A University
of Glasgow

Joseph, ljuptil Kwajighu (2025) Mathematical modelling of active fluids in a
channel. PhD thesis

https://theses.gla.ac.uk/85589/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without
first obtaining permission from the author

The content must not be changed in any way or sold commercially in
any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/
research-enlighten@glasgow.ac.uk



https://theses.gla.ac.uk/85589/
mailto:research-enlighten@glasgow.ac.uk

Mathematical Modelling of Active Fluids in a Channel

[juptil Kwajighu Joseph

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Mathematics and Statistics
College of Science and Engineering

University of Glasgow

A University
of Glasgow



Abstract

Active fluids, such as active nematics, consist of self-driven units that convert energy
into directed motion. Examples include suspensions of cytoskeletal filaments, motor
proteins, bacteria, schools of fish, cellular layers, and cell tissues. This thesis presents
a theoretical and computational study of active nematics using an adapted Ericksen-
Leslie dynamical theory, with a focus on understanding how activity, external fields, and
geometry influence flow and director patterns in confined systems. In one dimension, we
investigate the effects of an orienting field on extensile and contractile nematics under
planar and homeotropic anchoring. Extensile systems with planar anchoring exhibit
minimal director distortion, whereas contractile systems display significant distortion
when the orienting field exceeds a threshold from the initial homeotropic alignment. A
kickback effect is observed in contractile nematics, which diminishes in extensile systems
as activity increases. Nonlinear analyses reveal uniform, symmetric, and antisymmet-
ric states, with activity enhancing flow and inducing bistability in contractile systems.
In two-dimensional channels, we analyse the influence of activity and non-constant
boundary conditions. Under inlet/outlet normal flow conditions, low activities pro-
duce localised flows, while higher activities generate spatial fluctuations in contractile
systems. Extensile nematics at high activity exhibit transitions from unidirectional to
bidirectional flow. For inlet/outlet periodic conditions, the system behaviour is similar
to that under normal flow conditions. Variation in the splay-to-bend elastic constant ra-
tio leads to transitions from positive to negative flux, demonstrating that active stresses
can dominate elastic forces and produce unidirectional flow with positive flux for ex-
tensile systems. We also explore time-dependent boundary conditions as a conceptual

demonstration of object sensing, showing that the speed of anchoring transitions af-
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fects flow patterns: slower transitions delay system activation, while faster transitions
reduce bidirectional flows. These results indicate that small local disturbances can pro-
duce large-scale flows. In a biological context, such as wound healing, the tissue edge
acts as a dynamic boundary where cells actively migrate and reorganise. Our findings
on time-dependent boundary anchoring and activity-driven flows suggest that localised
changes at wound margins can trigger large-scale tissue flows, mimicking the collective
migration observed during wound closure. Overall, this work provides a theoretical
framework for understanding how activity and confinement can be harnessed in sys-
tems that respond sensitively to local perturbations, highlighting potential applications

for active-nematic-based sensing.
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Chapter 1

Introduction: Passive and Active

Liquid Crystals

Active fluids are systems composed of self-driven units that consume and convert energy
into directed motion [42,45,76,187,236]. Typical examples of active fluids include a
suspension of cytoskeletal filaments [126] and motor protein |78, 188,211|, as well as
cellular layers and cell tissues [44,255|. In this thesis, we focus on active nematics, which
are a type of active fluid characterised by nematic symmetry, which may arise from the
elongated shape of the self-driven units similar to the rod-like molecules in nematic
liquid crystals or an abstract orientational symmetry exhibited by the constituents

[40,211].

The behaviour and flow patterns of active fluids, particularly active nematics, have
been a growing area of interest in the active matter physics community. Recently,
research has also focused on their practical applications, such as microfluidic pumps
[230], biomedical applications related to tumour dynamics [44|, the spread of bacterial
biofilms [144,251], embedding responsive control systems within biomimetic materials

[80] and the growth of bacterial biofilms |79], further expanding the scope of the field.

Studies have shown that active fluids exhibit spontaneous flows and vortices [147,197],

along with backflow resulting from internal activity in active nematics [60,183|. Var-
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ious flow patterns, ranging from steady flow to turbulent flow, have been observed
in a confined infinitely long channel [41,197], depending on the activity strength or
channel width and the study of confined active nematics has potential applications in

morphogenesis, biofilm formation, and wound healing/closure [6,69,144].

Controlling the behaviour of active fluids is crucial to their potential applications in
microfluidic devices and energy harvesting [211], yet achieving effective control has
proven to be challenging. One well-established method for attaining this control is by
confinement [43,77,248], and a promising application of active nematics in a confinement
is in the design of sensors, since small changes in alignment or external forces can lead
to significant effects, such as flow, in the active system. However, the effect of applied
orienting fields, such as electric and magnetic fields, on the behaviour of these systems,

as well as the influence of local disturbances on flow, remains an open question.

To address these gaps, we develop a theoretical and computational study of active
nematics using a modified form of the Ericksen-Leslie equations. Our work aims to
deepen the understanding of active nematics, which will provide insights into potential
future devices such as sensors and understanding of biological processes such as biofilm

formations and morphogenesis.

A key finding of our study is that local disturbances drive global flow in active nematic
systems. This is demonstrated in the two-dimensional models, where localised distur-
bances at the center of a channel induce global flow. Similarly, in the 1D model, a high
orienting field causes a significant director orientation. This behaviour is important
for sensing applications, as small alignment changes can lead to large-scale flow and

director distortion.

