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Abstract

This thesis consists of the three chapters.

Chapter 1 aims to decrease the time complexity of multi-output relevance vector regression

from O
(
VM3

)
to O

(
V 3 +M3

)
, where V is the number of output dimensions, M is the number of

basis functions, and V < M . The experimental results demonstrate that the proposed method is

more competitive than the existing method, with regard to computation time. MATLAB codes are

available at http://www.mathworks.com/matlabcentral/fileexchange/49131.

The performance of online (sequential) portfolio selection (OPS), which rebalances a portfolio

in every period (e.g. daily or weekly) in order to maximise the portfolio’s expected terminal wealth

in the long run, has been overestimated by the ideal assumption of unlimited market liquidity (i.e.

no market impact costs). Therefore, a new transaction cost factor model that considers market

impact costs, estimated from limit order book data, as well as proportional transaction costs (e.g.

brokerage commissions or transaction taxes in a fixed percentage) is proposed in Chapter 2 for

both measuring OPS performance in a more practical way and developing a new OPS method.

Backtesting results from the historical limit order book data of NASDAQ-traded stocks show

both the performance deterioration of OPS by the market impact costs and the superiority of

the proposed OPS method in the environment of limited market liquidity. MATLAB codes are

available at http://www.mathworks.com/matlabcentral/fileexchange/56496.

Chapter 3 proposes an optimal intraday trading strategy to absorb the shock to the stock

market when an online portfolio selection algorithm rebalances a portfolio. It considers real-time

data of limit order books and splits a very large market order into a number of consecutive

market orders to minimise overall transaction costs, consisting of market impact costs as well as

proportional transaction costs. To be specific, it optimises both the number of intraday tradings

and an intraday trading path for a multi-asset portfolio. Backtesting results from the historical

limit order book data of NASDAQ-traded stocks show the superiority of the proposed trading

algorithm in the environment of limited market liquidity. MATLAB codes are available at

http://www.mathworks.com/matlabcentral/fileexchange/62503.
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Introduction

Machine learning is computer programming to optimise a performance criterion using example data
or past experience by using the theory of statistics (Alpaydin, 2014), and it has been used in financial
markets: financial time series forecasting by using artificial neural networks (ANN) and evolutionary
algorithms (Krollner et al., 2010), bankruptcy prediction and credit score modelling (Lin et al.,
2012), financial statement fraud detection by using ANN, logistic regression, and support vector
machines (SVMs) (Perols, 2011), credit rating based on the combination of ANN and logistic
regression (Tsai and Chen, 2010), warning systems for currency crises by using the neuro-fuzzy
modelling approach (Lin et al., 2008), and bankruptcy prediction by applying SVMs (Min and Lee,
2005).

This thesis is intended to broaden the usage of machine learning in quantitative finance and
consists of the three chapters. Chapter 1 aims to perform multi-input and multi-output (MIMO)
nonlinear regression, applicable to multi-step-ahead financial forecasting (e.g. Ticlavilca et al. (2010)
and Bao et al. (2014)), in short computation time. Both Chapter 2 and Chapter 3 aim to maximise
investors’ wealth when performing portfolio selection in an environment of limited liquidity by
using limit order book (LOB) data.

The contributions of this thesis are as follows. Chapter 1 proposes a faster MIMO nonlinear
regression algorithm as existing one is computationally time-consuming. Chapter 2 proposes a
new transaction cost factor (TCF) model which calculates transaction costs when rebalancing
a multi-asset portfolio. The proposed method considers market impact costs (MICs) quantified
by LOB data as well as proportional transaction costs, whereas the existing one considers only
proportional transaction costs. In addition, the proposed TCF model is employed to measure
the performance among different online portfolio selection methods in an environment of limited
liquidity. Chapter 3 proposes a new intraday trading algorithm by using the TCF model proposed
in Chapter 2. The proposed trading algorithm considers real-time LOB data of all assets in a
portfolio to measure the liquidity of all the assets and minimise overall MICs, while the existing
ones do not directly use LOB data for optimal trading.

Historical NASDAQ LOB data, not randomly generated LOB data, is utilised to reflect
limited liquidity for computer simulations in both Chapter 2 and Chapter 3. To be specific, the
data was downloaded from Limit Order Book System: The Efficient Reconstructor (LOBSTER:
https://lobsterdata.com/) that has NASDAQ LOB data from 27 Jun 2007 to the present.
Hence, the backtesting in both the chapters emulates the real world and proves the practical usage
of the proposed methods in Chapter 2 and Chapter 3.

MATLAB codes of the computer simulations of all the three chapters have been uploaded
on MATLAB Central (http://www.mathworks.com/matlabcentral/), and these will not only
avoid the potential ambiguity of the proposed algorithms in this thesis but also reduce redundant
programming efforts by other researchers for their future research to replicate or modify the
computer simulations. Besides, the parallel computing codes (parallel programming on a CPU,
not a GPU, is used as CPU programming is much easier than GPU programming) for the Monte
Carlo simulations of Chapter 2 and Chapter 3 contribute to the quantitative finance community
by showing how to reduce the running time of computationally heavy algorithms.
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The most relevant literature of each chapter is as follows. In Chapter 1, multi-output relevance
vector regression by Thayananthan (2005, Chapter 6), Thayananthan et al. (2008) (it uses the
Bayes’ theorem and the kernel trick to perform regression), one of MIMO nonlinear regression
methods, is the benchmark of the proposed method. In Chapter 2, online portfolio selection with
proportional transaction costs but without MICs by Györfi and Vajda (2008) (it rebalances a
portfolio daily or weekly under the assumption that stock returns are Markov processes) is the
benchmark of the proposed method. In Chapter 3, a path-dependent trading strategy by Lorenz
(2008, Chapter 2–3) (it considers an efficient frontier between the expected value and variance of
MICs) is the most relevant literature although it cannot be directly compared with the proposed
method.

The results of this thesis are as follows. In Chapter 1, the time complexity of the proposed
MIMO nonlinear regression algorithm is almost independent of the number of output dimensions,
whereas that of the existing algorithm is linearly dependent of it. In Chapter 2, the proposed
TCF model is combined with the benchmark OPS method (Györfi and Vajda, 2008), and the
combined OPS method is more profitable than the basic one in the real stock market with limited
liquidity because the combined method trades less on illiquid stocks when rebalancing a portfolio.
In Chapter 3, OPS with the proposed intraday trading algorithm is more profitable than that
without the proposed algorithm because the new algorithm considers real-time limit order book
data and splits a large maker order into a number of consecutive market orders.
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Chapter 1. Fast multi-output relevance vector
regression

1. Introduction

When it comes to multi-input nonparametric nonlinear regression or classification, the following
three methods can be considered: support vector machine (SVM), relevance vector machine (RVM),
and Gaussian process (GP) regression or classification.

SVM, invented by Cortes and Vapnik (1995), is a popular machine learning tool. It uses kernel trick
(RVM and GP also use the kernel trick) and makes classification and regression computationally
efficient for multidimensional inputs. However, its disadvantage is that a user needs to choose a
proper value of the error/margin trade-off parameter ‘C’ (the proper value can be found by k-fold
cross-validation).

RVM, invented by Tipping (2001),1 avoids estimating the error/margin trade-off parameter ‘C’ of
SVM (and in regression, the additional insensitivity parameter ‘ε’ (Vapnik 2000), or ‘ν’ (Schölkopf
et al. 2000)), which wastes computation time. Moreover, RVM allows probabilistic predictions
(i.e. both mean and variance of a Gaussian distribution) although SVM predicts only mean values
(the error bar estimation of SVM is possible with additional computation (Gao et al. 2002, Chu
et al. 2004)).

GP regression or classification, invented by Gibbs (1997), also does not need estimating ‘C’
(and the additional parameter of regression ‘ε’ or ‘ν’). Furthermore, the predictive variance of GP
regression or classification changes over an input vector x∗: the predictive variance is smaller at the
denser region of training samples, while the predictive variance of RVM is almost constant over x∗.

Support vector regression (SVR), relevance vector regression (RVR), and GP regression are
for multi-input but single-output regression, and they have been extended as multi-input and
multi-output (MIMO) regression to model correlated outputs: multi-output SVR (Pérez-Cruz
et al. 2002, Vazquez and Walter 2003, Tuia et al. 2011), multi-output RVR (Thayananthan 2005,
Thayananthan et al. 2008), and multi-output GP regression (Boyle and Frean 2004, Bonilla et al.
2007, Alvarez and Lawrence 2009).

The multi-output relevance vector regression (MRVR) algorithm by Thayananthan (2005, Chap-
ter 6), Thayananthan et al. (2008) uses the Bayes’ theorem and the kernel trick to perform MIMO
nonparametric nonlinear regression, but it has the limitation of low computational efficiency. There-
fore, a new faster algorithm is proposed in this chapter: it uses the matrix normal distribution to
model correlated outputs, while the existing algorithm uses the multivariate normal distribution.

The contributions of this chapter are:

• in Section 4, to propose a new algorithm with less time complexity than the existing MRVR
algorithm by Thayananthan (2005, Chapter 6), Thayananthan et al. (2008);

• in Section 5, to present Monte Carlo simulation results to compare between the existing and
the proposed MRVR algorithm in terms of accuracy and computation time.

The rest of this chapter is organised as follows: Section 2 lists related work. Section 3 and
Section 4 describe the existing and proposed algorithms of MRVR, respectively. Section 5 shows
the experimental results by using MATLAB, and Section 6 gives the conclusion.

1 Single-output relevance vector regression is easily explained in http://static1.squarespace.com/static/

58851af9ebbd1a30e98fb283/t/58902f4a6b8f5ba2ed9d3bfe/1485844299331/RVM+Explained.pdf.
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2. Related work

The following subsections list the existing research works that have been conducted to reduce
the computation time of single-output support vector machine (SVM), relevance vector machine
(RVM), and Gaussian process (GP) regression.

2.1. Single-output SVM

Guo and Zhang (2007) reduced SVR training time by reducing the number of training samples.
Their method consists of the two steps. Firstly, it extracts samples which are more likely to be
support vectors from a full training set befor performing SVR training, based on the heuristic
observation that the target value of support vector is usually a local extremum or near extremum.
Secondly, the extracted samples are used to train a SVR machine. Their simulation results show its
computational efficiency. In particular, the computation time of k-fold cross validation of SVR for
a large data set can be reduced greatly.

Catanzaro et al. (2008) accelerated SVM computation by using both faster sequential algorithms
and parallel computation on a graphics processing unit (GPU). To be specific, a sequential minimal
optimisation algorithm is used to solve the quadratic programming problem of SVM, and a GPU,
whose role has changed from the manipulation of computer graphics and image processing to
general-purpose programming, is employed for high throughput floating-point computation.

Chang and Lin (2011) made fast and efficient C++ software of SVM. They reduced the computa-
tion time to minimise SVM quadratic programming problems since the quadratic programming
is the most time consuming part of SVM. To be specific, shrinking and caching techniques are
used. The shrinking technique tries to identify and remove some bounded elements of the SVM
dual problem, and the caching technique reduces the computational time of the decomposition of a
dense matrix.

2.2. Single-output RVM

Tipping and Faul (2003) proposed a new marginal likelihood maximisation algorithm with efficient
addition/deletion of candidate basis functions. The efficiency comes from modifying the marginal
likelihood function:

L(α) = −1

2

(
N log(2π) + log |C|+ tᵀC−1t

)
, (2.1)

where α = [α0 α1 . . . αN ]ᵀ is a hyperparameter, N is the number of training samples, and t is a
target. In the original algorithm by Tipping (2001), C is written as C = σ2I + ΦA−1Φᵀ, where Φ
is a design matrix, and A = diag (α0, α1, . . . , αN ), whereas in the new algorithm by Tipping and
Faul (2003), C is rewritten as C = σ2I +

∑
m6=i

α−1
m φmφ

ᵀ
m + α−1

i φiφ
ᵀ
i , where φ is a basis vector

(the details of the mathematical expressions are in Section 3.3 and Section 4.3).
Ben-Shimon and Shmilovici (2006) partitioned training samples into small chunks to avoid the

inverse of a large matrix (the matrix inversion is the most computationally expensive part of RVM).
They suggested three methods to accelerate the computation of the basic algorithm by Tipping
(2001). Firstly, relevance vectors (RVs) from two partitions are merged together into a new partition
recursively (this is called the split and merge RVM). Secondly, RVs from the basic RVM and the
previous partition are merged consecutively (this is called the incremental RVM). Thirdly, the
incremental RVM is advanced: the merge operation is performed with the partition of the most
informative basis functions.

Yang et al. (2010) accelerated RVM computation by parallelising the matrix inversion operation
on a GPU. To be specific, the Cholesky decomposition for the matrix inversion is implemented
on a GPU. RVM uses an expectation–maximization (EM) algorithm, an iterative method, to
find maximum likelihood (this is explained in Section 3.4 and Section 4.4), and the Cholesky
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decomposition is performed iteratively based on the Cholesky decomposition results of the previous
EM iteration.

2.3. Single-output GP regression

Seeger et al. (2003) reduced GP regression training time by approximating the likelihood of training
data. The approximation consists of the following three components: i) likelihood approximation
for an active set of training samples (the active set is a part of the whole training samples, and the
reduced number of training samples decreases the computation time of the GP regression training),
ii) how to select the active set (information gain is calculated to score a new point for inclusion to
the active set), and iii) marginal likelihood approximation for the active set.

Shen et al. (2006) reduced both the training and prediction time of GP regression by using an
approximation method, based on a tree-type multiresolution data structure. They assumed that
the kernel of GP regression is monotonic isotropic (e.g. the Gaussian radial basis function kernel)
and grouped data points together that have similar weights. For the grouping, a k-d tree, a binary
tree that recursively partitions a set of data points, was employed.

Srinivasan et al. (2010) accelerated linear algebra operations of GP regression on a GPU, and
Gramacy et al. (2014) made a GPU-accelerated version of GP regression approximation. Srinivasan
et al. i) implemented the weighted summation of kernel functions by considering GPU memory
architecture, ii) accelerated iterative algorithms by having data between iterations stay on a GPU,
and iii) constructed kernel matrices in parallel on a GPU. Gramacy et al. converted a large problem
of GP regression into many small independent ones for a cascade implementation on a GPU.

3. Existing method

The following subsections describe the existing method of MRVR (Thayananthan 2005, Chapter 6),
(Thayananthan et al. 2008).

3.1. Model specification

V -dimensional multi-output regression upon an input x ∈ RU×1 (U -dimensional column vector), a
weight W ∈ RM×V (M -by-V matrix), and an output function y(x; W) ∈ R1×V (V -dimensional
row vector) (upright bold lower case letters denote vectors, and upright bold capital letters denote
matrices) is expressed as

y(x; W) = (Wᵀφ(x))ᵀ , (3.1)

where Wᵀ is the transpose of the matrix W (the objective of this chapter is to estimate proper
values of W), and φ(x) = [φ1(x) φ2(x) . . . φM (x)]ᵀ ∈ RM×1 is the transformed input by nonlinear
and fixed basis functions. In other words, the output y(x; W) is a linearly weighted sum of the
transformed input φ(x).

Given a data set of input-target pairs
{
xi ∈ RU×1, ti ∈ R1×V }N

i=1
, where N is the number of

training samples, it is assumed that the targets ti are samples from the model y(xi; W) with
additive noise:

ti = y(xi; W) + εi, (3.2)

where W ∈ R(N+1)×V is the weight, εi ∈ R1×V are independent samples from a Gaussian noise
process with mean zero and a covariance matrix Ω ∈ RV×V , and Ω is decomposed as the diagonal
matrix of the variances D ∈ RV×V and the correlation matrix R ∈ RV×V :

Ω = D
1

2 RD
1

2 , (3.3)
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where D = diag
(
σ2

1, σ
2
2, . . . , σ

2
V

)
, and σ2

j is the variance of the j-th dimension’s noise.

Because of the ignorance of R by Thayananthan (2005) and the assumption of independent
Gaussian noise, the likelihood of the data set can be given by the product of the Gaussian
distributions:

p (T|W,σ) =

V∏
j=1

(
2πσ2

j

)−N

2 exp

(
− 1

2σ2
j

‖τj −Φwj‖2
)
, (3.4)

where T =


t1

t2
...

tN

 ∈ RN×V , σ = [σ1 σ2 . . . σV ] ∈ R1×V
≥0 , τj ∈ RN×1 is the j-th column vector of T,

wj ∈ R(N+1)×1 is the j-th column vector of W, Φ = [φ(x1) φ(x2) . . . φ(xN )]ᵀ ∈ RN×(N+1) is a

design matrix, φ(x) = [1 K(x,x1) . . . K(x,xN )]ᵀ ∈ R(N+1)×1, and K(x,x′) is a kernel function.
For clarity, the implicit conditioning on the input xi, ∀i is omitted in Eq. (3.4) and the subsequent
expressions.

An assumption to avoid over-fitting in estimation of W is

p (W|α) =
V∏
j=1

N∏
i=0

N
(
0, α−1

i

)
. (3.5)

This means the prior distribution of wj is zero-mean Gaussian with inverse variances

α = [α0 α1 . . . αN ]ᵀ ∈ R(N+1)×1
>0 , which are N + 1 hyperparameters (Tipping 2001), and wj and

wj′ (j 6= j′) have the same distribution as
∏N
i=0N

(
0, α−1

i

)
.

3.2. Inference

By both the Bayes’ theorem and the property of p (T|W,α,σ) = p (T|W,σ),1 the posterior
probability distribution function over W is decomposed as

p (W|T,α,σ) =
p (T|W,σ) p (W|α,σ)

p (T|α,σ)
, (3.6)

and it is given by the product of multivariate Gaussian distributions:

p (W|T,α,σ) =

V∏
j=1

(2π)−
N+1

2 |Σj |−
1

2 exp

(
−1

2
(wj − µj)

ᵀ Σ−1
j (wj − µj)

)
, (3.7)

where the j-th posterior covariance and mean are, respectively:

Σj =
(
σ−2
j ΦᵀΦ + A

)−1
, (3.8)

µj = σ−2
j ΣjΦ

ᵀτj , (3.9)

1 In the case that the weight W is given, its inverse variances α are redundant in the calculation of the conditional probability
of the target T.
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where A = diag (α0, α1, . . . , αN ) ∈ R(N+1)×(N+1).
In the case of uniform hyperpriors α and σ, maximising a posteriori

p (α,σ|T) ∝ p (T|α,σ) p (α) p (σ) is equivalent to maximising the marginal likelihood p (T|α,σ),
which is given by

p (T|α,σ) =
V∏
j=1

(2π)−
N

2

∣∣σ2
j I + ΦA−1Φᵀ

∣∣− 1

2 exp

(
−1

2
τᵀ
j

(
σ2
j I + ΦA−1Φᵀ)−1

τj

)
. (3.10)

3.3. Marginal likelihood maximisation

The same method of accelerating the univariate relevance vector machine (Tipping and Faul 2003)
is used to accelerate the existing algorithm.

The log of Eq. (3.10) is an objective function:

L(α,σ) = −1

2

V∑
j=1

(
N log(2π) + log |Cj |+ τᵀ

jC
−1
j τj

)
, (3.11)

where Cj = σ2
j I + ΦA−1Φᵀ ∈ RN×N , and by considering the dependence of L(α,σ) on a single

hyperparameter αi, i ∈ {0, 1, . . . , N}, Cj is decomposed as the following two parts:

Cj = σ2
j I +

∑
m 6=i

α−1
m φmφ

ᵀ
m + α−1

i φiφ
ᵀ
i

= C−i,j + α−1
i φiφ

ᵀ
i ,

(3.12)

where C−i,j ∈ RN×N is Cj with the contribution of a basis vector φi ∈ RN×1 removed, and

φi =

{
[1 1 . . . 1]ᵀ, if i = 0

[K(xi,x1) K(xi,x2) . . . K(xi,xN )]ᵀ, otherwise
. (3.13)

The determinant and inverse matrix of Cj are, respectively:

|Cj | = |C−i,j |
(

1 + α−1
i φᵀ

i C
−1
−i,jφi

)
, (3.14)

by Sylvester’s determinant theorem, and

C−1
j = C−1

−i,j −
C−1
−i,jφiφ

ᵀ
i C
−1
−i,j

αi + φᵀ
i C
−1
−i,jφi

, (3.15)

by Woodbury matrix identity. From these, L(α,σ) in Eq. (3.11) can be decomposed into L(α−i,σ),
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the marginal likelihood with φi excluded, and `(αi,σ), the isolated marginal likelihood of φi:

L(α,σ) =− 1

2

V∑
j=1

(
N log(2π) + log |C−i,j |+ τᵀ

jC
−1
−i,jτj

)

− 1

2

V∑
j=1

− logαi + log
(
αi + φᵀ

i C
−1
−i,jφi

)
−

(
φᵀ
i C
−1
−i,jτj

)2

αi + φᵀ
i C
−1
−i,jφi


=L(α−i,σ) +

1

2

V∑
j=1

(
logαi − log (αi + si,j) +

q2
i,j

αi + si,j

)
=L(α−i,σ) + `(αi,σ),

(3.16)

where si,j and qi,j are defined as, respectively:

si,j
def
= φᵀ

i C
−1
−i,jφi, (3.17a)

qi,j
def
= φᵀ

i C
−1
−i,jτj . (3.17b)

To avoid the matrix inversion of C−i in Eq. (3.17), which requires the time complexity of O
(
N3
)
,

s′i,j and q′i,j are computed as, respectively (by the Woodbury matrix identity):1

s′i,j = φᵀ
i C
−1
j φi

= σ−2
j φᵀ

iφi − σ−4
j φᵀ

i ΦΣjΦ
ᵀφi,

(3.18a)

q′i,j = φᵀ
i C
−1
j τj

= σ−2
j φᵀ

i τj − σ
−4
j φᵀ

i ΦΣjΦ
ᵀτj ,

(3.18b)

and then si,j and qi,j in Eq. (3.17) are computed as, respectively:2

si,j =
αis
′
i,j

αi − s′i,j
, (3.19a)

qi,j =
αiq
′
i,j

αi − s′i,j
. (3.19b)

L(α,σ) has a unique maximum with respect to αi when the following equation is satisfied:

∂`(αi,σ)

∂αi
=

1

2

V∑
j=1

(
1

αi
− 1

αi + si,j
−

q2
i,j

(αi + si,j)2

)
= 0, (3.20)

1 s′i,j = σ−2
j φ

ᵀ
iφi and q′i,j = σ−2

j φ
ᵀ
i τj when αi =∞, ∀i.

2 si,j = s′i,j and qi,j = q′i,j when αi =∞.
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which is a (2V − 1)-th order polynomial equation of αi. This implies that:

• If φi is ‘‘in the model” (i.e. αi <∞) and αi in Eq. (3.20) has at least one positive real root
(αi > 0 as αi is inverse variance); then, αi is re-estimated,
• If φi is ‘‘in the model” (i.e. αi <∞) yet αi in Eq. (3.20) does not have any positive real root;

then, φi may be deleted (i.e. αi is set to be ∞),
• If φi is ‘‘out of the model” (i.e. αi = ∞) yet αi in Eq. (3.20) has at least one positive real

root; then, φi may be added (i.e. αi is set to be a finite value).

In addition,
∂L(α,σ)

∂σ2
j

= 0 leads to that L(α,σ) has a unique maximum with respect to σ2
j when:

σ2
j =

‖τj −Φµj‖2

N −
∑N+1

i=1 γi,j
, (3.21)

where γi,j
def
= 1− α(i−1)Σj,ii, and Σj,ii is the i-th diagonal element of Σj ∈ R(N+1)×(N+1).

3.4. Expectation–maximisation (EM) algorithm

Algorithm 1, an EM algorithm to maximise the marginal likelihood, starts without any basis vector
(i.e. M = 0) and selects the basis vector φi which gives the maximum change of the marginal
likelihood L(α,σ) of Eq. (3.11) at every iteration.

For efficient computation of the EM algorithm, quantities Φ ∈ RN×M , Σj ∈ RM×M , and
µj ∈ RM×1 contain only M (M ≤ N + 1 is always satisfied) basis functions that are currently
included in the model (i.e. φi satisfying αi <∞), and the diagonal matrix A consists of M hyper-
parameters of αi that are currently included in the model (i.e. αi satisfying αi <∞). Additionally,
Eq. (3.21) is rewritten as

σ2
j =

‖τj −Φµj‖2

N −
∑M

i=1 γ
′
i,j

, (3.22)

where γ′i,j
def
= 1− α′iΣj,ii, α

′
i is the i-th non-infinity value of α, and Σj,ii is the i-th diagonal element

of Σj ∈ RM×M .
From Eq. (3.11), the change in the marginal likelihood can be written as

2∆L = 2 (L(α̃,σ)− L(α,σ))

=
V∑
j=1

log
|Cj |∣∣∣C̃j

∣∣∣ + τᵀ
j

(
C−1
j − C̃−1

j

)
τj

 ,
(3.23)

where updated quantities are denoted by a tilde (e.g., α̃ and C̃j). Eq. (3.23) differs according to
whether αi is re-estimated, added, or deleted:

Re-estimation. as Cj = C−i,j + α−1
i φiφ

ᵀ
i and C̃ = C−i,j + α̃−1

i φiφ
ᵀ
i ,

2∆Li =

V∑
j=1

(
q′2i,j

s′i,j +
(
α̃−1
i − α

−1
i

)−1 − log
(
1 + s′i,j

(
α̃−1
i − α

−1
i

)))
, (3.24)

where α̃i is re-estimated αi,
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Algorithm 1: Existing EM algorithm of MRVR.

Input: T ∈ RN×V , and φi ∈ RN×1,∀i = {0, 1, . . . , N}, where N is the number of training samples, and V is the number
of output dimensions

Output: Σj ∈ RM×M ,µj ∈ RM×1, and σj ,∀j = {1, 2, . . . , V }, where M is the number of basis functions in the model
// Initialisation

1 αi ←∞, ∀i = {0, 1, . . . , N}
2 for j ← 1 to V do

3 t̄j ← 1
N

∑N
i=1 ti,j

4 σ2
j ←

0.1
N−1

∑N
i=1 (ti,j − t̄j)2

5 end
6 convergence←false, n← 1, M ← 0, where n is the iteration number, and M is the number of basis functions.
7 while convergence=false do

// maximisation step

8 for i← 0 to N do
9 for j ← 1 to V do

10 Update s′i,j and q′i,j using Eq. (3.18), and Update si,j and qi,j using Eq. (3.19).

11 end
12 switch the number of positive real roots of Eq. (3.20) do
13 case 0 do
14 α̃i ←∞
15 case 1 do
16 α̃i ← the positive real root of Eq. (3.20)
17 otherwise do
18 α̃i ← one of the positive real roots of Eq. (3.20), which maximises 2∆Li of either i) Eq. (3.24) if αi <∞

or ii) Eq. (3.25) if αi =∞
19 end

20 end
21 if α̃i <∞ then
22 if αi <∞ then zi ←‘re-estimation’
23 Update 2∆Li using Eq. (3.24).
24 else zi ←‘addition’
25 Update 2∆Li using Eq. (3.25).
26 end

27 else if αi <∞ thenzi ←‘deletion’
28 Update 2∆Li using Eq. (3.26).
29 else
30 2∆Li ← −∞
31 end

32 end
33 i← arg maxi 2∆Li // Select i which gives the greatest increase of the marginal likelihood

34 if n 6= 1 then
35 Update σj ,∀j using Eq. (3.22).
36 end
37 switch zi do
38 case ‘re-estimation’ do
39 ∆ logα← log αi

α̃i

40 αi ← α̃i
// Check convergence (convergence criteria are the same as those in (Tipping and Faul 2003))

41 if |∆ logα| < 0.1 then
42 convergence←true
43 for i← 0 to N do
44 if αi =∞ then // if φi is "out of the model"

45 if α̃i <∞ then // if φi may be added

46 convergence←false
47 break for loop

48 end

49 end

50 end

51 end

52 case ‘addition’ do
53 αi ← α̃i, M ←M + 1
54 case ‘deletion’ do
55 αi ←∞, M ←M − 1

56 end
// Expectation step

57 Sequentially update i) Φ ∈ RN×M , A ∈ RM×M , ii) Σj ∈ RM×M ,∀j, and iii) µj ∈ RM ,∀j using Eq. (3.8) and
Eq. (3.9), where Φ, Σj , and µj contain only M basis functions that are currently included in the model, and the
diagonal matrix A consists of M hyperparameters of αi that are currently included in the model.

58 n← n+ 1

59 end
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Addition. as Cj = C−i,j and C̃j = C−i,j + α̃−1
i φiφ

ᵀ
i ,

2∆Li =

V∑
j=1

(
q2
i,j

α̃i + si,j
+ log

α̃i
α̃i + si,j

)
, (3.25)

Deletion. as Cj = C−i,j + α−1
i φiφ

ᵀ
i and C̃j = C−i,j ,

2∆Li =
V∑
j=1

(
q′2i,j

s′i,j − αi
− log

(
1−

s′i,j
αi

))
. (3.26)

3.5. Making predictions

We can predict both the mean of j-th output dimension y∗,j and its variance σ2
∗,j from a new input

vector x∗ based on both i) Eq. (3.2), the model specification, and ii) Eq. (3.7), the posterior distri-

bution over the weights, conditioned on the most probable (MP) hyperparameters: αMP ∈ RM×1
>0

and σMP ∈ R1×V
≥0 , obtained from Algorithm 1. Predictive distribution of t∗,j is normally distributed

as

p(t∗,j |T,αMP,σMP) = N
(
t∗,j |y∗,j , σ2

∗,j
)
, (3.27)

with

y∗,j = φ(x∗)
ᵀµj , (3.28)

and

σ2
∗,j = σ2

MP,j + φ(x∗)
ᵀΣjφ(x∗), (3.29)

where φ(x∗) ∈ RM×1 comes from only M basis functions that are included in the model after the
EM algorithm, and subscript j refers to the j-th output dimension. The predictive variance σ2

∗,j
comprises the sum of two variance components: the estimated noise on the training data σ2

MP,j and

that due to the uncertainty in the prediction of the weights φ(x∗)
ᵀΣjφ(x∗).

3.6. Algorithm complexity

Matrix inversion of Σj ∈ RM×M in Eq. (3.8) for all j ∈ {1, 2, . . . , V } determines i) the time
complexity of the existing algorithm as O

(
VM3

)
and ii) the memory complexity as O

(
VM2

)
,

where V is the number of output dimensions, and M is the number of basis functions.1

1 The matrix multiplication to calculate s′i,j and q′i,j in Eq. (3.18) for all i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , V } at the 11-th line
of Algorithm 1 has the same time complexity because the matrix multiplication ΦΣjΦ

ᵀ is pre-calculated. In other words,
the time complexity of the matrix multiplication is O

(
VM3

)
, not O

(
NVM3

)
, because ΦΣjΦ

ᵀ is independent of i.
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4. Proposed method

4.1. Model specification

Given a data set of input-target pairs
{
xi ∈ RU×1, ti ∈ R1×V }N

i=1
, where N is the number of training

samples, it is assumed that the targets ti are samples from the model y(xi; W) with additive noise:

ti = y(xi; W) + εi, (4.1)

where W ∈ R(N+1)×V is the weight and εi ∈ R1×V are independent samples from a Gaussian noise
process with mean zero and a covariance matrix Ω ∈ RV×V .

Eq. (4.1) can be rewritten, using matrix algebra, as

T = ΦW + E, (4.2)

where T =


t1

t2
...

tN

 ∈ RN×V is the target, E =


ε1

ε2
...

