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Abstract

This thesis investigates the crepant (partial) resolutions of cA,, singularities and their asso-

ciated Gopakumar—Vafa (GV) invariants via noncommutative contraction algebras.

We begin in Chapter 3 by generalising GV invariants to crepant partial resolutions of cA,
singularities and demonstrate that these generalised invariants satisfy Toda’s formula. Fur-
thermore, we prove that generalised GV invariants are determined by the isomorphism class

of the contraction algebra.

In Chapter 4 we focus on crepant resolutions of cA, singularities, and introduce several
intrinsic definitions of a Type A potential on the doubled A, quiver (),,, which includes a

single loop at each vertex. Through applying coordinate changes, we then:
(1) Via monomialization, expresses these potentials in a particularly nice form;
(2) Show that Type A potentials classify crepant resolutions of cA, singularities;
(3) Confirm the Realisation Conjecture of Brown—Wemyss within this context.

We also provide an example of a non-isolated cA, singularity which illustrates that the

Donovan—Wemyss Conjecture fails for non-isolated ¢DV singularities.

Building upon the correspondence between crepant resolutions of cA,, singularities and mono-

mialized Type A potentials, in Chapter 5 we:

(1) Introduce a filtration structure on the parameter space of monomialized Type A po-

tentials with respect to the generalised GV invariants;

(2) Derive numerical constraints on the possible tuples of GV invariants, and explicitly

classify all tuples arising from crepant resolutions of cA, singularities.

For n < 3, in Chapter 6 we further provide a complete classification of Type A potentials
(without loops) up to isomorphism, as well as a classification of those with finite-dimensional
Jacobi algebras up to derived equivalence. These results yield various algebraic consequences,
including applications to certain tame algebras of quaternion type studied by Erdmann, for

which we describe all basic algebras within the derived equivalence class.
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Chapter 1

Introduction

We begin with a broad introduction to several key concepts central to this thesis: the
Minimal Model Program, noncommutative crepant resolutions, contraction algebras, and

Gopakumar—Vafa invariants.

Following this, we summarise our main results, outline the structure of the thesis, and

establish the notation and conventions used throughout.

Readers familiar with the background who wish to proceed directly to the new contributions

may skip ahead to §1.5.

§ 1.1 | Minimal model program

In algebraic geometry, smooth varieties are generally better behaved than singular ones.
Given a singular variety X, a natural goal is to construct a proper birational map X — X
such that X is smooth. Such a X is called a resolution of X, and the landmark result of [H1]
guarantees the existence of resolutions in all dimensions when the base field has characteristic

Zero.

It is then natural to ask for the “best” resolution of X. More precisely, one seeks a resolution
7t: X — X such that every other resolution of X factors through 7; such a resolution is known
as a minimal resolution. For curves and surfaces, minimal resolutions always exist and are

unique [C1].

Let us consider a surface example. Let G be a finite subgroup of SL(2, C), acting on the plane
C? via matrix multiplication. The quotient C?/G is then locally isomorphic to Spec C[x, y]¢,
where C[z,y]“ denotes the ring of invariants under the group action. Under the action of
G, these quotients define isolated surface singularities known as Kleinian singularities (or

Du Val singularities), which are classified into types A, D, and E; see e.g. [R1].

0

wil

h

w
Example 1.1.1. Let G be the group generated by ( 0 ) , where w is a primitive n'
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root of unity. Then,

Cllz, y]“ = Clla",y", 2y]] = Clla, b, ]}/ (ab — ") .

Each Kleinian singularity contains a unique singular point at the origin. The unique minimal
resolution of a Kleinian singularity exists and is an isomorphism away from the singular point.
Moreover, the preimage of this point is a finite chain of rational curves linked in a Dynkin

configuration (see [D]). We refer to this preimage as the ezceptional curves of the resolution.

Example 1.1.1 describes the Kleinian singularity of type A,,_1, whose minimal resolution has

n — 1 exceptional curves.

For n = 2 in Example 1.1.1, as the following picture illustrates, X is the A; Kleinian singu-

larity and its minimal resolution X has only one exceptional curve.

Figure 1.1: The minimal resolution X of the A; Kleinian singularity X

However, in higher-dimensional varieties, a minimal resolution may not exist. Thus, Mori
and Reid introduced the notion of a minimal model, whose central idea is that the crep-
ancy property [R1]—that is, remaining close to the original space—is more important than
achieving smoothness. Instead of requiring smoothness, one asks for a crepant morphism
m: Y — X such that the singularities of Y are “not too bad”. When the minimal model Y

happens to be smooth, we refer to 7t as a crepant resolution.

For Kleinian singularities, the crepant resolution and minimal resolution coincide, and hence
there is a unique minimal model [R1]. However, even in dimension three, the minimal model

may not be unique.

Example 1.1.2. (Atiyah Flop) Let X = Spec Clu, v, z, ]|/ (uv — xy). Blowing up the origin
of X yields a resolution 7t: X — X with exceptional locus P! x PL. Although X is smooth, it

is considered “too far away” from the original space X to qualify as a minimal model.

However, we can obtain minimal models of X from this resolution: contracting either copy
of P! gives two varieties, X; and X,. Both morphisms 71; and 75 are crepant resolutions
(i.e., minimal models), but neither factors through the other [A2]. Thus, X does not admit a

unique minimal resolution, and its crepant resolutions (i.e. minimal models) are not unique.
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Figure 1.2: Atiyah Flop

In Example 1.1.2, the minimal models X; and Xy are smooth. However, minimal models are

not always smooth (see e.g. Example 2.2.4(3) below).

The variety X in Example 1.1.2 belongs to the class of compound Du Val (¢DV) singularities,
which are natural three-dimensional generalisations of Du Val singularities. More precisely,
they can always be locally expressed in the form f(u,v,z)+tg(u,v, x,t) = 0, where f defines
a Du Val singularity and g is any polynomial [R1].

The cDV singularities admit minimal models but do not always admit crepant resolutions, as
shown in Example 2.2.4(3) (see also [K1]). Like Du Val singularities, the exceptional curves
of a minimal model of a ¢cDV singularity form a finite chain of rational curves, although they

are not necessarily linked in a Dynkin configuration.

Since minimal models of ¢DV singularities may not be unique—as in Example 1.1.2—a nat-
ural question arises: how are different minimal models related? Kollar showed that any two
minimal models of an isolated cDV singularity are connected by a finite sequence of special
birational maps called flops, which are isomorphisms in codimension one [K1]. Roughly
speaking, a flop transforms one minimal model into another by cutting some exceptional

curves in the current model and re-gluing them in the opposite orientation.

Returning to Example 1.1.2, the exceptional curve in both 7, and 71, is P!, and X, is a flop

of X;. This is the simplest three-dimensional flop, known as the Atiyah Flop [A2].

More generally, given a minimal model 71: Y — X = SpecR, where R is a cDV singularity,
by e.g. [W2, §2] we can factor 7t by contracting some of the exceptional curves. This yields

a sequence of morphisms Y — Yeon , X, where 70 is called a crepant partial resolution of X.

Thus, we have the following hierarchy:

crepant resolutions C minimal models C crepant partial resolutions.

§ 1.2 | Noncommutative crepant resolutions

There is also a ‘noncommutative geometry’ approach to the minimal model program, which
takes a different tack by replacing varieties with noncommutative objects, such as noncom-

mutative algebras and bounded derived categories of coherent sheaves.
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Example 1.2.1. Consider the sheaves O, O(1), ..., O(n) on P", which generate D" (P").
Set V, =0®0(1) @ ---® O(n). By [B2] there exists a derived equivalence

R Hom (V,, —) : D (coh P") = D (mod Endp» (V,,)),

where R Hom (V,,, —) denotes the derived functor of Hom (V,,, —). The algebra Endpx(V),) is
noncommutative and can be presented as a quiver with relations. Thus, one can now study

the algebraic properties of this quiver to learn about the geometry of P".

More generally, if a variety X admits a tilting bundle (essentially, a generator V of D?(coh X)
with vanishing higher self-Ext group) then D°(coh X) is derived equivalent to D’(mod Endx(V))
[V1]. In Example 1.2.1 above, the bundle O @ O(1) @ --- @ O(n) is a tilting bundle on P".

This idea also applies to crepant resolutions of Kleinian singularities as follows.

Theorem 1.2.2. [KV] Let t: X — Spec R be the crepant resolution of a Kleinian singular-
ity, and suppose R, My, ... M, are the indecomposable maximal Cohen—Macaulay R-modules.

Then there is a derived equivalence

D(coh X) ~ D (mod Endz(R & P Ml)> :
i=1
Since the derived category captures all the homological data of an object, this theorem shows

that the homological information of the variety X is precisely the same as that of the algebra
Endg (R ® @], M;).

Inspired by the above result for Kleinian singularities, Van den Bergh introduced the notion

of noncommutative crepant resolutions (NCCRs) in dimension three [V2].

Definition 1.2.3. A noncommutative crepant resolution (NCCR) of a Gorenstein ring R
is a ring of the form A := Endg(M) for some finitely generated reflexive R-module M, such

that A has finite global dimension and is mazimal Cohen-Macaulay (CM) as an R-module.

Given a crepant resolution 7t: X — Spec R where R is a ¢DV singularity, Van den Bergh
demonstrated how such an algebra A can be constructed. This leads to the following theorem,

which may be regarded as a three-dimensional analogue of Theorem 1.2.2.

Theorem 1.2.4. [V1] Let m: X — SpecXR be a crepant resolution of a c¢DV singularity
SpecR. Then there ezists a CM R-module M such that A := Endg(M) is an NCCR of R

and further, there is a derived equivalence

DP(coh X) ~ D"(modA).

The variety X can in fact be recovered from the algebra A via quiver GIT (Geometric
Invariant Theory) [K4]. This shows that to study a crepant resolution of a ¢cDV singularity,
one can equivalently study the corresponding NCCR.

4
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Example 1.2.5. (Pagoda Flop) Consider the ¢cDV singularity given by
R =Cllu,v,z, yl}/(uo — z(z +y")),
where n > 1. Note that when n = 1, Spec R is isomorphic to the X in Example 1.1.2 (Atiyah

Flop), up to a coordinate change. Similarly, here Spec R also admits two minimal models.

One NCCR is Endg(R&(u, x)), which can be presented as the following quiver with relations:

lla = CLZQ

¢ lib = bly
L C R ?s% x)i) " los = sly
&7 It =t

t [ =at —bs

13 =ta—sb

Example 1.2.6. Consider the ¢DV singularity given by
R = Cllu, v, 2,y]]/(uv — zy(z +y")),

where n > 1. In this example, Spec R has six minimal models (see e.g. [SW]).

One NCCR is Endy(R & (u,z) & (u,zy)), which can be presented as the following quiver

with relations

0l

(U, x) — (u7 :Uy) la() = a0a1b1

\>b0 ) // bol = aybybo

0 a agl == b1a1a2
\\‘ ‘// by = babray
R blboao + b1 (albl)" = a2b2b1

U boapay + (arbr)"ar = ajaszby
! aobo + "= bg(lg

When 7t is a singular minimal model (respectively, a crepant partial resolution), Iyama—Wemyss
[[W2] generalise the notion of NCCRs to mazimal modifying algebras and modifying alge-
bras, respectively. These generalizations also satisfy the derived equivalences described in

Theorem 1.2.4, along with other desirable properties (see also Section 2.3).

§ 1.3 | Contraction algebras

Contraction algebras originally arose from a somewhat different motivation: the introduction
of noncommutative algebras into deformation theory. The basic idea of deformation theory

is to study how structures can be extended along infinitesimal directions.
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More precisely, given a geometric object Y and a commutative local ring S, a deformation

of Y over S is a flat family Y over S whose fibre over the closed point is precisely Y.

For example, given a crepant partial resolution 7t: X — Spec R with a single exceptional
curve, we can consider deformations of that curve. Donovan—Wemyss [DW1] introduced
noncommutative deformations of this curve and showed that considering only commutative
deformations fails to capture certain geometric features. This provides further evidence that

noncommutative algebra is a powerful tool in algebraic geometry.

In this setting of a single exceptional curve, the contraction algebra can be defined as the
representing object of the functor of noncommutative deformations of the curve. For crepant
partial resolutions with multiple exceptional curves, the contraction algebra can be defined

similarly—as the representing object of a functor of pointed noncommutative deformations.

Due to the correspondence between crepant partial resolutions of a ¢DV singularity and its

modifying algebras (see §2.3.4), we adopt the following equivalent definition [DW1].

Definition 1.3.1. Given a crepant partial resolution m: X — SpecR of a complete local
cDV singularity, let M be the corresponding CM R-module in 2.3.4. Then, the contraction
algebra Acon(70) is defined to be

Endg (M) := Endg(M)/(R),
where (R) denotes the two-sided ideal consisting of all morphisms which factor through add R.

Since R is a direct summand of the CM R-module M, then the quiver of the contraction
algebra Endg (M) can be obtained from that of the NCCR Endg (M) simply by deleting the

vertex corresponding to R.

Example 1.3.2. Consider the Pagoda Flop in Example 1.2.5. The contraction algebra

associated to Endx(R & (u, x)) can be presented as the following quiver with relations

O

Thus the contraction algebra is isomorphic to C[[ls]] /(15).

Example 1.3.3. Consider Example 1.2.6. The contraction algebra associated to Endg(R @&

(u,x) @ (u,zy)) can be presented as the following quiver with relations

s bi(ab)" =0
(wa) T (way) @h)
((llbl) ap = 0
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Although the contraction algebra A, (7) is a quotient of the modifying algebra Endy (M),
it still recovers all known invariants of the crepant partial resolution 7t of a ¢cDV singularity

R, as follows:

(1) The quiver representation of the contraction algebra determines the dual graph, in-

cluding the normal bundle of the exceptional curves [W2].

(2) The crepant partial resolution is flopping (i.e., not contracting a divisor) if and only if

the dimension of its associated contraction algebra is finite [DW2] (see also §2.3.6).
If furthermore 7t is a crepant resolution and R is isolated, then

(3) The dimension of the contraction algebra is a weighted sum of the Gopakumar—Vafa

(GV) invariants of the crepant resolution [T2] (see also 1.4.1).

(4) The contraction algebra determines the GV invariants [HT, T2|, and moreover, it is a

strictly stronger invariant than the GV invariants themselves [BW1].

(5) The contraction algebra determines the ¢cDV singularity R [JKM, A.2] (see also 2.3.7).

§ 1.4 | Gopakumar—Vafa invariants

In this section, we introduce a curve invariant known as the Gopakumar—Vafa (GV) invariant,

which can be thought of as a virtual count of curves in a given curve class on a variety.

Gopakumar—Vafa (GV) invariants are designed to count the number of pseudo-holomorphic
curves and represent the number of BPS states on a Calabi-Yau 3-fold; it has been con-
jectured that this is equivalent to other curve counting Gromov-Witten invariants and

Pandharipande-Thomas invariants [MT].

The general approach to calculate GV invariants is to consider the moduli space of one-
dimensional stable sheaves on Calabi-Yau 3-folds satisfying some numerical conditions [K2],

and as such, it is usually hard to calculate them.

Now let 7t : X' — SpecR be a crepant resolution with exceptional curves |J; C; where R is a
cDV. Denote A;(m) := @;Z (C;) be the abelian group freely generated by C;.

Given a curve class B € A;(m) there is a Gopakumar—Vafa (GV) invariant GVg(m) which
counts the class § in X virtually. There are several equivalent interpretations of GVg(X)
(see 2.4.1).

Roughly speaking, the idea is to deform 7t into a disjoint union of the simplest types of
exceptional curves. Then, GVg(7) corresponds to the number of such curves with class f3.
However, the count is not naive—we refine it by using the structure of the flat family. This

allows us to split the total number of curves into contributions from specific curve classes
[BKL].

As noted in §1.3, if R is isolated, then the contraction algebra determines the GV invariants
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[HT, T2]. Moreover, one can extract GV invariants from the dimension of the contraction

algebra using the following result.

Theorem 1.4.1. (Toda’s formula, [T2, §4.4]) Let 7t: X — SpecR be a crepant resolution of

an isolated cDV singularity R with m exceptional curves. Then

diIIl(c Acon(’“) = Z | B |2GVf5 (7-[))
ﬁ:(f’l ----- BM)

where Bl =P1+ -+ Bm-

Example 1.4.2. Consider the Pagoda Flop from Example 1.2.5, and let 7t denote the crepant
resolution associated to R @ (u, x). Then Ao () = C[[l2]]/(1%), and so dimc Acon(7) = n.
(

Since 7t has a single exceptional curve C, Toda’s formula (Theorem 1.4.1) implies that
GVC (7’[) =nNn.

Example 1.4.3. Consider Example 1.3.3, and let 7t denote the crepant resolution associated

to R & (u,z) & (u, xy). There are two exceptional curves, C; and Cs, in 7.

The Acon(7r) has a C-basis given by
{e1,a1,a1b1,a1b1aq, ..., (a1b1)"} U{eq, by, bray, biaiby, ..., (byay)"},

where e; denotes the trivial path at vertex ¢ in the quiver presentation. Therefore, dime Acon (77) =

4dn + 2. It is known by e.g. [NW] that the only nonzero GV invariants are:

GVCl (7’[) = 1, GV02 (7'[) =1, Grvcl_,_c2 (7‘() =n.

We can verify Toda’s formula as follows:

> IBIPGV(n) =17 -GV, (1) + 17 - GV, (1) + 2% - GV, 40, () = 1+ 1+ 4n = dn + 2.
B=(B1,B2)

§ 1.5 | Main results

In this section, we summarise the main contributions of the thesis.
§1.5.1 | Generalised GV invariants

Two additional tools greatly simplify the computation of GV invariants in the context of
crepant partial resolutions of cA,, singularities. The first comes from Toda’s formula [T2] as
well as [HT, BW2], which suggests that GV invariants can be calculated by the dimension of
their associated contraction algebra. The second comes from [[W3], which gives a concrete
algebraic description of all crepant partial resolutions of cA,, singularities and their associated

contraction algebras.
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This subsection presents the consequences of these developments for curve-counting theories
in algebraic geometry—specifically GV invariants—and generalises them in two important

directions:
» to crepant partial resolutions, and
e to non-isolated cA, singularities.

It is worth highlighting that similar curve-counting invariants have also been investigated in
the physics literature. In particular, computations in [CSV, C3, DSV] evaluate M2-brane
BPS state counts—corresponding to five-dimensional hypermultiplets—for various classes of
cDV singularities. These include cases of crepant resolutions with a single exceptional curve,
as well as crepant partial resolutions of quasi-homogeneous isolated cDV singularities. Al-
though physically motivated, the resulting invariants yield precise mathematical predictions

that, in the cA,, setting, coincide with our generalised GV invariants.

Thus, the framework developed in this thesis provides a natural mathematical generalisation
of these physical calculations: it extends the validity of Toda’s formula to crepant partial
resolutions and to non-isolated cA, singularities, while simultaneously offering an algebraic
description in terms of contraction algebras. In this way, the results here not only recover
the predictions from physics in special cases but also place them in a broader and more

systematic mathematical setting.

Throughout, let 7t: X — Spec R be a crepant partial resolution where R is a (not necessarily
isolated) cA,, singularity. The case when X is smooth, equivalently when 7t is a crepant

resolution, will recover classical invariants and results.

We first introduce our new invariants, Ng(7r), which does not require smoothness of X, or
R to be isolated. To do this, write Cq, Cs, ..., C,, for the exceptional curves of 7t. For any
curve class § € @, Z (C;), consider

dime &2 if B = Ci + Cisy +...+C;
NB(T[) — C Ip B +1 j
0 else

where Ig € (z,y) is an ideal that depends on 3 and 7 (see 3.1.1).

The above generalised GV invariant is parallel to GV invariants, since when 7t is a crepant
resolution, then {C; + Cjy1 +---+C; | 1 < ¢ < j < m} are the only curve classes with

non-zero GV invariants [NW, V5].

We will show in 1.5.3 that in the special case when X is smooth, Vg is equivalent to GV for
all curve class 3, where GV is the integer-valued Gopakumar—Vafa (GV for short) invariant

of 3. This justifies us calling the Vg generalised GV invariants.

The following is our first result, which shows that Toda’s formula 1.4.1 holds in this more

general setting.
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Proposition 1.5.1 (3.2.4, 3.3.11). Let 7t be a crepant partial resolution of a cA,, singularity

with m exceptional curves. For any 1 < s <t <m, the following equality holds.

dimg esAcon(0)er = Z Bs - Bt Ng(mm) = dime e;Acon(T0)es.
B:(Blv"'vﬁm)

In particular, dime Aeon (1) = 35 |B|>Np(70) where |B| = B1+ -+ + B.

Hua—Toda [HT, T2] show that when X is smooth and R is isolated, the GV invariants are a
property of the isomorphism class of the contraction algebra. The following generalises this

to the crepant partial resolutions of (not necessarily isolated) cA,, singularities.

To ease notation, given a curve class = (f1,...,Bm), denote the reflective curve class
of B to be B := (Bom,-..,B1). This symmetry arises naturally from the involution of the
doubled A,, quiver, which reverses the orientation of the chain. Since the contraction algebra
is isomorphic to a quiver algebra of the doubled A,, quiver, the reflective class corresponds

to this quiver involution.

Theorem 1.5.2 (3.2.7, 3.3.11). Let m;: Xy — Spec Ry be two crepant partial resolutions of
cAy, singularities Ry with my, exceptional curves for k = 1,2. If Aeon(T1) = Acon(T12), then

my1 = mg and one of the following cases holds:
(1) Ng(my) = Ng(ma) for any curve class 3,
(2) Np(m) = Ng(ms) for any curve class 3.
The papers [NW, V5| give a combinatorial description of the matrix which controls the

transformation of the non-zero GV invariants under a flop (see §3.3.1 for cA,, cases). We

show in 3.2.8 that the generalised GV invariants also satisfy this transformation.

We next restrict ourselves to cases of crepant resolutions of (not necessarily isolated) cA,
singularities and show that whilst generalised GV invariants are not always equal to the GV

invariant, they are equivalent information.

Theorem 1.5.3 (3.3.8, 3.3.11). Let 7 be a crepant resolution of a cA, singularity. The

following holds for any curve class 3.

(1) Np(m) =00 <= GVg(m) = —1.

(2) Nﬁ(ﬂ) <00 <=~ GVB(T() = Nﬁ(ﬂf).
Together with 1.5.2, the following shows that the contraction algebra determines its associ-
ated GV invariants. This generalises the results in [HT, T2] to non-isolated cA,, cases.

Corollary 1.5.4 (3.2.7, 3.3.11). Let m;: X, — Spec Ry be two crepant resolutions of cA,
singularities Ry, for k =1,2. If Acon(701) = Acon(T12), then one of the following holds:

(1) GVg(my) = GVg(ma) for any curve class 3,
(2) GVp(m1) = GVg(7a) for any curve class .

10
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§1.5.2 | Monomialization and geometric realization

We now restrict our attention to the smooth case. Let 7t : X — Spec R be a crepant resolution
with R ¢DV. The contraction algebra A, (7) is isomorphic to the Jacobi algebra of a quiver
with some potential [V3], and it classifies Spec R complete locally if R is furthermore isolated
[JKM] (see also 2.3.7).

This motivates classifying Jacobi algebras (equivalently, their potentials) on various quivers,

as this immediately then classifies certain crepant resolutions.

In this subsection, we introduce various intrinsic algebraic definitions of a Type A potential
on the double A,, quiver @,, (with a single loop at each vertex). Then via coordinate changes,
we give a monomialization result that expresses these potentials in a particularly nice form,
and show that these potentials precisely correspond to cA,, crepant resolutions, which solves

the Realisation Conjecture of Brown-Wemyss in Type A cases [BW2].

Together, these results can be viewed as a noncommutative generalization of the classification
of simple singularities by commutative polynomials [A1], and also a generalisation of the fact
that the germ of a complex analytic hypersurface with an isolated singularity is determined
by its Tjurina algebra [MY].

For any fixed n > 1, consider the following quiver (),, which is the double of the usual A,
quiver, with a single loop at each vertex. Label the arrows of @),, left to right, as illustrated

below.

1 2 3 n—1 n
b bs bon—2

Quiver (Q,, which has loop as;_1 at each vertex 1.

From this, define elements x; and x; as follows: first, set by;_; to be the trivial path e; at

vertex i, for any 1 < i <n. Then for any 1 <i < 2n — 1, set x; := a;b; and x; := b;a;.

For example, in the case n = 3,

a1 as as X1:X/1:CL1
(a2 (1) as .
TR e > X3 = X3 = a3
1 2 3

bo by

whereas xo = asby, X, = beay, and x4 = ayby, X, = byay.

Given the above x; and x!, we first define a reduced Type A potential on @, to be any reduced
potential f that contains the terms x/x;1 forall 1 <7 <2n—2. A Type A potential on Q,, is

then defined in 4.1.4, but for this introduction we only require the concept of a monomialized

11
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Type A potential on @, which is defined to be any potential of the form

2n—2 2n—1 oo .

/ J
DECIETD D) B
=1 i=1 j=2

for some k;; € C. We will show in 4.1.20 and 4.1.23 that any Type A potential is isomorphic

to some monomialized Type A potential, and so the above monomialized version suffices.

The first main result is that the complete Jacobi algebra (denoted Jac) of any Type A
potential on @), can be realized as the contraction algebra of a crepant resolution of some

cA,, singularity.

Theorem 1.5.5 (4.2.12). For any Type A potential f on Q, where n > 1, there exists a
crepant resolution m: X — Spec R where R is cA,,, such that Jac(f) = Acon(TT).

The Brown—Wemyss Realisation Conjecture [BW2] states that if f is any potential for which
Jac(f) is either finite-dimensional, or infinite-dimensional but with at most linear growth
in the successive quotients by powers of its Jacobi ideal, then Jac(f) is isomorphic to the
contraction algebra of some crepant resolution X — Spec R, with R ¢cDV. The above result

1.5.5 confirms this Realisation Conjecture for any Type A potential on @),, with n > 1.
We then obtain the converse to 1.5.5 (see 4.2.15), which shows that our definition of Type
A potential is intrinsic. The definition of the quiver ), ; and Type A,, ; crepant resolutions
are given in §4.1 and 4.2.11.
Corollary 1.5.6 (4.2.16). Let f be a reduced potential on Q. ;. The following are equivalent.
(1) f is Type A.
(2) There exists a Type A, 1 crepant resolution Tt such that Jac(f) = Acon (7).

(3) e;dac(f)e; is commutative for 1 < i < n.

Moreover, there is a correspondence between crepant resolutions of cA,, singularities and our

intrinsic noncommutative monomialized Type A potentials, as follows.

Corollary 1.5.7 (4.2.19). For any n, the set of isomorphism classes of contraction algebras
associated to crepant resolutions of cA,, singularities is equal to the set of isomorphism classes

of Jacobi algebras of monomialized Type A potentials on Q.

Then, after restricting to those cA,, singularities which are isolated, we obtain the following

consequence.

12
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Theorem 1.5.8 (4.2.21). For any n, there exists a one-to-one correspondence

isomorphism classes of isolated cA, singularities

which admit smooth flopping contractions

!

derived equivalence classes of monomialized Type A potentials on @),

with finite-dimensional Jacobi algebra

We establish the correspondence in 1.5.8 for isolated cA,, singularities, as our proof relies
on the Donovan—-Wemyss Conjecture 2.3.7, which is known to hold only for isolated ¢cDV
singularities. This naturally suggests the idea of extending the Donovan—-Wemyss Conjecture

to non-isolated cases.

However, in §4.2.3, we present an explicit example of a non-isolated cAs singularity, demon-
strating in 4.2.26 that the Donovan—Wemyss Conjecture does not extend to non-isolated

cDV singularities.
§1.5.3 | Filtrations and obstructions
In this subsection, we continue under the assumption that X is smooth (equivalently, that 7t

is a crepant resolution).

The correspondence established in 1.5.7—between crepant resolutions of cA, singularities
and monomialized Type A potentials on (Q,—motivates filtration structures of the parameter

space of such monomialized potentials with respect to their generalised GV invariants.

Recall that a monomialized Type A potential on @), is any potential of the form

2n—2 2n—1 oo
Z X;Xi+1 + Z Z ]{I”XZ, (15A)
i=1 i=1 j=2

for some k;; € C. Since contraction algebra determines its associated GV invariants in 1.5.4,
the correspondence in 1.5.7 inspires us to approach GV invariants of cA,, crepant resolutions

through their corresponding monomialized Type A potentials on @),,.

So, given any n, we consider the set of all monomialized Type A potentials on @,, (1.5.A)

2n—2 2n—1 oo )
Fl) = D0 xixipr + > D Kiyxi,
i=1 i=1 j=2

over the parameter space

M := {(ki2, k13, ..., koo, kas, . . ., kon—12,kan—13,...) | all k;; € C}.

Based on the above correspondence between monomialized Type A potentials on ), and

13
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crepant resolutions of cA,, singularities, given any f € M we define generalised GV invariants

N;(f) through its associated crepant resolution (see 5.2.1).

The following gives a filtration structure on the parameter space M of monomialized Type

A potentials on @), with respect to generalised GV invariants.

Theorem 1.5.9 (5.3.8). Fiz some s, t satisfying 1 < s < t < n and the curve class
B=Cs+Csi1+ -4+ Ci. Then M has a filtration structure M = My 2D My D Mz 2D ---
such that

(1) For eachi>1, Ng(f(k)) =1 for all k € M;\M;;.
(2) Fach M; is the zero locus of some polynomial system of K.

(3) If s =t, then for eachi > 2, M; ={k € M | kos_1; =0 for 2 < j <i}.

It should be emphasized that the filtration in 1.5.9 strongly depends on the curve class [3;

as these vary, so does the filtration.

For any curve class 3 and N € N, := NUoo, then by 1.5.9 there exists a crepant resolution 7t
of a cA,, singularity such that Ng(7r) = N. However, this is no longer true when considering
generalised GV invariants of different curve classes simultaneously. So we next discuss the
obstructions and constructions of the generalised GV invariants that can arise from crepant

resolutions of cA,, singularities.

Notation 1.5.10 (5.4.3, 5.4.4). Fix some curve class f = C; + C41 + -+ + Gy, and a
tuple (qs, Gss1,---,q) € NiZ5TL Set quin := min{¢;}, and consider the subset of crepant

resolutions of cA, singularities with respect to (gs, ..., q) defined as

CAq := {cA, crepant resolution 7t | (N¢, (), N, (70), ..., Ne, (7)) = (¢ss @415 - -, @) }-

The following is the main obstruction result, which is new even in the case when X is smooth
and R is isolated (in which case Ny = GV by 1.5.4).

Theorem 1.5.11 (5.4.7). For any s andt with1 < s <t < n, and any tuple (qs, Gss1,---,q) €
NEsTL with notation in 1.5.10 and B := C4+ Cyyy + - - -+ Cy, the following statements hold.

(1) For any m € CAq necessarily Ng(T) > Qmin, and moreover there exists 1 € CAq such
that NB (7'[) = Qmin-

(2) When dmin is finite, the equality Np(7) = Qmin holds for all m € CAq if and only if
#{Z ’ q; = qmin} =1

We show in 5.4.12 that the actions on curve classes from [NW, 5.4] and [V5, 5.10], together
with 1.5.11, give more obstructions and constructions of the possible tuples that can arise.

One sample result is the following; many others are left to the end of §5.4.

14
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Corollary 1.5.12 (5.4.15). The generalised GV invariants of crepant resolutions of cAs

singularities have the following two possibilities:

NC1 NC2 p q P p
NC1+C2 N min(p, Q) or r

where p, q, r € Ny with p # q and r > p. All possible such p,q,r arise.

§ 1.5.4 | Special cases: A3

In the case of the double Az quiver without loops, it is possible to describe the full iso-
morphism classes of Type A potentials, and the derived equivalence classes of those with
finite-dimensional Jacobi algebras. This generalises [DWZ, E1, H2].

To ease notation, consider now the following labelling.

b1 by X = biai, y = azby

Double A3z quiver without loops @)

Given two potentials f and g on @), we say that f is isomorphic to g, written f = g, if the
corresponding Jacobi algebras are isomorphic (see 2.1.8). Similarly, we say that f is derived
equivalent to g, written f ~ g, if the corresponding Jacobi algebras are derived equivalent
(see 4.2.20).

Theorem 1.5.13 (6.1.17). Any Type A potential on QQ must be isomorphic to one of the

following isomorphism classes of potentials:
(1) x* 4+ xy + Ay? for any 0,1 #A € C.

(2) x> +xy + 1y* +x" for any r > 3.

(3) xP +xy +y? = x9+xy+yP for any (p,q) # (2,2).

(

(

>

)
)

4) x* 4+ xy + 3y*.
) XP+xy Zxy +yP for any p > 2.
)

(6) xy.

The Jacobi algebras of these potentials are all mutually non-isomorphic (except those iso-
morphisms stated), and in particular the Jacobi algebras with different parameters in the

same item are non-isomorphic.

The Jacobi algebras in (1), (2), (3) are realized by crepant resolutions of isolated cAs sin-
gularities, and those in (4), (5), (6) are realized by crepant resolutions of non-isolated cAs

singularities.

15
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Theorem 1.5.14 (6.2.6). The following groups the Type A potentials on Q with finite-
dimensional Jacobi algebra into sets, where all the Jacobi algebras in a given set are derived

equivalent.

(2) {x2+xy+y% x> +xy +y?, x4+ xy + Ly* + xP} forp > 3.
(3) {X+xy +y?, xI+xy +y’} forp >3 and ¢ > 3.

Moreover, the Jacobi algebras of the sets in (1)—(3) are all mutually not derived equivalent,
and in particular the Jacobi algebras of different sets in the same item are not derived equiv-
alent. In (1) there are no further basic algebras in the derived equivalence class, whereas
in (2)—(3) there are an additional finite number of basic algebras in the derived equivalence

class.

Next, recall the definition of the quaternion type quiver algebra A, ,(u) in [E1, H2], which

is the completion of the path algebra of the quiver () modulo the relations
a1asby — (a1b1)P " ay, babray — (boag)? 'ba, asboby — (bray )P 'by, biaras — w(ashs)?  as,

where u € C and p,q > 2. Note we have fewer relations than in [E1, H2] since we are

working with the completion. In fact A4, ,(n) = Jac(Q, f), where
1

The following improves various results of Erdmann and Holm [E1, H2].

Corollary 1.5.15 (6.2.9). The following groups those algebras A, ,(1) which are finite-

dimensional into sets, where all the algebras in a given set are derived equivalent.
(1) {A2,2<u/) | PL/ =W, I W, 1%“7 ?Hp %17 i} fOT 28 7& 07 L.
(2) {4p4(1), Agp(D)} for (p,q) # (2,2).

Moreover, the algebras in different sets in (1)—(2) are all mutually not derived equivalent. In
(1) there are no further basic algebras in the derived equivalence class, whereas in (2) there

are an additional finite number of basic algebras in the derived equivalence class.

§ 1.6 | Outline of the thesis

Chapter 2 provides the necessary preliminaries, particularly covering quivers with potential,

contraction algebras, and Gopakumar—Vafa (GV) invariants.

Chapter 3 introduces generalised GV invariants, extending the classical GV invariants to
include crepant partial resolutions of cA,, singularities. We also show that these generalised

invariants satisfy Toda’s formula and are determined by their associated contraction algebras.

16
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In Chapter 4, we introduce Type A potentials on ),, and prove that every Type A potential
can be transformed into a monomialized form. We then show that each such monomialized
potential can be realized by a crepant resolution of a cA,, singularity. Finally, we establish
a correspondence between crepant resolutions of cA,, singularities and our intrinsic Type A

potentials.

Chapter 5 constructs filtration structures on the parameter space of monomialized Type A
potentials on @), with respect to generalised GV invariants. Based on this filtration, we
describe obstructions and constructions for the possible tuples of GV invariants that can

arise from crepant resolutions of cA,, singularities.

In Chapter 6, we specialize to the simplest case: the doubled Az quiver without loops.
We classify all Type A potentials on this quiver up to isomorphism, as well as those with

finite-dimensional Jacobi algebras up to derived equivalence.

The Appendix provides a quiver presentation of the NCCR of the Type A universal flop,

which is used in proving the geometric realization results presented in Chapter 4.

§ 1.7 | Notation and conventions

Throughout this paper, we work over the complex number C, which is necessary for various
statements in §2.2 and §2.3.

The definitions of @), ; and x; are fundamental, and are repeated in §4.1 for reference. We

adopt the following notation:

(1) The integer n always refers to the n in cA,, singularities, and also to the number of
vertices in the quivers @), and @, ;. The subset I C {1,2,...,n} denotes the vertices

without loops in the quiver @), ;.

(2) In Chapter 3, the integer m refers to the number of exceptional curves in a crepant
partial resolution of a cA,, singularity. In Chapter 4, we define m := 2n—1—|I|, which

equals the number of variables x; in the quiver ), ;.

(3) R will always denote a set of relations in a quiver, except in the Appendix, where R

refers to a reduction system for a path algebra.

(4) R always denotes a complete local cDV singularity. Moreover, R refers to a complete

local cA,, singularity in Chapters 3, 4, and 5.

(5) Denote CM R for the category of maximal Cohen—Macaulay R-modules and CM R for
the stable category of CM R.

(6) Denote MR (resp. MM ®R) for the category of modifying (resp. maximal modifying)

R-modules.

(7) Given a crepant partial resolution 7t of a ¢cDV singularity, we write A(7t) for the modi-

17
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fication algebra and A, (71) for the contraction algebra. All modules over these non-

commutative rings are taken to be right modules.

(8) e; denotes the trivial path at vertex i in @),,, and also the trivial path at vertex i in the

quiver presentations of A(7r) or Acon(71).

(9) Given a crepant (resp. partial) resolution 7t: X — SpecR of a cA,, singularity R, we
write GV;;(m) (resp. N;j(m)) for the classical (resp. generalised) GV invariant of the
curve class C; + Cj41 +---+ C; in X.

(10) In Chapter 5, when considering the parameter space of monomialized Type A po-
tentials, k;; denotes a variable and k represents a tuple of such variables k;; (see

Definition 5.1.1). In other chapters, k;; is simply treated as a complex number.

(11) We denote isomorphisms of algebras by =, and derived equivalences of triangulated

categories by ~.

(12) The dimension of a vector space V over C is written as dim¢ V.

18
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Chapter 2

Preliminaries

In this chapter, we provide the necessary background for the results in this thesis. This
includes a brief introduction to quivers with potential, minimal models of compound Du Val
(cDV) singularities, the construction of contraction algebras, and various interpretations of

Gopakumar—Vafa (GV) invariants.

§ 2.1 | Quiver with potential

To set notation, consider a quiver Q@ = (Qo, Q1,t, h) which consists of a finite set of vertices
Qo, of arrows ()1, with two maps h: Q1 — @ and t: Q1 — Qo called the head and tail

respectively.

A loop a is an arrow satisfying h(a) = t(a), and a path is a formal expression ajas...a,
where h(a;) = t(a;41) for each 1 <4
the notation by setting t(a) := t(ay) for its starting vertex and h(a) := h(a,) for its ending

< n — 1. For such a path a = ajas---a,, we extend

vertex. A path a is cyclic if h(a) = t(a).

Given a field k, the complete path algebra k{Q) is defined to be the completion of the usual
path algebra k(Q). That is, the elements of k{Q) are possibly infinite k-linear combinations
of paths in Q.

Write mg, or simply m, for the two-sided ideal of k(@) generated by the elements of @1,
and write Ag, or simply A, for the k-span of the elements of @);.
Definition 2.1.1. Suppose that @ is a quiver with arrow span A.

(1) A relation of Q is a k-linear combination of paths in Q, each with the same head and
tail.

(2) Given a finite number of specified relations Ry, ..., R,, we can form the closure of the
two-sided idea R := kQR1kQ + ...+ EQR,kQ of kQ. We call (Q, R) a quiver with
relations, and we call k{Q))/R the complete path algebra of a quiver with relations.

(3) A quiver with potential (QP for short) is a pair (Q, W) where W is a k-linear combi-
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nation of cyclic paths.

(4) For anyn > 1, set W, to be the nth homogeneous component of W with respect to the
path length.

(5) For each a € Qy and cyclic path a; ...aq in Q, define the cyclic derivative as

d
aa ((11 ce ad) = Z 5a,a,-ai+l R % (¢ I 0 i |
i=1

(where dq 4, is the Kronecker delta), and then extend 9, by linearity.

(6) For every potential W, the Jacobi ideal J(W) is defined to be the closure of the two-
sided ideal in k{Q)) generated by 0,W for all a € Q.

(7) The Jacobi algebra Jac(Q,W) or Jac(A, W) is the quotient k{Q)/J(W). We write
Jac(W) when the quiver Q is obvious.

(8) For every potential W, write dW for the k-span of 9,W for all a € Q.

(9) We call a QP (Q, W) reduced if Wy = 0. It is called trivial if W,, = 0 for all n > 3,
and further oW = A.

Example 2.1.2. Consider the one loop quiver ) with potential W = a2,

a

()

The complete path algebra k(@) is k[a]]. Moreover, Jac(Q,W) = k[a]l/(a) = k since
04(a?) = 2a. Since W,, = 0 for all n > 3 and OW = ka = Ag, this QP (Q, W) is trivial.

Notation 2.1.3. For A := k{Q)), consider {A, A}, the commutator vector space of k{Q).

That is, elements of {A, A} are finite sums

n

> ki(pigi — aips)

=1

for elements p;, q; € k(@) and k; € C. Write {{A, A} for the closure of the commutator
vector space {A, A}.

Definition 2.1.4. Two potentials W and W' are cyclically equivalent (written W ~ W) if
W —W' e {A AR} Wewrite W AW if W ~ W' and W — W' € m'.

Remark 2.1.5. Note that if two potentials W and W’ are cyclically equivalent, then 9,W =
0,W' for all a € @y, and hence Jac(Q,W) = Jac(Q,W') [DWZ, 3.3]. Since we aim to
classify the Jacobi algebras up to isomorphism, we always consider the potentials up to

cyclic equivalence.

20



CHAPTER 2. PRELIMINARIES 21

Given an algebra homomorphism ¢: k(@) — k{Q’) such that ¢|; = id which sends mg
to mg, write g0|AQ = (p1,2) where @1: Ag — Ag and @o: Ag — mg, are k-module

homomorphisms.

Proposition 2.1.6. [DWZ, 2.4] Given two quivers Q and Q', any pair (p1,p2) of k-module
homomorphisms p1: Ag — Ag and py: Ag — mé, gives rise to a unique homomorphism of
algebras : k(Q) — k{(Q') such that ¢l =id and ¢|,, = (¢1,¢2). Furthermore, ¢ is an

isomorphism if and only if v1 is a k-module isomorphism Ag — Agr.