The thesis is organised as follows. In the remainder of Chapter 1, we begin by re-
viewing the historical background of liquid crystals, including their synthesis, phase
formation, and mathematical foundations. Particular attention is given to the classi-
cal classification of liquid crystals into nematic, smectic, and cholesteric phases, with

emphasis on nematic liquid crystals. This emphasis is motivated by our adoption of
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the Ericksen—Leslie framework for modelling active nematics, as well as the capacity
of nematic liquid crystals to align and flow under external fields [202], in addition to
their wide range of technological applications [23,82,145,146,239]. We then provide
an overview of active fluids, their classifications based on damping and symmetry, and
their behaviour in low-Reynolds-number regimes. This naturally leads to a discussion
of hydrodynamic instabilities in active fluids. We subsequently focus on active nematics
as a class of wet active systems, presenting their hydrodynamic theory and governing
equations, including active length and time scales. Special attention is given to kickback
and backflow mechanisms, as well as the Fréedericksz transition and the associated D-
and S-mode instabilities. The chapter concludes with a review of active nematics under
confinement, which is directly relevant to the present study, followed by an overview of
experimental observations of active fluids. Finally, we highlight applications in sensing
technologies, including electrorheological and magnetorheological sensors, liquid crystal
biosensors, and efforts toward the development of active nematic-based sensing devices.
In Chapter 2, we review the mathematical theories centered around the Ericksen-Leslie
framework, including the formulation of Frank—Oseen elastic energy and the Ericksen-
Leslie dynamic theory of nematic liquid crystals, which forms the underlying theory of
our study. This formulation is based on the conservation laws of mass, linear momen-
tum, and angular momentum. Recognising the importance of activity in these systems,
we also derive the activity term, which introduces an extra stress term into the original
Ericksen-Leslie equations for passive nematics. We conclude the chapter by discussing
anchoring conditions, focusing on planar, homeotropic anchoring and the hybrid aligned
(HAN) nematic cell, as well as the no-slip and no-penetration flow boundary conditions,

which will be used in Chapters 3, 4, and 5.

Chapters 1 and 2 present a comprehensive literature review that establishes the founda-
tional context for this research, highlighting key theories, methodologies, and previous
findings relevant to the study, while the remaining chapters focus on our original con-
tributions. To achieve the first objective of this research: examining the effect of the

orienting field on the behaviour of active nematics, Chapter 3 presents a linear analysis
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using planar and homeotropic alignments, as well as a nonlinear analysis, both under
the influence of an orienting field. We begin by linearising the governing equations
around a uniform director to understand early-time dynamics, followed by solving the
nonlinear analysis for longer times using a numerical approximation. We characterise
the solution based on activity strength and orienting field. Since mixed boundary con-
ditions will later be used, we conclude Chapter 3 by investigating the system in a simple

hybrid-aligned nematic (HAN) cell without an orienting field.

Chapter 4 presents a two-dimensional model of active nematics in a channel, considering
the effects of activity strength and channel width. To achieve the second objective of
this research: investigating the system using planar and homeotropic alignments, we
first examine the system under inlet/outlet normal flow conditions, which mimics a
single disturbance in anchoring, and characterises the solution by varying the activity
strength while fixing the channel width. We then investigate the system by varying both
activity and channel width. Next, we consider the system under periodic conditions,
inlet /outlet flow, which mimics a periodic disturbance in anchorings, where we also

examine the effect of the elastic constant ratio on director orientation and flow.

Chapter 5 focuses on the two-dimensional transient dynamics of HAN state formation,
which aligns with our third objective: understanding the transient dynamics of HAN
state formation. While Chapters 3 and 4 applied static boundary conditions on the top
solid wall, Chapter 5 introduces dynamic boundary conditions, enabling control of the

top boundary and allowing the system to switch from planar to homeotropic alignment.

Chapter 6 provides a summary of each chapter and offers suggestions for further work,
including the consideration of the three-dimensional form of this model and conducting

experimental validation for sensor design.
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1.1 Historical background of liquid crystals

In this section, we provide an overview of the historical background of liquid crystals
and their traditional classifications, which include nematic, smectic, and cholesteric
phases. While we discuss these three phases, our primary focus for the rest of the thesis

will be on nematic liquid crystals, the most relevant phase for active fluids.

Understanding the origins of liquid crystal helps us appreciate how this state of matter
was discovered and how its study evolved to become essential in both physics and
biology. Instead of a simple chronology of names and dates, this history reveals key
conceptual advances and how early research laid the ground for modern studies of active

nematics.

We divide the historical background into two aspects: the chemistry of liquid crys-
tals, focusing on their synthesis, and the mathematical foundation, beginning with the
Frank—Oseen elastic energy and ending with Ericksen-Leslie theory. These theories form

the mathematical basis of this thesis and will be discussed in detail in Chapter 2.

1.1.1 Synthesis of liquid crystals and their phase formation

Liquid crystals (LCs) are materials that possess intermediate phases of matter between
a crystalline solid and an isotropic liquid [25,35]. These intermediate phases are referred
to as mesomorphic phases. This means that LCs exhibit fluidity like that of viscous
fluids, which allows their molecules to flow or rearrange. At the same time, they retain
certain properties of solid crystals, such as specific optical behaviours [202]. LCs are also
anisotropic, meaning their physical properties vary depending on orientation [166,202].
Some notable properties of liquid crystals include electric anisotropy [8,29|, magnetic

anisotropy [180], anisotropic elasticity, and anisotropic viscosity [166].

The early history begins with Virchow in 1854 [233|, who observed an unusual liquid
state formed by dissolving myelin in water. Myelin—a fatty substance found in nerve

cells, which exhibits intermediate phase properties between solid and liquid. This phase
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of matter displayed double refraction (birefringence), a phenomenon where light splits
into two rays with different velocities, indicating an anisotropic internal structure. In
1857, Mettenheimer [132] further studied this optical behaviour and documented the

unique properties of myelin suspensions under polarised light.

The birefringence of myelin was one of the first experimental pieces of evidence that
certain fluids can have directional order. These early studies linked biology with the
physics of soft matter, suggesting that the anisotropic phases were not just found as

curiosities but could also be observed in living tissues.

Following this, in 1861, Valentin [228] extended these observations by investigating
plant and animal tissues under polarised light microscopy, revealing that such lyotropic
liquid crystal phases (formed by dissolving amphiphilic molecules in solvents like water)
may have been observed before the known thermotropic phases (formed by temperature
changes). This highlights the biological relevance of liquid crystals and foreshadows the

role of anisotropic ordering in cellular and tissue structures.

The formal discovery of liquid crystals is credited to Friedrich in 1888 [180], who studied
cholesterol derivatives and observed two distinct melting points: a cloudy intermediate
phase followed by a clear liquid phase. This “mesophase” showed both fluidity and
crystalline optical properties, which led Lehmann to describe these materials as “flowing
crystals” in 1889 [112]. These discoveries established liquid crystals as a new phase of

matter, distinct from solids and isotropic liquids.

