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Abstract

During an experimental or a survey session, participants adapt and change due to learning,
fatigue, fluctuations in attention, or other physiological or environmental changes. This tempo-
ral variation affects measurement, potentially reducing research power and validity. This thesis
discussed how time-varying fluctuations bias measurements and how dealing with these fluctu-
ations can improve measurements in two typical psychological research environments: cognitive
experiments and psychological measurements. Two methodological parts are presented. The
first one reviews typical cognitive experimental designs, and provided methods to account for
time-varying fluctuations and improve power in experimental studies. These methods are based
on better randomization algorithm and advanced statistics models. The second part introduced
how to control time-varying fluctuations in psychometric datasets by finite mixture models to
increase validity. It also provides an online platform for better randomizing and counterbal-
ancing surveys. Both parts found that dealing with time-varying fluctuations benefits to power
and validity gains, therefore increasing the reproducibility of psychological studies.
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Chapter 1

The Problem of Time-Varying
Fluctuations in Measurements

"No man ever steps in the same river twice, for it is not the same river and he is not the
same man." – Heraclitus

1.1 Background

Every psychology researcher knows that participating in an experiment or filling in an ques-
tionnaire takes time. Information about how long a study or questionnaire will take is always
provided in advertisements for participant recruitment, and participants are often rewarded in
proportion to the study duration. Given this, it is an oddity of current research practice that
the temporality of data collection is barely considered when designing experiments or when an-
alyzing data. In their approach to design and analysis, the typical researcher tends to behave
as though all the data for a given participant has been collected simultaneously, without any
of the mind wandering, task adaptation, excitement and/or boredom that characterizes human
participation in any prolonged activity. Indeed, it is doubtful that even participants who were
highly motivated to provide perfectly consistent, truthful, and attentive responses would be
able to avoid occasional lapses of attention or not change their response speed or accuracy as
they learn about the experimental task.

In this thesis I attempt to attack the problem of the non-simultaneity of measurement head
on, focusing on the two major data collection paradigms in psychology and neuroscience: cog-
nitive experiments and survey instruments. Nearly all experimental studies and psychometrics
investigations take repeated measurements of the neurological and/or behavioral responses of
a single participant, either under constant or varying conditions of measurement. Often this is
simply more practical, economical, and statistically efficient than taking a single measurement
from each of many subjects. Or a researcher might wish to investigate whether a psychological
construct is valid under certain samples, which requires applying multiple items (i.e., questions
in a psychological measurement instrument) measuring the same construct to a participant.
But whatever the underlying motivation, most experiments involve repeated measurements
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1.1. BACKGROUND 3

which by their very nature form a time series, and the full dataset forms a collection of such.

In cognitive experiments, traditionally delivered in a lab but increasingly taking place online,
the researcher usually measures some dependent variable (such as response time) under a va-
riety of experimental conditions. In modern experiments, it is typical to take many repeated
measurements from the same participant under the same repeated conditions within a single
testing session. For instance, in the well-known Stroop task, participants are presented with
color words (e.g., RED, BLUE, GREEN) and must respond with the color that each word is
printed in, with stimuli appearing in congruent (the word RED in printed in red font) or in-
congruent (the word RED appearing in green font) conditions. The set of familiar color words
is finite and so is the set of recognizable colors, and so each participant will see many stimuli
(usually in the tens but sometimes in the hundreds) in each of the two conditions. At the
start of the session, the participant may be keenly interested in the task but will take slightly
long to respond to each stimulus because of their unfamiliarity with the experiment. Over
time, they become more familiar and start responding more quickly and accurately. But over
time, the participant might become bored and tired, and experience lapses of attention. All
of these things are known to affect measurement, and it seems likely that they will affect it in
idiosyncratic ways from one participant to the next. These human factors introduce "nuisance
variation" into the measurement process, much of which is largely unpredictable.

The same processes are at play in the psychometric context, where a survey instrument is
deployed with the aim of measuring some latent psychological property. To do so, researchers
choose a validated psychometrics instrument. Participants answer the questions on a survey
sequentially, with items usually measuring the same underlying construct. For instance, there
may be items such as "I have a positive life attitude", "I am full of hope for my future". But
with similar questions appearing over and over again, a participant might provide a similar
answers to a similar previous question just for the sake of speed and consistency, rather than
carefully thinking about the wording and assessing how truthfully it represents them. Their
seriousness and attentiveness to the task might come and go over time, just as it does in an
experimental study.

So for the two main measurement scenarios in behavioral studies, experiments and surveys,
human factors are likely to introduce time-varying fluctuations into the measurement process.
The presence of time-varying fluctuations reflects the fundamental sequential and repeated
nature of experiments and surveys. Time-varying fluctuations are extremely common; that is
because "unlike molecules or plots of barley, human beings adapt quickly and continuously to
their environment" (Baayen et al., 2017 p.207). Such adaption applies to the experimental
environment and task: participants may may switch between discrete performance strategies
(Ashwood et al., 2022), experience attentional lapses (Robertson et al., 1997), fatigue (van
der Linden et al., 2003), or other fluctuations in underlying physiological states. Also, in a
psychometric investigation, task-takers may: adjust their response of current items based on
their previous responses (Gehlbach & Barge, 2012); provide more consistent responses as related
life experience is extracted and primed (Ozkok et al., 2019); learn from previous items to take
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action to the following items (Chen & Wang, 2007). Given that the vast majority of studies
in psychology and neuroscience involve repeated measures taken on the same participants, it
is no exaggeration to point out that nearly all studies in these fields are contaminated by
time-dependent noise.

1.2 Potential harms of ignoring the non-simultaneity of measurement

As noted, to ignore the time dimension when designing and analyzing psychological data is to
behave as though the data has been collected simultaneously. But the assumption of simultane-
ity rarely, if ever, holds. What are consequences for behavioural studies? As I argue below (and
show in subsequent chapters), in the experimental context, contamination of measurement by
time-varying fluctuations impairs power, while in the psychometric context, it impairs validity.

Some see temporal fluctuation in measurement as a potential threat to the validity of statis-
tical analyses of repeated-measures data. Parametric approaches to data analysis make the
fundamental assumption that the residuals of the analytical model are all independent. But if
we accept the above arguments that people unavoidably adapt and change over time, then this
assumption will be violated everywhere except in single item surveys or experiments having
only a single trial. Ignoring time variation in the model can induce temporal autocorrelation in
the model residuals, whereby residuals taken from observations taken close in time will be more
strongly correlated than residuals separated in time. Usually, this appears as a positive correla-
tion as a function time the time lag between residuals, which violates independence assumptions
(Bence, 1995). However, much of the literature warning about the harms of autocorrelation
involves the analysis of just one or perhaps several time series, a common situation in economic
forecasting or political polling, but very much unlike the "multi-level" context of experimental
studies where there are as many time series as participants.

Recently, researchers have expressed concerns that failing to account for temporal autocorrela-
tion in the analysis multi-level time-series may inflate false positives (Amon & Holden, 2021;
Baayen et al., 2017). Indeed, some have gone as far as suggesting that that the presence of time-
dependent error structure in multi-level data wholly invalidates the use of classical statistical
approaches (Amon & Holden, 2021). However, this view ignores that most experimentalists,
whether they know it or not, already employ a design practice that safeguards against the
potential for temporal autocorrelation to induce false positives: namely, basic randomization
(Thul et al., 2021).

Researchers typically randomize or counterbalance the sequence in which experimental condi-
tions are presented to participants. As we explain in Chapter 3, when basic randomization is
employed, ignoring temporal fluctuations does not induce false positives, but rather impairs
statistical power. Thus, the tradition of ignoring temporal fluctuations may be a contributor to
chronically low statistical power in psychology and neuroscience (Button et al., 2013; Cohen,
1962; Maxwell, 2004). Statistical power has emerged as key point of discussion in debates
about replicability and reproducibility in science, and has generally been accompanied by calls
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to increase sample size well beyond traditional standards.

Many analyses of experimental data work with participant means rather than the raw trial-
by-trial observations, so independence is not a concern, as now we are dealing with residuals
from condition means calculated over many trials rather than residuals from individual trials.
Although means are more likely to be independent than the individual observations comprising
them, the means will still be contaminated from the time-varying fluctuations, and so power is
still compromised.

For psychometrics, when evaluating the utility of a measurement instrument by means of tra-
ditional analysis (e.g., factor analysis), classic test theory assumes that the variances of item
scores are purely accounted for by the psychological construct, and no relationships remain
among any item pairs after accounting for it (McNeish, 2018). Researchers sometimes find
their data does not validate the measured psychological construct and, on this basis, suspect
that the test instrument (usually a questionnaire) has low validity. However, it is possible that
such low validity might arise is partly because time-varying fluctuations violate the local in-
dependence assumption by producing measurements that are related in time. In questionnaire
datasets, where measurements are usually ordinal, time-varying fluctuations would not exhibit
pattern that is easy to visualize as they do in continuous datasets because they affect partic-
ipants’ probability of selecting a response category (Myszkowski & Storme, 2024). Therefore,
time-varying fluctuations are harder to discover.

1.3 Model-based and design-based approaches

In the rare cases that researchers acknowledge the need to attempt to counteract the contam-
inating effect of time-varying fluctuations, it is generally only in the analysis stage, after all
the data have already been collected. Recent years have seen an ever-increasing number of
studies acknowledging the problem and proposing and debating potential analytical solutions
(Asparouhov et al., 2023; Baayen et al., 2017; Baayen et al., 2022; Myszkowski & Storme, 2024;
Ozkok et al., 2019; Thul et al., 2021). One attractive approach is to use time-series modeling,
a well-established framework for statistically modelling change over time (Fitzmaurice et al.,
2012; Mirman, 2016). One state-of-the-art modeling framework that we will explore in more
detail in Chapter 4 is Generalized Additive Mixed Modeling (GAMMs), which make it possi-
ble to flexibly model many different kinds of continuous wiggly patterns (Baayen et al., 2017;
Wood, 2017). In Chapter 7, we will also consider models of autocorrelation structure within
the psychometric context.

Model-based approaches can be highly effective and can generate powerful insight, but have
been developed specifically for situations where the dimension of time is of theoretical interest.
They can also be extremely difficult to implement especially when data is sparse, they can
yield results that are hard to interpret and easy to misunderstand, and demand a high degree
of technical knowledge (Thul et al., 2021). While these sophisticated approaches are critical
in situations where time is of central interest, it is asking a lot of researchers to apply them
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routinely across all situations, where time-varying effects are seen as more of a nuisance than
a potential source of insight.

A major contribution of the current thesis is to show the potential benefits of considering time-
varying fluctuations at the earliest stage of the research process: while studies are being designed.
There is tremendous potential to improve the quality of measurement by designing studies that
acknowledge the human element from start to finish. The design-based approach that I advocate
for experimental studies shows how improving upon the basic randomization procedure can
improve the quality of measurement and thus, improve the quality of power. Indeed, the
power gains attainable are almost as good as those attainable using the most powerful model-
based approaches. Although adapting a design-based approach to the psychometric context is
possible, it is more challenging, and so this thesis is limited to laying the groundwork for future
efforts in the psychometric arena that build upon the experimental results.

1.4 Overview

How can we improve measurement by accounting for time-varying fluctuations with design-
based and model-based methods? This thesis is divided into two parts, with the first (and
most substantial) part focusing on time-varying fluctuations in the experimental context, and
the second part focusing on the psychometric context.

The first part, Experimental Studies, has four chapters (Chapters 2 to 5) and is the core
of this thesis. This part focuses on how to deal with time-varying fluctuations in experimental
datasets to boost power. To consider the theoretically maximal power gains of our approach, we
start with the simplest experimental design: a one-factor design. Chapter 2 discusses how time-
varying fluctuations represent an untapped source of additional power in repeated-measures
experiments, and the possibility to clean up such fluctuations by designing better randomization
algorithms. This chapter also contains a literature review that seeks to characterize what
counts as a ‘representative’ experimental design. In Chapter 3, we outline a new randomization
algorithm for one-factor designs, Permuted Subblock Randomization (PSR), and show how it
helps segregate time-varying fluctuations from effects of interest, therefore improving power.
Under a Monte Carlo simulation study, we found that our design-based approach can boost
power by up to 45% for representative one-factor experimental designs. A tutorial about how to
easily implement PSR in experiments is also detailed. Next, in Chapter 4, we demonstrate the
test-independent properties, demonstrating that it yields similar benefits to power regardless
of whether data are analyzed with ANOVA or linear-mixed effects models. More importantly,
this chapter compares the performance of the design-based approach of PSR to a model-based
approach that uses GAMMs, finding that PSR yields gains that often approach the gains of
GAMMs. We also found that combining design-based and model-based approaches can optimize
the power by over 50% in certain cases. The last chapter of Part I, Chapter 5, extrapolates PSR
to 2x2 factorial designs. We discuss how power is allocated across different effects in the 2x2
factorial design framework, and introduced two variations of PSR that adapt it to the factorial
context. We conducted a new Monte Carlo simulation study to validate the power advantages
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of PSR in this chapter. Our results suggested that PSR benefits power in representative 2x2
factorial designs and can either achieve a general power improvement or increase power for
specific main effects or interaction terms.

The second part of this thesis, Psychological Measurement, contains two chapters (Chap-
ters 6 and 7). Building on the findings from Part I, it focuses on dealing with time-varying
fluctuations in psychological measurement datasets, especially in psychometrics surveys. Be-
cause of long-term debates and the difficulties in psychometrics, it is not clear design-based
approaches are useful as they are in experimental designs.

Therefore, in Chapter 6, we started with a model-based approach, Mixture Autoregressive
Confirmatory Factor Analysis (MAR-CFA), to improve validity of psychometrics datasets. The
MAR-CFA is a methodological extension of a recent approach (Ozkok et al., 2019), and seeks
to capture time-varying fluctuations by clustering latent heterogeneity. Our simulation results
showed that ignoring time-varying fluctuations in datasets could lead to a 20% overestimation
of factor loadings, while MAR-CFA efficiently moderated such overestimation. However, im-
plementing MAR-CFA imposes a considerable computational burden and requires a relatively
large sample size. Therefore, in Chapter 7, we introduced a new online survey builder and
data collection platform, RandomiSur, aiming to provide a new design-based perspective to
improve validity in psychometrics. In this chapter, I firstly detail why design-based approaches
are less appreciated in the field of psychometrics. Then RandomiSur is introduced as an on-
line tool to counterbalance and randomize psychometric measurement. This is based on our
success in dealing time-varying fluctuations in experimental studies. A tutorial about how to
deploy RandomiSur and how to launch a randomized psychometrics survey with it is provided
in this chapter in order to help future research to better design psychometric measurement
instruments.

At the time of writing of this thesis, the findings presented in Chapters 2 and 3 have been
published in the peer-reviewed journal Psychological Methods, see Liang & Barr (2024).
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Chapter 2

Typical Study Designs for Cognitive
Experiments

2.1 Background

As Chapter 1 outlined, time-varying fluctuations could be seen as an untapped power source. If
time-dependent noise is controlled through randomization—a design-based approach—an effect
of interest could be detected more easily as it is less likely to be masked. It is also possible
to use statistical modelling to "clean up" temporal nuisance effects from the data (Baayen
et al., 2017; Baayen et al., 2022), but doing so is challenging because the functional form of
such effects is generally unknown. Moreover, it may be inconsistent across participants, and
can include curvilinear, asymptotic, and/or discontinuous components (as will happen when
participants take rest breaks during a session). But statistical modelling is not the only way to
improve power. If we accept that humans adapt and change over an experiment, then we can-
and should-design our experiments with this temporal variation in mind. As adaptions and
changes are dependent to sequenced stimuli, carefully designing the trial presentation order
might be helpful to eliminate such effects.

Textbook discussions of organizing the presentation order of within-participant conditions in
experimental studies typically focus on counterbalancing. Furthermore, these discussions con-
cern situations where there is only a single observation per condition per participant. In such
circumstances, counterbalancing ensures each condition appears in each sequential position the
same number of times across participants. For example, a common approach is to counter-
balance the presentation order of conditions across participants using a Latin Square design
(Kirk, 2013; Rosenthal & Rosnow, 2008; Shadish et al., 2002). As presented in Figure 2.1 (left
panel), if there are four conditions labelled ABCD, then the first participant might get the or-
der ABCD, with participants two through four receiving orders BCDA, CDAB, and DABC.
This scheme has two nice properties: (1) each condition appears the same total number of times
in the data (four, in this example); and (2) each condition appears in each sequential position
equally often.

9
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A B C D

B C D A

C D A B

D A B C

A standard Latin Square

A A A B B B C C C D D D

B B B C C C D D D A A A

C C C D D D A A A B B B

D D D A A A B B B C C C

An extrapolated Latin Square

A B D C C A D B D A B C

B A D C C A B D A C D B

A C B D A C B D A D B C

D A B C D B A C C B D A

Simple Restricted Randomization

Figure 2.1: Trial sequences organized in a counterbalanced Latin Square (left panel), an ex-
trapolated Latin Square (middle panel), and the simple restricted randomization.

However, for cognitive experiments where there are multiple observations per experimental
condition, Latin Square is not a good method for counterbalancing. One could, for instance,
extrapolate the Latin Square logic to repeated observations by simply organizing the conditions
in each level into a block, as presented in Figure 2.1 (middle panel). If each participant gets each
condition three times, then participant one gets AAABBBCCCDDD, participant two gets
BBBCCCDDDAAA, and so on. However, this has three disadvantages. First, the condition
of each trial is highly predictable within each block. Second, each condition is always preceded
(and followed) by the same condition (e.g., B always comes before C and after A), which is also
seen in the standard Latin Square. Third, Monte Carlo simulations suggest that for datasets
having time-varying error structure (due to learning effects, waxing and waning of attention,
fatigue, etc.), blocking the levels of an independent variable together can be catastrophic for
power (Thul et al., 2021).

To overcome these disadvantages, using randomization will generally be preferable over counter-
balancing using a Latin square. However, experimentalists will not find much in the literature to
guide their randomization choices because much of the literature on randomization is focused
on clinical trials (Berger et al., 2021), which differ from cognitive experiments in important
ways. Many randomized clinical trials are between-subject designs where each participant is
randomly allocated to a treatment or control arm of a study, and there is much concern with
avoiding selection bias in the allocation process. In contrast, most cognitive experiments em-
ploy within-subject designs where each participant not only gets the full set of conditions (i.e.,
experimental conditions), but usually multiple measurements are taken at each. Many clinical
trials and most cognitive experiments use a form of restricted randomization (Pocock, 1979)
where the randomization process is constrained to ensure a balanced study. In the context of
laboratory experiments, this entails taking the full set of balanced conditions (e.g., three trials
in each of conditions A,B,C and D) and scrambling the order independently for each partic-
ipant, as presented on Figure 2.1, right panel. We refer to this approach as simple restricted
randomization.

Employing randomization allows researchers to maximally remove selection bias and position
effects of stimuli or treatment conditions. But if we see controlling time-varying fluctuations
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as a potential way of improving measurement, we should also see imposing further restrictions
on randomization as a potentially accessible and efficient way to improve power. By further
restricting randomization, we can produce a sequence where stimuli or treatment conditions are
more evenly distributed over time while still remaining relatively unpredictable. However, this
potential is generally overlooked by researchers when applying randomization. In fact, although
nearly all laboratory within-subject design experiments involve randomization in the sequencing
of stimuli or conditions, when researcher express motivations for imposing further restriction
they seldom mention power, but rather aim to avoid cross-trial contamination or to obscure the
purpose of an experiment from participants (van Casteren & Davis, 2006). Additionally, in ana-
lyzing experimental data—whether intentional or not—researchers often perform analyses that
effectively assume simultaneity of measurement : that is, they assume a measurement’s position
in the sequence has no bearing on its value. But if we recognize the time-dependent nature
of experiments, simultaneous measurement is impossible. Here, we contend that experimental
researchers can benefit by considering more sophisticated approaches to randomization found
in clinical trials research that consider the non-simultaneity of measurement. In the following
chapters, we introduce new restricted randomization approaches that accomplish this in the
experimental context.

To know how well an algorithm will perform, it is essential to understand the environment
in which it will be deployed. So before introducing these algorithms, we begin with a study
aiming to find the typical design structures of common cognitive experiments. What types of
experimental designs are most representative of cognitive experiments? One aspect concerns
the number of independent variables (factors) in the design, which determines the number of
treatment conditions. For one-factor designs, which will be the focus of the next two chapters,
there are three essential design parameters: (a) the number of factor levels, denoted as nk; (b)
the number of repetitions per level, denoted as nr; and (c) the number of participants, denoted
as np. These parameters can be collected from published research. However, before going
into collecting design parameter data, some details about these parameters would be helpful to
better understanding why they are crucial to randomization.

We start out with the number of factor levels, nk. Obviously, a factor must have at least two
levels nk ≥ 2 to be counted as a factor and to be subject to randomization. For a factor
with only two levels A and B and only one trial per condition, also two random sequences are
possible, AB and BA. However, even with such simple randomized sequences, we still avoid
bias from a potential position effect: A would not always appear in front of B, and B would
not always appear behind A. With nk increasing, the number of possible randomized sequences
expands, and we are more likely to avoid situations where one level would always appeared in
front of or behind another level. There are special cases in designs with more than one factors
(e.g., factorial designs), where nk could also represent the number of conditions constructed by
combining levels from all factors.

The number of repeated observations taken within each level, nr, also determines the space
of possible random sequences. As mentioned, repeated-measure designs with multiple mea-
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surements per factor level is extremely common in psychology and neuroscience. With a fully
within-participant design, the researcher takes nk×nr observations for each participant. Apply-
ing simple restricted randomization with small nk but large nr may not be a good idea because
there will be lots of runs of trials in the same condition. For example, given a factor with
only two levels A and B, a very large nr would be unlikely to generate sequences that regularly
switching conditions (ABABAB...) and more likely to bunch condition together (AAABBB...).
In subsequent chapters, we will explore randomization algorithms that help more evenly spread
the conditions.

Finally, every experiment has a certain number of participants, np. Discussions of power in the
literature almost entirely focus on this one parameter, np. Undeniably, participant sample size
is a major factor that affects power, (Marszalek et al., 2011), but it also determines the space
of possible randomizations for the whole sample. In many clinical experiments and cognitive
experiments that are between-subject, np is determined to construct a balanced design. When
multiple treatment groups are determined, researchers need to randomly allocate participants
to treatment groups in order to construct a balanced design across groups. In this case, np

directly affects the randomization process. In fully within-subject experiments, attention should
be also be directed at the sequencing of the nk × nr observations. As np increases, the more
independently randomized sequences generated, the more possible trials would be evenly spread
into all possible positions in sequences. Therefore, in fully within-subject experiments, although
np does not take part in the essential randomization process, it indirectly affects the utility of
randomization by allowing more evenly distributed stimuli or treatment conditions across the
sample. However, np cannot be always increased due to limitations in real life (ethical issues,
research expenditure, special samples, etc.). So investigating how power can be improved with
fixed (and typical) values of np is useful.

To determine typical design parameters, we conducted a comprehensive literature review of
recent cognitive experiments. Our results help ensure that we focus on typical design parameters
when evaluating the new randomizations that appear in the forthcoming chapters.

2.2 Methods

We targeted all cognitive experiments reported in a recent full publication year (2023) in the
Journal of Experimental Psychology: Human Perception & Performance2.1. This journal focuses
on publishing experimental papers in different areas of psychology, and the design parameters
retrieved from its publications are representative to common experimental settings. We ex-
tracted design parameters from 161 experiments reported in 68 articles that fulfilled our three
selection criteria, which were that articles must include: (1) at least one experiment where ran-
domization was explicitly mentioned; (2) repeated measurements of at least one within-subject
independent variable; and (3) multiple observations for each within-subject factor level or for
each combination of within-subject factors, if a design has more than one within-subject factors.
For each experiment, we collected design parameters np, nr, and nk. During the information

2.1At the time this review was finished, 2023 was the last full publication year of the target journal.
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extraction process, if a study contained more than one experiment, corresponding information
for each experiment was independently extracted. We also noted that some experiments used
a pseudorandomization strategy that applies randomization on top of certain limitations (e.g.,
applying for some treatment groups, some specific trials, or with limitations for relative treat-
ment orders). These experiments were included with the label pseudo. In addition, for studies
with one within-subject factor, nk simply represented the number of factor levels; while for
experiments with multi-factor designs, we calculated nk as a product of the number of factor
levels for each factor and nr as the number of within-subject repetitions within each condition
of the design. For example, given an experiment having two within-subject factors and each
factor has two levels, the number of conditions, nk, is 4. And if there are two repetitions per
conditions, nr = 2× 4 = 8.

2.3 Results and discussion

Table 2.1 listed the literature review results. Out of these 161 experiments, 30.4% had a
single within-participant factor, 61.2% had nk = 2, 30.6% had nk = 3, and the remaining
8.2% had nk ≥ 4. On top of basic employment of randomization, 11 experiments (0.1%)
additionally restrict the presentation order (i.e., using pseudorandomization design), in order to
allow interleaved conditions (e.g., Yarrow et al., 2023) and to suppress continuous appearances
of stimuli under the same condition (e.g., Severijnen et al., 2023).