εN

 ∈ RN×V is

the noise, Φ = [φ(x1) φ(x2) . . . φ(xN )]ᵀ ∈ RN×(N+1) is a design matrix,

φ(x) = [1 K(x,x1) K(x,x2) . . . K(x,xN )]ᵀ ∈ R(N+1)×1, and K(x,x′) is a kernel function.
Because of the assumption of independent Gaussian noise, the likelihood of the data set can be

given by the matrix Gaussian distribution:

p (T|W,Ω) = (2π)−
V N

2 |Ω|−
N

2 exp

(
−1

2
tr
(
Ω−1 (T−ΦW)ᵀ (T−ΦW)

))
, (4.3)

where Ω = E[EᵀE]
N , and tr denotes trace.1 As I assumed, I = E[EEᵀ]

tr(Ω) , which means the noise is

independent among rows with the same variance, where I is an N ×N identity matrix. For clarity,
the implicit conditioning on the input xi,∀i is omitted in Eq. (4.3) and the subsequent expressions.

An assumption to avoid over-fitting in the estimation of W is

p (W|α,Ω) = (2π)−
V (N+1)

2 |Ω|−
N+1

2 |A|
V

2 exp

(
−1

2
tr
(
Ω−1WᵀAW

))
, (4.4)

where A−1 = diag
(
α−1

0 , α−1
1 , . . . , α−1

N

)
= E[WWᵀ]

tr(Ω) . This means the prior distribution of W is zero-

mean Gaussian with among-row inverse variances α = [α0 α1 . . . αN ]ᵀ ∈ R(N+1)×1
>0 , which are N+1

hyperparameters (Tipping 2001). Eq. (4.4) implies another assumption: Ω = E[WᵀW]
tr(A−1) . Actually,

this is unreasonable because the weight W has no relationship with the noise E (i.e. I = E[WᵀW]
tr(A−1) ,

which means that the weights of different output dimensions are not correlated, is a reasonable
assumption), but it is essential for creating a computationally efficient algorithm.

1 If Ω = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
V

)
, then Eq. (4.3) will be Eq. (3.4).
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4.2. Inference

By both the Bayes’ theorem and the property of p (T|W,α,Ω) = p (T|W,Ω),1 the posterior
probability distribution function over W is decomposed as

p (W|T,α,Ω) =
p (T|W,Ω) p (W|α,Ω)

p (T|α,Ω)
, (4.5)

and it is given by the matrix Gaussian distribution:2

p (W|T,α,Ω) = (2π)−
V (N+1)

2 |Ω|−
N+1

2 |Σ|−
V

2 exp

(
−1

2
tr
(
Ω−1 (W −M)ᵀ Σ−1 (W −M)

))
,

(4.6)
where the posterior covariance and mean are, respectively:

Σ = (ΦᵀΦ + A)−1 , (4.7)

M = ΣΦᵀT. (4.8)

In the case of uniform hyperpriors α and Ω, maximising a posteriori
p (α,Ω|T) ∝ p (T|α,Ω) p (α) p (Ω) is equivalent to maximising the marginal likelihood p (T|α,Ω),
which is given by:

p (T|α,Ω) = (2π)−
V N

2 |Ω|−
N

2

∣∣I + ΦA−1Φᵀ
∣∣−V

2 exp

(
−1

2
tr
(
Ω−1Tᵀ (I + ΦA−1Φᵀ)−1

T
))

.

(4.9)

4.3. Marginal likelihood maximisation

The same method of accelerating the univariate relevance vector machine (Tipping and Faul 2003)
is used to accelerate the proposed algorithm.

The log of Eq. (4.9) is an objective function:

L(α,Ω) = −1

2

(
V N log(2π) +N log |Ω|+ V log |C|+ tr

(
Ω−1TᵀC−1T

))
, (4.10)

where C = I + ΦA−1Φᵀ ∈ RN×N , and by considering the dependence of L(α,Ω) on a single
hyperparameter αi, i ∈ {0, 1, . . . , N}, C is decomposed as the following two parts:

C = I +
∑
m 6=i

α−1
m φmφ

ᵀ
m + α−1

i φiφ
ᵀ
i

= C−i + α−1
i φiφ

ᵀ
i ,

(4.11)

where C−i ∈ RN×N is C with the contribution of a basis vector φi ∈ RN×1 removed, and

φi =

{
[1 1 . . . 1]ᵀ, if i = 0

[K(xi,x1) K(xi,x2) . . . K(xi,xN )]ᵀ, otherwise
. (4.12)

1 In the case that the weight W is given, its inverse variances α are redundant in the calculation of the conditional probability
of the target T.

2 The proof is in Appendix.
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The determinant and inverse matrix of C are, respectively:

|C| = |C−i|
(
1 + α−1

i φᵀ
i C
−1
−iφi

)
, (4.13)

by Sylvester’s determinant theorem, and

C−1 = C−1
−i −

C−1
−iφiφ

ᵀ
i C
−1
−i

αi + φᵀ
i C
−1
−iφi

, (4.14)

by Woodbury matrix identity. From these, L(α,Ω) in Eq. (4.10) can be decomposed into L(α−i,Ω),
the marginal likelihood with φi excluded, and `(αi,Ω), the isolated marginal likelihood of φi:

L(α,Ω) =− 1

2

(
V N log(2π) +N log |Ω|+ V log |C−i|+ tr

(
Ω−1TᵀC−1

−iT
))

− 1

2

(
−V logαi + V log

(
αi + φᵀ

i C
−1
−iφi

)
− tr

(
Ω−1Tᵀ C−1

−iφiφ
ᵀ
i C
−1
−i

αi + φᵀ
i C
−1
−iφi

T

))

=L(α−i,Ω) +
1

2

(
V logαi − V log (αi + si) +

tr
(
Ω−1qᵀ

i qi
)

αi + si

)
=L(α−i,Ω) + `(αi,Ω),

(4.15)

where si and qi ∈ R1×V are defined as, respectively:

si
def
= φᵀ

i C
−1
−iφi, (4.16a)

qi
def
= φᵀ

i C
−1
−iT. (4.16b)

To avoid the matrix inversion of C−i in Eq. (4.16), which requires the time complexity of O
(
N3
)
,

s′i and q′i ∈ R1×V are computed as (by the Woodbury matrix identity):1

s′i = φᵀ
i C
−1φi

= φᵀ
iφi −φᵀ

i ΦΣΦᵀφi,
(4.17a)

q′i = φᵀ
i C
−1T

= φᵀ
i T−φᵀ

i ΦΣΦᵀT,
(4.17b)

and then si and qi in Eq. (4.16) are computed as:2

si =
αis
′
i

αi − s′i
, (4.18a)

qi =
αiq

′
i

αi − s′i
. (4.18b)

1 s′i = φ
ᵀ
iφi and q′i = φ

ᵀ
iT when αi =∞,∀i.

2 si = s′i and qi = q′i when αi =∞.
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∂`(αi,Ω)

∂αi
= 0 leads to that L(α,Ω) has a unique maximum with respect to αi when:

αi =


s2
i

tr
(
Ω−1qᵀ

i qi
)

V
− si

, if
tr
(
Ω−1qᵀ

i qi
)

V
> si

∞, if
tr
(
Ω−1qᵀ

i qi
)

V
≤ si

, (4.19)

which implies that:

• If φi is ‘‘in the model” (i.e. αi <∞) and
tr
(
Ω−1qᵀ

i qi
)

V
> si; then, αi is re-estimated,

• If φi is ‘‘in the model” (i.e. αi <∞) yet
tr
(
Ω−1qᵀ

i qi
)

V
≤ si; then, φi may be deleted (i.e. αi

is set to be ∞),

• If φi is ‘‘out of the model” (i.e. αi = ∞) yet
tr
(
Ω−1qᵀ

i qi
)

V
> si; then, φi may be added

(i.e. αi is set to be a finite value).

In addition,
∂L(α,Ω)

∂Ω
= 0, where 0 is a V × V zero matrix, leads to that L(α,Ω) has a unique

maximum with respect to Ω when:

Ω =
Tᵀ(T−ΦM)

N
. (4.20)

4.4. Expectation–maximisation (EM) algorithm

Algorithm 2, an EM algorithm to maximise the marginal likelihood, starts without any basis vector
(i.e. M = 0) and selects the basis vector φi which gives the maximum change of the marginal
likelihood L(α,Ω) of Eq. (4.10) at every iteration.

For efficient computation of the EM algorithm, quantities Φ ∈ RN×M and Σ ∈ RM×M contain
only M (M ≤ N + 1 is always satisfied) basis functions that are currently included in the model
(i.e. φi which satisfies αi <∞), and the diagonal matrix A consists of M hyperparameters of αi
that are currently included in the model (i.e. αi which satisfies αi <∞).

From Eq. (4.10), the change in the marginal likelihood can be written as

2∆L = 2 (L(α̃,Ω)− L(α,Ω))

= V log
|C|∣∣∣C̃∣∣∣ + tr

(
Ω−1Tᵀ

(
C−1 − C̃−1

)
T
)
,

(4.21)

where updated quantities are denoted by a tilde (e.g., α̃ and C̃). Eq. (4.21) differs according to
whether αi is re-estimated, added, or deleted:

Re-estimation. as C = C−i + α−1
i φiφ

ᵀ
i and C̃ = C−i + α̃−1

i φiφ
ᵀ
i ,

2∆Li =
tr
(
Ω−1q′ᵀi q′i

)
s′i +

(
α̃−1
i − α

−1
i

)−1 − V log
(
1 + s′i

(
α̃−1
i − α

−1
i

))
, (4.22)

where α̃i is re-estimated αi,
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Algorithm 2: Proposed EM algorithm of MRVR.

Input: T ∈ RN×V and φi ∈ RN×1,∀i = {0, 1, . . . , N}, where N is the number of training samples, and V is the number
of output dimensions

Output: Σ ∈ RM×M , M ∈ RM×V , and Ω ∈ RV×V , where M is the number of basis functions in the model
// Initilisation

1 αi ←∞, ∀i = {0, 1, . . . , N}
2 t̄← 1

N

∑N
i=1 ti, where t̄ ∈ R1×V , and ti ∈ R1×V is the i-th row vector of T.

3 Ω← 0.1
N−1

∑N
i=1(ti − t̄)ᵀ(ti − t̄), where Ω ∈ RV×V is a covariance matrix.

4 convergence←false
5 n← 1, where n is the iteration number
6 M ← 0, where M is the number of basis functions.
7 while convergence=false do

// maximisation step

8 for i← 0 to N do
9 Update s′i and q′i using Eq. (4.17).

10 Update si and qi using Eq. (4.18).

11 θi ←
tr(Ω−1q

ᵀ
i qi)

V
− si

12 if θi > 0 then
13 if αi <∞ then zi ←‘re-estimation’

14 α̃i ←
s2i
θi

15 Update 2∆Li using Eq. (4.22).

16 else zi ←‘addition’
17 Update 2∆Li using Eq. (4.23).
18 end

19 else if αi <∞ thenzi ←‘deletion’
20 Update 2∆Li using Eq. (4.24).
21 else
22 2∆Li ← −∞
23 end

24 end
25 i← arg maxi 2∆Li // Select i which gives the greatest increase of the marginal likelihood

26 switch zi do
27 case ‘re-estimation’ do
28 ∆ logα← log αi

α̃i

29 αi ← α̃i
// Check convergence (convergence criteria are the same as those in (Tipping and Faul 2003))

30 if |∆ logα| < 0.1 then
31 convergence←true
32 for i← 0 to N do
33 if αi =∞ then // if φi is "out of the model"

34 if θi > 0 then // if φi may be added

35 convergence←false
36 break for loop

37 end

38 end

39 end

40 end

41 case ‘addition’ do

42 αi ←
s2i
θi

43 M ←M + 1

44 case ‘deletion’ do
45 αi ←∞
46 M ←M − 1

47 end
48 if n 6= 1 then
49 Update Ω using Eq. (4.20).
50 end

// Expectation step

51 Sequentially update i) Φ ∈ RN×M , A ∈ RM×M , ii) Σ ∈ RM×M , and iii) M ∈ RM×V using Eq. (4.7) and Eq. (4.8),
where Φ, Σ, and M contain only M basis functions that are currently included in the model, and the diagonal
matrix A consists of M hyperparameters of αi that are currently included in the model.

52 n← n+ 1

53 end
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Addition. as C = C−i and C̃ = C−i + α̃−1
i φiφ

ᵀ
i , where α̃i =

s2
i

tr
(
Ω−1qᵀ

i qi
)

V
− si

,

2∆Li =
tr
(
Ω−1q′ᵀi q′i

)
− V s′i

s′i
+ V log

V s′i
tr
(
Ω−1q′ᵀi q′i

) , (4.23)

Deletion. as C = C−i + α−1
i φiφ

ᵀ
i and C̃ = C−i,

2∆Li =
tr
(
Ω−1q′ᵀi q′i

)
s′i − αi

− V log

(
1− s′i

αi

)
. (4.24)

4.5. Making predictions

We can predict both a mean vector y∗ ∈ R1×V and a covariance matrix Ω∗ ∈ RV×V from a new
input vector x∗ ∈ RU×1 based on both i) Eq. (4.2), the model specification, and ii) Eq. (4.6), the
posterior distribution over the weights, conditioned on the most probable (MP) hyperparameters:

αMP ∈ RM×1
>0 and ΩMP ∈ RV×V , obtained from Algorithm 2. Predictive distribution of t∗ is jointly

normally distributed as

p(t∗|T,αMP,ΩMP) = N (t∗|y∗,Ω∗), (4.25)

with

y∗ = φ(x∗)
ᵀM, (4.26)

and

Ω∗ = ΩMP (1 + φ(x∗)
ᵀΣφ(x∗)) ,

1 (4.27)

where φ(x) ∈ RM×1 comes from only M basis functions that are included in the model after the
EM algorithm. The predictive covariance matrix Ω∗ comprises the two components: the estimated
noise on the training data ΩMP and that due to the uncertainty in the prediction of the weights
ΩMPφ(x∗)

ᵀΣφ(x∗), where φ(x∗)
ᵀΣφ(x∗) ∈ R≥0 by the fact that a covariance matrix is always

positive semidefinite. They share ΩMP by the assumption of Ω = E[EᵀE]
N = E[WᵀW]

tr(A−1) in Section 4.1.

4.6. Algorithm complexity

Matrix inversion of Ω ∈ RV×V in Eq. (4.19) and that of the M ×M matrix in Eq. (4.7) determine
i) the time complexity of the proposed algorithm as O

(
V 3 +M3

)
and ii) the memory complexity

as O
(
V 2 +M2

)
, where V is the number of output dimensions, and M is the number of basis

functions.2

1 Eq. (4.27) is obtained by the property that the covariance between two elements Wi,j and Wi′,j′ is the covariance between
the rows i and i′, i.e. Σ, multiplied by the covariance between the columns j and j′, i.e. ΩMP (Arnold 1981, p. 311).

2 The matrix multiplication to calculate s′i and q′i in Eq. (4.17) for all i ∈ {1, 2, . . . , N} at the 9-th line of Algorithm 2 does not
influence the time complexity because the matrix multiplication ΦΣΦᵀ is pre-calculated. In other words, the time complexity
of the matrix multiplication is O

(
M3
)
, not O

(
NM3

)
, because ΦΣΦᵀ is independent of i.
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Figure 1.: An example of MRVR (when U = 1, V = 2, N = 200, and the Gaussian kernel

K (x,x′) = exp
(
−‖x−x′‖2

2λ2

)
with a free parameter λ = 1.6 is used)

5. Experimental results

5.1. An example of MRVR

Fig. 1 shows an example of the MRVR results obtained using the two methods when the true
function of each output dimension is the sinc function and the linear function, respectively. Fig. 1a
and Fig. 1b show slightly different results although the same training samples are used.

5.2. Comparisons of the performance

The two methods are compared in terms of i) running time (computation time in INTEL R© CoreTM

i5-3470 CPU and MATLAB R© R2013b), ii) the estimation accuracy of the noise covariance matrix,
iii) root-mean-square error (RMSE) between true functions and predicted mean values, and iv)
the number of relevance vectors (RVs), where RVs are those training vectors associated with the
remaining non-zero weights (i.e. the number of basis functions M is equal to the number of RVs).
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Figure 2.: True functions of MC simulations

To measure the estimation accuracy of the noise covariance matrix Ω, entropy loss L1

(
Ω, Ω̂

)
and quadratic loss L2

(
Ω, Ω̂

)
are used (each of these is 0 when Ω̂ = Ω and is positive when

Ω̂ 6= Ω) (Anderson 1984, pp. 273–274):

L1

(
Ω, Ω̂

)
= tr

(
Ω̂Ω−1

)
− log

∣∣∣Ω̂Ω−1
∣∣∣− V, (5.1)

L2

(
Ω, Ω̂

)
= tr

((
Ω̂Ω−1 − I

)2
)
, (5.2)

where the estimated V × V covariance matrix of the noise Ω̂ is ΩMP in the case of the proposed
method. In the case of the existing method, Ω̂ can be obtained using both i) the estimated standard

deviation of the noise D̂ = diag(σMP,1, σMP,2, . . . , σMP,V ) in Section 3.5 and ii) the estimated

correlation matrix of the noise R̂:

Ω̂ = D̂R̂D̂, (5.3)

where R̂ = D̃−1Ω̃D̃−1, Ω̃ =
(T−ΦM̃)ᵀ(T−ΦM̃)

N − 1
, M̃ = [µ1 µ2 . . . µV ] ∈ RM×V , and

D̃ =
√

diag(Ω̃).

Monte Carlo (MC) simulations with random covariance matrices of the noise were conducted for
the performance comparisons. The noise from the random covariance matrix is added to the true
functions in Fig. 2 (each output has a sinc function with a translation in the x-axis), and the two
methods of MRVR with the Gaussian kernel were performed using the same training samples for a
fair comparison.

Unpaired two-sample t-tests may be used to compare the two methods to determine whether
the performance difference is fundamental or whether it is due to random fluctuations (Simon
2013, pp. 631–635), but the normality assumption of the performance measures (i.e. running time,
entropy loss, quadratic loss, RMSE, and the number of RVs) of the two methods must be checked.
The Jarque–Bera tests JB = n

6

(
S2 + 1

4(K − 3)2
)

with the number of observations n = 101 and
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Table 1.: The number of rejections of the null hypothesis of the Jarque–Bera test

Running time Entropy loss Quadratic loss RMSE The number of
RVs

Existing method 30 30 30 4 16
Proposed method 30 28 29 3 14

Table 2.: The difference in median values of running time (seconds)

N = 50 N = 100 N = 150 N = 200 N = 250 N = 300

V = 1
0.04(

3.6× 10-10
) 0.19(

2.1× 10-9) 0.40(
4.9× 10-9) 1.02(

3.2× 10-9) 3.11(
1.8× 10-20

) 5.95(
7.1× 10-18

)
V = 2

0.20(
4.8× 10-25

) 0.76(
1.5× 10-22

) 2.44(
9.0× 10-26

) 5.95(
2.1× 10-25

) 17.20(
1.3× 10-30

) 26.17(
1.0× 10-31

)
V = 3

0.33(
3.2× 10-26

) 1.70(
3.8× 10-32

) 5.27(
5.4× 10-29

) 10.37(
1.1× 10-31

) 37.74(
4.7× 10-34

) 64.99(
2.2× 10-34

)
V = 4

0.74(
2.2× 10-33

) 3.60(
1.3× 10-32

) 9.69(
2.1× 10-33

) 24.51(
2.4× 10-33

) 57.14(
2.1× 10-34

) 112.18(
1.2× 10-34

)
V = 5

1.05(
1.1× 10-33

) 5.25(
5.4× 10-34

) 13.01(
6.3× 10-34

) 34.09(
2.2× 10-34

) 92.96(
1.2× 10-34

) 176.24(
1.2× 10-34

)
Table 3.: The difference in median values of entropy loss

N = 50 N = 100 N = 150 N = 200 N = 250 N = 300

V = 1
3.4× 10-4

(0.9904)
8.0× 10-5

(0.9176)
2.2× 10-5

(0.9962)
1.7× 10-5

(0.9520)
3.7× 10-5

(0.8454)
5.7× 10-5

(0.9808)

V = 2
3.9× 10-3

(0.4942)
3.3× 10-3

(0.5964)
3.4× 10-3

(0.1132)
6.8× 10-4

(0.3915)
1.1× 10-3

(0.7434)
4.0× 10-4

(0.6234)

V = 3
3.2× 10-2

(0.0883)
8.6× 10-3

(0.2469)
6.8× 10-3

(0.0192)
8.0× 10-3

(0.0069)
5.1× 10-3

(0.0119)
1.4× 10-3

(0.0412)

V = 4
3.9× 10-2

(0.1137)
3.0× 10-2

(0.0030)
1.5× 10-2

(0.0010)
1.1× 10-2

(0.0042)
9.3× 10-3

(0.0063)
4.4× 10-3

(0.0058)

V = 5
1.1× 10-1

(0.0231)
3.0× 10-2

(0.0015)
2.9× 10-2

(0.0000)
2.5× 10-2

(0.0008)
1.4× 10-2

(0.0005)
1.2× 10-2

(0.0018)

a 5% significance level for 30 cases (V = {1, 2, 3, 4, 5} and N = {50, 100, 150, 200, 250, 300}) were
conducted, in which the null hypothesis was that the data of the performance measures came from
a normal distribution. Table 1 shows the number of rejections of the null hypothesis. Consequently,
the t-test can yield misleading results in the case that the null hypothesis is rejected.

Instead of the t-test, two-sided Wilcoxon rank sum tests, whose null hypothesis is that two
populations have equal median values, were used for the comparisons as they have greater efficiency
than the t-test on non-normal distributions and are nearly as efficient as the t-test on normal
distributions (Montgomery 2013, Chapter 10).

Fig. 3 shows the median values of the performance measures of both methods with various V and
N values. Entropy loss, quadratic loss, and RMSE decrease as N increases: the greater the number
of training samples, the more accurate the estimation. In contrast, the number of RVs, the number
of iterations of each EM algorithm (the same tolerance value of 0.1 for checking the convergence of
each EM algorithm was used as in 43th line of Algorithm 1 and 30th line of Algorithm 2), and the
running time (only for learning without prediction) of each EM algorithm increase as N increases:
the greater the number of training samples, the greater the computational burden.

Tables 2–6 show i) the difference in the median values of the performance measures, where each
median value is obtained from 101 MC simulations, and then the median value of the proposed
method is subtracted from that of the existing method (i.e. positive difference values mean that
the proposed method is better than the existing method, while negative difference values mean the
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Figure 3.: Median values of MC simulations (the number of simulations is 101)
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Table 4.: The difference in median values of quadratic loss

N = 50 N = 100 N = 150 N = 200 N = 250 N = 300

V = 1
2.8× 10-3

(0.9981)
-5.7× 10-4

(0.9233)
4.9× 10-5

(0.9981)
2.3× 10-4

(0.9405)
4.4× 10-5

(0.8605)
2.0× 10-4

(0.9770)

V = 2
5.5× 10-3

(0.5080)
3.5× 10-3

(0.4526)
7.0× 10-3

(0.0915)
2.2× 10-3

(0.3616)
1.6× 10-3

(0.6824)
-1.9× 10-4

(0.5782)

V = 3
8.5× 10-2

(0.0180)
2.5× 10-2

(0.1154)
1.4× 10-2

(0.0109)
1.4× 10-2

(0.0029)
1.3× 10-2

(0.0051)
2.7× 10-3

(0.0263)

V = 4
1.7× 10-1

(0.0382)
8.6× 10-2

(0.0005)
5.4× 10-2

(0.0001)
2.4× 10-2

(0.0007)
2.9× 10-2

(0.0019)
1.5× 10-2

(0.0013)

V = 5
7.3× 10-1

(0.0058)
1.8× 10-1

(0.0000)
8.5× 10-2

(0.0000)
5.5× 10-2

(0.0001)
4.8× 10-2

(0.0000)
3.7× 10-2

(0.0004)

Table 5.: The difference in median values of RMSE

N = 50 N = 100 N = 150 N = 200 N = 250 N = 300

V = 1
-0.0038
(0.956)

-0.0000
(0.985)

0.0000
(0.967)

-0.0001
(1.000)

-0.0007
(0.965)

0.0001
(0.987)

V = 2
-0.0035
(0.898)

-0.0076
(0.544)

-0.0051
(0.562)

-0.0033
(0.758)

-0.0064
(0.646)

-0.0020
(0.977)

V = 3
-0.0177
(0.182)

-0.0049
(0.299)

-0.0012
(0.408)

-0.0030
(0.661)

-0.0013
(0.546)

-0.0037
(0.565)

V = 4
-0.0121
(0.041)

-0.0142
(0.034)

-0.0101
(0.017)

-0.0037
(0.092)

-0.0038
(0.115)

-0.0029
(0.293)

V = 5
-0.0150
(0.008)

-0.0026
(0.013)

-0.0149
(0.001)

-0.0110
(0.015)

-0.0068
(0.025)

-0.0062
(0.072)

Table 6.: The difference in median values of the number of RVs

N = 50 N = 100 N = 150 N = 200 N = 250 N = 300

V = 1
0(

8.8× 10-1) 1(
9.0× 10-1) 0(

8.4× 10-1) 0(
9.6× 10-1) 0(

8.9× 10-1) 0(
9.9× 10-1)

V = 2
-1(

5.2× 10-2) -1(
4.8× 10-4) -1(

3.2× 10-3) -2(
5.1× 10-4) -2(

1.5× 10-3) -3(
2.2× 10-3)

V = 3
-3(

3.6× 10-7) -2(
3.9× 10-5) -2(

1.5× 10-5) -3(
3.4× 10-7) -3(

3.2× 10-6) -2(
2.6× 10-6)

V = 4
-3(

2.2× 10-8) -3(
4.8× 10-6) -2(

8.6× 10-5) -5(
2.4× 10-9) -2(

2.2× 10-7) -2(
1.8× 10-4)

V = 5
-4(

3.9× 10-15
) -3(

3.9× 10-10
) -3(

3.9× 10-8) -4(
9.0× 10-10

) -3(
6.9× 10-7) -6(

3.2× 10-7)
opposite) and ii) the p-values of the Wilcoxon rank sum tests, which appear inside the brackets. The
p-value is interpreted as the probability that a difference in the median values would be obtained
given that the population medians of two methods are equivalent, i.e. the p-value is not equal to the
probability that the population medians are equivalent (Simon 2013, p. 635). Note that statistically
significant difference values are marked in bold (p-value < 0.05).

The proposed method is faster than the existing method as shown in Table 2 (all differences
are statistically significant). In particular, the time difference is amplified as V or N increases.
This is because the time complexity of the proposed method O

(
V 3 +M3

)
is less than that of the

existing method O
(
VM3

)
(O
(
V 3 +M3

)
< O

(
VM3

)
is satisfied since V < M is satisfied in most

applications). Note that even when the number of input dimensions U changes, the size of the
design matrix Φ does not change. Hence, U does not influence the time complexity of both the
methods.
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Furthermore, the proposed method achieves higher accuracy in estimating the covariance matrix
of the noise Ω than the existing method as shown in Table 3 and Table 4. This is because the
proposed method considers the correlation matrix of the noise as Eq. (4.3), but the existing method
does not as Eq. (4.3).

However, the proposed method is worse than the existing one in terms of i) the accuracy in
predicting the mean values as shown in Table 5 (in particular, the RMSE increases in the region of
high V and low N) and ii) the number of RVs as shown in Table 6. This is because the proposed

method has the assumption of the weight Ω = E[WᵀW]
tr(A−1) , which behaves as the constraint of the

weight. Consequently, the mean values tend to deviate from the true functions, and the number of
RVs increases.

The MATLAB codes of the experiment have been uploaded on http://www.mathworks.com/
matlabcentral/fileexchange/49131 to avoid any potential ambiguity of both the methods.

6. Conclusion

A new algorithm of MRVR has been proposed. It is more efficient in computing the weight W
and more accurate in estimating the covariance matrix of the noise Ω than the existing algorithm.
Its computational efficiency and accuracy can be attributed to the different model specifications:
the existing method expresses the likelihood of the training data as the product of the Gaussian
distributions in Eq. (3.4), but the proposed one expresses it as the matrix Gaussian distribution in
Eq. (4.3).

However, the proposed method has drawbacks of lower accuracy in estimating the mean of the
weight M in Eq. (4.8) and higher number of RVs than the existing method. These disadvantages

are caused by the assumption Ω = E[WᵀW]
tr(A−1) , which means the weight W is related to the noise E in

Eq. (4.2), but it was indispensable to make MRVR faster.
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Appendix: proof of Eq. (4.6) and Eq. (4.9)

p (W|T,α,Ω) p (T|α,Ω)
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=ρexp
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Chapter 2. Review of online portfolio selection:

Performance comparison with transaction costs

including market impact costs

1. Introduction

Online (sequential) portfolio selection (OPS) aims to maximise the portfolio’s expected terminal
wealth in the long run and differs from single-period (Markowitz 1959) or multi-period (Dantzig
and Infanger 1993, Ben-Tal et al. 2000, Li and Ng 2000, Steinbach 2001) mean-variance portfolio
selection (MVPS). To be specific, OPS makes minimal statistical assumptions about the behaviour
of the stock market (e.g. stationarity and ergodicity), but MVPS assumes a log-normal distribution
of stock returns (Markowitz 1959). Furthermore, OPS aims for higher expected terminal wealth
without considering the variance (risk), but MVPS considers trade-off between the mean (expected
wealth) and variance (risk).

Both OPS and multi-period MVPS rebalance a portfolio periodically before an investor obtains
the final reward. The differences between them are i) the uncertainty of input data for portfolio
rebalancing and ii) portfolio rebalancing frequency: OPS uses deterministic data (e.g. historical
stock returns), but multi-period MVPS uses stochastic data (e.g. mean and covariance of stock
returns’ distribution). Besides, OPS rebalances a portfolio at the same frequency as the input data,
but multi-period MVPS rebalances a portfolio at a lower frequency than the input data.

OPS differs from portfolio optimisation using a risk measure based either on Value-at-Risk (VaR)
or on conditional VaR (CVaR) although neither of them nor OPS assumes any specific distribution
of stock returns (Gaivoronski and Pflug 2005). However, OPS uses stock return time series spanning
between the first day of investment and the current day, whereas portfolio optimisation using either
VaR or CVaR uses the finite samples in the left tail of historical stock returns spanning before the
first day of investment.

OPS directly optimises a portfolio in terms of the long-term investment without forecasting (Li
and Hoi 2014), and it differs from the previous studies of prediction-based portfolio selection (Freitas
et al. 2009, Otranto 2010, Brown and Smith 2011, Ferreira and Santa-Clara 2011, Gârleanu and
Pedersen 2013, DeMiguel et al. 2014, Palczewski et al. 2015), which i) forecasts the expected values
or covariance matrix of stock returns1 and ii) uses the mean-variance optimisation.2 Therefore,
OPS neither suffers from the difficulty of the prediction nor uses in-sample and out-of-sample tests.

However, all existing OPS methods (Blum and Kalai 1999, Györfi and Vajda 2008, Kozat and
Singer 2011, Bean and Singer 2012, Györfi and Walk 2012, Tunc et al. 2013, Das et al. 2013,
2014) have not considered market impact costs by limited liquidity although they have considered
proportional transaction costs. Therefore, the aim of this chapter is to develop a new model of
transaction cost factor (TCF; this will be explained in Section 5) by considering the limit order

1 Dynamic portfolio selection with transaction costs prevents too much trading by using multi-period prediction in the time

horizon from t + 1 to t + h (Brown and Smith 2011), and from t + 1 to ∞ (Gârleanu and Pedersen 2013), where t is the

current period. Both the methods show better backtesting results than their benchmarks with single-period prediction of t+ 1.
2 Brown and Smith (2011), Palczewski et al. (2015) used risk-averse utility functions instead of the mean-variance portfolio.