In 1911, Manguin studied the optical properties of liquid crystals. He aligned a liquid
crystal by rubbing glass with paper and observed that light polarisation followed the
nematic director [131]. Hence, the idea that liquid crystals can influence light was
established. By 1922 [56], Friedel introduced the foundational concept of “orientational
order” and classified liquid crystals into nematic, smectic, and cholesteric phases. This
classification describes how molecules organise in different patterns and how defects
and external fields affect their behaviour, which remains central to understanding liquid

crystals and active nematics today.
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The ability to control molecular orientation in liquid crystals using external fields, such
as magnetic or electric fields [25, 35, 55, 89, 104, 254|, has been a major focus since
the early 20th century, exemplified by the Fréedericksz transition observed in 1933
[54], where an applied field reorients the average orientation of LC molecules, above a
threshold strength. Such control mechanisms are crucial in applications ranging from

displays to modern research on active nematics.

More recently, Guillamat et al. [71] demonstrated how magnetic fields can control active
nematic turbulence, using a mixture of biologically relevant microtubule gels coupled
to passive thermotropic liquid crystals. The study shows that a magnetic field can in-
directly transform the chaotic “active turbulence” (a chaotic, self-sustained flow regime
observed in active nematic systems at high activity, characterised by the spontaneous
creation, motion, and annihilation of topological defects and vortices on mesoscopic
scales) of an active nematic into ordered laminar flows by coupling it to a passive
thermotropic liquid crystal: 4’-Octyl-4-biphenylcarbonitrile (8CB) that responds to
magnetic alignment. When the 8CB is cooled into its smectic-A phase under a uni-
form magnetic field, its layered “bookshelf” structure orients perpendicular to the field,
creating an anisotropic interfacial resistance that channels active flows into straight,
antiparallel lanes. This alignment is reversible and reconfigurable, which, when heated
above the smectic-A transition, restores turbulence, while rotating the magnetic field
rotates the layers. This represents a direct link from liquid crystal to the current interest
in active nematics, which are non-equilibrium systems driven by internal energy con-
sumption. Extending this concept to sensing, an object placed above the active nematic
layer could locally perturb the surface anchoring, for example, through an electrostatic
effect, applied force, or torque, which would reorient the director locally. In an active
nematic, this small local perturbation can then be amplified by activity-driven flows
to produce a global, detectable response, effectively translating a microscopic stimulus

into a macroscopic signal.

In our study, we will consider the effect of an external field, such as a magnetic field,
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on the behaviour of the active nematics.

Beyond these historical accounts, there are many other significant developments in the
chemical aspects of liquid crystals. For a more comprehensive review of these histories,
refer to [20,95,166]. In the next section, we will shift our focus to the historical
background of the mathematical theories that have shaped our understanding of liquid

crystals, which lay a foundation for their theoretical modelling and applications.

1.1.2 Mathematical foundations of liquid crystals

The mathematical understanding of liquid crystals has evolved through key theoreti-
cal breakthroughs, which together provide the foundation for modelling their complex
behaviours. This section outlines the major developments relevant to nematic liquid
crystals and active nematics, which emphasise the physical insights each theory con-

tributed.

The notion of orientational order introduced by Friedel in the early 20th century inspired
the first mathematical description of nematic liquid crystals by Oseen in 1929 [148]. He
formulated how anisotropic molecules tend to align along a common direction, called the
director, capturing the essential ordered structure of nematics. Building on this, in 1933,
Fréedericksz and Zolina [55], experimentally discovered the “Fréedericksz transition”, a
fundamental phenomenon where applying an external electric or magnetic field above
a threshold causes the liquid crystal molecules to reorient. This demonstrated how
external fields can dynamically control molecular alignment, which is crucial to both
applications like Liquid Crystal Displays (LCDs) and current active nematic research.
Around the same time, Zocher [260]|, further explored magnetic field effects, which

deepens the understanding of how fields influence liquid crystal properties.

While early theories treated nematics as continuous media, a molecular-level expla-
nation was needed to connect microscopic interactions with macroscopic behaviour.
In 1959, Maier and Saupe [124] proposed a molecular theory describing how correla-

tions and flexibility between rod-like molecules determine the nematic order parameter,
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quantifying the degree of alignment. Their theory also explained the first-order phase
transition from isotropic (disordered) to nematic (ordered) phases, clarifying the molec-

ular origins of liquid crystal behaviour.

A crucial advance came in the 1960s with the development of continuum hydrodynamic
theories to describe how nematic liquid crystals flow and deform under stress. Ericksen,
in 1962 [47], introduced a hydrostatic theory that accounted for elastic deformations
and orientational order. Building on this, Leslie, [113], formulated a dynamical theory
incorporating viscous and elastic effects, resulting in the well-known FEricksen—Leslie
theory. This framework successfully couples flow and director dynamics, enabling ac-
curate predictions of nematic behaviours under various conditions, and is foundational

to many applications and further research.

Active nematics differ from traditional liquid crystals because their constituent par-
ticles consume energy to generate internal stresses and flows, driving the system out
of equilibrium [45,176,212,236]. In this thesis, we adopt an active nematic extension
of the Ericksen—Leslie theory, where an additional stress term captures these active
contributions. This extension allows us to model spontaneous flows, instabilities, and

complex dynamics observed in biological and synthetic active nematic systems.

Building on this foundational work, we will explore the effect of external fields, particu-
larly magnetic fields, on the behaviour of active nematics. This includes understanding
how such fields interact with the internal dynamics of active nematics. Chapter 3 will

present a detailed discussion of these effects and their implications.

1.1.3 Classification of liquid crystals

Liquid crystals exhibit several distinct phases characterised by varying degrees of molec-
ular order. While this thesis focuses primarily on the nematic phase due to its funda-
mental role in modelling active nematics, as well as its remarkable ability to undergo
alignment and flow behaviours [202] under external fields, as well as their applica-

tions in force sensors [85], pressure sensors [155], light sensors [82,239], chemical sen-
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sors [23,145,146] and emerging potential application in designing sensors. However, a
brief overview of other traditional phases, such as smectic and cholesteric, is provided
for context and completeness. However, smectic and cholesteric phases are not directly

involved in the models or analyses presented in this thesis.

Liquid crystals are classified using either their molecular structure or their phase struc-
ture. The molecular structure is the geometrical representation of liquid crystals in
terms of the constituent mesogenic molecules. The mesogenic molecules can include
disk-shaped, lath-shaped, and rod-shaped molecules. The most common form of lig-
uid crystal is derived from rod-shaped molecules, which are termed calamitic from the
Greek word “calamos”, which means ‘“rod”. Liquid crystal phases can also be classified
by their dependence on the temperature and concentration in the solvent [20,25]. The
phase structure is then characterised by the conformation and intermolecular interac-
tion of the molecules, and the arrangements of these include the nematic, smectic and

cholesteric phases as shown in Figure 1.1.