From the above result, whenever we construct an automorphism ¢: k{Q) — k(@) in §4.1

and §6, it will always be the case that |, = id, so we will only describe |4, .

Definition 2.1.7. An algebra homomorphism ¢: k{Q) — k{Q) is called a unitriangular
automorphism if |, = id and p; = id. Fori > 1, we say that ¢ has depth i provided that
p2(a) € mgf! for alla € Q.

Definition 2.1.8. Let f and g be potentials on a quiver Q).
(1) We say that f is isomorphic to g (written f = g) if Jac(f) = Jac(g) as algebras.

(2) If there exists an algebra isomorphism ¢: k{QY) — k{Q) such that |, = id and
o(f) = g, then we write v: f v+ g and say that f is equivalent to g.

(3) If there exists an algebra isomorphism ¢: k{(Q) — k{Q) such that |, = id and
o(f) ~ g, then we write p: f ~> g and say that f is right-equivalent to g.

(4) For i > 1, if there exists a unitriangular ¢: k{Q) — k{Q)) such that ¢ has depth
greater than or equal to i, and further o(f) wt g, then we write p: f ~ g and say that
f is path degree 7 right-equivalent to g.

We follow the definition of right-equivalence in [DWZ, 4.2]. Moreover, from [DWZ, p12],
f ~ g induces f = ¢, and further a finite sequence of right-equivalences is still a right-
equivalence. By 2.1.6, f NS g induces f ~» g. Thus, together with the above definition, we
obtain

frg or freg or feg = fwg = f2g

~J

The Jacobi algebra isomorphism = is the equivalence relation that we aim to classify the
potentials up to. The main idea is to start with a potential f, then transform it by a
sequence of automorphisms which chases terms into higher and higher degrees. Composing
this sequence of automorphisms then gives a single automorphism which takes f to the
desired form (see §4.1 and §6.1).

The subtle point is that at each stage, the automorphism only gives the desired potential
up to cyclic equivalence (e.g. ~», ~). Given an infinite sequence of path degree i right-
equivalences ;: f; ~ fip1 for i > 1, the following asserts that lim f; exists, and further

there exists a right-equivalence F': f; ~~ lim f;.
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Theorem 2.1.9. [BW2, 2.9] Let [ be a potential, and set fi = f. Suppose that there exist

elements fo, f3, ...and automorphisms vy, s, ..., such that
(1) Every p; is unitriangular of depth of > i, and
(2) ()Ol(f,L) i"tl fi+1; fOT all i Z 1.

Then lim f; exists, and there exists an automorphism F such that F(f) ~ lim f;.

§ 2.2 | Minimal models and flops

Throughout the remainder of this thesis, the notation R will be reserved for the singularities

of the following form.

Definition 2.2.1. A complete local C-algebra R is called a compound Du Val (¢cDV) singu-

larity if
Cllu, v, x, t]]

[ +tg

where f € Cllu,v,x] defines a Du Val, or equivalently Kleinian, surface singularity and

R =

g € Cllu, v, x,t] is arbitrary.

In other words, a cDV singularity is a threefold singularity such that any generic surface
slice through it is a Kleinian singularity. These surface singularities are well understood and

are classified by simply laced Dynkin diagrams.

Like the Kleinian surface singularities they generalise, cDV singularities are also catego-
rized into types A, D, and E, corresponding to the ADE Dynkin diagrams. Type A ¢cDV
singularities take the following form:

Cllu, v, z, y]
w — fofi... fi’

where each f; is a prime element of C[[z,y]]. We refer to such an R as a cA,_; singularity,

R (2.2.A)

where n is the order of the product fyfi... f; viewed as a power series.
Definition 2.2.2. Let t: X — SpecXR be a proper birational morphism.
(1) We call 7t a crepant partial resolution if wy = T wsg.

(2) We call X a minimal model of SpecR if 7t is a crepant partial resolution and X has
only Q-factorial terminal singularities (see [W2, §2| for a definition). When X is

furthermore smooth, we call 7t a crepant resolution.

(3) When R is isolated, crepant partial resolutions and crepant resolutions are equivalently

called flopping contractions and smooth flopping contractions, respectively.

Remark 2.2.3. In general, the definition of a crepant (partial) resolution only requires
7t to be proper. For crepant partial resolutions of ¢cDV singularities, projectivity follows

automatically (see e.g. [W2]), so in this case every crepant resolution is projective.
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All minimal models of ¢cDV singularities have fibres of dimension at most one. Therefore,

any crepant partial resolution X — Spec R falls into one of two types:

o A curve-to-point contraction, which arises when R is isolated, or

o A divisor-to-curve contraction, which arises when R is non-isolated.

To illustrate this distinction intuitively, consider the following sketch depiction of the simplest

case—where a single curve lies above the origin. The difference between the two cases is

(0

| . l

We already noted in §1.1 that crepant resolutions do not always exist for ¢cDV singularities.
For the Type A ¢DV singularity defined by (2.2.A), we have the following facts.

o Risisolated. <= (f;) # (f;) for all i # j [IW3].

visualised below:

« R admits a crepant resolution. <= each f; has a linear term [BIKR, IW3].

Example 2.2.4. We present three examples of Type A ¢DV singularities.
(1) Recall the Pagoda Flop from Example 1.1.2, given by

R = Cllu, v, 2,y]}/ (wo — 2z +y")).

The Spec R is an isolated cA; singularity. Blowing up the ideal (u, z) yields a resolution
X1 — SpecR, and blowing up (u,z + y") gives Xo — SpecR. Both X; and X, are
smooth, and the morphisms 7t; and 7ty are smooth flopping contractions.
(2) Let
R = Cllu, v, z,y]|/(uv — ).
Then Spec R is a non-isolated cA; singularity, with singularities along the z-axis. There
is only one crepant resolution, obtained by blowing up the ideal (u,x).
(3) Let
R = Cllu, v, z,y]}/(uv — 2(2* + y?)).
The Spec R is an isolated cAj singularity. Blowing up the ideal (u, z) gives a resolution
X1 — Spec R, and blowing up (u, z? + y*) gives Xy — Spec R.

However, since 2% + 3 has no linear term, neither X; nor X, is smooth. A sketch
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illustrating this structure follows:

NS

)

In this diagram, the dots on the exceptional curves represent the singular point uv =

2% + 3, which is factorial. Hence, both X; and X, are minimal models of Spec R.

As noted in §1.1, a given threefold Spec R may admit multiple minimal models. A natural

question then arises: how many such models exist, and how are they related?

It is known that there are only finitely many minimal models [KM], and they are all connected

via sequences of codimension-two surgery operations known as flops [K5].

We now describe flops and flopping curves in detail. Let 7t : X — Spec R be a crepant partial
resolution. The reduced fibre above the origin 7=1(0)™¢ = (J, C; is a union of rational curves.

Choose any such C;. Since R is complete local, by e.g. [W2, §2] we may factor 7 as
XL Xw & SpecR

where f contracts C; to a closed point if and only if j = 7.

For any such factorisation, whenever f is a flopping contraction one can construct a birational
map f': X' — X, satisfying technical conditions described in [W2, 2.6], and fitting into

the following commutative diagram:

SpecR

where ¢ is a birational equivalence. The map 7t: X* — Spec R is called the flop of 7 at the
curve C;. It is also a crepant partial resolution, and 7t is a minimal model (resp. crepant
resolution) if and only if 7t is [K6, 4.11]. Note that Examples (1) and (3) in Example 2.2.4

are flops.

It is well known that the number of curves in the exceptional locus of t* matches that of 7,
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and there is a natural correspondence between them. If we fix an ordering Cq, ..., C,, on the
curves in 71, this ordering is preserved under the flop 7*, and we will often abuse notation by

using the same symbols Cy, ..., C, for the curves in 7.

We also emphasise that flopping is an involution: if 7': X* — Spec®R is the flop of 7 at
the curve C;, then conversely, t: X — SpecR is the flop of 7 at the same curve C;. This

symmetry makes flops especially interesting objects of study in birational geometry.

§ 2.3 | Modifying modules and contraction algebras

The Homological Minimal Model Programme uses noncommutative algebra to study min-
imal models. In this section, we introduce the constructions of modifying modules [TW3]
and contraction algebras, which are central to analysing crepant partial resolutions of cDV

singularities.

In particular, one key feature of any c¢DV singularity R is that all of its birational geom-
etry—i.e., the geometry “above” Spec R—can be recovered from the category of maximal

Cohen—Macaulay modules CM R, through various different approaches.

Definition 2.3.1. Given R c¢DV as before, M € mod R is called maximal Cohen—Macaulay
(CM) provided

depthy M :=inf{i > 0 | Ext4(R/m, M) # 0} = dim R.

We write CM R for the category of CM R-modules, and CM R for the stable category of CM R.
Further, for (—)* := Homg(—,R), M € modR is called reflexive if the natural morphism

M — M** is an isomorphism, and we write ref R for the category of reflexive R-modules.

Definition 2.3.2. We say N € ref R is a modifying (M) module if Endg(N) € CM R, and
we say that N € ref R is a maximal modifying (MM) module if it is modifying and it is

mazximal with respect to this property; equivalently,
add N = {X €ref R | Endg(N & X) € CMR}.

If N is an M module (resp. MM module), we call Endg(N) e modification algebra (resp.

maximal modification algebra).

The concept of a smooth noncommutative minimal model—called a noncommutative crepant

resolution—is due to Van den Bergh [V2].

Definition 2.3.3. A noncommutative crepant resolution (NCCR) of R is a ring of the form
A = Endg(N) where N € ref R, such that A € CM R and has finite global dimension.

If an NCCR Endg(V) exists, then N is automatically a maximal modifying (MM) module,

25



CHAPTER 2. PRELIMINARIES 26

and moreover every MM module gives rise to an NCCR. In other words, if one noncommu-

tative minimal model is smooth, then they all are [[W2, 5.11].

For Kleinian singularities, the McKay correspondence [M2], as reformulated by Auslander
[A4, A5], provides a bijection between indecomposable non-free CM modules and the ex-
ceptional curves in the minimal resolution. This correspondence can be extended to cDV

singularities, as demonstrated in 2.3.4(1)—(3) below.

As noted earlier, crepant resolutions of a ¢cDV singularity may not be unique, but they are
all connected by flops. Inspired by 1.2.4, the NCCRs and modifying algebras should reflect

a similar structure to the geometry of flops, as shown in 2.3.4(4) below.

Theorem 2.3.4. [IW2]| Let R be a ¢cDV singularity, then there exist bijections

(MR) N (CMR) <— {crepant partial resolutions 1 : X — Spec R},
(MM R) N (CM R) <— {minimal models 1 : X — Spec R} .

If further R admits a crepant resolution, then
(MM R) N (CM R) «— {crepant resolutions 7 : X — Spec R} .

Moreover, under this bijection:

(1) There is a one-to-one correspondence between the exceptional curves Cy, ..., C,, of the
crepant partial resolution 17 and the non-free indecomposable summands of the corre-

sponding module N .

(2) The quiver of Endg(N) encodes the dual graph of the corresponding crepant partial

resolution T, recording how the exceptional curves Cq,...,C,, intersect.

(3) When X is smooth, the number of loops at a vertex in the quiver of Endg(N) determines

the normal bundle of the corresponding exceptional curve.

(4) The flops of the crepant partial resolution T correspond to mutations of the module N.

The passage from left to right in the theorem sends a given N € (MR) N (CMR) to a
moduli space of representations of Endg(/N) [KK4]. Therefore, an NCCR (or more generally, a
modification algebra) encodes all geometric data of the associated crepant (partial) resolution
of SpecR. In other words, passing to noncommutative algebra does not lose any geometric

information.
We now explain the reverse direction of the bijection in 2.3.4.

Let t: X — SpecR be a crepant partial resolution with exceptional curves Cy, Cy, ..., C,,.
For each 1 < i < m, there exists a vector bundle AV; on X [V2, 3.5.4], and we define:

Niz (‘.)x@én}-/vi-

i=1
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This bundle is tilting on X [V2, 3.5.5]. Pushing forward via 7t yields:
m(0x) =R, m(N;) = N; for some R-module N;.

Let N := R @& @, N;. Then both N and Endg(N) lie in CMR [V2, §4], so N is a
modifying module. In other words, this construction produces a collection of indecomposable
R-modules—one for each exceptional curve—and their endomorphism algebra Endg(N) is

the modification algebra associated to the resolution 7.

By [V2, 3.2.10], there is an isomorphism

A(m) := Endy(N) = Endg(N) = A(N).
The contraction algebra associated to 7t is now defined as a certain quotient of this modifi-
cation algebra.

Definition 2.3.5. With notation above, define the contraction algebra associated to a crepant

partial resolution 1 to be the stable endomorphism algebra
Aeon(70) (caquivalently, Acon(N)) := Endg (N) = Enda (N)/(R),

where (R) denotes the two-sided ideal consisting of all morphisms which factor through add R.

The difference between flopping contractions and divisor-to-curve contractions can be de-

tected by the finite dimensionality (or otherwise) of the contraction algebra as follows.

Theorem 2.3.6. (Contraction Theorem, [DW2, 4.8]) Suppose that m: X — SpecR is a

crepant partial resolution. Then
7 is a flopping contraction <= dimgcAqy, (1) < 00.

If further X is smooth, these conditions are equivalent to R being an isolated singularity.

Donovan and Wemyss conjectured that the contraction algebra distinguishes the analytic

type of the flop [DW1, 1.4], which was later proved as follows.

Theorem 2.3.7. [JKM, A.2| Let m;: X; — SpecR; be crepant resolution of isolated cDV R;
fori=1,2. Then Acon(m1) and Aeon(72) are derived equivalent if and only if the singularities

Ry and Ry are isomorphic.

This means that the contraction algebras of an isolated cDV singularity R are all derived

equivalent, and furthermore, R can be recovered from this derived equivalence class.

The following result connects derived equivalence of contraction algebras with the operation

of flopping crepant partial resolutions.
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Theorem 2.3.8. [A3, 5.2.2] Given a crepant partial resolution 1t: X — Spec R where R is
isolated cDV, then the basic algebras derived equivalent to Ao (70) are precisely these Aeon(70)
where 1 is obtained by a sequence of iterated flops from 1. In particular, there are finitely

many such algebras.

§ 2.4 | Gopakumar—Vafa invariants

Let 7t: X — SpecR be a crepant resolution. The reduced fibre above the origin,
7.[—1<O)red — U Ci>
i=1

is a union of rational curves.
Let A;(m) := @}, Z (C;) be the abelian group freely generated by these exceptional curves.

Given a curve class B = (f1,...,Bn) € Aj(m), there exists a genus zero Gopakumar—Vafa
(GV) invariant GVg(X) (or equivalently, GVg(m)), which virtually counts curves in the class
3 on X.

Definition 2.4.1. There are several equivalent interpretations of GVg(X).
(1) Set
GVDC:/ v = ny (v (n or GVDC:/ 1
o0 = f Z (v"'(n)) o(X) = |

hfi (x)]vi'r

where v is the Behrend’s function [B1] on the moduli scheme Shg(X) of one dimensional
stable sheaves F with support 3 and Euler characteristic x(F') = 1. Moreover, there

is a symmetric perfect obstruction theory on Shg(X) and virtual fundamental class

[Shg (X)) [K2, MT].
(2) GVg(X) = Qp“™(1, ) where Qx(1,B) is a noncommutative BPS invariant [V5].
(3) If furthermore R is isolated, GV(X) equals to the number of (—1,—1)-curves with

curve class B on a one-parameter deformation of w: X — Spec R [BKL].

If further R is isolated, GV invariants can be read off from the dimension of Ay, (7) by

Toda’s formula.

Theorem 2.4.2. (Toda’s formula, [T2, §4.4]) Let 7t: X — SpecR be a crepant resolution of
an isolated cDV singularity R with exceptional curves U;_,; C;. For any 1 < s <t <mn, the
following equality holds.

dimg esAcon()e; = Z Bs - Br- GVg(m) = dime e;Acon(T0)es.

In particular, dime Aeon (1) = 3 [B[?GVg () where |B] = By + -+ + P
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Chapter 3

Generalised GV Invariants

In this chapter, we introduce and study generalised GV invariants, which extend the classical

GV invariants to crepant partial resolutions of cA,, singularities.
In §3.1, we define these generalised GV invariants.

Next, in §3.2, we prove that these generalised invariants satisfy a version of Toda’s formula

and demonstrate that they are determined by their associated contraction algebras.

Finally, §3.3 restricts our focus to crepant resolutions of cA, singularities, showing that in

this context, the generalised invariants are equivalent to the classical GV invariants.

§ 3.1 | Definition of generalised GV invariants

Recall that every cA; ; singularity R has the form

Cllu, v, z, y]
w — fofr. . fu
where ¢ is the order of the polynomial fyf; ... f, considered as a power series, and each f;

is a prime element of Cl[[z,y]. For any subset I C {0,1,...,n} set I°={0,1,...,n}\/ and

denote

I

R

fr:= Hfl and M; = (u, f)

il
where T7 is an ideal of R of generated by u and f;. For a collection of subsets ) C I} C I, C
.. C I, €{0,1,...,n}, we say that F = (I1,...,1I,) is a flag in the set {0,1,...,n}. We
say that the flag F is mazimal if n = m. Given a flag F = (I3, ..., I,,), we define

M7 =R (éMlj) .

J=1

To ease notation, set Iy := 0 and I, := {0,1,...,n}, and then g; := J1,.0\1; for all
0<j<m. Thus f;, = 175 g; and Mg, = (u, [I/Zs g;). Then using [IW3, §5] F is given
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pictorially by

g0 g1 g2 Im—1 gm

By [IW3, 5.1, the set (MR) N (CMR) is equal to modules M7, where F is a flag in
{0,1,...,n}. By 2.3.4, for each flag F there exists a crepant partial resolution 7/ : X —
Spec R such that Aeon(707) = Endg(M7).

Definition 3.1.1. With notation as above, define the generalised GV invariant Ng(n”) of
the curve class p € @2, Z (C;) to be

NB(T[]:) — { 9i—1,95)

0 else

The above generalised GV invariant 3.1.1 is parallel to GV invariants, since if 717 is a crepant
resolution, then {C; + Ciy1 + -+ C; | 1 < i < j < m} are the only curve classes with
non-zero GV invariants [NW, V5].

Thus throughout this paper we will often write N;;(m) (resp. GVj(m)) for Ng(m) (resp.

Example 3.1.2. Consider fqfifof3f1f5 with a flag F = ({0,1} € {0,1,2}). Then go = fof1,
g1 = fa, g2 = f3fsfs, and F corresponds to

T T
fof P fafafs
Then M7 is R ® (u, fof1) ® (u, fofif2), and the generalised GV invariants are

= dim M = dim, M — dim M
M) = dime g f oy Nlre) = dime S gy e ) = dime G )

Corollary 3.1.3. [IW3, 5.33] Given a flag F = (I1,..., 1), with notation as above the
quiver of Endx(M7) is as follows:

]\411 —I91— M; —92— . _m—1»> MIm

<~ 2 <y — o go
nc inc inc éu\\;*
inc u R M,
g0 gm v\Z'rLC/
\ / m ﬂ/
:R, u
m>2 m=1

together with the possible addition of some loops, given by the following rules:

o Consider vertex R. If (9o, gm) = (x,y) in the ring Cllz,y||, add no loops at vertex R.
Hence suppose (9o, gm) S (z,y). If there exists t € (x,y) such that (go, gm,t) = (x,y),

add a loop labelled t at vertex R. If there exists no such t, add two loops labelled x and
y at vertex R.
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o Consider vertex My,. If (gi-1,9:;) = (z,y) in the ring C[lx,y]], add no loops at vertex
Mj,. Hence suppose (gi—1,9:) S (x,y). If there ezists t € (x,y) such that (gi—1,¢:,t) =

(x,y), add a loop labelled t at vertex Mj,. If there exists no such t, add two loops
labelled x and y at vertex Mj,.

§ 3.2 | Contraction algebra determines generalised GV

invariants

In this subsection, we prove that the contraction algebra A..,(7t”) associated to a crepant
partial resolution 7t* of a cA,, singularity determines the generalised GV invariants N;;(7c”).
Specifically, we express the relevant hom-spaces inside the contraction algebra in terms of
power series rings, showing that their dimensions coincide with the values of the generalised
invariants. This result generalises Toda’s formula to the non-smooth setting and confirms
that the contraction algebra encodes complete numerical curve-counting information in this

context.

Through out this subsection, we follow the notation R, F, My, g; and 7 in §3.1. Note in

particular that the elements g; need not be prime.

Proposition 3.2.1. There are R-isomorphisms

Honma (o), (0.0 -0)) 2 e 2 o (w0 . gm1), (. 0))

In particular, the dimension of each as a C-vector space equals dime C[[z, y]|/ (g0, gm)-

Proof. (1) We first prove that Hom ((u, o), (1, go- - gr-1)) = Cllw v, 2,/ (11, v, go. gm).

We first claim that Homy((u, 90), (u, go - . .gm,l)) >~ Exty ((u, 90), (u, gm))
From [IW3, §5] there is an exact sequence

( 90---9m—1
u

0— (4, gm) —inc)/ R? (go'"gm*l)> (U, g0 ---Gm-1) — 0. (3.2.A)

Thus Q(u, go - - - gm-1) = (u, gn) where Q denotes the syzygy. Then we have

Homm (. ). (v, [T ) % Homa (v, 0). 2. TL){1])  (901] =1 in M%)
= HOiHloz(Wa gO)? (u7 gm)[l] (by above)
= Exty ((u, g0), (1, Gm) ) (by e.g. [TW2])

We next claim that Extj ((u,go), (u,gm)) = (u,G)/(u, goG, Ggm, Gv) as R-modules, where
G := ¢19s - .. gm_1 and the right-hand side is the quotient of one ideal by another.
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Applying F = Hom ((u, 90), —) to the short exact sequence (3.2.A) gives

0 — F(u, gm) — FR? M F(u, nﬁl gi) — BExty ((u, 9), (u, gm)) — Extg ((u, 9), fRQ).
i=0

Since (u, go) € CMR by [IW3, 5.3], Exty ((u,gg),RQ) = 0. Further, by [IW3, 5.4], there are

isomorphisms

(w, [[g:) =FR via re> (),
i=1 u
m—1 m—1

(u, H g:) = F(u, H gi) via 1 ().
i=1 i=0

Combining these together gives an exact sequence

incl
d= H:lo 9i
u

(u, f[gi)@z —_— 7 (u,nﬁ g;) — Exty, ((u,go), (u,gm)> — 0.

Thus Extg, ((u,go), (u,gm)) >~ (u,[1"7' gs)/Imd. It is elementary to check that Imd =
(u, 9oG, gmG, v(G), proving the second claim.

Finally, we claim that (u, G)/(u, oG, gmG,vG) = Cllu, v, z,y||/(u, v, go, gm) as R-modules.

We first define a C[[u, v, x, y]]-homomorphism ¢ as follows,
o Cllu,v,2,y] = (u,G)/ (1, 6oG, g G, vG).

Clearly, ¢ is well defined and (u, v, go, gm) C ker ¢. We claim that ker ¢ C (u, v, go, gm)-
Let r € C[lu, v, z,y]| be such that ¢(r) = 0. Then rG = riu+regoG+r3gmG + 140G for some

ri € Cllu,v,z,y]]. Thus riu = (r — rago — r3gm — r4v)G. Since u and G have no common
factors, we have r; = r5G for some r5 € Cllu, v, z,y|]. Thus rG = (rsu+rogo+1r39m +140)G.
Since Cllu,v,x,y] is domain, then r = rsu + rogo + 739m + r4v € (U, v, go, gm), and so

ker o C (u, v, go, gm), proving the claim. Thus ker ¢ = (u, v, go, gm )-
Since ¢ is evidently surjective, it induces a Cl[u, v, z, y|-isomorphism

 Clwvas] o (,0)
‘ (uavng7gm) (U,goG, Ggm,Gv)'

It is easy to check this is also an R-module isomorphism.

~Y

(2) We next prove that my((u, 9o - Gm-1), (u, go)> = Cllu, v, z,y]]/(u, v, go, gm)-

We first claim that Homg((u, go- - gm-1), (1, 90) ) = Excty ((u, TT7%" 9:), (u, T, 95) )
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Similar to (1), from [IW3, §5] there is an exact sequence

(2 -in0) o (3)

0= (g1 - Gm) , (1, go) — 0. (3.2.B)
Thus Q(u, go) = (1, g1 - - - gm) and

my((u, El i), (u, go)) = Hoifngz«u, jj: 9:), Qu, go)[l]) (Q[1] =1Id in CM R)

= Homg (1, T:f[: a0), (1 ﬁl g[1]) (by above)

= Ext ((u,iij)l 9, (u,ﬁgi)). (by e.g. [TW2])

We next claim that Extg ((u,]‘[;l_ol g:), (u, H;’;lgi)) >~ (u, gogm)/ (u?, ugo, UGm, Jogm) as R-
modules, where the right-hand side is the quotient of two fractional ideals.

Similar to (1), applying G = Homg ((u, 1"t g), —) to the exact sequence (3.2.B) gives

0 — G(u, lm_[ g) — GR? @ G(u, go) — BExtj <(u, nﬁ gi), (u, ﬁgl)) — 0.

i=1 i=0 i=1
By [IW3, 5.4], there are isomorphisms

(U, gm) =GR via 1 — (i),
u

~Y

(4, gogm) = G(u, go) via 7+ (-

).

S

Combining these together gives an exact sequence

d:( u ) m—1 m
<U'> gm)®2 i> (u7gogm) — EXt%l ((U, H gi)a (u> ng)> — 0.
i=0 i=1
Thus Extg ((u,]‘[ﬁ‘o1 gi)s (u,HﬁlgiD = (u,gogm)/Imd. Tt is elementary to check that
Imd = (u?, ugo, Ugm, Jogm ), Proving the second claim.

Y

Finally, we claim that (u, gogm)/ (u*, ugo, ugm, gogm) = Cllu, v, z,y]l/(u, v, go, gm) as R-modules.

Similar to (1), we first define a C[[u, v, z, y]]-homomorphism ¢ as follows,

¢: Cllu, v, 2, y]] = (u, gogm)/ (W, ugo, UG, Gogim)-

Clearly, ¢ is well defined and (u, v, go, gm) C ker ¢. We claim that ker ¢ C (u, v, go, gm)-

Let r € C[[u, v, z, y]| be such that p(r) = 0. Then ru = ryu®+rogou+r3gmu~+rigogm for some
ri € Cllu,v,z,y]]. Thus (r—riu—rego—1r3gm)u = r1gogm. Since u and gog,, have no common
factors, we have ry = rsu for some r5 € Cllu, v, z,y]]. Thus ru = (r1u+7r290+7r3Gm~+7r590Gm ) U

Since Cllu, v, x,y] is domain, then r = ru + rogo + r39m + 75909m € (U, v, go, gm), and so
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ker o C (u, v, go, gm), proving the claim.

Since ¢ is evidently surjective, it induces a C[[u, v, z, y]]-isomorphism

Cllu,v, x, ~ » Jo9m
o Cluvryl o (o)
(uavag(bgm) (U,ugo,ugm,gogm)

It is easy to check this is also an R-module isomorphism. ]

Lemma 3.2.2. Let p,q € Clx,y]]. If the greatest common divisor ged(p,q) # 1, then
dime C[lz, 3]}/ (p, g) = oo.

Proof. Write r € (x,y) for the greatest common divisor of p and ¢, namely r = ged(p, q).
Then p = rp’ and g = rq¢’ for some p/, ¢’ € C[[z,y]], and so (p,q) = (r)(p/,¢') C (r). Thus

_ Cla,y] _ .. Clz,y]
dime ") < dim¢ rq)

Since Cl[[z,y]] is a polynomial of two variables, dim¢ C[[z, y]]/(r) = 0o, and so the statement
follows. O

Lemma 3.2.3. Let p; and ¢; € Cl[z,y]] for 0 <i<sand0<j <t. Then

. Cl[z, y] G o Cllz. ]
dime (Mo pis im0 @) ;);:(:)d “ (i)

Proof. We split the proof into two cases.
(1) There exists ' and j" such that the greatest common divisor ged(py, gj1) # 1.
Since ged(pir, q5) # 1, gcd(]_[fzopi,]_[z»zo q;) # 1. By 3.2.2,

Cllz, y]
(Hf:O Di, H;’:O qj)

Cllz, y]
(pir, Qj’) ‘

dimc = 0o = dim¢

Since the dimension of a vector space can not be negative, the statement follows.
(2) The greatest common divisor ged(p;,q;) = 1 for each i and j.

It suffices to prove that

g S _ o Cllol) g o)
(Po; qoa1) (Po: q0) (Po; q1)
since then the statement follows by induction. We first consider the natural quotient C|[x, y]}-

homomorphism

. Clz.yll _ Clz,y]
" (Po:90q1)  (Po,q0)

It is clear that kero = (qo)/(po,qoq1). So we only need to prove that (qo)/(po,q0q1) =
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Cllz,y]l/(pos, q1)- To see this, we define a C[[z, y]-homomorphism as

Cllz, y] (40)
(p0>CI1) ~ (]907%611)
> qor

9

It is clear that ¥ is well-defined and surjective. So we only need to prove the injectivity. If
qor = r1po + r2qoqu for some ry,ry € Cl[z, y]|, since ged(po, qo) = 1, then r1 = r3qy for some

ry € Clla, y]). Since Cllz, ] is a domain, r = rapy + 121 € (po, 1), and s0 9 is injective. [

~J

Recall that 77 is a crepant partial resolution with m excpetional curves and A(7”) =
Endg(M7). Moreover, A(n”) can be presented as the quiver in 3.1.3 with the trivial path
e; at each vertex i. The following shows that generalised GV invariants also satisfy Toda’s

formula, which implies that these new invariants are a natural generalization.

Theorem 3.2.4. For any 1 < s <t < m, the following equality holds.
dime esAcon (07 )e, = SN ON; (") = dimge e;Acon (77 )es.
i=1 j=t
In particular, dime Acon(77) = 7, XL (7 — i + 1) Ny (7).

Proof. To ease notation, set 7w := 7*. We first factor m as X — Y < SpecR such that

Ay (w) = Uj,_, Z{Cy). By [IW3, §5], Y is given pictorially by

Cs Cs+1 Ct
go.--gs—1 gt..-gm

and Acon(w) = egAeon(m)es where eg := €5+ -+ - + ¢;. Thus

esNeon(T0)er = esespNeon (M) ey (since eseq = €5 and ege; =€)
= esAeon(w)ey (since Acon(w) = esAcon(T0)est)
= Homg (%, 9o -+ - gs—1), (U Go - - - Gi—1)) (by 3.1.3)
~ Cllu,v,z,y]

(U, 0,90+ Gs1, Gt - - - Gm)

where in the last step uses the first isomorphism in 3.2.1, but with g, and g,, replaced by
9o ---gs—1 and g; ... gp,. Similarly,

etM\con(T0)es = €15t Acon(T0)estEs (since e;eq = €, and eges = €y)
= i Acon(w)es (since Acon(w) = egpeon(T0)est)
= Homg((u, 9o - - - ge—1), (4, 9o - - - gs—1)) (by 3.1.3)

Cllu, v, z,y]

~

(U, 0,90+ -Gs—15Gt - - - Gm)
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where again the last step uses the second isomorphism in 3.2.1, with g9 and g, replaced by

go...Ggs—1 and g; ... g,. Combining these together, it follows that

Clz, y]
(T1:20 94, T, 97)

dimg e5Acon(70)e; = dime = dimgc e;Acon (1) €s.

Moreover,
: Clz, y] . Clz,y]
dimg 7—— — = dim¢ (by 3.2.3)
(HZ:(% gi, 1152, ;) ;}; (96 95)
S m C
_ Z Z dime Hxv y]]
i=1 j=t (9i-1,95)
=> ) Ny(m). (by definition 3.1.1)
i=1 j=t
Writing N;; = N;;(m) and Acon = Acon(71) to ease notation, it follows that
dime esAeoner = Z Z Ni; = dimg e;Acones. (3.2.0)
i=1 j=t
Now by 3.1.3,
6lA/\(:onel 61/\00n82 e elAconem
A 62Acon61 62‘/\(:on€2 e 62Aconem
em/\conel emAcon€2 e 6mAAconem
so using (3.2.C)
D BNy D BNy - D D). Ny
dimg A _ @2‘1:1 69}":2 Nz’j 6912:1 EBT:2 Nij e ?:1 @;‘n:m Nij
@i DL, Ny L@, Ny - O B, Ny

For 1 <i < j <m, N;; only appears in each entry of the submatrix from row 7 to row j and
column ¢ to column j of the above matrix, and so V;; appears (j —i+ 1)? times in dime Acop.
Thus dime Acon = 272 272, (7 — i + 1)2N;;. O

The following asserts that isomorphisms between contraction algebras of crepant partial

resolutions can only map e; to e; or e,,.1_; for 1 <i < m.

Proposition 3.2.5. Let m;: X), — Spec Ry, be two crepant partial resolutions of cA,, sin-
qularities Ry, with my, exceptional curves for k = 1,2. If there exists an algebra isomorphism

1 Neon(T11) = Aeon(712), then my = myo and ¢ must belong to one of the following cases:

36



CHAPTER 3. GENERALISED GV INVARIANTS 37

(1) ¢(ei) =e; for 1 <i<m,
(2) ¢(ei) = emyr—i for 1 <i <m,

where m = m; = Mms.

Proof. For 1 <1i < my, write §; for the simple Ao, (7 )-module corresponding to the vertex
i in the quiver of Acon(711) (see [HW, §5.2]). Similarly, for 1 < i < my, write 8 for the simple
Acon(7t2)-module corresponding to the vertex ¢ in the quiver of Acon (7). Write mod Aoy (7T

for the category of finitely generated right Aco,(7t;)-modules for k& = 1, 2.

The algebra isomorphism ¢ induces an equivalence ¢: mod Aco,(711) = mod Aeon(72). By
Morita theory, m; = mg, since ¢ maps simple modules to simple modules, and furthermore

there is a o in the symmetric group &,,, such that ¢(8;) = S5iy-

Since 71; is a crepant partial resolution of a cA,, singularity, 8, is the unique simple
module that satisfies Exty _ =) (81,82) # 0 by 3.1.3 and the intersection theory of [W2,
2.15]. Since mod Acon(717) is equlvalent to mod A¢on(712), there exists unique simple module
T € mod Acon(712) such that Extkm(m)(sg(l),ir) # 0. Thus the curve o(1) in 7 must be a
edge curve, by 3.1.3 and the intersection theory of [W2, 2.15]. Thus o(1) = 1 or m. We split

the proof into two cases.

(1) o(1) = 1. Since Ext)__ L) (81,82) # 0 and mod Acon(711) is equivalent to mod Acon(72),
we have Ext}\con(m)(SU(l), o(2)) # 0, and so Exty_ ) (81, 85(2)) # 0. Thus the curve 0(2) in

7y, must be connected to the curve o(1) = 1, and so 0(2) = 2 by 3.1.3 and the intersection
theory of [W2, 2.15]. Repeating the same process, we can prove o(i) = i, and so ¢(8;) = 8},

and furthermore ¢(e;) = e; for each i.

(2) o(1) = m. Since EXtAcon (m)(81,82) # 0 and mod Acon(m) is equivalent to mod Acon(712),
1(85(1): So(2)) # 0, and so Ext) 81 S5(2)) # 0. Thus the curve o(2)

we have Ext} s So(2
in 713 must be connected to the curve o(1) = m, and so 0(2) = m — 1 by 3.1.3 and the

con 7'[2 con (7'[2 (

intersection theory of [W2, 2.15]. Repeating the same process, we can prove o(i) = m+1—i,

and so ¢(8;) =8/, ,_;, and furthermore ¢(e;) = ey,41—,; for each i. O

The following strengthens 2.4.2 and 3.2.4, in that it intrinsically extracts the generalised GV
invariants from the contraction algebra, and is new even in the setting of smooth flopping

contractions.

Lemma 3.2.6. For any 1 < i < j < m, the following equity holds.

Nm(ﬂj:) = dlm(c €; ( ACOH(T[]:) . >> €;j.

<€17€27 s €1, €541, €542, - - -
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Proof. Wheni=1and j =m

Nip (") =dimg —= Cllz.y) (by the definition 3.1.1 of N;;(n”))
(g(]u gm)

= dim¢ Homg ( (u, go), (u, go - - .gm_l)) (by 3.2.1)

= dim¢ Homg (My,, M;,) (since My, = (u, go) and My, = (u,go---Gm-1))

= dime e1 Acon (77 ) ey (by 3.1.3)

Thus the statement holds. When i # 1 or j # m, we factor 7 as X 2 Y — Spec R such
that A;(w) = Ui_, Z(Ck). By [IW3, 5.31], Y is given pictorially by

Cy Ci—1 Cjp1 Cm
9i—19i---9j

where the red dot labelled g;_1g; - - - g; corresponds, complete locally, to the singularity 8 :=
Cllu, v, z,y]|/(wv — gi—19; - - - gj). Here we slightly abuse notation by again using u, v, z,y as

local coordinates to define 8.

Then consider the flat morphism Spec8& — Y, the fibre product U := X xy Spec§, and the
morphism wly : W — Spec 8. The following picture illustrates the m = 3, i = j = 2 case.

- u
_ C[[u 0,2,y

Ac0n<w|u> = Acon<7'f}—)/<€1, €o,...,€i_1, €j+1, €j+2> e ,€m>.

By [IW3, §5],

Thus we have

N () = dime M (by the definition 3.1.1 of Ny;(n%))
i—1, Y5

=dim¢ Homs((u, Gi—1), (U, gi1 .. .gj_1)> (by 3.2.1)

= dimc e;Acon (wu)€; (by 3.1.3)

= dlm(c €; (ACOH(T(];>/<€1, €2,...,€6_1, €j+1, €j+2, RN ,€m>)€j. O

The following shows that the contraction algebra of a crepant partial resolution of a cA,
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singularity determines its associated generalised GV invariants.

Theorem 3.2.7. Let /*: X7+ — Spec Ry, be two crepant partial resolutions of cA,, singu-

larities Ry, with my, exceptional curves for k = 1,2. If Aeon(T71) = Aeon(072), then my = my
and one of the following cases holds:

(1) Nij(T[}—1> = Nz‘j(Tf]:Q) f07"1 S 7 S] S m,

(2) Ni(m™1) = Nppg1—jmgr—i(772) for 1 <i < j <m,

where m = m; = Mms.

Proof. To ease notation, set m, 1= 7* for k = 1,2. Since Aeon (1) = Acon(T2), M1 = My
by 3.2.5. Let ¢ be the algebra isomorphism between Ao, (711) and Acon(72). By 3.2.5, either

o(e;) = e; or ¢(e;) = ema1—; for 1 <i < m. Then we split the proof into two cases.

(1) ¢(e;) =e; for 1 <i < m. In that case, for 1 <i < j <m,

Nz’j(m) 0 dimc e; (Acon(m)/(@l, €2,...,€i—-1,€541,€542,- - 76m>>€j
= dlm(c €; (Acon(ﬂ2>/<€17 €2,...,6i-1,€j4+1,€542,... 7€m>)€j
20 Ny ().

(2) ¢(ei) = emy1—; for 1 <7 < m. In that case, for 1 <i < j <m,

Nij(rm) *2" dimg e (Acon(701) / (€1, €2, -, €121, €511, €142, - €m) )€
= dimc €414 (Acon(ﬂg)/<€m, Cm—1s - Cm—it2s Cm—iy €m—jil, - - - ,el>)em+1,j
24 dime 41— (Acon<7'[2)/<€1, €2y iy €m—it2s Cm—it3, - - - ,em>)em+1,i
"2 N1 jms1-i(02). u

Remark 3.2.8. The papers [NW, V5] give a combinatorial description of the matrix which
controls the transformation of the non-zero GV invariants under a flop. For crepant resolu-

tions of cA,, singularities, see §3.3.1 below.

By definition 3.1.1 and example 3.1.2, it is clear that generalised GV invariants of crepant
partial resolutions of cA,, singularities also satisfy this transformation under a flop. Moreover,
generalised GV invariants satisfy Toda’s formula 3.2.4 and are determined by their associated
contraction algebra 3.2.7. These facts give strong evidence that generalised GV invariants

are a natural generalization of GV invariants.

§ 3.3 | Classical case: known facts

In this subsection, we restrict to cA,, singularities that admit a crepant resolution, and sum-

marise several facts about their noncommutative crepant resolutions (NCCRs), as developed
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in [IW3]. These results serve as the foundation for comparing generalised GV invariants

with classical GV invariants in the smooth case.

Recall that in §3.1, every cA;_; singularity R has the following form

Cllu, v, 2, y]
uv — fOfl‘-'fn7

where t is the order of the polynomial fyf; ... f, considered as a power series and each f; is

R

12

a prime element of C[[z, y]]. Moreover, R admits a crepant resolution if and only each f; has
a linear term by e.g. [BIKR, IW3].

In the subsection, we will only consider those R that admit a crepant resolution. Thus

t=n+1, and so R is a cA, singularity.
Recall in §3.1 the maximal flag F in the set {0,1,...,n}, and CM R-module M”. Following

the notation in [IW3, §5], we identify maximal flags with elements of the symmetric group

S,.41. Hence we regard each o € G,,,1 as the maximal flag
{(0)} € {0(0),0(1)} C ... C{0(0),...,0(n—1)}.
Notation 3.3.1. We adopt the following notation.
(1) Consider the symmetric group &,,,1. For any 0 € &,,44, set

n—1
M7 =R& (U, go‘(O)) S (U, go‘(O)ga(l)) D...0P <u7 H ga(l)) € (CM R) N (MM R)
=0

(2) Write m7: X7 — Spec R for the associated crepant resolution of M7 in 2.3.4 below.

(3) Now let & > 1 and consider the k-tuple r = (71,...,7) with each 1 <r7; < n. Set
O'(I') = (Tk,rk -+ 1) o (7’2,7"2 + 1)(7“1,7“1 -+ 1) - 6n+1,
and M* := M°®), Write m*: X* — Spec R for 7™ : X7 — Spec R.

(4) For 1 <i < n, write 7', X’ and M® for ®, X and M@ respectively.

The following two results are the special cases of 2.3.4 and 3.1.3, when we restrict to the

crepant resolutions of cA,, singularities.

Proposition 3.3.2. [IW3, 5.1, 5.27] The modules (MM R) N (CMR) in 2.3.4 are precisely
M? where 0 € &,,.1. Moreover, there is a bijection satisfying A(m%) = Endg(M?),

{M? | o € &,41} «— { crepant resolutions of R},

M? +— 7 : X° — Spec R.

