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Abstract
This thesis investigates the crepant (partial) resolutions of cAn singularities and their asso-
ciated Gopakumar–Vafa (GV) invariants via noncommutative contraction algebras.

We begin in Chapter 3 by generalising GV invariants to crepant partial resolutions of cAn

singularities and demonstrate that these generalised invariants satisfy Toda’s formula. Fur-
thermore, we prove that generalised GV invariants are determined by the isomorphism class
of the contraction algebra.

In Chapter 4 we focus on crepant resolutions of cAn singularities, and introduce several
intrinsic definitions of a Type A potential on the doubled An quiver Qn, which includes a
single loop at each vertex. Through applying coordinate changes, we then:

(1) Via monomialization, expresses these potentials in a particularly nice form;

(2) Show that Type A potentials classify crepant resolutions of cAn singularities;

(3) Confirm the Realisation Conjecture of Brown–Wemyss within this context.

We also provide an example of a non-isolated cA2 singularity which illustrates that the
Donovan–Wemyss Conjecture fails for non-isolated cDV singularities.

Building upon the correspondence between crepant resolutions of cAn singularities and mono-
mialized Type A potentials, in Chapter 5 we:

(1) Introduce a filtration structure on the parameter space of monomialized Type A po-
tentials with respect to the generalised GV invariants;

(2) Derive numerical constraints on the possible tuples of GV invariants, and explicitly
classify all tuples arising from crepant resolutions of cA2 singularities.

For n ≤ 3, in Chapter 6 we further provide a complete classification of Type A potentials
(without loops) up to isomorphism, as well as a classification of those with finite-dimensional
Jacobi algebras up to derived equivalence. These results yield various algebraic consequences,
including applications to certain tame algebras of quaternion type studied by Erdmann, for
which we describe all basic algebras within the derived equivalence class.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

We begin with a broad introduction to several key concepts central to this thesis: the
Minimal Model Program, noncommutative crepant resolutions, contraction algebras, and
Gopakumar–Vafa invariants.

Following this, we summarise our main results, outline the structure of the thesis, and
establish the notation and conventions used throughout.

Readers familiar with the background who wish to proceed directly to the new contributions
may skip ahead to §1.5.

§ 1.1 | Minimal model program
In algebraic geometry, smooth varieties are generally better behaved than singular ones.
Given a singular variety X, a natural goal is to construct a proper birational map X̃ → X

such that X̃ is smooth. Such a X̃ is called a resolution of X, and the landmark result of [H1]
guarantees the existence of resolutions in all dimensions when the base field has characteristic
zero.

It is then natural to ask for the “best” resolution of X. More precisely, one seeks a resolution
π : X̃→ X such that every other resolution of X factors through π; such a resolution is known
as a minimal resolution. For curves and surfaces, minimal resolutions always exist and are
unique [C1].

Let us consider a surface example. Let G be a finite subgroup of SL(2,C), acting on the plane
C2 via matrix multiplication. The quotient C2/G is then locally isomorphic to SpecCJx, yKG,
where CJx, yKG denotes the ring of invariants under the group action. Under the action of
G, these quotients define isolated surface singularities known as Kleinian singularities (or
Du Val singularities), which are classified into types A, D, and E; see e.g. [R1].

Example 1.1.1. Let G be the group generated by
 ω 0

0 ω−1

, where ω is a primitive nth
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root of unity. Then,

C[[x, y]]G ∼= C[[xn, yn, xy]] ∼= C[[a, b, c]]/ (ab− cn) .

Each Kleinian singularity contains a unique singular point at the origin. The unique minimal
resolution of a Kleinian singularity exists and is an isomorphism away from the singular point.
Moreover, the preimage of this point is a finite chain of rational curves linked in a Dynkin
configuration (see [D]). We refer to this preimage as the exceptional curves of the resolution.

Example 1.1.1 describes the Kleinian singularity of type An−1, whose minimal resolution has
n− 1 exceptional curves.

For n = 2 in Example 1.1.1, as the following picture illustrates, X is the A1 Kleinian singu-
larity and its minimal resolution X̃ has only one exceptional curve.

Figure 1.1: The minimal resolution X̃ of the A1 Kleinian singularity X

However, in higher-dimensional varieties, a minimal resolution may not exist. Thus, Mori
and Reid introduced the notion of a minimal model, whose central idea is that the crep-
ancy property [R1]—that is, remaining close to the original space—is more important than
achieving smoothness. Instead of requiring smoothness, one asks for a crepant morphism
π : Y → X such that the singularities of Y are “not too bad”. When the minimal model Y
happens to be smooth, we refer to π as a crepant resolution.

For Kleinian singularities, the crepant resolution and minimal resolution coincide, and hence
there is a unique minimal model [R1]. However, even in dimension three, the minimal model
may not be unique.

Example 1.1.2. (Atiyah Flop) Let X = SpecC[[u, v, x, y]]/(uv−xy). Blowing up the origin
of X yields a resolution π : X̃→ X with exceptional locus P1× P1. Although X̃ is smooth, it
is considered “too far away” from the original space X to qualify as a minimal model.

However, we can obtain minimal models of X from this resolution: contracting either copy
of P1 gives two varieties, X1 and X2. Both morphisms π1 and π2 are crepant resolutions
(i.e., minimal models), but neither factors through the other [A2]. Thus, X does not admit a
unique minimal resolution, and its crepant resolutions (i.e. minimal models) are not unique.

2
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X̃

X1 X2

X

p2p1

π

π1 π2

Figure 1.2: Atiyah Flop

In Example 1.1.2, the minimal models X1 and X2 are smooth. However, minimal models are
not always smooth (see e.g. Example 2.2.4(3) below).

The variety X in Example 1.1.2 belongs to the class of compound Du Val (cDV) singularities,
which are natural three-dimensional generalisations of Du Val singularities. More precisely,
they can always be locally expressed in the form f(u, v, x)+tg(u, v, x, t) = 0, where f defines
a Du Val singularity and g is any polynomial [R1].

The cDV singularities admit minimal models but do not always admit crepant resolutions, as
shown in Example 2.2.4(3) (see also [K1]). Like Du Val singularities, the exceptional curves
of a minimal model of a cDV singularity form a finite chain of rational curves, although they
are not necessarily linked in a Dynkin configuration.

Since minimal models of cDV singularities may not be unique—as in Example 1.1.2—a nat-
ural question arises: how are different minimal models related? Kollár showed that any two
minimal models of an isolated cDV singularity are connected by a finite sequence of special
birational maps called flops, which are isomorphisms in codimension one [K1]. Roughly
speaking, a flop transforms one minimal model into another by cutting some exceptional
curves in the current model and re-gluing them in the opposite orientation.

Returning to Example 1.1.2, the exceptional curve in both π1 and π2 is P1, and X2 is a flop
of X1. This is the simplest three-dimensional flop, known as the Atiyah Flop [A2].

More generally, given a minimal model π : Y → X = SpecR, where R is a cDV singularity,
by e.g. [W2, §2] we can factor π by contracting some of the exceptional curves. This yields
a sequence of morphisms Y→ Ycon

π′
−→ X, where π′ is called a crepant partial resolution of X.

Thus, we have the following hierarchy:

crepant resolutions ⊆ minimal models ⊆ crepant partial resolutions.

§ 1.2 | Noncommutative crepant resolutions
There is also a ‘noncommutative geometry’ approach to the minimal model program, which
takes a different tack by replacing varieties with noncommutative objects, such as noncom-
mutative algebras and bounded derived categories of coherent sheaves.

3
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Example 1.2.1. Consider the sheaves O, O(1), . . . , O(n) on Pn, which generate Db (Pn).
Set Vn := O⊕ O(1)⊕ · · · ⊕ O(n). By [B2] there exists a derived equivalence

RHom (Vn,−) : Db (cohPn) ∼−→ Db (mod EndPn(Vn)) ,

where RHom (Vn,−) denotes the derived functor of Hom (Vn,−). The algebra EndPn(Vn) is
noncommutative and can be presented as a quiver with relations. Thus, one can now study
the algebraic properties of this quiver to learn about the geometry of Pn.

More generally, if a variety X admits a tilting bundle (essentially, a generator V of Db(cohX)
with vanishing higher self-Ext group) then Db(cohX) is derived equivalent to Db(mod EndX(V))
[V1]. In Example 1.2.1 above, the bundle O⊕ O(1)⊕ · · · ⊕ O(n) is a tilting bundle on Pn.

This idea also applies to crepant resolutions of Kleinian singularities as follows.

Theorem 1.2.2. [KV] Let π : X→ SpecR be the crepant resolution of a Kleinian singular-
ity, and suppose R,M1, . . .Mn are the indecomposable maximal Cohen–Macaulay R-modules.
Then there is a derived equivalence

Db(cohX) ≃ Db
(

mod EndR(R⊕
n⊕

i=1
Mi)

)
.

Since the derived category captures all the homological data of an object, this theorem shows
that the homological information of the variety X is precisely the same as that of the algebra
EndR (R⊕⊕n

i=1 Mi).

Inspired by the above result for Kleinian singularities, Van den Bergh introduced the notion
of noncommutative crepant resolutions (NCCRs) in dimension three [V2].

Definition 1.2.3. A noncommutative crepant resolution (NCCR) of a Gorenstein ring R

is a ring of the form Λ := EndR(M) for some finitely generated reflexive R-module M, such
that Λ has finite global dimension and is maximal Cohen-Macaulay (CM) as an R-module.

Given a crepant resolution π : X → SpecR where R is a cDV singularity, Van den Bergh
demonstrated how such an algebra Λ can be constructed. This leads to the following theorem,
which may be regarded as a three-dimensional analogue of Theorem 1.2.2.

Theorem 1.2.4. [V1] Let π : X → SpecR be a crepant resolution of a cDV singularity
SpecR. Then there exists a CM R-module M such that Λ := EndR(M) is an NCCR of R
and further, there is a derived equivalence

Db(cohX) ≃ Db(modΛ).

The variety X can in fact be recovered from the algebra Λ via quiver GIT (Geometric
Invariant Theory) [K4]. This shows that to study a crepant resolution of a cDV singularity,
one can equivalently study the corresponding NCCR.

4
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Example 1.2.5. (Pagoda Flop) Consider the cDV singularity given by

R = C[[u, v, x, y]]/(uv − x(x+ yn)),

where n ≥ 1. Note that when n = 1, SpecR is isomorphic to the X in Example 1.1.2 (Atiyah
Flop), up to a coordinate change. Similarly, here SpecR also admits two minimal models.

One NCCR is EndR(R⊕(u, x)), which can be presented as the following quiver with relations:

R (u, x)

a

b

t

s

l1 l2

l1a = al2

l1b = bl2

l2s = sl1

l2t = tl1

ln1 = at− bs
ln2 = ta− sb

Example 1.2.6. Consider the cDV singularity given by

R = C[[u, v, x, y]]/(uv − xy(x+ yn)),

where n ≥ 1. In this example, SpecR has six minimal models (see e.g. [SW]).

One NCCR is EndR(R ⊕ (u, x) ⊕ (u, xy)), which can be presented as the following quiver
with relations

(u, x) (u, xy)

R

a1

b1

l

a0
b0 b2 a2

la0 = a0a1b1

b0l = a1b1b0

a2l = b1a1a2

lb2 = b2b1a1

b1b0a0 + b1(a1b1)n = a2b2b1

b0a0a1 + (a1b1)na1 = a1a2b2

a0b0 + ln = b2a2

When π is a singular minimal model (respectively, a crepant partial resolution), Iyama–Wemyss
[IW2] generalise the notion of NCCRs to maximal modifying algebras and modifying alge-
bras, respectively. These generalizations also satisfy the derived equivalences described in
Theorem 1.2.4, along with other desirable properties (see also Section 2.3).

§ 1.3 | Contraction algebras
Contraction algebras originally arose from a somewhat different motivation: the introduction
of noncommutative algebras into deformation theory. The basic idea of deformation theory
is to study how structures can be extended along infinitesimal directions.

5
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More precisely, given a geometric object Y and a commutative local ring S, a deformation
of Y over S is a flat family Y over S whose fibre over the closed point is precisely Y .

For example, given a crepant partial resolution π : X → SpecR with a single exceptional
curve, we can consider deformations of that curve. Donovan–Wemyss [DW1] introduced
noncommutative deformations of this curve and showed that considering only commutative
deformations fails to capture certain geometric features. This provides further evidence that
noncommutative algebra is a powerful tool in algebraic geometry.

In this setting of a single exceptional curve, the contraction algebra can be defined as the
representing object of the functor of noncommutative deformations of the curve. For crepant
partial resolutions with multiple exceptional curves, the contraction algebra can be defined
similarly—as the representing object of a functor of pointed noncommutative deformations.

Due to the correspondence between crepant partial resolutions of a cDV singularity and its
modifying algebras (see §2.3.4), we adopt the following equivalent definition [DW1].

Definition 1.3.1. Given a crepant partial resolution π : X → SpecR of a complete local
cDV singularity, let M be the corresponding CM R-module in 2.3.4. Then, the contraction
algebra Λcon(π) is defined to be

EndR(M) := EndR(M)/⟨R⟩,

where ⟨R⟩ denotes the two-sided ideal consisting of all morphisms which factor through addR.

Since R is a direct summand of the CM R-module M , then the quiver of the contraction
algebra EndR(M) can be obtained from that of the NCCR EndR(M) simply by deleting the
vertex corresponding to R.

Example 1.3.2. Consider the Pagoda Flop in Example 1.2.5. The contraction algebra
associated to EndR(R⊕ (u, x)) can be presented as the following quiver with relations

(u, x) l2 ln2 = 0

Thus the contraction algebra is isomorphic to C[[l2]]/(ln2 ).

Example 1.3.3. Consider Example 1.2.6. The contraction algebra associated to EndR(R⊕
(u, x)⊕ (u, xy)) can be presented as the following quiver with relations

(u, x) (u, xy)
a1

b1

b1(a1b1)n = 0
(a1b1)na1 = 0

6
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Although the contraction algebra Λcon(π) is a quotient of the modifying algebra EndR(M),
it still recovers all known invariants of the crepant partial resolution π of a cDV singularity
R, as follows:

(1) The quiver representation of the contraction algebra determines the dual graph, in-
cluding the normal bundle of the exceptional curves [W2].

(2) The crepant partial resolution is flopping (i.e., not contracting a divisor) if and only if
the dimension of its associated contraction algebra is finite [DW2] (see also §2.3.6).

If furthermore π is a crepant resolution and R is isolated, then

(3) The dimension of the contraction algebra is a weighted sum of the Gopakumar–Vafa
(GV) invariants of the crepant resolution [T2] (see also 1.4.1).

(4) The contraction algebra determines the GV invariants [HT, T2], and moreover, it is a
strictly stronger invariant than the GV invariants themselves [BW1].

(5) The contraction algebra determines the cDV singularity R [JKM, A.2] (see also 2.3.7).

§ 1.4 | Gopakumar–Vafa invariants
In this section, we introduce a curve invariant known as the Gopakumar–Vafa (GV) invariant,
which can be thought of as a virtual count of curves in a given curve class on a variety.

Gopakumar–Vafa (GV) invariants are designed to count the number of pseudo-holomorphic
curves and represent the number of BPS states on a Calabi-Yau 3-fold; it has been con-
jectured that this is equivalent to other curve counting Gromov-Witten invariants and
Pandharipande–Thomas invariants [MT].

The general approach to calculate GV invariants is to consider the moduli space of one-
dimensional stable sheaves on Calabi–Yau 3-folds satisfying some numerical conditions [K2],
and as such, it is usually hard to calculate them.

Now let π : X→ SpecR be a crepant resolution with exceptional curves ⋃i Ci where R is a
cDV. Denote A1(π) := ⊕

i Z ⟨Ci⟩ be the abelian group freely generated by Ci.

Given a curve class β ∈ A1(π) there is a Gopakumar–Vafa (GV) invariant GVβ(π) which
counts the class β in X virtually. There are several equivalent interpretations of GVβ(X)
(see 2.4.1).

Roughly speaking, the idea is to deform π into a disjoint union of the simplest types of
exceptional curves. Then, GVβ(π) corresponds to the number of such curves with class β.
However, the count is not naive—we refine it by using the structure of the flat family. This
allows us to split the total number of curves into contributions from specific curve classes
[BKL].

As noted in §1.3, if R is isolated, then the contraction algebra determines the GV invariants

7
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[HT, T2]. Moreover, one can extract GV invariants from the dimension of the contraction
algebra using the following result.

Theorem 1.4.1. (Toda’s formula, [T2, §4.4]) Let π : X→ SpecR be a crepant resolution of
an isolated cDV singularity R with m exceptional curves. Then

dimC Λcon(π) =
∑

β=(β1,...,βm)
|β|2GVβ(π),

where |β| = β1 + · · ·+ βm.

Example 1.4.2. Consider the Pagoda Flop from Example 1.2.5, and let π denote the crepant
resolution associated to R⊕ (u, x). Then Λcon(π) ∼= C[[l2]]/(ln2 ), and so dimC Λcon(π) = n.

Since π has a single exceptional curve C, Toda’s formula (Theorem 1.4.1) implies that
GVC(π) = n.

Example 1.4.3. Consider Example 1.3.3, and let π denote the crepant resolution associated
to R⊕ (u, x)⊕ (u, xy). There are two exceptional curves, C1 and C2, in π.

The Λcon(π) has a C-basis given by

{e1, a1, a1b1, a1b1a1, . . . , (a1b1)n} ∪ {e2, b1, b1a1, b1a1b1, . . . , (b1a1)n},

where ei denotes the trivial path at vertex i in the quiver presentation. Therefore, dimC Λcon(π) =
4n+ 2. It is known by e.g. [NW] that the only nonzero GV invariants are:

GVC1(π) = 1, GVC2(π) = 1, GVC1+C2(π) = n.

We can verify Toda’s formula as follows:
∑

β=(β1,β2)
|β|2GVβ(π) = 12 ·GVC1(π) + 12 ·GVC2(π) + 22 ·GVC1+C2(π) = 1 + 1 + 4n = 4n+ 2.

§ 1.5 | Main results
In this section, we summarise the main contributions of the thesis.

§ 1.5.1 | Generalised GV invariants

Two additional tools greatly simplify the computation of GV invariants in the context of
crepant partial resolutions of cAn singularities. The first comes from Toda’s formula [T2] as
well as [HT, BW2], which suggests that GV invariants can be calculated by the dimension of
their associated contraction algebra. The second comes from [IW3], which gives a concrete
algebraic description of all crepant partial resolutions of cAn singularities and their associated
contraction algebras.

8
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This subsection presents the consequences of these developments for curve-counting theories
in algebraic geometry—specifically GV invariants—and generalises them in two important
directions:

• to crepant partial resolutions, and

• to non-isolated cAn singularities.

It is worth highlighting that similar curve-counting invariants have also been investigated in
the physics literature. In particular, computations in [CSV, C3, DSV] evaluate M2-brane
BPS state counts—corresponding to five-dimensional hypermultiplets—for various classes of
cDV singularities. These include cases of crepant resolutions with a single exceptional curve,
as well as crepant partial resolutions of quasi-homogeneous isolated cDV singularities. Al-
though physically motivated, the resulting invariants yield precise mathematical predictions
that, in the cAn setting, coincide with our generalised GV invariants.

Thus, the framework developed in this thesis provides a natural mathematical generalisation
of these physical calculations: it extends the validity of Toda’s formula to crepant partial
resolutions and to non-isolated cAn singularities, while simultaneously offering an algebraic
description in terms of contraction algebras. In this way, the results here not only recover
the predictions from physics in special cases but also place them in a broader and more
systematic mathematical setting.

Throughout, let π : X→ SpecR be a crepant partial resolution where R is a (not necessarily
isolated) cAn singularity. The case when X is smooth, equivalently when π is a crepant
resolution, will recover classical invariants and results.

We first introduce our new invariants, Nβ(π), which does not require smoothness of X, or
R to be isolated. To do this, write C1,C2, . . . ,Cm for the exceptional curves of π. For any
curve class β ∈⊕m

i=1 Z ⟨Ci⟩, consider

Nβ(π) :=

dimC
C[[x,y]]

Iβ
if β = Ci + Ci+1 + . . .+ Cj

0 else

where Iβ ∈ (x, y) is an ideal that depends on β and π (see 3.1.1).

The above generalised GV invariant is parallel to GV invariants, since when π is a crepant
resolution, then {Ci + Ci+1 + · · · + Cj | 1 ≤ i ≤ j ≤ m} are the only curve classes with
non-zero GV invariants [NW, V5].

We will show in 1.5.3 that in the special case when X is smooth, Nβ is equivalent to GVβ for
all curve class β, where GVβ is the integer-valued Gopakumar–Vafa (GV for short) invariant
of β. This justifies us calling the Nβ generalised GV invariants.

The following is our first result, which shows that Toda’s formula 1.4.1 holds in this more
general setting.

9
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Proposition 1.5.1 (3.2.4, 3.3.11). Let π be a crepant partial resolution of a cAn singularity
with m exceptional curves. For any 1 ≤ s ≤ t ≤ m, the following equality holds.

dimC esΛcon(π)et =
∑

β=(β1,...,βm)
βs · βt ·Nβ(π) = dimC etΛcon(π)es.

In particular, dimC Λcon(π) = ∑
β |β|2Nβ(π) where |β| = β1 + · · ·+ βm.

Hua–Toda [HT, T2] show that when X is smooth and R is isolated, the GV invariants are a
property of the isomorphism class of the contraction algebra. The following generalises this
to the crepant partial resolutions of (not necessarily isolated) cAn singularities.

To ease notation, given a curve class β = (β1, . . . ,βm), denote the reflective curve class
of β to be β := (βm, . . . ,β1). This symmetry arises naturally from the involution of the
doubled An quiver, which reverses the orientation of the chain. Since the contraction algebra
is isomorphic to a quiver algebra of the doubled An quiver, the reflective class corresponds
to this quiver involution.

Theorem 1.5.2 (3.2.7, 3.3.11). Let πk : Xk → SpecRk be two crepant partial resolutions of
cAnk

singularities Rk with mk exceptional curves for k = 1, 2. If Λcon(π1) ∼= Λcon(π2), then
m1 = m2 and one of the following cases holds:

(1) Nβ(π1) = Nβ(π2) for any curve class β,

(2) Nβ(π1) = Nβ(π2) for any curve class β.

The papers [NW, V5] give a combinatorial description of the matrix which controls the
transformation of the non-zero GV invariants under a flop (see §3.3.1 for cAn cases). We
show in 3.2.8 that the generalised GV invariants also satisfy this transformation.

We next restrict ourselves to cases of crepant resolutions of (not necessarily isolated) cAn

singularities and show that whilst generalised GV invariants are not always equal to the GV
invariant, they are equivalent information.

Theorem 1.5.3 (3.3.8, 3.3.11). Let π be a crepant resolution of a cAn singularity. The
following holds for any curve class β.

(1) Nβ(π) =∞ ⇐⇒ GVβ(π) = −1.

(2) Nβ(π) <∞ ⇐⇒ GVβ(π) = Nβ(π).

Together with 1.5.2, the following shows that the contraction algebra determines its associ-
ated GV invariants. This generalises the results in [HT, T2] to non-isolated cAn cases.

Corollary 1.5.4 (3.2.7, 3.3.11). Let πk : Xk → SpecRk be two crepant resolutions of cAn

singularities Rk for k = 1, 2. If Λcon(π1) ∼= Λcon(π2), then one of the following holds:

(1) GVβ(π1) = GVβ(π2) for any curve class β,

(2) GVβ(π1) = GVβ(π2) for any curve class β.

10
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§ 1.5.2 | Monomialization and geometric realization

We now restrict our attention to the smooth case. Let π : X→ SpecR be a crepant resolution
with R cDV. The contraction algebra Λcon(π) is isomorphic to the Jacobi algebra of a quiver
with some potential [V3], and it classifies SpecR complete locally if R is furthermore isolated
[JKM] (see also 2.3.7).

This motivates classifying Jacobi algebras (equivalently, their potentials) on various quivers,
as this immediately then classifies certain crepant resolutions.

In this subsection, we introduce various intrinsic algebraic definitions of a Type A potential
on the double An quiver Qn (with a single loop at each vertex). Then via coordinate changes,
we give a monomialization result that expresses these potentials in a particularly nice form,
and show that these potentials precisely correspond to cAn crepant resolutions, which solves
the Realisation Conjecture of Brown–Wemyss in Type A cases [BW2].

Together, these results can be viewed as a noncommutative generalization of the classification
of simple singularities by commutative polynomials [A1], and also a generalisation of the fact
that the germ of a complex analytic hypersurface with an isolated singularity is determined
by its Tjurina algebra [MY].

For any fixed n ≥ 1, consider the following quiver Qn, which is the double of the usual An

quiver, with a single loop at each vertex. Label the arrows of Qn left to right, as illustrated
below.

. . .
1 2 3 n−1 n

a2

b2

a4

b4

a2n−2

b2n−2

a1 a3 a5 a2n−3 a2n−1

Quiver Qn which has loop a2i−1 at each vertex i.

From this, define elements xi and x′
i as follows: first, set b2i−1 to be the trivial path ei at

vertex i, for any 1 ≤ i ≤ n. Then for any 1 ≤ i ≤ 2n− 1, set xi := aibi and x′
i := biai.

For example, in the case n = 3,

1 2 3

a2

b2

a4

b4

a1 a3 a5 x1 = x′
1 = a1

x3 = x′
3 = a3

x5 = x′
5 = a5

whereas x2 = a2b2, x′
2 = b2a2, and x4 = a4b4, x′

4 = b4a4.

Given the above xi and x′
i, we first define a reduced Type A potential on Qn to be any reduced

potential f that contains the terms x′
ixi+1 for all 1 ≤ i ≤ 2n−2. A Type A potential on Qn is

then defined in 4.1.4, but for this introduction we only require the concept of a monomialized

11
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Type A potential on Qn, which is defined to be any potential of the form

2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2

kijxj
i

for some kij ∈ C. We will show in 4.1.20 and 4.1.23 that any Type A potential is isomorphic
to some monomialized Type A potential, and so the above monomialized version suffices.

The first main result is that the complete Jacobi algebra (denoted Jac) of any Type A

potential on Qn can be realized as the contraction algebra of a crepant resolution of some
cAn singularity.

Theorem 1.5.5 (4.2.12). For any Type A potential f on Qn where n ≥ 1, there exists a
crepant resolution π : X→ SpecR where R is cAn, such that Jac(f) ∼= Λcon(π).

The Brown–Wemyss Realisation Conjecture [BW2] states that if f is any potential for which
Jac(f) is either finite-dimensional, or infinite-dimensional but with at most linear growth
in the successive quotients by powers of its Jacobi ideal, then Jac(f) is isomorphic to the
contraction algebra of some crepant resolution X→ SpecR, with R cDV. The above result
1.5.5 confirms this Realisation Conjecture for any Type A potential on Qn with n ≥ 1.

We then obtain the converse to 1.5.5 (see 4.2.15), which shows that our definition of Type
A potential is intrinsic. The definition of the quiver Qn,I and Type An,I crepant resolutions
are given in §4.1 and 4.2.11.

Corollary 1.5.6 (4.2.16). Let f be a reduced potential on Qn,I . The following are equivalent.

(1) f is Type A.

(2) There exists a Type An,I crepant resolution π such that Jac(f) ∼= Λcon(π).

(3) eiJac(f)ei is commutative for 1 ≤ i ≤ n.

Moreover, there is a correspondence between crepant resolutions of cAn singularities and our
intrinsic noncommutative monomialized Type A potentials, as follows.

Corollary 1.5.7 (4.2.19). For any n, the set of isomorphism classes of contraction algebras
associated to crepant resolutions of cAn singularities is equal to the set of isomorphism classes
of Jacobi algebras of monomialized Type A potentials on Qn.

Then, after restricting to those cAn singularities which are isolated, we obtain the following
consequence.

12



CHAPTER 1. INTRODUCTION 13

Theorem 1.5.8 (4.2.21). For any n, there exists a one-to-one correspondence

derived equivalence classes of monomialized Type A potentials on Qn

with finite-dimensional Jacobi algebra

isomorphism classes of isolated cAn singularities
which admit smooth flopping contractions

We establish the correspondence in 1.5.8 for isolated cAn singularities, as our proof relies
on the Donovan–Wemyss Conjecture 2.3.7, which is known to hold only for isolated cDV
singularities. This naturally suggests the idea of extending the Donovan–Wemyss Conjecture
to non-isolated cases.

However, in §4.2.3, we present an explicit example of a non-isolated cA2 singularity, demon-
strating in 4.2.26 that the Donovan–Wemyss Conjecture does not extend to non-isolated
cDV singularities.

§ 1.5.3 | Filtrations and obstructions

In this subsection, we continue under the assumption that X is smooth (equivalently, that π
is a crepant resolution).

The correspondence established in 1.5.7—between crepant resolutions of cAn singularities
and monomialized Type A potentials on Qn—motivates filtration structures of the parameter
space of such monomialized potentials with respect to their generalised GV invariants.

Recall that a monomialized Type A potential on Qn is any potential of the form

2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2

kijxj
i , (1.5.A)

for some kij ∈ C. Since contraction algebra determines its associated GV invariants in 1.5.4,
the correspondence in 1.5.7 inspires us to approach GV invariants of cAn crepant resolutions
through their corresponding monomialized Type A potentials on Qn.

So, given any n, we consider the set of all monomialized Type A potentials on Qn (1.5.A)

f(κ) =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2
κijxj

i ,

over the parameter space

M := {(k12, k13, . . . , k22, k23, . . . , k2n−1,2, k2n−1,3, . . . ) | all kij ∈ C}.

Based on the above correspondence between monomialized Type A potentials on Qn and

13
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crepant resolutions of cAn singularities, given any f ∈ M we define generalised GV invariants
Nβ(f) through its associated crepant resolution (see 5.2.1).

The following gives a filtration structure on the parameter space M of monomialized Type
A potentials on Qn with respect to generalised GV invariants.

Theorem 1.5.9 (5.3.8). Fix some s, t satisfying 1 ≤ s ≤ t ≤ n and the curve class
β = Cs + Cs+1 + · · · + Ct. Then M has a filtration structure M = M1 ⊋ M2 ⊋ M3 ⊋ · · ·
such that

(1) For each i ≥ 1, Nβ(f(k)) = i for all k ∈Mi\Mi+1.

(2) Each Mi is the zero locus of some polynomial system of κ.

(3) If s = t, then for each i ≥ 2, Mi = {k ∈ M | k2s−1,j = 0 for 2 ≤ j ≤ i}.

It should be emphasized that the filtration in 1.5.9 strongly depends on the curve class β;
as these vary, so does the filtration.

For any curve class β and N ∈ N∞ := N∪∞, then by 1.5.9 there exists a crepant resolution π
of a cAn singularity such that Nβ(π) = N . However, this is no longer true when considering
generalised GV invariants of different curve classes simultaneously. So we next discuss the
obstructions and constructions of the generalised GV invariants that can arise from crepant
resolutions of cAn singularities.

Notation 1.5.10 (5.4.3, 5.4.4). Fix some curve class β = Cs + Cs+1 + · · · + Ct, and a
tuple (qs, qs+1, . . . , qt) ∈ Nt−s+1

∞ . Set qmin := min{qi}, and consider the subset of crepant
resolutions of cAn singularities with respect to (qs, . . . , qt) defined as

CAq := {cAn crepant resolution π | (NCs(π), NCs+1(π), . . . , NCt(π)) = (qs, qs+1, . . . , qt)}.

The following is the main obstruction result, which is new even in the case when X is smooth
and R is isolated (in which case Nβ = GVβ by 1.5.4).

Theorem 1.5.11 (5.4.7). For any s and t with 1 ≤ s ≤ t ≤ n, and any tuple (qs, qs+1, . . . , qt) ∈
Nt−s+1

∞ , with notation in 1.5.10 and β := Cs + Cs+1 + · · ·+ Ct, the following statements hold.

(1) For any π ∈ CAq necessarily Nβ(π) ≥ qmin, and moreover there exists π ∈ CAq such
that Nβ(π) = qmin.

(2) When qmin is finite, the equality Nβ(π) = qmin holds for all π ∈ CAq if and only if
#{i | qi = qmin} = 1.

We show in 5.4.12 that the actions on curve classes from [NW, 5.4] and [V5, 5.10], together
with 1.5.11, give more obstructions and constructions of the possible tuples that can arise.
One sample result is the following; many others are left to the end of §5.4.

14
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Corollary 1.5.12 (5.4.15). The generalised GV invariants of crepant resolutions of cA2

singularities have the following two possibilities:

NC1 NC2

NC1+C2
=

p q

min(p, q) or
p p

r

where p, q, r ∈ N∞ with p ̸= q and r ≥ p. All possible such p, q, r arise.

§ 1.5.4 | Special cases: A3

In the case of the double A3 quiver without loops, it is possible to describe the full iso-
morphism classes of Type A potentials, and the derived equivalence classes of those with
finite-dimensional Jacobi algebras. This generalises [DWZ, E1, H2].

To ease notation, consider now the following labelling.

1 2 3
b1

a1

b2

a2

Double A3 quiver without loops Q
x = b1a1, y = a2b2

Given two potentials f and g on Q, we say that f is isomorphic to g, written f ∼= g, if the
corresponding Jacobi algebras are isomorphic (see 2.1.8). Similarly, we say that f is derived
equivalent to g, written f ≃ g, if the corresponding Jacobi algebras are derived equivalent
(see 4.2.20).

Theorem 1.5.13 (6.1.17). Any Type A potential on Q must be isomorphic to one of the
following isomorphism classes of potentials:

(1) x2 + xy + λy2 for any 0, 1
4 ̸= λ ∈ C.

(2) x2 + xy + 1
4y2 + xr for any r ≥ 3.

(3) xp + xy + yq ∼= xq + xy + yp for any (p, q) ̸= (2, 2).

(4) x2 + xy + 1
4y2.

(5) xp + xy ∼= xy + yp for any p ≥ 2.

(6) xy.

The Jacobi algebras of these potentials are all mutually non-isomorphic (except those iso-
morphisms stated), and in particular the Jacobi algebras with different parameters in the
same item are non-isomorphic.

The Jacobi algebras in (1), (2), (3) are realized by crepant resolutions of isolated cA3 sin-
gularities, and those in (4), (5), (6) are realized by crepant resolutions of non-isolated cA3

singularities.

15
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Theorem 1.5.14 (6.2.6). The following groups the Type A potentials on Q with finite-
dimensional Jacobi algebra into sets, where all the Jacobi algebras in a given set are derived
equivalent.

(1) {x2 + xy + λ′y2 | λ′ = λ, 1−4λ
4 , 1

4(1−4λ) ,
λ

4λ−1 ,
4λ−1
16λ ,

1
16λ} for any λ ̸= 0, 1

4 .

(2) {xp + xy + y2, x2 + xy + yp, x2 + xy + 1
4y2 + xp} for p ≥ 3.

(3) {xp + xy + yq, xq + xy + yp} for p ≥ 3 and q ≥ 3.

Moreover, the Jacobi algebras of the sets in (1)–(3) are all mutually not derived equivalent,
and in particular the Jacobi algebras of different sets in the same item are not derived equiv-
alent. In (1) there are no further basic algebras in the derived equivalence class, whereas
in (2)–(3) there are an additional finite number of basic algebras in the derived equivalence
class.

Next, recall the definition of the quaternion type quiver algebra Ap,q(µ) in [E1, H2], which
is the completion of the path algebra of the quiver Q modulo the relations

a1a2b2 − (a1b1)p−1a1, b2b1a1 − µ(b2a2)q−1b2, a2b2b1 − (b1a1)p−1b1, b1a1a2 − µ(a2b2)q−1a2,

where µ ∈ C and p, q ≥ 2. Note we have fewer relations than in [E1, H2] since we are
working with the completion. In fact Ap,q(µ) ∼= Jac(Q, f), where

f = 1
p

xp − xy + µ

q
yq ∼= xp + xy + (−1)qp− q

p q−1µyq.

The following improves various results of Erdmann and Holm [E1, H2].

Corollary 1.5.15 (6.2.9). The following groups those algebras Ap,q(µ) which are finite-
dimensional into sets, where all the algebras in a given set are derived equivalent.

(1) {A2,2(µ′) | µ′ = µ, 1− µ, 1
1−µ ,

µ
µ−1 ,

µ−1
µ
, 1
µ
} for µ ̸= 0, 1.

(2) {Ap,q(1), Aq,p(1)} for (p, q) ̸= (2, 2).

Moreover, the algebras in different sets in (1)–(2) are all mutually not derived equivalent. In
(1) there are no further basic algebras in the derived equivalence class, whereas in (2) there
are an additional finite number of basic algebras in the derived equivalence class.

§ 1.6 | Outline of the thesis
Chapter 2 provides the necessary preliminaries, particularly covering quivers with potential,
contraction algebras, and Gopakumar–Vafa (GV) invariants.

Chapter 3 introduces generalised GV invariants, extending the classical GV invariants to
include crepant partial resolutions of cAn singularities. We also show that these generalised
invariants satisfy Toda’s formula and are determined by their associated contraction algebras.

16
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In Chapter 4, we introduce Type A potentials on Qn and prove that every Type A potential
can be transformed into a monomialized form. We then show that each such monomialized
potential can be realized by a crepant resolution of a cAn singularity. Finally, we establish
a correspondence between crepant resolutions of cAn singularities and our intrinsic Type A
potentials.

Chapter 5 constructs filtration structures on the parameter space of monomialized Type A
potentials on Qn with respect to generalised GV invariants. Based on this filtration, we
describe obstructions and constructions for the possible tuples of GV invariants that can
arise from crepant resolutions of cAn singularities.

In Chapter 6, we specialize to the simplest case: the doubled A3 quiver without loops.
We classify all Type A potentials on this quiver up to isomorphism, as well as those with
finite-dimensional Jacobi algebras up to derived equivalence.

The Appendix provides a quiver presentation of the NCCR of the Type A universal flop,
which is used in proving the geometric realization results presented in Chapter 4.

§ 1.7 | Notation and conventions
Throughout this paper, we work over the complex number C, which is necessary for various
statements in §2.2 and §2.3.

The definitions of Qn,I and xi are fundamental, and are repeated in §4.1 for reference. We
adopt the following notation:

(1) The integer n always refers to the n in cAn singularities, and also to the number of
vertices in the quivers Qn and Qn,I . The subset I ⊆ {1, 2, . . . , n} denotes the vertices
without loops in the quiver Qn,I .

(2) In Chapter 3, the integer m refers to the number of exceptional curves in a crepant
partial resolution of a cAn singularity. In Chapter 4, we define m := 2n−1−|I|, which
equals the number of variables xi in the quiver Qn,I .

(3) R will always denote a set of relations in a quiver, except in the Appendix, where R
refers to a reduction system for a path algebra.

(4) R always denotes a complete local cDV singularity. Moreover, R refers to a complete
local cAn singularity in Chapters 3, 4, and 5.

(5) Denote CMR for the category of maximal Cohen–Macaulay R-modules and CMR for
the stable category of CMR.

(6) Denote MR (resp. MMR) for the category of modifying (resp. maximal modifying)
R-modules.

(7) Given a crepant partial resolution π of a cDV singularity, we write Λ(π) for the modi-
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fication algebra and Λcon(π) for the contraction algebra. All modules over these non-
commutative rings are taken to be right modules.

(8) ei denotes the trivial path at vertex i in Qn, and also the trivial path at vertex i in the
quiver presentations of Λ(π) or Λcon(π).

(9) Given a crepant (resp. partial) resolution π : X → SpecR of a cAn singularity R, we
write GVij(π) (resp. Nij(π)) for the classical (resp. generalised) GV invariant of the
curve class Ci + Ci+1 + · · ·+ Cj in X.

(10) In Chapter 5, when considering the parameter space of monomialized Type A po-
tentials, κij denotes a variable and κ represents a tuple of such variables κij (see
Definition 5.1.1). In other chapters, κij is simply treated as a complex number.

(11) We denote isomorphisms of algebras by ∼=, and derived equivalences of triangulated
categories by ≃.

(12) The dimension of a vector space V over C is written as dimC V .

18
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Chapter 2

Preliminaries

In this chapter, we provide the necessary background for the results in this thesis. This
includes a brief introduction to quivers with potential, minimal models of compound Du Val
(cDV) singularities, the construction of contraction algebras, and various interpretations of
Gopakumar–Vafa (GV) invariants.

§ 2.1 | Quiver with potential
To set notation, consider a quiver Q = (Q0, Q1, t, h) which consists of a finite set of vertices
Q0, of arrows Q1, with two maps h : Q1 → Q0 and t : Q1 → Q0 called the head and tail
respectively.

A loop a is an arrow satisfying h(a) = t(a), and a path is a formal expression a1a2 . . . an

where h(ai) = t(ai+1) for each 1 ≤ i ≤ n − 1. For such a path a = a1a2 · · · an, we extend
the notation by setting t(a) := t(a1) for its starting vertex and h(a) := h(an) for its ending
vertex. A path a is cyclic if h(a) = t(a).

Given a field k, the complete path algebra k⟨⟨Q⟩⟩ is defined to be the completion of the usual
path algebra kQ. That is, the elements of k⟨⟨Q⟩⟩ are possibly infinite k-linear combinations
of paths in Q.

Write mQ, or simply m, for the two-sided ideal of k⟨⟨Q⟩⟩ generated by the elements of Q1,
and write AQ, or simply A, for the k-span of the elements of Q1.

Definition 2.1.1. Suppose that Q is a quiver with arrow span A.

(1) A relation of Q is a k-linear combination of paths in Q, each with the same head and
tail.

(2) Given a finite number of specified relations R1, . . . , Rn, we can form the closure of the
two-sided idea R := kQR1kQ + . . . + kQRnkQ of kQ. We call (Q,R) a quiver with
relations, and we call k⟨⟨Q⟩⟩/R the complete path algebra of a quiver with relations.

(3) A quiver with potential (QP for short) is a pair (Q,W ) where W is a k-linear combi-
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nation of cyclic paths.

(4) For any n ≥ 1, set Wn to be the nth homogeneous component of W with respect to the
path length.

(5) For each a ∈ Q1 and cyclic path a1 . . . ad in Q, define the cyclic derivative as

6a (a1 . . . ad) =
d∑

i=1
δa,ai

ai+1 . . . ada1 . . . ai−1

(where δa,ai
is the Kronecker delta), and then extend 6a by linearity.

(6) For every potential W , the Jacobi ideal J(W ) is defined to be the closure of the two-
sided ideal in k⟨⟨Q⟩⟩ generated by 6aW for all a ∈ Q1.

(7) The Jacobi algebra Jac(Q,W ) or Jac(A,W ) is the quotient k⟨⟨Q⟩⟩/J(W ). We write
Jac(W ) when the quiver Q is obvious.

(8) For every potential W , write 6W for the k-span of 6aW for all a ∈ Q1.

(9) We call a QP (Q,W ) reduced if W2 = 0. It is called trivial if Wn = 0 for all n ≥ 3,
and further 6W = A.

Example 2.1.2. Consider the one loop quiver Q with potential W = a2,

a

The complete path algebra k⟨⟨Q⟩⟩ is k[[a]]. Moreover, Jac(Q,W ) ∼= k[[a]]/(a) ∼= k since
6a(a2) = 2a. Since Wn = 0 for all n ≥ 3 and 6W = ka = AQ, this QP (Q,W ) is trivial.

Notation 2.1.3. For A := k⟨⟨Q⟩⟩, consider {A,A}, the commutator vector space of k⟨⟨Q⟩⟩.
That is, elements of {A,A} are finite sums

n∑
i=1

ki(piqi − qipi)

for elements pi, qi ∈ k⟨⟨Q⟩⟩ and ki ∈ C. Write {{A,A}} for the closure of the commutator
vector space {A,A}.

Definition 2.1.4. Two potentials W and W ′ are cyclically equivalent (written W ∼ W ′) if
W −W ′ ∈ {{A,A}}. We write W i∼ W ′ if W ∼ W ′ and W −W ′ ∈ mi.

Remark 2.1.5. Note that if two potentials W and W ′ are cyclically equivalent, then 6aW =
6aW ′ for all a ∈ Q1, and hence Jac(Q,W ) = Jac(Q,W ′) [DWZ, 3.3]. Since we aim to

classify the Jacobi algebras up to isomorphism, we always consider the potentials up to
cyclic equivalence.

20
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Given an algebra homomorphism φ : k⟨⟨Q⟩⟩ → k⟨⟨Q′⟩⟩ such that φ|k = id which sends mQ

to mQ′ , write φ|AQ
= (φ1, φ2) where φ1 : AQ → AQ′ and φ2 : AQ → m2

Q′ are k-module
homomorphisms.

Proposition 2.1.6. [DWZ, 2.4] Given two quivers Q and Q′, any pair (φ1, φ2) of k-module
homomorphisms φ1 : AQ → AQ′ and φ2 : AQ → m2

Q′ gives rise to a unique homomorphism of
algebras φ : k⟨⟨Q⟩⟩ → k⟨⟨Q′⟩⟩ such that φ|k = id and φ|AQ

= (φ1, φ2). Furthermore, φ is an
isomorphism if and only if φ1 is a k-module isomorphism AQ → AQ′.

From the above result, whenever we construct an automorphism φ : k⟨⟨Q⟩⟩ → k⟨⟨Q⟩⟩ in §4.1
and §6, it will always be the case that φ|k = id, so we will only describe φ|AQ

.

Definition 2.1.7. An algebra homomorphism φ : k⟨⟨Q⟩⟩ → k⟨⟨Q⟩⟩ is called a unitriangular
automorphism if φ|k = id and φ1 = id. For i ≥ 1, we say that φ has depth i provided that
φ2(a) ∈ mi+1

Q for all a ∈ Q1.

Definition 2.1.8. Let f and g be potentials on a quiver Q.

(1) We say that f is isomorphic to g (written f ∼= g) if Jac(f) ∼= Jac(g) as algebras.

(2) If there exists an algebra isomorphism φ : k⟨⟨Q⟩⟩ → k⟨⟨Q⟩⟩ such that φ|k = id and
φ(f) = g, then we write φ : f 7→ g and say that f is equivalent to g.

(3) If there exists an algebra isomorphism φ : k⟨⟨Q⟩⟩ → k⟨⟨Q⟩⟩ such that φ|k = id and
φ(f) ∼ g, then we write φ : f ⇝ g and say that f is right-equivalent to g.

(4) For i ≥ 1, if there exists a unitriangular φ : k⟨⟨Q⟩⟩ → k⟨⟨Q⟩⟩ such that φ has depth
greater than or equal to i, and further φ(f) i+1∼ g, then we write φ : f i⇝ g and say that
f is path degree i right-equivalent to g.

We follow the definition of right-equivalence in [DWZ, 4.2]. Moreover, from [DWZ, p12],
f ⇝ g induces f ∼= g, and further a finite sequence of right-equivalences is still a right-
equivalence. By 2.1.6, f i⇝ g induces f ⇝ g. Thus, together with the above definition, we
obtain

f ∼ g or f 7→ g or f
i⇝ g =⇒ f ⇝ g =⇒ f ∼= g.