(a) nematic (b) smectic A (¢) smectic C (d) cholesteric

Figure 1.1: Sketches of liquid crystal phases, where the blue ellipsoids represent
molecules.

1.1.3.1 Nematic liquid crystals

The nematic phase has long-range orientational order but no positional order [57,67,96].
In the nematic phase, the long axes of the constituent molecules tend to align parallel
to a preferred direction, often called the anisotropic axis. In modelling nematic liquid
crystals, a unit vector n, called the director, is used to describe the average direction
of the long molecular axes of all molecules in the liquid crystal. While maintaining

this alignment on average, the molecules can still translate freely [202]. Although

10
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individual nematogen molecules can be polar, with a permanent dipole moment, the
nematic phase as a whole is apolar. This is because the molecules tend to align along
a common axis but with no preferred head or tail direction, resulting in a head-to-
tail symmetry. Consequently, the macroscopic order is invariant under inversion of the
director (that is, n — n), so the nematic phase lacks large-scale polarity [202]. Because
the relevant molecular axis is rotationally symmetric, the only distinguished direction
in the nematic phase is this anisotropic axis defined by n. Hence, the nematic phase is
uniaxial. The stability of this phase and electro-optic anisotropy make it very useful in

LCDs [149,179].

Figure 1.2: Schematic depicting an idealised nematic liquid crystal, where molecules
align with the director n, demonstrating orientational order [141].

1.1.3.2 Smectic liquid crystals

Unlike nematics, the smectic phase has both long-range orientational order and a one-
dimensional positional order [25,150]. Smectics are usually found at a lower temperature
than nematic liquid crystals. There are many subclassifications of smectic liquid crys-
tals, but the most important are smectic A and C [8]. The smectic A phase consists of
classical rod-shaped molecules that align along the layer normal, whereas the smectic

C phase features a tilted molecular arrangement |25, 35].

11
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1.1.3.3 Cholesteric liquid crystals

Cholesteric liquid crystals, also called “chiral nematics”, involve a nematic alignment of
molecules, which varies throughout the medium. They differ from the nematic phase
in that the director varies in direction throughout the medium in a regular way |[7].
The structure of the cholesteric liquid crystals defines a distance (called the pitch of
the cholesteric) measured along an axis over which the director rotates [7,30,38]. It
is the molecular chirality that induces an azimuthal twist from one layer to the next,

producing this spiral twist of the molecules along an axis.

Having introduced the concept of classical liquid crystals and their discovery, from a
chemical aspect to developing mathematical theories, we now shift our focus to active
fluids. The remainder of this chapter will cover active fluids, beginning with a general
overview before and concluding with active nematics, which is our primary area of

interest.

1.2 Active fluids

This section covers active fluids and their classification based on symmetry properties
and damping mechanism, distinguishing between “wet” and “dry” active systems. Be-
fore the classification, we will briefly introduce the concept of active fluids and their
hydrodynamic properties. In this thesis, we specifically focus on wet active systems,

with particular emphasis on active nematic liquid crystals.

Active fluids are composed of self-driven elongated units and exhibit collective be-
haviour due to the interplay between activity and liquid crystalline order, making an
interesting study of nonequilibrium dynamics [61,126,243,252,257|. These self-driven
units consume and convert energy into directed motion. Some examples of active fluids
include schools of fish [52], flocks of birds [191], bacteria [157], motor proteins and in-
sects or animals |76] as shown in Figure 1.3. Another class of active fluids is active gels,

which include cytoskeletal networks [76,173]. Active fluids possess physical properties

12



Mathematical Modelling of Active Fluids in a Channel

such as the appearance of defect structures, hydrodynamic instabilities, and unusual

viscoelastic properties [22,120,217].

Figure 1.3: A sketch showing some examples of active fluids: From the left to the
right, we have bacteria [157], a school of fish [52], a flock of birds [191], and a group of
sheep [66].

Our next focus is the classification of active fluids to provide a background for under-
standing their behaviour, properties, and interactions, which are essential for modelling

these systems.

1.2.1 Classifications of active fluids

Active fluids can be classified based on damping mechanisms and symmetry properties
[126]. This section provides a review of these different classifications of active fluids.
However, our primary focus in this thesis is on the dynamics of active nematic liquid
crystals, which are classified based on symmetry and fall under the category of “wet”
active systems. These systems exhibit hydrodynamic interactions, distinguishing them
from “dry” active systems where frictional damping dominates over viscous dissipation

[126].

In our study, we specifically consider both contractile and extensile active nematics.
Contractile systems are characterised by internal stresses that pull the surrounding
fluid inward along their symmetry axis, leading to flow patterns distinct from those of
extensile systems, which push fluid outward along their symmetry axis [45]. Under-
standing their behaviours is essential for characterising their flow regimes and emergent

properties, as well as exploring potential applications, such as the design of sensors.

13
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1.2.1.1 Classification based on damping

Active fluids move within a medium that facilitates interactions with the substrate or

induces frictional damping [126, 198, 213].

Active particles suspended in a viscous fluid with viscosity 1 and subject to frictional
drag 7 can generally be described as a fluid /particle system that either conserve mo-
mentum or that do not, depending on physical factors such as particle density and
the relevant length scales [126]. When the fluid acts simply as an inert background
providing frictional resistance, the ensemble of active particles transferring momentum
to the fluid can be modelled with overdamped dynamics that ignore particle momen-
tum conservation [209]. Such systems are referred to as “dry.” In this system, it is
always assumed that momentum is damped by friction with the substrate. In other
words, the viscous dissipation in the dry active system is dominated by friction. The
conserved quantity is the number of particles, which is characterised by the density
number, and the associated hydrodynamic field is the local density of active units [126].
Examples of such systems include flocks or herds of animals, birds [66,191], schools of
fish [52], vibrated granular particles on a plate [213,220], and the collective motion of
self-propelled hard rods [9]. On the other hand, if hydrodynamic interactions mediated
by the solvent play a significant role, the fluid’s dynamics must be explicitly included,
resulting in a coupled description of both the active particles and the fluid, where total
momentum is conserved [135]. These are known as “wet” systems. Examples include
unicellular organisms such as bacteria [10], algae [126] and also cytoskeleton biopoly-
mers and suspensions [40]. It is important to note that labelling a system as wet or
dry pertains to the modelling approach and the scale of observation, rather than an in-
trinsic property of the system itself. Generally, hydrodynamic effects can be neglected
only at length scales larger than \/5n/y [126]. In wet active systems, the long-range
hydrodynamic interactions between self-propelled particles play a crucial role in the

dynamics [135,209].
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1.2.1.2 Classification based on symmetry