Table 2.1: Literature review results

Paper Randomization np nk nr Notes
Ma & Abrams (2023) Y 24 2 48 Exp 1
Ma & Abrams (2023) Y 24 2 54 Exp 2
Schirmer et al. (2023) pseudo 61 4 50 Exp 2
Chan & Saunders (2023) Y 16 4 45 Exp 1
Chan & Saunders (2023) Y 16 4 45 Exp 2
Guitard & Cowan (2023) Y 120 4 3 Exp 3
Guitard & Cowan (2023) Y 120 4 6 Exp 3
Gibson et al. (2023) Y 40 8 5 Exp 1
Gibson et al. (2023) Y 80 8 5 Exp 2
Vandenberghe & Vannuscorps (2023) Y 30 6 10 Exp 1
Vandenberghe & Vannuscorps (2023) Y 60 6 5 Exp 2
Mainka et al. (2023) Y 20 5 10
Savino & Kahan (2023) Y 32 16 5 Exp 1
Savino & Kahan (2023) Y 32 32 3 Exp 2
Sobrinho & Souza (2023) Y 28 4 6 Exp 1
Sobrinho & Souza (2023) Y 112 4 6 Exp 2
Bissett et al. (2023) Y 66 12 20

Continued on next page
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Continued from previous page
Paper Randomization np nk nr Notes
Kinoshita et al. (2023) Y 40 6 20 Exp 1
Kinoshita et al. (2023) Y 49 6 20 Exp 3
Kinoshita et al. (2023) Y 41 6 20 Exp 2
Kinoshita et al. (2023) Y 42 6 20 Exp 4
Pedziwiatr et al. (2023) pseudo 36 2 3 Exp 1
Pedziwiatr et al. (2023) pseudo 18 2 3 Exp 2
Pedziwiatr et al. (2023) pseudo 20 2 3 Exp 3
Hu et al. (2023) Y 74 3 2 Exp 2
Overkott & Souza (2023) Y 36 6 13 Exp 1a
Qiu et al. (2023) Y 49 4 6 Exp 1
Qiu et al. (2023) Y 57 8 3 Exp 2a
Qiu et al. (2023) Y 58 8 3 Exp 2b
Scheibel & Indefrey (2023) Y 40 4 15 Exp 1
Scheibel & Indefrey (2023) Y 37 4 15 Exp 2
Nedergaard et al. (2023) Y 222 8 1
L. Chen et al. (2023) Y 20 2 21 Exp 1a
L. Chen et al. (2023) Y 44 2 21 Exp 1b
L. Chen et al. (2023) Y 33 4 10 Exp 2
L. Chen et al. (2023) Y 36 4 10 Exp 3
Durgin & Portley (2023) Y 40 24 2
M. S.-Y. Chen et al. (2023) Y 40 2 8 Exp 1a
M. S.-Y. Chen et al. (2023) Y 40 4 12 Exp 1b
M. S.-Y. Chen et al. (2023) Y 40 2 8 Exp 2a
M. S.-Y. Chen et al. (2023) Y 40 4 12 Exp 2b
Asaoka & Wada (2023) Y 23 16 16 Exp 1
Asaoka & Wada (2023) Y 23 16 16 Exp 2
Marzola & Cohen (2023) Y 61 8 30 Exp 1
Marzola & Cohen (2023) Y 87 8 30 Exp 2
Klassen et al. (2023) Y 36 2 20
Severijnen et al. (2023) pseudo 80 32 3
M. E. Yu et al. (2023) Y 192 2 32
M. E. Yu et al. (2023) Y 50 2 32
H. Yu et al. (2023) Y 24 3 20 Exp 1a
H. Yu et al. (2023) Y 48 2 60 Exp 2a
Yan et al. (2023) Y 240 2 65 Exp 1
Yan et al. (2023) Y 120 2 65 Exp 2
Yan et al. (2023) Y 120 2 65 Exp 3
Fang et al. (2023) Y 91 6 2 Exp 1

Continued on next page
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Continued from previous page
Paper Randomization np nk nr Notes
Fang et al. (2023) Y 43 6 12 Exp 2a
Fang et al. (2023) Y 30 6 12 Exp 2b
Fang et al. (2023) Y 32 12 6 Exp 2c
Barnes et al. (2023) Y 25 12 2 Exp 1
Barnes et al. (2023) Y 48 12 2 Exp 2
Barnes et al. (2023) Y 78 12 2 Exp 3
Barnes et al. (2023) Y 75 16 3 Exp 4
Veldre et al. (2023) Y 44 18 20 Exp 1a
Veldre et al. (2023) Y 42 10 15 Exp 1b
Veldre et al. (2023) Y 61 20 15 Exp 2a
Veldre et al. (2023) Y 59 20 15 Exp 2b
Veldre et al. (2023) Y 59 10 30 Exp 3a
Veldre et al. (2023) Y 58 10 30 Exp 3b
Negen et al. (2023) Y 12 3 28 Exp 3
Negen et al. (2023) Y 12 3 28 Exp 4
Negen et al. (2023) Y 12 3 23 Exp 5
Negen et al. (2023) Y 12 3 42 Exp 6
Negen et al. (2023) Y 12 3 43 Exp 7
Negen et al. (2023) Y 12 4 16 Exp 8
Negen et al. (2023) Y 12 3 27 Exp 9
Milligan et al. (2023) Y 40 6 4 Exp 1
Milligan et al. (2023) Y 41 6 4 Exp 2
Peker et al. (2023) Y 20 16 2
Babu et al. (2023) Y 18 4 6
Barbosa Escobar et al. (2023) Y 300 2 10 Exp 1
Barbosa Escobar et al. (2023) Y 300 2 10 Exp 2
Kershner & Hollingworth (2023) Y 60 2 10 Exp 1
Kershner & Hollingworth (2023) Y 20 2 10 Exp 2
Kershner & Hollingworth (2023) Y 20 2 10 Exp 3
Kershner & Hollingworth (2023) Y 20 2 8 Exp 4
Ramgir & Lamy (2023) Y 96 4 12 Exp 1
Ramgir & Lamy (2023) Y 48 8 12 Exp 2
Goodridge et al. (2023) Y 12 9 300
Lavelle et al. (2023) Y 55 12 5 Exp 1
Lavelle et al. (2023) Y 54 8 4 Exp 2
Gutzeit et al. (2023) Y 40 3 12 Exp 1
Gutzeit et al. (2023) Y 40 3 12 Exp 2
Narhi-Martinez et al. (2023) Y 28 3 5 Exp 1

Continued on next page
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Continued from previous page
Paper Randomization np nk nr Notes
Narhi-Martinez et al. (2023) Y 28 3 21 Exp 2
Narhi-Martinez et al. (2023) Y 56 3 21 Exp 3
Bogon et al. (2023) Y 25 4 16 Exp 1
Bogon et al. (2023) Y 45 4 16 Exp 2
Ziaka & Protopapas (2023) Y 42 8 7
Cui et al. (2023) Y 37 12 12 Exp 1a
Cui et al. (2023) Y 36 12 12 Exp 1b
Cui et al. (2023) Y 35 12 12 Exp 3b
Cui et al. (2023) Y 44 4 37 Exp 2
Cui et al. (2023) Y 41 4 37 Exp 3c
Sears et al. (2023) Y 60 6 8 Exp 1
Sears et al. (2023) Y 60 6 8 Exp 2
Chang et al. (2023) Y 24 3 120 Exp 1
Chang et al. (2023) Y 24 3 120 Exp 2
Nguyen & van Buren (2023) Y 50 4 16 Exp 1,4
Nguyen & van Buren (2023) Y 100 4 16 Exp 2,3,6
Manzone & Welsh (2023) Y 24 4 15 Exp 1
Manzone & Welsh (2023) Y 23 4 148 Exp 2
Garnier-Allain et al. (2023) Y 21 8 7 Exp 1
Garnier-Allain et al. (2023) Y 21 8 36 Exp 1
Garnier-Allain et al. (2023) Y 21 28 10 Exp 1
Garnier-Allain et al. (2023) Y 21 28 13 Exp 2
Garnier-Allain et al. (2023) Y 21 4 96 Exp 2
Bollini et al. (2023) pseudo 42 4 13 Exp 1
Bollini et al. (2023) pseudo 42 4 13 Exp 2
Bollini et al. (2023) Y 42 2 27 Exp 3
B. E. Wirth et al. (2023) Y 31 4 9 Exp 1
B. E. Wirth et al. (2023) Y 36 4 9 Exp 2
Kang & Longo (2023) Y 20 2 18
Siqi-Liu & Egner (2023) pseudo 30 4 15 Exp 1
Siqi-Liu & Egner (2023) pseudo 83 8 4 Exp 2
Siqi-Liu & Egner (2023) pseudo 170 8 3 Exp 3
Schaaf et al. (2023) Y 48 4 10 Exp 1
Schaaf et al. (2023) Y 48 4 10 Exp 2
Van Geert & Wagemans (2023) Y 283 2 27 Task 1
Van Geert & Wagemans (2023) Y 283 2 82 Exp 2
Van Geert & Wagemans (2023) Y 283 2 66 Exp 3
Lerebourg et al. (2023) Y 43 4 10 Exp 1

Continued on next page
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Continued from previous page
Paper Randomization np nk nr Notes
Lerebourg et al. (2023) Y 43 4 16 Exp 2
Lerebourg et al. (2023) Y 80 4 10 Exp 3
Lerebourg et al. (2023) Y 80 4 10 Exp 4
Lee & Cho (2023) Y 32 4 24 Exp 1
Lee & Cho (2023) Y 32 4 24 Exp 2
Schmalbrock et al. (2023) Y 32 8 4 Exp 1a
Schmalbrock et al. (2023) Y 22 8 4 Exp 1b
Schmalbrock et al. (2023) Y 40 8 4 Exp 2a
Schmalbrock et al. (2023) Y 40 8 4 Exp 2b
R. Wirth et al. (2023) Y 24 4 40 Exp 1
Honda et al. (2023) Y 127 10 5 Task 1
Honda et al. (2023) Y 127 4 24 Task 3
Woźniak et al. (2023) Y 184 18 2
Wentura et al. (2023) Y 58 4 16 Exp 1
Wentura et al. (2023) Y 39 4 16 Exp 2
Wentura et al. (2023) Y 57 4 16 Exp 3
Wentura et al. (2023) Y 38 4 16 Exp 4
Colvett et al. (2023) Y 78 8 18 Exp 1
Colvett et al. (2023) Y 65 8 18 Exp 2
Colvett et al. (2023) Y 66 8 18 Exp 3
Zhang et al. (2023) Y 30 4 12 Exp 1
Zhang et al. (2023) Y 28 4 12 Exp 2
Zhang et al. (2023) Y 28 4 12 Exp 3
Zhang et al. (2023) Y 28 4 12 Exp 4
Eggleston et al. (2023) Y 90 2 50 Exp 1
Eggleston et al. (2023) Y 90 4 25 Exp 2
Hoversten & Martin (2023) Y 56 2 62
Yarrow et al. (2023) pseudo 20 18 7
Cheng et al. (2023) Y 18 2 90 Exp 1
Cheng et al. (2023) Y 21 4 5 Exp 2

The idea of randomization has been considered in multiple types of cognitive experiments,
including those about action control, bilingualism, emotional expression, and so on. Discussions
about the power of studies in these papers exclusively focused on participant sample sizes.

To obtain central ranges for the design parameters, we calculated the first (25%), second (50%,
or median) and third (75%) quartiles for each parameter. This analysis resulted in sample sizes
of 25, 40, and 60 (np ∈ {25, 40, 60}), factor level values of 2, 4, and 8 (nk ∈ {2, 4, 8}), and
repetition-per-condition values of 6, 12, 24 (nr ∈ {6, 12, 24}). As these reviewed studies rep-
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resented typical settings of current cognitive experiments, central ranges of design parameters
should cover a good part of the design parameter space. Fully crossing these parameters yielded
27 unique study designs. We refer these 27 designs as representative experimental designs.

Across studies being reviewed, almost all provided reasons for choosing sample size based on
the G-power calculation results, yet none of them discussed higher power gains from their
randomization strategies. In Chapter 3, we will purpose a design-based method that can
improve power in these representative experimental designs.



Chapter 3

Improving Power for ANOVA in
One-Factor Designs with Permuted
Subblock Randomization (PSR)

3.1 Background

Chapter 2 outlined the potential of randomization to power gain in repeated-measure within-
subject experiment designs, and provided representative experiment settings. In this chapter,
we show how a simple improvement to the randomization procedure for experiments having
within-subject factors can substantially improve power by controlling time-varying fluctuations.
Since randomization happens in stimuli sequence management, let us start with further looking
at the simple restricted randomization sequences, and understand why it is suboptimal to power
gains.

In clinical trials where between-subject experiments are commonly implemented, randomization
algorithms have been developed to ensure patients are allocated to treatment/control arms in a
balanced manner as the study unfolds. It is often the case that the clinical researcher does not
know in advance when the target sample size will be reached; for example, because enrollment
happens in parallel across multiple testing sites as patients become available. Given the study
may be completed (or terminated) unexpectedly, there is motivation to preserve balance among
the number of patients across treatment arms as they are enrolled. The easiest solution would
be to simply alternate allocation sequentially among the treatment arms; for instance, for
a study with treatments A and B, the allocation would alternate sequentially between them
(e.g., ABABABABAB . . .). However, the predictable nature of this sequence would enable the
experimenter to know in advance the identity of the next allocation, opening up the possibility
for selection bias (Blackwell & Hodges, 1957). An algorithm in common use that reflects a
compromise between balance and predictability is Permuted-Block Randomization (Altman &
Bland, 1999; Efron, 1971; Hill, 1952; Matts & Lachin, 1988). In the simplest version, a study
with nk treatment arms is divided into nb blocks of np patients, where np is a multiple of nk.

19
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For instance, if there are four treatment arms A, B, C, and D, then np may be four or eight or
some larger number that is a multiple of four. A balanced set of treatments is allocated to each
block and then a permutation of those treatments is chosen at random, independently from the
sequence chosen for other blocks. For example, if np = 8, then two As, two Bs, two Cs, and two
Ds are chosen and randomly ordered to form a sequence for that block, e.g., AADBCCBD.

The simple restricted randomization approach used in nearly all laboratory experiments can be
seen as a special case of Permuted-Block Randomization where there is a single block spanning
the full set of trials allocated to each participant. For instance, in a study with four within-
subject experimental conditions A, B, C, and D, and with five observations in each condition,
the researcher will create a presentation order for each participant by permuting the full set of
4×5 = 20 symbols. But as mentioned, typical motivations for randomization are not to increase
power. Experimenters also often organize trials into blocks, but mainly to allow participants
to have a rest break during a long experimental session.

We adapt the Permuted-Block Randomization approach from clinical trials into the experi-
mental context and estimate the potential improvement to power across a set of representative
designs from Chapter 2. Experimenters often divide trials into blocks to give participants rest
breaks during a session. We introduce an algorithm, Permuted-Subblock Randomization (PSR),
that further subdivides these blocks into balanced subblocks and permutes the order of levels
within each subblock. This approach smooths out imbalances over time that can mask effects
of interest. We used Monte Carlo simulation to estimate power improvements under four hy-
pothetical scenarios of time-varying errors. Depending on the design and the structure of the
dependencies, PSR boosted power over simple restricted randomization between 4% and 45%,
with a median boost of about 13%. We supply an applied example showing how to use the R
package explan to implement PSR when planning a hypothetical experiment.

3.2 Achieving balance over time with Permuted-Subblock Randomization (PSR)

Although researchers are typically well aware of time-varying fluctuations, they rarely take
them into account when ordering the sequence of levels over time. To see why it matters, let
us consider an example experiment consisting of response time measurements with a single
four-level within-participant factor with levels A, B, C, and D, representing four levels in the
experiment. Let us also assume that we collect sixteen measurements for each participant, four
for each condition.

Usually, before performing an ANOVA a researcher would calculate means for each subject in
each condition over the four measurement occasions in that condition, and then submit the
means rather than the raw observations to ANOVA. The sensitivity of this analysis depends
on the F ratio, a ratio of mean squares, e.g., MStreat/MSerror, where MStreat represents the
treatment variance (i.e., the variance introduced by the independent variable) and MSerror is
the residual sum of squares (RSS). Both MStreat and MSerror are scaled by their degrees of
freedom. In the ANOVA framework, this ratio amounts to signal plus noise divided by noise,
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such that the ratio will approach 1 for a null effect and increase beyond 1 as the signal variance
increases. We could potentially increase the ratio by designing the experiment in a way that
helps more clearly segregate the signal from the noise.

The errors for each participant in an ANOVA model are usually considered to be independent
over time. But due to time-varying fluctuations, it is less likely the case. For example, consider
three characteristic ways they can be time dependent (Figure 3.1): exponential decay, random
walk, and pink noise. Exponential decay characterizes a situation where there is a "practice"
or "learning" effect such that measurements decline toward some asymptotic value, a pattern
often seen with response times (Newell & Rosenbloom, 1981). A random walk situation can
be thought of as involving the waxing and waning of attention, such that measurements are
determined by a slowly changing attention state. This results in a more undulating type of
pattern. Finally "pink noise", a type of noise that is characteristic of self-organizing systems,
has also been detected in the sequence of responses in behavioral experiments (Gilden et al.,
1995). The cognitive processes that might give rise to such a pattern are difficult to characterize,
but the pattern is said to have a "fractal" signature, meaning that the same undulating pattern
is present at multiple time scales (Holden, 2005). All three of these patterns will give rise to
positive temporal autocorrelation, the property whereby a series is positively correlated with
lagged versions of itself. More simply, this may be thought of as errors being more similar to
one another the closer they are taken in time.
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Figure 3.1: Three characteristic patterns of time-dependent errors: exponential decay, random
walk, and pink noise. The top three charts show hypothetical patterns of response time errors
(vertical axis) for four different participants, distinguished by shape (circle, square, triangle,
plus) and color. Just below the curves are possible condition labels (A, B, C, D) for each subject
and trial (horizontal axis), organized into subblocks (indicated by boxes). Three possible designs
are represented: simple restricted randomization ("simple RR": top four rows of labels in a
single box), two subblocks (next four rows in the two side-by-side boxes) and four subblocks
(bottom four rows of labels in four boxes). The charts at the bottom show the observed mean
RTs for each participant in each design plotted against the true condition means (background
lines). RSS = Residual Sum of Squares.

To sequence the order of levels, researchers generally apply simple restricted randomization to
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the entire sequence of balanced level labels, and do so independently and separately for each
participant. Let us consider how this approach might be suboptimal for power. Assume that
the true response time means across levels are known to be 600, 533, 467, and 400 milliseconds
in conditions A, B, C, and D respectively. To keep our example simple, let us further assume
that the participants are from a homogeneous population where there are no individual dif-
ferences (e.g., by-subject random intercept and random slope variances are zero). Given this
assumption, the observed level means for each participant in each scenario under simple re-
stricted randomization (Figure 3.1, bottom "simple RR" charts) deviate from their true values
due to trial-level noise alone. Under the exponential decay scenario, the mean for participant
3 (the blue square in Figure 3.1) is lower than it should be in level B (504 vs the true mean of
533) and much higher than it should be in level C (514 vs the true mean of 467). The reason
for this is that the unconstrained randomization resulted in all four C trials appearing earlier
in the session (positions 2, 3, 5, and 6) than all four B trials (positions 8, 12, 13, and 14) for
this participant. Thus, the C trials tended to appear when RTs were artificially high and B

trials when RTs were artificially low. This lopsided temporal distribution results in the mean
for C being higher than the mean for B for this subject, masking a true effect going in the
opposite direction.

The above analysis suggests that it is the imbalance of levels over certain intervals of the
entire sequence that can potentially mask effects of interest. We can avoid this masking by
striving to maintain balance through the session, so that individual levels do not bunch together
where errors are momentarily high or low. We could easily achieve this by cycling through the
sequence of levels trial-by-trial (e.g., ABCDABCD . . .), but we must also avoid creating a
sequence that would allow the participant to predict the level of the next trial. This need to
preserve balance over time while avoiding predictability is the exact problem that Permuted-
Block Randomization solves in the clinical context, and we can apply it to trials within an
experiment just as it is applied to patients within a clinical study. We can maximize balance
over time by subdividing the fully balanced block of level labels into balanced subblocks, each
containing one repetition of each level. We can then avoid perfect predictability by permuting
the order of conditions within each subblock and then concatenate the subblocks back together
to form the final sequence. We refer to this algorithm as Permuted-Subblock Randomization
(PSR). The PSR algorithm is identical to Permuted-Block Randomization but the application
is different, in that it is applied to a sequence of trials in an experiment rather than to sequence
of patients in a clinical study.3.1

Had we designed our experiment using PSR with four subblocks instead of simple restricted
randomization, we would have avoided masking the main effect and would achieve a smaller
residual sum of squares (e.g., RSS = 2375 vs 7934 for the exponential decay scenario), thus
improving power. Still, this four subblock situation could be seen as too predictable for human
participants, who, once familiar with the set of levels, might still be able to predict the identity

3.1We opted for the term ‘subblock’ instead of ‘block’ to avoid confusion, because in the experimental context
the latter term is usually used to refer to a set of trials that a participant completes in a single series without
pausing for a break.
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of the next trial with some accuracy. But there is an intermediate design strategy between
maximally constrained four subblock version and simple restricted randomization: one with two
subblocks. We put two of each label in each subblock, pull labels out in a random order, and
concatenate the results. Applying this strategy would, on average (but not deterministically),
reduce the residual sum of squares across all three scenarios compared to simple restricted
randomization, thus improving our power while yielding a sequence that to participants would
still seem mostly random. In the exponential decay scenario, going from simple restricted
randomization to PSR with two subblocks decreases the RSS from 7934 to 3148; however, for
the pink noise scenario, it actually increased the RSS (from 5073 to 5246). This just shows
that the power advantage is stochastic rather than deterministic: in the long run, using more
subblocks is likely to increase power, but it may or may not do so for a particular dataset.

3.3 The Permuted-Subblock Randomization algorithm

We are now ready to more generally define our Permuted-Subblock Randomization (PSR) al-
gorithm for one-factor designs with an arbitrary number of levels and repetitions per level.
The algorithm consists of three steps that we refer to as split, permute, and concatenate. Let
nk be an integer representing the number of levels of the independent variable (with nk ≥ 2)
and let nr be an integer representing the number of repetitions for each level, where nr ≥ 1.
For instance, in the above example there are four levels (nk = 4) and four repetitions of each
(nr = 4). Each level must be denoted by a distinct label (e.g., A, B, C, D). The full set of
labels to be attached to all trials in a single session of the experiment will be of size nk × nr.

In the first split step, the labels are to be divided into subblocks following two rules. First,
each subblock must have at least one and at most nr of each label. Second, in a given subblock,
there should be an equal number of each label (e.g., three of each, but not three As, two Bs, one
C and two Ds). Normally, all subblocks would have identical frequency distributions of labels
(e.g., each subblock having three of each label) but deviation from this practice may sometimes
be desirable. The maximum possible number of subblocks is always nr, where each subblock
contains one label for each condition, and the minimum number of subblocks is one, where
there is a single subblock with all nr repetitions. This latter situation is equivalent to simple
restricted randomization. The set of possible subblocks, Snr is defined as the set of integer
divisors of nr. For example, for an experiment with nr = 12 (i.e., 12 repetitions of each level of
the independent variable), the number of subblocks ns is any of the possible values in the set
S12, ns = {1, 2, 3, 4, 6, 12}. Going forward, we refer to different subblock configurations using a
subscript; thus, PSR1 is single-subblock (i.e., simple restricted) randomization, PSR2 has two
subblocks, and so forth.

The permute and concatenate steps are straightforward. In the permute step, labels within
each subblock are randomly permuted into a new sequence without constraint. The resulting
strings of labels are then concatenated into a single long string to form the level order for the
experiment. In a later section of this chapter, we walk through an applied example showing
how to use the accompanying R package explan to implement this algorithm. In the next
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section, we describe the Monte Carlo simulations used to evaluate the performance of PSR.

3.4 Methods

To assess the long-run Type I error and power of the PSR algorithm, we conducted Monte Carlo
simulations in which we generated data from hypothetical experiments with time-dependent
errors (i.e., allowing time-varying fluctuations). Our simulations were run in R version 4.3.2
(R Core Team, 2023) with add-on packages numbers version 0.8.5 (Borchers, 2022a), pracma
version 2.4.2 (Borchers, 2022b), and tuneR version 1.4.5 (Ligges et al., 2023). The full code for
the simulation along with simulation results is available at the Open Science Framework (OSF)
and can be accessed at https://osf.io/w6tej.

3.4.1 Determining representative study design parameters

To cover the representative experiment environments, design parameters were provided by lit-
erature review results in Chapter 2. That is, 27 unique designs by fully crossing sample sizes
of 25, 40, 60 (np ∈ {25, 40, 60}), factor level values of 2, 4, and 8 (nk ∈ {2, 4, 8}), and
repetition-per-condition values of 6, 12, 24 (nr ∈ {6, 12, 24}).

As already noted, once nr is been determined, the set of possible subblocks Snr (of which ns

is the set size) can be calculated by determining the integer divisors of nr. The designs above
allowed for variable numbers of ns depending on the number of repetitions per level: four for
nr = 6, ns ∈ {1, 2, 3, 6}; six for nr = 12, ns ∈ {1, 2, 3, 4, 6, 12}; and eight for nr = 24, ns ∈
{1, 2, 3, 4, 6, 8, 12, 24}, yielding 162 total combinations of designs and subblocks.

3.4.2 Data-generating process

Unlike the simplified example in the above section, we used a more realistic data generating
process that included individual differences (by-subject random intercepts and random slopes).
To keep things simple, our focus in these simulations is on a situation where stimuli are treated
as fixed rather than random. The evaluation of performance of PSR where stimuli are treated
as a random factor is beyond the scope of the current investigation.

