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Abstract

Multiple stressors contribute to the decline of numerous animal species within and out-

side protected areas worldwide. While our understanding of anthropogenic habitat loss

and degradation, climate change, and anthropogenic pressures as potential drivers of

these declines is improving, we still lack a mechanistic understanding of how their fine-

scale effects translate into animal movement decisions and how these decisions ulti-

mately influence survival and, in turn, population dynamics at a broad scale. Unravel-

ling these patterns requires associations of spatial covariate fields and fine-scale move-

ment data, typically collected using Global Positioning System (GPS) tags deployed on

animals. These tags provide a bivariate time series of coordinates at defined intervals,

facilitating insights into how animals move, where and when they forage, and the nature

of both intra- and interspecific interactions.

Despite the availability of such movement data alongside the corresponding environ-

mental data, significant analytical challenges persist. Habitat selection models, particu-

larly resource selection functions (RSFs) and step selection functions (SSFs), represent a

fundamental tool to identify the characteristics of suitable habitats for animals at both

broad and fine scales. The core concepts underlying these methods are based on the ratio

between habitat availability and habitat use by the animal. However, while these models

enhance our understanding of habitat suitability, they often yield divergent conclusions
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even when applied to the same datasets, likely due to differences in their spatial and

temporal scales of operation. A pressing question, therefore, is how parameters derived

from fine-scale movement models can be reconciled to produce the patterns similar to

those from broad-scale models and thereby improving our understanding of how an-

imals’ use of space relates to the distribution of resources, risks, and environmental

conditions. Addressing this challenge requires a modelling framework that enables pa-

rameter scalability, quantifies uncertainty, and remains computationally efficient while

capturing the influence of spatial covariate fields, such as human-made infrastructure.

The objective of this thesis is to advance our understanding of how animal space use re-

lates to the distribution of resources, risks, and environmental conditions by integrating

and developing state-of-the-art multiscale statistical methods within a Bayesian frame-

work while maintaining computational efficiency. This will enhance our ability to assess

how animals respond to changing landscapes and climate conditions, predict future spa-

tial distributions based on current patterns, identify the key drivers that displace or re-

strict animals from otherwise suitable habitats, and pinpoint critical habitats that should

be preserved from human alteration. Throughout this thesis, I will focus on models of

animal movement, particularly habitat selection models, and contribute to expanding

the array of statistical methods available for analysing movement data. An overarching

goal of the thesis is to develop methods that can be applied to the study of the Serengeti

wildebeest migration, a vital ecological process in one of the most biodiverse ecosystems

on earth. I will begin by reviewing existing and widely used methods in the literature.

Subsequently, I introduce a multiscale step selection model that facilitates the estimation

of long-term animal space use without requiring simulations from the fitted model, and

I will leverage variational inference within a Bayesian framework to estimate selection

and avoidance parameters from movement observations and environmental data while
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demonstrating the importance of formally quantifying uncertainty in these estimates.

The focus then shifts to examining the effects of anthropogenic structures, such as build-

ings, on the spatial distribution of migratory wildebeest using multiscale inference from

the previous chapter. This analysis will provide insight into whether wildebeest select

or avoid areas near buildings and how these selection patterns influence their space use

at the population level within the ecosystem. These findings will be essential for a later

chapter, where I simulate how wildebeest space use is expected to change in response to

the introduction of new additional buildings in the ecosystem.

In Chapter 5, I use hierarchical sparse Gaussian processes to estimate the mean migra-

tion routes of the Serengeti wildebeest population. These modelled routes form the

basis for improving spatial predictions of where wildebeest are likely to spend most of

their time during critical life-history stages such as calving, weaning, rutting, or migra-

tion. This is achieved by integrating wildebeest space use patterns derived from local

environmental features such as anthropogenic structures, as detailed in Chapter 4 with

the population mean migration routes inferred here. The latter are used as a proxy

for the influence of long-term spatial memory on movement decisions. This integrative

modelling framework offers a more ecologically grounded understanding of wildebeest

spatial distribution across specific days of the year and during key life-history events.

In Chapter 6, I will develop a novel simulation approach to model the placement of

buildings in different scenarios and explore the impact of different allocation strategies

on wildebeest space use. This will be achieved by simulating hypothetical building dis-

tributions using a nonlinear preferential attachment rule to place buildings at specific

locations and incorporating an accept-reject mechanism to increase and decrease build-

ing clustering. Then I will estimate the new patterns of wildebeest space use using the

methodology introduced in chapter 4 and quantify the shift from observed space use by
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employing the Kullback-Leibler divergence.

This thesis demonstrates that multiscale animal movement models provide valuable in-

sights into how animal space use is shaped by the distribution of resources and risks in

changing landscapes. A key finding is that considerable uncertainty can persist even in

large telemetry datasets, underscoring the importance of quantifying uncertainty in re-

source selection analyses. The study on the spatial distribution of migratory wildebeest

reveals that while these animals tend to avoid areas near anthropogenic structures, this

behavior does not lead to complete exclusion. Instead, it results in a reduced duration

of time spent in the vicinity of such structures. Furthermore, the study incorporating

local environmental responses with long-term spatial memory effects reveals that spatial

predictions of wildebeest distribution during key life-history stages, such as calving, are

improved by reducing uncertainty about where populations are most likely to spend

time on specific days or during particular events. Finally, a simulation study indicates

that the impact on wildebeest space use is more pronounced when new developments

occur in previously undeveloped regions or in isolation from existing infrastructure,

highlighting the importance of strategic spatial planning in conservation efforts.
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Chapter 1

Introduction

Movement is a fundamental ecological and biological process that influences the life

histories, physiology, morphology, and behaviour of animals. This process is typi-

cally driven by an animal’s ability to navigate, experiential knowledge, physical fit-

ness, decision-making related to movement, and the abiotic or biotic factors it encoun-

ters (Nathan et al., 2008). Animal movement encompasses a wide range of behaviours

and activities, which subsequently elucidate complex relationships between animals and

their environments. Animal movement behaviours can be categorised into two ma-

jor groups: reproduction-related movement (dispersal) and resource-related movement

(which includes movement behaviours such as migration, sedentarism, and nomadism).

Dispersal refers to moving away of matured individuals from an origin (birthplace)

to a new site for reproduction. Sedentarism involves an individual inhabiting a rela-

tively small area with a stable home range or territory where the resources have little

variability. Nomadism involves seasonal movement within a defined territory without

permanent settlement and there is spatiotemporal unpredictability of resources, while

migration involves seasonal movements between spatially distinct areas where there is
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seasonal variation of resources in space and time (Mueller and Fagan, 2008). These

categories differ in movement pathways, movement distance, timing, and the shapes

and sizes of home ranges, which are crucial for planning and implementing various

wildlife management strategies. Therefore, investigating ecological questions concern-

ing the timing, mechanisms, reasons and locations of animal movements is essential to

enhance our understanding of their mobility, fitness, survival, and broader ecological

processes and functions (Fagan and Calabrese, 2014).

In the last decade, there has been significant progress in our capacity to collect animal

movement data at a very high spatial and temporal resolution that improves our un-

derstanding of the dynamics of animal movement (Joo et al., 2020; Nathan et al., 2022).

This progress is coupled with advances in mathematical and statistical methodologies,

facilitating the extraction of critical movement characteristics and the understanding of

the factors driving observed movement patterns (Hooten et al., 2017). At the heart of

movement ecology, random walk models applied in both continuous and discrete time

frameworks (Kareiva and Shigesada, 1983), have been playing a crucial role in the ad-

vancement and development of various methods and models that are being applied in

studying animal movement. These models serve various purposes, including the iden-

tification of distinct behavioural states (e.g. stationary versus exploratory) within move-

ment data (Morales et al., 2004), deriving estimates of animal home ranges by leveraging

trajectory autocorrelation (Fleming et al., 2015), delineating spatially or temporally dy-

namic migration routes (Gurarie et al., 2017), and assessing the role of social interactions

on movement decisions (Haydon et al., 2008; Torney et al., 2018).

Likewise, statistical modelling approaches such as step selection functions (Forester

et al., 2009; Fortin et al., 2005; Thurfjell et al., 2014), state-switching step selection func-

tions (Klappstein et al., 2023; Pohle et al., 2024), and hidden Markov models (Langrock
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et al., 2012) have been used to understand the drivers of animal movement and be-

havioural state at the fine scale by incorporating environmental covariates. More re-

cently, non-parametric methodologies have emerged, enabling the integration of con-

tinuous and time-varying movement parameters into models (Torney et al., 2021). An

important next step in advancing these models is quantifying spatially varying parame-

ters that can be translated across scales and identifying the corresponding environmen-

tal factors that influence the dynamics of animal movement. Achieving this requires

the development of flexible, data-driven statistical models capable of capturing intricate

spatial patterns and the nonlinear behavioural responses animals exhibit, while also ef-

ficiently handling the substantial volume of data required for accurate prediction and

inference (Paun et al., 2022).

1.1 Modeling animal movement and its drivers

Addressing ecological questions such as when, how, why and where animals move is

vital to advance our knowledge about their movement, habitat use, behavioural patterns,

and survival, particularly in the context of global landscape and climate change (Fagan

and Calabrese, 2014; Nathan et al., 2008). The variability in movement strategies among

animals, even within the same species, can be attributed to differences in personalities,

fitness levels, motivations, environmental conditions (Hooten et al., 2017), past experi-

ences, and interactions with conspecifics and other species (Majaliwa et al., 2022). Con-

sequently, there is significant interest in the mathematical and statistical fields in quanti-

fying, classifying, and measuring this heterogeneity in movement behaviour. However,

the rapid increase in fine-scale movement data, facilitated by advances in telemetry tech-

nology (Kays et al., 2015), has outpaced the development of appropriate models and

methods, posing a new mathematical challenge in measuring and disentangling pat-

3



terns from these detailed animal movement data.

Over the past four decades, movement ecology has experienced several transformative

step changes in the modelling of animal movement and its underlying drivers. These

advances have been primarily driven by progress in data collection technologies, the-

oretical frameworks, and computational methods. Collectively, these paradigm shifts

have fundamentally changed the way ecologists and wildlife biologists collect, process,

and analyse movement data to address key ecological questions. Rather than detailing

the full historical progression of modelling approaches and methods used to understand

the patterns and drivers of animal movement, this thesis focuses specifically on habitat

selection models. These models provide ecological insights into how animals select or

avoid resources, using data derived from spatial surveys and telemetry.

The early era of habitat selection models in movement ecology relied primarily on de-

scriptive analyses based on direct observations, mark-recapture techniques, and basic

telemetry data. For instance, to infer animal habitat use, ecologists and wildlife biol-

ogists often compared the number of observations within each habitat category using

non-parametric tests such as the Friedman test (Friedman, 1937) and Quade’s weighted

ranking test (Quade, 1979). Other approaches involved comparing observed versus ex-

pected occurrences in habitat categories using parametric tests such as the Chi-square

goodness-of-fit test in combination with Bonferroni confidence intervals (Neu et al.,

1974), and Manly’s selection ratio (Manly et al., 2007). However, these methods were

limited in both temporal and spatial resolution and could only accommodate categorical

variables, thereby restricting the depth and scope of ecological inference.

The advent of radio-tracking technologies, such as GPS tags, marked a significant ad-

vancement in animal movement studies by enabling ecologists and wildlife biologists to

access continuous, fine-scale trajectories of animal movement. This revolution in data
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collection facilitated more robust analyses of spatial behaviour and resource use. In

parallel, the development of resource selection functions (RSFs) provided a statistical

framework to analyse habitat selection using a use–availability design, with model pa-

rameters typically estimated via logistic regression (Manly et al., 2007). RSFs allowed for

the integration of categorical and continuous environmental variables. However, as the

temporal resolution of tracking data increased, the assumptions underlying RSFs, partic-

ularly the lack of temporal autocorrelation among observations of the same individual,

limited their applicability. These limitations led to the development of step selection

functions (SSFs), which account for spatial and temporal autocorrelation by condition-

ing available steps on the animals movement characteristics (Forester et al., 2009; Fortin

et al., 2005; Thurfjell et al., 2014). While SSFs offer improved modelling of fine-scale

resource use, they treat movement and resource selection as separate processes, which

can introduce bias in the estimation of selection and avoidance parameters. To overcome

this issue, integrated step selection functions (iSSFs) were introduced (Avgar et al., 2016).

This framework jointly models movement and resource selection, enabling simultaneous

inference of both components. iSSFs provide insights into key ecological questions, such

as when and where an animal moves faster or is more likely to remain in or leave a

particular habitat. More recently, multiscale step selection functions (MSSFs) in discrete-

time (Michelot et al., 2020, 2019a) and continuous-time (Michelot et al., 2019b) have been

proposed, extending this approach to infer parameters that are translated across multi-

ple spatial scales. These methodological advancements continue to transform the field

of movement ecology, offering novel tools to understand how animals interact with dy-

namic landscapes and respond to anthropogenic change.

5



1.2 Scaling to populations

Understanding the distribution of animals across landscapes at various spatial and tem-

poral scales requires scaling up from individual-level or fine-scale movement decisions

to long-term, broad-scale patterns observable at the population level. A significant

challenge in modern movement ecology is to bridge this gap, translating individual

or fine-scale movement decisions into population-level inferences (Hawkes, 2009; Holdo

and Roach, 2013; Torney et al., 2018). This difficulty largely stems from the fact that

commonly used standard models, such as step selection functions (SSFs), are typically

designed to capture fine-scale movement decisions or local habitat selection, making it

challenging to extrapolate findings to broader spatial patterns such as annual migrations

that are representative of the population level.

To address this issue, species-habitat association studies often employ hierarchical (or

random effects) models that account for inter-individual variation when inferring population-

level responses. Other common strategies include averaging model coefficients across

individuals (Hooten et al., 2017) or employing resampling techniques such as bootstrap-

ping (Fieberg et al., 2020). However, averaging coefficients can introduce bias, particu-

larly when a subset of individuals exhibit strong selection responses that overshadow

weaker or opposing trends among others (Holloway and Miller, 2014). This may lead

to an inaccurate representation of population-level responses, either overestimating or

underestimating the true effect.

Moreover, the predicted population-level space use derived from fine-scale models such

as SSFs often fails to match the spatial distributions generated by broad-scale models

such as resource selection functions (RSFs), even when their underlying habitat selec-

tion functions appear similar (Barnett and Moorcroft, 2008; Moorcroft and Barnett, 2008;
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Signer et al., 2017). This discrepancy highlights the limitations of using standard para-

metric long-term space use equations to capture broad-scale patterns, i.e. population

space use. Therefore, there is a critical need for multiscale modelling approaches in

the parameterisation of SSFs, specifically methods that ensure fine-scale movement deci-

sions translate directly into broader-scale space-use patterns, without requiring further

analyses such as simulation from the fitted model. While SSF and RSF models are of-

ten formulated as Poisson point processes over continuous space (R2), this formulation

alone does not guarantee that the parameters estimated from SSFs will yield the correct

long-term utilisation distribution. In other words, coefficient estimates from SSFs do not

automatically scale to match the distribution implied by the RSF parameters (Michelot

et al., 2019a). Multiscale approaches that have model structures that ensure that local

movement steps align with long-term utilisation distribution can resolve this mismatch.

By ensuring consistency between the step selection process and the implied RSF, these

frameworks produce stationary distributions that directly reflect the intended habitat

preferences. Such frameworks would enable transferable parameter estimates across

spatial scales, improve the robustness, predictive accuracy, and generalisability of move-

ment models across different landscapes and population contexts.

Several statistical approaches, including multiscale inference frameworks, have been pro-

posed to ensure that parameters derived from fine-scale models yield spatial distribu-

tions consistent with those from broad-scale models. One such approach conceptualises

animal movement as analogous to a Markov chain Monte Carlo (MCMC) sampler operat-

ing in parameter space, an idea formalised as MCMC step selection (Michelot et al., 2020,

2019a). This framework enables direct application of parameters estimated from SSFs to

broad-scale space-use predictions, owing to its scalability across the temporal and spatial

scale. While this method facilitates the estimation of space-use patterns without requir-
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ing computationally intensive numerical simulations, the original formulation relies on

the numerical approximation of the Hessian matrix to estimate parameter uncertainty.

Consequently, it does not yield full posterior distributions for model parameters. This

limitation is nontrivial: neglecting to formally quantify uncertainty in movement models

can result in overconfident habitat selection estimates and unreliable predictions of long-

term space use. Addressing this limitation is therefore essential for advancing statistical

methods in habitat selection modelling, as it highlights a critical methodological gap.

1.3 Thesis outline

This thesis is composed of seven chapters. In summary, the current chapter provides a

general introduction, while Chapter 2 presents the background theory. Chapter 3 focuses

on the development of efficient methods for movement data analysis, Chapters 4 and 5

on analysis of real telemetry data of animals, and Chapter 6 on simulations. Finally,

Chapter 7 summarises the conclusions and outlines potential future research directions.

Chapter 2 offers a comprehensive overview of the background theory, including the

methodological foundations necessary to understand the material discussed in subse-

quent chapters. Given that the primary focus is on habitat selection models in animal

movement, I begin by introducing random walk models, which serve as the foundation

for most models used in movement ecology. This is followed by the discussion of specific

methods, such as resource selection functions (RSFs), and step selection functions (SSFs),

all of which are well-suited for this type of analysis. In addition, I discuss the challenges

associated with these approaches and introduce a relatively novel class of multiscale

models, such as the multiscale step selection function (MSSF), which has opened new

avenues for research in movement ecology. Lastly, I describe the Greater Serengeti-Mara

ecosystem and its contemporary threats, and present modelling techniques used to un-
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derstand animal responses to these threats.

In Chapter 3, I develop an approximate Bayesian multiscale step selection function that

enables the prediction of broad-scale movement patterns using selection and avoidance

parameters inferred from a model that is fit to fine-scale movement observations and

environmental data. This method leverages GPU-enabled machine learning and is in-

spired by optimisation techniques that approximate the true posterior distribution of the

parameters using a simple distribution.

In Chapter 4, I leverage wildebeest telemetry data and spatial data on buildings to in-

vestigate the effects on the spatial distribution of migratory wildebeest in the Greater

Serengeti-Mara ecosystem. Specifically, I examine whether migratory wildebeest select

or avoid buildings and how these structures influence their movement and space use

within the ecosystem. I introduce a novel approach for quantifying nonlinear responses,

identifying the area of influence (i.e. distance thresholds), and assessing the interactive

effects of multiple anthropogenic structures.

In Chapter 5, I use hierarchical sparse Gaussian processes to estimate the mean migra-

tion routes of the Serengeti wildebeest population. These modelled routes form the

basis for improving spatial predictions of where wildebeest are likely to spend most of

their time during critical life-history stages such as calving, weaning, rutting, or migra-

tion. This is achieved by integrating wildebeest space use patterns derived from local

environmental features such as anthropogenic structures, as detailed in Chapter 4 with

the population mean migration routes inferred here. The latter are used as a proxy

for the influence of long-term spatial memory on movement decisions. This integrative

modelling framework offers a more ecologically grounded understanding of wildebeest

spatial distribution across specific days of the year and during key life-history events.
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The multiscale inference presented in Chapters 4 and 5 provides critical insights into

how fine-scale effects propagate into broad-scale movement patterns. However, as the

landscape continues to be modified by the addition of new anthropogenic structures, in-

ferences drawn from these studies become increasingly limited, particularly in predicting

future animal distributions based on observed responses. Consequently, a simulation-

based approach becomes essential for assessing potential future distribution patterns.

In Chapter 6, I therefore develop a simulation-based framework to quantify changes

in migratory wildebeest space use resulting from the addition of new anthropogenic

structures in the ecosystem. This framework integrates a combination of a nonlinear

preferential attachment rule and an accept-reject mechanism to simulate the placement

of new buildings under three future development scenarios. The simulation allows new

buildings to be allocated both in areas with existing structures and in previously un-

developed regions while also accounting for variations in building clustering patterns,

including both increased and decreased clustering. Following this, I estimate the simu-

lated migratory wildebeest space use and compare it to the observed space use presented

in Chapter 4 using the Kullback-Leibler divergence.

In the final chapter, Chapter 7, I summarise the key findings of my research and discuss

their implications for future research directions.
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Chapter 2

Background

In this chapter, I review key methods and theoretical findings from the literature, de-

scribe the Greater Serengeti-Mara ecosystem and its contemporary threats, and present

modelling techniques used to understand animal responses to these threats, providing a

foundation for the material presented in the following chapters.
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2.1 Introduction

Understanding the factors that contribute to how and why animals move and select

resources in a landscape is crucial for ecological research and wildlife management

decision-making (Nathan et al., 2008). However, conservation ecologists and wildlife bi-

ologists frequently encounter difficulties in obtaining reliable population-level estimates

of the movement and selection of resources by animals. These challenges stem from

the inherent variability in individual behaviours within the same species or population,

as habitat selection and movement patterns can differ substantially under varying envi-

ronmental conditions. Furthermore, the implementation of movement models is often

hindered by the complexity of computational procedures and the lack of standardised

mathematical notation used to describe these models (McClintock et al., 2014). The

growing number of methodological approaches for analysing animal movement data

also introduces uncertainty regarding model selection for specific movement observa-

tions, thereby presenting an ongoing challenge in the mathematical modelling of animal

movement.

Animal movement plays a fundamental role in shaping ecological processes, species

interactions, and population dynamics. Accurately modelling this movement requires

careful selection of an appropriate conceptual framework that represents how animals

move through space and time. The choice of framework is primarily guided by the spa-

tial and temporal resolution of the movement data collected, as well as the ecological

questions being addressed. Animal movement data are typically obtained through tech-

nologies such as GPS collars and satellite tags, which provide high-resolution individual

trajectories, or through camera traps and aerial surveys, which offer information on the

spatial distribution of animals at specific locations. Trajectory-based data, which track
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individual animals through space and time, are particularly well-suited for investigat-

ing fine-scale behaviours and decision-making processes, such as foraging strategies or

migratory routes. In contrast, data collected at fixed locations, such as presence-absence

records or estimates of animal density, are more appropriate for population-level analy-

ses aimed at understanding spatial and temporal patterns of animal occurrence. Recog-

nising the conceptual distinctions between these approaches is essential for selecting

appropriate modelling tools and accurately interpreting movement data in ecological

research. Broadly, animal movement modelling frameworks can be categorised into

two primary approaches: Lagrangian, which focuses on tracking individuals over time,

and Eulerian, which examines changes in population-level patterns at fixed spatial loca-

tions (Hooten et al., 2017; Smouse et al., 2010). The Lagrangian approach uses stochastic

differential equations to represent the changes in an animal’s position, r(t), within a

two-dimensional space (x,y) at a given time t. Specifically, the changes in the animal’s

location in the two-dimensional space (dx(t),dy(t)) at time t are given as follows:

dx(t)

dy(t)

 =

µx (r(t), t)

µy (r(t), t)

dt + D (r(t), t)

dΨx(t)

dΨy(t)

 (2.1)

where µx,y is the drift values, D is the diffusion matrix which represent animal motility

in the context of animal movement, and Ψ represents the infinitesimal increments of

a Wiener process in each dimension. Several special cases can be derived from the

general stochastic movement model in eqn. 2.1, depending on the properties of the drift

and diffusion terms. For example, if the drift components are zero and the diffusion

terms along the x and y axes are independent, the model reduces to an uncorrelated

random walk, in which the movement is purely stochastic with no preferred direction.

In contrast, if the drift components are not independent, the model becomes a correlated
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random walk, typically due to the dependence in drift or persistence of directionality. If

the diffusion components remain independent and the drift components are non-zero,

the result is a biased random walk, where an animal exhibits a tendency of moving in a

particular direction over time (Smouse et al., 2010).

The Eulerian approach, which is place-based and typically continuous-time, is employed

for population-level inferences. Unlike the Lagrangian approach, which involves track-

ing individual animal movement over time, the Eulerian approach instead focuses on

specific locations in the environment and observes how animals move through or inter-

act with those locations (habitats) over time. This includes modelling the spatial inten-

sity of animals over space and time, modelling how animals or groups of animals move

through a certain habitat, and the probability of animal occupancy in an N-dimensional

geographical space (Hooten et al., 2017).

2.2 Random walk models

A random walk model is a stochastic process that is the building block of many math-

ematical models developed in studying and modelling animal movement. In animal

movement, a discrete-time random walk is typically characterised by three components

which are: (i) the distance an animal moves in each step (distance), (ii) the time inter-

val between each step, and (iii) the direction in which an animal moves. In this model,

animals are presumed to take a series of successive steps in random directions, where

the direction or distance of movement is determined probabilistically. The movement

trajectory of an individual animal is broken down into various movement characteristics

such as step length (the distance between consecutive steps) and turn angles (the direc-

tion change between consecutive steps) (Kareiva and Shigesada, 1983). These movement

characteristics can be translated into behavioural patterns (e.g., resting, foraging, mov-

14



ing) using summary statistics like mean step length and mean cosine of turn angles.

Furthermore, this model enables the association of movement characteristics or states

with landscape features, facilitating the understanding of behavioural changes or shifts

in movement states across spatiotemporal scales (Benhamou, 2014; Morales et al., 2004).

Integrating empirical movement data with ecological theory provides insight into how

animals perceive and respond to their environment.

Random walk models have significantly advanced and transformed the field of move-

ment ecology. However, as landscapes change, animals often exhibit movement be-

haviours that routinely repeat within defined intervals such as nesting or denning be-

haviour, daily foraging routes, and seasonal migration, thus violating some assumptions

of random walk models. One such violated assumption is the short-term autocorrela-

tion in individual movement paths, which random walk models typically accommodate.

Due to the increasing environmental heterogeneity, animals may need to use long-term

memory to recall areas with stable foraging resources or to avoid recently encountered

risks, thus introducing long-term autocorrelations into their movement tracks (Fagan

and Calabrese, 2014). Therefore, advancements in these models are necessary to incor-

porate long-term autocorrelation. This integration will not only align animal movement

models more closely with biological processes, but also expand the scope of movement

ecology beyond purely random movement patterns (Fagan and Calabrese, 2014).