In addition, DeMiguel et al. (2014) constructed an arbitrage (zero-cost) portfolio, creating a zero net value, as well as the

mean-variance portfolio.
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· · ·

time

portfolio
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1st period n-th period (n + 1)-th period

b1

b2

bn−1

bn

bn+1

portfolio rebalancing

from bn to bn+1

at the present moment

Figure 1. Timeline of trading. A portfolio is rebalanced at the end of every period, where an asset’s price is given
at the end of every period. The end of n-th period is the present moment for rebalancing.

books (LOBs) of stocks of which a portfolio consists. All the previous methods of OPS (these will
be reviewed in Section 3) assumed that an investor can buy or sell any quantities of stocks, which
in turn makes the OPS methods impractical: they made investment strategies of rebalancing a
portfolio under the ideal assumption of unlimited liquidity of assets, and their numerical results
overestimated the performance of OPS. However, the new model will overcome these problems by
using LOB data, which reflects the liquidity of assets.

The contributions of this chapter are:

• in Section 5.2 and Section 5.3, to propose the new TCF model which reflects LOBs as well as
a fixed percentage fee;

• in Section 8, to present the backtesting results of a comparison among OPS methods (including
the proposed method) by using the real-world data (historical NASDAQ LOB data).

The rest of this chapter is organised as follows: Section 2 lists mathematical notations. Section 3
describes the existing methods of OPS. Section 4 includes the motivation of this chapter and the
review of the mathematical formulation of market impact costs (MICs) as a function of order
size. Section 5 reviews a TCF model without MICs and proposes the new TCF model with MICs.
Section 6 reviews a log-optimal portfolio, one of the OPS methods, which is the basis of the proposed
method. Section 7 describes the proposed OPS method. Section 8 demonstrates the performance of
OPS methods including the proposed method by computer simulations (backtesting). Section 9
gives the conclusion.

2. Mathematical setup

The following notations are used in this chapter:

• bn =
[
b
(1)
n b

(2)
n . . . b

(d)
n

]T
is a portfolio vector of d risky assets (there is no risk-free asset in

the portfolio) at the n-th period (trading occurs in a fixed interval such as a day or a week at

the end of every period as shown in Figure 1), where n ∈ Z≥1, b
(j)
n ∈ R≥0 (i.e. neither short

selling nor buying stocks on margin is permitted), and
∑d

j=1 b
(j)
n = 1 (i.e. b

(j)
n is the proportion

of a portfolio invested in asset j ∈ {1, 2, . . . , d} at the n-th period). Hence, bn ∈ ∆d−1, where

∆d−1 =
{[
b(1) b(2) . . . b(d)

]T ∈ Rd
≥0

∣∣∣ ∑d
j=1 b

(j) = 1
}

is the standard (d− 1)-simplex.

• b1 = [1/d 1/d . . . 1/d]T is an initial portfolio vector.
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• s(j)
n is the price of asset j at the end of the n-th period (see Figure 1).

• x(j)
n =

s
(j)
n

s
(j)
n−1

is a price relative of asset j at the end of the n-th period.

• xn =
[
x

(1)
n x

(2)
n . . . x

(d)
n

]T
∈ Rd

>0 is a market vector at the end of the n-th period.

• x i:j =


x i

x i+1
...
x j

 ∈ Rd(j−i+1)
>0 is the array of the market vectors, where i ≤ j.

3. Review of the existing methods of online portfolio selection

The two categories of OPS, classified according to whether considering transaction costs (TCs) or
not, are reviewed in the following subsections.

3.1. Online portfolio selection without transaction costs1

The most basic benchmark of OPS is a best constant rebalanced portfolio (BCRP), whose portfolio
vector is

b∗ = arg max
b∈∆d−1

T∏
i=1

〈b,x i〉, (1)

where T is the last period of trading, and 〈·, ·〉 denotes the inner product. This is a hindsight strategy
that can only be calculated with complete market vectors from the first period to the last period in
the future x 1:T ; hence, BCRP is unimplementable as an investment strategy but available only for
benchmark.

A universal portfolio (UP) is the beginning of OPS and performs asymptotically as well as BCRP
under the assumption that stock returns are a stationary ergodic time series (Cover 1991). The
portfolio vector of UP of the next period n+ 1 (n is the current period as shown in Figure 1) is

bn+1 =

∫
∆d−1 bSn(b,x 1:n)f(b)db∫
∆d−1 Sn(b,x 1:n)f(b)db

, 2 (2)

where Sn(b,x 1:n) = S0
∏n

i=1〈b,x i〉 is wealth at the end of the n-th period with an initial wealth
S0, and f(·) is the probability density function (PDF) of the Dirichlet distribution with the

d-dimensional concentration parameter vector [1/2 1/2 . . . 1/2]T. The UP strategy is a follow-the-
winner approach according to Li and Hoi (2014) as it increases the relative weights Sn(b,x 1:n) of
more successful assets in the past. In addition, Cover and Ordentlich (1996) extended UP (Cover
1991) to UP with side information, which uses additional information concerning the stock market
(e.g. a series of trading signals).

A non-parametric (i.e. the distribution of the market vector is unknown) kernel-based sequential
log-optimal investment strategy3 guarantees an optimal asymptotic growth rate of capital under
minimal assumptions on the behaviour of the market (i.e. daily price relatives x i are K-th order

1 A detailed survey of OPS without TCs was carried out by Li and Hoi (2014), and Das (2014, pp. 22–29).
2 The mathematical proof of (2) is more easily explained in (Cover and Thomas 2006, Chapter 16) than (Cover 1991).
3 Log-optimal portfolio is explained in Section 6.
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stationary Markov processes) (Györfi et al. 2006). Its portfolio vector of the next period is

bn+1 =

K∑
k=1

L∑
l=1

h (k,l) (x 1:n)Sn

(
h (k,l) (x 1:n) ,x 1:n

)
K∑
k=1

L∑
l=1

Sn

(
h (k,l) (x 1:n) ,x 1:n

) , (3)

where Sn

(
h (k,l) (x 1:n) ,x 1:n

)
= S0

∏n
i=1

〈
h (k,l) (x 1:n) ,x i

〉
is wealth at the end of the n-th period

with an initial wealth S0 and expert h (k,l)(·): i.e. the higher wealth Sn

(
h (k,l)(·), ·

)
; the greater

weight on bn+1. The portfolio vector of the expert h (k,l)(·) from the series of past and current
market vectors x 1:n is

h (k,l) (x 1:n) =

 b1, if Jn = ∅
arg max
b∈∆d−1

∑
i∈Jn

ln〈b,x i+1〉, 1 otherwise , (4)

where Jn is the locations of matches:

Jn = {k ≤ i ≤ n− 1 : ‖x i−k+1:i − xn−k+1:n‖ ≤ l/c} . (5)

This strategy is classified as a pattern-matching-based approach by Li and Hoi (2014) as it finds
the matching in Euclidean space between the past market vectors x i−k+1:i and the most recent
market vectors xn−k+1:n. According to their numerical results, it outperformed UP (Cover 1991)
although its performance (i.e. the terminal wealth) varies by the choice of the three free parameters:
K, L, and c in (3) and (5).

The computation time to calculate h (k,l)(·) in (4) was decreased by transforming the constrained
(i.e. b ∈ ∆d−1 in (4)) nonlinear (i.e. the log function in (4)) programming to the constrained
quadratic programming (Györfi et al. 2007):

h̄
(k,l)

(x 1:n) = arg max
b∈∆d−1

∑
i∈Jn

(
〈b,x i+1〉 − 1− 1

2
(〈b,x i+1〉 − 1)2

)
, Jn 6= ∅, (6)

(i.e. the second-order Taylor expansion of the log function was used). Moreover, the computation
time of the optimisation problem of (6) was reduced further by Györfi et al. (2007) by rewriting
(6) as

h̄
(k,l)

(x 1:n) = arg max
b∈∆d−1

(〈b,m〉 − 〈b,Σb〉) , 2 Jn 6= ∅, (7)

where m is the d-dimensional column vector (1 denotes the all-ones column vector):

m =
∑
i∈Jn

(x i+1 − 1 ),

1 arg minb∈∆d−1

(
−
∑

i∈Jn
ln〈b, x i+1〉

)
is a convex optimisation problem (proof is in Appendix B), which means any local

solution is guaranteed to be a global solution.
2 arg minb∈∆d−1 (〈b,Σb〉 − 〈b,m〉) in (7) is a convex optimisation problem (technically, a quadratic optimisation problem);

thus, any local solution is guaranteed to be a global solution.
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and Σ is the d× d matrix:

Σ =
1

2

∑
i∈Jn

(x i+1 − 1 )(x i+1 − 1 )T.

As a result, if we calculate m and Σ beforehand, the complexity of the optimisation problem of (7)
does not depend on the number of matches |Jn| (i.e. the size of m and Σ is fixed even if |Jn| in (7)
changes), while that of (6) does.

Ottucsák and Vajda (2007) showed a relationship between the log-optimal portfolio strat-
egy (Györfi et al. 2006) and the single-period MVPS by rewriting (6) as the equation form
of the single-period MVPS:

h̄
(k,l)

(x 1:n) = arg max
b∈∆d−1

∑
i∈Jn

(
〈b,x i+1〉 − 1− 1

2
(〈b,x i+1〉 − 1)2

)
, Jn 6= ∅,

≈ arg max
b∈∆d−1

(
2En+1(b)− 1

2
En+1(b)2 − 3

2

)
≈ arg max

b∈∆d−1

[
2En+1(b)− 1

2

(
En+1(b)2 − (En+1(b))2

)
− 1

2
(En+1(b))2

]
≈ arg max

b∈∆d−1

[En+1(b) (4− En+1(b))− Vn+1(b)]

≈ arg max
b∈∆d−1

(
En+1(b)

λn+1
− Vn+1(b)

)

(8)

where En+1(b)
def
= E [〈b,X n+1〉|X n = xn,X n−1 = xn−1, . . . ,X 1 = x 1], the conditional expected

value of the dot product between a portfolio vector b and the price relative at the end of the
(n+ 1)-th period xn+1 (see Figure 1), is approximately equal to

En+1(b) ≈ 1

|Jn|
∑
i∈Jn

〈b,x i+1〉, (9)

En+1(b)2 def
= E

[
〈b,X n+1〉2|X n = xn,X n−1 = xn−1, . . . ,X 1 = x 1

]
, the conditional second-order

moment of the dot product, is approximately equal to

En+1(b)2 ≈ 1

|Jn|
∑
i∈Jn

〈b,x i+1〉2, (10)

Vn+1(b)
def
= Var (〈b,X n+1〉|X n = xn,X n−1 = xn−1, . . . ,X 1 = x 1), the conditional variance of the

dot product at the end of the (n+ 1)-th period, is approximately equal to

Vn+1(b) =En+1(b)2 − (En+1(b))2

≈ 1

|Jn|
∑
i∈Jn

〈b,x i〉2 −

(
1

|Jn|
∑
i∈Jn

〈b,x i〉

)2

,
(11)

and λn+1, the coefficient of risk aversion at the end of the (n+ 1)-th period, is defined as

λn+1
def
=

1

4− En+1(b)
, (12)
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under the assumption that the market vectors x 1,x 2, . . . are realisations of random vectors
X 1,X 2, . . . drawn from a d-dimensional vector-valued stationary and ergodic process {X i, i ∈ Z}.
I.e. the log-optimal strategy (Györfi et al. 2006) dynamically adjusts the coefficient of risk aversion
λn while the single-period MPVS uses a constant value of the coefficient. As a result, the log-optimal
portfolio strategy (Györfi et al. 2006) outperformed the single-period MVPS in growth rate (the
terminal wealth in the long run) in their numerical experiments.

Györfi et al. (2008b) also assumed that daily price relatives are K-th order stationary Markov
process as the same as (Györfi et al. 2006) and made a nearest-neighbour(NN)-based investment
strategy with two free parameters: K and L. The difference between the two strategies is only the
way to find the locations of matching Jn in (5): instead of the threshold of the distance l/c in (5),
the criterion of NN in Euclidean space is used as

Jn =
{
k ≤ i ≤ n− 1

∣∣∣ x i−k+1:i is among the l̂ NNs of xn−k+1:n in x 1:k,x 2:k+1, . . . ,xn−k:n−1

}
,

(13)

where l̂ = bplnc, and pl = 0.02 + 0.5 l−1
L−1 , specified by Györfi et al. (2008a). Their experimental

results showed that the NN-based method (Györfi et al. 2008b) outperforms the kernel-based
method (Györfi et al. 2006) in terms of the terminal wealth and the robustness of choosing suitable
free parameters of K and L. Furthermore, as the terminal wealth of the NN-based method with the
order of Markov process k = 1 was the highest among k = {1, 2, . . . , 5} for all of l = {1, 2, . . . , 10},
we can infer that the market vector xn is a first-order Markov process rather than multiple-order.

Horváth and Urbán (2012) defined the sets of possible portfolio vectors of OPS with short selling
or leverage (i.e. borrowing money). In order to allow short selling, the original constraints of

the proportion of a portfolio invested in asset j, b(j) ∈ [0, 1] and
∑d

j=1 b
(j) = 1, are replaced with

b(j) ∈ [−1, 1] and
∑d

j=1 b
(j)+ = 1, where x+ def

= max(0, x). In order to allow borrowing money, the

original constraints are replaced with b(j) ∈ [0,∞) and
∑d

j=1 b
(j) = B, where B is the maximum

investable amount. The three sets (short selling only, leverage only, and both) are applicable to
any OPS method without TCs.

3.2. Online portfolio selection with transaction costs

UP with TCs by Blum and Kalai (1999) is a trivial extension of UP (Cover 1991). Instead of
accumulated wealth without TCs Sn in (2), that with TCs Nn (net wealth Nn is defined in Section 5)
is used to calculate the portfolio vector of the next period n+ 1:

bn+1 =

∫
∆d−1 bNn(b,x 1:n)f(b)db∫
∆d−1 Nn(b,x 1:n)f(b)db

, (14)

where Nn(b,x 1:n) = S0
∏n

i=1(〈b,x i〉 − Ci) is wealth at the end of the n-th period with an initial
wealth S0 and the TC at the end of the i-th period Ci.

Györfi and Vajda (2008) i) extended the investment strategy by Györfi et al. (2006) by considering
TCs and ii) simplified the assumption of the market from the multiple-order Markov process to a
first-order Markov process. They suggested an implementable but suboptimal algorithm with one
free parameter L:

bn+1 =

L∑
l=1

h (l) (x 1:n)Sn

(
h (l) (x 1:n) ,x 1:n

)
L∑
l=1

Sn

(
h (l) (x 1:n) ,x 1:n

) , (15)
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where Sn

(
h (l) (x 1:n) ,x 1:n

)
= S0

∏n
i=1

〈
h (l) (x 1:n) ,x i

〉
is wealth at the end of the n-th period with

an initial wealth S0.1 The portfolio vector of the expert h (l)(·) from the series of past and current
market vectors x 1:n is

h (l) (x 1:n) =

 b1, if Jn = ∅
arg max
b∈∆d−1

∑
i∈Jn

(ln〈b,x i+1〉+ lnwn) , otherwise , (16)

where Jn is the locations of matches between past market vector x i and current one xn:

Jn =
{

1 ≤ i ≤ n− 1
∣∣∣ ‖x i − xn‖ ≤

√
0.0001dl

}
. (17)

I.e. the difference between (4) and (16) is only the addition of lnwn (transaction cost factor wn

will be explained in Section 5) that considers TCs.2

Kozat and Singer (2011) proposed a sequential universal portfolio whose achieved wealth is
asymptotically as large as the wealth achieved by the best semi-constant rebalanced portfolio: a
semi-constant rebalanced portfolio rebalances its portfolio only on selected instants to reduce TCs,
while a constant rebalanced portfolio rebalances it at every period. Their portfolio vector of the
next period is

bn+1 =
n∑

i=0

d∑
j=1

σn(i, j)
(
Ftr(sn+1 = i|sn = i)ej + Ftr(sn+1 = n+ 1|sn = i)b1

)
, (18)

where ej
def
= [0 . . . 0 1 0 . . . 0]T is a vector of all zeros except a single one at location j, and the

weight of asset j at state i is defined as

σn(i, j)
def
=

Wn(xn, i, j)
n∑

k=0

d∑
l=1

Wn(xn, k, l)

. (19)

Hence, this strategy can be classified as the follow-the-winner approach as the weight σn(i, j) is
proportional to the weighted wealth of asset j at state i at the end of the n-th period Wn(xn, i, j),
0 ≤ i ≤ n. This weighted wealth is calculated from the previous (i.e. (n− 1)-th period) weighted
wealth Wn−1(xn−1, i, j), 0 ≤ i ≤ n− 1 (see Figure 2):

Wn(xn, i, j)
def
=


Wn−1(xn−1, i, j)Ftr(sn = i|sn−1 = i)x

(j)
n , if 0 ≤ i ≤ n− 1

n−1∑
k=0

(
d∑

l=1

Wn−1(xn−1, k, l)

)
Ftr(sn = n|sn−1 = k)b

(j)
1 x

(j)
n , if i = n

.

(20)
Ftr(sn = i|sn−1 = i) in both (18) and (20) is the horizontal path weight (i.e. there is no rebalancing

to b1 as shown in Figure 2) from state i at the end of the (n− 1)-th period to the same state i at

1 Györfi and Vajda (2008) compared between i) aggregation with wealth (i.e. the expert in (16) makes the portfolio selection

and pays TC individually) and ii) aggregation with portfolio (i.e. the aggregated portfolio bn+1 in (15) pays TC), which

implies that the former uses equations (16) and (17) while the latter uses equations (15), (16), and (17). Their numerical
experiments showed that the latter outperformed the former.

2 Györfi and Vajda (2008) also introduced an optimal but unimplementable algorithm which solves a theoretical dynamic

programming problem.
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time0
1st period 2nd period 3rd period

0
W0(x0, 0, 1)

...

W0(x0, 0, d)

0
W1(x1, 0, 1)

..

.

W1(x1, 0, d)

1
W1(x1, 1, 1)

...

W1(x1, 1, d)

0
W2(x2, 0, 1)

..

.

W2(x2, 0, d)

1
W2(x2, 1, 1)

...

W2(x2, 1, d)

2
W2(x2, 2, 1)

...

W2(x2, 2, d)

0
W3(x3, 0, 1)

..

.

W3(x3, 0, d)

1
W3(x3, 1, 1)

...

W3(x3, 1, d)

2
W3(x3, 2, 1)

...

W3(x3, 2, d)

3
W3(x3, 3, 1)

...

W3(x3, 3, d)

no rebalancing

rebalancing

Figure 2. The rebalancing diagram of universal semi-constant rebalanced portfolio for T = 3 (a similar diagram
is in (Kozat and Singer 2011, p. 300)). Each box represents a state, where each number in the box is the time of
the last rebalancing instant, and it includes accumulated wealth Wn(xn, i, j) for state i ∈ {0, 1, . . . , n} and for all
assets j = {1, 2, . . . , d}. A portfolio is rebalanced at the end of the n-th period by using the accumulated wealth

Wn(xn, i, j), ∀i, j, where x
(j)
0 = 1, ∀j.

the end of the n-th period (Kozat and Singer 2008):

Ftr(sn = i|sn−1 = i)
def
=
n− 1− i+ 1

2

n− 1− i+ 1
, (21)

and Ftr(sn = n|sn−1 = i) in both (18) and (20) is the upward path weight (i.e. there is a rebalancing
to b1 as shown in Figure 2) from state i at the end of the (n− 1)-th period to the state n (i.e. the
highest state in each period in Figure 2) at the end of the n-th period (Kozat and Singer 2008):

Ftr(sn = n|sn−1 = i)
def
=

1
2

n− 1− i+ 1
. (22)

Algorithm 3 in Appendix A describes the investment strategy by Kozat and Singer (2011) in detail.
Bean and Singer (2012) combined UP with side information (Cover and Ordentlich 1996) and

UP with TCs (Blum and Kalai 1999). Also, they employed factor graphs and a sum-product
algorithm to derive computationally more efficient implementations of the combined UP. UP with
side information under TCs (Bean and Singer 2012) achieves equal or greater wealth than UP with
side information (Cover and Ordentlich 1996) under all simulated fixed percentage commissions.
However, the Bean and Singer’s method underperforms that of Blum and Kalai (1999).

Györfi and Walk (2012) extended the theoretical and unimplementable dynamic programming
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Table 1. A 5-level limit order book of Microsoft Corporation, traded on NASDAQ, on 21 Jun 2012 at 16:00:00
(downloaded from https://lobsterdata.com/info/DataSamples.php). Bid-ask spread is USD 0.01, and midpoint

price is USD 30.135.

Level Price (USD) Volume (shares)

Asks

5 30.18 110,006
4 30.17 86,886
3 30.16 65,399
2 30.15 80,663
1 30.14 16,600

Bids

-1 30.13 -50,426
-2 30.12 -83,306
-3 30.11 -8,506
-4 30.10 -43,838
-5 30.09 -167,371

algorithm developed by Györfi and Vajda (2008) to two data-driven algorithms of the log-optimal
investment, based on a partitioning-based portfolio selection rule and K-nearest-neighbour-based
rule. However, both are still unimplementable (i.e. the algorithms cannot be transformed into a
computer program) for rebalancing a portfolio.

The numerical results of Ormos and Urbán (2013) show that the implementable log-optimal
strategy (Györfi and Vajda 2008) generates greater alpha values (excess return) of the CAPM
or Fama–French model than a buy-and-hold strategy, even in the presence of proportional TCs
(TC rate was set to 0.1% both for sale and purchase). Therefore, the log-optimal portfolio strategy
shows some kind of market inefficiency, in the sense that the first-order Markov model is better
than random stock selection.

A threshold rebalanced portfolio trades stocks only if a fraction of the portfolio is below a lower
threshold or over an upper threshold to reduce TCs (Tunc et al. 2013). However, this approach is
only available in two-stock markets, although Tunc et al. mentioned the possibility of its extension
to markets having more than two stocks. Furthermore, their assumption that the prices of the
two stocks follow two independent geometric Brownian motions does not consider the correlation
between the two stocks.

Das et al. (2013) assumed that the portfolio vector in the current period is replicated in the next
period (i.e. xn = xn+1) and added the transaction penalty term α‖bn+1− bn‖1, where ‖·‖1 denotes
the L1 norm. The disadvantage of this method is that the parameter α which controls the amount
of trading should be properly chosen, whereas Györfi and Vajda (2008)’s method does not require
the user’s care. Besides, Das et al. (2014) added a group sparsity term to the Das et al. (2013)’s
method to increase portfolio weights on a few top performing sectors and beat the market. However,
the additional term is also controlled by a user parameter. Hence, the performance of this OPS
algorithm depends on both the user parameters: the transaction penalty parameter and the group
sparsity parameter.

4. Market impact costs

Market impact costs (MICs, also called price impact costs) can be generated by an investor
who trades on an asset, pushing the price up when buying the asset and pushing it down while
selling (Damodaran 2012, Chapter 5).

4.1. Limit order book

An LOB (Table 1 is an example) is defined as the current set of active limit orders that is sent to,
and maintained by, a security exchange or a security dealer (Levy and Post 2005, p. 68).
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Figure 3. The liquidity of the limit order book in Table 1 (a similar diagram is in (Pristas 2007, p. 22)). The
horizontal axis represents the cumulative volumes of the bid (ask) side on the left (right) hand side. The vertical
axis shows the quoted prices.

4.2. Market impact costs of online portfolio selection

All the previous studies of OPS in Section 3 did not consider MICs but assumed that one can buy
or sell any quantities of stock at its closing price. However, this is impracticable due to bid-ask
spread and the finite depth of an LOB (Figure 3 shows both of them).

The bid-ask spread causes MICs.1 The closing price is the last price at which a stock is traded
on a day, and it is either the lowest ask price (if a buyer buys) or the highest bid price (if a seller
sells). Therefore, it is possible either i) that the purchase price is greater than the closing price or
ii) that the sale price is less than the closing price, which in turn will make the terminal wealth of
OPS less than the ideal case of zero bid-ask spread. In other words, the gap between the closing
price and the purchase (or sale) price occurs in every period and generates TCs whenever OPS
rebalances a portfolio.

Furthermore, if the ask or bid depth (see Figure 3) is shallow, MICs increase as the size (in
dollars) of a portfolio increases. If an OPS algorithm intends to trade for the amount greater than
the depth, the order will be executed for the amount of the depth at the best quoted price (i.e. the
lowest ask price or the highest bid price), and then the remaining part of the order will be executed
at the next prices of an LOB, which in turn will increase MICs and decrease the terminal wealth of
OPS.

Consequently, LOBs (e.g. Table 1) as well as fixed percentage TCs (e.g. brokerage commissions
and transaction taxes) should be considered to make OPS strategies practical.

4.3. Market impact costs as a function of order size in a limit order book

MICs that occur when rebalancing a portfolio can be written as a function of order volumes
and prices in LOBs. The average MIC as a function of order size q is defined as (Olsson 2005,

1 MICs include the bid-ask spread costs in this chapter although they are separate in (Damodaran 2012).
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Figure 4. Average price per share p̄(q) for order size q from the LOB data in Table 1. Positive (negative) q means
buying (selling) stocks.
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Figure 5. Average market impact cost π(q) for order size q from the LOB data in Table 1. Positive (negative) q
means buying (selling) stocks.
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Chapter 2.3)

π(q,M,P1, P2, . . . , P−1, P−2, . . . , V1, V2, . . . , V−1, V−2, . . .)

def
=
|p̄(q,M,P1, P2, . . . , P−1, P−2, . . . , V1, V2, . . . , V−1, V−2, . . .)−M |

M
,

(23)

where M = P−1+P1

2 is the midpoint between the best bid and ask price, called mid price. The
average price per share for the order size q is defined as (Olsson 2005, Chapter 2.3)

p̄(q,M,P1, P2, . . . , P−1, P−2, . . . , V1, V2, . . . , V−1, V−2, . . .)

def
=



−1∑
i=k+1

PiVi + Pk

(
q −

−1∑
i=k+1

Vi

)
q

, if q < V−1

P−1, if V−1 ≤ q < 0

M, if q = 0

P1, if 0 < q ≤ V1
k−1∑
i=1

PiVi + Pk

(
q −

k−1∑
i=1

Vi

)
q

, if V1 < q

,
(24)

where positive (negative) q means buying (selling) stocks, Pi and Vi with positive (negative) i are
the quoted ask (bid) price and volume at level i, respectively (i.e. Pi and Vi correspond to the
price and volume column of Table 1, respectively, and Vi ≥ 0, V−i ≤ 0,∀i ∈ Z≥1), and the highest
(lowest) trading level k when q > V1 (q < V−1) is

k =

{
x ∈ Z≥2

∣∣∣∣∣
x−1∑
i=1

Vi < q ≤
x∑

i=1

Vi

}
, (25a)

(
k =

{
x ∈ Z≤−2

∣∣∣∣∣
−1∑
i=x

Vi ≤ q <
−1∑

i=x+1

Vi

})
. (25b)

I.e. k represents the level in the order book where the q-th share would be executed (Figure 4 and 5
show p̄(q) and π(q) from the LOB data in Table 1).

5. Transaction cost factor

The net wealth at the end of the n-th period Nn is defined as (Györfi and Vajda 2008)

Nn
def
= Sn − Cn, (26)

where Sn is the growth wealth at the end of the n-th period, and Cn is TC at the end of the n-th
period. The current growth wealth Sn can be calculated from the previous net wealth Nn−1:

Sn = Nn−1

d∑
j=1

b(j)n x(j)
n = Nn−1〈bn,xn〉, (27)
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where x
(j)
n =

s
(j)
n

s
(j)
n−1

=
M

(j)
n

M
(j)
n−1

(i.e. the price of asset j at the end of the n-th period s
(j)
n is the mid

price of asset j at the end of the n-th period M
(j)
n ).

The transaction cost factor (TCF) at the end of the n-th period (i.e. the present moment; see
Figure 1) is defined as (Györfi and Vajda 2008)

wn
def
=
Nn

Sn
, (28)

where wn ∈ (0, 1] and w0
def
= 1 (the subscript 0 denotes time 0; see Figure 1). Let us calculate

wn when rebalancing from the current portfolio vector bn to the next portfolio vector bn+1 (see
Figure 1) for the following three cases: Section 5.1 describes an existing TCF model, while Section 5.2
and 5.3 describe a new TCF model proposed in this chapter.

5.1. Transaction cost factor with proportional costs but no market impact costs

If there are no MICs, only mid prices are used to calculate TCF. Let cp and cs denote the rate of
proportional TCs when purchasing and selling stocks, respectively, where cp, cs ∈ [0, 1) : cp + cs > 0.

At the present moment (see Figure 1), there are b
(j)
n x

(j)
n Nn−1 dollars of asset j before rebalancing,

by (27), while there are b
(j)
n+1Nn dollars of asset j after rebalancing. If b

(j)
n+1Nn > b

(j)
n x

(j)
n Nn−1, then

we have to purchase asset j for b
(j)
n+1Nn − b(j)n x

(j)
n Nn−1 dollars, and cp

(
b
(j)
n+1Nn − b(j)n x

(j)
n Nn−1

)
is

the TC of asset j. On the other hand, if b
(j)
n x

(j)
n Nn−1 > b

(j)
n+1Nn, then we have to sell asset j for

b
(j)
n x

(j)
n Nn−1 − b(j)n+1Nn dollars, and cs

(
b
(j)
n x

(j)
n Nn−1 − b(j)n+1Nn

)
is TC of asset j.

The growth wealth Sn consists of the sum of the net wealth Nn and the TCs of all assets in the
following self-financing way (Györfi and Vajda 2008):

Sn = Nn + cp

d∑
j=1

(
b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)+
+ cs

d∑
j=1

(
b(j)n x(j)

n Nn−1 − b(j)n+1Nn

)+
, (29)

where x+ def
= max(0, x). By dividing both sides of (29) by Sn and by referring to (27) and (28),

Equation (29) can be rewritten as (Györfi and Vajda 2008)

1 = wn + cp

d∑
j=1

(
b
(j)
n+1wn −

b
(j)
n x

(j)
n

〈bn,xn〉

)+

+ cs

d∑
j=1

(
b
(j)
n x

(j)
n

〈bn,xn〉
− b(j)n+1wn

)+

. (30)

Additionally, by using the property of (a− b)+ = a− b+ (b− a)+, Equation (30) can be simplified
as (Ormos and Urbán 2013)

wn = 1− cp + cs
1 + cp

d∑
j=1

(
b
(j)
n x

(j)
n

〈bn,xn〉
− b(j)n+1wn

)+

, (31)

which is solvable by using a root-finding algorithm, where wn = w(bn, bn+1,xn) is an unknown
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variable (cp and cs are omitted for notational simplicity).1

TCF wn in (31) is a quasi-concave but not concave function of bn+1 ∈ ∆d−1 (proof is in
Appendix C) as shown in Figure 6(d) and 6(f), where its convexity depends on the TC rates,

cp and cs: i.e. the greater cp+cs
1+cp

; the greater ∂2wn

(∂b(j)n+1)
2 , by (C8). Meanwhile, 1D plots in 6(b) look

like piecewise linear functions since ∂2wn

(∂b(j)n+1)
2 ≈ 0 when cp+cs

1+cp
is tiny.

Lemma 5.1 If g : Rd → R is quasi-concave (quasi-convex) and h : R→ R is nondecreasing, then
f = h ◦ g is quasi-concave (quasi-convex) (Boyd and Vandenberghe 2004, p. 102).

Lemma 5.2 The sum of quasi-concave (quasi-convex) functions is not necessarily quasi-concave
(quasi-convex) (Sydsæter et al. 2010, p. 95).

Theorem 5.3
∑

i∈Jn
(ln〈b,xi+1〉+ lnwn) in (16) is not necessarily a quasi-concave function of

b ∈ ∆d−1 even if wn is quasi-concave.