Proposition 3.3.3. [IW3, W2| Given any o € &,,41, let m°: X — SpecR be the associated
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crepant resolution. Then the NCCR A(77) can be presented as the following quiver (with
possible loops):

_ 9o 9o _Y95(n-1
IS n
\ . u /
ga(o)\ /”

0

where the vertex 0 represents R and the vertez i represents (u, Hé;g Go(j)) for 1 <i < n.

There is a loop labelled t at vertex 0 if and only if (9o(0); Jo(n)) S (%,y) and (go(0), Go(n), t) =
(x,y) in the ring C[z,y]|. Further, for any 1 <i < n, the possible loops at vertex i are given
by the following rules:
(1) the normal bundle of curve C; is O(=1) ® O(=1) <= (Go(i-1):Yos)) = (z,y) in
Cllz,y]] <= add no loop at vertex i.
(2) the normal bundle of curve C; is O(=2) ® O <= (go(i-1): 9o(i)) & (x,y) and there
exists t € (x,y) such that (go(i-1, 9o(i), t) = (x,y) in Cllx,y]] <= add a loop labelled

t at vertex 1.

Proof. In general, [[W3, W2] shows that either (1), (2) or the following third case holds.

(3) (go(i-1),9o(i)) S (@,y) and there is no ¢ such that (2) <= add two loops labelled x

and y at vertex 1.

We now prove that (3) is impossible when R is cA,, and admits a crepant resolution. If there

exist two loops at some vertex 4, then (g,(i-1), 9-(;)) S (@,y) and there exists no t € (z,y)

that satisfies (go(i—1), 9o(i),t) = (2,y). Hence both g,;_1) and g,¢;) must belong to (z,y)?.
But this contradicts the fact that R admits a crepant resolution X. O

§ 3.3.1 | Reduction steps for GV invariants

This subsection recalls various permutation results from [NW, V5], then shows that GV

invariants are suitably local.

The first reduction step we will use below is to permutate the GV invariant of an arbitrary
curve class into that of a particular curve class. From [NW, 5.4] and [V5, 5.10], for any cA,

crepant resolution 7t and 1 < i < n, there is a linear isomorphism
EI A1(7T) — Al(ﬂi),

such that GV () = GV g, (") for any B € A (7). Here we consider A, () = Z" = A, ('),
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and so Fj is a elements of M,,(Z). Moreover,

I, — 2E + By, ifi=1
Fi=1{1,-2E,,+ Ey, 1, ifi=n
L, —2E; + Ejjo1 + By, else
where E;; € M,,(Z) is the standard basis matrix with a one in the j-th column of the i-th

row, and zeros everywhere else. Inspired by the above GVg () = GV, ('), we adopt the

following notation.

Notation 3.3.4. For any 1 < ¢ < n and r in 3.3.1, denote |F;| := | — | o F; and |F}| :=
|Fy |00 |Fy| 0| Fyy|. Thus GVg(m) = GVgy ) (1) and GV (1) = GV () (7).

For 1 <7 < j < n, write v;; for the vector in Z" which corresponds to the curve class
Ci+Cip1 +---+C;. Thus v;; = Z{;:i e, where e, is the k-th standard basis vector.
Lemma 3.3.5. With the notation as above, the following holds.

(1) For2<i<j<mn, Fi_1v;; = v;_1,.

(2) For1<i<j<n, Fjuj=u;;1.

(3) For1<i<j<n, set

Q)cmdFr:Id, ifi=7=1
r=1q(5,7 32) ifi=1land2<j<n
u—lz 21,5, —1,...,3,2), f2<i<j<n

then |Fy|vi; = v1.

€;, ift=y
Proof. From the basic facts of linear algebra, we have E;;e, = j.
0, else

(1) When 3 S 1 S j S n, then Fl;l = In - 2EZ;171;1 + Ez;l’ifz + Eifl,ia and so
J
Fiqvj=0,-2E_ 1,1+ FEi_1, 2+ Ezflz)(z er) = Uij + €i_1 = Vi_1.
k=i
When 2 =4 < j <n, then F, { = F, =1, —2FE; + E}5, and so
J
Fioqvij = Fiugj = (I, = 2B + E12) (D ex) = vo 4+ €1 = vy = vi_1;.
k=2
(2) When 1 <i<j<mn-—1,then F; =1, —2E;; + E; ;1 + Ej j11, and so
J
Fyoy = (I, = 2B + Ejj1 + ) (D er) = vij — 2¢j +¢; = v 1.
k=i
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When 1 <¢ < j =n, then F; = F, =1, —2E,, + E, 1, and so

fwj”ij = Fpvin = (In —2E,, + En,n—l)(z ek:) = Vip — 26, + €, = Vin—1 = Vjj—1-
k=i

(3) We only prove the case of 2 <i < j < n. The other two cases are similar.

By (1), [Fi|o[Fy|o---o|Fi | o|Fi1|viy = vij. By (2), [Fa|o|F3|o---o|Fj | o|Fjlvy; = vi1.
Thus |Fy|vi; = |[Fa| o [F3] 0o |[Fj_q| o|Fj[ o |Fi| o [Fy| 0o |Fi o] o |Fiy[vij = v O

The second reduction step will show that the GV invariants are suitably local and flopping

a curve only affects the neighbourhood of that curve.

Fix some integers s and t satisfying 1 < s <t < n. Then we factor 7 as
m: X 5 Y — SpecR

such that A;(w) = @t _ Z(Cy). Write Spec S for the affine patch of Y containing the singular
point and & for the completion of S at the singular point. Then we consider the flat morphism

Spec§ — Y, the fibre product U := X xy Spec 8 and the morphism w|y: U — Spec 8.

We abuse the notation to write the exceptional curves of wly also as A;(wly) = ®%_ Z({Cy).
The following picture illustrates the n = 4, s = 2, t = 3 case where the red dots represent

the singular point of Y and Spec 8.

w wiy

D e

We now prove that flopping a curve only affects the neighbourhood of that curve. Recall
from notation 3.3.1 that X* denotes the variety of flopping the exceptional curve C; in X.
For s < i < t, we consider the diagram below: we flop C; in X to obtain w*: X* — Y, and
denote the birational map as @: X* --» X. Pulling back w’ along Spec 8 — Y, we obtain the

morphism (wly)?, and define the birational map @* := (wy)? o (w]y) ™.
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xi 4 u-l—
XU
W (@)’
W w‘u

Y «—— Spec§

Lemma 3.3.6. With the diagram above, (w|y)" is the flop of wlhy by flopping the exceptional
curve C; in U; that is U = UT = X xy SpecS.

Proof. Since R is complete local, there exists Cartier divisor D; on X such that D, - C; = d;;
for all s < j <t. Let EZ denote the proper transform of D; to X?. Then EZ -Cj = —9;; for
all s < j <t. Let D;|y denote be the pull back of D; to U, and likewise 5¢|u+- Then for all
s<j<t

Dilu-Cj =0y, Dilus - C; = =65, and (@*)*Dily = Do+

Hence by e.g. [W2, 2.7] (w]y)" is the flop of w|y by flopping the exceptional curve C; in U. [
Proposition 3.3.7. (GV invariants are local) With notation as above, we have GV;(X) =
GV;;(U) forany s <i<j<t.

Proof. (1) We first prove that GV (X) = GV (U) for any s < k <.

Fix k satisfying s < k < t. Consider the following derived equivalences from [V2, 3.5.8],

D’(coh X) = DP(modA(w)),  DP(cohU) = DP(modA(w|y))
Ock(—l) <~ Sy ock(—l) < Sl;

where S, denotes the simple-A(w) module that corresponds to Oc, (—1) (see [HW, §5.2]).

The S}, is similar.

From [V5, 5.3], Sk (respectively S},) is the only nilpotent point in the moduli space of
semisimple A(w) (resp. A(wly))-modules of its dimension vector. So, to compare GV (X)

and GV, (W), it suffices to compare the value of the Behrend functions at these two points.
From [J], these values only depend on the formal neighbourhood, which can be presented

as the Maurer-Cartan locus of their enhancement algebras Endlz(%)(Sk) and End?&u)(&'ﬂ)

respectively. From [DW2], these two DG-algebras are DG equivalent, via

End() (S) = EndR®(Oc, (—1)) 2 Endy®(Oc, (—1)) = End}(,,(Sp)-

(wlw)

Thus, these two values are the same. So, exactly as in [V5, 5.3], GV (X) = GV (U).
(2) We then prove that GV,;(X) = GV;;(U) for any s <i < j <t
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When s < i = j < t, the statement holds by (1). So we only need to prove the statement
for s <i<j<t Setr=(j,j—1,...,i4+1). Then GV;;(X) = GV;;(X*) and GV,;(U) =
GV (U") by 3.3.5(2). Since by 3.3.6 U" = X* xy Spec8, GV;(X*) = GV;(U*) by (1). So
GV (X) = GV (U). ]

§ 3.3.2 | Classical case: new results

This subsection first shows in 3.3.8 that generalised GV invariants are equivalent to GV
invariants. Together with 3.2.7, 3.3.10 asserts that the contraction algebra of a crepant
resolution of a cA, singularity determines its associated GV invariants. For the isolated
cA,, this result is from Toda’s formula 2.4.2 and [HT]. Our result generalises this to non-
isolated cA,,.

Theorem 3.3.8. Given a crepant resolution 1: X — SpecR where R is cA,, for any 1 <
1 < j <n the following holds.

Proof. Without loss of generality, we assume

Cllu, v, z,y]]
uv — f(]fl‘”fn’

and M = (u, fo)® (u, fof1)®...®(u,[1Z fi) such that 7t is the associated crepant resolution
with A(7t) = Endg(M) in 3.3.2.

R

112

Let r be the tuple in 3.3.5. We have GV;;(nt) = GVy;(n") by 3.3.5. Then we factor 7" as
X* % Y — SpecR such that A;(w) = Z(C,). Since GVy;(7") only depends on X* and the
curve class C; by 2.4.1, then GVy;(n") = GVy1(w), and so GV,(m) = GVyq(w).

By 3.3.2, A(7") & Endg(M*) where M™ = R (u, fi_1)® (u, fi1f;)®...® (u, [ fi), then
using [IW3, §5] X* is given pictorially by
Cy Co Cn

r T TS T . — T
X fi—1 fi

Since m": X* = Y — SpecR where A;(w) = Z(C,), then again by [IW3, §5] Y is given
pictorially by
Cy C3 Cn
y fiig‘\/‘\ - —
where the singular point of Y is locally S := Clu,v,z,y]/(uv — fi_1f;). Write 8§ for the
completion of S at the singular point. Then consider the flat morphism SpecS — Y, the
fibre product U := X* xy Spec§, and the morphism wly: U — Spec 8. Since GV invariants

are local by 3.3.7, then GV1;(w) = GVi1(wly), and so GV;(m) = GVyy(wly).
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- u
O S ——

Consider the 8-module N := U & (u, f;—1). In 3.3.2, w|y is the crepant resolution of Spec 8
with respect to V. Since Spec$8 is a cA; singularity and admits a crepant resolution, then
by [R1] there exists a change of coordinates ¢ (possibly different in the two cases below)
such that

(1) why is a divisor-to-curve contraction. <= ¢(f;—1) = = = ¢(f;).
(2) whisaflop. <= o(fi1) =2+ y" and ¢(f;) = v — y" for some n > 1.

In case (1), we have Acon(w|y) = C[ly]] from [DW1] and GV (w|y) = —1 from [V5], and so
GV,;(m) = —1. Moreover,

Cleyl] _ gy Cls]
(fi—1, f5) (p(fic1)o(f5))

In case (2), we have Acon(w|u) = Clly]]/(y™) from [DW1], and so GVy;3(wly) = n by 2.4.2,
thus GV;;(m) = n. It follows that,

Cl[x, y]] Clz.y]  _ dime Clly] _
(fie1, [) (e(fic1), o(f)) (y™) ’

and so Nij (7'[) = GVZ] (7'[) ]

Nij (7T) = dlm(c

= dlm(c

Remark 3.3.9. Given a crepant resolution 7 of a cA,, singularity, by 3.3.8 the data of IV;;
is equivalent to the data of GV,;;. We go between them freely by replacing all —1s in GV’s

by oos in N’s. For example,

GV11 GV, 13 Ni1 Ny 13
GVlZ - —1 — N12 - o0

Below, the N;; are mildly easier to control, and they unify statements about the filtration
structure in 5.3.7 and 5.3.8.

Corollary 3.3.10. Let ;.: X — Spec Ry, be two crepant resolutions of cA,, singularities Ry,
fork=1,2. If Aeon(m1) = Acon(2), then one of the following cases holds:

1 leﬂl :GVlTEQ fOT’lSZS]Sn,
J J
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(2) GVU (7'(1) = G\/nﬂ_jmﬂ_i(m) fOT’ 1< < j <n.
Proof. This is immediate from 3.2.7 and 3.3.8. O

Remark 3.3.11. This section has stated various results using the indexing N;; and GV;;.
Based on the following facts, we can rephrase these results to use the indexing Ng and GV

as in the introduction.

Given a crepant partial resolution 7t of a cA,, singularity with m exceptional curves Cy, ..., C,,,

consider the following set of exceptional curve classes
S = {Ci+Ci+1+-~~+Cj |1§1§]§m}

Recall that given a curve class B = (B, ..., Bm), its reflective curve class B = (B, - -, B1)-

(1) By [NW, V5], GVg(m) £0 < B € S.

5) If B = C;+ Ciy1+ - -+ C;j, then its reflective curve class B = Cppi1—j+ +Chppoj- -+
Crnt1-i-
Based on the above facts, we rephrase the results in the section to those in the introduction.
e By (2) and (4), 3.2.4 induces 1.5.1.
e By (2), (3) and (5), 3.2.7 induces 1.5.2.
e By (1) and (2), 3.3.8 induces 1.5.3.
« By (1), (3) and (5), 3.2.7 induces 1.5.4.
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Chapter 4

Monomialization and Geometric Real-

isation

In this chapter, we focus on the smooth cases, specifically the crepant resolutions of cA,

singularities.

In §4.1, we introduce various intrinsic algebraic definitions of a Type A potential on the
double A,, quiver (with a possible single loop at each vertex). Via coordinate changes, we
next establish a monomialization result that expresses these potentials in a particularly nice

form.

Building on this monomialization, §4.2 shows that any Type A potential on @, can be
realised by a crepant resolution of a cA, singularity, and thereby proving the Realisation

Conjecture of Brown-Wemyss [BW2] in the setting of Type A potentials.

We further establish a correspondence between the crepant resolutions of cA,, singularities

and these intrinsic Type A potentials on Q,,.

Finally, we provide an example of a non-isolated cA, singularity which illustrates that the

Donovan—Wemyss Conjecture does not extend to non-isolated cDV singularities.

§ 4.1 | Monomialization

This section introduces the quiver (), ; and Type A potentials.

The main result in §4.1.1 is that any reduced Type A potential on @), ; is right-equivalent
to some reduced monomialized Type A potential in 4.1.20. This is the starting point of the

geometric realization in §4.2.

Then §4.1.2 shows that any monomialized Type A potential on @), ; is isomorphic to a
(possibly non-reduced) monomialized Type A potential on @,, in 4.1.23, which shows that

considering the monomialized Type A potentials on @, suffices.

Definition 4.1.1. Given a quiver Q, let f, g and h be potentials on Q). Write f = >, Ai¢;



CHAPTER 4. MONOMIALIZATION AND GEOMETRIC REALISATION 49

as a linear combination of cycles where each 0 # A; € C.
(1) We write V(f) for the C-span of {cycle ¢ | ¢ ~ ¢; for some i}.
(2) We say f is orthogonal to g if V(f) NV (g) = {0}.
(3) Wewrite f=g®h if f =g+ h and g is orthogonal to h.
(4)

4) We say f contains g if f ~Ag @ R’ for some 0 # A € C and potential I'.

Recall the definition of the quiver @), in §1.5.2, which is the double of the usual A, quiver,

with a single loop at each vertex as follows.

al as azn—3 a2n—1
(L= () = | Q (e ()
QTL — 1 -~ 2 -~ 3 . v .
n—1 n
b2 b4 b2n72

For any I C {1,2,...,n}, define the quiver @), ; by removing the loop in @),, at each vertex
1 € I, and then relabel a; and b; from left to right. Similarly to before, we now set b; :== e;

whenever a; is a loop in @, 1, and set x; := a;b; and x; := b;a; for each i. For example,

whereas xg = agby, X = boay, and x3 = agbs, x; = bzas.

Notation 4.1.2. Through this chapter, n is the number of vertices in the quiver @, ;, and
I C {1,2,...,n} is the set of vertices without loop in @), ;. Note that Qg is just Q,.

Furthermore, set m := 2n — 1 — |I|, which equals the number of x; in @, s

We now give several definitions and notations with respect to @)y, ;.

Definition 4.1.3. Given any cycle ¢ on @, 1, write ¢ as a composition of arrows. For i
such that 1 <1 < m, let q; be the number of times a; appears in this composition. Then set
T(c) = (q1,q2,---,qm), and define the degree of ¢ to be deg(c) == >, ¢;.

Definition 4.1.4. We say that a potential f on @, is reduced Type A if f is reduced in the
sense of 2.1.1 and f contains x;x;+1 in the sense of 4.1.1 for each 1 < i < m — 1. Further,

we say that a (possibly non-reduced) potential f on Qnr is Type A if
(1) All terms of f have degrees greater than or equal to two in the sense of 4.1.3.

(2) The reduced part frea is Type A on Q1 for some I CI' C {1,2,...,n}.

The Splitting Theorem [DWZ, 4.6] gives the existence and uniqueness of feq, so 4.1.4 is well
defined.
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Lemma 4.1.5. Given any potential f ~ 77" Aixixis1 + h where each 0 # \; € C on Qn.1;

there exists f ~ f' such that f' = Y ' xIxis1 + g for some potential g.

Proof. Applying a; — k;a; where k; € C for each 1 < i < m gives
m—1
J~ Z kiki1Nixixiv1 + g,
i=1
for some potential g. Since each A; # 0, we can always find some (kq, ks, . . ., k,,,) that ensures
l{iil{?i+1}\i =1 holds for 1 S 1 S m — 1. ]

Remark 4.1.6. The above lemma shows that any reduced Type A potential f can be
transformed to the form of 77" x/x;11 @ g for some potential g. Thus, in this paper, for

any reduced Type A potential f on @, 7, we always assume that f = 7" x/x;1 @ g.

Definition 4.1.7. We call a quiver f on @, monomialized Type A if f ~ S " xix; 1 +

D 2y kijx! for some k;; € C.

Given any monomialized Type A potential f, it is clear that f is Type A. Moreover, f is

reduced if and only if kK, = 0 whenever x, is a loop.

Definition 4.1.8. Given a cycle ¢ on Q,, 1, consider T(c) from 4.1.3. Define left(c) to be
the smallest i such that ¢; > 0, and right(c) to be the largest i such that ¢; > 0. Then define
the length of ¢ to be len(c) := right(c) — left(c) + 1.

From the above definition, if len(¢) = 1 then ¢ ~ x! for some 1 <4 < m and j > 1.

Notation 4.1.9. We adopt the following notation regarding cycles on @, 1.

(1) Write F for the C-span of {c | ¢ is a cycle with deg(c) > 1} where the degree is defined
in 4.1.3.

(2) For any ¢ € N, write D; for the C-span of {c | ¢ is a cycle with deg(c) = i}.

(3) For any i € N, write L; for the C-span of {c | ¢ is a cycle with len(c) = i} where the
length is defined in 4.1.8.

(4) For any i and j € N satisfying 1 < ¢ < j < m, write Vj; for the C-span of {c |
c is a cycle with left(c) = i and right(c) = j}.
It is clear that F' = €, D;, I' =, L; and F' = @,<; V};.
Notation 4.1.10. Let f be a potential on @, ;.
(1) Write deg(f) =i if f € D,. Similarly write deg(f) > ¢ if f € &,>,D;, with natural

self-documenting variations such as deg(f) < i.

(2) Write len(f) = ¢ if f € L;. Similarly write len(f) > ¢ if f € @;>;L;, with natural

self-documenting variations such as len(f) < i.
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The above degree and length notations will be important, and they will replace the common

notations such as path length.
Notation 4.1.11. Let f and g be potentials on @), ;. With the notation in 4.1.9, since
[,9€ F, F =, D; and F = @,<; Vi;, we will adopt the following notation.

(1) Define f; by decomposing f = >, fs where each f; € D,.

(2) Define feq =>4 fi and fuq = > ;o4 fi, with natural self-documenting variations such
as f<q and fs4. Thus, if deg(f) > 2 then f = fo + f3+ f=s.

(3) Define fi; by decomposing

f= > fi

ij:1<i<j<m
where each f;; € V;;. Variations such as fi; 4, fij<d, fij<d, fij>a and fi; >q are obtained
by applying (1) and (2) to f;;.
(4) Given s such that 1 < s < m, set

fu= > [ty

i,j:1<i<s<j<m

Variations such as fig.4; fis,<d> fis),<d» fis),>a and fis >q are obtained by applying (1)
and (2) to fig.

(5) Write f =g+ 04if f — g € @y>q D, and f = g+ 04 if f — g € Vij N\ @pza Di.-

Remark 4.1.12. We will frequently work with sequences of potentials (fs)s>1 on @, s, and
write fy for the degree d pieces of f (see 4.1.11). To avoid confusion, we will systematically

use Greek font f; to denote the d-th elements in a sequence, and not the d-th degree piece.

§4.1.1 | Monomialization

This subsection will prove that any reduced Type A potential on (), s is right-equivalent to

some reduced monomialized Type A potential (see 4.1.20).

Notation 4.1.13. To ease notation, in this subsection f will always refer to a reduced Type
A potential on @), ; of the form Zﬁ‘ll XiX;41 @ g (see 4.1.6). In the statements below, to ease

notation, the c and ¢, will refer to a cycle on @), 1, possibly with a coefficient.

The following lemma allows us to monomialize the degree 2 terms in f.
Lemma 4.1.14. Suppose that g = h+ ¢ where len(c) > 3 and deg(c) = 2. Then there ezists
a path degree one right-equivalence (in the sense of 2.1.8),
" m—1
pe: [~ Y Xixip1 @ (h+¢1) + O3,

i=1

such that len(cy) = 1 and deg(c;) = 2.

o1
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Proof. Since deg(c) = 2 and len(c) > 3, ¢ must have the form of ¢ ~ Ax]_;x,41 for some
0 # A € C, where s is such that x, is a loop. Since x, is a loop and f is reduced, f does not
contain x2, and S0 fig2 = X,_1Xs + XX 11.

Rewrite f = fl2® fls,>3® 7. Being a loop, x; = a,, so applying the depth one unitriangular

automorphism p.: as — a5 — Abs_1as_1 (in other words, xs — x; — AX._;) gives

pe(f) = X;—l(xs - )\X;—l) + (Xs - AX;—l)Xs—&-l + f[S},23 +7r+ 03

= [ = Ax_1)” = A pXerr + O3 (f = fig2 + figzs +7)
m—1
= D XX FhA e = AX_)? = M Xep + Oy (f = X" xiXi1 + h+c)
i=1
9 m—1
~ Y XiXipn +h - Axe_; + O3 (€~ M Xsp1s (Xoq)? ~x2y)
i=1
m—1
= D XX @ (h =M ,) + O3, (f = X3 xXi1 @ (h + ), len(c) > 3)
i=1
Set ¢; = —Ax%_,, which satisfies len(c;) = 1 and deg(c;) = 2, and we are done. O

The following lemmas allow us to monomialize the terms with degrees greater than two in
f. More precisely, given a cycle ¢ with len(c) > 2 in f, the basic idea is to decrease right(c)
(see 4.1.16) repeatedly through some right-equivalences until the terms that replace ¢ have
length one (see 4.1.17).

Lemma 4.1.15. Suppose that len(fy) < 2 and g = h + ¢ where len(c) > 2, d := deg(c) > 3.

Then there exists a path degree d — 1 right-equivalence,
a1 m—1
9 f ~ Z X;Xi+1 © (h +c1 + Cg) + Od+1,
i=1
such that each cy is either zero or satisfies right(cy) < right(c), deg(cy) = deg(c) and
T(Ck>right(c) = T(C>right(c) - L

Proof. Set s = right(c) — 1. The assumption len(fs) < 2 says that the degree two part
of f (wrt. x;, as in 4.1.10) must be spread over at most two variables. Thus the only
degree two cycles in f containing x, are x._;xs, x? and x/x,;1. So, in the notation of 4.1.11,

fisl2 = X,_1Xs 4+ Kx2 + x[x,11 for some k € C.

Then separating the terms of f that contain or do not contain x,, we may write f = fi52®

Jis,>3 ® 7. The proof splits into cases.
(1) x is not a loop.

The assumptions that len(c) > 2 and right(c) = s + 1 imply that as, bs, asy1 and bsyy both
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appear in c. Note that X, is not a loop, thus x, = asbs. Locally @), 1 looks like the following.

Xs41
as As41 as Q

bs bs+1 bs
Xs11 1S not a loop Xs11 1S a loop

Since right(c) = s + 1, we can assume cycle ¢ starts with xs.; up to cyclic equivalence. In
this order, ¢ starts with some number of x,,; and the next path must be b;. Thus we may
write

c~ Axﬁlbspasr ~ Abspasrxﬁl

for some 0 # A € C, integer N, and paths p, . Consider the path ¢ := rxﬁ_ll, and rewrite
¢ ~ ANbspasqxsy1. Since deg(c) > 3 and deg(x;) = 1 = deg(xs41), deg(p) + deg(q) > 1.

Then applying the depth d — 1 unitriangular automorphism &: as — as, — Apasq gives

ﬁ(f) - X;_l(as - }\pascﬁbs + K[(as - ApasQ)bs]Q + bs(a’s - ApasQ)Xs—I—l + f[s},ZS +r+ Od—i—l
'g’ f - }\nglpasqbs - 2}\szpasqbs - }\bspasqxs—i-l + Od—H (f = f[s],2 + f[5]723 + T)

m—1
= ) Xixip1 — AX,_ 1 pasgbs — 2Akx,pasqbs — Abspasqxsi1 + ¢+ h+ Ogi
i—1

(f =X XX +h +¢)
m—1
4 > xixip1 — A, pasgbs — 2Akxspasqbs + h + Ogia (¢ ~ Abspasqxsi1)
i—1

o
I

3

XiXir1 B (—AX,_1pasqbs — 2Akxspasqbs + h) + Ogyq.
1

(2
Set ¢; = —AX._pasqbs and ¢y = —2Akxspasqbs. The conclusions for ¢; are clear. Either ¢y is
zero or K # 0. In that case, the conclusions for ¢, are also clear.
(2) x, is a loop.

Since x; is a loop, from the shape of the quiver @), 1, X541 is not a loop. Since right(c) = s+1,
we can assume that the cycle ¢ ends with x,.1, up to cyclic equivalence. Thus ¢ ~ Apxs;
for some path p and 0 £ A € C.

Since deg(c) > 3 and deg(xs;1) = 1, deg(p) > 2. Moreover, since x, is a loop and f is
reduced, the k in figo = x[_;xs + kx? + x/xs11 equals to zero. Locally @, ; looks like the

following.
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Being a loop, x5 = as, so applying the depth d—1 unitriangular automorphism 9: as — as—Ap

(in other words, x; — x5 — Ap) gives

If) =xi_1(xs = Ap) + (X5 = Ap)Xss1 + flo,>3 + 7+ Qa1

d

~ [ - )‘X;—MU — Apxsy1 + Oapr (f = f[s],z + f[s],23 +7)
m—1

= > XXir1 — M, p — ApXsi1 + ¢+ h+ Ogiq (f =X XXy +h +¢)
i=1

d m—1

~ XiXi11 — AP+ h+ Ogyq (¢~ Apxsq1)

i

3
L

X,/L'Xl'+1 ) <—7\X;_1p + h) + Od+1.

Il
—

7

Set ¢; = —Ax,_;p and ¢ = 0. The conclusions for ¢; and ¢, are clear. O

We next apply the previous lemma multiple times to decrease right(c).

Corollary 4.1.16. Suppose thatlen(fs) < 2 and g = h+c wherelen(c) > 2, d := deg(c) > 3.
Then there exists a path degree d — 1 right-equivalence

m—1
9 f D XX @ (h+ > ) + Oay,

=1 k

such that right(cx) < right(c) — 1 and deg(cx) = deg(c) for each k.

Proof. Set q = T(c) and j = right(c). By 4.1.15, there exists a path degree d — 1 right-

equivalence,
m—1 2

Vo f “ fy = Z X;iXip1 @ (h + Zws) + Oay1,

i=1 s=1
such that wy is either zero, or satisfies right(w,) < right(c), T(ws); = ¢; — 1 and deg(w;) =
deg(c) for each s.

If both wy equal zero, or both satisfy T(ws); = 0, we are done. Otherwise, we continue to

apply 4.1.15 to decrease T(ws);, as follows.
o m—1 2 2
Dp: fy "5 foi= Y Xixi1 @ (A4 > wa) + Oapa,

=1 s=1t=1

such that each wy, is either zero, or right(ws) < right(w,) < right(c), T(ws); = ¢; — 2 and
deg(wg;) = deg(c). The proof follows by induction. O

o4
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We next apply the previous 4.1.16 multiple times to achieve the situation where length equals

one, namely a monomial type potential.

Corollary 4.1.17. Suppose thatlen(fs) < 2 and g = h~+c wherelen(c) > 2, d := deg(c) > 3.

Then there exists a path degree d — 1 right-equivalence
de1 m—1
pei [ 3 Xixipr @ (h+ D) + Ogsn,
i=1 k

such that len(cg) = 1 and deg(cy) = deg(c) for each k.

Proof. Set j = right(c). By 4.1.16, there exists a path degree d — 1 right-equivalence
de1 m—1
D f 5% fri= D xixi1 @ (h+ Y ws) + Oay,
i=1 s

such that deg(ws) = d and right(w;) < j — 1 for each s.

If all len(ws) = 1, we are done. Otherwise, we continue to apply 4.1.16 to those len(ws) > 1
to decrease right(wy), as follows.
d—1 =
1(}22 fl ~ f2 = Z X;Xi+1 D (h -+ Zwst) + Od+1,
=1 s,t

such that deg(ws:) = deg(c) and the wy, satisfies right(ws) < j — 2.

If all len(wg) = 1, we are done. Otherwise, we can repeat this process at most j — 1 times,

as follows. )
pe: f o fj1 = Z X;Xiy1 @ (h+ ch) + 0441,
i=1 k

such that deg(cy) = deg(c), and either each len(cy) = 1 or right(cy) = 1. However if
right(c,) = 1, then len(c;) = 1, we are done. O

Using the previous results, we next monomialize the potential f degree by degree. The
following deals with degree two.
Proposition 4.1.18. There exists a path degree one right-equivalence,
1 m—1
p2: [~ Y Xixip1 @ h 4 O,

i=1

such that len(h) =1 and deg(h) = 2.

Proof. We first decompose g in 4.1.13 by degree (wrt. x;, as in 4.1.10) as g = g2 & g>3, then

express g, as a linear combination of cycles g = @;_;cx.

95



CHAPTER 4. MONOMIALIZATION AND GEOMETRIC REALISATION 26

Since there are only a finite number of cycles with degree two on @), 1, necessarily s is finite.

Since
m—1 m—1

f= Z XiXit1 D g = Z xiXit1 © g2 D g>3,
i=1 i=1

then go does not contain any length two terms, and so len(c,) = 1 or > 3 for each k.

If len(c;) =1, set p,, = Id. Otherwise len(c;) = 3, so by 4.1.14 there exists

m—1 s
Pey - f 'vl~—> fl = Z X;Xi_._l D (Z Ccr + h1) + Og,
i=1 k=2

such that len(h;) = 1 and deg(h;) = 2.
If len(cg) = 1, set p., = Id. Otherwise len(cy) = 3, so again by 4.1.14 there exists
1 m—1 s 2
Pey: T1 ~> o 1= Z XiXis1 D (Z Crp + th’) + 03,
i=1 k=3 k=1
such that len(hy) = 1 and deg(hsy) = 2.
We repeat this process s times and set ps := p., 0+ 0 p., 0 p.,. It follows that,
1 m—1 s
pa: f o~ Z X; X1 @th+o37
i=1 k=1

such that len(h) = 1, deg(hy) = 2 for each k. Set h = >_;_; hy, we are done. O

The following will allow us to monomialize the higher degree terms.

Proposition 4.1.19. Suppose that len(fy) < 2. For any d > 3, there exists a path degree

d — 1 right-equivalence,
de1 m—1
pa: [~ Z XXi+1 D (g<a + h) + Out1,
i=1

such that len(h) =1 and deg(h) = d.

Proof. We first decompose ¢ in 4.1.13 by degree (wrt. x;, as in 4.1.10) as g = g<q4 ® ga D g,
then express g; as a linear combination of cycles g; = @j_,c,. Since there are only a finite

number of cycles with degree d on @), 1, s is finite.

If len(c;) =1, set p,, = Id. Otherwise, by 4.1.17 there exists

m—1 s
d—
Pey: f = Y XiXiq1 D (gea + Y 0+ 1) + Oap1,
=1 =2

such that len(h;) = 1 and deg(h;) = d.
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If len(ce) = 1, set p., = Id. Otherwise, again by 4.1.17 there exists

m—1 s 2
d—
Pes: T Sy = > xixip1 @ (gea+ D>k + D> hg) 4+ Oap1,
i=1 k=3 k=1

such that len(hg) = 1 and deg(hy) = d.
We repeat this process s times and set pg := p., 0+ 0 pe, © pe,. It follows that,
de1 m—1 s
pa: [ D xixip1 @ (9ea + Y hy) + Oata,
i=1 k=1

such that len(hy) = 1, deg(hy) = d for each k. Set h = >;_, hy, we are done. O

The following is the main result of this subsection.

Theorem 4.1.20. For any reduced Type A potential f on Q) 1, there exists a right-equivalence
p: [~ f" such that f' is a reduced monomialized Type A potential. In particular, f’ is unique

up to isomorphism of Jacobi algebras.

Proof. We first apply the ps in 4.1.18,

m—1

P2 f '\/1‘-> fl = Z X;Xi+1 EBhQ =+ 03,
i=1
such that len(hy) = 1 and deg(hsy) = 2.
Since (f1)2 = 27, xix;1 @ hy, it is clear that len((f;)2) < 2. Thus by 4.1.19 applied to f;,

there exists

m—1 3
p3: i 2 fy = D Xixip1 @ Y hj+ Oy,
i=1 =2

such that len(hs) = 1, deg(hs) = 3. Thus, repeating this process s — 1 times gives

m—1 S
PsO-++0pP30pPy: fwfs = ngle@Zhj—l—OsH,
i=1 J=2

such that len(h;) = 1, deg(h;) = j for each j.
Since py is a path degree d — 1 right-equivalence for each d > 2 by 4.1.18 and 4.1.19, by 2.1.9

p = limg ,, ps0---0p30 py exists, and further
m—1 e’}
prf o Y Xixi1 ® )by,
i=1 =2

such that len(h;) = 1 and deg(h;) = j for each j.

Set f' = 3" xixip1 + 232, hy. Since len(h;) = 1 for each j, f’ is a monomialized Type

A potential. Moreover, since f is reduced, f’ is also reduced. Since a right-equivalence
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f ~ f" induces an isomorphism of Jacobi algebras f = f’, it follows that f’ is unique up to

isomorphism of Jacobi algebras. O

§ 4.1.2 | Transform monomialized Type A potentials on @), ; to Q,

To state unified results later, it will be convenient to show that any monomialized Type A
potential on @, ; is isomorphic to a (possibly non-reduced) monomialized Type A potential
on @),. This required the following results, which give precise construction on how to add a
loop on @, 1.

Lemma 4.1.21. Given any I # {1,2,...,n} and i € I¢, let xt be the loop at ’Uertezi of
Qn.1. Suppose that b = Y13 XIXi1 + X[ Xep1 + S04y XiXigt — 5X¢ + i 200y KijXi where
all k;; € C. There exists a right-equivalence

D SEURES 9 o]
i=1j5=2
where K;; are some scalars, and further ki, # 0.
Proof. Being a loop, x; = a;, so applying the automorphism a; — a; — b;_1a;—1 — ;410441 (in

other words, x; — X; — X} | — X;41) gives,

t—2 m—1 0o
1 ,
him D XXt + XX+ Y XX — 5 (e = Xi_g = Xxep1)? D0 D KigX]
1 i—t+1 2 £t =2
7 ? J
1 1
~ Z XiXi11 — xt 1 5 xtJrl + Z Z KijX; (4.1.A)
1#t j=2
Then set the value of k[, from the equation Y52 0%, khx! = —ix2 | — L2 — L2+
Sist 2020 KijXi . Since Kj, is the coefficient of x7 in (4.1.A), kjy = —1 # 0. O

Corollary 4.1.22. Given any I # 0, i € I and a monomialized Type A potential f on

Qn,1, then there exists a monomialized Type A potential g on Qy 1/ such that Jac(Qn 1, f) =

dJac(Qn,1/i,9) and g contains the square of the loop at vertex i.

Proof. Let x; be the loop at vertex ¢ of @), ;/;. Locally, @, and @, ;/; look like the following,

respectively.
Xt
at—1 at at O Qat41
L] L] L] L] L] L]
7 %
bi—1 bt bt bt+1
Qn,1 Qn,1/i

Relabeling the paths allows us to consider [ as a potential on @, /. More precisely, we
replace the ay and by, in f by aj,; and by, respectively for any k& > ¢. Then set h := f — 1x2.

2
It is clear that Jac(Qn,r, f) = Jac(Qpn,1/i, ).
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By 4.1.21, there exists a right-equivalence h ~» ¢ such that ¢ is a monomialized Type
A potential on @,/ and g contains x;. Thus Jac(Qni/i,h) = Jac(Qnisi,g), and so
gaC(Qn,h f) = HaC(Qn,I/iag)’ O

Proposition 4 1.23. Given any I and a monomialized Type A potential f = S x!xiy1 +
i1 2eg Kix) on Q1 where all ki; € C, then there exists a monomialized Type A potential

g on Q,, namely

2n—2 2n—1 oo
g = Zxxz+1+ ZZKUX
=1 j=2

for some k;; € C, such that Jac(Qy, g) = dac(Qn1, f) and Ky;—12 # 0 for each i € I.

Proof. If I = (), there is nothing to prove. Otherwise, given any ¢ € I, by 4.1.22 there exist
a monomialized Type A potential g; on @, 1, such that Jac(Qn;,g1) = Jac(Qn,r, f), where

g1 contains the square of the loop at vertex .

Similarly, by 4.1.22 we can repeat the same argument to g, on @, n; and any j € I\{i} to
construct a monomialized Type A potential g, on @, n, ;; such that HaC(Qn’[\{i’j},gg) =

Jac(Qn, g1), where gy contains the square of the loop at vertex ¢ and vertex j.

Set s = |I|. Thus we can repeat this process s times to construct a monomialized Type A
potential g, on @, ¢ such that Jac(Q,, g, gs) = Jac(Q, 1, f), and g, contains the square of all

the loops at all vertices ¢ € I.

Set g := g,. Since Kg;_1 2 are the coefficients of the square of the loops at the vertices i € I,

the statement follows. O]

§ 4.2 | Geometric realisation

Section §4.2.1 below shows that any Type A potential on @), ; can be realised by a crepant
resolution of a cA,, singularity in 4.2.12, and furthermore proves the Realisation Conjecture

of Brown-Wemyss [BW2] in the setting of Type A potentials.

Section §4.2.2 gives the converse in 4.2.15, then proves a correspondence between the crepant

resolutions of cA,, singularities and our intrinsic Type A potentials on @),, in 4.2.18 and 4.2.19.

In §4.2.3, we provide an example of a non-isolated cAsy singularity, illustrating that the

Donovan—Wemyss Conjecture 2.3.7 fails for non-isolated cDV singularities in 4.2.26.
§4.2.1 | Geometric realisation

In this subsection, we will prove in 4.2.12 that, given any Type A potential f on @, s, there
is a crepant resolution 7t of a cA,, singularity such that Jac(f) = Acon(7r). This proves the

Realisation Conjecture of Brown—-Wemyss [BW2] in the setting of Type A potentials.
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Notation 4.2.1. We first fix a monomialized Type A potentials f on @), as follows,

2n—2 2n—1 oo ]
F=> Xxis1+ Y D> Kyl (4.2.A)
=1 =1 j=2

Then we consider the following system of equations where each g; € C[[z, ||

o0
go + ZjKug{_l +92=0
=2

g1+ Z]'szggil +93=0
i=2
(4.2.B)

Jon—2 + ZjK2n—1,jgg;i1 + gon, = 0.
=2

The following lemma allows us to construct the geometric realisation of f (4.2.A) in 4.2.3(1)

by the system of equations (4.2.B).

Lemma 4.2.2. With notation in 4.2.1, fix some integer t satisfying 0 <t < 2n—1, and set
Gt =Y, gis1 = x. Then there exists (go, g1, - - -, Gon) which satisfies (4.2.B) and, furthermore,

each g5 € (z,y) C Clz,y] is prime and has a linear term. Moreover,
(1) For any 0 <s <2n—1, (g5, 9s+1) = (=, y)-

(2) For any 1 S S S 2n— 17 ((gs—lvgs-H» -,C«- ((xay)) when Ks2 = 07 and ((gs—lags—i-l)) = (('CE? y))
when Kg # 0.

Proof. We start with the equation g; + 372, jKs 11 gl + giro = 0 in (4.2.B) which defines
Ji42 = —Y — Z?inKtJrl,jxj_l € ((z,y). Then we consider g,y + Z;i2j|<t+2,jgi—:21 +gi+3=0
which also defines g;13 € (z,y)). Thus we can repeat this process to construct g5 € (z,y)) for
t+2 < s < 2n. Similarly, the equation g; ; +Z?‘;2j|<t’jg{_l + gi11 = 0 defines ¢g; 1 € (z,v)).
We can repeat this process to construct gs € (z,y) for 0 < s <t — 1.

(1) For any 0 < s < 2n — 2, using gs + Z;’;QjKHngg;i + gs12 = 0 in (4.2.B), we have
(955 9s+1) = (gss1,gss2)- Moving either to the left or right until we hit ¢, it follows that

((gs>gs+1)) = ((gtvgt+1>) = ((yax» Hence ((.gsagerl)) = ((Z',y)) forall 0 < s < 2n — 17 which
implies that each g, is prime and has a linear term.