For the data-generating process, the response time Yijt for participant i in condition j on trial
number t is given by Formula 3.1,

Yijt = µ+ Sµi + βj + Sβij + eit (3.1)

where µ is the grand mean; βj is the main effect of condition j, Sµi and Sβi are the random
intercept and random slope for participant i, respectively; and eit is the error for participant i

on trial t with variance σ2. As in the standard ANOVA parameterization,
∑
j

βj = 0 and for

any participant i,
∑
j

Sβij = 0.

https://osf.io/w6tej
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We defined the variance components Sµi, Sβij, and eit to approximately match the empirical
distribution documented in a meta-analysis of variance components in psycholinguistics (Barr et
al., 2013), where the error variance was the largest component, the by-subject random intercept
variance was about 35% of the error variance, and the by-subject random slope variance was
about 11% of the error variance.3.2 As a computational example, fixing the trial level variance
at 1 with 24 subjects and 48 trials per subject yields an expected sum of squares for trial-level
error of SStrial = 24 ∗ 48 = 1152. The random intercept variance was set to 35% of this size
(SSparticipant = 403.20) and the random slope variance to 11% (SStreat x participant = 126.72).
The intercept parameter µ was drawn from a uniform distribution from -1 to 1.

A main effect can manifest in a variety of different ways. To be agnostic about the shape of
the main effect, we set the target sum of squares for the main effect, SStreat, to a fixed value
based on a target effect size of η2, and let the cell means vary randomly. We define η2 as
SStreat/(SStreat +SSerror). We estimated power curves for each design by varying η2 from zero
to some target value in six steps (seven values).

To maximize sensitivity, we used different ranges for η for each triplet of design parameters
⟨np, nk, nr⟩. We determined the range for each setting using Monte Carlo simulation. For
each setting, we made an initial guess about the value of η2 that would yield 50% power, and
then ran 1,000 Monte Carlo runs with that value of η2. We adjusted the value of η2 until the
power estimate fell within the 95% Agresti-Coull confidence interval for a process with p = .5

and 1,000 samples. Once determined, that value of η2 then became the median value for the
range for that design. The η2 values are presented as supplementary materials of the published
version of this chapter, available at https://supp.apa.org/psycarticles/supplemental/

met0000717/met0000717_supp.html.

3.4.3 Time-varying error patterns

The errors eit for each participant were simulated to reflect four different time-varying fluctu-
ation patterns found in real world data: (1) a learning effect, showing a typical "exponential
decay" pattern; (2) Gaussian random walk, corresponding to the waxing and waning of atten-
tion over an experimental session; (3) 1

fα scaling, or so-called "pink noise" (Gilden et al., 1995);
and (4) a mixture of patterns (1) to (3). For examples of patterns (1) to (3), see Figure 3.1.
For comparison, we also included a fifth (baseline) scenario in which all errors were tempo-
rally independent. The error sequence generated for each participant was normalized to have
a standard deviation of 1.

The exponential decay scenario followed the function e
−(λ+Sλi)

t
Nt where t is trial number and

Nt = NkNr, the total number of trials. The fixed λ parameter determines the steepness of the
slope for the population. For each dataset, this value was drawn from a uniform distribution
with range [loge 2, loge 15]. So that the change was not identical across subjects, the fixed λ

parameter was offset by a by-subject random effect for participant i, Sλi, which was drawn from
3.2See Table 4 in the Appendix of Barr et al. (2013) at https://talklab.psy.gla.ac.uk/simgen/realdata.

html

https://supp.apa.org/psycarticles/supplemental/met0000717/met0000717_supp.html
https://supp.apa.org/psycarticles/supplemental/met0000717/met0000717_supp.html
https://talklab.psy.gla.ac.uk/simgen/realdata.html
https://talklab.psy.gla.ac.uk/simgen/realdata.html
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a normal distribution with a standard deviation of .8. So that the curves were not completely
smooth, each was mixed with 10% Gaussian white noise.

The Gaussian random walk scenario was based on the stat_gp() function (Thul et al., 2021),
which follows the numerical method developed by Shinozuka & Deodatis (1991). The function
takes two arguments: σ, which represents the standard deviation, and γ, which represents the
correlation length. In our simulations, we used values of σ = 1 and γ = 2, equivalent to
Scenario 4 in Thul et al. (2021), for which technical details are provided in their Appendix.

Pink or 1
fα noise was created using the (non-exported) internal function TK95() of R package

tuneR (Ligges et al., 2023). For each dataset, the fixed parameter α was drawn from an uniform
distribution, α ∼ U(.8, 1.2).

The "mixed" condition was created to reflect that all of the above processes are likely operating
for individual participants but in different proportions, and was created by mixing together the
previous three patterns with each pattern randomly weighted. For each participant in each
dataset, three weights were randomly generated numbers from a uniform distribution between
zero and one (runif(3) in R), which were then normalized to sum to one. The error pattern
for that participant was then the weighted sum of the three patterns, and different participants
in the same dataset would have different weighted sums.

3.4.4 Analysis

Combining our 162 design-subblock combinations further with our five error scenarios (inde-
pendent, exponential decay, gaussian random walk, pink noise, and mixed) and seven steps
of effect size (η) yielded a total of 5,670 possible parameter settings for the simulations. To
simplify presentation of the results, out of the 27 possible designs we chose three as "focal"
designs, representing the smallest (25 participants, nk = 2, nr = 6), largest (60 participants,
nk = 8, nr = 24), and medium-sized or most typical design (40 participants, nk = 4, nr = 12).
For the focal designs, we ran simulations at all possible subblock settings. For the remaining
24 non-focal designs, we reduced the number of simulations by only running them with one of
three subblock settings: (1) one subblock (baseline); (2) the maximum number of subblocks,
henceforth max(Snr); and (3) the number just below the maximum number of subblocks, hence-
forth (Snr). For example, for nr = 24, where S24 = {1, 2, 3, 4, 6, 8, 12, 24}, we ran simulations
with only 1, 12, and 24 subblocks.

For each of these 3,150 hypothetical experiments, we estimated Type I error and power by
conducting 10,000 Monte Carlo runs, with each run consisting of randomly generating a dataset
based on the parameters and then analyzing it. We performed an Analysis of Variance (ANOVA)
on each dataset using the built-in aov() function in R. We first calculated the means for each
condition for each participant and then submitted the means to analysis using the model formula
Y ~ A + Error(id) where Y is the DV, A is a factor representing the independent variable,
and id is a factor identifying individual participants. The p-values were extracted from the
summary() table of results, with α = .05.
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The proportion of datasets yielding a statistically significant main effect was reported as an
estimate of the Type I error rate and statistical power for the PSR algorithm. The Type I
error rate is estimated by the proportion of significant effects detected when η is zero (i.e., false
positive rate). When η > 0, the proportions of effects determined to be significant provide an
estimate of power (true positives).

3.5 Results

3.5.1 Power

To estimate power, for each of the 2,700 cases where η > 0 we calculated the proportion of runs
(out of 10,000) that yielded a significant main effect. Then, for each of the 135 cases yielded
by combining the 27 designs with the 5 error structures, we estimated the power advantage of
PSR by calculating the percent increase in power for PSRmax(Snr ) and PSR(Snr ) relative to PSR1

(simple restricted randomization) at each of the six non-zero values of η for that case.3.3 We
then extracted the maximum power advantage observed across all six values of η for PSRmax(Snr )

and PSR(Snr ).
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Figure 3.2: Median percent increase in power from baseline (simple restricted randomization)
across all six non-zero levels of η by number of participants (np), error structure, number of
repetitions (nr), number of factor levels (nk), and number of subblocks (max, submax).

Figure 3.2 shows the median power broken down by case. As expected, when the error structures
3.3To illustrate, if power increased from .20 to .25, this would be characterized as a 25% increase, because

100× (.25−.20)
.20 = 25.
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were independent, the power advantage for using the maximum or sub-maximum number of
subblocks was negligible, with estimated increases in power of just 0.1% and 0.2% respectively.

Across all four cases with non-independent errors and both numbers of subblocks, power gains
ranged from 3.9% to 44.9%, with a median power gain of 13.3%. For designs using PSRmax(Snr ),
the greatest power gains were in the exponential decay scenario with a range from 7.9% to
44.9%, followed by Gaussian random walk (7.1% to 39.1%). Gains were more modest for the
mixed scenario (8.3% to 27.0%), and smallest for pink noise (4.8% to 16.3%). For designs
using PSR(Snr ), gains were lower overall but ranked in the same order, with exponential decay
showing largest gains (7.5% to 30.6%), followed by Gaussian random walk (4.2% to 19.7%),
then mixed (6.3% to 15.2%), and finally, pink noise (3.9% to 10.4%).

Some further observations from Figure 3.2 warrant mention. First, the power gains seem to be
largely independent of the number of participants, np, which makes sense since the subblocking
mechanism that produces the power gains operates at the participant level. Next, power gains
seem most impressive when there are fewer repetitions (i.e., when nr is small). Beyond this,
there seems to be a complex relationship between nr, nk (the number of factor levels) and the
type of error structure in determining the amount of gain. For example, for the exponential
decay structure, gains are largest for the design with eight factor levels, followed by four and
then two; but for the Gaussian random walk structure, gains are largest for four, followed by
two, then by eight. For the mixed structure, the gains for four and eight levels are roughly the
same and both exceed the two level case.

Figure 3.3 presents full power curves for the PSR algorithm across all the three focal designs,
where we ran all possible numbers of subblocks, not just the maximum and submaximum.
(Power curves for all non-focal designs are provided in the supplementary materials at https://
supp.apa.org/psycarticles/supplemental/met0000717/met0000717_supp.html). When no
time-varying dependency was present in the data ("independent" error scenario), there was no
discernible effect of the number of subblocks on power. Across all four time-dependent scenarios,
the PSR algorithm consistently increased power in proportion to the number of subblocks.

3.5.2 Type I error rates

Although the demonstrated power gains are impressive, it is important to confirm that these
gains are not achieved at the expense of the control of the false positive rate. To estimate Type I
error, we calculated the proportion of simulation runs with a statistically significant main effect
(with α = .05) for each of the 450 cases where η2 = 0. To determine whether Type I error rates
were close to the nominal α = .05 level, we checked whether observed rates fell within the 99.9%
Agresti-Coull confidence interval for a binary process with probability .05 and 10,000 samples,
which was [0.0433, 0.0577]. Cases that fall below this interval are deemed conservative (i.e.,
have inflated false negatives); cases that fall above this interval are deemed anti-conservative
(i.e., have inflated false positives); and finally, cases that fall within this interval are deemed
nominal (i.e., are calibrated to the α level).

https://supp.apa.org/psycarticles/supplemental/met0000717/met0000717_supp.html
https://supp.apa.org/psycarticles/supplemental/met0000717/met0000717_supp.html
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Figure 3.3: Power curves (α = .05) for the three focal designs plotted by number of subblocks,
trial-level error variance scenario, and effect size (η). Each data point is estimated from 10,000
Monte Carlo simulations.
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Figure 3.4: Type I error rates (α = .05) for the three focal designs: small (top row), middle
(middle row), and large (bottom row), broken down by number of subblocks, error variance
scenario, and effect size (η). Each data point is estimated from 10,000 Monte Carlo simulations.
The shaded region represents the 99.9% Agresti-Coull confidence interval for 10,000 random
samples from a process with a "success" rate of .05.
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As a baseline, we evaluated the overall performance of the field-standard of simple restricted
randomization (i.e., PSR1). As expected, for the 27 cases with no time-varying error pattern
(i.e., independent structure) the range of Type I error rates was [0.0477, 0.0555], which falls
within the reference range and thus reflects nominal performance. More importantly, the range
of Type I error rates for the remaining 135 cases with a single subblock but where there was a
time-varying error pattern, the Type I performance was also nominal, with a range of [0.0456,
0.0570]. This latter observation counters prevailing wisdom that time-varying error structure
inflates Type I error rates, further supporting the claim of Thul et al. (2021) that appropriate
randomization is an effective defense against autocorrelated errors.

The key question, however, concerns the Type I error performance of cases with multiple
subblocks. Figure 3.4 presents results for the three focal cases; remaining cases are available
in the supplementary materials. Fortunately, the PSR algorithm maintained nominal error
rates across all 315 cases with multiple subblocks. For the 252 cases where errors were non-
independent, the Type I error range was [0.0440, 0.0560]. For the 63 cases where errors were
independent, the range was [0.0438, 0.0539], indicating that the PSR algorithm is safe to use
even when there is no time-dependent error structure in the data.

3.6 Applied example: Using PSR in experiment planning

Let us consider an example of implementing PSR for a hypothetical experiment that uses our
explan package for the R programming language (R Core Team, 2023). As our hypothetical
example, we present a version of the classic Stroop paradigm (Stroop, 1935) in which each
participant sees a series of four color words ("blue", "red", "green", and "yellow") presented
in four different font colors. The participant’s task is to respond with the font color of each
presented word. The standard finding is that people take longer and produce more errors
naming the font color when it mismatches the meaning of the word (incongruent condition)
than when it matches (congruent condition). For example, on average people would take longer
and make more mistakes responding "yellow" to the word "blue" printed in a yellow font than
to respond "yellow" to the word "yellow" printed in yellow font.

In our hypothetical experiment, the color words will be presented to participants one by one,
and our independent variable congruency has two levels (nk = 2, congruent and incongruent).
Half of the stimuli are to be congruent and half are to be incongruent, with 24 repetitions in
each level (nr = 24) for a grand total of 48 trials per participant. We will consider two different
functions for applying PSR using explan.

The first method would be to directly use the psr() function from explan, which will create
a vector containing the sequence of levels for a single participant. The psr() function takes
three arguments: (1) levels, a vector containing the levels of the independent variable, which
has nk elements; (2) n_subblocks, the desired number of subblocks ns; and (3) n_reps, the
number of times each level is repeated for each participant (nr). To decide on the value of
n_subblocks, it is useful first to consider the set of possible subblocks using the function
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possible_subblocks(). For nr = 24, there are eight possible values for ns.

## NB: first install the explan package using:

## remotes::install_github("dalejbarr/explan")

library("explan")

possible_subblocks(24)

[1] 1 2 3 4 6 8 12 24

We might then choose the sub-maximum value of 12 subblocks. We would then apply the psr()
function to create a sequence for a single participant.

options(width = 77)

psr(c("congruent", "incongruent"), 12, 24)

[1] "congruent" "congruent" "incongruent" "incongruent" "incongruent"

[6] "incongruent" "congruent" "congruent" "congruent" "incongruent"

[11] "incongruent" "congruent" "congruent" "congruent" "incongruent"

[16] "incongruent" "congruent" "incongruent" "congruent" "incongruent"

[21] "congruent" "congruent" "incongruent" "incongruent" "congruent"

[26] "incongruent" "incongruent" "congruent" "incongruent" "congruent"

[31] "congruent" "incongruent" "congruent" "incongruent" "incongruent"

[36] "congruent" "congruent" "incongruent" "congruent" "incongruent"

[41] "incongruent" "congruent" "incongruent" "congruent" "incongruent"

[46] "incongruent" "congruent" "congruent"

The above vector is the sequence of levels for a single participant. The code below shows how
to use the base R function lapply() to do this for 20 participants, returning the results in list
format (not shown).

lapply(seq_len(20),

\(.x) psr(c("congruent", "incongruent"), 12, 24))

The utility of this simple approach is limited, however, in that returns a sequence of level labels,
but what the researcher typically needs is a sequence of stimuli. The explan package provides
a second function to randomize a table of stimuli, psr_stimuli(). The researcher must first
create a data frame containing the full set of stimuli delivered to each participant and then
pass this table as the first argument of the function. The second argument is the name of
the variable (or variables) that represent the independent variable (or variables) in the study.
For illustration, the explan package has a built-in table corresponding to the Stroop design
mentioned above, named stroop_stimuli.

head(stroop_stimuli, 6)

stimulus_id word font_color congruency

1 1 blue blue congruent
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2 2 green green congruent

3 3 red red congruent

4 4 yellow yellow congruent

5 5 blue blue congruent

6 6 green green congruent

Because the first argument is a full table of stimuli, psr_stimuli() can infer the values of nr

and nk from the data, and so the only further argument that the researcher must specify is the
desired number of subblocks (ns), which appears as the third argument to the function. The
result of the function is a table with the rows sorted in the presentation order, as determined
by PSR. By default, the function sequences the stimuli for a single participant. To get 16
participants, we set n_part to 16.

set.seed(1451) # optional: to reproduce the output below exactly

stroop12 <- psr_stimuli(stroop_stimuli, IVs = "congruency",

n_subblocks = 12,

n_part = 16)

head(stroop12, 9)

PID sb_no stimulus_id word font_color congruency

1 1 1 48 yellow red incongruent

2 1 1 8 yellow yellow congruent

3 1 1 34 green blue incongruent

4 1 1 15 red red congruent

5 1 2 41 blue red incongruent

6 1 2 43 red blue incongruent

7 1 2 16 yellow yellow congruent

8 1 2 7 red red congruent

9 1 3 25 blue green incongruent

In the output, the rows appear in their order of presentation, and sb_no is an integer specifying
the subblock number that each stimulus appears in. For further information and examples, see
the vignette "randomization" in the explan package.

3.7 Discussion

In this chapter, we discussed how a restricted randomization algorithm from clinical trials could
be adapted to improve power in the context of a repeat-measure within-subject laboratory
experiment. Permuted-Subblock Randomization (PSR) increases power by ensuring balance
among experimental levels over time, and in this manner helps prevent the masking of effects of
interest by time-dependent nuisance variation engendered by time-varying fluctuations such as
learning, attentional fluctuations, or other physiological or environmental factors. PSR offers
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a ready-made, free, and easy-to-implement solution to help remedy the pervasive problem of
low power in psychology and neuroscience. It requires no specialized technical knowledge nor
any a prior expectations or assumptions about the temporal structure of dependencies in the
data. It will boost power whenever the sequences of within-subject observations are temporally
autocorrelated, while maintaining strict control over the false positive rate.

How much power can one expect to gain using the algorithm? First we note that power
gains were observed for all designs containing multiple subblocks and across all four scenarios
containing time-varying errors, with a range between 4% and 45% and median of about 13%.
To give a sense for what this would mean in terms of budgetary savings for the researcher,
let us consider the case of a typical design (np = 40, nk = 4, nr = 12). In many situations
it is likely to be impractical to use the maximum number of subblocks, as the pattern would
be too predictable. Using the sub-maximum number of subblocks (PSR6) for this design with
the "mixed" error scenario and η2 = 0.01089 yielded power gains of about 13.8% over baseline
(75.8% versus 66.6%), which is fairly close to the median gain of 13%. Assuming we used PSR6

in the study, how many fewer participants would we need to run to reach the same level of power
as we would attain using PSR1? To estimate this value, we ran a set of additional simulations
(see Supplementary Materials). Using PSR6 instead of simple restricted randomization reduced
the number of participants from 40 to 33, corresponding to a savings on research expenditure
of 16.9%.

Our PSR algorithms makes it possible to boost power by changing the study design without
requiring any change to the analysis. We consider this a benefit of our approach. However,
in discussions of randomization and counterbalancing in the literature, one often finds strong
recommendations to include block as a covariate in the analysis. These recommendations
often are found in situations where the blocking involves groups of participants rather than
groups of trials within participants, and so may not apply to within-participant experiments.
When time-varying patterns are largely idiosyncratic across participants, as in our simulations,
subblock effects will largely cancel (e.g., the mean measurement in subblock i will be neither
high nor low across participants, despite the observations in subblock i being correlated within
each subblock for each participant). Thus, including subblock as a covariate for fully within-
participant designs may serve only to complicate the analysis without necessarily yielding any
tangible benefit. This may not be the case for other types of designs, such as so-called ‘split-
plot’ designs where there is at least one between-participant factor in addition to any within-
participant factors.

Although using PSR does not require any alterations to analysis, there is one situation that
calls for caution: using PSR in tandem with permutation tests. Permutation tests involve
the construction of a null-hypothesis distribution by permuting the condition labels and recal-
culating the test statistic many times over. Permutation tests assume that observations are
exchangeable under the null hypothesis (Good, 2013). This implies that if PSR has been used
to randomization conditions in the original data, then the re-randomization algorithm used
to construct the null-hypothesis distribution should respect this constraint by permuting the
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labels within the same subblocks. Failing to adhere to this violates exchangeability and may
inflate the false positive rate.

One danger of using PSR is increasing the number of subblocks makes the sequence of conditions
more predictable than simple restricted randomization. In practice, predictability will depend
on aspects of the study design in combination with the memory capacity of the participants
and the perceptual distinctiveness of the conditions. The optimal balance will depend on
the relative importance of avoiding false negatives versus avoiding predictable sequences. We
suggest the following guidelines. First, researchers should certainly avoid highly predictable
sequences where each condition is associated with a distinct response. One should generally
avoid using the maximum (nr) number of subblocks because in many instances this is likely
to result in a sequence that is too predictable, although there may be exceptions where nk is
large or the conditions are difficult to distinguish. An appealing strategy is to use the second or
third highest value from the set of possible subblocks (e.g., PSR6 or PSR4 for nr = 12). When
avoiding predictable sequences is of paramount importance, advantages may still be obtained by
choosing the second lowest number in the set of divisors (PSR2 for nr = 12). Also, PSR will be
most useful with a reasonable number of repetitions (nr ≥ 4), since for Nr = 2 and Nr = 3 only
two options are available: simple restricted randomization (PSR1) and PSR with the maximal
number of subblocks, the latter of which is likely to yield overly predictable sequences.

Might there be hidden dangers of using PSR that were not brought to light by our simulations?
Under the context of one-factor design, we cannot answer with an unqualified "no". It is
possible that we have overlooked situations where applying PSR or other such randomization
algorithms will introduce statistical artifacts. One area that requires further investigation is
situations where there is spectral coherence between subblock size and the time-varying pattern.
For example, PSR with one repetition per subblock introduces a level of recurrence that has
an nk bandwidth. It may cause problems if the time-varying noise also has a strong nk spectral
component. Because the process is still fundamentally random, we are doubtful that such
coherence would increase the false positive rate. Instead, it would tend to reduce power, much
like the "blocking" effect discussed in Thul et al. (2021). This part of discussion would go
further in Chapter 5.

So far, we have shown that it is possible to tap into time-varying fluctuations as a source of
power through PSR. But a further question is, how to extend our randomization approach to
other situations? For example, it is more realistic that researchers have a design with random
effects of stimuli as well as participants. To the extent stimulus variation is of interest, the
estimation of such variation will be contaminated by temporal fluctuations, since stimuli are
presented over time. To capture random effects, a field-standard approach is to use linear
mixed effect model (LMEM). But LMEM assumes "static" random variation components that
are irrelevant to time for each participants, and therefore ignore the time-dependent noise.
Therefore, combining PSR and LMEM may maximally clean up nuisance noise to allow more
precise estimation of stimulus effects.



36 CHAPTER 3. IMPROVING POWER FOR ANOVA USING PSR

Also, we note a result that is important and seems to run contrary to commonly-held statistical
wisdom. Some have held that that the presence of time-dependent error structure in multi-
level data invalidates the use of classical statistical approaches (Amon & Holden, 2021) or calls
for sophisticated modelling of such effects to avoid false positives (Baayen et al., 2017). Our
results challenge this received wisdom, further corroborating the main conclusion from Thul et
al. (2021) that they can safely be ignored, provided that presentation order has independently
randomized across participants. Indeed, across the three time-dependent error scenarios we
considered, the Type I error rates and power curves for the field-standard of simple restricted
randomization were indistinguishable from the scenario with independent errors. Our view
is that these fluctuating patterns represent an untapped additional source of power that, to
date, could only be reclaimed using very advanced statistical modelling such as Generalized
Additive Mixed Models (GAMMs) with factor smooths. But it also reflects a possibility that
power advantages could be maximally achieved by simultaneously applying design-based and
model-based approaches.

Therefore, to tap into time-varying fluctuations as power source and improvement power as
much as we can, in next chapter, we extend usage scenarios of PSR, combining LMEM and
GAMMs to investigate if this algorithm can achieve additional power gains than it already did.



Chapter 4

Comparing PSR with Model-Based
Approaches

4.1 Background

In Chapter 3 we examined PSR in repeated-measures datasets and saw its capacity in boosting
power for one-factor designs analyzed using ANOVA. Because of its test-independent character-
istics, PSR could also contribute to power gains in other types of analyses. In this chapter we
evaluate its performance when combined with mixed-effects models, where individual differences
are directly modeled as random effects. One goal is to confirm that PSR also increases power
combined with standard mixed-effects models that ignore temporal fluctuations, as it does for
ANOVA. A second, more important, goal is to compare the performance of the design-based
PSR to the performance of Generalized Additive Mixed Models (GAMMs), a model-based ap-
proach for capturing temporal trends in data. Finally, as these approaches are not mutually
exclusive, we also seek to estimate the potential of controlling for temporal fluctuations by
using GAMMs and PSR together.

As a classic "recipe", ANOVA is often performed on aggregated data (e.g., subject means).
When data is aggregated, treatment-by-subject interactions cannot be estimated. Treatment-
by-subject interactions reflect the fact that treatment effects vary across individuals. They
can only be observed when researchers look at the raw data in a repeated-measure dataset
where multiple observations are collected within conditions of the design, because no variation
can be calculated from a single data point. A more modern approach is to use linear mixed-
effects models (LMEMs) on the raw (unaggregated) data and to include the treatment-by-
subject interaction in the model as by-subject random slopes. Under the LMEM framework,
researchers can more easily estimate within-subject variance components through the random
effects structure.