Proof.
∑

i∈Jn
ln〈b,x i+1〉 is quasi-concave both i) by the proof in Appendix B that

∑
i∈Jn

ln〈b,x i+1〉
is concave and ii) by the fact that every concave (convex) function is quasi-concave (quasi-convex).
In addition, lnwn is quasi-concave but not concave because wn is quasi-concave but not concave
by lemma 5.1. As a result,

∑
i∈Jn

(ln〈b,x i+1〉+ lnwn) =
∑

i∈Jn
ln〈b,x i+1〉 + |Jn| lnwn in (16) is

not a necessarily quasi-concave function of b ∈ ∆d−1 by lemma 5.2.

Therefore, a local solution of (16) with TCF wn in (31) is not guaranteed to be a global solution.
Györfi and Vajda (2008, p. 112) also mentioned that no global optimality of (16) is guaranteed
although they did not give any proof.

5.2. Transaction cost factor with market impact costs but no proportional costs

This subsection is to propose a new TCF model by considering market impact costs but not
considering proportional costs: if there are no proportional costs, the growth wealth Sn consists of
the sum of the net wealth Nn and the MICs:

Sn = Nn +

d∑
j=1

(
p̄
(
q(j)
n

)
−M (j)

n

)
q(j)
n , (33)

where p̄(·) is the average price function in (24) (for notational simplicity, some input variables
of (24), i.e. M,P1, P2, . . . , P−1, P−2, . . . , V1, V2, . . . , V−1, V−2, . . . of each asset j, are omitted in (33)

and the subsequent expressions), M
(j)
n is the mid price of asset j, q

(j)
n is an unknown order size of

asset j, and subscript n denotes the end of the n-th period.
When the investor either buys or sells every asset j according to the portfolio vector of the

1 Another form of TCF is defined as (Borodin and El-Yaniv 1998, pp. 299–300)

wn = 1−
cp + cs

1 + cp

d∑
j=1

(
b
(j)
n x

(j)
n

〈bn, xn〉
− b

(j)
n+1

)+

, (32)

which has less computational burden than (31), but it is error-prone if
cp+cs
1+cp

is large. Meanwhile, Borodin

and El-Yaniv (1998, pp. 299–300) and Borodin et al. (2004, pp. 590–591) made the same typo of substituting

wn = 1−
cp + cs

1 + cp

d∑
j=1

(
b
(j)
n x

(j)
n

〈bn, xn〉
− b

(j)
n

)+

for (32).
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(c) Ternary contour plot of transaction cost factor when
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(e) Ternary contour plot of transaction cost factor when
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Figure 6. Ternary contour plots and 1D plots of transaction cost factor wn = w(bn, bn+1, xn) in (31) with the
variable bn+1 and the fixed values: bn = [1/3 1/3 1/3]T, xn = [0.6 0.9 1.4]T, and cp = 0.
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(n+ 1)-th period bn+1, the following equation is satisfied:

b
(j)
n+1Nn − b(j)n x(j)

n Nn−1 = M (j)
n q(j)

n , (34)

where b
(j)
n x

(j)
n Nn−1 is the amount of dollars of asset j before rebalancing a portfolio, and b

(j)
n+1Nn

is that after rebalancing. Hence, equation (34) means that the purchase (if left-hand side of (34)
is positive) or sale (if left-hand side of (34) is negative) amount in dollars of asset j equals the

product between M
(j)
n , the mid price of asset j, and q

(j)
n , an unknown order size of asset j, where

positive (negative) q
(j)
n means the purchase (sale) of asset j.1

Equation (33) can be rewritten, by (28) and (34), as

wn = 1−

d∑
j=1

(
p̄
(
q

(j)
n

)
−M (j)

n

)
q

(j)
n

Sn
, (35)

where

q(j)
n =

b
(j)
n+1Snwn − b(j)n x

(j)
n Nn−1

M
(j)
n

. (36)

Equations (35) and (36) are solvable by using a root-finding algorithm, where
wn = w(bn, bn+1,xn, Nn−1) is an unknown variable. TCF wn in (35) is calculated in the
following order: i) N0 = S0, ii) S1 by using (27), iii) w1 by using (35), iv) N1 = w1S1, v) S2 by
using (27), and vi) continued calculations.

TCF wn in (35) looks like a piecewise linear concave function as shown in Figure 7(b), 7(d),
and 7(f).2 Also, the greater net wealth at the end of the previous period Nn−1; the less wn and
more non-differentiable points in the 1D plots. This is because |k| in (25), the absolute value of the
executed level in LOB, increases as Nn−1 increases.

5.3. Transaction cost factor with both proportional and market impact costs

If both proportional TCs and MICs are considered, the growth wealth Sn consists of the sum of the
net wealth Nn, the MICs in (33), and the proportional TCs for buying and selling assets:

Sn = Nn +

d∑
j=1

(
p̄
(
q(j)
n

)
−M (j)

n

)
q(j)
n + cp

d∑
j=1

(
p̄
(
q(j)
n

)
q(j)
n

)+
+ cs

d∑
j=1

(
−p̄
(
q(j)
n

)
q(j)
n

)+
.3 (37)

1 The reason why M
(j)
n in (34) cannot be replaced with p̄

(
q
(j)
n

)
is that b

(j)
n+1Nn denotes the asset j’s portion of the net wealth,

excluding MICs, at the end of the n-th period. Also, M
(j)
n excludes MIC, while p̄

(
q
(j)
n

)
includes MIC.

2 Mathematical proof of the convexity of wn in (35) is not given in this chapter due to the complex equations: (24), (35), and
(36). However, numerically approximate values of second-order partial derivative at differentiable points of the nine 1D plots

in Figure 7(b), 7(d), and 7(f) are all positive when using the central difference
∂2f(x)

∂x2 ≈ f(x+h)−2f(x)+f(x−h)

h2 . This implies
that wn in (35) is not concave.

3 The reason why the proportional TCs in (37) cannot be replaced with cp
∑d

j=1

(
M

(j)
n q

(j)
n

)+
+ cs

∑d
j=1

(
−M(j)

n q
(j)
n

)+
is

that proportional TCs are determined by the actual traded price p̄
(
q
(j)
n

)
, not by the mid price M

(j)
n .
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(a) Ternary contour plot of transaction cost factor when Nn−1

is USD 104.
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(b) 1D plots of transaction cost factor when Nn−1 is USD 104

(each line matches each straight line in the left plot).
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(c) Ternary contour plot of transaction cost factor when Nn−1

is USD 105.
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(d) 1D plots of transaction cost factor when Nn−1 is USD 105

(each line matches each straight line in the left plot).
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(e) Ternary contour plot of transaction cost factor when Nn−1

is USD 106.
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Figure 7. Ternary contour plots and 1D plots of transaction cost factor wn = w(bn, bn+1, xn, Nn−1) in (35) with
the variable bn+1 and the fixed values: bn = [1/3 1/3 1/3]T and xn = [0.6 0.9 1.4]T. 10-level limit order book data
of AAPL (b(1)), AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used.
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This can be simplified, by the property of a+ = a+ (−a)+, as

Sn = Nn +
d∑

j=1

(
(1− cs)p̄

(
q(j)
n

)
−M (j)

n

)
q(j)
n + (cp + cs)

d∑
j=1

(
p̄
(
q(j)
n

)
q(j)
n

)+
, (38)

and can be rewritten, by (28), as

wn = 1−

∑d
j=1

(
(1− cs)p̄

(
q

(j)
n

)
−M (j)

n

)
q

(j)
n + (cp + cs)

∑d
j=1

(
p̄
(
q

(j)
n

)
q

(j)
n

)+

Sn
, (39)

where q
(j)
n is the same as (36). Equation (39) and (36) are also solvable by using a root-finding

algorithm, where wn = w(bn, bn+1,xn, Nn−1) is an unknown variable (cp and cs are omitted for
notational simplicity).

The ternary contour plots and 1D plots of wn in (39) are different from those of wn in (31) when
comparing between Figure {8(a), 8(b)} and Figure {6(a), 6(b)} due to the additional consideration
of MICs. In contrast, they are similar when comparing between Figure {8(c), 8(d), 8(e), 8(f)} and
Figure {6(c), 6(d), 6(e), 6(f)} because proportional TCs are much greater than MICs when cp or cs
is large.

Theorem 5.4 The quasi-concavity of function f : Rn → R is equivalent to the fact that f is
unimodal (i.e. single-peaked) (Simchi-Levi et al. 2014, p. 18).

TCF wn in (39) is a unimodal function of bn+1 (TCF wn in (31) and that in (35) are also
unimodal), as shown in Figure 8(a), 8(c), and 8(e), because wn strictly decreases as bn+1 goes away
from the maximum point:

b?
n+1

def
= arg max

b∈∆d−1

w(bn, b,xn, Nn−1) =
bn � xn

〈bn,xn〉
, (40)

where � denotes element-wise multiplication of vectors.1 Hence, wn in (39) is quasi-concave by
theorem 5.4,2 but

∑
i∈Jn

(ln〈b,x i+1〉+ lnwn) in (16) with wn in (39) is not a necessarily quasi-

concave function of b ∈ ∆d−1 by theorem 5.3.

6. Log-optimal portfolio

The log-optimal portfolio (or the log-utility approach) is one of OPS strategies and is the basis of
the proposed method described in Section 7.

1 The mathematical proof of the unimodality is not provided in this chapter.
2 Mathematical proof of the convexity of wn in (39) is not given in this chapter due to the complex equations: (24), (25), (39),

and (36). However, numerically approximate values of second-order partial derivative at differentiable points of the nine 1D

plots in Figure 8(b), 8(d), and 8(f) are all positive when using the central difference
∂2f(x)

∂x2 ≈ f(x+h)−2f(x)+f(x−h)

h2 . This

implies that wn in (39) is not concave.
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(b) 1D plots of transaction cost factor when cs = 0.1% (each
line matches each straight line in the left plot).
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(c) Ternary contour plot of transaction cost factor when

cs = 25%.
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(d) 1D plots of transaction cost factor when cs = 25% (each
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Figure 8. Ternary contour plots and 1D plots of transaction cost factor wn = w(bn, bn+1, xn, Nn−1) in (39) with the
variable bn+1 and the fixed values: bn = [1/3 1/3 1/3]T, xn = [0.6 0.9 1.4]T, cp = 0, and Nn−1 is USD 106. 10-level
limit order book data of AAPL (b(1)), AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used.
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6.1. Objective of log-optimal investment strategy1

Assume that the present moment is time 0 (do not see Figure 1). The wealth of a portfolio of a
single asset at the end of the n-th period (in the future) with an initial wealth S0 is

Sn = S0

n∏
i=1

Xi, (41)

where Xi is a random variable of the price relative at the end of the i-th period (i.e. Xi = Si

Si−1
,

where Si is a random variable of an asset’s price at the end of the i-th period). Taking the log of
both the sides gives

lnSn = lnS0 +

n∑
i=1

lnXi, (42)

and this can be rewritten as

ln

(
Sn
S0

)1/n

=
1

n

n∑
i=1

lnXi. (43)

As n becomes extremely large, the right-hand side of (43) converges to

lim
n→∞

1

n

n∑
i=1

lnXi = E[lnXi], (44)

under the assumption that the random variable Xi is independent and identically distributed, and
the wealth Sn converges to

lim
n→∞

Sn = S0e
mn, (45)

where m
def
= E[lnXi] is a growth rate. Consequently, for large n (i.e. long-term investment), the

wealth Sn grows (roughly) exponentially with mn; therefore, maximising the growth rate m is
critical for the long-term investment. In other words, the log is an appropriate utility function for
the long-term investment.

6.2. log-optimal portfolio with transaction costs

The growth wealth at the end of the next period (i.e. n+ 1; see Figure 1), from (27) and (28), is

Sn+1 = wnSn〈bn+1,X n+1〉, (46)

where wn = w(bn, bn+1,xn) is TCF in (31), the deterministic value Sn is the growth wealth at the
present moment, the d-dimensional variable bn+1 is the portfolio vector of the next period, and the
d-dimensional multivariate random variable X n+1 is a set of possible market vectors in the next
period.

Our aim is to choose an appropriate portfolio vector bn+1 to maximise the conditional expected
value of the log (the log behaves as a utility function for the long-term investment as mentioned in

1 The whole of this subsection is a paraphrase of (Luenberger 1998, pp. 419–421).
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Section 6.1) of the growth wealth at the end of the next period, given the observed market vectors
xn,xn−1, . . . ,x 1:

bn+1 = arg max
b∈∆d−1

E[lnSn+1]

= arg max
b∈∆d−1

E[ln (w(bn, b,xn)Sn〈b,X n+1〉)]

= arg max
b∈∆d−1

(
lnw(bn, b,xn) + E[ln〈b,X n+1〉|X n = xn,X n−1 = xn−1, . . . ,X 1 = x 1]

)
,

(47)

and this can be rewritten as

bn+1 = arg max
b∈∆d−1

(
lnw(bn, b,xn) + E[ln〈b,X n+1〉|X n = xn]

)
, (48)

under the assumption that the market process {X i} is a homogeneous first-order Markov process.
This result is the same as (Györfi and Vajda 2008, equation (5)) although they derived (48) in a
different way. Finally, the implementable algorithm to obtain bn+1 in (48) employs Equation (16)
and (17).

7. Proposed method of online portfolio selection

7.1. Assumptions for simplicity

I assume i) that assets are arbitrarily divisible (i.e. q
(j)
n ∈ R,∀j, n ≥ 1) to avoid mixed-integer

nonlinear programming1 and ii) that the market impact of trading by the proposed OPS method is
transitory, not persistent: i.e. portfolio rebalancing at the present moment does not affect the price
at the end of the next period sn+1 (see Figure 1).2

Only market orders, an order to buy or sell a specific number of shares q at the best price available
when an investor places his or her order, are submitted when the proposed strategy rebalances a
portfolio in order to avoid the risk of non-execution. In addition, the proposed method does not
split a large market order into smaller market orders in order to avoid potential liquidity risk in
the future:3 i.e. it rebalances a portfolio by using current LOBs (which are obvious) rather than by
using LOBs in the future (which are unknown).

The proposed method ignores hidden limit orders (HLOs), invisible in limit order books. If a
market order is executed against a hidden order, the trader submitting the market order may receive
an unexpected price improvement (Bauwens et al. 2007, p. 115): i.e. if HLOs are in a limit order
book, a trader may buy stocks at a cheaper price than expected, and he or she may sell stocks at a
superior price than expected. In other words, π̃(q) ≤ π(q),∀q ∈ R, where π̃(q) is the average market
impact cost with HLOs for order size q, and π(q) is that without HLOs in (23). The additional
liquidity from HLOs can be quantified by hidden volume rate, the total volume of trades against
hidden orders divided by the total volume of all trades. The mean of this value between 2 Jan 2014
and 31 Dec 2015 is {13.30%, 13.33%} in the case of stocks, not exchange traded products, traded
on {NYSE, NASDAQ}, respectively.4 Therefore, the difference between π̃(q) and π(q) may not be
significant.

1 Softwares of mixed-integer nonlinear programming are listed in (Bussieck and Vigerske 2011).
2 Dynamic trading strategy by Gârleanu and Pedersen (2013) allows for both the cases: transitory and persistent market

impact.
3 Expected overall market impact costs can be minimized by the split of a large market order into a number of smaller

consecutive market orders under a specified resilience rate (Alfonsi et al. 2008).
4 This value is the average of daily hidden volume rates, downloaded from the homepage of U.S. Securities and Exchange

Commission (URL: http://www.sec.gov/opa/data/market-structure/marketstructuredata-by-exchange.html).
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Figure 9. Ternary axes. Each vertex has the barycentric coordinate of b ∈ ∆2, and each unit vector ej corresponds
to the direction of the partial derivative with respect to b(j).

Computation time to calculate bn+1 between receiving real-time data of LOBs from a stock
exchange and sending market orders to rebalance a portfolio is ignored. To be specific, the price
and volume in LOBs change during the computation as LOBs are continuously updated by other
investors. Therefore, the proposed method actually uses the past LOBs, not the present, to calculate
bn+1. In other words, it employs TCF wn in (39) delayed for the computation time.

7.2. Details of the proposed method

The proposed method is based on the log-optimal portfolio with TCs in (48), as the same as (Györfi
and Vajda 2008). The difference between the existing (Györfi and Vajda 2008) and proposed
method is wn. I.e. wn = w(bn, bn+1,xn, Nn−1) in (39) is employed for the proposed method,
whereas wn = w(bn, bn+1,xn) in (31) is employed for the existing method. As a result, the portfolio
vector of the next period bn+1 of the proposed method depends on the net wealth of the previous
period Nn−1, while that of the existing method does not (the proposed method has less tendency of
portfolio rebalancing as Nn−1 increases, while the existing method does not).

Consequently, the proposed method uses the following equations: (15), (16), (17), (24), (25), (36),
and (39), where (16) is a constrained (i.e. bn+1 ∈ ∆d−1) nonlinear optimisation problem (Algorithm 1
describes the difference between the existing and proposed method). However, Equation (16) is
not a quasi-convex optimisation problem for both the cases, (31) and (39), which means a local
solution is not guaranteed to be a global solution, as mentioned in Section 5.1 and 5.3.

7.3. Local vs. global optimisation1

Let us find which is the appropriate optimisation algorithm between local and global optimisation
to maximise

∑
i∈Jn

(ln〈b,x i+1〉+ lnwn) in (16) with respect to b ∈ ∆d−1. The summation part is
equal to the sum of the following two equations:

f(b) =
∑
i∈Jn

ln〈b,x i+1〉, (49)

and

g(b) = |Jn| lnwn, (50)

where wn is either w(bn, b,xn) in (31) or w(bn, b,xn, Nn−1) in (39), in the case of |Jn| ≥ 1
(if |Jn| = ∅, the optimisation is not performed as the nine and tenth lines of Algorithm 1).

1 Neither Györfi and Vajda (2008) nor Ormos and Urbán (2013) explained how to solve the optimisation problem of (16).
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Algorithm 1: Difference between the existing (Györfi and Vajda 2008) and proposed method.

Input: cp, cs, S0, b1, and limit order book data between time 0 and the T -th period, where T
is the last period of trading.

Output: terminal wealth ST .
// Initialisation

1 L← 5 // The number of experts L is less than 10, specified in (Györfi and

Vajda 2008, p. 112), in order to reduce the computation time.

2 N0 ← S0

// A loop to update b n+1

3 for n← 1 to T do
4 for j ← 1 to d do

5 x
(j)
n ← M

(j)
n

M
(j)
n−1

// where M
(j)
n is the mid price of asset j at the end of the

n-th period.

6 end
7 for l← 1 to L do

8 Jn =

{
1 ≤ i ≤ n− 1

∣∣∣∣ ‖x i − xn‖ ≤
√

0.001d l
L

}
9 if Jn = ∅ then

10 h (l) ← b?
n+1 // b ?

n+1 in (40) is employed instead of b 1 in order not to

suffer large transaction costs.

11 else
12 switch method do
13 case existing do

14 h (l) ← arg max
b∈∆d−1

∑
i∈Jn

(ln〈b,x i+1〉+ lnw(bn, b,xn)) // by using (31).

15 case proposed do

16 h (l) ← arg max
b∈∆d−1

∑
i∈Jn

(ln〈b,x i+1〉+ lnw(bn, b,xn, Nn−1)) // by using (39).

17 end

18 end

19 S
(l)
past ← S0

n∏
i=1

〈
h (l),x i

〉
20 end

21 bn+1 ←
∑L

l=1 h
(l)S

(l)
past∑L

l=1 S
(l)
past

22 Sn ← Nn−1〈bn,xn〉
23 if unlimited liquidity then
24 Nn ← Snw(bn, bn+1,xn) // by using (31).
25 else
26 Nn ← Snw(bn, bn+1,xn, Nn−1) // by using (39).
27 end

28 end
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Figure 10. The sum of two unimodal functions is not necessarily unimodal.

f(b) is either (i) a constant, (ii) unimodal function of b ∈ ∆d−1, or (iii) strictly increasing
(decreasing) function of b if its first partial derivative (Figure 9 shows the direction of the partial
derivative when d = 3)

∂f(b)

∂b
=

[
∂f(b)

∂b(1)

∂f(b)

∂b(2)
. . .

∂f(b)

∂b(d)

]T

=

[∑
i∈Jn

x
(1)
i+1 − x

(d)
i+1

〈b,x i+1〉
∑
i∈Jn

x
(2)
i+1 − x

(1)
i+1

〈b,x i+1〉
. . .

∑
i∈Jn

x
(d)
i+1 − x

(d−1)
i+1

〈b,x i+1〉

]T

,

(51)

is, respectively:

(i) 0 ,∀b ∈ ∆d−1, where 0 is a zero vector (a sufficient condition that makes f(b) a constant

is
[
x

(1)
i+1 x

(2)
i+1 . . . x

(d)
i+1

]T
=
[
x

(d)
i+1 x

(1)
i+1 . . . x

(d−1)
i+1

]T
, ∀i ∈ Jn),

(ii) 0 at a single point (necessary conditions that make f(b) a unimodal function are

∃i ∈ Jn :
[
x

(1)
i+1 x

(2)
i+1 . . . x

(d)
i+1

]T
6=
[
x

(d)
i+1 x

(1)
i+1 . . . x

(d−1)
i+1

]T
, and |Jn| ≥ 2),

(iii) ¬0 , ∀b ∈ ∆d−1 (a necessary condition that makes f(b) a strictly increasing (decreasing)

function is ∃i ∈ Jn :
[
x

(1)
i+1 x

(2)
i+1 . . . x

(d)
i+1

]T
6=
[
x

(d)
i+1 x

(1)
i+1 . . . x

(d−1)
i+1

]T
).

However, f(b) cannot be multimodal since it is a concave function of b (see Appendix B).
g(b) is a unimodal function of b ∈ ∆d−1 for both the cases of wn = w(bn, b,xn) in (31) and

wn = w(bn, b,xn, Nn−1) in (39). This is because w(bn, b,xn) and w(bn, b,xn, Nn−1) are unimodal
functions of b as explained in Section 5.3; hence, g(b), the logarithmic function (which is strictly
increasing) of wn, is also unimodal.

Even though it is true that the sum of two unimodal functions is not necessarily unimodal as
shown in Figure 10, f(b)+g(b) is either unimodal or strictly increasing (decreasing) under a certain
condition:

(i) If f(b) is a constant, then f(b) + g(b) is unimodal without any conditions.
(ii) If f(b) is unimodal, then the unimodality of the sum depends on the number of

points that satisfy the equality: ∂f(b)
∂b + ∂g(b)

∂b = 0 , which denotes the local max-
imum of the sum. Figure {11(a), 11(b)} shows an example of the sum of two uni-
modal functions by using {(31), (39)}, where arg maxb∈∆1 f(b) = [0.3 0.7]T, and
arg maxb∈∆1 g(b) = [0.7 0.3]T. Hence, there exists a possibility that the sum has multi-
ple local maxima between 0.3 and 0.7 (e.g. Figure 10(b) and 10(c)). However, the sum
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Figure 11. If f(b) is unimodal, then f(b) + g(b) is also unimodal under low proportional transaction cost rates

(f(b) = ln
〈
b, [1.151 0.876]T

〉
+ ln

〈
b, [0.836 1.136]T

〉
, cp = cs = 1%, bn = [0.7 0.3]T, and xn = [1.1 1.1]T). More

non-differentiable points are observed in Figure {11(d),11(f)} than Figure {11(c),11(e)} because the average market
impact cost function is piecewise as shown in Figure 5.
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has a unique local maximum at the single point: {0.543, 0.560}, since the first-order
partial derivative of the sum is 0 at {0.543, 0.560} as shown in Figure {11(c), 11(d)}.
This is because both i) the opposite sign (i.e. ∂f(b)

∂b(1) < 0, ∂g(b)
∂b(1) > 0, ∀b(1) ∈ (0.3, 0.7)) as

shown in Figure {11(c), 11(d)}, and ii) the crossing between
∣∣∣∂f(b)
∂b(1)

∣∣∣ and
∣∣∣∂g(b)
∂b(1)

∣∣∣ only

once in the interval (0.3, 0.7) as shown in Figure {11(e), 11(f)}. Of course, it is pos-
sible that they cross more than once in the interval since both are increasing func-

tions in the interval (i.e.
∂
∣∣∣ ∂f(b)

∂b(1)

∣∣∣
∂b(1) = − ∂2f(b)

(∂b(1))2
=
∑
i∈Jn

(x(1)
i+1−x

(2)
i+1)

2

〈b,x i+1〉2 > 0, ∀b(1) ∈ (0.3, 0.7), and

∂
∣∣∣ ∂g(b)

∂b(1)

∣∣∣
∂b(1) = ∂2g(b)

(∂b(1))2
> 0,∀b(1) ∈ (0.3, 0.7)1). However, if the proportional TC rate is low (tech-

nically, low cp+cs
1+cp

from (C8)), the second partial derivative of g(b) is approximated as 0

(i.e. ∂2g(b)

(∂b(1))2
≈ 0), which in turn makes

∣∣∣∂g(b)
∂b(1)

∣∣∣ {a constant, piecewise constant function} in

the case of {(31), (39)} as shown in Figure {11(e), 11(f)}. As a result,
∣∣∣∂f(b)
∂b(1)

∣∣∣ and
∣∣∣∂g(b)
∂b(1)

∣∣∣
cross only once in the interval (0.3, 0.7) when cp+cs

1+cp
is low, which in turn makes f(b) + g(b)

unimodal.
(iii) If f(b) is strictly increasing (decreasing), then f(b) + g(b) is either unimodal or strictly

increasing (decreasing) under the same condition of low proportional TC rates as (ii). Even

if there exists an interval of the opposite sign between ∂f(b)
∂b(1) and ∂g(b)

∂b(1) , their absolute values
cross at most once if the latter is almost constant.

Consequently, f(b) + g(b) is either unimodal or strictly increasing (decreasing) under the sufficient
condition of low proportional TC rates (i.e. low cp+cs

1+cp
), which implies that a local maximum is

unique. Thus, the local optimum is guaranteed to be the global optimum when cp+cs
1+cp

is low.

7.4. Initial value of optimisation

b?
n+1 in (40) is recommended as the initial value of local optimisation, which makes wn = 1 (i.e. b?

n+1

is the portfolio vector of zero TCs by not rebalancing a portfolio), at the end of the n-th period.
This is in order to reduce the computation time of the optimisation: calculating g(b) = |Jn| lnwn

in (50) with TCF wn = w(bn, b,xn, Nn−1) in (39) requires using the price and volume data of
LOBs between the first absolute level of LOB and a higher absolute level of LOB (a positive level
means buying stocks, whereas a negative level means selling stocks) as b is farther away from
b?
n+1, which in turn causes a heavier burden to calculate (24). If the initial value is b?

n+1, the heavy
computation can be avoided at least at the early stage of the optimisation.

8. Simulations (backtesting)

Monte Carlo (MC) simulations consisting of independent trials of random stock selection—each
stock has an equal chance of being selected—were conducted to compare the performance among the
existing methods and the proposed method. This is similar to (Kozat and Singer 2011, Section 4),
while the differences are i) the number of trials, increased from 50 to 100 in order to generate more

1 The proof of
∂2g(b)

(∂b(1))2
> 0 is in Appendix C in the case of (31), but no proof of

∂2g(b)

(∂b(1))2
> 0 is provided in this chapter

in the case of (39). Meanwhile,
∂2g(b)

(∂b(1))2
> 0 is observed at differentiable points in Figure 11(b) by using the numerical

differentiation:
∂2g(b)

(∂b(1))2
≈ g(b+[h −h]T)−2g(b)+g(b−[h −h]T)

h2 , where h = 10−3.
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reliable results, and ii) the number of selected stocks, increased from 3 to 30 in order to generate
more practical results.

10-level (i.e. 10 levels of the ask side and 10 levels of the bid side) historical LOB data1 of NASDAQ
100 Index Components2 (30 components are randomly selected among the 100 components at each
trial) between 1 Jan 2008 and 31 Dec 2015 (total 2015 trading days) was downloaded from Limit
Order Book System: The Efficient Reconstructor (LOBSTER),3 and the LOB data was sampled
with the period of one day at the end of regular NASDAQ stock market trading (i.e. 4:00:00 p.m.
Eastern Time).4 Also, all OPS methods in this section rebalanced a portfolio at the closing time on
every U.S. trading day (i.e. rebalancing once a trading day).

The 8-year period of the NASDAQ data set is much shorter than the 44-year period of an NYSE
data set between 1962 and 2006,5 used in (Györfi and Vajda 2008, Györfi and Walk 2012, Horváth
and Urbán 2012) for their experiments. Hence, the pattern-matching-based OPS methods (e.g.
Györfi and Vajda (2008)’s and the proposed method) with the 8-year data might suffer from low
performance due to insufficient data to discover the tendencies of the market vectors, as similarly
observed in (Györfi et al. 2006, Table 4.1). Consequently, the two-stage splitting scheme (Györfi
et al. 2012, p. 102):6

(i) learning phase (that ranges between 1 Jan 1998 and 31 Dec 2007): only data collection is
conducted without portfolio rebalancing;

(ii) concurrent phase (that ranges between 1 Jan 2008 and 31 Dec 2015): both data collection and
portfolio rebalancing using the learning and concurrent phases are conducted concurrently;

was employed in the following experiments for Györfi and Vajda (2008)’s and the proposed method.
Structural breaks are not considered under the assumption that stock returns are stationary time

series. However, the concurrent phase might be broken into multiple parts if structural breaks exist.
To be specific, the following steps are required: detecting structural breaks (multiple breaks tests
may be conducted), estimating the number of change points, and testing change-point of returns
and volatility (Andreou and Ghysels 2009). For example, the concurrent phase can be broken into
the two parts: before and after the 2008 financial crisis, if a structural break exists at the stock price
collapse between September and November in 2008 as shown in Figure 19(b). This is because any
financial crisis could well be thought of as a switch in regime that is often reflected in a structural
break in the market volatility (Chakrabarti and Sen 2013, p. 8).

The actual number of stock candidates is 100 − 34 − 5 = 61 by the splitting: 34 companies
listed on NASDAQ after 1 Jan 1998 (their historical data is not enough for the learning phase),
and 5 companies delisted (ALTR, AMLN, DELL, and TLAB were acquired by other companies,
and FWLT was voluntarily delisted from NASDAQ) before 31 Dec 2015 (their historical data is
not enough for the concurrent phase). Therefore, the number of possible portfolio combinations is(

61
30

)
= 2.3× 1017, and the portion of 100

2.3×1017 = 4.3× 10-16 is covered by the MC simulations.
The range of proportional TC rate was set as cp = 0 and 0.00184% ≤ cs ≤ 0.5%

(i.e. 0.00184% ≤ cp+cs
1+cp

≤ 0.5%). This is because the securities transaction tax rates in most of

the G20 countries vary between 0.1% and 0.5% (Matheson 2011), and those in the United States in

1 If accessing LOB data at greater than level 10 is required, ask price and volume at level i ∈ Z>10 are estimated as

Pi = P10 +
P10−P−1

10
(i− 10), Vi =

∑10
k=1 Vk

10
, respectively. Similarly, if accessing LOB data at less than level -10 is required,

bid price and volume at level i ∈ Z<−10 are estimated as Pi = P−10 +
P−10−P1

10
(−i− 10), Vi =

∑10
k=1 V−k

10
, respectively.

2 Historical, not current, NASDAQ 100 Index Components on 1 Jan 2008 was downloaded from http://marketcapitalizations.

com/historical-data/historical-components-nasdaq/.
3 LOBSTER (https://lobsterdata.com/) has LOB data from 27 Jun 2007 to the present, and the LOB data of LOBSTER

does not include hidden LOBs (Huang and Polak 2011, Table 1).
4 1:00:00 p.m. data was used for the following NASDAQ early closing dates: 3 Jul 2008, 28 Nov 2008, 24 Dec 2008, 27 Nov

2009, 24 Dec 2009, 26 Nov 2010, 25 Nov 2011, 3 Jul 2012, 23 Nov 2012, 24 Dec 2012, 3 Jul 2013, 29 Nov 2013, 24 Dec 2013,
3 Jul 2014, 28 Nov 2014, 24 Dec 2014, 27 Nov 2015, and 24 Dec 2015.