Active fluids can also be classified based on their symmetry. The first symmetry classi-
fication consists of polarity, where self-propelled units can interact to affect polar order.
In polar systems, the units align head-to-head and tail-to-tail, examples include schools
of fish and flocks of flying birds or self-propelled rods [164,232,253]. Apolar systems
also exists, examples of which include fibroblasts [189] and melanocytes [69], which can
form an apolar nematic liquid crystal at high cell densities [69], which exhibit inter-
actions that align particles in opposite directions on the same axis regardless of their
polarity [188]. Beyond polar and apolar systems, active fluids can also be described by
scalar and hexatic order parameters. Scalar active fluids lack orientational order, and
their behaviour is governed primarily by variations in density or concentration [216].
Hexatic active fluids exhibit sixfold orientational symmetry, with units arranging locally
in hexagonal patterns without long-range positional order, as seen in certain bacterial

colonies or colloidal monolayers [103].

In the next section, we will explore the active fluids in the low Reynolds number regime.
This review provides a foundation for modelling active systems in which viscous forces

dominate over inertial effects.

1.2.2 Low Reynolds number flow of active fluids

Even though our primary focus is on the collective behaviour of active nematics, it is
useful to briefly discuss individual microswimmers in low Reynolds number regimes, as
they illustrate the fundamental mechanisms of self-propelled motion in highly viscous,
inertia-negligible environments. Reynolds number is defined as the ratio of inertial to
viscous forces. Specifically, studying microswimmers helps understand how propulsion
arises purely from active stresses, how hydrodynamic interactions affect trajectories,
and how collective patterns emerge from individual motions. In this thesis, we neglect
the inertia term because the Reynolds number is small. To provide a foundation for

this approach, we first review microswimmers and then follow with continuum models
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of microswimmers.

Microswimmers such as bacteria exhibit motility by self-propelling in fluids using flagella
or cilia arranged in various geometric patterns [111,161|. Their shapes, behaviours, and
ability to rotate about their swimming direction [13] can all be used in mathematical

models to describe their motion.

Several mathematical models have been developed to describe their behaviours, begin-
ning with Taylor’s model in 1951 [208], which examined how a self-propelled organism
moves in a highly viscous medium. Although originally formulated for a single swim-
mer, this model illustrates how individual propulsion generates flow fields, a concept
that underlies the active stresses driving collective motion in active nematics. Build-
ing on this, Lighthill [118] introduced the concept of a spherical deformable body that
swims by performing small oscillations of its surface, demonstrating how individual
surface motions generate local flows even in the absence of inertia. Blake [16] extended
this idea through the spherical envelope model, which approximates the dense cilia of
a microorganism as a continuous waving envelope, allowing calculation of propulsion
velocities and efficiency, while accounting for collective ciliary motion. These models
provide a foundational framework for understanding how individual self-propelled units
generate flow and hydrodynamic interactions, which are central to emergent patterns
in active matter. Building on this, Pedley and Kessler [161] explored the swimming
behaviour of microorganisms such as Chlamydomonas and Bacillus, focusing on their
responses to external stimuli like chemical gradients (chemotaxis), shear (rheotaxis),
and magnetic fields (magnetotaxis). These studies also contributed to the understand-
ing of bioconvection, where the collective movement of microorganisms generates fluid
flow patterns [98,160], providing further context for the emergence of collective dynam-

1cs In active nematics.

At low Reynolds numbers, viscosity dominates fluid dynamics, as emphasised by Pur-
cell [174], who formulated the “Scallop Theorem,” demonstrating that reciprocal motion

alone cannot generate net propulsion in this regime. He simplified the Navier-Stokes
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equation to the Stokes equation, where inertia is negligible, highlighting the distinct me-
chanics governing microswimmers compared to macroscopic organisms. Further studies,
such as mesoscale hydrodynamic simulations of F. coli, have revealed that propulsion
mechanisms rely on coordinated flagellar and cell body rotation [84]. Additionally, Hu-
ber et al. [86] showed that hydrodynamic interactions significantly affect their swimming

efficiency and trajectories.

The mathematical theories underlying the study of active fluids can be viewed at dif-
ferent length scales. This includes macro, micro, and molecular scales depending on
the Reynolds number. The corresponding Reynolds numbers, might for, instance be
10* for macroscopic turbulent flows, 10? for certain mesoscopic systems, and 10~2 or
smaller for microscale active suspensions [11]. In this Thesis, our focus is on the hy-
drodynamic theories governing microscale active fluids, which typically operate in the

low-Reynolds-number regime where viscous forces dominate over inertia.

The Reynolds number in a typical fluid is defined as

L
Re = %, (1.1)

which quantifies the ratio of inertial to viscous forces, where p is the fluid density, U a

characteristic velocity, L a characteristic length scale, and n the fluid viscosity.

In this thesis, we assume Re < 1, so that fluid inertia can be neglected. Since the
flow velocity is induced by activity, we define the velocity scale as U = |£|d/ns, where
|€] is the magnitude of the activity, d is the characteristic length scale, and 73 is the
fluid viscosity. This velocity scale will be explained and justified later in Section 3.3.1.1
(see equation (3.27)), where the characteristic active length and time scales are derived

from the linearised hydrodynamic equations.

Substituting this into the definition of Re gives

d2
Re = p|§|2 <1 (1.2)

N3
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Specifically, we use the physical parameters of the nematic LC N-(4-Methoxybenzylidene)
-4-butylaniline (MBBA) at 25°C throughout this thesis, as outlined in Table 1.1. MBBA
is chosen because its material parameters are well-characterised and widely reported,
making it a convenient reference for setting physical scales. We emphasise, however,
that MBBA has no explicit relation to active nematics, which may exhibit a broad

*

range of properties. The parameter values marked by ** are the varying parameters.