However, similar to ANOVA, LMEMs as typically used do not allow random effects to vary
over time. With essentially static random effects, autocorrelation patterns would still remain in
the residual structure. Although ignoring autocorrelation patterns in residuals will not increase

37
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the rate of false positives when the sequence of conditions have been appropriately randomized
or counterbalanced (Thul et al., 2021), as we showed in the last chapter, there is power to be
gained by controlling for them in the design.

But researchers have long been aware of autocorrelation patterns in repeated-measured data,
and more commonly have proposed accounting for them statistically using model-based ap-
proaches. The magnitude of the impact of time-varying fluctuations would also be a function
of multiple aspects in an experiment, including the strength of the fluctuations, their structure
in time, and their consistency across experimental subjects. To capture such relationships, one
general purpose strategy is to explicitly model them using advanced modelling approaches such
as Generalized Additive Mixed Models (GAMMs) that can flexibly estimate wiggly patterns
(Baayen et al., 2017; Wood, 2017) both as fixed and random effects. The fundamental way
GAMMs operate is by estimating patterns as a linear combination of a set of basic functions.
The exact mathematical details of how they do this are not important here, and have been
discussed at length elsewhere (Baayen et al., 2017). For our purposes, it is sufficient to operate
with the conceptual understanding that GAMMs allow for a time-varying fixed intercept, which
captures common temporal trends across all participants, as well as a time-varying random in-
tercept (here called a "factor smooth"), which allows the pattern to vary from the common
standard across participants. It would also be possible for the effects of condition to vary over
time, both generally as well as across participants (time-varying slopes and time-varying ran-
dom slopes); but for simplicity, we follow Thul et al. (2021) in modeling them as static random
effects.

GAMMs with factor smooth may be especially useful to model time-varying fluctuations in
experimental datasets, as "human factors" such as fatigue and mind wandering are common
and likely to introduce temporal variation that itself will vary across subjects. It is possible
that applying GAMMs can achieve better power improvement beyond PSR, because of their
powerful ability to model wiggly patterns. But there are a number of trade-offs to consider,
including hidden dangers that may be obscured by their technical sophistication and lack of
standards for model specification (Thul et al., 2021). Another consideration is that GAMMs
assume that the nature of underlying change is continuous, whereas research subjects can show
discontinuous shifts if an experiment contains rest breaks.

Compared to GAMMs, PSR is far easier to implement and makes fewer assumptions about
the patterns of time-varying fluctuations, and could therefore make a model-based approach
redundant. This raises the question as to whether PSR offers power gains that are comparable
to using GAMMs alone, and whether there are circumstances where it may even outperform
them. But these approaches are not mutually exclusive-perhaps there is value to using PSR
in the design and GAMMs in the analysis. In what follows, we describe a set of Monte Carlo
simulations to evaluate these questions.
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4.2 Methods

We conducted a Monte Carlo simulation study in order to access type I error rates and power
performance of PSR used in combination with linear mixed-effects models (LMEMs), gener-
alized additive mixed models (GAMMs), and analysis of variance (ANOVA), with the latter
of these analytical techniques providing a baseline. The design parameters, data generation
process, and time-varying error patterns were identical as in Chapter 3. To speed up the sim-
ulations, an R package psrsim was developed that incorporated functions written in C++ for
data generation and for the ANOVA analysis.

Because our goal was to focus on the maximum power boost attainable under PSR, we used
PSR with the maximal number of subblocks. We also include simple restricted randomization
(i.e., PSR with one subblock) as a baseline.

4.2.1 Analysis

Because we were using new code for data-generation written in C++, we re-ran the ANOVA
analysis from the previous chapter just in case there were any minor differences arising from
the C++ libraries we used for generating random numbers. We fit both LMEM and GAMMs
using the bam() function from the mgcv package.

lmem_model <- mgcv::bam(formula = dv ~

## intercept

1 +

## main effect

cond +

## by-subject random intercept

s(id, bs = "re") +

## by-subject random slope

s(id, cond, bs = "re"),

data = dat)

gamms_model <- mgcv::bam(formula = dv ~

## main effects

cond +

## time-varying fixed intercept

s(order, bs = "tp") +

## time-varying random intercept

s(id, order, m = 1, bs = "fs") +

## by-subject random slope

s(id, cond, bs = "re"),

data = dat)

It is possible to fit a pure LMEM with mgcv::bam() by specifying only time-independent fixed
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and random effects in the model syntax. Random effects are specified differently in bam() than
in the lme4::lmer() function which is more commonly used for mixed-effects modeling. In
bam(), time-independent random effects are specified using the general function s(), which
is also used for smooth (i.e., time-varying) terms. In the function call above that creates the
lmem_model object, the random effect term s(id, bs = "re") specifies by-subject random
intercepts and s(id, cond, bs = "re") specifies by-subject random slopes. The argument
bs = "re" is a way of requesting a static random effect structure. This model formula is
notationally equivalent to the lme4::lmer() formula dv ~ cond + (1 + cond || id) where
(uncorrelated) by-subject random intercepts and random slopes are specified. Turning to the
model formula used to create the gamms_model object, the first s() term, s(order, bs =

"tp"), specifies a fixed intercept than can wiggle over time (i.e., a time-varying fixed intercept
term). The argument bs = "tp" tells bam() to estimate this term by default "thin plate" basic
functions. The second s() term, s(id, order, m = 1, bs = "fs") specifies factor smooths
by the argument bs = "fs" that defines a by-subject random intercept term than can wiggle
over time. The argument m = 1 adds a penalty to the first basic function and ensures the factor
smooths behave as a random effect (Baayen et al., 2017). The last s() term s(id, cond, bs

= "re") specifies by-subject random slopes of the dv cond by setting bs = "re".

As in last chapter, fully crossing all design parameters yielded 5,670 settings. To compromise
between comprehensive results and computational burden, we only run simulations for our
three chosen "focal designs": (a) the smallest design with np = 25, nk = 2, and nr = 6; (b)
the middle design with np = 40, nk = 4, and nr = 12; and (c) the middle design with np = 60,
nk = 8, and nr = 24. Across all three designs, only PSR1 and PSRmax (i.e., PSR6 in the
smallest design, PSR12 in the middle design, and PSR24 in the largest design) are considered.
This reduces the number parameter settings from 5,670 to 210. For each of these 210 designs,
we conducted 10,000 Monte Carlo runs to estimate Type I error rates and power, within each
run including randomly generating a dataset, analyzing it with one of our three analytical
models (ANOVA, LMEM, GAMMs), and extracting the p-value. For GAMMs and LMEMs we
derived p-values using Wald z. Specially for LMEM and GAMMs, we also recorded whether
the model is converged on each run, and excluded non-converging models in those calculations.
Combining all focal design settings and analytical methods yielded 630 scenarios under which
we calculated Type I error and power from 10,000 Monte Carlo runs.

4.3 Results

4.3.1 Power

To estimate power, for 540 out of the 630 cases where η > 0, we calculated the proportion
of runs (out of 10,000) that yielded a significant main effect. We also estimated the power
advantage of PSRmax by calculating the percent increase in power for PSRmax relative to PSR1

(simple restricted randomization) at each of the six non-zero values of η for that case. We then
extracted the median power advantage observed across all six values of eta for PSRmax.
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Figure 4.1: Median percent increase in power as compared to baseline (ANOVA with simple
restricted randomization; i.e., 1 subblock) across all six non-zero levels of η by focal designs,
error structure, and number of subblocks (1, nr).
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Figure 4.1 shows the median percent increase in power with respect to baseline broken down by
focal designs and collapsed over the six values of η. For the uncollapsed data, see Figure 4.2.
LMEMs and GAMMs seem to have consistently higher power than ANOVA. For LMEM, such
increase ranges from 8.5% to 11.1% in smallest designs, 2.5% to 3.6% in middle designs, and
2.8% to 3.9% in largest designs; for GAMMs, the increase ranges from 9.9% to 11.6% in smallest
designs, 2.6% to 3.5% in middle designs, and 3.1% to 4.2% in largest designs, respectively.
But the apparent superiority of LMEMs to ANOVA and part of that for GAMMs is illusory;
calculations of p-values for LMEM and GAMMs are based on the t-as-z methods (Wald z

statistics), and this method tends to be anti-conservative (Luke, 2017 , also see the type I error
rates describe later). As the sample size increases, this anti-conservativity wanes (Barr et al.,
2013).

With time-dependent error structures present and only simple restricted randomization (i.e.,
PSR1), GAMMs showed consistent power advantages over ANOVA and LMEMs across all
designs, ranging from 10.2% to 53.0%, with the highest increase in power observed in the
smallest design under the gaussian random walk scenario. LMEM showed moderate increase
in power over ANOVA in PSR1, ranging from 11.1% to 43.1%. The highest 43.1% increase of
power is observed in smallest design under the mixed error scenario. But again, it is important
to note that the gain of LMEMs over ANOVA is artificial as it reflects the anti-conservativity
of the former. The power gain of GAMMs over LMEMs, however, is real, and shows that a
model-based approach using GAMMs can boost power by accounting for autocorrelated error
structures (Barr et al., 2013; Thul et al., 2021).

Compared to our baseline of simple restricted randomization (PSR1) with ANOVA, applying
PSRmax (i.e., ns = 6 in smallest designs, ns = 12 in middle designs, and ns = 24 in largest
designs) increased power across all analytical methods. First, GAMMs with PSRmax achieved
the highest power gains in all cases over other analytical approaches, ranging from 10.2% to
53.0%. Next, the power increase for the LMEM with PSRmax ombination ranged from 11.1%
to 43.1%. And lastly, as expected, ANOVA with PSRmax yielded gains ranging from 4.4%
to 29.8%. The greatest power improvements for all three analytical methods are observed
in smallest designs under the gaussian random walk scenario, with the increase of 53.0% for
GAMMs, 43.1% for LMEM, and 29.8% for ANOVA, respectively.

Where error structures were time-dependent, in most cases replacing simple restricted ran-
domization with PSR boosted power across all analytical methods. For example, when using
LMEM to analyze datasets, implementing PSR brings another 10.5% power increase on average.
Furthermore, even though GAMMs already estimate time-varying components, applying PSR
could increase power by 3.2% on average. However, we do observed an exception for GAMMs
in the middle design under the exponential decay scenario. In this scenario, GAMMs have
slightly better power under simple restricted randomization than under PSR, (22.9% versus
19.9% respectively).

One key question we set out to answer was the relative benefits of the design-based and model-
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based approaches for improving power. A useful way to answer this question is to compare
the power gains of PSR plus LMEM, which controls temporal variation through the design,
to those of GAMMs alone with simple restricted randomization, where temporal variation is
controlled statistically. Henceforth we refer PSRmax-LMEM as the design-based approach and
PSR1-GAMMs as the model-based approach. Surprisingly, the design-based approach achieved
comparable or even better power gains as compared to GAMMs. For example, power gains
were similar for both approaches in the smallest design under the mixed scenario (25.9% for
the design-based versus 27.6% for the model-based approach). Furthermore, in the smallest
design under the pink noise scenario, the design-based approach improved power more than
the model-based approach (22.3% versus 14.7% respectively); in middle designs, the design-
based exceeded the model-based approach under gaussian random walk (28.4% versus 27.0%),
pink noise (14.3% versus 8.8%), and mixed (18.4% versus 17.4%); for the largest designs, the
design-based approach outperformed the model-based approach in all four time-dependent error
structures (11.2% versus 10.9% in exponential decay, 11.1% versus 5.4% in gaussian random
walk, 11.2% versus 9.0% in pink noise, and 11.2% versus 8.2% in mixed).

Given the strong performance of the design-based approach, the question emerges as to whether
there is any extra benefit to be attained by combining it with the model-based approach. To
answer this question, we compared the power gains of PSR plus GAMMs, which stands for
PSRmax-GAMMs and represented an omnibus approach, to the design approach (i.e., PSRmax-
LMEM). According to our 12 error-design scenarios, the omnibus approach mostly brings ad-
ditional power gains over the design-based approach, with the range from -1.1% to 31.7%, and
a median of 2.5%. Such additional power benefit is highest in smallest design under the ex-
ponential decay error scenario: when implementing both PSR and GAMMs, an 31.7% power
increase is observed over simple design-based approach. In addition, in smallest design un-
der gaussian random walk error scenario, although implementing the design-based approach
already increased power, the omnibus approach can reach another 9.9% increase on this basis
(i.e., 43.1% for design-based approach and 53.0% for omnibus approach, respectively). As the
sample size increases, the design-based approach had similar or even better power advantages
than omnibus approach did. Indeed, we observed that in largest design under pink noise error
scenario, implementing omnibus approach did not do better over the design-based approach,
with the power gains of the omnibus approach being -1.1% percent lower than the design-based
approach (i.e., 11.2% for design-based approach and 10.2% for omnibus approach, respectively).

4.3.2 Type I error

In the last chapter we validated that PSR does not yield anti-conservative type I error rates
with ANOVA. Here we extend that analysis to LMEMs and GAMMs. To estimate Type I error
under these circumstances, we calculated the proportion of simulation runs with a statistically
significant main effect (with α = .05) for each of the situations where η2 = 0. Again, to
determine whether Type I error rates were close to the nominal α = .05 level, we checked
whether observed rates fell within the 99.9% Agresti-Coull confidence interval for a binary
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Figure 4.2: Power curves (α = .05) for the three focal designs plotted by number of subblocks,
trial-level error variance scenario, and effect size (η). Each data point is estimated from 10,000
Monte Carlo simulations.

process with probability .05 and 10,000 samples, which was [0.0447, 0.0559]. As last chapter,
cases that fall below this interval are seen as conservative (i.e., have inflated false negatives);
cases that fall above this interval are seen as anti-conservative (i.e., have inflated false positives);
and finally, cases that fall within this interval are seen as nominal (i.e., are calibrated to the α

level).

Figure 4.3 presents type I error rates for all designs. As expected, all type I error rates of
ANOVA fall into the 99.9% confidence interval and are deemed nominal, ranging from 0.0467
to 0.0543. Also, anti-conservative type I error rates are observed for LMEM and GAMMs
methods, especially in small samples, because of the t-as-z method used to compute p-values.
Type I error rates for LMEM ranged from 0.0502 to 0.0666 and 0.0457 to 0.0653 for GAMMs.
Anti-conservative type I error rates are most prominent in the smallest design with ns = 25,
nk = 2, and nr = 6; yet this situation is mitigated as the np increases: for all four non-
independent error structures in middle focal design, anti-conservative type I error rates are
acceptably closing to the upper limits of the 99.9% confidence interval, while in the largest
design, only one anti-conservative type I error rate of 0.0573 was observed in mixed, for LMEM.

However, a more important question is whether using PSR with LMEMs and GAMMs adds
additional anti-conservativity over simple restricted randomization. According to our results,
with 5 exceptions, applying PSR did not lead to more anti-conservative type I error rates
with LMEM analyses. Regarding those 12 exceptions, the increases of type I error rates are
negligible, with all increase less than 0.01. For GAMMs, only one exception is observed in
the smallest design under the mixed scenario, where using PSR increased the type I error
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Figure 4.3: Type I error rates (α = .05) for the three analytical approaches: ANOVA, LMEM,
and GAMMs, broken down by number of subblocks, error variance scenario, and effect size
(η). Each data point is estimated from 10,000 Monte Carlo simulations. The shaded region
represents the 99.9% Agresti-Coull confidence interval for 10,000 random samples from a process
with a "success" rate of .05.
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rate from 0.0575 to 0.0581, a difference of less than 0.001. Given how small these differences
are, it is unclear whether they reflect standard error from the simulations or true underlying
differences. Finally, with 3 exceptions out of our 90 cases, GAMMs did not have any greater
anti-conservativity than LMEM did.

4.4 Discussion

In this chapter, we extended PSR to new analytical scenarios and demonstrated its compatibility
with model-based strategies to improve power. Our results suggested that a design-based
approach to controlling time-dependent noise using PSR yields gains comparable to model-
based approaches using GAMMs under many scenarios, and that combining both approaches
can improve power even slightly more. We also established that even when advanced GAMMs
are considered to model time-dependent noise, PSR is still safe to use (in terms of maintaining
reasonable false positive rates).

According to our simulation results, using PSR was advantageous to power gains in most of the
designs, regardless of the analytical method of choice. The power gain of PSR with traditional
analytical method that ignore time-varying components (i.e., LMEM, ANOVA) is encouraging,
especially in light of claims from some researchers that such models are flawed or even promote
false positives when time-varying components are present (Baayen et al., 2017). Indeed, in many
scenarios and designs, PSR yielded gains that were comparable or even higher than for GAMMs.
And PSR has the advantage of simplicity and ease of implementation as compared to GAMMs,
making power gains available to the many researchers who lack the technical knowledge to
implement GAMMs or other advanced modeling strategies. That said, an important caveat
is that we compared GAMMs to PSR with the maximum number of subblocks, and as noted
in the previous chapter, this may result in sequences that participants find predictable. So
GAMMs have the advantage that their power gains do not come at the expense of creating
predictable sequences of trials.

Finally, combining PSR with LMEMs and GAMMs did not introduce any clear additional risks
to anti-conservativity beyond those already associated with these approaches. If balancing type
I error rates and the power is the main priority when analyzing relatively small datasets, simply
using PSR with ANOVA would be the desired solution for improving measurement quality, when
applicable. But once the sample size gets sufficiently large, choosing which analytical model
to use and whether to combine it with PSR would depend on the expected error structure. In
practice, error structures seem more likely to follow the mixed pattern as this reflect realistic
processes happening at multiple time scales. In this case, applying PSR while keeping using
the traditional analytical methods (LMEM or ANOVA) could have similar power performance
to GAMMs. But in special cases where only a strong practice/learning effect is expected and
the sample size is small, using PSR with GAMMs might optimize power.

In this chapter, the utility of PSR has validated in the framework of modelling approaches.
But up to now we have only been looking at a design with a single factor. It is also useful
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to determine the safety and potential benefit of using PSR in multifactor designs, such as 2x2
designs, which are extremely common in psychology and neuroscience. We are optimistic that
similar benefits would be detected in a factorial context, based on the fact that the hypothesis
test for a main effect in a one-factor design with four levels is equivalent to an "omnibus" test
for a 2x2 factorial design. However, it is usually the case in factorial designs that certain effects
(e.g., an interaction) might be more theoretically important than others (e.g., a main effect).
In the next chapter, we consider these issues in more detail.



Chapter 5

Generalizing PSR to 2x2 Factorial Designs

5.1 Background

Chapters 3 and 4 demonstrated impressive power gains using the design-based approach of PSR
for one-factor designs. But researchers usually use designs that are more complex. Indeed, the
factorial design containing two factors is the most widely used experiment type in behavioural
sciences (Kirk, 2013). A "full" factorial design should meet three requirements: (1) it should
have at least two factors; (2) each factor should have at least two levels; and (3) all levels of
each factor should fully combine with the levels of all other factors to form treatment conditions
(or "cells", as they are often referred to). Under these requirements, the simplest full factorial
design is a 2x2 (two-by-two) factorial design where there are two factors each of which has only
two levels.

Let us refer to the two levels of the first factor as A and a, and the levels of the second factor
as B and b. If we list A and a in rows, and list B and b in columns, we would have a 2x2
condition table, and the first factor becomes a "row factor" and the second one becomes a
"column factor". The cells (or treatment conditions) in this table represent all possible level
combinations of the row factor and the column factor (i.e., AB, Ab, aB, and ab, as presented in
Figure 5.1, top right tables of each top row panels). In clinical and neuroscience experiments,
is it very common to consider a 2x2 factorial design with one between-subject factor and one
within-subject factor, with subjects randomly assigned to one level of the between-subject
factor while receiving all treatment levels of the within-subject factor. But since it is more
common for psycholinguistics and cognitive experiments to use within-subject designs, we will
focus on the situation where both factors are within-subject, meaning that each subject would
experience all four combinations of the levels of the two factors.

As in one-factor designs, in 2x2 factorial designs time-varying fluctuations would mask the true
effects if stimuli sequences are not well organized. Furthermore, because the designs are more
complex, the way this masking could happen would also be more complex. As for a one-way
design, in a two-way ANOVA containing main effects and interactions, the sensitivity for each
effect is still determined by the F ratio of mean squares, F = MStreat/MSerror, and both

48



5.1. BACKGROUND 49

B b
A AB Ab
a aB ab

R

C

aB AB ab Ab Ab ab AB aB ab aB aB AB ab Ab Ab AB
AB aB Ab AB Ab ab AB ab Ab aB ab aB AB Ab ab aB
AB aB aB ab aB aB ab Ab AB ab AB Ab Ab Ab AB ab
ab AB ab AB AB aB Ab aB ab Ab Ab Ab AB aB ab aB

aB AB Ab ab Ab AB ab aB Ab AB ab aB aB ab Ab AB
Ab ab aB AB aB AB ab Ab aB AB Ab ab Ab ab aB AB
AB Ab ab aB ab AB Ab aB ab AB aB Ab ab Ab aB AB
Ab AB aB ab aB Ab ab AB aB AB Ab ab Ab AB aB ab

Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB
ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab
aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab
AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB

Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB
aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab
ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB
AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab

4

3

2

1

−100

0

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
trial number

er
ro

r

exponential decay

B b
A AB Ab
a aB ab

R

C

ab aB AB AB AB Ab Ab ab AB aB ab Ab aB aB Ab ab
Ab AB AB Ab Ab ab aB aB ab ab Ab AB ab aB aB AB
Ab aB ab ab aB AB ab Ab Ab AB aB AB ab aB Ab AB
AB ab aB aB aB AB Ab AB ab Ab ab AB ab Ab aB Ab

ab aB Ab AB AB aB Ab ab aB AB ab Ab aB Ab ab AB
Ab AB ab aB aB ab AB Ab ab AB aB Ab aB AB Ab ab
Ab ab AB aB aB ab Ab AB AB aB ab Ab aB AB Ab ab
AB Ab aB ab aB AB ab Ab Ab ab aB AB AB Ab ab aB

Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB
ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab
aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab
AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB

Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB
aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab
ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB
AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab

4

3

2

1

−100

0

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
trial number

er
ro

r

random walk

B b
A AB Ab
a aB ab

R

C

Ab ab aB ab Ab aB Ab AB aB AB Ab aB ab AB ab AB
Ab AB aB ab aB ab Ab aB ab aB Ab AB ab AB AB Ab
AB aB AB ab aB AB Ab AB Ab aB ab ab aB Ab ab Ab
Ab ab AB aB ab aB aB Ab AB AB ab aB AB ab Ab Ab

AB Ab ab aB ab aB Ab AB aB Ab AB ab ab AB Ab aB
Ab AB aB ab aB Ab ab AB aB Ab AB ab AB Ab ab aB
ab aB AB Ab AB aB ab Ab ab AB aB Ab AB aB ab Ab
Ab aB ab AB ab AB aB Ab Ab ab aB AB aB ab Ab AB

Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB
ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab
aB AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab
AB Ab ab aB AB Ab ab aB AB Ab ab aB AB Ab ab aB

Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB
aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab
ab AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB
AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab

4

3

2

1

−100

0

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
trial number

er
ro

r

pink noise

SSR: 24619
SSC: 7924

SSR: 12611
SSC: 10377

SSR: 18702
SSC: 11458

SSR: 18702
SSC: 9890

1: simple RR 2: PSR−max 3: PSR−C 4: PSR−E

A a B b A a B b A a B b A a B b

400

500

600

700

m
ar

gi
na

l m
ea

n 
R

T SSR: 8078
SSC: 15627

SSR: 17351
SSC: 2283

SSR: 22976
SSC: 7735

SSR: 22976
SSC: 7846

1: simple RR 2: PSR−max 3: PSR−C 4: PSR−E

A a B b A a B b A a B b A a B b

400

500

600

700

m
ar

gi
na

l m
ea

n 
R

T SSR: 27585
SSC: 8438

SSR: 32140
SSC: 7395

SSR: 15843
SSC: 13566

SSR: 15843
SSC: 9460

1: simple RR 2: PSR−max 3: PSR−C 4: PSR−E

A a B b A a B b A a B b A a B b

400

500

600

700

m
ar

gi
na

l m
ea

n 
R

T

SSRC: 6051 SSRC: 3042 SSRC: 3666 SSRC: 2804

1: simple RR 2: PSR−max 3: PSR−C 4: PSR−E

AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab

400

500

600

700

ce
ll 

m
ea

n 
R

T

SSRC: 5003 SSRC: 5433 SSRC: 5100 SSRC: 5190

1: simple RR 2: PSR−max 3: PSR−C 4: PSR−E

AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab

400

500

600

700

ce
ll 

m
ea

n 
R

T

SSRC: 3512 SSRC: 5216 SSRC: 3935 SSRC: 1894

1: simple RR 2: PSR−max 3: PSR−C 4: PSR−E

AB Ab aB ab AB Ab aB ab AB Ab aB ab AB Ab aB ab

400

500

600

700

ce
ll 

m
ea

n 
R

T

SSE SSR SSC SSRC SST: 86%

SST: 95%

SST: 89%

SST: 89%4: PSR−E

3: PSR−C

2: PSR−max

1: simple RR

0.00 0.25 0.50 0.75 1.00
SS proportions

SSE SSR SSC SSRC SST: 89%

SST: 93%

SST: 96%

SST: 96%4: PSR−E

3: PSR−C

2: PSR−max

1: simple RR

0.00 0.25 0.50 0.75 1.00
SS proportions

SSE SSR SSC SSRC SST: 91%

SST: 89%

SST: 90%

SST: 88%4: PSR−E

3: PSR−C

2: PSR−max

1: simple RR

0.00 0.25 0.50 0.75 1.00
SS proportions

Figure 5.1: Three characteristic patterns of time-dependent errors: exponential decay, random
walk, and pink noise. The top three charts show hypothetical patterns of response time errors
(vertical axis) for four different participants, distinguished by shape (circle, square, triangle,
plus) and color. Just below the curves are possible condition labels (AB, Ab, aB, ab) for each
subject and trial (horizontal axis), organized into subblocks and "walk algorithms" (indicated
by boxes and numbers). The condition tables are presented on top right of the error dependent
charts. Four possible designs are represented: simple restricted randomization (‘simple RR’:
rows in the subblock marked by number 1), PSRmax (rows in the four side-by-side boxes marked
by number 2), PSR-C (rows in the four side-by-side boxes marked by number 3), and PSR-E
(rows in the four side-by-side boxes marked by number 4). The charts on the second row show
the margin mean RTs for each participant against the true marginal means. The charts on the
third rows shows observed mean RTs (cell means) for each participant in each design plotted
against the true condition means. All true means were shown by background lines in each
chart. The charts at the bottom row shows sums of squares (SS) allocations for each variance
component from the in relation to the total sum of squares, in three error structures. SSR =
sum of squares of the row factor, SSC = sum of squares of the column factor, SSRC = sum of
squares of interaction. SSE = sum of squares of error.
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mean squares are scaled from the sum of squares, SS, by the corresponding degrees of freedom.
However, in a 2x2 factorial design, SStreat can be further broken down as the sum of SSR, SSC ,
and SSRC , where SSR represents the sum of squares of the row factor, SSC represents those
of the column factor, and SSRC those of their interaction. As such, segregating each source of
treatment variation from noise contributes to a larger SStreat and would achieve a "general"
overall power improvement. To take a closer look at SStreat, the main effect for a given factor
means the variance accounted for by this factor while ignoring the other factors in the design.
Estimating the sum of squares for main effects involves computation of a mean for each level of
the factor while ignoring the other factor (also known as "marginal means"). At the same time,
a common computational formula the interaction defines this effect as what remains of SStreat

after the main effects are removed. Its sum of squares are calculated by summing the remaining
variance in each level combinations (known as "cell means") by subtracting the main effects
of the row factor and the column factor. Viewed in this way, it may be possible to discover
different ways of performing restricted randomization that specifically target one of the three
possible effects of interest (row, column, or interaction).