The Jacobi algebra isomorphism ∼= is the equivalence relation that we aim to classify the
potentials up to. The main idea is to start with a potential f , then transform it by a
sequence of automorphisms which chases terms into higher and higher degrees. Composing
this sequence of automorphisms then gives a single automorphism which takes f to the
desired form (see §4.1 and §6.1).

The subtle point is that at each stage, the automorphism only gives the desired potential
up to cyclic equivalence (e.g. ⇝, i⇝). Given an infinite sequence of path degree i right-
equivalences φi : fi

i⇝ fi+1 for i ≥ 1, the following asserts that lim fi exists, and further
there exists a right-equivalence F : f1 ⇝ lim fi.
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Theorem 2.1.9. [BW2, 2.9] Let f be a potential, and set f1 = f . Suppose that there exist
elements f2, f3, . . . and automorphisms φ1, φ2, . . . , such that

(1) Every φi is unitriangular of depth of ≥ i, and

(2) φi(fi) i+1∼ fi+1, for all i ≥ 1.

Then lim fi exists, and there exists an automorphism F such that F (f) ∼ lim fi.

§ 2.2 | Minimal models and flops
Throughout the remainder of this thesis, the notation R will be reserved for the singularities
of the following form.

Definition 2.2.1. A complete local C-algebra R is called a compound Du Val (cDV) singu-
larity if

R ∼=
C[[u, v, x, t]]
f + tg

where f ∈ C[[u, v, x]] defines a Du Val, or equivalently Kleinian, surface singularity and
g ∈ C[[u, v, x, t]] is arbitrary.

In other words, a cDV singularity is a threefold singularity such that any generic surface
slice through it is a Kleinian singularity. These surface singularities are well understood and
are classified by simply laced Dynkin diagrams.

Like the Kleinian surface singularities they generalise, cDV singularities are also catego-
rized into types A, D, and E, corresponding to the ADE Dynkin diagrams. Type A cDV
singularities take the following form:

R ∼=
C[[u, v, x, y]]
uv − f0f1 . . . ft

, (2.2.A)

where each fi is a prime element of C[[x, y]]. We refer to such an R as a cAn−1 singularity,
where n is the order of the product f0f1 . . . ft viewed as a power series.

Definition 2.2.2. Let π : X→ SpecR be a proper birational morphism.

(1) We call π a crepant partial resolution if ωX
∼= π∗ωR.

(2) We call X a minimal model of SpecR if π is a crepant partial resolution and X has
only Q-factorial terminal singularities (see [W2, §2] for a definition). When X is
furthermore smooth, we call π a crepant resolution.

(3) When R is isolated, crepant partial resolutions and crepant resolutions are equivalently
called flopping contractions and smooth flopping contractions, respectively.

Remark 2.2.3. In general, the definition of a crepant (partial) resolution only requires
π to be proper. For crepant partial resolutions of cDV singularities, projectivity follows
automatically (see e.g. [W2]), so in this case every crepant resolution is projective.
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All minimal models of cDV singularities have fibres of dimension at most one. Therefore,
any crepant partial resolution X→ SpecR falls into one of two types:

• A curve-to-point contraction, which arises when R is isolated, or

• A divisor-to-curve contraction, which arises when R is non-isolated.

To illustrate this distinction intuitively, consider the following sketch depiction of the simplest
case—where a single curve lies above the origin. The difference between the two cases is
visualised below:

X

SpecR

or

We already noted in §1.1 that crepant resolutions do not always exist for cDV singularities.
For the Type A cDV singularity defined by (2.2.A), we have the following facts.

• R is isolated. ⇐⇒ (fi) ̸= (fj) for all i ̸= j [IW3].

• R admits a crepant resolution. ⇐⇒ each fi has a linear term [BIKR, IW3].

Example 2.2.4. We present three examples of Type A cDV singularities.

(1) Recall the Pagoda Flop from Example 1.1.2, given by

R = C[[u, v, x, y]]/(uv − x(x+ yn)).

The SpecR is an isolated cA1 singularity. Blowing up the ideal (u, x) yields a resolution
X1 → SpecR, and blowing up (u, x + yn) gives X2 → SpecR. Both X1 and X2 are
smooth, and the morphisms π1 and π2 are smooth flopping contractions.

(2) Let
R = C[[u, v, x, y]]/(uv − x2).

Then SpecR is a non-isolated cA1 singularity, with singularities along the x-axis. There
is only one crepant resolution, obtained by blowing up the ideal (u, x).

(3) Let
R = C[[u, v, x, y]]/(uv − x(x2 + y3)).

The SpecR is an isolated cA2 singularity. Blowing up the ideal (u, x) gives a resolution
X1 → SpecR, and blowing up (u, x2 + y3) gives X2 → SpecR.

However, since x2 + y3 has no linear term, neither X1 nor X2 is smooth. A sketch
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illustrating this structure follows:

In this diagram, the dots on the exceptional curves represent the singular point uv =
x2 + y3, which is factorial. Hence, both X1 and X2 are minimal models of SpecR.

As noted in §1.1, a given threefold SpecR may admit multiple minimal models. A natural
question then arises: how many such models exist, and how are they related?

It is known that there are only finitely many minimal models [KM], and they are all connected
via sequences of codimension-two surgery operations known as flops [K5].

We now describe flops and flopping curves in detail. Let π : X→ SpecR be a crepant partial
resolution. The reduced fibre above the origin π−1(0)red = ⋃

i Ci is a union of rational curves.
Choose any such Ci. Since R is complete local, by e.g. [W2, §2] we may factor π as

X
f−→ Xcon

g−→ SpecR

where f contracts Cj to a closed point if and only if j = i.

For any such factorisation, whenever f is a flopping contraction one can construct a birational
map f i : Xi → Xcon, satisfying technical conditions described in [W2, 2.6], and fitting into
the following commutative diagram:

X Xi

Xcon

SpecR

f f i

g
π πi

φ

where φ is a birational equivalence. The map πi : Xi → SpecR is called the flop of π at the
curve Ci. It is also a crepant partial resolution, and π is a minimal model (resp. crepant
resolution) if and only if πi is [K6, 4.11]. Note that Examples (1) and (3) in Example 2.2.4
are flops.

It is well known that the number of curves in the exceptional locus of πi matches that of π,
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and there is a natural correspondence between them. If we fix an ordering C1, . . . ,Cn on the
curves in π, this ordering is preserved under the flop πi, and we will often abuse notation by
using the same symbols C1, . . . ,Cn for the curves in πi.

We also emphasise that flopping is an involution: if πi : Xi → SpecR is the flop of π at
the curve Ci, then conversely, π : X → SpecR is the flop of πi at the same curve Ci. This
symmetry makes flops especially interesting objects of study in birational geometry.

§ 2.3 | Modifying modules and contraction algebras
The Homological Minimal Model Programme uses noncommutative algebra to study min-
imal models. In this section, we introduce the constructions of modifying modules [IW3]
and contraction algebras, which are central to analysing crepant partial resolutions of cDV
singularities.

In particular, one key feature of any cDV singularity R is that all of its birational geom-
etry—i.e., the geometry “above” SpecR—can be recovered from the category of maximal
Cohen–Macaulay modules CMR, through various different approaches.

Definition 2.3.1. Given R cDV as before, M ∈ modR is called maximal Cohen–Macaulay
(CM) provided

depthRM := inf{i ≥ 0 | Exti
R(R/m,M) ̸= 0} = dimR.

We write CMR for the category of CMR-modules, and CMR for the stable category of CMR.
Further, for (−)∗ := HomR(−,R), M ∈ modR is called reflexive if the natural morphism
M →M∗∗ is an isomorphism, and we write ref R for the category of reflexive R-modules.

Definition 2.3.2. We say N ∈ ref R is a modifying (M) module if EndR(N) ∈ CMR, and
we say that N ∈ ref R is a maximal modifying (MM) module if it is modifying and it is
maximal with respect to this property; equivalently,

addN = {X ∈ ref R | EndR(N ⊕X) ∈ CMR}.

If N is an M module (resp. MM module), we call EndR(N) a modification algebra (resp.
maximal modification algebra).

The concept of a smooth noncommutative minimal model—called a noncommutative crepant
resolution—is due to Van den Bergh [V2].

Definition 2.3.3. A noncommutative crepant resolution (NCCR) of R is a ring of the form
Λ := EndR(N) where N ∈ ref R, such that Λ ∈ CMR and has finite global dimension.

If an NCCR EndR(N) exists, then N is automatically a maximal modifying (MM) module,
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and moreover every MM module gives rise to an NCCR. In other words, if one noncommu-
tative minimal model is smooth, then they all are [IW2, 5.11].

For Kleinian singularities, the McKay correspondence [M2], as reformulated by Auslander
[A4, A5], provides a bijection between indecomposable non-free CM modules and the ex-
ceptional curves in the minimal resolution. This correspondence can be extended to cDV
singularities, as demonstrated in 2.3.4(1)–(3) below.

As noted earlier, crepant resolutions of a cDV singularity may not be unique, but they are
all connected by flops. Inspired by 1.2.4, the NCCRs and modifying algebras should reflect
a similar structure to the geometry of flops, as shown in 2.3.4(4) below.

Theorem 2.3.4. [IW2] Let R be a cDV singularity, then there exist bijections

(MR) ∩ (CMR)←→ {crepant partial resolutions π : X→ SpecR} ,
(MMR) ∩ (CMR)←→ {minimal models π : X→ SpecR} .

If further R admits a crepant resolution, then

(MMR) ∩ (CMR)←→ {crepant resolutions π : X→ SpecR} .

Moreover, under this bijection:

(1) There is a one-to-one correspondence between the exceptional curves C1, . . . ,Cm of the
crepant partial resolution π and the non-free indecomposable summands of the corre-
sponding module N .

(2) The quiver of EndR(N) encodes the dual graph of the corresponding crepant partial
resolution π, recording how the exceptional curves C1, . . . ,Cm intersect.

(3) When X is smooth, the number of loops at a vertex in the quiver of EndR(N) determines
the normal bundle of the corresponding exceptional curve.

(4) The flops of the crepant partial resolution π correspond to mutations of the module N .

The passage from left to right in the theorem sends a given N ∈ (MR) ∩ (CMR) to a
moduli space of representations of EndR(N) [K4]. Therefore, an NCCR (or more generally, a
modification algebra) encodes all geometric data of the associated crepant (partial) resolution
of SpecR. In other words, passing to noncommutative algebra does not lose any geometric
information.

We now explain the reverse direction of the bijection in 2.3.4.

Let π : X → SpecR be a crepant partial resolution with exceptional curves C1,C2, . . . ,Cm.
For each 1 ≤ i ≤ m, there exists a vector bundle Ni on X [V2, 3.5.4], and we define:

N := OX ⊕
m⊕

i=1
Ni.

26



CHAPTER 2. PRELIMINARIES 27

This bundle is tilting on X [V2, 3.5.5]. Pushing forward via π yields:

π∗(OX) = R, π∗(Ni) = Ni for some R-module Ni.

Let N := R ⊕ ⊕m
i=1 Ni. Then both N and EndR(N) lie in CMR [V2, §4], so N is a

modifying module. In other words, this construction produces a collection of indecomposable
R-modules—one for each exceptional curve—and their endomorphism algebra EndR(N) is
the modification algebra associated to the resolution π.

By [V2, 3.2.10], there is an isomorphism

Λ(π) := EndX(N ) ∼= EndR(N) = Λ(N).

The contraction algebra associated to π is now defined as a certain quotient of this modifi-
cation algebra.

Definition 2.3.5. With notation above, define the contraction algebra associated to a crepant
partial resolution π to be the stable endomorphism algebra

Λcon(π) (equivalently, Λcon(N)) := EndR(N) = EndR(N)/⟨R⟩,

where ⟨R⟩ denotes the two-sided ideal consisting of all morphisms which factor through addR.

The difference between flopping contractions and divisor-to-curve contractions can be de-
tected by the finite dimensionality (or otherwise) of the contraction algebra as follows.

Theorem 2.3.6. (Contraction Theorem, [DW2, 4.8]) Suppose that π : X → SpecR is a
crepant partial resolution. Then

π is a flopping contraction ⇐⇒ dimCΛcon(π) <∞.

If further X is smooth, these conditions are equivalent to R being an isolated singularity.

Donovan and Wemyss conjectured that the contraction algebra distinguishes the analytic
type of the flop [DW1, 1.4], which was later proved as follows.

Theorem 2.3.7. [JKM, A.2] Let πi : Xi → SpecRi be crepant resolution of isolated cDV Ri

for i = 1, 2. Then Λcon(π1) and Λcon(π2) are derived equivalent if and only if the singularities
R1 and R2 are isomorphic.

This means that the contraction algebras of an isolated cDV singularity R are all derived
equivalent, and furthermore, R can be recovered from this derived equivalence class.

The following result connects derived equivalence of contraction algebras with the operation
of flopping crepant partial resolutions.

27



CHAPTER 2. PRELIMINARIES 28

Theorem 2.3.8. [A3, 5.2.2] Given a crepant partial resolution π : X → SpecR where R is
isolated cDV, then the basic algebras derived equivalent to Λcon(π) are precisely these Λcon(π′)
where π′ is obtained by a sequence of iterated flops from π. In particular, there are finitely
many such algebras.

§ 2.4 | Gopakumar–Vafa invariants
Let π : X→ SpecR be a crepant resolution. The reduced fibre above the origin,

π−1(0)red =
n⋃

i=1
Ci,

is a union of rational curves.

Let A1(π) := ⊕n
i=1 Z ⟨Ci⟩ be the abelian group freely generated by these exceptional curves.

Given a curve class β = (β1, . . . ,βn) ∈ A1(π), there exists a genus zero Gopakumar–Vafa
(GV) invariant GVβ(X) (or equivalently, GVβ(π)), which virtually counts curves in the class
β on X.

Definition 2.4.1. There are several equivalent interpretations of GVβ(X).

(1) Set
GVβ(X) =

∫
Shβ(X)

v =
∑
n∈Z

nχ
(
v−1(n)

)
or GVβ(X) =

∫
[Shβ(X)]vir

1

where v is the Behrend’s function [B1] on the moduli scheme Shβ(X) of one dimensional
stable sheaves F with support β and Euler characteristic χ(F ) = 1. Moreover, there
is a symmetric perfect obstruction theory on Shβ(X) and virtual fundamental class
[Shβ(X)]vir [K2, MT].

(2) GVβ(X) = Ωnum
X (1,β) where ΩX(1,β) is a noncommutative BPS invariant [V5].

(3) If furthermore R is isolated, GVβ(X) equals to the number of (−1,−1)-curves with
curve class β on a one-parameter deformation of π : X→ SpecR [BKL].

If further R is isolated, GV invariants can be read off from the dimension of Λcon(π) by
Toda’s formula.

Theorem 2.4.2. (Toda’s formula, [T2, §4.4]) Let π : X→ SpecR be a crepant resolution of
an isolated cDV singularity R with exceptional curves ⋃n

i=1 Ci. For any 1 ≤ s ≤ t ≤ n, the
following equality holds.

dimC esΛcon(π)et =
∑

β=(β1,...,βn)
βs · βt ·GVβ(π) = dimC etΛcon(π)es.

In particular, dimC Λcon(π) = ∑
β |β|2GVβ(π) where |β| = β1 + · · ·+ βn.
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Chapter 3

Generalised GV Invariants

In this chapter, we introduce and study generalised GV invariants, which extend the classical
GV invariants to crepant partial resolutions of cAn singularities.

In §3.1, we define these generalised GV invariants.

Next, in §3.2, we prove that these generalised invariants satisfy a version of Toda’s formula
and demonstrate that they are determined by their associated contraction algebras.

Finally, §3.3 restricts our focus to crepant resolutions of cAn singularities, showing that in
this context, the generalised invariants are equivalent to the classical GV invariants.

§ 3.1 | Definition of generalised GV invariants
Recall that every cAt−1 singularity R has the form

R ∼=
C[[u, v, x, y]]

uv − f0f1 . . . fn

,

where t is the order of the polynomial f0f1 . . . fn considered as a power series, and each fi

is a prime element of C[[x, y]]. For any subset I ⊆ {0, 1, . . . , n} set Ic = {0, 1, . . . , n}\I and
denote

fI :=
∏
i∈I

fi and MI := (u, fI)

where TI is an ideal of R of generated by u and fI . For a collection of subsets ∅ ⊊ I1 ⊊ I2 ⊊
. . . ⊊ Im ⊊ {0, 1, . . . , n}, we say that F = (I1, . . . , Im) is a flag in the set {0, 1, . . . , n}. We
say that the flag F is maximal if n = m. Given a flag F = (I1, . . . , Im), we define

MF := R⊕

 m⊕
j=1

MIj

 .
To ease notation, set I0 := ∅ and Im+1 := {0, 1, . . . , n}, and then gj := fIj+1\Ij

for all
0 ≤ j ≤ m. Thus fIj

= ∏j−1
i=0 gi and MIj

= (u,∏j−1
i=0 gi). Then using [IW3, §5] F is given
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pictorially by

F . . .
C1 C2 Cm

g0 g1 g2 gm−1 gm

By [IW3, 5.1], the set (MR) ∩ (CMR) is equal to modules MF , where F is a flag in
{0, 1, . . . , n}. By 2.3.4, for each flag F there exists a crepant partial resolution πF : XF →
SpecR such that Λcon(πF) ∼= EndR(MF).

Definition 3.1.1. With notation as above, define the generalised GV invariant Nβ(πF) of
the curve class β ∈⊕m

i=1 Z ⟨Ci⟩ to be

Nβ(πF) :=

dimC
C[[x,y]]

(gi−1,gj) if β = Ci + Ci+1 + . . .+ Cj

0 else

The above generalised GV invariant 3.1.1 is parallel to GV invariants, since if πF is a crepant
resolution, then {Ci + Ci+1 + · · · + Cj | 1 ≤ i ≤ j ≤ m} are the only curve classes with
non-zero GV invariants [NW, V5].

Thus throughout this paper we will often write Nij(π) (resp. GVij(π)) for Nβ(π) (resp.
GVβ(π)) when β = Ci + Ci+1 + . . .+ Cj.

Example 3.1.2. Consider f0f1f2f3f4f5 with a flag F = ({0, 1} ⊊ {0, 1, 2}). Then g0 = f0f1,
g1 = f2, g2 = f3f4f5, and F corresponds to

f0f1 f2 f3f4f5

Then MF is R⊕ (u, f0f1)⊕ (u, f0f1f2), and the generalised GV invariants are

N11(πF) = dimC
C[[x, y]]

(f0f1, f2)
, N22(πF) = dimC

C[[x, y]]
(f2, f3f4f5)

, N12(πF) = dimC
C[[x, y]]

(f0f1, f3f4f5)
.

Corollary 3.1.3. [IW3, 5.33] Given a flag F = (I1, . . . , Im), with notation as above the
quiver of EndR(MF) is as follows:

m≥2

MI1 MI2 ··· MIm

R

inc
g1

inc
g2

inc
gm−1

inc
g0 gm

u

u R MI1

g0
u

g1
u

inc

m=1

together with the possible addition of some loops, given by the following rules:

• Consider vertex R. If (g0, gm) = (x, y) in the ring C[[x, y]], add no loops at vertex R.
Hence suppose (g0, gm) ⊊ (x, y). If there exists t ∈ (x, y) such that (g0, gm, t) = (x, y),
add a loop labelled t at vertex R. If there exists no such t, add two loops labelled x and
y at vertex R.
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• Consider vertex MIi
. If (gi−1, gi) = (x, y) in the ring C[[x, y]], add no loops at vertex

MIi
. Hence suppose (gi−1, gi) ⊊ (x, y). If there exists t ∈ (x, y) such that (gi−1, gi, t) =

(x, y), add a loop labelled t at vertex MIi
. If there exists no such t, add two loops

labelled x and y at vertex MIi
.

§ 3.2 | Contraction algebra determines generalised GV
invariants

In this subsection, we prove that the contraction algebra Λcon(πF) associated to a crepant
partial resolution πF of a cAn singularity determines the generalised GV invariants Nij(πF).
Specifically, we express the relevant hom-spaces inside the contraction algebra in terms of
power series rings, showing that their dimensions coincide with the values of the generalised
invariants. This result generalises Toda’s formula to the non-smooth setting and confirms
that the contraction algebra encodes complete numerical curve-counting information in this
context.

Through out this subsection, we follow the notation R, F , MIj
, gj and πF in §3.1. Note in

particular that the elements gj need not be prime.

Proposition 3.2.1. There are R-isomorphisms

HomR

(
(u, g0), (u, g0 . . . gm−1)

) ∼= C[[u, v, x, y]]
(u, v, g0, gm)

∼= HomR

(
(u, g0 . . . gm−1), (u, g0)

)
.

In particular, the dimension of each as a C-vector space equals dimC C[[x, y]]/(g0, gm).

Proof. (1) We first prove that HomR

(
(u, g0), (u, g0 . . . gm−1)

) ∼= C[[u, v, x, y]]/(u, v, g0, gm).

We first claim that HomR

(
(u, g0), (u, g0 . . . gm−1)

) ∼= Ext1
R

(
(u, g0), (u, gm)

)
.

From [IW3, §5] there is an exact sequence

0→ (u, gm)
( g0...gm−1

u
−inc )

−−−−−−−−−−→ R2 ( u
g0...gm−1 )
−−−−−−−→ (u, g0 . . . gm−1)→ 0. (3.2.A)

Thus Ω(u, g0 . . . gm−1) = (u, gm) where Ω denotes the syzygy. Then we have

HomR

(
(u, g0), (u,

m−1∏
i=0

gi)
) ∼= HomR

(
(u, g0),Ω(u,

m−1∏
i=0

gi)[1]
)

(Ω[1] = Id in CMR)

∼= HomR

(
(u, g0), (u, gm)[1]

)
(by above)

∼= Ext1
R

(
(u, g0), (u, gm)

)
. (by e.g. [IW2])

We next claim that Ext1
R

(
(u, g0), (u, gm)

) ∼= (u,G)/(u, g0G,Ggm, Gv) as R-modules, where
G := g1g2 . . . gm−1 and the right-hand side is the quotient of one ideal by another.
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Applying F = Hom
(
(u, g0),−

)
to the short exact sequence (3.2.A) gives

0→ F(u, gm)→ FR2

( u∏m−1
i=0 gi

)
−−−−−−−→ F(u,

m−1∏
i=0

gi)→ Ext1
R

(
(u, g0), (u, gm)

)
→ Ext1

R

(
(u, g0),R2

)
.

Since (u, g0) ∈ CMR by [IW3, 5.3], Ext1
R

(
(u, g0),R2

)
= 0. Further, by [IW3, 5.4], there are

isomorphisms

(u,
m∏

i=1
gi) ∼= FR via r 7→ (· r

u
),

(u,
m−1∏
i=1

gi) ∼= F(u,
m−1∏
i=0

gi) via r 7→ (·r).

Combining these together gives an exact sequence

(u,
m∏

i=1
gi)⊕2

d=
(

inc∏m−1
i=0 gi

u

)
−−−−−−−−−→ (u,

m−1∏
i=1

gi)→ Ext1
R

(
(u, g0), (u, gm)

)
→ 0.

Thus Ext1
R

(
(u, g0), (u, gm)

) ∼= (u,∏m−1
i=1 gi)/ Im d. It is elementary to check that Im d ∼=

(u, g0G, gmG, vG), proving the second claim.

Finally, we claim that (u,G)/(u, g0G, gmG, vG) ∼= C[[u, v, x, y]]/(u, v, g0, gm) as R-modules.

We first define a C[[u, v, x, y]]-homomorphism φ as follows,

φ : C[[u, v, x, y]] ·G−→ (u,G)/(u, g0G, gmG, vG).

Clearly, φ is well defined and (u, v, g0, gm) ⊆ kerφ. We claim that kerφ ⊆ (u, v, g0, gm).

Let r ∈ C[[u, v, x, y]] be such that φ(r) = 0. Then rG = r1u+r2g0G+r3gmG+r4vG for some
ri ∈ C[[u, v, x, y]]. Thus r1u = (r − r2g0 − r3gm − r4v)G. Since u and G have no common
factors, we have r1 = r5G for some r5 ∈ C[[u, v, x, y]]. Thus rG = (r5u+ r2g0 + r3gm + r4v)G.
Since C[[u, v, x, y]] is domain, then r = r5u + r2g0 + r3gm + r4v ∈ (u, v, g0, gm), and so
kerφ ⊆ (u, v, g0, gm), proving the claim. Thus kerφ = (u, v, g0, gm).

Since φ is evidently surjective, it induces a C[[u, v, x, y]]-isomorphism

φ : C[[u, v, x, y]]
(u, v, g0, gm)

∼−→ (u,G)
(u, g0G,Ggm, Gv)

.

It is easy to check this is also an R-module isomorphism.

(2) We next prove that HomR

(
(u, g0 . . . gm−1), (u, g0)

) ∼= C[[u, v, x, y]]/(u, v, g0, gm).

We first claim that HomR

(
(u, g0 . . . gm−1), (u, g0)

) ∼= Ext1
R

(
(u,∏m−1

i=0 gi), (u,
∏m

i=1 gi)
)
.
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Similar to (1), from [IW3, §5] there is an exact sequence

0→ (u, g1 . . . gm)
( g0

u
−inc )

−−−−−−→ R2 ( u
g0 )
−−−→ (u, g0)→ 0. (3.2.B)

Thus Ω(u, g0) = (u, g1 . . . gm) and

HomR

(
(u,

m−1∏
i=0

gi), (u, g0)
) ∼= HomR

(
(u,

m−1∏
i=0

gi),Ω(u, g0)[1]
)

(Ω[1] = Id in CMR)

∼= HomR

(
(u,

m−1∏
i=0

gi), (u,
m∏

i=1
gi)[1]

)
(by above)

∼= Ext1
R

(
(u,

m−1∏
i=0

gi), (u,
m∏

i=1
gi)
)
. (by e.g. [IW2])

We next claim that Ext1
R

(
(u,∏m−1

i=0 gi), (u,
∏m

i=1 gi)
) ∼= (u, g0gm)/(u2, ug0, ugm, g0gm) as R-

modules, where the right-hand side is the quotient of two fractional ideals.

Similar to (1), applying G = HomR

(
(u,∏m−1

i=0 gi),−
)

to the exact sequence (3.2.B) gives

0→ G(u,
m∏

i=1
gi)→ GR2 ( u

g0 )
−−−→ G(u, g0)→ Ext1

R

(
(u,

m−1∏
i=0

gi), (u,
m∏

i=1
gi)
)
→ 0.

By [IW3, 5.4], there are isomorphisms

(u, gm) ∼= GR via r 7→ (· r
u

),

(u, g0gm) ∼= G(u, g0) via r 7→ (· r
u

).

Combining these together gives an exact sequence

(u, gm)⊕2 d=( u
g0 )

−−−−→ (u, g0gm)→ Ext1
R

(
(u,

m−1∏
i=0

gi), (u,
m∏

i=1
gi)
)
→ 0.

Thus Ext1
R

(
(u,∏m−1

i=0 gi), (u,
∏m

i=1 gi)
) ∼= (u, g0gm)/ Im d. It is elementary to check that

Im d ∼= (u2, ug0, ugm, g0gm), proving the second claim.

Finally, we claim that (u, g0gm)/(u2, ug0, ugm, g0gm) ∼= C[[u, v, x, y]]/(u, v, g0, gm) as R-modules.
Similar to (1), we first define a C[[u, v, x, y]]-homomorphism φ as follows,

φ : C[[u, v, x, y]] ·u−→ (u, g0gm)/(u2, ug0, ugm, g0gm).

Clearly, φ is well defined and (u, v, g0, gm) ⊆ kerφ. We claim that kerφ ⊆ (u, v, g0, gm).

Let r ∈ C[[u, v, x, y]] be such that φ(r) = 0. Then ru = r1u
2+r2g0u+r3gmu+r4g0gm for some

ri ∈ C[[u, v, x, y]]. Thus (r−r1u−r2g0−r3gm)u = r4g0gm. Since u and g0gm have no common
factors, we have r4 = r5u for some r5 ∈ C[[u, v, x, y]]. Thus ru = (r1u+r2g0+r3gm+r5g0gm)u.
Since C[[u, v, x, y]] is domain, then r = r1u + r2g0 + r3gm + r5g0gm ∈ (u, v, g0, gm), and so
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kerφ ⊆ (u, v, g0, gm), proving the claim.

Since φ is evidently surjective, it induces a C[[u, v, x, y]]-isomorphism

φ : C[[u, v, x, y]]
(u, v, g0, gm)

∼−→ (u, g0gm)
(u2, ug0, ugm, g0gm) .

It is easy to check this is also an R-module isomorphism.

Lemma 3.2.2. Let p, q ∈ C[[x, y]]. If the greatest common divisor gcd(p, q) ̸= 1, then
dimC C[[x, y]]/(p, q) =∞.

Proof. Write r ∈ (x, y) for the greatest common divisor of p and q, namely r = gcd(p, q).
Then p = rp′ and q = rq′ for some p′, q′ ∈ C[[x, y]], and so (p, q) = (r)(p′, q′) ⊆ (r). Thus

dimC
C[[x, y]]

(r) ≤ dimC
C[[x, y]]
(p, q) .

Since C[[x, y]] is a polynomial of two variables, dimC C[[x, y]]/(r) =∞, and so the statement
follows.

Lemma 3.2.3. Let pi and qj ∈ C[[x, y]] for 0 ≤ i ≤ s and 0 ≤ j ≤ t. Then

dimC
C[[x, y]]

(∏s
i=0 pi,

∏t
j=0 qj)

=
s∑

i=0

t∑
j=0

dimC
C[[x, y]]
(pi, qj)

.

Proof. We split the proof into two cases.

(1) There exists i′ and j′ such that the greatest common divisor gcd(pi′ , qj′) ̸= 1.

Since gcd(pi′ , qj′) ̸= 1, gcd(∏s
i=0 pi,

∏t
j=0 qj) ̸= 1. By 3.2.2,

dimC
C[[x, y]]

(∏s
i=0 pi,

∏t
j=0 qj)

=∞ = dimC
C[[x, y]]
(pi′ , qj′) .

Since the dimension of a vector space can not be negative, the statement follows.

(2) The greatest common divisor gcd(pi, qj) = 1 for each i and j.

It suffices to prove that

dimC
C[[x, y]]

(p0, q0q1)
= dimC

C[[x, y]]
(p0, q0)

+ dimC
C[[x, y]]
(p0, q1)

,

since then the statement follows by induction. We first consider the natural quotient C[[x, y]]-
homomorphism

φ : C[[x, y]]
(p0, q0q1)

↠
C[[x, y]]
(p0, q0)

.

It is clear that kerφ = (q0)/(p0, q0q1). So we only need to prove that (q0)/(p0, q0q1) ∼=
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C[[x, y]]/(p0, q1). To see this, we define a C[[x, y]]-homomorphism as

ϑ : C[[x, y]]
(p0, q1)

→ (q0)
(p0, q0q1)

r 7→ q0r

It is clear that ϑ is well-defined and surjective. So we only need to prove the injectivity. If
q0r = r1p0 + r2q0q1 for some r1, r2 ∈ C[[x, y]], since gcd(p0, q0) = 1, then r1 = r3q0 for some
r3 ∈ C[[x, y]]. Since C[[x, y]] is a domain, r = r3p0 + r2q1 ∈ (p0, q1), and so ϑ is injective.

Recall that πF is a crepant partial resolution with m excpetional curves and Λ(πF) ∼=
EndR(MF). Moreover, Λ(πF) can be presented as the quiver in 3.1.3 with the trivial path
ei at each vertex i. The following shows that generalised GV invariants also satisfy Toda’s
formula, which implies that these new invariants are a natural generalization.

Theorem 3.2.4. For any 1 ≤ s ≤ t ≤ m, the following equality holds.

dimC esΛcon(πF)et =
s∑

i=1

m∑
j=t

Nij(πF) = dimC etΛcon(πF)es.

In particular, dimC Λcon(πF) = ∑m
i=1

∑m
j=i(j − i+ 1)2Nij(πF).

Proof. To ease notation, set π := πF . We first factor π as X −→ Y
ω−→ SpecR such that

A1(ω) = ⋃t
k=s Z⟨Ck⟩. By [IW3, §5], Y is given pictorially by

Y . . .
Cs Cs+1 Ct

g0...gs−1 gt...gm

and Λcon(ω) ∼= estΛcon(π)est where est := es + · · ·+ et. Thus

esΛcon(π)et
∼= esestΛcon(π)estet (since esest = es and estet = et)
∼= esΛcon(ω)et (since Λcon(ω) ∼= estΛcon(π)est)
∼= HomR((u, g0 . . . gs−1), (u, g0 . . . gt−1)) (by 3.1.3)

∼=
C[[u, v, x, y]]

(u, v, g0 . . . gs−1, gt . . . gm) ,

where in the last step uses the first isomorphism in 3.2.1, but with g0 and gm replaced by
g0 . . . gs−1 and gt . . . gm. Similarly,

etΛcon(π)es
∼= etestΛcon(π)estes (since etest = et and estes = es)
∼= etΛcon(ω)es (since Λcon(ω) ∼= estΛcon(π)est)
∼= HomR((u, g0 . . . gt−1), (u, g0 . . . gs−1)) (by 3.1.3)

∼=
C[[u, v, x, y]]

(u, v, g0 . . . gs−1, gt . . . gm)
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where again the last step uses the second isomorphism in 3.2.1, with g0 and gm replaced by
g0 . . . gs−1 and gt . . . gm. Combining these together, it follows that

dimC esΛcon(π)et = dimC
C[[x, y]]

(∏s−1
i=0 gi,

∏m
j=t gj)

= dimC etΛcon(π)es.

Moreover,

dimC
C[[x, y]]

(∏s−1
i=0 gi,

∏m
j=t gj)

=
s−1∑
i=0

m∑
j=t

dimC
C[[x, y]]
(gi, gj)

(by 3.2.3)

=
s∑

i=1

m∑
j=t

dimC
C[[x, y]]
(gi−1, gj)

=
s∑

i=1

m∑
j=t

Nij(π). (by definition 3.1.1)

Writing Nij = Nij(π) and Λcon = Λcon(π) to ease notation, it follows that

dimC esΛconet =
s∑

i=1

m∑
j=t

Nij = dimC etΛcones. (3.2.C)

Now by 3.1.3,

Λcon =


e1Λcone1 e1Λcone2 · · · e1Λconem

e2Λcone1 e2Λcone2 · · · e2Λconem

... ... . . . ...
emΛcone1 emΛcone2 · · · emΛconem

 ,

so using (3.2.C)

dimC Λcon =



⊕1
i=1

⊕m
j=1 Nij

⊕1
i=1

⊕m
j=2 Nij · · · ⊕1

i=1
⊕m

j=m Nij⊕1
i=1

⊕m
j=2 Nij

⊕2
i=1

⊕m
j=2 Nij · · · ⊕2

i=1
⊕m

j=m Nij

... ... . . . ...⊕1
i=1

⊕m
j=m Nij

⊕2
i=1

⊕m
j=m Nij · · ·

⊕m
i=1

⊕m
j=m Nij

 .

For 1 ≤ i ≤ j ≤ m, Nij only appears in each entry of the submatrix from row i to row j and
column i to column j of the above matrix, and so Nij appears (j− i+1)2 times in dimC Λcon.
Thus dimC Λcon = ∑m

i=1
∑m

j=i(j − i+ 1)2Nij.

The following asserts that isomorphisms between contraction algebras of crepant partial
resolutions can only map ei to ei or em+1−i for 1 ≤ i ≤ m.

Proposition 3.2.5. Let πk : Xk → SpecRk be two crepant partial resolutions of cAnk
sin-

gularities Rk with mk exceptional curves for k = 1, 2. If there exists an algebra isomorphism
ϕ : Λcon(π1) ∼= Λcon(π2), then m1 = m2 and ϕ must belong to one of the following cases:
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(1) ϕ(ei) = ei for 1 ≤ i ≤ m,

(2) ϕ(ei) = em+1−i for 1 ≤ i ≤ m,

where m := m1 = m2.

Proof. For 1 ≤ i ≤ m1, write Si for the simple Λcon(π1)-module corresponding to the vertex
i in the quiver of Λcon(π1) (see [HW, §5.2]). Similarly, for 1 ≤ i ≤ m2, write S′

i for the simple
Λcon(π2)-module corresponding to the vertex i in the quiver of Λcon(π2). Write mod Λcon(πk)
for the category of finitely generated right Λcon(πk)-modules for k = 1, 2.

The algebra isomorphism ϕ induces an equivalence φ : mod Λcon(π1) ∼= mod Λcon(π2). By
Morita theory, m1 = m2, since φ maps simple modules to simple modules, and furthermore
there is a σ in the symmetric group Sm such that φ(Si) = S′

σ(i).

Since π1 is a crepant partial resolution of a cAn1 singularity, S2 is the unique simple
module that satisfies Ext1

Λcon(π1)(S1, S2) ̸= 0 by 3.1.3 and the intersection theory of [W2,
2.15]. Since mod Λcon(π1) is equivalent to mod Λcon(π2), there exists unique simple module
T ∈ mod Λcon(π2) such that Ext1

Λcon(π2)(S′
σ(1),T) ̸= 0. Thus the curve σ(1) in π2 must be a

edge curve, by 3.1.3 and the intersection theory of [W2, 2.15]. Thus σ(1) = 1 or m. We split
the proof into two cases.

(1) σ(1) = 1. Since Ext1
Λcon(π1)(S1, S2) ̸= 0 and mod Λcon(π1) is equivalent to mod Λcon(π2),

we have Ext1
Λcon(π2)(S′

σ(1), S
′
σ(2)) ̸= 0, and so Ext1

Λcon(π2)(S′
1, S

′
σ(2)) ̸= 0. Thus the curve σ(2) in

π2 must be connected to the curve σ(1) = 1, and so σ(2) = 2 by 3.1.3 and the intersection
theory of [W2, 2.15]. Repeating the same process, we can prove σ(i) = i, and so φ(Si) = S′

i,
and furthermore ϕ(ei) = ei for each i.

(2) σ(1) = m. Since Ext1
Λcon(π1)(S1, S2) ̸= 0 and mod Λcon(π1) is equivalent to mod Λcon(π2),

we have Ext1
Λcon(π2)(S′

σ(1), S
′
σ(2)) ̸= 0, and so Ext1

Λcon(π2)(S′
n, S

′
σ(2)) ̸= 0. Thus the curve σ(2)

in π2 must be connected to the curve σ(1) = m, and so σ(2) = m − 1 by 3.1.3 and the
intersection theory of [W2, 2.15]. Repeating the same process, we can prove σ(i) = m+1−i,
and so φ(Si) = S′

m+1−i, and furthermore ϕ(ei) = em+1−i for each i.

The following strengthens 2.4.2 and 3.2.4, in that it intrinsically extracts the generalised GV
invariants from the contraction algebra, and is new even in the setting of smooth flopping
contractions.

Lemma 3.2.6. For any 1 ≤ i ≤ j ≤ m, the following equity holds.

Nij(πF) = dimC ei

(
Λcon(πF)

⟨e1, e2, . . . , ei−1, ej+1, ej+2, . . . , em⟩

)
ej.
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Proof. When i = 1 and j = m,

N1m(πF) = dimC
C[[x, y]]
(g0, gm) (by the definition 3.1.1 of Nij(πF))

= dimC HomR

(
(u, g0), (u, g0 . . . gm−1)

)
(by 3.2.1)

= dimC HomR(MI1 ,MIm) (since MI1 = (u, g0) and MIm = (u, g0 . . . gm−1))
= dimC e1Λcon(πF)em. (by 3.1.3)

Thus the statement holds. When i ̸= 1 or j ̸= m, we factor πF as X
ω−→ Y −→ SpecR such

that A1(ω) = ⋃j
k=i Z⟨Ck⟩. By [IW3, 5.31], Y is given pictorially by

Y . . . . . .
C1 Ci−1 Cj+1 Cm

gi−1gi...gj

where the red dot labelled gi−1gi · · · gj corresponds, complete locally, to the singularity S :=
C[[u, v, x, y]]/(uv − gi−1gi · · · gj). Here we slightly abuse notation by again using u, v, x, y as
local coordinates to define S.

Then consider the flat morphism Spec S → Y, the fibre product U := X ×Y Spec S, and the
morphism ω|U : U→ Spec S. The following picture illustrates the m = 3, i = j = 2 case.

C1 C2 C3

ω

C1 C3

g1g2

C2

ω|U

X

Y

U

Spec S := Spec C[[u,v,x,y]]
(uv−g1g2)

By [IW3, §5],

Λcon(ω|U) ∼= Λcon(πF)/⟨e1, e2, . . . , ei−1, ej+1, ej+2, . . . , em⟩.

Thus we have

Nij(πF) = dimC
C[[x, y]]
(gi−1, gj)

(by the definition 3.1.1 of Nij(πF))

= dimC HomS

(
(u, gi−1), (u, gi−1 . . . gj−1)

)
(by 3.2.1)

= dimC eiΛcon(ω|U)ej (by 3.1.3)
= dimC ei

(
Λcon(πF)/⟨e1, e2, . . . , ei−1, ej+1, ej+2, . . . , em⟩

)
ej.

The following shows that the contraction algebra of a crepant partial resolution of a cAn
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singularity determines its associated generalised GV invariants.

Theorem 3.2.7. Let πFk : XFk → SpecRk be two crepant partial resolutions of cAnk
singu-

larities Rk with mk exceptional curves for k = 1, 2. If Λcon(πF1) ∼= Λcon(πF2), then m1 = m2

and one of the following cases holds:

(1) Nij(πF1) = Nij(πF2) for 1 ≤ i ≤ j ≤ m,

(2) Nij(πF1) = Nm+1−j,m+1−i(πF2) for 1 ≤ i ≤ j ≤ m,

where m := m1 = m2.

Proof. To ease notation, set πk := πFk for k = 1, 2. Since Λcon(π1) ∼= Λcon(π2), m1 = m2

by 3.2.5. Let ϕ be the algebra isomorphism between Λcon(π1) and Λcon(π2). By 3.2.5, either
ϕ(ei) = ei or ϕ(ei) = em+1−i for 1 ≤ i ≤ m. Then we split the proof into two cases.

(1) ϕ(ei) = ei for 1 ≤ i ≤ m. In that case, for 1 ≤ i ≤ j ≤ m,

Nij(π1) 3.2.6= dimC ei

(
Λcon(π1)/⟨e1, e2, . . . , ei−1, ej+1, ej+2, . . . , em⟩

)
ej

= dimC ei

(
Λcon(π2)/⟨e1, e2, . . . , ei−1, ej+1, ej+2, . . . , em⟩

)
ej

3.2.6= Nij(π2).

(2) ϕ(ei) = em+1−i for 1 ≤ i ≤ m. In that case, for 1 ≤ i ≤ j ≤ m,

Nij(π1) 3.2.6= dimC ei

(
Λcon(π1)/⟨e1, e2, . . . , ei−1, ej+1, ej+2, . . . , em⟩

)
ej

= dimC em+1−i

(
Λcon(π2)/⟨em, em−1, . . . , em−i+2, em−j, em−j+1, . . . , e1⟩

)
em+1−j

3.2.4= dimC em+1−j

(
Λcon(π2)/⟨e1, e2, . . . , em−j, em−i+2, em−i+3, . . . , em⟩

)
em+1−i

3.2.6= Nm+1−j,m+1−i(π2).

Remark 3.2.8. The papers [NW, V5] give a combinatorial description of the matrix which
controls the transformation of the non-zero GV invariants under a flop. For crepant resolu-
tions of cAn singularities, see §3.3.1 below.

By definition 3.1.1 and example 3.1.2, it is clear that generalised GV invariants of crepant
partial resolutions of cAn singularities also satisfy this transformation under a flop. Moreover,
generalised GV invariants satisfy Toda’s formula 3.2.4 and are determined by their associated
contraction algebra 3.2.7. These facts give strong evidence that generalised GV invariants
are a natural generalization of GV invariants.

§ 3.3 | Classical case: known facts
In this subsection, we restrict to cAn singularities that admit a crepant resolution, and sum-
marise several facts about their noncommutative crepant resolutions (NCCRs), as developed
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in [IW3]. These results serve as the foundation for comparing generalised GV invariants
with classical GV invariants in the smooth case.

Recall that in §3.1, every cAt−1 singularity R has the following form

R ∼=
C[[u, v, x, y]]

uv − f0f1 . . . fn

,

where t is the order of the polynomial f0f1 . . . fn considered as a power series and each fi is
a prime element of C[[x, y]]. Moreover, R admits a crepant resolution if and only each fi has
a linear term by e.g. [BIKR, IW3].

In the subsection, we will only consider those R that admit a crepant resolution. Thus
t = n+ 1, and so R is a cAn singularity.

Recall in §3.1 the maximal flag F in the set {0, 1, . . . , n}, and CM R-module MF . Following
the notation in [IW3, §5], we identify maximal flags with elements of the symmetric group
Sn+1. Hence we regard each σ ∈ Sn+1 as the maximal flag

{σ(0)} ⊂ {σ(0), σ(1)} ⊂ . . . ⊂ {σ(0), . . . , σ(n− 1)}.

Notation 3.3.1. We adopt the following notation.

(1) Consider the symmetric group Sn+1. For any σ ∈ Sn+1, set

Mσ := R⊕ (u, gσ(0))⊕ (u, gσ(0)gσ(1))⊕ . . .⊕ (u,
n−1∏
i=0

gσ(i)) ∈ (CMR) ∩ (MMR).

(2) Write πσ : Xσ → SpecR for the associated crepant resolution of Mσ in 2.3.4 below.

(3) Now let k ≥ 1 and consider the k-tuple r = (r1, . . . , rk) with each 1 ≤ ri ≤ n. Set

σ(r) := (rk, rk + 1) · · · (r2, r2 + 1)(r1, r1 + 1) ∈ Sn+1,

and M r := Mσ(r). Write πr : Xr → SpecR for πσ(r) : Xσ(r) → SpecR.

(4) For 1 ≤ i ≤ n, write πi, Xi and M i for π(i), X(i) and M (i) respectively.

The following two results are the special cases of 2.3.4 and 3.1.3, when we restrict to the
crepant resolutions of cAn singularities.

Proposition 3.3.2. [IW3, 5.1, 5.27] The modules (MMR) ∩ (CMR) in 2.3.4 are precisely
Mσ where σ ∈ Sn+1. Moreover, there is a bijection satisfying Λ(πσ) ∼= EndR(Mσ),

{Mσ | σ ∈ Sn+1} ←→ { crepant resolutions of R} ,

Mσ ←→ πσ : Xσ → SpecR.