In movement ecology, random walk models can be put into two categories; discrete-time

movement and continuous-time movement models. Discrete-time movement models in-

volve discretising movement observation into regular intervals and often lead into the

results that are dependent on the choice of the discretisation step. Continuous-time

movement models incorporate movement observation recorded at irregular intervals (ir-

regular sampling intervals) in the modelling approach because they represent animal
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movement as a continuous-time stochastic process, rather than being constrained to dis-

crete time steps. This formulation allows for the estimation of an animal’s location at

any time point, even when no direct observation is available, by capturing the temporal

autocorrelation and modelling the underlying movement dynamics between observed

locations.

The two categories can be extended to describe various types of random walk model

used to describe the different types of animal movement observed in ecology, such as

simple random walk (uncorrelated random walk), correlated random walk, Lévy walk,

and Brownian motion.

2.2.1 Simple random walk

This is the memoryless random walk model, in which the animal typically moves a

constant distance and in random directions at each successive step. It is memoryless

because the distance and direction of the next step in which the animal takes depend

only on the current state and not on the previous step (the decision to move next is not

influenced by where the animal has been in the past). In ecology, a simple random walk

model is typically used when there is no clear pattern in the direction of movement of an

animal. Mathematically, the location of the animal after the n steps in one-dimensional

space is given by,

Xn = X0 +
n

∑
i=1

ϵi (2.2)

where Xn is the animal location after n steps, X0 is the initial location, and ϵi is a random

variable representing the i-th step. If the distribution of random variables ϵi is not

symmetric around zero, the walk is biased.
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2.2.2 Correlated random walk

This is a type of random walk model that incorporates memory, where the subsequent

step and direction of the animal are influenced by the previous step, specifically the

magnitude and direction of the previous step (Kareiva and Shigesada, 1983). This model

is generally categorised into unbiased and biased correlated random walks. The walk

is considered unbiased when there is no long-term directional preference, whereas it is

biased when there exists a sustained persistence of the directional over time. The corre-

lated random walk model is commonly applied to describe animals that exhibit a degree

of directional persistence for a period before altering their course while navigating a

landscape. As a result, there is often a correlation in the direction between consecutive

steps taken by the animal. Such movement patterns are typically observed during activ-

ities such as foraging, transitioning between habitat patches in fragmented landscapes,

and migration (Fagan and Calabrese, 2014). Mathematically, the location xt+1 of the

animal at time step t + 1 given it is at location xt at time step t can be expressed as,

slt ∼ Gamma(k,ψ),

ϕt ∼ von Mises(0,κ),

θt = θt−1 + ϕt, t = 2, · · · ,n,

xt+1 = xt + slt cos(θt),

yt+1 = yt + slt sin(θt) (2.3)

where slt is the step length and ϕt is the turning angle which controls how much the

direction changes from one step to the next drawn from a distribution centred around 0,

and θ is the heading of the step.
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2.3 Modelling animal habitat preference

Recent advances in tracking technology have resulted in an increasing availability of

high-resolution spatiotemporal animal movement data (Kays et al., 2015). This volume

of data provides new opportunities to address various ecological questions, such as

those related to species’ energy budgeting, behavioural patterns (e.g., encamped vs. mi-

gratory), and the influence of environmental covariates on species distributions (species-

habitat associations) (Matthiopoulos et al., 2020). Various modelling methods are em-

ployed to study species-habitat preferences. One widely used method is the habitat

selection function, which evaluates the ratio of used to available resource units of the

animal. This includes resource selection functions (RSFs) (Manly et al., 2007), step selec-

tion functions (SSFs) (Forester et al., 2009; Fortin et al., 2005; Thurfjell et al., 2014), and

recently developed integrated step selection functions (iSSFs) (Avgar et al., 2016). While

RSFs are typically used to model broad-scale (global) habitat selection inferences, SSFs

and iSSFs are applied at fine scales, particularly with high-resolution data that exhibit

spatiotemporal autocorrelation.

2.3.1 Resource selection function (RSFs)

Resource Selection Functions (RSFs) are spatial statistical tools that are primarily used

to calculate the probability of an animal occupying a specific location (x ∈ D ⊆ R2) by

evaluating the ratio of the resource units used by the animal to alternative resource units

that are theoretically available (Manly et al., 2007). This method is applied to answer

ecological questions, such as which landscape features wildlife avoids or selects when

moving through a landscape. RSFs employ a use-availability framework and are typi-

cally fitted using weighted logistic regression to identify the features of the landscape

that the animals select or avoid. The used locations are the observed locations (e.g., ani-
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mal telemetry data and spatial survey data), while the available locations are randomly

generated within the range of the animal’s home (home range) or study domain (Manly

et al., 2007). The selection of the domain for sampling the available locations depends on

the ecological questions to be addressed, which can influence the RSFs results (Northrup

et al., 2013).

RSFs are evaluated across three spatial scales of habitat selection: first-order, second-

order, and third-order (DeCesare et al., 2012; Johnson, 1980). First-order habitat selection

involves observed telemetry locations of many individuals of a species, with availability

sampled within the entire study area. Second-order habitat selection involves observed

locations of a single individual, with availability sampled within that population home

range. Third-order habitat selection involves observed individual telemetry locations,

with availability sampled within the individual’s home range. One of the strengths

of RSFs is their flexibility in using both animal tracking data and spatial survey data

when fitting the model. However, high-resolution animal telemetry data often suffer

from positive spatial and temporal autocorrelation (Noonan et al., 2019), violating the

independence and identically distributed (IID) assumption of RSFs. Traditional RSFs

assume data arise from a Poisson point process, which requires non-dependent sampled

data, thus not allowing for autocorrelation. To avoid this violation, telemetry data are

often thinned or sub-sampled, leading to data loss, biased parameter estimates, statis-

tical inefficiency (typically measured via autocorrelation time), and potentially missing

important information on animal resource usage (Alston et al., 2023).

To remedy the issues of spatial and temporal autocorrelation in RSFs, Alston et al.

(2023) proposed the Integrated Resource Selection Function (iRSF). This approach mit-

igates sampling bias in irregular tracking data by applying likelihood weighting, as-

signing weights to each observed location in an animal’s movement track based on its
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level of autocorrelation. This allows the inclusion of autocorrelated data through down-

weighting rather than removing or thinning observations. While the iRSF avoids data

thinning, it does not address ecological questions of temporal changes in resource se-

lection, such as seasonal (i.e., dry and wet) or diurnal (i.e., day and night) variations

without the data being segmented. However, such questions may be what ecologists are

interested in when they focus on short-term scale conservation strategies such as imple-

menting prescribed burning, water provisioning, and habitat manipulation. To detect

temporal changes in resource selection, Dejeante et al. (2024) proposed dynamic RSFs

which use a discrete-time state-space model to estimate time-varying coefficients from lo-

gistic regression (Fahrmeir, 1992). This approach allows for the identification of periods

in which resource selection or avoidance coefficients are homogeneous or heterogeneous

with respect to landscape features, such as woodland habitats. Despite its utility, this

method produces downward-biased standard errors in the presence of auto-correlated

movement data and cannot estimate long-term space use (static distribution) because

the parameters are continuously changing. The next step in the evolution of RSFs is to

combine the approaches of (Alston et al., 2023) and (Dejeante et al., 2024) to develop

time-varying RSFs that account for both temporal autocorrelation and the influence of

animal behaviour on resource selection. Conventional RSFs models rely on simplifying

assumptions namely that animal locations are temporally independent, that all available

habitats are equally accessible, and that the inferred parameters reflect broad-scale pat-

terns of resource selection or avoidance. These assumptions constrain their applicability,

particularly when movement data are collected at a high frequency or when geographic

barriers constrain habitat accessibility. To address these limitations, alternative methods

such as step selection functions (SSFs) have been developed. SSFs explicitly account for

spatial and temporal autocorrelation by modelling habitat availability conditional on an

animal’s movement characteristics, offering a more ecologically realistic framework to
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analyse resource selection at finer spatial and temporal scales.

2.3.2 Step selection function (SSFs)

SSFs are spatial statistical modelling tools that account for spatio-temporal autocorrela-

tion when assessing the effects of environmental covariates on animal movement deci-

sions at a fine scale. SSFs originated from the locally biased correlated random walk,

where an animal’s movement decisions are influenced by the local environmental con-

ditions in the immediate vicinity. This means that the alternative steps theoretically

available for the animal in each used step are generated and constrained based on the

direction and distance travelled during that time step, as shown in Fig. 2.1. A common

assumption in SSFs is that the animal telemetry locations are recorded in discrete time

(regular intervals) (Thurfjell et al., 2014). This assumption often leads to the exclusion

of observations that do not fit within the predefined time intervals, as data outside this

tolerance are omitted to regularise the movement tracks.
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Figure 2.1: An illustration of an animal movement track with observed steps (sl)(black

in color), and alternative steps (pink in color) as is commonly done in SSF analysis.

However, recent advances proposed by Hofmann et al. (2024) introduced a method for

modelling incomplete animal tracking data (that is, data with irregularities) using SSFs.

This approach allows for the inclusion of all animal telemetry locations in the model,

thus improving the accuracy of selection and avoidance estimates. Standard SSF for-

mulations also overlook the influence of behaviour on habitat selection, which could

introduce bias into model estimates that can lead to underestimation or overestimation

of uncertainty (Roever et al., 2014). Traditionally, a two-stage approach has been used

to model behaviour-dependent habitat selection. First, a discrete-time hidden Markov

model classifies the states of animal behaviour, and then the SSFs are fitted to each

dataset corresponding to the classified behavioural states (Clontz et al., 2021; Picardi

et al., 2022). This approach fails to account for the uncertainty in behavioural states and
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does not allow for the dependence of state on resource selection, as it separates animal

behaviour, movement, and habitat selection.

To address these limitations, Klappstein et al. (2023) and subsequently Pohle et al.

(2024) have proposed the state-switching step selection function. This method unifies

behavioural state dynamics and resource selection within a single-model formulation.

The model is structured as a hidden Markov model, where the observation process is

defined by an SSFs. Unlike the two-stage approach, the state-switching step selection

jointly estimates behavioural state transitions, resource selection parameters, and state

classification, allowing these components to inform one another within an integrated

statistical framework.

In general, SSFs are typically fitted using standard conditional logistic regression in

an exponential form with a matched case-control design, where observed steps are the

cases, and alternative sampled steps are the controls, conditional on the set of available

alternative steps at each movement decision point. Alternatively, maximum likelihood

estimation and numerical integration can be used (Michelot et al., 2024). The likelihood

function to estimate selection coefficients β using the maximum likelihood approach is

given as,

L (β|s1, · · · ,st, · · · ,sT) = ∏T
t=1

exp (βX (st, t))
∑n

i=1 exp (βX(st,i, t))
(2.4)

where, β represents the vector of habitat selection parameters and X the matrix of co-

variate values at the end of step st.

SSFs have become a mainstream and popular tool for ecologists in modelling animal

resource selection and movement. Despite their utility in movement ecology, SSFs have

several limitations. First, the parameters inferred from the SSFs vary with changes in

the sampling interval of the movement observations (dependent on sampling) (Avgar
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et al., 2016; Fieberg et al., 2021). In other words, if the same movement track were

sampled at different intervals (i.e., 1 hour, 2 hours, 4 hours, 1 day, and so forth), the

step selection functions (SSFs) parameterised from these different samples would yield

varying estimates of selection. Second, SSFs provide narrow confidence intervals for

selection estimates if the sampling interval (∆t) is shorter than the time required to

ensure statistical independence of observed steps τ, that is, when ∆t < τ. Third, SSF-

estimated parameters cannot be directly used to predict long-term space use by animals

without adjustments such as simulation from the fitted model (Barnett and Moorcroft,

2008; Michelot et al., 2019a; Signer et al., 2017).

To address these issues, additional methodologies have been employed. One approach

incorporates spatially structured random effects to account for unobserved spatial vari-

ation in SSFs (Arce Guillen et al., 2023). Likewise, conceptualising animal movement as

a Markov chain Monte Carlo (MCMC) sampler in parameter space (MCMC step selec-

tion) has been proposed (Michelot et al., 2020, 2019a). This approach allows inferred

parameters from SSFs to be used directly for broad-scale space use predictions because

of their scalability in time and space. However, this framework does not account for the

influence of behaviour on resource selection, assuming instead that an animal’s selection

or avoidance of resources remains constant regardless of the behavioural motivations

behind movement. Additionally, the current multiscale modelling framework does not

formally quantify the uncertainty in the movement and resource selection and avoidance

estimates. Addressing this limitation is crucial for advancing the statistical methodolo-

gies used in habitat selection modelling, as it represents a significant methodological

gap.
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2.4 Bayesian statistics

Bayesian methods belong to a statistical modelling inference framework that interprets

probability as a measure of belief or confidence, not just as a limiting frequency of out-

comes, and uses Bayes rule to update the initial prior belief or hypotheses with new evi-

dence. The initial prior may be based on prior belief, domain-specific assumptions, and

expert knowledge. Inference is typically performed using sampling-based approaches

such as Markov chain Monte Carlo (MCMC) methods or approximate inference tech-

niques such as variational inference (VI).

2.4.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a class of powerful computational algorithms

designed to generate samples from complex probability distributions, particularly when

direct sampling is infeasible (Brooks et al., 2011; Gilks et al., 1995). These methods are

especially powerful in settings where the distribution is only known up to a normalising

constant, that is, where the functional form of the probability density is known but

difficult to integrate analytically. The fundamental idea is to generate samples from a

target distribution π(z), defined over a state space Z , by constructing a Markov chain

whose stationary distribution coincides with π(z). This approach effectively defines a

random walk over Z , so that as the chain evolves, its marginal distribution converges

to the target distribution. In the context of Bayesian inference, the target distribution

of interest is the posterior distribution p(θ | D), where D denotes the observed data

and θ ∈ Θ represents the model parameters. Consequently, the state space becomes the

parameter space Θ.

To ensure that the Markov chain converges to the desired stationary distribution, it is
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necessary to satisfy the detailed balance condition. Let ρ(s, t) = p(Xn+1 = t | Xn = s)

denote the transition probability of the Markov chain, where s, t ∈ Z and Xn is the

stochastic process defined by the chain. Then, the detailed balance condition holds if

there exists a probability distribution κ on Z such that:

κ(s)ρ(s, t) = κ(t)ρ(t, s), ∀s, t ∈ Z . (2.5)

When the detailed balance condition is satisfied, κ becomes a stationary distribution of

the Markov chain, which means the transition probability can be defined to guarantee

that the chain will converge to the target distribution π(z). The samples drawn from

this chain are then used to approximate expectations, quantiles, and other statistical

summaries of interest. The Monte Carlo component refers to using these samples to

compute numerical estimates, while the Markov chain component ensures that each

sample depends only on the previous one, satisfying the Markov property.

In Bayesian inference, MCMC methods provide a general framework to obtain informa-

tion on the distributions and estimate posterior distributions of a set of unknown param-

eters using a stochastic sampling process (Gelman et al., 2013). One of the strengths of

MCMC is its ability to sample directly from the posterior distribution for a wide class of

models, where the shape of the posterior is determined by both the likelihood function

and the prior distribution.

However, this advantage comes at a computational cost. Generating a sufficient number

of samples to approximate the posterior accurately can be time-consuming, particularly

in high-dimensional or hierarchical models. Nevertheless, MCMC remains a cornerstone

of modern Bayesian analysis due to its ability to handle analytically intractable posteri-

ors. The posterior distribution is typically defined via Bayes’ rule, which combines the
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prior distribution and the likelihood function as follows:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(2.6)

where p(θ|D) is the posterior distribution, p(D|θ) is the likelihood function, p(D) is

the marginal likelihood, and p(θ) is the prior probability, reflecting our prior beliefs

about the parameters θ before seeing the data. The selection of an appropriate prior

distribution may be based on information from previous published studies, past experi-

ence, expert opinion, or theoretical understanding. While priors help constrain models

appropriately, they also introduce assumptions that should be examined critically. Re-

gardless of type, all priors carry some information and influence the resulting posterior

distribution, particularly when data are limited.

Priors are typically classified as non-informative, weakly informative, informative, or

conjugate (Gelman et al., 2013):

Non-informative priors (also called vague, flat, or diffuse) are intended to exert min-

imal influence on the posterior distribution. A common example is a uniform distri-

bution, such as θ ∼ Unif(0,1), which assigns equal probability across a range. While

used when prior knowledge is limited, these priors still encode assumptions and must

be specified within an ecologically or scientifically plausible range.

Weakly informative priors moderately constrain parameters based on general domain

knowledge. They help stabilise estimates, reduce overfitting, and prevent implausible

inferences particularly useful in small or noisy datasets. These priors balance flexibil-

ity with realism and contribute information without overwhelming the data or heavily

influencing the posterior.

Informative priors are based on existing data, pilot studies, or expert knowledge. When

27



well specified, they improve precision without introducing bias and are most useful

when prior understanding of the ecological system studied is strong. Their assumptions

must be transparent and justified. Sensitivity analyses should be used to assess how

different informative priors influence the results. For example, informative priors can

be used to rule out biologically implausible parameter values, such as a negative rela-

tionship between weight and length in humans. When multiple plausible priors exist,

exploring a range from weakly to strongly informative can provide valuable insights into

model robustness.

Finally, a conjugate prior belongs to the same distribution family as the posterior (e.g.,

a gamma prior for exponential likelihood yields a gamma posterior or a gamma prior

for Poisson likelihood yields a gamma posterior). Conjugate priors simplify analytical

and computation in complex or high-dimensional models but should only be used when

they realistically represent prior beliefs.

Within this subsection, I now briefly introduce the Metropolis-Hastings (MH) algorithm

and Hamiltonian Monte Carlo (HMC), the latter being one of the most widely used and

efficient MCMC sampling algorithms in modern Bayesian computation, as it uses gra-

dient information to efficiently explore complex posterior distributions, enabling large,

informed moves through low probability regions and reducing sample autocorrelation.

Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is a widely used Markov Chain Monte Carlo

(MCMC) method for obtaining a sequence of random samples from complex, high-

dimensional probability distributions, especially when direct sampling is computation-

ally prohibitive (Hastings, 1970). The MH algorithm generates a sequence of samples by

proposing candidate points from a proposal (or jumping) distribution and then deciding
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whether to accept or reject each candidate based on a ratio that ensures the stationary

distribution of the chain matches or converges to the target distribution.

In particular, the algorithm allows simulation from a parameter’s posterior distribution

without requiring the calculation of the intractable normalising constant of the prob-

ability density. This is particularly useful in Bayesian inference, where the posterior

distribution is proportional to the product of the likelihood and the prior, and the nor-

malising constant (often referred to as the marginal likelihood) is typically difficult to

compute directly, especially for complex models.

The MH algorithm works as follows (Hastings, 1970):

1. Proposal Step: Given the current state xt, a new candidate x′ is proposed by sam-

pling from a jumping (or proposal) distribution q(x′|xt), which is typically chosen

based on the target distribution’s properties. This proposal distribution generates

candidate samples in the parameter space.

2. Acceptance Step: The proposed candidate x′ is accepted with probability given by

the Metropolis acceptance ratio:

α(xt, x′) = min
(

1,
p(x′)q(xt|x′)
p(xt)q(x′|xt)

)

where α(xt, x′) is the is the probability of accepting x′, p(xt) is the target distri-

bution, and q(x′|xt) is the proposal distribution. The ratio compares the relative

probability of the proposed sample to the current sample, ensuring that states with

higher target probability are more likely to be accepted.

3. Repeat: If the candidate x′ is accepted, the chain moves to x′. Otherwise, the

chain remains at xt. This process is repeated for many iterations, and the resulting
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chain of samples converges to the target distribution as the number of iterations

increases.

The efficiency of the MH algorithm heavily rely on the choice of the proposal distribution

q(x′|xt). If q(x′|xt) is poorly chosen, the algorithm can suffer from high rejection rates,

which slows the convergence. When the proposal distribution is symmetric, that is,

q(x′|xt) = q(xt|x′), the acceptance ratio simplifies. In this case, the acceptance criterion

reduces to the following simpler form:

α(xt, x′) = min
(

1,
p(x′)
p(xt)

)

This simplification occurs because the proposal distribution terms cancel out, and the

acceptance probability only depends on the ratio of the target distribution’s values at

the proposed and current states. This is the Metropolis algorithm, a special case of MH

when the proposal distribution is symmetric. The Metropolis algorithm is often more ef-

ficient in high-dimensional settings because it avoids the complications of an asymmetric

proposal distribution, simplifying the acceptance criterion.

In general, the Metropolis-Hastings algorithm, and the Metropolis algorithm in the case

of symmetric proposals, provide powerful tools for sampling from posterior distribu-

tions in Bayesian inference, especially when the normalising constant is not available.

However, the choice of proposal distribution remains critical to the efficiency of the

algorithm, and careful consideration must be given to its properties to ensure fast con-

vergence and minimise computational cost.
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Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is considered one of the fastest Markov chain Monte

Carlo (MCMC) sampling algorithms, leveraging gradients and momentum to gener-

ate more efficient Metropolis proposals when sampling from the posterior distribu-

tion (Neal, 2012). A key feature of HMC is its use of gradient information of the log-

posterior to inform proposed moves in the parameter space, thereby reducing random

walk behaviour and improving exploration. To generate proposals, HMC augments

the parameter space with auxiliary momentum variables. Auxiliary momentum vari-

ables are temporary variables, typically drawn from a multivariate normal distribution,

that pair with model parameters in HMC to form a physical system and help simulate

Hamiltonian dynamics, enabling efficient exploration of the parameter space. Let q ∈ Rd

denote the vector of parameters of interest (position variables) and p ∈ Rd the auxiliary

momentum variables. HMC defines a Hamiltonian function as (Neal, 2012):

H(q, p) = U(q) + K(p) (2.7)

where, U(q) is the potential energy, defined as the negative log of the unnormalised

posterior distribution:

U(q) = − log [π(q)L(q | D)] (2.8)

where π(q) is the prior density and L(q | D) is the likelihood function given data D.

The other component K(p) in eqn. 2.7 is the kinetic energy, often defined as a quadratic

function:

K(p) =
d

∑
i

p2
i

mi
(2.9)

where mi is the variance.
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The joint distribution over (q,p) then becomes;

P(q,p) ∝ exp(−H(q,p)) =
1
Z

exp
(
−U(q)

T

)
exp

(
−K(p)

T

)
(2.10)

where Z is the normalising constant needed for this function to sum or integrate to one

and T is the temperature that is typically set to 1 for mathematical convenience in MCMC

and to define the canonical distribution, therefore allowing for the exact marginalisation

of the marginal distribution q which is the desired target posterior distribution.

At each iteration of the algorithm, the state (q′,p′) is proposed using Hamiltonian dy-

namics, implemented with the leapfrog method. Then the proposed state is accepted or

rejected as the next state of the Markov chain based on an acceptance probability defined

as:

min
[
1,exp

(
−H(q′, p′) + H(q, p)

)]
= min

[
1,exp

(
−U(q′) + U(q)− K(q′) + K(q)

)]
(2.11)

This ensures that the resulting Markov chain satisfies detailed balance with respect to

the joint distribution P(q,p), and therefore preserves it as the invariant distribution.

Furthermore, the chain transitions from one state to another via proposals informed

by Hamiltonian dynamics, and the accept-reject mechanism ensures that the transition

kernel satisfies reversibility and ergodicity property, key conditions for MCMC conver-

gence.

Using gradient information and momentum, HMC consistently makes intelligent pro-

posals and explores the parameter space much more effectively, thereby increasing the

acceptance rate, improving sampling efficiency in high-dimensional parameter spaces,

and enhancing performance in complex models, such as multilevel models. Further-
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more, HMC reduces the autocorrelation of samples. Implementing the HMC algorithm

requires a thorough specification of several parameters. The most important parame-

ters are (Neal, 2012): (i) the negative logarithmic probability of the data at the current

parameter values, (ii) the gradient of the negative logarithmic probability at the current

parameter values, (iii) the step size, (iv) a number of leapfrog steps, and (v) a vector

of initial parameter values. In practice, however, the No-U-Turn sampler (NUTS), an

adaptive extension of HMC is almost universally used in place of standard HMC with

manually tuned leapfrog steps, as it automatically determines an optimal path length,

thereby improving efficiency and reducing the need for parameter tuning.

2.4.2 Variational inference

Variational inference (VI) is an approximate Bayesian machine learning method em-

ployed to approximate the true posterior distribution using a simpler distribution, known

as the variational distribution. Unlike standard Bayesian approaches, which typically

sample directly from the posterior distribution using the MCMC algorithm, VI approx-

imates the target distribution through optimisation techniques. The goal is to optimise

the parameters and any hyperparameters of the proposed member of the family of the

variational distribution so that it closely matches the true posterior, which is achieved by

minimising the Kullback-Leibler (KL) divergence between the true posterior p(θ|X) and

the approximating distribution qλ(θ), defined as,

KL[qλ(θ)||p(θ|X)] =
∫

qλ(θ) log
(

qλ(θ)

p(θ|X)

)
dθ. (2.12)

This optimisation-based approach often results in faster performance and better scala-

bility for large datasets compared to MCMC, which can struggle when sampling from
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both unimodal and multimodal posteriors. Furthermore, VI supports dividing data into

batches (mini-batches) during optimisation, enabling it to handle large datasets more

efficiently by avoiding memory limitations, whereas MCMC generally requires process-

ing the entire dataset at each step of the MCMC sampler to evaluate the likelihood. In

addition to the choice of variational family, VI requires also the choice of the optimi-

sation method in order to minimise the objective function by iteratively updating the

variational parameters.

VI offers significant advantages for high-dimensional or computationally demanding

models, such as those commonly encountered in ecological systems. Despite its po-

tential, VI has rarely been applied in the field of animal movement modelling, where

MCMC and HMC methods have traditionally been the standard approaches. For exam-

ple, VI has been used in a hierarchical continuous-time velocity model to identify key

wildebeest migration pathways (Paun et al., 2022), demonstrating its capacity to cap-

ture complex, spatially varying movement patterns and effectively manage large-scale

movement data. By incorporating VI into animal movement models, this thesis lever-

ages existing computational tools in innovative ways to address persistent challenges

in movement ecology, including uncertainty quantification, scalable inference, and the

need for efficient algorithms capable of processing large tracking datasets within practi-

cal time constraints. This approach not only advances methodological development, but

also provides practical solutions to pressing issues in the field.