To give an intuitive example, let us extend our one-factor design example to the context of 2x2
within-subject design. Suppose the true mean RTs (cell means) for four level combinations,
AB, Ab, aB, and ab are 455, 475, 495, and 575 ms, respectively. Under these true cell means,
the true margin means would be (455 + 475) / 2 = 465 ms for A, (495 + 575) / 2 = 535 ms
for a, (455 + 495) / 2 = 475 ms for B, and (475 + 575) / 2 = 525 ms for b, respectively.
Also, since the effect of the row factor differs across the levels of the column factor (i.e., 475 -
455 = 20ms at B versus 575 - 495 = 80ms at b), there is an interaction in between row and
column factors this design. To maintain the simplicity of our discussion, we further assume
there are no individual differences, and all biases in individual RTs are simply due to trial-level,
time-dependent noise (patterns presented in Figure 5.1), as they did in Chapter 3.

If we recognize that improving power is essentially improving the segregation of the signal
variations from noise and thus increasing the proportion of SStreat in the F ratio, we could try to
use the PSRmax algorithm to achieve a more uniform distribution of the repeated presentations
of each conditions, as we did for the one-factor designs. In this case, we could see all four
conditions as four independent levels from an "omnibus" factor and concatenate sequences by
randomizing stimuli in four subblocks. Sequences resulting from this approach are presented in
Figure 5.1, marked by number 2. Under PSRmax in the exponential decay scenario, we increase
the SStreat proportion against simple restricted randomization from 86% to 95%, accounting
for an additional 9% of the total variance (the left chart of the bottom row in Figure 5.1) . But
as mentioned in Chapter 3, the PSR algorithm is not a method that deterministically improves
power in every dataset, but one that does so over the long-run. On average, under PSRmax, the
proportion of SStreat should increase for all three time-dependent error structures, although for
the chosen data set in the figure it actually decreased in the pink noise scenario (from 91% in
simple restrict randomization to 89% in pink noise).

If long-run "omnibus" power improvement is indeed achieved under PSRmax, as would be
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expected, it would also be useful to determine whether it does so by equally improving power
for all three effects (two main effects and interaction). In the simulated data behind the figure,
consistent power improvement was not found over all three error patterns: in the exponential
decay scenario, PSRmax increased SSC but reduced SSR and SSRC ; while in the gaussian
random walk and pink noise scenarios, SSR and SSRC increased under PSRmax but SSC took
a big hit.

5.2 "Walking" through a design table: PSR-C and PSR-E

To understand how power might be distributed among the three effects comprising SStreat, let
us have a closer look at the application of PSRmax to a single subblock containing conditions
AB, Ab, aB and ab. From the perspective of omnibus power, we have four separate conditions,
and so there is no particular arrangement of conditions that could possibly improve omnibus
power for that subblock. But things change if we look at this from the perspective of each
of the two main effects as well as from the perspective of the two simple effects that together
comprise the interaction effect.

First, from the perspective of either main effect, we have two repetitions of each level within
a subblock: two Bs and two bs. There are only six unique arrangements of these levels within
the subblock: BbBb, bBbB, BbbB, bBBb, BBbb, and bbBB. The first two are cases where the
levels alternate from trial to trial, and, following from the results in Chapter 3, this alternation
should lead to higher power than cases where there are runs of the same level. But each instance
of a given level B or b in the subblock is associated with a different level of the other factor, A
or a. So if we want to maintain the alternating pattern BbBb the only possibilities for doing
this while combining with the levels of the other factor are ABabaBAb or aBAbABab. Note
that in either cases, the A and a levels get bunched together into AaaA and aAAa; if we were to
string together multiple subblocks organized in this way, we would have AaaAAaaAAaaA . . ..
For illustration, see Figure 5.1, top graph, row of subblocks marked 4. It is not possible to
simultaneously alternate both factors—alternating one of them creates runs in the other. Given
that the omnibus power is fixed, this means sacrificing some of the power for the row factor (A
and a) for the sake of the column factor (B and b). The pattern where we alternate between
B and b can be conceived of as a "figure-8" movement throughout the cells of the design, as
shown in the right panel of Figure 5.2. Note that a second "figure-8" movement direction is
also possible that would alternate A with a while creating runs of the levels of B and b. Note
further that we can start this figure-8 movement at any arbitrary cell in the table. Henceforth
we refer to arranging a subblock according to this figure-8 pattern as PSR-E.

What does PSR-E imply for the interaction effect? Let us consider that the interaction effect
can be estimated as the difference of two simple effects: for example, the simple effect of B vs b
at the level A minus the simple effect of B vs b at the level a, or: (AB−Ab)− (aB− ab) which
can be simplified to AB−Ab−aB+ab. In this equation, there are two positively-signed terms
+AB and +ab and two negatively-signed terms −Ab and −aB. The ideal subblock organization
for improving interaction power would therefore be one in which the signs alternate within
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AB Ab 

aB ab 
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B b

Movement of PSR−Circular (PSR−C)

AB Ab 

aB ab 
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B b

Movement of PSR−Eight (PSR−E)

Figure 5.2: Two types of "movements" through the design table in 2x2 factorial designs, both
(arbitrarily) starting from AB.

subblock, e.g., AB − Ab + ab − aB. But the figure-8 pattern of PSR-E creates runs of same-
signed terms, e.g., −Ab − aB + ab + AB (see Figure 5.1, top graph, row of subblocks marked
4), a suboptimal arrangement for interaction power.

What type of movement, then, might create the type of signed alternation that would improve
interaction power? There is only one other type of within-subblock movement that could create
this pattern: circular movement (Figure 5.1, left panel), henceforth PSR-C. Moving around the
design table in a circle will alternate the signs in the interaction computation and thus improve
power for the interaction. Returning to the above example with +AB − Ab + ab − aB, going
clockwise produces +AB −Ab+ ab− aB and moving counterclockwise produces +AB − aB +

ab − Ab. But note that clockwise movement produces runs in the levels of each main effect
factor, so we hypothesize that circular movement improves interaction power at the expense of
the main effects. Again, note that we can start this movement at any arbitrary random cell in
the design table.

Both PSR-C and PSR-E fixed the condition sequences within a subblock while having just one
repetition of a condition (cell) within the subblock. In that sense, they represent an implemen-
tation of PSRmax. However, unlike PSRmax where each subblock is randomized independently,
here repetitions start at an arbitrary starting point and repeat identically over subblocks, creat-
ing a highly predictable pattern. While this repetition across subblocks is not strictly necessary,
our interest here is in determining the theoretical limits of how much power can be improved
without worrying about human factors. For PSR-C and PSR-E, the only thing that is truly
random for each participant is the starting point of the sequence. But it is better for power to
counterbalance the starting point across participants so that each cell has an equal chance of
appearing first. For example, when using PSR-C, if participant one starts at AB on trial one,
then participant two would start at Ab, participant three at ab, and participant four at aB.
Thus if there is any overarching common pattern across participants (such as in the exponential
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decay scenario), any bias will tend to cancel out.

Although developed specifically for factorial designs, we are not saying PSR-C and PSR-E
should take priority over PSRmax. On the contrary, PSR-C and PSR-E are just two adaptations
of the standard PSR algorithm that target power improvements for specific effects of interest.
While we aim to investigate the maximum theoretical gains possible, we recognize that there
are a wealth of possibilities for how these might be deployed in a more practical manner. For
example, researchers can switch the starting points for each subblocks, alternate algorithms
for each subblock, or move in different directions across subblocks to generate independent
sequences. But doing so would only produce sequences that are closer to PSRmax. In fact,
given the requirement that "each subblock only contains one repetition of each condition",
each subblock is either PSR-C or PSR-E because no other pattern of "movement" through the
design table is possible. Therefore, we can look at PSRmax as just randomly choosing starting
point, movement type (PSR-C or PSR-E), and movement direction for each subblock.

To extend the PSR algorithms (PSRmax, PSR-C, and PSR-E) into the context of 2x2 factorial
design, and to assess their long-run Type I error rates and power performance, we conducted
Monte Carlo simulations in which we generated data from hypothetical experiments with time-
dependent errors.

5.3 Methods

To improve simulation efficiency, all simulations were run via C++ programming language.
But we also provided a wrapper R package psrsim for non-experts of C++.

5.3.1 Determining representative study design parameters

To mimic realistic experiments, we used different parameters to generate our datasets. First, we
chose three representative sample sizes by inspecting studies involving 2x2 factorial designs from
the data described in Chapter 2. As design parameters, we still use np to denote the number of
participants, nr to denote condition repetitions, and ns to denote number of subblocks. Here
we skipped the number of conditions, nk, as in 2x2 factorial designs, nk = 4. Based on the
data from Chapter 2, we arrived at the following design parameters: np = {28, 40, 50}, and
nr = {10, 16}. As PSR-C and PSR-E were developed from PSRmax, we hereby only considered
two possible numbers of subblocks, ns = {1, nr}. Designs with ns = 1 are equivalent to simple
restricted randomization and are used as a baseline. Designs with ns = nr were those containing
PSRmax, PSR-C and PSR-E algorithms. Similar to the one-factor design, we applied different
ranges of eight different values of effect sizes η to different designs. To reduce the number of
simulations, we specified identical ηs for main effects and interaction within each design. The
five error structures (independent, exponential decay, gaussian random walk, pink noise, and
mixed) and the procedures of determining ηs were the same as in Chapter 3.
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5.3.2 Data-generating process

The value of dependent variable, Y, of subject i in level j of the row factor R, k of the column
factor C on trial t is generated by the following formula (notice that jk combines to a condition
in 2x2 factorial design).

Yijkt = µ+ Sµi + βj + βk + βjk + Sβj + Sβk + Sβjk + eit (5.1)

In formula 5.1, µ represents the grand mean, Sµi represents the random intercept of subject i;
effect components βj, βk, and βjk represent main effects of R, C, and the interaction RC, respec-
tively; similarly, Sβj + Sβk + Sβjk represent the random slopes of R, C, and RC, respectively. All
random variances were specified to account for about 11% of the total variance, being around
44% of the total variance. This is aiming to maintain a typical portion of random effects in re-
lation to total variance (about 40%, see section Random effects in relation to residual variance
in the meta-analysis of Barr et al. (2013), Appendix). The term eit stands for the error term
of subject i in trial t, and its setting was identical as in Chapter 3.

5.3.3 Analysis

Fully crossing design parameters np and nk yielded 6 unique designs. To simplify the presen-
tation of our results, we chose three focal factorial designs to represent three most typical 2x2
within-subject designs. They are: the "smallest" design where np = 28, nr = 10; the "medium"
design where where np = 40, nr = 16; and the "largest" design where np = 50, nr = 16. These
three designs, combining with five error structures and eight effect sizes, yielded 120 hypothet-
ical experiments. Furthermore, since we only consider the setting as ns = {1, nr} here, four
PSR algorithms were considered, including (a) PSR1 (common PSR with one subblock, equiv-
alent to simple restricted randomization), (b) PSRmax (PSR with ns = nr, the maximum of
all possible number of subblocks), (c) PSR-C, and (d) PSR-E. For PSR-C and PSR-E, starting
conditions were counterbalanced across subjects except the largest focal design, because 50 is
not a multiple of 4, leaving two sequences out from the total. This finally yielded 480 possible
experiment settings. For each of these experiments, we conducted 10,000 Monte Carlo runs,
within each run defined as generating and analyzing a single dataset. For the analysis, we
conducted a two-way ANOVA by calculating F -ratios for two main effects and one interaction,
F(df1,df2) =

MS
MSE

. Here, MS and MSE are means of squares of corresponding factor and residu-
als, and are scaled by corresponding degrees of freedom df1 and df2, respectively. The p-values
of R, C, RC were extracted with α = .05. Identically to previous chapters, these p-values were
used to estimate Type I error rates and power for all PSR variations and under different designs
and error scenarios.
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5.4 Results

5.4.1 Power

To estimate power, we calculated the portions of 10,000 runs that yielded significant effects for
each of the two main effects and the interaction effect. We estimated power under PSRmax,
PSR-C, PSR-E, benchmarking it against simple restricted randomization (i.e., PSR1). Due
to the large amount of data, we calculated median power increase rates for all three effects
across the three focal factorial designs, presented in Figure 5.3. For temporally independent
error structures, as expected, our three PSR algorithms yielded negligible power improvements
against simple restricted randomization for all three effects, with median power improvements
ranging from -1.3% to 1.1%. Regarding other four scenarios with autocorrelated error struc-
tures, the power improvements over simple restricted randomization ranged from -3.4% to
13.5%.
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Figure 5.3: Median percent increase in power of different PSR algorithms against simple re-
stricted randomization (PSR1).

According to Figure 5.3, PSRmax turns out to be the only option among our three algorithms
to guarantee power improvements for all effects, across all error structures and designs. Power
gains were largest in gaussian random walk (5.0% to 9.3%), followed by mixed (2.8% to 4.2%),
then exponential decay (1.7% to 3.8%), and finally pink noise (0.8% to 2.5%). As we expected,
PSRmax distributed power roughly equally across the row, column, and interaction effects.

But compare to PSRmax, power gains of PSR-C and PSR-E seem to be more sensitive to the
effect of interest. However, once extra power gain is achieved, PSR-C and PSR-E would show
higher capacity than PSRmax has. For example, PSR-C boosts power for interaction RC in
all cases, with the largest gain of 12.5% in smallest design under pink noise scenario; while
using PSRmax yielded 2.1% power increase. In this case, PSR-C has 10.3% extra power gains
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over PSRmax. At the same time, PSR-E can maintain consistent power improvements for the
column factor C, with the largest gain of 13.3% in smallest design under pink noise scenario;
while using PSRmax yielded 2.1% power increase. Therefore, with such settings, PSR-E has
11.2% extra power gains over PSRmax.

However, power impairments were also observed for PSR-C and PSR-E: in the case of largest
design with exponential decay error scenario, PSR-C and PSR-E reduced the power of R by
2.1% and 3.4%, respectively. In all three designs under pink noise, PSR-C consistently impairs
the power of R and C, ranging from -2.1% to -0.2%; while PSR-E consistently reduces the
power of R and RC, with the range of ranging from -2.3% to -0.1%.

As expected, power gains for all three algorithms are largely determined by the types of error
structures. However, unlike PSRmax, power gains of PSR-C and PSR-E are also determined
by the number of participants np, and there seems to be a complex interaction between error
structures and np. In exponential decay cases, increasing np from 40 to 50 (i.e., the middle
focal design versus the largest focal design) harms the power for R for both PSR-C and PSR-E.
However, increasing np would mitigate such impairment. In largest design, power losses for
PSR-C and PSR-E were controlled to a negligible level, with all losses less than 1%.

5.4.2 Type I error rates
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Figure 5.4: Type I error rates of PSR algorithms for effect terms, in different focal designs.
The shaded regions represent the 99.9% Agresti-Coull confidence intervals for 10,000 random
samples from a process with a "success" rate of .05.

We calculated the type I error rate by calculating the number of significant results in designs
where η2 = 0 (i.e., null effects). Figure 5.4 shows these results for our three focal factorial
designs. We also computed the 99.9% Agresti-Coull confidence intervals with the "success
rate" at the nominal level α = 0.05, which is [0.0433, 0.0577] and marked by shaded regions.
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First, in baseline scenarios where residuals were independent, the type I error rate range for
simple restricted randomization (PSR1) is [0.0483, 0.0531] across 3 designs and for all three
effects of interest. This range falls in the 99.9% confidence interval, and no anti-conservative
type I error rate was identified for any of effect of interest. Fortunately, none of our PSR
algorithms exhibited anti-conservatism in independent cases, with type I error rate ranges
of [0.0470, 0.0550] for PSRmax, [0.0470, 0.0531] for PSR-C, and [0.0478, 0.0511] for PSR-E,
respectively. This results suggested that, in 2x2 factorial designs, even when errors were not
temporally structured, it is safe to use our three algorithms.

However, since PSRmax, PSR-C, and PSR-E only partially remove time-dependent residuals, it
is important to inspect whether the remaining autocorrelated residuals cause anti-conservative
type I error rates when detecting effects of interest, especially for the latter two algorithms
that involve consistently repeating sequences. Encouragingly, according to Figure 5.4, in our
12 cases where residuals were time-dependent, no algorithms indicated extra anti-conservatism
over the upper limit of the 99.9% Agresti-Coull confidence interval, with type I error ranges
of [0.0439, 0.0540] for PSRmax, [0.0345, 0.0550] for PSR-C, and [0.0346, 0.0558] for PSR-E,
respectively.

However, the two new algorithms PSR-C and PSR-E showed conservativity in the exponential
decay scenario for all effects of interest in all three designs. Both PSR-C and PSR-E showed
conservative type I error rates for all effects in the smallest design. Increasing the number of
participants ameliorated this somewhat for PSR-E except for the interaction term in the largest
design. But PSR-C showed conservativity for all three effects across all sample sizes.

5.5 Applied example: Using PSR-C and PSR-E in experimental designs

As in one-factor designs, to implement PSR in 2x2 factorial designs, let us consider a hypo-
thetical experiment with the explan package for R language (R Core Team, 2023). In this
example, we use a factorial Stroop paradigm (Rosenbaum et al., 2017) to illustrate how to
deploy PSR. Similar to the standard Stroop paradigm (e.g., Stroop, 1935), participants would
see "congruent" word-color pairs where the font color matches the meaning of the word, and
"incongruent" pairs where the font color mismatches the meaning of the word. But at the same
time, participants need to identify the color while in one of two different positions (standing
or sitting). These settings produce a standard 2x2 factorial design, with one factor being con-
gruency (congruent versus incongruent), and the other being position (sitting versus standing).
As such, combining all levels generates four conditions: congruent-sitting, congruent-standing,
incongruent-sitting, and incongruent-standing. The standard finding of Rosenbaum et al. (2017)
is that Stroop effect is smaller when participants are standing.

Before starting randomization, it would be useful to inspect how factors are combined and how
the relative positions are determined in a sequence, as the these positions justify final PSR-C
and PSR-E sequences. This inspection could be done using the con_2x2() function in explan.
This function takes two arguments: (1) facR, a vector containing two levels of the first factor
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(would be seen as the row factor); (2) facC, a vector containing two levels of the second factor
(would be seen as the column factor).

## NB: first install the explan package using:

## remotes::install_github("dalejbarr/explan")

library(explan)

con_2x2(facR = c("congruent", "incongruent"),

facC = c("sitting", "standing"))

sitting standing

congruent "congruent/sitting (1)" "congruent/standing (2)"

incongruent "incongruent/sitting (3)" "incongruent/standing (4)"

According to the resulting matrix, we can see each entry contains a condition by combining
one level of each factor. The numbers following determine how these conditions are originally
arranged within each subblock (i.e., the original sequence without randomization).

Next, we need to randomize these conditions with our three algorithms, PSRmax, PSR-C, and
PSR-E. For PSRmax, one can use psr() function mentioned in Chapter 3, and take all conditions
as the level vector to generate independent sequences for every participant (results not shown).

lapply(seq_len(4),

\(.x) psr(c("congruent/sitting", "congruent/standing",

"incongruent/sitting", "incongruent/standing"),

24, 4))

However, as PSR-C and PSR-E requires additional constraints to the relative positions of
conditions, we developed another function, walk_2x2() in order to implement randomization.
The walk_2x2() function helps user "walk" through the conditions by taking five arguments:
(1) np, the number of desired participants; (2) nr, repetitions of each conditions; (3) and (4)
being facR and facC, identical to those in con_2x2() function; and (5) method, a character
determining the PSR algorithm, with c representing PSR-C and e being PSR-E. Based on these
parameters, this function generates a list containing condition sequences for each participant
under the chosen algorithm. The starting conditions are counterbalanced across participants.

walk_2x2(np = 4, nr = 4,

facR = c("congruent", "incongruent"),

facC = c("sitting", "standing"),

method = "c")

[[1]]

[1] "incongruent/sitting" "congruent/standing" "incongruent/standing"

[4] "congruent/sitting" "incongruent/sitting" "congruent/standing"

[7] "incongruent/standing" "congruent/sitting" "incongruent/sitting"

[10] "congruent/standing" "incongruent/standing" "congruent/sitting"
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[13] "incongruent/sitting" "congruent/standing" "incongruent/standing"

[16] "congruent/sitting"

[[2]]

[1] "congruent/standing" "incongruent/standing" "congruent/sitting"

[4] "incongruent/sitting" "congruent/standing" "incongruent/standing"

[7] "congruent/sitting" "incongruent/sitting" "congruent/standing"

[10] "incongruent/standing" "congruent/sitting" "incongruent/sitting"

[13] "congruent/standing" "incongruent/standing" "congruent/sitting"

[16] "incongruent/sitting"

[[3]]

[1] "incongruent/standing" "congruent/sitting" "incongruent/sitting"

[4] "congruent/standing" "incongruent/standing" "congruent/sitting"

[7] "incongruent/sitting" "congruent/standing" "incongruent/standing"

[10] "congruent/sitting" "incongruent/sitting" "congruent/standing"

[13] "incongruent/standing" "congruent/sitting" "incongruent/sitting"

[16] "congruent/standing"

[[4]]

[1] "congruent/sitting" "incongruent/sitting" "congruent/standing"

[4] "incongruent/standing" "congruent/sitting" "incongruent/sitting"

[7] "congruent/standing" "incongruent/standing" "congruent/sitting"

[10] "incongruent/sitting" "congruent/standing" "incongruent/standing"

[13] "congruent/sitting" "incongruent/sitting" "congruent/standing"

[16] "incongruent/standing"

As with a one-factor design, it is most commonly the case that researchers would like to apply
PSR directly to stimuli, not just to conditions. In this case, they can turn to our factorial
randomization function, psr_2x2_stimuli(). The psr_2x2_stimuli() function requires be-
haves quite closely to psr_stimuli(), and the researcher must pass a data frame containing
the full set of stimuli delivered to each participant. To illustrate, we use another built-in table
in explan, confirming to the factorial Stroop design, stroop_stimuli_factorial.

head(stroop_stimuli_factorial, 6)

stimulus_id word font_color congruency positions

1 1 blue blue congruent sitting

2 2 blue blue congruent standing

3 3 brown brown congruent sitting

4 4 brown brown congruent standing

5 5 green green congruent sitting

6 6 green green congruent standing
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To implement PSR with the table of stimuli, four arguments are mandatory: (1) stim_table,
the name of stimulus table; (2) IVs, two independent variables (factors) to be considered, with
the first one being the row factor, and the second one being the column factor; (3) n_part,
the number of desired participants; and (4) algorithm, the desired PSR-algorithms, with max

representing PSRmax, circular representing PSR-E, and eight being PSR-E.

set.seed(1451) ## ensure reproducibility of the output

stroop_fac_4 <- psr_2x2_stimuli(stim_table = stroop_stimuli_factorial,

IVs = c("congruency", "positions"),

n_part = 4,

algorithm = "circular")

head(stroop_fac_4, 9)

PID sb_no stimulus_id word font_color congruency positions

1 1 1 10 blue blue congruent standing

2 1 1 72 red green incongruent standing

3 1 1 63 green brown incongruent sitting

4 1 1 27 brown brown congruent sitting

5 1 2 18 blue blue congruent standing

6 1 2 50 blue brown incongruent standing

7 1 2 49 blue brown incongruent sitting

8 1 2 13 green green congruent sitting

9 1 3 48 red red congruent standing

The output above has the same structure as that from psr_sim(). But if we take a further look
at the independent variables (i.e., congruency and positions), we find that they are randomized
by PSR-C, and their orders are determined by the numbers obtained from the output matrix
of the con_2x2() function5.1.