(2) For any 1 < s < 2n — 1, using gs—1 + 2525 jKejgl " + gsp1 = 0 in (4.2.B), we have
(gs-1,9s11) = ((98—172;.;2stj9g_1))' Thus, if ke = 0 then (gs-1,9:41) € (2,9), and if
Ks2 7 0 then (gs—1,9s+1) = (gs—1,9s) which equals (z,y) by (1). O

Notation 4.2.3. For any ¢ with 0 < ¢ < 2n — 1, 4.2.2 calculates a solution of (4.2.B). Fix

any such solution, say (go, g1, - - - , g2n)- From this, we adopt the following notation.
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(1) Since each g; is a prime element of C[[z, y]] with a linear term (by 4.2.2), we first define

the cA,, singularity

g Cluvwy]
Uv — gogz - - - 92n

and the CM R-module

n—1
M :=R® (u,g0) ® (u, goga) & - .. ® (u, H G2;5)-
j=0

(2) We next define

S L (C[[uv V,Zy, L1,X2,L3...,Toan—1, xQn]]
1= .

UV — o2 ...Ton

(3) Define a sequence hy, ha, ..., ha,—1 € 81 to be
hi =z + Zsz‘jfcg_l + Tit1,
j=2
and set ‘Sz = 81/(h1,h2, . 7hi—1) for 2 S 1 S 2n.

(4) For 1 < i < 2n, by abuse of notation we regard (u, zo), (u,zoz2), ..., (u,H;‘:_Ol :U2j>

as 8;-modules. Then we define the §;-module

n—1
N; =8, ® (u,z0) ® (u, xox2) B -+ B (u, 11 xgj).
=0

(5) Write 7y for the universal flop of Spec 81 corresponding to Ny [IW1, §5]. For 2 < i < 2n,
consider the morphism Spec8; — Spec8;, and the fiber product X; := X; Xgpecs,

Spec ;. These morphisms fit into the following commutative diagram.

Xop—— -+ X X1
Spec8y,—> -+ —>SpecSy—>Spec S,
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(6) Consider the following quiver Q.

1,001,150l L2002, 15000220 13,003,150 0l3,20  In=1,00n-11ln—1.2n Lol I
n,05¢n,1y--5tn,2n

()0 () () 0

— 22— — G 3 ...... n 1 /_a2"72\> n

N =
\ by /b2n /

10,0,00,1,--,10,2n

Then define the relations Ry of () as follows.

lt,z‘a2t = a2tlt+1,z‘7 lt+1,z‘b2t = b2tlt,ia lt,z‘lt,j = lt7jlt,i7

Rl =
lior = aatbat, L1t = barag for any t € Z/(n+1) and 0 <4, j < 2n.
(4.2.C)
For 2 < s < 2n, define R, to be R; with the additional relations
liici+ > Kl 4+l =0forany 0 <t <nand 1 <i<s—1. (4.2.D)

=2

To prepare for the main construction 4.2.9, we now establish in 4.2.4-4.2.8 a quiver presen-
tation of the NCCR Endg (M), where R and M are as in 4.2.3(1).

Lemma 4.2.4. With notation in 4.2.3, for 2 < k < 2n, 8 is an integral domain and

normal. Furthermore, there exists a ring isomorphism ¢: 89, — R such that ¢(Na,) = M.

Proof. Fix some k with 2 < k < 2n. By the definition in 4.2.3(2) and 4.2.3(3),

Sk ~ C[[uavaxmxhx%"'7'x2n]]

)
(wv — oy . .. oy, hy, hoy ... k1)

. i—1

where each h; = x;_1 + 352, jKijv] + 2iq0.

Similar to 4.2.2, for each 2 <17 < k, we can express x; as a formal power series of xy and x;
using hq, ho, ..., hg_1. Write these expressions as x; := H;(xq, z1).

Thus, when k is even,

C[[u7 UV, 0, L1y L1y Lh4-2y« -+ - 7([’2”]]

Sy =
uv — I0H2H4 . Hkxk+2 .. Top
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When £ is odd,
C[[u7 UV, X0, L1y L1y Th4-25 -+ - 7x2n]]
uv — IOH2H4 e Hk—lxk-i-l .. Loy

I

Sk

In both cases, 8 is an integral domain and normal by e.g. [S, 4.1.1].

Then we prove that 85, = R. Recall from 4.2.2 that we start with ¢, = vy and ¢;;1 =  and
then construct (go, g1, - ., g2n) Where each g; € C|[z,y]] using the equation system (4.2.B).
Then, in 4.2.3(1), these g; were used to define R.

On the other hand,
C[[u7 U, X, L1, X2, -+ -, x?n]]

I

Son )
(wv — oy . .. Tap, by, ho, ... hop_1)

Similar to 4.2.2, we can express each x, as a formal power series of x; and z,,; using

hi,ha, ..., hoy_1, and indeed x4 = gs(z411, ;). Hence

C[[ua U, Tt, xt-f—l]]

S, = .
o uv — 90($t+17 xt)g2($t+17 «Tt) .. '92n(xt+17 It)

Define a ring homomorphism ¢: 85, — R by u +— u, v — v, ;1 — x, and x; — y. It is

immediate that ¢ is an isomorphism, and moreover p(Ny,) = M. O

~Y

With notation in 4.2.3, consider the universal resolution 7t;: X1 — Spec8; with A(7y) =
Endg, (NV;) [IW1, §5]. As shown in Appendix 7.0.18, Endg, (V) = C{Q))/R;, where @ and
Ry are in (4.2.C).

To ease notation, set A := C{Q)/R;. By [W2, 6.2], X; is isomorphic to a moduli scheme
of stable representations of A, of dimension vector 6 = (1,1,...,1) and stability & =
(—n,1,1,...,1) where the —n sits at vertex 0 of Q.

In notation, X; = M2(A), which is the moduli space of 9-stable representations of dimension
vector 8. Moreover, exactly as in [W3, §3], M2(A) = U, Uy, is a gluing of n + 1 affine
charts. Accounting for the relations R; (4.2.C), the first affine chart U,q is parameterised by

bo,b2,...,ban—2,x2n, bo,b2,...,ban—2,x2n, bo,b2,...,ban 2,21, bo,b2,...,ban—2,x2n, bo,b2,...,ban—2,X2n,

X15XByeeey X2n—1 X15XBsyeeey X2n—1 X1,X3 5000y X2n—1 X15,X3 5000y X2n—1 X15X3 5000y X2n—1

() )0 () ()

(C/—l

B

b() b2n
1\ / ”
C

bo,b2,..,ban—2,xan,

X15X3 5000y X2n—1
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where Xo,, = ag,,ba, and (since we work on the completed path algebra) all cycles are nilpotent.
We claim that U;y = Spec Aig where

C[[bo, ba, ..., ban—2, 820, X1,X3, ..., Xon_1, Xon, V]Han]

A =
10 (X2n — agpba,, v —bobs . .. an)

. (4.2.E)

Indeed, we have used all the relations in the quiver, so the question boils down to under-
standing nilpotent cycles. Clearly Xi,Xs, ..., X2,_3,X2n_1, X2n, Do, b2, . .., ba,_o are cycles, as
is ay, (once composed with all clockwise arrows marked 1), thus they are nilpotent. As is
bonbon o ... bg.

There is no condition on by,, so it is a polynomial variable. Introducing a new completion
variable v to capture the nilpotency of by, bs,_s...by, which has a mix of both polynomial

and completion variables, the claim follows.

Moreover, 7t |y, : Uip — Spec§; is induced by the ring homomorphism ¢19: 81 — Ajo

xo by, warrbo, .., @op_orr boyo, Ton F Xop,

Ty > Xy, Tygr>»X3, ..., Top—1tr>Xogp—1, UrH>ag,, UVr>V. (42F)

Similarly, the second affine chart U,; is parameterised by

bo,b2,...,b2n—4, bo,b2,...,ban—4, bo,b2,...,b2n—4, bo,b2,...,b2n—4, bo,b2,...,b2n—4,
X2n—2,32n, X2n—2,32n; X2n—2,32n, X2n—2,32n, X2n—2,32n,;
X1,X3 50+, X2 —1 X1,X3 50+, X2n — 1 X1,X3 50+, X2n—1 X1,X3 50+, X2 —1 X1,X3 50+, X2n —1
C— ‘7T Cc— '"7——¢Cc - — P —
bo 1
1\ /a2n

C

bo,b2,...,b2n—4,x2n—2,32n,

X1,X35-+9X2n—1

where Xg, o = g, _2bs, o and (since we work on the completed path algebra) all cycles are

nilpotent. We claim that U;; = Spec A7 where

All — C[[bl); b27 R b2n747 A2n, X1, X3, . . ., Xop—1, X2pn—2, U, V]] [32n727 b2n72] (42G)
(X2n—2 — agn—2boy 2, U — agy_2a9,, v — bgby . .. b2n—2)

Similarly, we have also used all the relations in the quiver, so the question boils down
to understanding nilpotent cycles. Clearly xq,X3, ..., X2n_3, X2n—1,X2n_2, b, ba, ..., bop_4, a2,

are cycles, as is as,_sas, (once composed with all clockwise arrows marked 1), thus they are
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nilpotent. As is bgn_gbgn_4 ce bo.

There is no condition on as,_» and bs,_s, so they are polynomial variables. Introducing new
completion variables u and v to capture the nilpotency of asg, _sas, and by, obs, 4...bg re-

spectively, which have a mix of both polynomial and completion variables, the claim follows.

Moreover, 7t |y, : U3 — Spec 8y is induced by the ring homomorphism ¢11: 81 — Aqg

xo b, zarrba, .., Top_a > bop_a,  Top_or Xop_2,  Tap > A2y,

X1+ Xy, T3> X3, ..., Top—1tr7>Xop—1, U U, V> V. (42H>

Each of the remaining affine charts U;; of X; admits a similar parametrisation, and the

corresponding morphism 7c1|u1j : Uy; — Spec &, is defined in the same way as above.

Notation 4.2.5. With the notation U;; above and in 4.2.3, for each 2 < ¢ < 2n and
0<j<n, we set

(1) Wij := Uy; Xspecs, Spec;, the base change of Uy; along Spec8; — Spec 8;
(2) Ay :=T'(Us, Oy, ), the coordinate ring of Uy;

(3) @ij: 8 — Ay, the ring homomorphism associated to 75|y, : U;; — Spec ;.

By definition 4.2.3(5) X; := X1 Xgpecs, Spec8;, hence X; = U7_, Us;.

Since X; is the universal resolution of Spec &, it is connected and smooth. We now show

that, for 2 < i < 2n, the base change X; is likewise connected and smooth.

The next result shows that the connectivity of X; comes from the overlap of adjacent affine

charts along the exceptional curves.

Proposition 4.2.6. With notation in 4.2.3, X; is connected for all 2 < i < 2n.

Proof. For 1 < j < n, write C; for the j-th exceptional curve of the universal resolution
10 X1 — Spec 8; over the origin. By definition 4.2.3(3), for 2 <i < 2n

8; = 381/(h1,ha, ..., hi_1),

where each h; is a power series without a constant term. Thus Spec§; contains the origin
of Spec8;. Consequently, for 2 < < 2n, X; contains the j_; C; C Xy supported over the
origin. Moreover, for each 1 < 7 < n the affine charts of X; satisfy

Cj C uiyj,1 U uij = ui,j—l N uij 7é @7

and so the affine charts of X; pairwise overlap along the exceptional curves. Hence X; is

connected. O

We now prove that X; is smooth for 2 <7 < 2n by analysing each affine chart U;; of X;.
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Proposition 4.2.7. With notation in 4.2.3, for 2 <1i < 2n, X; is smooth.

Proof. Since by definition 4.2.3(5) X; = Xy Xgpecs, SpecS; for 2 < i < 2n, we have the
following pullback squares for the j-th affine chart U;; of X;:

uij ulj -Aij ‘Alj
yq e T |y, ©ij P1;
Spec S,‘ —_— Spec 81 Si 81

Recall from 4.2.3(3) that for 2 <1i < 2n

Si = 81/(h1, hg, e hi—l) with hz =1+ Zjl(ijl'ij_l + Lit1-

j=2
Therefore, for 2 <i <2n and 0 < j < n,

'Aij = -Alj ®51 Sz = -Alj ®51 81/<h1, hg, cey hifl) = .Alj/<.A1jh1,.A1jh2, S ,.Aljhifl). (421)

First chart (j =0). From (4.2.E) we have

(C[[b07 b27 cc b2n727 A2n, X1, X35 -« -y Xon—1, X2p, V]”bQTL]

A =
10 (in — agpbap, v —bgby . .. b2n)

Moreover, by (4.2.F) ¢19: 81 — Ajp is given by

T > b07 To b27 R Top—2 — b2n—27 Ton =7 Xon, U > Aoy, V=V,

Ty > Xy, T3F»X3, ..., Tap—1+t7 Xop—1.

Thus, for 1 <i < 2n — 1, the images Ajph; are

bi,1 + Z?‘;QjKingil + bi+1, for i = 1,3, ey 2n — 3
Arohi = {x;_1 + Z‘;‘;QjKijbg_l + X1, fori=2,4,...,2n —2

. j—1 -
bgn_g + Z?i2jK2n—1,jX2n—1 + Xon fori=2n—1

Introduce the notation obtained by successive elimination:

[e.9]

b01 = — ZjKlj le_l — bQ S C[[Xl, bg]],
j=2
and, using x; = — 3272, jKa; b —x3,
%) Jj-1
bgy 1= — ZJK13< ZTKQTbT - ) — by GC[[bQ,Xg]].
j=2
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Continuing inductively, for 0 <t <n —1 and 2¢t < k < 2n — 1, define by ;, with

C[[Xka bk+1]]7 k 0dd> k 7é 2n — 17
bot i € § Cllbg, xx11]],  k even,

C[[Xgnfl, Xgnﬂ, k=2n—1.
Each Ajph; has a linear term, hence eliminates one variable in (4.2.1). Consequently,

Asg = Ao/ (Aroht) =2 Arg/(bo + Y jkix] " + by)

=2
~ C[[b2, ba, ..., bon—2,82n, X1,X3, ..., Xon—1, Xon, V]Hb2n]
(in — ag,bon, v —boibs . .. an)
Aso = Aro/(Aroha, Aroha) = A/ (bo + ZjKle{_l +bo, X + Z]K%b%_l + x3)
=2 j=2
~ C[[b27 b47 ooy b2n—27 A2p, X3, X5, .« 3 X2p—1, X2n,s V]HbQH]
(X2n — ag,bon, v — bpabs . .. an)

Y

Y

Aon—1,0 = A1/ (Ar0ha, Arohs, . . ., Arohan—2)

~ C[{b2n727 A2p, X2n—15 X2n, VH [an]

(in — agybay,, v — b0,2n72b2,2n72 cee b2nf4,2n72b2n72b2n) ’
Aono = Ao/ (Aroha, Arohe, - . ., Arohon—2, Ar0han—1)
~ C[[a2n7 Xon—1;X2n, V]] [bZn]

(in — agpbop, v — b0,2n71 b2,2n71 e b2nf4,2n71 b2n72,2n71b2n)

Hence, for 2 < i < 2n, the first affine chart U;q := Spec A,y is smooth. Since the last affine

chart U;, is analogous to U;g, it is also smooth.

Second chart (7 =1). From (4.2.G) we have

C[[bO, ba, ..., bap_4,a820,X1,X3, ..., Xon_1,X2n—2, U, V]] [3211—27 bzn—2]
(X2n72 — agp—2bop_9,u —ag,_2a9,,v —boby . .. b2n72>

12

-All

Moreover, by (4.2.H) ¢11: 8; — Ay is given by

o+ by, warrba, L Topa = bopa, Topo P Xop—o,  Top kA2, UP U, UV,

T1 > X1, T3> X3, ..., Top—1t> Xop_1.
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Thus, for 1 <7 < 2n — 1, the images A;1h; are

biy 4+ Y52, jiKix! T+ b, fori=1,3,...,2n—5
Xio1 + 2000 jKibl T 4 X, fori=2,4,...,2n — 4
Ai1hi = { boy_a + Z;‘;Qngn,g’jxgizi + Xop_o, for i =2n —3
Xon—3 + Z;’;Qngn_ij%;iQ + Xop_1, for i =2n —2

0o g Jj—1 s
Xon—2 + Zj:2jK2n—1,jX2n—1 +agy, fori=2n—1

Define by, ;, analogously for 0 <t <n — 2 and 2t < k < 2n — 1. From the last equation, set

(o)
Xop—22n—1 ‘= — ZjKanl,jX%;il — a9y, € Cl[x2n—1, a2,]]-

=2

Again, each A;1h; has a linear term, hence eliminates one variable in (4.2.1). Consequently,

Aoy = Ay /(Arrhy) = Aq /(b + ZjKle{;l + by)
j=2
~ C[[b27 b47 I b2n—47 A2n, X1, X3, -+ .y, Xop—1, Xop—2, U, V]] [3271—27 b2n—2}

<X2n—2 — agp—2bop_o,u — ag,_2a9,,v — bgiby. .. b2n—2)

Az =2 A1 /(Ariha, Arihe) = Aqq/(bo + ZjKle{_l + bo, Xy + Zszjb%_l + X3)
=2 =2
~ Cllbg, by, - - -, b4, 320, X3, X5, - - s Xan—1, X2n—2, U, V]|[agn—2, ban—2]

- )

(in—Q — agn—2bop_9,u — az,_2a9,,v — bpabsy . .. b2n—2)

Y

Aon—11 = A /(Arhy, Anrhy, ..., Arihon o)
~ C[[aQn, Xon—1, X2n—2, U, V]] [aQn—27 b2n—2]
B (X2n—2 — agp—2b2p_9, U — Ag,_2a9,,V — b0,2n—2b2,2n—2 e b2n—4,2n—2b2n—2)
Aon1 = A/ (Anrhy, Avh, .. Arhon o, Arihon 1)
~ C[[a2n7 Xon—1, U, V]] [aQn—z, b2n—2]

(X2n—2,2n—1 — azp—2b2y_2, U — az,_23a9,,V — b0,2n—1b2,2n—1 cee b2n—4,2n—1 b2n—2)

Y

Since Xg,,—2.9,—1 has a linear term ay,, it follows that for 2 < i < 2n the second affine chart
U1 := SpecA;; is smooth. For 2 < j < n —1, the affine charts U;; are analogous to U;; (for
each fixed i), hence smooth as well. Therefore X; is smooth for all 2 <1 < 2n. O

Corollary 4.2.8. With notation in 4.2.3, Ends (N;) = C{(Q)/R; for 1 <i < 2n.
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Proof. Recall from 4.2.3 the commutative diagram

Xop—— -+~ Xs X1
Spec8y,—> -+ —>SpecSy—>Spec Sy

together with the 8;-module N; for 1 <1 < 2n.

By [IW1, §5], N is the tilting bundle for 7t;, and Appendix 7.0.18 shows that
Ends, (N;) = C{Q) /Ry, (4.2.J)

where () and R, are given in (4.2.C).

Note that 8; is an integral domain and normal, and X; is connected and smooth. By 4.2.4,
89 is also an integral domain and normal. By 4.2.6 and 4.2.7, X5 is connected and smooth.
Since Nj is the tilting bundle for 7t;, we can apply [V4, 2.11] to deduce that Ny = N; ®g, So
is the tilting bundle for 71, and

EIldg2 (NQ) = Endgl/hl (Nl ®51 51/h1> (since 82 = Sl/hl, N2 = N1 ®51 52)
= Ends, (N7)/(hq) (by [V4, 2.11])
= C(Q)/Rs. (by (4.2.J))

Here R; is obtained from R; by adding the relation (4.2.D) with ¢ = 1, namely
lio + ZjK]_]’lz’Il +UL2=0, forteZ/(n+1),
j=2
which corresponds to

[o¢]
_ : Jj—1
hy = xo + E JKy;x{  + To.
=2

Iterating this argument, for any 2 < ¢ < 2n, we have N; = N;_; ®s,_, §; is the tilting bundle

for m;, and

Ends, (N;) = Ends,_, (Ni-1)/(hi-1)
= Ends, ,(Ni—2)/(hi—1, hi—2)

= Endgl(Nl)/(hi—la hi—2’ ) hl)
~ C(Q)/R:. -

The following proposition shows that any (possibly non-reduced) monomialized Type A

potential on @, can be realised by a crepant resolution of a cA,, singularity.
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Theorem 4.2.9. Given the monomialized Type A potential f in (4.2.A) on Q,, the cA,
singularity R, and the CM R-module M in 4.2.3, we have Endy(M) = Jac(Qn, f).

Proof. By 4.2.4, R = 8,, and Endg (M) = Endg,, (Ns,). By 4.2.8, Ends,, (Na,) = C(Q)) / Roy,.
Thus Endg(M) = C{Q))/Ra, where @ and Ry, are in 4.2.3(7).

Similar to @), we also define x; and x; on @ as follows: for any 0 < i < n, set Xo; = ag;by;
and xb; 1= by;ay;, and for any 1 <i < n, set xo;_1 1= l;2i1 =: Xb;_1.

Next, we consider the following relations induced by Rs,. For any 1 < ¢t < n — 1, left
multiplying the i = 2¢ case of (4.2.D) by by gives

o0
. j—1
barle or—1 + Z] Kot jbatli or + baeliois
i=2

o0
= barly o1 + Zszt,ijtli,Etl + leg1,26e 4102 (since batly 9141 = lit1,204109¢ by (4.2.C))
=2

(0.0

_ / : Jj—1

= bayXyy ¢ + Z JKat jbasXa, 4 Xop 41094
i=2

. - - o -
(smce lt,zt = agiby = X, lt72t—1 = Xo; 1 and lt+1,2t+1 = Xg¢41 Dy (4-2-0))

Similarly, for any 1 <t < n — 1, right multiplying the i = 2t case of (4.2.D) by ay; gives

o0

. j—1
lior—1a9: + Z JKat il op A2t + 2011028
=2
&0 .
— ; j—1 . o
- lt72t—102t + Z]KQt,jlt,Qt Qo + a2tlt+1,2t+1 (smce lt,2t+1a2t = a2tlt+1,2t+1 by (4.2-0))
=2
o0
_ . Jj—1
= Xgp_1G2t + Z JKat jXop ~ Qop + A2¢Xor41-
Jj=2

: /
(SlﬂCe lt,2t = Qg¢bar = Xo4, lt,2t—1 = X911 and lt+1,2t+1 = Xot41 Dy (4-2-0))

For any 1 <t <n, the i =2t — 1 case of (4.2.D) is

o oo
| o : j—1
lior—o + Z]Kijlt,%—l F ot = Xop_o + Z]KQtfl,jXQt—l + Xot-
Jj=2 Jj=2
) B N o B B )
(since lyoi—1 = Xat—1, lyot—2 = bop_2a2_9 = X4 _o and l; oy = agbey = xop by notation and (4.2.C))

Combining the above three types of relations gives the following,

bin/‘—l + Z(;izjKijbng_l + Xi+1bi = 0, for i = 2, 4, ey 2n — 2.
T:=qx\ ja; + Z;?‘;ijijx{‘lai +ax; 1 =0,fori=24,...,2n—2. (4.2.K)

ngl + EﬁzjKinfl + x4 =0,fori=1,3,...,2n — 1.

Then we define the quiver Q,, by deleting loops on @ as follows. For each vertex ¢ on
with 1 <t < n, we delete all loops l;; except ;21 (namely x9;—1). Note that @), is Q,, by
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removing the vertex 0 and loops on it.

In 4.2.10 below we will show that C{Q)/(Ran,e0) = C{Q,)/(T,eo). Together with the
isomorphism Endg(M) = C{Q))/Ra, at the start of the proof, this gives

Endg (M) = C(Q)/(Ran, €0) = C{(Qn) /(T o).

Thus Endg (M) is isomorphic to C{@,)) factored by the relations T, which after deleting
paths that factor through vertex 0, become

)
biX;_l + ZjKijbiXZ]'_l + Xi—i—lbi = 0, for i = 2, 4, ey 2n — 2.
j=2

o
12 . —1 .
Xi_1a; + Y jKix] i+ axi =0, for i =2,4,...,2n — 2.
=2

X+ Y gk i =0, fori=3,...,2n 2.
=2

o0 o0

. j—1 _ ! : J—=1 _
Z]Kljxl +x2 =0, X5, 5 + Z]KQn—lijanl = 0.
J=2 J=2

112

These are exactly the relations generated by the derivatives of f. Thus Endy(M)
dac(Qn, f)- 0

Lemma 4.2.10. With notation in 4.2.3 and 4.2.9, C{Q) /{Ran, eo) = C{Q,) /(T e).

Proof. We first divide the relations Ry, in 4.2.3(7) into three parts. The following are the

relations in Ry, that factor through vertex 0.

loo = aopbo, l0,2n = bonQop.
loiao = aol, lpiaon = asnloi, loiban = banlyi, liibo = bolos,

lOiZOj = leZOia for 0 S Z,j S 2n.

lO,ifl + Z?‘;Q]Kljlégl + l07i+1 = 07 fOI' 1 S ”L S 27’L — 1.
Then we divide the remaining relations of R,, into the following two parts.

lior—2 = bop_oa9; o, for 1 <t < n.
Ty = § lyly; = lyyly, for 1 <t <nand 0 <1i,j < 2n.
liiage = agelisr 4, lig1,iboe = bogly;, for 1 <t <n—1and 0 <i < 2n.
lior = agibyy, for any 1 <t < n.

Ty = ,
lt,ifl + Z;‘;QjKijlg;l + lt,i+1 =0 for any 1 <t<n and 1 < 1 < 2n — 1.

71



CHAPTER 4. MONOMIALIZATION AND GEOMETRIC REALISATION 72

Since T' in (4.2.K) is induced by Rs,, necessarily

CLQ)/(Ran) = CLQ) /(Ron, T) = C(Q) /(To, Th, T2, T). (4.2.1)

We next use T5 to eliminate some loops at vertex 1,2,...,n of (), as follows.

Fix some vertex ¢t with 1 < ¢ < n and consider the loops l;; on it. Since l; 2 = agby in
T5, we can eliminate [; o;. From our notation, l; o—1 := xo—1 and Xg; := ag;be;. Thus we can
write l; o = Xgp. Since l;ly; = Uil in Ty for 0 <4, j < 2n, we can consider C{(l; o—1,l; ) as

the polynomial ring C[[l; 21, l; 2¢]]. By the relation
lt’2t71 + ZjKijlg,;tl + lt,2t+1 = 07 (42M)
=2

in Ty, we can express ly o1 € Clllp 21, li2t]] = C|[Xat—1,x2]]. Thus we can eliminate l; 9;41.
Similar to the argument in 4.2.2, for each ¢ # 2t — 1 we can express l;; 1= [ti(th_l,xgt) €

C[[X2t—1, x2¢]] and eliminate it. So we only leave one loop l;9;—1 = X2:—1 on vertex t.

Thus we can use all the relations in 75 to eliminate all such loops at vertices 1,2,...,n.
For 0 < k < 2, write T}, for the the relations where we have substituted I; in T}, by the
polynomial I for 1 <t <mnand0<i<2n. Sowe have

CQ)/(To, Ty, To, T) = C(Qn)/{To, T1,T). (4.2.N)

Now during the above substitution process, the following expressions in T’y

[75,21& = Xot = Q2tbyy (since xo; = agbyy)
Lot + Y JKillae + o =0 (by (4.2.M))
j=2

hold in C{Q,,) tautologically. Similarly, tautologically, all the other expressions in T also
hold in C(Q,).

We next prove that T in (4.2.K) induces T}.

(1) Firstly, we prove that T induces l_t,gtfz = byy_oa9;_o for 1 <t < n. Since

Xby o + Zngt_ij%t__ll + x9¢ = 0, (by the i = 2t — 1 case of the third line in (4.2.K))
=2

Lot + Zngt_LjZ{,;},l + 1o = 0. (since Ty holds in C{Q,))

Jj=2
and by notation lt,2t—1 = X9¢t—1 and lt,2t = Xot, then lt’Qt_Q = Xl2t72 = bgt_gagt_g.

(2) Secondly, we prove that T" induces l_tzl_t] = l_t]l_tZ for1<t<nand0<i,j<2n.
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Left multiplying the ¢ = 2t case of the first line in (4.2.K) by ay; gives

[o.¢] oo
_ / ; Jj—1 _ ! : J
0 = ag(baxy,_; + Z] Kot jD2rXoy ~ + Xopq1bar) = XoiXy, ¢ + Z J Kot jXoe + AoXor 1Dy
=2 =2

(since xg; = agbyy)

Right multiplying the i = 2t case of the second line in (4.2.K) by by gives

o oo
o . j—1 _ ; J
0= (X2t71a2t + ZJK%,szt Qg + a2tx2t+1)b2t = Xop_1Xot + Z]K%,jxgt + ag¢Xorr1bos.
Jj=2 Jj=2

(since xgp = agbyy)

Thus Xgixy;,_; = X§_1X2. Since xg—7 is the loop at vertex ¢, then by definition x5, ; = X911,
and 0 XgiXgr_1 = Xgr_1Xg;. Together with the fact that each l;; € Cllxgs_1,%o:]] gives lyly; =
l;thi for 0 S Z,] S 2n.

(3) Finally, we prove that 7" induces — agtl_tﬂﬂ-, l_t+17z'bgt = byl for 1 <t <n—1and
0 <17 < 2n. For each vertex t with 1 <t <n — 1, we have

lior = aibay = oy, (since Ty holds in C{Q,)))
7 /
1,20 = baragy = Xy, (by (1))
7 / 7 / .
lt,2t—1 = Xot—1 = Xo4_1; lt+1,2t+1 = Xot41 = X2t+1‘ (by the definition of Xot—1 and X2t+1)
Thus
lt,2ta2t = agtboray (SiDCG lt,2t = aztbzt)
= agliy1,0t, (since liv12t = boraot)
and
7 ! . 7 /
lot—1G9 = X5 1ot (since lyor—1 = Xb, 1)

= — Zngmxgt_lagt — agxoir1  (by the i = 2t case of the second line in (4.2.K))

Jj=2
o
_ : i1 2
= Z]K2t,ja2t tr1,2t — A2ebe41,2¢41
i=2
(since X = agbar, liv1,90 = bopagy and xopp1 = lig1,2041)
o0
_ S S
= _a2t(ZJK2t,jlt+1,2t +let12641)
i=2
= aoly1 001 (since T’ holds in C{Q,,))

Since Ty holds in C{Q,)), then similar to the argument in 4.2.2, each l;; € C{ls2 1, lro:)
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and ly11; € C{li1.20-1, les12¢). Furthermore,

l_ti = Hi(l_t,Qt—lv l_t,2t)7 l_t—i-l,i = Hi(l_t-l-l,Zt—b l_t+1,2t)~

for the same H;. Together with the above Zt’QtG/Qt = dgtilg+172t and L,gt_lagt = aztllﬂ,gt_l, this

gives Loy = a2tl_t+1’i for each i.
Similarly, T (4.2.K) also induces l; 1 by = byyly; for each i.

Combining (1), (2) and (3), it follows that 7" induces T, and so C{Q,)/(To,T1,T) =
C(Q.)/(Ty,T). Together with (4.2.1), this gives

(4.2.N)

CLQ)/(Ran) = CLQY/(To, T1, T2, T) = C{Qu)/(To,T1,T) = C(Qn))/{T0, T),
and so C(Q)/(Ran, o) = C(Qn) /(To, T, €9) = C{ Q) /(T €o). B

We now consider the quiver @, ; for some I C {1,2,....n} and prove that any Type A

potential on it can be realized by a crepant resolution of a cA,, singularity as follows.

Definition 4.2.11. We say that 7t is Type A,, if 7t is a crepant resolution X — Spec R where
R is cA,. Moreover, we say that 7 is Type A, 1 if the normal bundle of the exceptional curve
C; is O(=1) P O(—1) if and only if i € I, else the normal bundle is O(—2) @ O.

Theorem 4.2.12. For any Type A potential [ on Q. r, there exists a Type A, crepant
resolution 1: X — SpecR such that Aeon(7) = Jac(Qnr, f). If furthermore f is reduced,
then 1 is Type A, 1.

Proof. By the Splitting Theorem ([DWZ, 4.6]) and 4.1.4, there is a reduced Type A potential
frea o0 Q. for some I C I' C {1,2,...,n} such that Jac(Qn.r, frea) = dac(@Qn.1, f). Then,
by 4.1.20, there exists a reduced monomialized Type A potential g on @, ;7 such that fieqa = g.
By 4.1.23, there exists a monomialized Type A potential h on @), such that Jac(Qy.r,g) =
Jac(Qy, h). Thus we have

Jac(Qnr, f) = Jac(Qn,r, frea) = dac(Qu,rr, g) = Jac(Qn, h).

By 4.2.9, there exists a cA, singularity R and a maximal CM R-module M such that
Endy (M) = Jac(Qn, h). Denote 7 to be the crepant resolution of Spec R, which corresponds
to M in 3.3.2. Thus Acon(m) = Jac(Qn, h), and so Acon () = Jac(Qn.1, f).

If furthermore f is reduced, then I’ = I, f,.q = f and g is a reduced monomialized Type A
potential on @, ;. Then write
2n—2 2n—1 oo

h = Z X;Xi_;_l + Z Z Kiszja
=1

i=1 j=2
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for some k;; € C. Since g is reduced on @, ;, then by 4.1.23 K9;_12 # 0 when ¢ € I, and

Koi—12 = 0 when ¢ ¢ I. Write R and M as follows,

Cllw, v, 2, y]

Uv — gogz - - - 92n

R:

and M = R & (u, go) D (u, gogz) ® - -+ ® (u, [1/=y g2i). We next prove that 7 is Type A, .

(1) For any vertex i € I, since Kog;_12 # 0, then (g2i—2,92) = (z,y)) by 4.2.2, and so the
normal bundle of the exceptional curve C; of mis O(—1) @ O(—1) by 3.3.3.

(2) For any vertex i ¢ I, since Kg;—12 = 0, then (g2i—2,92) € (z,v) by 4.2.2, and so the

=

normal bundle of the exceptional curve C; of 7t is O(—2) @ O by 3.3.3. O

The Brown—Wemyss Realisation Conjecture [BW2] states that if f is any potential which
satisfies Jdim(f) < 1 (see [BW2, 3.4] for the definition), then Jac(f) is isomorphic to the
contraction algebra of some crepant resolution X — Spec R with R ¢cDV. The above result
4.2.12 confirms this Realisation Conjecture for Type A potentials on @), ; for any n > 1 and
IC{1,2,...,n}.

§4.2.2 | Type A, ; crepant resolutions and potentials

In this subsection, we prove in 4.2.15 the converse of 4.2.12. More precisely, given any
Type A, ; crepant resolution, there is a reduced Type A potential f on (), ; such that
Acon(7) = Jac(f). So, together with 4.2.12, this gives a correspondence between Type A,

crepant resolutions and monomialized Type A potentials on @),,, in 4.2.18 and 4.2.19.
The following 4.2.13 and 4.2.14 imply that both Type A, crepant resolutions and Type A

potentials on @), are commutative in some sense, which is the key for proving 4.2.15.

Lemma 4.2.13. If m: X — SpecR is a Type A, crepant resolution, then e;Acon(T)e; is

commutative for any 1 <1i < n.

Proof. Since 7 is a Type A,, crepant resolution, A(7t) = Endg (M) and Acon(7r) = Endg (M)
for some maximal CM R-module M where M = R & M; & --- & M, and each M; is an
indecomposable rank one CM R-module. Thus Endy(M;) = R for 1 <1i <n from e.g. [IW3,
5.4].

Denote € to be the stable category CM R of Cohen—Macaulay R-modules. Then we have
Endy(M) = Endy (M) and Endg(M;) = Endg(M;), thus for any 1 <i <n,

eiAcon(n)ei = eiLMR(M)Gi = €; EI]CLg(M)G, = Endg(M,) = LMR(MZ)

Since Endg(M;) = R is commutative and Endg(M;) is a quotient of Endg (M), then Endg(M;)

is also commutative, and so e;Acon(7)e; is commutative. O
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Lemma 4.2.14. Suppose that [ is a reduced potential on Q1. If there is some integer j
where 1 < j < m — 1 such that f does not contain xjx;ji1, then there exists some integer i

(depending on j) where 1 < i < n such that e;Jac(f)e; is not commutative.

Proof. (1) When x; and x;;1 are not loops, then there exists a vertex i € I such that @, ;

at vertex ¢ locally looks like the following.

We denote the above quiver with only the three vertices shown, as )’. Then consider
the noncommutative algebra J, defined as Jac(f) quotiented by the ideal generated by the
following paths:

. m%nﬁ , where mq , is the ideal generated by all the arrows of @, ; (see 2.1.1).
e gpforalll<k<i—landi+1<k<n.
o possible loops x;_; on vertex ¢ — 1 and x; 4o on vertex 7 + 1.

It is clear that J = Jac(Q, g) where g ~ 7\1x]2- + 7\2X‘;Xj+1 + 7\3x]2-Jrl for some Ay, Ag, A3 € C.
Then we suppose that e;Jac(f)e; is commutative and f does not contain x}xjﬂ, and aim for

a contradiction.

Since e;dac(f)e; is commutative and e;Je; is a factor of e;Jac(f)e;, then e;Je; is also com-
mutative, and furthermore xzxjﬂ = xij} in e;Je;. Since f does not contain x;-xjﬂ,
g ~ Aix; +Asx7, . It is clear that the four relations induced by differentiating Ayx2 4 Agx3
can not induce the relation (bja;)(a;j11bj41) = (aj410551)(bja;). Thus xjxj11 # xj01%; in
e;Je;, a contradiction.

(2) When x; is not a loop and x;1; is a loop, then there exists a vertex ¢ ¢ I such that @,

at vertex ¢ locally looks like the following.

We again denote the above quiver with the only two vertices shown, as @)’. Then consider
the noncommutative algebra J, defined as Jac(f) quotiented by the ideal generated by the
following paths:

e« m¢  where mg, ; is the ideal generated by all the arrows of Qs (see 2.1.1).
e epforalll<k<i—1landi<k<n.

e the possible loop x;_; on vertex ¢ — 1.
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2
* Xjt1-

It is clear that J = Jac(Q, 9)/(x3,1) where g ~ ApxZ + Aoxixjq1 +AsxixF, | +Aax5 g +Asx3 | +
Aexj,, for some A, € C. We suppose that e;Jac(f)e; is commutative and f does not contain

Xixj41, and aim for a contradiction.

Since e;Jac(f)e; is commutative and e;Je; is a factor of e;Jac(f)e;, then e;Je; is also com-
mutative, and furthermore x}xjﬂ = xj+1x; in e;Je;. Since f does not contain x}xjH, Ay = 0.
Since f is reduced, Ay, = 0. Thus

C(@)

(As(bja)xjs1 + Asxji1(bjaz), Mbjazby, Majbjaz, x3 )

I

J

Again, it is clear that the above relations can not induce (bja;)xj41 = Xj41(bja;). Thus

Xixjy1 # Xj11%; in e;Je;, a contradiction.
(3) When x; is a loop and x,41 is not a loop, the proof is similar to (2). ]

Proposition 4.2.15. Given any Type A, 1 crepant resolution mt: X — SpecR, there exists
a reduced Type A potential f on Qn 1 such that Acon(7) = Jac(f).

Proof. By 3.3.3, the NCCR A(7) can be presented as the quiver in 3.3.3 with some relations.
Since R is complete local, A(7) is also complete local by e.g. [BW2, 8.4]. Moreover, A(m) is
3-CY from [IW1, 2.8]. Since a complete local 3-CY algebra is a Jacobi algebra from [V3],
the relations of A(7r) are generated by some reduced potential g. Since Aco, (1) = A(7)/{e0),

Acon(70) is isomorphic to Jac(Qy, 1, f) for some reduced potential f.

Then we prove that f is Type A, namely f contains x/x;;1 for each 1 < i < m — 1. Since
Acon () = Jac(f) and e;Acon(70)e; is commutative for each 1 <i < n by 4.2.13, e;Jac(f)e; is

also commutative for each i. So f must contain x/x;,; for each i, by 4.2.14. [

We are now in a position to show that our definition of Type A potential 4.1.4 is intrinsic.

Corollary 4.2.16. Let f be a reduced potential on Q) 1. The following are equivalent.
(1) f is Type A.
(2) There exists a Type A, 1 crepant resolution 1 such that Jac(f) = Acon (7).

(3) e;dac(f)e; is commutative for 1 < i <n.

Proof. (1) = (2): Since f is a reduced Type A potential on @), 7, it is immediate by 4.2.12.

(2) = (3): Since 7 is a Type A, crepant resolution, then e;Aq,(7)e; is commutative by

4.2.13, and so e;Jac(f)e; is commutative for any 1 < i < n.

(3) = (1): Since f is a reduced potential on @, and e;Jac(f)e; is commutative for any
1 <i < mn, then f contains x/x;41 for any 1 <7 <m —1 by 4.2.14, and so f is Type A. O
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Definition 4.2.17. We say two crepant resolutions m;: X; — SpecXR; for i = 1,2 have the

same noncommutative deformation type (NC deformation type) if Acon(711) = Acon(72).

The name NC deformation type comes from the fact that the contraction algebra represents

the noncommutative deformation functor of the exceptional curves [DW1].

Together with 4.1.20, the above 4.2.15 induces a map ¢ from Type A,, ; crepant resolutions to
the isomorphism classes of reduced monomialized Type A potentials on @),, ;. More precisely,
for any Type A, ; crepant resolution 7t, we define ¢(7) to be the reduced monomialized Type
A potential f on @, ; that satisfies Acon(7r) = Jac(f) by 4.2.15 and 4.1.20. Moreover, ¢ is
well-defined since if there are two such f; and fo, then Jac(fi) = Jac(fz).

Theorem 4.2.18. The above @ induces a one-to-one correspondence as follows.

Type A, 1 crepant resolutions up to NC deformation type

!

isomorphism classes of reduced monomialized Type A potentials on Q.1

Proof. Firstly, we prove the map from top to bottom is surjective, namely that for any
reduced monomialized Type A,, ; potential f, there is a Type A,, ; crepant resolution 7t: X —
Spec R such that Jac(f) = Acon(7r). This is immediate from 4.2.12.

Then we prove that the map from top to bottom is injective. Let 7t: X — Spec Ry be two
Type A, 1 crepant resolutions for k = 1,2. If Acon(711) = Jac(f) = Acon(712) for some reduced
monomialized Type A potential f on @), ;, then 7; and 7, have the same NC deformation

type. O

The following asserts that Type A potentials on @),, describe the contraction algebra of all

Type A, crepant resolutions.

Corollary 4.2.19. The set of isomorphism classes of contraction algebras associated to
Type A,, crepant resolutions is equal to the set of isomorphism classes of Jacobi algebras of

monomialized Type A potentials on Q).

Proof. We first define a map ¢ from the isomorphic classes of contraction algebra associated
with Type A, crepant resolutions to the isomorphic classes of Jacobi algebra of monomialized

Type A potentials on Q),,.