Quantity Description MBBA 25°C
Elastic constant (N)
K, Splay elastic constant 6 x 1072
K, Twist elastic constant 3.8 x 10712
K, Bend elastic constant 7.5 x 10712
Viscosity (Pa s)
a1 Leslie viscosity —0.0181
Q9 Leslie viscosity —0.1104
Q3 Leslie viscosity —0.001104
oy Leslie viscosity 0.0826
Qs Leslie viscosity 0.0779
a6 Leslie viscosity —0.0336
i Miesowicz viscosity 0.0240
Mo Miesowicz viscosity 0.1361
73 Miesowicz viscosity 0.0413
V1= Qg — Qo Rotational viscosity 0.1093
Yo = a3 + Qg Torsion viscosity —0.1121
Leslie angle (rad)
0r Leslie angle 0.099
Xa (dimensionless) Magnetic anisotropy ~ 1.219 x 107°
p (Kg/m?) Density 1088
Activity strength (Pa)
£ 1D [~2, 2]

2D [—100, 150]
Geometry (um)
d channel height (1D) 200
d channel height (2D) 2
w channel width (2D) 20%*
l HAN region length [w/1000, w/3]
Applied field (A m™1)
H Orienting field [0, 5]**

H.,

Critical field strength

(m/d)(v/ K1/ Xa)

Table 1.1: Table of parameter values

The Reynolds numbers corresponding to the range of activity values considered in this
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study, & = +0.0001, £0.3, and +150, are summarised Table 1.2. These values confirm

Dimension Characteristic length d (um) Activity £ (Pa) Reynolds number (Re)

1D 200 0.001 2.5515 x 107°
1D 200 0.3 7.6544 x 1073
1D 200 2 5.1029 x 102
2D 2 0.001 2.5515 x 107?
2D 2 100 2.5515 x 1074
2D 2 150 3.8272 x 1074

Table 1.2: Reynolds numbers for 1D and 2D flows for weak and high activity cases.

that both 1D and 2D flows are in the low-Reynolds-number regime, justifying the

neglect of inertia in our simulations.

The choice of different activity values for 1D and 2D systems arises from both scaling
considerations and practical motivations. In the 1D channel geometry (d = 200um),
relatively small activity values (¢ = 0.0001-2 Pa) are sufficient to generate measurable
hydrodynamic effects because the larger characteristic length amplifies the impact of
active stresses. By contrast, in the 2D case (d = 2um), the smaller system size ne-
cessitates higher activity parameters (up to & = 150 Pa) to produce comparable flow
instabilities. Moreover, exploring strong activity in 2D is motivated by potential ap-
plications in the design of microscale sensors, where enhanced active stresses could be

exploited to improve sensitivity and response.

The choice of a 2 pm channel height in the present study is primarily motivated by
potential applications in sensor design, rather than experimental convenience. While
experimentally filling channels of this dimension is challenging, and typical confinements
in active nematic systems are larger (5-50 pm for microtubule—kinesin networks and 1-
10 pm for bacterial suspensions) [40,188,242|, a 2 pm channel provides a highly confined
geometry that is relevant for integrating active nematics into micro- and nano-fluidic
devices. At this height, microtubules (diameter 25 nm) would form only about 80 layers
across the channel, which is sufficient to capture collective dynamics while maintaining
a quasi-two-dimensional flow regime. Therefore, despite being smaller than typical

experimental channels, this choice allows exploration of active nematic behaviour under
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conditions directly relevant to sensing applications.

Having established this background by reviewing studies on active fluids, we now focus

on hydrodynamic instabilities in these systems.

1.2.3 Hydrodynamic instabilities in active fluids

This section reviews various instabilities in active fluids, with a primary focus on ac-
tive nematics. To provide context, we first examine the broader literature on active
fluids, highlighting the types of flow, instabilities, and hydrodynamic interactions in
these systems. Specifically, Section 1.5 covers active nematics and their hydrodynamic

Interactions.

Hydrodynamic theory-based studies on active matter have been ongoing, covering both
microscopic and macroscopic modelling [91,107,126]. One approach to developing a
hydrodynamic theory for these systems is to start with a microscopic model and apply
statistical physics tools to coarse-grain it, deriving the long-wavelength and long-time-
scale equations [108,120]. For example, large density fluctuations due to the continuous

energy input at the microscopic scale [136,176] have been observed in active systems.

Theoretical and computational studies, supported by simulations and experiments, have
predicted or observed spontaneous flow in active fluids [65,127,236]. These systems may
exhibit steady flows [61] with instabilities that disrupt nematic order, often triggering
motion [214,219,236]. A study of active systems such as active nematics shows that
the interaction between non-uniform nematic order, activity, and flow leads to spatially
modulated relaxation oscillations [62,63|. In our study, we will later demonstrate that
active nematics exhibit oscillatory flow in contractile active systems. Other studies
have observed turbulence in active systems even at a low Reynolds number [212,214].
In all these studies, the stress term, dependent on the nematic tensor, and the order

parameter are important activity parameters [178].

Hydrodynamic instabilities in active fluids occur due to their intrinsic non-equilibrium
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nature [46,126,175,185,237|. Unlike passive liquid crystals, where instabilities typically
arise from external perturbations or thermal fluctuations [83], active fluids experience
internally generated stresses that can lead to spontaneous flow patterns [44,236]| and
symmetry breaking [37,218]. These instabilities are crucial for understanding the self-
organisation observed in active matters, including bacteria suspensions, self-propelled

rods and active gels.

For instance, linear stability analysis of collective hydrodynamics behaviour of self-
propelled hard rods reveals that fluctuations in the isotropic state are stable for low
density but unstable for high density [9]. Similarly, a study of the hydrodynamics
of bacterial suspensions using statistical mechanics indicates that the homogeneous
isotropic suspension of contractile systems becomes unstable at concentrations above
the critical concentration and is stable at concentrations below the critical concentration
[10]. In these contractile systems, the homogeneous ordered state is destabilised by the
growth of the splay configuration, while growth of a bend configuration destabilises
the homogeneous ordered state in extensile systems [1]. In further investigations of
the viscoelastic properties of active filament solutions under different phases (isotropic,
polarised, and nematic), a molecular model suggests that the system is disturbed from
its equilibrium state by external energy sources, such as shear stress, and internal
sources (like motor activity) [121]. A study of active gels indicates that the interaction
between the elasticity of semiflexible filaments and the mechanical properties of the
system results in the contractile behaviour of the active gels [122]. In many such
systems, these instabilities can be controlled by confining the system or applying an

external shear [49,128,140].