5.6 Discussion

In this chapter, we extended the PSR algorithm into the context of 2x2 factorial designs,
and introduced two PSR variations, PSR-C and PSR-E. Compared to one-factor design, time-
varying fluctuations have more complex masking effects in factorial designs, but there are also
possibilities for arranging conditions to improve power for certain effects. Since 2x2 factorial
designs are one of the most frequently used designs in psychology and neuroscience, adapting
PSR to this context would be advantageous for improving measurement and thus increasing
the reproducibility of lab experiments while keeping false positive rates at a nominal level.

As a direct generalization, PSRmax was the only algorithm guaranteeing the general power

5.1The function psr_2x2_stimuli() could still generate sequences even when np is not a multiple of 4. In
this case, users would receive a warning message from the function, suggesting it is an unbalanced design
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improvement across all effects of interest. The results of PSRmax would be useful wherever
main effects and their interaction have the same weight of research interest. PSR-C and PSR-E
showed clear power advantages in detecting specific effects of interest when error structures are
participant-specific rather than general (i.e., except in the exponential decay scenario). One
characteristic of PSR-C and PSR-E is, they choose a fixed starting condition and follows a
given path to move across conditions, and the resulting sequence within a subblock is repeated
in independent sequences for each participant. Although the starting conditions are counter-
balanced across participants, the sequence is repeats identically. Thus, it would be ill-advised
to use these approaches as is, with actual participants. Furthermore, in contrast to PSRmax,
they also risk to bring in spectral alignment with time-varying patterns. As previously dis-
cussed in Chapter 3, when time-varying noise happens to have a strong spectral component,
then power might be negatively affected, although the amount could be trivial. The pink noise
scenario represents this situation, where the residual time-series spectrum has an overall fractal
structure.

Given this possibility of spectral coherence, would within-participant counterbalancing of the
subblock-level sequences have any benefit? This is doubtful, especially if we explore the space
of possibilities for within-participant counterbalancing. First, as earlier explained in introduc-
tion section of this chapter, randomly choosing for each subblock whether the apply PSR-C
and PSR-E, which cell to start in, and in which direction to move is effectively the same as
applying PSRmax. Second, it is possible to generate "palindrome" PSR-C sequences (e.g., clock-
wise arranging conditions in one subblock then anti-clockwise arranging conditions in the next
subblock) and create sequences like AB − Ab − ab − aB − AB − aB − ab − Ab and so on;
but such sequences lose the even distribution of conditions over time (e.g., two aBs are quite
closed to each other, and Bs have been repeated for three times). We believe palindrome se-
quences would be no better than standard PSR-C or PSR-E sequences, as predictable condition
streaks appear at the margins between subblocks. However, for PSR-C and PSR-E, complete
between-subject counterbalancing in starting points and motions might be beneficial to fully
clean up time-dependent variance on the sample level. But doing so requires a sample size at
least double of we originally have to achieve a fully balanced design. Given that conditions are
not independent as in one-factor design, how to arrange stimuli and better cancel out time-
varying noise becomes more challenging. But our results have shown power advantages under
all possible movements in a fully within-subject 2x2 factorial design.

In this chapter, we only considered design-based approaches for dealing with time-varying
fluctuations in 2x2 factorial designs. But model-based approaches for 2x2 factorial designs are
also possible, and could even be combined with design-based approaches, as we did for the one-
factor design in Chapter 4. As time-dependent noise is partially removed via PSR algorithms,
using statistical modeling to remove remaining time-dependent noise might be particularly
useful. Future research is needed to see how this might work.

According to Chapters 3 to 5, we have seen that involving time-varying fluctuations could
improve measurement by boosting power in repeated-measure within-subject experiments. One
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characteristic of these experiments is that observations have temporal characteristics (e.g.,
reaction time) and would be obviously affected by time-dependent effects as the task unfold.
But in psychology and other behavioural sciences, there is often seen another kind of dataset
where observations are time-dependent: specifically, psychometric instruments implemented
through questionnaire reports. In these types of datasets, observations are taken to measure
psychological properties of participants (e.g., attitudes or abilities). Although observations from
a questionnaire would are intended to measure these presumably static and long-term properties
of participants, time-varying fluctuations could also affect measurement as the observations
must be taken sequentially. In the next chapter, we focus on time-varying fluctuations in
psychometrics research, another field that has generally ignored time-dependent noise. We
introduce a model-based approach to improve measurement in these contexts.
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Chapter 6

Cleaning up Psychometric Measurement
with Mixture Autoregression
Confirmatory Factor Analysis

6.1 Background

So far, we have seen how controlling time-varying fluctuations can improve measurement by
boosting power in repeated-measures experiments. The approaches we reviewed improve mea-
surement by accounting for the non-simultaneity of measurement. But the non-simultaneity of
measurement also affects study quality in other areas, such as in psychometrics, where an instru-
ment, usually a questionnaire, is used to assess a psychological property of a participant. Just
like in an experiment, participants repeatedly respond to items that are designed to measure
one specific construct—it could be a main construct, or some facet of it. As time-varying fluctu-
ations lead to systematic changes irrelevant to the effects of interest in experimental datasets,
they would also do so in a questionnaire dataset, especially in a cross-sectional survey. As
mentioned in Chapter 1, reliability requires a clear psychological construct; thus, determining
the validity of a measurement is prior to an assessment of its reliability. In this chapter, I
will introduce a model-based method to increase the validity of the psychometric analysis by
considering time-varying fluctuations, as model-based methods are currently the most common
and acceptable solutions in psychometrics6.1. But before going into the technical section, some
general background is require to better understand the motivations of this study.

Generally, to determine the validity of a psychological measurement is to confirm whether
this measurement reflects the construct it is claimed to measure. This process is completed
by a variation of multivariate regression, factor analysis. In most behavioural research, the
construct is proposed earlier than the test so that a factor analysis is often confirmatory, and it
is therefore called Confirmatory Factor Analysis (CFA) thereby. Nowadays, CFA perhaps has
become the most popular approach to validate a psychological measurement (Coulacoglou &

6.1Design-based approaches to improve measurement in psychometrics are still in debate and are difficult to
implement. For further discussion about this part, see next chapter.
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Saklofske, 2017).

Essentially, CFA is a multivariate linear regression model, and researchers justify the test
validity by inspecting model fits and factor loadings (i.e., the regression coefficient of each item,
represented by the arrow from the latent variable to the indicator yi in panel a of Figure 6.1).
As in other linear regression models, CFA provides Chi-square (χ2) value to determine how
well the theoretical model represents the sample. It also provides Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) for basic model comparison. Specifically
however, CFA additionally provide Comparative Fit Index (CFI), and Tucker–Lewis Index
(TLI) to estimate how better the theoretical model does in explaining the dataset at hand
than the baseline model where all variables are independent. Determining a questionnaire’s
validity requires a combination of adequate values of all these fits and parameters. Factor
loadings represent the relationship between the construct and individual items. For example,
if an item has a factor loading value of 0.70 on a given latent variable, then this latent variable
has accounted for 0.702 = 49% of the variance of this item.

(a) CFA model specification
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y1 y2 y3 y4 y5

ry1 ry2 ry3 ry4 ry5

(b) AR-CFA model specification
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(c) MAR-CFA model specification
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Figure 6.1: Model specifications of (a) conventional CFA, (b) AR-CFA as purposed by Ozkok
et al. (2019), (c) MAR-CFA, and (d) mixture autocorrelation patterns. Circles defines latent
variables that cannot be directly observed or that have to be indirectly estimated. Squares
reflects observations that are obtained from the raw dataset. Arrows specified the direction of
causation, pointing from predictors to indicators. Arrows starting from a latent variable and
pointing to itself reflects the variance of the latent variable. Rectangles constructed by dotted
lines suggested a latent cluster that is implied by MAR-CFA. lv = Latent variable. y = item
(indicator). ry = residual of an item. κ = autoregression coefficient.

Despite the wide use of CFA, researchers usually find poor results from their analysis. For
example, one might observe satisfying model fits but low item factor loadings from the CFA re-
sults. Usually, this situation can be accounted for by model misspecification, poor performance
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of some items, or potential outliers in the datasets. At this point, test developers and analysts
often see it as a positive signal and start checking the dataset, re-specifying the analytical
model, and even reconsidering the theoretical construct itself, thereby refining the measure-
ment. But for some other cases, researchers observed poor model fit and high factor loadings.
This phenomenon suggests that items are measuring a hybrid of the construct but with some
unexplained relationships among items. To control these potential relationships, researchers
can split the measured construct into two or more components (formally stated, they add new
factors) that are correlated, letting different items measure different components, and therefore
yielding multi-factor models. Or they can specify some correlated items according to the model
modification indices suggested by software/programming languages. In either way, researchers
need to control unexplained relationships by taking them out from the original construct. But
because both ways are highly data-driven, it is hard to determine if the modification really
improved the validity and helped generalize the findings, or whether the improvement reflects
special properties of the dataset being analyzed (Chin, 1998). Also, model modification is often
an empirical endeavor and is less appreciated unless strong theoretical evidence is provided. In
practice, modifications reduce confidence in the future use of the measurement being validated,
as no clear factor structure or contradictory factor structures would be proposed (cf. Liang et
al., 2022; Wang et al., 2020).

Modifying the original construct is not always viable, but paying attention to the sample-
specific effect sources might be helpful, as we are trying to separate the homogeneity explained
by measured construct from that caused by sample-specific properties. As we have already seen
in experiments, time-varying fluctuations affect participants’ performances. Participants still
need to react to the test item by item, their responses would naturally form a time series, and
such performances are unlikely to stay stable.

Historically, however, very little research has considered how dealing with time-varying fluctua-
tions can help statistically increase the validity of CFA-based approaches. Instead, researchers
behave as though responses from each participants are collected simultaneously when specifying
a CFA model. But this is far from the truth, especially given that question ordering and other
serial effects are a research topic in its own right: for example, long-term contextual effects
and item wording effects, social desirability, and so on (Marsh, 1996; Pedregon et al., 2012).
Although in another approach to investigate the relationship between measured construct and
items, item response theory, researchers have introduced time-fluctuations into the analytical
framework (e.g., Myszkowski & Storme, 2024), its application still requires a solid psycholog-
ical construct that items within a scale measure, and the responses to an item are assumed
independent of responses to other items once their contribution to the construct is taken into
account (i.e., unidimensionality assumption and local independence assumption, Nguyen et al.,
2014). Testing these requirements is usually completed by CFA. Therefore the item response
theory analysis would be biased if the measurement validity is already biased by a CFA that
ignores time-varying fluctuations.
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6.2 Autoregressive CFA

Ozkok et al. (2019) noted the limitations in CFA, and they were the first to introduce the idea
of time-varying fluctuations into the model, resulting in the Autoregressive CFA (AR-CFA)
approach. According to Ozkok et al. (2019), the item response is described as a sequential pro-
cess, and they model such process by specifying a residual structure with autoregression (i.e.,
the residual of an item would be predicted by the residual of its previous item, reflected by the
arrow existing in residuals ryn in panel b of Figure 6.1). Except for the residual specification,
the remaining settings are identical to a conventional CFA. Under their model comparisons and
a Monte Carlo simulation study, (Ozkok et al., 2019) found that conventional CFA usually over-
estimates the factor loadings and worsen model fit results when time-varying fluctuations are
present (quantified by autoregression coefficients); while AR-CFA has satisfying performance
in improving validity. Such improvement is achieved by applying ". . . a more theoretically
rigorous approach to model specification. . . while also offering ways to balance the difference
between highly a constrained IC-CFA vs. other less-constrained approaches such as an EFA
[Exploratory Factor Analysis]." (p. 16).

The AR-CFA has two appealing advantages. First, its settings are understandable and sim-
ple—the fundamental time-varying fluctuations and response processes were only reflected in
residual term specification and thus, the factor structure component stays clear. Second, com-
pared to the data-driven modification approaches, specifying autoregressive residual structure
is highly theoretically supported-researchers are trying to recover the true process happening
in a test completion. In fact, Ozkok et al. (2019) even discussed the settings in multi-factor
models where a construct is measured by more than one components, and items under different
factors can have autoregressive relationships. Although this scenario represents the possibil-
ities to investigate further interactions between time-varying fluctuations and the measured
construct, it is beyond our topic for the model complexity and will not be discussed further.

6.3 Mixture AR-CFA: A compromise between "None" and "All"

According to the specification of AR-CFA, only one general autocorrelation pattern was in-
cluded throughout all participants. But in reality, this is very unlikely to happen due to
individual differences. For example, as the task goes on, task-takers might consistently in-
crease their attention, or might lose interest; they can expend more effort to rate items or they
just provide very casual, biased responses because of fatigue. But trying to capture all these
changes would be very difficult, and is likely to exceed researchers’ knowledge and modelling
techniques. There is, however, an R package mxsem (Orzek, 2024) that provides algorithms to
allow the specification of a Moderated Nonlinear Factor Analysis (Bauer, 2016; Kolbe et al.,
2024) whose model parameters (e.g., factor loadings, regressions, covariances) can vary across
participants, and thus could potentially capture all possible time-dependent noise. But the
general application of the MNLFA requires a known source of individual differences (e.g., gen-
der, age); yet there is no such reference variable in a questionnaire dataset that help determine
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time-varying fluctuations, as they are invisible and embedded in the raw response series. Expe-
rienced analysts might try to specify random effect structures to capture individual differences,
but they would be disappointed by the lengthy, complex, and error-prone programming and
the overwhelmingly heavy computational burden (see "Moderated-Nonlinear-Factor-Analysis"
vignette of mxsem package for the model syntax). At the simplest structure that only has three
items, MNLFA needs to additionally estimate two linear mixed effect models with its minimal
setup given the same amounts of information (and it is highly possible for these models to be
under-identified). Any increase in item number or sample size would also slow down to the
factor model estimation speed. Once it is appreciated that the return of estimating a complex
model imposes high complexity and effort, the potential of MNLFA is doubtful.

But in between fully ignoring time-varying fluctuations and exhaustively estimated individual
differences, we can look for a compromise to clean the time-varying fluctuations while maintain-
ing the model as much as we can. For example, based on the AR-CFA, we can model several
additional time-varying fluctuations patterns that are shared by several groups of participants,
as an attempt of approaching individual differences. In order to model these patterns, we
here introduce Mixture AR-CFA (MAR-CFA). Basically, MAR-CFA maintains the same factor
structure specification in AR-CFA, but we apply a finite mixture model (FMM) to estimate
autoregressive residual structures. As the most important difference between MAR-CFA and
traditional CFA is the FMM framework, we will focus on this approach. A standard FMM
can group a population into several subsets based on a heterogeneity source and allow certain
parameters and/or relationships to vary across subsets (formally, the subset here is stated as
cluster, and we will call it henceforth). Panel c of Figure 6.1 represents the model specification
of MAR-CFA, whose residuals and autoregressions are seen as clusters, surrounded by rectangle
with dotted edges, and the cluster membership is predicted by a new latent variable c. Panel
d of Figure 6.1 represents how the autoregression coefficient (denoted by κin where i represents
the ith cluster and n represents the coefficients from the nth item to n + 1 item) vary across
different clusters. At the first glance, FMM is similar to multigroup analysis where analysts
can specify invariant or changing parameters across groups that are defined by a reference
variable. However, in FMM, the heterogeneity source for identifying population membership
is unknown, and the population membership is inferred from the data. That being said, no
pre-defined population membership is in the original dataset.

6.4 The expectation maximization algorithm

The estimation of FMM is performed using the Expectation Maximization (EM) algorithm
(Dempster et al., 1977). Basically, fitting a model is to find a mathematical solution (i.e., a
parameter set) to describe our sample (the dataset at hand). However, it is hard to do so
in mixture models, as the sample distribution is a combination of multiple sub-distributions.
Instead, the EM algorithm attempts to provide the solution with the largest log-likelihood in
a likelihood function across every possible parameter value, and the solution with the largest
log-likelihood is called global maxima, and sample at hand would have the highest probability
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to be obtained at this case, comparing to all other possible solutions. To achieve the largest
log-likelihood, the EM algorithm iteratively estimates the model and updates the model input
based on its previous execution until the stopping rules are met. These rules include a maximum
number of iterations (how many times the EM algorithms should run) and a convergence
criterion (how small the changes in log likelihood between nearby executions are small enough
to ignore).

To provide an intuitive understanding behind this iterative mechanism, let us use the "mountain
climber" analogy in Masyn (2013). Imagine the likelihood function is a mountain range, and the
EM algorithm is a mountain climber who aims to climb to the highest peak of the range (find
the global maxima). However, the climber does not know where is the peak of this mountain
from the base. So the climber collects available information (dataset at hand) and chooses a
reasonable starting point (the initial starting values of parameter estimates) to start climbing
step by step (estimate the model). With each step, the climber would stop and consider which
following step he could access (adjacent parameter sets) takes him to a higher point (larger
log likelihood), and then the climber moves to that point. The climber repeats this process
until he found a point that any following step of which would either take him to a lower or not
apparently higher. At this point the climber thinks he reaches the peak of the mountain range
and plants a flag there (the model convergence criterion is met). However, a climber cannot
take this trek forever-the life supplies are limited (the maximum number of iterations). If the
supplies are ran out before the climber reaches the peak (the algorithm exceeds the maximal
number of iterations before the convergence criterion is met), the climber cannot continue the
journey. And because there might be other possible points that take him higher, the climber
would not plant the flag at the current point (model fails to converge).

However, a mountain range can have many peaks with different heights. So it is possible that
the climber reaches a peak he thinks it is the highest and runs out all supplies spinning around,
while the true highest peak for the whole mountain range is in somewhere else. Mapped the
EM algorithm, a model can converged to a log likelihood that is the maximum of a given range,
but not of the whole likelihood function. The log likelihood observed in this case is called local
maxima. So how does a climber know the peak he reaches is the highest one of the mountain
range, instead of a given area? The answer is he cannot really know with only one attempt.
Instead, he can verify it by climbing with different starting point and routes again and again.
Different routes might take the climber to different peaks, but if all the routes point to the same
peak, then the climber has less possibility to make mistake. In practice, to avoid local maxima,
researchers would use a set random start values to estimate the model at the initialization stage,
as start value selection can significantly affect model estimation results (Shireman et al., 2017).
And it is suggested that if the maximal log likelihood is repeated for at least twice, it can be
considered as the global maxima and the parameters under this solution can be interpreted
with confidence (Nylund et al., 2007). With each time the EM estimates the model, it would
calculate the posterior probabilities that which individual belongs to which cluster. Therefore
the final estimation results could have the record of these posterior probabilities, and researchers
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could draw inference of latent heterogeneity by inspecting these probabilities.

Maybe the most well-known examples of FMM in psychology are Latent Class Analysis (LCA)
where observed indicators are categorical (e.g., Atroszko et al., 2021), and Latent Profile Anal-
ysis (LPA) where the observed indicators are continuous (e.g., Shukla et al., 2018). Both LCA
and LPA are useful tools to illustrate how the measured psychological construct varies in differ-
ent levels on a model-implied latent predictor. Using LPA, Wang et al. (2023) illustrated the
relationship between psychological flexibility and depression, anxiety and stress among Chinese
college students. Results suggested that students’ flexibility has obvious group heterogeneity,
and students in different profiles of psychological flexibility (i.e., different levels of a model-
implied psychological flexibility clusters) exhibited significantly different depression, anxiety,
and stress levels.

Although sharing the similar FMM fundamental of LCA and LPA, our aim with MAR-CFA
is slightly different: we would like to capture the meaningful uniqueness and homogeneity of
the psychological construct as much as possible by taking off the trivial heterogeneity within
clusters instead of explaining the time-dependent residual structures. Time-varying fluctuations
naturally exist during a test, regardless of the sample. And for questionnaire development or
validation, the major focus is the construct itself. Therefore, the idea of MAR-CFA is that the
factor structure should stay stable and invariant across clusters, but the autoregressive residual
structures can vary across clusters. Within each cluster, the autoregression coefficients are the
same for each participant. We considered unchanged factor loadings for theoretical reasons.
First, we would like to know how much the validity and measurement can be improved when
time-varying fluctuations are the only known nuisance variation. Second, the effects of time-
varying fluctuations are assumed to be small and do not seriously affect the construct itself-if
they do, researchers should first consider the robustness of the theoretical construct that being
measured or potential interactions between the measured construct and external constructs.

In this chapter, we conducted a Monte Carlo simulation study to address two questions: First,
what happens when time-varying fluctuations are present but ignored? To answer this ques-
tion, we compared the model performances of modelling techniques that ignore versus consider
temporal characteristics (i.e., conventional CFA vs. AR-CFA vs. MAR-CFA). Second, if time-
varying fluctuations cannot be ignored, in what way and to what extent can controlling them
help increase the validity of measurement?

6.5 Methods

6.5.1 Determining parameters

As an early investigation into this area, we would like to maintain a simple setting. Therefore, in
the current study, we considered an one-factor structure where one latent variable is measured
by ten items, and the true factor loadings (λ) are identical for each item. This number of
items ensures enough degrees of freedom to identify our MAR-CFA model. We included three
values of true factor loadings, 0.5, 0.6, and 0.7, to mimic real measurement parameters (i.e.,
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λ ∈ {0.5, 0.6, 0.7}). Regarding time-varying fluctuations, three designs were included: in
design (a), all participants shared a autocorrelation pattern with a regression coefficient (κ) of
0.175. In design (b), participants have two shared autocorrelation patterns (i.e., two clusters)
with different strengths κ1 = 0.05, κ2 = 0.3. In design (c), participants have three shared
autocorrelation patterns (i.e., three clusters) (κ1 = 0.05, κ2 = 0.175, κ3 = 0.3). We also
included a baseline scenario where residuals are independent to time. For all designs, five sample
sizes (N) were included, N ∈ {300, 600, 900, 1, 200, 1, 500}, to represent different scales of
psychometric research. For designs including more than one cluster, the numbers of participants
is the same across clusters. For example, in design (c) with 1,500 participants, each cluster
has 500 participants. Fully crossing these parameter settings yielded 60 designs. To simplify
simulations, we did not consider the interaction in between time-varying fluctuations and the
latent variable. The main topic of interest is to raise the attention of time-varying fluctuations
in response process, not to discuss a certain relationship in between such fluctuations and the
psychological construct. This complex issue exceeds the scope of this chapter.

In terms of analytical models, we considered four models: conventional CFA model; AR-CFA
model as purposed in Ozkok et al. (2019); MAR-CFA model with two clusters (referred as
MAR-CFA2 ); and MAR-CFA containing three clusters (referred as MAR-CFA3 ). The reason
for additionally considering a two-cluster CFA is that mixture models often involves a class
number decision, require comparing models with different numbers of clusters. And the reason
for not considering models with more the three clusters is simpler models are often preferable
in model comparisons. When too few participants are clustered into a latent cluster, a model
with fewer clusters but allocating more participants within might be preferred (Nylund et al.,
2007).

6.5.2 Data generation

Directly generating datasets with mixture components is difficult, as we need to simultaneously
generate multiple distributions with unknown means. In addition, it is unclear how autocorre-
lation strength affects latent score means, therefore we cannot determine the relative positions
of simulated latent score distributions. Instead, we simulated multiple datasets with different
autocorrelation strengths and combine them to form a final simulated mixture dataset that
enters analysis. This manner breaks down the simulation process into separately generating
multiple AR-CFA datasets, and we are now able to do so following the (modified) formulae
purposed in Ozkok et al. (2019):

yi = ν +Ληη +Λϵϵi (6.1)

ϵi = κϵi−1 + ui (6.2)

Formulae 6.1 and 6.2 represents the algebraic form of the generation process, where yi is an
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observed array of scores of the ith item, ν is the grounded mean of the item and is fixed to zero
for simplicity, Λη represents the factor loading matrix of the latent variable η, Λϵ is a symmetric
matrix to capture all latent residuals. The Λϵ fixed on-diagonal elements to unity, but we also
fixed off-diagonal elements to zero as no covariances across residuals were considered so that Λϵ

becomes an identity matrix I. Next, the term ϵi represents the residual array of the observed
raw scores, and it is calculated by summing its random residual component ui and the AR
component-the residual array of its previous item ϵi−1 times the autoregression array κ. As
only one latent variable is considered in our design, The random residual component ui follows
a normal distribution, ui ∼ N(0,Θ), and Θ is a diagonal matrix of residual covariances. The
covariance structure of MAR-CFA is represented by the following formula:

Σ = ΛηΨΛη
′ +Λϵ(I− κ)−1Θ(I− κ′)−1Λϵ

′ (6.3)

where Σ is the model-implied covariance matrix and Ψ is the latent covariance matrix. As our
simulation only considered one-factor structure, Ψ is equivalent to the variance of the latent
variable η and we fixed it to 1 for CFA model identification.