Given any contraction algebra A, (7) where 7 is a Type A, crepant resolution, then 7
belongs to Type A, crepant resolution for some I. Thus Acon(m) = Jac(Q,, 1, f') for some
reduced monomialized Type A potential f' on @), ; by 4.2.18. Moreover, f’ is isormphic to
some monomialized Type A potential f on @, by 4.1.23. We define ¢(Acon()) 1= Jac(f).
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Secondly, we prove that ¢ is well-defined. If there are two Type A,, crepant resolutions 7t; and

Ty SllCh that Acon(ﬁl) & Acon(ﬂg), then (b(Acon(T[l)) - HaC(f1) and ¢<Acon(7-[2)) = 3&C(f2), S0
Jac(f1) = Jac(fy) from the above definition of ¢.

Thirdly, we prove that ¢ is injective. If there are two Type A, crepant resolutions 71y and
1y such that ¢(Acon(m1)) = Jac(f) = ¢(Acon(2)) for some monomialized Type A potential
f on @y, then Ao, (711) = Aeon(712) from the above definition of ¢.

Finally, by 4.2.12 ¢ is surjective. [

Notation 4.2.20. Let f and g be potentials on a quiver ). We say that f is derived
equivalent to to g (written f ~ g) if the derived categories DP(Jac(f)) and DP(Jac(g)) are

triangle equivalent.

Given any isolated cA,, singularity R which admits a crepant resolution, let 7t: X — Spec R
be one of the crepant resolutions. Then, by 4.2.19, there exists some monomialized Type
A potential f on @, such that A.n(7) = Jac(f), so it induces a map ® from isolated cA,

singularities, which admit a crepant resolution to monomialized Type A potentials on @,,.

Theorem 4.2.21. The above ® induces a one-to-one correspondence as follows.

isomorphism classes of isolated cA, singularities

which admit a crepant resolution

!

derived equivalence classes of monomialized Type A potentials on @,

with finite-dimensional Jacobi algebra

Proof. Firstly, we prove that the map from top to bottom is well-defined. Given any iso-
lated cA,, R which admits a crepant resolution, let 7t: X — SpecR be one of the crepant
resolutions. Then there exists some monomialized Type A potential f on @, such that
Acon(m) = Jac(f) by 4.2.19. Moreover, since R is isolated, Jac(f) is finite-dimensional by
2.3.6. Let 7': X' — SpecR be another crepant resolution such that A, () = Jac(f’) for
some monomialized Type A potential f on @Q,,. Since 7 is a flop of 7t and R is isolated, f

is derived equivalent to f’ by 2.3.8.

Secondly, we prove that the map from top to bottom is surjective. Given any monomialized
Type A potential f on ), with finite-dimensional Jacobi algebra, there exists a Type A,
crepant resolution 71: X — SpecR such that Jac(f) = Acon(m) by 4.2.9. Moreover, since
Jac(f) is finite-dimensional, R is isolated by 2.3.6.

Finally, we prove the map from top to bottom is injective. This uses the proof of the
Donovan-Wemyss conjecture in 2.3.7. Let 7;: X; — SpecR; be two crepant resolutions of
isolated cA,, R; with Ao (7;) = Jac(f;) for i = 1,2. If f; is derived equivalent to f, together
with R; and R isolated, then Ry = Ry by 2.3.7. O
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§4.2.3 | Derived equivalences associated to non-isolated cases

Since both 2.3.7 and 2.3.8 need the assumption of isolated ¢cDVs, we restrict our proof of
the correspondence in 4.2.21 to isolated cA,, singularities. This naturally suggests the idea
of extending 2.3.7 and 2.3.8 to non-isolated cDVs.

However, by testing contraction algebras associated to crepant resolutions of the non-isolated
cAy singularity Cllu, v, z,y]]/(uv — 2%y), we find in 4.2.26 and 4.2.29 that 2.3.7 and 2.3.8 do

not extend directly to non-isolated cDVs.

Let R := C[[u, v, r,y]]/(uv — 2%y) and consider the R-module M := R & (u, z) & (u, xy), and
the corresponding crepant resolution 7t: X — SpecR with A(mr) = Endg(M) in 3.3.2. By
[IW3, §5], X is given pictorially by

By 3.3.3 Endg(M) can be presented as the following quiver

/—y_\
(u,z) (u,zy)
TT——ine—,

AN
. \R//

Thus Acon(71) = Endg (M) = Jac(Q, f) for some potential f on the quiver () where

It is easy to check that f = 0 by the quiver presentation of Endg (M) above.

We next perform a flop of the exceptional curve C; in 7t: X — SpecR, obtaining a new

crepant resolution 7¢': X’ — SpecR. Again by [IW3, §5], X’ is given pictorially by

and A(7') = Endg(M’) where M’ = R @ (u,y) ® (u,yz). Again by 3.3.3 Endg(M’) can be
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presented as the following quiver

Ny

Thus Acon(70) = Endy (M') = Jac(Q', f) for some potential f* on the quiver ()’ where

l

a
Q/ o ./—\Q
TOIN~__ 2
b

It is easy to check that f’ = lba by the quiver presentation of Endg(M’) above.
Thus if 2.3.7 and 2.3.8 hold for non-isolated ¢DVs, then Jac(Q), f) would need to be derived

equivalent to Jac(Q’, f'). However, we will show that this is not the case by comparing their

global dimensions.

Notation 4.2.22. To ease notation, we adopt the following notation.

(1) Set Acon = Jac(Q, f) and Loy, = Jac(Q', f).

(2) Then set P, = Aconer = Endg(M, (u,x)), Py == Aconea = Endg(M, (u,xy)) and
Q1 = Teoner = Endg (M) (u,y)), Qo := Teonez = Endgy (M, (u, yx)).

(3) Write Sy (resp. Ss) for the simple left I'.o,-module which corresponds to the following

quiver representation of I'cyp.

0 0
. ) . ()
\_/ ~_
0 0

Lemma 4.2.23. With notation in 4.2.22, the global dimension gl.dim(Aq,) < 1.

Proof. Since Ay, = C{Q)) which is a complete quiver algebra with no relations, by [C3, §1]
pdy, . (N) <1 for any left Acoy-module N. Thus gl.dim(Acon) < 1. ]

Lemma 4.2.24. With notation in 4.2.22, there exists an exact sequence of left Icon-modules

0—>51—>Q21>Q21>Q1—>51—>0.
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Proof. Recall that T'co, = Jac(Q’, f') where f’ = lba. Given that the relations generated by
flare b =0, ba = 0, and al = 0, we consider the following left I'.,,-modules as C-vector

spaces:
o ()1 = Dcone is the C-vector space generated by {ey, b, ab},
o Qo = ['ones is the C-vector space generated by {es, a,l, 1%, ...},

[eond is the C-vector space generated by {b, ab},

[eonl is the C-vector space generated by {l,1%, ...},

[cona is the C-vector space generated by {a}.

Thus we have the short exact sequences

0= Teonb — Q1 — S — 0,
0 — Tegnl = Qs 2 Tegnb — 0,

0 — Teona — Q2 N [eonl — 0.
Combining the above three short exact sequences gives the long exact sequence
O_>Fcona_>Qgi>Q2i>Ql_>Sl—>0.

So we only need to prove that I'.ona = S as left I'eo,-modules. By the one-to-one correspon-
dence between the quiver representations of I'co, and the left I'cop-modules in [W3, 6.14],
S1 = C with the left I'.,,-module structure ac = 0, bc = 0, lc = 0, esc = 0 and e;c = ¢ for
any ¢ € C. Thus the map ¢: I'cona — S7 defined by ¢(ca) = ¢ for any ¢ € C is a surjective

left-I'¢,, homomorphism. Since dimg I'copa = 1 = dime Sy, ¢ is a left-I'.on isomorphism. [

Lemma 4.2.25. With notation in 4.2.22, the global dimension gl.dim(I'.,) = oco.

Proof. By the dimension shifting theorem of the Ext groups and the exact sequence in 4.2.24,

for any ¢ > 0 we have

Extr..,, (51, S2) = Exty}? (51, 5).

By the shape of the quiver @' and the intersection theory of [W2, 2.15], Ext%m(Sl, Sy) =
C, and so Ext}, (S1,5) = C for any i = 1,4,7,---. Thus pdp_ (S1) = oo, and so
gl.dim(T'copn) = o0. O

Proposition 4.2.26. With notation in 4.2.22, A.on s not derived equivalent to Tcop.
Proof. It Acop is derived equivalent to T'copn, then by [R3] there exists a tilting complex T'
of Acon such that T'eoy = Endgb(proja.,,)(1). Since by 4.2.23 gl.dim(Aey) is finite, by [KK,

Theorem 1] gl.dim(Endge projA..,) (1)) is also finite. But this contradicts with the fact that
gl.dim(Teopn) = 00 in 4.2.25. O
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Although A, is not derived equivalent to I'co,, we will show that Ay, is derived equivalent

to C(Q")/(Ix), where

Note that C{Q"))/(Ix) is a quotient of I'c,, defined via the map ¥: I'con — C{Q")/(Ix),
given by

Q//

() =1, 90b)=z, 9(a)=0.
Thus C{Q")/(Ix) = T'con/(a). This is a new phenomenon specific to the non-isolated cDVs.

Let CP(mod Acon) denote the category of bounded cochain complexes of finitely generated
Acon-modules, and let KP(proj Acon) denote the bounded homotopy category of finitely gen-

erated projective Ao,-modules.

By [A3, §4.1], Acon has a two-term complex
P = (MJ{ (M, (u,z)) < Homg, (M, (u, :Uy))) ® (O — Homg (M, (u,xy)))

Since R is non-isolated, we can not use [A3, §4] to deduce that P is a titling complex. How-
ever, we next prove that P is still a tilting complex by checking Homgb (proj A, (P, P[1]) = 0
for n # 0. With notation in 4.2.22

P:(Pl—UL)PQ)@(O%PQ) (420)

To ease notation, we write C* (resp. KP) for C°(mod Acon) (resp. KP(proj Acon)) throughout

this subsection.

Lemma 4.2.27. With notation in 4.2.22, P is a tilting complex of Acon-

Proof. Since P is a two-term complex, Homys (P, P[n|) = 0 for n > 2 or n < —2. Thus we
only need to check that Homgnw (P, P[n]) =0 for n =1, —1.

(1) We first check that Homys (P, P[1]) = 0. By the construction of P,

Homy (P, — Po, (P, — P5)[1]) Homys (P, — Pa, (0 — P3)[1])

o (PP = Homa (0= Py, (P> P Hom(0 = o (0 - P[L)

Any cochain map ¢ in Homan (0 — P, (P; — P»)[1]) has the form

0 0 Py
(—a)
P Py 0
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Thus g; = 0 for each i, and so Homgs(0 — P», (P, — F»)[1]) = 0. Similarly, we have
HOHle(O — Pg, (0 — PQ)D]) = 0.

Any cochain map ¢ in Homew (P, — Py, (0 — P»)[1]) has the form

-a

0 P B
g-1 l 90 J 91 J
0 P, 0

Thus g; = 0 for each i # 0. By the shape of the quiver @), we have gy = ah’ for some
h' € Homy,,, (P2, P»). Then we define a collection of maps h; in the diagram below as
ho = h' and h; = 0 for each i # 0.

0 pP—2p e
O/gil h,l/ g‘o ho/g‘1 0/
. P V7 b
: 0 P 0

It is clear that gy = ahg + h_; - 0. Thus h is a cochain homotopy between g and the zero
cochain map, and so Homgs (P, — P, (0 — P,)[1]) = 0. Similarly, we have Homgn (P —
Py, (Pr — P)[1]) = 0.

(2) We next check that Homyw (P, P[—1]) = 0. By the construction of P,

HOHle(Pl — PQ, (Pl — Pg)[—l]) HOme(P1 — Pg, (0 — Pg)[—l])

Homye (P, PI=1]) = Homyo (0 = P, (P = P)[-1])  Homgs (0 — P, (0 — P)[—1])

Any cochain map ¢ in Homen (P, — Py, (0 — P5)[—1]) has the form

P Py 0
lgl Jgo ng
0 0 Py

Thus g; = 0 for each ¢, and so Homgs (P — P2, (0 — P)[—1]) = 0. Similarly, we have
HOl’Ile(O — Py, (0 — PQ)[—]_]) =0.

Any cochain map ¢ in Homew (P, — Py, (P, — P)[—1]) has the form

-a

P P, 0
(—a)
0 P Py

Thus g; = 0 for each i # 0. Since g commutes with the boundary operator, gy - (—a) =
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0-9g1 = 0. Since Aeon = C(Q)) with no relations, gy = 0. Thus g = 0, and so we have
HOHle(Pl — PQ, (Pl — PQ)[—1]> =0. Slmllarly, HOHIKI)(O — Pg, (Pl — PQ)[—l]) = 0. ]

Lemma 4.2.28. With notation as above and 4.2.22, Endgb proj aen) (P) = C(Q")/(Ix).

Proof. Recall that P = (P, <5 P,) @ (0 — P,) (4.2.0). Thus

EIlde(Pl—)PQ) HOme<P1—>P2,0—>P2)

Endgs(P) =
w(P) Homyo (0 — Py, P — P,) Endgs (0 — Py)

(1) Any cochain map g in Endew (P; — P») has the form

0 P P,
g-2 l g-1 J g0 J g1 J
0 P—2 P 0

Thus g; = 0 for each 7 # —1,0. Since g commutes with the boundary operator, g_1a = ago.
Recall that Py = Aconer and P = Aggneg in 4.2.22 where Ao, = C(Q) and

Q— ./—\.
oI~ 2
b

Thus ¢g_1a = agy induces
g1 = cp(ab)™ + cp1(ab)"t + - -+ + crab + cpey,

go = cn(ba)" + cu1(ba)" 1 + - - + c1ba + coea,

for some n > 0 and each ¢; € C.

We next define a cochain map E; € Ende(P1 — P) as (E1)_1 = e1, (E1)p = ez and
(E1); = 0 for each i # —1,0.

Then we define a collection of maps h; in the diagram below as h; = 0 for each ¢ # 0 and

ho = c,b(ab)" ™" + c,_1b(ab)" 2 + - - - + c1b.

0 P ———P, 0
0/912 h /‘ h /9‘0 0/9‘

-1 9-1 0 /
e b P
: 0 Py P,

1 0

|
0

It is clear that
-1 — co(Er)-1 = ahg+ h_q1-0and gy — co(E1)o = hoa + 0 - hy.
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Thus h is a cochain homotopy between g and ¢yE;, and so g = ¢oFE; in Endge(Py — P).
Thus EHde (Pl — PQ) = (CEl

(2) Any cochain map ¢ in Homgs (0 — Py, P, — P,) has the form

0 0 P, 0
g-—2 l g-1 J go J g1 J
0 pP—2 5P 0

Thus g; = 0 for each ¢ # 0, and
9o = cn(ba)™ + co_1(ba)" ' 4 - - + c1ba + coes

for some n > 0 and each ¢; € C.

We next define a cochain map X € Homen (0 — P, P, — P») as Xy = e3 and X; = 0 for each
i # 0. Similar to (3), we can also construct a cochain homotopy h between g and ¢yX. So
g = Cox in HOme(O — PQ,Pl — PQ) Thus HOHle(O — PQ,Pl — P2) = CX.

(3) Any cochain map g in Homgw (P, — P»,0 — P») has the form

0 P P 0
o l . J 0 J o J
0 0 P, 0

Thus g; = 0 for each ¢ # 0. Since g commutes with the boundary operator, a-go = g_1-0 = 0.
Since Acon = C(Q) with no relations, gy = 0. Thus Homgw (P, — P2, 0 — P5) = 0.

(4) Any cochain map ¢ in Endgs (0 — P,) has the form

0 0 Py
g-2 l g-1 J go J g1 J
0 0 Py 0

Thus g; = 0 for each i # 0 and
go = cn(ba)" + cu1(ba)" ' + - + c1ba + coes

for some n > 0 and each ¢; € C.

We next define the cochain maps Fs, L € Endey (0 — P) as
e (Ey)p = ey and (E,); =0 for each i # 0,
e Ly=ba and L; = 0 for each 7 # 0.
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It is clear that Endcs (0 — B) is a C-algebra generated by Ey and L with relations E? = Fs,
E>L = L = LE;. Since any cochain homotopy h in the diagram above must be zero,
Endgs (0 — P») has no more relations, and so Endgs(0 — P,) = C[[L]], and as a C-vector
space is spanned by {Fy, L, L?,---}.

Combining (1), (2), (3) and (4), it follows that

End (P) EHde (Pl — PQ) HOIHKb (Pl — PQ, 0— PQ) ~ CEl 0
ndgo = = ,
* Homg (0 — Py, P, — Py) Endye (0 — Py) CX C[L]

which is the C-algebra generated by E;, X, E; and L where
E; 0 0 0 0 0 0 0
E, = ! , = , 9 1= , L:= .
0 0 X 0 0 Es 0 L

Moreover, Endgs(P) is the C-vector space spanned by {E;, X, Ey, L, L% - }.

l
Q
=17 3

We define an algebra homomorphism ¢: C{Q"))/(Ix) — Endgs(P) by ¢(e1) = Eqi, ¢(es) =
Eo, ¢(X) = X and ¢(I) = L. We next check that ¢ is well-defined, which only requires
verifying that Endgs (P) satisfies the relations of C{Q")/(Ix).

The relations of C{Q")/(Ix) are

Recall that

Q//

e% =e1, 160 =0, e;x =0, 1l =0,
ese; =0, e% =e9, 9x =, €3l =1,
rer =1, vea =0, 22 =0, 2l =0,

ley =0, leg =1, lx =0.

Recall that
(1) Ey € Endgo (P — By) with (Ey)_; = ey, (E1)o = ez and (E}); = 0 for each i # —1,0,
(2)
(3) Ey € Endgs(0 — P») with (Ey)g = e2 and (Esy); = 0 for each i # 0,
(4)

Thus Eq, Eo, X and L clearly satisfy all the relations above, except for LX = 0. So it remains

X € Homyn (0 — P, PL — P») with Xy = €3 and X; = 0 for each i # 0,

L € Endgs (0 — P,) with Ly = ba and L; = 0 for each ¢ # 0.
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to check that LX = 0, which is illustrated as follows,

P,

AT
S

1 P2

-

ha

/

We define a collection of maps h; in the diagram above as hg = b and h; = 0 for each

O+ O «— O

© # 0. It is clear that h is a cochain homotopy between LX and 0. So we have LX = 0 in
Homgs (0 — Py, Py — P). So ¢: C{Q")/(Ix) — Endgs(P) is an algebra homomorphism.

Since Endgs (P) is the C-algebra generated by E;, X, Es and L, and ¢p(e1) = Eq, ¢(es) = Eo,
©(X) =X and ¢(l) = L, it follows that ¢ is surjective. By the relations of C{Q"))/(Ix), it

is a C-vector space spanned by {e1,z,es,1,1% -+ }. Since Endgs(P) is the C-vector space

spanned by {E{, X, E,,IL,IL?, - - - }, ¢ is injective. So ¢ is an algebra isomorphism. O

Proposition 4.2.29. With notation as above and 4.2.22, Ao is derived equivalent to

CLQ") /().

Proof. By 4.2.27, P in (4.2.0) is a tilting complex of Acon. Thus by [R3] Acon is derived equiv-
alent to Endib (proj acy,) (P)- Since Endios (proja..n) (P) = C{Q") /(Ix) by 4.2.28, the statement
follows. [l
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Chapter 5

Filtrations and Obstructions

In §5.1 and §5.2, we first define some matrices and generalised GV invariants associated to

a monomialized Type A potential.

Using these matrices, §5.3 gives filtration structures of the parameter space of monomialized

Type A potentials on @,, with respect to generalised GV invariants.

Finally, §5.4 uses these filtration structures to give the obstructions of generalised GV in-

variants that can arise from crepant resolutions of cA,, singularities.

§ 5.1 | Matrices from potentials

This section introduces some matrices associated with monomialized Type A potentials.
With these matrices, §5.3 gives a filtration structure of the parameter space of monomialized

Type A potentials on @),, with respect to generalised GV invariants.

Throughout this section, we fix some n > 1 and consider monomialized Type A potentials
on the quiver @, (1.5.A).

Notation 5.1.1. Since §5.3 and §5.4 will consider the parameter space of monomialized

Type A potentials on @),,, we introduce the following notation.

(1) Define the set of monomialized Type A potentials on @,

2n—2 2n—1 oo
MA::{Z Xixii1 + Z Zk’ijxf]kijeCfor1§i§2n—1and2§j§oo}.
i=1 i=1 j=2

(2) Then set the parameter space M associated to MA to be

M:= {(k}lg,k’137 .. -qun—l,Qqun—l,& - ) | kij € C for 1 S 1 S 2n — 1 and 2 S ] S OO}

(3) Write k for the tuple of variables k;; for 1 < i < 2n —1 and 2 < j < oo, inside the

infinite polynomial ring Cl[kj2, K13, . . . Kap—1.2, Kon—1.3, - - -]} := C[[K]].

(4) For each i and j, define the map ¢;;: MA — C to be &;;(f) := jki;. By the obvious
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bijection map M — MA, sometimes we abuse the notation to consider ¢;;: M — MA —

C and so (k) = jk;;.

Given two matrices A = (a;j)pxq and B = () sx¢ With apg = b1, define AODB € M1y (g+—1)
to be

11 12 ccr OG1p—1 A1n 0O --- 0

Up-11 Ap-12 “* Gp-1g-1 Gp-14 O -+ 0

AOB:=| ap Ap2 " Gp-1gq apg b1z - by
0 0 . 0 b21 b22 e b2t

O 0 T O bsl bsQ e bst

Definition 5.1.2. With the ¢;; in 5.1.1(4), we next define a set of matrices Azdj for
(1) 1<i<j<2n-—1,75—1iis odd, and d =2,
(2) 1<i<j<2n-—1,j—1iis even, and d > 2.

Forany1<i<2n—1 andd > 2, define Agi = [£i7d}.

& 1
For any 1 <i<2n—2, define A?,,, = & _
’ I &g

Forany1<i<2n—3 andd > 2, define Agiﬁ € M(a41)x(d+1) to be

(eiq 0 0 01 0]
10 0 0 0
1 1 0 0 0
O 01 --- 00 0
e |- (5.1.A)
0 10 0
0 0
0 1 &it24]

The other A;jj are defined inductively. For any i, j satisfying j — i > 2, define

A?,j = A?,i-{—l O Az?+1,i+2 O---o A?_Lj- (5.1.B)
For any d > 2, and i, j satisfying j — i > 4 and even, define
Al =AY L0AL, 0 DAY, (5.1.0)

Given any f € MA, define A;’lj(f) as replacing all €, 4 in Afj with €.q(f).
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Remark 5.1.3. Since ¢;;: MA — C in 5.1.1(4), for any ¢, j,d in 5.1.2, we have

Al MA — M(C),
e AG(S)
where M(C) is the set of matrices over the complex numbers. By the obvious bijection map

M — MA, sometimes we abuse the notation and consider Afj: M — MA — M(C), and so
Af(k) € M(C[[x]) and det A% (k) € C[[k]].

Example 5.1.4. A% (k) = [dxy|, 4%,,(k) = [2Kz‘,2 | ] e d
1 2Kit1,2
[dkia 0 0 01 0 |
1 10 00 0
0 11 00 0
. 0 01 00 0
Ai,i+2(K): :
0 00 10 0
00 --10 1
i 00 -+ 0 1 dkipaq]

Then we consider some subsets of the monomialized Type A potentials MA on @,,.

Notation 5.1.5. Fix a tuple p = (p1,pa, . .., pon_1) Where each 2 < p; € N, we adopt the

following notation, which is parallel to that in 5.1.1.

(1) Define the following subset of monomialized Type A potentials on @,

2n—2 2n—1 oo
MA :={ > Xixis1+ D > kX! | kij,=0for 1 <i<2n—-1,2<j <p;}. (5.1.D)
i=1 i=1 j=2

(2) Then set the parameter space M, associated to MA, to be

Mp = {(ki2, k13, - -, kon—12, kon—13, ... ) | kij, =0 for 1 <@ <2n —1,2 < j; < p;}.

(5.1.E)
(3) Write kp, for the tuple of variables k;j,, for 1 <i < 2n —1 and p; < j; < oc.
(4) For any i, j satisfying 1 < ¢ < j <2n — 1, define d;;(p) to be
2 if 7 — i is odd
di;(p) == . DR (5.1.F)
min (p;, Pita,...,p;) if j —iis even

(5) Given another tuple p’ = (p!,ph, ..., Dh,_1), write p’ > p if p} > p; for each i.

Remark 5.1.6. We next make some remarks about the above notations.
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(1) If p=(2,2,...,2), then kp, M, and MA, coincide with k, M and MA respectively.

(2) By the inclusion map MA, — MA, for any f € MA, and i,j,d in 5.1.2, f € MA and
s0 €;;(f), Af;(f) have been defined.

(3) By the inclusion map M, < M, for any ¢, j, d in 5.1.2 sometimes we abuse the notation
to consider ¢;; and Af; are defined on the subspace My, and so Af;(kp) € M(C[[kp]))
and €ij<Kp)7 det A,Ldj(Kp) S (C[[Kp]]

(4) Let f € MA, and write

2n—2 2n—1 oo
f Z X iXit1 + Z Zkljx
i=1 j=2

For 1 <i<2n-—1,ifd < p;, then k;y = 0, and so €;4(f) = dkiqg = 0. Thus €;4 is a zero

function over the domain MA, and so €;4(kp) = 0.

(5) If p’ > p, then MA, € MA, and My C M,,.

The following results of this subsection come from the inductive definition of Aglj. They
will be used in §5.3 to give the general position of the parameter space M, with respect to

generalised GV invariants.

Lemma 5.1.7. Given any i and j satisfying j — 1 > 2, the following holds.
(1) det A7, = ejpdet A7, | — det A7,

©,]—27
(2) det A7, = ejpdet A7 | ; — det A7, ..

When furthermore j —i is even, for any d > 2, the following holds.
(3) det Af, = —det A, , + (—1)U=DW=D/2¢

(4) det Af, = (=1)%"tdet AL, + (—1)U7/2¢,.

Proof. (1) By the inductive definition of A7; and A7,

(5.1.B),

2 2 2

Set v, to be the 1 x n matrix [0,0,...,0,1]. Thus

2 T 2 T
A2 — Al.] 1 Vj—i A2 _ Az] 2 Vi—i—1
(/A ’ t,j—1 7
Vj—; €42 Vj—i—1 €i-1.2

Write B for the matrix by removing the last row and the second to last column of Afj. By

expanding along the last row of A2, det Afj = gjpdet Aij_l — det B. Moreover, by the forms

157
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2 2
of Aj; and A7, ; as above,

0

2
B = Az]Q

Vj—i—-1 1
Thus by expanding along the last column of B, det B = det A7, ,, and so det A7, =
€52 det Ai7 — det Afj 2-

(2) This is similar, by expanding along the first row of AZ;.

(3) By the inductive definition of A}, (5.1.C), A% = A¢, , 0 A4 , .. Together with (5.1.A),
Afj has the following form

00 --000
Ad._ L I
s 0 0 0 0
0 0 01
10 00 0
Al = 0 11 00 0
0 01 00 0
0 0 .10 0
0 10 1
0 00 - 0 1 g4

Write Cd for the matrix by removing the last row and the last column of AZ], D for the
matrix by removing the last row and the second to last column of Aij. By expanding along
the last row of A%, det A}, = ¢jqdet Cfi — det D. We claim that det D = det A, , and
det Cfh = (=1)U=9(=D/2So the statement follows.
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To see this, by the form of Afj,

00 -~ 00
Ad - . . . .
2 0 0 00
00 10
1] 1
D 0 0 0
0|11 0 0
001 0 0
0 10
00 0 11
By expanding along the last column repeatedly, det D = det Aﬁ o

By the definition of C’Z-dj, C’Z-‘fj_Q and the form of Agj,
i 0 00 - 00 |
ca : Do Do
2 0 00 00
1 0 0 0 0
Cd . €i—2d 0 0 0 1
ij = ’
00 ---0 1 10 0 0
0 0 11 0 0
10
10

where the lower right corner block is a d by d matrix. Since C’idj has the above form, by
(—1)4-1 det C where

expanding along the last row d — 1 times, it follows that det C’idj

0

Thus det C' = det Cf; ,, and so det Cfi = (=1)%"'det Cf;_,. Since Cf,,, is obtained by

removing the last row and the last column of A¢, , (5.1.A), det C¢;, = (=1)*". So

det Cf = (—1) " det Cf,_, = (—1)U=2D2 et CF, ) = (—1)U=D/2,

7
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(4) This is similar, by expanding along the first row of A?j. O

Notation 5.1.8. For any ¢ and j satisfying ¢+ < 7 and j — ¢ is even, we adopt the following

notation for the ideals in Cle;_1 2, €i2, ..., €j412).
(1) Write mi; for the ideal (8@72, €422, -+, Ej,Q)'

(2) Write E;; for the ideal generated by all the degree two terms of €;9,€4229,..., €52

2 2 2
except €79, €199, -, Ejg-

Lemma 5.1.9. Given any i, j satisfying 1 < j, the following holds.
(1) If j —i is odd, then det A% = (=1)U="D/2 4 e where € € m; j_y N My ;.
(2) If j —i is even, then det A7, = (=1)0=0/2(gs0 + €100 + - + €j2) + € where € € Ej;.

(3) If j —i is even and d > 2, then det A, = (=1)U"2(e;q + (=1)%ei40a + -+ +
(_1)(]_1)d/2£d>
j

Proof. (1) If j — i = 1, then by definition det Afj = —1+ €;2€&+12. Since €;2€412 €

(€i2) N (&i41,2) = My j—1 N m44q j, the statement follows.

We next prove this statement by induction. Fix some i, j satisfying 7 —¢ > 3 and odd.

Assume that det Azj_2 = (=1)U==D/2 1 ¢’ where € € m;; 3N My 2. So we have

2,

det A?j = gjp det A?,jﬂ — det A?,jq (by 5.1.7(1))

= gjp det A?,jq — (1R ¢ (by assumption)

Set € 1= gjpdet Aij_l — €’. So it suffices to prove that € € m; ;1 Nm;4q ;.

Since by definition (51B) det Azz,jfl c (C[Sig, Eir1,25- -+, 8];1’2], €42 det Azz,jfl c Mit1,5- To-
gether with € € m;;1 ;-2 C m;yq,, it follows that € € m;;; ;. Similarly, we can prove

€€ My 1 by det AZQ] = &2 det A?—lvj — det A?—Q,j in 517(2) So € € m; -1 N Mit1,5-

(2) If j —i = 0, then by definition det A7, = €;5. Thus the statement follows.

We next prove this statement by induction. Fix some i, j satisfying j — ¢ > 2 and even.
Assume that det A2j72 = (_1)(]‘—2—1‘)/2(82,,2 + €00+ -+ €j22) + € where €5 € E;j_o.

2,

Then by (1) det A%, | = (=1)U=9/2 4 €, where €5 € m; ;2. So we have

]~

det Afj = gjodet A?._| — det A?,j—2 (by 5.1.7(1))

7,0—1
— ng((_l)(j—i)/Q + €5) — (_1)(3‘—2—1‘)/2(51,72 + Eiyon+ o+ 53._2’2) — €
(by (1) and assumption)

= (_1)(]‘—1‘)/2(%2 + €ipo2 + -+ €j2) + €j0€0 — €.

Set € := €j0€5 — €. Thus it suffices to prove that € € FE;;. Since €a € m; ;o =
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(€i2, €422, -, Ej—22), €j2€2 € (€j2€i2, €j2€i422, ..., Ej2Ej—22) € E;;. Together with e; €
E;;_5 C E;j, it follows that € € E;;.

(3) If j —i =0 and d > 2, then by definition det Af;, = €; 4. Thus the statement follows.
We next prove this statement by induction. Fix some ¢, j and d satisfying d > 2, and j—i > 2
and even. Assume that det A?, ) = (—1)U7270/2(g;q4(—1) ;19 g4 - -4 (—1)0 270424 ).

So we have

det Af, = —det AY,_, + (—1)U=DD/2¢ (by 5.1.7(3))
= (=D (eiq + (—1)%eiynq + - -+ (=1)UD92¢ ). (by assumption)
Thus the statement follows. ]

Proposition 5.1.10. Let f € MA and write

2n—2 2n—1 oo

= Z XiXit1 + Z Zk‘wxf
i=1

i=1 j=2

Forany 1 <1 <75 <2n—1 such that j — 1 is odd, the following holds.
(1) If kg =0 fort =i,i+2,...,j—1, then det A%(f) = (=1)U="D/2,
(2) Ifkg =0 fort =i+ 1,i+3,...,j, then det A%(f) = (—1)U=/2,

In particular, given some p satisfying d; j_1(p) > 2 or di11,;(p) > 2, then we have det A7;(kp) =
(_1)(j—i+1)/2'

Proof. (1) For t = 4,i+2,...,7 — 1, since k;p = 0, then e;(f) = 2k;p = 0. By 5.1.9(1),
det A%(f) = (—1)U=#D/2 4 ¢(f) where € € m;j_1 N'myy1;. In particular € belongs to the
ideal generated by the functions €;9, €422, ..., €j-12, all of which evaluate at f to be zero.
Thus €(f) =0, and so det A% (f) = (—1)U=1/2,

(2) This is similar.

If d;;—1(p) > 2, then by (5.1.F) p;, piyo,...,pj—1 > 2. If further f € MA,, then ki = 0
for t =i,i4+2,...,j—1by (5.1.D), and so by (1) det A%(f) = (=1)U="*1/2 Since f is an
arbitrary potential in MAy,, det A (kp) = (—1)U="1/2_ Similarly, if d;11,;(p) > 2, then by
(2) det A%(kp) = (—1)U—+0/2, O

Recall the notation kp, di;(p) in 5.1.5, and det Af;(kp) in 5.1.6. The following is the main
technical result of this subsection. It will be used in §5.3 below to construct a filtration
structure on My (for some fixed p) with respect to the generalised GV invariant of some
chosen curve class C;+...4+C;. The zero locus of the polynomial det A;fl;j (p)(Kp) € Cl[kp]] will
turn out to be the first strata in the filtration, which motivates proving that this polynomial
is nonzero in part (2) below. Part (1) is more technical, but will be needed for inductive

proof in 5.3.2.
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Proposition 5.1.11. Given some p, and any i, j,d in 5.1.2, then the following holds.
(1) If d < dij(p), then det Af;(kp) = 0 € C|[kp]].
(2) If d = dij(p) and d is finite, then det Af;(kp) # 0 in C[[kp].

Proof. For any d > 2, consider two complementary subsets of S :={i,71+2,...,j}

Sq:={teS|p <d}, Si={teS|p >d}

Then by 5.1.6(4),

t €Sy < eu(f)=0forall f€MA, <= ¢4(Kp) is the zero function over My,
(5.1.G)

If j —iis even and d < d;j(p), then by (5.1.F) d < min(p;, pit2,-..,p;), and so Sqg = 0,
Sqa=S. If j —iis even and d = d;;(p), then by (5.1.F) d = min(p;, pita, - .-, p;j), and so
Sa# 0, Sa#S.

(1) Since d > 2, the case d;j(p) = 2 cannot occur. Consequently d;;(p) > 2, and thus j — i
must be even by (5.1.F). Since d < d;;(p), Sq = S, and so by (5.1.G) e(kp) is a zero
function for each t € S = {i,i+2,...,7}.

If furthermore d > 2, then

det Af, (kp) = (=1)V" 2 (eia(kp) + (—1) €is.a(kp) + -+ + (=1) V2 54(kp))
(by 5.1.9(3))

I
=

(since g14(kp) =0 fort =i,i+2,...,7)

Otherwise, if d = 2, then
det Af(kp) = det A, (kp)

= (1)U (ein(kp) + €iraa(Kp) + - + €5a(kp)) + €(kp)  (by 5.1.9(2))
= €(Kp), (since €a(kp) =0 fort =i,i+2,...,7)

where € € Ij; and Ej; is the ideal generated by some degree two terms of €;0, €;42.9, ..., €j2.

Since ep(kp) =0 for t =i,i+2,...,j, €(kp) = 0, and so det A% (kp) = 0.

(2) We split the proof into cases.

(i) j —iis odd, d = d;;(p) and finite.

Since j — i is odd, d = d;;(p) = 2 by (5.1.F). Thus by 5.1.9(1),

det A% (kp) = det A2 (kp) = (—1)U7HD/2 4 e(k,),
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where € € mij—1 and mij—1 is the ideal generated by €i2,&+422...,&-12. Since by 51()(4)
ein(Kp) is either 2k or zero for any ¢, €(kp) € (kp), and so det A%(kp) is a non-zero

polynomial.
(ii) j — ¢ is even, d = d;;(p) > 2 and finite.

Since j — ¢ is even and d > 2,
det Af(kp) = (=1)V"92(eia(kp) + (= 1) eiszalkp) + - + (= 1)V ej4(p))

(by 5.1.9(3))
= (—1)62 Y (L), (by (5.1.G))

teSy
Since j — i is even and d = d;;(p), Sa # 0, and so det AY;(kp) is a non-zero polynomial.
(iii) 7 — i is even and d = d;;(p) = 2.

Since j — ¢ is even and d = 2,

det A, (kp) = det A, (kp)
= (=) (ein(kp) + Eiraa(kp) + o+ eja(kp)) +e(kp)  (by 5.1.9(2)

= (=102 (Y 2K + e(xp), (by (5.1.G))
teSy
where € € Ij; and Ej; is the ideal generated by some degree two terms of €;0, €;42.2, ..., €j2.

Since by 5.1.6(4) €42(kp) is either 2k, or zero for any ¢, e(kp) is a degree two term in C[[kp].
Since j — i is even and d = d;;(p), S¢ # 0, and s0 Ycq, 2K s a non-zero degree one
term in C[[kp]]. Combining these facts together, it follows that det A%(kp) is a non-zero

polynomial. O

§ 5.2 | Generalised GV invariants of potentials

This section introduces generalised GV invariants of a monomialized Type A potential on

Q),, which parallels those of a crepant resolution of a cA,, singularity in 3.1.1.

Inspired by the correspondence between monomialized Type A potentials on @),, and crepant
resolutions of cA,, singularities in 4.2.19, we define generalised GV invariants of a monomi-

alized Type A potential by its associated crepant resolution as follows.

We first recap the geometric realization in §4.2.1. Fix a monomialized Type A potentials f

on @y,

2n—2 2n—1 oo ]
F=> Xxir+ Y > kix!,
i=1 i=1 j=2

where each k;; € C. Then we consider the following system of equations where each g; €
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Cllz, vl

9o + Z]'kug{il +92=0
=2

g1+ ijng%—l +g93=0
i=2
(5.2.A)
gon—2 + ijén—l,jg%‘?;il + 9on = 0.
j=2

Fix some integer s satisfying 0 < s < 2n — 1, and set gs = y, gs11 = x. Then there exists

90, 15 - - - » gon, Which satisfies (5.2.A) and each g¢; € (z,y) C C[[z,y]. Furthermore, for any
0<i<2n—1, (g 9i11) = (z,9).

Definition 5.2.1. With notation as above, for any 1 < i < j < n, define the generalised
GV invariant N;;(f) associated to f to be

- Cll,y]
Ni;i(f) = dimeg ————..
i) © (92i-2, 92;)
We then consider the cA,, singularity
C[[u7 v? x? y]]

R =

UU—gogz-‘-gzn’

and consider the R-module

n—1
M :=R® (u,90) ® (v, 9092) B ... D (v, [[ g2) € MMR) N (CMR).
=0

In view of the above results 3.2.5 and 3.2.7, we introduce the following notation.

Notation 5.2.2. Suppose that Ay, Ay are complete quiver algebras of (), subject to some
relations. Write e; for the trivial path at vertex ¢ of @,, and write p: A; = Ay if ¢ is an

algebra isomorphism satisfying ¢(e;) = e; for each i.

By 4.2.9, Endg(M) = Jac(f). Since (gi,gi+1) = (x,y) for 0 < i < 2n — 1, each g; has
a linear term, and so R admits a crepant resolution by e.g. [[W3, 5.1]. Together with
M € (MM R)N (CMR), by 3.3.2 there exists a crepant resolution 7t : X — Spec R such that
Acon() = Endy (M),

By 3.3.3, Endy(M) and A (7) can be presented as a complete quiver algebra of @Q,, with
some relations. In this chapter, we declare that the ith vertex of Endg (M) = Acon(m) is the
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vertex corresponding to the summand (u, [['Z¢ g2). Using [IW3, §5] X is given pictorially by

C1 Ca Cn
g0 92 g4 92n—2 g2n

and under this convention, the curve C; corresponds to the summand (u, [T.25 g2;), and thus
the vertex i of Aeon (7). Moreover, Jac(f) = Endg(M) = Acon(7).

Thus the generalised GV invariant N;;(f) of a monomialized Type A potential f is equal to

N;;(m) (see 3.1.1), where 7t is its associated crepant resolution. Namely,

Cllz, yl

Ny(m) = dime £ o)
i—2) 925

= Ny (f). (5.2.B)

Thus the data of N;;(f) is equivalent to the data of GV;;(7r) in the sense of 3.3.8 and 3.3.9.

So in §5.3 and §5.4, we discuss generalised GV invariants of monomialized Type A potentials

to reach conclusions about GV invariants of crepant resolutions of cA,, singularities.

Recall that, in order to define N;;(f) in 5.2.1, we first fix some integer s and set g; =
Y, gs+1 = x, then solve to give go,g1,..., 92, that satisfy (5.2.A). From this, N;;(f) =

dime Cl[z, y]|/(g2i-2, 92;)-

Lemma 5.2.3. The generalised GV invariant N;;(f) in 5.2.1 does not depend on s.

Proof. We start with s, set gs =y, gs+1 = x, then solve to obtain g, g1, ..., ga,. From this,
the above constructs R, 7 such that A, () = Jac(f).

We next start with another integer ¢ and set g, = y, gi,;, = x, then solve to obtain
Gbs G5 -+ - > 9o Similarly, the above constructs R', 7' such that Acn(7) = Jac(f). Thus
Acon(71) = Acon(70), and so Ny;(7t) = Nj;(7') by 3.2.7. In particular

dime C[z, ¥/ (g2i-2, g25) = Nij(7) = Nij(7') = dime Clz, ]|/ (952> 9a;),

and so N;;(f) does not depend on s. O

§ 5.3 | Filtrations

In this section, we give filtration structures of the parameter space of monomialized Type A

potentials on ),, with respect to generalised GV invariants.
§ 5.3.1 | Filtration sturctures

Fix some p and consider the obvious bijection map f: M, — MA,, under which
2n—2 2n—1 oo

flkp) = D2 xixipa + > > Kijx!, (5.3.A)
i=1

i=1 j=2
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where k; ;, =0 for 1 <7 <2n—1and 2 <j; <p;.