Proposition 3.3.3. [IW3, W2] Given any σ ∈ Sn+1, let πσ : X→ SpecR be the associated
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crepant resolution. Then the NCCR Λ(πσ) can be presented as the following quiver (with
possible loops):

1 2 3 . . . n− 1 n

0

inc
gσ(0)

inc
gσ(1)

inc
gσ(2)

inc
gσ(n−1)

gσ(n)
u

u

where the vertex 0 represents R and the vertex i represents (u,∏i−1
j=0 gσ(j)) for 1 ≤ i ≤ n.

There is a loop labelled t at vertex 0 if and only if (gσ(0), gσ(n)) ⊊ (x, y) and (gσ(0), gσ(n), t) =
(x, y) in the ring C[[x, y]]. Further, for any 1 ≤ i ≤ n, the possible loops at vertex i are given
by the following rules:

(1) the normal bundle of curve Ci is O(−1) ⊕ O(−1) ⇐⇒ (gσ(i−1), gσ(i)) = (x, y) in
C[[x, y]] ⇐⇒ add no loop at vertex i.

(2) the normal bundle of curve Ci is O(−2) ⊕ O ⇐⇒ (gσ(i−1), gσ(i)) ⊊ (x, y) and there
exists t ∈ (x, y) such that (gσ(i−1), gσ(i), t) = (x, y) in C[[x, y]] ⇐⇒ add a loop labelled
t at vertex i.

Proof. In general, [IW3, W2] shows that either (1), (2) or the following third case holds.

(3) (gσ(i−1), gσ(i)) ⊊ (x, y) and there is no t such that (2) ⇐⇒ add two loops labelled x

and y at vertex i.

We now prove that (3) is impossible when R is cAn and admits a crepant resolution. If there
exist two loops at some vertex i, then (gσ(i−1), gσ(i)) ⊊ ((x, y)) and there exists no t ∈ (x, y)
that satisfies (gσ(i−1), gσ(i), t) = (x, y). Hence both gσ(i−1) and gσ(i) must belong to (x, y)2.
But this contradicts the fact that R admits a crepant resolution X.

§ 3.3.1 | Reduction steps for GV invariants

This subsection recalls various permutation results from [NW, V5], then shows that GV
invariants are suitably local.

The first reduction step we will use below is to permutate the GV invariant of an arbitrary
curve class into that of a particular curve class. From [NW, 5.4] and [V5, 5.10], for any cAn

crepant resolution π and 1 ≤ i ≤ n, there is a linear isomorphism

Fi : A1(π)→ A1(πi),

such that GVβ(π) = GV|Fi(β)|(πi) for any β ∈ A1(π). Here we consider A1(π) ∼= Zn ∼= A1(πi),
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and so Fi is a elements of Mn(Z). Moreover,

Fi =


In − 2E11 + E12, if i = 1

In − 2Enn + En,n−1, if i = n

In − 2Eii + Ei,i−1 + Ei,i+1, else

where Eij ∈ Mn(Z) is the standard basis matrix with a one in the j-th column of the i-th
row, and zeros everywhere else. Inspired by the above GVβ(π) = GV|Fi(β)|(πi), we adopt the
following notation.

Notation 3.3.4. For any 1 ≤ i ≤ n and r in 3.3.1, denote |Fi| := | − | ◦ Fi and |Fr| :=
|Frk
| ◦ · · · ◦ |Fr2| ◦ |Fr1|. Thus GVβ(π) = GV|Fi|(β)(πi) and GVβ(π) = GV|Fr|(β)(πr).

For 1 ≤ i ≤ j ≤ n, write vij for the vector in Zn which corresponds to the curve class
Ci + Ci+1 + · · ·+ Cj. Thus vij = ∑j

k=i ek where ek is the k-th standard basis vector.

Lemma 3.3.5. With the notation as above, the following holds.

(1) For 2 ≤ i ≤ j ≤ n, Fi−1vij = vi−1,j.

(2) For 1 ≤ i < j ≤ n, Fjvij = vi,j−1.

(3) For 1 ≤ i ≤ j ≤ n, set

r =


∅ and Fr = Id, if i = j = 1

(j, j − 1, . . . , 3, 2), if i = 1 and 2 ≤ j ≤ n

(i− 1, i− 2, . . . , 2, 1, j, j − 1, . . . , 3, 2), if 2 ≤ i ≤ j ≤ n

then |Fr|vij = v11.

Proof. From the basic facts of linear algebra, we have Eijet =

ei, if t = j

0, else
.

(1) When 3 ≤ i ≤ j ≤ n, then Fi−1 = In − 2Ei−1,i−1 + Ei−1,i−2 + Ei−1,i, and so

Fi−1vij = (In − 2Ei−1,i−1 + Ei−1,i−2 + Ei−1,i)(
j∑

k=i

ek) = vij + ei−1 = vi−1,j.

When 2 = i ≤ j ≤ n, then Fi−1 = F1 = In − 2E11 + E12, and so

Fi−1vij = F1v2j = (In − 2E11 + E12)(
j∑

k=2
ek) = v2j + e1 = v1j = vi−1,j.

(2) When 1 ≤ i < j ≤ n− 1, then Fj = In − 2Ejj + Ej,j−1 + Ej,j+1, and so

Fjvij = (In − 2Ejj + Ej,j−1 + Ej,j+1)(
j∑

k=i

ek) = vij − 2ej + ej = vi,j−1.
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When 1 ≤ i < j = n, then Fj = Fn = In − 2Enn + En,n−1, and so

Fjvij = Fnvin = (In − 2Enn + En,n−1)(
n∑

k=i

ek) = vin − 2en + en = vi,n−1 = vi,j−1.

(3) We only prove the case of 2 ≤ i ≤ j ≤ n. The other two cases are similar.

By (1), |F1| ◦ |F2| ◦ · · · ◦ |Fi−2| ◦ |Fi−1|vij = v1j. By (2), |F2| ◦ |F3| ◦ · · · ◦ |Fj−1| ◦ |Fj|v1j = v11.
Thus |Fr|vij = |F2| ◦ |F3| ◦ · · · ◦ |Fj−1| ◦ |Fj| ◦ |F1| ◦ |F2| ◦ · · · ◦ |Fi−2| ◦ |Fi−1|vij = v11.

The second reduction step will show that the GV invariants are suitably local and flopping
a curve only affects the neighbourhood of that curve.

Fix some integers s and t satisfying 1 ≤ s ≤ t ≤ n. Then we factor π as

π : X ω−→ Y −→ SpecR

such that A1(ω) = ⊕t
k=sZ⟨Ck⟩. Write SpecS for the affine patch of Y containing the singular

point and S for the completion of S at the singular point. Then we consider the flat morphism
Spec S→ Y, the fibre product U := X×Y Spec S and the morphism ω|U : U→ Spec S.

We abuse the notation to write the exceptional curves of ω|U also as A1(ω|U) = ⊕t
k=sZ⟨Ck⟩.

The following picture illustrates the n = 4, s = 2, t = 3 case where the red dots represent
the singular point of Y and Spec S.

C1 C2 C3 C4

ω

C1 C4

C2 C3

ω|U

X

Y

U

Spec S

We now prove that flopping a curve only affects the neighbourhood of that curve. Recall
from notation 3.3.1 that Xi denotes the variety of flopping the exceptional curve Ci in X.
For s ≤ i ≤ t, we consider the diagram below: we flop Ci in X to obtain ωi : Xi → Y, and
denote the birational map as φ : Xi 99K X. Pulling back ωi along Spec S→ Y, we obtain the
morphism (ω|U)i, and define the birational map φi := (ω|U)i ◦ (ω|U)−1.
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Xi U+

Y Spec S

X U

φ φi

ω
ωi

ω|U
(ω|U)i

Lemma 3.3.6. With the diagram above, (ω|U)i is the flop of ω|U by flopping the exceptional
curve Ci in U; that is Ui ∼= U+ ∼= Xi ×Y Spec S.

Proof. Since R is complete local, there exists Cartier divisor Di on X such that Di ·Cj = δij

for all s ≤ j ≤ t. Let D̃i denote the proper transform of Di to Xi. Then D̃i · Cj = −δij for
all s ≤ j ≤ t. Let Di|U denote be the pull back of Di to U, and likewise D̃i|U+ . Then for all
s ≤ j ≤ t

Di|U · Cj = δij, D̃i|U+ · Cj = −δij, and (φi)∗Di|U ∼= D̃i|U+ .

Hence by e.g. [W2, 2.7] (ω|U)i is the flop of ω|U by flopping the exceptional curve Ci in U.

Proposition 3.3.7. (GV invariants are local) With notation as above, we have GVij(X) =
GVij(U) for any s ≤ i ≤ j ≤ t.

Proof. (1) We first prove that GVkk(X) = GVkk(U) for any s ≤ k ≤ t.

Fix k satisfying s ≤ k ≤ t. Consider the following derived equivalences from [V2, 3.5.8],

Db(cohX) ∼−→ Db(modΛ(ω)), Db(cohU) ∼−→ Db(modΛ(ω|U))
OCk

(−1)↔ Sk OCk
(−1)↔ S ′

k

where Sk denotes the simple-Λ(ω) module that corresponds to OCk
(−1) (see [HW, §5.2]).

The S ′
k is similar.

From [V5, 5.3], Sk (respectively S ′
k) is the only nilpotent point in the moduli space of

semisimple Λ(ω) (resp. Λ(ω|U))-modules of its dimension vector. So, to compare GVkk(X)
and GVkk(U), it suffices to compare the value of the Behrend functions at these two points.

From [J], these values only depend on the formal neighbourhood, which can be presented
as the Maurer-Cartan locus of their enhancement algebras EndDG

Λ(ω)(Sk) and EndDG
Λ(ω|U)(S ′

k)
respectively. From [DW2], these two DG-algebras are DG equivalent, via

EndDG
Λ(ω)(Sk) ∼= EndDG

X (OCk
(−1)) ∼= EndDG

U (OCk
(−1)) ∼= EndDG

Λ(ω|U)(S ′
k).

Thus, these two values are the same. So, exactly as in [V5, 5.3], GVkk(X) = GVkk(U).

(2) We then prove that GVij(X) = GVij(U) for any s ≤ i ≤ j ≤ t.
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When s ≤ i = j ≤ t, the statement holds by (1). So we only need to prove the statement
for s ≤ i < j ≤ t. Set r = (j, j − 1, . . . , i + 1). Then GVij(X) = GVii(Xr) and GVij(U) =
GVii(Ur) by 3.3.5(2). Since by 3.3.6 Ur ∼= Xr ×Y Spec S, GVii(Xr) = GVii(Ur) by (1). So
GVij(X) = GVij(U).

§ 3.3.2 | Classical case: new results

This subsection first shows in 3.3.8 that generalised GV invariants are equivalent to GV
invariants. Together with 3.2.7, 3.3.10 asserts that the contraction algebra of a crepant
resolution of a cAn singularity determines its associated GV invariants. For the isolated
cAn, this result is from Toda’s formula 2.4.2 and [HT]. Our result generalises this to non-
isolated cAn.

Theorem 3.3.8. Given a crepant resolution π : X → SpecR where R is cAn, for any 1 ≤
i ≤ j ≤ n the following holds.

(1) Nij(π) =∞ ⇐⇒ GVij(π) = −1.

(2) Nij(π) <∞ ⇐⇒ GVij(π) = Nij(π).

Proof. Without loss of generality, we assume

R ∼=
C[[u, v, x, y]]

uv − f0f1 . . . fn

,

and M = (u, f0)⊕(u, f0f1)⊕. . .⊕(u,∏n−1
i=0 fi) such that π is the associated crepant resolution

with Λ(π) ∼= EndR(M) in 3.3.2.

Let r be the tuple in 3.3.5. We have GVij(π) = GV11(πr) by 3.3.5. Then we factor πr as
Xr ω−→ Y −→ SpecR such that A1(ω) = Z⟨C1⟩. Since GV11(πr) only depends on Xr and the
curve class C1 by 2.4.1, then GV11(πr) = GV11(ω), and so GVij(π) = GV11(ω).

By 3.3.2, Λ(πr) ∼= EndR(M r) where M r = R⊕ (u, fi−1)⊕ (u, fi−1fj)⊕ . . .⊕ (u,∏n−1
i=0 fi), then

using [IW3, §5] Xr is given pictorially by

Xr . . .
C1 C2 Cn

fi−1 fj

Since πr : Xr ω−→ Y −→ SpecR where A1(ω) = Z⟨C1⟩, then again by [IW3, §5] Y is given
pictorially by

Y . . .
C2 C3 Cn

fi−1fj

where the singular point of Y is locally S := C[u, v, x, y]/(uv − fi−1fj). Write S for the
completion of S at the singular point. Then consider the flat morphism Spec S → Y, the
fibre product U := Xr ×Y Spec S, and the morphism ω|U : U → Spec S. Since GV invariants
are local by 3.3.7, then GV11(ω) = GV11(ω|U), and so GVij(π) = GV11(ω|U).
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C1 C2
...

Cn

ω

C2
...

Cn

C1

ω|U

Xr

Y

U

Spec S := Spec C[[u,v,x,y]]
(uv−fi−1fj)

Consider the S-module N := U ⊕ (u, fi−1). In 3.3.2, ω|U is the crepant resolution of Spec S
with respect to N . Since Spec S is a cA1 singularity and admits a crepant resolution, then
by [R1] there exists a change of coordinates φ (possibly different in the two cases below)
such that

(1) ω|U is a divisor-to-curve contraction. ⇐⇒ φ(fi−1) = x = φ(fj).

(2) ω|U is a flop. ⇐⇒ φ(fi−1) = x+ yn and φ(fj) = x− yn for some n ≥ 1.

In case (1), we have Λcon(ω|U) ∼= C[[y]] from [DW1] and GV11(ω|U) = −1 from [V5], and so
GVij(π) = −1. Moreover,

Nij(π) = dimC
C[[x, y]]
(fi−1, fj)

= dimC
C[[x, y]]

(φ(fi−1), φ(fj))
= dimC C[[y]] =∞.

In case (2), we have Λcon(ω|U) ∼= C[[y]]/(yn) from [DW1], and so GV11(ω|U) = n by 2.4.2,
thus GVij(π) = n. It follows that,

Nij(π) = dimC
C[[x, y]]
(fi−1, fj)

= dimC
C[[x, y]]

(φ(fi−1), φ(fj))
= dimC

C[[y]]
(yn) = n,

and so Nij(π) = GVij(π).

Remark 3.3.9. Given a crepant resolution π of a cAn singularity, by 3.3.8 the data of Nij

is equivalent to the data of GVij. We go between them freely by replacing all −1s in GV’s
by ∞s in N’s. For example,

GV11 GV22

GV12
=

1 3
−1 ⇐⇒

N11 N22

N12
=

1 3
∞

Below, the Nij are mildly easier to control, and they unify statements about the filtration
structure in 5.3.7 and 5.3.8.

Corollary 3.3.10. Let πk : Xk → SpecRk be two crepant resolutions of cAn singularities Rk

for k = 1, 2. If Λcon(π1) ∼= Λcon(π2), then one of the following cases holds:

(1) GVij(π1) = GVij(π2) for 1 ≤ i ≤ j ≤ n,
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(2) GVij(π1) = GVn+1−j,n+1−i(π2) for 1 ≤ i ≤ j ≤ n.

Proof. This is immediate from 3.2.7 and 3.3.8.

Remark 3.3.11. This section has stated various results using the indexing Nij and GVij.
Based on the following facts, we can rephrase these results to use the indexing Nβ and GVβ

as in the introduction.

Given a crepant partial resolution π of a cAn singularity withm exceptional curves C1, . . . ,Cm,
consider the following set of exceptional curve classes

S := {Ci + Ci+1 + · · ·+ Cj | 1 ≤ i ≤ j ≤ m}.

Recall that given a curve class β = (β1, . . . ,βm), its reflective curve class β = (βm, . . . ,β1).

(1) By [NW, V5], GVβ(π) ̸= 0 ⇐⇒ β ∈ S.

(2) By the definition 3.1.1, Nβ(π) ̸= 0 ⇐⇒ β ∈ S.

(3) By the definition of reflective curve class, β ∈ S ⇐⇒ β ∈ S.

(4) If β = Ci + Ci+1 + · · ·+ Cj, with notation in 1.5.1, then |β| = j − i+ 1.

(5) If β = Ci + Ci+1 + · · ·+ Cj, then its reflective curve class β = Cm+1−j + +Cm+2−j · · ·+
Cm+1−i.

Based on the above facts, we rephrase the results in the section to those in the introduction.

• By (2) and (4), 3.2.4 induces 1.5.1.

• By (2), (3) and (5), 3.2.7 induces 1.5.2.

• By (1) and (2), 3.3.8 induces 1.5.3.

• By (1), (3) and (5), 3.2.7 induces 1.5.4.
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Chapter 4

Monomialization and Geometric Real-
isation

In this chapter, we focus on the smooth cases, specifically the crepant resolutions of cAn

singularities.

In §4.1, we introduce various intrinsic algebraic definitions of a Type A potential on the
double An quiver (with a possible single loop at each vertex). Via coordinate changes, we
next establish a monomialization result that expresses these potentials in a particularly nice
form.

Building on this monomialization, §4.2 shows that any Type A potential on Qn can be
realised by a crepant resolution of a cAn singularity, and thereby proving the Realisation
Conjecture of Brown–Wemyss [BW2] in the setting of Type A potentials.

We further establish a correspondence between the crepant resolutions of cAn singularities
and these intrinsic Type A potentials on Qn.

Finally, we provide an example of a non-isolated cA2 singularity which illustrates that the
Donovan–Wemyss Conjecture does not extend to non-isolated cDV singularities.

§ 4.1 | Monomialization
This section introduces the quiver Qn,I and Type A potentials.

The main result in §4.1.1 is that any reduced Type A potential on Qn,I is right-equivalent
to some reduced monomialized Type A potential in 4.1.20. This is the starting point of the
geometric realization in §4.2.

Then §4.1.2 shows that any monomialized Type A potential on Qn,I is isomorphic to a
(possibly non-reduced) monomialized Type A potential on Qn in 4.1.23, which shows that
considering the monomialized Type A potentials on Qn suffices.

Definition 4.1.1. Given a quiver Q, let f , g and h be potentials on Q. Write f = ∑
i λici
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as a linear combination of cycles where each 0 ̸= λi ∈ C.

(1) We write V (f) for the C-span of {cycle c | c ∼ ci for some i}.

(2) We say f is orthogonal to g if V (f) ∩ V (g) = {0}.

(3) We write f = g ⊕ h if f = g + h and g is orthogonal to h.

(4) We say f contains g if f ∼ λg ⊕ h′ for some 0 ̸= λ ∈ C and potential h′.

Recall the definition of the quiver Qn in §1.5.2, which is the double of the usual An quiver,
with a single loop at each vertex as follows.

. . .
1 2 3 n−1 n

a2

b2

a4

b4

a2n−2

b2n−2

a1 a3 a5 a2n−3 a2n−1

Qn =

For any I ⊆ {1, 2, . . . , n}, define the quiver Qn,I by removing the loop in Qn at each vertex
i ∈ I, and then relabel ai and bi from left to right. Similarly to before, we now set bi := ei

whenever ai is a loop in Qn,I , and set xi := aibi and x′
i := biai for each i. For example,

1 2 3

a2

b2

a3

b3

a1 a4

Q3,{2} =
b1 = e1, x1 = x′

1 = a1

b4 = e4, x4 = x′
4 = a4

whereas x2 = a2b2, x′
2 = b2a2, and x3 = a3b3, x′

3 = b3a3.

Notation 4.1.2. Through this chapter, n is the number of vertices in the quiver Qn,I , and
I ⊆ {1, 2, . . . , n} is the set of vertices without loop in Qn,I . Note that Qn,∅ is just Qn.
Furthermore, set m := 2n− 1− |I|, which equals the number of xi in Qn,I

We now give several definitions and notations with respect to Qn,I .

Definition 4.1.3. Given any cycle c on Qn,I , write c as a composition of arrows. For i
such that 1 ≤ i ≤ m, let qi be the number of times ai appears in this composition. Then set
T(c) := (q1, q2, . . . , qm), and define the degree of c to be deg(c) := ∑m

i=1 qi.

Definition 4.1.4. We say that a potential f on Qn,I is reduced Type A if f is reduced in the
sense of 2.1.1 and f contains x′

ixi+1 in the sense of 4.1.1 for each 1 ≤ i ≤ m− 1. Further,
we say that a (possibly non-reduced) potential f on Qn,I is Type A if

(1) All terms of f have degrees greater than or equal to two in the sense of 4.1.3.

(2) The reduced part fred is Type A on Qn,I′ for some I ⊆ I ′ ⊆ {1, 2, . . . , n}.

The Splitting Theorem [DWZ, 4.6] gives the existence and uniqueness of fred, so 4.1.4 is well
defined.
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Lemma 4.1.5. Given any potential f ∼ ∑m−1
i=1 λix′

ixi+1 + h where each 0 ̸= λi ∈ C on Qn,I ,
there exists f ⇝ f ′ such that f ′ = ∑m−1

i=1 x′
ixi+1 + g for some potential g.

Proof. Applying ai 7→ kiai where ki ∈ C for each 1 ≤ i ≤ m gives

f ⇝
m−1∑
i=1

kiki+1λix′
ixi+1 + g,

for some potential g. Since each λi ̸= 0, we can always find some (k1, k2, . . . , km) that ensures
kiki+1λi = 1 holds for 1 ≤ i ≤ m− 1.

Remark 4.1.6. The above lemma shows that any reduced Type A potential f can be
transformed to the form of ∑m−1

i=1 x′
ixi+1 ⊕ g for some potential g. Thus, in this paper, for

any reduced Type A potential f on Qn,I , we always assume that f = ∑m−1
i=1 x′

ixi+1 ⊕ g.

Definition 4.1.7. We call a quiver f on Qn,I monomialized Type A if f ∼ ∑m−1
i=1 x′

ixi+1 +∑m
i=1

∑∞
j=2 κijxj

i for some κij ∈ C.

Given any monomialized Type A potential f , it is clear that f is Type A. Moreover, f is
reduced if and only if κs2 = 0 whenever xs is a loop.

Definition 4.1.8. Given a cycle c on Qn,I , consider T(c) from 4.1.3. Define left(c) to be
the smallest i such that qi > 0, and right(c) to be the largest i such that qi > 0. Then define
the length of c to be len(c) := right(c)− left(c) + 1.

From the above definition, if len(c) = 1 then c ∼ xj
i for some 1 ≤ i ≤ m and j ≥ 1.

Notation 4.1.9. We adopt the following notation regarding cycles on Qn,I .

(1) Write F for the C-span of {c | c is a cycle with deg(c) ≥ 1} where the degree is defined
in 4.1.3.

(2) For any i ∈ N, write Di for the C-span of {c | c is a cycle with deg(c) = i}.

(3) For any i ∈ N, write Li for the C-span of {c | c is a cycle with len(c) = i} where the
length is defined in 4.1.8.

(4) For any i and j ∈ N satisfying 1 ≤ i ≤ j ≤ m, write Vij for the C-span of {c |
c is a cycle with left(c) = i and right(c) = j}.

It is clear that F = ⊕
i Di, F = ⊕

i Li and F = ⊕
i≤j Vij.

Notation 4.1.10. Let f be a potential on Qn,I .

(1) Write deg(f) = i if f ∈ Di. Similarly write deg(f) ≥ i if f ∈ ⊕j≥iDj, with natural
self-documenting variations such as deg(f) ≤ i.

(2) Write len(f) = i if f ∈ Li. Similarly write len(f) ≥ i if f ∈ ⊕j≥iLj, with natural
self-documenting variations such as len(f) ≤ i.
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The above degree and length notations will be important, and they will replace the common
notations such as path length.

Notation 4.1.11. Let f and g be potentials on Qn,I . With the notation in 4.1.9, since
f, g ∈ F , F = ⊕

i Di and F = ⊕
i≤j Vij, we will adopt the following notation.

(1) Define fd by decomposing f = ∑
d fd where each fd ∈ Dd.

(2) Define f<d = ∑
i<d fi and f>d = ∑

i>d fi, with natural self-documenting variations such
as f≤d and f≥d. Thus, if deg(f) ≥ 2 then f = f2 + f3 + f>3.

(3) Define fij by decomposing
f =

∑
i,j:1≤i≤j≤m

fij,

where each fij ∈ Vij. Variations such as fij,d, fij,<d, fij,≤d, fij,>d and fij,≥d are obtained
by applying (1) and (2) to fij.

(4) Given s such that 1 ≤ s ≤ m, set

f[s] :=
∑

i,j:1≤i≤s≤j≤m

fij.

Variations such as f[s],d, f[s],<d, f[s],≤d, f[s],>d and f[s],≥d are obtained by applying (1)
and (2) to f[s].

(5) Write f = g + Od if f − g ∈⊕k≥d Dk, and f = g + Oij,d if f − g ∈ Vij
⋂⊕

k≥d Dk.

Remark 4.1.12. We will frequently work with sequences of potentials (fd)d≥1 on Qn,I , and
write fd for the degree d pieces of f (see 4.1.11). To avoid confusion, we will systematically
use Greek font fd to denote the d-th elements in a sequence, and not the d-th degree piece.

§ 4.1.1 | Monomialization

This subsection will prove that any reduced Type A potential on Qn,I is right-equivalent to
some reduced monomialized Type A potential (see 4.1.20).

Notation 4.1.13. To ease notation, in this subsection f will always refer to a reduced Type
A potential on Qn,I of the form ∑m−1

i=1 x′
ixi+1⊕ g (see 4.1.6). In the statements below, to ease

notation, the c and ck will refer to a cycle on Qn,I , possibly with a coefficient.

The following lemma allows us to monomialize the degree 2 terms in f .

Lemma 4.1.14. Suppose that g = h+ c where len(c) ≥ 3 and deg(c) = 2. Then there exists
a path degree one right-equivalence (in the sense of 2.1.8),

ρc : f 1⇝
m−1∑
i=1

x′
ixi+1 ⊕ (h+ c1) + O3,

such that len(c1) = 1 and deg(c1) = 2.
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Proof. Since deg(c) = 2 and len(c) ≥ 3, c must have the form of c ∼ λx′
s−1xs+1 for some

0 ̸= λ ∈ C, where s is such that xs is a loop. Since xs is a loop and f is reduced, f does not
contain x2

s , and so f[s],2 = x′
s−1xs + x′

sxs+1.

Rewrite f = f[s],2⊕f[s],≥3⊕r. Being a loop, xs = as, so applying the depth one unitriangular
automorphism ρc : as 7→ as − λbs−1as−1 (in other words, xs 7→ xs − λx′

s−1) gives

ρc(f) = x′
s−1(xs − λx′

s−1) + (xs − λx′
s−1)xs+1 + f[s],≥3 + r + O3

= f − λ(x′
s−1)2 − λx′

s−1xs+1 + O3 (f = f[s],2 + f[s],≥3 + r)

=
m−1∑
i=1

x′
ixi+1 + h+ c− λ(x′

s−1)2 − λx′
s−1xs+1 + O3 (f = ∑m−1

i=1 x′
ixi+1 + h+ c)

2∼
m−1∑
i=1

x′
ixi+1 + h− λx2

s−1 + O3 (c ∼ λx′
s−1xs+1, (x′

s−1)2 ∼ x2
s−1)

=
m−1∑
i=1

x′
ixi+1 ⊕ (h− λx2

s−1) + O3. (f = ∑m−1
i=1 x′

ixi+1 ⊕ (h+ c), len(c) ≥ 3)

Set c1 = −λx2
s−1, which satisfies len(c1) = 1 and deg(c1) = 2, and we are done.

The following lemmas allow us to monomialize the terms with degrees greater than two in
f . More precisely, given a cycle c with len(c) ≥ 2 in f , the basic idea is to decrease right(c)
(see 4.1.16) repeatedly through some right-equivalences until the terms that replace c have
length one (see 4.1.17).

Lemma 4.1.15. Suppose that len(f2) ≤ 2 and g = h+ c where len(c) ≥ 2, d := deg(c) ≥ 3.
Then there exists a path degree d− 1 right-equivalence,

ϑ : f d−1⇝
m−1∑
i=1

x′
ixi+1 ⊕ (h+ c1 + c2) + Od+1,

such that each ck is either zero or satisfies right(ck) ≤ right(c), deg(ck) = deg(c) and
T(ck)right(c) = T(c)right(c) − 1.

Proof. Set s = right(c) − 1. The assumption len(f2) ≤ 2 says that the degree two part
of f (wrt. xi, as in 4.1.10) must be spread over at most two variables. Thus the only
degree two cycles in f containing xs are x′

s−1xs, x2
s and x′

sxs+1. So, in the notation of 4.1.11,
f[s],2 = x′

s−1xs + κx2
s + x′

sxs+1 for some κ ∈ C.

Then separating the terms of f that contain or do not contain xs, we may write f = f[s],2 ⊕
f[s],≥3 ⊕ r. The proof splits into cases.

(1) xs is not a loop.

The assumptions that len(c) ≥ 2 and right(c) = s+ 1 imply that as, bs, as+1 and bs+1 both
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appear in c. Note that xs is not a loop, thus xs = asbs. Locally Qn,I looks like the following.

xs+1 is not a loop

as

bs

as+1

bs+1

xs+1 is a loop

as

bs

xs+1

Since right(c) = s + 1, we can assume cycle c starts with xs+1 up to cyclic equivalence. In
this order, c starts with some number of xs+1 and the next path must be bs. Thus we may
write

c ∼ λxN
s+1bspasr ∼ λbspasrxN

s+1

for some 0 ̸= λ ∈ C, integer N , and paths p, r. Consider the path q := rxN−1
s+1 , and rewrite

c ∼ λbspasqxs+1. Since deg(c) ≥ 3 and deg(xs) = 1 = deg(xs+1), deg(p) + deg(q) ≥ 1.

Then applying the depth d− 1 unitriangular automorphism ϑ : as 7→ as − λpasq gives

ϑ(f) = x′
s−1(as − λpasq)bs + κ[(as − λpasq)bs]2 + bs(as − λpasq)xs+1 + f[s],≥3 + r + Od+1

d∼ f − λx′
s−1pasqbs − 2λκxspasqbs − λbspasqxs+1 + Od+1 (f = f[s],2 + f[s],≥3 + r)

=
m−1∑
i=1

x′
ixi+1 − λx′

s−1pasqbs − 2λκxspasqbs − λbspasqxs+1 + c+ h+ Od+1

(f = ∑m−1
i=1 x′

ixi+1 + h+ c)

d∼
m−1∑
i=1

x′
ixi+1 − λx′

s−1pasqbs − 2λκxspasqbs + h+ Od+1 (c ∼ λbspasqxs+1)

=
m−1∑
i=1

x′
ixi+1 ⊕ (−λx′

s−1pasqbs − 2λκxspasqbs + h) + Od+1.

Set c1 = −λx′
s−1pasqbs and c2 = −2λκxspasqbs. The conclusions for c1 are clear. Either c2 is

zero or κ ̸= 0. In that case, the conclusions for c2 are also clear.

(2) xs is a loop.

Since xs is a loop, from the shape of the quiver Qn,I , xs+1 is not a loop. Since right(c) = s+1,
we can assume that the cycle c ends with xs+1, up to cyclic equivalence. Thus c ∼ λpxs+1

for some path p and 0 ̸= λ ∈ C.

Since deg(c) ≥ 3 and deg(xs+1) = 1, deg(p) ≥ 2. Moreover, since xs is a loop and f is
reduced, the κ in f[s],2 = x′

s−1xs + κx2
s + x′

sxs+1 equals to zero. Locally Qn,I looks like the
following.
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as+1

bs+1

xs

Being a loop, xs = as, so applying the depth d−1 unitriangular automorphism ϑ : as 7→ as−λp
(in other words, xs 7→ xs − λp) gives

ϑ(f) = x′
s−1(xs − λp) + (xs − λp)xs+1 + f[s],≥3 + r + Od+1

d∼ f − λx′
s−1p− λpxs+1 + Od+1 (f = f[s],2 + f[s],≥3 + r)

=
m−1∑
i=1

x′
ixi+1 − λx′

s−1p− λpxs+1 + c+ h+ Od+1 (f = ∑m−1
i=1 x′

ixi+1 + h+ c)

d∼
m−1∑
i=1

x′
ixi+1 − λx′

s−1p+ h+ Od+1 (c ∼ λpxs+1)

=
m−1∑
i=1

x′
ixi+1 ⊕ (−λx′

s−1p+ h) + Od+1.

Set c1 = −λx′
s−1p and c2 = 0. The conclusions for c1 and c2 are clear.

We next apply the previous lemma multiple times to decrease right(c).

Corollary 4.1.16. Suppose that len(f2) ≤ 2 and g = h+c where len(c) ≥ 2, d := deg(c) ≥ 3.
Then there exists a path degree d− 1 right-equivalence

ϑ : f d−1⇝
m−1∑
i=1

x′
ixi+1 ⊕ (h+

∑
k

ck) + Od+1,

such that right(ck) ≤ right(c)− 1 and deg(ck) = deg(c) for each k.

Proof. Set q = T(c) and j = right(c). By 4.1.15, there exists a path degree d − 1 right-
equivalence,

ϑ1 : f d−1⇝ f1 :=
m−1∑
i=1

x′
ixi+1 ⊕ (h+

2∑
s=1

ws) + Od+1,

such that ws is either zero, or satisfies right(ws) ≤ right(c), T(ws)j = qj − 1 and deg(ws) =
deg(c) for each s.

If both ws equal zero, or both satisfy T(ws)j = 0, we are done. Otherwise, we continue to
apply 4.1.15 to decrease T(ws)j, as follows.

ϑ2 : f1
d−1⇝ f2 :=

m−1∑
i=1

x′
ixi+1 ⊕ (h+

2∑
s=1

2∑
t=1

wst) + Od+1,

such that each wst is either zero, or right(wst) ≤ right(ws) ≤ right(c), T(wst)j = qj − 2 and
deg(wst) = deg(c). The proof follows by induction.
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We next apply the previous 4.1.16 multiple times to achieve the situation where length equals
one, namely a monomial type potential.

Corollary 4.1.17. Suppose that len(f2) ≤ 2 and g = h+c where len(c) ≥ 2, d := deg(c) ≥ 3.
Then there exists a path degree d− 1 right-equivalence

ρc : f d−1⇝
m−1∑
i=1

x′
ixi+1 ⊕ (h+

∑
k

ck) + Od+1,

such that len(ck) = 1 and deg(ck) = deg(c) for each k.

Proof. Set j = right(c). By 4.1.16, there exists a path degree d− 1 right-equivalence

ϑ1 : f d−1⇝ f1 :=
m−1∑
i=1

x′
ixi+1 ⊕ (h+

∑
s

ws) + Od+1,

such that deg(ws) = d and right(ws) ≤ j − 1 for each s.

If all len(ws) = 1, we are done. Otherwise, we continue to apply 4.1.16 to those len(ws) > 1
to decrease right(ws), as follows.

ϑ2 : f1
d−1⇝ f2 :=

m−1∑
i=1

x′
ixi+1 ⊕ (h+

∑
s,t

wst) + Od+1,

such that deg(wst) = deg(c) and the wst satisfies right(wst) ≤ j − 2.

If all len(wst) = 1, we are done. Otherwise, we can repeat this process at most j − 1 times,
as follows.

ρc : f d−1⇝ fj−1 :=
m−1∑
i=1

x′
ixi+1 ⊕ (h+

∑
k

ck) + Od+1,

such that deg(ck) = deg(c), and either each len(ck) = 1 or right(ck) = 1. However if
right(ck) = 1, then len(ck) = 1, we are done.

Using the previous results, we next monomialize the potential f degree by degree. The
following deals with degree two.

Proposition 4.1.18. There exists a path degree one right-equivalence,

ρ2 : f 1⇝
m−1∑
i=1

x′
ixi+1 ⊕ h+ O3,

such that len(h) = 1 and deg(h) = 2.

Proof. We first decompose g in 4.1.13 by degree (wrt. xi, as in 4.1.10) as g = g2 ⊕ g≥3, then
express g2 as a linear combination of cycles g2 = ⊕s

k=1ck.
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Since there are only a finite number of cycles with degree two on Qn,I , necessarily s is finite.
Since

f =
m−1∑
i=1

x′
ixi+1 ⊕ g =

m−1∑
i=1

x′
ixi+1 ⊕ g2 ⊕ g≥3,

then g2 does not contain any length two terms, and so len(ck) = 1 or ≥ 3 for each k.

If len(c1) = 1, set ρc1 = Id. Otherwise len(c1) = 3, so by 4.1.14 there exists

ρc1 : f 1⇝ f1 :=
m−1∑
i=1

x′
ixi+1 ⊕ (

s∑
k=2

ck + h1) + O3,

such that len(h1) = 1 and deg(h1) = 2.

If len(c2) = 1, set ρc2 = Id. Otherwise len(c2) = 3, so again by 4.1.14 there exists

ρc2 : f1
1⇝ f2 :=

m−1∑
i=1

x′
ixi+1 ⊕ (

s∑
k=3

ck +
2∑

k=1
hk) + O3,

such that len(h2) = 1 and deg(h2) = 2.

We repeat this process s times and set ρ2 := ρcs ◦ · · · ◦ ρc2 ◦ ρc1 . It follows that,

ρ2 : f 1⇝
m−1∑
i=1

x′
ixi+1 ⊕

s∑
k=1

hk + O3,

such that len(hk) = 1, deg(hk) = 2 for each k. Set h = ∑s
k=1 hk, we are done.

The following will allow us to monomialize the higher degree terms.

Proposition 4.1.19. Suppose that len(f2) ≤ 2. For any d ≥ 3, there exists a path degree
d− 1 right-equivalence,

ρd : f d−1⇝
m−1∑
i=1

x′
ixi+1 ⊕ (g<d + h) + Od+1,

such that len(h) = 1 and deg(h) = d.

Proof. We first decompose g in 4.1.13 by degree (wrt. xi, as in 4.1.10) as g = g<d⊕ gd⊕ g>d,
then express gd as a linear combination of cycles gd = ⊕s

k=1ck. Since there are only a finite
number of cycles with degree d on Qn,I , s is finite.

If len(c1) = 1, set ρc1 = Id. Otherwise, by 4.1.17 there exists

ρc1 : f d−1⇝ f1 :=
m−1∑
i=1

x′
ixi+1 ⊕ (g<d +

s∑
k=2

ck + h1) + Od+1,

such that len(h1) = 1 and deg(h1) = d.
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If len(c2) = 1, set ρc2 = Id. Otherwise, again by 4.1.17 there exists

ρc2 : f1
d−1⇝ f2 :=

m−1∑
i=1

x′
ixi+1 ⊕ (g<d +

s∑
k=3

ck +
2∑

k=1
hk) + Od+1,

such that len(hk) = 1 and deg(hk) = d.

We repeat this process s times and set ρd := ρcs ◦ · · · ◦ ρc2 ◦ ρc1 . It follows that,

ρd : f d−1⇝
m−1∑
i=1

x′
ixi+1 ⊕ (g<d +

s∑
k=1

hk) + Od+1,

such that len(hk) = 1, deg(hk) = d for each k. Set h = ∑s
k=1 hk, we are done.

The following is the main result of this subsection.

Theorem 4.1.20. For any reduced Type A potential f on Qn,I , there exists a right-equivalence
ρ : f ⇝ f ′ such that f ′ is a reduced monomialized Type A potential. In particular, f ′ is unique
up to isomorphism of Jacobi algebras.

Proof. We first apply the ρ2 in 4.1.18,

ρ2 : f 1⇝ f1 :=
m−1∑
i=1

x′
ixi+1 ⊕ h2 + O3,

such that len(h2) = 1 and deg(h2) = 2.

Since (f1)2 = ∑m−1
i=1 x′

ixi+1 ⊕ h2, it is clear that len((f1)2) ≤ 2. Thus by 4.1.19 applied to f1,
there exists

ρ3 : f1
2⇝ f2 :=

m−1∑
i=1

x′
ixi+1 ⊕

3∑
j=2

hj + O4,

such that len(h3) = 1, deg(h3) = 3. Thus, repeating this process s− 1 times gives

ρs ◦ · · · ◦ ρ3 ◦ ρ2 : f ⇝ fs :=
m−1∑
i=1

x′
ixi+1 ⊕

s∑
j=2

hj + Os+1,

such that len(hj) = 1, deg(hj) = j for each j.

Since ρd is a path degree d−1 right-equivalence for each d ≥ 2 by 4.1.18 and 4.1.19, by 2.1.9
ρ := lims→∞ ρs ◦ · · · ◦ ρ3 ◦ ρ2 exists, and further

ρ : f ⇝
m−1∑
i=1

x′
ixi+1 ⊕

∞∑
j=2

hj,

such that len(hj) = 1 and deg(hj) = j for each j.

Set f ′ = ∑m−1
i=1 x′

ixi+1 + ∑∞
j=2 hj. Since len(hj) = 1 for each j, f ′ is a monomialized Type

A potential. Moreover, since f is reduced, f ′ is also reduced. Since a right-equivalence
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f ⇝ f ′ induces an isomorphism of Jacobi algebras f ∼= f ′, it follows that f ′ is unique up to
isomorphism of Jacobi algebras.

§ 4.1.2 | Transform monomialized Type A potentials on Qn,I to Qn

To state unified results later, it will be convenient to show that any monomialized Type A
potential on Qn,I is isomorphic to a (possibly non-reduced) monomialized Type A potential
on Qn. This required the following results, which give precise construction on how to add a
loop on Qn,I .

Lemma 4.1.21. Given any I ̸= {1, 2, . . . , n} and i ∈ Ic, let xt be the loop at vertex i of
Qn,I . Suppose that h = ∑t−2

i=1 x′
ixi+1 + x′

t−1xt+1 +∑m−1
i=t+1 x′

ixi+1 − 1
2x2

t +∑
i ̸=t

∑∞
j=2 κijxj

i where
all κij ∈ C. There exists a right-equivalence

h⇝
m−1∑
i=1

x′
ixi+1 +

∞∑
i=1

∞∑
j=2
κ′

ijx
j
i ,

where κ′
ij are some scalars, and further κ′

t2 ̸= 0.

Proof. Being a loop, xt = at, so applying the automorphism at 7→ at− bt−1at−1−at+1bt+1 (in
other words, xt 7→ xt − x′

t−1 − xt+1) gives,

h 7→
t−2∑
i=1

x′
ixi+1 + x′

t−1xt+1 +
m−1∑

i=t+1
x′

ixi+1 −
1
2(xt − x′

t−1 − xt+1)2 +
∑
i ̸=t

∞∑
j=2
κijxj

i

∼
m−1∑
i=1

x′
ixi+1 −

1
2x2

t−1 −
1
2x2

t −
1
2x2

t+1 +
∑
i ̸=t

∞∑
j=2
κijxj

i . (4.1.A)

Then set the value of κ′
ij from the equation ∑∞

i=1
∑∞

j=2 κ
′
ijx

j
i = −1

2x2
t−1 − 1

2x2
t − 1

2x2
t+1 +∑

i ̸=t

∑∞
j=2 κijxj

i . Since κ′
t2 is the coefficient of x2

t in (4.1.A), κ′
t2 = −1

2 ̸= 0.

Corollary 4.1.22. Given any I ̸= ∅, i ∈ I and a monomialized Type A potential f on
Qn,I , then there exists a monomialized Type A potential g on Qn,I/i such that Jac(Qn,I , f) ∼=
Jac(Qn,I/i, g) and g contains the square of the loop at vertex i.

Proof. Let xt be the loop at vertex i of Qn,I/i. Locally, Qn,I and Qn,I/i look like the following,
respectively.

Qn,I

i

at−1

bt−1

at

bt

Qn,I/i

i

at

bt

xt

at+1

bt+1

Relabeling the paths allows us to consider f as a potential on Qn,I/i. More precisely, we
replace the ak and bk in f by ak+1 and bk+1 respectively for any k ≥ t. Then set h := f− 1

2x2
t .

It is clear that Jac(Qn,I , f) ∼= Jac(Qn,I/i, h).
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By 4.1.21, there exists a right-equivalence h ⇝ g such that g is a monomialized Type
A potential on Qn,I/i and g contains x2

t . Thus Jac(Qn,I/i, h) ∼= Jac(Qn,I/i, g), and so
Jac(Qn,I , f) ∼= Jac(Qn,I/i, g).

Proposition 4.1.23. Given any I and a monomialized Type A potential f = ∑m−1
i=1 x′

ixi+1 +∑m
i=1

∑∞
j=2 κ

′
ijx

j
i on Qn,I where all κ′

ij ∈ C, then there exists a monomialized Type A potential
g on Qn, namely

g =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2
κijxj

i

for some κij ∈ C, such that Jac(Qn, g) ∼= Jac(Qn,I , f) and κ2i−1,2 ̸= 0 for each i ∈ I.

Proof. If I = ∅, there is nothing to prove. Otherwise, given any i ∈ I, by 4.1.22 there exist
a monomialized Type A potential g1 on Qn,I\i such that Jac(QI\i, g1) ∼= Jac(Qn,I , f), where
g1 contains the square of the loop at vertex i.

Similarly, by 4.1.22 we can repeat the same argument to g1 on Qn,I\i and any j ∈ I\{i} to
construct a monomialized Type A potential g2 on Qn,I\{i,j} such that Jac(Qn,I\{i,j}, g2) ∼=
Jac(QI\i, g1), where g2 contains the square of the loop at vertex i and vertex j.

Set s = |I|. Thus we can repeat this process s times to construct a monomialized Type A
potential gs on Qn,∅ such that Jac(Qn,∅, gs) ∼= Jac(Qn,I , f), and gs contains the square of all
the loops at all vertices i ∈ I.

Set g := gs. Since κ2i−1,2 are the coefficients of the square of the loops at the vertices i ∈ I,
the statement follows.

§ 4.2 | Geometric realisation
Section §4.2.1 below shows that any Type A potential on Qn,I can be realised by a crepant
resolution of a cAn singularity in 4.2.12, and furthermore proves the Realisation Conjecture
of Brown–Wemyss [BW2] in the setting of Type A potentials.

Section §4.2.2 gives the converse in 4.2.15, then proves a correspondence between the crepant
resolutions of cAn singularities and our intrinsic Type A potentials on Qn in 4.2.18 and 4.2.19.

In §4.2.3, we provide an example of a non-isolated cA2 singularity, illustrating that the
Donovan–Wemyss Conjecture 2.3.7 fails for non-isolated cDV singularities in 4.2.26.

§ 4.2.1 | Geometric realisation

In this subsection, we will prove in 4.2.12 that, given any Type A potential f on Qn,I , there
is a crepant resolution π of a cAn singularity such that Jac(f) ∼= Λcon(π). This proves the
Realisation Conjecture of Brown–Wemyss [BW2] in the setting of Type A potentials.
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Notation 4.2.1. We first fix a monomialized Type A potentials f on Qn as follows,

f =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2
κijxj

i . (4.2.A)

Then we consider the following system of equations where each gi ∈ C[[x, y]]

g0 +
∞∑

j=2
jκ1jg

j−1
1 + g2 = 0

g1 +
∞∑

j=2
jκ2jg

j−1
2 + g3 = 0

... (4.2.B)

g2n−2 +
∞∑

j=2
jκ2n−1,jg

j−1
2n−1 + g2n = 0.