Data generation was performed with the R (R Core Team, 2023) package simsem (Pornprasert-
manit et al., 2021). Notice that we used the path analysis framework to generate our data by
specifying modelType = "Path" in simsem::model() function. Residuals cannot be observed
and thus are seen as latent variables in simsem. However, simsem::model() cannot specify
regressive residual terms by general modelType = "CFA" and modelType = "Sem" arguments.
The first step of data generation is create the path matrix for the MAR-CFA model. In this
matrix, the regression coefficient of the latent variable towards itself is 1, and any regression
coefficient from the latent variable to an exogenous variable (i.e., an item) represents the fac-
tor loading of this item, while any coefficient from the i − 1th item to the ith item represents
the AR coefficient. All other elements in this matrix were fixed to 0 to represent an inde-
pendent relationship except for manual specifications. Next, we generated the residual matrix
by using a wrapped simsem::findFactorResidualVar() function. This function calculates
the (latent factor) residual variances from the path matrix and factor (residual) correlations.
These two matrices would be taken by simsem::model() function to create simsem style model
template and as references of simsem::generate(), the main function to generate data. As
mentioned, when considering cluster data with different κs, we separately generated subsets
and vary κs within each cluster. The changes were completed in the path matrix generation.
In simsem::generate(), such changes yielded a multigroup template for data generation and
the function would automatically generate multigroup datasets, which a new variable would
be created to label cluster membership of each observation. During data generation process, a
built-in R package parallel was used to enable parallel computation and boost the generation
speed.
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6.5.3 Analysis

Generated datasets were fitted by multiple models mentioned above via Mplus 8.3 (Muthen et
al., 2017) as this is the most general and flexible software that fits FMM by the EM algorithm.
For each hypothetical setting mentioned above, the models fitted would vary: conventional
CFA models for the baseline model where no autocorrelated residual patterns were included
and for the AR-CFA model where datasets were generated with a fixed AR effect term were
considered across all autocorrelated residuals; a AR-CFA models where a set of autocorrelated
residuals would be considered, with the regression coefficient fixed; and MAR-CFA2. Within
each cluster, autocorrelated residuals and item residuals were allowed to be freely estimated.
For datasets containing two and three latent autocorrelated residual specifications, CFA, AR-
CFA, MAR-CFA2 and MAR-CFA3 would be considered as analytical models. These settings
finally yielded 210 combinations of hypothetical questionnaire designs and analytical models.

Model selection was done by aBIC fit index comparison given its satisfying performance in
detecting the correct number of clusters over other indices (Tein et al., 2013). The conventional
CFI and TLI indices were not considered because sample means, (co)variances are not available
(not sufficient statistics) in mixture models, and the Chi-square and following statistics based
on this statistic are not provided. Also the entropy value is also recorded as a measure of
classification quality. The entropy ranges from 0 to 1, with higher values representing better
classification results. Although not the main topic of interest, it is also helpful to inspect if
MAR-CFA can deal with trivial time-dependent noise after controlling them. Besides fit indices,
we also conducted the Lo-Mendell-Rubin test (LMR, Lo et al., 2001) and the bootstrapped
likelihood ratio test (BLRT) to compare (nested) mixture models with k − 1 clusters versus k

clusters. For LMR and BLRT, a p-value less than 0.05 means the model with k clusters are
preferable.

For each of the hypothetical designs, we ran 500 Monte Carlo runs to evaluate the average factor
loading recover performance and the model selection capacity. Each run consisted of generating
a dataset according to our parameter set and analyzing it with models mentioned above. To
avoid local maxima, we increased the number of starting value sets by specifying STARTS = 30

6; in Mplus6.2. This command means Mplus would randomly generate 30 parameter sets for at
the initialization stage, and across these 30 sets, 6 of them that yielded a model with the largest
log-likelihood at the first round of iteration would be included into the final optimizations, say,
subsequent iterations would be carried on these 6 sets. The number of parameter sets were
smaller than the usual recommendation (e.g., 100 20) as we have to balance the sensitivity and
the heavy computational burden. As a remedy, we narrow down the convergence criteria (i.e.,
from the default 0.00001 to 0.000001) to ensure each iteration achieves a considerable model
improvement. Instead of manually switching in between R and Mplus, we used the R package
MplusAutomation (Hallquist & Wiley, 2018) to allow cooperation between both.

6.2The default for Mplus to estimate mixture models is STARTS = 10 2;.
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6.6 Results

6.6.1 Convergence

Before presenting simulation results, it is necessary to inspect model convergence performance,
since mixture models involve iteration processes and start value specifications. Across all 190
analytical models, 170 (89.5%) had a convergence rate over 85%. However, 20 (9.5%) designs
combining λ = 0.7, true numbers of cluster in 2, 3, and analytical numbers of clusters in 2,
3 had very poor convergence rates, ranging from 2.2% (with the sample size of 1,500, 3 true
clusters, analyzed with a 2-cluster mixture model) to 88.8% (with the sample size of 300, 3
true clusters, analyzed with a 2-cluster mixture model). Further model inspection suggested
that poor convergence rates might be attributed to non-positive defined covariance matrices.
To ensure the accuracy of results, data from these 20 models were excluded and will not be
discussed further.

6.6.2 Factor loading recovery performances
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Figure 6.2: Mean bias of factor loadings for each model. A positive mean bias means the factor
loading were overestimated, and vice versa. Panels in each row represents datasets generated
from the same sample size. Panels in each column represents datasets generated from the same
factor structure. Data from non-convergent models was omitted.

Figure 6.2 presents factor loading recovery performances for each model. In baseline scenarios
where no autocorrelation patterns appear in residual structures, all analytical models performed
well in recovering true factor loadings. Mean percentages of estimation bias ranged from -2.4%
to 0.2%.
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But for all designs with non-independent residual patterns, conventional CFA will always overes-
timate the factor loadings by over 20%. In the worse case of our results, where true λ = 0.5, N =

900, and the datasets had 2 autocorrelation patterns in the residual structure, the conventional
CFA approach would, on average, overestimate the factor loadings by 26.0%. This consequence
might suggest that, the portion of item score variances contributed by time-varying fluctua-
tions have been incorrectly explained by factor loadings. Due to the strict local-independence
assumption of CFA, factor loading terms absorbed the non-independent error terms in the re-
gression process. Additionally, the principle of overestimation is independent of the sample
size. This is reasonable as CFA does not specify any participant-level constrains.

Compared to conventional CFA, models allowing non-independent residual structures can ef-
ficiently reduce the mean estimation bias. However, underestimating the number of latent
clusters is still likely to inflate factor loading estimations. In designs whose datasets have 2 and
3 real autocorrelation patterns, the AR-CFA consistently overestimated the factor loadings, es-
pecially when the factor structure is stable (λ =0.7). In this case, the mean bias from AR-CFA
ranged from 13.8% to 14.3%. In contrast, overestimating the number of latent clusters seems to
be less harmful to factor loading estimations: when there was only one autocorrelation pattern,
mixture CFA with 2 clusters underestimated the true factor loadings, but such underestimation
is trivial with the most severe mean bias of -2.1%; and when the datasets contain two auto-
correlation patterns, misspecified models with three latent clusters would only yielded -2.1%
of mean estimation bias even in the worst case. According to Figure 6.2, modelling multiple
autocorrelation patterns has apparent advantages in approaching true factor loadings, as latent
residual clusters extract the temporal components of item variances from the variance mixture.

6.6.3 Model selection criteria

Firgue 6.3 summarized means of entropy for mixture models. The entropy for most mixture
models were small, falling under 0.7. These results suggest that the classification results cannot
clearly separate individuals. Also, under the same design environments, the entropy decreases
as the sample size becomes larger. These results were not surprising regarding our model
specifications because we only considered two interpretive sources of variances, the effects of
hypothetical construct and time-varying fluctuations, and the latter one only accounted for
a vary small portion. Regarding the latent score distributions, different clusters have highly
similar shapes that largely overlap. After fixing identical factor loadings across all clusters, it
is difficult to distinguish clusters by controlling small (but significant) effects accounted for by
temporal components. The overlapped areas of latent score distributions in between clusters
become larger as sample sizes increase. Previous research has indicated that low entropy is
typical for mixture models, and it even tends to decrease when the sample size is large (Fagan
et al., 2013; Van Lissa et al., 2024).

Another finding from Figure 6.3 is that, in most cases, entropy increases as hypothetical cluster
number becomes large, especially when true datasets have 2 clusters and analytical models
estimated misspecified MAR-CFA3, the entropy values are consistently larger than the true
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Figure 6.3: Entropy values for resulting models. Panels in each raw represents datasets gener-
ated from the same factor structure. Panels in each column represents datasets generated from
the same true λ. Data from non-convergent models was omitted.

MAR-CFA2. A possible inference is that mixture models are not able to clearly classify clusters
that almost completely overlap. But for factor mixture models that only consider latent clusters
in factor structures, entropy usually performs poorly in identifying correct cluster numbers
(Lubke & Muthén, 2007), At this stage, an early conclusion is applying mixture models has
limited capacity of capturing temporal heterogeneity across model-implied clusters, but it does
benefit to capture the homogeneity in the sample (i.e., successfully recovering the true factor
loadings).

From the entropy results, some potential for harm in model selection warrants notice. When
analyzing empirical datasets, determining the number of clusters by simply reading entropy is
not reliable, as true cluster numbers remain unknown. The the model selection should be a
consequence of multiple fit indices. The results of the aBIC changes for model comparisons are
presented in Figure 6.4. Overall the aBIC performs well in model selection. In the "baseline"
scenario whose residuals are temporal-independent, all models yielded similar mean aBIC val-
ues, with the differences close to 0. When the true model has one autocorrelation pattern (i.e.,
a standard AR-CFA structure as in Ozkok et al., 2019), the aBIC criteria consistently lead to
correct model identification results, with smaller aBIC observed in AR-CFA specification than
in conventional CFA. The aBIC also prevent the overestimation of cluster numbers in this de-
sign. The mean aBIC changes higher than 0 are observed in this scenario, regardless of the true
factor loadings and sample sizes, but these changes are very small in terms of the computed
aBIC value (0 < ∆BIC < 20). Regarding datasets with more than one autocorrelation patterns,
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Figure 6.4: The aBIC changes in model comparison. Accepted model: H0 represents the model
has one less cluster than the analytical model was preferable. Accepted model: H1 represents
the current analytical model was preferable. Panels in each row represents datasets generated
from the same sample size. Panels in each column represents datasets generated from the same
factor structure. Data from non-convergent models was omitted.
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Figure 6.5: Type I error rates for LMR test and BLRT. Panels in each row represent datasets
generated from the same factor structure. Panels in each column represent datasets generated
from the same sample size. Data from non-convergent models was omitted.

aBIC in most cases can identify the correct mixture models with corresponding cluster sizes:
all the mean aBICs can reject the AR-CFA (1-cluster model) in comparing that and 2-cluster
mixture models, when the true cluster number is 2; most of the aBIC shown negative charges
in 3-cluster models when the true models have 3 autocorrelation patterns. For designs with
small sample sizes and an unstable factor structure (i.e., true factor loading = 0.5), model
comparisons suggested very small changes in aBIC, which can be seen as results of two equally
well-fitting models. But for datasets under a true 3-cluster models, small positive changes in
aBIC consistently appeared. Considering the number of parameters estimated, the aBIC lost
some capacities in model comparison.

The conclusion so far is: considering autocorrelations in CFA can improve measurement and
yield a more realistic factor structure. But to what extent are we likely to determine a correct
mixture model? To answer this question, some (nested) mixture model comparisons are further
needed. The determination of latent cluster number is usually done by inspecting results from
VLMR and BLRT tests. Results of these tests are presented in Figure 6.5. It is suggested
that type I error rates for both MAR-CFA2 and MAR-CFA3 did not exceed the 95% confidence
interval of the nominal alpha (grey shadowed area). These type I error rates mean in most
situations, using conventional model comparison methods can correctly reject a misspecified
model that overestimate the number of autocorrelation patterns.

However, extremely conservative Type I error rate raise concerns of low statistical power (i.e.,
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Figure 6.6: Power performance of LRT test and BLRT. Panels in each row represents datasets
generated from the same factor structure. Panels in each column represents datasets generated
from the same sample size. Data from non-convergent models was omitted.

inflated type II error rate). Figure 6.6 presents power performances of both model selection
performances. For true 2-cluster models, the power gain is a function of sample size and
factor loadings. With the "smallest" design, both LMR and BLRT achieved extremely low
power; while the factor loadings increase and a stable factor structure is form, both tests
had a probability over 50% to correct accept a true model. However, in 3-cluster models,
both tests almost always prefer a simpler model with one less cluster. This is a symptom
of homogeneity across classes in our datasets. Regarding our settings, to maximally avoid
non-positive defined matrix, we hypothesized three ρs that are very close. When following a
"standardized" procedure to generate data, small effects of autocorrelation would only result
in distributions having different skewness. The power of VLMR and BLRT tests are hugely
dependent on the sample size, number of latent clusters, and the degree of separation in between
clusters. It is reported that these tests performs in a very conservative manner and tend to
choose models with fewer classes when clusters have very small distance (i.e., a Cohen’s d less
than 0.2, Tein et al., 2013). We claim that, when applying mixture models to extract temporal
components from the variances, multiple indices should be considered. Although looking at a
single value might receive hints of the existence of time-varying fluctuations, it might not be
informative enough to determine the correct cluster number.

To summarize our findings in model selection session, when considering time-varying fluctua-
tions, multiple fit indices and tests should work in conjunction to detect a preferred mixture
model. In most cases, using aBIC is helpful to directly compare models. All three model-
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specified methods (entropy, LMR, BLRT) performed poorly in distinguishing latent clusters.
But these results might be a signal that, although the effects of time-varying fluctuations
are relatively small, they are still masking the true variances that are accounted for by the
construct. Our results provided support to Ozkok et al. (2019), suggesting that considering
time-dependent noise in psychometrics datasets could help recover the true factor loadings.
Our results further indicates that, using clustering approach to divide time-dependent noise
benefits to determine the factor structure.

6.7 Discussion

In this chapter we introduced a mixture model to capture time-varying fluctuations in cross-
sectional psychometric and questionnaire datasets in order to improve psychological measure-
ment. This mixture model extends the previous AR-CFA proposed by Ozkok et al. (2019) to
the mixture framework, further separating time-varying fluctuation patterns within the sample.
Based on our Monte Carlo simulation study, the mixture models performed well in recovering
true factor loadings compared to the conventional CFA that totally ignored the temporal com-
ponents in the dataset. By extracting those temporal effects from the variance components,
mixture models avoided overestimating the factor loadings and yielded a factor structure that
is closer to the true model. Furthermore, researchers are able to identify a model with adequate
number of latent clusters by inspecting multiple model selection criteria.

To address the main issue of this chapter, it is inappropriate to ignore time-varying fluctua-
tions in survey datasets. Regardless whether the mixture idea is applied, modelling time-varying
fluctuations would considerably decrease the biases in estimating factor loadings. Under the
framework of linear mixed effect regression, the effects of time-varying fluctuations are triv-
ial, but they are magnified when researchers apply analysis techniques on top of aggregated
data (i.e., mean scores and covariance matrix). Unlike behavioural or neuroscience experiments
whose signals are directly measured, like reaction times of experimental trials, psychological
measurement uses an indirect way to measure abstract concepts. Therefore, the psychological
changes during measurement are likely to cloud measurement of the true construct in a more
complex way. For example, time-varying fluctuations can take participants’ responses in differ-
ent directions-even though some items are less effective to measure extroversion, participants
who has higher degrees of extroversion would consistently have higher scores to extroversion
items and vice versa, because they adjust their responses based on the item context.

Indeed, applying conventional CFA and looking at the results, researchers are very likely to find
out a portion of uniqueness to interpret the dataset, and claim the model-implied covariance
matrix are able to discriminate participants with different levels of measured latent traits. But
in empirical datasets, consequential uniqueness can be accounted for by the interaction be-
tween time-varying fluctuations and the measured psychological construct, or even by another
construct that is not measured (Myszkowski & Storme, 2024). Incorrectly considering this
uniqueness as the effect of the measured construct would exaggerate the capacity of the true
construct, or say, the capacity of the questionnaire. This can be reflected by the overestimation
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of inflated factor loading estimation in conventional CFA results. In terms of questionnaire de-
velopment, biased factor loadings reduce the probability of yielding reproducible research, since
in practice, the covariance structure included into analysis is a mixture of construct uniqueness
and sample homogeneity, with the latter one very unlikely to be identical across samples. For
empirical research or medical administrations, using a measurement with overestimated factor
loadings would also overestimate participants’ factor scores, and the locations of participants
in the distribution of latent trait would be misjudged. It increases the chances of misdiagnosis
in clinical settings, especially in the context of norm-references tests where factor scores would
be compared to external cutoffs.

How should we extract time-varying fluctuations, especially when the true structure is com-
pletely unknown in practice? To answer this question, notice that our study is based on the
assumption that time-varying fluctuations are not the effects of interest, but those needed to
be controlled, as they are in experimental datasets. At this stage, our findings suggested that
modelling time-varying fluctuations is advantageous to observing factor loadings that are closer
to the true value, and, if possible, considering multiple common patterns across participant
clusters would further eliminate the biases than simply including a "typical effects" across all
participants (i.e., applying the AR-CFA). Due to individual differences, we are less likely to
capture a common pattern of temporal change for each participant, but it is possible to divide
them into a few subsets.

But now, a further question emerges as whether we should adapt our models after modelling
time-varying noise? According to our model, traditional model modification approaches (i.e.,
those based on modification indices) do not help much in improving model fits, because causal
relationships have been specified. In this case, any model modification seems to yield a more
complex model, which brings up additional difficulties to estimation and interpretation. As con-
firmatory approaches, factor structure modelling techniques usually aim to determine whether
theoretical psychological construct can describe the dataset at hand, and the factor loadings
are key parameters researchers would care about. Therefore, we claim that, once time-varying
fluctuations are controlled, researchers can safely interpret the "corrected" factor structure and
treat time-varying fluctuations as nuisance effects that have been controlled.

The approach of fixing identical factor loadings across classes and allow residual structures to
be freely estimated has some similarities to conducting a measurement invariance test—both
methods control possible noise sources. However, the aim of our methods is to recover a factor
structure that is closer to the truth and the trivial heterogeneity is usually not the effect of
interest; the measurement invariance test focuses on the grouping variable that causes the
changes of factor structure—the heterogeneity is the topic of interest. Based on this fact, we
see the mixture model as a calibration method to improve measurement, and measurement
invariance test a comparison method. We therefore encourage the combination of these two
methods in the future research since they have potential advantages to observe more realistic
factor structures across groups and lend more precise interpretation to the heterogeneity caused
by the target grouping variable.
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As an early exploration to improve measurement by controlling time-varying fluctuations, mix-
ture models have the advantage of being conceptually understandable. However, one major chal-
lenge and limitation of our simulation study is from the modelling approach itself—specifically,
the computation difficulty. In our simulation, analytical mixture models rarely converged when
true factor loadings were high, the sample size was large, and when there were three latent
clusters. We acknowledge that in practice, before selecting an appropriate model, researchers
might have to pay even more time and effort to achieve "healthy models", say, those that
convert to the global maximum. Modelling processes involve the selection and modification
of starting values and convergence criteria, and researchers who are less familiar with mixture
models would easily be lost in the forest of options. Without a clear guideline, analysts would
have no better solution but simply increasing starting values and narrowing down the conver-
gence criteria. This modification would possibly slow down the model estimation speed as new
models usually take more iteration runs, and could be impractical on computers with limited
capacity.

Another limitation is, our simulations generated "simple and perfect datasets" where autocor-
relations are identical and significant across all nearby items, and autocorrelation patterns are
identical within classes. In practice, however, such assumptions are still unrealistic. Instead,
the autocorrelation might behave as a random effect, varying in strength and direction (e.g.,
reverse scoring items) across item series and across participants. Combining these situations
might lead to increased difficulties in controlling temporal component in questionnaire datasets
and reduce the prospect for meaningful interpretation of the resulting models. However, un-
like time-series data modelling methods in experimental psychology, controlling time-varying
fluctuations in cross-sectional psychometrics dataset is in a very early stage. Experiences and
references in this field is limited, and further developing modelling methods to control time-
varying fluctuations is helpful to demonstrate the role of psychological fluctuations in item
response process.

Now we know that modeling time-varying fluctuations could improve measurement in psy-
chometrics, but they are quite challenging to implement. As such, could we turn to some
design-based strategies to control time-dependent noise, as we have done in experimental de-
signs? In next chapter, I would address this question by proposing some potential approaches
based on questionnaire design, and provide a tool for investigations in this field.



Chapter 7

RandomiSur: A Platform for
Randomizing and Counterbalancing
Psychometric Measurement

7.1 Background

In the previous chapter, we have seen how a model-based strategy can increase validity and im-
prove measurement in psychometric surveys. However, for researchers who lack the experience
of (advanced) modelling, MAR-CFA would be quite challenging due to its model complexity
and computational burden. And in most cases, model-based approaches would also require
specialized software and only be applicable to certain types of data. But the success of a
design-based strategy in cognitive experiments (e.g., the PSR algorithm in previous chapters)
brings hope that a way can be found to extend the strategy to the psychometric context. If
randomization can help control effects of time-varying fluctuations in laboratory tasks, perhaps
it can bring similar improvements to questionnaire administration. Answering the question of
whether design-based approaches can improve measurement to psychometrics is beyond the
scope of this thesis. Instead, we describe a questionnaire platform that we have developed to
allow researchers to flexibly randomize and counterbalance item orders when deploying surveys.

The vast majority of survey instruments present test items in fixed presentation orders. In
the past, this was reasonable as surveys were often done with paper and pencil, and individual
sequence manipulation would require researchers to have hard copies with different presentation
orders. But now that online survey tools are available along with computer algorithms for
randomization and counterbalancing, in principle, researchers have more flexibility in survey
construction.

Unfortunately, how item order impairs validity is still under studied, and the small amount of
work on this topic does not yield consistent conclusions. Schell & Oswald (2013) investigated
different randomization approaches for the Big Five personality survey and concluded that
its psychometric properties were independent of item order. Using survs, an online survey
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platform, researchers utilized three order arrangements (putting items under the same factor
together, cycling items under different factors, one-off randomization) in the survey and did
not find significant improvement in CFA modelling. A contribution of Schell & Oswald (2013)
is the idea of "planned" design in scale design for improving measurement. Specifically, putting
items under the same factor together bears some similarities to the block design in experimental
context, while "cycling" that keeps presenting items from distinct factors and it is therefore
similar to our PSRmax. However, all three sequencing methods were conducted on the sample
level, which means participants under the same sequencing method still complete the test with
the same orders.

But as we have seen in the experimental context, design-based strategies improve measurement
by controlling time-varying fluctuations within individual participants, which is important be-
cause temporal variations are likely to be idiosyncratic. In contrast, the planned designs in
Schell & Oswald (2013) are no different from generating three new fixed orders and delivering
them to participants, and thus this approach failed to provide an adequate test of the potential
benefits of randomization. A more recent study conducted a fully randomized psychologi-
cal measurement to investigate measurement quality against fixed-order measurement Şahin
(2021). Results suggested fixed item order led to biases in mean scores and factor structure,
while randomization increased the construct validity, indicated by better model fit. But as
with the randomization process in experiments, if an item order is subject to simple restricted
randomization without any further constraints, it is likely that we would observe runs of items
measuring the same underlying factor. Grouping items from the same factor has been shown to
overestimate the scale validity, giving rise to short-term item effects and anchoring (Gehlbach
& Barge, 2012; Weijters et al., 2014).

To avoid unplanned runs in item presentation, transferring design-based strategies from the ex-
perimental context to the psychometric context would be helpful. To do so, using online survey
platforms might benefit to efficiently randomize or counterbalance our surveys. Anwyl-Irvine
et al. (2020) have summarized the most popular online survey platforms, which come with
built-in functions and user-friendly configurations to efficiently generate online psychological
experiments and surveys. However, they only provide limited support for item order man-
agement. Most platforms and questionnaire builders listed in Anwyl-Irvine et al. (2020) like
Qualtrics, PsyToolKit, and SurveyMonkey, have built-in functions to fully randomize presenta-
tion orders of uploaded questionnaires, and Gorilla additionally supports Latin Square design
that exports each row of a Latin Square as an individual presentation order. Maybe, these
platforms provided randomization and counterbalance options because they want to support
researchers to better design surveys; and indeed, some studies have utilized these functionali-
ties to discuss whether simple restricted randomization is useful to improve measurements (e.g.,
Buchanan et al., 2018; Loiacono & Wilson, 2020). However, if we want to develop and deploy
better design-based methods with online platforms, just as we did in experimental context with
explan, there is little flexibility for us to do. This is because, firstly, they do not offer much
opportunity for further control sequences beyond simple restricted randomization and Latin
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Square. Second, even if researchers want to customize the ordering functions, the closed-source
nature of online platforms often does not allow them to do so.

But researchers dissatisfied with existing platforms who wish to build their own custom plat-
forms would face a large set of programming challenges. To develop a standalone online plat-
form requires familiarity with website programming languages (e.g., HTML, JavaScript, PHP),
and even database management skills (e.g., MySQL). Such programming abilities are likely to
exceed the knowledge of many psychologists and data analysts.

7.2 RandomiSur

To overcome the shortcomings of existing platforms and help researchers better design their
surveys, we introduce our newly developed computer-based design builder and online survey
platform, RandomiSur. RandomiSur is an open-source questionnaire builder and data collec-
tion platform and can be retrieved from https://github.com/Jinghui-Liang/RandomiSur.
Driven by jsPsych, a JavaScript framework which is supported by major web browsers (e.g.,
Chrome, Firefox, Safari), RandomiSur can set up items directly from a source file. Additionally,
RandomiSur has comprehensive default settings that allow users to build a web-based online
survey with minimal programming, and no additional browser dependency or plug-in is needed.

One of the key advantages of RandomiSur is that it gives researchers great flexibility to ma-
nipulate item orders. It includes eleven built-in algorithms to design surveys, including three
fixed-order-based methods and eight randomization strategies. Researchers can use all possible
combinations to generate item sequences customized for each participant, and all randomization
strategies are at the individual level rather than the group level.