The analysis of hydrodynamic instabilities in active fluids demonstrates how continuous
energy input at the microscale generates spontaneous flows and complex spatiotemporal
patterns. In low-Reynolds-number regimes, as encountered in microswimmer systems,
viscous forces dominate over inertia, leading to creeping flows where activity-induced

stresses drive the dynamics. This highlights the importance of self-driven activity and
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anisotropic interactions in shaping the collective behaviour of active fluids. Active ne-
matics extend these concepts by considering elongated, rod-like particles whose align-
ment and activity produce characteristic defect structures, spontaneous flows, and rich
nonequilibrium phenomena, making them an ideal system to study the interplay of

activity, symmetry, and hydrodynamic instabilities.

1.3 Active nematics

As previously mentioned, active nematics are a class of active fluids that operate out of
equilibrium, driven by the continuous energy consumption of their constituent particles
[215]. This intrinsic energy dissipation leads to instabilities and topological defects in
the system, making them fascinating subjects of study [40, 182,214, 236]. Although
lyotropic active nematics are composed of suspensions of elongated particles rather
than molecular liquid crystals, their orientational order and defect dynamics can be
described using the continuum theory of thermotropic nematics. This is because the
coarse-grained alignment and elastic stresses in both systems are governed by similar
symmetry principles and free-energy considerations, which allows the well-established
hydrodynamic equations of thermotropic nematics to be applied to lyotropic active

systems.

Figure 1.4 is a sketch that shows bacteria aligning in a nematic phase, where n represents
the self-driven units aligned along a local axis. We use the hydrodynamic theory of
thermotropic nematic liquid crystals to study the collective behaviour of active nematic

liquid crystals [64, 69,106, 107].

In terms of phase formation, active fluids can exhibit either nematic apolar or polar
ordering [64,126]. Active polar fluids consist of head-tail structures, forming polar or
ferromagnetic orders, as illustrated in Figure 1.5(a) [126,135|. These systems may also
form apolar states, where the particles align in either direction along the same axis of
mean orientation, exhibiting global symmetry of n — —n (Figure 1.5(b)). The steric

interactions between particles often dominate, leading to nematic phase formation [1].
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Figure 1.4: Schematic showing bacteria align into a nematic phase.

(a) (b) (c)

Figure 1.5: Schematics of active particles: (a) polar particle, (b) apolar particle, and
(¢) self-propelling particles.

1.3.1 Hydrodynamics of active nematics

In active nematics, the key idea is that the constituent particles, such as elongated
biological filaments or synthetic rods, consume energy to generate motion. Unlike
passive systems, where disturbances typically decay over time due to viscosity and
friction, active nematics can increase disturbances because of the continuous input of
energy at the microscopic level. Imagine a uniform alignment of rod-like particles (the
nematic director field). If there is a small bend or splay in this alignment, the active
stresses generated by the particles push or pull the fluid around them, which will either
enhance or suppress the distortion. These flows, driven by active stresses, couple with
the orientation of the nematic field. If this coupling is strong enough, the feedback loop
leads to a hydrodynamic instability: the nematic order breaks into chaotic, swirling

patterns known as active turbulence [2,10,126].

Continuum theory of active nematics, building on the system’s symmetries, extends the
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theory of liquid crystals, particularly the hydrodynamic theory of thermotropic nematic
liquid crystals by incorporating activity term in the stress tensor [107,211,221]. This
theory can be applied to systems operating over extended periods and on length scales

that are significantly larger than the size of active particles [227].

Many recent studies [2,9,15,87,123] have explored the phase transitions and collective
behaviour of active nematics. For example, in 2D systems, activity can drive transitions
from homogeneous states to chaotic ones, with the formation of vortices and sponta-
neous flow [64,176,256]. In one-dimensional geometry, active systems exhibit inherent
hydrodynamic instabilities under planar anchoring [215,243,252|. These hydrodynamic
instabilities in active nematics can also be suppressed by shear near walls [215], and
interactions between director orientation and flow can lead to sustained steady spon-
taneous flow [126|. These hydrodynamic instabilities can also drive the emergence of

topological defects [105].

One of the foundational models of polar active matter, which later inspired the de-
velopment of theories for active nematics, can be traced back to the Vicsek model in
1995 |232], which reveals that self-propelled agents interacting via simple alignment
rules and subjected to noise undergo a genuine phase transition from disordered to
ordered motion. This demonstrated that long-range order and collective dynamics can
emerge in dry active matter systems. Despite its success in capturing essential features
of collective motion, the Vicsek model has several notable limitations. First, it assumes
particles move on a fixed substrate and neglects fluid interactions or hydrodynamics.
Second, the model lacks steric or volume exclusion effects; the particles are treated as
point-like and can freely overlap, thereby ignoring physical constraints and interactions.
Moreover, the alignment rule is overly simplistic, relying only on local averaging and
not accounting for more realistic mechanisms such as delayed responses or torque-driven
reorientation. Another limitation is the assumption of constant particle speed, even in
conditions where crowding or interactions would realistically alter velocity. Further-

more, due to its stochastic and discrete nature, the model is analytically intractable,
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meaning that most of the understanding relies heavily on numerical simulations rather

than exact theory.

Later in 1998, Toner and Tu developed a theory of flocking [220], to describe a collec-
tive motion in systems of self-propelled particles (SPPs) that break rotational symmetry
and exhibit macroscopic order. This theory provided the theoretical justification for
the observations in the Vicsek model and generalised its results beyond the computa-
tional setting. They write down the most general continuum equations of motion for a
long-wavelength description of the flock, which is consistent with symmetries and con-
servation laws, including a continuity equation for density, a Navier-Stokes-like equation

for the velocity with nonlinear convective terms, active stresses, and noise.

The Toner—Tu theory thus elevated the Vicsek model from a simulation-based descrip-
tion of polar active matter to a continuum hydrodynamic framework for flocking. It
predicted groundbreaking features such as long-range order in two dimensions, giant
number fluctuations, and propagating density modes. However, since both the Vic-
sek and Toner—Tu models describe polar systems, where particles possess a head—tail
asymmetry, they cannot capture the full richness of active nematics, which exhibit ap-
olar symmetry. Moreover, their simplifying assumptions, such as motion over a solid
substrate with friction (which damps momentum) and the neglect of hydrodynamic
interactions, mean they cannot describe phenomena that require later developments,

such as the Simha—Ramaswamy or active gel theories.