The following lemma allows us to construct the geometric realisation of f (4.2.A) in 4.2.3(1)
by the system of equations (4.2.B).

Lemma 4.2.2. With notation in 4.2.1, fix some integer t satisfying 0 ≤ t ≤ 2n− 1, and set
gt = y, gt+1 = x. Then there exists (g0, g1, . . . , g2n) which satisfies (4.2.B) and, furthermore,
each gs ∈ ((x, y)) ⊆ C[[x, y]] is prime and has a linear term. Moreover,

(1) For any 0 ≤ s ≤ 2n− 1, ((gs, gs+1)) = ((x, y)).

(2) For any 1 ≤ s ≤ 2n−1, ((gs−1, gs+1)) ⊊ ((x, y)) when κs2 = 0, and ((gs−1, gs+1)) = ((x, y))
when κs2 ̸= 0.

Proof. We start with the equation gt +∑∞
j=2 jκt+1,jg

j−1
t+1 + gt+2 = 0 in (4.2.B) which defines

gt+2 = −y −∑∞
j=2 jκt+1,jx

j−1 ∈ ((x, y)). Then we consider gt+1 +∑∞
j=2 jκt+2,jg

j−1
t+2 + gt+3 = 0

which also defines gt+3 ∈ ((x, y)). Thus we can repeat this process to construct gs ∈ ((x, y)) for
t+ 2 ≤ s ≤ 2n. Similarly, the equation gt−1 +∑∞

j=2 jκt,jg
j−1
t + gt+1 = 0 defines gt−1 ∈ ((x, y)).

We can repeat this process to construct gs ∈ ((x, y)) for 0 ≤ s ≤ t− 1.

(1) For any 0 ≤ s ≤ 2n − 2, using gs + ∑∞
j=2 jκs+1,jg

j−1
s+1 + gs+2 = 0 in (4.2.B), we have

((gs, gs+1)) = ((gs+1, gs+2)). Moving either to the left or right until we hit t, it follows that
((gs, gs+1)) = ((gt, gt+1)) = ((y, x)). Hence ((gs, gs+1)) = ((x, y)) for all 0 ≤ s ≤ 2n − 1, which
implies that each gs is prime and has a linear term.

(2) For any 1 ≤ s ≤ 2n − 1, using gs−1 + ∑∞
j=2 jκsjg

j−1
s + gs+1 = 0 in (4.2.B), we have

((gs−1, gs+1)) = ((gs−1,
∑∞

j=2 jκsjg
j−1
s )). Thus, if κs2 = 0 then ((gs−1, gs+1)) ⊊ ((x, y)), and if

κs2 ̸= 0 then ((gs−1, gs+1)) = ((gs−1, gs)) which equals ((x, y)) by (1).

Notation 4.2.3. For any t with 0 ≤ t ≤ 2n− 1, 4.2.2 calculates a solution of (4.2.B). Fix
any such solution, say (g0, g1, . . . , g2n). From this, we adopt the following notation.
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(1) Since each gi is a prime element of C[[x, y]] with a linear term (by 4.2.2), we first define
the cAn singularity

R := C[[u, v, x, y]]
uv − g0g2 . . . g2n

,

and the CM R-module

M := R⊕ (u, g0)⊕ (u, g0g2)⊕ . . .⊕ (u,
n−1∏
j=0

g2j).

(2) We next define

S1 := C[[u, v, x0, x1, x2, x3 . . . , x2n−1, x2n]]
uv − x0x2 . . . x2n

.

(3) Define a sequence h1, h2, . . . , h2n−1 ∈ S1 to be

hi := xi−1 +
∞∑

j=2
jκijx

j−1
i + xi+1,

and set Si := S1/(h1, h2, . . . , hi−1) for 2 ≤ i ≤ 2n.

(4) For 1 ≤ i ≤ 2n, by abuse of notation we regard (u, x0), (u, x0x2), . . . ,
(
u,
∏n−1

j=0 x2j

)
as Si-modules. Then we define the Si-module

Ni := Si ⊕ (u, x0)⊕ (u, x0x2)⊕ · · · ⊕
(
u,

n−1∏
j=0

x2j

)
.

(5) Write π1 for the universal flop of Spec S1 corresponding toN1 [IW1, §5]. For 2 ≤ i ≤ 2n,
consider the morphism Spec Si → Spec S1, and the fiber product Xi := X1 ×Spec S1

Spec Si. These morphisms fit into the following commutative diagram.

Spec S1Spec S2Spec S2n

X1X2X2n

π1π2π2n

. . .

. . .
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(6) Consider the following quiver Q.

1 2 3 . . . . . . n− 1 n

0

b0
a0

b2
a2

b4
a4

b2n−2

a2n−2

a2n

b2n

l0,0,l0,1,...,l0,2n

l1,0,l1,1,...,l1,2n l2,0,l2,1,...,l2,2n l3,0,l3,1,...,l3,2n ln−1,0,ln−1,1,...,ln−1,2n
ln,0,ln,1,...,ln,2n

Then define the relations R1 of Q as follows.

R1 :=

lt,ia2t = a2tlt+1,i, lt+1,ib2t = b2tlt,i, lt,ilt,j = lt,jlt,i,

lt,2t = a2tb2t, lt+1,2t = b2ta2t for any t ∈ Z/(n+ 1) and 0 ≤ i, j ≤ 2n.
(4.2.C)

For 2 ≤ s ≤ 2n, define Rs to be R1 with the additional relations

lt,i−1 +
∞∑

j=2
jκijl

j−1
t,i + lt,i+1 = 0 for any 0 ≤ t ≤ n and 1 ≤ i ≤ s− 1. (4.2.D)

To prepare for the main construction 4.2.9, we now establish in 4.2.4–4.2.8 a quiver presen-
tation of the NCCR EndR(M), where R and M are as in 4.2.3(1).

Lemma 4.2.4. With notation in 4.2.3, for 2 ≤ k ≤ 2n, Sk is an integral domain and
normal. Furthermore, there exists a ring isomorphism φ : S2n

∼−→ R such that φ(N2n) = M .

Proof. Fix some k with 2 ≤ k ≤ 2n. By the definition in 4.2.3(2) and 4.2.3(3),

Sk
∼=

C[[u, v, x0, x1, x2, . . . , x2n]]
(uv − x0x2 . . . x2n, h1, h2, . . . , hk−1)

,

where each hi = xi−1 +∑∞
j=2 jκijx

j−1
i + xi+1.

Similar to 4.2.2, for each 2 ≤ i ≤ k, we can express xi as a formal power series of x0 and x1

using h1, h2, . . . , hk−1. Write these expressions as xi := Hi(x0, x1).

Thus, when k is even,

Sk
∼=

C[[u, v, x0, x1, xk+1, xk+2, . . . , x2n]]
uv − x0H2H4 . . . Hkxk+2 . . . x2n

.
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When k is odd,
Sk
∼=

C[[u, v, x0, x1, xk+1, xk+2, . . . , x2n]]
uv − x0H2H4 . . . Hk−1xk+1 . . . x2n

.

In both cases, Sk is an integral domain and normal by e.g. [S, 4.1.1].

Then we prove that S2n
∼= R. Recall from 4.2.2 that we start with gt = y and gt+1 = x and

then construct (g0, g1, . . . , g2n) where each gi ∈ C[[x, y]] using the equation system (4.2.B).
Then, in 4.2.3(1), these gi were used to define R.

On the other hand,
S2n
∼=

C[[u, v, x0, x1, x2, . . . , x2n]]
(uv − x0x2 . . . x2n, h1, h2, . . . , h2n−1)

.

Similar to 4.2.2, we can express each xs as a formal power series of xt and xt+1 using
h1, h2, . . . , h2n−1, and indeed xs = gs(xt+1, xt). Hence

S2n
∼=

C[[u, v, xt, xt+1]]
uv − g0(xt+1, xt)g2(xt+1, xt) . . . g2n(xt+1, xt)

.

Define a ring homomorphism φ : S2n → R by u 7→ u, v 7→ v, xt+1 7→ x, and xt 7→ y. It is
immediate that φ is an isomorphism, and moreover φ(N2n) = M .

With notation in 4.2.3, consider the universal resolution π1 : X1 → Spec S1 with Λ(π1) ∼=
EndS1(N1) [IW1, §5]. As shown in Appendix 7.0.18, EndS1(N1) ∼= C⟨⟨Q⟩⟩/R1 where Q and
R1 are in (4.2.C).

To ease notation, set Λ := C⟨⟨Q⟩⟩/R1. By [W2, 6.2], X1 is isomorphic to a moduli scheme
of stable representations of Λ, of dimension vector δ = (1, 1, . . . , 1) and stability ϑ =
(−n, 1, 1, . . . , 1) where the −n sits at vertex 0 of Q.

In notation, X1 ∼=Mϑ
δ(Λ), which is the moduli space of ϑ-stable representations of dimension

vector δ. Moreover, exactly as in [W3, §3], Mϑ
δ(Λ) ∼=

⋃n
i=0 U1i is a gluing of n + 1 affine

charts. Accounting for the relations R1 (4.2.C), the first affine chart U10 is parameterised by

C C C . . . . . . C C

C

b0

1

b2

1
b4

1
b2n−2

1

a2n

b2n

b0,b2,...,b2n−2,x2n,

x1,x3,...,x2n−1 x1,x3,...,x2n−1 x1,x3,...,x2n−1 x1,x3,...,x2n−1 x1,x3,...,x2n−1

x1,x3,...,x2n−1

b0,b2,...,b2n−2,x2n, b0,b2,...,b2n−2,x2n, b0,b2,...,b2n−2,x2n, b0,b2,...,b2n−2,x2n, b0,b2,...,b2n−2,x2n,
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where x2n = a2nb2n and (since we work on the completed path algebra) all cycles are nilpotent.
We claim that U10 ∼= SpecA10 where

A10 := C[[b0, b2, . . . , b2n−2, a2n, x1, x3, . . . , x2n−1, x2n, v]][b2n]
(x2n − a2nb2n, v − b0b2 . . . b2n) . (4.2.E)

Indeed, we have used all the relations in the quiver, so the question boils down to under-
standing nilpotent cycles. Clearly x1, x3, . . . , x2n−3, x2n−1, x2n, b0, b2, . . . , b2n−2 are cycles, as
is a2n (once composed with all clockwise arrows marked 1), thus they are nilpotent. As is
b2nb2n−2 . . . b0.

There is no condition on b2n, so it is a polynomial variable. Introducing a new completion
variable v to capture the nilpotency of b2nb2n−2 . . . b0, which has a mix of both polynomial
and completion variables, the claim follows.

Moreover, π1|U10 : U10 → Spec S1 is induced by the ring homomorphism φ10 : S1 → A10

x0 7→ b0, x2 7→ b2, . . . , x2n−2 7→ b2n−2, x2n 7→ x2n,

x1 7→ x1, x3 7→ x3, . . . , x2n−1 7→ x2n−1, u 7→ a2n, v 7→ v. (4.2.F)

Similarly, the second affine chart U11 is parameterised by

C C C . . . . . . C C

C

b0

1

b2
1

b4
1

b2n−2

a2n−2

a2n

1

b0,b2,...,b2n−4,x2n−2,a2n,

x1,x3,...,x2n−1 x1,x3,...,x2n−1 x1,x3,...,x2n−1 x1,x3,...,x2n−1 x1,x3,...,x2n−1

x2n−2,a2n, x2n−2,a2n, x2n−2,a2n, x2n−2,a2n, x2n−2,a2n,

x1,x3,...,x2n−1

b0,b2,...,b2n−4, b0,b2,...,b2n−4, b0,b2,...,b2n−4, b0,b2,...,b2n−4, b0,b2,...,b2n−4,

where x2n−2 = a2n−2b2n−2 and (since we work on the completed path algebra) all cycles are
nilpotent. We claim that U11 ∼= SpecA11 where

A11 := C[[b0, b2, . . . , b2n−4, a2n, x1, x3, . . . , x2n−1, x2n−2, u, v]][a2n−2, b2n−2]
(x2n−2 − a2n−2b2n−2, u− a2n−2a2n, v − b0b2 . . . b2n−2)

. (4.2.G)

Similarly, we have also used all the relations in the quiver, so the question boils down
to understanding nilpotent cycles. Clearly x1, x3, . . . , x2n−3, x2n−1, x2n−2, b0, b2, . . . , b2n−4, a2n

are cycles, as is a2n−2a2n (once composed with all clockwise arrows marked 1), thus they are
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nilpotent. As is b2n−2b2n−4 . . . b0.

There is no condition on a2n−2 and b2n−2, so they are polynomial variables. Introducing new
completion variables u and v to capture the nilpotency of a2n−2a2n and b2n−2b2n−4 . . . b0 re-
spectively, which have a mix of both polynomial and completion variables, the claim follows.

Moreover, π1|U11 : U11 → Spec S1 is induced by the ring homomorphism φ11 : S1 → A11

x0 7→ b0, x2 7→ b2, . . . , x2n−4 7→ b2n−4, x2n−2 7→ x2n−2, x2n 7→ a2n,

x1 7→ x1, x3 7→ x3, . . . , x2n−1 7→ x2n−1, u 7→ u, v 7→ v. (4.2.H)

Each of the remaining affine charts U1j of X1 admits a similar parametrisation, and the
corresponding morphism π1|U1j

: U1j → Spec S1 is defined in the same way as above.

Notation 4.2.5. With the notation U1j above and in 4.2.3, for each 2 ≤ i ≤ 2n and
0 ≤ j ≤ n, we set

(1) Uij := U1j ×Spec S1 Spec Si, the base change of U1j along Spec Si → Spec S1;

(2) Aij := Γ(Uij,OUij
), the coordinate ring of Uij;

(3) φij : Si → Aij, the ring homomorphism associated to πi|Uij
: Uij → Spec Si.

By definition 4.2.3(5) Xi := X1 ×Spec S1 Spec Si, hence Xi
∼=
⋃n

j=0 Uij.

Since X1 is the universal resolution of Spec S1, it is connected and smooth. We now show
that, for 2 ≤ i ≤ 2n, the base change Xi is likewise connected and smooth.

The next result shows that the connectivity of Xi comes from the overlap of adjacent affine
charts along the exceptional curves.

Proposition 4.2.6. With notation in 4.2.3, Xi is connected for all 2 ≤ i ≤ 2n.

Proof. For 1 ≤ j ≤ n, write Cj for the j-th exceptional curve of the universal resolution
π1 : X1 → Spec S1 over the origin. By definition 4.2.3(3), for 2 ≤ i ≤ 2n

Si := S1/(h1, h2, . . . , hi−1),

where each hi is a power series without a constant term. Thus Spec Si contains the origin
of Spec S1. Consequently, for 2 ≤ i ≤ 2n, Xi contains the ⋃n

j=1 Cj ⊂ X1 supported over the
origin. Moreover, for each 1 ≤ j ≤ n the affine charts of Xi satisfy

Cj ⊂ Ui,j−1 ∪ Uij ⇒ Ui,j−1 ∩ Uij ̸= ∅,

and so the affine charts of Xi pairwise overlap along the exceptional curves. Hence Xi is
connected.

We now prove that Xi is smooth for 2 ≤ i ≤ 2n by analysing each affine chart Uij of Xi.
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Proposition 4.2.7. With notation in 4.2.3, for 2 ≤ i ≤ 2n, Xi is smooth.

Proof. Since by definition 4.2.3(5) Xi := X1 ×Spec S1 Spec Si for 2 ≤ i ≤ 2n, we have the
following pullback squares for the j-th affine chart Uij of Xi:

Uij U1j

Spec Si Spec S1

πi|Uij
π1|U1j

Aij A1j

Si S1

φij φ1j

Recall from 4.2.3(3) that for 2 ≤ i ≤ 2n

Si := S1/(h1, h2, . . . , hi−1) with hi := xi−1 +
∞∑

j=2
jκijx

j−1
i + xi+1.

Therefore, for 2 ≤ i ≤ 2n and 0 ≤ j ≤ n,

Aij
∼= A1j ⊗S1 Si

∼= A1j ⊗S1 S1/(h1, h2, . . . , hi−1) ∼= A1j/(A1jh1,A1jh2, . . . ,A1jhi−1). (4.2.I)

First chart (j = 0). From (4.2.E) we have

A10 ∼=
C[[b0, b2, . . . , b2n−2, a2n, x1, x3, . . . , x2n−1, x2n, v]][b2n]

(x2n − a2nb2n, v − b0b2 . . . b2n) .

Moreover, by (4.2.F) φ10 : S1 → A10 is given by

x0 7→ b0, x2 7→ b2, . . . , x2n−2 7→ b2n−2, x2n 7→ x2n, u 7→ a2n, v 7→ v,

x1 7→ x1, x3 7→ x3, . . . , x2n−1 7→ x2n−1.

Thus, for 1 ≤ i ≤ 2n− 1, the images A10hi are

A10hi =


bi−1 +∑∞

j=2 jκijxj−1
i + bi+1, for i = 1, 3, . . . , 2n− 3

xi−1 +∑∞
j=2 jκijbj−1

i + xi+1, for i = 2, 4, . . . , 2n− 2

b2n−2 +∑∞
j=2 jκ2n−1,jxj−1

2n−1 + x2n, for i = 2n− 1

Introduce the notation obtained by successive elimination:

b01 := −
∞∑

j=2
jκ1j x j−1

1 − b2 ∈ C[[x1, b2]],

and, using x1 = −∑∞
j=2 jκ2j b j−1

2 − x3,

b02 := −
∞∑

j=2
jκ1j

(
−

∞∑
r=2

rκ2r b r−1
2 − x3

)j−1

− b2 ∈ C[[b2, x3]].
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Continuing inductively, for 0 ≤ t ≤ n− 1 and 2t < k ≤ 2n− 1, define b2t,k with

b2t,k ∈


C[[xk, bk+1]], k odd, k ̸= 2n− 1,

C[[bk, xk+1]], k even,

C[[x2n−1, x2n]], k = 2n− 1.

Each A10hi has a linear term, hence eliminates one variable in (4.2.I). Consequently,

A20 ∼= A10/(A10h1) ∼= A10/(b0 +
∞∑

j=2
jκ1jxj−1

1 + b2)

∼=
C[[b2, b4, . . . , b2n−2, a2n, x1, x3, . . . , x2n−1, x2n, v]][b2n]

(x2n − a2nb2n, v − b01b2 . . . b2n) ,

A30 ∼= A10/(A10h1,A10h2) ∼= A10/(b0 +
∞∑

j=2
jκ1jxj−1

1 + b2, x1 +
∞∑

j=2
jκ2jbj−1

2 + x3)

∼=
C[[b2, b4, . . . , b2n−2, a2n, x3, x5, . . . , x2n−1, x2n, v]][b2n]

(x2n − a2nb2n, v − b02b2 . . . b2n) ,

...
A2n−1,0 ∼= A10/(A10h1,A10h2, . . . ,A10h2n−2)

∼=
C[[b2n−2, a2n, x2n−1, x2n, v]][b2n]

(x2n − a2nb2n, v − b0,2n−2b2,2n−2 . . . b2n−4,2n−2b2n−2b2n) ,

A2n,0 ∼= A10/(A10h1,A10h2, . . . ,A10h2n−2,A10h2n−1)

∼=
C[[a2n, x2n−1, x2n, v]][b2n]

(x2n − a2nb2n, v − b0,2n−1b2,2n−1 . . . b2n−4,2n−1b2n−2,2n−1b2n) .

Hence, for 2 ≤ i ≤ 2n, the first affine chart Ui0 := SpecAi0 is smooth. Since the last affine
chart Uin is analogous to Ui0, it is also smooth.

Second chart (j = 1). From (4.2.G) we have

A11 ∼=
C[[b0, b2, . . . , b2n−4, a2n, x1, x3, . . . , x2n−1, x2n−2, u, v]][a2n−2, b2n−2]

(x2n−2 − a2n−2b2n−2, u− a2n−2a2n, v − b0b2 . . . b2n−2)
.

Moreover, by (4.2.H) φ11 : S1 → A11 is given by

x0 7→ b0, x2 7→ b2, . . . , x2n−4 7→ b2n−4, x2n−2 7→ x2n−2, x2n 7→ a2n, u 7→ u, v 7→ v,

x1 7→ x1, x3 7→ x3, . . . , x2n−1 7→ x2n−1.
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Thus, for 1 ≤ i ≤ 2n− 1, the images A11hi are

A11hi =



bi−1 +∑∞
j=2 jκijxj−1

i + bi+1, for i = 1, 3, . . . , 2n− 5

xi−1 +∑∞
j=2 jκijbj−1

i + xi+1, for i = 2, 4, . . . , 2n− 4

b2n−4 +∑∞
j=2 jκ2n−3,jxj−1

2n−3 + x2n−2, for i = 2n− 3

x2n−3 +∑∞
j=2 jκ2n−2,jxj−1

2n−2 + x2n−1, for i = 2n− 2

x2n−2 +∑∞
j=2 jκ2n−1,jxj−1

2n−1 + a2n, for i = 2n− 1

Define b2t,k analogously for 0 ≤ t ≤ n− 2 and 2t < k ≤ 2n− 1. From the last equation, set

x2n−2,2n−1 := −
∞∑

j=2
jκ2n−1,jxj−1

2n−1 − a2n ∈ C[[x2n−1, a2n]].

Again, each A11hi has a linear term, hence eliminates one variable in (4.2.I). Consequently,

A21 ∼= A11/(A11h1) ∼= A11/(b0 +
∞∑

j=2
jκ1jxj−1

1 + b2)

∼=
C[[b2, b4, . . . , b2n−4, a2n, x1, x3, . . . , x2n−1, x2n−2, u, v]][a2n−2, b2n−2]

(x2n−2 − a2n−2b2n−2, u− a2n−2a2n, v − b01b2 . . . b2n−2)
,

A31 ∼= A11/(A11h1,A11h2) ∼= A11/(b0 +
∞∑

j=2
jκ1jxj−1

1 + b2, x1 +
∞∑

j=2
jκ2jbj−1

2 + x3)

∼=
C[[b2, b4, . . . , b2n−4, a2n, x3, x5, . . . , x2n−1, x2n−2, u, v]][a2n−2, b2n−2]

(x2n−2 − a2n−2b2n−2, u− a2n−2a2n, v − b02b2 . . . b2n−2)
,

...
A2n−1,1 ∼= A11/(A11h1,A11h2, . . . ,A11h2n−2)

∼=
C[[a2n, x2n−1, x2n−2, u, v]][a2n−2, b2n−2]

(x2n−2 − a2n−2b2n−2, u− a2n−2a2n, v − b0,2n−2b2,2n−2 . . . b2n−4,2n−2b2n−2)
,

A2n,1 ∼= A11/(A11h1,A11h2, . . . ,A11h2n−2,A11h2n−1)

∼=
C[[a2n, x2n−1, u, v]][a2n−2, b2n−2]

(x2n−2,2n−1 − a2n−2b2n−2, u− a2n−2a2n, v − b0,2n−1b2,2n−1 . . . b2n−4,2n−1b2n−2)
.

Since x2n−2,2n−1 has a linear term a2n, it follows that for 2 ≤ i ≤ 2n the second affine chart
Ui1 := SpecAi1 is smooth. For 2 ≤ j ≤ n− 1, the affine charts Uij are analogous to Ui1 (for
each fixed i), hence smooth as well. Therefore Xi is smooth for all 2 ≤ i ≤ 2n.

Corollary 4.2.8. With notation in 4.2.3, EndSi
(Ni) ∼= C⟨⟨Q⟩⟩/Ri for 1 ≤ i ≤ 2n.
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Proof. Recall from 4.2.3 the commutative diagram

Spec S1Spec S2Spec S2n

X1X2X2n

π1π2π2n

. . .

. . .

together with the Si-module Ni for 1 ≤ i ≤ 2n.

By [IW1, §5], N1 is the tilting bundle for π1, and Appendix 7.0.18 shows that

EndS1(N1) ∼= C⟨⟨Q⟩⟩/R1, (4.2.J)

where Q and R1 are given in (4.2.C).

Note that S1 is an integral domain and normal, and X1 is connected and smooth. By 4.2.4,
S2 is also an integral domain and normal. By 4.2.6 and 4.2.7, X2 is connected and smooth.
Since N1 is the tilting bundle for π1, we can apply [V4, 2.11] to deduce that N2 ∼= N1⊗S1 S2

is the tilting bundle for π2 and

EndS2(N2) ∼= EndS1/h1(N1 ⊗S1 S1/h1) (since S2 ∼= S1/h1, N2 ∼= N1 ⊗S1 S2)
∼= EndS1(N1)/(h1) (by [V4, 2.11])
∼= C⟨⟨Q⟩⟩/R2. (by (4.2.J))

Here R2 is obtained from R1 by adding the relation (4.2.D) with i = 1, namely

lt,0 +
∞∑

j=2
jκ1jl

j−1
t,1 + lt,2 = 0, for t ∈ Z/(n+ 1),

which corresponds to
h1 = x0 +

∞∑
j=2

jκ1j x
j−1
1 + x2.

Iterating this argument, for any 2 ≤ i ≤ 2n, we have Ni
∼= Ni−1⊗Si−1 Si is the tilting bundle

for πi, and

EndSi
(Ni) ∼= EndSi−1(Ni−1)/(hi−1)

∼= EndSi−2(Ni−2)/(hi−1, hi−2)
...

∼= EndS1(N1)/(hi−1, hi−2, . . . , h1)
∼= C⟨⟨Q⟩⟩/Ri.

The following proposition shows that any (possibly non-reduced) monomialized Type A

potential on Qn can be realised by a crepant resolution of a cAn singularity.
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Theorem 4.2.9. Given the monomialized Type A potential f in (4.2.A) on Qn, the cAn

singularity R, and the CM R-module M in 4.2.3, we have EndR(M) ∼= Jac(Qn, f).

Proof. By 4.2.4, R ∼= S2n and EndR(M) ∼= EndS2n(N2n). By 4.2.8, EndS2n(N2n) ∼= C⟨⟨Q⟩⟩/R2n.
Thus EndR(M) ∼= C⟨⟨Q⟩⟩/R2n where Q and R2n are in 4.2.3(7).

Similar to Qn, we also define xi and x′
i on Q as follows: for any 0 ≤ i ≤ n, set x2i := a2ib2i

and x′
2i := b2ia2i, and for any 1 ≤ i ≤ n, set x2i−1 := li,2i−1 =: x′

2i−1.

Next, we consider the following relations induced by R2n. For any 1 ≤ t ≤ n − 1, left
multiplying the i = 2t case of (4.2.D) by b2t gives

b2tlt,2t−1 +
∞∑

j=2
jκ2t,jb2tl

j−1
t,2t + b2tlt,2t+1

= b2tlt,2t−1 +
∞∑

j=2
jκ2t,jb2tl

j−1
t,2t + lt+1,2t+1b2t (since b2tlt,2t+1 = lt+1,2t+1b2t by (4.2.C))

= b2tx′
2t−1 +

∞∑
j=2

jκ2t,jb2txj−1
2t + x2t+1b2t.

(since lt,2t = a2tb2t = x2t, lt,2t−1 = x′
2t−1 and lt+1,2t+1 = x2t+1 by (4.2.C))

Similarly, for any 1 ≤ t ≤ n− 1, right multiplying the i = 2t case of (4.2.D) by a2t gives

lt,2t−1a2t +
∞∑

j=2
jκ2t,jl

j−1
t,2t a2t + lt,2t+1a2t

= lt,2t−1a2t +
∞∑

j=2
jκ2t,jl

j−1
t,2t a2t + a2tlt+1,2t+1 (since lt,2t+1a2t = a2tlt+1,2t+1 by (4.2.C))

= x′
2t−1a2t +

∞∑
j=2

jκ2t,jxj−1
2t a2t + a2tx2t+1.

(since lt,2t = a2tb2t = x2t, lt,2t−1 = x′
2t−1 and lt+1,2t+1 = x2t+1 by (4.2.C))

For any 1 ≤ t ≤ n, the i = 2t− 1 case of (4.2.D) is

lt,2t−2 +
∞∑

j=2
jκijl

j−1
t,2t−1 + lt,2t = x′

2t−2 +
∞∑

j=2
jκ2t−1,jxj−1

2t−1 + x2t.

(since lt,2t−1 = x2t−1, lt,2t−2 = b2t−2a2t−2 = x′
2t−2 and lt,2t = a2tb2t = x2t by notation and (4.2.C))

Combining the above three types of relations gives the following,

T :=


bix′

i−1 +∑∞
j=2 jκijbixj−1

i + xi+1bi = 0, for i = 2, 4, . . . , 2n− 2.

x′
i−1ai +∑∞

j=2 jκijxj−1
i ai + aixi+1 = 0, for i = 2, 4, . . . , 2n− 2.

x′
i−1 +∑∞

j=2 jκijxj−1
i + xi+1 = 0, for i = 1, 3, . . . , 2n− 1.

(4.2.K)

Then we define the quiver Qn by deleting loops on Q as follows. For each vertex t on Q

with 1 ≤ t ≤ n, we delete all loops ltj except lt,2t−1 (namely x2t−1). Note that Qn is Qn by
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removing the vertex 0 and loops on it.

In 4.2.10 below we will show that C⟨⟨Q⟩⟩/⟨R2n, e0⟩ ∼= C⟨⟨Qn⟩⟩/⟨T, e0⟩. Together with the
isomorphism EndR(M) ∼= C⟨⟨Q⟩⟩/R2n at the start of the proof, this gives

EndR(M) ∼= C⟨⟨Q⟩⟩/⟨R2n, e0⟩ ∼= C⟨⟨Qn⟩⟩/⟨T, e0⟩.

Thus EndR(M) is isomorphic to C⟨⟨Qn⟩⟩ factored by the relations T , which after deleting
paths that factor through vertex 0, become

bix′
i−1 +

∞∑
j=2

jκijbixj−1
i + xi+1bi = 0, for i = 2, 4, . . . , 2n− 2.

x′
i−1ai +

∞∑
j=2

jκijxj−1
i ai + aixi+1 = 0, for i = 2, 4, . . . , 2n− 2.

x′
i−1 +

∞∑
j=2

jκijxj−1
i + xi+1 = 0, for i = 3, . . . , 2n− 2.

∞∑
j=2

jκ1jxj−1
1 + x2 = 0, x′

2n−2 +
∞∑

j=2
jκ2n−1,jxj−1

2n−1 = 0.

These are exactly the relations generated by the derivatives of f . Thus EndR(M) ∼=
Jac(Qn, f).

Lemma 4.2.10. With notation in 4.2.3 and 4.2.9, C⟨⟨Q⟩⟩/⟨R2n, e0⟩ ∼= C⟨⟨Qn⟩⟩/⟨T, e0⟩.

Proof. We first divide the relations R2n in 4.2.3(7) into three parts. The following are the
relations in R2n that factor through vertex 0.

T0 :=



l00 = a0b0, l0,2n = b2na2n.

l0ia0 = a0l1i, lnia2n = a2nl0i, l0ib2n = b2nlni, l1ib0 = b0l0i,

l0il0j = l0jl0i, for 0 ≤ i, j ≤ 2n.

l0,i−1 +∑∞
j=2 jκijl

j−1
0,i + l0,i+1 = 0, for 1 ≤ i ≤ 2n− 1.

Then we divide the remaining relations of R2n into the following two parts.

T1 :=


lt,2t−2 = b2t−2a2t−2, for 1 ≤ t ≤ n.

ltiltj = ltjlti, for 1 ≤ t ≤ n and 0 ≤ i, j ≤ 2n.

ltia2t = a2tlt+1,i, lt+1,ib2t = b2tlti, for 1 ≤ t ≤ n− 1 and 0 ≤ i ≤ 2n.

T2 :=

lt,2t = a2tb2t, for any 1 ≤ t ≤ n.

lt,i−1 +∑∞
j=2 jκijl

j−1
t,i + lt,i+1 = 0 for any 1 ≤ t ≤ n and 1 ≤ i ≤ 2n− 1.

71



CHAPTER 4. MONOMIALIZATION AND GEOMETRIC REALISATION 72

Since T in (4.2.K) is induced by R2n, necessarily

C⟨⟨Q⟩⟩/⟨R2n⟩ ∼= C⟨⟨Q⟩⟩/⟨R2n, T ⟩ ∼= C⟨⟨Q⟩⟩/⟨T0, T1, T2, T ⟩. (4.2.L)

We next use T2 to eliminate some loops at vertex 1, 2, . . . , n of Q, as follows.

Fix some vertex t with 1 ≤ t ≤ n and consider the loops lti on it. Since lt,2t = a2tb2t in
T2, we can eliminate lt,2t. From our notation, lt,2t−1 := x2t−1 and x2t := a2tb2t. Thus we can
write lt,2t = x2t. Since ltiltj = ltjlti in T1 for 0 ≤ i, j ≤ 2n, we can consider C⟨⟨lt,2t−1, lt,2t⟩⟩ as
the polynomial ring C[[lt,2t−1, lt,2t]]. By the relation

lt,2t−1 +
∞∑

j=2
jκijl

j−1
t,2t + lt,2t+1 = 0, (4.2.M)

in T2, we can express lt,2t+1 ∈ C[[lt,2t−1, lt,2t]] = C[[x2t−1, x2t]]. Thus we can eliminate lt,2t+1.
Similar to the argument in 4.2.2, for each i ̸= 2t − 1 we can express lti := l̄ti(x2t−1, x2t) ∈
C[[x2t−1, x2t]] and eliminate it. So we only leave one loop lt,2t−1 = x2t−1 on vertex t.

Thus we can use all the relations in T2 to eliminate all such loops at vertices 1, 2, . . . , n.
For 0 ≤ k ≤ 2, write T k for the the relations where we have substituted lti in Tk by the
polynomial l̄ti for 1 ≤ t ≤ n and 0 ≤ i ≤ 2n. So we have

C⟨⟨Q⟩⟩/⟨T0, T1, T2, T ⟩ ∼= C⟨⟨Qn⟩⟩/⟨T 0, T 1, T ⟩. (4.2.N)

Now during the above substitution process, the following expressions in T 2

l̄t,2t = x2t = a2tb2t (since x2t = a2tb2t)

l̄t,2t−1 +
∞∑

j=2
jκij l̄

j−1
t,2t + l̄t,2t+1 = 0 (by (4.2.M))

hold in C⟨⟨Qn⟩⟩ tautologically. Similarly, tautologically, all the other expressions in T 2 also
hold in C⟨⟨Qn⟩⟩.

We next prove that T in (4.2.K) induces T 1.

(1) Firstly, we prove that T induces l̄t,2t−2 = b2t−2a2t−2 for 1 ≤ t ≤ n. Since

x′
2t−2 +

∞∑
j=2

jκ2t−1,jxj−1
2t−1 + x2t = 0, (by the i = 2t− 1 case of the third line in (4.2.K))

l̄t,2t−2 +
∞∑

j=2
jκ2t−1,j l̄

j−1
t,2t−1 + l̄t,2t = 0. (since T 2 holds in C⟨⟨Qn⟩⟩)

and by notation l̄t,2t−1 = x2t−1 and l̄t,2t = x2t, then l̄t,2t−2 = x′
2t−2 = b2t−2a2t−2.

(2) Secondly, we prove that T induces l̄til̄tj = l̄tj l̄ti for 1 ≤ t ≤ n and 0 ≤ i, j ≤ 2n.
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Left multiplying the i = 2t case of the first line in (4.2.K) by a2t gives

0 = a2t(b2tx′
2t−1 +

∞∑
j=2

jκ2t,jb2txj−1
2t + x2t+1b2t) = x2tx′

2t−1 +
∞∑

j=2
jκ2t,jxj

2t + a2tx2t+1b2t.

(since x2t = a2tb2t)

Right multiplying the i = 2t case of the second line in (4.2.K) by b2t gives

0 = (x′
2t−1a2t +

∞∑
j=2

jκ2t,jxj−1
2t a2t + a2tx2t+1)b2t = x′

2t−1x2t +
∞∑

j=2
jκ2t,jxj

2t + a2tx2t+1b2t.

(since x2t = a2tb2t)

Thus x2tx′
2t−1 = x′

2t−1x2t. Since x2t−1 is the loop at vertex t, then by definition x′
2t−1 = x2t−1,

and so x2tx2t−1 = x2t−1x2t. Together with the fact that each l̄ti ∈ C[[x2t−1, x2t]] gives l̄til̄tj =
l̄tj l̄ti for 0 ≤ i, j ≤ 2n.

(3) Finally, we prove that T induces l̄tia2t = a2tl̄t+1,i, l̄t+1,ib2t = b2tl̄ti for 1 ≤ t ≤ n− 1 and
0 ≤ i ≤ 2n. For each vertex t with 1 ≤ t ≤ n− 1, we have

l̄t,2t = a2tb2t = x2t, (since T 2 holds in C⟨⟨Qn⟩⟩)
l̄t+1,2t = b2ta2t = x′

2t, (by (1))
l̄t,2t−1 = x2t−1 = x′

2t−1, l̄t+1,2t+1 = x2t+1 = x′
2t+1. (by the definition of x2t−1 and x2t+1)

Thus

l̄t,2ta2t = a2tb2ta2t (since l̄t,2t = a2tb2t)
= a2tl̄t+1,2t, (since l̄t+1,2t = b2ta2t)

and

l̄t,2t−1a2t = x′
2t−1a2t (since l̄t,2t−1 = x′

2t−1)

= −
∞∑

j=2
jκ2t,jxj−1

2t a2t − a2tx2t+1 (by the i = 2t case of the second line in (4.2.K))

= −
∞∑

j=2
jκ2t,ja2tl̄

j−1
t+1,2t − a2tl̄t+1,2t+1

(since x2t = a2tb2t, l̄t+1,2t = b2ta2t and x2t+1 = l̄t+1,2t+1)

= −a2t(
∞∑

j=2
jκ2t,j l̄

j−1
t+1,2t + l̄t+1,2t+1)

= a2tl̄t+1,2t−1. (since T 2 holds in C⟨⟨Qn⟩⟩)

Since T 2 holds in C⟨⟨Qn⟩⟩, then similar to the argument in 4.2.2, each l̄ti ∈ C⟨⟨l̄t,2t−1, l̄t,2t⟩⟩
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and l̄t+1,i ∈ C⟨⟨l̄t+1,2t−1, l̄t+1,2t⟩⟩. Furthermore,

l̄ti = Hi(l̄t,2t−1, l̄t,2t), l̄t+1,i = Hi(l̄t+1,2t−1, l̄t+1,2t).

for the same Hi. Together with the above l̄t,2ta2t = a2tl̄t+1,2t and l̄t,2t−1a2t = a2tl̄t+1,2t−1, this
gives l̄tia2t = a2tl̄t+1,i for each i.

Similarly, T (4.2.K) also induces l̄t+1,ib2t = b2tl̄ti for each i.

Combining (1), (2) and (3), it follows that T induces T 1, and so C⟨⟨Qn⟩⟩/⟨T 0, T 1, T ⟩ ∼=
C⟨⟨Qn⟩⟩/⟨T 0, T ⟩. Together with (4.2.L), this gives

C⟨⟨Q⟩⟩/⟨R2n⟩ ∼= C⟨⟨Q⟩⟩/⟨T0, T1, T2, T ⟩
(4.2.N)∼= C⟨⟨Qn⟩⟩/⟨T 0, T 1, T ⟩ ∼= C⟨⟨Qn⟩⟩/⟨T 0, T ⟩,

and so C⟨⟨Q⟩⟩/⟨R2n, e0⟩ ∼= C⟨⟨Qn⟩⟩/⟨T 0, T, e0⟩ ∼= C⟨⟨Qn⟩⟩/⟨T, e0⟩.

We now consider the quiver Qn,I for some I ⊆ {1, 2, . . . , n} and prove that any Type A
potential on it can be realized by a crepant resolution of a cAn singularity as follows.

Definition 4.2.11. We say that π is Type An if π is a crepant resolution X→ SpecR where
R is cAn. Moreover, we say that π is Type An,I if the normal bundle of the exceptional curve
Ci is O(−1)⊕O(−1) if and only if i ∈ I, else the normal bundle is O(−2)⊕O.

Theorem 4.2.12. For any Type A potential f on Qn,I , there exists a Type An crepant
resolution π : X → SpecR such that Λcon(π) ∼= Jac(Qn,I , f). If furthermore f is reduced,
then π is Type An,I .

Proof. By the Splitting Theorem ([DWZ, 4.6]) and 4.1.4, there is a reduced Type A potential
fred on Qn,I′ for some I ⊆ I ′ ⊆ {1, 2, . . . , n} such that Jac(Qn,I′ , fred) ∼= Jac(Qn,I , f). Then,
by 4.1.20, there exists a reduced monomialized Type A potential g on Qn,I′ such that fred ∼= g.
By 4.1.23, there exists a monomialized Type A potential h on Qn such that Jac(Qn,I′ , g) ∼=
Jac(Qn, h). Thus we have

Jac(Qn,I , f) ∼= Jac(Qn,I′ , fred) ∼= Jac(Qn,I′ , g) ∼= Jac(Qn, h).

By 4.2.9, there exists a cAn singularity R and a maximal CM R-module M such that
EndR(M) ∼= Jac(Qn, h). Denote π to be the crepant resolution of SpecR, which corresponds
to M in 3.3.2. Thus Λcon(π) ∼= Jac(Qn, h), and so Λcon(π) ∼= Jac(Qn,I , f).

If furthermore f is reduced, then I ′ = I, fred = f and g is a reduced monomialized Type A
potential on Qn,I . Then write

h =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2
κijxj

i ,
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for some κij ∈ C. Since g is reduced on Qn,I , then by 4.1.23 κ2i−1,2 ̸= 0 when i ∈ I, and
κ2i−1,2 = 0 when i /∈ I. Write R and M as follows,

R = C[[u, v, x, y]]
uv − g0g2 . . . g2n

and M = R⊕ (u, g0)⊕ (u, g0g2)⊕ · · · ⊕ (u,∏n−1
i=0 g2i). We next prove that π is Type An,I .

(1) For any vertex i ∈ I, since κ2i−1,2 ̸= 0, then ((g2i−2, g2i)) = ((x, y)) by 4.2.2, and so the
normal bundle of the exceptional curve Ci of π is O(−1)⊕O(−1) by 3.3.3.

(2) For any vertex i /∈ I, since κ2i−1,2 = 0, then ((g2i−2, g2i)) ⊊ ((x, y)) by 4.2.2, and so the
normal bundle of the exceptional curve Ci of π is O(−2)⊕O by 3.3.3.

The Brown–Wemyss Realisation Conjecture [BW2] states that if f is any potential which
satisfies Jdim(f) ≤ 1 (see [BW2, 3.4] for the definition), then Jac(f) is isomorphic to the
contraction algebra of some crepant resolution X → SpecR with R cDV. The above result
4.2.12 confirms this Realisation Conjecture for Type A potentials on Qn,I for any n ≥ 1 and
I ⊆ {1, 2, . . . , n}.

§ 4.2.2 | Type An,I crepant resolutions and potentials

In this subsection, we prove in 4.2.15 the converse of 4.2.12. More precisely, given any
Type An,I crepant resolution, there is a reduced Type A potential f on Qn,I such that
Λcon(π) ∼= Jac(f). So, together with 4.2.12, this gives a correspondence between Type An

crepant resolutions and monomialized Type A potentials on Qn, in 4.2.18 and 4.2.19.

The following 4.2.13 and 4.2.14 imply that both Type An crepant resolutions and Type A
potentials on Qn are commutative in some sense, which is the key for proving 4.2.15.

Lemma 4.2.13. If π : X → SpecR is a Type An crepant resolution, then eiΛcon(π)ei is
commutative for any 1 ≤ i ≤ n.

Proof. Since π is a Type An crepant resolution, Λ(π) ∼= EndR(M) and Λcon(π) ∼= EndR(M)
for some maximal CM R-module M where M = R ⊕ M1 ⊕ · · · ⊕ Mn and each Mi is an
indecomposable rank one CMR-module. Thus EndR(Mi) ∼= R for 1 ≤ i ≤ n from e.g. [IW3,
5.4].

Denote C to be the stable category CMR of Cohen–Macaulay R-modules. Then we have
EndR(M) ∼= EndC (M) and EndR(Mi) ∼= EndC (Mi), thus for any 1 ≤ i ≤ n,

eiΛcon(π)ei
∼= eiEndR(M)ei

∼= ei EndC (M)ei
∼= EndC (Mi) ∼= EndR(Mi).

Since EndR(Mi) ∼= R is commutative and EndR(Mi) is a quotient of EndR(Mi), then EndR(Mi)
is also commutative, and so eiΛcon(π)ei is commutative.
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Lemma 4.2.14. Suppose that f is a reduced potential on Qn,I . If there is some integer j
where 1 ≤ j ≤ m − 1 such that f does not contain x′

jxj+1, then there exists some integer i
(depending on j) where 1 ≤ i ≤ n such that eiJac(f)ei is not commutative.

Proof. (1) When xj and xj+1 are not loops, then there exists a vertex i ∈ I such that Qn,I

at vertex i locally looks like the following.

i−1 i i+1

aj

bj

aj+1

bj+1

Q′ :=

We denote the above quiver with only the three vertices shown, as Q′. Then consider
the noncommutative algebra J , defined as Jac(f) quotiented by the ideal generated by the
following paths:

• m5
Qn,I

where mQn,I
is the ideal generated by all the arrows of Qn,I (see 2.1.1).

• ek for all 1 ≤ k < i− 1 and i+ 1 < k ≤ n.

• possible loops xj−1 on vertex i− 1 and xj+2 on vertex i+ 1.

It is clear that J ∼= Jac(Q, g) where g ∼ λ1x2
j + λ2x′

jxj+1 + λ3x2
j+1 for some λ1, λ2, λ3 ∈ C.

Then we suppose that eiJac(f)ei is commutative and f does not contain x′
jxj+1, and aim for

a contradiction.

Since eiJac(f)ei is commutative and eiJei is a factor of eiJac(f)ei, then eiJei is also com-
mutative, and furthermore x′

jxj+1 = xj+1x′
j in eiJei. Since f does not contain x′

jxj+1,
g ∼ λ1x2

j + λ3x2
j+1. It is clear that the four relations induced by differentiating λ1x2

j + λ2x2
j+1

can not induce the relation (bjaj)(aj+1bj+1) = (aj+1bj+1)(bjaj). Thus x′
jxj+1 ̸= xj+1x′

j in
eiJei, a contradiction.

(2) When xj is not a loop and xj+1 is a loop, then there exists a vertex i /∈ I such that Qn,I

at vertex i locally looks like the following.

i−1 i

aj

bj

xj+1

Q′ :=

We again denote the above quiver with the only two vertices shown, as Q′. Then consider
the noncommutative algebra J , defined as Jac(f) quotiented by the ideal generated by the
following paths:

• m4
Qn,I

where mQn,I
is the ideal generated by all the arrows of Qn,I (see 2.1.1).