One of the differences between RandomiSur and the other platforms is that it uses a sequential
presentation, with only one item is presented per page, instead of showing all items on the
same page. This sequential presentation order prevents respondents from jumping backward
and forward in the survey. In addition, a default timing function is implemented that enables
researchers to observe item-level response times in addition to collecting response measurements.
Response time at the item level has received strong interest among survey researchers and has
become recognized as an informative factor illuminating individual differences (Bean & Bowen,
2021; De Boeck & Jeon, 2019; Liu & Liu, 2021).

All these properties make RandomiSur a powerful tool to design and conduct professional online
surveys. Although RandomiSur was originally developed in Linux, all dependencies have been
containerized into a Docker image (a lightweight virtual software environment that promotes
easy and consistent deployment across machines with different operating systems). Researchers
can access the full functionalities of RandomiSur via any operating system that supports Docker.
In production, data can be stored in a hosted database by simply delivering source files to the
host. In what follows, we will describe an example of how to build and deploy a questionnaire
with RandomiSur, together with a detailed introduction to its features.

https://github.com/Jinghui-Liang/RandomiSur
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7.3 Applied example: Deploying an online personality survey with RandomiSur

Suppose you wish to deploy an online survey aiming to measure Big-Five personality by the 20
items sampled from the 50-item International Personality Item Pool (Goldberg, 1992; IPIP-20
henceforth, Goldberg et al., 2006), together with two demographic items (age, gender). The
IPIP-20 contains 20 items from the original 50-item scale, measuring the Big-Five factor markers
reported in Goldberg (1992), including Extroversion (E), Agreeableness (A), Conscientiousness
(C), Neuroticism (N). and Openness to experience/Intellect (O). Each factor has four items.

7.3.1 Installation

Since RandomiSur is containerized with Docker, before downloading RandomiSur, users should
first install Docker. After Docker is installed, on the local machine, users can access Ran-
domiSur via https://github.com/Jinghui-Liang/RandomiSur.git, by downloading a com-
pressed archive from the web page, or executing the following command line on the shell prompt
locally, if Git is locally installed.

git clone https://github.com/Jinghui-Liang/RandomiSurgit

7.3.2 Prepare the test

Next, the IPIP-20 should be prepared and saved as comma separate values (csv) format. Ran-
domiSur has specific requirements for column arrangements and their contents. A template for
IPIP-20 is presented on Table 7.1.

question choices required label demographic
What is your age? n age y
What is your gender male/female n gender y
I am the life of the party. Inaccurate/ Neu-

tral/ Accurate
y E

I feel little concern for others. n A
I am always prepared. y C
I get stressed out easily. N
I have a rich vocabulary. O

Table 7.1: A simplified template of questionnaire format

According to Table 7.1, a standard questionnaire should contain five mandatory columns. In
the first column, question, users should place their scale items and demographic items, with
each row containing a single item. The second column, choices, should contain the set of
available choices for each item. To generate Likert-type choices, users should separate options
with slashes. For example, "Inaccurate/Neutral/Accurate" would be treated as three possible
options for an item. For scale items, users can provide choices for the first item and leave the
column blank for all remaining rows. By doing so, RandomiSur will map this choice to the rest

https://github.com/Jinghui-Liang/RandomiSur.git
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of the items unless otherwise specified. For demographic items, however, blank cells mean text
input will be accepted instead of choices. The third column, required, specifies whether or not
an item must be answered. Both letter "y" in a cell or a blank cell mean that answering this
item is mandatory, and participant will be prevented seeing the next item until they provide a
response. The user can put "n" in this cell to disable the forced-answer function. The fourth
column, label, contains labels for every item. For demographic items, labels presented in this
column will be transferred to the name of a variable storing corresponding information. For
scale items, labels represent which factor (subscale) a given item belongs to, and will be used
as an important index for arranging items. The fifth column, demographic, tells RandomiSur
whether or not the item is a demographic item. Typing "y" in cells of this columns makes the
corresponding item on the same row a demographic item, while typing "n" or leaving this cell
blank takes the corresponding item as a questionnaire item. RandomiSur behaves differently
in handling demographic items and questionnaire items.

7.3.3 Item sequence arrangement

In RandomiSur, item sequences of a questionnaire are pre-defined and stored as a property of
surveys, and they are easy to build with our built-in shiny app, inject-order.R. Executing
the R code below will take users to the test builder page:

## NB: install "shiny" first using:

## install.package("shiny")

shiny::runApp("./RandomiSur/inject-order")

On the sidebar of inject-order, users can upload ipip20.csv to the shiny app and have a
preview on "data" panel. To start arranging data, users can access the "builder" panel and
randomize the questionnaire order by selecting desired strategies on the left sidebar, together
with setting sample sizes for each selected method Currently, RandomiSur has eleven possible
algorithms to arrange presentation orders. Table 7.2 details their mechanisms.
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Methods Label Description
Fixed fx No sequence manipulation.
Simple Randomization rd Randomize the sequence order without con-

strains.
Permuted-Subblock Ran-
domization (Maximal)

psrmax Implementing PSR to sequences with maximal
Nr, factor as conditions.

Latin Square ls Generate a k×k Latin Square, k equals to num-
ber of items. Each row is seen as an item se-
quence and presented to participants.

Fixed Grouping gff Clustering items under the same factors, fix
item sequences, fix factor sequences. E.g.,
EEEECCCCAAAANNNNOOOO

Random Grouping, factor grf Similar to gff, but randomizing factor se-
quences.

Random Grouping, item gfr Similar to gff, but randomizing item sequences
within groups.

Random Grouping, both grr Clustering items under the same factors, ran-
domize item and factor sequences.

Fixed Cycling cff Cycling items based on a fixed factor cycle or-
der, fixed item allocations in each cycle. E.g.,
EACNOEACNO...

Random Cycling, factor crf Cycling items, but randomizing factor cycle or-
ders for each participant, within each cycle, fix
item allocations.

Random Cycling, item cfr Cycling items, fix factor cycle order across par-
ticipant, but randomize item allocations within
cycles for each participant.

Random Cycling, both crr Cycling items, randomize both factor cycle or-
ders and item allocations within cycles.

Table 7.2: Randomization methods in RandomiSur

These methods contains common ways to arrange item sequences. For example, the "Fixed"
algorithm presents items as they are originally listed in the questionnaire; "Simple Randomiza-
tion" conducts full randomization to the item order with no additional constrain; and "Latin
Square" appears as a counterbalancing method to cancel possible order effects over participants.
We also included two algorithms, fixed grouping and fixed cycling, that were mainly discussed in
previous research (Schell & Oswald, 2013), and their randomization versions: random grouping
and random cycling. For grouping algorithms, items under the same factor are placed together.
Participants do not receive items from other factors until they have responded to items for a
given factor. In the cycling method, participants repeatedly respond to items from different
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factors under a test, but no two items from the same factor would sequentially appear. Both
fixed grouping and fixed cycling would not randomize item positions in the original sequence,
nor would they shuffle the presentation order of factors. If we use E1, E2, E3, A1, A2, A3, C1,
C2, C3 and so on to represent the ith item under a given factor, then the fixed grouping order
would be E1−E2−E3−A1−A2−A3−C1−C2−C3−N1−N2−N3−O1−O2−O3, while the fixed
cycling order would be E1−A1−C1−N1−O1−E2−A2−C2−N2−O2−E3−A3−C3−N3−O3.
On top of these principles, randomization on the factor level (Random Grouping, Factor and
Random Cycling, Factor) would randomize the factor presentation so that factors do not al-
ways appear in the same order, e.g., EACNO, but with items still appearing from the first to
the ith factor. In contrast, randomization on item level (Random Grouping, Item and Ran-
dom Cycling, Item) randomizes the item orders but keeps factor presentation the same for
every participant. Combining factor-level and item-level methods yields the comprehensive
(quasi)randomization variations of grouping and cycling methods. That is, both factor order
and item order would be independently randomized and different across participants. An item
sequence under the Random Grouping, Both method could be O3 −O1 −O2 −A2 −A1 −A3 −
N1 −N2 −N3 −E1 −E3 −E2 −C1 −C2 −C3, and one under Random Cycling, Both could be
A2 −C1 −E3 −N1 −O2 −A3 −C2 −E2 −N3 −O1 −A1 −C3 −E1 −N2 −O3. All algorithms
can be used in conjunction in order to compare capacities of sequence arrangement strategies.

Once users finish deploying desired randomization strategies, they can visit the "plan" panel
to inspect names of generated orders, and determine how many participants each order is to
be assigned to. After the inspection, users can download the compressed "data documents"
by clicking "download" button on the top of this shiny app. A compressed file, df-order.zip
would be downloaded and users should move and store this file at scalepool directory. De-
compressing is not needed since the scripts later on will automatically do so for users.

7.3.4 Launch an online survey

Now we have all necessary background to deploy RandomiSur. To initialize it, users need
to launch the terminal on their own machines, and change the working directory to where
RandomiSur is stored.

cd path/to/RandomiSur

Then, users need to create the Docker image to build up a virtual development environment
by the command below.

docker-compose up -d --build

...

Creating survey_php ... done

Creating survey_db ... done

The first time the user executes this command, Docker downloads all necessary dependencies
and builds up the environment for RandomiSur. This might take a while. Once the initialization
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is finished, users should be able to access the the environment by the code below.

docker exec -it -w /var survey_php sh

...

#

The first configuration step is to set up the database. To do so, users should execute the binary
ConfigDB by putting the command below.

./ConfigDB

Then, users will see a prompt asking if they are running a local test or uploading the question-
naire to a survey.

Are you running local test or uploading your platform to a server? (local/server)

In our example, we will put local as the first argument to generate a sample survey. After
hitting return, users will see the second prompt on the terminal.

The name of target questionnaire you would like to use, extension required:

At this point, we use the filename of our questionnaire, ipip20.csv, as the argument to tell Ran-
domiSur which is the target questionnaire and allow it to automatically generate the database,
create a connection from the survey to the database, and write randomization rules based on
the target questionnaire and item sequences generated by inject-order. When the prompt
’Initialization done’ is displayed on the terminal, users can inspect the resulting online survey
by accessing 127.0.0.1:8080 from a web browser. In this generated online survey, items will be
presented on the webpage one by one, and participants will not know the presentation orders
they received. Demographic items will always appear at the beginning of surveys, and random-
ization would not be applied to these items. As they finish the survey and click the "submit"
button, which is displayed last, their responses and trial-level RT will be submitted and stored
in the (virtual) database.

Presentation orders will be automatically and randomly assigned to participants. Once a pre-
sentation order reaches the maximal assignment frequency as planned, this order will not be
selected. After all sequences have been assigned as many times as planned, the entire survey
ends, and new visitors to the survey webpage will not be able to see any questions. By default,
RandomiSur conducts anonymous surveys and participants will only be assigned random IDs
only for the purpose of data tidying.

7.3.5 Accessing the dataset and data structure

Users can access the dataset anytime, even when a survey is not finished, by calling the built-in
R script download_rawdat.R from the command line.

Rscript path/to/RandomiSur/R/download_rawdat.R
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Executing this script from the terminal allows reading the environment file on the root di-
rectory of this platform (detailed below). Successful execution downloads three csv files on
the local directory: a response.csv file which is the main response dataset for every par-
ticipant, a demo.csv that records the demographic information for each participant, and an
order-pid.csv that records which participant received which presentation order. Table 7.3
presented a template of pre-processed data from response.csv.

p_id rt response Q_num trial_index order_index
"gso0" 1065 2 1 2 "cff"
"gso0" 1147 3 2 3 "cff"
"gso0" 1015 1 3 4 "cff"
"gso0" 948 2 4 5 "cff"
"gso0" 931 2 5 6 "cff"

Table 7.3: A simplified data template generated by RandomiSur.

The resulting dataset presented on Table 7.3 has six columns: (1) p_id represents the random,
anonymous id assigned to a participant; (2) rt represents the participant’s reaction time for this
item; (3) response shows the participant’s response to an item; (4) Q_num represents which
item it is in the original item sequence; (5) textbf{trial_index indicates this item’s position
in the arranged sequence; and (6) textbforder_index indicates which presentation order was
assigned to this participant. Looking at the the first row of this dataset, we can obtain the
following information: the participant "gso0" received an item sequence under the Fixed Cycling
(cff) manipulation method, and in this sequence, the first item presented to this participant was
the seventh item in the original questionnaire, "I am interested in people". This participant
chose the second option for this item, "Moderately Inaccurate", and the reaction time of this
item is 1,065ms.

7.3.6 Hosting a formal online survey

To launch an online survey, users can change the (hidden) configuration file located on the root
directory, i.e., /RandomiSur/.env. First, edit the host names, port, usernames, database name,
and password to the corresponding information for the server. Then, users should access the
virtual environment and execute the ConfigDB binary again, with server as the argument of
the first prompt. By doing so, RandomiSur will automatically configure the online database
according to the configuration on .env, and initialize the remote online database. The default
setting of this Docker container enables files within the virtual environment to be accessed
from outside (i.e., users’ local machines), so that they can send the resulting public html folder
/RandomiSur/server/www to the server in order to put the survey online. Dataset inspection
follows the same procedure illustrated above.

7.4 Discussion

This chapter outlined a new platform, RandomiSur, for conducting online surveys and manip-
ulating item sequences. RandomiSur takes advantage of multiple programming languages and
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serves as a powerful test builder and online survey platform. It also minimizes the deployment
difficulties through containerization and web-browser access, allowing researchers to build up
and test an online survey with little programming. Most importantly, RandomiSur provides a
large array of possibilities for arranging item sequences. Hence, researchers have more flexibil-
ity to explore design-based strategies in order to control time-varying fluctuations and improve
measurement,

Compared to model-based approaches, using design-based strategies to improve measurement
quality is more accessible and easier to implement, especially in the area of psychological mea-
surement, were basic factor models are already fairly difficult to estimate even without in-
troducing time-based components. That said, how much could controlling the presentation
sequence improve the quality of measurement? At this point we are unable to draw any conclu-
sion. In fact, according to the existing literature, the benefits of randomization are debatable.
It is still unclear whether the benefits to controlling order arrangement in psychometrics are
anywhere near those that we have demonstrated in the experimental context. By introducing
RandomiSur, we have at least provided a tool that makes it possible to begin addressing these
questions empirically. RandomiSur also offers new item sequence arrangements that could stim-
ulate future research in psychometrics. Given its open-source nature, researchers can generate
new R functions for ordering items and add them into the R shiny app. As a starting point, we
are confident that a developed test builder and data collection platform can help researchers
gain a further understanding of temporal characteristics in psychometrics.

In psychometrics research, it is very common to investigate relationships across multiple latent
traits, and researchers need to conduct a joint measurement that uses multiple questionnaires.
An interesting question is whether design-based methods help to clean up time-varying fluc-
tuations in such datasets and improve measurement. If so, how might these methods work in
such a complex scenario? A future development goal, would be to fit RandomiSur into general
application scenarios, such as allowing simultaneously arranging presentation orders of multiple
questionnaires and independently changing their the presentation orders.



Chapter 8

General Discussion

8.1 Summary of key findings

In Chapter 1, we discussed how time-varying fluctuations impair measurement and lead to
reduced power/validity; we also suggested the possibilities to tap into time-varying fluctuations
as a potential source of better measurement. In our first methodological part, we introduced
Permuted Subblock Randomization (PSR), an algorithm to boost power by better randomizing
trials in one-factor experimental designs. Then we compared PSR to a model-based approach,
Generalized Additive Mixed Models (GAMMs), to compare power gains from design-based
approaches to those from model-based approaches. Results suggested that the design-based
approach yielded gains often comparable to model-based approaches. But the approaches are
not in conflict, and combining them can optimize power even more in certain situations. At the
end of this part, we extend PSR to 2x2 factorial designs, and introduced two variations, PSR-C
and PSR-E. Our simulation results confirmed that the PSR algorithm can boost power in the
factorial context. In this case, traditional PSR achieved general power increase; while PSR-C
and PSR-E allowed for power gains for the interaction effect and column effect, respectively.

In the second part of this thesis, we introduced a model-based method, mixture autoregressive
confirmatory factor analysis (MAR-CFA), to improve the validity in psychometrics research by
clustering latent heterogeneity. This model-based approach showed that modelling time-varying
fluctuations in psychometrics datasets helps to recover the true factor loadings and thereby
increases validity. But deploying MAR-CFA is challenging because it imposes a computational
burden and involves complicated model selection. Finally, we introduced RandomiSur, an
online test builder and data collection platform, to provide a tool for researchers to randomize
and counterbalance their surveys. This platform offers the possibility for future studies to use
design-based approaches to increase psychometric studies validity, which is easier than using
model-based approaches.

The key finding in this thesis is, time-varying fluctuations can be—and should be—used as
a source to improve measurement. By dealing with such fluctuations with design-based and
model-based approaches, or even by combining them, the statistical power and validity of
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psychological research can be improved. Improving measurement may help address the long-
standing reproducibility crisis in psychology (Pashler & Wagenmakers, 2012).

8.2 Experimental studies

In Chapter 3, even under the simple one-factor design, variations on the PSR approach are
possible, and should be explored in future work. Although our simulations considered a sit-
uation in which every subblock contained the same number of repetitions, this need not be
the case. Indeed, an appealing way to balance power gains against predictability would be to
vary subblock sizes throughout the experiment. The general principle, which can be extended
beyond the exponential decay scenario, is to use fewer repetitions per subblock at times where
temporal effects are strongest, and more repetitions per subblock when temporal effects are
weakest. For instance, in situations where learning effects with a characteristic "exponential
decay" pattern are expected, one could use an expanding subblock strategy, where the sequence
begins with a subblock with one repetition per level, followed by a subblock with two repetitions
per level, followed by a subblock with three repetitions per level, and then a final subblock with
all remaining repetitions. Also, learning effects can occur after each break during a session, as
Thul et al. (2021) demonstrated in their reanalysis of a large Stroop dataset. Thus, to improve
power, it would be advisable to use a subblock with one repetition of each level following each
break, and then use PSR with a higher number of repetitions throughout the remainder of the
session.

Given our results in Chapter 4, PSR could be used as a control method to deal with time-
dependent error structures in datasets. Even when temporally structured residuals are already
modelled by GAMMs, PSR could still add extra power gains by cleaning up the remaining time-
dependent components while maintaining reasonable false positive rates. But the performance
of PSR and GAMMs together depends strongly on sample sizes and error structures. According
to our results, when the sample size is small and a strong, obvious time-varying fluctuations
pattern is expected, using PSR on the basics of GAMMs could bring maximal power advantages.
In more general situations where time-varying fluctuations are mixed in different time scales
(e.g., as the simulated mixed error structure), using PSR on the field-standard analysis can
achieve similar power gains as using so on GAMMs. For researchers who are not familiar to to
GAMMs, PSR can be confidently applied to eliminate time-dependent noise, without changing
the analysis they are familiar with.

In Chapter 5, we extended PSR to 2x2 factorial designs. But it also seems possible to extend
the approaches here to designs that are even more complex than 2x2, such as 2x3 or even 2x2x2
designs. However, we acknowledge that PSR-C and PSR-E would be difficult to deploy under
such cases. As the simplest extension, even adding one factor level to generate a fully within-
subject 2x3 factorial design, there would be 15 possible paths to move across all conditions
within a subblock. Representing all these variations would require a large sample size in order to
counterbalance the sequence order if condition positions are always fixed. However, researchers
can always consider PSRmax in complex designs given its general power advantages.
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According to Chapters 3 to 5 in part I, by discretizing temporal characteristics, our PSR al-
gorithms achieved power improvements in experiments. Our approach bears some similarities
to the m-sequence approach for improving the efficiency of event-related functional magnetic
resonance imaging (Buračas & Boynton, 2002), but these two design-based approaches to im-
proving power have distinct aims. M-sequences aim to optimize efficiency of estimation in the
face of strong carryover effects arising from the sluggish nature of the hemodynamic signal, but
are otherwise temporally invariant. To counteract these sequential dependencies, quasirandom
m-sequences are mean to minimize their own temporal autocorrelation; i.e., that strive to be
as orthogonal as possible to time-shifted versions of themselves. In contrast, our approach is
intended to deal with measurements that are assumed to be fluctuating in time. M-sequences
are less concerned about repetition of labels (event types in fMRI nomenclature) and more
concerned about counterbalancing their ordering. In contrast, our approach seeks to avoid rep-
etition of labels and does not concern itself with higher-order properties (e.g., bigram or trigram
probabilities). It may be profitable to further investigate the relationship between these two
approaches in future work.

Our claims about PSR are based on the outcome of Monte Carlo simulation, but there are
two main challenges with this approach: (1) determining whether the parameter space is rep-
resentative of real world data; (2) ensuring important edge cases have not been missed. As to
(1), we have attempted to simulate data with realistic variance components and that reflect
representative designs in the experimental literature. We have also sought to use time-varying
structures that are theoretically and empirically justified. There is abundant evidence in the
literature for the existence and pervasiveness of time-varying patterns and repeated warnings
about their potential impact on analysis (Altman & Royston, 1988; Amon & Holden, 2021;
Baayen et al., 2017). However, research is needed to develop tools for diagnosing these pat-
terns in real data, as well as efforts to catalog the functional forms and how much variance
is attributable to temporal structure. Research is also needed to characterize the timescale of
these various effects. Until such research is available, the true benefits of design-based (or even
model-based) strategies for accounting for temporal structure will be difficult to estimate.

8.3 Psychological measurements

It is well-known that time-varying fluctuations exist in psychological measurement datasets.
Some have suggested they need not be controlled (Shimada & Katahira, 2023), but then con-
structs capture temporal noise rather than true systematic patterns and thereby reduce the
validity of the measurement (Myszkowski & Storme, 2024). Finally, if the local independence
assumption is violated because of autoregressive residuals, analyses to estimate item capacity
(e.g., difficulty parameter and discrimination parameter) or human parameters (e.g., ability
parameter) would be warped (Tang et al., 2020). In Chapter 6, our findings with MAR-CFA
dispute the conclusion that time-dependent noise can be ignored. We found that consider-
ing time-dependent noise in psychometric datasets can help recover true factor loadings and
increase validity.
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But, as mentioned earlier in this thesis, MAR-CFA might not be the best approach to deal
with time-varying fluctuations in questionnaire datasets, or not the best possible model-based
approach at least. If the autoregression pattern is fixed, then time-dependent variances will de-
cay, and eventually account for small total variances. Especially when scores are standardized,
identifying different autoregression patterns amounts to distinguishing distributions that are
highly overlapping. On top of this, successfully fitting a mixture model requires complex model
selection criteria, alongside the extra computational cost of comparing models based on these
criteria. In addition, unequal time-varying effect sizes, missing data, or even requiring more
complex models to deal with special item settings (e.g., three-point scales where responses are
discrete versus five-point scales where responses can be seen as continuous) bring many chal-
lenges to using MAR-CFA, or even most of psychometric analytical approaches that consider
time-varying fluctuations (Asparouhov et al., 2018, 2023). But given the powerful insight and
high validity improvement model-based approaches could bring, we encourage future develop-
ments in this field.

So, with model-based methods in their early stage and challenging to use, how well might
design-based methods improve measurement and validity in survey datasets? Answering this
question needs some time, because there was formerly no tool for using design-based methods in
psychometric surveys. By introducing the tool RandomiSur (Chapter 7), we introduce the pos-
sibility of controlling time-varying fluctuations through the design, as the package explan does
for experimental datasets. But design-based approaches may be more challenging to develop
in the psychometric context, given that sequences involving sensitive items or reversed-scoring
items could induce unexpected adaptations or temporal effects (Myszkowski & Storme, 2024).
In addition, some order arrangement algorithms (e.g., grouping, cycling) seem to increase va-
lidity by intentionally inducing "blocking effects" in each subset of items. In real questionnaire
surveys where true validity is impossible to determine, it is unclear whether the apparent "im-
provement" is a statistical artifact or a true gain from organized item sequences. It is interesting
to consider that when researchers develop a new measurement, they determine its validity us-
ing a fixed item order. Therefore, from some researchers’ perspectives, this "factory setting"
sequence is seen as a property of the measurement itself (Schell & Oswald, 2013). Follow-
ing this opinion, would questionnaire validation with independently and properly randomized
sequences yielding measurements with higher quality, as it is more "sample-free" and more
aligned to local dependence assumptions? RandomiSur makes it possible to address these and
further questions.

8.4 Closing remarks

In closing, let us come back to the main theme of this thesis: measurement. Although studies
in this thesis are still in early stage, they provided an encouraging prospect and an exciting
opportunity for gaining better measurement quality. As mentioned in Chapter 1, once we
acknowledge that human beings adapt and change over time during an experiment or investi-
gation, there is tremendous potential to improve the quality of measurement.
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Indeed, there is much to be done to optimize measurements in the future. One can focus on ex-
tending design-based and model-based methods to scenarios that are close to real psychological
research environments. To name a few, participants could take rests in between experimental
sessions; task-takers can complete a combination survey which is combined by many ques-
tionnaires, or even an integrated task alternatively involving experiments and surveys. These
settings could yield a number of fluctuation patterns that are more complicated than our cases.
However, a major contribution of this thesis is to point out the possibility to use such fluc-
tuations as the source of better measurements. Given that our design-based and model-based
methods are developed on the most general situations, we are optimistic that these approaches
can be widely generalized to many other psychological studies. By further developing meth-
ods to improve measurements under these scenes, the efficiency of psychological studies can be
hugely benefited by removing the masking caused by time-varying fluctuations.
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