2.4.3 Gaussian processes

Gaussian processes (GPs) are a class of non-parametric models rooted in Bayesian in-

ference and formalised as continuous-time stochastic processes (Rasmussen, 2006). A

defining characteristic of GPs is that any finite collection of random variables drawn
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from the process follows a multivariate normal distribution. This property enables GPs

to model complex relationships between inputs and outputs through a mean function

and a covariance function (or kernel), the latter of which captures the spatial or temporal

similarity between observations based on their locations. In a standard GP formulation,

the relationship between observed outputs and their associated inputs can be expressed

as

yi = f (xi) + ϵ (2.13)

where yi are the outputs observed at the input points or locations xi, f (x) is an un-

observed latent function, and ϵ ∼ N (0,σ2
m) is an independent additive Gaussian white

noise term often associated with measurement error. The goal of GPs is to infer a pos-

terior distribution over possible functions f (x) conditioned on the observed data. To

achieve this, a GP prior is placed over the unobserved latent function f (x)

f (x) ∼ GP
(
m(x),K(x, x′)

)
(2.14)

where m(x) is a mean function, often assumed to be zero (Murphy, 2012) and K(x, x′) is

a covariance function (or kernel) that encodes prior assumptions about the smoothness,

periodicity, or other properties of the process being modelled.

Taking the assumption that the unobserved function f (x) is a realisation of a GP, Bayesian

inference is applied using Bayes’ theorem and Gaussian identities to calculate the poste-

rior distribution over functions. This posterior quantifies both the expected outputs and

the associated uncertainty, given the input (observed data) and prior beliefs.

GPs are particularly powerful and flexible for modelling ecological phenomena, espe-

cially when the underlying functional relationships are complex or poorly understood.

In movement ecology, for instance, GPs have been used to reconstruct animal trajec-
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tories (Rieber et al., 2024), identify periodic activity patterns, and detect deviations in

the migratory behaviour of animals (Torney et al., 2021). More broadly, GPs are widely

employed in ecological applications, including modelling spatio-temporal distributions

of migratory populations (Piironen et al., 2022), temporal trend analysis, and environ-

mental monitoring (Wang et al., 2021), as well as in general machine learning tasks such

as optimisation (Snoek et al., 2012), regression (Williams and Rasmussen, 2006), and

classification (Nickisch et al., 2008).

2.5 The Greater Serengeti-Mara Ecosystem and its contem-

porary threats

In the remainder of this chapter, an overview of the ecology of the Greater Serengeti-

Mara region is presented. Understanding how animal space use relates to the distribu-

tion of resources, risks, and environmental conditions constitutes a primary goal of this

thesis and serves to motivate the analyses developed and presented in the subsequent

chapters.

The Greater Serengeti-Mara Ecosystem is a transboundary conservation area of global

significance, straddling the border between Tanzania and Kenya (33◦30′–35◦30′E and

1◦15′–3◦30′S) in East Africa (Sinclair et al., 2008). Spanning approximately 37,516 km2,

some wilderness areas of this ecosystem offer a rare glimpse of what the world’s land-

scape looked like a million years ago. At its core lies the Serengeti National Park, ad-

joined by several other protected areas, including the Ngorongoro Conservation Area,

Maasai Mara National Reserve, and the Maswa, Grumeti, Ikorongo, Kijereshi, and Polo-

leti Game Reserves. In addition, it encompasses a network of community-managed

wildlife conservancies in Kenya and wildlife management areas in Tanzania. These areas
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are classified into various International Union for Conservation of Nature (IUCN) pro-

tected area categories based on their management objectives. The vegetation within the

ecosystem is mainly characterized by wooded savanna, which cover approximately 60%

of the area predominantly in the northern region while the remaining 40% consists of

short grasslands, mainly in the southern part (McNaughton, 1985). The dominant grass

species in these grasslands include Digitaria macroblephera and Sporobolus ioclades. The

ecosystem hosts approximately seventy (70) species of mammals, with the wildebeest

(Connochaetes taurinus) being the most abundant and functionally dominant species. In

addition to its migratory behaviour, wildebeest play a critical role in driving key ecolog-

ical processes such as nutrient cycling and storage (Sinclair et al., 2008).

Globally, approximately 33% of protected land, including designated conservation ar-

eas (Jones et al., 2018), is under increasing pressure from extensive anthropogenic activi-

ties, such as agriculture and livestock incursions. These pressures result in fragmentation

and degradation of habitats, leading to loss of structural and functional heterogeneity

in these ecosystems. The Greater Serengeti-Mara ecosystem is no exception and is cur-

rently experiencing human-induced disturbances at an unprecedented scale. This high-

lights the urgent need to understand how such disturbances impact the resilience of

the ecosystem and how wildlife respond. Human-induced threats in the ecosystem can

be broadly categorised into two types: First, non-local threats originating outside the

ecosystem include rapid human population growth, livestock incursions, conversion of

land for agriculture (Veldhuis et al., 2019), and large-scale irrigation projects for com-

mercial farming (Kihwele et al., 2021). These external pressures have led to habitat loss,

fragmentation, and degradation, particularly along the western boundary of the ecosys-

tem, where hard edges have emerged due to increasing human activities (Kavwele et al.,

2022; Veldhuis et al., 2019). In addition, large-scale irrigation upstream has significantly
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reduced the flow of key rivers, such as the Mara River, which wildlife depend on during

the dry season (Kihwele et al., 2021). This reduction in water availability can disrupt es-

sential ecological processes, including nutrient transport across different regions of the

ecosystem, as well as the spatial and temporal distribution patterns of wildlife.

Secondly, the ecosystem is increasingly impacted by local threats, particularly those as-

sociated with unsustainable mass tourism. The leverage of natural capital for tourism

has led to a substantial increase in the development of hard infrastructure within what

was once a largely pristine landscape. Examples of such infrastructure include road net-

works and tourist accommodations, such as campsites, lodges, and hotels built within

the ecosystem itself (Larsen et al., 2020). These developments, along with other anthro-

pogenic pressures, are gradually transforming the natural habitat into a human-modified

landscape. This transformation poses significant risks to resident, nomadic, and migra-

tory species, including wildebeest, by altering their spatial distribution, migration tim-

ing, and increasing mortality through incidents such as wildlife-vehicle collisions (Lya-

muya et al., 2022). A critical and urgent challenge, therefore, is determining how to

strike a balance between the infrastructure development necessary to support tourism

in ecologically significant areas such as the Serengeti and the imperative to conserve

biodiversity and maintain ecological integrity.

Given that most contemporary threats to the ecosystem are human-induced and are

the primary drivers of ecological disturbances, it is crucial to understand how wildlife

responds and adapts to these changes within and around the ecosystem. In addition,

it is equally important to predict the potential impacts of these disturbances on animal

populations and assess the extent to which they can compromise the resilience of the

ecosystem. Achieving this requires the collection of fine-scale ecological data, along

with the application of multiscale models and simulation studies. Such approaches are
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essential for translating fine-scale animal responses and behaviours into ecosystem-wide

predictions, providing a more comprehensive understanding of the broader ecological

consequences.

2.5.1 Modelling wildlife responses to ecosystem threats

Various ecological methods are employed to collect field data, which can involve either

invasive or non-invasive approaches such as tissue sampling or live trapping (invasive)

or and camera trapping, collecting fecal samples, or acoustic monitoring (non-invasive).

In the Greater Serengeti-Mara ecosystem, numerous studies have used Lagrangian and

Eulerian individually or in combination to gain deeper insights into how wildlife in-

teract with their environment. These approaches have supported the development and

application of advanced animal movement modelling techniques such as species-habitat

preference frameworks to understand how animals respond to both local and non-local

threats in the ecosystem. For example, to investigate the influence of human presence

on wildlife, Hopcraft et al. (2012) analysed long-term data obtained through system-

atic aerial censuses covering five species of Serengeti mammalian herbivores: African

buffalo (Syncerus caffer), topi (Damaliscus korrigum), Coke’s hartebeest (Alcelaphus buse-

laphus), Grant’s gazelle (Gazella granti), and Thomson’s gazelle (Gazella thomsoni). The

study used resource selection functions to estimate the probability of each species’ oc-

currence in relation to human proximity. This study notably illustrates how large-scale

spatial survey data can be effectively analysed using habitat selection models, even at

relatively coarse spatial resolutions.

At a broader spatial scale, Kavwele et al. (2022) employed camera traps to investigate

whether the formation of hard edges resulting from expanding human activities influ-

ences the spatial distribution of migratory wildebeest and zebra (Equus burchelli) within
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the ecosystem. Using a resource selection function that was conditioned on the presence

of wildebeest or zebra along the transect at each camera trap location and at some point

during the day, the study revealed that these migratory species exhibit a strong avoid-

ance of hard edges, with displacement occurring up to 6-8 km into the core protected

area. This finding highlights the utility of technological tools, such as camera traps, in

ecological research. Camera traps allow for continuous, long-term data collection at a

relatively low cost, making them especially valuable in contexts where fine-scale indi-

vidual tracking technologies, such as GPS tags, are cost-prohibitive for sampling large

numbers of individuals (Caravaggi et al., 2017; Rowcliffe, 2017). Thus, camera traps

provide an efficient alternative for assessing population-level responses of wildlife to

environmental changes (Beaudrot et al., 2020; Pettorelli et al., 2010), while retaining the

advantages of applying the same modelling frameworks used with data derived from

the Lagrangian approach.

At the individual level, animal responses to both local and non-local threats can be as-

sessed using movement data collected through tracking devices such as GPS tags. These

data allow for the reconstruction of movement trajectories over time, which can be de-

composed into key metrics such as step length and turning angle. Analysing these

components enhances our understanding of behavioural states, such as when animals

are likely to move quickly and in a directed manner versus slowly and with less direc-

tional persistence. For example, Hopcraft et al. (2014) conducted a hierarchical analysis

of movement trajectories in wildebeest and zebra to examine their responses to hu-

man presence across different spatial scales in the Serengeti ecosystem. Their findings

revealed that both species display similar behavioural adjustments: increased displace-

ment and changes in movement direction when near areas of high human density, com-

pared to regions with lower human presence. This approach illustrates how behavioural
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changes can be inferred at the individual level, revealing patterns that may be obscured

in population-level analyses. Such insights improve our understanding of species adap-

tive strategies and offer a valuable tool to inform conservation planning in increasingly

anthropogenic landscapes.

Furthermore, Veldhuis et al. (2019) used a combined methodological approach using

remote sensing imagery and GPS collars affixed to animals to assess the impact of non-

local threats on the spatial distribution of wildlife within the ecosystem. GPS-based

movement data revealed that migratory large herbivores actively avoid peripheral areas

of the ecosystem, resulting in a reduced use of these zones. This pattern was further sup-

ported by remote sensing imagery, which showed a high density and extensive network

of livestock paths, indicating that illegal livestock incursions into protected areas may

be displacing wildebeest toward the ecosystem’s core due to increased competition for

forage. This integrative approach illustrates the value of combining multiple methodolo-

gies to better understand the drivers of animal spatial distribution in landscapes shaped

by complex and interacting non-local threats.

In summary, these studies highlight the value of integrating multiple modelling ap-

proaches to improve our understanding of how wildlife respond to environmental pres-

sures from human activity, particularly in human-modified ecosystems. By leveraging

tools such as GPS collars, camera traps, and remote sensing, wildlife biologists and

ecologists can capture fine-scale and broad-scale patterns of animal movement, as well

as resource selection and avoidance behaviours across the landscape. This integrative

approach is crucial for guiding effective conservation strategies, especially in complex

and dynamic ecosystems where local and non-local threats interact to influence species

distributions at spatial and temporal scale. Importantly, such models can also provide a

foundation for developing predictive models to assess the potential ecological impacts of
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both planned and unplanned infrastructure and economic development, thereby inform-

ing conservation management decisions that balance development needs with long-term

conservation goals.

This chapter has provided an overview of background theory that forms the foundation

of the thesis as well as describing the challenges associated with the conservation of the

Serengeti ecosystem. Each of the chapters that follow will make use of some or all of

the theoretical foundations described above and all chapters are motivated by a central

goal: to develop statistical methods that can be applied to the study of the Serengeti

wildebeest migration. In particular, these methods seek to understand how migratory

wildebeest space use within the ecosystem and how their behaviour and movement pat-

terns are influenced by anthropogenic threats, particularly infrastructure development,

which currently represents one of the most significant non-lethal risks to their migration.
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Chapter 3

Efficient approximate Bayesian inference

for quantifying uncertainty in multiscale

animal movement models

Note:

The content of this chapter has been published in the journal Ecological Informatics, 84,

p.102853, https://doi.org/10.1016/j.ecoinf.2024.102853.
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Abstract

It is becoming increasingly important for wildlife managers and conservation ecolo-

gists to understand which resources are selected or avoided by an animal and how to

best predict future spatial distributions of animal populations in the long term. How-

ever, inferring the patterns of space use by animals is a challenging multiscale inference

problem, and formal uncertainty quantification of parameter estimates is an essential

component of models that provide useful predictions across scales. In this study, we

develop an approximate Bayesian inference framework for step selection models of an-

imal movement which quantifies the uncertainty in estimates of resource selection and

avoidance parameters within the Bayesian paradigm. The framework allows joint in-

ference of movement and resource selection parameters of animals and is multiscale in

that parameters inferred from fine scale movement steps scale to produce predictions

of long-term patterns of space use. Our analysis focuses on simulated movement data

in which we test the performance of our framework by altering movement parameters

in the data-generating process. In our simulations, individuals respond to two envi-

ronmental covariates and we employ all combinations of positive and negative selection

coefficients corresponding to attraction to an environmental feature and avoidance of an

environmental feature, respectively. In all scenarios, we recover the movement param-

eters used for the simulation of synthetic movement data using variational inference,

an approximate Bayesian method, allowing us to formally quantify the uncertainty as-

sociated with each parameter for varying data set sizes. Our framework successfully

recovered all combinations of movement parameters of the simulated data and accu-

rately captured their posterior distributions given the available data suggesting that the

framework is reliable and suitable for inferring how animals select resources and move

on a landscape.
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Notably, our analysis shows that even for reasonably large data sets (circa 10,000 ob-

servations) there can still be considerable uncertainty associated with resource selection

parameters which can in turn lead to inaccurate predictions of long term space use if

not properly incorporated into the modelling approach. To further illustrate the utility

of our approach, we also present a case study of its application to an example data set

consisting of GPS locations of a fisher (Martes pennanti). Our approach will be of interest

to ecologists looking to address conservation questions such as when and where ani-

mals are likely to spend most of their time. Furthermore, the approach could be used to

predict new suitable areas for conservation based on how GPS collared animals use or

avoid resources while including uncertainty around the predictions, thereby helping to

make informed management decisions.
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3.1 Introduction

Conservationists and applied ecologists frequently need to determine the response of an-

imals to different landscape features, predation risks, and human-driven disturbances in

order to effectively manage and protect mobile species. Species-habitat association stud-

ies (Matthiopoulos et al., 2020) provide a framework for modelling observed patterns of

resource selection and risk avoidance using data on environmental covariates and ani-

mal locations. In order to identify the behavioural drivers of species-habitat associations

and to make accurate and generalisable predictions of animal space use, statistical meth-

ods should be able to quantify uncertainty and provide inferences that can be translated

across scales (Torney et al., 2018), from the scale of observation, which is typically the

individual, to the scale of interest, which for conservation applications is most often the

population.

Various approaches have been employed in species-habitat association studies that focus

on different spatio-temporal scales (Fieberg et al., 2021; Michelot et al., 2019a). Com-

monly used methods either summarize an animal’s response at a broad scale, for exam-

ple resource selection functions or RSFs (Manly et al., 2007), or at a fine scale by incorpo-

rating movement characteristics using step selection functions (SSFs) (Fortin et al., 2005;

Thurfjell et al., 2014) and integrated step selection functions (iSSFs) (Avgar et al., 2016).

While these methods all model the relationship between animal movement and environ-

mental covariates, they differ in complexity and in their underlying assumptions. For

example, RSFs assume that the telemetry locations of the same individual are indepen-

dent of each other (Fieberg et al., 2010), and all areas within the home range or study

site are equally accessible by the animal (Beyer et al., 2010; Matthiopoulos, 2003). When

these assumptions do not hold due to the high temporal resolution of location data then
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SSFs may be used instead to account for spatial and temporal auto-correlation of the an-

imal’s locations and the restricted availability of resources that varies among individual

animals in space and at each time step (Forester et al., 2009; Fortin et al., 2005; Thur-

fjell et al., 2014). However, due to the separation between the movement process and

the resource selection process SSFs are known to produce biased estimates of the selec-

tion coefficients. To counter this issue, including movement characteristics (step length,

or natural logarithm of step length or turning angle) is required (Fieberg et al., 2021;

Forester et al., 2009) leading to the simultaneous estimation of movement and resource

selection parameters using iSSFs (Avgar et al., 2016).

Despite the usefulness that RSFs, SSFs, and iSSFs have in species-habitat association

studies and the apparent similarity in their model structure, the parameters estimated

by the different approaches when applied to the same movement data do not have the

same ecological meaning, even though each of the methods seek to improve our under-

standing of animals’ resource selection and avoidance patterns (Barnett and Moorcroft,

2008; Moorcroft and Barnett, 2008; Signer et al., 2017). While the RSF modelling approach

has several disadvantages and should not be applied to auto-correlated movement data,

a fitted RSF corresponds to a prediction about the long-term space use of an animal and

is therefore highly relevant to many questions of interest for ecologists and conserva-

tionists. Conversely, while an iSSF models does provide unbiased estimates of resource

selection and avoidance coefficients at the fine-scale, these coefficients cannot be directly

employed to make predictions over longer time scales. Since long term population-level

patterns of space use are the consequence of the selection patterns that occur, and are ob-

served, at the fine scale, in principle a model that is fit to these fine scale data should be

able to make accurate predictions across scales. To achieve this aim, different approaches

have been proposed to tackle the multiscale inference problem in animal movement and
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habitat selection.

Using a continuous-time animal movement model based on the Langevin diffusion equa-

tion, Michelot et al. (2019b) model the animal’s positions using a diffusion process, en-

suring that, over time, the model converges to a limiting distribution regardless of the

animal’s initial location. This convergence occurs due to the animal’s inherent tendency

to move towards suitable habitats. The parametric model can be connected to SSFs when

long term space use is modelled as a function of environmental covariates. A unique

property of this framework, compared to many multiscale modelling approaches, is its

formulation in continuous time, which allows for the accommodation of irregular or

incomplete movement data.

In a discrete-time formulation, Michelot et al. (2019a) proposed the MCMC step selection

framework, an approach that introduces a novel model of fine-scale movement decisions

of an animal that when fitted to data has the property that the model parameters can be

used directly to make predictions of space use at the broad scale.

The key novelty of the Monte Carlo Markov chain (MCMC) step selection approach

proposed by Michelot et al. (2020, 2019a) is to conceptualise animal movement as the

movement of an MCMC sampler in parameter space (for an overview of MCMC meth-

ods see, for example, Bolstad (2009)). The use of this analogy enabled the design of an

animal movement model that directly links the parameters of the step selection mech-

anism to the stationary utilisation distribution of the animal i.e. the distribution that

would be obtained via an RSF analysis. This important advance allows selection coeffi-

cients to map directly to the utilisation distribution of the animal without requiring the

individual based simulations typically associated with iSSF analysis (Signer et al., 2024).

While the MCMC step selection approach obviates the need for expensive, individual-

based movement model simulations and still provides movement steps that map directly
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to the parameters of the long-term utilisation distribution, the original formulation does

not obtain full posterior distributions for the model parameters but instead relies on nu-

merical estimation of the Hessian matrix to formally quantify model parameter uncer-

tainty. In general, failing to formally quantify uncertainty in animal movement models

may lead to over-confidence in habitat selection parameters and inaccurate predictions

of long term space use. As the number of measured movement steps change, model

predictions will vary due to either underestimation or overestimation of the response

resulting in an inability to identify data inadequacies, inaccurate utilisation distribu-

tions, compromised reliability of the estimates (Jansen et al., 2022; Rocchini et al., 2011),

and a lack of transferability to the same species in areas not sampled (Wenger and

Olden, 2012; Yates et al., 2018). However, as the approach proposed by Michelot et al.

(2019a) is likelihood-based it is therefore amenable to Bayesian inference either using

sampling-based approaches or approximate inference techniques. Further, since there is

a direct link between the parameters of the step selection mechanism and the stationary

utilisation distribution of the animal, uncertainty may be propagated directly from the

fine-scale model to the long term predictions.

In this work, we propose the use of variational inference (VI) (Blei et al., 2017) to formally

quantify the uncertainty in step selection models in an efficient and flexible way, thus

enabling predictions of an animal’s long term space use that accounts for uncertainty.

Instead of directly sampling the parameters of interest from the posterior distribution

using Markov chain Monte Carlo methods, as is common in standard Bayesian prac-

tice, VI turns the inference process into an optimisation problem. While approximate,

this method offers notable improvements in speed and computational efficiency, as it

involves dividing the data into batches (mini-batching), and optimising parameters and

any hyperparameters associated with the model via stochastic gradient descent using
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the Kullback-Leibler divergence (Ranganath et al., 2014) between the posterior distribu-

tion and its approximating distribution as the objective function of the optimiser. If the

true posterior distribution belongs to the same family as the approximating distribution,

VI returns the exact posterior, whereas if the approximating family does not contain the

true posterior then we obtain only an approximate posterior. In what follows we select

the multivariate normal as the approximating family of distributions, however arbitrary

distributions may be employed within the same framework.

To showcase how VI can be used to estimate habitat selection and movement parameters

jointly, we simulate synthetic movement data based on known parameters and inves-

tigate the performance of our method in recovering those movement parameters. We

demonstrate the flexibility of the VI method by testing its capability with four different

combinations of movement parameters (positive-positive coefficients, positive-negative

coefficients, negative-negative coefficients, and negative-positive coefficients). To illus-

trate its scalability and robustness, we evaluate the computation speed and accuracy

of recovering movement parameters based on datasets of up to 1 million observations.

We demonstrate that VI is an effective tool for processing large scale animal movement

datasets and further show how even relatively large datasets give rise to high uncertainty

in the coefficients of habitat selection models. Finally, we present a resource selection

analysis case study using GPS locations from a fisher (Martes pennanti), incorporating

three environmental covariates (two continuous and one categorical) analysed through

VI.
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3.2 Background

3.2.1 Resource selection functions (RSFs)

RSFs are mathematical functions that evaluate the ratio of used habitats by an animal in

relation to available habitats in order to estimate the probability an animal will occupy

a specific location (Johnson, 1980; Manly et al., 2007). RSFs are usually fitted to animal

location data using logistic regression so that the landscape features of locations that are

visited by an animal (such as vegetation) are compared to what is available as a means

of estimating selection or avoidance. Used locations are telemetry locations or points

where animals are observed, and available locations are typically sampled randomly

within the domain available to the animals and are fixed over time. This may be within

the individual or population home range, where the home range is usually defined as the

area traversed by an animal over a particular period of time (such as its lifetime or during

the specific period of time the observations were made) or study area (geographical

area where the animals are found). If a resource occurs more frequently in the used

locations than the available locations, the resource is preferentially selected by the animal

(selection), but if a resource is used less frequently than its availability, it means the

resource is avoided by the animal (avoidance). Finally, if a resource is used randomly

(such that the used resources is equal to available resources), it indicates neither selection

nor avoidance (Manly et al., 2007). Mathematically, RSFs are typically written as

w (c) = exp(β1c1 + β2c2 · · ·+ βpcp) (3.1)

where w(c) is proportional to the probability that a location with covariate value c is

used, β1 · · ·βp are the parameters (coefficients) to be estimated associated with the vector
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c of predictor variables (or environmental covariates) c1 · · · cp. The selection coefficients β

can be estimated using maximum likelihood or Bayesian methods. Since the RSF is pro-

portional to the probability of use, the long term average probability of an animal being

found in a specific location within a study domain, termed the utilisation distribution,

can be found by rescaling eqn. 3.1 with a normalising constant,

π(x) =
exp (β1c1(x) + β2c2(x) + ... + βncn(x))∫

Ω exp (β1c1(z) + β2c2(z) + ... + βncn(z))dz
(3.2)

where Ω denotes the study region and c(z) and c(x) associate the spatial locations to the

corresponding covariate values. The denominator in eqn. 3.2 normalise the utilisation

distribution to ensure that it defines a valid probability distribution for spatial location

x.

In addition, the selection coefficients β obtained from the RSFs model (eqn. 3.1) fitted

using weighted logistic regression is equal to that of the intensity function (eqn. 3.3) of an

Inhomogeneous Poisson Point Process model (IPP), when the number of available points

sampled in RSFs is assigned an infinite weight and is large enough to ensure stability

of the coefficient estimates (Fieberg et al., 2021; Fithian and Hastie, 2012; Warton and

Shepherd, 2010), hence, making a link between IPP and RSFs in addressing applied

ecological questions on attractiveness and repulsiveness of resources by the animal. The

intensity function λ(s) can be modelled as a log-linear function of spatial covariates and

is expressed mathematically as:

λ(s) = exp(β0 + β1c1(s) · · ·+ βpcp(s)) (3.3)

where β1 · · ·βp are the parameters (coefficients) to be estimated associated with the vec-

tor c of the spatial predictor variables c1 · · · cp at location s. β0 in the eqn. 3.3 above
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is the intercept and is ecologically not meaningful, but rather is used to determine the

log density of locations within a spatial domain (area) that is small and homogeneous

around s when all ci(s)(i = 1, · · · , p) are zero.

When performing an RSF analysis, there are some assumptions inherent in the mod-

elling framework that must be considered. The most significant assumptions are (Manly

et al., 2007; Millspaugh et al., 1998): (i) the observations of the same individual are in-

dependent of each other, so there is no temporal auto-correlation in the location, (ii) all

available habitats are equally accessible or available to animals all the time, (iii) sam-

pling of the available points is random and independent,(iv) the selection of resource

by an individual at one location is independent of any other location previous or con-

secutive location that an individual visited, and (v) resources must be heterogeneously

distributed across the landscape to allow the detection of selection; without variation,

preferences or avoidance cannot be inferred. Notably, RSFs are heavily influenced by

the definition of availability (Paton and Matthiopoulos, 2016) since as the extent of the

available habitat changes the strength of selection or avoidance will also change (Beyer

et al., 2010). To avoid changes in habitat selection parameters when the extent of avail-

able area changes, Alston et al. (2023) and Matthiopoulos et al. (2023) have proposed

objective methods that guarantee stable estimates regardless of changes in the extent of

available habitat. For migratory animals and those which have a large home range, the

assumption that all locations are equally available all the time is violated due to physical

separation (Manly et al., 2007).