• ek for all 1 ≤ k < i− 1 and i < k ≤ n.

• the possible loop xj−1 on vertex i− 1.
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• x2
j+1.

It is clear that J ∼= Jac(Q, g)/(x2
j+1) where g ∼ λ1x2

j +λ2x′
jxj+1 +λ3x′

jx2
j+1 +λ4x2

j+1 +λ5x3
j+1 +

λ6x4
j+1 for some λk ∈ C. We suppose that eiJac(f)ei is commutative and f does not contain

x′
jxj+1, and aim for a contradiction.

Since eiJac(f)ei is commutative and eiJei is a factor of eiJac(f)ei, then eiJei is also com-
mutative, and furthermore x′

jxj+1 = xj+1x′
j in eiJei. Since f does not contain x′

jxj+1, λ2 = 0.
Since f is reduced, λ4 = 0. Thus

J ∼=
C⟨⟨Q⟩⟩

(λ3(bjaj)xj+1 + λ3xj+1(bjaj), λ1bjajbj, λ1ajbjaj, x2
j+1)

.

Again, it is clear that the above relations can not induce (bjaj)xj+1 = xj+1(bjaj). Thus
x′

jxj+1 ̸= xj+1x′
j in eiJei, a contradiction.

(3) When xj is a loop and xj+1 is not a loop, the proof is similar to (2).

Proposition 4.2.15. Given any Type An,I crepant resolution π : X → SpecR, there exists
a reduced Type A potential f on Qn,I such that Λcon(π) ∼= Jac(f).

Proof. By 3.3.3, the NCCR Λ(π) can be presented as the quiver in 3.3.3 with some relations.
Since R is complete local, Λ(π) is also complete local by e.g. [BW2, 8.4]. Moreover, Λ(π) is
3-CY from [IW1, 2.8]. Since a complete local 3-CY algebra is a Jacobi algebra from [V3],
the relations of Λ(π) are generated by some reduced potential g. Since Λcon(π) ∼= Λ(π)/⟨e0⟩,
Λcon(π) is isomorphic to Jac(Qn,I , f) for some reduced potential f .

Then we prove that f is Type A, namely f contains x′
ixi+1 for each 1 ≤ i ≤ m − 1. Since

Λcon(π) ∼= Jac(f) and eiΛcon(π)ei is commutative for each 1 ≤ i ≤ n by 4.2.13, eiJac(f)ei is
also commutative for each i. So f must contain x′

ixi+1 for each i, by 4.2.14.

We are now in a position to show that our definition of Type A potential 4.1.4 is intrinsic.

Corollary 4.2.16. Let f be a reduced potential on Qn,I . The following are equivalent.

(1) f is Type A.

(2) There exists a Type An,I crepant resolution π such that Jac(f) ∼= Λcon(π).

(3) eiJac(f)ei is commutative for 1 ≤ i ≤ n.

Proof. (1) ⇒ (2): Since f is a reduced Type A potential on Qn,I , it is immediate by 4.2.12.

(2) ⇒ (3): Since π is a Type An crepant resolution, then eiΛcon(π)ei is commutative by
4.2.13, and so eiJac(f)ei is commutative for any 1 ≤ i ≤ n.

(3) ⇒ (1): Since f is a reduced potential on Qn,I and eiJac(f)ei is commutative for any
1 ≤ i ≤ n, then f contains x′

ixi+1 for any 1 ≤ i ≤ m− 1 by 4.2.14, and so f is Type A.
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Definition 4.2.17. We say two crepant resolutions πi : Xi → SpecRi for i = 1, 2 have the
same noncommutative deformation type (NC deformation type) if Λcon(π1) ∼= Λcon(π2).

The name NC deformation type comes from the fact that the contraction algebra represents
the noncommutative deformation functor of the exceptional curves [DW1].

Together with 4.1.20, the above 4.2.15 induces a map φ from Type An,I crepant resolutions to
the isomorphism classes of reduced monomialized Type A potentials on Qn,I . More precisely,
for any Type An,I crepant resolution π, we define φ(π) to be the reduced monomialized Type
A potential f on Qn,I that satisfies Λcon(π) ∼= Jac(f) by 4.2.15 and 4.1.20. Moreover, φ is
well-defined since if there are two such f1 and f2, then Jac(f1) ∼= Jac(f2).

Theorem 4.2.18. The above φ induces a one-to-one correspondence as follows.

isomorphism classes of reduced monomialized Type A potentials on Qn,I

Type An,I crepant resolutions up to NC deformation type

Proof. Firstly, we prove the map from top to bottom is surjective, namely that for any
reduced monomialized Type An,I potential f , there is a Type An,I crepant resolution π : X→
SpecR such that Jac(f) ∼= Λcon(π). This is immediate from 4.2.12.

Then we prove that the map from top to bottom is injective. Let π : Xk → SpecRk be two
Type An,I crepant resolutions for k = 1, 2. If Λcon(π1) ∼= Jac(f) ∼= Λcon(π2) for some reduced
monomialized Type A potential f on Qn,I , then π1 and π2 have the same NC deformation
type.

The following asserts that Type A potentials on Qn describe the contraction algebra of all
Type An crepant resolutions.

Corollary 4.2.19. The set of isomorphism classes of contraction algebras associated to
Type An crepant resolutions is equal to the set of isomorphism classes of Jacobi algebras of
monomialized Type A potentials on Qn.

Proof. We first define a map ϕ from the isomorphic classes of contraction algebra associated
with Type An crepant resolutions to the isomorphic classes of Jacobi algebra of monomialized
Type A potentials on Qn.

Given any contraction algebra Λcon(π) where π is a Type An crepant resolution, then π
belongs to Type An,I crepant resolution for some I. Thus Λcon(π) ∼= Jac(Qn,I , f

′) for some
reduced monomialized Type A potential f ′ on Qn,I by 4.2.18. Moreover, f ′ is isormphic to
some monomialized Type A potential f on Qn by 4.1.23. We define ϕ(Λcon(π)) := Jac(f).
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Secondly, we prove that ϕ is well-defined. If there are two Type An crepant resolutions π1 and
π2 such that Λcon(π1) ∼= Λcon(π2), then ϕ(Λcon(π1)) = Jac(f1) and ϕ(Λcon(π2)) = Jac(f2), so
Jac(f1) ∼= Jac(f2) from the above definition of ϕ.

Thirdly, we prove that ϕ is injective. If there are two Type An crepant resolutions π1 and
π2 such that ϕ(Λcon(π1)) ∼= Jac(f) ∼= ϕ(Λcon(π2)) for some monomialized Type A potential
f on Qn, then Λcon(π1) ∼= Λcon(π2) from the above definition of ϕ.

Finally, by 4.2.12 ϕ is surjective.

Notation 4.2.20. Let f and g be potentials on a quiver Q. We say that f is derived
equivalent to to g (written f ≃ g) if the derived categories Db(Jac(f)) and Db(Jac(g)) are
triangle equivalent.

Given any isolated cAn singularity R which admits a crepant resolution, let π : X→ SpecR
be one of the crepant resolutions. Then, by 4.2.19, there exists some monomialized Type
A potential f on Qn such that Λcon(π) ∼= Jac(f), so it induces a map Φ from isolated cAn

singularities, which admit a crepant resolution to monomialized Type A potentials on Qn.

Theorem 4.2.21. The above Φ induces a one-to-one correspondence as follows.

derived equivalence classes of monomialized Type A potentials on Qn

with finite-dimensional Jacobi algebra

isomorphism classes of isolated cAn singularities
which admit a crepant resolution

Proof. Firstly, we prove that the map from top to bottom is well-defined. Given any iso-
lated cAn R which admits a crepant resolution, let π : X → SpecR be one of the crepant
resolutions. Then there exists some monomialized Type A potential f on Qn such that
Λcon(π) ∼= Jac(f) by 4.2.19. Moreover, since R is isolated, Jac(f) is finite-dimensional by
2.3.6. Let π′ : X′ → SpecR be another crepant resolution such that Λcon(π′) ∼= Jac(f ′) for
some monomialized Type A potential f ′ on Qn. Since π′ is a flop of π and R is isolated, f
is derived equivalent to f ′ by 2.3.8.

Secondly, we prove that the map from top to bottom is surjective. Given any monomialized
Type A potential f on Qn with finite-dimensional Jacobi algebra, there exists a Type An

crepant resolution π : X → SpecR such that Jac(f) ∼= Λcon(π) by 4.2.9. Moreover, since
Jac(f) is finite-dimensional, R is isolated by 2.3.6.

Finally, we prove the map from top to bottom is injective. This uses the proof of the
Donovan-Wemyss conjecture in 2.3.7. Let πi : Xi → SpecRi be two crepant resolutions of
isolated cAn Ri with Λcon(πi) ∼= Jac(fi) for i = 1, 2. If f1 is derived equivalent to f2, together
with R1 and R2 isolated, then R1 ∼= R2 by 2.3.7.
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§ 4.2.3 | Derived equivalences associated to non-isolated cases

Since both 2.3.7 and 2.3.8 need the assumption of isolated cDVs, we restrict our proof of
the correspondence in 4.2.21 to isolated cAn singularities. This naturally suggests the idea
of extending 2.3.7 and 2.3.8 to non-isolated cDVs.

However, by testing contraction algebras associated to crepant resolutions of the non-isolated
cA2 singularity C[[u, v, x, y]]/(uv − x2y), we find in 4.2.26 and 4.2.29 that 2.3.7 and 2.3.8 do
not extend directly to non-isolated cDVs.

Let R := C[[u, v, x, y]]/(uv− x2y) and consider the R-module M := R⊕ (u, x)⊕ (u, xy), and
the corresponding crepant resolution π : X → SpecR with Λ(π) ∼= EndR(M) in 3.3.2. By
[IW3, §5], X is given pictorially by

X
C1 C2

x y x

By 3.3.3 EndR(M) can be presented as the following quiver

(u,x) (u,xy)

R

y

inc

x
inc u x

u

y

Thus Λcon(π) ∼= EndR(M) ∼= Jac(Q, f) for some potential f on the quiver Q where

1 2
b

a

Q =

It is easy to check that f = 0 by the quiver presentation of EndR(M) above.

We next perform a flop of the exceptional curve C1 in π : X → SpecR, obtaining a new
crepant resolution π′ : X′ → SpecR. Again by [IW3, §5], X′ is given pictorially by

X′
C1 C2

y x x

and Λ(π′) ∼= EndR(M ′) where M ′ = R ⊕ (u, y) ⊕ (u, yx). Again by 3.3.3 EndR(M ′) can be
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presented as the following quiver

(u,y) (u,yx)

R

x

inc

y
inc u x

u

y

Thus Λcon(π′) ∼= EndR(M ′) ∼= Jac(Q′, f ′) for some potential f ′ on the quiver Q′ where

1 2
b

a

l

Q′ =

It is easy to check that f ′ = lba by the quiver presentation of EndR(M ′) above.

Thus if 2.3.7 and 2.3.8 hold for non-isolated cDVs, then Jac(Q, f) would need to be derived
equivalent to Jac(Q′, f ′). However, we will show that this is not the case by comparing their
global dimensions.

Notation 4.2.22. To ease notation, we adopt the following notation.

(1) Set Λcon := Jac(Q, f) and Γcon := Jac(Q′, f ′).

(2) Then set P1 := Λcone1 = EndR(M, (u, x)), P2 := Λcone2 = EndR(M, (u, xy)) and
Q1 := Γcone1 = EndR(M ′, (u, y)), Q2 := Γcone2 = EndR(M ′, (u, yx)).

(3) Write S1 (resp. S2) for the simple left Γcon-module which corresponds to the following
quiver representation of Γcon.

C 0

0

0

0

resp. 0 C

0

0

0

Lemma 4.2.23. With notation in 4.2.22, the global dimension gl.dim(Λcon) ≤ 1.

Proof. Since Λcon ∼= C⟨⟨Q⟩⟩ which is a complete quiver algebra with no relations, by [C3, §1]
pdΛcon(N) ≤ 1 for any left Λcon-module N . Thus gl.dim(Λcon) ≤ 1.

Lemma 4.2.24. With notation in 4.2.22, there exists an exact sequence of left Γcon-modules

0→ S1 −→ Q2
·l−→ Q2

·b−→ Q1 −→ S1 → 0.
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Proof. Recall that Γcon = Jac(Q′, f ′) where f ′ = lba. Given that the relations generated by
f ′ are lb = 0, ba = 0, and al = 0, we consider the following left Γcon-modules as C-vector
spaces:

• Q1 = Γcone1 is the C-vector space generated by {e1, b, ab},

• Q2 = Γcone2 is the C-vector space generated by {e2, a, l, l
2, . . . },

• Γconb is the C-vector space generated by {b, ab},

• Γconl is the C-vector space generated by {l, l2, . . . },

• Γcona is the C-vector space generated by {a}.

Thus we have the short exact sequences

0→ Γconb→ Q1 → S1 → 0,

0→ Γconl→ Q2
·b−→ Γconb→ 0,

0→ Γcona→ Q2
·l−→ Γconl→ 0.

Combining the above three short exact sequences gives the long exact sequence

0→ Γcona −→ Q2
·l−→ Q2

·b−→ Q1 −→ S1 → 0.

So we only need to prove that Γcona ∼= S1 as left Γcon-modules. By the one-to-one correspon-
dence between the quiver representations of Γcon and the left Γcon-modules in [W3, 6.14],
S1 = C with the left Γcon-module structure ac = 0, bc = 0, lc = 0, e2c = 0 and e1c = c for
any c ∈ C. Thus the map φ : Γcona→ S1 defined by φ(ca) = c for any c ∈ C is a surjective
left-Γcon homomorphism. Since dimC Γcona = 1 = dimC S1, φ is a left-Γcon isomorphism.

Lemma 4.2.25. With notation in 4.2.22, the global dimension gl.dim(Γcon) =∞.

Proof. By the dimension shifting theorem of the Ext groups and the exact sequence in 4.2.24,
for any i ≥ 0 we have

Exti
Γcon(S1, S2) = Exti+3

Γcon(S1, S2).

By the shape of the quiver Q′ and the intersection theory of [W2, 2.15], Ext1
Γcon(S1, S2) =

C, and so Exti
Γcon(S1, S2) = C for any i = 1, 4, 7, · · · . Thus pdΓcon(S1) = ∞, and so

gl.dim(Γcon) =∞.

Proposition 4.2.26. With notation in 4.2.22, Λcon is not derived equivalent to Γcon.

Proof. If Λcon is derived equivalent to Γcon, then by [R3] there exists a tilting complex T

of Λcon such that Γcon ∼= EndKb(proj Λcon)(T ). Since by 4.2.23 gl.dim(Λcon) is finite, by [KK,
Theorem 1] gl.dim(EndKb(proj Λcon)(T )) is also finite. But this contradicts with the fact that
gl.dim(Γcon) =∞ in 4.2.25.
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Although Λcon is not derived equivalent to Γcon, we will show that Λcon is derived equivalent
to C⟨⟨Q′′⟩⟩/(lx), where

1 2x

l

Q′′ =

Note that C⟨⟨Q′′⟩⟩/(lx) is a quotient of Γcon defined via the map ϑ : Γcon → C⟨⟨Q′′⟩⟩/(lx),
given by

ϑ(l) = l, ϑ(b) = x, ϑ(a) = 0.

Thus C⟨⟨Q′′⟩⟩/(lx) ∼= Γcon/⟨a⟩. This is a new phenomenon specific to the non-isolated cDVs.

Let Cb(mod Λcon) denote the category of bounded cochain complexes of finitely generated
Λcon-modules, and let Kb(proj Λcon) denote the bounded homotopy category of finitely gen-
erated projective Λcon-modules.

By [A3, §4.1], Λcon has a two-term complex

P :=
(
HomR (M, (u, x)) ·y−→ HomR (M, (u, xy))

)
⊕
(
0→ HomR (M, (u, xy))

)
.

Since R is non-isolated, we can not use [A3, §4] to deduce that P is a titling complex. How-
ever, we next prove that P is still a tilting complex by checking HomKb(proj Λcon)(P ,P [n]) = 0
for n ̸= 0. With notation in 4.2.22,

P = (P1
·a−→ P2)⊕ (0→ P2). (4.2.O)

To ease notation, we write Cb (resp. Kb) for Cb(mod Λcon) (resp. Kb(proj Λcon)) throughout
this subsection.

Lemma 4.2.27. With notation in 4.2.22, P is a tilting complex of Λcon.

Proof. Since P is a two-term complex, HomKb(P ,P [n]) = 0 for n ≥ 2 or n ≤ −2. Thus we
only need to check that HomKb(P ,P [n]) = 0 for n = 1,−1.

(1) We first check that HomKb(P ,P [1]) = 0. By the construction of P ,

HomKb(P ,P [1]) =
HomKb(P1 → P2, (P1 → P2)[1]) HomKb(P1 → P2, (0→ P2)[1])

HomKb(0→ P2, (P1 → P2)[1]) HomKb(0→ P2, (0→ P2)[1])

 .
Any cochain map g in HomCb(0→ P2, (P1 → P2)[1]) has the form

0 0 P2

P1 P2 0

g−1 g0 g1

. . . . . .

·(−a)
. . . . . .
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Thus gi = 0 for each i, and so HomKb(0 → P2, (P1 → P2)[1]) = 0. Similarly, we have
HomKb(0→ P2, (0→ P2)[1]) = 0.

Any cochain map g in HomCb(P1 → P2, (0→ P2)[1]) has the form

0 P1 P2

0 P2 0

g−1 g0 g1

·a. . . . . .

. . . . . .

Thus gi = 0 for each i ̸= 0. By the shape of the quiver Q, we have g0 = ah′ for some
h′ ∈ HomΛcon(P2, P2). Then we define a collection of maps hi in the diagram below as
h0 = h′ and hi = 0 for each i ̸= 0.

0 P1 P2

0 P2 0

g−1 g0 g1

·a. . . . . .

. . . . . .

0h0h−10

It is clear that g0 = ah0 + h−1 · 0. Thus h is a cochain homotopy between g and the zero
cochain map, and so HomKb(P1 → P2, (0 → P2)[1]) = 0. Similarly, we have HomKb(P1 →
P2, (P1 → P2)[1]) = 0.

(2) We next check that HomKb(P ,P [−1]) = 0. By the construction of P ,

HomKb(P ,P [−1]) =
HomKb(P1 → P2, (P1 → P2)[−1]) HomKb(P1 → P2, (0→ P2)[−1])

HomKb(0→ P2, (P1 → P2)[−1]) HomKb(0→ P2, (0→ P2)[−1])

 .
Any cochain map g in HomCb(P1 → P2, (0→ P2)[−1]) has the form

P1 P2 0

0 0 P2

g−1 g0 g1

·a. . . . . .

. . . . . .

Thus gi = 0 for each i, and so HomKb(P1 → P2, (0 → P2)[−1]) = 0. Similarly, we have
HomKb(0→ P2, (0→ P2)[−1]) = 0.

Any cochain map g in HomCb(P1 → P2, (P1 → P2)[−1]) has the form

P1 P2 0

0 P1 P2

g−1 g0 g1

·a. . . . . .

·(−a)
. . . . . .

Thus gi = 0 for each i ̸= 0. Since g commutes with the boundary operator, g0 · (−a) =
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0 · g1 = 0. Since Λcon ∼= C⟨⟨Q⟩⟩ with no relations, g0 = 0. Thus g = 0, and so we have
HomKb(P1 → P2, (P1 → P2)[−1]) = 0. Similarly, HomKb(0→ P2, (P1 → P2)[−1]) = 0.

Lemma 4.2.28. With notation as above and 4.2.22, EndKb(proj Λcon)(P) ∼= C⟨⟨Q′′⟩⟩/(lx).

Proof. Recall that P = (P1
·a−→ P2)⊕ (0→ P2) (4.2.O). Thus

EndKb(P) =
 EndKb(P1 → P2) HomKb(P1 → P2, 0→ P2)
HomKb(0→ P2, P1 → P2) EndKb(0→ P2)

 .
(1) Any cochain map g in EndCb(P1 → P2) has the form

0 P1 P2 0

0 P1 P2 0

g−2 g−1 g0 g1

·a. . . . . .

·a. . . . . .

Thus gi = 0 for each i ̸= −1, 0. Since g commutes with the boundary operator, g−1a = ag0.
Recall that P1 = Λcone1 and P2 = Λcone2 in 4.2.22 where Λcon ∼= C⟨⟨Q⟩⟩ and

1 2
b

a

Q =

Thus g−1a = ag0 induces

g−1 = cn(ab)n + cn−1(ab)n−1 + · · ·+ c1ab+ c0e1,

g0 = cn(ba)n + cn−1(ba)n−1 + · · ·+ c1ba+ c0e2,

for some n ≥ 0 and each ci ∈ C.

We next define a cochain map E1 ∈ EndCb(P1 → P2) as (E1)−1 = e1, (E1)0 = e2 and
(E1)i = 0 for each i ̸= −1, 0.

Then we define a collection of maps hi in the diagram below as hi = 0 for each i ̸= 0 and

h0 = cnb(ab)n−1 + cn−1b(ab)n−2 + · · ·+ c1b.

0 P1 P2 0

0 P1 P2 0

g−2 g−1 g0 g1

·a. . . . . .

·a. . . . . .

0 h−1 h0 0 0

It is clear that

g−1 − c0(E1)−1 = ah0 + h−1 · 0 and g0 − c0(E1)0 = h0a+ 0 · h1.
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Thus h is a cochain homotopy between g and c0E1, and so g = c0E1 in EndKb(P1 → P2).
Thus EndKb(P1 → P2) ∼= CE1

(2) Any cochain map g in HomCb(0→ P2, P1 → P2) has the form

0 0 P2 0

0 P1 P2 0

g−2 g−1 g0 g1

. . . . . .

·a. . . . . .

Thus gi = 0 for each i ̸= 0, and

g0 = cn(ba)n + cn−1(ba)n−1 + · · ·+ c1ba+ c0e2

for some n ≥ 0 and each ci ∈ C.

We next define a cochain map X ∈ HomCb(0→ P2, P1 → P2) as X0 = e2 and Xi = 0 for each
i ̸= 0. Similar to (3), we can also construct a cochain homotopy h between g and c0X. So
g = c0X in HomKb(0→ P2, P1 → P2). Thus HomKb(0→ P2, P1 → P2) ∼= CX.

(3) Any cochain map g in HomCb(P1 → P2, 0→ P2) has the form

0 P1 P2 0

0 0 P2 0

g−2 g−1 g0 g1

·a. . . . . .

. . . . . .

Thus gi = 0 for each i ̸= 0. Since g commutes with the boundary operator, a·g0 = g−1 ·0 = 0.
Since Λcon ∼= C⟨⟨Q⟩⟩ with no relations, g0 = 0. Thus HomKb(P1 → P2, 0→ P2) = 0.

(4) Any cochain map g in EndCb(0→ P2) has the form

0 0 P2 0

0 0 P2 0

g−2 g−1 g0 g1

. . . . . .

. . . . . .

Thus gi = 0 for each i ̸= 0 and

g0 = cn(ba)n + cn−1(ba)n−1 + · · ·+ c1ba+ c0e2

for some n ≥ 0 and each ci ∈ C.

We next define the cochain maps E2, L ∈ EndCb(0→ P2) as

• (E2)0 = e2 and (E2)i = 0 for each i ̸= 0,

• L0 = ba and Li = 0 for each i ̸= 0.
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It is clear that EndCb(0→ P2) is a C-algebra generated by E2 and L with relations E2
2 = E2,

E2L = L = LE2. Since any cochain homotopy h in the diagram above must be zero,
EndKb(0 → P2) has no more relations, and so EndKb(0 → P2) ∼= C[[L]], and as a C-vector
space is spanned by {E2, L, L

2, · · · }.

Combining (1), (2), (3) and (4), it follows that

EndKb(P) =
 EndKb(P1 → P2) HomKb(P1 → P2, 0→ P2)
HomKb(0→ P2, P1 → P2) EndKb(0→ P2)

 ∼=
CE1 0
CX C[[L]]

 ,
which is the C-algebra generated by E1, X, E2 and L where

E1 :=
E1 0

0 0

 , X :=
0 0
X 0

 , E2 :=
0 0
0 E2

 , L :=
0 0
0 L

 .
Moreover, EndKb(P) is the C-vector space spanned by {E1,X,E2,L,L2, · · · }.

Recall that

1 2x

l

Q′′ =

We define an algebra homomorphism φ : C⟨⟨Q′′⟩⟩/(lx) → EndKb(P) by φ(e1) = E1, φ(e2) =
E2, φ(X) = X and φ(l) = L. We next check that φ is well-defined, which only requires
verifying that EndKb(P) satisfies the relations of C⟨⟨Q′′⟩⟩/(lx).

The relations of C⟨⟨Q′′⟩⟩/(lx) are

e2
1 = e1, e1e2 = 0, e1x = 0, e1l = 0,
e2e1 = 0, e2

2 = e2, e2x = x, e2l = l,

xe1 = x, xe2 = 0, x2 = 0, xl = 0,
le1 = 0, le2 = l, lx = 0.

Recall that

(1) E1 ∈ EndKb(P1 → P2) with (E1)−1 = e1, (E1)0 = e2 and (E1)i = 0 for each i ̸= −1, 0,

(2) X ∈ HomKb(0→ P2, P1 → P2) with X0 = e2 and Xi = 0 for each i ̸= 0,

(3) E2 ∈ EndKb(0→ P2) with (E2)0 = e2 and (E2)i = 0 for each i ̸= 0,

(4) L ∈ EndKb(0→ P2) with L0 = ba and Li = 0 for each i ̸= 0.

Thus E1, E2, X and L clearly satisfy all the relations above, except for LX = 0. So it remains
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to check that LX = 0, which is illustrated as follows,

0 0 P2 0

0 0 P2 0

0 P1 P2 0

·ba

·e2

. . . . . .

. . . . . .

·a. . . . . .

h−2 h−1 h0 h1 h2

We define a collection of maps hi in the diagram above as h0 = b and hi = 0 for each
i ̸= 0. It is clear that h is a cochain homotopy between LX and 0. So we have LX = 0 in
HomKb(0→ P2, P1 → P2). So φ : C⟨⟨Q′′⟩⟩/(lx)→ EndKb(P) is an algebra homomorphism.

Since EndKb(P) is the C-algebra generated by E1, X, E2 and L, and φ(e1) = E1, φ(e2) = E2,
φ(X) = X and φ(l) = L, it follows that φ is surjective. By the relations of C⟨⟨Q′′⟩⟩/(lx), it
is a C-vector space spanned by {e1, x, e2, l, l

2, · · · }. Since EndKb(P) is the C-vector space
spanned by {E1,X,E2,L,L2, · · · }, φ is injective. So φ is an algebra isomorphism.

Proposition 4.2.29. With notation as above and 4.2.22, Λcon is derived equivalent to
C⟨⟨Q′′⟩⟩/(lx).

Proof. By 4.2.27, P in (4.2.O) is a tilting complex of Λcon. Thus by [R3] Λcon is derived equiv-
alent to EndKb(proj Λcon)(P). Since EndKb(proj Λcon)(P) ∼= C⟨⟨Q′′⟩⟩/(lx) by 4.2.28, the statement
follows.
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Chapter 5

Filtrations and Obstructions

In §5.1 and §5.2, we first define some matrices and generalised GV invariants associated to
a monomialized Type A potential.

Using these matrices, §5.3 gives filtration structures of the parameter space of monomialized
Type A potentials on Qn with respect to generalised GV invariants.

Finally, §5.4 uses these filtration structures to give the obstructions of generalised GV in-
variants that can arise from crepant resolutions of cAn singularities.

§ 5.1 | Matrices from potentials
This section introduces some matrices associated with monomialized Type A potentials.
With these matrices, §5.3 gives a filtration structure of the parameter space of monomialized
Type A potentials on Qn with respect to generalised GV invariants.

Throughout this section, we fix some n ≥ 1 and consider monomialized Type A potentials
on the quiver Qn (1.5.A).

Notation 5.1.1. Since §5.3 and §5.4 will consider the parameter space of monomialized
Type A potentials on Qn, we introduce the following notation.

(1) Define the set of monomialized Type A potentials on Qn

MA := {
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2

kijxj
i | kij ∈ C for 1 ≤ i ≤ 2n− 1 and 2 ≤ j ≤ ∞}.

(2) Then set the parameter space M associated to MA to be

M := {(k12, k13, . . . , k2n−1,2, k2n−1,3, . . . ) | kij ∈ C for 1 ≤ i ≤ 2n− 1 and 2 ≤ j ≤ ∞}.

(3) Write κ for the tuple of variables κij for 1 ≤ i ≤ 2n − 1 and 2 ≤ j ≤ ∞, inside the
infinite polynomial ring C[[κ12, κ13, . . .κ2n−1,2, κ2n−1,3, . . .]] := C[[κ]].

(4) For each i and j, define the map εij : MA → C to be εij(f) := jkij. By the obvious
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bijection map M→ MA, sometimes we abuse the notation to consider εij : M→ MA→
C and so εij(κ) = jκij.

Given two matricesA = (aij)p×q andB = (bij)s×t with apq = b11, defineA@B ∈M(p+s−1)×(q+t−1)

to be

A @B :=



a11 a12 · · · a1,n−1 a1n 0 · · · 0
... ... . . . ... ... ... . . . ...

ap−1,1 ap−1,2 · · · ap−1,q−1 ap−1,q 0 · · · 0
ap1 ap2 · · · ap−1,q apq b12 · · · b1t

0 0 · · · 0 b21 b22 · · · b2t

... ... . . . ... ... ... . . . ...
0 0 · · · 0 bs1 bs2 · · · bst


.

Definition 5.1.2. With the εij in 5.1.1(4), we next define a set of matrices Ad
ij for

(1) 1 ≤ i ≤ j ≤ 2n− 1, j − i is odd, and d = 2,

(2) 1 ≤ i ≤ j ≤ 2n− 1, j − i is even, and d ≥ 2.

For any 1 ≤ i ≤ 2n− 1 and d ≥ 2, define Ad
i,i :=

[
εi,d

]
.

For any 1 ≤ i ≤ 2n− 2, define A2
i,i+1 :=

εi,2 1
1 εi+1,2

.

For any 1 ≤ i ≤ 2n− 3 and d > 2, define Ad
i,i+2 ∈M(d+1)×(d+1) to be

Ad
i,i+2 :=



εi,d 0 0 · · · 0 1 0
1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
0 0 1 · · · 0 0 0
... ... ... . . . ... ... ...
0 0 0 · · · 1 0 0
0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 εi+2,d



. (5.1.A)

The other Ad
ij are defined inductively. For any i, j satisfying j − i ≥ 2, define

A2
i,j := A2

i,i+1 @ A2
i+1,i+2 @ · · · @ A2

j−1,j. (5.1.B)

For any d > 2, and i, j satisfying j − i ≥ 4 and even, define

Ad
i,j := Ad

i,i+2 @ Ad
i+2,i+4 @ · · · @ Ad

j−2,j. (5.1.C)

Given any f ∈ MA, define Ad
ij(f) as replacing all ε∗,d in Ad

ij with ε∗,d(f).

90



CHAPTER 5. FILTRATIONS AND OBSTRUCTIONS 91

Remark 5.1.3. Since εij : MA→ C in 5.1.1(4), for any i, j, d in 5.1.2, we have

Ad
ij : MA→M(C),

f 7→ Ad
ij(f)

where M(C) is the set of matrices over the complex numbers. By the obvious bijection map
M → MA, sometimes we abuse the notation and consider Ad

ij : M → MA → M(C), and so
Ad

ij(κ) ∈M(C[[κ]]) and detAd
ij(κ) ∈ C[[κ]].

Example 5.1.4. Ad
i,i(κ) =

[
dκid

]
, A2

i,i+1(κ) =
2κi,2 1

1 2κi+1,2

, and for d > 2

Ad
i,i+2(κ) =



dκid 0 0 · · · 0 1 0
1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
0 0 1 · · · 0 0 0
... ... ... . . . ... ... ...
0 0 0 · · · 1 0 0
0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 dκi+2,d



.

Then we consider some subsets of the monomialized Type A potentials MA on Qn.

Notation 5.1.5. Fix a tuple p = (p1, p2, . . . , p2n−1) where each 2 ≤ pi ∈ N∞, we adopt the
following notation, which is parallel to that in 5.1.1.

(1) Define the following subset of monomialized Type A potentials on Qn

MAp := {
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2

kijxj
i | ki,ji

= 0 for 1 ≤ i ≤ 2n− 1, 2 ≤ ji < pi}. (5.1.D)

(2) Then set the parameter space Mp associated to MAp to be

Mp := {(k12, k13, . . . , k2n−1,2, k2n−1,3, . . . ) | ki,ji
= 0 for 1 ≤ i ≤ 2n− 1, 2 ≤ ji < pi}.

(5.1.E)

(3) Write κp for the tuple of variables κiji
, for 1 ≤ i ≤ 2n− 1 and pi ≤ ji ≤ ∞.

(4) For any i, j satisfying 1 ≤ i ≤ j ≤ 2n− 1, define dij(p) to be

dij(p) :=
 2 if j − i is odd

min (pi, pi+2, . . . , pj) if j − i is even
(5.1.F)

(5) Given another tuple p′ = (p′
1, p

′
2, . . . , p

′
2n−1), write p′ ≥ p if p′

i ≥ pi for each i.

Remark 5.1.6. We next make some remarks about the above notations.
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(1) If p = (2, 2, . . . , 2), then κp, Mp and MAp coincide with κ, M and MA respectively.

(2) By the inclusion map MAp ↪−→ MA, for any f ∈ MAp and i, j, d in 5.1.2, f ∈ MA and
so εij(f), Ad

ij(f) have been defined.

(3) By the inclusion map Mp ↪−→ M, for any i, j, d in 5.1.2 sometimes we abuse the notation
to consider εij and Ad

ij are defined on the subspace Mp, and so Ad
ij(κp) ∈ M(C[[κp]])

and εij(κp), detAd
ij(κp) ∈ C[[κp]].

(4) Let f ∈ MAp and write

f =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2

kijxj
i .

For 1 ≤ i ≤ 2n− 1, if d < pi, then kid = 0, and so εid(f) = dkid = 0. Thus εid is a zero
function over the domain MAp, and so εid(κp) = 0.

(5) If p′ ≥ p, then MAp′ ⊆ MAp and Mp′ ⊆ Mp.

The following results of this subsection come from the inductive definition of Ad
ij. They

will be used in §5.3 to give the general position of the parameter space Mp with respect to
generalised GV invariants.

Lemma 5.1.7. Given any i and j satisfying j − i ≥ 2, the following holds.

(1) detA2
ij = εj2 detA2

i,j−1 − detA2
i,j−2,

(2) detA2
ij = εi2 detA2

i−1,j − detA2
i−2,j.

When furthermore j − i is even, for any d > 2, the following holds.

(3) detAd
ij = − detAd

i,j−2 + (−1)(j−i)(d−1)/2εjd,

(4) detAd
ij = (−1)d−1 detAd

i+2,j + (−1)(j−i)/2εid.

Proof. (1) By the inductive definition of A2
ij and A2

i,j−1 (5.1.B),

A2
ij = A2

i,j−1 @ A2
j−1,j and A2

i,j−1 = A2
i,j−2 @ A2

j−2,j−1.

Set vn to be the 1× n matrix [0, 0, . . . , 0, 1]. Thus

A2
ij =


A2

i,j−1 vT
j−i

vj−i εj2

 , A2
i,j−1 =


A2

i,j−2 vT
j−i−1

vj−i−1 εj−1,2

 .

Write B for the matrix by removing the last row and the second to last column of A2
ij. By

expanding along the last row of A2
ij, detA2

ij = εj2 detA2
i,j−1−detB. Moreover, by the forms
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of A2
ij and A2

i,j−1 as above,

B =


A2

i,j−2 0
vj−i−1 1

 .

Thus by expanding along the last column of B, detB = detA2
i,j−2, and so detA2

ij =
εj2 detA2

i,j−1 − detA2
i,j−2.

(2) This is similar, by expanding along the first row of A2
ij.

(3) By the inductive definition of Ad
ij (5.1.C), Ad

ij = Ad
i,j−2 @ Ad

j−2,j. Together with (5.1.A),
Ad

ij has the following form

Ad
ij =



Ad
i,j−2

0 0 · · · 0 0 0
... ... . . . ... ... ...
0 0 · · · 0 0 0
0 0 · · · 0 1 0

0 0 · · · 1
0 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

1 0 · · · 0 0 0
1 1 · · · 0 0 0
0 1 · · · 0 0 0
... ... . . . ... ... ...
0 0 · · · 1 0 0
0 0 · · · 1 0 1
0 0 · · · 0 1 εjd



.

Write Cd
ij for the matrix by removing the last row and the last column of Ad

ij, D for the
matrix by removing the last row and the second to last column of Ad

ij. By expanding along
the last row of Ad

ij, detAd
ij = εjd detCd

ij − detD. We claim that detD = detAd
i,j−2 and

detCd
ij = (−1)(j−i)(d−1)/2. So the statement follows.
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To see this, by the form of Ad
ij,

D =



Ad
i,j−2

0 0 · · · 0 0
... ... . . . ... ...
0 0 · · · 0 0
0 0 · · · 1 0

0 0 · · · 1
0 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0
0 0 · · · 0

1 0 · · · 0 0
1 1 · · · 0 0
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0
0 0 · · · 1 1



.

By expanding along the last column repeatedly, detD = detAd
i,j−2.

By the definition of Cd
ij, Cd

i,j−2 and the form of Ad
ij,

Cd
ij =



Cd
i,j−2

0 0 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 0
1 0 0 · · · 0 0

0 0 · · · 1
0 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0
0 0 · · · 0

εj−2,d 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 0
0 0 0 · · · 1 0



,

where the lower right corner block is a d by d matrix. Since Cd
ij has the above form, by

expanding along the last row d− 1 times, it follows that detCd
ij = (−1)d−1 detC where

C :=


Cd

i,j−2

0
...
0
0

0 0 · · · 1 1


.

Thus detC = detCd
i,j−2, and so detCd

ij = (−1)d−1 detCd
i,j−2. Since Cd

i,i+2 is obtained by
removing the last row and the last column of Ad

i,i+2 (5.1.A), detCd
i,i+2 = (−1)d−1. So

detCd
ij = (−1)d−1 detCd

i,j−2 = (−1)(j−i−2)(d−1)/2 detCd
i,i+2 = (−1)(j−i)(d−1)/2.
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(4) This is similar, by expanding along the first row of Ad
ij.

Notation 5.1.8. For any i and j satisfying i ≤ j and j − i is even, we adopt the following
notation for the ideals in C[εi−1,2, εi,2, . . . , εj+1,2].

(1) Write mij for the ideal (εi,2, εi+2,2, . . . , εj,2).

(2) Write Eij for the ideal generated by all the degree two terms of εi,2, εi+2,2, . . . , εj,2

except ε2
i,2, ε

2
i+2,2, . . . , ε

2
j,2.

Lemma 5.1.9. Given any i, j satisfying i ≤ j, the following holds.

(1) If j − i is odd, then detA2
ij = (−1)(j−i+1)/2 + ϵ, where ϵ ∈ mi,j−1 ∩mi+1,j.

(2) If j − i is even, then detA2
ij = (−1)(j−i)/2(εi2 + εi+2,2 + · · ·+ εj2) + ϵ where ϵ ∈ Eij.

(3) If j − i is even and d > 2, then detAd
ij = (−1)(j−i)/2(εid + (−1)dεi+2,d + · · · +

(−1)(j−i)d/2εjd).

Proof. (1) If j − i = 1, then by definition detA2
ij = −1 + εi,2εi+1,2. Since εi,2εi+1,2 ∈

(εi,2) ∩ (εi+1,2) = mi,j−1 ∩mi+1,j, the statement follows.

We next prove this statement by induction. Fix some i, j satisfying j − i ≥ 3 and odd.
Assume that detA2

i,j−2 = (−1)(j−i−1)/2 + ϵ′ where ϵ′ ∈ mi,j−3 ∩mi+1,j−2. So we have

detA2
ij = εj2 detA2

i,j−1 − detA2
i,j−2 (by 5.1.7(1))

= εj2 detA2
i,j−1 − (−1)(j−i−1)/2 − ϵ′ (by assumption)

= (−1)(j−i+1)/2 + εj2 detA2
i,j−1 − ϵ′.

Set ϵ := εj2 detA2
i,j−1 − ϵ′. So it suffices to prove that ϵ ∈ mi,j−1 ∩mi+1,j.

Since by definition (5.1.B) detA2
i,j−1 ∈ C[εi,2, εi+1,2, . . . , εj−1,2], εj2 detA2

i,j−1 ∈ mi+1,j. To-
gether with ϵ′ ∈ mi+1,j−2 ⊆ mi+1,j, it follows that ϵ ∈ mi+1,j. Similarly, we can prove
ϵ ∈ mi,j−1 by detA2

ij = εi2 detA2
i−1,j − detA2

i−2,j in 5.1.7(2). So ϵ ∈ mi,j−1 ∩mi+1,j.

(2) If j − i = 0, then by definition detA2
ij = εi,2. Thus the statement follows.

We next prove this statement by induction. Fix some i, j satisfying j − i ≥ 2 and even.
Assume that detA2

i,j−2 = (−1)(j−2−i)/2(εi,2 + εi+2,2 + · · · + εj−2,2) + ϵ1 where ϵ1 ∈ Ei,j−2.
Then by (1) detA2

i,j−1 = (−1)(j−i)/2 + ϵ2 where ϵ2 ∈ mi,j−2. So we have

detA2
ij = εj2 detA2

i,j−1 − detA2
i,j−2 (by 5.1.7(1))

= εj2((−1)(j−i)/2 + ϵ2)− (−1)(j−2−i)/2(εi,2 + εi+2,2 + · · ·+ εj−2,2)− ϵ1

(by (1) and assumption)

= (−1)(j−i)/2(εi,2 + εi+2,2 + · · ·+ εj,2) + εj2ϵ2 − ϵ1.

Set ϵ := εj2ϵ2 − ϵ1. Thus it suffices to prove that ϵ ∈ Eij. Since ϵ2 ∈ mi,j−2 =
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(εi2, εi+2,2, . . . , εj−2,2), εj2ϵ2 ∈ (εj2εi2, εj2εi+2,2, . . . , εj2εj−2,2) ∈ Eij. Together with ϵ1 ∈
Ei,j−2 ⊆ Eij, it follows that ϵ ∈ Eij.

(3) If j − i = 0 and d > 2, then by definition detAd
ij = εi,d. Thus the statement follows.

We next prove this statement by induction. Fix some i, j and d satisfying d > 2, and j−i ≥ 2
and even. Assume that detAd

i,j−2 = (−1)(j−2−i)/2(εid+(−1)dεi+2,d+· · ·+(−1)(j−2−i)d/2εj−2,d).
So we have

detAd
ij = − detAd

i,j−2 + (−1)(j−i)(d−1)/2εjd (by 5.1.7(3))
= (−1)(j−i)/2(εid + (−1)dεi+2,d + · · ·+ (−1)(j−i)d/2εjd). (by assumption)

Thus the statement follows.

Proposition 5.1.10. Let f ∈ MA and write

f =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2

kijxj
i .

For any 1 ≤ i ≤ j ≤ 2n− 1 such that j − i is odd, the following holds.

(1) If kt2 = 0 for t = i, i+ 2, . . . , j − 1, then detA2
ij(f) = (−1)(j−i+1)/2.

(2) If kt2 = 0 for t = i+ 1, i+ 3, . . . , j, then detA2
ij(f) = (−1)(j−i+1)/2.

In particular, given some p satisfying di,j−1(p) > 2 or di+1,j(p) > 2, then we have detA2
ij(κp) =

(−1)(j−i+1)/2.

Proof. (1) For t = i, i + 2, . . . , j − 1, since kt2 = 0, then εt2(f) = 2kt2 = 0. By 5.1.9(1),
detA2

ij(f) = (−1)(j−i+1)/2 + ϵ(f) where ϵ ∈ mi,j−1 ∩mi+1,j. In particular ϵ belongs to the
ideal generated by the functions εi2, εi+2,2, . . . , εj−1,2, all of which evaluate at f to be zero.
Thus ϵ(f) = 0, and so detA2

ij(f) = (−1)(j−i+1)/2.

(2) This is similar.

If di,j−1(p) > 2, then by (5.1.F) pi, pi+2, . . . , pj−1 > 2. If further f ∈ MAp, then kt2 = 0
for t = i, i + 2, . . . , j − 1 by (5.1.D), and so by (1) detA2

ij(f) = (−1)(j−i+1)/2. Since f is an
arbitrary potential in MAp, detA2

ij(κp) = (−1)(j−i+1)/2. Similarly, if di+1,j(p) > 2, then by
(2) detA2

ij(κp) = (−1)(j−i+1)/2.

Recall the notation κp, dij(p) in 5.1.5, and detAd
ij(κp) in 5.1.6. The following is the main

technical result of this subsection. It will be used in §5.3 below to construct a filtration
structure on Mp (for some fixed p) with respect to the generalised GV invariant of some
chosen curve class Ci+. . .+Cj. The zero locus of the polynomial detAdij(p)

ij (κp) ∈ C[[κp]] will
turn out to be the first strata in the filtration, which motivates proving that this polynomial
is nonzero in part (2) below. Part (1) is more technical, but will be needed for inductive
proof in 5.3.2.
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Proposition 5.1.11. Given some p, and any i, j, d in 5.1.2, then the following holds.

(1) If d < dij(p), then detAd
ij(κp) = 0 ∈ C[[κp]].

(2) If d = dij(p) and d is finite, then detAd
ij(κp) ̸= 0 in C[[κp]].

Proof. For any d ≥ 2, consider two complementary subsets of S := {i, i+ 2, . . . , j}

Sd := {t ∈ S | pt ≤ d}, Sd := {t ∈ S | pt > d}.

Then by 5.1.6(4),

t ∈ Sd ⇐⇒ εtd(f) = 0 for all f ∈ MAp ⇐⇒ εtd(κp) is the zero function over Mp.

(5.1.G)

If j − i is even and d < dij(p), then by (5.1.F) d < min(pi, pi+2, . . . , pj), and so Sd = ∅,
Sd = S. If j − i is even and d = dij(p), then by (5.1.F) d = min(pi, pi+2, . . . , pj), and so
Sd ̸= ∅, Sd ̸= S.

(1) Since d ≥ 2, the case dij(p) = 2 cannot occur. Consequently dij(p) > 2, and thus j − i
must be even by (5.1.F). Since d < dij(p), Sd = S, and so by (5.1.G) εtd(κp) is a zero
function for each t ∈ S = {i, i+ 2, . . . , j}.