By considering k;; as variables and solving the system of equations (5.2.A), we can also
realize the family of monomialized Type A potentials f(kp) over M, (5.1.E) by a family
of crepant resolutions of cA,, singularities over M,. More precisely, fix some s satisfying

0<s<2n-—1,and set g = ¥y, gs+1 = z, then solve go, g1, .., 92, by (5.2.A) where each
9: € (Kp, 2, y) € Cllkp, 2, 4]
For any k € My, write ¢:(k) € C[[z,y] for ¢; evaluated at k, and consider the cA,, singularity

. Cllu,v,z,y]
K= uv — go(k)g2(k) - . 'g2n(k')’

and the R;-module
My :=R® (u, go(k)) ® (u, go(k)g2(k)) & ... & (%%H 92i(k)) € (MM R;) N (CM Ry,).

Similar to §5.2, Jac(f(k)) = Endg, (M)) = Acon(7). Thus if we vary k over the parameter

space My, the family of crepant resolutions 7, realizes f(kp).

Recall that in the above construction, we first fix some integer s satisfying 0 < s < 2n — 1,

then construct go, g1, . .., g2n, With g; = y and g,41 = x to realize f(kp).

Notation 5.3.1. With the fixed s as above, we adopt the following notation in 5.3.2.
(1) Set (gs05 gsis---»Gs2n) = (90, 91, - - - Gon)-

2) For 0 <t < 2n, set hg := gst(Kp, x,0) € Cllkp, ]

3

4

Give any h € C[[kp, x|, write [h]; for the degree i graded piece with respect to x.

(2)
(3)
(4) Write Oy for a element in C[[kp, x| that satisfies [O4]; = 0 for each i < d.

(5) For 1 < t < 2n — 1, write k;p for the tuple of wvariables k;;, for 1 < i < ¢ and
pi < Ji < 00.

For 0 < s <2n — 1, since gs;s = y, for any t we have (gss, 9st) = (Y, gst) = (hs). Thus
Cllz, y]

(921'72,21727 92%2,2;’)
Cllz, y]

(¥, 92%2,23')
Cll«]

(hai—2,25) '

Ni‘(f(Kp)) = dimc¢

(by 5.2.3 with s = 2i — 2)
= dlm(c

= dime (5.3.B)
S0 hgi_g2; determines the generalised GV invariant N;;(f(kp)). In particular, the lowest de-
gree term (wrt. z) of ho;_o 2; determines the general value and general position of N;;(f(kp))
over the parameter space M. The following establishes that the lowest degree term can be

described by the matrix A3, |, (kp) where d = dy;_12j_1(p) in 5.1.5.
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Proposition 5.3.2. Given the monomialized Type A potentials f(kp) (5.3.A) on @, and
with notation in 5.3.1, for any 1 < s <t <2n — 1, we have

s Lt+1 — Zcz

for some 1 <r € Ny, and each ¢; € C[[kp]]. Moreover, the following hold.
(1) ]f dst(p) = 00, then hs—l,t+1 = 0.

(2) Ifd :=du(p) < oo, then r =d —1, and the lowest degree term (wrt. x) in hs_1441 has
coefficient ¢, = (—1)"** det AY,(kp).

Proof. Since hy_1 441 € C[[kp, x| , we first write hs_1 441 as

s 1,41 = Z csmx = )\ .T +Orst+1, (530)

1= =Tst

for some ry > 0, each ¢y ; € Cllkp] and Ay 1= cgr,,. Now since the h’s are obtained from
the ¢’s by evaluating at y = 0, they must satisfy the same relations as the ¢’s. In particular,
by (5.2.A),

Bt + D jKghl 1y + he1441 = 0. (5.3.D)
J=pt

In the equation above, the index j starts at p; because k;; = 0 for j < p, in f(kp) (5.3.A).
Rearranging (5.3.D) in the case t = s, then using the fact that gs_1 -1 =y, gs—1,s = « (thus

hs—l,s—l = 0, hs—l,s = l‘), we obtain

hs—l,s-i—l s 1,s—1 — Z ]nghi %5 = - Z ]Ksjl'j 1- (53E)

J=ps J=Dps

Next, rearranging (5.3.D) in the case t = s + 1 gives

)

_ ; i—1
hsfl,erQ — _hsfl,s - Z ]K8+1,jh5—1,s+1

J=Ps+1
) -
— ; J—
=—T— Z JKst1,5 1 s41- (5.3.F)
J=Ps+1

In the double index of h,_1 ., we now induct on the second of the two indices to prove the
result. We split the remainder of the proof into the following four lemmas (5.3.3, 5.3.4, 5.3.5
and 5.3.6). O

Lemma 5.3.3. With notation in 5.3.2, if dg(p) = 0o, then hys_1 411 = 0.

Proof. If dy(p) = oo, then by (5.1.F) ¢t — s is even and Kyj, Kgta,..., Ky = 0 for all j. In
particular, hs_1 11 = 0 via (5.3.E). Substituting this into (5.3.F), hs_1 5420 = —x. Next,
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rearranging (5.3.D) in the case t = s 4 2 gives

[oe)
_ S i1
hs—1,643 = —Ns—1.641 — JKs+2,jhs—1,s+2-
j:ps+2

Since hg_1 541 = 0 and kg9 = 0 for all 7, necessarily hs_; 43 = 0. Repeating the same

argument gives hg_j 515, Ns—1,547, -, Rs—1441 = 0. O

Lemma 5.3.4. With notation in 5.3.1 and 5.3.2, for s <t <2n—1, hy_144+1 € C[[kep, 7],

and in particular the lowest degree (wrt. x) coefficient Ag in hs_1 441 (5.3.C) belongs to

Clikep])-

Proof. We first check that hs_q 41 and hs_j 440 satisfy the statement. By (5.3.E), it is
straightforward that hs_q 511 € C[Kksp,2]]. Then together with (5.3.F), it follows that

hs 1512 € Cl[Ksy1p, 7]

We next prove the statement by induction on the second index: we assume that hy_q,_; €
Cl[ki—2.p, z]] and hs_1+ € C[[Ki—1p, z]| for some t > s+2, and prove that hs_1 141 € Cl[kep, x].
This is straightforward by (5.3.D). O

Lemma 5.3.5. With notation in 5.3.2, if d := dg(p) < 0o, then rg =d — 1.

Proof. We first check that 7, and r, o4 satisfy the statement. By (5.1.F), dss(p) = ps and
dossr(p) = 2. By (5.3.1), )
he1sr1=— D JKea? "
J=ps
This has lowest degree term zP*~!, and thus by definition r,s = p,—1 = dg,(p) — 1. Similarly,
since each jK8+17jhgj75+1 in (5.3.F) contains K441 j, these terms can not cancel the —z in

(5.3.F). Thus the lowest degree of of hs_1 s19 is one, and 80 75511 = 1 = ds s41(p) — 1.

We next prove the statement by induction on the second index: we assume that rs;_o =
dst—2(p) —1land ry;—1 = ds—1(p) — 1 for some t > s+ 2, and prove that ry = dg(p) — 1 by

splitting into the following two cases.

(1) t — s is odd.

Since t — s is odd, ds;—o(p) = da(p) = 2 by (5.1.F). By assumption 75,1 = ds1—1(p) — 1
and rs49 = ds4—o(p) — 1 = 1. Thus by (5.3.C) (applied to t — 2 and ¢t — 1),

det_1—1
ho14-1=Asp2x+ 02, he1p=Asp12°77 + O, ,_y,

where Ag;_o, Asi—1 # 0 by assumption. Thus by (5.3.D), in order to give the lowest degree
rst Of hs_144+1, we only need to consider the lowest degree term of hy_; ;1 (namely A, ; o)
and $00, jKyhd 71,

=Dt
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Since by 5.3.4 A ;o € C|[[k;—2,p]] and each jKtjhgiit contains K¢j, A ;22 can not be canceled
by Z;‘ipthtjhg:it, and so the lowest degree 7y of hs_1441 is one. Since dy(p) = 2, 1y =
1=du(p) -1

(2) t — s is even.

Since t — s is even, ds¢—1(p) = 2 by (5.1.F). By assumption ry; 1 = ds;—1(p) — 1 = 1 and
Tsi—2 = ds—2(p) — 1. Thus again by (5.3.C) (applied to t — 2 and ¢ — 1),

d

_ —2—1 _
hs—l,t—l = )\5715—237 >t + ods,i_za hs—l,t = )\s,t—lx + 027

where Ag 2, As;—1 # 0 by assumption. Thus by (5.3.D), in order to give the lowest degree rg;
of hs_1 441, we only need to consider the lowest degree term of hs_1 ;1 (namely As,t,gxd“*“’_l)

and Z;')ipt jKtjhgj,t (namely piKyp, ()\s,t—1$)p“1).

Since by 5.3.4 Ag4 o € C[ki2pll, and pikip, (Ass—12)P™1 contains Ky ,,, it follows that

7\S7t_2$d5’t*2‘1 and p¢K p, (?\S,t_lx)pi_l can not cancel each other. Thus the lowest degree
rst Of hs_1441 is min(dss—o(p) — 1,pr — 1). Since dy(p) = min(ds;—o(p),p:) by (5.1.F),
re = dg(p) — 1. O

Lemma 5.3.6. With notation in 5.3.2, if d := dy(p) < oo, then the lowest degree (wrt. x)
coefficient in hs_14+1 (5.3.C) is Ay = (=1)!*F det A%, (xp).

Proof. To ease notation, for any 4, j,d in 5.1.2 we write d;; and A, for d;;(p) and A, (kp)

respectively in the following proof.

We first prove that the statement holds for t = s. By (5.3.E), the lowest degree coefficient

in hs_1 541 1S —psKs p,, thus

Ass = —DPs Ks,ps
= —dgsKsa,, (since ps = dgs by (5.1.F))
= —det A%, (since det A%, = dkyq for any d by 5.1.4)

We next prove that the statement holds for ¢ = s + 1. Indeed,

[e.9]

hsfl,s+2 = _hsfl,s - Z st+1,jhgj,s+1 (by (53F))
j:P5+1
= —x— Z JKsr1,j(Ags™ + Opg1) (since hs_1 s = x, and (5.3.C))
J=Ps+1
=T - Z stJrl,j(_psKs,prTss + Orss+1>j_l (7\5S = _psKS,ps)
J=Ps+1
== Z st"‘l,j(_pSKS,psxps_l + ops>j_1 (Tss =dss—1= ps — 1 by 535)
J=Ps+1

= —x+ (_1)ps+1ps+1 Kst1pair (psKsyps)ps+1—1x(29s—1)(175+1—1) + o(ps—l)(ps+1—l)'
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If ps = ps+1 = 2, then (4Kks2Ksi12 — 1)z is the lowest degree term in hy_q 442, thus

}\s,s—‘rl = 4K572Ks+1,2 -1
= det Aisﬂ (since det Aisﬂ = 4K 9Ksy12 — 1 by 5.1.4)
= det Af;f:f. (since ds 511 = 2 by (5.1.F))

Otherwise, if p; > 2 or ps41 > 2, then —x is the lowest degree term in hy_1 542 and by (5.3.A)

Ks2 = 0 or Ks+1,2 = 0. Thus

As o1 = —1
= 4KsoKsr12 — 1 (since kg2 = 0 or Kgp12 = 0)
=det AZ, (since det A? | = 4KyaKer12 — 1 by 5.1.4)
= det Affs’ff. (since ds 511 = 2 by (5.1.F))

We next prove the statement by induction on the second index. Fix some ¢ satisfying
t > s+2. We assume that A,; o = (—1)"!det Aff,;t_f and Ag;1 = (—1)""*det Affgiﬁl, and
prove that Ay = (—1)t5*! det A% by splitting into the following cases.

By (5.3.D), for any integer d > 1, we have
[hs—14-1]a + [Z jKtjhgj,t]d + [hs—1+1]a =0, (5.3.G)
J=pt
where [h]; denotes the degree (wrt. z) d graded piece of h (see 5.3.1).
(1) t — s is odd.
Since t — s is odd, by (5.1.F) dsy—2 = dsy = 2. Thus by 5.3.5, g4 9 = ryq = 1 and
Tst—1 = ds,t—l —1. So by (53 )7
hs—l,t—l = As,t—Q-CE + 027
hsfl,t = As,tflxrs’t_1 + Ors,t_1+1 = 7\5,15713:dsi_171 + Ods’t_17
hs—14+1 = Az + Oa.

Thus the lowest degree of the terms in (5.3.D) is one. We then consider these lowest degree

terms, thus set d =1 in (5.3.G), which gives

7\57,5_233 + [pth,pt (Asi_l&?ds’t—l_l)pt_l]l -+ )\StiL' =0. (53H)

Since t — s is odd, the inductive assumption becomes A;; 5 = det Aitﬁ and Ay, =

—det Agff__f. We need to prove that Ay = det A%,. We again split into subcases.
(1.1) t — s is odd and p; > 2.

Since p; > 2, &2(kp) = 2K = 0 by 5.1.6(4) and [piksp, (As—1z%=171)P71; = 0. To ease
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notation, we write € for €:2(kp) in the following. Thus

Ast = —Asi—2 (by (5.3.H) and [piK¢p, (Asy_1x¥=t=171)Pe=1] = 0)
= —det A2, , (by assumption)
=det A2, — eppdet A2, , (by 5.1.7)
= det A2, (since g = 0)
(1.2) t — s is odd, py = 2 and dg;—1 > 2.
Since dg g1 > 2, [pikep,(Asg—1z®+ "1~ = 0 and by 5.1.11 det A2, | = 0. Thus
Aot = —Ag2 (by (5.3.H) and [piK¢p, (Asg—1x®t=171)Pe=1] = 0)
= —det AZ,_, (by assumption)
= det A2, — eppdet A2, (by 5.1.7)
= det A2, (since det A, | =0)

(1.3) t — s is odd, pr = 2 and ds ;1 = 2.

Since p; = 2 and dy ;1 = 2, [piKep, As 1% 71)Pr1] = 2K9Ag 412, Thus

Ast = —2KppAg i1 — Asy2 (by (5.3.H) and [piksp, (A z®=171)P1) = 2k, 1 1)
= g;pdet A;tt T —det AZ,, (by assumption and g, = 2K;2)
= gppdet A2, —det A2, , (since ds4—1 = 2)
= det A2, (by 5.1.7)

(2) t — s is even.

Since ¢t — s is even, then ds;—1 = 2 by (5.1.F). Thus by 5.3.5, rs4—1 = 1, rg4-9 = dss—2 — 1
and ry4 = dg — 1. So by (5.3.C),

Ts t— dst—2—1
hs—l,t—l - As,t—Qx si=2 + O’I‘S,t72+1 - As,t—Qx st=2 + Od37t727
hs—l,t - }\s,t—lw + 027
T dst—1
hs—17t+1 == }\stx s+ orst—i-l == )\stx st + Odst'

Since by (5.1.F) dg; 9 > dy and p; > dg, the lowest degree of hy 1, 1 and (he_q14)P " is
greater than or equal to that of hs_1 1. Thus the lowest degree of the terms in (5.3.D) is
dss — 1. We then consider these lowest degree terms, thus set d = dg; — 1 in (5.3.G), which
gives

Moo=, 1 4 [Pikep A1) Hayo1 + Agr®™ ™t = 0. (5.3.1)

. . . . . dei_
Since t — s is even, the inductive assumption now becomes Ag ;o = —det A;}'5 and Ay 1 =
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det Ag,tq- We prove Ay, = — det A% by splitting into the following subcases.
(2.1) t — s is even and p; < dg;—o.

Since p; < dgs 2, by (5.1.F) py = dy < dss_2, and so [Ag; oxdt=271,; | = 0. Thus by
(5.3.1), it follows that

_ pt—1
Ast = —Dy K¢, py }\s,tfl .

Now, since dg < ds¢—2, by 5.1.11 det Afjs; 5 = 0. If furthermore p; = dy; = 2, then

Ast = —2Ki2Ag 11 (since p; = 2)
= —2Kspp det A2 (by assumption)
= —gpdet A2, | +det A2, , (since €4 = 2Ky, det A%, = 0 and dy = 2)
= —det A%, (by 5.1.7)
= —det A%, (since dgy = 2)

Otherwise, p; = dy > 2, and then by 5.1.10 det A?, | = (—1)*=%)/2 and so

At = —PeKep N

= —piKyp, (det A2, )P (by assumption)
= —dyKya,, (—1)EdmD/2 (since det A2, | = (=1)=9/2 and p, = d)
= —(=1)t=)de=D)/2¢, 1 det Afftt_Q (since €14, = dgK¢ 4, and det Afstt 5, =10)
= —det A%, (by 5.1.7)

(2.2) t — s is even and p; > dg—o.

Since p; > ds -2, by (5.1.F) py > ds 42 = dg, and thus [pik; p, (As¢—12)P 4,1 = 0. Hence
by (5.3.1), it follows that
Ast = _)\s,t—2-

Since p; > dgy, by 5.1.6(4) €14, (kp) = dsiKe g, = 0. If furthermore ds;—o = dsy = 2, then

Ast = —Asi—2
= det A;ift’t_’; (by assumption)
=det AZ,_, (since dst—o = 2)
= —gpdet A2, | +det A2, _, (since €14, = 0 and dy = 2)
= —det A% (by 5.1.7)
= — det A%, (since dg = 2)
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Otherwise, ds ;2 = ds > 2, and then

Ast = —Asi—2
= det A;l;’f:; (by assumption)
= det Afftiz (since dsy—o = dg)
= —(—1)(t’s)(d“’1)/2£t,dst + det Agfti2 (since €;q,, = 0)
= —det A% (by 5.1.7)

(2.3) t — s is even and p; = dy;—o.
Since py = dg -9, by (5.1.F) p; = ds4—2 = dg. Thus by (5.3.1)

-1
Ast = _)\s,t—Q — PtK¢ p, (As,t—l)pt .

If furthermore p; = ds1—2 = dsy = 2, then

Ast = —Asi—2 — 2Ke2Ag 11 (since p; = 2)
=det A2, , — 2k det A2, (by assumption and ds;_o = 2)
=det A, , — eppdet A2, (since €49 = 2Kt2)
= —det A2, (by 5.1.7)
= —det A% (since dgy = 2)

Otherwise, p; = ds;—2 = dsy > 2. But then by 5.1.10 det Ast L= (=172 and so

Ast = —Asi—2 — DiKep, (7\s,t—1)p171
= det Asstt 5 — DK, (det A2, )Pt (by assumption)
= det Ag,stt—Z _ dsth,dst<_1)(t_5)(d3t_1)/2
(since det A2, | = (=1)"9/2 and p; = dyy—5 = dyy)

= det Agftt_Z — (—1)(t_8)(d“_1)/2£t7dst (since €t 4,, = dstKed,,)
= —det A%, (by 5.1.7)
So by induction Ay = (—1)"5t!det A% for any 1 < s <t < 2n — 1. O

We next fix p and curve class C; + Cgyq + - - - + Cy, and from this data construct a filtration
structure of My, which is the main result of this section. Recall that My is the parameter

space of monomialized Type A potentials f(kp) (5.1.D), namely

2n—2 2n—1 oo
fkp) = D Xixip1 + > > Kyx!, where k; 5, =0 for 1 <i<2n—1,2<j; <p;,
i=1 i1 j=2

Mp = {(F12, k13, ..., kon—12, kon—13, ... ) | kij, =0 for 1 <7 < 2n —1,2 < j; < pi}.
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Recall the notation d;;(p) and A% (kp) in 5.1.5.

Theorem 5.3.7. Fiz p, and some s, t satisfying 1 < s <t < mn. If dys_12-1(p) is finite,
then My, has a filtration structure M, = My 2 My 2 M3 D -+ such that

(1) For eachi > 1, Ny (f(k)) = dos—19t-1(p) + 7 — 2 for all k € M\M;4,.

(2) Each M; is the zero locus of some polynomial system of Ky, and moreover
My = {k € My, | det A, 5, (f(k)) = 0 where d = da,_1.2i-1(p)}.
(3) If s =t, then for each i > 2
M; ={k € Mp | kas_1; =0 for pas1 < j < pas1 +1i— 2}
Otherwise, if dos—1.2—1(P) s infinite, then Ng(f(k)) = oo for all k € Mp.

Proof. With notation in 5.3.1 and by (5.3.B),

) Cllx
Nit(f(kp)) = dimg ﬁ (5.3.)
(hos—22¢)
By 5.3.2,
0 if dog_1.2i— =
T 5:3K)
Yot if dys_19i-1(p) < 00

where each ¢; € C[[kp]], 7 = das—12-1(p) — 1 and ¢, = — det A;li:{;;j(Kp).

Thus, if dos—1,21—1(P) = 00, then hgs_99; = 0, and so N (f(kp)) = 0o by (5.3.J).

(1), (2) When das_12:-1(p) < oo, we first define N; := My, and for each ¢ > 2 define
N ={ke My | ¢ =¢41 = = cpio = 0} So we have a sequence of spaces
Ny O Ny O N3 O ---. Note that there may exist some segment like N; 1 D N; = N;;; =
-~ = N; 2 Nji1. After removing the repetitive elements in all such segments, we get a
sequence of filtered spaces M, = M; 2 My 2 Ms---. By the definition of N;, each M; is the

zero locus of some polynomial system of K.

By (5.3.K) and (5.3.J), for each i > 1, Ng(f(k)) is constant for all k& € M;\M;,;. Thus we
can set d; := Ng(M;\M;,1), which obviously satisfies d; < dy < ---.

Since ¢, = —detAgis__ﬁffj(Kp) # 0 by 5.1.11, Ny = {k € M, | ¢, = 0} € Ny, and so
My = Ny C Ny = M, and further dy = Ny (M;\Ms) =1 = dos—12-1(p) — L.

We next prove that d; = Ng(M;\M;11) = das—12-1(p) +i — 2 for i > 2. Fix some i with

i > 2. By (5.1.F), there exists p’ such that p’ > p (see 5.1.5(5)) and das_12:—1(p") =
dos—12t—1(p) + i — 1. Since p’ > p, MA, C MA,, and M, C M, by 5.1.6(5).

Repeating the same argument as above, there is a sequence of filtered spaces My = M| D
M} D --- such that Ny (M{\M}) = dos—1.2:-1(P') —1 = das_1,20-1(P) +i—2. Set U, := M{\ M,
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which satisfies U; C M{ = M C M, = M.

Since the above works for any 7 > 2, there is a sequence of spaces U; C M; such that Ny (U;) =

dgs_ljgt_l(p) + 7 — 2. SO Uz Q Mi\Mi+1 and dz = Nst(Mi\Mi+1) = d2s—1,2t—1(p) =+ 7, — 2 fOl"
each 7 > 2.
(3) By h25_2’25_2 = 0, h28_2725_1 =T (see 531) and (53D),

o0

has—22s = — D JKas—1 2’ .
J=P2s—1
Then by (5.3.J),
. Cf] : Cll=]
Ny(f(kp)) = dimg ————— = dim = : .,
(7(p)) . (has—2,25) © (3252 ey JK2s-1,52771)
Thus the statement follows immediately. O]

If we set p=1(2,2,...,2) in 5.3.7, then My, coincides with M which is the parameter space
of all monomialized Type A potentials f(k) (see 5.1.5, 5.1.6), as follows.

2n—2 2n—1 oo )
F() =D xixipr + Y > KX/,
i=1 i=1 j=2

M = {(k‘lg, klg, RN k’gg, k‘gg, . ,k‘gn_lg, k’gn_Lg, C ) | all k* € (C}

Thus, as a special case of 5.3.7, we next give a filtration structure of M with respect to a

fixed curve class.

Corollary 5.3.8. Fiz some s, t satisfying 1 < s <t < mn, then M has a filtration structure
M= M 2 My, 2D M2 --- such that

(1) For eachi>1, Nu(f(k)) =1 for all k € M;\ M, ;.

(2) Fach M; is the zero locus of some polynomial system of K, and moreover

My = {k € M | det A3,y 5,1 (£(R)) = 0).

(3) If s =t, then for each i > 2
Mi:{keM|]€23_17j:0f01'2§j§i}.

Proof. By setting p = (2,2,...,2) in 5.3.7, then dys_12:—1(p) = 2, and so the statement

follows immediately. O

§5.3.2 | Examples

In this subsection, we will apply 5.3.7 and 5.3.8 to discuss the filtration structures of the

parameter space of monomialized Type A potentials on )7 and @)s.
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Example 5.3.9. Consider monomialized Type A potentials f(k) = >, Kljx{ on (), where

X1

0 -V

The corresponding parameter space M is {(ki2, k13,...) | all kx € C}. Then by 5.3.8(3), for
any i > 1 and k € M

Nll(f(k)) =1 <— kl,i+1 7A 0 and klj =0 fOI‘j S 1.

We can also see this fact in the following way. For any k£ € M, consider the cA; singularity

Cllu, v, 2, y]

R = : A
uv —y(y + 352 jhijal )

and R-module M = R ® (u,y) ® (u,y(y + X525 jkij2’~")). Then f(k) is realized by the
crepant resolution 7t of R that corresponds to M (see §5.3). Thus by (5.2.B),

Clz, y]]
(Y, y + 22520 jhiji=1)

Cli=z]

Ni(f(k)) = Nu(m) = dime (500, jkyai—1)

= dlm(c

So the above fact follows immediately.

Example 5.3.10. Consider monomialized Type A potentials

o0 o0 o0
f(k) = Z K1jX] + XiXa + Z KojX3 + XoX3 + Z K3,jX3
j=2 =2 j=2

on ()9, where

a1 a3 X1 =X] =a
(o= () :

Qe = s> X3 = X3 = as
1 by 2

/
Xg = ClQbQ,X2 = bgag.

The parameter space M is {(ki2, k13, . . . k2g, kas, . . . k32, kg, ... ) | all k., € C}. Recall in 5.1.2
that, for any k € M

2k 1 0
A%S(f(k)) - 1 2ka 1
0 1 2ks39

Thus det A2,(f(k)) = 8kiokoskss — 2k1o — 2kszs. For fixed curve class C; + Cy, by 5.3.8(3),

ng(f(k‘)) =1 < det A%?)(f(k?)) 7é 0 <— 4]{312]{322]{?32 — k‘lg — kgg 7é 0,
ng(f(/{?)) >1 < det A%g(f(k‘)) =0 <— 4]{?12]{,’22]{332 — ]{712 — l{32 =0.

Thus the generalised GV invariant Nj5 at the general position of M is one, while that at the

codimension one locus defined by 4k19KooK3s — K19 — Kgo = 0 is greater than one.
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We next choose a different p from the above example and consider the corresponding filtra-
tion structure, and then show that there exists a nonempty subspace of the parameter space
of monomialized Type A potentials on (); such that the generalised GV invariant N, on
this subspace is two. This also illustrates how the filtration structure in the proof of 5.3.7

was constructed.

Example 5.3.11. Set p = (3,2,3) and consider the subset f(kp) of monomialized Type A

potentials on (), so
Flkp) = D KujXi +xXixa + Y KXy +Xo%3 + ) Kajxg
j=3 j=2 j=3

(see 5.1.5). The parameter space My, is {(ki3, k14, - - - ka2, kos, . . . ka3, ksa,...) | all k. € C}.
Recall in 5.1.5 and 5.1.2 that di3(p) = 3 and for any k € M,

3kiz 001 0
1 1.0 0
A (f(k)) =
SO =] .
0 0 1 3ks3

Thus det A3,(f(k)) = 3kss — 3ki3. For fixed curve class C; + Cy (so, s = 1,t = 2),
dos—12t-1(P) = di3(p) = 3, and thus by 5.3.7 for any k € M,

Nig(f(k)) = dis(p) =1 =2 <= det A}(f(k)) #0 <= ksz — kag # 0,
ng(f(k)) > dlg(p) —1=2 «<— det A?g(f(k)) =0 < k33— ki3=0.

Thus the generalised GV invariant Vi at the general position of My, is two.
Since p = (3,2, 3), by (5.1.E) we may view M, = {k € M | k13 = 0 = kso}. Thus,

UQZ:{]{IEMp|k33—k137é0}:{]€6|\/||k’12:O:]€32aﬂdk33—]€137AO},

where M is the parameter space of all monomialized Type A potentials on ()2 as in 5.3.10.
Thus, by the above argument, Ni5(Us) = 2. Since Us # () and Uy C M, Us is a nonempty

subspace of M such that the generalised GV invariant Ni5 on this subspace is two.

Furthermore, consider
Mg = {k - M ’ 4]€12]€22k'32 — ]{Zlg — k32 = 0},

which by 5.3.10 is the first strata of M, which satisfies N1o(M\ M) = 1 and Nyo(Ms) > 2.
Since Uy C M and Ni5(Us) = 2, Uy must be contained in M. We can also check this by

some elementary calculation, namely

Uy={k M| kg =0=ksg, kss — ki3 # 0} C {k € M | dk1okaokss — k1o — k3o = 0} = M.
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§ 5.4 | Obstructions

§ 5.4.1 | Obstructions

Based on the filtration structures in §5.3, this subsection in 5.4.7 gives the obstructions and
constructions of generalised GV invariants that can arise from crepant resolutions of cA,

singularities.

Recall the definition of generalised GV invariants of crepant resolutions of cA,, singularities
and those of monomialized Type A potentials in 3.1.1 and 5.2.1 respectively.

Definition 5.4.1. Given a crepant resolution 7 of a cA, singularity, define generalised GV
tuple of 7t to be N(m) := (Ng(m) | all 1 < s <t <n).

Similarly, given a monomialized Type A potential f on Q,, define generalised GV tuple of
ftobe N(f) = (Na(f) ] all1 <s<t<n).

Lemma 5.4.2. Let 7t be a crepant resolution of a cA,, singularity and f be a monomialized
Type A potentialon Q. If Aeon(0) = Jac(f), then Ngy(m) = Ng(f) for 1 < s <t <n, and
so N(m) = N(f).

Proof. Recall the construction of Ng(f) in 5.2.1. There exists a crepant resolution 7t such
that Acon(70) = Jac(f) and Ny(7) = Ny(f) (5:2.B). Thus Acon() = Acon(70), and so
N (1) = Ng(7) by 3.2.7, and further Ny (71) = Ng(f). O

For any s, ¢ satisfying 1 < s <t < n, and any N € N, by 5.3.8 there exists a crepant
resolution 7t of a cA,, singularity such that Ny (7t) = N. However, this is no longer true when

considering generalised GV invariants of different curve classes simultaneously.

Notation 5.4.3. Fix some positive integer k, set q = {(B1,¢1), (B2,¢2),- -, (B, qx)} where
each B; € @' Z (C;) and ¢; € Ny,. Then we denote qui, := min{¢;}, and consider a subset

of crepant resolutions of cA,, singularities
CAq := {cA, crepant resolution 7t | (Ng, (7), Np, (), ..., Ng, (7)) = (1,92, - - -, ) }-

Notation 5.4.4. Fix some s, t with 1 < s <t <n, and a tuple (gs,...,q) € Nt

(1) Asin 5.4.3, consider q := {(Cs, gs), (Cs+1, ¢s+1), - - -, (Ct, @) }, and its associated subset

of crepant resolutions of cA, singularities CA,.

(2) Furthermore, set p = (p1, P2, - -, Pan—1), Where pg; 1 1= g;+1 for s < i < ¢, else p; := 2,

and consider monomialized Type A potentials MA, on @, defined in 5.1.5.

(3) We define a nonempty subset MAS C MA,, (defined in (5.1.D)) by
MAD := {f € MA, | k2i_1,,_, # 0 for all i satisfying s <4 <t and py;; finite},
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and an open subspace M, of M, (defined in (5.1.E)) by

My, := {k € My, | kgi—1p,,_, # 0 for all i satisfying s <7 < ¢ and py; ; finite}.

We can, and will, consider MA] as a family of monomialized Type A potentials over M.

Proposition 5.4.5. With notation in 5.4.4, the set of isomorphism classes of contraction
algebras associated to CAq is equal to the set of isomorphism classes of Jacobi algebras of
MAJ.

Proof. For any t € CAq, by 4.2.19 there exists a monomialized Type A potentials f on @,
such that Jac(f) = Acon(m). We claim that f € MAJ. To see this, we first fix some ¢
satisfying s < i < ¢. Since Jac(f) = Acon(7), by 5.4.2 N;;(f) = Ny(m). Since m € CAq,
Nii(m) = ¢;, and so Ny (f) = ¢;. Thus by 5.3.8 the following holds.

(1) If ¢; is infinite, then ky;_; ; = 0 in f for any j.

(2) If g; is finite, then ko;_q 4,41 # 0 and kg1 ; = 0 in f for any j < g;.
In either case, since py; 1 = ¢; + 1 in 5.4.4, f € MA].
Then we prove the converse. For any f € MA], by 1.5.5 there is a cA,, crepant resolution
7t such that Aen(t) = Jac(f). We claim that m € CA,. To see this, we first fix some i
satisfying s < i <t. Since Acon() = Jac(f), by 5.4.2 Ny(m) = Ny(f). Since f € MA], by
5.3.8 Nu(f> = P2i—1 — 1= q;, and so NM(T() = q;. Thus T € CAq
Together with the fact in 1.5.7 that the set of isomorphism classes of contraction algebras

associated to crepant resolutions of cA,, singularities is equal to the set of isomorphism classes

of Jacobi algebras of monomialized Type A potentials on @,,, the statement follows. n

(¢}

p» Which have been

The following transfers generalised GV tuples of CA4 to those of MA

characterized explicitly in 5.3.7 and 5.3.8.

Corollary 5.4.6. The set of generalised GV tuples of CAq is equal to the set of generalised
GV tuples of MAJ.

Proof. This is immediate from 5.4.5 and 5.4.2. [

Combining 5.4.6 and 5.3.7, the following gives obstructions and constructions of the possible

tuples that can arise from generalised GV tuples of cA,, crepant resolutions.

Theorem 5.4.7. For any s and t with 1 < s <t < n, and any tuple (qs, ..., q) € Ni*T,

with notation in 5.4.4, the following statements hold.

(1) For any € CAq necessarily Ng(T0) > Qmin, and moreover there exists T € CAq such
that Nst<7'f> = Qmin-
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(2) When Qumin is finite, the equality Ng(7) = Qmin holds for all m € CAq if and only if
#{Z ’ qi = qmin} = 1.
Proof. By 5.4.6 it suffices to prove that the statement holds for the generalised GV invariants

of MA]. Recall in 5.4.4 that MA] C MA,, M2 C My, and p = (p1,p2,. -, P2n—1) Where
Poic1 = q; + 1 for s < i <t else p; = 2. Thus

dos—1,2t-1(P) = Min(Pas—1,P2st1,-- -, Par—1) =min(gs + 1, ¢s1 + 1, ..., ¢t + 1) = Qpnin + 1.

The remainder of the proof will use the following notation and facts.

Notation 5.4.8. We list the notation and facts we will use below when q,,;, is finite.

(a) Set I:={i| ¢ is finite for s <i <t} = {i | pg;_1 is finite for s < i < t}. Since quiy is
finite and by definition q,;;, = min{g¢;}, I # 0.

(b) By 544, Mp\M; = {k‘ c Mp | HiGI 1{322'_171,21._1 = O}

(c) By 5.3.7, there exists a filtration structure M, = M; 2 My D M3 2 --- such that

Ngt (M \Ms) = d2571,2t71(p> — 1 = Qumin, Nst(My) > d2371,2t71<p) — 1 = Qmin, and
My ={k e M, | det Ags_lzt_l(f(k:)) = 0 where d = dos_12:-1(P) }-

Notation 5.4.9. To avoid the proof difficulties encountered in infinite-dimensional vector
spaces, with notation in 5.4.8, we next define some finite-dimensional linear subspaces Np,

N and Ny of My, to facilitate the following proof.

(a) Write kp for the tuple of variables Kos—1py. ;s K2spoes - - - 5 K2t—1,ps, ;- NOte that kp only

has finite variables.

(b) We next define a linear subspace N, of My, as the vector space generated by the basis
corresponding to kp, and a linear subspace V' of My as the vector space generated by
the basis corresponding to k, except xp. Thus N, is a finite dimensional vector space
and M, =N, @ V.

(c) Parallel to My € My, in 5.4.4, define an open subspace Np of Ny, by
N(;) = {k} € Np ’ kQZ‘fl,inil 7£ 0 for all 7 € I}

Thus NP\N; = {k € Np | [Lie in—me‘fl = 0}
(d) Parallel to My C My, in 5.4.8(c), define a closed subspace N, of Ny, by

No = {k € Np | det A5, 5,_,(f(k)) = 0 where d = da,12-1(P)}.

(e) By definition 5.1.2 A3, ,,_;(kp) only contains variables Kos_1.4, K2s.ds - - - , Ka¢—1,4. Thus

when d = d23—1,2t71(p) = min(pgs,l,pgerl,...,th,l), Agsfl,thl(Kp) only contains

. . d _ d
variables in rp, and so A5, 5 1(Kp) = A9, 1 9 1 (Kp)-
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(f) Consider the natural quotient map ¢: My — Ny with ker o = V. Since M7 and N7, are
defined by the zero locus of the same polynomial, p(M?) = N7, and so My = N & V.
Similarly, since by 5.4.9(e) My and N, are also defined by the zero locus of the same
polynomial, p(My) = No, and so My = Ny @ V.

(1) If Qymin = 00, then das_; 2:—1(p) = 00, and so by 5.3.7 Ny (Mp) = oco. Since () # M € My,
there exists f € MA] such that Ny(f) = 00 = quin-

Otherwise, Qpin < 00, and then by 5.4.8 Nyu(Mp) > Quin. Since My € My, Ny (f) > Qmin
for any f € MAJ. This proves the first part of the statement.

For the second part, we claim that there exists f € MA] such that Ny (f) = Qmin- Since by
5.4.8 Ngt(Mp\M2) = Qumin and Ny (Ma) > Quin, it is equivalent to prove that (Mp\Mz)NMp #
0. Since by 5.4.9(b) and 5.4.9(f), Mp = N, @V, M? = N2 @V and My = N, @ V, it is
equivalent to prove that (Np\Na) N Ng # 0.

Since by 5.4.9(d) Ns is the zero locus of a polynomial in C[[kp]], Np\ V2 is an open set (wrt.

Zariski topology) of the finite dimensional space N. Similarly, by 5.4.9(c) N¢ is also an open
set (wrt. Zariski topology) of Np. So (Np\Na) NN # 0.

(2) Assume that qu;, is finite.

(<) We first prove that if #{i | ¢ = Qmin} = 1, then the equality Ng(f) = Qmin holds for
all f € MAJ. Since by 5.4.8 Nst(Mp\M2) = dmin and Ng (M) > Qumin, it is equivalent to
prove that M2 N M, = () (equivalently, My € My\M3).

To ease notation, write m for the unique index such that ¢,,, = Qmin and set d := das_1 2:-1(P).
Since po;1 = ¢; + 1 for s < ¢ < t in 5.4.4, py,_1 is the unique smallest element in
{p2s—1,DP2541,- -, P2t-1}, and so by (5.1.F) d = poy—1 > po;—1 for all i satisfying s < i <t
and i # m. Thus by 5.1.6(4), for s < i <t the following holds.

o Ifi= m, then P2i—1 = d, and so £2i—1,d<Kp) = dKQZ‘_Ld.
o If i # m, then py;_; > d, and so €9;_1 4(Kp) is a zero function over M.

If d > 2, then by 5.1.9(3),

det Ags—l,%—l(Kp)

(-1 (825—17d('<p) + (_1)d525+1,d('<p) +ooet (_1)(t_8)d52t—1,d('<p))
(=)' (= 1) egp 1.4(kp)

— (_1)t—s+(m—s)ddK2m_17d‘

So by 5.4.8(c), My = {k € My, | kam—1.4 = 0}. Since ¢, = Qumin is finite, m € I (see 5.4.8(a)).
Together with 5.4.8(b) and d = pay,_1, it follows that

MP\M; = {l{? S Mp | k2m—1,d H in—LPQi—l = 0}
€I\{m}
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Thus My € Mp\My.
Otherwise, d = 2, and then by 5.1.9(2),

det A3, 190 1(Kp) = (—1)" 7 (e26-1,2(Kp) + €a0412(Kp) + -+ + €2-1,2(Kp)) + €(ip)
(—=1)"*2kom_12 + €(Kp),

where € € Fos_19,—1 and Eos_j 9,1 is the ideal generated by all the degree two terms of
€25-1,2) €2511,2, - - - 5 €20—1,2 CXCCDE €3, 1 9, E5gy10,-- -, 5 19 (see 5.1.8). Together with €5, _12(Kp)
is the only non-zero element in {€95_12(Kp), €25412(Kp), - - -, €2t-12(Kp) }, thus Eos_1.21(Kp) =
{0}, and so e(kp) = 0. Thus det A3, |, ;(kp) = (=1)"*2Kapm_12. So by 5.4.8(c), My =
{k € My, | kgpp—1,0 = 0}. Similarly, My C Mp\M;.

(=) We next prove the converse: if #{i | ¢; = Qu} > 1, then there exists f € MAJ
such that Ng(f) > Qmin. Since by 5.4.8(c) Ng(Mp\M2) = Qmin and Ny (M) > Qmin, it
is equivalent to prove Mg N My # () (equivalently, My € My\M?). Since by 5.4.9(b) and
5.4.9(f), Mp = N, & V, My = Np @V and My = N @ V, it is equivalent to prove that
Ny & Np\N;

To ease notation, set d := das—19:—1(p) and I := {i | ¢ = Quin, for s <@ <t} = {i | poi_1 =
d = min(pas_1,P2st1,- - -, Par—1) for s < i < t}. Since #{i | ¢ = Qmin} > 1, then the number
of elements |I| > 1. By 5.1.6(4), for s < ¢ <t the following holds.

e Ifi e I, then P2i—1 = d, and so £2i71,d(Kp) = ngi,Ld.
o Ifi ¢ I, then py;_1 > d, and so €3;_1 4(Kp) is a zero function over My,
If d > 2, then

5.4.9(e)
detAgs—L%—l(“p) = detAgs—l,%—l(KP)

5.1.9(3 s —s
20 (1) (e ralip) + (=) eara(kp) -+ (=1 Meg (k)

= () () e a(kp))
il
— (_1)t—s—sdd Z(_l)idKQi—l,w
el
So by 5.4.9(d), Ny = {k € Np | Xse;(—1)"kgi_14 = 0}. We next prove that No € Np\Ng
by contradiction. Recall that Ny2\NP = {k € Ny | [T;er koi—1,pp,_, = 0} in 5.4.9(c). Thus if
N, C Np\N;, then
(IT %210 1) € Q- (=1)"kai-14)

iel iel
in C[[kp]], and so there exists k" € C[[rp] such that

H K2i—1,pgi1 = F&/(Z(—l)idKQi—l,d)- (5.4.A)

i€l el
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Since C[[kp]| has only a finite number of variables, it is a unique factorization domain.
Together with (5.4.A) and |I| > 1, there are two different factorizations of the same element
in C[[xp]], a contradiction.
Otherwise, d = 2, and then
5.4.9(e) 9

= det A2s—1,2t—1(‘<p)
2)

det Ags—mt—l(“p)

5.1.¢

©
—~

(—1)t_s(€2s—1,2('<p) + €25112(Kp) + -+ + 52t—1,2('<p)> + €(kp)
= (=1)""2) koim12 + €(kp),

icl
where € € FEys_19-1 and Eas_q9.1 is the ideal generated by some degree two terms of

625_172, 8284_172, ey 8275_172. So by 549((1), N2 = {/{5 c Np | (—1)t782 Zie[ in_LQ -+ G(k) = 0}
Similarly, we can prove that Na & N\Np by contradiction. O

Example 5.4.10. Let 7t be a crepant resolution of a cAs singularity with exceptional curves
Cq, Cy and Cs. Suppose that

(N11(7r), Nog(71), N33(71)) = (q1, q2, g2) where ¢1 < g2 < ¢3.