To overcome the issues associated with RSFs alternative methods have been developed,

in the form of step selection functions (Forester et al., 2009), that account for spatial and

temporal auto-correlation of telemetry locations and model resource availability so that

it varies within individual animals in space and over time.
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3.2.2 Step selection functions (SSFs)

SSFs are a mechanistic movement model derived from locally biased correlated random

walks, where an animal’s movement decisions are influenced by the local environmental

conditions in its immediate vicinity. Mathematically, SSFs are functions that evaluate

the effects of environmental features on the movement decisions of animals. SSFs pro-

vide a more biologically plausible and realistic comparison between what is used and

what is available by incorporating movement characteristics of the animal, so available

locations are constrained to be within range of a typical movement step and habitat

selection is conditioned on the movement (Forester et al., 2009; Thurfjell et al., 2014).

SSFs extend RSFs by combining a resource-independent movement kernel, which de-

scribes the animal’s movement characteristics in the absence of resource selection, with

a habitat selection function, which describes how the animal selects resources when not

constrained by movement. SSFs account for factors such as distance and turning angle

of the animal’s movements, and they relax the assumptions of independence commonly

associated with RSFs. This combination allows used and available locations to share the

same starting point but different end points due to variations in distance and turning

angle.

Available locations for an animal at a particular time step are generated by sampling

from a distribution of turning angles (heading between two sequential locations) and

step lengths (distance between two consecutive locations) derived from the movement

data. Popular choices for the distribution of the step lengths are the Gamma or Weibull

distributions, while turn angles are typically sampled from von Mises or wrapped

Cauchy distributions. Alternatively, steps may be sampled directly from the empiri-

cal distribution given by the movement data (Fortin et al., 2005). SSFs are fitted using

standard conditional logistic regression with a matched case-control design, where cases
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are the observed steps and controls are the randomly sampled steps. In an SSF model,

the probability of an animal moving to a location xt+1 given it is at location xt is given

by

p(xt+1|xt) =
ϕ(xt+1|xt)w{c(xt+1)}∫

Ω ϕ(z|xt)w{c(z)}dz
, (3.4)

where ϕ(xt+1|xt) is the resource-independent movement kernel (probability of moving

from x to xt+1 in a homogeneous landscape), and w{c(xt+1)} is the attractiveness of the

resources which typically takes an exponential form,

w{c (xt+1)} = exp
[
β1c1(xt+1) + β2c2(xt+1) · · ·+ βpcp(xt+1)

]
. (3.5)

The denominator is a normalising constant to ensure that eqn. 3.4 is a valid probability

distribution with respect to xt+1.

Despite being widely used in resource selection modelling, step selection models pro-

duce biased estimates of the resource selection coefficients (Forester et al., 2009; Thurfjell

et al., 2014) due to the separation of the movement and resource selection processes (Av-

gar et al., 2016). To rectify the biased estimates produced by SSFs, including movement

characteristics when fitting the model (step length, or natural logarithm of step length

or turning angle) is required (Fieberg et al., 2021; Forester et al., 2009). Similarly, the SSF

framework does not take into account how the characteristics of an animal’s movement

may change when in a particular environment, thus making it difficult to address biolog-

ical questions such as, does the animal move faster or slower when in a particular habitat

type, or does the animal’s movement tend to be more or less persistent when moving

in a particular environment. To address such questions and enable unbiased estima-

tion of resource selection coefficients, Avgar et al. (2016) extended SSFs and proposed a

new class of resource selection models termed integrated step selection functions (iSSFs)
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that simultaneously estimate movement and resource selection parameters as the prod-

uct of two independent kernels (a selection-free movement kernel and a movement-free

selection function). The probability density function in location x at time t is given by

f (xt|xt−2,xt−1; β,θ) =
ϕ(xt−2,xt−1,xt;θ)w{c(xt); β}∫

Ω ϕ(xt−2,xt−1,z;θ)w{c(z); β}dz
, (3.6)

where ϕ(xt−2,xt−1,xt;θ) is a selection-free movement kernel, and w{c(xt); β} is a movement-

free selection function. The denominator in eqn. 3.6 is a normalising constant.

3.2.3 Selection coefficients and the utilisation distribution

While SSFs enable the understanding of how animals select resources at a fine spatio-

temporal scale, the resource selection parameters estimated by standard SSFs and iSSFs

do not directly translate to predictions of the long term space use by animals (Barnett

and Moorcroft, 2008; Moorcroft and Barnett, 2008; Signer et al., 2017). This means that

the coefficients of eqn. 3.1 are not the same coefficients as eqn. 3.5 despite their apparent

similarity. Therefore, in order for SSFs coefficients to converge to the long term space

use, numerical simulations of fitted SSF models are required in order to estimate the

utilisation distribution (Potts et al., 2014; Signer et al., 2017, 2024), which are generally

challenging to implement and computationally expensive. Ecologically, however, the

selection of resources at the broad scale is the consequence of movement processes that

occur or are observed at the fine scale, hence a model fit to these fine scale processes

should in principle to be able to directly estimate long-term space use (Michelot et al.,

2019a).

To solve this issue, Michelot et al. (2020, 2019a) make use of the fundamental properties

of Markov chain Monte Carlo (MCMC) methods and propose the MCMC step selection
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model. MCMC methods are a widely used technique in Bayesian inference for sampling

from posterior distributions. The transition probabilities of an MCMC sampler are spec-

ified so that the long term stationary distribution of the chain will converge to the target

posterior distribution. Michelot et al. (2019a) design a step selection model that proposes

an analogy between the movement of an individual animal and the steps of an MCMC

sampler so that the fine-scale step selection rules are guaranteed to converge to the pa-

rameters of the underlying long term utilisation distribution. To implement this, they

developed a rejection-free MCMC sampler which they termed the local Gibbs sampler.

A key characteristic of the local Gibbs sampler is the introduction of an intermediate

random step into the standard step selection mechanism so that eqn. 3.4 becomes,

p(xt+1|xt) = w{c(xt+1)}
∫

µ∈Ω

ϕ(xt+1|µ)ϕ(µ|xt)∫
z∈Ω w{c(z)}ϕ(z|µ)dz

dµ (3.7)

where µ is the random intermediate step, and ϕ(xt+1|µ) is a symmetric, resource-independent

movement kernel. The intermediate random step is not intended to model animal move-

ment behaviour but is a technical requirement that enables the construction of a valid

transition kernel.

Due to the design of the movement step the long term stationary utilisation distri-

bution and the fine-scale resource selection process are unified and the coefficients of

w{c(xt+1)} in eqn. 3.7 may be used directly to make predictions of the long term space

use of an animal. This is illustrated in Fig 3.1 which shows the theoretical utilisation dis-

tribution and the simulated utilisation distribution of an animal following the movement

process described in eqn. 3.7.

The MCMC step selection approach provides valuable insight into the movement and

resource selection studies, and is able to provide uncertainty quantification by estimat-
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Figure 3.1: Simulated and theoretical utilisation distributions for an MCMC step se-
lection model. A) and B) show random covariates generated using Gaussian random
fields that represent an attractive and a repelling environmental covariate, C) theoretical
utilisation distribution of animals using movement parameters β0 = 0.5, β1 = −0.8 and
the distribution function given by eqn. 3.2, D) simulated utilisation distribution of an
individual using the MCMC step selection movement model using parameters β0 = 0.5,
β1 = −0.8.

ing the variance of the maximum likelihood estimate using the Hessian matrix. This

paper aims to take this process one step further by proposing variational inference (VI)

to quantify uncertainty in step selection models within a Bayesian framework, enabling

more robust inference for conservation planning and environmental prediction and sup-

porting a more precise understanding of long-term space use by animal populations.
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3.3 Methods

3.3.1 Synthetic data generation

In order to test the accuracy of our proposed approach and to demonstrate the amount

of uncertainty inherent in step selection models, we simulate synthetic movement data

based on known parameters and investigate the performance of our method in recov-

ering those movement parameters and associated posterior distributions. We there-

fore simulate animal movement in a 2-dimensional environment in which we assume

movement steps are selected following the process proposed by Michelot et al. (2019a)

whereby an intermediate random step is chosen, followed by a resource dependent step.

We simulated environmental covariate layers as Gaussian random fields with periodic

boundary conditions by sampling from a 2-dimensional Gaussian process with a peri-

odic covariance function (Rasmussen, 2006) to mimic the landscape feature of a real case

study (see Fig. 3.1A and B for example spatial fields) while removing any effects of the

boundary. The covariance kernel used was therefore,

k(x, x′) = α2 exp
(
− 2
ℓ2 sin2

(π

p
|x − x′|

))
(3.8)

where α2 is the amplitude and a value of 1 was used for both fields, p is the size of the

domain, ℓ is the length scale parameter where for spatial field A, ℓ = 0.4 and for spatial

field B, ℓ = 0.9. The spatial fields were restricted to a domain of Ω = [0,50].

Subsequently, we simulated synthetic movement data representing the selection process

of animals in a 2-dimensional geographical space, with multiple runs consisting of sim-

ulated movement tracks of 10,000, 100,000, and 1,000,000 steps each. Each movement

track started at the center of the domain and periodic boundaries were employed to
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Table 3.1: Movement parameters used for simulation of synthetic movement locations
data. Note that there is no significant difference between the use of positive and negative
coefficients in the table below and identical distributions would be obtained if both the
coefficient and the covariate were multiplied by minus one (-1)

.

Coefficients β1 β2
Positive-positive 1.2 1.8

Negative-negative -1.5 -1.8
Positive-negative 0.5. -0.8
Negative-positive -1.5 1.8

ensure the animal remained within the domain. At each time step t=1,2,...n, an interme-

diate step µt was generated as a random offset from the starting location µt ∼N
(

xt, σ2

2

)
.

From this intermediate location, a set of 100 potential random locations were generated

by sampling from the 2-d normal distribution N
(

µt,
σ2

2

)
. For each potential point, the

environmental covariates at the location were calculated, and the next point was selected

with probability proportional to the standard resource selection function of Eq. 3.1. The

chosen point was then the location of the animal at time t + 1 and became the starting

point for the next step. The resource independent movement parameter σ was set to 1 in

all simulations whereas the resource selection coefficients that determined the response

to each of the covariate fields, denoted by β1 and β2, were either specified as a positive

value indicating selection of resources or a negative value indicating the avoidance of

resources (see Table 3.1 for the values employed in the simulations).

3.3.2 Model likelihood

Similar to any movement and resource selection studies, the framework presented here

describes a step selection model with parameters that specify the resource-independent

movement process of the animal and the parameters of the target utilisation distribu-

tion, denoted β with βi defining the response to the ith covariate, which describe how

animals’ select resources (avoidance or selection) on a landscape (habitat selection pa-

rameters). The full parameter set, which we denote θ, is estimated simultaneously from
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environmental layers and movement data using variational inference in a manner which

ensures that the parameters inferred from fine-scale movement data define the long-term

utilisation distribution of the animal.

Variational inference is a form of approximate Bayesian inference and as such approx-

imates the posterior distribution p(θ|X) where X represents the sequence of animal lo-

cations X = {x1,x2, ...,xT}. In standard Bayesian inference this posterior distribution is

found by applying Bayes’ rule,

p(θ|X) = L(X|θ)p(θ)
p(X)

(3.9)

where L(X|θ) is the likelihood of the data given the parameters, p(θ) is the prior dis-

tribution of the parameters, and p(X) is the marginal likelihood of the data. In general,

the marginal likelihood is intractable and so inference typically proceeds using sampling

methods or through the use of an approximation. In either scenario it is necessary to

calculate the likelihood function L(X|θ).

Since the likelihood factorises it can be written as,

L(X|θ) =
T−1

∏
t=1

p(xt+1|xt,θ) (3.10)

and the probability of each step is given by eqn. 3.7, i.e.

p(xt+1|xt,θ) =
∫

µ∈Ω

w{c(xt+1)}ϕ(xt+1|µ)∫
z∈Ω w{c(z)}ϕ(z|µ)dz

ϕ(µ|xt)dµ. (3.11)

For the resource independent movement kernel we use a 2-dimensional normal distri-

bution so that ϕ(x|y) =N (y, σ2

2 ) where y represents the current steps (current locations)

and x the potential end steps, so that θ = {β1, β2, · · · , βn,σ}. Since the movement ker-
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nel is a Gaussian we employ Gauss-Hermite quadrature to approximate the integrals of

eqn. 3.11. We use 3 Gauss-Hermite points so that the integral is exact if the resource

field can be approximated as a 5 degree polynomial within the length scale of a move-

ment step which leads to 9 Gauss-Hermite points and associated function evaluations in

2-dimensions. Since typically the environmental covariates will vary slowly with respect

to the length scale of an average movement step we expect the error introduced by this

approximation to be negligible.

While a Laplace approximation could potentially reduce computational cost, it is less ap-

propriate for the type of integral appearing in eqn. 3.11, where the integrand comprising

the product of the movement kernel and resource selection function is not guaranteed

to be sharply peaked or well-approximated by a local Gaussian expansion. In particular,

heterogeneous or multi-modal landscapes may give rise to multiple regions of elevated

probability mass, violating the unimodality and local quadratic assumptions underlying

Laplace’s method. As a result, this could lead to underestimation of the integral and

biased likelihood contributions. Our implementation uses fixed-point Gauss-Hermite

quadrature, which, while not adaptive, provides a controlled and accurate approxima-

tion given the assumed local smoothness of the covariate fields relative to movement

scale.

Given eqn. 3.11, along with a set of telemetry locations, and a set of covariate grids

for each environmental layer, the log likelihood function may be computed directly.

We employ the machine learning library TensorFlow (Abadi et al., 2016) to perform

these calculations since it facilitates parallel computation of the likelihood using GPU-

accelerated hardware. Note that calculating the nested integrals of eqn. 3.11 requires

the computation of the inner integral for each of the Gauss-Hermite points of the outer

integral and is the limiting step in terms of memory when parallelising the computation.
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3.3.3 Variational inference

Due to the volumes of data associated with modern movement ecology studies and the

complexity of the likelihood computation for the step selection model, it is likely to be

infeasible to sample from the posterior distribution using Markov chain Monte Carlo

methods in most cases. Instead, we propose the use of variational inference (Blei et al.,

2017) to obtain approximate posterior distributions of the model parameters. In varia-

tional inference, the posterior distribution is approximated by a variational distribution

qλ that is restricted to belong to a family of distributions parameterised by λ. The varia-

tional parameters λ are then optimised so that the difference between the true posterior

and the approximating posterior is as small as possible given the distribution family. In

this way the sampling associated with MCMC methods is replaced with an optimisa-

tion process which is not only more efficient in most cases, but also enables the use of

stochastic gradient descent techniques developed in the domain of deep learning such

as automatic differentiation and adaptive optimisation schemes.

In order to minimise the difference between the true posterior and the approximating

posterior, it is necessary to define a distance metric between the two distributions. As is

standard in variational inference, we use the Kullback-Leibler divergence (Kullback and

Leibler, 1951) as the distance metric. The Kullback-Leibler (KL) divergence between the

true posterior distribution p(θ|X) and the variational distribution qλ(θ) is given by,

KL[qλ(θ)||p(θ|X)] =
∫

qλ(θ) log
(

qλ(θ)

p(θ|X)

)
dθ. (3.12)

An obvious issue with the KL divergence is that it depends on the unknown posterior
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distribution p(θ|X) which is the quantity we are trying to approximate. However, as

p(θ|X) = p(X|θ)p(θ)
p(X)

(3.13)

we can rewrite the KL divergence as

log p(X)−
∫

qλ(θ) log p (X|θ)dθ+
∫

qλ(θ) log
(

qλ(θ)

p(θ)

)
dθ. (3.14)

Since log p(X) does not depend on qλ(θ) minimising the KL divergence between the

variational distribution and the true posterior is equivalent to maximising,

∫
qλ(θ) log p (X|θ)dθ− KL [qλ(θ)||p(θ)] (3.15)

a quantity that is known as the evidence lower bound (ELBO). It can therefore be seen

that maximising the ELBO represents a trade-off between maximising the expected log-

likelihood of the data under the variational distribution and minimising the KL diver-

gence between the variational distribution and the prior distribution. Optimisation is

achieved using stochastic gradient descent which enables the data to be processed in

batches. The KL divergence term may be calculated in closed form for many paramet-

ric distributions, however the expected log-likelihood is typically intractable. Since we

employ a multivariate Gaussian distribution as the family for the variational distribu-

tion we again make use of Gauss-Hermite quadrature to approximate the expectation

term of eqn. 3.15. All numerical computation was undertaken using TensorFlow (Abadi

et al., 2016) and TensorFlow Probability (Dillon et al., 2017). We used diffuse priors to

estimate selection and avoidance parameters, reflecting the fact that these coefficients

are unbounded and can take on both positive and negative values. This choice implies

no prior assumption of preference or avoidance for any covariate, while also avoiding

64



undue constraints on ecologically plausible effect sizes. By allowing the coefficients to

vary broadly, the priors support a wide range of potential selection strengths and let

the data specifically, the covariate values observed in animal movements drive posterior

inference. The priors used in the model are specified as follows:

β1 ∼ N (0,10) ,

β2 ∼ N (0,10) ,

3.4 Results

To evaluate the performance of our approach we simulated movement datasets of vary-

ing sizes and attempted to infer the movement and resource selection parameters that

were employed in the simulations. We employed a multivariate normal distribution

as the variational posterior and used an optimisation scheme to maximise the evidence

lower bound described above. In order to assess model convergence we examine how the

optimised posterior distribution changes between subsequent epochs and cease model

training when the change in the distribution falls below a threshold value.

In Fig. 3.2 we show the posterior distributions of the recovered resource selection pa-

rameters for each of the four combinations of parameters used in the simulations. The

true values of the parameters are indicated by the vertical dashed line. It can be seen

that the recovered parameters are approximately to the true (known) values and that the

uncertainty in the parameters decreases as the number of observations increases. While

there is not an exact match between the recovered posterior mean values and the true

values it can be seen that the true values are contained within the 95% credible intervals
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Figure 3.2: Posterior probability distribution of recovered movement parameters using
VI from the simulated data. Left column, middle column and right column represent
10,000, 100,000, and 1,000,000 observations, respectively. Note, the scale of the axes are
changing from left to right to account for the reduction in uncertainty as the number
of observations increases. The movement parameters values for first row A,E, and I are
β1 = 0.5 and β2 = −0.8; second row B,F, and J is β1 = −1.5 and β2 = −1.8; third row C,
G, and K is β1 = −1.5 and β2 = 1.8, and Last row D, H, and L is β1 = 1.2 and β2 = 1.8.
The vertical dashed line (black in colour) indicates the true values.

of the optimized posterior distributions (Table S1).

To further explore the uncertainty quantification of the recovered resource selection pa-

rameters, we computed the posterior Z-scores of the true simulation values (β1, β2) for

10 independent runs of synthetic data generation and subsequent variational inference.
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This gave 240 scores corresponding to each of the 10 runs for four combinations of the

two resource selection parameters and three observation sizes. We then compared the

quantiles of the posterior z-scores with a standard normal distribution. The QQ-plot

of the Z-scores is shown in Fig. 3.3. It can be seen that the Z-scores are approximately

normally distributed meaning that the posterior distributions obtained via our frame-

work are appropriately representing the uncertainty in the resource selection coefficient

estimates.

Figure 3.3: QQ-plot for 240 Z-scores of recovered resource selection parameters (β1, β2)
from 10 runs for each combination of resource selection parameter (see Table 3.1) with
varying observation sizes of 10,000, 100,000, and 1,000,000.

While the analysis of posterior Z-scores of the true values provide a useful metric for

assessing the uncertainty in the recovered parameters for our simulation study, this ap-

proach requires the true values to be known. We therefore also include a comparison of

the results of VI on the smaller movement dataset with an MCMC sampling approach

on the same data. For 10,000 observations we were able to run a Hamiltonian Monte

Carlo sampler for a single simulated dataset for each of the 4 parameter combinations

within a reasonable time scale. Results from this analysis are shown in the supplemen-

tary material (Fig. S1 and Table S2) from which it can be seen that the results from HMC
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are an almost exact match to the results obtained with VI.

Finally, to emphasise the importance of accounting for uncertainty in estimates of selec-

tion coefficients when scaling to predictions of an animal’s utilisation distribution, we

performed simulations of an animal responding to a single environmental covariate. We

ran 10 independent simulations for dataset sizes of 10,000, 100,000, and 1,000,000 obser-

vations with the environment modelled as a simple sine function that varied in one axis

only for ease of visualisation. A plot of the environment is shown in Fig. 3.4A. We then

used the VI approach to obtain the maximum a posteriori probability (MAP) estimate,

defined as,

θ̂MAP = argmax
θ

p(θ | X) = argmax
θ

[p(X | θ)p(θ)] , (3.16)

for the selection coefficient for each of the independent simulations. Since the predicted

utilisation distribution can be obtained directly from the selection coefficient we then

computed the predicted distribution for each of the simulations and these are plotted

in Fig. 3.4B-D along with the true distribution. The results show that for 10,000 obser-

vations there is large variation in the utilisation distribution derived from each of the

simulations even though all used the same parameters and initial conditions. This is

consistent with the observed levels of uncertainty when considering the posterior distri-

bution obtained from the analysis of a single data set of the same size. As the size of the

dataset increases the variation between the different simulation results decreases, and

for 1 million observations all predictions give a consistent picture of animal space use.

This highlights that uncertainty in estimated space use patterns is strongly influenced by

the number of observations. However, in practice, the informativeness of a dataset also

depends on its temporal coverage and resolution. A large number of closely spaced ob-
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servations over a short time window (e.g., 1 million locations over 24 hours) may reduce

uncertainty in fine-scale estimates but may fail to capture broader temporal patterns

in movement behaviour or habitat use. Conversely, a sparser dataset collected over a

longer period (e.g., 10,000 locations over a year) may better reflect long-term or seasonal

dynamics but with greater uncertainty in short-term utilisation patterns. Therefore, both

the number of observations and temporal extent of data collection influence the overall

uncertainty and should be balanced according to the ecological processes or specific

questions of interest.
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Figure 3.4: A) Simulated map of environmental covariate used to infer utilisation

distribution, B) Estimated utilisation distribution using 10,000 observations across 10

runs, C) Estimated utilisation distribution using 100,000 observations across 10 runs, D)

Estimated utilisation distribution using 1000,000 observations across 10 runs. Horizontal

dashed line (red in colour) represent true utilisation distribution, and blue in colour is

the estimated across 10 runs. The movement parameter used during the simulation was

β1 = 0.1.
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3.4.1 Case study

To showcase the applicability of the VI approach on a real animal tracking dataset, we

performed an analysis with GPS data obtained on a fisher tracked near Albany, New

York, USA (Signer et al., 2019). Location data were collected between December, 2010

and January, 2011, and consisted of 3,004 locations. Further details on data collection

can be found in LaPoint et al. (2013) and Fieberg et al. (2021). The environmental co-

variates used to estimate fisher’s resource selection were elevation, population density,

and a categorical land use variable with three categories: forest, grass and wet which

are shown in Fig. 3.5 (again further details can be found in (Fieberg et al., 2021)). We

used our VI framework to estimate habitat selection parameters and inferred posterior

probability distributions which are presented in Fig. 3.6. For continuous covariates, our

analysis reveals that fisher tends to select areas with relatively high elevation and low

human population density, although the 95% credible interval for the effect of human

population density contains zero. For the categorical variables, fisher avoids grass areas

compared to forest, but we observed almost no attraction to, or avoidance of, wet areas

compared to forest.
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Figure 3.5: Covariate maps for the fisher analysis. A) Population density, B) Elevation,

C) Grass area, and D) Wet area. The black lines represent the fisher’s movement track.

The covariate layers for population density, elevation, grass, and wet have spatial reso-

lutions of 659 meters, 44 meters, 220 meters, and 220 meters, respectively

.
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Figure 3.6: Posterior probability distribution of inferred habitat selection parameters

using VI from fisher’s locations data. First from left is the human population density

(β1) with a posterior mean of -0.15 and posterior standard deviation of 0.33, second from

left is the elevation (β2) with a posterior mean of 0.86 and posterior standard deviation

of 0.33, third from left is the grass (β3) with a posterior mean of -1.38 and posterior

standard deviation of 0.69, fourth from left is the wet (β4) with a posterior mean of -0.37

and posterior standard deviation of 1.32. Forest is the reference category for land use.

3.5 Discussion

We have presented an efficient Bayesian inference scheme for scalable step selection

models that provides approximate posterior distributions of resource selection coeffi-

cients. This approach reveals that there are substantial levels of uncertainty in estimates

of resource selection coefficients even when using datasets typically considered large for

movement ecology studies, such as circa 10,000 observations. When scaling selection

estimates to predictions about long term space use, this uncertainty can significantly

impact the accuracy and utility of these predictions. In the context of animal move-
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ment data, such uncertainty may arise from limited sampling duration, GPS location

error, missing data due to device malfunction, or biased coverage across individuals,

time periods, or spatial extents. Likewise, environmental covariates may introduce un-

certainty due to coarse spatial or temporal resolution, measurement error, or missing

values. Addressing these sources of uncertainty and developing methods to quantify

them is essential for producing robust and ecologically meaningful space use predic-

tions, an approach implemented in this study through the use of variational inference to

quantify uncertainty in resource selection and avoidance parameters.

There are several key advantages to the approach we propose here. Firstly, it is fast and

scalable making it suitable for handling large datasets. Notably, the time taken to op-

timise the variational distribution in a single gradient step does not scale linearly with

the number of observations due to the use of mini-batching, meaning that significant

computational savings can be achieved (Zhang et al., 2018). This is in contrast to MCMC

sampling approaches which use the entire dataset to evaluate the likelihood in each

step of the sampler. In addition, it relies on gradient-based optimisation, where the pa-

rameters of the variational distribution and any associated hyper-parameters within the

model are optimised with stochastic gradient descent. This enables the use of techniques

such as automatic differentiation and adaptive optimisation schemes that have received

significant attention in the past years due to their importance for training deep neural

networks. Secondly, it offers explicit posterior probability distributions of the estimated

habitat selection parameters, allowing for uncertainty quantification. By combining the

method of Michelot et al. (2019a) with variational inference, we present a comprehensive

framework for analysing animal movement data that is both computationally efficient

and provides a detailed understanding of the uncertainty in the estimates. This enables

the uncertainty in resource selection coefficients to be propagated to estimates of long
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term space use in an efficient and rigorous way. While alternative techniques, such as

Potts et al. (2014); Signer et al. (2017, 2024), for estimating utilisation distributions from

step selection coefficients do exist, they can be challenging to implement and compu-

tationally expensive, especially when performing multiple simulations to account for

parameter uncertainty.