If furthermore d > 2, then

detAd
ij(κp) = (−1)(j−i)/2(εid(κp) + (−1)dεi+2,d(κp) + · · ·+ (−1)(j−i)d/2εjd(κp))

(by 5.1.9(3))

= 0. (since εtd(κp) = 0 for t = i, i+ 2, . . . , j)

Otherwise, if d = 2, then

detAd
ij(κp) = detA2

ij(κp)
= (−1)(j−i)/2(εi2(κp) + εi+2,2(κp) + · · ·+ εj2(κp)) + ϵ(κp) (by 5.1.9(2))
= ϵ(κp), (since εt2(κp) = 0 for t = i, i+ 2, . . . , j)

where ϵ ∈ Eij and Eij is the ideal generated by some degree two terms of εi2, εi+2,2, . . . , εj2.
Since εt2(κp) = 0 for t = i, i+ 2, . . . , j, ϵ(κp) = 0, and so detAd

ij(κp) = 0.

(2) We split the proof into cases.

(i) j − i is odd, d = dij(p) and finite.

Since j − i is odd, d = dij(p) = 2 by (5.1.F). Thus by 5.1.9(1),

detAd
ij(κp) = detA2

ij(κp) = (−1)(j−i+1)/2 + ϵ(κp),
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where ϵ ∈ mi,j−1 and mi,j−1 is the ideal generated by εi,2, εi+2,2 . . . , εj−1,2. Since by 5.1.6(4)
εt2(κp) is either 2κt2 or zero for any t, ϵ(κp) ∈ (κp), and so detAd

ij(κp) is a non-zero
polynomial.

(ii) j − i is even, d = dij(p) > 2 and finite.

Since j − i is even and d > 2,

detAd
ij(κp) = (−1)(j−i)/2(εid(κp) + (−1)dεi+2,d(κp) + · · ·+ (−1)(j−i)d/2εjd(κp))

(by 5.1.9(3))

= (−1)(j−i)/2 ∑
t∈Sd

(−1)(t−i)d/2dκtd. (by (5.1.G))

Since j − i is even and d = dij(p), Sd ̸= ∅, and so detAd
ij(κp) is a non-zero polynomial.

(iii) j − i is even and d = dij(p) = 2.

Since j − i is even and d = 2,

detAd
ij(κp) = detA2

ij(κp)
= (−1)(j−i)/2(εi2(κp) + εi+2,2(κp) + · · ·+ εj2(κp)) + ϵ(κp) (by 5.1.9(2))
= (−1)(j−i)/2

( ∑
t∈Sd

2κt2
)

+ ϵ(κp), (by (5.1.G))

where ϵ ∈ Eij and Eij is the ideal generated by some degree two terms of εi2, εi+2,2, . . . , εj2.
Since by 5.1.6(4) εt2(κp) is either 2κt2 or zero for any t, ϵ(κp) is a degree two term in C[[κp]].
Since j − i is even and d = dij(p), Sd ̸= ∅, and so ∑

t∈Sd
2κt2 is a non-zero degree one

term in C[[κp]]. Combining these facts together, it follows that detAd
ij(κp) is a non-zero

polynomial.

§ 5.2 | Generalised GV invariants of potentials
This section introduces generalised GV invariants of a monomialized Type A potential on
Qn, which parallels those of a crepant resolution of a cAn singularity in 3.1.1.

Inspired by the correspondence between monomialized Type A potentials on Qn and crepant
resolutions of cAn singularities in 4.2.19, we define generalised GV invariants of a monomi-
alized Type A potential by its associated crepant resolution as follows.

We first recap the geometric realization in §4.2.1. Fix a monomialized Type A potentials f
on Qn

f =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2

kijxj
i ,

where each kij ∈ C. Then we consider the following system of equations where each gi ∈
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C[[x, y]]

g0 +
∞∑

j=2
jk1jg

j−1
1 + g2 = 0

g1 +
∞∑

j=2
jk2jg

j−1
2 + g3 = 0

... (5.2.A)

g2n−2 +
∞∑

j=2
jk2n−1,jg

j−1
2n−1 + g2n = 0.

Fix some integer s satisfying 0 ≤ s ≤ 2n − 1, and set gs = y, gs+1 = x. Then there exists
g0, g1, . . . , g2n which satisfies (5.2.A) and each gi ∈ (x, y) ⊆ C[[x, y]]. Furthermore, for any
0 ≤ i ≤ 2n− 1, (gi, gi+1) = (x, y).

Definition 5.2.1. With notation as above, for any 1 ≤ i ≤ j ≤ n, define the generalised
GV invariant Nij(f) associated to f to be

Nij(f) := dimC
C[[x, y]]

(g2i−2, g2j)
.

We then consider the cAn singularity

R := C[[u, v, x, y]]
uv − g0g2 . . . g2n

,

and consider the R-module

M := R⊕ (u, g0)⊕ (u, g0g2)⊕ . . .⊕ (u,
n−1∏
i=0

g2i) ∈ (MMR) ∩ (CMR).

In view of the above results 3.2.5 and 3.2.7, we introduce the following notation.

Notation 5.2.2. Suppose that Λ1,Λ2 are complete quiver algebras of Qn subject to some
relations. Write ei for the trivial path at vertex i of Qn, and write φ : Λ1

∼−→ Λ2 if φ is an
algebra isomorphism satisfying φ(ei) = ei for each i.

By 4.2.9, EndR(M) ∼= Jac(f). Since (gi, gi+1) = (x, y) for 0 ≤ i ≤ 2n − 1, each gi has
a linear term, and so R admits a crepant resolution by e.g. [IW3, 5.1]. Together with
M ∈ (MMR)∩ (CMR), by 3.3.2 there exists a crepant resolution π : X→ SpecR such that
Λcon(π) ∼= EndR (M).

By 3.3.3, EndR(M) and Λcon(π) can be presented as a complete quiver algebra of Qn with
some relations. In this chapter, we declare that the ith vertex of EndR(M) ∼= Λcon(π) is the
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vertex corresponding to the summand (u,∏i−1
i=0 g2i). Using [IW3, §5] X is given pictorially by

X . . .
C1 C2 Cn

g0 g2 g4 g2n−2 g2n

and under this convention, the curve Ci corresponds to the summand (u,∏i−1
i=0 g2i), and thus

the vertex i of Λcon(π). Moreover, Jac(f) ∼−→ EndR(M) ∼−→ Λcon(π).

Thus the generalised GV invariant Nij(f) of a monomialized Type A potential f is equal to
Nij(π) (see 3.1.1), where π is its associated crepant resolution. Namely,

Nij(π) = dimC
C[[x, y]]

(g2i−2, g2j)
= Nij(f). (5.2.B)

Thus the data of Nij(f) is equivalent to the data of GVij(π) in the sense of 3.3.8 and 3.3.9.

So in §5.3 and §5.4, we discuss generalised GV invariants of monomialized Type A potentials
to reach conclusions about GV invariants of crepant resolutions of cAn singularities.

Recall that, in order to define Nij(f) in 5.2.1, we first fix some integer s and set gs =
y, gs+1 = x, then solve to give g0, g1, . . . , g2n that satisfy (5.2.A). From this, Nij(f) =
dimCC[[x, y]]/(g2i−2, g2j).

Lemma 5.2.3. The generalised GV invariant Nij(f) in 5.2.1 does not depend on s.

Proof. We start with s, set gs = y, gs+1 = x, then solve to obtain g0, g1, . . . , g2n. From this,
the above constructs R, π such that Λcon(π) ∼−→ Jac(f).

We next start with another integer t and set g′
t = y, g′

t+1 = x, then solve to obtain
g′

0, g
′
1, . . . , g

′
2n. Similarly, the above constructs R′, π′ such that Λcon(π′) ∼−→ Jac(f). Thus

Λcon(π) ∼−→ Λcon(π′), and so Nij(π) = Nij(π′) by 3.2.7. In particular

dimC C[[x, y]]/(g2i−2, g2j) = Nij(π) = Nij(π′) = dimC C[[x, y]]/(g′
2i−2, g

′
2j),

and so Nij(f) does not depend on s.

§ 5.3 | Filtrations
In this section, we give filtration structures of the parameter space of monomialized Type A
potentials on Qn with respect to generalised GV invariants.

§ 5.3.1 | Filtration sturctures

Fix some p and consider the obvious bijection map f : Mp → MAp under which

f(κp) =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2
κijxj

i , (5.3.A)
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where κi,ji
= 0 for 1 ≤ i ≤ 2n− 1 and 2 ≤ ji < pi.

By considering κij as variables and solving the system of equations (5.2.A), we can also
realize the family of monomialized Type A potentials f(κp) over Mp (5.1.E) by a family
of crepant resolutions of cAn singularities over Mp. More precisely, fix some s satisfying
0 ≤ s ≤ 2n − 1, and set gs = y, gs+1 = x, then solve g0, g1, . . . , g2n by (5.2.A) where each
gt ∈ (κp, x, y) ⊆ C[[κp, x, y]].

For any k ∈ Mp, write gt(k) ∈ C[[x, y]] for gt evaluated at k, and consider the cAn singularity

Rk := C[[u, v, x, y]]
uv − g0(k)g2(k) . . . g2n(k) ,

and the Rk-module

Mk := R⊕ (u, g0(k))⊕ (u, g0(k)g2(k))⊕ . . .⊕ (u,
n−1∏
i=0

g2i(k)) ∈ (MMRk) ∩ (CMRk).

Similar to §5.2, Jac(f(k)) ∼−→ EndRk
(Mk) ∼−→ Λcon(πk). Thus if we vary k over the parameter

space Mp, the family of crepant resolutions πk realizes f(κp).

Recall that in the above construction, we first fix some integer s satisfying 0 ≤ s ≤ 2n− 1,
then construct g0, g1, . . . , g2n with gs = y and gs+1 = x to realize f(κp).

Notation 5.3.1. With the fixed s as above, we adopt the following notation in 5.3.2.

(1) Set (gs0, gs1, . . . , gs,2n) := (g0, g1, . . . , g2n).

(2) For 0 ≤ t ≤ 2n, set hst := gst(κp, x, 0) ∈ C[[κp, x]].

(3) Give any h ∈ C[[κp, x]], write [h]i for the degree i graded piece with respect to x.

(4) Write Od for a element in C[[κp, x]] that satisfies [Od]i = 0 for each i < d.

(5) For 1 ≤ t ≤ 2n − 1, write κt,p for the tuple of variables κiji
for 1 ≤ i ≤ t and

pi ≤ ji ≤ ∞.

For 0 ≤ s ≤ 2n− 1, since gss = y, for any t we have (gss, gst) = (y, gst) = (hst). Thus

Nij(f(κp)) = dimC
C[[x, y]]

(g2i−2,2i−2, g2i−2,2j)
(by 5.2.3 with s = 2i− 2)

= dimC
C[[x, y]]

(y, g2i−2,2j)

= dimC
C[[x]]

(h2i−2,2j)
. (5.3.B)

So h2i−2,2j determines the generalised GV invariant Nij(f(κp)). In particular, the lowest de-
gree term (wrt. x) of h2i−2,2j determines the general value and general position of Nij(f(κp))
over the parameter space Mp. The following establishes that the lowest degree term can be
described by the matrix Ad

2i−1,2j−1(κp) where d = d2i−1,2j−1(p) in 5.1.5.
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Proposition 5.3.2. Given the monomialized Type A potentials f(κp) (5.3.A) on Qn and
with notation in 5.3.1, for any 1 ≤ s ≤ t ≤ 2n− 1, we have

hs−1,t+1 =
∞∑

i=r

cix
i

for some 1 ≤ r ∈ N∞ and each ci ∈ C[[κp]]. Moreover, the following hold.

(1) If dst(p) =∞, then hs−1,t+1 = 0.

(2) If d := dst(p) <∞, then r = d− 1, and the lowest degree term (wrt. x) in hs−1,t+1 has
coefficient cr = (−1)t−s+1 detAd

st(κp).

Proof. Since hs−1,t+1 ∈ C[[κp, x]] , we first write hs−1,t+1 as

hs−1,t+1 =
∞∑

i=rst

cst,ix
i = λstx

rst + Orst+1, (5.3.C)

for some rst ≥ 0, each cst,i ∈ C[[κp]] and λst := cst,rst . Now since the h’s are obtained from
the g’s by evaluating at y = 0, they must satisfy the same relations as the g’s. In particular,
by (5.2.A),

hs−1,t−1 +
∞∑

j=pt

jκtjh
j−1
s−1,t + hs−1,t+1 = 0. (5.3.D)

In the equation above, the index j starts at pt because κtj = 0 for j < pt in f(κp) (5.3.A).
Rearranging (5.3.D) in the case t = s, then using the fact that gs−1,s−1 = y, gs−1,s = x (thus
hs−1,s−1 = 0, hs−1,s = x), we obtain

hs−1,s+1 = −hs−1,s−1 −
∞∑

j=ps

jκsjh
j−1
s−1,s = −

∞∑
j=ps

jκsjx
j−1. (5.3.E)

Next, rearranging (5.3.D) in the case t = s+ 1 gives

hs−1,s+2 = −hs−1,s −
∞∑

j=ps+1

jκs+1,jh
j−1
s−1,s+1

= −x−
∞∑

j=ps+1

jκs+1,jh
j−1
s−1,s+1. (5.3.F)

In the double index of hs−1,∗, we now induct on the second of the two indices to prove the
result. We split the remainder of the proof into the following four lemmas (5.3.3, 5.3.4, 5.3.5
and 5.3.6).

Lemma 5.3.3. With notation in 5.3.2, if dst(p) =∞, then hs−1,t+1 = 0.

Proof. If dst(p) = ∞, then by (5.1.F) t − s is even and κsj, κs+2,j, . . . ,κtj = 0 for all j. In
particular, hs−1,s+1 = 0 via (5.3.E). Substituting this into (5.3.F), hs−1,s+2 = −x. Next,
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rearranging (5.3.D) in the case t = s+ 2 gives

hs−1,s+3 = −hs−1,s+1 −
∞∑

j=ps+2

jκs+2,jh
j−1
s−1,s+2.

Since hs−1,s+1 = 0 and κs+2,j = 0 for all j, necessarily hs−1,s+3 = 0. Repeating the same
argument gives hs−1,s+5, hs−1,s+7, . . . , hs−1,t+1 = 0.

Lemma 5.3.4. With notation in 5.3.1 and 5.3.2, for s ≤ t ≤ 2n− 1, hs−1,t+1 ∈ C[[κt,p, x]],
and in particular the lowest degree (wrt. x) coefficient λst in hs−1,t+1 (5.3.C) belongs to
C[[κt,p]].

Proof. We first check that hs−1,s+1 and hs−1,s+2 satisfy the statement. By (5.3.E), it is
straightforward that hs−1,s+1 ∈ C[[κs,p, x]]. Then together with (5.3.F), it follows that
hs−1,s+2 ∈ C[[κs+1,p, x]].

We next prove the statement by induction on the second index: we assume that hs−1,t−1 ∈
C[[κt−2,p, x]] and hs−1,t ∈ C[[κt−1,p, x]] for some t ≥ s+2, and prove that hs−1,t+1 ∈ C[[κt,p, x]].
This is straightforward by (5.3.D).

Lemma 5.3.5. With notation in 5.3.2, if d := dst(p) <∞, then rst = d− 1.

Proof. We first check that rss and rs,s+1 satisfy the statement. By (5.1.F), dss(p) = ps and
ds,s+1(p) = 2. By (5.3.E),

hs−1,s+1 = −
∞∑

j=ps

jκsjx
j−1

This has lowest degree term xps−1, and thus by definition rss = ps−1 = dss(p)−1. Similarly,
since each jκs+1,jh

j−1
s−1,s+1 in (5.3.F) contains κs+1,j, these terms can not cancel the −x in

(5.3.F). Thus the lowest degree of of hs−1,s+2 is one, and so rs,s+1 = 1 = ds,s+1(p)− 1.

We next prove the statement by induction on the second index: we assume that rs,t−2 =
ds,t−2(p)− 1 and rs,t−1 = ds,t−1(p)− 1 for some t ≥ s+ 2, and prove that rst = dst(p)− 1 by
splitting into the following two cases.

(1) t− s is odd.

Since t − s is odd, ds,t−2(p) = dst(p) = 2 by (5.1.F). By assumption rs,t−1 = ds,t−1(p) − 1
and rs,t−2 = ds,t−2(p)− 1 = 1. Thus by (5.3.C) (applied to t− 2 and t− 1),

hs−1,t−1 = λs,t−2x+ O2, hs−1,t = λs,t−1x
ds,t−1−1 + Ods,t−1 ,

where λs,t−2, λs,t−1 ̸= 0 by assumption. Thus by (5.3.D), in order to give the lowest degree
rst of hs−1,t+1, we only need to consider the lowest degree term of hs−1,t−1 (namely λs,t−2x)
and ∑∞

j=pt
jκtjh

j−1
s−1,t.
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Since by 5.3.4 λs,t−2 ∈ C[[κt−2,p]] and each jκtjh
j−1
s−1,t contains κtj, λs,t−2x can not be canceled

by ∑∞
j=pt

jκtjh
j−1
s−1,t, and so the lowest degree rst of hs−1,t+1 is one. Since dst(p) = 2, rst =

1 = dst(p)− 1.

(2) t− s is even.

Since t − s is even, ds,t−1(p) = 2 by (5.1.F). By assumption rs,t−1 = ds,t−1(p) − 1 = 1 and
rs,t−2 = ds,t−2(p)− 1. Thus again by (5.3.C) (applied to t− 2 and t− 1),

hs−1,t−1 = λs,t−2x
ds,t−2−1 + Ods,t−2 , hs−1,t = λs,t−1x+ O2,

where λs,t−2, λs,t−1 ̸= 0 by assumption. Thus by (5.3.D), in order to give the lowest degree rst

of hs−1,t+1, we only need to consider the lowest degree term of hs−1,t−1 (namely λs,t−2x
ds,t−2−1)

and ∑∞
j=pt

jκtjh
j−1
s−1,t (namely ptκt,pt(λs,t−1x)pt−1).

Since by 5.3.4 λs,t−2 ∈ C[[κt−2,p]], and ptκt,pt(λs,t−1x)pt−1 contains κt,pt , it follows that
λs,t−2x

ds,t−2−1 and ptκt,pt(λs,t−1x)pt−1 can not cancel each other. Thus the lowest degree
rst of hs−1,t+1 is min(ds,t−2(p) − 1, pt − 1). Since dst(p) = min(ds,t−2(p), pt) by (5.1.F),
rst = dst(p)− 1.

Lemma 5.3.6. With notation in 5.3.2, if d := dst(p) <∞, then the lowest degree (wrt. x)
coefficient in hs−1,t+1 (5.3.C) is λst = (−1)t−s+1 detAd

st(κp).

Proof. To ease notation, for any i, j, d in 5.1.2 we write dij and Ad
ij for dij(p) and Ad

ij(κp)
respectively in the following proof.

We first prove that the statement holds for t = s. By (5.3.E), the lowest degree coefficient
in hs−1,s+1 is −psκs,ps , thus

λss = −psκs,ps

= −dssκs,dss (since ps = dss by (5.1.F))
= − detAdss

ss . (since detAd
ss = dκsd for any d by 5.1.4)

We next prove that the statement holds for t = s+ 1. Indeed,

hs−1,s+2 = −hs−1,s −
∞∑

j=ps+1

jκs+1,jh
j−1
s−1,s+1 (by (5.3.F))

= −x−
∞∑

j=ps+1

jκs+1,j(λssx
rss + Orss+1)j−1 (since hs−1,s = x, and (5.3.C))

= −x−
∞∑

j=ps+1

jκs+1,j(−psκs,psx
rss + Orss+1)j−1 (λss = −psκs,ps)

= −x−
∞∑

j=ps+1

jκs+1,j(−psκs,psx
ps−1 + Ops)j−1 (rss = dss − 1 = ps − 1 by 5.3.5)

= −x+ (−1)ps+1ps+1κs+1,ps+1(psκs,ps)ps+1−1x(ps−1)(ps+1−1) + O(ps−1)(ps+1−1).
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If ps = ps+1 = 2, then (4κs,2κs+1,2 − 1)x is the lowest degree term in hs−1,s+2, thus

λs,s+1 = 4κs,2κs+1,2 − 1
= detA2

s,s+1 (since detA2
s,s+1 = 4κs,2κs+1,2 − 1 by 5.1.4)

= detAds,s+1
s,s+1 . (since ds,s+1 = 2 by (5.1.F))

Otherwise, if ps > 2 or ps+1 > 2, then −x is the lowest degree term in hs−1,s+2 and by (5.3.A)
κs,2 = 0 or κs+1,2 = 0. Thus

λs,s+1 = −1
= 4κs,2κs+1,2 − 1 (since κs,2 = 0 or κs+1,2 = 0)
= detA2

s,s+1 (since detA2
s,s+1 = 4κs,2κs+1,2 − 1 by 5.1.4)

= detAds,s+1
s,s+1 . (since ds,s+1 = 2 by (5.1.F))

We next prove the statement by induction on the second index. Fix some t satisfying
t ≥ s+ 2. We assume that λs,t−2 = (−1)t−s−1 detAds,t−2

s,t−2 and λs,t−1 = (−1)t−s detAds,t−1
s,t−1 , and

prove that λst = (−1)t−s+1 detAdst
st by splitting into the following cases.

By (5.3.D), for any integer d ≥ 1, we have

[hs−1,t−1]d + [
∞∑

j=pt

jκtjh
j−1
s−1,t]d + [hs−1,t+1]d = 0, (5.3.G)

where [h]d denotes the degree (wrt. x) d graded piece of h (see 5.3.1).

(1) t− s is odd.

Since t − s is odd, by (5.1.F) ds,t−2 = ds,t = 2. Thus by 5.3.5, rs,t−2 = rst = 1 and
rs,t−1 = ds,t−1 − 1. So by (5.3.C),

hs−1,t−1 = λs,t−2x+ O2,

hs−1,t = λs,t−1x
rs,t−1 + Ors,t−1+1 = λs,t−1x

ds,t−1−1 + Ods,t−1 ,

hs−1,t+1 = λstx+ O2.

Thus the lowest degree of the terms in (5.3.D) is one. We then consider these lowest degree
terms, thus set d = 1 in (5.3.G), which gives

λs,t−2x+ [ptκt,pt(λs,t−1x
ds,t−1−1)pt−1]1 + λstx = 0. (5.3.H)

Since t − s is odd, the inductive assumption becomes λs,t−2 = detA2
s,t−2 and λs,t−1 =

− detAds,t−1
s,t−1 . We need to prove that λst = detA2

st. We again split into subcases.

(1.1) t− s is odd and pt > 2.

Since pt > 2, εt2(κp) = 2κt2 = 0 by 5.1.6(4) and [ptκt,pt(λs,t−1x
ds,t−1−1)pt−1]1 = 0. To ease
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notation, we write εt2 for εt2(κp) in the following. Thus

λst = −λs,t−2 (by (5.3.H) and [ptκt,pt(λs,t−1x
ds,t−1−1)pt−1]1 = 0)

= − detA2
s,t−2 (by assumption)

= detA2
st − εt2 detA2

s,t−1 (by 5.1.7)
= detA2

st. (since εt2 = 0)

(1.2) t− s is odd, pt = 2 and ds,t−1 > 2.

Since ds,t−1 > 2, [ptκt,pt(λs,t−1x
ds,t−1−1)pt−1]1 = 0 and by 5.1.11 detA2

s,t−1 = 0. Thus

λst = −λs,t−2 (by (5.3.H) and [ptκt,pt(λs,t−1x
ds,t−1−1)pt−1]1 = 0)

= − detA2
s,t−2 (by assumption)

= detA2
st − εt2 detA2

s,t−1 (by 5.1.7)
= detA2

st. (since detA2
s,t−1 = 0)

(1.3) t− s is odd, pt = 2 and ds,t−1 = 2.

Since pt = 2 and ds,t−1 = 2, [ptκt,pt(λs,t−1x
ds,t−1−1)pt−1]1 = 2κt2λs,t−1x. Thus

λst = −2κt2λs,t−1 − λs,t−2 (by (5.3.H) and [ptκt,pt(λs,t−1x
ds,t−1−1)pt−1]1 = 2κt2λs,t−1x)

= εt2 detAds,t−1
s,t−1 − detA2

s,t−2 (by assumption and εt2 = 2κt2)
= εt2 detA2

s,t−1 − detA2
s,t−2 (since ds,t−1 = 2)

= detA2
st. (by 5.1.7)

(2) t− s is even.

Since t − s is even, then ds,t−1 = 2 by (5.1.F). Thus by 5.3.5, rs,t−1 = 1, rs,t−2 = ds,t−2 − 1
and rst = dst − 1. So by (5.3.C),

hs−1,t−1 = λs,t−2x
rs,t−2 + Ors,t−2+1 = λs,t−2x

ds,t−2−1 + Ods,t−2 ,

hs−1,t = λs,t−1x+ O2,

hs−1,t+1 = λstx
rst + Orst+1 = λstx

dst−1 + Odst .

Since by (5.1.F) ds,t−2 ≥ dst and pt ≥ dst, the lowest degree of hs−1,t−1 and (hs−1,t)pt−1 is
greater than or equal to that of hs−1,t+1. Thus the lowest degree of the terms in (5.3.D) is
dst − 1. We then consider these lowest degree terms, thus set d = dst − 1 in (5.3.G), which
gives

[λs,t−2x
ds,t−2−1]dst−1 + [ptκt,pt(λs,t−1x)pt−1]dst−1 + λstx

dst−1 = 0. (5.3.I)

Since t−s is even, the inductive assumption now becomes λs,t−2 = − detAds,t−2
s,t−2 and λs,t−1 =
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detA2
s,t−1. We prove λst = − detAdst

st by splitting into the following subcases.

(2.1) t− s is even and pt < ds,t−2.

Since pt < ds,t−2, by (5.1.F) pt = dst < ds,t−2, and so [λs,t−2x
ds,t−2−1]dst−1 = 0. Thus by

(5.3.I), it follows that
λst = −ptκt,ptλ

pt−1
s,t−1.

Now, since dst < ds,t−2, by 5.1.11 detAdst
s,t−2 = 0. If furthermore pt = dst = 2, then

λst = −2κt2λs,t−1 (since pt = 2)
= −2κt2 detA2

s,t−1 (by assumption)
= −εt2 detA2

s,t−1 + detA2
s,t−2 (since εt2 = 2κt2, detAdst

s,t−2 = 0 and dst = 2)
= − detA2

st (by 5.1.7)
= − detAdst

st . (since dst = 2)

Otherwise, pt = dst > 2, and then by 5.1.10 detA2
s,t−1 = (−1)(t−s)/2, and so

λst = −ptκt,ptλ
pt−1
s,t−1

= −ptκt,pt(detA2
s,t−1)pt−1 (by assumption)

= −dstκt,dst(−1)(t−s)(dst−1)/2 (since detA2
s,t−1 = (−1)(t−s)/2 and pt = dst)

= −(−1)(t−s)(dst−1)/2εt,dst + detAdst
s,t−2 (since εt,dst = dstκt,dst and detAdst

s,t−2 = 0)
= − detAdst

st . (by 5.1.7)

(2.2) t− s is even and pt > ds,t−2.

Since pt > ds,t−2, by (5.1.F) pt > ds,t−2 = dst, and thus [ptκt,pt(λs,t−1x)pt−1]dst−1 = 0. Hence
by (5.3.I), it follows that

λst = −λs,t−2.

Since pt > ds,t, by 5.1.6(4) εt,dst(κp) = dstκt,dst = 0. If furthermore ds,t−2 = dst = 2, then

λst = −λs,t−2

= detAds,t−2
s,t−2 (by assumption)

= detA2
s,t−2 (since ds,t−2 = 2)

= −εt2 detA2
s,t−1 + detA2

s,t−2 (since εt,dst = 0 and dst = 2)
= − detA2

st (by 5.1.7)
= − detAdst

st . (since dst = 2)
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Otherwise, ds,t−2 = dst > 2, and then

λst = −λs,t−2

= detAds,t−2
s,t−2 (by assumption)

= detAdst
s,t−2 (since ds,t−2 = dst)

= −(−1)(t−s)(dst−1)/2εt,dst + detAdst
s,t−2 (since εt,dst = 0)

= − detAdst
st . (by 5.1.7)

(2.3) t− s is even and pt = ds,t−2.

Since pt = ds,t−2, by (5.1.F) pt = ds,t−2 = dst. Thus by (5.3.I)

λst = −λs,t−2 − ptκt,pt(λs,t−1)pt−1.

If furthermore pt = ds,t−2 = dst = 2, then

λst = −λs,t−2 − 2κt2λs,t−1 (since pt = 2)
= detA2

s,t−2 − 2κt2 detA2
s,t−1 (by assumption and ds,t−2 = 2)

= detA2
s,t−2 − εt2 detA2

s,t−1 (since εt2 = 2κt2)
= − detA2

st (by 5.1.7)
= − detAdst

st . (since dst = 2)

Otherwise, pt = ds,t−2 = dst > 2. But then by 5.1.10 detA2
s,t−1 = (−1)(t−s)/2, and so

λst = −λs,t−2 − ptκt,pt(λs,t−1)pt−1

= detAds,t−2
s,t−2 − ptκt,pt(detA2

s,t−1)pt−1 (by assumption)
= detAdst

s,t−2 − dstκt,dst(−1)(t−s)(dst−1)/2

(since detA2
s,t−1 = (−1)(t−s)/2 and pt = ds,t−2 = dst)

= detAdst
s,t−2 − (−1)(t−s)(dst−1)/2εt,dst (since εt,dst = dstκt,dst)

= − detAdst
st . (by 5.1.7)

So by induction λst = (−1)t−s+1 detAdst
st for any 1 ≤ s ≤ t ≤ 2n− 1.

We next fix p and curve class Cs + Cs+1 + · · ·+ Ct, and from this data construct a filtration
structure of Mp, which is the main result of this section. Recall that Mp is the parameter
space of monomialized Type A potentials f(κp) (5.1.D), namely

f(κp) =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2
κijxj

i , where κi,ji
= 0 for 1 ≤ i ≤ 2n− 1, 2 ≤ ji < pi,

Mp = {(k12, k13, . . . , k2n−1,2, k2n−1,3, . . . ) | ki,ji
= 0 for 1 ≤ i ≤ 2n− 1, 2 ≤ ji < pi}.
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Recall the notation dij(p) and Ad
ij(κp) in 5.1.5.

Theorem 5.3.7. Fix p, and some s, t satisfying 1 ≤ s ≤ t ≤ n. If d2s−1,2t−1(p) is finite,
then Mp has a filtration structure Mp = M1 ⊋M2 ⊋M3 ⊋ · · · such that

(1) For each i ≥ 1, Nst(f(k)) = d2s−1,2t−1(p) + i− 2 for all k ∈Mi\Mi+1.

(2) Each Mi is the zero locus of some polynomial system of κp, and moreover

M2 = {k ∈ Mp | detAd
2s−1,2t−1(f(k)) = 0 where d = d2s−1,2t−1(p)}.

(3) If s = t, then for each i ≥ 2

Mi = {k ∈ Mp | k2s−1,j = 0 for p2s−1 ≤ j ≤ p2s−1 + i− 2}.

Otherwise, if d2s−1,2t−1(p) is infinite, then Nst(f(k)) =∞ for all k ∈ Mp.

Proof. With notation in 5.3.1 and by (5.3.B),

Nst(f(κp)) = dimC
C[[x]]

(h2s−2,2t)
. (5.3.J)

By 5.3.2,

h2s−2,2t =
 0 if d2s−1,2t−1(p) =∞∑∞

i=r cix
i if d2s−1,2t−1(p) <∞

(5.3.K)

where each ci ∈ C[[κp]], r = d2s−1,2t−1(p)− 1 and cr = − detAd2s−1,2t−1
2s−1,2t−1(κp).

Thus, if d2s−1,2t−1(p) =∞, then h2s−2,2t = 0, and so Nst(f(κp)) =∞ by (5.3.J).

(1), (2) When d2s−1,2t−1(p) < ∞, we first define N1 := Mp, and for each i ≥ 2 define
Ni := {k ∈ Mp | cr = cr+1 = · · · = cr+i−2 = 0}. So we have a sequence of spaces
N1 ⊇ N2 ⊇ N3 ⊇ · · · . Note that there may exist some segment like Ni−1 ⊋ Ni = Ni+1 =
· · · = Nj ⊋ Nj+1. After removing the repetitive elements in all such segments, we get a
sequence of filtered spaces Mp = M1 ⊋M2 ⊋M3 · · · . By the definition of Ni, each Mi is the
zero locus of some polynomial system of κp.

By (5.3.K) and (5.3.J), for each i ≥ 1, Nst(f(k)) is constant for all k ∈ Mi\Mi+1. Thus we
can set di := Nst(Mi\Mi+1), which obviously satisfies d1 < d2 < · · · .

Since cr = − detAd2s−1,2t−1
2s−1,2t−1(κp) ̸= 0 by 5.1.11, N2 = {k ∈ Mp | cr = 0} ⊊ N1, and so

M2 = N2 ⊊ N1 = M1, and further d1 = Nst(M1\M2) = r = d2s−1,2t−1(p)− 1.

We next prove that di = Nst(Mi\Mi+1) = d2s−1,2t−1(p) + i − 2 for i ≥ 2. Fix some i with
i ≥ 2. By (5.1.F), there exists p′ such that p′ ≥ p (see 5.1.5(5)) and d2s−1,2t−1(p′) =
d2s−1,2t−1(p) + i− 1. Since p′ ≥ p, MAp′ ⊆ MAp and Mp′ ⊆ Mp by 5.1.6(5).

Repeating the same argument as above, there is a sequence of filtered spaces Mp′ = M ′
1 ⊋

M ′
2 ⊋ · · · such that Nst(M ′

1\M ′
2) = d2s−1,2t−1(p′)−1 = d2s−1,2t−1(p)+i−2. Set Ui := M ′

1\M ′
2
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which satisfies Ui ⊊M ′
1 = Mp′ ⊆ Mp = M1.

Since the above works for any i ≥ 2, there is a sequence of spaces Ui ⊊M1 such thatNst(Ui) =
d2s−1,2t−1(p) + i − 2. So Ui ⊆ Mi\Mi+1 and di = Nst(Mi\Mi+1) = d2s−1,2t−1(p) + i − 2 for
each i ≥ 2.

(3) By h2s−2,2s−2 = 0, h2s−2,2s−1 = x (see 5.3.1) and (5.3.D),

h2s−2,2s = −
∞∑

j=p2s−1

jκ2s−1,jx
j−1.

Then by (5.3.J),

Nss(f(κp)) = dimC
C[[x]]

(h2s−2,2s)
= dimC

C[[x]]
(∑∞

j=p2s−1 jκ2s−1,jxj−1) .

Thus the statement follows immediately.

If we set p = (2, 2, . . . , 2) in 5.3.7, then Mp coincides with M which is the parameter space
of all monomialized Type A potentials f(κ) (see 5.1.5, 5.1.6), as follows.

f(κ) =
2n−2∑
i=1

x′
ixi+1 +

2n−1∑
i=1

∞∑
j=2
κijxj

i ,

M = {(k12, k13, . . . , k22, k23, . . . , k2n−1,2, k2n−1,3, . . . ) | all k∗ ∈ C}.

Thus, as a special case of 5.3.7, we next give a filtration structure of M with respect to a
fixed curve class.

Corollary 5.3.8. Fix some s, t satisfying 1 ≤ s ≤ t ≤ n, then M has a filtration structure
M = M1 ⊋M2 ⊋M3 ⊋ · · · such that

(1) For each i ≥ 1, Nst(f(k)) = i for all k ∈Mi\Mi+1.

(2) Each Mi is the zero locus of some polynomial system of κ, and moreover

M2 = {k ∈ M | detA2
2s−1,2t−1(f(k)) = 0}.

(3) If s = t, then for each i ≥ 2

Mi = {k ∈ M | k2s−1,j = 0 for 2 ≤ j ≤ i}.

Proof. By setting p = (2, 2, . . . , 2) in 5.3.7, then d2s−1,2t−1(p) = 2, and so the statement
follows immediately.

§ 5.3.2 | Examples

In this subsection, we will apply 5.3.7 and 5.3.8 to discuss the filtration structures of the
parameter space of monomialized Type A potentials on Q1 and Q2.
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Example 5.3.9. Consider monomialized Type A potentials f(κ) = ∑∞
j=2 κ1jxj

1 on Q1, where

x1

Q1 =

The corresponding parameter space M is {(k12, k13, . . . ) | all k∗ ∈ C}. Then by 5.3.8(3), for
any i ≥ 1 and k ∈ M

N11(f(k)) = i ⇐⇒ k1,i+1 ̸= 0 and k1j = 0 for j ≤ i.

We can also see this fact in the following way. For any k ∈ M, consider the cA1 singularity

R := C[[u, v, x, y]]
uv − y(y +∑∞

j=2 jk1jxj−1)

and R-module M := R ⊕ (u, y) ⊕ (u, y(y + ∑∞
j=2 jk1jx

j−1)). Then f(k) is realized by the
crepant resolution π of R that corresponds to M (see §5.3). Thus by (5.2.B),

N11(f(k)) = N11(π) = dimC
C[[x, y]]

(y, y +∑∞
j=2 jk1jxj−1) = dimC

C[[x]]
(∑∞

j=2 jk1jxj−1) .

So the above fact follows immediately.

Example 5.3.10. Consider monomialized Type A potentials

f(κ) =
∞∑

j=2
κ1jxj

1 + x′
1x2 +

∞∑
j=2
κ2jxj

2 + x′
2x3 +

∞∑
j=2
κ3jxj

3

on Q2, where

Q2 = 1 2

a2

b2

a1 a3 x1 = x′
1 = a1

x3 = x′
3 = a3

x2 = a2b2, x′
2 = b2a2.

The parameter space M is {(k12, k13, . . . k22, k23, . . . k32, k33, . . . ) | all κ∗ ∈ C}. Recall in 5.1.2
that, for any k ∈ M

A2
13(f(k)) =


2k12 1 0

1 2k22 1
0 1 2k32

 .
Thus detA2

13(f(k)) = 8k12k22k32 − 2k12 − 2k32. For fixed curve class C1 + C2, by 5.3.8(3),

N12(f(k)) = 1 ⇐⇒ detA2
13(f(k)) ̸= 0 ⇐⇒ 4k12k22k32 − k12 − k32 ̸= 0,

N12(f(k)) > 1 ⇐⇒ detA2
13(f(k)) = 0 ⇐⇒ 4k12k22k32 − k12 − k32 = 0.

Thus the generalised GV invariant N12 at the general position of M is one, while that at the
codimension one locus defined by 4κ12κ22κ32 − κ12 − κ32 = 0 is greater than one.
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We next choose a different p from the above example and consider the corresponding filtra-
tion structure, and then show that there exists a nonempty subspace of the parameter space
of monomialized Type A potentials on Q2 such that the generalised GV invariant N12 on
this subspace is two. This also illustrates how the filtration structure in the proof of 5.3.7
was constructed.

Example 5.3.11. Set p = (3, 2, 3) and consider the subset f(κp) of monomialized Type A
potentials on Q2, so

f(κp) =
∞∑

j=3
κ1jxj

1 + x′
1x2 +

∞∑
j=2
κ2jxj

2 + x′
2x3 +

∞∑
j=3
κ3jxj

3

(see 5.1.5). The parameter space Mp is {(k13, k14, . . . k22, k23, . . . k33, k34, . . . ) | all k∗ ∈ C}.
Recall in 5.1.5 and 5.1.2 that d13(p) = 3 and for any k ∈ Mp

A3
13(f(k)) =


3k13 0 1 0

1 1 0 0
0 1 0 1
0 0 1 3k33

 .

Thus detA3
13(f(k)) = 3k33 − 3k13. For fixed curve class C1 + C2 (so, s = 1, t = 2),

d2s−1,2t−1(p) = d13(p) = 3, and thus by 5.3.7 for any k ∈ Mp

N12(f(k)) = d13(p)− 1 = 2 ⇐⇒ detA3
13(f(k)) ̸= 0 ⇐⇒ k33 − k13 ̸= 0,

N12(f(k)) > d13(p)− 1 = 2 ⇐⇒ detA3
13(f(k)) = 0 ⇐⇒ k33 − k13 = 0.

Thus the generalised GV invariant N12 at the general position of Mp is two.

Since p = (3, 2, 3), by (5.1.E) we may view Mp = {k ∈ M | k12 = 0 = k32}. Thus,

U2 := {k ∈ Mp | k33 − k13 ̸= 0} = {k ∈ M | k12 = 0 = k32 and k33 − k13 ̸= 0},

where M is the parameter space of all monomialized Type A potentials on Q2 as in 5.3.10.
Thus, by the above argument, N12(U2) = 2. Since U2 ̸= ∅ and U2 ⊆ M, U2 is a nonempty
subspace of M such that the generalised GV invariant N12 on this subspace is two.

Furthermore, consider

M2 := {k ∈ M | 4k12k22k32 − k12 − k32 = 0},

which by 5.3.10 is the first strata of M, which satisfies N12(M\M2) = 1 and N12(M2) ≥ 2.
Since U2 ⊆ M and N12(U2) = 2, U2 must be contained in M2. We can also check this by
some elementary calculation, namely

U2 = {k ∈ M | k12 = 0 = k32, k33 − k13 ̸= 0} ⊆ {k ∈ M | 4k12k22k32 − k12 − k32 = 0} = M2.
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§ 5.4 | Obstructions

§ 5.4.1 | Obstructions

Based on the filtration structures in §5.3, this subsection in 5.4.7 gives the obstructions and
constructions of generalised GV invariants that can arise from crepant resolutions of cAn

singularities.

Recall the definition of generalised GV invariants of crepant resolutions of cAn singularities
and those of monomialized Type A potentials in 3.1.1 and 5.2.1 respectively.

Definition 5.4.1. Given a crepant resolution π of a cAn singularity, define generalised GV
tuple of π to be N(π) := (Nst(π) | all 1 ≤ s ≤ t ≤ n).

Similarly, given a monomialized Type A potential f on Qn, define generalised GV tuple of
f to be N(f) := (Nst(f) | all 1 ≤ s ≤ t ≤ n).

Lemma 5.4.2. Let π be a crepant resolution of a cAn singularity and f be a monomialized
Type A potentialon Qn. If Λcon(π) ∼−→ Jac(f), then Nst(π) = Nst(f) for 1 ≤ s ≤ t ≤ n, and
so N(π) = N(f).

Proof. Recall the construction of Nst(f) in 5.2.1. There exists a crepant resolution π′ such
that Λcon(π′) ∼−→ Jac(f) and Nij(π′) = Nij(f) (5.2.B). Thus Λcon(π) ∼−→ Λcon(π′), and so
Nst(π) = Nst(π′) by 3.2.7, and further Nst(π) = Nst(f).

For any s, t satisfying 1 ≤ s ≤ t ≤ n, and any N ∈ N∞, by 5.3.8 there exists a crepant
resolution π of a cAn singularity such that Nst(π) = N . However, this is no longer true when
considering generalised GV invariants of different curve classes simultaneously.

Notation 5.4.3. Fix some positive integer k, set q = {(β1, q1), (β2, q2), . . . , (βk, qk)} where
each βi ∈

⊕n
i Z ⟨Ci⟩ and qi ∈ N∞. Then we denote qmin := min{qi}, and consider a subset

of crepant resolutions of cAn singularities

CAq := {cAn crepant resolution π | (Nβ1(π), Nβ2(π), . . . , Nβk
(π)) = (q1, q2, . . . , qk)}.

Notation 5.4.4. Fix some s, t with 1 ≤ s ≤ t ≤ n, and a tuple (qs, . . . , qt) ∈ Nt−s+1
∞ .

(1) As in 5.4.3, consider q := {(Cs, qs), (Cs+1, qs+1), . . . , (Ct, qt)}, and its associated subset
of crepant resolutions of cAn singularities CAq.

(2) Furthermore, set p = (p1, p2, . . . , p2n−1), where p2i−1 := qi +1 for s ≤ i ≤ t, else pi := 2,
and consider monomialized Type A potentials MAp on Qn defined in 5.1.5.

(3) We define a nonempty subset MA◦
p ⊆ MAp (defined in (5.1.D)) by

MA◦
p := {f ∈ MAp | k2i−1,p2i−1 ̸= 0 for all i satisfying s ≤ i ≤ t and p2i−1 finite},
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and an open subspace M◦
p of Mp (defined in (5.1.E)) by

M◦
p := {k ∈ Mp | k2i−1,p2i−1 ̸= 0 for all i satisfying s ≤ i ≤ t and p2i−1 finite}.

We can, and will, consider MA◦
p as a family of monomialized Type A potentials over M◦

p.

Proposition 5.4.5. With notation in 5.4.4, the set of isomorphism classes of contraction
algebras associated to CAq is equal to the set of isomorphism classes of Jacobi algebras of
MA◦

p.

Proof. For any π ∈ CAq, by 4.2.19 there exists a monomialized Type A potentials f on Qn

such that Jac(f) ∼−→ Λcon(π). We claim that f ∈ MA◦
p. To see this, we first fix some i

satisfying s ≤ i ≤ t. Since Jac(f) ∼−→ Λcon(π), by 5.4.2 Nii(f) = Nii(π). Since π ∈ CAq,
Nii(π) = qi, and so Nii(f) = qi. Thus by 5.3.8 the following holds.

(1) If qi is infinite, then k2i−1,j = 0 in f for any j.

(2) If qi is finite, then k2i−1,qi+1 ̸= 0 and k2i−1,j = 0 in f for any j ≤ qi.

In either case, since p2i−1 = qi + 1 in 5.4.4, f ∈ MA◦
p.

Then we prove the converse. For any f ∈ MA◦
p, by 1.5.5 there is a cAn crepant resolution

π such that Λcon(π) ∼−→ Jac(f). We claim that π ∈ CAq. To see this, we first fix some i
satisfying s ≤ i ≤ t. Since Λcon(π) ∼−→ Jac(f), by 5.4.2 Nii(π) = Nii(f). Since f ∈ MA◦

p, by
5.3.8 Nii(f) = p2i−1 − 1 = qi, and so Nii(π) = qi. Thus π ∈ CAq.

Together with the fact in 1.5.7 that the set of isomorphism classes of contraction algebras
associated to crepant resolutions of cAn singularities is equal to the set of isomorphism classes
of Jacobi algebras of monomialized Type A potentials on Qn, the statement follows.

The following transfers generalised GV tuples of CAq to those of MA◦
p, which have been

characterized explicitly in 5.3.7 and 5.3.8.

Corollary 5.4.6. The set of generalised GV tuples of CAq is equal to the set of generalised
GV tuples of MA◦

p.

Proof. This is immediate from 5.4.5 and 5.4.2.

Combining 5.4.6 and 5.3.7, the following gives obstructions and constructions of the possible
tuples that can arise from generalised GV tuples of cAn crepant resolutions.