5 The NYSE data is downloadable at http://www.cs.bme.hu/~oti/portfolio/data.html.
6 The original intention to introduce the two-stage splitting scheme by Györfi et al. (2012) is to prove its uselessness by the

assumption of the stationarity and long-term investment.
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2015 are cp = 0 and cs = 0.184 bps.1 However, stock brokerage commissions were ignored by an
assumption that institutional investors, who pay tiny commissions, rather than individual investors,
are the main users of OPS.

When calculating the price relative of asset j of the n-th day, cash dividends, stock dividends,
and stock splits should be considered as

x(j)
n =

M
(j)
n

A
(j)
n

C
(j)
n

M
(j)
n−1

A
(j)
n−1

C
(j)
n−1

, (52)

where
{
M

(j)
n , C

(j)
n , A

(j)
n

}
is the {closing mid, closing, adjusted closing} price from {LOBSTER,

Yahoo Finance, Yahoo Finance} of asset j of the n-th day. However, the proportion of the data
mismatching between LOBSTER and Yahoo Finance (i.e. (P1 6= C) ∨ (P−1 6= C), where P1 (P−1)
is the best ask (bid) price at the closing time from LOBSTER, and C is the closing price from
Yahoo Finance) for the 55 stocks and 2015 trading days was as high as 69.6%. Therefore, the price
relative of asset j of the n-th day was calculated as

x(j)
n =

A
(j)
n

A
(j)
n−1

. (53)

The following MC simulations are categorised into two parts according to whether the liquidity
of assets is unlimited or limited. The first is to provide a benchmark for the comparison between
the ideal assumption (i.e. unlimited liquidity) and the real stock market (i.e. limited liquidity),
and the second is to demonstrate both i) the performance deterioration of OPS by MICs and
ii) the superiority of the proposed method in the environment of the limited liquidity. Additionally,
graphical comparisons and computation time analysis are provided.

The MATLAB codes of the following experiments have been uploaded on http://www.mathworks.

com/matlabcentral/fileexchange/56496 to avoid any potential ambiguity of the MC simula-
tions.2 You may leave comments on the web page; any feedback or bug report is welcome.

8.1. In the case that the liquidity of assets is unlimited

In the case that the liquidity of assets is unlimited, TCF wn in (31) is employed to calculate both
the portfolio vector of next day bn+1 and net wealth Nn in (28) at the end of every day, but the
LOB data is disregarded.

8.1.1. Comparison between (Cover 1991) and (Blum and Kalai 1999). Since perfor-
mance comparison between (Cover 1991) and (Blum and Kalai 1999) had not been conducted
by Blum and Kalai (1999), it was carried out in this chapter. Their difference (i.e. Blum and Kalai
(1999) takes into account cp and cs when calculating bn+1, whereas Cover (1991) does not) is
described in Algorithm 2 in Appendix A.

The numerical integral in both (2) and (14) is performed by using MC methods. Let b(k) be
the k-th (k ∈ {1, 2, . . . ,K}) random numbers of the Dirichlet distribution with the d-dimensional

1 Order making fiscal year 2015 annual adjustments to transaction fee rates, U.S. Securities and Exchange Commission [Release

No. 34-74057/15 Jan 2015].
2 MATLAB fmincon (a local, not global, optimisation solver), which finds minimum of constrained nonlinear multivariable

function, was utilised to solve (16) for both the existing method with (31) and the proposed method with (39). MATLAB
R2011b and R2014b resulted in slightly different solutions of h(l)(x1:n) in (16), and the older version was used to perform

the simulations of this chapter.
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Figure 12. An example scatter plot of the Dirichlet distribution with α = [1/2 1/2 1/2]T and K = 103.

Table 2. Statistics of annualised returns for comparison between Cover and Blum’s method when market liquidity
is unlimited (cp = 0).

cs (%) 0.1 0.2 0.3 0.4 0.5
Cover Blum Cover Blum Cover Blum Cover Blum Cover Blum

P -value of JB test 0.374 0.374 0.376 0.376 0.378 0.378 0.380 0.380 0.381 0.382
Standard deviation (%) 1.16 1.16 1.16 1.16 1.15 1.15 1.15 1.15 1.15 1.15

Mean (%) 12.7 12.7 12.6 12.6 12.4 12.4 12.3 12.3 12.2 12.2
Difference of meansa (bps) -0.012 -0.022 -0.033 -0.042 -0.051

P -value of t-test 0.999 0.999 0.998 0.998 0.997

aDifference equals average annualised return of Blum minus that of Cover.

concentration parameter vector α = [1/2 1/2 . . . 1/2]T, where K = 103 is the number of samplings
(Figure 12 shows an example). The portfolio vector in (2) is then approximated as (Ishijima 2001)

bn+1 =

∑K
k=1 b(k)Sn(b(k),x 1:n)∑K

k=1 Sn(b(k),x 1:n)
. (54)

Table 2 shows the performance comparison between the two methods by using the annualised
return: (

ST
S0

) 252

T

− 1, (55)

where T is the number of total trading days, and 252 is the number of trading days in a year. Even
though the negative differences between the two means for all cs imply that the Cover’s method is
better than the Blum’s method, the statistical significance of the difference in means by unpaired
two-sample t-tests with unequal variances, whose null hypothesis is that the data in two groups
comes from independent random samples from normal distributions with equal means but different
variances, is negligible for all cs,

1 where the assumption of the normal distribution was tested by
the Jarque–Bera (JB) tests.

The t-tests (the t-test denotes the unpaired two-sample t-test with unequal variances here and
in the remainder of this chapter) answer whether the performance difference is fundamental or
whether it is due to random fluctuations (Simon 2013, p. 631). In other words, if a p-value of

1 Although the sample standard deviations at each cs in Table 2 are similar, unpaired two-sample t-tests with equal variance,

whose null hypothesis is that the data in two groups comes from independent random samples from normal distributions with
equal means and equal but unknown variances, were not performed. This is because even when the variances are identical,

the unequal variance t-test performs just as effectively as the equal variance t-test in terms of Type I error (Ruxton 2006).
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the t-test is less than a significance level (e.g. 0.05), the performance difference is fundamental.1

However, the p-values of the t-tests in Table 2 are greater than or equal to 0.05 for all cs, which
means that the performance difference between the Cover’s method and the Blum’s method is due
to random fluctuations. As a result, the Blum’s method is not compared to any other methods in
the subsequent experiments.

8.1.2. Comparison among (Kozat and Singer 2011), (Cover 1991), and (Györfi and
Vajda 2008).

1 The p-value of the t-test is interpreted as the probability that a difference in the mean values would be obtained, given that
the population means of two methods are equivalent. I.e. the p-value is not equal to the probability that the population

means are equivalent (Simon 2013, p. 635).
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Table 3. Statistics of annualised returns for comparison among Kozat, Cover, and Györfi’s method when market liquidity is unlimited (cp = 0).

cs (%) 0.00184 0.00184 0.00184 0.1 0.1 0.1 0.2 0.2 0.2
B&H Kozat Cover Györfi Kozat Cover Györfi Kozat Cover Györfi

P -value of JB test 0.419 0.603 0.768 0.038 0.602 0.76∗∗∗ 0.011 0.603 0.758 0.009
Standard deviation (%) 1.15 1.19 1.34 7.39 1.19 1.34 6.98 1.19 1.33 5.74

Mean (%) 11.3 12.1 12.8 21.4 12.1 12.7 17.6 12.1 12.6 16.1
Difference of meansa (%) - 0.80∗∗∗ 1.54∗∗∗ 10.10∗∗∗ 0.79∗∗∗ 1.40∗∗∗ 6.28∗∗∗ 0.79∗∗∗ 1.25∗∗∗ 4.82∗∗∗

P -value of t-test - 2.7×10-6 9.7×10-16 1.4×10-24 3.3×10-6 1.6×10-13 2.1×10-14 4.0×10-6 2.3×10-11 4.7×10-13

cs (%) 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5
Kozat Cover Györfi Kozat Cover Györfi Kozat Cover Györfi

P -value of JB test 0.603 0.753 0.081 0.604 0.750 0.063 0.602 0.747 0.066

Standard deviation (%) 1.19 1.33 5.62 1.19 1.33 5.81 1.19 1.33 5.89
Mean (%) 12.1 12.4 15.0 12.1 12.3 14.5 12.1 12.1 14.0

Difference of meansa (%) 0.78∗∗∗ 1.10∗∗∗ 3.69∗∗∗ 0.77∗∗∗ 0.95∗∗∗ 3.20∗∗∗ 0.76∗∗∗ 0.80∗∗∗ 2.69∗∗∗

P -value of t-test 4.8×10-6 2.5×10-9 3.5×10-9 5.9×10-6 1.8×10-7 4.1×10-7 7.1×10-6 8.7×10-6 1.8×10-5

aDifference equals average annualised return of the corresponding method at each cs minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 13. Box plots of annualised returns for comparison among Kozat, Cover, and Györfi’s method when market liquidity is unlimited (cp = 0).
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Figure 14. Mean of annualised returns for comparison among Kozat, Cover, and Györfi’s method when market
liquidity is unlimited (cp = 0).

The t-tests were performed to compare the performance between a benchmark and OPS methods
(Table 3 shows the results), where a strategy of buy-and-hold (B&H) with the initial portfolio b1

is the benchmark against all OPS methods, and its performance is independent of cp or cs as it
does not incur any TCs. The Kozat, Cover, and Györfi’s method show the positive differences
with p-values less than 0.01 when cs ≤ 0.5%, which means that these OPS methods are highly
fundamentally superior to B&H when cs ≤ 0.5%.

However, Wilcoxon rank sum tests (also called Wilcoxon–Mann–Whitney tests), whose null
hypothesis is that data in two groups are samples from continuous distributions (even non-normal
distributions) with equal medians, were not performed even though the violation of the normality
assumption of the t-test was confirmed by the JB test with the significance level of 0.05 as shown
in Table 3 (p-values of the JB test less than 0.05 are marked in bold, which implies non-normality).
This is because the t-test is superior to the Wilcoxon rank sum test when variances (i.e. the variance
of annualised returns of B&H and that of each OPS method) differ (Skovlund and Fenstad 2001).

Standard deviation in Table 3 can be interpreted as the sensitivity of the annualised return to
the random stock selection: the Kozat’s method and the Györfi’s method are the least and most
sensitive, respectively, for all cs. In addition, Figure 14 (Figure 13) shows the decreasing trend
of the performance as cs increases by using the mean (box plots) of annualised returns of each
method: the Kozat’s method and the Györfi’s method show the least and most decreasing trend,
respectively.

Figure 13 shows that the higher expected return does not always guarantee the higher profits. In
other words, there is no best OPS method, but investors may choose a preferable OPS method by
considering both the expected return and the risk (i.e. standard deviation of annualised returns).
Meanwhile, negative returns are observed in the low outliers of the Györfi’s method when cs ≥ 0.1%,
resulting in the loss of money (i.e. ST < S0).

8.2. In the case that the liquidity of assets is limited

In the case that the liquidity of assets is limited, TCF wn in (39) is employed to calculate the net
wealth Nn in (28) at the end of every day. Therefore, the performance of all OPS methods depends
on initial wealth S0 because TCF wn in (39) is a function of Sn: i.e. the greater S0; the greater
MICs, which in turn causes less performance of OPS compared to Section 8.1. However, only the
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Table 4. Statistics of annualised returns for comparison among Kozat, Cover, Györfi’s, and proposed method when market liquidity is limited and S0 = 104 (cp = 0).

cs (%) 0.00184 0.00184 0.00184 0.00184 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
B&H Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed

P -value of JB test 0.419 0.601 0.735 0.009 0.027 0.602 0.728 0.009 0.016 0.604 0.723 0.020 0.149
Standard deviation (%) 1.15 1.19 1.33 8.50 7.00 1.19 1.33 7.81 5.89 1.19 1.32 5.92 5.38

Mean (%) 11.3 12.1 12.7 16.0 17.9 12.1 12.6 14.5 16.1 12.1 12.4 14.4 15.0
Difference of meansa (%) - 0.79∗∗∗ 1.39∗∗∗ 4.67∗∗∗ 6.61∗∗∗ 0.79∗∗∗ 1.25∗∗∗ 3.22∗∗∗ 4.84∗∗∗ 0.78∗∗∗ 1.10∗∗∗ 3.14∗∗∗ 3.74∗∗∗

P -value of t-test - 3.4×10-6 1.6×10-13 3.6×10-7 2.3×10-15 4.1×10-6 2.2×10-11 8.8×10-5 1.1×10-12 5.0×10-6 2.3×10-9 9.4×10-7 6.0×10-10

cs (%) 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5

Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed

P -value of JB test 0.603 0.716 0.074 0.066 0.603 0.712 0.059 0.056 0.603 0.707 0.063 0.067

Standard deviation (%) 1.19 1.32 5.74 5.55 1.19 1.32 5.89 5.84 1.19 1.32 5.95 5.93

Mean (%) 12.1 12.3 13.9 14.3 12.1 12.1 13.7 13.8 12.1 12.0 13.3 13.2
Difference of meansa (%) 0.77∗∗∗ 0.95∗∗∗ 2.64∗∗∗ 3.04∗∗∗ 0.76∗∗∗ 0.80∗∗∗ 2.39∗∗∗ 2.52∗∗∗ 0.76∗∗∗ 0.65∗∗∗ 2.02∗∗∗ 1.91∗∗∗

P -value of t-test 6.0×10-6 1.7×10-7 1.7×10-5 4.6×10-7 7.3×10-6 8.4×10-6 1.2×10-4 4.9×10-5 8.8×10-6 2.5×10-4 1.2×10-3 2.1×10-3

aDifference equals average annualised return of the corresponding method at each cs minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

0.00184 0.1 0.2 0.3 0.4 0.5

cs (%)

-5

0

5

10

15

20

25

30

A
n
n
u
al
is
ed

re
tu
rn

(%
)

Kozat
Cover
Györfi
Proposed

B&H

-5

0

5

10

15

20

25

30

Figure 15. Box plot of annualised returns for comparison among Kozat, Cover, Györfi’s, and proposed method when market liquidity is limited and S0 = 104 (cp = 0).

62



Table 5. Statistics of annualised returns for comparison among Kozat, Cover, Györfi’s, and proposed method when market liquidity is limited and S0 = 105 (cp = 0).

cs (%) 0.00184 0.00184 0.00184 0.00184 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
B&H Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed

P -value of JB test 0.419 0.603 0.731 0.008 0.027 0.601 0.726 0.009 0.015 0.602 0.722 0.021 0.165
Standard deviation (%) 1.15 1.19 1.33 8.51 6.79 1.19 1.33 7.83 5.71 1.19 1.32 5.92 5.36

Mean (%) 11.3 12.1 12.7 15.3 17.6 12.1 12.6 14.2 15.9 12.1 12.4 14.3 14.7
Difference of meansa (%) - 0.79∗∗∗ 1.39∗∗∗ 3.95∗∗∗ 6.28∗∗∗ 0.79∗∗∗ 1.25∗∗∗ 2.93∗∗∗ 4.61∗∗∗ 0.78∗∗∗ 1.10∗∗∗ 3.01∗∗∗ 3.40∗∗∗

P -value of t-test - 3.4×10-6 1.7×10-13 1.2×10-5 6.2×10-15 4.1×10-6 2.3×10-11 3.4×10-4 2.5×10-12 5.0×10-6 2.5×10-9 2.3×10-6 1.0×10-8

cs (%) 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5

Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed Kozat Cover Györfi Proposed

P -value of JB test 0.603 0.717 0.073 0.059 0.603 0.711 0.059 0.057 0.605 0.706 0.063 0.077

Standard deviation (%) 1.19 1.32 5.74 5.45 1.19 1.32 5.89 5.78 1.19 1.32 5.95 5.81

Mean (%) 12.1 12.3 13.9 13.9 12.1 12.1 13.7 13.4 12.1 12.0 13.3 12.9
Difference of meansa (%) 0.77∗∗∗ 0.95∗∗∗ 2.57∗∗∗ 2.58∗∗∗ 0.76∗∗∗ 0.80∗∗∗ 2.35∗∗∗ 2.14∗∗∗ 0.76∗∗∗ 0.65∗∗∗ 1.99∗∗∗ 1.64∗∗∗

P -value of t-test 6.0×10-6 1.8×10-7 2.6×10-5 1.0×10-5 7.3×10-6 8.8×10-6 1.6×10-4 4.5×10-4 8.8×10-6 2.6×10-4 1.4×10-3 6.7×10-3

aDifference equals average annualised return of the corresponding method at each cs minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 16. Box plot of annualised returns for comparison among Kozat, Cover, Györfi, and proposed method when market liquidity is limited and S0 = 105 (cp = 0).
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Figure 17. Mean of annualised returns for comparison among Kozat, Cover, Györfi’s, and proposed method when
market liquidity is limited and S0 = 104 (cp = 0).

Table 6. Mean difference of annualised returns between Györfi’s and proposed method when S0 = 104 (cp = 0).

cs (%) 0.00184 0.1 0.2 0.3 0.4 0.5
Difference of meansa (%) 1.94∗ 1.62∗ 0.60 0.40 0.12 −0.12

P -value of t-test 0.080 0.099 0.457 0.614 0.882 0.889

aDifference equals average annualised return of the proposed method minus that of
Györfi. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

proposed method takes into account the LOB data as well as cp, cs when calculating bn+1.

8.2.1. When initial wealth S0 is small
(
S0 = 104

)
. When initial wealth S0 is as small as

USD 10k, the performance deterioration of the Györfi’s method is severe when comparing between
Figure 14 and 17 (or between Figure 13 and 15). In addition, the performance difference between
the Györfi’s and proposed method is marginally statistically significant when cs ≤ 0.1% as shown in
Table 6, which means that the proposed method is not effective compared to the Györfi’s method
for small-sized funds with high proportional TCs. Moreover, the p-value tends to increase as cs
increases, which proves the low effectiveness of the proposed method with high proportional TCs.
This was foreseen in Section 5.3: the proportion of MICs in TCs decreases as cp or cs increases,
which in turn makes the proposed method less different from the Györfi’s method.

8.2.2. When initial wealth S0 is large
(
S0 = 105

)
. When S0 is as large as USD 100k

(a hundred thousand US dollars is not a large fund size but relatively large for the Györfi’s
and proposed method in terms of MICs), the performance deterioration of the Györfi’s method
is higher than the proposed method when comparing between Figure 17 and 18 (or between

Table 7. Mean difference of annualised returns between Györfi’s and proposed method when S0 = 105 (cp = 0).

cs (%) 0.00184 0.1 0.2 0.3 0.4 0.5
Difference of meansa (%) 2.33∗∗ 1.68∗ 0.39 0.01 −0.21 −0.35

P -value of t-test 0.034 0.085 0.626 0.991 0.797 0.673

aDifference equals average annualised return of the proposed method minus that of
Györfi. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 18. Mean of annualised returns for comparison among Kozat, Cover, Györfi, and proposed method when
market liquidity is limited and S0 = 105 (cp = 0).

Figure 15 and 16). To be specific, the proposed method is fundamentally superior to the Györfi
method when cs = 0.00184% and S0 = 105, while it is marginally fundamentally superior to the
Györfi method when cs = 0.00184% and S0 = 104. This means that the proposed method is more
effective than the Györfi method for large-sized funds and low TC rates (i.e. small value of cp+cs

1+cp
).

The performance of the Kozat’s method and the Cover’s method does not change even when
S0 increases from USD 104 to 105 as shown in Figure 17 and 18. This is for the following two
reasons: i) bn+1 is independent of Sn in the case of the Kozat’s method and the Cover’s method. ii)
The Kozat’s method and the Cover’s method trade much less than the Györfi’s and the proposed

method. I.e. the market order size q
(j)
n in (39) of the Kozat’s method and the Cover’s method is

much less than that of the Györfi’s and the proposed method (this will be shown in Figure 21);

hence, p̄
(
q

(j)
n

)
in (39) is replaced with either P1 or P−1 (i.e. the best ask or bid price) for both

S0 = 104 and S0 = 105, which results in the same TCF and same performance for each cs between
S0 = 104 and S0 = 105.

8.3. Graphical comparisons

Figure 19 shows the growth wealth Sn of a portfolio of five stocks when market liquidity is limited,
and when initial wealth S0 is USD 100k, where Figure 19(b) is the magnified plot of the beginning
part of Figure 19(a). All the OPS methods made huge losses at the beginning part due to the
financial crisis of 2008, but they have been converted to profits by the bull NASDAQ stock market
for seven years since 2009.

Figure 20 shows the proportion of portfolio (i.e. the portfolio vector bn) that made the growth
wealth in Figure 19(b), in the form of area plots. The portfolio vector of B&H changes over time,
as shown in Figure 20(a), as the prices of assets change over time, and Figure 20(b) is similar to
Figure 20(a) because the Kozat’s method tries to minimize TCs. On the one hand, the Cover’s
method made an almost constant portfolio vector over time as shown in Figure 20(c), but on the
other hand, the Györfi’s and the proposed method generated abrupt changes of the portfolio vector
over time, as shown in Figure 20(d) and 20(e). Meanwhile, Figure 20(e) shows fewer spikes than
Figure 20(d) as the proposed method impedes the rapid portfolio changes: i.e. it considers MICs and
makes a decision that a small change of the portfolio vector is more profitable than a large change.
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(a) Between 2 Jan 2008 and 31 Dec 2015 (annualised return is buy-and-hold 15.5%; Kozat 15.7%; Cover 17.1%; Györfi 20.1%;
proposed method 23.4%).
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(b) Between 2 Jan 2008 and 31 Dec 2008.

Figure 19. Growth wealth over time when the portfolio consists of AMZN, CDNS, CTAS, MSFT, and SNDK
(S0 = 105, cp = 0, cs = 0.00184%).

Figure 21 shows market orders q
(j)
n ,∀j = {1, 2, . . . , 5} that made the growth wealth in Figure 19(b),

calculated from (36). The amplitude of the market order varies among the OPS methods. In
particular, Figure 21(d), by the proposed method, shows smaller amplitude than Figure 21(c), by
the Györfi’s method; the amplitude difference between Figure 21(d) and 21(c) corresponds to the
difference between Figure 20(e) and 20(d).

Figure 22 shows TCs (including MICs) by the marker orders in Figure 21 and confirms that the
more TCs are charged as the greater magnitude of market order is generated, where TC including
MIC at the end of the n-th day is calculated as

Cn = (1− wn)Sn, (56)

from (26) and (28). Both the Györfi’s and the proposed method lead to zero TCs (i.e. Cn = 0, which
means no trading at the end of the n-th day) on some days as shown in Figure 22(b), whereas the
Kozat’s method and the Cover’s method do not, as shown in Figure 22(a). The zero TCs of the
Györfi’s and proposed method are caused by the two possibilities: no matching (i.e. Jn = ∅ in (17)
for all l) and the dominance of TCs (i.e. b?

n+1 in (40) is the solution of (16) for all l).
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(a) Buy-and-hold.

(b) Kozat.

(c) Cover.

(d) Györfi.

(e) Proposed method.

Figure 20. Proportion of portfolio over time between 2 Jan 2008 and 31 Dec 2008 (S0 = 105, cp = 0, cs = 0.00184%).
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(b) Cover.
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(c) Györfi.
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Figure 21. Market order over time between 2 Jan 2008 and 31 Dec 2008 (S0 = 105, cp = 0, cs = 0.00184%). Positive
(negative) values of market order indicate buying (selling) stocks.

68



02-Jan-2008 03-Mar-2008 01-May-2008 01-Jul-2008 02-Sep-2008 03-Nov-2008

T
ra
n
sa
ct
io
n
co
st

C
n
(U

S
D
)

10-3

10-2

10-1

100

101

Kozat

Cover

(a) Kozat and Cover.
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(b) Györfi’s and proposed method.

Figure 22. Transaction costs including market impact costs over time between 2 Jan 2008 and 31 Dec 2008 (S0 = 105,
cp = 0, cs = 0.00184%).

Table 8. Sample mean and standard deviation of computation time (d = 30).

Kozat Cover Györfi Proposed
(
S0 = 104

)
Proposed

(
S0 = 105

)
Time (seconds) 0.20± 0.02 0.03± 0.00 0.84± 1.31 0.97± 0.87 1.79± 1.22

8.4. Computation time

Table 8 shows the computation time to calculate bn+1 for the simulations in Section 8.2 by using
AMD OpteronTM 6376 CPU and MATLAB R2011b. The computation time to calculate bn+1

depends on n (i.e. the greater n; the longer computation time) in the case of the Kozat’s, Györfi’s,
and proposed method. Thus, only the worst case, n = 2013,1 was measured for all the OPS methods.
It takes longer for the proposed method to calculate bn+1 by the additional time to calculate MICs
than the Györfi’s method. In addition, the computation time of the proposed method increases
as the initial wealth S0 increases. This is because the larger wealth causes the heavier burden to
calculate p̄(q) in (24) by additionally using LOB data in higher absolute levels.

1 30 Dec 2015 (n = 2013), not 31 Dec 2015 (n = 2014), was the last day to calculate bn+1, where 2 Jan 2008 corresponds to

n = 0 (i.e. time 0; see Figure 1).
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9. Conclusion

The foremost contribution of this chapter has been to develop the new TCF model in Section 5.2
and 5.3 by considering MICs, quantified by LOB data, as well as the proportional TCs, while
the previous TCF model (Györfi and Vajda 2008) in Section 5.1 considered only the proportional
TCs. Secondly, it has been applied to both i) measuring OPS performance in a more practical way
by considering MICs (it was overestimated in all the previous OPS studies without MICs) and
ii) developing the new OPS method, described in Algorithm 1 (Section 8.2.2 showed its superiority
to the existing method (Györfi and Vajda 2008) for large-sized funds with low TC rates).
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Palczewski, J., Poulsen, R., Schenk-Hoppé, K.R. and Wang, H., Dynamic portfolio optimization with

transaction costs and state-dependent drift. European Journal of Operational Research, 2015, 243,
921--931.

Pristas, G., Limit order book dynamics and asset liquidity. PhD thesis, University of Zurich, 2007.
Ruxton, G.D., The unequal variance t-test is an underused alternative to Student’s t-test and the Mann--

Whitney U test. Behavioral Ecology, 2006, 17, 688--690.
Simchi-Levi, D., Chen, X. and Bramel, J., The logic of logistics: Theory, algorithms, and applications for

logistics management (3rd edn), 2014, Springer.
Simon, D., Evolutionary optimization algorithms, 2013, Wiley.
Skovlund, E. and Fenstad, G.U., Should we always choose a nonparametric test when comparing two

apparently nonnormal distributions?. Journal of Clinical Epidemiology, 2001, 54, 86--92.

71

http://ssrn.com/abstract=1977207


Steinbach, M.C., Markowitz revisited: Mean-variance models in financial portfolio analysis. SIAM review,
2001, 43, 31--85.

Sydsæter, K., Strøm, A. and Berck, P., Economists’ mathematical manual (4th edn), 2010, Springer.
Tunc, S., Donmez, M.A. and Kozat, S.S., Optimal investment under transaction costs: A threshold rebalanced

portfolio approach. IEEE Transactions on Signal Processing, 2013, 61, 3129--3142.

Appendix A: Algorithms of existing methods

Algorithm 2: Difference between (Cover 1991) and (Blum and Kalai 1999).

Input: cp, cs, S0, b1, and x 1:T , where T is the last period of trading.
Output: terminal wealth ST .
// Initialisation

1 K ← 103

2 N0 ← S0

3 for k ← 1 to K do
4 b(k)←Dir(α) // where Dir(α) is the random number generator of the Dirichlet

distribution with the d-dimensional concentration parameter vector

α = [1/2 1/2 . . . 1/2]T.
5 Npast(k)← 1

6 end
// A loop to update b n+1

7 for n← 1 to T do
8 for k ← 1 to K do
9 switch method do

10 case Cover do
11 Npast(k)← Npast(k)〈b(k),xn〉
12 case Blum do
13 Npast(k)← Npast(k)〈b(k),xn〉w(b(k), b(k),xn) // by using (31).

14 end

15 end

16 bn+1 ←
∑K

k=1 b(k)Npast(k)∑K
k=1Npast(k)

17 Sn ← Nn−1〈bn,xn〉
18 if unlimited liquidity then
19 Nn ← Snw(bn, bn+1,xn) // by using (31).
20 else
21 Nn ← Snw(bn, bn+1,xn, Nn−1) // by using (39).
22 end

23 end

This section is composed of Algorithm 2 and 3.

Appendix B: Concavity of Equation (4)

Let us check whether
∑

i∈Jn
ln〈b,x i+1〉 in (4) is a concave function of b ∈ ∆d−1 or not. The

first-order partial derivative of ln〈b,x i+1〉 with respect to b(j) (Figure 9 shows the direction of the
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Algorithm 3: Universal semi-constant rebalanced portfolio (Kozat and Singer 2011, p. 305).

Input: cp, cs, S0, b1, and x 1:T , where T is the last period of trading.
Output: terminal wealth ST .
// Initialisation

1 N0 ← S0

2 for j ← 1 to d do

3 W0(0, j)← b
(j)
1

4 end
// A loop to update b n+1

5 for n← 1 to T do
// Update Wn(x n, n, j), ∀j for the upward paths (see Figure 2)

6 for j ← 1 to d do
7 Wn(xn, n, j)← 0 // A bug (Wn(x n, n, j) is set as 0 for several times

in (Kozat and Singer 2011, Figure 3.2)) has been fixed.

8 end
9 for i← 0 to n− 1 do

10 τ ← 0 // where τ is the total wealth of Wn−1(x n−1, i, ·).
11 for j ← 1 to d do
12 τ ← τ +Wn−1(xn−1, i, j)
13 end
14 for j ← 1 to d do

15 Wn(xn, n, j)←Wn(xn, n, j) + τ
1/2

n− i
b
(j)
1 x(j)

n // A bug (b
(j)
n is used instead of

b
(j)
1 in (Kozat and Singer 2011, Figure 3.2)) has been fixed.

16 end

17 end
// Update Wn(x n, n, j), ∀j for the horizontal paths (see Figure 2)

18 for i← 0 to n− 1 do
19 for j ← 1 to d do

20 Wn(xn, i, j)←Wn−1(xn−1, i, j)
n− i− 1/2

n− i
x(j)
n

21 end

22 end

23 bn+1 ←
n∑

i=0

d∑
j=1

Wn(xn, i, j)∑n
k=0

∑d
l=1Wn(xn, k, l)

(
n− i+ 1/2

n− i+ 1
ej +

1/2

n− i+ 1
b1

)
// where

e j
def
= [0 . . . 0 1 0 . . . 0]T is a vector of all zeros except a single one at

location j.
24 Sn ← Nn−1〈bn,xn〉
25 if unlimited liquidity then
26 Nn ← Snw(bn, bn+1,xn) // by using (31).
27 else
28 Nn ← Snw(bn, bn+1,xn, Nn−1) // by using (39).
29 end

30 end

partial derivative when d = 3) is

∂ ln〈b,x i+1〉
∂b(j)

=
x

(j)
i+1 − x

(j′)
i+1

〈b,x i+1〉
, (B1)
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where j′
def
=

{
d, if j = 1

j − 1, otherwise
. The second-order partial derivative is

∂2 ln〈b,x i+1〉(
∂b(j)

)2 = −

(
x

(j)
i+1 − x

(j′)
i+1

)2

〈b,x i+1〉2
, (B2)

and the second-order mixed partial derivative is

∂2 ln〈b,x i+1〉
∂b(j)∂b(k)

= −

(
x

(j)
i+1 − x

(j′)
i+1

)(
x

(k)
i+1 − x

(k′)
i+1

)
〈b,x i+1〉2

, (B3)

where k′
def
=

{
d, if k = 1

k − 1, otherwise
, and j 6= k.