Currently, standard practices in multiscale modelling frameworks for animal movement

frequently rely on methods such as maximum likelihood estimation (MLE) to estimate

movement, resource avoidance, and selection parameters. However, MLE-based ap-

proaches have been shown to perform poorly when data is limited and complex models

are used, which is a common scenario in movement ecology (Ferguson, 1982; Kéry and

Schaub, 2011). Our study advances existing approaches by offering improved computa-

tional efficiency and approximate posterior distributions of model parameters that may

be employed to create predictions of space use that incorporate systemic uncertainty.

Furthermore, the proposal to use VI in multiscale step selection models is particularly

timely, as the findings of previous studies have shown that Bayesian, machine learning,

and deep learning approaches outperform conventional statistical inference in species

distribution modelling, particularly in terms of generalisability to novel ecosystems (Al-

dossari et al., 2022) and predictive accuracy of suitable habitats (Noda et al., 2024).

Moreover, the differences in predictions of utilisation distribution between observations

of varying sizes (Fig. 3.4B-D) explicitly highlight the importance of propagating the un-

certainty in parameter estimates into estimates of utilisation distributions. In a con-

servation context, this creates the risk of failing to pinpoint correctly animal utilisation

hotspots in protected areas, misallocation of sparse and valuable resources that need to

be channelled into the protection of animals, and leading wildlife managers to make

incorrect decisions due to overconfidence in predictions and failure to properly account
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for uncertainty (Jansen et al., 2022; Rocchini et al., 2011).

The results from the case study in Section 3.4.1 indicate that fisher selects areas with

high elevation and avoids grass areas compared to forests. These findings are consistent

with the results of a previous study by Fieberg et al. (2021), which employed integrated

SSFs to infer habitat selection parameters using fisher’s location data. In that study,

available steps were generated by sampling step lengths from a gamma distribution

and turning angles from a von Mises distribution. In contrast to the SSF approach,

the parameters inferred from the variational inference method can directly be used to

estimate fisher’s utilisation distribution without the need for simulation, offering formal

uncertainty quantification in an animal’s habitat selection parameters and the resulting

utilisation distribution.

The development of efficient inference methods for animal movement data is of criti-

cal importance for conservation management and planning due to the increasing avail-

ability of GPS-tagged animal telemetry data and the growth in the size of movement

datasets (Joo et al., 2020; Nathan et al., 2022). Processing these datasets within a rea-

sonable time scale is essential if the information is to be used in making informed con-

servation management decisions such as where to allow infrastructure development in

protected areas while ensuring minimal impact to migratory, nomadic, dispersing, and

sedentary animals. Our approach offers such a possibility by estimating the degree of

uncertainty around the predictions of how animals use or avoid certain landscape fea-

tures, such as accessing forage while avoiding human infrastructure. The application of

this approach is a useful compromise in modeling animal resource selection and move-

ment, quantifying uncertainty, and minimising computational cost.

In this study, a symmetric, resource-independent movement kernel was specified using

a Gaussian distribution. This assumption offers significant computational and analytical
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advantages due to its smooth and symmetric form and effectively captures movement

patterns where short steps are more frequent than long ones, which is consistent with

many animal telemetry datasets. However, this simplification may not fully capture the

movement of animals in real-world, particularly in cases where individuals take long

distance steps more frequently than the Gaussian tail would allow. This can lead to a

misrepresentation of movement behaviour, although it is unlikely to substantially bias

habitat selection parameters (Michelot et al., 2020). The discrepancy primarily arises

from the inability of the Normal kernel to represent heavy-tailed movement distribu-

tions and directional biases, thereby underestimating the probability of large movements.

While the Normal kernel remains useful for reliable inference of habitat selection and

avoidance parameters, alternative approaches such as incorporating a random availabil-

ity radius modelled using a gamma distribution may better capture variation in step

lengths and movement speed (Michelot et al., 2020), thus improving the ecological real-

ism of the movement process.

In summary, we have described a Bayesian framework that is able to accurately infer

resource selection and movement coefficients from synthetic movement data. By eval-

uating the performance of our framework in a range of simulated scenarios we have

shown how it is able to consistently recover different combinations of selection and

movement parameters and quantify their uncertainty in an efficient and scalable man-

ner. Our results highlight the importance of obtaining posterior distributions for model

parameters rather than simply point estimates especially when making predictions that

span multiple scales, from fine scale decision-making to the long-term use of space by

animal populations.
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Chapter 4

Revealing the effects of anthropogenic

structures on the spatial distribution of

migratory wildebeest

Note:

The content of this chapter is currently under review for publication in the Journal of

Applied Ecology.
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Abstract

The increasing interaction between wildlife and humans, both within and outside pro-

tected areas, highlights the importance of understanding how migratory animals re-

spond to anthropogenic disturbance. To effectively safeguard migratory populations,

we must understand their habitat use, particularly in response to the expanding pres-

ence of human-made structures in their environments. In this work, we employed a

multiscale step selection model within a Bayesian framework to explore the impact of

human-made structures on the movement patterns and habitat preferences of migratory

wildebeest in the Serengeti. Our findings reveal that wildebeest tend to avoid areas

near these structures, even in the core of the protected area where tourist infrastructure

is the most prevalent. Although buildings do not entirely exclude wildebeest, they do

reduce the amount of time wildebeest spend in their vicinity. Individuals weigh multi-

ple trade-offs in deciding whether to remain or move during migration, and if animals

forego access to key resources in the areas around buildings, this could lead to reduced

fitness and demographic consequences that may not be immediately apparent. We fur-

ther find that increasing numbers of co-located buildings have a diminishing rather than

a compounding effect on the spatial distribution of wildebeest, meaning that clustering

buildings away from key grazing areas could be a beneficial strategy. Synthesis and

Applications: In light of these findings, we recommend careful regulation and spatial

planning of infrastructure development within ecosystems that considers the nuanced

effects human-made structures can have on the behaviour and habitat use of migratory

animals.
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4.1 Introduction

Protected areas worldwide are experiencing increases in anthropogenic disturbance,

driven by expanding human activities including tourism, commercial development, and

settlement within boundaries (Dirzo et al., 2014; Jones et al., 2018). The impacts of dis-

turbance on wildlife populations and implications for the sustainable conservation of

biodiversity within protected areas is unknown. Leveraging nature capital for tourism

has emerged as a prominent strategy within the field of conservation management in re-

cent years, particularly in protected areas in Africa (Lindsey et al., 2020). This has led to

a significant proliferation of hard infrastructure development, including road networks

and tourist accommodations such as campsites, lodges, and hotels within these once

pristine areas (Larsen et al., 2020; Tverijonaite et al., 2018). Of particular concern is how

wildlife respond to structural alterations in their habitats, with documented effects rang-

ing from behavioural changes such as reduced movement (Doherty et al., 2021; Stabach

et al., 2022), shielding effects (Berger, 2007) and noise avoidance (Zanette et al., 2023), to

physiological responses including elevated stress hormones (Creel et al., 2002), and ulti-

mately to population-level impacts through altered species interactions (Shannon et al.,

2017) and reduced reproductive success (Phillips and Alldredge, 2000). Beyond these

direct effects, animals may abandon areas where vital habitat features are fragmented,

where forage quality and quantity decline, or where the perceived risk outweighs the

value of the resource following infrastructure development. Understanding these re-

sponses at fine spatial and temporal scales is therefore crucial for wildlife managers and

policy makers to evaluate and improve conservation planning strategies.

Migratory species are particularly vulnerable to anthropogenic disturbances because

they require unimpeded access to seasonally available resources that are spatially sepa-
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rated across large landscapes (Kauffman et al., 2021). Migratory animals often have to

trade-off resource acquisition while avoiding perceived risks as they navigate through

dynamic and heterogeneous ecosystems (Hopcraft et al., 2014, 2010). These trade-offs

can have consequences for their individual fitness as well as the ecological community,

given their influence on shaping ecosystem structure, functions, and processes (Dobson,

2009; Wilcove and Wikelski, 2008). Moreover, the concurrent effects of global environ-

mental change and the increase in human disturbance pose dual threats to migratory

animals by limiting the availability of suitable habitats in both space and time (Stabach

et al., 2022; Wilcove and Wikelski, 2008), intensifying competition for limited resources

in less productive areas (Stabach et al., 2022), and disrupting behavioural and migratory

patterns (Aikens et al., 2022; Larsen et al., 2020; Paun et al., 2022; Veldhuis et al., 2019).

To protect migratory populations over the long-term, it is essential to accurately identify

the threats to their viability. For example, assessing the uncertainty in direct and indirect

anthropogenic impacts on animal behaviour can help conserve species and strengthen

ecosystem resilience.

Understanding the response of animals to anthropogenic pressure requires an efficient

modelling framework that is sufficiently flexible to be able to model fine-scale move-

ment behaviours as well as being able to quantify uncertainty in predictions about how

individual decisions scale to produce long-term shifts in space use at the population-

level (Masolele et al., 2024; Michelot et al., 2020, 2019a). Many studies that model move-

ment decisions as a response to anthropogenic disturbances focus on features such as

roads (Prokopenko et al., 2017; Scrafford et al., 2018; Singh et al., 2024) and fences (Robb

et al., 2022) using step selection functions (SSF) and general and generalised linear mod-

els by estimating the change of movement metrics (such as home range, movement dis-

tance, and speed) (Aikens et al., 2022; Doherty et al., 2021; Mendgen et al., 2023; Tucker
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et al., 2023), and fences using barrier behaviour analysis (Xu et al., 2021). However,

how these effects of anthropogenic disturbances on individual animal movement deci-

sions translate into animal’s space use at the population level remains largely unknown.

To accurately predict these processes and movement decisions at the population level,

multiscale models are required that are capable of linking fine-scale animal movement

decisions with predictions of animal space use at the broad scale (i.e. the long-term util-

isation distribution) (Michelot et al., 2020). This translation from individual movement

to population-level space use is achieved by modelling movement as a stochastic pro-

cess, where both short-term step selection and long-term utilisation arise from the same

underlying habitat selection mechanism. In other words, repeated application of local

movement rules leads to emergent long-term space-use patterns. For multiple individ-

uals, movement data are discretised into steps, and the overall likelihood of observed

tracks is calculated as the product of the likelihoods of individual steps (Michelot et al.,

2019a).

The Greater Mara-Serengeti ecosystem is currently experiencing rapid transformation as

a result of landscape modifications driven by infrastructure development (Larsen et al.,

2020). Examining the response of migratory herbivores to these landscape changes is

often overlooked since responses are difficult to detect and are not a primary area of

focus for wildlife managers when compared to other drivers of biodiversity decline such

as poaching. However, these nonlethal effects on animal populations could potentially

lead to large-scale impacts on the migratory system, as many of these species operate

at their physiological limits and rely on large and extensive undisturbed landscapes to

maintain viable and self-sustaining populations (Hopcraft et al., 2014). The Serengeti

wildebeest (Connochaetes taurinus) serves as a prime example of such species, which in

addition to being an iconic migratory species, also serves as an indicator species in the
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Figure 4.1: A) A map of the Serengeti ecosystem with wildebeest GPS locations shown
as blue points, black line indicates the boundary of the Serengeti ecosystem and asso-
ciated protected areas, B) Building density per square kilometer within the Serengeti
ecosystem and within a buffer zone of approximately 20 Kilometers. Note, the colormap
employs a log scale. (C-E) Satellite images illustrating selected locations within distinct
regions of the ecosystem along the wildebeest migration route (C) Maasai Mara National
Reserve in Kenya, (D) Seronera in the Serengeti National Park and (E) Ndutu within the
Ngorongoro Conservation Area Authority. Blue lines in the satellite imagery show the
outlines of buildings.
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ecosystem (Mduma et al., 1999; Torney et al., 2018), and are sensitive to habitat changes

resulting from human-induced disturbance (Kavwele et al., 2022).

In this work, we explore how movement decisions of wildebeest are influenced by

human-made structures using a step selection model (Michelot et al., 2019a). This ap-

proach allows us to explore how the presence of buildings affect long-term space use by

migratory wildebeest in the Serengeti. We quantify the behavioural response of wilde-

beest to buildings as a function of distance and determine if there are diminishing or

compounding effects of multiple co-located human-made structures. Our findings aim

to guide spatial planning of infrastructure development within ecosystems by account-

ing for the nuanced effects of human-made structures on the behaviour and habitat use

of migratory animals.

4.2 Methods

4.2.1 Empirical data collection

GPS collars were deployed on 57 migratory wildebeest (Connochaetes taurinus) in the

Serengeti National Park, Tanzania, between January 2019 and September 2023. Because

the acquisition of locations varied among collared migratory wildebeest, we filtered all

data to retain only locations where there was between one hour and less than 24 hours

between successive fixes. The resulting movement data set consisted of 143,268 locations

collected by 57 collared wildebeest. Fig 4.1A shows a map of the Serengeti ecosystem

along with the recorded wildebeest movement data. We obtained the large-scale open

data set that contains the outlines of buildings derived from high-resolution satellite

imagery accessible at open buildings managed by (Sirko et al., 2021). We used version

2 of the open buildings dataset which was created in August 2022 on imagery cover-
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ing 3.91 × 107 km2 of Africa, South and South-East Asia. Building footprint detections

from the open buildings dataset with a confidence score below 70% were discarded.

These detections are derived from satellite imagery using deep learning models, and the

confidence score reflects the model’s estimated likelihood that a detected footprint cor-

responds to an actual building. Fig 4.1B shows a map of buildings per square kilometer

for the Serengeti ecosystem and within a buffer zone of approximately 20 kilometers.

4.2.2 Model inference

In order to assess the effects of anthropogenic structures on the movement and long-term

space use of wildebeest in the landscape, we included a distance to buildings covariate

within a step selection model (Michelot et al., 2020, 2019a). Specifically, we calculated

the distance of a potential location an animal could select to the 10 nearest buildings and

then transformed these distances into a set of covariates that are used within the step

selection model. In the model, the likelihood of a wildebeest moving to a location xt+1

at time t + 1 given it is at location xt at time t is given by

p(xt+1|xt) =

∫
µ∈Ω

w{c(xt+1)}ϕ(xt+1|µ)∫
z∈Ω w{c(z)}ϕ(z|µ)dz

ϕ(µ|xt)dµ. (4.1)

where µ is a random intermediate step, ϕ(xt+1|µ) is a symmetric, resource-independent

movement kernel, and w{c(xt+1)} is the selection function that models preference (at-

traction or repulsion) for the environmental covariates c(x). Implicit in eqn. 4.1 is a

dependence on a parameter vector θ which consists of the selection parameters and a

resource independent movement parameter. The intermediate random step used in the

likelihood calculation is not intended to model animal movement behaviour but is a

technical requirement that enables the model to be fitted to fine-scale movement data

and then used to make predictions of long-term space use (the interested reader should
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refer to (Michelot et al., 2020, 2019a) for details).

The selection function w{c(xt+1)} takes an exponential form and is defined as

exp
[
β1c1(xt+1) + β2c2(xt+1) · · ·+ βpcp(xt+1)

]
. (4.2)

where βi is the selection coefficient for environmental covariate ci. Since any potential

wildebeest response will decrease with increasing distance away from the buildings, we

define the covariates based on a monotonically decreasing function so that

ci(x) =
(

1 + exp
[
α
(
∥x − bi∥ − γ

)])−1

(4.3)

where α,γ are model parameters that control the shape of the function, ∥ · ∥ is the Eu-

clidean norm, and bi is a vector representing the location of the ith nearest building to x.

Adjusting the parameters α and γ will change the shape of the response function. For

example, a larger α will result in a steeper decline in the response as the distance in-

creases, while a larger γ will shift the point at which the response is at half its maximum

further away from the building.

The selection coefficient βi then scales the response to the covariate value ci and may

be positive, meaning that animals are more likely to select locations near to buildings,

or negative, indicating an avoidance response. However, in all scenarios the response

becomes weaker as the distance to the building increases due to spatial attenuation. We

include within the covariate fields potential effects of up to 10 nearest buildings based

on their ranked distances (e.g., first nearest, second nearest, up to the tenth nearest) on

wildebeest selection. Instead of allowing the selection coefficients to be independent of

one another, we impose the constraint that there is a baseline response to the nearest

building (β ≡ β1) and subsequent buildings induce a response that are scaled versions
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of this baseline, i.e.

βi = ωi−1β1 ∀i ∈ {2, .., p} (4.4)

where ω is a model parameter. This enables us to encode the response to an arbitrary

number of buildings with two parameters, while still addressing whether subsequent

buildings have a diminishing effect (ω < 1), a compounding effect (ω > 1), or if the

effect depends only on the Euclidean distance to buildings (ω = 1). The final selection

function is therefore

w (x) = exp

(
N−1

∑
i=0

ωiβ
(

1 + exp
[
α
(
∥x − bi∥ − γ

)])−1
)

(4.5)

The response to buildings is therefore determined by four parameters in our model, the

response to the closest building β1(baseline selection coefficient value), hereafter referred

to as β, the relative effect of additional buildings ω, where ω < 1 indicates a diminishing

effect and ω > 1 indicates a compounding effect, the steepness of any threshold response

to buildings α, and the inflection distance of the response γ. N is the number of build-

ings considered which we set at 10 in our analysis. We also experimented with both

smaller (N < 10) and larger (N > 10) numbers of nearest buildings and observed that

the relationship of interest remained consistent across these thresholds. Therefore, 10

nearest buildings were chosen to minimise unnecessary computational expense while

maintaining the reliability of the results.

Given the wildebeest movement dataset D and the building locations data, we are able to

compute the log likelihood function given in eqn. 4.1. In order to infer model parameters

we employ variational Bayesian inference (Blei et al., 2017) following the methodology

described in (Masolele et al., 2024). The idea behind variational inference is first to pro-
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pose a family of variational distributions with which to approximate an unknown pos-

terior, followed by optimising the parameters of the proposed distribution to minimise

the distance (defined using the Kullback–Leibler divergence) between the approximate

distribution and the true posterior. For our case, we employ an independent Gaussian

distribution as the family for the variational distribution for each parameter. We then

optimise the parameters of the Gaussian distributions and a hyperparameter associated

with the resource independent movement process using a stochastic gradient descent

algorithm (Hoffman et al., 2013). This approach enabled wildebeest telemetry locations

to be processed in batches, which reduces memory requirements and increases compu-

tational efficiency. Three parameters (α,γ,ω) are constrained to be positive by applying

an exponential transform and diffuse priors are employed as follows,

β ∼ N (0,10) ,

lnα ∼ N (0,10) ,

lnγ ∼ N (0,10) ,

lnω ∼ N (0,10) , (4.6)

This choice of priors reflects no prior assumption of preference or avoidance for build-

ings, while avoiding overly restrictive constraints on ecologically plausible effect sizes. It

allows the distances to buildings calculated at the end steps of the migratory wildebeest

movement steps to drive the inference.

The parameters were optimised using stochastic gradient descent with a learning rate of

0.1 and a batch size of 1024, which means that 1024 movement steps were passed to the

optimiser at each iteration, with the dataset shuffled at the end of each epoch. To assess

convergence the change in the variational posteriors after each epoch of training was
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monitored and the algorithm was halted once the posteriors had converged. All anal-

yses were performed in Python using TensorFlow (Abadi et al., 2016) and TensorFlow

Probability (Dillon et al., 2017).

4.3 Results

4.3.1 Displacement effects of buildings in the Serengeti ecosystem

We observe that the presence of anthropogenic structures has a significantly negative

effect on space use by wildebeest. Given the posterior distribution for the selection

coefficient β it is highly probably that this parameter is less than zero, with posterior

mean β̂ = −0.059 (95% CI: [−0.076,−0.041]; P(β > 0|D) = 2.13e−11). In Fig. 4.2A we

show the posterior distribution for the log selection function in the presence of a single

building, while in Fig. 4.2B the expected reduction in space use across the ecosystem

is shown, conditional on the location of buildings in the 2022 open buildings dataset.

In the most affected areas, we predict a reduction of approximately 22% in wildebeest

use. Furthermore, there is a substantial reduction in wildebeest use at the centre of the

park compared to the south-east and areas to north of the centre of the park due to

the relatively high number of buildings in this area as shown in Fig. 4.1B. During this

period, we observed that wildebeest moved on average approximately 630 meters/hour.
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Figure 4.2: A) Log relative step selection strength as a function of distance to a single

building. Blue line indicates the inferred posterior mean and shaded gray regions (dark

to light) represent 95%, and 99% credible intervals respectively. B) Predicted reduction

in space use due to the response to buildings. Colors indicate expected reduction in use

from no reduction (yellow) to around 22% reduction (dark blue). Gray lines indicate the

boundary of the Serengeti ecosystem and associated protected areas.
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4.3.2 Nonlinear decay and threshold effects

We include the parameters γ and α in the model to quantify the spatial extent of the

influence of the buildings on wildebeest and the manner in which this influence decays

with increasing distance. When α is small the functional form of eqn. ?? results in a lin-

ear relationship between the buildings and wildebeest response. In contrast, for larger

values of α (α ≫ 1), the response is nonlinear and there is a threshold response whereby

buildings closer than γ elicit a strong response while buildings at a greater distance

than this threshold have a far weaker effect. Our findings reveal that the response of

the wildebeest to buildings decays in a nonlinear manner, with areas in close proximity

to buildings being less likely to be selected but the effect diminishes rapidly once the

distance from the buildings reaches a threshold. This pattern is illustrated in Fig. 4.2A,

where the response is initially constant until the distance to the building reaches ap-

proximately 4 kilometers before transitioning to zero (no response) at a distance greater

than 8 kilometers. The nonlinear response of the wildebeest to buildings is controlled

by the parameter α, which has a posterior mean of α̂ = 1.617 (95% CI: [1.262,1.972]).

Furthermore, the effect of a building reaches half of its maximum strength at a distance

of approximately 6.1 kilometers from the building, indicating that the transition from a

negative selection response to a neutral response is centreed at this distance (γ̂ = 6.092;

95% CI: [6.011,6.173]).

4.3.3 Interacting effects of multiple buildings

Next we examine the cumulative impact of multiple buildings on wildebeest behaviour

by analyzing their combined response to multiple structures at different distances. Our

model incorporates the ranked distances to buildings (including from nearest to tenth

nearest) and allows their combined influence on wildebeest selection and space use pat-
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terns to depend on the Euclidean distance along with the rank order, i.e. a building at

a distance of 5 kilometers to a potential location will have a different effect depending

on whether it is the nearest building to the location or the 10th nearest. In this way

clusters of buildings may have a compounding or diminishing effect. The nature of the

effect of multiple buildings is controlled by the parameter ω in our model which defines

the relative influence of each additional building in the vicinity of a potential location.

If ω = 1 then every building essentially has an independent effect that depends only

its Euclidean distance to a location. If ω > 1 then the effect is compounding and two

buildings close to one another will have more than double the effect on the environment

than a single isolated building, whereas if ω < 1 the effect diminishes.

By allowing the effect of multiple buildings to be modelled in this way we find that

there is a strong avoidance response to the nearest building that diminishes with each

additional building in proximity (Fig. 4.3A). We assess the strength of this diminishing

effect by examining the posterior distribution of the weight decay parameter ω which

has a posterior mean of ω̂ = 0.776 (95% CI: [0.667,0.884]). Since ω < 1 with high prob-

ability (P(ω ≥ 1|D) = 2.32e−5; Fig. 4.3B), this indicates that each subsequent building

has a weaker effect than the previous one. These findings suggest that clustering build-

ings together may help minimise their overall spatial impact on wildebeest movement

patterns and habitat use compared to dispersing buildings across the landscape.

92



Figure 4.3: A) The relative avoidance strength of multiple co-located buildings (Dis-

tance to nearest ten (10) buildings) on wildebeest selection pattern, B) Posterior proba-

bility distribution of inferred decay rate of the effect of building, with a posterior mean

of 0.776 and posterior standard deviation of 0.055.

4.4 Discussion

This study quantifies how anthropogenic structures influence wildebeest movement de-

cisions in the Serengeti ecosystem using a novel multiscale analysis approach. By ex-

amining the cumulative impacts of multiple co-located buildings on the behaviour of

wildebeest, we reveal patterns of avoidance that have not been previously documented.
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Our findings demonstrate that wildebeest typically avoid areas near buildings, though

this avoidance does not result in complete exclusion from these areas. Instead, the anal-

ysis reveals a reduction in space use of approximately 22% in the most affected regions.

The densest building areas within the region are in the central Maasai Mara National

Reserve and the Serengeti National Park as compared to other protected areas in the

ecosystem where human settlement is restricted (such as the Maswa Game Reserve, Ki-

jereshi Game Reserve, Ikorongo-Grumeti Game Reserve and Pololeti Game Reserve). In

the Serengeti National Park, the densest building areas are in the central Seronera re-

gion and to the north and north-west in the Kogatende region (Fig. 4.1B). Approximately

80% of all habitat areas in the Greater Serengeti-Mara ecosystem are located within 6.1

kilometers of a building (the distance at which we observe the response to buildings

is approximately half of its maximum). This means that a relatively small area of the

ecosystem is unaffected by anthropogenic disturbances. In the core protected area of

the ecosystem, the Serengeti National Park, where wildebeest spend most of the year,

approximately 65% of all habitat areas are within 6.1 kilometers of buildings, leaving

only 35% of the habitat relatively unaffected.