Theorem 5.4.7. For any s and t with 1 ≤ s ≤ t ≤ n, and any tuple (qs, . . . , qt) ∈ Nt−s+1
∞ ,

with notation in 5.4.4, the following statements hold.

(1) For any π ∈ CAq necessarily Nst(π) ≥ qmin, and moreover there exists π ∈ CAq such
that Nst(π) = qmin.
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(2) When qmin is finite, the equality Nst(π) = qmin holds for all π ∈ CAq if and only if
#{i | qi = qmin} = 1.

Proof. By 5.4.6 it suffices to prove that the statement holds for the generalised GV invariants
of MA◦

p. Recall in 5.4.4 that MA◦
p ⊆ MAp, M◦

p ⊆ Mp and p = (p1, p2, . . . , p2n−1) where
p2i−1 = qi + 1 for s ≤ i ≤ t, else pi = 2. Thus

d2s−1,2t−1(p) = min(p2s−1, p2s+1, . . . , p2t−1) = min(qs + 1, qs+1 + 1, . . . , qt + 1) = qmin + 1.

The remainder of the proof will use the following notation and facts.

Notation 5.4.8. We list the notation and facts we will use below when qmin is finite.

(a) Set I := {i | qi is finite for s ≤ i ≤ t} = {i | p2i−1 is finite for s ≤ i ≤ t}. Since qmin is
finite and by definition qmin = min{qi}, I ̸= ∅.

(b) By 5.4.4, Mp\M◦
p = {k ∈ Mp |

∏
i∈I k2i−1,p2i−1 = 0}.

(c) By 5.3.7, there exists a filtration structure Mp = M1 ⊋ M2 ⊋ M3 ⊋ · · · such that
Nst(M1\M2) = d2s−1,2t−1(p) − 1 = qmin, Nst(M2) > d2s−1,2t−1(p) − 1 = qmin, and
M2 = {k ∈ Mp | detAd

2s−1,2t−1(f(k)) = 0 where d = d2s−1,2t−1(p)}.

Notation 5.4.9. To avoid the proof difficulties encountered in infinite-dimensional vector
spaces, with notation in 5.4.8, we next define some finite-dimensional linear subspaces Np,
N◦

p and N2 of Mp to facilitate the following proof.

(a) Write κp for the tuple of variables κ2s−1,p2s−1 , κ2s,p2s , . . . ,κ2t−1,p2t−1 . Note that κp only
has finite variables.

(b) We next define a linear subspace Np of Mp as the vector space generated by the basis
corresponding to κp, and a linear subspace V of Mp as the vector space generated by
the basis corresponding to κp except κp. Thus Np is a finite dimensional vector space
and Mp = Np ⊕ V .

(c) Parallel to M◦
p ⊆ Mp in 5.4.4, define an open subspace N◦

p of Np by

N◦
p := {k ∈ Np | k2i−1,p2i−1 ̸= 0 for all i ∈ I}.

Thus Np\N◦
p = {k ∈ Np |

∏
i∈I k2i−1,p2i−1 = 0}.

(d) Parallel to M2 ⊆ Mp in 5.4.8(c), define a closed subspace N2 of Np by

N2 := {k ∈ Np | detAd
2s−1,2t−1(f(k)) = 0 where d = d2s−1,2t−1(p)}.

(e) By definition 5.1.2 Ad
2s−1,2t−1(κp) only contains variables κ2s−1,d, κ2s,d, . . . ,κ2t−1,d. Thus

when d = d2s−1,2t−1(p) := min(p2s−1, p2s+1, . . . , p2t−1), Ad
2s−1,2t−1(κp) only contains

variables in κp, and so Ad
2s−1,2t−1(κp) = Ad

2s−1,2t−1(κp).
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(f) Consider the natural quotient map φ : Mp ↠ Np with kerφ = V . Since M◦
p and N◦

p are
defined by the zero locus of the same polynomial, φ(M◦

p) = N◦
p, and so M◦

p = N◦
p ⊕ V .

Similarly, since by 5.4.9(e) M2 and N2 are also defined by the zero locus of the same
polynomial, φ(M2) = N2, and so M2 = N2 ⊕ V .

(1) If qmin =∞, then d2s−1,2t−1(p) =∞, and so by 5.3.7 Nst(Mp) =∞. Since ∅ ≠ M◦
p ⊆ Mp,

there exists f ∈ MA◦
p such that Nst(f) =∞ = qmin.

Otherwise, qmin < ∞, and then by 5.4.8 Nst(Mp) ≥ qmin. Since M◦
p ⊆ Mp, Nst(f) ≥ qmin

for any f ∈ MA◦
p. This proves the first part of the statement.

For the second part, we claim that there exists f ∈ MA◦
p such that Nst(f) = qmin. Since by

5.4.8Nst(Mp\M2) = qmin andNst(M2) > qmin, it is equivalent to prove that (Mp\M2)∩M◦
p ̸=

∅. Since by 5.4.9(b) and 5.4.9(f), Mp = Np ⊕ V , M◦
p = N◦

p ⊕ V and M2 = N2 ⊕ V , it is
equivalent to prove that (Np\N2) ∩ N◦

p ̸= ∅.

Since by 5.4.9(d) N2 is the zero locus of a polynomial in C[[κp]], Np\N2 is an open set (wrt.
Zariski topology) of the finite dimensional space Np. Similarly, by 5.4.9(c) N◦

p is also an open
set (wrt. Zariski topology) of Np. So (Np\N2) ∩ N◦

p ̸= ∅.

(2) Assume that qmin is finite.

(⇐) We first prove that if #{i | qi = qmin} = 1, then the equality Nst(f) = qmin holds for
all f ∈ MA◦

p. Since by 5.4.8 Nst(Mp\M2) = qmin and Nst(M2) > qmin, it is equivalent to
prove that M◦

p ∩M2 = ∅ (equivalently, M2 ⊆ Mp\M◦
p).

To ease notation, write m for the unique index such that qm = qmin and set d := d2s−1,2t−1(p).
Since p2i−1 = qi + 1 for s ≤ i ≤ t in 5.4.4, p2m−1 is the unique smallest element in
{p2s−1, p2s+1, . . . , p2t−1}, and so by (5.1.F) d = p2m−1 > p2i−1 for all i satisfying s ≤ i ≤ t

and i ̸= m. Thus by 5.1.6(4), for s ≤ i ≤ t the following holds.

• If i = m, then p2i−1 = d, and so ε2i−1,d(κp) = dκ2i−1,d.

• If i ̸= m, then p2i−1 > d, and so ε2i−1,d(κp) is a zero function over Mp.

If d > 2, then by 5.1.9(3),

detAd
2s−1,2t−1(κp) = (−1)t−s

(
ε2s−1,d(κp) + (−1)dε2s+1,d(κp) + · · ·+ (−1)(t−s)dε2t−1,d(κp)

)
= (−1)t−s(−1)(m−s)dε2m−1,d(κp)
= (−1)t−s+(m−s)ddκ2m−1,d.

So by 5.4.8(c), M2 = {k ∈ Mp | k2m−1,d = 0}. Since qm = qmin is finite, m ∈ I (see 5.4.8(a)).
Together with 5.4.8(b) and d = p2m−1, it follows that

Mp\M◦
p = {k ∈ Mp | k2m−1,d

∏
i∈I\{m}

k2i−1,p2i−1 = 0}.
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Thus M2 ⊆ Mp\M◦
p.

Otherwise, d = 2, and then by 5.1.9(2),

detA2
2s−1,2t−1(κp) = (−1)t−s(ε2s−1,2(κp) + ε2s+1,2(κp) + · · ·+ ε2t−1,2(κp)) + ϵ(κp)

= (−1)t−s2κ2m−1,2 + ϵ(κp),

where ϵ ∈ E2s−1,2t−1 and E2s−1,2t−1 is the ideal generated by all the degree two terms of
ε2s−1,2, ε2s+1,2, . . . , ε2t−1,2 except ε2

2s−1,2, ε
2
2s+1,2, . . . , ε

2
2t−1,2 (see 5.1.8). Together with ε2m−1,2(κp)

is the only non-zero element in {ε2s−1,2(κp), ε2s+1,2(κp), . . . , ε2t−1,2(κp)}, thus E2s−1,2t−1(κp) =
{0}, and so ϵ(κp) = 0. Thus detA2

2s−1,2t−1(κp) = (−1)t−s2κ2m−1,2. So by 5.4.8(c), M2 =
{k ∈ Mp | k2m−1,d = 0}. Similarly, M2 ⊆ Mp\M◦

p.

(⇒) We next prove the converse: if #{i | qi = qmin} > 1, then there exists f ∈ MA◦
p

such that Nst(f) > qmin. Since by 5.4.8(c) Nst(Mp\M2) = qmin and Nst(M2) > qmin, it
is equivalent to prove M◦

p ∩M2 ̸= ∅ (equivalently, M2 ̸⊆ Mp\M◦
p). Since by 5.4.9(b) and

5.4.9(f), Mp = Np ⊕ V , M◦
p = N◦

p ⊕ V and M2 = N2 ⊕ V , it is equivalent to prove that
N2 ̸⊆ Np\N◦

p

To ease notation, set d := d2s−1,2t−1(p) and I := {i | qi = qmin for s ≤ i ≤ t} = {i | p2i−1 =
d = min(p2s−1, p2s+1, . . . , p2t−1) for s ≤ i ≤ t}. Since #{i | qi = qmin} > 1, then the number
of elements |I| > 1. By 5.1.6(4), for s ≤ i ≤ t the following holds.

• If i ∈ I, then p2i−1 = d, and so ε2i−1,d(κp) = dκ2i−1,d.

• If i /∈ I, then p2i−1 > d, and so ε2i−1,d(κp) is a zero function over Mp.

If d > 2, then

detAd
2s−1,2t−1(κp) 5.4.9(e)= detAd

2s−1,2t−1(κp)
5.1.9(3)= (−1)t−s

(
ε2s−1,d(κp) + (−1)dε2s+1,d(κp) + · · ·+ (−1)(t−s)dε2t−1,d(κp)

)
= (−1)t−s

(∑
i∈I

(−1)(i−s)dε2i−1,d(κp)
)

= (−1)t−s−sdd
∑
i∈I

(−1)idκ2i−1,d.

So by 5.4.9(d), N2 = {k ∈ Np |
∑

i∈I(−1)idk2i−1,d = 0}. We next prove that N2 ̸⊆ Np\N◦
p

by contradiction. Recall that Np\N◦
p = {k ∈ Np |

∏
i∈I k2i−1,p2i−1 = 0} in 5.4.9(c). Thus if

N2 ⊆ Np\N◦
p, then

(
∏
i∈I
κ2i−1,p2i−1) ⊆ (

∑
i∈I

(−1)idκ2i−1,d)

in C[[κp]], and so there exists κ′ ∈ C[[κp]] such that
∏
i∈I
κ2i−1,p2i−1 = κ′(

∑
i∈I

(−1)idκ2i−1,d). (5.4.A)
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Since C[[κp]] has only a finite number of variables, it is a unique factorization domain.
Together with (5.4.A) and |I| > 1, there are two different factorizations of the same element
in C[[κp]], a contradiction.

Otherwise, d = 2, and then

detA2
2s−1,2t−1(κp) 5.4.9(e)= detA2

2s−1,2t−1(κp)
5.1.9(2)= (−1)t−s

(
ε2s−1,2(κp) + ε2s+1,2(κp) + · · ·+ ε2t−1,2(κp)

)
+ ϵ(κp)

= (−1)t−s2
∑
i∈I

κ2i−1,2 + ϵ(κp),

where ϵ ∈ E2s−1,2t−1 and E2s−1,2t−1 is the ideal generated by some degree two terms of
ε2s−1,2, ε2s+1,2, . . . , ε2t−1,2. So by 5.4.9(d), N2 = {k ∈ Np | (−1)t−s2∑i∈I k2i−1,2 + ϵ(k) = 0}.
Similarly, we can prove that N2 ̸⊆ Np\N◦

p by contradiction.

Example 5.4.10. Let π be a crepant resolution of a cA3 singularity with exceptional curves
C1, C2 and C3. Suppose that

(N11(π), N22(π), N33(π)) = (q1, q2, q2) where q1 < q2 < q3.

With notation in 5.4.7, set s = 1, t = 2 and q = {(C1, q1), (C2, q2)}. Since N11(π) = q1

and N22(π) = q2 by assumption, necessarily π ∈ CAq. Since q1 < q2, qmin = q1 is finite and
#{i | qi = qmin} = #{1} = 1. So by 5.4.7(2), N12(π) must be q1.

Similarly, we can prove that N23(π) = q2 by setting s = 2, t = 3 and q = {(C2, q2), (C3, q3)},
and N13(π) = q1 by setting s = 1, t = 3 and q = {(C1, q1), (C2, q2), (C3, q3)}.

§ 5.4.2 | Obstructions from iterated flops

Iterating flops gives more obstructions and constructions of the possible tuples that can arise
from the generalised GV invariants of cAn crepant resolutions.

Notation 5.4.11. Recall r and πr in 3.3.1, and |Fr| in 3.3.4. There is a linear isomorphism

|Fr| : A1(π)→ A1(πr),

such that GVβ(π) = GV|Fr|(β)(πr) for any β ∈ A1(π). By 3.3.8, Nβ(π) = N|Fr|(β)(πr).
Varying r over all possible flops gives the following set,

F :=
∞⋃

i=1
{|Fr| | r = (r1, r2, . . . , ri) where each 1 ≤ rj ≤ n}.

Given any F ∈ F and q = {(β1, q1), (β2, q2), . . . , (βk, qk)} in 5.4.3, write

F (q) := {(F (β1), q1), (F (β2), q2), . . . , (F (βk), qk)}.
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The flexibility of F ∈ F as above, together with 5.4.7, gives more obstructions and construc-
tions of the possible tuples that can arise from generalised GV invariants of cAn crepant
resolutions, as follows.

Corollary 5.4.12. For any integers s and t with 1 ≤ s ≤ t ≤ n, any tuple (qs, . . . , qt) ∈
Nt−s+1

∞ , and any F ∈ F , with notation as in 5.4.4 and 5.4.11, the following statements hold.

(1) For any π ∈ CAF (q) necessarily NF (st)(π) ≥ qmin, and moreover there exists π ∈ CAF (q)

such that NF (st)(π) = qmin.

(2) When qmin is finite, the equality NF (st)(π) = qmin holds for all π ∈ CAF (q) if and only
if #{i | qi = qmin} = 1.

Proof. By the definition of F in 5.4.11, there exists some r = (r1, r2, . . . , rj) such that
F = |Fr|. Then set the reverse tuple of r to be r = (rj, rj−1, . . . , r1).

Since Nβ(π) = NF (β)(πr) in 5.4.11, for any π ∈ CAq, we have πr ∈ CAF (q).

Similarly, since Nβ(πr) = NF (β)(π) in 5.4.11, for any π ∈ CAF (q), we have πr ∈ CAq.

(1) If π ∈ CAF (q), then πr ∈ CAq. By 5.4.7, Nst(πr) ≥ qmin. Since NF (st)(π) = Nst(πr),
NF (st)(π) ≥ qmin. Again by 5.4.7, there exists π1 ∈ CAq such that Nst(π1) = qmin. Since
NF (st)(πr

1) = Nst(π1), NF (st)(πr
1) = qmin. Since π1 ∈ CAq, πr

1 ∈ CAF (q). We are done.

(2) For any π ∈ CAF (q), we have πr ∈ CAq and NF (st)(π) = Nst(πr). If qmin is finite and
#{i | qi = qmin} = 1, then by 5.4.7 Nst(πr) = qmin, and so NF (st)(π) = qmin.

We next prove the converse. For any π ∈ CAq, πr ∈ CAF (q) and Nst(π) = NF (st)(πr). Thus
if NF (st)(π) = qmin holds for all π ∈ CAF (q), then Nst(π) = qmin holds for all π ∈ CAq. So
#{i | qi = qmin} = 1 by 5.4.7 and the assumption qmin is finite.

§ 5.4.3 | Examples

Note that 5.4.7 demonstrates that the generalised GV invariant Nst is constrained by prop-
erties of the tuple (Nss, . . . , Ntt), and 5.4.12 demonstrates that NF (st) is constrained by
properties of the tuple (NF (ss), . . . , NF (tt)).

Example 5.4.13. Consider n = 2, s = 1 and t = 2, and apply different F in 5.4.12. The
following table illustrates that Nβ is constrained by by properties of the tuple (Nβ1 , Nβ2)
where (β1,β2,β) :=

(
F (11), F (22), F (12)

)
.

F β1,β2 β

id 11, 22 12
|F(1)| 11, 12 22
|F(2)| 12, 22 11
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As an explicit example, for any cA2 crepant resolution π the following holds. To ease
notation, we write Nβ for Nβ(π) in the following.

(1) By the first line, N12 ≥ min(N11, N22). Moreover, if N11 ̸= N22, then N12 must be
min(N11, N22).

(2) By the second line, N22 ≥ min(N11, N12). Moreover, if N11 ̸= N12, then N22 must be
min(N11, N12).

(3) By the third line, N11 ≥ min(N12, N22). Moreover, if N12 ̸= N22, then N11 must be
min(N12, N22).

Example 5.4.14. Consider n = 3, s = 1 and t = 3, and apply different F in 5.4.12. The
following table illustrates that Nβ is constrained by properties of the tuple (Nβ1 , Nβ2 , Nβ3)
where (β1,β2,β3,β) :=

(
F (11), F (22), F (33), F (13)

)
.

F β1,β2,β3 β

id 11, 22, 33 13
|F(1)| 11, 12, 33 23
|F(2)| 12, 22, 23 13
|F(3)| 11, 23, 33 12
|F(1,2)| 12, 11, 23 33
|F(2,1)| 22, 12, 13 23
|F(2,3)| 13, 23, 22 12
|F(3,2)| 12, 33, 23 11
|F(1,3)| 11, 13, 33 22

With the results in 5.4.7, 5.4.12 and 5.4.13, we can give all the tuples that generalised GV
tuples of cA2 crepant resolutions can arise.

Corollary 5.4.15. The generalised GV tuples of cA2 crepant resolutions have the following
two possibilities:

N11 N22

N12
=

p q

min(p, q) or
p p

r

where p, q, r ∈ N∞ with p ̸= q and r ≥ p. All possible such p, q, r arise.

Proof. Fix some p, q ∈ N∞. By 5.4.7(1), for any cA2 crepant resolution π satisfying N11(π) =
p and N22(π) = q, necessarily N12(π) ≥ min(p, q). Moreover, there exists such a π with
N12(π) = min(p, q). If furthermore p ̸= q, then N12(π) = min(p, q) by 5.4.7(2) which proves
the first possibility.

Then we consider the case of p = q. Since by 5.4.13 N22 is constrained by properties of the
tuple (N11, N12), for any r ≥ p by 5.4.12(1) there exists a cA2 crepant resolution π such that
N11(π) = p, N12(π) = r and N22(π) = min(p, r) = p. The second possibility follows.
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Chapter 6

Special Cases: A3

This chapter considers the special case Q3,{1,2,3}, namely

1 2 3
b1

a1

b2

a2

x1 = a1b1, x′
1 = b1a1

x2 = a2b2, x′
2 = b2a2

and describes the full isomorphism classes of Type A potentials, and the derived equivalence
classes of those with finite-dimensional Jacobi algebras. This generalises the results in [DWZ,
E1, H2].

Notation 6.0.1. In this chapter, for simplicity, we will adopt the following notation. Recall
the notation fd, f≥d in 4.1.11.

(1) Write Q for Q3,{1,2,3}, x := x′
1 and y := x2, whereas x′ := x1 and y′ := x′

2.

(2) Suppose that f is a Type A potential on Q. Then define the base part of f as fb :=
κ1xp +xy+κ2yq where κ1xp, κ2yq is the lowest degree monomial of x, y in f respectively.
If there is no monomial of x (or y) in f , we assume κ1 = 0 (or κ2 = 0). Then define
the redundant part of f as fr := f − fb.

(3) Given any Type A potential f on Q with fb = κ1xp +xy+κ2yq, we give a new definition
of degree as follows, which differs from 4.1.3. For any t ≥ 0, define

deg(xp+t) := t+ 2, deg(yq+t) := t+ 2.

The degree of binomials in x and y is the same as 4.1.3. We also write fd for the degree
d piece of f with respect to this new definition (overwriting 4.1.11). Similar for fij,d,
Od and Oij,d. This new definition of degree is natural since now fb = f2 and fr = f≥3,
which will unify the proof below.

(4) Let f be a Type A potential on Q with fb = κ1xp + xy + κ2yq. Recall the definition of
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Ad
ij(f) in 5.1.2. To ease notation, write the matrices A11(f), A22(f) and A12(f) for

A11(f) := Ap
11(f) =

[
pκ1

]
, A22(f) := Aq

11(f) =
[
qκ2

]
,

A12(f) := A2
12(f) =

ε12(f) 1
1 ε22(f)

 ,

where ε12(f) =

2κ1 if p = 2

0 if p > 2
and ε22(f) =

2κ2 if q = 2

0 if q > 2
.

§ 6.1 | Normalization
The purpose of this section is to prove 6.1.17, which gives the isomorphism classes of Type
A potentials on Q.

Notation 6.1.1. In this section, we assume f = fb + fr is a Type A potential on Q with
fb = κ1xp + xy + κ2yq, and will freely use the notations fd, f≥d, fij,d, Od and Oij,d in 6.0.1(3).

The following results show that we can commute x and y in f .

Lemma 6.1.2. Suppose that fr = g + λyxc where 0 ̸= λ ∈ C, d := deg(yxc) and c is a cycle
with deg(c) ≥ 1. Then there exists a path degree d− 1 right-equivalence,

ϑ : f d−1⇝ fb + g + λxyc+ Od+1.

Proof. Applying the depth d − 1 unitriangular automorphism ϑ : a1 7→ a1 − λa1c, b1 7→
b1 + λcb1 gives,

ϑ : f 7→ κ1((b1 + λcb1)(a1 − λa1c))p + (b1 + λcb1)(a1 − λa1c)y + κ2yq + λyxc+ g + Od+1

= fb − λxcy + λcxy + λyxc+ g + Od+1

d∼ fb + g + λxyc+ Od+1,

since similar to the proof of 4.1.15, the degree of the terms generated by fr = g+ λyxc after
applying ϑ is greater than or equal to d+ 1.

Corollary 6.1.3. Suppose that fr = g + λc where 0 ̸= λ ∈ C, d := deg(c) and c is a cycle
with T(c)1 = i and T(c)2 = j. Then there exists a path degree d− 1 right-equivalence,

θ : f d−1⇝ fb + g + λxiyj + Od+1.

Proof. If j = 0, then c ∼ xi, so there is nothing to prove. The case of i = 0 is similar.
Thus we assume i, j > 0. Firstly, note that c ∼ xi1yj1xi2yj2 . . . xikyjk where ∑k

t=1 it = i and
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∑k
t=1 jt = j. Since 6.1.2 can commute yx contained in c to xy, we can apply the ϑ in 6.1.2

repeatedly until we commute all yx to xy, and so

θ : f d−1⇝ fb + g + λxiyj + Od+1.

Remark 6.1.4. With notation in 6.1.3, we can transform λc to λxiyj up to higher degree
Od+1 where d = deg(c). Moreover, since we will normalise the potential degree by degree in
the following part of this section, we can assume c = xiyj.

Then, we start normalizing the potential f , and the basic idea is to use fb to normalize fr

degree by degree. For any integer s ≥ 1, we define the following depth s + 1 unitriangular
automorphisms.

φ11,s : a1 7→ a1 + λa1xs, (6.1.A)
φ22,s : a2 7→ a2 + λysa2, (6.1.B)
φ12,s : a1 7→ a1 + λ1a1xs−1y, a2 7→ a2 + λ2xsa2, (6.1.C)

where λ, λ1, λ2 ∈ C.

Lemma 6.1.5. The φ11,s (6.1.A) induces a degree s+ 1 right-equivalence,

φ11,s : f s+1⇝ f + λpκ1xp+s + O12,s+2 + Os+3.

Proof. Applying φ11,s : a1 7→ a1 + λa1xs to f gives

φ11,s : f 7→ κ1(b1(a1 + λa1xs))p + b1(a1 + λa1xs)y + κ2yq + fr + Os+3
s+2∼ f + λpκ1xp+s + λxs+1y + Os+3

= f + λpκ1xp+s + O12,s+2 + Os+3.

Lemma 6.1.6. The φ22,s (6.1.B) induces a degree s+ 1 right-equivalence,

φ22,s : f s+1⇝ f + λqκ2yq+s + O12,s+2 + Os+3.

Proof. The proof is similar to 6.1.5.

Lemma 6.1.7. The φ12,s (6.1.C) induces a degree s+ 1 right-equivalence,

φ12,s : f s+1⇝ f +
[
xs+1y xsy2

]
A12(f)

λ1

λ2

+ Os+3.
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Proof. Applying φ12,s to f gives

φ12,s : f 7→ κ1(x + λ1xsy)p + (x + λ1xsy)(y + λ2xsy) + κ2(y + λ2xsy)q + fr + Os+3
s+2∼ f + λ1pκ1xp+s−1y + λ2xs+1y + λ1xsy2 + λ2qκ2xsyq + Os+3

= f +
[
xs+1y xsy2

]
A12(f)

λ1

λ2

+ Os+3.

Recall the definition of A12(f) in 6.0.1(4). In the above last equation, we move λ1pκ1xp+s−1y

into Os+3 when p > 2, and move it into
[
xs+1y xsy2

]
A12(f)

λ1

λ2

 when p = 2. Similar for

λ2qκ2xsyq.

Proposition 6.1.8. With notation in 6.1.1, for any d ≥ 3, there exists a path degree d− 1
right-equivalence

ϕd : f d−1⇝ f<d + cd + Od+1,

where the cd is defined to be

cd =
 0 if det(A12(f)) ̸= 0
µxp+d−2 if det(A12(f)) = 0

for some µ ∈ C.

Proof. We first rewrite fr = fd + g and fd = f11,d + f12,d + f22,d where f11,d = α1xp+d−2 and
f22,d = α2yq+d−2 for some α1, α2 ∈ C.

Recall that fb = κ1xp + xy + κ2yq in 6.1.1. If κ2 = 0, then there is no monomial of y in f ,
and so α2 = 0. Otherwise, κ2 ̸= 0, so set λ = −α2/(qκ2) and applying 6.1.6 to obtain,

φ22,d−2 : f d−1⇝ f + λqκ2yq+d−2 + O12,d + Od+1

= fb + g + fd + λqκ2yq+d−2 + O12,d + Od+1 (f = fb + fr, fr = fd + g)
= fb + g + f11,d + f12,d + (α2 + λqκ2)yq+d−2 + O12,d + Od+1

(fd = f11,d + f12,d + f22,d, f22,d = α2yq+d−2)

= fb + g + f11,d + f12,d + O12,d + Od+1 (since λ = −α2/(qκ2))
= fb + g + f11,d + O12,d + Od+1. (6.1.D)

Set f1 := fb + g + f11,d + O12,d + Od+1. The proof splits into cases.

(1) det(A12(f)) = 0.

By 4.1.19, we can transform the binomial terms O12,d in f1 to the monomials of x. More
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precisely, there exists a path degree d− 1 right-equivalence,

ρd : f1
d−1⇝ fb + g + µxp+d−2 + Od+1, (f11,d = α1xp+d−2)
= f<d + µxp+d−2 + Od+1. (fb + g = f<d + f>d)

for some µ ∈ C. Set ϕd := ρd ◦φ22,d−2, we are done.

(2) det(A12(f)) ̸= 0.

Similar to (6.1.D), applying 6.1.5 to f1 gives

φ11,d−2 : f1
d−1⇝ f2 := fb + g + O12,d + Od+1.

Then we continue to normalize the O12,d in f2. It is clear that f2 satisfies the assumption of
4.1.15. Thus we can apply 4.1.15 repeatedly until,

ϑ : f2
d−1⇝ f3 := fb + g + βxd−1y + Od+1

for some β ∈ C. Then by 6.1.7,

φ12,d−2 : f3
d−1⇝ f3 +

[
xd−1y xd−2y2

]
A2

12(f)
λ1

λ2

+ Od+1

= fb + g + βxd−1y +
[
xd−1y xd−2y2

]
A2

12(f)
λ1

λ2

+ Od+1.

Since detA2
12(f) ̸= 0, we can solve (λ1, λ2) to make

βxd−1y +
[
xd−1y xd−2y2

]
A2

12(f)
λ1

λ2

 = 0.

Thus we have

φ12,d−2 : f3
d−1⇝ fb + g + Od+1

= f<d + Od+1. (fb + g = f<d + f>d)

Set ϕd := φ12,d−2 ◦ ϑ ◦φ11,d−2 ◦φ22,d−2, we are done.

Proposition 6.1.9. With notation in 6.1.1, there exists a right-equivalence,

Φ: f ⇝ fb + c

where the c is defined to be

c =
 0 if detA12(f) ̸= 0∑∞

i=1 µixp+i if detA12(f) = 0
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for some µi ∈ C.

Proof. We first apply the ϕ3 in 6.1.8,

ϕ3 : f 2⇝ f1 := f<3 + c3 + O4,

where the c3 is the same as in 6.1.8. Then we continue to apply the ϕ4 in 6.1.8 to f1,

ϕ4 : f1
3⇝ f2 := (f1)<4 + c4 + O5 = f<3 +

4∑
d=3

cd + O5.

where the c4 is the same as in 6.1.8. Thus repeating this process s− 2 times gives

ϕs ◦ · · · ◦ ϕ4 ◦ ϕ3 : f ⇝ fs := f<3 +
s∑

d=3
cd + Os+1.

Since ϕd is a path degree d − 1 right-equivalence for each d ≥ 3 by 6.1.8, by 2.1.9 Φ :=
lims→∞ϕs ◦ · · · ◦ ϕ4 ◦ ϕ3 exists, and further

Φ: f ⇝ f<3 +
∞∑

d=3
cd = fb +

∞∑
d=3

cd,

where each cd is the same as in 6.1.8. Thus set c := ∑∞
d=3 cd, we are done.

The above 6.1.9 shows that we can eliminate all terms in fr when detA12(f) ̸= 0. Thus we
next consider the cases of f with detA12(f) = 0. The following lemma holds immediately
from the definition of A12(f) in 6.0.1(4).

Lemma 6.1.10. detA12(f) = 0 if and only if fb = κ1x2 + xy + κ2y2 with 4κ1κ2 = 1.

Lemma 6.1.11. With notation in 6.1.1, suppose that f satisfies detA12(f) = 0, and fr =
µxs + Ot where t > s ≥ 3 and 0 ̸= µ ∈ C. Then there exists a path degree t − s + 1
right-equivalence ψt such that

ψt : f t−s+1⇝ fb + µxs + Ot+1.

Proof. Since detA2
12(f) = 0, by 6.1.10 fb = κ1x2 + xy + κ2y2 with 4κ1κ2 = 1. If the degree t

terms in Ot are zero, there is nothing to prove. Otherwise, we first apply 4.1.15 repeatedly
and obtain,

ϑ : f t−1⇝ f1 := fb + µxs + βxt−1y + Ot+1,

for some β ∈ C. If β = 0, we are done. Otherwise, we next apply φ12,t−s in 6.1.7 which
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gives

φ12,t−s : f1 7→κ1(x + λ1xt−sy)2 + (x + λ1xt−sy)(y + λ2xt−sy) + κ2(y + λ2xt−sy)2

+ µ(x + λ1xt−sy)s + βxt−1y + Ot+1
t−s+2∼ fb + µxs + (2κ1λ1 + λ2)xt−s+1y + (λ1 + 2κ2λ2)xt−sy2 + (sµλ1 + β)xt−1y

+ (κ1λ
2
1 + κ2λ

2
2 + λ1λ2)x2(t−s)y2 + Ot+1.

Since 4κ1κ2 = 1, then 1
2κ1

= 2κ2, and so any λ1 and λ2 with λ1
λ2

= − 1
2κ1

= −2κ2 satisfies the
following system of equations 

2κ1λ1 + λ2 = 0

λ1 + 2κ2λ2 = 0

κ1λ
2
1 + κ2λ

2
2 + λ1λ2 = 0.

We next choose λ1 to satisfy sµλ1 +µt = 0, and set λ2 = −2κ1λ1. This makes the coefficients
of xt−s+1y, xt−sy2, xt−1y and x2(t−s)y2 equal to zero in the above potential. Setψt := φ12,t−s◦ϑ,
we are done.

The following shows that when detA2
12(f) = 0, the leading term of fr can eliminate all the

other terms.

Proposition 6.1.12. With notation in 6.1.1, suppose that f satisfies detA12(f) = 0. Then
there exists a right-equivalence Ψ such that

Ψ: f ⇝ fb or fb + µxs,

where 0 ̸= µ ∈ C and s ≥ 3.

Proof. Since detA12(f) = 0, then by 6.1.9

Φ: f ⇝ f1 := fb +
∞∑

i=1
µixi+2.

If all µi = 0, then f ⇝ fb. Otherwise, set s to be the smallest integer satisfying µs ̸= 0.
Then by 6.1.11 applied to f1, there exists

ψs+1 : f1
2⇝ f2 := fb + µxs + Os+2.

Thus, repeating this process k times gives

ψs+k ◦ · · · ◦ψs+2 ◦ψs+1 : f1 ⇝ fk+1 := fb + µxs + Os+k+1.

Since ψt is a degree t − s + 1 right-equivalence for each t > s by 6.1.11, by 2.1.9 Ψ′ :=
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limk→∞ψs+k ◦ · · · ◦ψs+2 ◦ψs+1 exists, and further

Ψ′ : f1 ⇝ fb + µxs.

Set Ψ := Ψ′ ◦ Φ, we are done.

Combining 6.1.9, 6.1.10 and 6.1.12 gives the following result.

Proposition 6.1.13. Any Type A potential on Q must be right-equivalent to one of the
following potentials:

(1) κ1x2 + xy + κ2y2 where κ1, κ2 ̸= 0 and 4κ1κ2 ̸= 1.

(2) κ1x2 + xy + κ2y2 + µxs where 4κ1κ2 = 1, 0 ̸= µ ∈ C and s ≥ 3.

(3) κ1xp + xy + κ2yq where (p, q) ̸= (2, 2) and κ1, κ2 ̸= 0.

(4) κ1x2 + xy + κ2y2 where 4κ1κ2 = 1.

(5) κ1xp + xy where p ≥ 2 and κ1 ̸= 0.

(6) xy + κ2yq where q ≥ 2 and κ2 ̸= 0.

(7) xy.

Proof. Recall in 6.0.1 and 6.1.1, any Type A potential on Q has the form of f = fb + fr

where fb = κ1xp + xy + κ2yq.

When detA12(f) = 0, namely p = q = 2 and 4κ1κ2 = 1 by 6.1.10, then by 6.1.9 f ∼=
fb or fb + µxs where 0 ̸= µ ∈ C and s ≥ 3. These are items (4) and (2) in the statement.

When detA12(f) ̸= 0, by 6.1.9 f ∼= fb. Again by 6.1.10, we have (p, q) ̸= (2, 2) or 4κ1κ2 ̸= 1,
so f must belong to one of the following cases.

a) κ1 ̸= 0 and κ2 = 0.

b) κ1 = 0 and κ2 ̸= 0.

c) κ1 = 0 and κ2 = 0.

d) κ1, κ2 ̸= 0, 4κ1κ2 ̸= 1 and p = q = 2.

e) κ1, κ2 ̸= 0 and (p, q) ̸= (2, 2).

The a), b), c), d) and e) are items (5), (6), (7), (1) and (3) in the statement.

Then we continue to normalise the coefficients of the potentials in 6.1.13. In the statement
of 6.1.14, case (1) is placed first since it represents the most basic family: its Jacobi algebra
has the smallest dimension (namely, 20) and it exhibits moduli, in contrast to the discrete
classification of Du Val singularities. By contrast, case (2) has a different structural form
from all of the remaining cases, and is in fact derived equivalent to certain potentials in
case (3) (see 6.2.6).
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Corollary 6.1.14. Any Type A potential on Q must be isomorphic to one of the following
potentials:

(1) x2 + xy + λy2 where 0, 1
4 ̸= λ ∈ C.

(2) x2 + xy + 1
4y2 + xs where s ≥ 3.

(3) xp + xy + yq where (p, q) ̸= (2, 2).

(4) x2 + xy + 1
4y2.

(5) xp + xy where p ≥ 2.

(6) xy + yq where q ≥ 2.

(7) xy.

Proof. (1) Applying a1 7→ λ1a1, a2 7→ λ2a2 where λ1, λ2 ∈ C to (1) gives

κ1x2 + xy + κ2y2 7→ λ2
1κ1x2 + λ1λ2xy + λ2

2κ2y2.

Since κ1 ̸= 0, we can solve (λ1, λ2) that ensures λ2
1κ1 = λ1λ2 = 1 holds. Moreover, since

κ2 ̸= 0 and 4κ1κ2 ̸= 1, λ2
2κ2 = κ1κ2 ̸= 0, 1

4 . Set λ := λ2
2κ2. Thus κ1x2+xy+κ2y2 7→ x2+xy+λy2

where λ ̸= 0, 1
4 .

(2) Applying φ : a1 7→ λ1a1, a2 7→ λ2a2 where λ1, λ2 ∈ C to (2) gives

κ1x2 + xy + κ2y2 + µxs 7→ λ2
1κ1x2 + λ1λ2xy + λ2

2κ2y2 + λs
1µxs.

We next claim that we can find some (λ1, λ2) which satisfies

λ2
1κ1 : λ1λ2 : λ2

2κ2 : λs
1µ = 1 : 1 : 1

4 : 1.

Once the claim is certified, it follows at once that κ1x2 + xy +κ2y2 +µxs ∼= x2 + xy + 1
4y2 + xs.

To prove the claim, since s ≥ 3 and µ ̸= 0, we can solve λ1 to ensure λ2
1κ1 : λs

1µ = 1 : 1
holds. Then we solve λ2 from λ1 and λ2

1κ1 : λ1λ2 = 1 : 1. Moreover, this choice of λ1 and λ2

also satisfies λ1λ2 : λ2
2κ2 = 1 : 1

4 since 4κ1κ2 = 1. Combining these together, (λ1, λ2) satisfies
the claim.

(3) Applying φ : a1 7→ λ1a1, a2 7→ λ2a2 where λ1, λ2 ∈ C to (3) gives

κ1xp + xy + κ2yq 7→ λp
1κ1xp + λ1λ2xy + λq

2κ2yq.

Similar to (2), the statement follows once we find some (λ1, λ2) which satisfies

λp
1κ1 : λ1λ2 : λq

2κ2 = 1 : 1 : 1.

The above equations induce λ2 = λp−1
1 κ1 and λ1 = λq−1

2 κ2, and so λ(p−1)(q−1)−1
1 κq−1

1 κ2 = 1.
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Since κ1, κ2 ̸= 0 and (p, q) ̸= (2, 2), we can solve λ1, and then λ2 such that the above
equations hold.

(4) Applying a1 7→ λ1a1, a2 7→ λ2a2 where λ1, λ2 ∈ C to (4) gives

κ1x2 + xy + κ2y2 7→ λ2
1κ1x2 + λ1λ2xy + λ2

2κ2y2.

Similar to (1), we can solve (λ1, λ2) that ensures λ2
1κ1 = λ1λ2 = 1 holds, and then λ2

2κ2 =
κ1κ2 = 1

4 since 4κ1κ2 = 1. Thus κ1x2 + xy + κ2y2 7→ x2 + xy + 1
4y2.

(5) Applying a1 7→ λ1a1, a2 7→ λ2a2 where λ1, λ2 ∈ C to (5) gives

κ1xp + xy 7→ λp
1κ1xp + λ1λ2xy.

Since κ1 ̸= 0, we can solve (λ1, λ2) that ensures λp
1κ1 = λ1λ2 = 1 holds. Thus κ1xp + xy 7→

xp + xy.

The proof of (6) and (7) is similar to (5).

We now simplify the previous geometric realization in §4.2 for the potentials in 6.1.14.

Proposition 6.1.15. Each Jacobi algebra of potentials in 6.1.14 is realized by a crepant
resolution of a singularity of cA3 R := C[[u, v, x, y]]/(uv − h0h1h2h3), which corresponds to
the R-module M := R⊕ (u, h0)⊕ (u, h0h1)⊕ (u, h0h1h2) in 3.3.2 as follows.

h0 h1 h2 h3

(1) 2x+ y x y x+ 2λy
(2) 2x+ y + sxs−1 x y x+ 1

2y

(3) pxp−1 + y x y x+ qyq−1

(4) 2x+ y x y x+ 1
2y

(5) pxp−1 + y x y x

(6) y x y x+ qyq−1

(7) y x y x

Proof. In order to construct the geometric realization by 4.2.9 and (5.2.A), we first transform
the potentials in 6.1.14 to some potentials in Q3, which has a single loop at each vertex, as
illustrated below (see also 4.1.2).

1 2 3

a1

b1

a2

b2

l1 l2 l3

Q3 =

Consider a potential f = κ1xp + xy + κ2yq + κ3xs on Q where κ1, κ2, κ3 ∈ C. By applying
4.1.22 three times, each of which adds a loop li at vertex i of Q for 1 ≤ i ≤ 3, we have
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Jac(Q, f) ∼= Jac(Q3, f
′) where

f ′ = l1x′ + xl2 + l2y + y′l3 −
1
2 l

2
1 −

1
2 l

2
2 −

1
2 l

2
3 − x2 − y2 + κ1xp + κ2yq + κ3xs.

Then by 4.2.9, 4.2.2 and (5.2.A), we can realize f ′ by setting g2 = x, g3 = x + y and then
solving the following system of equations where each gi ∈ C[[x, y]]

g0 − g1 + g2 = 0
g1 − 2g2 + κ1pg

p−1
2 + κ3sg

s−1
2 + g3 = 0

g2 − g3 + g4 = 0
g3 − g4 + κ2g

q−1
4 + g5 = 0

g4 − g5 + g6 = 0.

Thus (g0, g1, g2, g3, g4, g5, g6) = (−κ1px
p−1 − κ3sx

s−1 − y, x − κ1px
p−1 − κ3sx

s−1 − y, x, x +
y, y,−x+ y − κ2qy

q−1,−x− κ2qy
q−1). Set (h0, h1, h2, h3) := (−g0, g2, g4,−g6) and consider

R := C[[u, v, x, y]]
uv − h0h1h2h3

= C[[u, v, x, y]]
uv − (κ1pxp−1 + κ3sxs−1 + y)xy(x+ κ2qyq−1)

and R-module M = R⊕ (u, h0)⊕ (u, h0h1)⊕ (u, h0h1h2). Write π for the crepant resolution
of SpecR, which corresponds to M in 3.3.2. Then Λcon(π) ∼= Jac(Q3, f

′) by 4.2.9, and so
Λcon(π) ∼= Jac(Q, f). By choosing different values of κ1, κ2, κ3 and p, q, s to make f become
the potentials in 6.1.14, we prove the statement.

Then we classify the Type A potentials on Q up to isomorphism, which is the main result
of this section.

Lemma 6.1.16. [E2] If λ1, λ2 ̸= 0, 1
4 and λ1 ̸= λ2, then x2 + xy + λ1y2 ̸∼= x2 + xy + λ2y2.

Theorem 6.1.17. Any Type A potential on Q must be isomorphic to one of the following
isomorphism classes of potentials:

(1) x2 + xy + λy2 for any 0, 1
4 ̸= λ ∈ C.

(2) x2 + xy + 1
4y2 + xs for any s ≥ 3.

(3) xp + xy + yq ∼= xq + xy + yp for any (p, q) ̸= (2, 2).

(4) x2 + xy + 1
4y2.

(5) xp + xy ∼= xy + yp for any p ≥ 2.

(6) xy.

The Jacobi algebras of these potentials are all mutually non-isomorphic (except those iso-
morphisms stated), and in particular the Jacobi algebras with different parameters in the
same item are non-isomorphic.
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The Jacobi algebras in (1), (2), (3) are realized by crepant resolutions of isolated cA3 sin-
gularities, and those in (4), (5), (6) are realized by crepant resolutions of non-isolated cA3

singularities.

Proof. We first prove the isomorphisms in the statement. Applying a1 7→ b2, b1 7→ a2, a2 7→
b1, b2 7→ a1 gives

xp + xy + yq ⇝ xq + xy + yp, xp + xy⇝ xy + yp.

Then we prove the non-isomorphisms in the statement by using the following fact. If Type
A potentials f and g on Q are isomorphic, then dimC Jac(f) = dimC Jac(g), and further by
3.2.5 there is an equality of sets

{dimC Jac(f)/e1, dimC Jac(f)/e3} = {dimC Jac(g)/e1, dimC Jac(g)/e3}. (6.1.E)

The following table lists dimC Jac(f), dimC Jac(f)/e1 and dimC Jac(f)/e3 for each f in each
item, using Toda’s formula 2.4.2.

dimC Jac(f) dimC Jac(f)/e1 dimC Jac(f)/e3

(1) 20 6 6
(2) 9s+ 2 6 6
xp + xy + yq 4p+ 4q + 4 4q − 2 4p− 2
(4) ∞ 6 6
xp + xy ∞ ∞ 4p− 2
(6) ∞ ∞ ∞

Now, all Jacobi algebras in (1) have dimension 20, but are mutually non-isomorphic by
6.1.16. All Jacobi algebras in (2) are mutually non-isomorphic since they all have different
dimensions.

For (3), we only need to prove that xp + xy + yq ̸∼= xr + xy + ys for any (p, q) ̸= (r, s) and
(p, q) ̸= (s, r). From the above table,

{dimC Jac(xp + xy + yq)/e1, dimC Jac(xp + xy + yq)/e3} = {4q − 2, 4p− 2},
{dimC Jac(xr + xy + ys)/e1, dimC Jac(xr + xy + ys)/e3} = {4r − 2, 4s− 2}.

Since (p, q) ̸= (r, s) and (p, q) ̸= (s, r), then the above two sets are not equal, and so
xp + xy + yq ̸∼= xr + xy + ys by (6.1.E).

For (5), since xp + xy ∼= xy + yp, we only need to prove that xp + xy ̸∼= xq + xy for any p ̸= q.
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From the above table,

{dimC Jac(xp + xy)/e1, dimC Jac(xp + xy)/e3} = {∞, 4p− 2},
{dimC Jac(xq + xy)/e1, dimC Jac(xq + xy)/e3} = {∞, 4q − 2}.

Since p ̸= q, the above two sets are not equal, so xp + xy ̸∼= xq + xy by (6.1.E).

The above shows that potentials in the same item are mutually non-isomorphic. We finally
prove that the potentials in different items are mutually non-isomorphic.

Since Jacobi algebras in (1), (2) and (3) have finite dimension, while those in (4), (5) and
(6) have infinite dimension, we only need to prove that the potentials in (1), (2) and (3) are
mutually non-isomorphic, and the potentials in (4), (5) and (6) are mutually non-isomorphic,
respectively.