With notation in 5.4.7, set s = 1, ¢t = 2 and q = {(C1,q1), (Ca,q2)}. Since Nii(7) = ¢
and Ny (71) = ¢o by assumption, necessarily m € CAq. Since ¢1 < @2, Qmin = ¢1 is finite and
#{i | ¢ = dmin} = #{1} = 1. So by 5.4.7(2), Ny»(7t) must be q;.

Similarly, we can prove that Noz(71) = go by setting s = 2, ¢ = 3 and q = {(Cs, ¢2), (Cs, q3)},
and Ny3(7) = q1 by setting s =1, ¢t = 3 and q = {(Cy, q1), (Ca, 2), (C3,q3) }-

§ 5.4.2 | Obstructions from iterated flops

[terating flops gives more obstructions and constructions of the possible tuples that can arise

from the generalised GV invariants of cA,, crepant resolutions.

Notation 5.4.11. Recall r and 7" in 3.3.1, and |F;| in 3.3.4. There is a linear isomorphism
|Fy|: Ar(mr) — Ay (),

such that GVB(T[) = GV\FA([&)(T[T) for any [.)) S Al(’lt). By 3.3.8, N@(Tt) = N|Fr‘(ﬁ)(7fr).

Varying r over all possible flops gives the following set,

F = U{|Fr| | r=(ry,ry,...,1;) where each 1 < r; < n}.
i=1

Given any F' € F and q = {(B1,¢1), (B2,¢2),- -, (Bk,qx)} in 5.4.3, write

F(q) = {(F(B1),q1), (F(B2): g2), -, (F(Br), qr) }-
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The flexibility of F' € F as above, together with 5.4.7, gives more obstructions and construc-
tions of the possible tuples that can arise from generalised GV invariants of cA, crepant

resolutions, as follows.

Corollary 5.4.12. For any integers s and t with 1 < s <t < n, any tuple (¢s,...,q) €
Nt and any F € F, with notation as in 5.4.4 and 5.4.11, the following statements hold.

(1) Foranym € CAp(q) necessarily Np o) (70) > Qmin, and moreover there exists 0 € CAr(q)
such that Np(s)(T) = Qmin-

(2) When qmin s finite, the equality Np(s)(T1) = dmin holds for all m € CApq) if and only

Proof. By the definition of F in 5.4.11, there exists some r = (ry,rg,...,7;) such that

F = |F}|. Then set the reverse tuple of r to be T = (r;,7rj_1,...,71).
Since Ng(7t) = Npg) (") in 5.4.11, for any m € CAq, we have " € CAp(qg).
Similarly, since Ng(7") = Npg)(7) in 5.4.11, for any 7w € CAp(q), we have 7* € CAq.

(1) If € CAp(q), then m € CAq. By 5.4.7, Ny(7") > Quin. Since Npy)(m) = Ny ("),
Npst)(T) > Qmin- Again by 5.4.7, there exists 1y € CAq such that Ny (1) = qmin. Since
Npon (1)) = N (11), Npst) (7)) = dmin. Since 111 € CAq, 7] € CAp(q). We are done.

(2) For any m € CAp(q), we have ™ € CAq and Np(o)(1) = Ng(7). If Qo is finite and
#{i | ¢ = Amin} = 1, then by 5.4.7 Ny (7") = Quin, and s0 Np(s)(T) = Qunin-

We next prove the converse. For any 7 € CAq, ™ € CAp(q) and Ny () = Np(s) (). Thus

if Np(s)(71) = Qmin holds for all m € CAp(q), then Ny () = qmin holds for all m € CA4. So
#{i| ¢ = Quin} = 1 by 5.4.7 and the assumption qu,;, is finite. O

§ 5.4.3 | Examples

Note that 5.4.7 demonstrates that the generalised GV invariant N is constrained by prop-
erties of the tuple (Ny,...,Ny), and 5.4.12 demonstrates that Np(y) is constrained by
properties of the tuple (Ng(ss), - - - Npw))-

Example 5.4.13. Consider n = 2, s = 1 and t = 2, and apply different F' in 5.4.12. The
following table illustrates that Ng is constrained by by properties of the tuple (Ng,, Np,)

where (B1, B2, B) := (F(11), F(22), F(12)).

F [51’[32 B
id 11,22 12

|Fy| 11,12 22
|Fpy| 12,22 11
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As an explicit example, for any cAs crepant resolution 7 the following holds. To ease

notation, we write Ng for N(7) in the following.
(1) By the first line, Nis > min(Nyy, Nog). Moreover, if N3 # Nao, then Njp must be
min(Nyq, Nog).
(2) By the second line, Nyy > min(Nyq, Ni2). Moreover, if Ni; # Nig, then Nos must be
min(Nyq, Nig).
(3) By the third line, Ni; > min(Nis, Nog). Moreover, if Nig # Nao, then Ny; must be
min(Nyg, Nog).

Example 5.4.14. Consider n = 3, s = 1 and t = 3, and apply different F' in 5.4.12. The
following table illustrates that Ng is constrained by properties of the tuple (Ng,, Ng,, Np,)

xwhena(ﬁl,ﬁg,ﬁg,ﬁ):zz(5111),5122),5133),5113)).

F B1, B2, B3 B
id 11,22,33 13
|Fy]  11,12,33 23
|Fop|  12,22,23 13
|Fgy|  11,23,33 12
|Fag| 12,11,23 33
|Fon| 22,12,13 23
|Flos)| 13,23,22 12
|Flsg| 12,33,23 11
|Fasg| 11,13,33 22

With the results in 5.4.7, 5.4.12 and 5.4.13, we can give all the tuples that generalised GV

tuples of cAy crepant resolutions can arise.

Corollary 5.4.15. The generalised GV tuples of cAy crepant resolutions have the following
two possibilities:
N1zt Nap p q p P

Nia B min(p, q) or r

where p, q, r € Ny with p # q and r > p. All possible such p,q,r arise.

Proof. Fixsome p, q € No. By 5.4.7(1), for any cA, crepant resolution 7t satisfying Ny, (71) =
p and Nao(m) = ¢, necessarily Nio(7) > min(p, q). Moreover, there exists such a 7 with
Nia(7) = min(p, q). If furthermore p # ¢, then Nio(71) = min(p, ) by 5.4.7(2) which proves
the first possibility.

Then we consider the case of p = ¢. Since by 5.4.13 Ny is constrained by properties of the
tuple (Ny1, N12), for any r > p by 5.4.12(1) there exists a cAs crepant resolution 7t such that
Ni1(m) = p, Nia(mr) = r and Naog(71) = min(p, ) = p. The second possibility follows. O
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Chapter 6

Special Cases: As

This chapter considers the special case (03 (1,23}, namely

al a2
_ r_
./\./\. X1 = albl, X] = b1a1
1™~ 2%~ -3
_ [
by b Xg = Ggby, X5 = boay

and describes the full isomorphism classes of Type A potentials, and the derived equivalence

classes of those with finite-dimensional Jacobi algebras. This generalises the results in [DWZ,
E1, H2].

Notation 6.0.1. In this chapter, for simplicity, we will adopt the following notation. Recall
the notation fg, f>q in 4.1.11.

(1)
(2)

(4)

Write @ for Qs (12,3}, X := x| and y := xp, whereas x' :=x; and y" 1= xj.

Suppose that f is a Type A potential on (). Then define the base part of f as f, =
K1XP 4+ xy + Koy? where k1xP, Koy? is the lowest degree monomial of x, y in f respectively.
If there is no monomial of x (or y) in f, we assume k; = 0 (or ko = 0). Then define
the redundant part of f as f. .= f — f,.

Given any Type A potential f on @ with f, = kix? +xy+ Kkoy?, we give a new definition
of degree as follows, which differs from 4.1.3. For any ¢ > 0, define

deg(xP™) :=t+2, deg(y?™) =t +2.

The degree of binomials in x and y is the same as 4.1.3. We also write f; for the degree
d piece of f with respect to this new definition (overwriting 4.1.11). Similar for f;; 4,
Oq and O;j 4. This new definition of degree is natural since now f, = fo and f, = f>3,

which will unify the proof below.
Let f be a Type A potential on @ with f, = k;x? + xy + kay?. Recall the definition of
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A%(f) in 5.1.2. To ease notation, write the matrices Ay (f), Az (f) and Ayo(f) for
Au(f) =AU = [pxa] . An(f) = AL(F) = [gxo]

Ap(f) = AL(f) = |:512(f) 1 ] |

1 exnl(f)
2k ifp=2 2Ky if g = 2

where 812<f) = ! P and €22(f) = ? 1
0 ifp>2 0 ifg>2

§ 6.1 | Normalization

The purpose of this section is to prove 6.1.17, which gives the isomorphism classes of Type

A potentials on Q).

Notation 6.1.1. In this section, we assume f = f, 4+ f. is a Type A potential on @) with
fo = K1xP +xy + koy?, and will freely use the notations fy, f>a4, fija, Oq and O;;4 in 6.0.1(3).

The following results show that we can commute x and y in f.

Lemma 6.1.2. Suppose that f,. = g+ Ayxc where 0 # A € C, d := deg(yxc) and ¢ is a cycle
with deg(c) > 1. Then there exists a path degree d — 1 right-equivalence,

0 f S fy+ g+ Mye + O

Proof. Applying the depth d — 1 unitriangular automorphism 9 : a; — a1 — Aaic, by —
b1 + Acby gives,

I f — K1<(b1 + 7\0()1)(&1 — }\a16>)p + (bl + Acbl)(al — Aalc)y + Kqu + }\yXC +9+ Od+1
= fi — Axey + Aexy + Ayxc + g + Qg1
L fy+ g+ Axye + e,

since similar to the proof of 4.1.15, the degree of the terms generated by f,. = g + Ayxc after
applying ¥ is greater than or equal to d + 1. m

Corollary 6.1.3. Suppose that f. = g+ Ac where 0 # A € C, d := deg(c) and ¢ is a cycle
with T(c); =i and T(c)y = j. Then there exists a path degree d — 1 right-equivalence,

0: f S fy 4+ g+ MKy 4+ Oy

Proof. If j = 0, then ¢ ~ x‘, so there is nothing to prove. The case of i = 0 is similar.

Thus we assume 4, j > 0. Firstly, note that ¢ ~ x“y/ix?2y72 __ x%*y/* where >F i, = i and

122



CHAPTER 6. SPECIAL CASES: A; 123

¥ . j, = j. Since 6.1.2 can commute yx contained in ¢ to xy, we can apply the 9 in 6.1.2

repeatedly until we commute all yx to xy, and so
0: f %5 fy+ g+ Ay 4 Ogyr. O

Remark 6.1.4. With notation in 6.1.3, we can transform Ac to Ax’y? up to higher degree
Q441 where d = deg(c). Moreover, since we will normalise the potential degree by degree in

the following part of this section, we can assume ¢ = x'y7.

Then, we start normalizing the potential f, and the basic idea is to use f, to normalize f,

degree by degree. For any integer s > 1, we define the following depth s + 1 unitriangular

automorphisms.
Pr1,s: A1 = aq + 7\a1xs, (61A)
P25 Q2 > Q2 + }\ys(lg, (61B)
P12,s: a1 > aq + }\16L1XS_1y, a9 — Q9 + )\QXS(IQ, (610)

where A, A, Ay € C.
Lemma 6.1.5. The @115 (6.1.A) induces a degree s + 1 right-equivalence,
.opstl p+s
Qi [ AKX 4+ 019 6190 + Oggs.
Proof. Applying @115: a1 — a; + Aa1x® to f gives

@150 [ = Ki(b1(ar + Aarx?))? + by (a1 + Aar1x®)y + koy? + fr + Ogy3
4 ApkixPTS 4+ Ay 4+ O,
= f -+ }\plep—i-s + (912,54_2 -+ Os+3. ]

Lemma 6.1.6. The @ (6.1.B) induces a degree s + 1 right-equivalence,
. op sl q+s
Qo251 [~ [+ AgRayT™" + O12 549 + O3
Proof. The proof is similar to 6.1.5. m
Lemma 6.1.7. The @25 (6.1.C) induces a degree s + 1 right-equivalence,

At

Q25 f = [+ [XSHY XSYQ} Ago(f) + Ogys.

2
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Proof. Applying @125 to f gives

Q12,50 [ = Ki(X FACY)P + (x 4+ AxXy) (y + Aox’y) + Koy + Aox*y)? + fr + Ogps

2 4+ ApkixP Ty 4 Ao Ty 4+ Aixy? + Aagkax®y? + Oy g

A1

=f+ [XSHY Xsyz} Aio(f) A + Ogy3.

2
Recall the definition of Ajo(f) in 6.0.1(4). In the above last equation, we move A;pkxP 1y
into O4y3 when p > 2, and move it into [x‘g“y xsyﬂ A(f) Kl] when p = 2. Similar for
AoqKox®yd. ’ O
Proposition 6.1.8. With notation in 6.1.1, for any d > 3, there exists a path degree d — 1

right-equivalence
d—1
$a: [~ f<i+ cat Oupa,

where the cq is defined to be

o= 0 if det(Au(f)) 7’é 0
T w2 f det(Ap(f) = 0

for some n € C.

Proof. We first rewrite f, = fq+ g and fq = fi1.a + fi2.4a + foz.a where fi14 = ouxPT%~2 and

fo2,4 = ooy9T9=2 for some oy, an € C.

Recall that f, = kix? + xy + koy? in 6.1.1. If k; = 0, then there is no monomial of y in f,
and so ay = 0. Otherwise, ks # 0, so set A = —xy/(gKo) and applying 6.1.6 to obtain,

d— _
Qad-2: f ! f+ AgkayttiT? 4 O12.4 + Q441
= fo+ g+ fa+ Mgy 2+ 010 + O (f=hHh+f =fat+9)

= fo+ g+ fira+ fioa + (0 + Agk2)y™™ % + Q190 + Ous
(fd = fll,d, + f127d + f22,d; f22,d — O(qu+d_2)

= fo+ 9+ firg+ fiza+ 0124+ Oapa (since A = —ota/(gK2))
=fot+ 9+ fira+ 0120+ Oapa. (6.1.D)

Set fi .= fo + 9+ fir,a + 0124 + Og1. The proof splits into cases.
(1) det(A2(f)) = 0.

By 4.1.19, we can transform the binomial terms O34 in f; to the monomials of x. More
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precisely, there exists a path degree d — 1 right-equivalence,

pa: fi ey fo 4+ g4+ w2 4 04y, (fi1.a = oqxPTd=2)

= fea+ mxX"T? + Ogy1. (fos+9= fea+ f>a)

for some p € C. Set ¢g := pg 0 @22.4-2, We are done.

(2) det(Am2(f)) # 0.
Similar to (6.1.D), applying 6.1.5 to f; gives

d—
Pi1,d—2: f1 = fo = fo + 9+ 0124 + Og41.

Then we continue to normalize the O34 in fy. It is clear that fy satisfies the assumption of

4.1.15. Thus we can apply 4.1.15 repeatedly until,
9: f, Sy = fy b g+ BTy + O

for some 3 € C. Then by 6.1.7,

_ A
Q12.4-2: f3 E A [xd‘ly Xd_QYﬂ AL (f) )\1 + 0441
2
d—1 d—1 d—2.2] A2 A1
= fi+ g+ By + [xily xi2y?| Af(f) A | T Oas
2
Since det A%,(f) # 0, we can solve (A, Ay) to make
d-1 d—1 d—2,,2] A2 A
px )“"[X y X Y}Am(f) A\ =0.
2
Thus we have
d—1
Qi24-2:f3 ~ fo + 9+ Oapr
= fea+ Og41. (fo +9=fea+ [5a)

Set g = @12.4-20D 0 Q11,420 Pag g_2, We are done.

Proposition 6.1.9. With notation in 6.1.1, there exists a right-equivalence,
P: ffrote

where the ¢ is defined to be

0
Cc = .
{ z‘oil },LZ'XP—H Zf det Alg(f) =0

125
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for some u; € C.
Proof. We first apply the ¢3 in 6.1.8,
b3 f 5= feg +c3+ Oy,

where the c3 is the same as in 6.1.8. Then we continue to apply the ¢4 in 6.1.8 to fi,
s 4
ba:fimfoi=(f)aat s+ 05 =fs+ ) ca+ Os.
d=3
where the ¢, is the same as in 6.1.8. Thus repeating this process s — 2 times gives
dso-rodgods: fofyi=fes+ D ca+ O
d=3

Since ¢y is a path degree d — 1 right-equivalence for each d > 3 by 6.1.8, by 2.1.9 & :=

lim, oo Gs0---0dy o ds exists, and further
o0 [e.9]
P fo<3+ZCd:fb+ZCd>
d=3 d=3
where each ¢4 is the same as in 6.1.8. Thus set ¢ := > 325 ¢4, we are done. ]

The above 6.1.9 shows that we can eliminate all terms in f, when det Aj5(f) # 0. Thus we
next consider the cases of f with det A;2(f) = 0. The following lemma holds immediately
from the definition of Ajo(f) in 6.0.1(4).

Lemma 6.1.10. det Ai5(f) = 0 if and only if f, = K1x* + xy + Koy? with 41Ky = 1.

Lemma 6.1.11. With notation in 6.1.1, suppose that f satisfies det Ayo(f) =0, and f, =
ux® + O, where t > s > 3 and 0 # w € C. Then there exists a path degree t — s + 1
right-equivalence \b; such that

Yoo [ fy x4 O

Proof. Since det A%, (f) =0, by 6.1.10 f, = k1x* + xy + kay? with 4k;ky = 1. If the degree ¢
terms in O, are zero, there is nothing to prove. Otherwise, we first apply 4.1.15 repeatedly
and obtain,

1 f 5 f= o o+ BTy o O,

for some 3 € C. If B = 0, we are done. Otherwise, we next apply @12, in 6.1.7 which
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gives

©120-s: 1 2K (X AXTEY)2 (X + A TEy) (y A+ Aox!T0y) + Koy + Agx' )2

+ (X + A TY)T + BTy + Oy

fo 4 x4 (207 + Ao)X 5Ty o (A 4+ 2kA0)X 5y + (spA; + B)x Tty
+ (KIAZ + KoA2 + A A)XCE9y2 1 O,y

t—s+2
Y

AL
A2

Since 4k1ky = 1, then i = 2Ky, and so any A; and Ay with £+ = = —2K9 satisfies the

1
—5
following system of equations

2K1}\1 + 7\2 =0
7\1 + 2K27\2 =0
Kl}\% + Kg)\g + }\1)\2 =0.

We next choose A to satisfy spuA; +uw, = 0, and set Ay = —2k;A;. This makes the coefficients

t—s+1 2(t—s)

of x y, xi7%y2 xt~ly and x y? equal to zero in the above potential. Set P, := @19, 09,

we are done. 0

The following shows that when det A%,(f) = 0, the leading term of f, can eliminate all the

other terms.

Proposition 6.1.12. With notation in 6.1.1, suppose that f satisfies det A12(f) = 0. Then

there exists a right-equivalence VW such that
U f~s fyor fp+px®,
where 0 # pw € C and s > 3.

Proof. Since det Aj5(f) = 0, then by 6.1.9
D: famfyi=fo+) X2,
i=1

If all w; = 0, then f ~» f,. Otherwise, set s to be the smallest integer satisfying p, # 0.
Then by 6.1.11 applied to f;, there exists

2 s
Yepr: fi = fy = fiy + ux® + O 0.
Thus, repeating this process k times gives

Yoo ooy fi ~ fiop = fy + 1 + Ogyppa

Since ), is a degree t — s + 1 right-equivalence for each ¢t > s by 6.1.11, by 2.1.9 ¥’ :=
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limy,_yoo Weyr © -+ - 0 Pgpg 0Py exists, and further
U o~ fy 4+ ux®,
Set ¥ := ¥’ o @, we are done. m

Combining 6.1.9, 6.1.10 and 6.1.12 gives the following result.

Proposition 6.1.13. Any Type A potential on ) must be right-equivalent to one of the

following potentials:

(1) kyx? + xy + Kay? where K1, Ko # 0 and 4k Ky # 1.

(2) Kix® 4+ xy + Koy? + ux® where 4k1ky =1, 0 £ n € C and s > 3.
(3) KixP 4+ xy + kay? where (p,q) # (2,2) and Ky, Ky # 0.

(4) K1x® 4+ xy + Koy? where 4k1Ky = 1.

(5) kixP +xy where p > 2 and k1 # 0.

(6) xy + Koy? where ¢ > 2 and kg # 0.

(7) xy.

Proof. Recall in 6.0.1 and 6.1.1, any Type A potential on @ has the form of f = f, + f.
where f, = kixP + xy + Koy?.

When det Aj5(f) = 0, namely p = ¢ = 2 and 4k;k2 = 1 by 6.1.10, then by 6.1.9 f =
fo or fi + ux® where 0 # p € C and s > 3. These are items (4) and (2) in the statement.

When det A12(f) # 0, by 6.1.9 f = f,. Again by 6.1.10, we have (p, q) # (2,2) or 4kiKg # 1,

so f must belong to one of the following cases.

a) Kl;é()and KQZO.

b) K1:0and KQ#O.

¢) k1 =0 and kg = 0.

d) K1,K2%0,4K1K27élandp:q:2.
)

€) Ki, Kg 7£ 0 and (p7 Q) 7é (272)
The a), b), ¢), d) and e) are items (5), (6), (7), (1) and (3) in the statement. O

Then we continue to normalise the coefficients of the potentials in 6.1.13. In the statement
of 6.1.14, case (1) is placed first since it represents the most basic family: its Jacobi algebra
has the smallest dimension (namely, 20) and it exhibits moduli, in contrast to the discrete
classification of Du Val singularities. By contrast, case (2) has a different structural form
from all of the remaining cases, and is in fact derived equivalent to certain potentials in
case (3) (see 6.2.6).
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Corollary 6.1.14. Any Type A potential on Q) must be isomorphic to one of the following
potentials:

(1) x*+xy + Ay? where 0,3 # A € C.
(2) x* +xy + +y* 4+ x* where s > 3.
(3) xP +xy + y? where (p,q) # (2,2).
(4) x* +xy + 3y*.

(5
(
(

6

xP + xy where p > 2.

xy + y? where q > 2.

)
)
)
)
)
7) xy.
Proof. (1) Applying a; — Ajaq, as — Agas where A, Ay € C to (1) gives
Kix? 4 Xy + Kay? 5 ATk1x? + A Aoxy + A2koy?.

Since k1 # 0, we can solve (A,Ay) that ensures A%Kl = AiAy = 1 holds. Moreover, since
Ko # 0and 4k1Kg # 1, A2Ky = K1Kg # 0, i. Set A := A2ky. Thus kix2+xy+Kay? — xZ+xy+Ay?
where A # 0, i

(2) Applying ¢: a3 — Ajay, as — Agas where A, Ay € C to (2) gives
Kix? 4 Xy 4 Koy? + ux® = ATkix? 4 AjAgxy + AsKay? + ASux®.

We next claim that we can find some (A1, ) which satisfies

1
7\%K127\17\2:7\§K2:?\iu:1:12111.

Once the claim is certified, it follows at once that k1x? + Xy 4 Koy? + px® = x? +xy + 1y* 4 x°.

To prove the claim, since s > 3 and p # 0, we can solve A; to ensure A2k; : Ajp =1 : 1
holds. Then we solve A, from ?\1 and A?k; : A{Ao = 1 : 1. Moreover, this choice of A; and Ay
also satisfies AjAg : A2ky = 1 : 7 since 4k;ky = 1. Combining these together, (A1, Ay) satisfies

the claim.

(3) Applying ¢: a; — Ajay, as — Agas where A, Ay € C to (3) gives
KixP + xy + Koy? = AVkixP + A Aoxy + Adkoyl.
Similar to (2), the statement follows once we find some (A1, A2) which satisfies
Aki i AMA i ATk =1:1: 1.

The above equations induce Ay = AP 'k; and A; = A2 'k,, and so Aﬁ”‘”(q‘”‘lK‘{*lKg = 1.
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Since k1, Ko # 0 and (p,q) # (2,2), we can solve A;, and then Ay such that the above

equations hold.

(4) Applying a; — Ajay, as — Ayas where A, Ay € C to (4) gives
Kix2 4+ Xy + Koy? — 7\%le2 + A1 Aoxy + ?\3 Koy?.

Similar to (1), we can solve (A1, Ag) that ensures A¥k; = AjAy = 1 holds, and then Ak, =

1 1,2

KiKp = 1 since 4k1kg = 1. Thus kix® + xy + Koy? — x* +xy + 1y,

(5) Applying a; — Ajaq, as — Agsas where Aj, Ay € C to (5) gives
KixP + xy = Ak x? + A Agxy.

Since k1 # 0, we can solve (Ar,Ay) that ensures Ak; = AAy = 1 holds. Thus k;x? + xy —
xP + xy.
The proof of (6) and (7) is similar to (5). O

We now simplify the previous geometric realization in §4.2 for the potentials in 6.1.14.

Proposition 6.1.15. Fach Jacobi algebra of potentials in 6.1.14 is realized by a crepant
resolution of a singularity of cAs R := Cllu, v, x,y]]/(uv — hohihshg), which corresponds to
the R-module M := R & (u, hg) ® (u, hoh1) & (u, hohihs) in 3.3.2 as follows.

hO hl hQ h3
(1) 2z+y x Yy T+ 2\y
(2) 22+ y+ st x Yy T+ %y
(3) pa*'+y r oy wtqyt!
4) 2z+vy xr Yy T+ %y
(5) pzP~t+y r oy w
(6) v r oy rtqyt!
(7) vy Ty

Proof. In order to construct the geometric realization by 4.2.9 and (5.2.A), we first transform
the potentials in 6.1.14 to some potentials in ()3, which has a single loop at each vertex, as
illustrated below (see also 4.1.2).

Iy l2 I3

Qo (o)

Q3 = e
by by

Consider a potential f = kyx? + xy + Koy? + K3x® on ) where K, Ko, K3 € C. By applying
4.1.22 three times, each of which adds a loop [; at vertex ¢ of @) for 1 < ¢ < 3, we have
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Jac(Q, f) = Jac(Qs, f') where
/ ’ , 1 9 1 9 1 9 9 9 .
f = llX + Xl2 + lzy _|’ y 13 - 5[1 - 5[2 — 513 — X7 — y + lep + K2yq + Ksx®.

Then by 4.2.9, 4.2.2 and (5.2.A), we can realize f’ by setting go = =, g3 = = + y and then

solving the following system of equations where each g; € C[[z, y]|

go—G1+g2=0

91— 202+ Kipgh " + K595 + g3 =0
g2 —93+91=0

g3 — g1+ K20l ' +g5=0

91— 95+ gs = 0.

Thus (9o, g1, G2+ 93, G4, G5, g6) = (—K1prP~ ! — kgsa®™ 1 — y, & — kyprP~! — kgsa®™! — y,z, 0 +

Yy, —T 4y — Kaqy? ™t —x — Koqy?™h). Set (ho, ha, ho, h3) := (—go, g2, g1, —gs) and consider

_ Cluvey) Cllw,0,2,4])
uv — hohihohs — wv — (kypaP~t + k3sxs~t + y)zy(z + Koqyd™1)

and R-module M = R @ (u, hy) @ (u, hohy) ® (u, hoh1hs). Write 7t for the crepant resolution
of Spec R, which corresponds to M in 3.3.2. Then Ay, (1) = Jac(Qs, f') by 4.2.9, and so
Acon(m) = Jac(Q, f). By choosing different values of Ky, k2, k3 and p, ¢, s to make f become

the potentials in 6.1.14, we prove the statement. ]

Then we classify the Type A potentials on ) up to isomorphism, which is the main result

of this section.
Lemma 6.1.16. [E2] If A\, Ay # 0,1 and Ay # Ny, then x2 + xy + Ay? 2 x% + xy + Aoy?.
Theorem 6.1.17. Any Type A potential on QQ must be isomorphic to one of the following
isomorphism classes of potentials:

(1) x* +xy + Ay? for any 0,1 #A € C.
(2) x> +xy + 1y> +x* for any s > 3.
(3) X2 +xy +y? = xI +xy +y” for any (p,q) # (2,2).
(
(

>

)
)

4) x* +xy+4y
) xP 4+ xy Z xy +yP for any p > 2.
)

(6) xy.
The Jacobi algebras of these potentials are all mutually non-isomorphic (except those iso-

morphisms stated), and in particular the Jacobi algebras with different parameters in the

same item are mon-isomorphic.
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The Jacobi algebras in (1), (2), (3) are realized by crepant resolutions of isolated cAs sin-
gularities, and those in (4), (5), (6) are realized by crepant resolutions of non-isolated cAs

singularities.

Proof. We first prove the isomorphisms in the statement. Applying a; — by, by — ag, as —
b1, by — ay gives

XP 4+ xy +y? ~s x+xy +y7, xP +xy ~» xy 4y
Then we prove the non-isomorphisms in the statement by using the following fact. If Type

A potentials f and g on @ are isomorphic, then dim¢ Jac(f) = dimc Jac(g), and further by
3.2.5 there is an equality of sets

{dimc dJac(f)/e1, dim¢ Jac(f)/es} = {dimc Jac(g)/e1, dime Jac(g)/es}. (6.1.E)

The following table lists dimc Jac(f), dime Jac(f)/e; and dime Jac(f)/es for each f in each

item, using Toda’s formula 2.4.2.

dim¢ Jac(f) dime Jac(f)/e; dime Jac(f)/es

(1) 20 6 6

(2) 9s + 2 6 6
xXP+xy+y? 4p+4q9+4 4q9-—2 dp — 2
(4) 00 6 6

xP + xy 00 00 dp — 2
(6) 00 00 00

Now, all Jacobi algebras in (1) have dimension 20, but are mutually non-isomorphic by
6.1.16. All Jacobi algebras in (2) are mutually non-isomorphic since they all have different

dimensions.
For (3), we only need to prove that x? + xy + y? 2 x" + xy + y* for any (p,q) # (r,s) and
(p,q) # (s,r). From the above table,

{dimc Jac(x” +xy +y?)/e1, dimc Jac(x” +xy +y?)/est = {4q — 2,4p — 2},

{dim¢ Jac(x" + xy +y®)/e1, dimc Jac(x” + xy +y%)/es} = {4r — 2,4s — 2}.
Since (p,q) # (r,s) and (p,q) # (s,r), then the above two sets are not equal, and so
xP +xy +y? 2 x" +xy +y° by (6.1.E).

For (5), since x? + xy = xy + y?, we only need to prove that x? 4+ xy 2 x? + xy for any p # q.
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From the above table,

{dim¢ Jac(x? + xy)/e1, dimc Jac(xP +xy)/es} = {00, 4p — 2},
{dimc Jac(x? + xy)/e1, dimc Jac(x? + xy)/es} = {00, 4q — 2}.

Since p # ¢, the above two sets are not equal, so x? + xy 2 x? + xy by (6.1.E).

The above shows that potentials in the same item are mutually non-isomorphic. We finally

prove that the potentials in different items are mutually non-isomorphic.

Since Jacobi algebras in (1), (2) and (3) have finite dimension, while those in (4), (5) and
(6) have infinite dimension, we only need to prove that the potentials in (1), (2) and (3) are
mutually non-isomorphic, and the potentials in (4), (5) and (6) are mutually non-isomorphic,

respectively.

From the above table, the Jacobi algebras in (1), (2), and (3) have dimensions 20, 9s + 2
and 4p + 4q + 4, respectively. Since s > 3 and (p,q) # (2,2), then 9s + 2 > 20 and
4p + 4q + 4 > 20, and so the potentials in (1) are not isomorphic to those in (2) and (3). To
compare the potentials in (2) and (3), since (p,q) # (2,2), then {4¢ — 2,4p — 2} # {6,6},
then the potentials in (2) are not isomorphic to those in (3), by (6.1.E) and the table.

To compare the potentials in (4), (5) and (6), since {6,6}, {oc0,4p — 2} and {oo, 00} are
mutually not equal, then the potentials in (4), (5) and (6) are mutually non-isomorphic by
(6.1.E) and the table.

By the geometric realizations in 6.1.15, the Jacobi algebras in (1), (2), (3) are realized by
crepant resolutions of isolated cAjs singularities, and the those in (4), (5), (6) are realized by

crepant resolutions of non-isolated cAs singularities. O

Remark 6.1.18. In 6.1.17, (4) is the limit of (2) by s — oo or (1) by A — 1. Similarly,
(5) and (6) are the limits of (3) by p — oo and ¢ — oo. This parallels the fact that

divisor-to-curve contractions are usually the limit of flops; see also [BW2].

Remark 6.1.19. In this section, for a Type A potential f on the doubled A; quiver without
loops, we normalise f using the matrix A%,(f) introduced in 5.1.2. For a Type A potential
f on the doubled A3 quiver with loops, or more generally on the doubled A,, quiver @),, with
n > 4, one would instead need to use matrices of the form Af;(f) (with j —i > 2 and d > 2)
to normalise f. At present, it is unclear how to extend the normalisation process developed

here to Type A potentials on @Q,, for arbitrary n.

§ 6.2 | Derived equivalence classes

The purpose of this section is to prove 6.2.6, which gives the derived equivalence classes of

Type A potentials with finite-dimensional Jacobi algebra on Q.
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Given a Type A potential f on @), by 6.1.14 and 6.1.15 we can realize f by some cAj

CH“; v, T, y]]
uv — hohlhghg

R

I

and R-module M = R & (u, ho) ® (u, hoh1) ® (u, hohihs). Denote the corresponding crepant
resolution as 7t: X — Spec R, so that Acon(7r) = Endy (M) = Jac(f).

Notation 6.2.1. We adopt the following notation. We first recall i, X¢, M* and 7t*, X*, M*
in 3.3.1. By 4.2.15, there is a Type A potential g on Q)3 such that A, (") = Jac(Qs.1,9)
for some I C {1,2,3}, and we set f* := g, which is well defined up to the isomorphism of
Jacobi algebras. For 1 < i < 3, write f* for f@.

Since this section aims to classify the derived equivalence classes of Type A potentials, the

definition of f* and f? up to the isomorphism of Jacobi algebras is harmless.

By 3.3.2, Acon (") = Endg (M™) = Jac(f*). If, in addition, R is isolated, by 2.3.8 f* ~ f (see
the definition of ~ in 2.1.8). Moreover, by 2.3.6, R is isolated if and only if dim¢ Acon(71) < 00

(equivalently, Jac(f) is finite-dimensional).

Hence we transfer the question about the derived equivalence classes of Type A potentials
on () with finite-dimensional Jacobi algebra to that about the flops of crepant resolutions of
isolated cAj singularities. The restriction to finite-dimensional Jacobi algebras is necessary

because 2.3.8 requires R to be isolated.

In order to present the NCCRs Endx (M) and Endx(M™), we adopt the following.

Definition 6.2.2. Define the quiver Q from ) by adding a new vertex 0, paths ag, by, as,

bs and a possible loop at vertex 0, as illustrated below.

Qulver Q

Since f* might be a potential in Q3 ; for some I # (), and we aim to classify the derived

equivalence classes of Type A potentials on @) := 3, we need the following lemma.

Lemma 6.2.3. Given a potential of Type A f = kxP + xy + Koy? in Q, the following
statements hold.

(1) k1 #0 and p =2 <= f'is a potential on Q.

(2) ke #0 and g =2 <= f> is a potential on Q.
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(3) Ki,ka #0 andp=q=2 <= f?is a potential on Q.

Proof. By 6.1.15, we can realize f by

CHU, v, T, y]]
uv — hohlhghg

112

R

and R-module M = R & (u, hy) & (u, hoh1) @ (u, hohihy) where hg = kKypxP~! +y, hy = =,
ha =y, hg = x + Kaqy?™*. For 1 <i <3, Jac(Qsr, f*) = Endg(M") for some I C {1,2,3}.

(1) Since M = R® (u, hy) @ (u, hihg) ® (u, hihohs), by 3.33 [ =0 <= k1 #0and p = 2.
(2) Since M? = R® (u, hg) @ (u, hoha) @ (u, hohohy), by 3.3.3 I =0 <= Ky # 0 and ¢ = 2.
(3) Since M3 = R ® (u, hy) & (u, hoh1) ® (u, hohihs), by 3.33 I =0 <= «k;i,Ks # 0 and
p=q=2. O
Lemma 6.2.4. Suppose that f is a Type A potential on Q. Then the following holds.

(1) If f = x> 4+xy+Ay? with A # 0, then f* = x®+xy+(3—A)y? = 3 and f? = x> +xy+ 5 y°.

(2) If f =x*+xy + 1y2 + xP with p > 3, then f' = x>+ xy +y? and f3 = xP + xy + y2.

Proof. Suppose that f = x? 4+ xy +Ay?. By 6.1.15, we can realize f by

Cllw, v, 2, y]

R
uv — hohlhghg

I

and R-module M = R®(u, hg) D (u, hohy)® (u, hohyhs) where hg = 2x+y, hy = z, hy = y and
hs = x + Apy?~!. Since M = R® (u, hy) & (u, hihg) ® (u, hihohs), then by 3.3.3 Endx(M?)

can be presented by Q with relations

xb; — yby = 2biboag,  box — bay = 2(azbzby — Apbay? ™),

a1X — a1y = 2b0a0a1, XA — Yag = 2(@2(13()3 — Apyp_l(lg),

plus some other relations that factor through the vertex 0 (and so will not be relevant below).

Hence Endg (M) can be presented by @ with relations

xby —yb1 =0,  byx — boy = —2Apbay” ",

arx — a1y =0,  Xas — yas = —2Apy? a,.

Thus Endg (M) = Jac(Q, f!) where f! = %XQ — Xy + %yz — 2Ay?. Normalizing by applying
a; — —v2a; and ay — %ag to f1 gives

1
frex® Fxy + 1y2 — 217 EpyP.

Setting p = 2 in the above potential proves the f! statement in (1). The proof of the f?

statement in (1) is similar.
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For p > 3 and A # 0, applying a; — %bg, b1 — ag, ag — 2by, by — ay gives

1 P 1 p
x? 4 xy + Zy2 — 2179 AYP o X2 xy + ZyQ — 213,

Then since p > 3 and A # 0, by 6.1.14(2),

1 p 1
X% 4+ xy + ZyQ — 2MOAXP 2 %% xy + Zy2 + xP.

Thus (x* +xy + y?)! = x* +xy + iy2 + xP. Since flopping is an involution, this proves the f1

statement in (2). The proof of the f? statement in (2) is similar.
Then we finally prove the f? statement in (1). In this case, go = 2x + ¥y, g1 = z, go = y and
g3 = T+ 2Ay. Since M? = R & (u, ho) & (u, hohs) & (u, hohahy), then by 3.3.3 Endg(M?) can
be presented by Q with relations

xby + 2yby = biboag,  2Abox + bay = aszbszby,

a1X + 2a1y = boagay, 2AXas + yas = asazbs,

plus some other relations that factor through the vertex 0 (and so will not be relevant below).

Hence Endy(M?) can be presented by @ with relations

xby +2yby =0, 2Abox + byy = 0,
a1X + 2a1y =0, 2Axag + yas = 0.

Thus Endg(M2) = Jac(Q, f?) where f% 22 x2 4 xy + 1hy2. -

Recall the definition of the generalised GV tuple N(7) in 5.4.1.

Lemma 6.2.5. Let 10 X — Spec Ry be two crepant resolutions of isolated cA,, singularity
Ry for k =1,2. If Aeon(111) is derived equivalent to Aeon(7t2), then N(m) = N(73).

Proof. Since Acon(y) is derived equivalent to Acon(712) and each R; is isolated, then Ry = Ry

by 2.3.7, and so 7y and 715 are two crepant resolutions of a same cA,, singularity and connected
by a sequence of flops. Thus N(7;) = N(72) by [NW, 5.4] and 3.3.8. O

Theorem 6.2.6. The following groups the Type A potentials on @) with finite-dimensional

Jacobi algebra into sets, where all the Jacobi algebras in a given set are derived equivalent.

(1) {2 +xy+Ny2 | N =A, 1_44)‘, 4(1i4}\), 4A}L1, 4{‘6_}\1, Fl)\} for any A # 0, i.

(2) {x" +xy +y% X +xy +y7, % +xy + gy* +xP} forp > 3.
(3) {xP +xy+y? x?+xy+yP} forp >3 and g > 3.

Moreover, the Jacobi algebras of the sets in (1)—(3) are all mutually not derived equivalent,
and in particular the Jacobi algebras of different sets in the same item are not derived equiv-

alent. In (1) there are no further basic algebras in the derived equivalence class, whereas
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in (2)—(3) there are an additional finite number of basic algebras in the derived equivalence

class.

Proof. By 6.1.17 and 2.3.6, the potentials in the statement are precisely the Type A poten-

tials on ) with finite-dimensional Jacobi algebra, thus they exhaust all possibilities.

Firstly, we prove that the Jacobi algebras in each given set are derived equivalent. By 2.3.8,
given a Type A potential f with finite-dimensional and Jac(f) = Acon(7), if we want to
obtain all the basic algebras that are derived equivalent to Jac(f), we only need to calculate

all iterated flops from 7. So we consider f? for 1 < i < 3 in the following.
(1) Suppose that f = x? + xy + Ay? where A # 0, 1.

By 6.2.4, f! = x*+xy+(;—A)y? = f? and f? = x?+xy+75y>. Repeating the same argument,
we have f0 2 x2 4 xy + rlioy?, fOD 25 4y 4 Bely? and 020 2 4y 4 Aoy
Repeating this process, only six numbers appear, so by 2.3.8 there are no further basic

algebras in this derived equivalence class.
(2) Suppose that f = x? + xy + 1y? + x? where p > 3.

By 6.2.4, f! =2 x2 +xy +y? and f2 = xP + xy + y?, and thus the three potentials in the
statement are derived equivalent. Since p > 3, then f'2, 13, f3! and f3? are not on Q by

6.2.3, and so there are additional basic algebras in this derived equivalence class.