Despite the high numbers of anthropogenic structures in the ecosystem, we find that

wildebeest do not completely abandon areas near buildings but instead reduce their

usage, suggesting they weigh localised, nonlethal risks against surrounding levels of re-

sources. Their response aligns with current theory surrounding the ‘landscape of fear’

concept that describes how animals integrate risk information across multiple spatiotem-

poral scales (Gaynor et al., 2019; Palmer et al., 2023; Tablado and Jenni, 2017). Given that

the edges of the Serengeti ecosystem are facing increasing pressure from human activi-

ties (Veldhuis et al., 2019), the continued use of regions in the vicinity of buildings may

indicate a scarcity of viable alternative areas, rather than a display of tolerance or site fi-
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delity. Although the response of wildebeest does not exclude them from these areas, the

impact of buildings may limit their access to resources and could have increased ener-

getic costs. Furthermore, these changes may have cumulative effects, potentially leading

to long-term consequences for the viability and sustainability of the population (Smith

et al., 2021).

Clustering buildings so they are close to each other has a diminishing rather than a

compounding effect on, meaning that the largest impact on wildebeest occupancy oc-

curs with the placement of the first building in an area, which has a larger impact on

wildebeest behaviour than subsequent buildings. This is somewhat surprising since we

may expect wildebeest to show stronger responses to areas where the building density

is highest, assuming the density of buildings is correlated with the degree of human

disturbance such as noise or lights at night. A possible explanation for the diminishing

effects of co-located buildings could be that wildebeest react to the presence or absence

of humans, rather than on the level of human activity.

There are several potential mechanisms that could explain why wildebeest avoid areas

near buildings. These areas are likely to experience high levels of traffic disturbance

and vehicle movement, creating suboptimal conditions for resting and foraging. This

aligns with studies of other migratory ungulates such as a study on elk (Prokopenko

et al., 2017) which found that these ungulates avoided areas near human-made infras-

tructure such as linear features, potentially due to relatively high disturbance. The pres-

ence of humans is known to illicit strong avoidance responses in wildlife (Stiegler et al.,

2024; Zanette et al., 2023) and buildings may be considered a proxy for human pres-

ence (Potapov et al., 2014) with the response mediated by anthropogenic noise (Harding

et al., 2019; Shannon et al., 2016), light pollution (de Wilde and de Souza, 2022), or mem-

ory of their locations (Bracis and Mueller, 2017; Verzuh et al., 2024). Another potential
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explanation could be that humans select building sites that are associated with naturally

risky features in the landscapes that wildebeest may inherently avoid such as rocky out-

crops (kopjes) or permanent waterholes, which attract predators such as lions (Hopcraft

et al., 2005; Valeix et al., 2009). Without a controlled experimental intervention, we can-

not rule out the presence of a confounding variable that is positively correlated with the

presence of buildings but negatively correlated with wildebeest selection. However, the

strong avoidance response we observe suggest that human presence is a key driver of

the observed patterns.

The parametric distance function employed in eqn. 4.5 reflects a biologically informed

assumption that the influence of buildings on wildebeest movement decreases smoothly

with distance. This formulation captures the ecological expectation that animals are

more likely to respond to nearby anthropogenic features than to those farther away. By

allowing the effect of buildings to diminish gradually with distance, the model avoids

the unrealistic implication of persistent long-range influences. The parameters α and γ

control the shape and scale of this decay, ensuring that the function remains monotoni-

cally decreasing and biologically interpretable. In particular, γ governs the approximate

distance at which behavioural responses begin to transition, acting as a soft threshold

rather than enforcing a sudden cut-off distance. This allows the model to capture a grad-

ual shift in selection or avoidance behaviour, which is more consistent with observed

patterns in animal movement than models assuming abrupt or binary responses with-

out attenuation. Overall, this formulation provides a flexible and ecologically grounded

way to represent how migratory wildebeest interact with built environments during

movement decisions.

To ensure that our model provided a good fit to the data when using variational in-

ference, we monitored the evidence lower bound (ELBO), which serves as a proxy for
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the model’s log marginal likelihood. Specifically, we monitored ELBO at each training

epoch, where one epoch corresponded to a complete iteration through the entire migra-

tory wildebeest movement dataset. To avoid overfitting and reduce unnecessary com-

putation, training was halted early if the ELBO failed to improve over five consecutive

epochs. This type of convergence monitoring is commonly used in variational inference

frameworks and has been applied in ecological studies, such as the inference of spatially

varying migratory wildebeest movement characteristics in the Serengeti National Park

by Paun et al. (2022).

In summary, this study represents the first attempt to assess the potential nonlinear ef-

fects of human-made structures on the spatial distribution of wildebeest, while taking

into account interacting effects of multiple co-located buildings. Our findings suggest

that priority should be given to conservation efforts in high-use areas such as key forag-

ing grounds and migratory routes. Limiting the expansion of building structures in these

critical habitats and clustering buildings away from these areas will mitigate the impacts

on migratory wildlife. Taken together, our results suggest that developing infrastructure

in the ecosystem and surrounding areas that minimises the effects on migratory wilde-

beest requires careful planning, knowledge of wildebeest behaviour, and information on

the history of their migratory route. Future research should incorporate additional char-

acteristics of anthropogenic structures, such as the size of the building, the associated

levels of traffic, and the nature of the structure, such as tented camps versus perma-

nent structures, thus providing more accurate information for relevant conservation and

management efforts.
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Chapter 5

Identifying the migration routes of

Serengeti wildebeest with hierarchical

sparse Gaussian processes

Note:

This chapter has been prepared as a manuscript which I aim to submit to the journal

Movement Ecology.
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Abstract

Understanding animal migration patterns through the identification of migratory routes

is essential for advancing our knowledge of animal movement behaviour, habitat connec-

tivity, delineating migratory corridors, and understanding how animals interact with the

landscape and respond to dynamic resource distributions, all of which are critical for ef-

fective conservation planning and for uncovering the mechanisms underlying migration.

However, modelling animal movement at scale presents significant challenges due to the

high volume of fine-scale, high-accuracy tracking data, the cyclic and often stochastic na-

ture of migratory behaviour, and the inherent complexity of spatiotemporal dynamics.

In this study, we introduce a novel hierarchical sparse Gaussian process (HSGP) frame-

work for identifying population-level animal migration routes using large-scale datasets

of GPS locations. Our method leverages the flexibility of Gaussian processes for non-

parametric modelling of animal migration, while incorporating sparsity and hierarchical

structure to achieve computational efficiency and capture both individual movement dy-

namics and the autocorrelation inherent in GPS tracking data. We apply this framework

to a decade of movement data from migratory wildebeest within the Serengeti ecosys-

tem, one of the worlds most iconic and ecologically significant migratory systems. Our

results reveal that at the onset of the dry season, wildebeest transit through the western

Serengeti toward the northern regions, whereas during the short rainy season, typically

around November, they begin moving southward toward the nutrient rich short grass

plains of the Serengeti, although their migratory routes show increased variability dur-

ing this period. These findings demonstrate the utility of HSGP in ecological movement

studies and provide actionable insights for tracking migration, preserving critical migra-

tory pathways and guiding conservation planning in dynamic, large-scale landscapes.
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5.1 Introduction

Conserving animal populations, such as migratory animals, requires a detailed under-

standing of the underlying drivers of observed spatial distributions. Identifying the

timing of the temporal pattern of animal movement would enable an understanding

of the set of ecological interactions in which they are involved. For example, due to

their wide range patterns, migratory animals often interact with large numbers of other

animals in various ways; such interactions can range from consumption, mutualism,

disease spread, and competition (Bauer and Hoye, 2014). Therefore, in the current era

with ecosystems experiencing changing climates, increased human population growth,

increased infrastructure development, and an assortment of other destabilising effects, it

is important to understand how migratory species may shift their migration routes over

time in the system in which they occur. This information is important for understanding

niche partitioning, migratory species ecology and evolution, and how these systems in

which they occur will endure into the future given the role they play in shaping ecosys-

tem structure and functions, and biological processes.

Nomadic, dispersal, and periodic migration are typical examples of macroscale and

mesoscale movement phase processes exhibited by migratory animals and are long-

range movement patterns in the sense that they occur at a large (spatial and tempo-

ral) scale (Mueller and Fagan, 2008; Nathan et al., 2008). For migratory species, both

macroscale and mesoscale movement phase processes, such as periodic migration, are

primarily motivated by the need to track and select temporary but high-quality for-

ages (Fryxell and Sinclair, 1988). These long distance movements make the animal incur

migration cost in terms of energy, time, and exposure to risks. Poor quality or low quan-

tity forage and depleting fat reserves significantly impact an animals ability to meet these

100



cost requirements: hardly digestible forages reduce fat gain, low fat reserves increase for-

aging time or weaken the animal if not able to locate quality forage to replenish the lost

reserve, and risks such as predation and poaching cost animal life or injuries. Therefore,

through learning and memory (short-term and long-term reference memory), migratory

animals are expected to have acquired a navigational capacity that allows them to select

routes that minimise risk and energetic costs while maximising resource acquisition un-

der the different environmental conditions they encounter. Identifying these migration

routes is of critical importance, as it helps predict responses to environmental changes

and directs conservation efforts focused on protecting vital corridors from habitat frag-

mentation. Furthermore, understanding these routes allows for the identification of key

pathways, enabling their protection from development activities such as tourism infras-

tructure, thereby ensuring the continued survival of migratory species and biodiversity

conservation.

Identifying migration routes of animals requires a modelling framework that can cap-

ture the cyclic or periodic patterns that an animal exhibits between different areas of the

landscape due to the change in selection patterns driven by the change in environmen-

tal resources. To address this, several approaches have been developed that use animal

telemetry data. For instance, a multilevel Gaussian process model in continuous-time

has been used to identify animal migration routes and activity patterns (Torney et al.,

2021), while likelihood-based approaches have been used to estimate range-shift param-

eters such as transition durations and site fidelity (Gurarie et al., 2017; Patin et al., 2020),

and migration parameters such as distance and timing (Bunnefeld et al., 2011; Gurarie

et al., 2019). Although the multilevel Gaussian process framework proposed by (Torney

et al., 2021) is capable of detecting multiscale patterns and trends in movement trajec-

tory data such as periodic activity patterns and altered migratory routes, the original
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formulation relies on the adaptive Metropolis adjusted Langevin algorithm (MALA) to

sample directly from the posterior distribution of latent functions and parameters. In

general, this method may suffer from poor mixing and slow convergence of Markov

chains as the size of the animal movement observations increases, particularly when in-

ferring high-dimensional parameter spaces that include kernel hyperparameters. This

limits their scalability and practical application in large-scale and long-term ecologi-

cal studies in movement ecology. Thus, to accurately infer population-level migration

routes of animals, it is essential to use multiscale models that provide scalable inference,

maintain flexibility, and ensure computational efficiency. This is particularly important

when modelling animal movement data, which are inherently complex and often exhibit

substantial individual-level variation in movement patterns.

In this study, we use a hierarchical sparse Gaussian process (HSGP) to model and iden-

tify the mean migration routes of animals at the population level. Sparse Gaussian pro-

cesses (SGP) are an efficient approximation of standard Gaussian processes (GPs) that

uses a subset of observations, known as inducing points, to approximate the true pos-

terior distribution of parameters and hyperparameters (Snelson and Ghahramani, 2005).

This reduction enhances computational efficiency without significantly compromising

model accuracy as fewer observations are involved in the modelling process. The model

parameters, including the locations of the inducing points and the covariance function

hyperparameters, are optimised using variational inference, resulting in a tractable ap-

proximation to the full GPs. HSGP extends SGP by incorporating a hierarchical struc-

ture into the observational framework, enabling the capture of complex dependencies

and multiscale patterns within the data while maintaining the computational advan-

tages of sparse approximations. This hierarchical framework facilitates the capture of

both the population-level migration route and accounting for individual movement dy-

102



namics while also quantifying uncertainties at multiple levels. Finally, we demonstrate

the utility of the HSGP in identifying the mean migration routes at the population-level

of the Serengeti migratory wildebeest (Connochaetes taurinus). Building on this, we refine

predictions of areas where wildebeest are likely to spend the most time during critical

life-history stages such as calving, weaning, rutting, and migration, by integrating the

inferred mean migration route, representing long-term memory effects, with fine-scale

wildebeest space use patterns estimated using a buildings dataset described in (Masolele

et al., 2025).

5.2 Methods

To identify the expected migration route of Serengeti wildebeest, we analysed a large-

scale dataset of GPS locations using a hierarchical sparse Gaussian processes (HSGP).

Wildebeest movement data was collected in the Serengeti National Park, Tanzania, be-

tween 2013 and 2023. In this period, a total of 63 wildebeest were fitted with GPS

collars (Followit, formerly ‘Televilt,’ GSM or Iridium transmitters with GPS location)

programmed to record locations at intervals ranging from 6 to 24 hours, resulting in

204,129 location observations.

The annual wildebeest migration covers, and in fact defines, the range of the Greater

Serengeti ecosystem. Herds move south in early November away from their dry season

refuge in Kenya, towards the southern short grass plains of Tanzania, where they spend

the wet season (December to May) in search of high-quality forage. During the dry sea-

son (August to November) herds move towards the northern woodlands of the Serengeti

National Park and on to the Maasai Mara National Reserve, where they remain until the

short rains begin and the cycle begins again (Torney et al., 2018). The migration route

is not fixed and can vary from year to year as the herds follow gradients of rainfall and
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nutrients (Holdo et al., 2009), as well as being influenced by site fidelity (Morrison et al.,

2021) and social information (Berdahl et al., 2018; Torney et al., 2018).

In order to infer a mean migration route, we employ Gaussian process modelling (Ras-

mussen, 2006) which allows us to decompose the observed data into a periodic compo-

nent and a stochastic movement component by combining a periodic kernel correspond-

ing to the long-term average herd migration route, and an Ornstein-Uhlenbeck (OU)

process kernel corresponding to individual movement patterns. The periodic kernel

captures the cyclic nature of the migration route, while the OU process kernel captures

the stochastic movement patterns of individual wildebeest. This combination allows us

to model the mean migration route while accounting for individual variability in move-

ment patterns and the autocorrelation inherent in GPS location data.

Gaussian processes (GPs) are non-parametric models that can be used to model complex

relationships between inputs and outputs by defining a mean value and a covariance

structure, with the fundamental assumption that any finite collection of function val-

ues follows a multivariate normal distribution. This property allows Gaussian processes

to provide not only predictions but also uncertainty estimates, making them particu-

larly suitable for modelling complex spatial and temporal patterns in animal movement

data (Torney et al., 2021).

5.2.1 Hierarchical Gaussian process model

As in standard GP regression, we begin by placing a GP prior on a latent function g(t)

that models the true location of wildebeest across N time points t, and then assume

that observations y(t) are generated from the latent function with additive measurement

noise, i.e.

g(t) ∼ GP
(
0,K(t, t′)

)
.
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Note, the Gaussian process is defined over a continuous domain however the data is

observed at discrete observation points.

where g(t) denotes the collection of latent locations at all observation times t= [t1, . . . , tN]
⊤.

At each observation time ti, we then observe a noisy measurement of the true location,

yi = gi + ϵi,

where yi = y(ti) and gi = g(ti) denote the observed two-dimensional location and the

true location, respectively, at time ti. Both yi and gi are elements of R2 representing

two-dimensional spatial coordinates. The measurement noise ϵi is assumed to be in-

dependent and identically distributed (i.i.d.) two-dimensional isotropic Gaussian white

noise,

ϵi ∼N (0,σ2
obsI2)

where σ2
obs is the observation noise variance. Note, to improve clarity, throughout this

work we use non-bold symbols for single two-dimensional vectors such as yi and gi,

and bold symbols (e.g. y) for collections of such vectors where y = y(t) is the stacked

2N-dimensional vector of N observations.

In our framework, we assume that the covariance kernel, K(t, t′) is composed of two

components, a periodic kernel that captures the long-term average migration route, and

a stochastic movement kernel that captures the individual movement dynamics. The

periodic kernel is defined as an annual periodic function, while the stochastic movement

kernel defines an OU process, a mean reverting random walk that has been widely used

to model animal movement patterns (Calabrese et al., 2016; Dunn and Gipson, 1977;

Torney et al., 2021). For a single individual, the covariance function is therefore defined
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as

K(t, t′) = Km(t, t′) + KOU(t, t′) (5.1)

where Km(t, t′) is the migration kernel and KOU(t, t′) is the individual movement kernel.

The migration kernel is defined as,

Km(t, t′) = σ2
m exp

(
−2sin2(π|t − t′|/P)

ℓ2
m

)
(5.2)

where σ2
m is the amplitude, P is the period (365 days), and ℓm is the length scale (which

defines how quickly the migratory wildebeest location can change over time within

each migration cycle) controls the smoothness of the modelled migration route. The

movement kernel is defined as the Matern 1/2 kernel,

KOU(t, t′) = σ2
OU exp

(
−|t − t′|

ℓOU

)
(5.3)

where σ2
OU is the amplitude and ℓOU is the length scale, which is the covariance function

associated with the OU process (Torney et al., 2021).

Since the average migration location is a population level process, we assume that the

migration kernel is shared across all individuals whereas the OU process kernel on the

other hand, models individual movement around this mean. This hierarchical structure

allows us to capture both the population-level migration route while also accounting

for individual-level variability in movement. For multiple individuals, the pair wise

covariance function between any two observations is defined as

Cov
(

yp
i ,yq

j

)
= Km(ti, tj) + δindKOU(ti, tj) (5.4)

where yp
i indicates the location observation is from individual p at time ti, and δind is
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an indicator function that is 1 if individual p and individual q are the same individual

(p = q) and 0 otherwise.

Primarily, we are interested in learning about the mean migration route of the wilde-

beest population and not the true location of a single individual. To that end, we may

reformulate the model in a hierarchical structure as follows,

y ∼ N
(

g,σ2
obsI

)
,

g ∼ GP
(
f,δindKOU(t, t′)

)
,

f ∼ GP
(
0,Km(t, t′)

)
. (5.5)

where we have introduced a separate GP for f that denotes the mean migration route at

all time points in t, g remains the latent true location of wildebeest, now conditional on

f, and I denotes the 2N × 2N identity matrix, corresponding to the vectorised form of

the N two-dimensional observations. Given the model defined in eqn. 5.5, we focus on

obtaining the posterior distribution of the mean migration location given the telemetry

observations, p(f|y). Inference for GP models involves optimising the parameters of

the covariance kernels, followed by analytically calculating the posterior distributions by

exploiting the conjugate structure of the model. In small data scenarios, the former may

be solved by directly maximising the log marginal likelihood,

log p(y) = log
∫∫

p(y | g) p(g | f) p(f)dg df. (5.6)

However, for large-scale datasets this is impractical since, although tractable, eqn. 5.6

involves inverting the full covariance matrix, an operation that scales cubically with

dataset size.

107



5.2.2 Sparse variational inference for Gaussian processes

To enable inference for large telemetry datasets, such as the wildebeest migration data,

we employ a sparse approximation (Titsias, 2009) to full GP regression by introducing

a set of inducing points z and defining fz as the unknown function values at these

points. The key approximation introduced in this approach is that the latent function

f∗ at any test inputs and the latent function at the training locations f are conditionally

independent given fz,

p(f∗ | f, fz) = p(f∗ | fz). (5.7)

This allows us to introduce a variational distribution q(f, fz) that approximates the pos-

terior distribution of the latent function values at the training locations and the inducing

points. The variational distribution is defined as

q(f, fz) = p(f | fz)ϕ(fz), (5.8)

where ϕ(fz) is a Gaussian distribution with mean µz and covariance Σz. To determine

the optimal values of the variational parameters µz and Σz, we maximise a lower bound

on the marginal log-likelihood that is obtained via Jensen’s inequality (Saul et al., 2016)

log p(y) = log
∫∫

p(y | f) p(f, fz)df dfz

= log
∫∫

p(y | f) p(f, fz)
q(f, fz)

q(f, fz)
df dfz

≥
∫∫

q(f, fz) log
(

p(y | f) p(f, fz)

q(f, fz)

)
dfdfz

≥
∫

log (p(y | f))q(f)df − KL (ϕ(fz)∥p(fz)) (5.9)
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where q(f) =
∫

q(f, fz)dfz, KL is the Kullback-Leibler divergence, and

p(y | f) =
∫

p(y | g)p(g | f)dg. (5.10)

The final term of eqn. 5.9 is known as the evidence lower bound (or ELBO) and maximis-

ing this bound results in optimal variational parameters i.e. parameters that minimise

the KL divergence between the approximate posterior and the true posterior. In practice,

the ELBO also depends on the hyperparameters associated with the covariance kernels

and the observation process, therefore, we may jointly optimise the variational param-

eters and the model hyperparameters by maximising the ELBO with respect to all of

them.

The inducing point approach proposed in (Titsias, 2009) was later extended to enable

stochastic variational inference (SVI) for GP regression (Hensman et al., 2013). This

approach allows the model to be trained on arbitrarily large datasets by optimising the

ELBO with respect to both the variational parameters and the kernel hyperparameters

using mini-batch stochastic gradients. The key advance presented in Hensman et al.

(2013) was to maintain an explicit representation of the variational distribution which

acts as a set of global parameters, enabling efficient and scalable variational inference.

We follow the approach of (Hensman et al., 2013) to perform variational inference for

our hierarchical sparse Gaussian process model; however, we modify the approach to

account for the dependence between observations from the same individual.

5.2.3 Evidence lower bound

We next derive the ELBO for our hierarchical sparse Gaussian process model given that

the observations depend on the latent true location g which in turn depends on the

mean migration route f and show that the lower bound can be analytically computed
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therefore avoiding the need for Monte Carlo sampling (Ranganath et al., 2014) to estimate

the expectation of the log likelihood term in eqn. 5.9. Beginning with the ELBO from

eqn. 5.9,

ELBO =
∫

log (p(y|f))q(f)df − KL(ϕ(fz)||p(fz)). (5.11)

The second term of this equation is the KL divergence between the variational distribu-

tion of the inducing points and the prior distribution of the inducing points which is a

Gaussian distribution and can be calculated in closed form. The first term involves the

expected value of log p(y|f) under the variational distribution. Given the model defined

in eqn. 5.5,

p(y|f) = (2π)−N/2|Σ|−1/2 exp
(
−1

2
(y − f)TΣ−1(y − f)

)
(5.12)

where N is the number of observations and we have introduced the notation Σ =

δindKOU(t, t′) + σ2
obsI for clarity. Since the observations of a single individual are con-

ditionally independent given the latent function values, we can write this probability as

a product of the probabilities for each individual, i.e.

p(y|f) =
M

∏
j=1

(2π)−Nj/2|Σj|−1/2 exp
(
−1

2
(yj − fj)

TΣ−1
j (yj − fj)

)
(5.13)

where M is the number of individuals, yj is the vector of observations for individual j,

fj is the vector of latent function values for individual j, and Σj = KOU(tj, t′j) + σ2
obsI is

the covariance matrix for individual j. Taking the logarithm of this probability gives us

the log likelihood of the observations,

log(p(y|f)) = −N
2

log(2π)− 1
2

M

∑
j=1

(
log |Σj|+ (yj − fj)

TΣ−1
j (yj − fj)

)
. (5.14)
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We may now substitute this expression into the first term of the ELBO in eqn. 5.11 to

obtain

∫
q(f) log (p(y|f))df = −N

2
log(2π)− 1

2

M

∑
j=1

log |Σj|

− 1
2

M

∑
j=1

(∫
q(fj)(yj − fj)

TΣ−1
j (yj − fj)dfj

)
. (5.15)

Since q(fj) is a Gaussian distribution, we can write the remaining integral as

∫
q(fj)(yj − fj)

TΣ−1
j (yj − fj)dfj

=
∫
N (fj|µj,C j)(yj − fj)

TΣ−1
j (yj − fj)dfj. (5.16)

where µj and C j are the mean and covariance of the probability distribution q(fj) which

can be computed analytically by marginalising eqn. 5.8 over the inducing points z. By

introducing a substitution for fj − yj we can view this integral as the expectation of a

quadratic form, which has a known solution (Kendrick, 1981) and is given by

(yj − µj)
TΣ−1

j (yj − µj) + Tr(Σ−1
j C j). (5.17)

All combined, the expected log likelihood term in the ELBO can be written as

−1
2

log(2π)− 1
2

M

∑
j=1

(
log |Σj|+ (yj − µj)

TΣ−1
j (yj − µj) + Tr(Σ−1

j C j)
)

, (5.18)

which in combination with the KL divergence term in eqn. 5.11 gives us a tractable ex-

pression for the ELBO that can be optimised with respect to the variational parameters

and the kernel hyperparameters. It should be noted that it is only possible to compute

the expected log likelihood term in eqn. 5.11 because the lower levels of the hierarchical
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model only affect the mean location of the observations and not the parameters of the

movement kernel. This is a key difference between our model and the original hierar-

chical GP model proposed in (Torney et al., 2021) which does not allow for analytical

computation of the expected log likelihood term.

5.2.4 Numerical implementation

To maximise the expected log likelihood and infer the parameters of the migration and

movement kernel, we employed variational inference using stochastic optimisation. Be-

cause of large wildebeest movement observations, we used a trajectory segmentation

technique, where we divided the individual animal trajectories into multiple and com-

putationally manageable segments, so that each segment has 1024 movement observa-

tions. Additionally, we used 300 inducing points (z) that were evenly spaced across the

year (assuming 1 year =365 days) and provided an optimal balance between accuracy

and reducing computational costs. All the analysis were performed in Python program-

ming language using TensorFlow (Abadi et al., 2016) and TensorFlow Probability (Dillon

et al., 2017).

5.2.5 Integrating local environmental features

Understanding the mechanisms underlying animal space use during specific days of the

year or key life history events often requires more than simple consideration of broad

scale movement patterns. In many cases animals respond to finer scale environmental

features such as the presence of buildings or watering holes, and to dynamic features

such as vegetation growth.

Similarly, fine scale features alone do not adequately explain animal movement patterns

or habitat selection. To improve predictions of where animals are likely to spend most of
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their time during critical life-history stages such as calving, weaning, rutting, or migra-

tion, it is essential to incorporate the role of long-term spatial memory. Animals often

retain information about past experiences and may preferentially return to familiar lo-

cations, even when those areas do not offer the highest immediate resource quality. In

order to better estimate the spatial distribution of Serengeti wildebeest we employ the in-

ferred population mean migration routes as a proxy for the effects of long-term memory

on fine scale movement decisions. Firstly, we note that for any time t we may calculate a

probability density function for the location of a wildebeest at that time of the year pt(x).

The density function is a multivariate normal with mean and covariance calculated from

eqn. 5.8 combined with the stationary covariance of the OU process (Gardiner, 2009).