From the above table, the Jacobi algebras in (1), (2), and (3) have dimensions 20, 9s + 2
and 4p + 4q + 4, respectively. Since s ≥ 3 and (p, q) ̸= (2, 2), then 9s + 2 > 20 and
4p+ 4q+ 4 > 20, and so the potentials in (1) are not isomorphic to those in (2) and (3). To
compare the potentials in (2) and (3), since (p, q) ̸= (2, 2), then {4q − 2, 4p − 2} ̸= {6, 6},
then the potentials in (2) are not isomorphic to those in (3), by (6.1.E) and the table.

To compare the potentials in (4), (5) and (6), since {6, 6}, {∞, 4p − 2} and {∞,∞} are
mutually not equal, then the potentials in (4), (5) and (6) are mutually non-isomorphic by
(6.1.E) and the table.

By the geometric realizations in 6.1.15, the Jacobi algebras in (1), (2), (3) are realized by
crepant resolutions of isolated cA3 singularities, and the those in (4), (5), (6) are realized by
crepant resolutions of non-isolated cA3 singularities.

Remark 6.1.18. In 6.1.17, (4) is the limit of (2) by s → ∞ or (1) by λ → 1
4 . Similarly,

(5) and (6) are the limits of (3) by p → ∞ and q → ∞. This parallels the fact that
divisor-to-curve contractions are usually the limit of flops; see also [BW2].

Remark 6.1.19. In this section, for a Type A potential f on the doubled A3 quiver without
loops, we normalise f using the matrix A2

12(f) introduced in 5.1.2. For a Type A potential
f on the doubled A3 quiver with loops, or more generally on the doubled An quiver Qn with
n ≥ 4, one would instead need to use matrices of the form Ad

ij(f) (with j− i ≥ 2 and d ≥ 2)
to normalise f . At present, it is unclear how to extend the normalisation process developed
here to Type A potentials on Qn for arbitrary n.

§ 6.2 | Derived equivalence classes
The purpose of this section is to prove 6.2.6, which gives the derived equivalence classes of
Type A potentials with finite-dimensional Jacobi algebra on Q.
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Given a Type A potential f on Q, by 6.1.14 and 6.1.15 we can realize f by some cA3

R ∼=
C[[u, v, x, y]]
uv − h0h1h2h3

and R-module M = R⊕ (u, h0)⊕ (u, h0h1)⊕ (u, h0h1h2). Denote the corresponding crepant
resolution as π : X→ SpecR, so that Λcon(π) ∼= EndR(M) ∼= Jac(f).

Notation 6.2.1. We adopt the following notation. We first recall πi, Xi, M i and πr, Xr, M r

in 3.3.1. By 4.2.15, there is a Type A potential g on Q3,I such that Λcon(πr) ∼= Jac(Q3,I , g)
for some I ⊆ {1, 2, 3}, and we set f r := g, which is well defined up to the isomorphism of
Jacobi algebras. For 1 ≤ i ≤ 3, write f i for f (i).

Since this section aims to classify the derived equivalence classes of Type A potentials, the
definition of f r and f i up to the isomorphism of Jacobi algebras is harmless.

By 3.3.2, Λcon(πr) ∼= EndR(M r) ∼= Jac(f r). If, in addition, R is isolated, by 2.3.8 f r ≃ f (see
the definition of ≃ in 2.1.8). Moreover, by 2.3.6, R is isolated if and only if dimC Λcon(π) <∞
(equivalently, Jac(f) is finite-dimensional).

Hence we transfer the question about the derived equivalence classes of Type A potentials
on Q with finite-dimensional Jacobi algebra to that about the flops of crepant resolutions of
isolated cA3 singularities. The restriction to finite-dimensional Jacobi algebras is necessary
because 2.3.8 requires R to be isolated.

In order to present the NCCRs EndR(M) and EndR(M r), we adopt the following.

Definition 6.2.2. Define the quiver Q from Q by adding a new vertex 0, paths a0, b0, a3,
b3 and a possible loop at vertex 0, as illustrated below.

1 2 3

0

a1
b1

a2
b2

a0
b0 b3

a3

Quiver Q

Since f i might be a potential in Q3,I for some I ̸= ∅, and we aim to classify the derived
equivalence classes of Type A potentials on Q := Q3,∅, we need the following lemma.

Lemma 6.2.3. Given a potential of Type A f = κ1xp + xy + κ2yq in Q, the following
statements hold.

(1) κ1 ̸= 0 and p = 2 ⇐⇒ f 1 is a potential on Q.

(2) κ2 ̸= 0 and q = 2 ⇐⇒ f 3 is a potential on Q.
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(3) κ1, κ2 ̸= 0 and p = q = 2 ⇐⇒ f 2 is a potential on Q.

Proof. By 6.1.15, we can realize f by

R ∼=
C[[u, v, x, y]]
uv − h0h1h2h3

and R-module M = R ⊕ (u, h0) ⊕ (u, h0h1) ⊕ (u, h0h1h2) where h0 = κ1pxp−1 + y, h1 = x,
h2 = y, h3 = x+ κ2qyq−1. For 1 ≤ i ≤ 3, Jac(Q3,I , f

i) ∼= EndR(M i) for some I ⊆ {1, 2, 3}.

(1) Since M1 = R⊕ (u, h1)⊕ (u, h1h0)⊕ (u, h1h0h2), by 3.3.3 I = ∅ ⇐⇒ κ1 ̸= 0 and p = 2.

(2) Since M2 = R⊕ (u, h0)⊕ (u, h0h2)⊕ (u, h0h2h1), by 3.3.3 I = ∅ ⇐⇒ κ2 ̸= 0 and q = 2.

(3) Since M3 = R ⊕ (u, h0) ⊕ (u, h0h1) ⊕ (u, h0h1h3), by 3.3.3 I = ∅ ⇐⇒ κ1, κ2 ̸= 0 and
p = q = 2.

Lemma 6.2.4. Suppose that f is a Type A potential on Q. Then the following holds.

(1) If f = x2+xy+λy2 with λ ̸= 0, then f 1 ∼= x2+xy+(1
4−λ)y2 ∼= f 3 and f 2 ∼= x2+xy+ 1

16λy
2.

(2) If f = x2 + xy + 1
4y2 + xp with p ≥ 3, then f 1 ∼= x2 + xy + yp and f 3 ∼= xp + xy + y2.

Proof. Suppose that f = x2 + xy + λyp. By 6.1.15, we can realize f by

R ∼=
C[[u, v, x, y]]
uv − h0h1h2h3

and R-module M = R⊕(u, h0)⊕(u, h0h1)⊕(u, h0h1h2) where h0 = 2x+y, h1 = x, h2 = y and
h3 = x+ λpyp−1. Since M1 = R⊕ (u, h1)⊕ (u, h1h0)⊕ (u, h1h0h2), then by 3.3.3 EndR(M1)
can be presented by Q with relations

xb1 − yb1 = 2b1b0a0, b2x − b2y = 2(a3b3b2 − λpb2yp−1),
a1x − a1y = 2b0a0a1, xa2 − ya2 = 2(a2a3b3 − λpyp−1a2),

plus some other relations that factor through the vertex 0 (and so will not be relevant below).
Hence EndR(M1) can be presented by Q with relations

xb1 − yb1 = 0, b2x − b2y = −2λpb2yp−1,

a1x − a1y = 0, xa2 − ya2 = −2λpyp−1a2.

Thus EndR(M1) ∼= Jac(Q, f 1) where f 1 ∼= 1
2x2 − xy + 1

2y2 − 2λyp. Normalizing by applying
a1 7→ −

√
2a1 and a2 7→ 1√

2a2 to f 1 gives

f 1 7→ x2 + xy + 1
4y2 − 21− p

2λyp.

Setting p = 2 in the above potential proves the f 1 statement in (1). The proof of the f 3

statement in (1) is similar.
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For p ≥ 3 and λ ̸= 0, applying a1 7→ 1
2b2, b1 7→ a2, a2 7→ 2b1, b2 7→ a1 gives

x2 + xy + 1
4y2 − 21− p

2λyp ⇝ x2 + xy + 1
4y2 − 21+ p

2λxp.

Then since p ≥ 3 and λ ̸= 0, by 6.1.14(2),

x2 + xy + 1
4y2 − 21+ p

2λxp ∼= x2 + xy + 1
4y2 + xp.

Thus (x2 + xy + yp)1 = x2 + xy + 1
4y2 + xp. Since flopping is an involution, this proves the f 1

statement in (2). The proof of the f 3 statement in (2) is similar.

Then we finally prove the f 2 statement in (1). In this case, g0 = 2x + y, g1 = x, g2 = y and
g3 = x+ 2λy. Since M2 = R⊕ (u, h0)⊕ (u, h0h2)⊕ (u, h0h2h1), then by 3.3.3 EndR(M2) can
be presented by Q with relations

xb1 + 2yb1 = b1b0a0, 2λb2x + b2y = a3b3b2,

a1x + 2a1y = b0a0a1, 2λxa2 + ya2 = a2a3b3,

plus some other relations that factor through the vertex 0 (and so will not be relevant below).
Hence EndR(M2) can be presented by Q with relations

xb1 + 2yb1 = 0, 2λb2x + b2y = 0,
a1x + 2a1y = 0, 2λxa2 + ya2 = 0.

Thus EndR(M2) ∼= Jac(Q, f 2) where f 2 ∼= x2 + xy + 1
16λy

2.

Recall the definition of the generalised GV tuple N(π) in 5.4.1.

Lemma 6.2.5. Let πk : Xk → SpecRk be two crepant resolutions of isolated cAn singularity
Rk for k = 1, 2. If Λcon(π1) is derived equivalent to Λcon(π2), then N(π1) = N(π2).

Proof. Since Λcon(π1) is derived equivalent to Λcon(π2) and each Ri is isolated, then R1 ∼= R2

by 2.3.7, and so π1 and π2 are two crepant resolutions of a same cAn singularity and connected
by a sequence of flops. Thus N(π1) = N(π2) by [NW, 5.4] and 3.3.8.

Theorem 6.2.6. The following groups the Type A potentials on Q with finite-dimensional
Jacobi algebra into sets, where all the Jacobi algebras in a given set are derived equivalent.

(1) {x2 + xy + λ′y2 | λ′ = λ, 1−4λ
4 , 1

4(1−4λ) ,
λ

4λ−1 ,
4λ−1
16λ ,

1
16λ} for any λ ̸= 0, 1

4 .

(2) {xp + xy + y2, x2 + xy + yp, x2 + xy + 1
4y2 + xp} for p ≥ 3.

(3) {xp + xy + yq, xq + xy + yp} for p ≥ 3 and q ≥ 3.

Moreover, the Jacobi algebras of the sets in (1)–(3) are all mutually not derived equivalent,
and in particular the Jacobi algebras of different sets in the same item are not derived equiv-
alent. In (1) there are no further basic algebras in the derived equivalence class, whereas
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in (2)–(3) there are an additional finite number of basic algebras in the derived equivalence
class.

Proof. By 6.1.17 and 2.3.6, the potentials in the statement are precisely the Type A poten-
tials on Q with finite-dimensional Jacobi algebra, thus they exhaust all possibilities.

Firstly, we prove that the Jacobi algebras in each given set are derived equivalent. By 2.3.8,
given a Type A potential f with finite-dimensional and Jac(f) ∼= Λcon(π), if we want to
obtain all the basic algebras that are derived equivalent to Jac(f), we only need to calculate
all iterated flops from π. So we consider f i for 1 ≤ i ≤ 3 in the following.

(1) Suppose that f = x2 + xy + λy2 where λ ̸= 0, 1
4 .

By 6.2.4, f 1 ∼= x2+xy+(1
4−λ)y2 ∼= f 3 and f 2 ∼= x2+xy+ 1

16λy
2. Repeating the same argument,

we have f (12) ∼= x2 + xy + 1
4(1−4λ)y

2, f (21) ∼= x2 + xy + 4λ−1
16λ y2 and f (121) ∼= x2 + xy + λ

4λ−1y2.
Repeating this process, only six numbers appear, so by 2.3.8 there are no further basic
algebras in this derived equivalence class.

(2) Suppose that f = x2 + xy + 1
4y2 + xp where p ≥ 3.

By 6.2.4, f 1 ∼= x2 + xy + yp and f 3 ∼= xp + xy + y2, and thus the three potentials in the
statement are derived equivalent. Since p ≥ 3, then f 12, f 13, f 31 and f 32 are not on Q by
6.2.3, and so there are additional basic algebras in this derived equivalence class.

(3) By 6.1.17, xp + xy + yq ∼= xq + xy + yp, and thus the two potentials in the statement are
derived equivalent. Suppose that f = xp +xy+yq. Since p ≥ 3 and q ≥ 3, then f 1, f 2 and f 3

are not on Q by 6.2.3, and so there are additional basic algebras in this derived equivalence
class.

The wall–chamber decomposition of the movable cone for a cA3 crepant resolution is governed
by the type A3 root system (see e.g. [W2, 5.24, §7]). These chambers are precisely the Weyl
chambers, so their number equals the order of the Weyl group, namely #W (A3) = |S4| = 24.
Each chamber corresponds to a crepant resolution.

Moreover, the double A3 quiver Q admits a natural involution that sends e1 7→ e3, e2 7→ e2,
and e3 7→ e1 (equivalently, exchanging x and y in the potentials). This symmetry identifies
certain Jacobi algebras, so that there are at most 12 distinct isomorphism classes. Conse-
quently, the number of additional basic algebras appearing in the derived equivalence classes
in cases (2) and (3) of 6.2.6 is finite.

Secondly, we prove that the Jacobi algebras in different sets in (1)–(3) are all mutually not
derived equivalent.

Given any potential f in the statement, by 6.1.15 we can find a Type A3 crepant resolution
π such that Λcon(π) ∼= Jac(f). By the definition of generalised GV invariants 3.1.1, the
generalised GV tuple of each set in (1)–(3) is:
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➀ (1, 1, 1, 1, 1, 1),

➁ (1, 1, 1, p− 1, 1, 1),

➂ (1, 1, 1, p− 1, q − 1, 1).

Suppose that f1 and f2 are potentials in the statement with f1 ≃ f2 and each Jac(fi) ∼=
Λcon(πi), where πi : Xi → SpecRi is a Type A3 crepant resolution. Then Λcon(π1) is derived
equivalent to Λcon(π2). Since each Jac(fi) is finite-dimensional, then each Ri is isolated by
2.3.6, and so N(π1) = N(π2) by 6.2.5. So if we want to prove that two potentials are not
derived equivalent, we only need to prove that their corresponding generalised GV tuples
are not equal.

Since p ≥ 3, then any generalised GV tuple in ① is different from that in ②, and so any set
of potentials in (1) is not derived equivalent to that in (2). Since q ≥ 3, then any generalised
GV tuple in ② is different from that in ③, and so any set of potentials in (2) is not derived
equivalent to that in (3). Similar for (1) and (3).

Next, consider two sets of potentials in the same item. Given a potential f in (1), we
have already exhausted all 6 potentials that are derived equivalent to f in the above proof.
Thus by 2.3.8, different sets of potentials in (1) are not derived equivalent. Since different
generalised GV tuples in ② are not equal, different sets of potentials in (2) are not derived
equivalent. Similar for (3).

Remark 6.2.7. It is usually hard to give the derived equivalence class of an algebra A. But
when A is Jac(f) for a Type A potential f on Qn,I , there is a Type An crepant resolution
π : X → SpecR such that A ∼= Λcon(π) by 4.2.12. If further A is finite-dimensional over C,
then R is isolated by 2.3.6. So we can apply 2.3.8 to get the full derived equivalence class of
A by calculating all iterated flops from π.

This is why we restrict this section to the cases of Type A potential on Q with finite-
dimensional Jacobi algebra. Furthermore, as indicated in §4.2.3, 2.3.8 does not extend
directly to non-isolated cDV singularities, and thus 6.2.6 likewise does not extend directly to
non-isolated cAn singularities, although an appropriate generalisation may still be possible.

Remark 6.2.8. In cases (2) and (3) of 6.2.6, there are additional basic algebras in the
derived equivalence class. These algebras are isomorphic to the Jacobi algebras of some
potentials on Q3,I where I ̸= ∅ (see the proof in 6.2.6).

Next, recall the definition of the quaternion type quiver algebra Ap,q(µ) in [E1, H2], which
is the completion of the path algebra of the quiver Q

1 2 3
b1

a1

b2

a2
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modulo the relations

a1a2b2 − (a1b1)p−1a1, b2b1a1 − µ(b2a2)q−1b2, a2b2b1 − (b1a1)p−1b1, b1a1a2 − µ(a2b2)q−1a2,

where µ ∈ C and p, q ≥ 2. Note we have fewer relations than in Erdmann [E1] since we are
working with the completion. In fact Ap,q(µ) ∼= Jac(Q, f), where

f = 1
p

xp − xy + µ

q
yq ∼= xp + xy + (−1)qp− q

p q−1µyq.

Denote Bp,q(λ) := Jac(Q, f) where f = xp + xy + λyq. Thus Ap,q(µ) ∼= Bp,q((−1)qp− q
p q−1µ).

The following improves various results of Erdmann and Holm [E1, H2].

Corollary 6.2.9. The following groups those algebras Ap,q(µ) which are finite-dimensional
into sets, where all the algebras in a given set are derived equivalent.

(1) {A2,2(µ′) | µ′ = µ, 1− µ, 1
1−µ ,

µ
µ−1 ,

µ−1
µ
, 1
µ
} for µ ̸= 0, 1.

(2) {Ap,q(1), Aq,p(1)} for (p, q) ̸= (2, 2).

Moreover, the algebras of the sets in (1)–(2) are all mutually not derived equivalent. In (1)
there are no further basic algebras in the derived equivalence class, whereas in (2) there are
an additional finite number of basic algebras in the derived equivalence class.

Proof. Since Ap,q(µ) ∼= Bp,q((−1)qp− q
p q−1µ), in particular A2,2(µ) ∼= B(µ4 ), then by 6.1.17

the Ap,q(µ) in the statement are precisely the finite-dimensional ones up to isomorphism.

Then we prove that the algebras in each set are derived equivalent.

(1) Since A2,2(µ) ∼= B2,2(µ4 ) = Jac(x2 + xy + µ
4 y2), then by 6.2.6(1) the algebras in each set of

(1) are derived equivalent. Moreover, again by 6.2.6(1) there are no further basic algebras
in the derived equivalence class.

(2) When (p, q) ̸= (2, 2), Bp,q((−1)qp− q
p q−1) ∼= Bp,q(1) by the proof of 6.1.14(3), thus

Ap,q(1) ∼= Bp,q(1). Similarly, Aq,p(1) ∼= Bq,p(1). Thus by 6.2.6(2)(3) the algebras in each
set of (2) are derived equivalent. Moreover, again by 6.2.6(2)(3) there are an additional
finite number of basic algebras in the derived equivalence class.

By 6.2.6 the algebras of the sets in (1)–(2) are all mutually not derived equivalent.
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Chapter 7

Appendix

The purpose of this appendix is to prove 7.0.18, which gives a quiver presentation (7.0.A) of
EndS(N). This is used to prove the geometric realization in §4.2.

We first introduce the reduction system and the Diamond Lemma. For a quiver Q, we denote
the set of paths of degree i by Qi where the degree is with respect to the path length, and
write Q≥i = ⋃

j≥i Qj for the set of paths of degree ≥ i.

Definition 7.0.1. [B3, §1] Given a field k, a reduction system R for the path algebra kQ is
a set of pairs

R = {(s, φs) | s ∈ S and φs ∈ kQ}

where

(1) S is a subset of Q≥2 such that s is not a sub-path of s′ when s ̸= s′ ∈ S.

(2) For all s ∈ S, s and φs have the same head and tail.

(3) For each pair (s, φs) ∈ R, φs is irreducible, meaning we can write φs = ∑
i λipi where

each 0 ̸= λi ∈ k, and each pi does not contain elements in S as a sub-path.

Definition 7.0.2. Let (s, φs) ∈ R and let q, r be two paths such that qsr ̸= 0 in kQ.
Following [CS, §2] a basic reduction rq,s,r : kQ→ kQ is defined as the k-linear map uniquely
determined by the following: for any path p

rq,s,r(p) =

qφsr if p = qsr

p if p ̸= qsr

Sometimes we write p→ qφsr instead of rq,s,r(p) = qφsr for simplicity.

Definition 7.0.3. A reduction r is defined as a composition rqn,sn,rn ◦ · · · ◦ rq2,s2,r2 ◦ rq1,s1,r1

of basic reductions for some n ≥ 1. We say a path p is reduction-finite if for any infinite
sequence of reductions (ri)i∈N there exists n0 ∈ N such that for all n ≥ n0, we have rn ◦ · · · ◦
r2 ◦ r1(p) = rn0 ◦ · · · ◦ r2 ◦ r1(p).
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A path may contain many sub-paths in S, so one may obtain different elements in kQ after
performing different reductions.

Definition 7.0.4. [B3, §1] Let R be a reduction system for kQ. A path pqr ∈ Q≥3 for
p, q, r ∈ Q≥1 is an overlap ambiguity of R if pq, qr ∈ S. We say that an overlap ambiguity
pqr with pq = s and qr = s′ is resolvable if φsr and pφs′ are reduction-finite and r(φst) =
r′(pφs′) for some reductions r, r′.

Theorem 7.0.5. (Diamond Lemma) [B3, 1.2] Let R = {(s, φs)}s∈S be a reduction system
for kQ. Let I = ⟨s− φs⟩s∈S ⊂ kQ be the corresponding two-sided ideal and write A = kQ/I

for the quotient algebra. If R is reduction-finite, then the following are equivalent:

(1) All overlap ambiguities of R are resolvable.

(2) The image of the set of irreducible paths under the projection kQ→ A forms a k-basis
of A.

Consider the following quiver Q with relations I.

1 2 3 . . . . . . n− 1 n

0

b0
a0

b1
a1

b2
a2

bn−1

an−1

an

bn

l0,0,l0,1,...,l0,n

l1,0,l1,1,...,l1,n l2,0,l2,1,...,l2,n l3,0,l3,1,...,l3,n ln−1,0,ln−1,1,...,ln−1,n
ln,0,ln,1,...,ln,n

I :=

lt,iat = atlt+1,i, lt+1,ibt = btlt,i, lt,ilt,j = lt,jlt,i,

lt,t = atbt, lt+1,t = btat for any t ∈ Z/(n+ 1) and 0 ≤ i, j ≤ n.
(7.0.A)

Then define the reduction system R for the path algebra kQ to be

R := {(lt,iat, atlt+1,i), (lt+1,ibt, btlt,i), (atbt, lt,t), (btat, lt+1,t), (ltjlti, ltiltj) |
for any 0 ≤ i ≤ n, t ∈ Z/(n+ 1) and j > i}. (7.0.B)

We next prove that R is reduction-finite and all overlap ambiguities of R are resolvable.

Lemma 7.0.6. The reduction system R (7.0.B) is reduction-finite.

Proof. For any path p and any infinite sequence of reductions (ri)i∈N, if there does not exist
n0 ∈ N such that for all n ≥ n0 we have rn ◦ · · · ◦ r1(p) = rn0 ◦ · · · ◦ r1(p), then there must
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exist infinite basic reductions that can be applied to p consecutively. We prove that this is
impossible. There are three types of path pairs in R:

(1) (atbt, lt,t), (btat, lt+1,t).

(2) (lt,iat, atlt+1,i), (lt+1,ibt, btlt,i).

(3) (lt,jlt,i, lt,ilt,j) for j > i.

The type (1) basic reduction decreases the path degree by one. The type (2) basic reduction
moves at or bt one step left, and lt,i or lt+1,i one step right in the path. Similarly, the type
(3) basic reduction moves lt,i one step left, and lt,j one step right in the path for j > i.

Thus, any composition of these three types either decreases the path degree or moves at, bt

to the left, lt,j with the larger j to the right. Since the path degree of p is finite, we can only
apply the basic reductions of these three types to p finitely many times.

Lemma 7.0.7. All overlap ambiguities of the reduction system R (7.0.B) are resolvable.

Proof. There are four types of overlap ambiguities in R (7.0.B): lt,iatbt, lt+1,ibtat, lt,jlt,iak,
lt+1,jlt+1,ibt for 0 ≤ i ≤ n, t ∈ Z/(n + 1) and j > i. We next check that these overlap
ambiguities are resolvable.

(1) When t < i, (lt,iat)bt → at(lt+1,ibt)→ (atbt)lt,i → lt,tlt,i, and lt,i(atbt)→ lt,ilt,t → lt,tlt,i.
The case of t ≥ i is similar.

(2) When t < i, (lt+1,ibt)at → bt(lt,iat) → (btat)lt+1,i → lt+1,tlt+1,i, and lt+1,i(btat) →
lt+1,ilt+1,t → lt+1,tlt+1,i. The case of t ≥ i is similar.

(3) (lt,jlt,i)at → lt,i(lt,jat)→ (lt,iat)lt+1,j → atlt+1,ilt+1,j,
ltj(lt,iat)→ (lt,jat)lt+1,i → at(lt+1,jlt+1,i)→ atlt+1,ilt+1,j.

(4) (lt+1,jlt+1,i)bt → lt+1,i(lt+1,jbt)→ (lt+1,ibt)lt,j → btlt,ilt,j,
lt+1,j(lt+1,ibt)→ (lt+1,jbt)lt,i → bt(lt,jlt,i)→ btlt,ilt,j.

Proposition 7.0.8. Consider the quiver Q with relations I (7.0.A) and its reduction system
R in (7.0.B). Then, the set of irreducible paths (with respect to R) of kQ under the projection
kQ→ kQ/I forms a k-basis of kQ/I.

Proof. It is clear that the two-sided ideal generated by R (see 7.0.5) coincides with I (7.0.A).
Since R is reduction-finite and all overlap ambiguities of R are resolvable by 7.0.6 and 7.0.7,
the statement holds by 7.0.5.

Notation 7.0.9. For any t ∈ Z/(n + 1), consider the following subsets of the set of paths
on Q with head t.

(1) At := {at−i . . . at−2at−1 | all i ∈ N}.

(2) Bt := {bt+i−1 . . . bt+1bt | all i ∈ N}.
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(3) Lt := {li1
t,0l

i2
t,1 . . . l

in
t,n | all i1, i2, . . . , in ∈ N ∪ {0}}.

(4) AtLt := {pq | all p ∈ At and q ∈ Lt}.

(5) BtLt := {pq | all p ∈ Bt and q ∈ Lt}.

(6) Then write kAt, kBt and kLt for the k-span of At, Bt and Lt respectively.

(7) For any A ∈ kAt, write (A)t−1 for the unique element in kAt−1 such that A =
(A)t−1at−1.

(8) For any B ∈ kBt, write (B)t+1 for the unique element in kBt+1 such that B = (B)t+1bt.

(9) For any L ∈ kLt and 0 ≤ s ≤ n, write (L)s for the unique element in kLs, which is
obtained by replacing lt,0, lt,1, . . . , lt,n in L by ls,0, ls,1, . . . , ls,n.

We next describe all irreducible paths in Q, with respect to the reduction system R (7.0.B).

Proposition 7.0.10. For any path p with head t in Q,

p is irreducible ⇐⇒ p ∈ At ∪Bt ∪ Lt ∪AtLt ∪BtLt.

Proof. By the reduction system R (7.0.B), it is clear that each path in At,Bt,Lt,AtLt,BtLt

is irreducible. We next prove the other direction. Since the head of p is t, p either ends with
at−1, bt or lt,i for some i. The proof splits into cases.

(1) p ends with at−1.

Write p = qat−1 for some q with head t − 1. Then q either ends with at−2, bt−1 or lt,i for
some i. However, if q either ends with bt−1 or lt,i, then qat−1 is reducible by R (7.0.B). Thus
q can only end with at−2. Repeating the same process gives p ∈ At.

(2) p ends with bt.

Similar to (1), we can prove that p ∈ Bt.

(3) p ends with lt,i.

Write p = qlt,i for some q with head t. Then q either ends with at−1, bt or lt,j for some j.
If q ends with at−1, then q ∈ At by (1), and so p ∈ AtLt. Similarly, if q ends with bt, then
p ∈ BtLt. If q ends lt,j, then j ≤ i; otherwise, it will contradict the irreducibility of qlt,i.
Repeating the same process gives p ∈ Lt, AtLt or BtLt.

We next apply 7.0.8 and 7.0.10 to prove the exactness of a particular complex in 7.0.12. In
the following, we write Pt for the k-span of the paths with head t in kQ/I (7.0.A).

Lemma 7.0.11. The k-linear maps

mlt,n : Pt → Pt, mat : Pt → Pt+1

f 7→ flt,n f 7→ fat
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are injective for any t ∈ Z/(n+ 1).

Proof. We only prove ml0,n and ma0 and are injective, the other cases are similar. Since the
reduction system R (7.0.B) is reduction-finite by 7.0.6, we can assume f ∈ P0 is irreducible.

(1) ml0,n is injective.

We first write f = ∑
i λipi as a linear combination of irreducible paths where each λi ∈ k.

Since pi is irreducible and there are no paths in S (7.0.B) that end with l0,n, pil0,n is also
irreducible. Thus if fl0,n = ∑

i λipil0,n = 0, then each λi = 0 by 7.0.8, and so f = 0.

(2) ma0 is injective.

Since f ∈ P0, by 7.0.10 we can write f as a linear combination of irreducible terms

f = λA+ µB + βL+
∑

i

λiAiLi +
∑

j

µjBjLj,

where each λ,µ,β, λi,µj ∈ k, and A,Ai ∈ kA0, and B,Bj ∈ kB0, and L,Li, Lj ∈ kL0. Thus

fa0 = λAa0 + µBa0 + βLa0 +
∑

i

λiAiLia0 +
∑

j

µjBjLja0

= λAa0 + µ(B)1b0a0 + βLa0 +
∑

i

λiAiLia0 +
∑

j

µj(Bj)1b0Lja0

(since B = (B)1b0 and Bj = (Bj)1b0)

→ λAa0 + µ(B)1l1,0 + βa0(L)1 +
∑

i

λiAia0(Li)1 +
∑

j

µj(Bj)1l1,0(Lj)1. (7.0.C)

(since b0Lja0 → b0a0(Lj)1 → l1,0(Lj)1)

By 7.0.10, each term in (7.0.C) is irreducible. We next claim that each term in (7.0.C) differs
from the others.

Since AiLi are different for different i, Aia0(Li)1 are different for different i. Similarly,
(Bj)1l1,0(Lj)1 are different for different j. Since deg(Ai) ≥ 1, Aia0(Li)1 is different from
a0(L)1 for each i. Similarly, (Bj)1l1,0(Lj)1 is different from (B)1l1,0 for each j. Thus we
proved the claim.

So by 7.0.8 the terms in (7.0.C) descend to give basis elements of kQ/I. Thus if fa0 = 0,
then each λ,µ,β, λi,µj is zero, and so f = 0. Thus ma0 is injective.

Proposition 7.0.12.

0→ P0
(a0,bn)−−−−→

d4
P1 ⊕ Pn

(
l1,n −b0bn

−ana0 ln,0

)
−−−−−−−−−−→

d3
P1 ⊕ Pn

( b0
an

)
−−−→

d2
P0 −→

d1
k[l0,1, l0,2, . . . , l0,n−1]→ 0

is an exact sequence of k-linear maps in kQ/I (7.0.A).

Proof. This sequence is a chain complex from the relations I (7.0.A). The exactness at the
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last three indexes is from [W1, §6]. By 7.0.11, we have d4 is injective, and thus this complex
is exact at the first index. So we only need to prove that ker d3 ⊆ im d4. It suffices to prove
that, for any (f, g) ∈ P1 ⊕ Pn,

fl1,n = gana0 ⇒ (f, g) = (ha0, hbn) for some h ∈ P0.

Since the reduction system R (7.0.B) is reduction-finite by 7.0.6, we can assume that f and g
are irreducible. Since f is irreducible and there are no paths in S (7.0.B) that end with l1,n,
then fl1,n is also irreducible. Since g ∈ Pn, by 7.0.10 we can write g as a linear combination
of irreducible terms

g = λA+ µB +
n∑

i=0
βiLiln,i +

n∑
i=0

∑
j

λijAijKijln,i +
∑

k

µkBkJk,

where each λ,µ,βi, λij,µk ∈ k, and A,Aij ∈ kAn, and B,Bk ∈ kBn, and Li, Kij, Jk ∈ kLn.
Since Liln,i is irreducible, Li ∈ k⟨ln,0, . . . , ln,i⟩ for each i. Similarly, Kij ∈ k⟨ln,0, ln,1, . . . , ln,i⟩
for each i and j.

Multiplying g on the right by ana0, gana0 equals

λAana0 + µBana0 +
∑

i

βiLiln,iana0 +
∑
i,j

λijAijKijln,iana0 +
∑

k

µkBkJkana0

= λAana0 + µ(B)01b0bnana0 +
∑

i

βiLiln,iana0 +
∑
i,j

λijAijKijln,iana0

+
∑

k

µk(Bk)01b0bnJkana0 (since B = (B)0bn = (B)01b0bn, Bk = (Bk)0bn = (Bk)01b0bn)

→ λAana0 + µ(B)01l1,0l1,n +
∑

i

βiana0(Li)1l1,i +
∑
i,j

λijAijana0(Kij)1l1,i

+
∑

k

µk(Bk)01l1,0(Jk)1l1,n (7.0.D)

(since b0bnJkana0 → b0bnana0(Jk)1 → b0l0,na0(Jk)1 → b0a0l1,n(Jk)1 → l1,0(Jk)1l1,n)

= λAana0 + µ(B)01l1,0l1,n +
n−1∑
i=0
βiana0(Li)1l1,i + βnana0(Ln)1l1,n+

n−1∑
i=0

∑
j

λijAijana0(Kij)1l1,i +
∑

j

λnjAnjana0(Knj)1l1,n +
∑

k

µk(Bk)01l1,0(Jk)1l1,n

= λAana0 +
n−1∑
i=0
βiana0(Li)1l1,i +

n−1∑
i=0

∑
j

λijAijana0(Kij)1l1,i + f1l1,n. (7.0.E)

(set f1 := µ(B)01l1,0 + βnana0(Ln)1 +∑
j λnjAnjana0(Knj)1 +∑

k µk(Bk)01l1,0(Jk)1)

We claim that each term in (7.0.D) is irreducible. To see this, we consider the terms in
(7.0.D) separately.

(1) By the reduction system R (7.0.B) Aana0 is irreducible.

(2) Since l1,0l1,n ∈ L1 and (B)01 ∈ B1, (B)01l1,0l1,n is irreducible by 7.0.10.
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(3) Since Li ∈ k⟨ln,0, . . . , ln,i⟩, (Li)1 ∈ k⟨l1,0, . . . , l1,i⟩, so (Li)1l1,i ∈ kL1. Thus ana0(Li)1l1,i

is irreducible by 7.0.10.

(4) Since Kij ∈ k⟨ln,0, . . . , ln,i⟩, (Kij)1 ∈ k⟨l1,0, . . . , l1,i⟩, so (Kij)1l1,i ∈ kL1. Thus we have
Aijana0(Kij)1l1,i is irreducible by 7.0.10.

(5) Since l1,0(Jk)1l1,n ∈ kL1, (Bk)01l1,0(Jk)1l1,n is irreducible by 7.0.10.

We next claim that each term in (7.0.D) differs from the others.

Since each ana0(Li)1l1,i ends with l1,i, ana0(Li)1l1,i are different for different i. Since AijKijln,i

are different for different i and j, Aijana0(Kij)1l1,i are also different for different i and j. Sim-
ilarly, (Bk)01l1,0(Jk)1l1,n are different for different k. Since deg(Aij) ≥ 1, Aijana0 is different
from ana0, so Aijana0(Kij)1l1,i is different from ana0(Li)1l1,i. Similarly, (Bk)01l1,0(Jk)1l1,n is
different from (B)01l1,0l1,n. So we proved the claim.

Since (7.0.E) is obtained by combining the terms in (7.0.D) that end with l1,n, each term
in (7.0.E) is also irreducible and differs from the others. So the terms in (7.0.E) descend to
give different basis elements of kQ/I by 7.0.8.

Recall that fl1,n = gana0 and fl1,n is irreducible. Since only f1l1,n ends with l1,n in gana0

(7.0.E), then all terms in gana0 except f1l1,n are zero, namely λ = 0, βi = 0 and λij = 0 for
any j and 0 ≤ i ≤ n− 1. So

g = µB + βnLnln,n +
∑

j

λnjAnjKnjln,n +
∑

k

µkBkJk

= µ(B)0bn + βnLnanbn +
∑

j

λnjAnjKnjanbn +
∑

k

µk(Bk)0(Jk)0bn

(since Bk = (Bk)0bn and bnJk = (Jk)0bn)

= hbn. (set h := µ(B)0 + βnLnan +∑
j λnjAnjKnjan +∑

k µk(Bk)0(Jk)0)

Thus gana0 = hbnana0 = ha0l1,n. Together with fl1,n = gana0 gives fl1,n = ha0l1,n, and so
f = ha0 by 7.0.11. Thus (f, g) = (ha0, hbn), proving the claim.

With the exact sequence in 7.0.12, we can calculate the vector space dimension of each
graded degree piece of Pt in (7.0.F), which will be used to prove the isomorphism in 7.0.18.

Notation 7.0.13. In the following, we adopt a new definition of degree of Q (7.0.A), which
differs from path length in 2.1.1(4).

(1) Define deg(ai) = deg(bi) = 1 and deg(lt,i) = 2 for each i and t.

(2) With respect to this degree, write Pt,d for the graded piece of degree d of Pt.

(3) With notation in 7.0.9, write At,d,Bt,d,Lt,d, (AtLt)d and (BtLt)d for the subset of
degree d paths in At, Bt, Lt, AtLt and BtLt respectively.

(4) Write Dd for the vector space dimension of P0,d.
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By the symmetry of the quiver Q and relations I (7.0.A), Dd is also the vector space dimen-
sion of Pt,d for 1 ≤ t ≤ n. By 7.0.12, for any integer d, there is an exact sequence

0→ P0,d → P1,d+1 ⊕ Pn,d+1 → P1,d+3 ⊕ Pn,d+3 → P0,d+4 → Td+4 → 0,

where Td+4 denotes the degree d+ 4 piece of k[l0,1, l0,2, . . . , l0,n−1]. Thus

Dd − 2Dd+1 + 2Dd+3 −Dd+4 + Ed+4 = 0 (7.0.F)

where Ed+4 = dimk Td+4.

Since 7.0.10 describes all irreducible paths in Q, we can calculate Dd for each d in 7.0.14.
Moreover, we can verify that the Dd in 7.0.14 satisfies (7.0.F) with some basic calculations.
We write |S| for the number of elements in a set S, and denote C(m,n) as the number of
n-combinations from a given set T of m elements.

Proposition 7.0.14. With notation as above, the following holds.

Dd =
 2∑(d−1)/2

i=0 C(n+ i, n), if d odd
C(n+ d/2, n) + 2∑d/2−1

i=0 C(n+ i, n), if d even.

In particular, we have the vector space dimension of the graded degree d piece of kQ/I, which
is (n+ 1)Dd.

Proof. Since Dd is the vector space dimension of Pt,d for any t, by 7.0.8 Dd is equal to the
number of the irreducible paths with head t and degree d. Recall the notation in 7.0.9 and
7.0.13. By 7.0.10, for any path p with head t and degree d,

p is irreducible ⇐⇒ p ∈ At,d ∪Bt,d ∪ Lt,d ∪ (AtLt)d ∪ (BtLt)d.

Thus Dd = |At,d∪Bt,d∪Lt,d∪ (AtLt)d∪ (BtLt)d|. Since the intersection of any two different
sets above is empty,

Dd = |At,d|+ |Bt,d|+ |Lt,d|+ |(AtLt)d|+ |(BtLt)d|.

We first claim that |At,d| = 1 and |Bt,d| = 1 for each d, and

|Lt,d| =
 0, if d odd
C(n+ d/2, n), if d even.

Since At,d := {at−d . . . at−2at−1}, |At,d| = 1. Similarly, |Bt,d| = 1. Since the degree of each
loop is two (see 7.0.13), if d is odd, then Lt,d = ∅, and so |Lt,d| = 0. Now we consider the
case of d is even. Since any p ∈ Lt,d has the form of li0

t,0l
i1
t,1 . . . l

in
t,n where each ij is a positive

integer and 2i0 + 2i1 + · · ·+ 2in = d, |Lt,d| = C(n+ d/2, n). Thus we proved the claim.

By the definition of (AtLt)d in 7.0.13, |(AtLt)d| = ∑
0<i<d |At,i||Lt,d−i|. Then we split into
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two cases. When d is odd,

|(AtLt)d| =
∑

0<i<d

|At,i||Lt,d−i|

= |At,1||Lt,d−1|+ |At,3||Lt,d−3|+ · · ·+ |At,d−2||Lt,2|
(since |Lt,d| = 0 when d is odd)

= C(n+ (d− 1)/2, n) + C(n+ (d− 3)/2, n) + · · ·+ C(n+ 1, n)

=
(d−1)/2∑

i=1
C(n+ i, n).

When d is even,

|(AtLt)d| =
∑

0<i<d

|At,i||Lt,d−i|

= |At,2||Lt,d−2|+ |At,4||Lt,d−4|+ · · ·+ |At,d−2||Lt,2|
(since |Lt,d| = 0 when d is odd)

= C(n+ (d− 2)/2, n) + C(n+ (d− 4)/2, n) + · · ·+ C(n+ 1, n)

=
d/2−1∑

i=1
C(n+ i, n).

Similarly, we also have

|(BtLt)d| = |(AtLt)d| =

∑(d−1)/2

i=1 C(n+ i, n), if d odd∑d/2−1
i=1 C(n+ i, n), if d even.

Then we calculate Dd into two cases. When d is odd,

Dd = |At,d|+ |Bt,d|+ |Lt,d|+ |(AtLt)d|+ |(BtLt)d|

= 1 + 1 + 0 + 2
(d−1)/2∑

i=1
C(n+ i, n)

= C(n, n) + C(n, n) + 2
(d−1)/2∑

i=1
C(n+ i, n) (since C(n, n) = 1)

= 2
(d−1)/2∑

i=0
C(n+ i, n).
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When d is even,

Dd = |At,d|+ |Bt,d|+ |Lt,d|+ |(AtLt)d|+ |(BtLt)d|

= 1 + 1 + C(n+ d/2, n) + 2
d/2−1∑

i=1
C(n+ i, n)

= C(n, n) + C(n, n) + C(n+ d/2, n) + 2
d/2−1∑

i=1
C(n+ i, n) (since C(n, n) = 1)

= C(n+ d/2, n) + 2
d/2−1∑

i=0
C(n+ i, n).

Notation 7.0.15. We next define

S := k[u, v, x0, x1, . . . , xn]
uv − x0x1 . . . xn

, (7.0.G)

and consider the S-module N := ⊕n
i=0 Ni where N0 := S and Ni := (u,∏i−1

j=0 xj) for 1 ≤ i ≤ n.

We will show that kQ/I (7.0.A) presents EndS(N). By [IW3], every morphism in EndS(N)
can be obtained as a linear combination of compositions of the following maps.

N1 N2 ◦ . . . ◦ Nn

N0

inc
x0

inc
x1

inc
x2

inc
xn−1

xn
u

u

x0,x1,...,xn

x0,x1,...,xn x0,x1,...,xn x0,x1,...,xn

(7.0.H)

Thus there exists an obvious surjective homomorphism kQ ↠ EndS(N). Since I gets sent
to zero by inspection, this induces a surjective homomorphism ψ : kQ/I ↠ EndS(N). We
will show that ψ is an isomorphism, by counting graded pieces.

Notation 7.0.16. Grade S via deg(u) = deg(v) = n + 1 and deg(x0) = · · · = deg(xn) = 2.
The particular choice of the graded shift of N given by N := ⊕n

i=0 Ni(−i) induces a grading
in EndS(N), which explicitly grades each arrow in (7.0.H) as follows.
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N1(−1) N2(−2) ◦ . . . ◦ Nn(−n)

N0

1
1

1
1

1
1

1
1

1
1

2,2,...,2

2,2,...,2 2,2,...,2 2,2,...,2

(7.0.I)

Notation 7.0.17. Parallel to the notation 7.0.13, we adopt the following notation.

(1) Set Qt := HomS(N,Nt(−t)) for 0 ≤ t ≤ n.

(2) With respect to (7.0.I), write Qt,d for the degree d graded piece of Qt.

(3) Write D′
d for the vector space dimension of Q0,d.

By the symmetry of (7.0.H), D′
d is also the vector space dimension of Qt,d for 1 ≤ t ≤ n.

By [W3], we have the following exact sequence,

0→ N0
(x0,u)−−−→ N1 ⊕Nn

(
xn −u

− x0xn
u

x0

)
−−−−−−−−→ N1 ⊕Nn

(
inc
xn
u

)
−−−−→ N0 → 0

Using the grading in 7.0.17, the above exact sequence becomes

0→ N0
d4−→ N1(−1)⊕Nn(−n) d3−→ N1(−1)⊕Nn(−n) d2−→ N0 → 0. (7.0.J)

where each di is homogeneous, and further deg(d4) = 1 = deg(d2) and deg(d3) = 2. Applying
HomS(N,−) to (7.0.J) induces the following exact sequence,

0→ Q0
d4−→ Q1 ⊕Qn

d3−→ Q1 ⊕Qn
d2−→ Q0

d1−→ Λcon ∼= k[x1, x2, . . . , xn−1]→ 0,

which is parallel to the one in 7.0.12. Thus for any integer d, there is an exact sequence

0→ Q0,d → Q1,d+1 ⊕Qn,d+1 → Q1,d+3 ⊕Qn,d+3 → Q0,d+4 → T ′
d+4 → 0,

where T ′
d+4 denotes the degree d+ 4 piece of k[x1, x2, . . . , xn−1]. Thus

D′
d − 2D′

d+1 + 2D′
d+3 −D′

d+4 + E ′
d+4 = 0 (7.0.K)

where E ′
d+4 = dimk T

′
d+4.

Proposition 7.0.18. With notation as above, ψ induces an isomorphism kQ/I
∼−→ EndS(N).
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Proof. With the notation above, ψ is a graded surjective homomorphism, so it suffices to
show that Dd = D′

d for all d. Using (7.0.F), (7.0.K) and Ed = E ′
d for each d, we have

Dd = D′
d for each d by induction.

Corollary 7.0.19. With respect to the degree in (7.0.I), for any d, the vector space dimension
of the degree d graded piece of EndS(N) is equal to 2(n+ 1)∑(d−1)/2

i=0 C(n+ i, n), if d odd
(n+ 1)C(n+ d/2, n) + 2(n+ 1)∑d/2−1

i=0 C(n+ i, n), if d even.

Proof. This is immediate from 7.0.18 and 7.0.14.
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