Theorem B.1 A (twice differentiable) function Rd → R is concave (convex) if and only if its
Hessian matrix is negative (positive) semidefinite.

The Hessian matrix of ln〈b,x i+1〉 when d = 2 is

H =


∂2 ln〈b,x i+1〉(

∂b(1)
)2 ∂2 ln〈b,x i+1〉

∂b(1)∂b(2)

∂2 ln〈b,x i+1〉
∂b(1)∂b(2)

∂2 ln〈b,x i+1〉(
∂b(2)

)2
 = −

[
a2

1 a1a2

a1a2 a2
2

]
, (B4)

where aj
def
=
x

(j)
i+1 − x

(j′)
i+1

〈b,x i+1〉
.

Theorem B.2 A symmetric matrix A is negative (positive) semidefinite if and only if all eigen-
values of A are nonpositive (nonnegative).

To find the eigenvalues of H, we need to set det(H− λI) equal to 0:

det(H− λI) =
(
−a2

1 − λ
) (
−a2

2 − λ
)
− (a1a2)2 = 0, (B5)

where I is the identity matrix, and solve (B5) for λ. This results in the eigenvalues of H:

λ1 = 0, λ2 = −
(
a2

1 + a2
2

)
= −


(
x

(1)
i+1 − x

(2)
i+1

)2

〈b,x i+1〉2
+

(
x

(2)
i+1 − x

(1)
i+1

)2

〈b,x i+1〉2

 ≤ 0, (B6)

which means that ln〈b,x i+1〉 is concave when d = 2 by theorem B.1 and B.2, and the eigenvalues
of H for the general case of d ≥ 3 are

λ1 = 0, λ2 = 0, . . . , λd−1 = 0, λd = −
d∑

j=1

a2
j ≤ 0, (B7)

which means that ln〈b,x i+1〉 is concave for all d ∈ Z≥2 by theorem B.1 and B.2. Consequently,∑
i∈Jn

ln〈b,x i+1〉 in (4) is a concave function of b ∈ ∆d−1 by the fact that the sum of concave
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(convex) functions is concave (convex).

Appendix C: Concavity of transaction cost factor

Let us check whether TCF wn in (31) is a concave function of bn+1 ∈ ∆d−1 or not by rewriting
(31) as

cp + cs
1 + cp

∑
l∈Gn

(
b
(l)
n x

(l)
n

〈bn,xn〉
− b(l)n+1wn

)
= 1− wn, (C1)

where the set Gn is defined as Gn
def
=

{
j ∈ {1, 2, . . . , d}

∣∣∣∣∣ b(j)n x
(j)
n

〈bn,xn〉
≥ b(j)n+1wn

}
, and

Gn has, if there is no trading at the end of the n-th period, the property of

Gn = {1, 2, . . . , d} ⇔ wn = 1 ⇔ b
(j)
n+1 =

b
(j)
n x

(j)
n

〈bn,xn〉
,∀j. Equation (C1) can be rewritten again as

wn =

1− cp + cs
1 + cp

∑
l∈Gn

b
(l)
n x

(l)
n

〈bn,xn〉

1− cp + cs
1 + cp

∑
l∈Gn

b
(l)
n+1

. (C2)

The first-order partial derivative of wn with respect to b
(j)
n+1 (Figure 9 shows the direction of the

partial derivative when d = 3) is

∂wn

∂b
(j)
n+1

=


ẇn, if j ∈ Gn ∧ j′ /∈ Gn

−ẇn, if j /∈ Gn ∧ j′ ∈ Gn

0, otherwise

, (C3)

where

ẇn
def
=

cp + cs
1 + cp

1− cp + cs
1 + cp

∑
l∈Gn

b
(l)
n x

(l)
n

〈bn,xn〉


1− cp + cs

1 + cp

∑
l∈Gn

b
(l)
n+1

2 , (C4)

and j′
def
=

{
d, if j = 1

j − 1, otherwise
. Hence, wn is not differentiable with respect to

b
(j)
n+1 when a true statement among i) j ∈ Gn ∧ j′ /∈ Gn, ii) j /∈ Gn ∧ j′ ∈ Gn, and

iii) (j ∈ Gn ∧ j′ ∈ Gn) ∨ (j /∈ Gn ∧ j′ /∈ Gn) in (C3) changes as bn+1 changes. For example, wn

is not differentiable at the maximum point, b?
n+1 in (40), since the left partial derivative:

∂−wn

∂b
(j)
n+1

= ẇn =

cp + cs
1 + cp

1− cp + cs
1 + cp

, (C5)
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and the right partial derivative:

∂+wn

∂b
(j)
n+1

= −ẇn = −

cp + cs
1 + cp

1− cp + cs
1 + cp

, (C6)

are not equal. The second-order partial derivative is

∂2wn(
∂b

(j)
n+1

)2 =

{
ẅn, if (j ∈ Gn ∧ j′ /∈ Gn) ∨ (j /∈ Gn ∧ j′ ∈ Gn)

0, otherwise
, (C7)

where

ẅn
def
=

2

(
cp + cs
1 + cp

)2
1− cp + cs

1 + cp

∑
l∈Gn

b
(l)
n x

(l)
n

〈bn,xn〉


1− cp + cs

1 + cp

∑
l∈Gn

b
(l)
n+1

3 . (C8)

The second-order mixed partial derivative is

∂2wn

∂b
(j)
n+1∂b

(k)
n+1

=


ẅn, if (j ∈ Gn ∧ j′ /∈ Gn ∧ k ∈ Gn ∧ k′ /∈ Gn)

∨(j /∈ Gn ∧ j′ ∈ Gn ∧ k /∈ Gn ∧ k′ ∈ Gn)
−ẅn, if (j ∈ Gn ∧ j′ /∈ Gn ∧ k /∈ Gn ∧ k′ ∈ Gn)

∨(j /∈ Gn ∧ j′ ∈ Gn ∧ k ∈ Gn ∧ k′ /∈ Gn)
0, otherwise

, (C9)

where k′
def
=

{
d, if k = 1

k − 1, otherwise
, and j 6= k. The concavity of wn in (31) at differentiable points is

determined by theorem B.1 and B.2; the Hessian matrix of wn at differentiable points when d = 2 is

H =


∂2wn(
∂b(1)

)2 ∂2wn

∂b(1)∂b(2)

∂2wn

∂b(1)∂b(2)

∂2wn(
∂b(2)

)2
 =

[
ẅn −ẅn

−ẅn ẅn

]
.1 (C10)

To find the eigenvalues of H, we need to set det(H− λI) equal to 0:

det(H− λI) = (ẅn − λ)2 − ẅ2
n = 0. (C11)

This results in the eigenvalues of H:

λ1 = 0, λ2 = 2ẅn, (C12)

1 Only the two cases are considered: Gn = {1} and Gn = {2}, even though there are four cases: Gn = ∅, Gn = {1}, Gn = {2},

and Gn = {1, 2}. Firstly, Gn cannot be the empty set because of Gn = ∅⇔ b
(j)
n x

(j)
n

〈bn,xn〉
< b

(j)
n+1, ∀j (i.e. b

(j)
n x

(j)
n

〈bn,xn〉
< b

(j)
n+1, ∀j is

false by bn, bn+1 ∈ ∆1). Secondly, b?
n+1 in (40), which satisfies bn+1 = b?

n+1 ⇔ Gn = {1, 2}, is the non-differentiable point

as mentioned in (C5) and (C6).
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where ẅn > 0 by the inequalities: 0 <
cp + cs
1 + cp

< 1, 0 ≤
∑
l∈Gn

b
(l)
n x

(l)
n

〈bn,xn〉
≤ 1, and 0 ≤

∑
l∈Gn

b
(l)
n+1 ≤ 1.

The eigenvalues of H for the general case of d ≥ 3 are

λ1 = 0, λ2 = 0, . . . , λd−1 = 0, λd = 2ẅn. (C13)

Consequently, wn in (31) at differentiable points is convex because all the eigenvalues of the Hessian
matrix are nonnegative.

However, wn is quasi-concave by theorem 5.4: TCF wn in (31) is a unimodal function of bn+1

because wn strictly decreases as bn+1 goes away from the maximum point b?
n+1 in (40), as shown

in Figure 6(a), 6(c), and 6(e).1

In summary, TCF wn in (31) is a continuous (as shown in Figure 6(b), 6(d), and 6(f)) but not
differentiable and quasi-concave but not concave function of bn+1 ∈ ∆d−1.

1 The mathematical proof of the unimodality is not provided in this chapter.
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Chapter 3. Algorithmic trading in limit order books

for online portfolio selection

1. Introduction

Online portfolio selection (OPS) rebalances a portfolio in every period (e.g. daily or weekly) in
order to maximise the portfolio’s expected terminal wealth in the long run.1 It is for a multi-period
investment and different from Markowitz mean-variance portfolio selection (MVPS), which is for
a single-period investment. OPS aims for higher expected terminal wealth without considering
variance (risk), but MVPS considers trade-off between the mean (expected wealth) and variance.

OPS directly optimises a portfolio in terms of the long-term investment without forecasting stock
returns (Li and Hoi 2014); hence, OPS does not use in-sample and out-of-sample tests. In contrast,
Valle et al. (2014a,b, 2015)’s portfolios achieve certain objectives in an in-sample period. Valle
et al. (2014a) made an absolute return portfolio by conducting the three steps: i) minimising the
regression slope of a portfolio, ii) maximising the regression intercept, and iii) minimising transaction
costs. Valle et al. (2014b) constructed a market-neutral portfolio by not using the pairs trading
but minimising the absolute value of the correlation between portfolio return and index return (a
constraint that the average return of the optimised portfolio is greater than or equal to that of the
benchmark index was set, in order to pursue high returns as well as the zero correlation). Valle
et al. (2015) constructed a factor-neutral portfolio that minimises the three factors’ effect of the
Fama–French model.

Price

Time
t1 t2

(a) Temporary impact.

Price

Time
t1 t2

(b) Permanent impact.

Figure 1. Two types of stock price trajectory affected by two subsequent purchases at time t1 and t2 (similar graphs
are in (Agliardi and Gençay 2014, p. 36)).

A problem of OPS is that it needs to send large market orders whenever it rebalances a large-sized
portfolio in every period. However, a very large market order cannot be executed if asset liquidity
is limited at the rebalancing time. Even if it is executed, it may cause a permanent, rather than

1 Literature surveys of OPS were carried out by Das (2014, pp. 22–29), Li and Hoi (2014), and Ha (2017, Section 3).
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Table 1. A 5-level limit order book of Microsoft Corporation, traded on NASDAQ, on 21 Jun 2012 at 16:00:00
(downloaded from https://lobsterdata.com/info/DataSamples.php). Bid-ask spread is USD 0.01, and midpoint

price is USD 30.135.

Level Price (USD) Volume (shares)

Asks

5 30.18 110,006
4 30.17 86,886
3 30.16 65,399
2 30.15 80,663
1 30.14 16,600

Bids

-1 30.13 -50,426
-2 30.12 -83,306
-3 30.11 -8,506
-4 30.10 -43,838
-5 30.09 -167,371

temporary, impact on asset prices (Figure 1 shows an example)1 and may make OPS strategies
unprofitable. This is because OPS is based on an assumption that portfolio rebalancing by OPS in
the current period does not affect the stock prices of the portfolio in the next period; the assumption
is no longer valid if the permanent impact occurs.

Existing trading algorithms (Almgren and Chriss 2001, Kissell et al. 2004, Alfonsi et al. 2008,
Lorenz 2008, Alfonsi et al. 2010, Guéant et al. 2012) may be considered for OPS to rebalance a
large-sized portfolio. However, they are impractical as they do not use limit order book (LOB;
Table 1 is an example) data. Almgren and Chriss (2001), Kissell et al. (2004) mathematically
models market impact but not considers LOB. Alfonsi et al. (2008, 2010) models the shape of LOB
as a block or a continuous function rather than employs LOB data. Guéant et al. (2012) uses LOB
data to calibrate the intensity parameters of trading execution, but they do not directly use LOB
data for optimal trading.

Therefore, the aim of this chapter is to develop an algorithmic trading strategy that splits a very
large market order into a number of consecutive market orders to minimise overall market impact
costs (MICs, also called price impact costs, can be generated by an investor who trades on an asset,
pushing the price up when buying the asset and pushing it down while selling (Damodaran 2012,
Chapter 5)) by taking into account LOB data. This is because the market can usually absorb these
smaller slices, resulting in reduced MICs (Kissell et al. 2003, p. 196).

The contributions of this chapter are:

• in Section 5, to propose an intraday trading algorithm, compatible with any OPS method,
available for any fund size, by considering real-time LOB data;

• in Section 6, to present backtesting results of the proposed intraday trading strategy for the
real-world data (historical NASDAQ LOB data).

Furthermore, it should be noted that this is the first attempt to combine OPS with algorithmic
trading.

The rest of this chapter is organised as follows. Section 2 reviews algorithmic trading strategies.
Section 3 lists mathematical notations. Section 4 reviews a transaction cost factor (TCF) model which
reflects MICs. Section 5 explains the proposed method of optimal intraday trading for multi-asset
portfolios. Section 6 presents the backtesting results. Lastly, Section 7 gives a conclusion.

2. Literature review of algorithmic trading

Algorithmic trading is the computerised execution of financial instruments following pre-specified
rules and guidelines (Kissell 2013, p. 269). It is classified by Kissell (2013, pp. 17–20) as follows:

1 The two kinds of market impact, temporary and permanent impact, have been distinguished by Almgren and Chriss (2001).
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(i) arrival price algorithm that optimises a trading path in order to balance the trade-off
between cost and risk at a user-specified level of risk aversion;

(ii) implementation shortfall algorithm, similar to the arrival price algorithm, but which
incorporates real-time adaptation, while the arrival price algorithm does not (the trading
path of implementation shortfall algorithm is updated by real-time data on every intraday
trading, while that of arrival price algorithm is determined before trading and does not
change during intraday trading);

(iii) black box algorithm that searches for profiting opportunities and makes investment
decisions based on market signals (e.g. asset prices and trading volume).

2.1. Arrival price algorithm

Almgren and Chriss (2001) and Kissell et al. (2004) commonly proposed an efficient frontier (akin
to the Markowitz efficient frontier in the portfolio theory) in a two-dimensional plane whose
axes are i) the expected value of MIC arising from the temporary and permanent market impact
(see Figure 1) and ii) its variance, which comes from price volatility. Hence, it allows an investor to
choose his or her trading strategy for portfolio management with a user-specified parameter of risk
aversion. The difference between (Almgren and Chriss 2001) and (Kissell et al. 2004) is how to
derive the equation of MIC. The former was derived from consecutive trades, whereas the latter
was derived from an aggregate trade.

Alfonsi et al. (2008) suggested a trading strategy that splits a very large market order for a
single-asset, not a multi-asset portfolio, into a number of consecutive market orders to reduce the
expected overall market impact. It determines the size of the individual orders with a parameter of
the resilience rate of a block-shaped LOB (it is assumed that an LOB consists of a continuous price
distribution of orders with a constant height). However, it does not consider the risk of the price
volatility as they assumed traders are risk-neutral unlike (Almgren and Chriss 2001, Kissell et al.
2004). Therefore, it minimises the expected value of MIC regardless of the risk.

Alfonsi et al. (2010) extended the trading strategy in LOBs of the constant function (Alfonsi
et al. 2008) to that in LOBs of a general shape function. Alfonsi et al. (2010) modelled discrete
data of LOB (volume and price in Table 1) as a continuous function of LOB density (volume
density at a given price). Both the strategies have the same optimal solution of intermediate orders:
ξ1 = ξ2 = · · · = ξN−1, where ξn is the size of the market order placed at time tn, and tN is the
ending time of trading. However, the optimal initial market order ξ0 for the generally shaped
LOBs is expressed as an implicit equation, while that for the block-shaped LOBs is expressed as a
closed-form equation.

2.2. Implementation shortfall algorithm

A path-dependent (dynamic) trading strategy, whose trading path is updated by real-time data,
by Lorenz (2008, Chapter 2–3) is superior in terms of generating a more efficient frontier to the
path-independent (static) trading strategy, whose trading path is determined before trading starts,
by Almgren and Chriss (2001). The superiority of the dynamic strategy comes from trading faster
and reducing the risk of the price volatility for the remaining time in the future if there was a
windfall trading gain (i.e. lower trading cost) in the past.

Guéant et al. (2012)’s trading strategy is similar to Almgren and Chriss (2001) in terms of
liquidating a certain quantity of a single-asset, not a multi-asset portfolio, within a given time
horizon. However, they are different in terms of order types and optimisation methods. Guéant et al.
(2012) sends limit orders by considering both price risk (stock price follows a Brownian motion) and
non-execution risk (limit orders are sometimes not executed), whereas Almgren and Chriss (2001)
sends market orders by considering the trade-off between price risk and MICs. Guéant et al. (2012)
uses the Hamilton–Jacobi–Bellman equation to solve the stochastic control problem of optimal
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liquidation, whereas Almgren and Chriss (2001) uses quadratic programming to construct efficient
frontier where the trade-off between price risk and MICs is binding.

2.3. Black box algorithm

Avellaneda and Lee (2010) constructed a statistical arbitrage strategy of a market-neutral long–short
portfolio, i.e. pairs trading: long 1 dollar in a stock and short βj dollars in the j-th factor, where a
multi-factor regression model decomposes a stock return R into a systematic component

∑m
j=1 βjFj

(m is the number of factors) and an idiosyncratic component R̃:

R =
m∑
j=1

βjFj + R̃. (1)

This method generates trading signals of buy, sell, or close of long (short) position by using the
mean-reverting property of the long–short portfolio’s return.

Cont et al. (2010) proposed a Markov model of the short-term dynamics of an LOB. The volume
of limit orders (see Table 1) is modeled as a Markov state, where a state transition occurs by a
limit order, a market order, or a stop order (cancellation of a limit order). Furthermore, Cont
et al. (2010) showed an application of this model to high-frequency trading by making a short-term
prediction of the mid price. This statistical arbitrage makes the round-trip transaction. It enters
a long position when the probability of the mid price increasing is high, and it exits the position
either when a profit is secured or when a loss of one tick is made.

Tan et al. (2011) explained how to detect stock cycles from historical stock prices. They used
mean reverting property of stock prices and provided a learning framework to trade on the cycles.
To be specific, long positions are held after detecting troughs of stock cycles, and short positions
are held after detecting peaks of stock cycles. In addition, a dynamic asset switching strategy was
proposed as the detection of stock cycles is for individual stocks.

The investment strategy by Caldeira and Moura (2013) is also pairs trading like the strategy
by Avellaneda and Lee (2010). Their difference is the long–short portfolio. Caldeira and Moura
(2013) made a pair of two stocks (their stock selection algorithm is based on the cointegration tests:
if two stocks are cointegrated, then it is possible to form a mean-reverting stationary process from
a linear combination of stock A and B), while Avellaneda and Lee (2010) made a pair of one stock
and multiple exchange-traded funds, or a pair of one stock and factors calculated from the principal
component analysis.

Mousavi et al. (2014) proposed a multi-tree genetic programming model that i) extracts profitable
trading rule bases for a multi-asset portfolio from historical data (daily closing price and transaction
volume) and ii) updates the portfolio weights over time. Even though it generates a distinct
decision rule for each stock, the rules for multiple stocks are evolved simultaneously, and the
correlations among multiple stocks are considered. Besides, the proposed model considers the risks
and transaction costs from active trading.

Bendtsen and Peña (2016) developed a single-asset trading algorithm with either long or closed
position (i.e. no short selling) by using technical indicators (e.g. the moving average, and the
relative strength index). Its goal is to generate buy or sell signals for trading a stock by learning
and predicting the stock movement. To be specific, they made gated Bayesian network learn a
lower risk investment strategy than the buy-and-hold strategy. The network goes back and forth
between the buy and sell phases, and it looks for an opportunity to buy or sell shares.

Xu et al. (2017) found an arbitrage opportunity through an empirical analysis of the LOB
resiliency of stocks traded on Shenzhen Stock Exchange. Their analysis shows that buy (sell) market
orders attract more buy (sell) limit orders especially i) when the bid-ask spread is one tick and
ii) when the buy (sell) market order size is less than the best ask (bid) volume (the best ask (bid)
volume is the volume of LOB at level 1 (−1); see Table 1).
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after the end of
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after the end of
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at time 2
after the end of

the n-th day

Mn,τ will be given

at time τ
(before or

at market closing)

after the end of
the n-th day

Figure 2. The timeline of intraday trading when the present moment is the end of n-th day. OPS rebalances a
portfolio at the end of every trading day (a day ends at time 0, e.g. 9:30 a.m. or 10:00 a.m., not midnight, in this
chapter), and an algorithmic trading strategy cushions the shock of the portfolio rebalancing from bn to bn+1.

Krauss et al. (2017) generated daily trading signals from lagged returns of stocks. They conducted
nonparametric nonlinear regression between the lagged returns and one-day-ahead return. In
particular, the following nonlinear regression methods were employed: deep neural networks,
gradient-boosted trees, and random forests. At the last step, a daily portfolio (that is going long
for the stocks of higher expected returns and going short for those of lower expected returns) is
constructed from the combined signals of the three methods.

3. Notations

The following notations are used in this chapter.

• A lowercase italic letter x indicates a deterministic scalar value, while a capital italic letter X
indicates a random variable. A lowercase italic bold letter x indicates a deterministic vector,
while a capital italic bold letter X indicates a multivariate random variable (i.e. a random
vector). A capital upright bold letter X denotes a deterministic matrix or a random matrix.

• bn =
[
b
(1)
n b

(2)
n . . . b

(d)
n

]T
is a portfolio vector of d risky assets (there is no risk-free asset in
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the portfolio) on the n-th day (see Figure 2), where n ∈ Z≥1, b
(j)
n ∈ R≥0 (i.e. neither short

selling nor buying stocks on margin is permitted), and
∑d

j=1 b
(j)
n = 1 (i.e. b

(j)
n is the proportion

of a portfolio invested in asset j ∈ {1, 2, . . . , d} at the n-th day). Hence, bn ∈ ∆d−1, where

∆d−1 =
{[
b(1) b(2) . . . b(d)

]T ∈ Rd≥0

∣∣∣ ∑d
j=1 b

(j) = 1
}

is the standard (d− 1)-simplex.

• bn,t ∈ ∆d−1 is an intraday portfolio vector at time t after the end of the n-th day, where
t ∈ {0, 1, . . . , τ}, and τ is the number of intraday tradings (see Figure 2; the portfolio
rebalancing from bn,τ to bn+1 is not counted as an intraday trading).

• b1 = [1/d 1/d . . . 1/d]T is an initial portfolio vector.

• A deterministic value m
(j)
n (if n is a past or present day), or random variable M

(j)
n (if n is a

future day) is the mid price of asset j at the end of the n-th day.

• A deterministic value m
(j)
n,t (if n, t is in the past or at the present), or random variable M

(j)
n,t

(if n, t is in the future) is the mid price of asset j at time t after the end of the n-th day.

Technically, m
(j)
n,0 = m

(j)
n and M

(j)
n,0 = M

(j)
n .

• A deterministic value x
(j)
n =

m
(j)
n

m
(j)
n−1

, or random variable X
(j)
n =

M
(j)
n

M
(j)
n−1

(
or X(j)

n =
M

(j)
n

m
(j)
n−1

)
is

the relative price of asset j for one day at the end of the n-th day.

• A deterministic vector xn =
[
x

(1)
n x

(2)
n . . . x

(d)
n

]T
∈ Rd>0, or multivariate random variable

X n =
[
X

(1)
n X

(2)
n . . . X

(d)
n

]T
∈ Rd>0 is a market vector, an array of the relative prices of all

assets, at the end of the n-th day.

• A deterministic value x
(j)
n,t =

m
(j)
n,t

m
(j)
n,t−1

, or random variable X
(j)
n,t =

M
(j)
n,t

M
(j)
n,t−1

(
or X

(j)
n,t =

M
(j)
n,t

m
(j)
n,t−1

)
is the intraday relative price of asset j between time t− 1 and t after the end of the n-th day,

where mn,−1
def
= mn−1,τ , and Mn,−1

def
= Mn−1,τ .

• A deterministic vector xn,t =
[
x

(1)
n,t x

(2)
n,t . . . x

(d)
n,t

]T
∈ Rd>0, or multivariate random variable

X n,t =
[
X

(1)
n,t X

(2)
n,t . . . X

(d)
n,t

]T
∈ Rd>0 is an intraday market vector, an array of the intraday

relative prices of all assets, at time t after the end of the n-th day.

4. Review of market impact costs and transaction cost factor

4.1. Market impact costs as a function of order size in a limit order book

MIC occurs when rebalancing a portfolio, and it can be written as a function of order volumes
and prices in LOBs. The average MIC as a function of order size q is defined as (Olsson 2005,
Chapter 2.3)

π(q,m, p1, p2, . . . , p−1, p−2, . . . , v1, v2, . . . , v−1, v−2, . . .)

def
=
|p̄(q,m, p1, p2, . . . , p−1, p−2, . . . , v1, v2, . . . , v−1, v−2, . . .)−m|

m
,

(2)
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where m = p−1+p1
2 is the midpoint between the best bid and ask price, called mid price. The average

price per share for the order size q is defined as

p̄(q,m, p1, p2, . . . , p−1, p−2, . . . , v1, v2, . . . , v−1, v−2, . . .)

def
=



−1∑
i=k+1

pivi + pk

(
q −

−1∑
i=k+1

vi

)
q

, if q < v−1

p−1, if v−1 ≤ q < 0

m, if q = 0

p1, if 0 < q ≤ v1
k−1∑
i=1

pivi + pk

(
q −

k−1∑
i=1

vi

)
q

, if v1 < q

,
(3)

where positive (negative) q means buying (selling) stocks, pi and vi with positive (negative) i are
the quoted ask (bid) price and volume at level i, respectively (pi and vi correspond to the second
and third column of Table 1, respectively, where vi ≥ 0, v−i ≤ 0,∀i ∈ Z≥1), and the highest (lowest)
trading level k when q > v1 (q < v−1) is

k =

{
x ∈ Z≥2

∣∣∣∣∣
x−1∑
i=1

vi < q ≤
x∑
i=1

vi

}
, (4a)

(
k =

{
x ∈ Z≤−2

∣∣∣∣∣
−1∑
i=x

vi ≤ q <
−1∑

i=x+1

vi

})
. (4b)

I.e. k represents the level in the order book where the q-th share would be executed.

4.2. Transaction cost factor with both proportional transaction costs and market
impact costs

The net wealth at time t after the end of the n-th day is a deterministic value νn,t if n, t is in the
past or at the present, while it is a random variable Nn,t if n, t is in the future (the notations of
random variables are omitted in the subsequent expressions), and it is defined as

νn,t
def
= sn,t − γn,t, (5)

where sn,t is the growth wealth at time t after the end of the n-th day, and γn,t is transaction cost
(TC) at time t after the end of the n-th day. The growth wealth sn,t can be calculated from the
previous net wealth νn,t−1:

sn,t = νn,t−1

d∑
j=1

b
(j)
n,tx

(j)
n,t = νn,t−1〈bn,t,xn,t〉, (6)

84



where νn,−1
def
= νn−1,τ , and 〈·, ·〉 denotes the inner product. Transaction cost factor (TCF) at time t

after the end of the n-th day is defined as (Györfi and Vajda 2008)

wn,t
def
=
νn,t
sn,t

, (7)

where wn,t ∈ (0, 1]⇔ γn,t ∈ [0, sn,t).
Let us calculate wn,t when rebalancing from bn,t to bn,t+1. If both proportional TCs and MICs

are considered, the growth wealth sn,t consists of the sum of the net wealth νn,t, the MICs, the
purchase TCs, and the sale TCs (Ha 2017):

sn,t = νn,t +

d∑
j=1

(
p̄
(
q

(j)
n,t

)
−m(j)

n,t

)
q

(j)
n,t + cp

d∑
j=1

(
p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+
+ cs

d∑
j=1

(
−p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+
, (8)

where cp, cs ∈ [0, 1) : cp + cs > 0 denotes the rate of proportional TCs when purchasing and selling
stocks, respectively (some arguments of (3), m, p1, p2, . . . , p−1, p−2, . . . , v1, v2, . . . , v−1, v−2, . . . of

asset j, are omitted in (8) and the subsequent expressions for notational simplicity), a+ def
= max(0, a),

q
(j)
n,t, an unknown order size of asset j, is

q
(j)
n,t =

b
(j)
n,t+1sn,twn,t − b

(j)
n,tx

(j)
n,tνn,t−1

m
(j)
n,t

, (9)

and b
(j)
n,τ+1

def
= b

(j)
n+1. Equation (8) can be simplified, by the property of a+ = a+ (−a)+, as

sn,t = νn,t +

d∑
j=1

(
(1− cs)p̄

(
q

(j)
n,t

)
−m(j)

n,t

)
q

(j)
n,t + (cp + cs)

d∑
j=1

(
p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+
, (10)

and this can be rewritten, by (7), as

wn,t = 1−

∑d
j=1

(
(1− cs)p̄

(
q

(j)
n,t

)
−m(j)

n,t

)
q

(j)
n,t + (cp + cs)

∑d
j=1

(
p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+

sn,t
, (11)

where w0,t
def
= 1, ∀t ∈ {0, 1, . . . , τ} (i.e. there are no TCs between time 0 and τ on the

0-th day). Equation (9) and (11) are solvable by using a root-finding algorithm, where
wn,t = w (bn,t, bn,t+1,xn,t, νn,t−1) is an unknown variable (cp and cs are omitted for notational
simplicity).

5. Proposed method of optimal intraday trading

This section explains

(i) how to calculate E[Sn+1|Fn] in the case of no intraday trading (i.e. τ = 0);
(ii) how to obtain an optimal trading path when rebalancing a portfolio from bn to bn+1, given

the number of intraday tradings τ ≥ 1 (see Figure 2);
(iii) how to calculate the optimal number of intraday tradings τ∗;
(iv) and how to consider real-time LOB data for optimal intraday trading.

The following assumptions are made for the simplicity of the proposed method:
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• asset prices follow the multi-dimensional Brownian motion;
◦ hence, the increments of asset prices are jointly normally distributed;
◦ and the increments of asset prices are mutually independent for different assets j 6= j′ or

different trading times t 6= t′;
• LOB at time t′ ∈ {t+ 1, t+ 2, . . . , τ} is the same as LOB at time t on the same day.

5.1. No intraday trading (τ = 0)

Suppose that a probability space (Ω,F , P ) equipped with a filtration Fn is given. If we do not
perform intraday trading, then the conditional expected value of the growth wealth at the end of
the (n+ 1)-th day, given the past observations, is written, by (6) and (7), as

E[Sn+1|Fn] =E[Nn〈bn+1,X n+1〉|Fn]

=E[SnWn〈bn+1,X n+1〉|Fn]

=E[SnWn|Fn]E[〈bn+1,X n+1〉|Fn]

=snwnE[〈bn+1,X n+1〉],

(12)

where

• Fn denotes the filtration of the process {X n}n∈Z≥1
up to day n,

• Nn is stochastic net wealth at the end of the n-th day,
• Sn = s0

∏n
i=1〈bi,X i〉 is stochastic growth wealth at the end of the n-th day with an initial

wealth s0,
• Wn = w(bn, bn+1,X n, Nn−1) is stochastic TCF at the end of the n-th day (SnWn and
〈bn+1,X n+1〉 are mutually independent by the assumption that X n and X n+1 are mutually
independent),

• sn = s0
∏n
i=1〈bi,x i〉 is deterministic growth wealth at the end of the n-th day,

• wn = w(bn, bn+1,xn, νn−1) is deterministic TCF at the end of the n-th day (SnWn is converted
to snwn by the conditional expectation given Fn),

• and the market vector X n+1 is jointly normally distributed with the mean vector of all ones
[1 1 . . . 1]T.