Due to the periodicity of the mean migration route we also note that pt(x) = pt+365(x).

In the absence of any environmental responses beyond what is encoded in the mean

migration location, the probability density function may be reformulated within a step

selection model (Thurfjell et al., 2014) framework by assuming the covariate field on

which movement steps are based is given as log pt(x), the selection coefficient is 1, and

the movement model follows the local Gibbs sampler proposed in (Michelot et al., 2019a)

which ensures that the step selection rules map directly to the parameters of the long

term utilisation distibution. Specifically, the selection function is defined as

w(x, t) = exp

(
log(pt(x)) + ∑

i
βici(x, t)

)
(5.19)

where βi and ci are the selection coefficients and covariate values respectively. As de-

scribed in (Michelot et al., 2019a), if movement steps are assumed to follow the local

Gibbs algorithm, the utilisation distribution is given by,

π(x, t) =
1
Z

exp

(
log(pt(x)) + ∑

i
βici(x, t)

)
(5.20)
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Figure 5.1: Wildebeest migration route in Serengeti, A) Inferred population-level pos-
terior mean migration route in easting and shaded red regions represent 95% credible
interval, B) Inferred population-level posterior mean migration route in northing and
and shaded red regions represent 95% credible interval, C) Wildebeest locations (red
points) and inferred population-level posterior mean migration route (blue line).

where Z is a normalising constant. In the absence of any covariate fields (or if βi = 0 for

all i) we recover the long term predicted space use π(x, t) = pt(x).

To demonstrate how predictions of wildebeest space use may be iteratively refined, we

analyse movement decisions of wildebeest in the context of human made structures

within the national park, using a buildings dataset described in (Masolele et al., 2025).

5.3 Results

The results reveal that at the onset of the dry season, wildebeest migrate through the

western Serengeti toward the northern regions in search for forage and water (Fig. 5.1A).

During the short rainy season, typically around November, they begin moving south-

ward toward the nutrient rich short grass plains of the Serengeti, although their migra-

tory routes show increased variability during this period (Fig. 5.1B).

Furthermore, wildebeest have lower uncertainty in their memory-informed space use

during the calving period, as shown with the contour plot in Fig. 5.2A, but the un-
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certainty increases as they transition to another life event such as rutting (Fig. 5.2B),

weaning (Fig. 5.2C), and becomes much higher during their migration routes back to the

southern part of the ecosystem from the North (Fig. 5.2D).

5.4 Discussion

Gaussian processes have long been a mainstream machine learning technique for analysing

time series data in spatial statistics (Williams and Rasmussen, 2006). However, their ap-

plication to modelling animal movement data has emerged only recently (e.g., Cobb

et al., 2018; Torney et al., 2021). In this study, we have demonstrated how the HSGP

framework can effectively model movement observations of migratory animals to infer

the mean population-level migration route. To account for uncertainty in the dynamics of

migration routes, we introduced the use of variational inference, a fast and computation-

ally efficient approximate Bayesian inference that has also been employed in modelling

animal observations to capture spatially varying movement characteristics (Paun et al.,

2022), and to formally quantify uncertainty in multiscale step selection models (Masolele

et al., 2024). Our results suggest that the HSGP approach could also be useful for identi-

fying shifts or changes in the migratory route and activity periods of animals using GPS

data collected from multiple individuals while reducing computational complexity.

Models of animal migration routes often depict them as circuit-like flows between habitat

patches, using circuit theory to represent connectivity (McRae et al., 2008). While these

models are useful for understanding broad-scale connectivity, they tend to oversimplify

migration routes as closed loops between seasonal ranges (e.g., Sawyer et al., 2009). This

simplification limits the ability to capture fine-scale spatiotemporal movement patterns

of animals. This study demonstrates that the wildebeest migration route is not a circuit,

as it is typically presented, but rather a to-and-fro migration with greater variability
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Figure 5.2: Inference of migratory wildebeest memory-informed space use in some of
the key life events during the course of their annual migration, A) Calving, B) Rutting,
C) Weaning, D) Migrating to the southern part of the ecosystem. The blue dot repre-
sent the inferred posterior mean population-level migration route in that location. The
background regions (from dark purple (low values) to bright yellow (high values)) rep-
resent wildebeest long term space use in that particular event. The red line represent
the inferred population-level posterior mean migration route and Gray line represent the
boundary of the Greater Serengeti-Mara ecosystem.
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in the southward movements. This shift in perspective advances our understanding of

wildebeest movement behaviour, spatial variability, and deviations due to environmental

or anthropogenic factors, and provides a more accurate representation of the Serengeti

migration. The inferred mean population-level migration route indicates that wildebeest

transit through the western Serengeti at the onset of the dry season (Fig. 5.1A). During

the short rainy season, they begin moving southward toward the nutrient-rich short grass

plains of the Serengeti, although their migration routes exhibit greater variability during

this period (Fig. 5.1B). These patterns align with seasonal changes in resource distribu-

tion and landscape heterogeneity in the ecosystem. During the onset of the dry season,

the western Serengeti typically begins to experience a decrease in water availability and

a decline in forage quality due to reduced rainfall. In such conditions, wildebeest are

likely to minimise their residence time in this region to avoid nutritional stress and dehy-

dration. The observed route through the western Serengeti may represent opportunistic

foraging periods and salt licking for essential minerals such as sodium (Buchanan, 2020)

as herds move towards the more reliable water and forage resources of the northern

Serengeti.

In contrast, the short rainy season triggers localised forage growth and temporary water

availability (Boone et al., 2006), encouraging extensive search and capitalisation of newly

available resources. However, due to the spatial unpredictability of rainfall during this

period, migration routes become more variable as herds adjust their movement in re-

sponse to dynamic, patchy resources, leading to increased uncertainty. The observed

variation in the duration of southward movement may also be influenced by social

cues and collective decision making, especially under uncertain conditions. Wildebeest

migrations are known to be partially guided by collective decision making and social

cues (Torney et al., 2018), and such behaviours may become more prominent when the
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distribution of the resource is unpredictable. The increased variability during short rains

may thus reflect both environmental heterogeneity and socially mediated exploration.

The lower uncertainty in the wildebeest memory-informed space use during the calv-

ing period (Fig. 5.2A) suggests that migratory wildebeest employ a mobile aggregated

distribution pattern at this time of the year by forming large aggregations that move in

the same direction over a large area based on where they are able to locate and exploit

short, highly rich in protein and nutritious forages. Furthermore, the level of uncertainty

increases as they move to the rutting period (Fig. 5.2B) because of the changing environ-

mental conditions such as localised high-quality forages and wildebeest apt to disperse

and form clusters (groups) consisting of small herds and large herds.

Through the use of HSGP we have shown that it is possible to combine both migration

kernel, and a movement kernel to encode into the model periodic structures and the

stochastic nature of animal movement behaviour, respectively, thereby introducing mul-

tiscale processes into the model. This method further allows learning of the arbitrary

model structures to infer the mean route of the animal migration without limiting the

model to a particular functional form. Additionally, our non-parametric approach can

be extended to incorporate fine-scale movement decisions and categorical variables such

as whether an animal is inside or outside a protected area when the goal of the inference

is to assess spatial use patterns and potential boundary-crossing behaviour.

The inferred population-level posterior mean migration route in Fig. 5.1C indicates that,

at some point in the north-west of the ecosystem, the route passes through areas with rel-

atively few wildebeest observations. This arises primarily due to increased uncertainty

in data-sparse regions and the use of stationary GPs, which assume constant smooth-

ness and correlation structure across space. Such assumptions limit the model’s ability

to adapt to heterogeneous observation densities. One possible way to address this limi-
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tation is to adopt a non-stationary GPs framework, where the covariance structure varies

spatially. This would allow the model to be more flexible and responsive in areas with

dense data, while remaining more conservative in regions with limited observational

support.

However, a key limitation of our model lies in the assumptions made to enable effi-

cient inference. Specifically, VI in this framework is tractable primarily because it is

the mean function of the higher-level GPs that is allowed to vary while the kernel co-

variance parameters remain fixed or stationary. This simplification allows closed-form

expectations during optimisation, making VI computationally efficient (Titsias, 2009).

If instead the model employed a non-stationary kernel, where the covariance structure

changes over input space, then the expectation term in the variational objective would

no longer have an analytic solution. In such cases, computationally more demanding

methods such as the Metropolis-Adjusted Langevin Algorithm (MALA) or variational

inference augmented with Monte Carlo approximations of the expectation would be

employed (Heinonen et al., 2016), both of which increase inference complexity and run-

time.

Herein, we have described hierarchical sparse Gaussian processes (HSGP) that offers

computationally flexible scalable inference and is able to formally quantify uncertainty

around the inferred population mean migration routes of animals from telemetry data

in an efficient manner. Our results highlight the importance of using HSGP in ani-

mal movement modelling especially when inferring animal migration routes or periodic

patterns that are multiscale processes, include multiple individuals, and multiple co-

variance kernels either through multiplication or addition to capture complex patterns

such as annual or diurnal patterns exhibited by animal populations. Furthermore, the

seasonal differences observed in the uncertainty around the migratory route of wilde-

119



beest can be attributed to the interplay of rainfall-driven resource dynamics, the costs of

movement, and the use of social information. These findings underscore the sensitivity

of wildebeest migration in a highly variable environment and highlight the importance

of conserving heterogeneous landscapes that support this iconic migratory system.
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Chapter 6

Predicted impact of anthropogenic

structures on the Serengeti migratory

wildebeest population

Note:

This chapter has been prepared as a manuscript which I aim to submit to the journal of

Ecological Applications.
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Abstract

Given the rapid increase of anthropogenic structures in previously pristine environ-

ments, understanding how migratory animals navigate these altered landscapes and

where they predominantly spend their time is paramount to devising evidence-based

conservation interventions. In this study, we employ a Bayesian multiscale step selection

model developed for migratory wildebeest, together with an anthropogenic-structure

simulation model, to investigate how different conservation spatial planning strategies

for allocating new buildings both individually and in combination may influence the

long-term spatial use of migratory wildebeest in the Greater Serengeti–Mara ecosys-

tem. The simulation model assumes that new buildings are added either in proximity

to existing structures, following a preferential attachment mechanism, or randomly in

previously undeveloped areas. Allocation near existing structures is governed by a pref-

erential attachment exponent, which determines the strength of the tendency for new

buildings to cluster around existing development. Our simulation results indicate that

the impact on wildebeest space use is greater when new buildings are added to pre-

viously undeveloped areas or away from existing infrastructure. Furthermore, even a

modest increase in infrastructure, such as a 10% addition to the existing buildings, re-

sults in a measurable change in wildebeest space use and access to key grazing habitats,

likely because factors such as human presence, road networks, vehicle traffic, noise, and

light pollution may repel animals from these areas. Given the critical role of wildebeest

in maintaining the Serengeti ecosystem’s structure, function, and key processes such as

nutrient cycling and storage, we recommend restricting or ceasing new construction in

the core regions of the ecosystem where wildebeest concentrate on key resources, in or-

der to preserve their long-term population viability. Furthermore, our results highlight

the broader need to assess the long-term impacts of human activity on the habitat use of

122



migratory species and their potential to displace animals from key resources.
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6.1 Introduction

Migratory animals are currently facing an existential crisis due to a combination of mul-

tifaceted anthropogenic activities including climate change. Alterations in habitat and

environmental conditions are resulting in shifts in spatial distribution, migration timing,

and animal abundance. As a consequence, many species are experiencing population

declines or risk of extinction (Kauffman et al., 2021), primarily due to their inability to

adapt to or cope with the rapid changes that occur in their ecosystems. To effectively

protect these species, it is crucial to understand and mitigate the impacts of human-

induced environmental change. However, to predict future distribution patterns, such

as where animals are likely to move or spend most of the time, it is essential to inves-

tigate how they respond to local environmental change and identify critical threats in

high-risk areas using robust computational models grounded on current conditions.

Recent advances in technology have facilitated the development of fast, powerful, and

more flexible mechanistic models in the field of computational ecology (de Koning et al.,

2023; Thiele and Grimm, 2015). These models are increasingly becoming indispensable

tools in ecological modelling, allowing applied ecologists, conservationists, and policy

makers to continuously reassess and refine their conservation strategies and ecologi-

cal management approaches (Schuwirth et al., 2019). However, the complex ecological

interactions inherent in many ecosystems, coupled with rapid global changes in pro-

tected areas driven by anthropogenic activities (Riva et al., 2023), highlight the need for

dynamic computational models that can combine data, domain knowledge and contin-

uous alignment with real-world ecological systems (de Koning et al., 2023) to create a

more mechanistic understanding. These models must maintain consistency over time

to support long-term ecological assessments, which is essential for producing reliable
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predictions that guide evidence-based management and policy interventions.

Ecosystems, by their nature, are characterised by complex and dynamic ecological inter-

actions (Mouquet et al., 2015) and are increasingly exposed to a range of internal and

external stressors, including human pressures, climate change, habitat loss and degra-

dation, among others (Riva et al., 2023). As these stressors intensify, there is a growing

need to anticipate potential future outcomes to develop effective management and con-

servation strategies that can mitigate risks or prevent further damage to these natural

systems. A widely used approach in ecology for this purpose is scenario modelling,

which enables ecologists to examine the potential impacts of environmental change on

species distributions, the spread of invasive species, and the outcomes of various man-

agement actions (Bennett et al., 2003; Cumming, 2007). Scenario analysis facilitates the

exploration of different hypothetical quantitative estimates of future population dynam-

ics or distribution patterns of animals and plants by considering various environmental

covariates, ecological assumptions about how the system works, management plans or

strategies, and sources of uncertainties. This approach enables simulation of potential

outcomes grounded on current ecological patterns, principles, and assumptions that re-

flect prevailing conditions. By considering different states, such as baseline, current and

projected future conditions, it is possible to assess changes in spatial distribution and

identify context-specific management interventions for each biodiversity scenario that

may reduce risk or enhance resilience. The ability to simulate and compare such ecolog-

ical scenarios offers valuable insight to wildlife managers and policymakers, enabling

informed evidence-based decision making in the face of ecological uncertainty.

In ecology, simulation models have been used to understand and provide probabilistic

predictions of ecological outcomes under varying scenarios. These models, informed by

initial conditions and parameters, help explore ecosystem behaviour, population dynam-
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ics (Colomer and Margalida, 2025), species distributions over time (Willis et al., 2009),

the risk of species extinction (Mashayekhi et al., 2014; Ovaskainen and Meerson, 2010;

Schleuning et al., 2016) and predicting the impact of human-made infrastructure, such

as roads, on animal migration (Holdo et al., 2011). Additionally, they simulate species

behaviour at multiple scales, such as foraging patterns, plant competition, or commu-

nity dynamics, and offer insight into long-term trends in ecosystem processes, including

human-environment interactions (Railsback and Grimm, 2019). This approach provides

valuable insights on the inherent uncertainty of ecological systems and aids in predicting

future outcomes based on the implementation of specific management actions.

In many large wildlife-rich ecosystems around the world, expanding human settlement,

tourism, and commercial development have increasingly fragmented wildlife habitats,

limiting access to key foraging areas and disrupting traditional migratory routes (Bolger

et al., 2008; Harris et al., 2009; Kauffman et al., 2021; Liu et al., 2024). Although tourism

provides essential revenue for conservation efforts and supports local livelihoods (Larsen

et al., 2020), it can also degrade natural habitats when not managed properly. This dual

role highlights the need to balance the economic and conservation benefits of tourism

with its potential ecological costs. To prevent conservation interventions from inadver-

tently compromising the ecosystems they aim to safeguard, it is critical to identify the

areas most affected by anthropogenic disturbances associated with tourism infrastruc-

ture, including lodges, campsites, and hotels. Quantifying animal space use is funda-

mental to inform sustainable tourism strategies that support both biodiversity conser-

vation and ecosystem resilience. These analyses facilitate the identification of high- and

low-use wildlife areas, thereby guiding the development of targeted, cost-effective miti-

gation measures that maintain ecological connectivity and minimise the risks associated

with human pressures or barriers that impede animal movement. Crucially, effective
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mitigation requires movement models that accurately reflect current animal behaviour,

supported by high-resolution data collected at fine spatial and temporal scales. Such

models are essential for anticipating the ecological consequences of planned and un-

planned development and ensuring continued wildlife access to key resources in the

ecosystem.

In the Serengeti ecosystem, wildebeest have been observed to reduce the time they spend

in areas near human-made structures such as buildings (Masolele et al., 2025). However,

as the landscape continues to be modified by the addition of new anthropogenic struc-

tures, it becomes increasingly important to predict future changes in wildebeest space

use based on observed behavioural responses. In this study, we evaluate the impact of

anthropogenic disturbances on the spatial distribution of migratory wildebeest in the

Serengeti ecosystem, which is undergoing rapid environmental changes due to the de-

velopment of human-made structures such as buildings. Specifically, we investigate how

the long-term space use of migratory wildebeest may be altered as a result of the addition

of new buildings in the ecosystem. We use an existing multiscale step selection model

developed for migratory wildebeest (Masolele et al., 2025), together with a simulation

model that simulates the addition of new buildings in areas with existing infrastructure

and in previously undeveloped regions of the landscape, considering three scenarios of

10%, 50%, and 100% increase of existing buildings in the landscape. Finally, we evaluate

the shift in wildebeest space use in future scenarios relative to their current patterns.

This approach demonstrates how animal movement models can inform infrastructure

development in anthropogenically altered landscapes and provide valuable predictions

that can help mitigate or reduce associated risks.
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6.2 Methods

6.2.1 Study area description

The Greater Serengeti–Mara Ecosystem is a transboundary conservation landscape lo-

cated in East Africa, spanning the border between Tanzania and Kenya (approximately

33◦30′–35◦30′E and 1◦15′–3◦30′S), and covering an area of about 37,516 km2. At its core is

the Serengeti National Park, which is surrounded by a mosaic of other protected areas,

including the Ngorongoro Conservation Area, Masai Mara National Reserve, and the

Maswa, Grumeti, Ikorongo, Kijereshi, and Pololeti Game Reserves as shown in Fig. 6.1A.

In addition, the ecosystem includes a network of community-managed wildlife conser-

vancies in Kenya and wildlife management areas in Tanzania. Each of these protected

areas operates under distinct management objectives tailored to meet their conservation

priorities.

We obtained version 2 of the location data (Fig. 6.1B) of existing buildings from the large-

scale open data set that contains the outlines of buildings derived from high-resolution

satellite imagery accessible at open buildings managed by (Sirko et al., 2021). The wilde-

beest movement dataset consisted of 143,268 GPS locations from 57 collared migratory

wildebeest collected in the Serengeti ecosystem, between January 2019 and September

2023 (Fig. 6.1A).
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Figure 6.1: A) A map of the Serengeti ecosystem with wildebeest GPS locations shown

as blue points, black line indicates the boundary of the Serengeti ecosystem and associ-

ated protected areas, B) Building distribution within the Serengeti ecosystem shown as

black points, grey lines indicates the boundary of the Serengeti ecosystem and associ-

ated protected areas. The background regions from dark purple (low values) to bright

yellow (high values) represent grass nitrogen concentration in the ecosystem.

6.2.2 Model scenarios

Our modelling objective is to investigate how the long-term spatial use patterns of mi-

gratory wildebeest may be affected by the addition of new buildings in the ecosystem.

To achieve this, we simulate the addition of new buildings in both areas with exist-

ing infrastructure and previously undeveloped regions. We examine three development

scenarios, representing the increase in 10%, 50%, and 100% of the number of existing

buildings in the landscape.
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The current observed spatial distribution of human-made structures within the ecosys-

tem reveals a high-level of clustering in the locations of buildings. This indicates that

new buildings are often constructed near existing infrastructure rather than located in

previously undeveloped areas. Clustered patterns suggest that the selection of the build-

ing site is influenced by logistical considerations, such as proximity to road networks or

favourable wildlife viewing locations such as proximity to water provisioning points.

In contrast, isolated buildings imply that some developments may prioritise remoteness

and access to relatively undisturbed environments. To capture both dynamics, we im-

plement a hybrid spatial anthropogenic structure simulation model: with probability δ,

locations are selected via random placement to simulate preferences for isolation or pre-

viously undeveloped regions; with probability 1 − δ, new structures follow a non-linear

preferential attachment rule (Barabási and Albert, 1999; Kunegis et al., 2013), favour-

ing locations near existing buildings (described below). Specifically, a new building is

allocated using preferential attachment if the proposal is less than a threshold (1 − δ),

where δ ∈ [0,1]; otherwise, the new building is allocated randomly. This approach al-

lows new buildings to be allocated to previously undeveloped regions and results in

a decrease in clustering as the value of δ increases from 0 to 1. Additionally, when δ

is between 0 and 1, the method implements a hybrid allocation strategy that combines

the random placement of new buildings with the clustering, allowing a continuous and

automated transition between these two spatial distribution patterns of human-made

structures within the ecosystem. Furthermore, given that the Serengeti ecosystem com-

prises multiple protected areas, each with different management regime and objectives

and varying numbers of existing buildings, the allocation of new buildings in all three

scenarios is proportional to the current number of structures within each protected area.

To define the attachment rule, we assign each existing building a probability of receiv-
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ing a new neighbouring building. This probability is proportional to the number of

buildings already located within a 6 kilometres radius, a range within which habitat is

significantly influenced by anthropogenic disturbance (Masolele et al., 2025). To account

for varying spatial development patterns in areas with existing structures, ranging from

random distribution (no preference for the number of existing neighbouring structures),

to linear preferential attachment (new buildings are more likely to appear near areas

with many existing structures), to clustering (new buildings preferentially attach near

large, dense clusters), we introduce a preferential attachment exponent, denoted by α, as

described in Eq. 6.1. This exponent modulates the likelihood that a new building will be

placed adjacent to a given existing building based on the current number of structures.

Specifically:

• When α = 0, new buildings are placed uniformly at random, with no preference

for the number of neighbouring structures.

• When α = 1, the probability of a new building attaching to an existing one is di-

rectly proportional to the number of neighbouring structures .

• When α = 2, new buildings are strongly biased toward attaching near existing

structures with many neighbours, resulting in enhanced clustering.

The probability P(i) that a new building connects to an existing building i is given by,

P(i) =
kα

i

∑M
j=1 kα

j

(6.1)

where ki is the number of neighbouring buildings of building i within a radius of 6 kilo-

metres, an area within which habitat is significantly influenced by anthropogenic distur-

bance, and where the effect of a building on wildebeest behavioural response reaches
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half of its maximum strength (Masolele et al., 2025). ∑M
j=1 kα

j represents the sum of the

degrees of all existing buildings, that is, the number of connections each building has,

each raised to the power of α (this normalises the probability across all existing buildings

to sum to one), M is the total number of existing buildings.

New buildings are placed uniformly within a radius of 6 km from the selected neigh-

bouring building i, hence the location of the new building is given by,

r = 6
√

u,

x′ = x + r cosϕ,

y′ = y + r sinϕ (6.2)

where (x′, y′) is the location of the new building, x and y is the location of the existing

building to which the new building is attached and is chosen stochastically with its

probability given by eqn. 6.1. u is a uniformly distributed random number between 0

and 1, r is the radius within which the new building is added and ϕ is a uniformly

distributed random number between 0 and 2π.

6.2.3 Wildebeest space use estimation

For each simulation scenario, we estimate wildebeest space use using the covariate field

defined on the basis of proximity of the combined existing and new simulated buildings

in the ecosystem in eqn. 6.2. The estimated wildebeest space use is given by:

PSPU =
1
Z

exp

(
N−1

∑
i=0

ωiβ
(

1 + exp
[
λ
(
∥bi∥ − γ

)])−1
)

(6.3)

where β is the value of the selection coefficient of wildebeest response to buildings, N
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is the number of nearest buildings considered that we set at 10 in our analysis to re-

duce unnecessary computational expense while preserving the stability of the results

as demonstrated by Masolele et al. (2025), ω is a model parameter that represents the

diminishing effects of the nearest buildings, γ and λ quantify the spatial extent of the

influence of the buildings on wildebeest, ∥bi∥ is the covariate field of the Euclidean dis-

tance to the ith nearest building. To create this covariate, we generated a 1 km resolution

grid covering the full spatial extent of all potential wildebeest locations and calculated

the distance to the ith nearest building for each point on the grid, and Z is a normalising

constant. All model parameters used were inferred from the model in (Masolele et al.,

2025) and presented in the appendix in Table S3.

Subsequently, we calculated the change in wildebeest space use ratio (SPUR) as the

difference between the predicted space use from simulated buildings data (PSPU) and

the space use obtained using the current building locations (CSPU) divided by the space

use obtained using the current building locations:

SPUR =
PSPU − CSPU

CSPU
× 100. (6.4)

6.2.4 Quantifying change in wildebeest space use

We assessed how increasing the number of buildings would lead to a change from the

current observed wildebeest space use by comparing the predicted space use from sim-

ulated buildings data to the space use of the real spatial data of buildings currently

present in the ecosystem. For this purpose, we used the Kullback-Leibler (KL) diver-

gence (Kullback and Leibler, 1951) as the distance metric to compare between each sim-

ulated space use under various scenarios and the space use obtained using the current

133



building locations. Then the KL divergence was calculated as,

KL[Q(θ)||P(θ)] =
∫

Q(θ) log
(

Q(θ)

P(θ)

)
dθ. (6.5)

Where P(θ) is the predicted space use using the real building data and Q(θ) is the pre-

dicted space use from the simulated building data. If the simulated space use produces

an identical distribution of usage as the observed space use, the KL distance will be

equal to 0, but if they are not identical, the KL will be greater than 0 (KL > 0) .

6.3 Results

Comparison of the new building allocation strategy within the ecosystem across all three

scenarios (10%, 50%, and 100% ) demonstrates clear effects on the space use of migratory

wildebeest, though the impact varies between the scenarios. Even a small increase in the

number of buildings, for example, by 10% of existing buildings within the ecosystem

is predicted to negatively affect the migratory wildebeest by partially displacing their

spatial distribution and altering habitat use patterns in all values of parameter α in the

preferential attachment mechanism (Top rows in Fig. 6.2A-E, Fig. 6.5A-E, Fig. 6.8A-E).

Notably, when the allocation of new buildings is completely randomly distributed across

the ecosystem regardless of the presence of prior structures (i.e., when the parameter δ =

1), we observe a marked negative change in wildebeest space use in almost all areas of

the ecosystem especially under large development scenarios (e.g., 50% and 100% increase

in the number of existing buildings), as shown in Fig. 6.2J and O, Fig. 6.5J and O, and

Fig. 6.8J and O.