(3) By 6.1.17, x? 4+ xy + y? = x9 4+ xy + y?, and thus the two potentials in the statement are
derived equivalent. Suppose that f = x? +xy+y?. Since p > 3 and ¢ > 3, then f!, f? and f3
are not on () by 6.2.3, and so there are additional basic algebras in this derived equivalence

class.

The wall-chamber decomposition of the movable cone for a cA3 crepant resolution is governed
by the type Aj root system (see e.g. [W2, 5.24, §7]). These chambers are precisely the Weyl
chambers, so their number equals the order of the Weyl group, namely #W (A3) = |S4| = 24.

Each chamber corresponds to a crepant resolution.

Moreover, the double A3 quiver () admits a natural involution that sends e; — e3, €5 — eo,
and ez — e; (equivalently, exchanging x and y in the potentials). This symmetry identifies
certain Jacobi algebras, so that there are at most 12 distinct isomorphism classes. Conse-
quently, the number of additional basic algebras appearing in the derived equivalence classes
in cases (2) and (3) of 6.2.6 is finite.

Secondly, we prove that the Jacobi algebras in different sets in (1)—(3) are all mutually not

derived equivalent.

Given any potential f in the statement, by 6.1.15 we can find a Type As crepant resolution
7t such that Acn(m) = Jac(f). By the definition of generalised GV invariants 3.1.1, the
generalised GV tuple of each set in (1)—(3) is:
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@ (1,1,1,1,1,1),
@ (]-7 17 ]-7p - 17 17 ]-)7

® (1,1,1,p—1,q—1,1).

Suppose that f; and f, are potentials in the statement with f; ~ f, and each Jac(f;) =
Acon(71;), where 71;: X; — SpecR; is a Type Az crepant resolution. Then A, (711) is derived
equivalent to Acon(72). Since each Jac(f;) is finite-dimensional, then each R; is isolated by
2.3.6, and so N(m) = N(mg) by 6.2.5. So if we want to prove that two potentials are not
derived equivalent, we only need to prove that their corresponding generalised GV tuples

are not equal.

Since p > 3, then any generalised GV tuple in @ is different from that in @, and so any set
of potentials in (1) is not derived equivalent to that in (2). Since ¢ > 3, then any generalised
GV tuple in @ is different from that in ®, and so any set of potentials in (2) is not derived
equivalent to that in (3). Similar for (1) and (3).

Next, consider two sets of potentials in the same item. Given a potential f in (1), we
have already exhausted all 6 potentials that are derived equivalent to f in the above proof.
Thus by 2.3.8, different sets of potentials in (1) are not derived equivalent. Since different
generalised GV tuples in @ are not equal, different sets of potentials in (2) are not derived

equivalent. Similar for (3). ]

Remark 6.2.7. It is usually hard to give the derived equivalence class of an algebra A. But
when A is Jac(f) for a Type A potential f on @), , there is a Type A,, crepant resolution
mt: X — Spec R such that A = A, (7) by 4.2.12. If further A is finite-dimensional over C,
then R is isolated by 2.3.6. So we can apply 2.3.8 to get the full derived equivalence class of
A by calculating all iterated flops from 7t.

This is why we restrict this section to the cases of Type A potential on () with finite-
dimensional Jacobi algebra. Furthermore, as indicated in §4.2.3, 2.3.8 does not extend
directly to non-isolated cDV singularities, and thus 6.2.6 likewise does not extend directly to

non-isolated cA,, singularities, although an appropriate generalisation may still be possible.

Remark 6.2.8. In cases (2) and (3) of 6.2.6, there are additional basic algebras in the
derived equivalence class. These algebras are isomorphic to the Jacobi algebras of some
potentials on Q3 where I # () (see the proof in 6.2.6).

Next, recall the definition of the quaternion type quiver algebra A, ,(p) in [E1, H2], which
is the completion of the path algebra of the quiver )
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modulo the relations
ajagby — (albl)p_lab babiay — p1(baag)? by, asbaby — (blal)p_lbla brajas — p(agbe)?™ Lay,

where . € C and p,q > 2. Note we have fewer relations than in Erdmann [E1] since we are

working with the completion. In fact A4, ,(n) = Jac(Q, f), where
1

Denote B, 4(A) := Jac(Q, f) where f = x? +xy + Ay?. Thus A, 4(n) = qu((—l)qp_%q_lp,)_

The following improves various results of Erdmann and Holm [E1, H2].

Corollary 6.2.9. The following groups those algebras A, ,(1) which are finite-dimensional

into sets, where all the algebras in a given set are derived equivalent.
(1) {Ago(0) | W =1 =, 71, 25, M0 o) for n # 0,1
(2) {Apqg(1), Agp(1)} for (p.q) # (2,2).

Moreover, the algebras of the sets in (1)—(2) are all mutually not derived equivalent. In (1)
there are no further basic algebras in the derived equivalence class, whereas in (2) there are

an additional finite number of basic algebras in the derived equivalence class.

Proof. Since A, (1) = Bnq((—l)qp_%q_lp.), in particular Aps(n) = B(Y), then by 6.1.17

the A, ,(n) in the statement are precisely the finite-dimensional ones up to isomorphism.
Then we prove that the algebras in each set are derived equivalent.

(1) Since Aso(1) = Baa(k) = Jac(x* +xy + Yy?), then by 6.2.6(1) the algebras in each set of
(1) are derived equivalent. Moreover, again by 6.2.6(1) there are no further basic algebras
in the derived equivalence class.

(2) When (p,q) # (2,2), Bp,q((—l)qpfﬁqfl) = B,,(1) by the proof of 6.1.14(3), thus
A,,(1) = B,,(1). Similarly, A4,,(1) = B,,(1). Thus by 6.2.6(2)(3) the algebras in each
set of (2) are derived equivalent. Moreover, again by 6.2.6(2)(3) there are an additional

finite number of basic algebras in the derived equivalence class.

By 6.2.6 the algebras of the sets in (1)—(2) are all mutually not derived equivalent. O
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Chapter 7

Appendix

The purpose of this appendix is to prove 7.0.18, which gives a quiver presentation (7.0.A) of
Endg(/V). This is used to prove the geometric realization in §4.2.

We first introduce the reduction system and the Diamond Lemma. For a quiver ), we denote
the set of paths of degree ¢ by @); where the degree is with respect to the path length, and
write Q>; = U;>; @; for the set of paths of degree > i.

Definition 7.0.1. [B3, §1] Given a field k, a reduction system R for the path algebra kQ is
a set of pairs

R={(s,ps) | s €5 and ¢, € kQ}
where
(1) S is a subset of Q> such that s is not a sub-path of s when s # s’ € S.
(2) Foralls € S, s and @5 have the same head and tail.

(3) For each pair (s,¢s) € R, ps is irreducible, meaning we can write s = >; Nip; where

each 0 # A; € k, and each p; does not contain elements in S as a sub-path.

Definition 7.0.2. Let (s,p5) € R and let q, r be two paths such that gsr # 0 in kQ.
Following [CS, §2] a basic reduction v, ,, : kQ — kQ is defined as the k-linear map uniquely
determined by the following: for any path p

qpsT if p=qsr
Tgr(P) = )
D if p # qsr

Sometimes we write p — g, instead of v, 5, (p) = gpsr for simplicity.

Definition 7.0.3. A reduction v is defined as a composition vy, s, v, © 0 gy 5515 © Cay.s1.m
of basic reductions for some n > 1. We say a path p is reduction-finite if for any infinite

sequence of reductions (t;);en there exists ng € N such that for all n > ngy, we have t,o0---o0

T2 0T1(p) =Ty 0 -+ 0Tz 0 T1(D).
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A path may contain many sub-paths in S, so one may obtain different elements in k@) after

performing different reductions.

Definition 7.0.4. [B3, §1] Let R be a reduction system for kQ. A path pgr € Q>3 for
D,q,7 € Q>1 is an overlap ambiguity of R if pq, qr € S. We say that an overlap ambiguity
pqr with pq = s and qr = s’ is resolvable if psr and ppy are reduction-finite and t(pst) =

v(ppy) for some reductions ¢, .

Theorem 7.0.5. (Diamond Lemma) [B3, 1.2] Let R = {(s, ps)}ses be a reduction system
for kQ. Let I = (s — ¢g) g C kQ be the corresponding two-sided ideal and write A = kQ /I

for the quotient algebra. If R is reduction-finite, then the following are equivalent:
(1) All overlap ambiguities of R are resolvable.

(2) The image of the set of irreducible paths under the projection kQQ — A forms a k-basis
of A.

Consider the following quiver () with relations I.

11,0)l1,1,--5l1,n I2,0,02,1,.,l2,n 13,0,03,1,--503,n ln—1,0n—1,1,--ln-1,n

In,05ln,15-ln,n
o0 0 ()
e =3 n-1 :Z:_1>Q
ao \ /an
\ 0

10,0,00,1,---lo,n

lt,iat = atltﬂ,i, lt+1,ibt = btlt,i; lt,ilt,j = lt,jlt,z'a

I:= (7.0.A)
ltﬂg = atbt, lt—i—l,t = btat for any te Z/(TL + ].) and 0 S Z,j S n.

Then define the reduction system R for the path algebra kQ) to be

R:= {(lt,iah atlt-i—l,i)a (lt+1,ibt7 btlt,i)a (atbt; lt,t)y (btah lt+1,t)a (ltjlti; ltiltj) |
forany 0 <i<n, t€Z/(n+1)and j > i}. (7.0.B)

We next prove that R is reduction-finite and all overlap ambiguities of R are resolvable.

Lemma 7.0.6. The reduction system R (7.0.B) s reduction-finite.

Proof. For any path p and any infinite sequence of reductions (t;);en, if there does not exist

no € N such that for all n > ny we have v, 0---ovy(p) = t,, 0---oty(p), then there must
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exist infinite basic reductions that can be applied to p consecutively. We prove that this is

impossible. There are three types of path pairs in R:
(1) (atbe, lit), (brag, liy1t).
(2) (Lesae, arlig ), (Lga,abe, bely ;).
(3) (e jleiy il ) for j > .

The type (1) basic reduction decreases the path degree by one. The type (2) basic reduction
moves a; or b, one step left, and [,; or ;11 ; one step right in the path. Similarly, the type

(3) basic reduction moves I, ; one step left, and I, ; one step right in the path for j > i.

Thus, any composition of these three types either decreases the path degree or moves a;, by
to the left, [, ; with the larger j to the right. Since the path degree of p is finite, we can only
apply the basic reductions of these three types to p finitely many times. O

Lemma 7.0.7. All overlap ambiguities of the reduction system R (7.0.B) are resolvable.

Proof. There are four types of overlap ambiguities in R (7.0.B): l, aibe, i1 b, Ul 0k,
liv1levrb for 0 <4 < n, t € Z/(n+ 1) and j > i. We next check that these overlap

ambiguities are resolvable.

(1) When ¢ < i, (lmat)bt — at(lt—i-l,ibt) — (Cltbt)lt,i — lt,tlt,iy and lm(atbt) — lt,ilt,t — lt,tlt,i-

The case of t > i is similar.

(2) When ¢t < i, (ltﬂ,ibt)at — bt(lt,iat> — (btat)ltﬂ,i — lt+1,tlt+1,i7 and lt+1’i(btat) —
lt+17ilt+1,t — lt+1,tlt+1,i- The case of ¢ 2 7 is similar.

(3) (lt,jlt,i)at — lt,i<lt,jat> — (lt,z‘@t)lt+1,j — aglig1iles 5,
ltj(lt,iat) - (lt,j@t)ltﬂ,i — at(lt+1,jlt+1,i) — glig1ilir

(4) (lt+1,jlt+1,i)bt — lt+1,i(lt+1,jbt) — (lt—i-l,ibt)lt,j — btlt,ilt,ja

lt+1,j(lt+1,ibt> — (lt+1,jbt)lt,i — bt(lt,jlt,i) — bylyly 5. O

Proposition 7.0.8. Consider the quiver QQ with relations I (7.0.A) and its reduction system
R in (7.0.B). Then, the set of irreducible paths (with respect to R) of kQ under the projection
kQ — kQ/I forms a k-basis of kQ/I.

Proof. 1t is clear that the two-sided ideal generated by R (see 7.0.5) coincides with I (7.0.A).
Since R is reduction-finite and all overlap ambiguities of R are resolvable by 7.0.6 and 7.0.7,
the statement holds by 7.0.5. O]

Notation 7.0.9. For any t € Z/(n + 1), consider the following subsets of the set of paths
on () with head ¢.

(1) Ay :={as—...a_2a,1 | alli € N}.

(2) th = {bt—l—i—l Ce bt-‘rlbt | all 1 € N}
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(3) Ly = {0l ... I | all iy, is, ... i, € NU{0}}.

(4) ALy :={pq| all p € A; and q € L;}.

(5) BiLy:={pq| all p € B; and q € L;}.

(6) Then write kA;, kB, and kL, for the k-span of A;, B, and L, respectively.
(7)

7) For any A € kA;, write (A);_; for the unique element in kA; ; such that A =
(A)tflatfl-
(8) For any B € kB, write (B);41 for the unique element in kB, such that B = (B);;1b.

(9) For any L € kL; and 0 < s < n, write (L), for the unique element in kL, which is
obtained by replacing l;o,l¢1,...,ln in L by ls0,l51,. .., lsn-

We next describe all irreducible paths in @, with respect to the reduction system R (7.0.B).

Proposition 7.0.10. For any path p with head t in @),
p is irreducible <— pe A, UB, UL, UAL, UBL,.

Proof. By the reduction system R (7.0.B), it is clear that each path in Ay, By, Ly, ALy, B Ly
is irreducible. We next prove the other direction. Since the head of p is ¢, p either ends with

ai—1, by or l,; for some ¢. The proof splits into cases.
(1) p ends with a;_;.

Write p = ga,—; for some ¢ with head ¢ — 1. Then ¢ either ends with a;_o, b;—; or [;; for
some . However, if ¢ either ends with b,_; or l;;, then ga;_; is reducible by R (7.0.B). Thus

q can only end with a;_5. Repeating the same process gives p € A;.
(2) p ends with b,.

Similar to (1), we can prove that p € B,.

(3) p ends with I, ;.

Write p = ql;; for some ¢ with head ¢. Then ¢ either ends with a,_;, b; or [, ; for some j.
If ¢ ends with a;_1, then ¢ € A; by (1), and so p € A, L. Similarly, if ¢ ends with b;, then
p € BLy. If ¢ ends [, then j < 4; otherwise, it will contradict the irreducibility of gl ;.
Repeating the same process gives p € £;, A;L; or B.L,. O

We next apply 7.0.8 and 7.0.10 to prove the exactness of a particular complex in 7.0.12. In
the following, we write P, for the k-span of the paths with head ¢ in kQ/I (7.0.A).

Lemma 7.0.11. The k-linear maps

mlt,n:Pt%‘P?ﬂ m(lt:—Pt%PlH*l

f= flin f— fa
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are injective for anyt € Z/(n+ 1).

Proof. We only prove my, , and m,, and are injective, the other cases are similar. Since the

reduction system R (7.0.B) is reduction-finite by 7.0.6, we can assume f € P, is irreducible.
(1) my,,, is injective.

We first write f = >, A;p; as a linear combination of irreducible paths where each A; € k.
Since p; is irreducible and there are no paths in S (7.0.B) that end with Iy, pilon is also
irreducible. Thus if fly,, = >; Aipilo,, = 0, then each A; = 0 by 7.0.8, and so f = 0.

(2) my, is injective.

Since f € Fpy, by 7.0.10 we can write f as a linear combination of irreducible terms

f=M+uB+BL+> NAL +> wB;L;,
i J
where each A, w, B,A;, u; € k, and A, A; € kAo, and B, Bj € kB, and L, L;, L; € kL. Thus
fCLO = }\Aao + HBCLO + BLCLO + Z)\ZAZLZCLO + Z MijLjCLO
‘ J
:7\Aa0+u(B) boCLo"i‘ BLCLO+Z7\ALCLO+ZH] boL ap

J

(since B = (B)1by and B; = (B;)1bo)
— }\ACLO—F H(B) llo—i‘ Bao 1 +Z?\Aa0 1+Zuﬂ llO ) (700)

(SlHCG b()L ag — bgao(L )1 — U O(L ) )

By 7.0.10, each term in (7.0.C) is irreducible. We next claim that each term in (7.0.C) differs

from the others.

Since A;L; are different for different i, A;ao(L;); are different for different . Similarly,
(Bj)1l1,0(L;)1 are different for different j. Since deg(A4;) > 1, A;ap(L;); is different from
ao(L); for each i. Similarly, (B;)1l1,0(L;)1 is different from (B)lyo for each j. Thus we

proved the claim.

So by 7.0.8 the terms in (7.0.C) descend to give basis elements of kQ/I. Thus if fay = 0,
then each A, w, B, A;, 1, is zero, and so f = 0. Thus m,, is injective. O

Proposition 7.0.12.
ll,n _bObn)

(ao,bn) P1 @P <—ana0 ln,0

4 3

bo
O—)Po Pl@P (an) PQ——>I{,'[101,Z02,...,ZO7n,1]—>O
is an exact sequence of k-linear maps in kQ/I (7.0.A).

Proof. This sequence is a chain complex from the relations I (7.0.A). The exactness at the
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last three indexes is from [W1, §6]. By 7.0.11, we have d is injective, and thus this complex
is exact at the first index. So we only need to prove that ker ds C imdy. It suffices to prove
that, for any (f,g) € P & P,,

flin = ganag = (f,g) = (hag, hb,,) for some h € P.

Since the reduction system R (7.0.B) is reduction-finite by 7.0.6, we can assume that f and g
are irreducible. Since f is irreducible and there are no paths in S (7.0.B) that end with { ,,
then fly, is also irreducible. Since g € P, by 7.0.10 we can write g as a linear combination

of irreducible terms
g=ANA+uB+> BiLily; + Y > NijAiKijln; + > B Ji,
i=0 i=0 j i
where each A, p, 3;,Aij, Wx € k, and A, A;; € kA, and B, B, € kB,,, and L;, K;;, J;, € kL,,.
Since L;l,; is irreducible, L; € k(l, 0, ..., l,;) for each i. Similarly, K;; € k(lh0,ln1,-- -, lni)
for each ¢ and j.
Multiplying ¢ on the right by a,aq, ga,ao equals
Aayag + wBayag + Z BiLilyianag + Z AijAii Kl ianao + Z Wi, By Jranag
i irj e

= AMapao + W(B)obobpanag + Z BiLily ianao + Z AijAii Kijln ianao

/1:7.]'

+ > we(Br)otbobnJranao  (since B = (B)ob, = (B)o1bobn, Bx = (Bi)obn = (B )o1boby)
k

— AManao + W(B)oilioli, + Z Bianao(Li)1l; + Z AijAijanao(Kij) il

(2]
+ Z W (Br)orl,0(Jk) 1l (7.0.D)
k
(Since boankanao — bobnanao(Jk)l — bolg7na0(<]k)1 — boaoll,n(Jk)l — l170(e]]€)1117n)
n—1
= AManao + 1(B)orl1olin + Z Bianao(Li)ili + Bnanao(Ln)ilin+
=0

n—1
Z Z AijAijanao(Kij)ili,; + Z AnjAnjanao(FKnj) il n + Z We(Br)otlio(Je)ilin
' k

=0 j J

n—1 n—1
= 7\Aana0 + Z Bianao(Li)llLi + Z Z?\iinjanao(Kij)llM + flll,n- (7OE)

i=0 i—0
(set fi := w(B)oil1,0 + Brnanao(Ln)1 + X ApjAnjanao(Knj)1 + >k Wk(Br)oilo(Jk)1)

We claim that each term in (7.0.D) is irreducible. To see this, we consider the terms in
(7.0.D) separately.
(1) By the reduction system R (7.0.B) Aanay is irreducible.

(2) Since ligly, € £1 and (B)o1 € By, (B)o1liol1, is irreducible by 7.0.10.
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(3) Since Lz S k(ln,o, C ;ln,i>; (Lz)l € k‘(ll’o, ey ll,i), SO (Li>1l1ﬂ‘ S kLl Thus anao(Li)llu
is irreducible by 7.0.10.

(4) Since Kz’j S k<ln70, - ,ln,i>, (Kij>1 € k(ll’o, Cee ll,i>7 SO (Kz’j)lll,i € kL. Thus we have
Ajjanao(K;j)1l, is irreducible by 7.0.10.

(5) Since ll,O(Jk>1l1,n € ]{ZLI, (Bk>01l1,0(<]k>1ll,n is irreducible by 7.0.10.
We next claim that each term in (7.0.D) differs from the others.

Since each a,ao(L;)1l1,; ends with {1 ;, anao(L;)1l1; are different for different . Since A;;K;;l,,;
are different for different i and j, A;;a,a0(f;;)1l1; are also different for different ¢ and j. Sim-
ilarly, (Bg)oili,0(Jk)1l1,n are different for different k. Since deg(A;;) > 1, Ajjanao is different
from a,ag, so A;janao(K;j)1l1, is different from a,ao(L;)1ly,;. Similarly, (By)oili,o(Jk)1ln is

different from (B)o1l1,0l1.,. So we proved the claim.

Since (7.0.E) is obtained by combining the terms in (7.0.D) that end with [, ,, each term
in (7.0.E) is also irreducible and differs from the others. So the terms in (7.0.E) descend to
give different basis elements of kQ/I by 7.0.8.

Recall that fly, = ganao and fl;, is irreducible. Since only fil; ,, ends with {;, in ga,ao
(7.0.E), then all terms in ga,aq except fily, are zero, namely A = 0, 3; = 0 and A;; = 0 for

any j and 0 <i<n—1. So
J k

J k

(since Bk = (Bk:)l)bn and ank = (Jk)Obn)
== hbn (Set h = H(B)O + BnLnan + Ej AnjAannjan + Zk p’k(Bk)O(Jk>0)

Thus ga,ag = hb,anao = haoly ,,. Together with fly ,, = ganaq gives fly,, = haoly,, and so
f = hag by 7.0.11. Thus (f, g) = (hao, hb,), proving the claim. O

With the exact sequence in 7.0.12, we can calculate the vector space dimension of each

graded degree piece of P, in (7.0.F), which will be used to prove the isomorphism in 7.0.18.

Notation 7.0.13. In the following, we adopt a new definition of degree of @) (7.0.A), which
differs from path length in 2.1.1(4).

(1) Define deg(a;) = deg(b;) = 1 and deg(l;;) = 2 for each i and t.

(2) With respect to this degree, write P, ; for the graded piece of degree d of P;.

(3) With notation in 7.0.9, write A;q, Bra, Lra, (ArLi)a and (BLy)g for the subset of
degree d paths in A;, By, L, AL, and B, L, respectively.

(4) Write D, for the vector space dimension of % ,4.
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By the symmetry of the quiver @) and relations I (7.0.A), Dy is also the vector space dimen-

sion of P, 4 for 1 <t <n. By 7.0.12, for any integer d, there is an exact sequence
0— Poa— Prav1 ® Pragrr = Prars ® Paars — Poaya — Tapa — 0,
where T4 denotes the degree d + 4 piece of k[lo1,lo2; - - -, lon—1]. Thus
Dyg—2Dgi1+2Dgi3— Dgia+ Egiy =0 (7.0.F)

where Ed+4 = dln’lk Td+4.

Since 7.0.10 describes all irreducible paths in ), we can calculate D, for each d in 7.0.14.
Moreover, we can verify that the Dy in 7.0.14 satisfies (7.0.F) with some basic calculations.
We write |S| for the number of elements in a set S, and denote C(m,n) as the number of

n-combinations from a given set T" of m elements.
Proposition 7.0.14. With notation as above, the following holds.
D, { 2 (12 C(;z + in), if d odd
C(n+d/2,n)+ 22;% "C(n+i,n), ifd even.
In particular, we have the vector space dimension of the graded degree d piece of kQ /I, which

is (n+ 1)Dy.

Proof. Since Dy is the vector space dimension of P, 4 for any ¢, by 7.0.8 D, is equal to the
number of the irreducible paths with head ¢ and degree d. Recall the notation in 7.0.9 and
7.0.13. By 7.0.10, for any path p with head ¢ and degree d,

p is irreducible <= pe AU B qU LygU (AiLy)qg U (BiLy)a.

Thus Dy = [A;gUBraULe gU(AiLy)a U (BeLy)al. Since the intersection of any two different

sets above is empty,

Dq = |Apal +|Bral +|Leal + [(ALi)al + [(BiLe)al.

We first claim that |A; 4| =1 and |B; 4| = 1 for each d, and

0, if d odd
|[Lral = .
C(n+d/2,n), if d even.

Since At g = {at—q...ar—2a;-1}, |Atq| = 1. Similarly, |B; 4| = 1. Since the degree of each
loop is two (see 7.0.13), if d is odd, then £;4 = ), and so |£L; 4| = 0. Now we consider the
case of d is even. Since any p € £, 4 has the form of l;?olifl e li’"n where each ¢; is a positive

integer and 2ip + 2y + - -+ + 2i, = d, |Lr4| = C(n+d/2,n). Thus we proved the claim.
By the definition of (A;L;)q in 7.0.13, [(ALe)a] = Yocica Aril|Lt.a—i]- Then we split into
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two cases. When d is odd,

[(AiLi)al = D Al Lol

0<i<d
= |Aea||La—1]| + [Aes||Lra—s| + - + [Ara—2]|| Lol
(since |L; 4| = 0 when d is odd)

=Cn+(d—-1)/2,n)+C(n+(d—-3)/2,n)+---+C(n+1,n)
(d-1)/2

= Y C(n+in).

i=1

When d is even,

[(ALi)al = Y [AuillLra—il
o<i<d
= |As2||Lra—a| + [Aral|Lra—a| + -+ [Atd—a||Lr2]
(since |£; 4| = 0 when d is odd)

=Cn+(d-2)/2,n)+C(n+(d—4)/2,n)+---+C(n+1,n)
dj2—1

= > C(n+i,n).

i=1

Similarly, we also have

SUD2 0(n 44,n), if d odd

BiLi)a| = [(AiLy)a| =
|( t t)d| |( t t)d| { Z?ﬁ_lc(n"*_i’n)’ if d even.

Then we calculate Dy into two cases. When d is odd,

Dy = [Ara| + [Bral + | Leal + [(ALi)al + [(BiLe)dl

(d-1)/2
=1+14+0+2 ) C(n+in)
i=1
(d-1)/2
=C(n,n)+C(n,n)+2 > C(n+i,n) (since C(n,n) =1)
i=1
(d—1)/2
=2 Y C(n+i,n).

1=0
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When d is even,

Dy = [Ara| + |Bral + | Leal + [(AcLi)al + |(BiLli)d]
d/2—1
=1+14+C(n+d/2,n)+2 > C(n+i,n)

=1

d/2-1
=C(n,n)+C(n,n)+C(n+d/2,n)+2 > C(n+i,n) (since C(n,n) =1)
i=1
d/2-1
=C(n+d/2,n)+2 Y C(n+i,n). O
i=0
Notation 7.0.15. We next define
.- k[u,v,xo,xl,...,xn]’ (70.G)

UV — o1 ...Tp

and consider the 8-module N := @}, N; where Ny := 8 and N; := (u, ;;% xj) for1 <i<n.

We will show that k£Q/I (7.0.A) presents Endg(N). By [IW3], every morphism in Endg(V)

can be obtained as a linear combination of compositions of the following maps.

L0115 Tn, T0,T15e-sTn Z0,Z1,yTn
——T1— ——T2— ——Tn—1—0,
Ny —, ), —=Ny—,’—=o0 o=— 1N,

\" “/ (7.0.H)

Thus there exists an obvious surjective homomorphism k@) — Endg(/N). Since I gets sent
to zero by inspection, this induces a surjective homomorphism ¢: kQ/I — Endg(N). We

will show that 1) is an isomorphism, by counting graded pieces.

Notation 7.0.16. Grade 8 via deg(u) = deg(v) = n + 1 and deg(zo) = -- - = deg(z,) = 2.
The particular choice of the graded shift of IV given by N := @}, N;(—i) induces a grading
in Ends(N), which explicitly grades each arrow in (7.0.H) as follows.
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22,2 2.2,...2 22,2
Ni(—=1) ZI2> No(=2) —i= 0o -+ o<l N,(-n)

) \ / : (7.0.1)

No

2,2,...,2

Notation 7.0.17. Parallel to the notation 7.0.13, we adopt the following notation.
(1) Set @Q; := Homg(N, Ny(—t)) for 0 <t < n.
(2) With respect to (7.0.1), write Q¢4 for the degree d graded piece of Q.

(3) Write D, for the vector space dimension of Qg 4.

By the symmetry of (7.0.H), DJ is also the vector space dimension of (); 4 for 1 <t < n.

By [W3], we have the following exact sequence,

O%NOMMEBN”MM@N”@NO%O

Using the grading in 7.0.17, the above exact sequence becomes
0= No & Ni(=1) ® No(—n) & Ny(=1) ® No(—n) 2 Ny — 0. (7.0.J)

where each d; is homogeneous, and further deg(d,) = 1 = deg(ds) and deg(ds) = 2. Applying
Homg(N, —) to (7.0.J) induces the following exact sequence,

0= Qo Qr®Qn 2 QLdQn 2 Qo Aoon klx1, @, ..., xhq] = 0,
which is parallel to the one in 7.0.12. Thus for any integer d, there is an exact sequence
0— Qod — Qrar1 ® Qnar1 = Qrars ® Qnars = Qoara — Ty — 0,
where T, denotes the degree d + 4 piece of k[z1,2a, ..., 2,-1]. Thus
Dy —2Dgy + 2D, 5 — Dy + Egy =0 (7.0.K)
where Ej; , = dim;, T} ,.

Proposition 7.0.18. With notation as above, ¢ induces an isomorphism kQ/I = Endg(N).
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Proof. With the notation above, 1 is a graded surjective homomorphism, so it suffices to
show that D; = D/ for all d. Using (7.0.F), (7.0.K) and E; = E/, for each d, we have
D, = D), for each d by induction. O

Corollary 7.0.19. With respect to the degree in (7.0.1), for any d, the vector space dimension
of the degree d graded piece of Endg(N) is equal to

2n+ 1) SV 2 Ctn+ i, n), if d odd
(n+1)C(n+d/2,n) +2n+ 1) 27 Cn+i,n), ifd even.

Proof. This is immediate from 7.0.18 and 7.0.14. O]

151



BIBLIOGRAPHY 152

Bibliography

(B3]

[BCHM]

[BIKR]

[BKL]

V. L. Arnold, Local normal forms of functions, Invent. Math. 35 (1976), 87-1009.

M. F. Atiyah, On analytic surfaces with double points, Proc. Roy. Soc. London Ser.
A 247 (1958), 237-244; MR0095974

J. August, The tilting theory of contraction algebras, Adv. Math. 374 (2020),
107372, 56 pp.

M. Auslander, Isolated singularities and existence of almost split sequences. Repre-
sentation theory, II (Ottawa, Ont., 1984), 194-242, Lecture Notes in Math., 1178,
Springer, Berlin, 1986.

M. Auslander, Rational singularities and almost split sequences. Trans. Amer.
Math. Soc. 293 (1986), no. 2, 511-531.

K. A. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann.
of Math. (2) 170 (2009), no. 3, 1307-1338; MR2600874

A. A. Beilinson, Coherent sheaves on P™ and problems in linear algebra, In: Funk-

tsional. Anal. i Prilozhen. 12.3 (1978), 68-69.

G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978),
no. 2, 178-218; MR0506890

C. Birkar et al., FExistence of minimal models for varieties of log general type, J.

Amer. Math. Soc. 23 (2010), no. 2, 405-468; MR2601039

I. Burban et al., Cluster tilting for one-dimensional hypersurface singularities, Adv.
Math. 217 (2008), no. 6, 2443-2484; MR2397457

J. A. Bryan, S. H. Katz and N. C. Leung, Multiple covers and the integrality con-
jecture for rational curves in Calabi- Yau threefolds, J. Algebraic Geom. 10 (2001),
no. 3, 549-568; MR1832332



BIBLIOGRAPHY 153

[BW1]

[BW2]

[BW3]

[DSV]

[DW1]

[DW2]

[DWZ]

[E1]

G. Brown and M. Wemyss, Gopakumar-Vafa invariants do not determine flops,
Comm. Math. Phys. 361 (2018), no. 1, 143-154; MR3825938

G. Brown and M. Wemyss, Local normal forms of noncommutative functions, Fo-
rum Math. Pi 13 (2025), Paper No. €8, 59 pp.; MR4865672

S. Barmeier and Z. Wang, Deformations of categories of coherent sheaves via quiv-
ers with relations, Algebr. Geom. 11 (2024), no. 1, 1-36; MR4680012

C. Cadman et al., A first glimpse at the minimal model program, in Snowbird
lectures in algebraic geometry, 17-42, Contemp. Math., 388, Amer. Math. Soc.,
Providence, RI, ; MR2182888

A. Collinucci et al.; Flops of any length, Gopakumar-Vafa invariants and 5d Higgs
branches, J. High Energy Phys. 2022, no. 8, Paper No. 292, 45 pp.; MR4674707

W. Crawley-Boevey, Lectures on representations of quivers. 1992.

S. Chouhy and A. L. Solotar, Projective resolutions of associative algebras and
ambiguities, J. Algebra 432 (2015), 22-61; MR3334140

A. Collinucci, A. Sangiovanni and R. Valandro, Genus zero Gopakumar-Vafa in-
variants from open strings, J. High Energy Phys. 2021, no. 9, Paper No. 059, 24
pp-; MR4327257

A. H. Durfee, Fifteen characterizations of rational double points and simple critical
points, Enseign. Math. (2) 25 (1979), no. 1-2, 131-163; MR0543555

M. De Marco, A. Sangiovanni and R. Valandro, 5d Higgs branches from M-theory
on quasi-homogeneous cDV threefold singularities, J. High Energy Phys. 2022,
no. 10, Paper No. 124, 51 pp.; MR4505627

W. Donovan and M. Wemyss, Noncommutative deformations and flops, Duke
Math. J. 165 (2016), no. 8, 1397-1474.

W. Donovan and M. Wemyss, Contractions and deformations, Amer. J. Math. 141
(2019), no. 3, 563-592.

H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their rep-
resentations. I. Mutations. Selecta Math. (N.S.) 14 (2008), no. 1, 59-119.

K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes
in Mathematics, 1428, Springer, Berlin, 1990; MR 1064107

K. Erdmann, Private communication, August 2020.

153



BIBLIOGRAPHY 154

[H1]

[H2]

[HT]

[HW]

[JKM]

W1

W2

[TW3]

[K4]

H. Hironaka, Resolution of singularities of an algebraic variety over a field of char-
acteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; 79 (1964), 205-326;
MR0199184

T. Holm, Derived equivalent tame blocks, J. Algebra 194 (1997), no. 1, 178-200;
MR1461486

7. Hua and Y. Toda, Contraction algebra and invariants of singularities, Int. Math.
Res. Not. IMRN 2018, no. 10, 3173-3198; MR3805201

Y. Hirano and M. Wemyss, Stability conditions for 3-fold flops, Duke Math. J. 172
(2023), no. 16, 3105-3173; MR4679958

G. Jasso, B. Keller and F. Muro, The Donovan- Wemyss conjecture via the derived
Auslander-Iyama correspondence, in Triangulated categories in representation the-
ory and beyond—the Abel Symposium 2022, 105-140, Abel Symp., 17, Springer,
Cham, ; MR4786504

O. Iyama and M. Wemyss, Singular Derived Categories of Q-factorial terminaliza-
tions and Maximal Modification Algebras, Adv. Math. 261 (2014), 85-121.

O. Iyama and M. Wemyss, Mazimal modifications and Auslander-Reiten duality for
non-isolated singularities, Invent. Math. 197 (2014), no. 3, 521-586; MR3251829

O. Iyama and M. Wemyss, Reduction of triangulated categories and Maximal Modi-
fication Algebras for cA,, singularities, J. Reine Angew. Math. 738 (2018), 149-202.

Y. Jiang, Motivic Milnor fibre of cyclic Ly -algebras, Acta Math. Sin. (Engl. Ser.)
33 (2017), no. 7, 933-950; MR3665255

S. H. Katz, Small resolutions of Gorenstein threefold singularities, in Algebraic
geometry: Sundance 1988, 61-70, Contemp. Math., 116, Amer. Math. Soc., Provi-
dence, RI, ; MR1108632

S. H. Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Dif-
ferential Geom. 79 (2008), no. 2, 185-195; MR2420017

S. H. Katz, Gromov-Witten, Gopakumar-Vafa, and Donaldson-Thomas invariants
of Calabi-Yau threefolds, in Snowbird lectures on string geometry, 43-52, Contemp.
Math., 401, Amer. Math. Soc., Providence, RI, ; MR2222528

J. Karmazyn, Quiver GIT for varieties with tilting bundles, Manuscripta Math.
154 (2017), no. 1-2, 91-128; MR3682206

154



BIBLIOGRAPHY 155

[K5]

[M2]

[MT]

[MY]

[NW]

[R1]

[R2]

Y. Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008),
no. 2, 419-423; MR2426353

J. Kollar, Flips, flops, minimal models, etc, in Surveys in differential geometry
(Cambridge, MA, 1990), 113-199, Lehigh Univ., Bethlehem, PA, ; MR1144527

B. Keller and H. Krause, Tilting preserves finite global dimension, C. R. Math.
Acad. Sci. Paris 358 (2020), no. 5, 563-570; MR4149855

Y. Kawamata and K. Matsuki, The number of the minimal models for a 3-fold of
general type is finite, Math. Ann. 276 (1987), no. 4, 595-598; MR0879538

M. M. Kapranov and E. Vasserot, Kleinian singularities, derived categories and

Hall algebras, Math. Ann. 316 (2000), no. 3, 565-576; MR1752785

O. Kidwai and N.J. Williams, Donaldson-Thomas invariants for the Bridgeland-
Smith correspondence, arXiv:2401.10093.

H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Math-
ematics, Vol. 8, Cambridge Univ. Press, Cambridge, 1986. Translated from the
Japanese by M. Reid; MR0879273

J. McKay, Graphs, singularities, and finite groups, Proc. Sympos. Pure Math. 37
(1980), 183-186.

D. Maulik and Y. Toda, Gopakumar-Vafa invariants via vanishing cycles, Invent.

Math. 213 (2018), no. 3, 1017-1097; MR3842061

J. N. Mather and S. S. T. Yau, Classification of isolated hypersurface singularities
by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243-251; MR0674404

N. Nabijou and M. Wemyss, GV and GW invariants via the enhanced movable
cone, Moduli 1, Article ID 8, 38p. (2024).

M. Reid, Minimal models of canonical 3-folds, in Algebraic varieties and analytic
varieties (Tokyo, 1981), 131-180, Adv. Stud. Pure Math., 1, North-Holland, Am-
sterdam, ; MR0715649

M. Reid, Young person’s guide to canonical singularities, in Algebraic geometry,
Bowdoin, 1985 (Brunswick, Maine, 1985), 345414, Proc. Sympos. Pure Math.,
46, Part 1, Amer. Math. Soc., Providence, RI, ; MR0927963

J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43
(1991), no. 1, 37-48; MR1099084

K. Steele, The K-theory of (compound) Du Val singularities, arXiv:2009.05291.

155


https://arxiv.org/abs/2401.10093
https://arxiv.org/abs/2009.05291

BIBLIOGRAPHY 156

[SW] I. Smith and M. Wemyss, Double bubble plumbings and two-curve flops, Selecta
Math. (N.S.) 29 (2023), no. 2, Paper No. 29, 62 pp.; MR4565163

[T1] Y. Toda, Non-commutative width and Gopakumar-Vafa invariants, Manuscripta
Math. 148 (2015), no. 3-4, 521-533; MR3414491

[T2] Y. Toda, Non-commutative deformations and Donaldson-Thomas invariants, in
Algebraic geometry: Salt Lake Clity 2015, 611-631, Proc. Sympos. Pure Math.,
97.1, Amer. Math. Soc., Providence, RI, ; MR3821164

[V1] M. Van den Bergh, Non-commutative crepant resolutions, in The legacy of Niels
Henrik Abel, 749-770, Springer, Berlin, ; MR2077594

(V2] M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke

Math. J. 122 (2004), no. 3, 423-455.

[V3] M. Van den Bergh, Calabi-Yau algebras and superpotentials, Selecta Math. (N.S.)
21 (2015), no. 2, 555-603.

[V4] O. van Garderen, Donaldson—Thomas invariants of threefold flops, PhD thesis,
University of Glasgow, 2021.

[V5] O. van Garderen, Vanishing and Symmetries of BPS Invariants for ¢cDV Singular-
ities, arXiv:2207.13540.

[W1] M. Wemyss, Reconstruction algebras of type A, Trans. Amer. Math. Soc. 363
(2011), no. 6, 3101-3132; MR2775800

[W2] M. Wemyss, Flops and clusters in the homological minimal model programme, In-
vent. Math. 211 (2018), no. 2, 435-521; MR3748312

(W3] M. Wemyss, Lectures on noncommutative resolutions, Noncommutative algebraic
geometry, 239-306, Math. Sci. Res. Inst. Publ., 64, Cambridge Univ. Press, New
York, 2016.

[Z1] H. Zhang, Local forms for the double A, quiver, arXiv:2412.10042.

[Z2] H. Zhang, Gopakumar—Vafa invariants associated to cA, singularities,

arXiv:2504.03139.

156


https://arxiv.org/abs/2207.13540
https://arxiv.org/abs/2412.10042
https://arxiv.org/abs/2504.03139

	Thesis Cover Sheet (My Version)
	2025ZhangHaoPhD
	Introduction
	Minimal model program
	Noncommutative crepant resolutions
	Contraction algebras
	Gopakumar–Vafa invariants
	Main results
	Generalised GV invariants
	Monomialization and geometric realization
	Filtrations and obstructions
	Special cases: A3

	Outline of the thesis
	Notation and conventions

	Preliminaries
	Quiver with potential
	Minimal models and flops
	Modifying modules and contraction algebras
	Gopakumar–Vafa invariants

	Generalised GV Invariants
	Definition of generalised GV invariants
	Contraction algebra determines generalised GV invariants
	Classical case: known facts
	Reduction steps for GV invariants
	Classical case: new results


	Monomialization and Geometric Realisation
	Monomialization
	Monomialization
	Transform monomialized Type A potentials on Qn, I to Qn

	Geometric realisation
	Geometric realisation
	Type An,I crepant resolutions and potentials
	Derived equivalences associated to non-isolated cases


	Filtrations and Obstructions
	Matrices from potentials
	Generalised GV invariants of potentials
	Filtrations
	Filtration sturctures
	Examples

	Obstructions
	Obstructions
	Obstructions from iterated flops
	Examples


	Special Cases: A3
	Normalization
	Derived equivalence classes

	Appendix