In other words, multi-asset price M n+1 follows the multi-dimensional Brownian motion with the
zero drift:

(M n+1 −mn) ∼ N (0 ,Σn), (13)

where M n+1 =
[
M

(1)
n+1 M

(2)
n+1 . . . M

(d)
n+1

]T
is the random mid-price vector at the end of the

(n+ 1)-th day, mn =
[
m

(1)
n m

(2)
n . . . m

(d)
n

]T
is the deterministic mid-price vector at the end of the

n-th day, 0 denotes the all-zero vector (forecasting the expected return of the next trading day is
not performed in this chapter), and Σn is the covariance matrix of price changes between the end of
the n-th day and the end of the (n+ 1)-th day. Hence, M n+1 is also jointly normally distributed as

M n+1 ∼ N (mn,Σn). (14)

As X n+1 can be calculated as

X n+1 = D−1M n+1, (15)
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where D = diag(mn), it is jointly normally distributed as

X n+1 ∼ N (1 ,D−1ΣnD
−1). (16)

Consequently, E[Sn+1|Fn] in (12) can be simplified as

E[Sn+1|Fn] =snwnE[〈bn+1,X n+1〉]

=snwnE
[
b
(1)
n+1X

(1)
n+1 + b

(2)
n+1X

(2)
n+1 + · · ·+ b

(d)
n+1X

(d)
n+1

]
=snwn

(
b
(1)
n+1E

[
X

(1)
n+1

]
+ b

(2)
n+1E

[
X

(2)
n+1

]
+ · · ·+ b

(d)
n+1E

[
X

(d)
n+1

])
=snwn

d∑
j=1

b
(j)
n+1

=snwn.

(17)

5.2. Single intraday trading (τ = 1)

If we perform intraday trading only once per trading day, then the conditional expected value of
the growth wealth at the end of the (n+ 1)-th day, given the past observations, is written, by (6),
(7), and (12), as

E[Sn+1|Fn] = snwnE[〈bn,1,X n,1〉Wn,1〈bn+1,X n+1,0〉], (18)

where

• wn = w(bn, bn,1,xn,0, νn−1,1) (wn is TCF at the end of the n-th day when rebalancing a
portfolio from bn to bn,1),

◦ xn,0 =

[
m

(1)
n

m
(1)
n−1,1

m
(2)
n

m
(2)
n−1,1

. . . m
(d)
n

m
(d)
n−1,1

]T

(xn,0 is not equivalent to

xn =

[
m

(1)
n

m
(1)
n−1

m
(2)
n

m
(2)
n−1

. . . m
(d)
n

m
(d)
n−1

]T

),

• X n,1 =

[
M

(1)
n,1

m
(1)
n

M
(2)
n,1

m
(2)
n

. . .
M

(d)
n,1

m
(d)
n

]T

,

• Wn,1 = w(bn,1, bn+1,X n,1, snwn),

• and X n+1,0 =

[
M

(1)
n+1

M
(1)
n,1

M
(2)
n+1

M
(2)
n,1

. . .
M

(d)
n+1

M
(d)
n,1

]T

(X n+1,0 is not equivalent to

X n+1 =

[
M

(1)
n+1

m
(1)
n

M
(2)
n+1

m
(2)
n

. . .
M

(d)
n+1

m
(d)
n

]T

).

Of course, the MIC function at time 1 after the end of the n-th day to calculate Wn,1 is stochastic
as LOBs are continuously updated by other investors between time 0 and 1. However, the random

variables P
(j)
i , V

(j)
i , ∀i, j in LOBs at time 1 are omitted in (18) for the simple expression, where

P
(j)
i (V

(j)
i ) is a random variable of the quoted price (volume) of asset j at level i in LOBs.

Under the assumption that the two random vectors, X n,1 and X n+1,0, are mutually independent,
Equation (18) can be rewritten again as

E[Sn+1|Fn] = snwnE[〈bn,1,X n,1〉Wn,1]E[〈bn+1,X n+1,0〉], (19)

but 〈bn,1,X n,1〉 and Wn,1 are mutually dependent as Wn,1 is a function of X n,1. Finally, by the
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property of E[〈bn+1,X n+1,0〉] = 1, proved in (17), E[Sn+1|Fn] in (18) can be simplified as

E[Sn+1|Fn] = snwnE[〈bn,1,X n,1〉Wn,1]. (20)

Our goal is to find the optimal portfolio vector b∗n,1 that maximises E[Sn+1|Fn], and this is a
stochastic programming problem as follows:

b∗n,1 = arg max
bn,1∈∆d−1

E[Sn+1|Fn]

= arg max
bn,1∈∆d−1

wnE[〈bn,1,X n,1〉Wn,1]

= arg max
bn,1∈∆d−1

wn

∫
xn,1∈Rd>0

〈bn,1,xn,1〉wn,1f(xn,1)dxn,1,

(21)

where wn,1 = w(bn,1, bn+1,xn,1, snwn), f(xn,1) is the probability density function (PDF) of the
multivariate normal distribution X n,1 ∼ N (1 ,D−1Σn,1D

−1), and D = diag(mn) (b∗n,1 is not a
function of sn as the growth wealth at the end of the n-th day sn = s0

∏n
i=1〈bi,x i〉 is independent of

bn,1). As a result, not only forecasting Σn,1, the covariance matrix of price changes between time 0
and 1 after the end of the n-th day (i.e. multivariate intraday volatility),1 but also calculating the
Monte Carlo numerical integration (a closed-form solution of E[Sn+1|Fn] does not exist as that of
wn,1 does not) are required to obtain b∗n,1.

Therefore, to avoid both the intraday forecasting and the heavy computation (ultimately, to make
the stochastic programming problem in (21) simpler), the expected value solution of the stochastic
programming, a suboptimal solution of b∗n,1, is calculated by replacing the random variable X n,1

in (21) with its expected value E[X n,1] = 1 (Birge and Louveaux 2011, p. 165):

b
∗
n,1 = arg max

bn,1∈∆d−1

wn〈bn,1,1 〉wn,1

= arg max
bn,1∈∆d−1

wnwn,1,
(22)

where wn,1 = w(bn,1, bn+1,1 , snwn) (the unimodality of wnwn,1 with respect to bn,1 ∈ ∆d−1 is not
proved in this chapter although an example is provided in Appendix A; therefore, a local optimum
is not guaranteed to be a global optimum). b

∗
n,1 is always worse than or equal to b∗n,1 in terms

of the value of the stochastic solution (VSS), defined as the loss by not considering the random
variations (Birge and Louveaux 2011, p. 9):

w∗nE[〈b∗n,1,X n,1〉W ∗n,1]− w∗nE
[〈

b
∗
n,1,X n,1

〉
W
∗
n,1

]
≥ 0, (23)

where

• w∗n = w(bn, b
∗
n,1,xn,0, νn−1,1),

• w∗n = w
(
bn, b

∗
n,1,xn,0, νn−1,1

)
,

• W ∗n,1 = w(b∗n,1, bn+1,X n,1, snw
∗
n),

• and W
∗
n,1 = w

(
b
∗
n,1, bn+1,X n,1, snw

∗
n

)
(VSS is always nonnegative for any stochastic program because b∗n,1 is an optimal solution, while

b
∗
n,1 is just one solution of arg maxb∈∆d−1 E[Sn+1|Fn] (Birge and Louveaux 2011, p. 166)). However,

1 Intraday (each day is divided into 10-minute intervals) volatility forecasting by using the univariate GARCH model (Σn,1 is
assumed as a diagonal matrix) was proposed by Engle and Sokalska (2012).
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Figure 3. The suboptimal path of single intraday trading is dependent on cp, cs, and νn−1,1 (cp = 0,
bn = [1/3 1/3 1/3]T, bn+1 = [0.8 0.1 0.1]T, and xn,0 = [0.6 0.9 1.4]T). 10-level limit order book data of AAPL (b(1)),
AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used.

the suboptimal solution b
∗
n,1, obtainable by nonlinear programming, has the merits of computational

simplicity by neither forecasting the intraday volatility nor conducting the Monte Carlo numerical
integration.
b
∗
n,1 is a function of cp, cs, and νn−1,1 as shown in Figure 3 because wn and wn,1 are a function

of cp, cs, and νn−1,1. To be specific, each arrow in Figure 3 indicates a suboptimal trading path
from the starting point:

b?n,1
def
=

bn � xn,0
〈bn,xn,0〉

, (24)

where � denotes element-wise multiplication of vectors, and w(bn, b
?
n,1,xn,0, νn−1,1) = 1, to the end

point bn+1. The starting point is b?n,1, not bn (b?n,1 is equivalent to bn if there are no price changes).
This is because bn changes over time as price changes even if we do not rebalance a portfolio, as

shown in Figure 11(a). Equation (24) indicates that b
?(j)
n,1 , the weight of asset j, increases (decreases)

as m
(j)
n,0, the current price of asset j, has increased (decreased) compared to m

(j)
n−1,1, the previous

price of asset j. I.e. if we do not trade at time 1 after the end of the n-th day (this is equivalent to

q
(j)
n,1 = 0, ∀j ⇔ w(bn, bn,1,xn,0, νn−1,1) = 1), then bn,1 = b?n,1 is satisfied.

5.3. Multiple intraday tradings (τ ≥ 2)

If we perform intraday trading more than once per day, then the conditional expected value of the
growth wealth at the end of the (n+ 1)-th day, given the past observations, is written, by (6), (7),
and (12), as

E[Sn+1|Fn] = snwnE

[(
τ∏
t=1

〈bn,t,X n,t〉Wn,t

)
〈bn+1,X n+1,0〉

]
, (25)

where

• wn = w(bn, bn,1,xn,0, νn−1,τ ),
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◦ xn,0 =

[
m

(1)
n

m
(1)
n−1,τ

m
(2)
n

m
(2)
n−1,τ

. . . m
(d)
n

m
(d)
n−1,τ

]T

,

• X n,t =


[
M

(1)
n,1

m
(1)
n

M
(2)
n,1

m
(2)
n

. . .
M

(d)
n,1

m
(d)
n

]T

, if t = 1[
M

(1)
n,t

M
(1)
n,t−1

M
(2)
n,t

M
(2)
n,t−1

. . .
M

(d)
n,t

M
(d)
n,t−1

]T

, if 2 ≤ t ≤ τ
,

• Wn,t = w(bn,t, bn,t+1,X n,t, snwn
∏t−1
t′=1〈bn,t′ ,X n,t′〉Wn,t′),

◦
∏0
t′=1(·) def

= 1,

◦ bn,τ+1
def
= bn+1,

• and X n+1,0 =

[
M

(1)
n+1

M
(1)
n,τ

M
(2)
n+1

M
(2)
n,τ

. . .
M

(d)
n+1

M
(d)
n,τ

]T

.

By the assumption that the random vectors, X n,1,X n,2, . . . ,X n,τ ,X n+1,0, are mutually indepen-
dent, Equation (25) can be rewritten as

E[Sn+1|Fn] = snwnE

[
τ∏
t=1

〈bn,t,X n,t〉Wn,t

]
E[〈bn+1,X n+1,0〉], (26)

but 〈bn,t,X n,t〉 and Wn,t are mutually dependent because Wn,t is a function of X n,t. Also,
〈bn,t,X n,t〉Wn,t and 〈bn,t′ ,X n,t′〉Wn,t′ are mutually dependent, where t 6= t′, because Wn,t

is a function of X n,1,X n,2, . . . ,X n,t−1 as well as X n,t. Finally, by using the property of
E[〈bn+1,X n+1,0〉] = 1, proved in (17), E[Sn+1|Fn] in (25) can be simplified as

E[Sn+1|Fn] = snwnE

[
τ∏
t=1

〈bn,t,X n,t〉Wn,t

]
. (27)

Our goal is to find the optimal portfolio vectors b∗n,1, b
∗
n,2, . . . , b

∗
n,τ that maximises E[Sn+1|Fn],

and this is a stochastic programming problem as follows:

b∗n,1, b
∗
n,2, . . . , b

∗
n,τ

= arg max
bn,1,bn,2,...,bn,τ∈∆d−1

E[Sn+1|Fn]

= arg max
bn,1,bn,2,...,bn,τ∈∆d−1

wnE

[
τ∏
t=1

〈bn,t,X n,t〉Wn,t

]

= arg max
bn,1,bn,2,...,bn,τ∈∆d−1

wn

∫
xn,1∈Rd>0

· · ·
∫
xn,τ∈Rd>0

τ∏
t=1

〈bn,t,xn,t〉wn,tf(xn,t)dxn,1 · · · dxn,τ ,

(28)

where

• wn,t = w(bn,t, bn,t+1,xn,t, snwn
∏t−1
t′=1〈bn,t′ ,xn,t′〉wn,t′),

◦ bn,τ+1
def
= bn+1,

• f(xn,t) is the PDF of the multivariate normal distribution N
(
1 ,D−1

n,t−1Σn,tD
−1
n,t−1

)
,

◦ and Dn,t−1 =

{
diag(mn), if t = 1

diag(M n,t−1), if 2 ≤ t ≤ τ
.

(b∗n,1, b
∗
n,2, . . . , b

∗
n,τ is not a function of sn as the growth wealth at the end of the n-th day

sn = s0
∏n
i=1〈bi,x i〉 is independent of bn,1, bn,2, . . . , bn,τ ). As a result, not only forecasting Σn,t,
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the covariance matrix of price changes between time t− 1 and t after the end of the n-th day (i.e.
multivariate intraday volatility), but also calculating the Monte Carlo numerical integration (a
closed-form solution of E[Sn+1|Fn] does not exist as that of wn,t does not) are required to obtain
b∗n,1, b

∗
n,2, . . . , b

∗
n,τ .

Therefore, to avoid both the intraday forecasting and the heavy computation (ultimately,
to make the stochastic programming problem in (28) simpler), the expected value solution
of the stochastic programming, a suboptimal solution of b∗n,1, b

∗
n,2, . . . , b

∗
n,τ , is calculated by

replacing all the random variables X n,1,X n,2, . . . ,X n,τ in (28) with their expected values
E[X n,1] = E[X n,2] = . . . = E[X n,τ ] = 1 (Birge and Louveaux 2011, p. 165):

b
∗
n,1, b

∗
n,2, · · · , b

∗
n,τ = arg max

bn,1,bn,2,...,bn,τ∈∆d−1

wn

τ∏
t=1

〈bn,t,1 〉wn,t

= arg max
bn,1,bn,2,...,bn,τ∈∆d−1

wn

τ∏
t=1

wn,t,

(29)

where wn,t = w
(
bn,t, bn,t+1,1 , snwn

∏t−1
t′=1wn,t′

)
, and bn,τ+1

def
= bn+1 (the unimodality of

wn
∏τ
t=1wn,t with respect to bn,1, bn,2, . . . , bn,τ ∈ ∆d−1 is not proved in this chapter; therefore,

a local optimum is not guaranteed to be a global optimum).1 b
∗
n,1, b

∗
n,2, . . . , b

∗
n,τ is always worse

than or equal to b∗n,1, b
∗
n,2, . . . , b

∗
n,τ in terms of the VSS, defined as the loss by not considering the

random variations (Birge and Louveaux 2011, p. 9):

w∗nE

[
τ∏
t=1

〈
b∗n,t,X n,t

〉
W ∗n,t

]
− w∗nE

[
τ∏
t=1

〈
b
∗
n,t,X n,t

〉
W
∗
n,t

]
≥ 0, (31)

where

• w∗n = w(bn, b
∗
n,1,xn,0, νn−1,τ ),

• w∗n = w
(
bn, b

∗
n,1,xn,0, νn−1,τ

)
,

• W ∗n,t = w
(
b∗n,t, b

∗
n,t+1,X n,t, snw

∗
n

∏t−1
t′=1

〈
b∗n,t′ ,X n,t′

〉
W ∗n,t′

)
,

◦ b∗n,τ+1
def
= bn+1,

• W ∗n,t = w
(
b
∗
n,t, b

∗
n,t+1,X n,t, snw

∗
n

∏t−1
t′=1

〈
b
∗
n,t′ ,X n,t′

〉
W
∗
n,t′

)
,

◦ and b
∗
n,τ+1

def
= bn+1.

However, the suboptimal solution b
∗
n,1, b

∗
n,2, . . . , b

∗
n,τ , obtainable by nonlinear programming, has

the merits of computational simplicity by neither forecasting the intraday volatility nor conducting
the Monte Carlo numerical integration.
b
∗
n,1, b

∗
n,2, . . . , b

∗
n,τ is a function of cp, cs, and νn−1,τ as shown in Figure 4 because wn and

wn,t,∀t ∈ {1, 2, . . . , τ} are a function of cp, cs, and νn−1,τ . To be specific, each arrow indicates a

suboptimal trading path from the starting point b?n,1 = bn�xn,0
〈bn,xn,0〉 in (24) to the end point bn+1.

1 If forecasting intraday expected return is possible, Equation (29) can be rewritten as the following equation by replacing 1 to

E[Xn,t]

b
∗
n,1, b

∗
n,2, · · · , b

∗
n,τ = arg max

bn,1,bn,2,...,bn,τ∈∆d−1

wn

τ∏
t=1

〈bn,t,E[Xn,t]〉wn,t, (30)

where wn,t = w
(
bn,t, bn,t+1,E[Xn,t], snwn

∏t−1
t′=1
〈bn,t′ ,E[Xn,t′ ]〉wn,t′

)
, and bn,τ+1

def
= bn+1.
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Figure 4. The suboptimal path of two intraday tradings is dependent on cp, cs, and νn−1,τ (cp = 0,
bn = [1/3 1/3 1/3]T, bn+1 = [0.8 0.1 0.1]T, and xn,0 = [0.6 0.9 1.4]T). 10-level limit order book data of AAPL (b(1)),
AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used.

A recommended initial value of bn,t for the optimisation of (29) is

b†n,t = b?n,1 +
t

τ + 1
(bn+1 − b?n,1), (32)

where t ∈ {1, 2, . . . , τ} (i.e. b†n,t,∀t is linearly located between b?n,1 and bn+1 with the same distance).

This is because the suboptimal portfolio vector b
∗
n,t, ∀t is not far from b†n,t,∀t as shown in Figure 3

and 4. As a result, the initial value b†n,t will reduce the computation time for searching the solution.

5.4. Optimal number of intraday tradings

The optimal number of intraday tradings τ∗ can be written as

τ∗ = arg max
τ∈Z≥0

sn+1(τ), (33)

where sn+1(τ) is the growth wealth at the end of the (n+ 1)-th day i) when a portfolio is rebalanced

through the suboptimal trading path b
∗
n,1, b

∗
n,2, . . . , b

∗
n,τ , given the number of intraday tradings τ ,

and ii) when neither prices nor LOBs change between the end of the n-th day and the end of the
(n+ 1)-th day (see Figure 2). sn+1(τ) can be written as

sn+1(τ) =

{
snw(bn, bn+1,xn,0, νn−1,τ ), if τ = 0

snw
∗
n

∏τ
t=1w

∗
n,t, if τ ≥ 1

, (34)

where

• w∗n = w
(
bn, b

∗
n,1,xn,0, νn−1,τ

)
,

• w∗n,t = w
(
b
∗
n,t, b

∗
n,t+1,1 , snw

∗
n

∏t−1
t′=1w

∗
n,t′

)
,

◦ and b
∗
n,τ+1

def
= bn+1.
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Also, sn+1(τ) can be rewritten, by (5) and (6), as

sn+1(τ) = sn −
τ∑
t=0

γn,t(τ), 1 (35)

where γn,t(τ) is TC at time t after the end of the n-th day, given the number of intraday tradings τ .

This results, by (10) and the zero price change (i.e. m
(j)
n,t = m

(j)
n , ∀t ∈ {1, 2, . . . , τ}), in

τ∗

= arg min
τ∈Z≥0

τ∑
t=0

γn,t(τ)

= arg min
τ∈Z≥0

τ∑
t=0

 d∑
j=1

(
(1− cs)p̄

(
q

(j)
n,t

∗
(τ)
)
−m(j)

n

)
q

(j)
n,t

∗
(τ) + (cp + cs)

d∑
j=1

(
p̄
(
q

(j)
n,t

∗
(τ)
)
q

(j)
n,t

∗
(τ)
)+

 ,
(36)

where q
(j)
n,t

∗
(τ) is the order size of asset j when rebalancing a portfolio by following the suboptimal

trading path from b
∗
n,t to b

∗
n,t+1, given the number of intraday tradings τ .

Equation (36) implies that overall TCs
∑τ

t=0 γn,t(τ), consisting of proportional TCs and MICs, can

be minimised when τ is large enough to make
∣∣∣q(j)
n,t

∗
(τ)
∣∣∣ small for all j and all t ∈ {0, 1, . . . , τ}. Also,

Equation (36) indicates that the sufficient and necessary condition which minimises
∑τ

t=0 γn,t(τ) is

that all assets are traded at the best ask price p
(j)
1 or the best bid price p

(j)
−1 for all t ∈ {0, 1, . . . , τ}:

p̄
(
q

(j)
n,t

∗
(τ∗)

)
=


p

(j)
1 , if q

(j)
n,t

∗
(τ∗) > 0

p
(j)
−1, if q

(j)
n,t

∗
(τ∗) < 0

m
(j)
n , otherwise

, as v
(j)
−1 ≤ q

(j)
n,t

∗
(τ∗) ≤ v(j)

1 ,∀t. Consequently, the overall

1

sn+1(τ) =νn,τ 〈bn+1,1 〉

=νn,τ

=sn,τ − γn,τ

=νn,τ−1〈bn,τ ,1 〉 − γn,τ

=νn,τ−1 − γn,τ

=sn,τ−1 − γn,τ−1 − γn,τ

=sn −
τ∑
t=0

γn,t.
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Figure 5. The optimal number of intraday tradings τ∗ is not unique (cp = 0, cs = 0.00218%, bn = [1/3 1/3 1/3]T,
bn+1 = [0.8 0.1 0.1]T, xn,0 = [0.6 0.9 1.4]T, and νn−1,τ = 2×106 USD). 10-level limit order book data of AAPL (b(1)),
AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used.

TCs can be minimised when τ = τ∗ as

τ∗∑
t=0

γn,t(τ
∗)

=
τ∗∑
t=0

 d∑
j=1

(
(1− cs)p̄

(
q

(j)
n,t

∗
(τ∗)

)
−m(j)

n

)
q

(j)
n,t

∗
(τ∗) + (cp + cs)

d∑
j=1

(
p̄
(
q

(j)
n,t

∗
(τ∗)

)
q

(j)
n,t

∗
(τ∗)

)+


=

τ∗∑
t=0

d∑
j=1

[(
(1− cs)p(j)

1 −m
(j)
n

)(
q

(j)
n,t

∗
(τ∗)

)+
+
(
m(j)
n − (1− cs)p(j)

−1

)(
−q(j)

n,t

∗
(τ∗)

)+
]

+ (cp + cs)
τ∗∑
t=0

d∑
j=1

p
(j)
1

(
q

(j)
n,t

∗
(τ∗)

)+

=
τ∗∑
t=0

d∑
j=1

[(
(1 + cp)p

(j)
1 −m

(j)
n

)(
q

(j)
n,t

∗
(τ∗)

)+
+
(
m(j)
n − (1− cs)p(j)

−1

)(
−q(j)

n,t

∗
(τ∗)

)+
]

=

d∑
j=1

[(
(1 + cp)p

(j)
1 −m

(j)
n

) τ∗∑
t=0

(
q

(j)
n,t

∗
(τ∗)

)+
+
(
m(j)
n − (1− cs)p(j)

−1

) τ∗∑
t=0

(
−q(j)

n,t

∗
(τ∗)

)+
]

(37)
The optimal number of intraday tradings τ∗, a solution of (36), is not unique but

τ∗ ∈ {τ ∈ Z≥0|τ ≥ τ∗min}, where τ∗min is the minimum optimal number of intraday tradings. This

is because both
∑τ

t=0

(
q

(j)
n,t

∗
(τ)
)+

and
∑τ

t=0

(
−q(j)

n,t

∗
(τ)
)+

in (37) are constants if τ ≥ τ∗min. As

a result, sn+1(τ)
sn

is a monotonically increasing function of τ as shown in Figure 5. Furthermore,
sn+1(τ)
sn

does not change after τ∗min = 7. Even though sn+1(τ)
sn

increases or decreases in the inter-

val 7 ≤ τ ≤ 9 (each value above the line in Figure 5 is the change amount of sn+1(τ)
sn

), the
change is considered as numerical error. This is because the tolerance of the optimisation al-

94



gorithm for solving max
bn,1,bn,2,...,bn,τ∈∆d−1

wn

τ∏
t=1

wn,t in (29) was set as ε = 10−6. To be specific, if∣∣∣f (bkn,1, bkn,2, . . . , bkn,τ)− f (bk+1
n,1 , b

k+1
n,2 , . . . , b

k+1
n,τ

)∣∣∣ < ε, then the iteration of the optimisation stops,

where f
(
bkn,1, b

k
n,2, . . . , b

k
n,τ

)
is the value of the objective function wn

∏τ
t=1wn,t at bkn,1, b

k
n,2, . . . , b

k
n,τ

(the superscript k indicates the iteration number).

Algorithm 1: How to obtain the minimum optimal number of intraday tradings.

Input: τmax, νn−1,τ , xn,0, and limit order book data at the end of the n-th day.
Output: the minimum optimal number of intraday tradings τ∗min.

1 calculate order size q
(j)
n,0,∀j when there is no intraday trading by using (9) and (11);

2 if v
(j)
−1 ≤ q

(j)
n,0 ≤ v

(j)
1 , ∀j then

3 τ∗min ← 0;
4 else
5 for τ ← 1 to τmax do

// τ is the number of intraday tradings

6 b
∗
n,1, b

∗
n,2, . . . , b

∗
n,τ ← arg maxbn,1,bn,2,...,bn,τ∈∆d−1 wn

∏τ
t=1wn,t,

where wn = w(bn, bn,1,xn,0, νn−1,τ ), wn,t = w
(
bn,t, bn,t+1,1 , snwn

∏t−1
t′=1wn,t′

)
,

and bn,τ+1
def
= bn+1; // from (29)

7 if v
(j)
−1 ≤ q

(j)
n,t

∗
(τ) ≤ v(j)

1 ,∀j ∈ {1, 2, . . . , d}, ∀t ∈ {0, 1, . . . , τ} // where q
(j)
n,t

∗
(τ),

calculable from (9) and (11), is the order size of asset j when

rebalancing a portfolio from b
∗
n,t to b

∗
n,t+1 (b

∗
n,0

def
= b n and

b
∗
n,τ+1

def
= b n+1), given the number of intraday tradings τ

8 then
9 break;

10 end

11 end
12 τ∗min ← τ ;

13 end

Algorithm 1 describes how to obtain the minimum optimal number of intraday tradings τ∗min

from the property of v
(j)
−1 ≤ q

(j)
n,t

∗
(τ∗) ≤ v

(j)
1 , ∀j ∈ {1, 2, . . . , d}, ∀t ∈ {0, 1, . . . , τ}. This algorithm

increases the number of intraday tradings τ from 0 until either when τ equals the upper limit τmax,
a user parameter decided by trading hours and an intraday trading interval (see the 5th line of
Algorithm 1), or when trading all assets at the best ask or best bid price is possible (see the 7th
line of Algorithm 1).

5.5. Considering real-time limit order book data

The proposed method described in Algorithm 2, an implementation shortfall algorithm (an intraday
trading strategy is determined by real-time LOB data at every intraday trading time t) for a
multi-asset portfolio, performs intraday trading by sending market orders, not limit orders, in the
following order.

(i) The portfolio vector of next day bn+1 is obtained from an OPS algorithm (see the 2nd
line of Algorithm 2) at the end of every trading day (the end of trading day is the market
opening, not the midnight; see Figure 2).
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Algorithm 2: Proposed method of optimal intraday trading.

Input: s0, µ, τmax, where s0 is an initial wealth, and (µ− 1) is the number of rebalancing days
by online portfolio selection.

1 for n← 1 to µ− 1 do
2 obtain bn+1 from an online portfolio selection algorithm;
3 for t← 0 to τmax do
4 if t = τmax then
5 rebalance a portfolio from bn,t to bn+1;
6 break; // the for-loop of t

7 end
8 receive real-time limit order book data at time t after the end of the n-th day;

9 calculate order size q
(j)
n,t, ∀j for rebalancing a portfolio from bn,t to bn+1 by using (9)

and (11);

10 if
(
v

(j)
−1

)
n,t
≤ q(j)

n,t ≤
(
v

(j)
1

)
n,t
, ∀j // where

(
v

(j)
i

)
n,t

is the quoted volume of

limit order book of asset j at level i at time t after the end of the

n-th day

11 then
12 rebalance a portfolio from bn,t to bn+1;
13 break; // for-loop of t

14 else
15 for τ ← t+ 1 to τmax do

16 b
∗
n,t+1, b

∗
n,t+2, . . . , b

∗
n,τ ← arg maxbn,t+1,bn,t+2,...,bn,τ∈∆d−1 wn,t

∏τ
t′=t+1wn,t′ ,

where wn,t = w(bn,t, bn,t+1,xn,t, νn,t−1),

wn,t′ = w
(
bn,t′ , bn,t′+1,1 , sn,t′−1wn,t′−1

∏t′−1
t′′=t+1wn,t′′

)
, and bn,τ+1

def
= bn+1;

// from (29)

17 if
(
v

(j)
−1

)
n,t′
≤ q(j)

n,t′
∗
≤
(
v

(j)
1

)
n,t′

, ∀j ∈ {1, 2, . . . , d}, ∀t′ ∈ {t, t+ 1, . . . , τ}

// where q
(j)
n,t′
∗
, calculable from (9) and (11), is the order size

of asset j when rebalancing a portfolio from b
∗
n,t′ to b

∗
n,t′+1

(b
∗
n,t

def
= b n,t and b

∗
n,τ+1

def
= b n+1)

18 then
19 break; // for-loop of τ
20 end

21 end

22 rebalance a portfolio from bn,t to b
∗
n,t+1;

23 end

24 end

25 end

(ii) The current LOBs of all assets in the portfolio are taken into account at every intraday
trading time t until either the time that satisfies t = τmax (see the 3rd line of Algorithm 2)

or the time that satisfies
(
v

(j)
−1

)
n,t
≤ q(j)

n,t ≤
(
v

(j)
1

)
n,t
, ∀j (i.e. whether trading all assets in

the current best ask or best bid price is possible or not is checked on every t; see the 10th
line of Algorithm 2), whichever happens first.

(iii) If any of the inequalities at the 10th line is false, then the minimum optimal number of
intraday tradings τ∗min is obtained by considering the current LOBs and by using Algorithm 1
(see between the 15th line and the 21st line of Algorithm 2).
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(iv) Among the suboptimal path b
∗
n,t+1, b

∗
n,t+2, . . . , b

∗
n,τ , calculated at the 16th line, only one

component b
∗
n,t+1 is used for the rebalancing at time t (see the 22nd line of Algorithm 2),

but the other components of the suboptimal path b
∗
n,t+2, b

∗
n,t+3, . . . , b

∗
n,τ are ignored. This

is because new LOBs will be given at time t+ 1 (see the 8th line of Algorithm 2).

(v) The portfolio vector b
∗
n,t+1 at time t will be the portfolio vector bn,t at the subsequent time

(see the 22nd line of Algorithm 2).

However, Algorithm 2 ignores the risk of intraday price volatility as Alfonsi et al. (2008, 2010) did.
I.e. the volatility of the random intraday market vectors X n,t+1,X n,t+2, . . . ,X n,τ is not considered
by the assumption that traders are risk-neutral.