Likewise, the simulation predicts that when the new buildings are randomly allocated

to areas with existing structure (i.e., when the parameter α = 0), meaning that both small
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and large clusters have the same chance of the new building being assigned next to it,

there will be a substantial change in wildebeest space use (Fig. 6.2), and the magnitude

of the change increases when there is a large increase in the number of new buildings,

that is, 50% and 100% increase of existing buildings as shown in Fig. 6.2F-I and K-N.
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Figure 6.2: Predicted change in wildebeest space use due to the response to increasing

buildings from the simulation. Colors indicate expected change in use from positive

change (blue), no change (grey), to negative change (red). Top row A-E, middle row

F-J and bottom row K-O represent 10%, 50%, and 100% increase of existing buildings,

respectively. Note, the space use is changing from left to right due to decreasing of

buildings clustering with δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment

parameter used during the simulation of buildings was α = 0. Gray lines indicate the

boundary of the Serengeti ecosystem and associated protected areas.
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Figure 6.3: Predicted 95% lower credible intervals for the wildebeest space use due to

the response to increasing buildings from the simulation. Colors indicate low space use

(dark blue) to high space use (yellow). Top row A-E, middle row F-J and bottom row

K-O represent 10%, 50%, and 100% increase of existing buildings, respectively. Note, the

space use is changing from left to right due to decreasing of buildings clustering with

δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment parameter used during

the simulation of buildings was α = 0. Gray lines indicate the boundary of the Serengeti

ecosystem and associated protected areas.
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Figure 6.4: Predicted 95% upper credible intervals for the wildebeest space use due to

the response to increasing buildings from the simulation. Colors indicate low space use

(dark blue) to high space use (yellow). Top row A-E, middle row F-J and bottom row

K-O represent 10%, 50%, and 100% increase of existing buildings, respectively. Note, the

space use is changing from left to right due to decreasing of buildings clustering with

δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment parameter used during

the simulation of buildings was α = 0. Gray lines indicate the boundary of the Serengeti

ecosystem and associated protected areas.

Furthermore, the simulation predicts a small change in wildebeest space use when new

buildings are added to areas with existing structures but proportionate to the number
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of structures already existing (i.e., when the parameter α = 1) compared to random

allocation regardless of the existing number of structures (i.e., when the parameter α = 0),

as shown in Fig. 6.5A, F, K. This means that small clusters receive fewer new allocations

of buildings and large clusters receive more allocation of new buildings. In contrast,

when random allocation and preferential attachment strategies are used at the same

time, we observe a significant change in wildebeest space use regardless of the number

of new buildings added as shown in Fig. 6.5 B-D, G-I, and L-N. But the changes are

far more pronounced when the allocation is totally random (that is, when the parameter

δ = 1), meaning both areas with existing structures and wilderness regions (undeveloped

regions) have the same probability of new buildings being assigned in those locations.
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Figure 6.5: Predicted change in wildebeest space use due to the response to increasing

buildings from the simulation. Colors indicate expected change in use from positive

change (blue), no change (grey), to negative change (red). Top row A-E, middle row

F-J and bottom row K-O represent 10%, 50%, and 100% increase of existing buildings,

respectively. Note, the space use is changing from left to right due to decreasing of

buildings clustering with δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment

parameter used during the simulation of buildings was α = 1. Gray lines indicate the

boundary of the Serengeti ecosystem and associated protected areas.
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Figure 6.6: Predicted 95% lower credible intervals for the wildebeest space use due to

the response to increasing buildings from the simulation. Colors indicate low space use

(dark blue) to high space use (yellow). Top row A-E, middle row F-J and bottom row

K-O represent 10%, 50%, and 100% increase of existing buildings, respectively. Note, the

space use is changing from left to right due to decreasing of buildings clustering with

δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment parameter used during

the simulation of buildings was α = 1. Gray lines indicate the boundary of the Serengeti

ecosystem and associated protected areas.
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Figure 6.7: Predicted 95% upper credible intervals for the wildebeest space use due to

the response to increasing buildings from the simulation. Colors indicate low space use

(dark blue) to high space use (yellow). Top row A-E, middle row F-J and bottom row

K-O represent 10%, 50%, and 100% increase of existing buildings, respectively. Note, the

space use is changing from left to right due to decreasing of buildings clustering with

δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment parameter used during

the simulation of buildings was α = 1. Gray lines indicate the boundary of the Serengeti

ecosystem and associated protected areas.

In addition, when the new buildings are clustered (i.e., when the parameter α = 2), there

is a relatively small change in wildebeest space use compared to when they are allocated
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randomly (Fig. 6.8A, F, K). Furthermore, we observed that when a mixed strategy (for

example, combining clustering and random allocation) is used for a large increase in the

number of new buildings (50% and 100% increases of existing buildings in Fig. 6.8G-I

and Fig. 6.8L-N, respectively), there is an observable change in wildebeest space use,

even when the number of new buildings added randomly is relatively small compared

to the clustered ones.
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Figure 6.8: Predicted change in wildebeest space use due to the response to increasing

buildings from the simulation. Colors indicate expected change in use from positive

change (blue), no change (grey), to negative change (red). Top row A-E, middle row

F-J and bottom row K-O represent 10%, 50%, and 100% increase of existing buildings,

respectively. Note, the space use is changing from left to right due to decreasing of

buildings clustering with δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment

parameter used during the simulation of buildings was α = 2. Gray lines indicate the

boundary of the Serengeti ecosystem and associated protected areas.
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Figure 6.9: Predicted 95% lower credible intervals for the wildebeest space use due to

the response to increasing buildings from the simulation. Colors indicate low space use

(dark blue) to high space use (yellow). Top row A-E, middle row F-J and bottom row

K-O represent 10%, 50%, and 100% increase of existing buildings, respectively. Note, the

space use is changing from left to right due to decreasing of buildings clustering with

δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment parameter used during

the simulation of buildings was α = 2. Gray lines indicate the boundary of the Serengeti

ecosystem and associated protected areas.
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Figure 6.10: Predicted 95% upper credible intervals for the wildebeest space use due to

the response to increasing buildings from the simulation. Colors indicate low space use

(dark blue) to high space use (yellow). Top row A-E, middle row F-J and bottom row

K-O represent 10%, 50%, and 100% increase of existing buildings, respectively. Note, the

space use is changing from left to right due to decreasing of buildings clustering with

δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential attachment parameter used during

the simulation of buildings was α = 2. Gray lines indicate the boundary of the Serengeti

ecosystem and associated protected areas.
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6.3.1 Predicted change in wildebeest space use

To demonstrate how an increase in the number of buildings within the ecosystem changes

wildebeest space use, we performed simulations that incorporate new buildings in three

scenarios: a 10%, 50%, and 100% increase in the number of existing buildings. We

used the parameter α that governed the clustering of the new buildings, with its range

spanning from 0 to 2, while the parameter δ (ranging from 0 to 1) represented the de-

crease in clustering. For each value of α ∈ {0,0.2,0.4,0.6,0.8, .......,2}, we iterated over a

second set of parameters δ ∈ {0,0.1,0.2,0.3,0.4, .......,1} during the building simulation

across all scenarios. This resulted in a decrease in the clustering of buildings as the

value of δ increased from 0 to 1. We then estimated space use based on the simulated

buildings, as described in Eqn. 6.3. To assess the difference between the simulated and

observed wildebeest space use, we used the Kullback-Leibler divergence (Eqn. 6.5), with

the results plotted in Fig. 6.11A-C. The results indicate that when the new buildings are

clustered, there is a small change in wildebeest space use compared to when they are not

clustered (Fig. 6.11A, B, C). In contrast, we observe a large shift in wildebeest space use

when there is a decrease in clustering of new buildings. This large change is observed

even for a small reduction in clustering when a large number of buildings are added to

the ecosystem, for example, 50% and 100% of existing buildings in Fig. 6.11B-C.

147



Figure 6.11: Predicted change in wildebeest space use resulting from increasing the

number of new buildings from the current observed usage in the Serengeti ecosystem.

A) Number of new added buildings is 10% of existing buildings, B) Number of new

added buildings is 50% of existing buildings, C) Number of new added buildings is

100% of existing buildings.

6.4 Discussion

We have developed a framework that predicts the impact of buildings on wildebeest

space use change. The framework allows for the simultaneous application of multiple

building allocation strategies (random placement or clustered), where one strategy can

be increased while the other is decreased in terms of the placement of new buildings

within the ecosystem. We have ensured that our simulation of additional buildings

aligns with real-world practices in building allocation in the ecosystem, thereby facilitat-

ing a direct link to how these structures may impact wildebeest space use. We achieve

it by combining a simple non-linear preferential attachment rule (governed by α param-

eter) with a modifier parameter (δ) that decreases the clustering of buildings over time

to understand how wildebeest space use will be changed by new additions of buildings

in the ecosystem. Our simulation model predicts change in wildebeest space use as

the number of new buildings are placed in the ecosystem; however, these changes are

148



more pronounced when buildings are added haphazardly. While the framework pre-

sented here does not directly address wildebeest migration or incorporate demographic

changes, buildings may pose a potential risk if they are placed in areas with key re-

sources essential for survival during migration. If such areas are abandoned by the

animals, this could affect their fitness and have broader demographic consequences.

Our simulation model presents one possible scenario as far as the effects of the build-

ings on wildebeest space use are concerned in the absence of other environmental factors

such as rainfall. However, there are reasons to believe that as the number of buildings

increases, people, roads, vehicle traffic, noise, and light pollution follow, eventually mak-

ing the development of new buildings a de facto disturbance and fragmenting habitats

that could reduce the use of wildebeest in those areas. The fragmentation of habitats

that is likely to result from building activities has the potential to dissect the ecosystem

habitat into separate habitats, which could lead to the loss of functional heterogeneity

and a decrease in vegetation productivity (Hobbs et al., 2008), leading to inadequate sup-

port for wildebeest in these areas. In worst-case scenarios, this could affect the fitness

of individuals if these areas where new buildings are built are the refuge of last resort

that provide key resources for wildebeest during times of need, such as times of dietary

stress in the course of their migration.

While clustering buildings does not completely eliminate the impact of buildings on

wildebeest space use, it significantly reduces the negative change compared to ran-

dom and linear preferential attachment building allocation strategies. This reduction

likely results from the diminishing effects, in which the first structure introduced into

an undeveloped area elicits the strongest behavioural response from wildebeest. Sub-

sequent buildings in already developed zones or areas contribute comparatively little

additional displacement, as many associated stressors of human disturbance are already
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present (Masolele et al., 2025). From a conservation management point of view, this find-

ing underscores the importance of directing new infrastructure into already impacted

areas, as this may help buffer wildebeest from further habitat fragmentation and be-

havioural displacement. Implementing conservation spatial planning policies that pro-

mote clustered development can help limit the expansion of the human footprint into

intact habitats, thereby reducing habitat fragmentation and preserving functional space

for migratory species like wildebeest. Such spatial planning approaches are essential for

balancing development needs with the long-term conservation of wide-ranging wildlife.

Like all models that model hypothetical scenarios, the framework presented here in-

evitably has inherent limitations. For example, although we allow for new buildings to

be allocated in both areas with existing structures and previously undeveloped regions

in our simulations, we assume that wildebeest have avoidance patterns toward build-

ings, multiple co-located buildings have diminishing effects, and that only the number

of buildings varies. However, it is clear that a more precise identification and separation

of the potential correlates of buildings is crucial to derive more refined predictions of

future wildebeest space use in the presence of additional buildings. For now, in some

cases, the simulations extrapolate beyond the observed range of building densities, and

the assumption is that increasing the number of buildings within a cluster does not fun-

damentally alter wildebeest movement patterns. This assumption is informed by recent

telemetry data on wildebeest movements, in conjunction with spatial data on building

distributions, used to model their responses to anthropogenic structures (Masolele et al.,

2025). Future refinements may include the development of a dynamic virtual model

driven by the integration of multisource data within the simulation framework. Addi-

tionally, employing a digital twin approach could facilitate real-time updates, thereby

enhancing the models ability to adapt to changes in the distribution and expansion of
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anthropogenic structures within the ecosystem.

We have provided a simulation framework to assess the impact of buildings on wilde-

beest space use under various scenarios that involve the addition of new buildings to the

Greater Serengeti-Mara ecosystem. The framework accommodates the use of multiple

strategies simultaneously (random placement or clustered), and each strategy indepen-

dently, allowing for the exploration of both individual and combined effects of building

allocation strategies. We assess the impacts of these new building additions using the

Kullback-Leibler divergence, enabling a comprehensive evaluation of changes in ani-

mal space use. We believe that our simulation framework provides insight for wildlife

managers and policymakers in minimising the adverse effects of new anthropogenic

structures when making decisions regarding their addition in protected areas.
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Chapter 7

Conclusions

Statistical methods have become indispensable in ecological modelling, enhancing gen-

eralisability, predictive capabilities, and the scalability of inferences across spatial scales.

These approaches offer critical insights into animal responses to anthropogenic pressures

in the Anthropocene, making them especially relevant for contemporary ecological ap-

plications. This thesis contributes to the field by introducing novel, scalable statistical

methods for analysing animal movement and migration, integrating both simulation

studies and modelling real-world animal telemetry data, while maintaining high com-

putational efficiency throughout. The methodological contributions that I have given

are found in Chapter 3 and include its applications to real telemetry data of animals in

Chapters 4 and 5. Chapter 6 focuses on simulations.

In Chapter 2, I highlighted the significance of existing modelling techniques and their

contribution to our comprehension of animal movement at various scales such as fine-

scale and broad-scale, and identified research gaps that need to be filled in this area.

In Chapter 3, I proposed a novel approximate Bayesian inference method to quantify un-
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certainty in a multiscale step selection model, which links fine-scale animal movement

decisions to broad-scale space use. Specifically, this approach allows the parameters

inferred from a model fitted to fine-scale data to be used directly to estimate population-

level space use (Michelot et al., 2020, 2019a). The method is based on variational in-

ference, which employs a simple distribution, known as the variational distribution, to

approximate the true posterior probability distribution (Blei et al., 2017) through op-

timization techniques such as stochastic gradient descent (Hoffman et al., 2013). This

approach enables the division of telemetry data into mini-batches during inference, facil-

itating parallel computation, reducing memory requirements, and enhancing computa-

tional efficiency. Unlike standard Bayesian sampling methods, which require evaluating

the model likelihood at each step of the sampler using the whole dataset, thereby sig-

nificantly increasing computational complexity, this method obviates the need to sample

directly from the posterior distribution. Furthermore, by iterating data batches multi-

ple times through the optimization algorithm, variational inference effectively learns the

selection and movement parameters from movement observations and the associated co-

variate field. This powerful and versatile modelling framework provides reliable param-

eter estimates within a reasonable timeframe, making it a viable alternative to standard

Bayesian sampling-based approaches, which can be computationally prohibitive. As a

result, this method has great potential for applications in movement ecology.

The novel multiscale step selection framework presented in Chapter 4 addresses key

challenges in assessing the effects of anthropogenic disturbances on animal habitat se-

lection, including identifying thresholds at which their impact diminishes, capturing

nonlinear responses, and evaluating the interacting effects of multiple co-located human-

made structures. The primary objective was to examine whether the presence of a single

human-made structure, such as a building, elicits a stronger response in wildebeest com-
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pared to multiple structures in close proximity, thereby assessing whether the combined

effects of such structures are compounding or diminishing. In the literature, traditional

resource selection functions (RSFs) (Manly et al., 2007) and standard step selection func-

tions (SSFs) (Forester et al., 2009; Fortin et al., 2005; Thurfjell et al., 2014) are commonly

used for this purpose. While these models are intuitive to apply, they have limitations

in terms of scaling properties. For example, the RSF parameters represent broad-scale

selection, whereas the SSF parameters capture fine-scale movement decisions, making

it difficult to translate individual animal movement responses to anthropogenic distur-

bances to population-level space use. To overcome these limitations, the proposed flex-

ible multiscale model enables the identification of thresholds, nonlinear responses, and

interactions effects of multiple co-located anthropogenic structures on animal habitat

preferences. Additionally, it allows fine-scale movement effects to be directly propa-

gated to broad-scale space use patterns. This model was applied to quantify the impact

of buildings on the movement and spatial distribution of migratory wildebeest in the

Greater Serengeti-Mara ecosystem. The analysis revealed a reduction in wildebeest use

near buildings, with diminishing effects observed when buildings were clustered. Fu-

ture research could enhance the current model by incorporating additional covariates

that were not previously included. This would improve our understanding of how var-

ious abiotic, biotic, and anthropogenic factors influence wildebeest movement decisions

and spatial use patterns.

In Chapter 5, I demonstrated the application of hierarchical sparse Gaussian processes

to model the population-level mean migration routes of the Serengeti wildebeest. By

using these routes as a proxy for long-term spatial memory and integrating them with

space use patterns derived from local environmental features, I demonstrated how this

approach improves the prediction of animal habitat use during ecologically and demo-
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graphically critical periods. This integrative approach underscores the importance of

accounting for both environmental features and long-term spatial memory in movement

models when predicting the spatial distribution of animals over time and space.

In Chapter 6, I demonstrated how the addition of new buildings in the Serengeti ecosys-

tem would impact wildebeest space use. To assess this, I introduced a novel simulation

approach that modelled building expansion under various scenarios (10%, 50%, and

100% increases in existing buildings), while considering different allocation strategies,

including random, linear, and clustering in areas with existing structures, and com-

pletely random placement regardless of prior structures. The simulation framework

was based on concepts from non-linear preferential attachment (Kunegis et al., 2013),

augmented with an accept-reject mechanism. This approach allowed for the realistic

simulation of new buildings in both previously developed and undeveloped areas while

simultaneously quantifying the changes in wildebeest space use due to additional infras-

tructure. To evaluate these changes, Kullback-Leibler divergence was used to quantify

the shift in estimated space use relative to the observed space use inferred from real

telemetry data. The simulation results indicated that if new buildings must be added,

the strategy that minimises the impact on wildebeest space use is clustering buildings

together in areas away from key grazing sites. However, it is important to note that the

current simulation framework does not explicitly model wildebeest migratory dynamics

or account for demographic processes. As a result, the model provides only a partial

understanding of how additional development may influence wildebeest behavioural

responses. To fully assess the ecological consequences of expanding human-made struc-

tures within the ecosystem, future models should integrate migratory patterns and de-

mographic parameters. This will help determine whether increased infrastructure im-

poses additional barriers to migration or disrupts population viability over time.
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7.1 Future work

The computational modelling techniques developed in this study have a broad range of

potential applications and can be used effectively in various ecosystems to study animal

movement and migration using telemetry data. The core concept underlying these meth-

ods is the ability to handle large-scale datasets of animal movement while improving

computational efficiency. The Bayesian multiscale step selection framework developed

in this study is based on a discrete-time approach. As a result, there remains a gap in

our mechanistic understanding of how multiscale inference operates in continuous time

within a Bayesian paradigm. A promising direction for future research would be to ex-

tend this framework to a continuous-time setting, which could provide deeper insights

into animal movement and habitat selection in the Anthropocene. Additionally, while

the current method relies solely on telemetry data from GPS-tagged individuals, fu-

ture work could explore the integration of multiscale inference with traditional resource

selection functions (RSFs), which are based on spatial survey (location) data. Combin-

ing these approaches would improve estimates and predictions of animal space use at

the population level by incorporating information from areas visited by untagged con-

specifics. This integration would enhance the robustness of habitat preference modelling

and contribute to a more comprehensive understanding of animal movement. Given the

increasing availability of fine-scale movement observations, leveraging this information

is crucial for advancing movement ecology research.
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S1 Variational Inference estimates

Table S1: Estimates and 95% credible intervals of resource selection parameters (β1 and
β2) recovered from the simulated synthetic movement data using VI.

Coefficients
combinations No. observations Parameter True values Estimates Credible intervals

Positive-Negative

10,000 β1 0.5 0.51 [0.41 , 0.61]
100,000 β1 0.5 0.50 [0.48, 0.54]

1,000,000 β1 0.5 0.50 [0.49, 0.52]
10,000 β2 -0.8 -0.91 [-1.15, -0.67]

100,000 β2 -0.8 -0.73 [-0.79, -0.66]
1,000,000 β2 -0.8 -0.82 [-0.85, -0.78]

Negative-Negative

10,000 β1 -1.5 -1.42 [-1.53, -1.32]
100,000 β1 -1.5 -1.47 [-1.51, -1.43]

1,000,000 β1 -1.5 -1.49 [-1.51, -1.48]
10,000 β2 -1.8 -1.67 [-1.96, -1.37]

100,000 β2 -1.8 -1.83 [-1.89, -1.76]
1,000,000 β2 -1.8 -1.79 [-1.82, -1.76]

Negative-Positive

10000 β1 -1.5 -1.56 [-1.68, -1.45]
100,000 β1 -1.5 -1.49 [-1.54, -1.46]

1,000,000 β1 -1.5 -1.50 [-1.52, -1.49]
10,000 β2 1.8 1.89 [1.66, 2.12]

100,000 β2 1.8 1.72 [1.61, 1.82]
1,000,000 β2 1.8 1.82 [1.78, 1.85]

Positive-Positive

10000 β1 1.2 1.29 [1.18, 1.39]
100,000 β1 1.2 1.20 [1.17, 1.24]

1,000,000 β1 1.2 1.19 [1.18, 1.22]
10,000 β2 1.8 2.01 [1.67, 2.34]

100,000 β2 1.8 1.79 [1.73, 1.85]
1,000,000 β2 1.8 1.79 [1.75, 1.82]
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S2 Hamiltonian Monte Carlo

We used Hamiltonian Monte Carlo (HMC) sampling to recover the parameters used

for the simulation of 10,000 observations of synthetic movement data in a 2-dimension

geographical space. The movement parameters used for the simulation were positive in-

dicating selection of resources, and negative indicating the avoidance of resources. The

number of leapfrog steps, step size, and burn-in steps were 3, 0.1, and 1000, respectively

and a step size adaptation algorithm was used during the burn-in phase. The sampler

was then run for 10000 steps with 4 independent chains. Convergence and mixing was

assessed by calculating effective sample sizes and potential scale reduction factors. Pos-

terior distributions of β1, and β2 and summary statistics of recovered parameters are

shown in Fig. S1 and Table S2, respectively. As we are using simulated data, this can be

compared to the true values used to simulate the movement data. We observe a close

agreement between the recovered values and the parameter values used for simulation.

Though, is not an exact match, but the true values are contained within the 95% credi-

ble intervals of the recovered parameter values. We also note a very close match to the

posterior distributions obtained with VI.
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Figure S1: Posterior probability distribution of recovered movement parameters using

Hamiltonian Monte Carlo sampling technique and Variational inference from the simu-

lated data with 10,000 observations using a combination of movement parameter values

(see Table 3.1) of A) β1=0.5 and β2=-0.8, B) β1=-1.5 and β2=-1.8, C) β1=-1.5 and β2=1.8,

and D) β1=1.2 and β2=1.8. The vertical dashed line (black in colour) indicates the true

values.
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Table S2: Estimates and 95% credible intervals of resource selection parameters (β1 and

β2) recovered from the simulated synthetic movement data using HMC.

Coefficients

combinations No. observations Parameter True value Estimates Credible interval

Positive-Negative
10,000 β1 0.5 0.51 [0.42, 0.61]

10,000 β2 -0.8 -0.92 [-1.15, -0.69]

Negative-Negative
10,000 β1 -1.5 -1.44 [-1.54, -1.33]

10000 β2 -1.8 -1.69 [-1.98, -1.40]

Negative-Positive
10,000 β1 -1.5 -1.56 [-1.67, -1.44 ]

10,000 β2 1.8 1.88 [1.65, 2.11 ]

Positive-Positive
10,000 β1 1.2 1.29 [1.18, 1.39]

10,000 β2 1.8 2.03 [1.69, 2.35 ]
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S3 Buildings simulation

Figure S2: Simulated buildings in the Greater Serengeti-Mara Ecosystem. Top row A-E,

middle row F-J and bottom row K-O represent 10%, 50%, and 100% increase of existing

buildings, respectively. Note, the distribution is changing from left to right due to de-

creasing of buildings clustering with δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential

attachment parameter used during the simulation of buildings was α = 0. Black dots

indicate the locations of existing buildings and red dots indicate the simulated locations

of new additional buildings in the ecosystem. Gray lines indicate the boundary of the

Serengeti ecosystem and associated protected areas.
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Figure S3: Simulated buildings in the Greater Serengeti-Mara Ecosystem. Top row A-E,

middle row F-J and bottom row K-O represent 10%, 50%, and 100% increase of existing

buildings, respectively. Note, the distribution is changing from left to right due to de-

creasing of buildings clustering with δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential

attachment parameter used during the simulation of buildings was α = 1. Black dots

indicate the locations of existing buildings and red dots indicate the simulated locations

of new additional buildings in the ecosystem. Gray lines indicate the boundary of the

Serengeti ecosystem and associated protected areas.
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Figure S4: Simulated buildings in the Greater Serengeti-Mara Ecosystem. Top row A-E,

middle row F-J and bottom row K-O represent 10%, 50%, and 100% increase of existing

buildings, respectively. Note, the distribution is changing from left to right due to de-

creasing of buildings clustering with δ values of 0, 0.25, 0.5, 0.75, and 1. The preferential

attachment parameter used during the simulation of buildings was α = 2. Black dots

indicate the locations of existing buildings and red dots indicate the simulated locations

of new additional buildings in the ecosystem. Gray lines indicate the boundary of the

Serengeti ecosystem and associated protected areas.
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S4 Parameters inferred from multiscale step selection Model

Table S3: Estimates and 95% credible intervals of parameters used for the estimation of

simulated wildebeest space use. β is the coefficient value of wildebeest selection, ω is

a parameter that indicates the diminishing effects of the subsequent buildings, λ and γ

quantify the spatial extent of the influence of the buildings on wildebeest.

Parameters Estimates Credible interval

β̂ -0.059 [−0.076,−0.041]

γ̂ 6.092 [6.011,6.173]

λ̂ 1.617 [1.262,1.972]

ω̂ 0.776 [0.667,0.884]
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