6. Simulations (backtesting)

Monte Carlo (MC) simulations consisting of independent trials of random stock selection—each
stock has an equal chance of being selected—were conducted to compare the performance between
OPS without intraday trading and OPS with the proposed method. To be specific, the number
of MC trials is 100, and the number of selected stocks is 30 (d = 30). These values are the same
as (Ha 2017). 100 is a relatively small number for MC simulations, but the heavy computation to
solve the optimisation problem in (29) restricts the number. Also, the numerical results in this
section depend on the number. As the greater number of MC simulations is chosen, the more
accurate numerical results are obtained. The MATLAB codes of the following experiments have
been uploaded on http://www.mathworks.com/matlabcentral/fileexchange/62503 to avoid
any potential ambiguity of the MC simulations. You may leave comments on the web page; any
feedback or bug report is welcome.

6.1. Assumptions for simplicity

The following assumptions were made for simplicity.

• Assets are arbitrarily divisible (i.e. q
(j)
n,t ∈ R instead of q

(j)
n,t ∈ Z) to avoid mixed-integer nonlinear

programming.1

• Hidden limit orders (HLOs), invisible in limit order books, are never submitted.2

• The execution of market orders by OPS at the current time t does not affect the LOBs at the
next time t+ 1 (this contradicts the real world but makes this backtesting feasible).

• The computation time to calculate bn,t+1 is zero (neither the running time between the 9th line
and the 11th line in Algorithm 2 nor that between the 9th line and the 21st line in Algorithm 2
is considered).

Trading at the market opening (9:30 a.m.) was not conducted in this experiment because
bid-ask spreads are much higher at the open than mid-day or close as shown in Figure 6 (Fig-
ure 6 corresponds to the empirical analysis that bid-ask spreads decrease and level out after
about the first 15–30 minutes for large cap stocks and after about 30–60 minutes for small
cap stocks by Kissell (2013, pp. 67–69)). This is because the higher bid-ask spreads cause

the greater MICs:
∑d

j=1

(
p̄
(
q

(j)
n,t

)
−m(j)

n,t

)
q

(j)
n,t in (8), as well as the greater proportional TCs:

1 Softwares of mixed-integer nonlinear programming are listed in (Bussieck and Vigerske 2011).
2 The historical quantity of HLOs can be measured by hidden volume rate, the total volume of trades against hidden orders

divided by the total volume of all trades. The mean of this value between 2 Jan 2014 and 30 Sep 2016 is {13.1%, 13.5%}
in the case of stocks, not exchange traded products, traded on {NYSE, NASDAQ}, respectively. The daily data of hidden
volume rate is downloadable at the homepage of U.S. Securities and Exchange Commission (URL: http://www.sec.gov/opa/

data/market-structure/marketstructuredata-by-exchange.html).
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Figure 6. The median values of intraday bid-ask spreads of NASDAQ 100 Index Components (between 1 Jan 2008
and 31 Mar 2016).

cp
∑d

j=1

(
p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+
+ cs

∑d
j=1

(
−p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+
in (8), which in turn deteriorates the perfor-

mance of OPS methods. As a result, in this experiment, trading starts at 10:00 a.m., and this
moment corresponds to time 0 (t = 0; see Figure 2).

Trading interval was fixed to 30 minutes under the assumption that LOBs reverts to its normal
shape within 30 minutes after the execution of market orders by OPS. This is because Xu et al.
(2017) empirically showed that the intensity (or rate) of limit order submissions gradually decreases
to its normal level within 30 minutes after the execution of market orders in the case of the Shanghai
Stock Exchange. Consequently, τmax is determined as 12 because trading starts at 10:00 a.m. instead
of 9:30 a.m. and because NASDAQ regular market hours ends at 4:00 p.m.1 (the maximum number
of intraday tradings is 12, not 13, since the portfolio rebalancing from bn,τ to bn+1 is not counted
as an intraday trading).

6.2. The source of backtesting data

10-level (10 levels of the ask side and 10 levels of the bid side, respectively) historical LOB data2 of
NASDAQ 100 Index Components3 (30 components are randomly selected among the 100 components
at each MC trial) between 1 Jan 2008 and 31 Mar 2016 (total 2076 trading days) was downloaded
from Limit Order Book System: The Efficient Reconstructor (LOBSTER),4 and the LOB data was
sampled with the period of 30 minutes during NASDAQ regular market hours.

1 τmax is 6 instead of 12 for the following NASDAQ early closing dates (NASDAQ closes at 1:00 p.m.): 3 Jul 2008, 28 Nov 2008,

24 Dec 2008, 27 Nov 2009, 24 Dec 2009, 26 Nov 2010, 25 Nov 2011, 3 Jul 2012, 23 Nov 2012, 24 Dec 2012, 3 Jul 2013,
29 Nov 2013, 24 Dec 2013, 3 Jul 2014, 28 Nov 2014, 24 Dec 2014, 27 Nov 2015, and 24 Dec 2015.

2 If accessing LOB data at greater than level 10 is required, ask price and volume at level i ∈ Z>10 are estimated as

pi = p10 +
p10−p−1

10
(i− 10), vi =

∑10
k=1 vk
10

, respectively. Similarly, if accessing LOB data at less than level -10 is required,

bid price and volume at level i ∈ Z<−10 are estimated as pi = p−10 +
p−10−p1

10
(−i− 10), vi =

∑10
k=1 v−k

10
, respectively.

3 Historical, not current, NASDAQ 100 Index Components on 1 Jan 2008 was downloaded from http://siblisresearch.com/

data/historical-components-nasdaq/. In addition, the number of stock candidates used in this experiment is 83 because

17 companies were delisted before 31 Mar 2016 (ALTR, AMLN, BEAS, BRCM, CEPH, DELL, FMCN, GENZ, JAVA,
LEAP, NIHD, PETM, SIAL, TLAB, and VMED were acquired by other companies, and FWLT and MIICF were voluntarily
delisted from NASDAQ). Therefore, the number of possible portfolio combinations is

(83
30

)
= 3.5× 1022, and the portion of

100
3.5×1022 = 2.9× 10-21 is covered by the MC simulations.

4 LOBSTER (https://lobsterdata.com/) has LOB data from 27 Jun 2007 to the present, and the LOB data of LOBSTER
does not include hidden LOBs (Huang and Polak 2011, Table 1).
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Table 2. A list of online portfolio selection (OPS) strategies.

Category Author(s) OPS strategy Abbreviation

Follow the winner

Cover (1991) Universal portfolio UP
Helmbold et al. (1998) Exponential gradient EG
Borodin et al. (2000) Markov of order zero M0, T0a

Agarwal et al. (2006) Online Newton step ONS
Kozat and Singer (2011) Universal semi-constant rebal-

anced portfolio
USCRP

Follow the loser

Borodin et al. (2004) Anti-correlation ANTICOR, ANTICOR ANTICORb

Li and Hoi (2012) Online moving average reversion OLMAR1, OLMAR2c

Li et al. (2012) Passive aggressive mean reversion PAMR, PAMR1, PAMR2d

Li et al. (2013) Confidence weighted mean rever-
sion

CWMR VAR, CWMR STDEVe

Pattern matching
Györfi et al. (2006) Nonparametric kernel-based log-

optimal
BK

Györfi et al. (2008) Nonparametric nearest neighbour
log-optimal

BNN

Li et al. (2011) Correlation-driven nonparametric
learning

CORN, CORNU, CORNKf

aT0 considers the historical market vectors x1, x2, . . . , xn fully, while M0 does not.

bANTICOR ANTICOR is the twice compounded algorithm of ANTICOR.

cOLMAR1 uses a simple (unweighted) moving average, while OLMAR2 uses an exponential (exponentially weighted) moving
average.

dPAMR1 added a slack variable ξ to the objective function of PAMR, and PAMR2 added ξ2.

eCWMR STDEV is a modified algorithm of CWMR VAR to obtain convex constraints (Crammer et al. 2008).

fCORN: each expert has a weight proportional to its historical performance; CORNU: all experts have the same weight; CORNK:
only the K-best experts have weights.

When calculating the relative price of asset j between time τ after the end of the (n− 1)-th day
and the end of the n-th day, cash dividends, stock dividends, and stock splits were considered as

x
(j)
n,0 =

m
(j)
n,0

a
(j)
n,τmax

g
(j)
n,τmax

m
(j)
n−1,τ

a
(j)
n−1,τmax

g
(j)
n−1,τmax

, (38)

where m
(j)
n,t is the mid price of asset j at time t after the end of the n-th day from LOBSTER, and{

g
(j)
n,τmax , a

(j)
n,τmax

}
(the subscript n, τmax indicates time τmax after the end of the n-th day) is the

{closing, adjusted closing} price of asset j of the (n+ 1)-th day, not n-th day, (a day ends after or
at the market opening in this chapter; see Figure 2) from Yahoo Finance.

6.3. Performance comparison among online portfolio selection methods without
proposed intraday trading

The performance (annualised return) of the OPS methods in Table 2 without intraday trading
is compared in the case of zero TCs (cp = 0, cs = 0, and zero MICs) as shown in Table 3 and
Figure 7,1 where all the OPS methods rebalanced a portfolio at 10:00 a.m. on every U.S. trading
day. In particular, the unpaired two-sample t-tests with unequal variances (simply called t-tests in
the remainder of this chapter), whose null hypothesis is that the data in two groups comes from
independent random samples from normal distributions with equal means but different variances,
were performed to compare the performance between a buy-and-hold (B&H) strategy with the initial

1 MATLAB programs of OPS by Li and Hoi (2015, Appendix A) were utilised to obtain Table 3 and Figure 7.
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Table 3. Statistics of annualised returns of different online portfolio selection methods without intraday trading (cp = 0, cs = 0, and zero market impact costs).

B&H UP EG ONS USCRP ANTICOR ANTICOR ANTICOR OLMAR1 OLMAR2 PAMR PAMR1
P -value of JB test 0.956 0.450 0.530 0.077 0.570 0.330 0.766 0.048 0.034 0.332 0.332

Standard deviation (%) 1.26 1.50 1.51 11.43 1.32 8.29 11.93 17.37 17.18 16.58 16.58
Mean (%) 9.3 11.4 11.4 23.1 10.4 8.4 6.6 6.2 9.6 9.2 9.2

Difference of meansa (%) - 2.11∗∗∗ 2.10∗∗∗ 13.81∗∗∗ 1.08∗∗∗ −0.88 −2.75∗∗ −3.11∗ 0.24 −0.12 −0.12
P -value of t-test - 2.0×10-21 3.4×10-21 3.3×10-21 1.3×10-8 2.9×10-1 2.4×10-2 7.8×10-2 8.9×10-1 9.4×10-1 9.4×10-1

PAMR2 CWMR VAR CWMR STDEV BK BNN CORN CORNU CORNK M0 T0

P -value of JB test 0.357 0.233 0.231 0.002 0.127 0.672 0.629 0.729 0.445 0.533

Standard deviation (%) 16.53 16.07 15.99 5.39 8.05 9.46 6.34 8.90 3.36 1.53
Mean (%) 9.5 11.1 11.3 8.6 12.2 5.3 10.0 6.0 12.8 11.5

Difference of meansa (%) 0.16 1.80 1.96 −0.73 2.85∗∗∗ −3.99∗∗∗ 0.68 −3.30∗∗∗ 3.43∗∗∗ 2.18∗∗∗

P -value of t-test 9.2×10-1 2.7×10-1 2.2×10-1 1.9×10-1 7.1×10-4 6.0×10-5 3.0×10-1 3.8×10-4 1.3×10-16 3.9×10-22

aDifference equals average annualised return of the corresponding OPS method minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 7. Box plots of annualised returns of different online portfolio selection methods without intraday trading (cp = 0, cs = 0, and zero market impact costs).

100



portfolio b1 and the OPS methods. Also, the normality assumption of the t-test was confirmed by
the Jarque–Bera (JB) test with the significance level of 0.05 as shown in Table 3 except OLMAR1,
OLMAR2, and BK. Standard deviation in Table 3 can be interpreted as the sensitivity of the
annualised return to the random stock selection. USCRP and OLMAR1 are the least and most
sensitive, respectively.

The t-tests answer whether the performance difference is fundamental or whether it is due to
random fluctuations (Simon 2013, p. 631). If a p-value of the t-test is less than a significance
level, the performance difference is fundamental.1 All the OPS methods of follow the winner and
others are highly fundamentally superior to B&H as shown in Table 3. On the contrary, all the
OPS methods of follow the loser and pattern matching except BNN are not fundamentally superior
to B&H, and some of them are fundamentally inferior to B&H (i.e. the differences of means are
negative with low p-values in Table 3). However, it should not be interpreted that the OPS methods
of follow the loser and pattern matching are always inferior to those of follow the winner. In other
words, the NASDAQ bull market between 2009 and 2016 (see figure 10) was unfavourable to the
OPS methods of follow the loser.

The performance of each OPS method without TCs and intraday trading in Table 3 and Figure 7
can be considered as the upper limit of that with TCs and intraday trading. This is because OPS
carries out long-term investment for every period by using stock prices at t = 0 (OPS works only at
the end of every trading day as shown in Figure 2), while the proposed method of intraday trading
absorbs the shock to the market whenever OPS rebalances a portfolio. In other words, the proposed
method minimises the performance gap between OPS without TCs and OPS with TCs, not making
additional profits.

6.4. Performance comparison of online portfolio selection methods between
without and with proposed method

T0, UP, and ONS were selected as the best three OPS methods by referring to the p-values of the
t-test in Table 3 for the comparison of each OPS method between without and with the proposed
method (PM; Algorithm 2). All of the three methods increase the relative weights of more successful
assets in the past periods (these are called follow the winner algorithms) as the proportion of asset j
or the portfolio vector of each algorithm in the next period is

• T0: b
(j)
n+1 =

c
(j)
n + β

dβ +
∑d

j′=1 c
(j′)
n

, where c
(j)
n = c

(j)
n−1+log2

(
1 + x

(j)
n

)
, and β ∈ [0,∞) is a parameter;

• UP: bn+1 =

∫
∆d−1 bsn(b,x 1:n)db∫
∆d−1 sn(b,x 1:n)db

, where, sn(b,x 1:n) = s0
∏n
i=1〈b,x i〉 is wealth at the end of

the n-th period with an initial wealth s0;

• ONS: bn+1 = arg max
b∈∆d−1

(
n∑
i=1

ln〈b,x i〉 −
β

2
‖b‖2

)
, where β ∈ [0,∞) is a trade-off parameter

between the follow the winner term
∑n

i=1 ln〈b,x i〉 and the regularisation term ‖b‖2.

TCs, consisting of proportional TCs and MICs, were calculated whenever a portfolio was rebalanced
for the both cases (without and with the PM) to measure the performance difference. TCs were
calculated at 10:00 a.m. on every trading day in the case of OPS without the PM, whereas they
were calculated not only at 10:00 a.m. but also between 10:30 a.m. and 4:00 p.m. in the period of
30 minutes on every trading day in the case of OPS with the PM.

The range of the proportional TC rate was set as cp = 0 and 0.00218% ≤ cs ≤ 0.5%. This is

1 The p-value of the t-test is interpreted as the probability that a difference in the mean values would be obtained, given that
the population means of two methods are equivalent. The p-value is not equal to the probability that the population means

are equivalent (Simon 2013, p. 635).
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because the securities transaction tax rates in most of the G20 countries vary between 0.1% and
0.5% (Matheson 2011), and those in the United States in 2016 are cp = 0 and cs = 0.218 basis
points.1 However, stock brokerage commissions were ignored by an assumption that institutional
investors, who pay tiny commissions, rather than individual investors, are the main users of OPS.

1 Order making fiscal year 2016 annual adjustments to transaction fee rates, U.S. Securities and Exchange Commission [Release

No. 34-76848/7 Jan 2016].
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Table 4. Statistics of annualised returns of different online portfolio selection methods without and with proposed method (PM) (cp = 0, s0 = 105 USD)

cs (%) 0.00218 0.00218 0.00218 0.00218 0.00218 0.00218 0.16667 0.16667 0.16667 0.16667 0.16667 0.16667

B&H
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
P -value of JB test 0.956 0.594 0.617 0.509 0.503 0.076 0.082 0.603 0.585 0.519 0.514 0.073 0.079

Standard deviation (%) 1.26 1.53 1.53 1.50 1.50 10.93 11.22 1.53 1.53 1.50 1.50 10.88 11.12
Mean (%) 9.3 11.3 11.3 11.2 11.2 21.3 22.1 11.0 11.0 11.0 11.0 20.1 20.7

Difference of meansa (%) - 1.97∗∗∗ 1.97∗∗∗ 1.92∗∗∗ 1.92∗∗∗ 11.99∗∗∗ 12.73∗∗∗ 1.69∗∗∗ 1.69∗∗∗ 1.65∗∗∗ 1.65∗∗∗ 10.72∗∗∗ 11.36∗∗∗

P -value of t-test - 4.6×10-19 4.9×10-19 1.3×10-18 1.3×10-18 8.9×10-19 1.3×10-19 4.9×10-15 4.0×10-15 8.2×10-15 8.2×10-15 2.4×10-16 4.1×10-17

Difference of meansb (%) - -0.00 0.00 0.73 0.01 0.00 0.63
P -value of t-test - 0.990 0.999 0.641 0.976 0.999 0.684

cs (%) 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333 0.5 0.5 0.5 0.5 0.5 0.5
T0

w/o PM

T0

w/ PM

UP

w/o PM

UP

w/ PM

ONS

w/o PM

ONS

w/ PM

T0

w/o PM

T0

w/ PM

UP

w/o PM

UP

w/ PM

ONS

w/o PM

ONS

w/ PM

P -value of JB test 0.612 0.595 0.529 0.524 0.070 0.075 0.621 0.606 0.539 0.534 0.067 0.073
Standard deviation (%) 1.53 1.53 1.50 1.50 10.83 11.08 1.53 1.53 1.50 1.50 10.78 11.02

Mean (%) 10.7 10.7 10.7 10.7 18.8 19.4 10.4 10.4 10.4 10.4 17.5 18.1

Difference of meansa (%) 1.40∗∗∗ 1.40∗∗∗ 1.38∗∗∗ 1.38∗∗∗ 9.45∗∗∗ 10.08∗∗∗ 1.11∗∗∗ 1.11∗∗∗ 1.11∗∗∗ 1.11∗∗∗ 8.18∗∗∗ 8.78∗∗∗

P -value of t-test 3.0×10-11 2.6×10-11 3.2×10-11 3.2×10-11 7.3×10-14 1.1×10-14 7.3×10-8 6.3×10-8 5.4×10-8 5.3×10-8 2.0×10-11 3.2×10-12

Difference of meansb (%) 0.01 0.00 0.63 0.01 0.00 0.60

P -value of t-test 0.977 0.999 0.686 0.977 0.999 0.699

aDifference equals average annualised return of corresponding OPS method minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

bDifference equals average annualised return of corresponding OPS method with proposed method (PM) minus that without PM. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 8. Box plots of annualised returns of different online portfolio selection methods without and with proposed method (PM) (cp = 0, s0 = 105 USD).
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Table 5. Statistics of annualised returns of different online portfolio selection methods without and with proposed method (PM) (cp = 0, s0 = 106 USD)

cs (%) 0.00218 0.00218 0.00218 0.00218 0.00218 0.00218 0.16667 0.16667 0.16667 0.16667 0.16667 0.16667

BnH
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
P -value of JB test 0.956 0.643 0.552 0.511 0.487 0.059 0.090 0.651 0.564 0.520 0.503 0.057 0.086

Standard deviation (%) 1.26 1.53 1.54 1.50 1.51 10.12 11.23 1.53 1.53 1.50 1.50 10.10 11.17
Mean (%) 9.3 11.3 11.3 11.3 11.3 18.6 22.1 11.0 11.0 11.0 11.0 17.5 20.8

Difference of meansa (%) - 1.95∗∗∗ 2.00∗∗∗ 1.93∗∗∗ 1.93∗∗∗ 9.24∗∗∗ 12.74∗∗∗ 1.66∗∗∗ 1.71∗∗∗ 1.66∗∗∗ 1.66∗∗∗ 8.12∗∗∗ 11.51∗∗∗

P -value of t-test - 9.2×10-19 2.0×10-19 8.5×10-19 8.8×10-19 9.8×10-15 1.3×10-19 9.2×10-15 2.4×10-15 5.5×10-15 5.9×10-15 2.2×10-12 2.5×10-17

Difference of meansb (%) - 0.05 0.00 3.50∗∗ 0.05 -0.00 3.39∗∗

P -value of t-test - 0.810 0.995 0.022 0.825 1.000 0.025

cs (%) 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333 0.5 0.5 0.5 0.5 0.5 0.5
T0

w/o PM

T0

w/ PM

UP

w/o PM

UP

w/ PM

ONS

w/o PM

ONS

w/ PM

T0

w/o PM

T0

w/ PM

UP

w/o PM

UP

w/ PM

ONS

w/o PM

ONS

w/ PM

P -value of JB test 0.659 0.578 0.530 0.513 0.055 0.082 0.667 0.591 0.540 0.524 0.054 0.079
Standard deviation (%) 1.53 1.53 1.50 1.50 10.08 11.11 1.52 1.53 1.50 1.50 10.06 11.06

Mean (%) 10.7 10.8 10.7 10.7 16.3 19.6 10.4 10.5 10.5 10.4 15.2 18.4

Difference of meansa (%) 1.37∗∗∗ 1.42∗∗∗ 1.39∗∗∗ 1.39∗∗∗ 6.99∗∗∗ 10.27∗∗∗ 1.09∗∗∗ 1.12∗∗∗ 1.12∗∗∗ 1.11∗∗∗ 5.86∗∗∗ 9.02∗∗∗

P -value of t-test 5.4×10-11 1.7×10-11 2.2×10-11 2.4×10-11 4.9×10-10 5.5×10-15 1.2×10-7 4.9×10-8 3.9×10-8 4.4×10-8 8.3×10-8 1.2×10-12

Difference of meansb (%) 0.04 -0.00 3.28∗∗ 0.04 -0.00 3.16∗∗

P -value of t-test 0.841 0.993 0.030 0.856 0.987 0.036

aDifference equals average annualised return of corresponding OPS method minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

bDifference equals average annualised return of corresponding OPS method with proposed method (PM) minus that without PM. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 9. Box plots of annualised returns of different online portfolio selection methods without and with proposed method (PM) (cp = 0, s0 = 106 USD).
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If initial wealth s0 is as small as USD 100,000, the performance difference between OPS without
and with the PM is not statistically significant, as shown in Table 4 and Figure 8. The statistical
significance can be determined by both the sign and p-value of the difference of means of annualised
return between without and with the PM. A positive difference with low p-value indicates the PM
is useful. However, the lowest p-value (when using ONS at cs = 0.00218%) is as high as 0.641 as
shown in Table 4, which means the PM is not useful for small-sized funds.

However, the PM is useful when initial wealth s0 is as large as USD 1,000,000 as shown in Table 5
and Figure 9. In particular, the performance difference between ONS without and with the PM
is statistically significant. In addition, the performance difference between without and with the
PM varies by an OPS method. ONS makes the greater performance gap than T0 and UP. This
is because ONS is a more dynamic investment strategy than T0 and UP (this will be shown in
Figure 11). I.e. the PM has the more opportunities to reduce TCs when OPS attempts to cause the
higher TCs.

The performance difference between without and with the PM (the difference of means in
Table 4 and Table 5) is more significant when cs is small. This is because proportional TCs,

cp
∑d

j=1

(
p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+
+ cs

∑d
j=1

(
−p̄
(
q

(j)
n,t

)
q

(j)
n,t

)+
in (8), are dominant compared to MICs,∑d

j=1

(
p̄
(
q

(j)
n,t

)
−m(j)

n,t

)
q

(j)
n,t in (8), when cp or cs is large. Even if a large market order is di-

vided into consecutive intraday market orders by the PM, proportional TCs with the PM are as
large as those without the PM. Consequently, the PM is more useful with lower cp and cs.

6.5. Graphical comparisons

Figure 10 shows growth wealth sn of a portfolio of six stocks with initial wealth of a million
US dollars. The PM of intraday trading has little value in the case of T0 and UP as shown in
Figure 10(a) and Figure 10(b). However, The PM works well when ONS is used as shown in
Figure 10(c). These correspond to the performance difference between without and with the PM in
Table 5.

Figure 11 shows the proportion of portfolio (the portfolio vector bn) that made the growth wealth
in Figure 10, in the form of area plots (bn is independent of the usage of an intraday trading
algorithm). The portfolio vector of B&H changes over time, as shown in Figure 11(a), as the prices
of assets change over time. T0 generates almost constant portfolio bn = b1 as shown in Figure 11(b),
and UP generates rougher portfolio weights over time than those of T0, but smoother changes than
those of B&H, as shown in Figure 11(c). ONS makes the most abrupt changes of portfolio weights
over time as shown in Figure 11(d).

Figure 12 shows how much the PM can decrease TCs, consisting of both proportional TCs and
MICs, when following the growth wealth in Figure 10. Its TC reduction is not significant in the
case of T0 and UP as shown in Figure 12(a) and Figure 12(b) since both T0 and UP do not trade
too much. On the contrary, it saves a lot of TCs for a high-volume trading algorithm like ONS as
shown in Figure 12(c).

6.6. Computation time

Mean computation time of the PM depends on an OPS strategy, initial wealth s0, and intraday
trading time t as shown in Figure 13. Firstly, the PM requires more computation time for the
higher-volume trading algorithms (e.g. ONS) than the lower-volume trading algorithms (e.g. T0 and
UP), as shown in both Figure 13(a) and Figure 13(b). Secondly, the PM requires more computation
time for the bigger-sized funds (see Figure 13(b)) than the smaller-sized funds (see Figure 13(a)).
Thirdly, the computation time changes over time in a day. To be specific, the computation time
of the PM with ONS decreases as time goes by during the NASDAQ trading hour, as shown in
Figure 13(b). This is because Algorithm 2 has the iteration for (τmax−t) times for each t to calculate
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Figure 10. Growth wealth over time sn when the portfolio consists of AAPL, BIDU, EXPE, QVCA, UAL, and
VRSN (s0 = 106 USD, cp = 0, cs = 0.00218%).

the minimum optimal number of intraday tradings. Consequently, the time complexity of the PM
is O(τmax).
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(a) Buy-and-hold (B&H).

(b) T0.

(c) UP.

(d) ONS.

Figure 11. The proportion of portfolio over time bn.
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Figure 12. Transaction costs, consisting of proportional costs and market impact costs, over time cn (s0 = 106 USD,
cp = 0, and cs = 0.00218%).

7. Conclusion

A mathematical framework to minimise overall TCs, consisting of proportional TCs and MICs,
when rebalancing a multi-asset portfolio has been proposed. It considers real-time LOBs and
splits very large market orders of the portfolio into small sequential market orders. As a result, it
cushions the shock when rebalancing large-sized funds (the backtesting results in Section 6 have
demonstrated that the PM is effective for the large capital investment). Moreover, the proposed
intraday trading algorithm is applicable to any portfolio rebalancing strategy as well as all the OPS
methods regardless of its capital size. However, the heavy computation, analysed in Section 6.6,
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Figure 13. The mean computation time of the proposed method (trading at 16:00 is not counted as intraday trading).
The latter parts of T0 and UP are missing as they end intraday trading before 15:30.

should be reduced for real-time algorithmic trading.
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Figure A1. Ternary contour plots and 1D plots of the product of transaction cost factors wnwn,1 with the variable
bn,1 and the fixed values: bn = [1/3 1/3 1/3]T, xn,0 = [0.6 0.9 1.4]T, νn−1,τ = 106 USD, bn+1 = [0.8 0.8 0.1]T, cp = 0,
and cs = 0.00218%. 10-level limit order book data of AAPL (b(1)), AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012
at 16:00:00 was used.

Appendix A: An example of unimodality of wnwn,1

The product of TCFs wnwn,1 in (22) can be rewritten as a function of bn,1 as

wnwn,1 =w(bn, bn,1,xn,0, νn−1,τ )w(bn,1, bn+1,1 , snwn)

=w(bn, bn,1,xn,0, νn−1,τ )w(bn,1, bn+1,1 , νn−1,τ 〈bn,xn,0〉wn)

=w(bn, bn,1,xn,0, νn−1,τ )w(bn,1, bn+1,1 , νn−1,τ 〈bn,xn,0〉w(bn, bn,1,xn,0, νn−1,τ )),

(A1)

and it is plotted as a unimodal function of bn,1 (i.e. wnwn,1 strictly decreases as bn,1 goes away

from the maximum point b
∗
n,1) as shown in Figure A1. Therefore, wnwn,1 is a unimodal function of

bn,1 ∈ ∆d−1. However, this is only one example from the given values (bn, xn,0, νn−1,τ , bn+1, cp,
and cs) and the LOBs of the three stocks. The mathematical proof of the unimodality of wnwn,1 is
not provided in this chapter.
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Conclusion

This thesis has proposed three different algorithms of machine learning in quantitative finance.
Although they have different topics (multi-output nonlinear regression in Chapter 1, transaction cost
factor and online portfolio selection in Chapter 2, and intraday algorithmic trading in Chapter 3),
the common contributions of Chapter 2 and Chapter 3 are to propose how to avoid trading illiquid
stocks for investors’ wealth maximisation.

In Chapter 1, the computation of multi-output relevance vector regression has been accelerated
by the proposed method that uses matrix normal distribution to model correlated outputs (the
existing method uses multivariate normal distribution). However, the posposed method has the
disadvantage: its regression accuracy is less than the existing method.

In Chapter 2, the method how to quantify stock’s liquidity from limit order book data when
rebalancing a portfolio has been proposed. Also, it was applied to one of online portfolio selection
(OPS) methods to reduce market impact costs (MICs), and it showed better performance in the
backtesting. Moreover, the proposed liquidity measure can be applied to not only OPS but also
mean-variance portfolio selection (MVPS). This is because it can gauge the reduced expected return
of MVPS by the limited liquidity when MVPS rebalances a portfolio.

In Chapter 3, the intraday trading algorithm to minimise MICs as well as proportional transac-
tion costs has been proposed by using the liquidity quantification method proposed in Chapter 2.
The backtesting results in Chapter 3 have shown that the proposed method reduces MICs for OPS
when rebalancing a portfolio. The proposed algorithm has pros and cons: it is applicable to not
only OPS but also MVPS, but its inefficient computation should be reformed in the future for
real-time trading.

OPS algorithms, dealt with in both Chapter 2 and Chapter 3, which directly optimises a portfolio
in terms of long-term investment can be explained econometrically rather than algorithmically.
They are classified as i) follow-the-winner (increasing the relative weights of more successful assets
in the past periods), ii) follow-the-loser (decreasing the relative weights of more successful assets in
the past periods), and iii) pattern matching (finding similar stock return time series in the past and
predicting stock returns in the future) by Li and Hoi (2014). The assumption of follow-the-winner
and follow-the-loser is that stock returns are modelled as autoregressive time series:

rn = α+

h∑
i=1

βirn−i + εn, (1)

where rn is excess log return (log return minus risk-free rate) of the n-th period, α is the intercept, h
is the maximum lag, and εn is error term of the n-th period. The follow-the-winner OPS algorithms
assume that the coefficient βi is positive, while the follow-the-lower OPS algorithms assume that it
is negative. In a similar way, the assumption of these two OPS categories can be modelled as time
series momentum, proposed by Moskowitz et al. (2012):

rn
σn−1

= α+ βh
rn−h
σn−h−1

+ εn, (2)
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or returns signal momentum, proposed by Papailias et al. (2017):

rn
σn−1

= α+
βh
h

h∑
i=1

1{rn−i≥0} + εn, (3)

where σn−1 is ex-ante volatility, and 1 is the indicator function. Both the momentum methods
assume that returns scaled by their ex ante volatility depend on previous returns with proper
coefficient βh (follow-the-winner corresponds to positive βh, whereas follow-the-loser corresponds
to negative βh).
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