While the Simha-Ramaswamy theory describes hydrodynamic instabilities in active
nematic systems, it was primarily a linearised treatment, which focuses only on the
onset of instabilities without exploring the nonlinear steady states that can emerge, such
as active turbulence. Additionally, the theory assumed a fixed concentration or small
fluctuations around a homogeneous density, limiting its applicability to systems where
density inhomogeneities or motility-induced phase separation play a crucial role. It also
did not account for viscoelastic effects, complex rheological responses, or cytoskeletal

mechanics, which are central to biologically active matter such as actomyosin gels or
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the cell cortex. Later in 2003, Ramaswamy et al. [176] constructed the more general

universal equations of motion, valid for all systems of dry active nematogenic particles.

However, this theory is only applicable to dry active systems and cannot be applied
to wet active systems. Additionally, the theory is limited by its linear approxima-
tion, neglect of fluid flow, viscoelasticity, defect dynamics, strong density fluctuations,

boundary effects, and simplified noise assumptions.

Beyond these theories, Kruse et al. [106] developed a generalised hydrodynamic theory
for active viscoelastic gels composed of polar filaments, motivated by the cytoskeleton
dynamics in living cells. The theory describes how continuous chemical energy con-
sumption drives these gels out of equilibrium, which produces flows and stresses not
possible in passive materials. The cytoskeletal network is modelled as a polar viscoelas-
tic gel with macroscopic polarity described by a polarisation field. The constitutive
hydrodynamic equations were derived, combining the flow velocity field and the polar-
isation dynamics, including active terms proportional to the ATP chemical potential
difference driving the system. The model generalises liquid crystal hydrodynamics by
incorporating active stresses generated by molecular motors and polymerisation pro-

cesses.

Analyses of the governing equations reveal distinct patterns of filament orientation,
such as asters (radial), vortices (circular), and rotating spirals, and demonstrate that
when active stress exceeds a critical threshold, these defects spontaneously begin to

rotate.

The limitation of this theory is that it assumes small activity near equilibrium, sim-
plified geometry, uniform ATP concentration, and neglects complex motor dynamics,
boundary effects, chirality and fluctuations. However, a hydrodynamic theory for multi-
component active polar gels was developed to capture possible chiral symmetry of the

filaments [90], and later describe the physics of active gels [173].

We now shift from continuum-level ideas to mesoscopic models because continuum
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theories, which capture large-scale behaviours, often miss crucial particle-level details
such as defect core structure, steric interactions, and noise. However, microscopic
theories, though more detailed, can be computationally intensive and may lack the
ability to generalise emergent collective behaviour. This makes mesoscopic models a
practical middle ground that incorporates nematic alignment, active stresses, and defect

dynamics.

A study of the collective motion of self-propelled particles with noisy local interac-
tions provided a microscopic foundation for the study of active systems [15]|. Bertin, et
al. [14], derived a mesoscopic theory of active nematics, starting with a simple Vicsek-
style model for active nematics, using a combination of kinetic theory and It calculus
approaches (a framework in stochastic calculus used to handle integration and differen-
tiation when randomness is involved). Other mesoscopic and kinetic theories include a
nonlinear field theory for aligning self-propelled rods [165], which bridges microscopic
Vicsek-type models to mesoscopic equations using a Boltzmann-Ginzburg-Landau ex-
pansion; kinetic theory using the Smoluchowski equation for hard rods with nematic
alignment, which leads to continuum equations for density and order parameter fields
[9]; theories of binary fluid mixtures, which extend the Doi-Onsager kinetic theory
for passive liquid crystals to include activity, enabling the mesoscopic description of
defect dynamics, flows, and spontaneous ordering [24]; a nonlinear model of active
suspensions, which uses the Smoluchowski equation to describe distribution functions
of swimmers, incorporating alignment, hydrodynamic interactions, and noise to de-
rive continuum descriptions [186]; and the dynamics of active Brownian particles using
Fokker—Planck equations, which lead to mesoscopic phase-field models for motility-
induced phase separation (MIPS) [246]. Mesoscopic theories often simplify microscopic
details and fluctuations, sometimes missing complex hydrodynamic effects and exact

defect behaviour.

We conclude the sections on microscopic and mesoscopic theories of active systems by

summarising the governing equations for active nematics, including the dry and wet
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active systems.

Active nematic theories, whether wet or dry, are constructed based on fundamental
conservation laws. These include conservation of mass, linear momentum, angular
momentum, and particle number. The dynamics of the nematic is described by an order
parameter whose evolution depends on the interplay of elastic stresses, active stresses,
and viscous dissipation. As earlier mentioned, in wet active nematics, momentum is
conserved and hydrodynamic interactions play a key role, while in dry active nematics,
substrate friction dominates and momentum is effectively dissipated. Activity enters
the theory as an additional stress or flux term that drives spontaneous flows and defect

formation. For a detailed formulation of the governing equations, see [39,196,240|.

These governing equations have been solved by the hybrid lattice Boltzmann method
by Wang and Zhang [240]. The results suggest unsteady director dynamics in a 2D
study of self-assembled active nematics below threshold activity. This behaviour of
the system is invariant with the interplay between active stress and driven flow. The
study also suggests that the system exhibits discontinuity for activity values above the

threshold activity, leading to a complex periodic spatiotemporal director pattern.

Simulations have also been used to bridge the gap between microscopic and meso-
scopic theories. For example, Duclos et al. [44], investigates the emergence of sponta-
neous shear flows in confined cellular nematics, using experiments, theory, and simula-
tions to understand how activity and confinement lead to self-organised flow patterns.
Kozhukhov and Shendruk [105] introduce an algorithm for simulating active nematics

using multi-particle collision dynamics.

The accompanying figures (A-D) provide visual representations of the local director
field, with the colour denoting the scalar order parameter, while additional figures
(i-iv) illustrate vorticity, with arrows depicting velocity. At an initial time step (0),
the director remains undistorted, accompanied by a uniform flow field, as depicted in
Figures 1.6 (A) and 1.6(i) respectively. Subsequently, at time step 110, the system

displays bend instabilities characterised by high-bend kink boundaries with a net force
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density parallel to the bend (refer to Figures 1.6 (B) and 1.6(ii)). Progressing to time
step 160, a pair of £1/2 topological defects emerge, distinguished by the red and blue
colours (see Figures 1.6 (C) and 1.6(iii)). Finally, at time step 245, the system evolves

into active turbulence, as illustrated in Figures 1.6 (D) and 1.6(iv).
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Figure 1.6: Snapshots of the director field (labeled A-D) where the colour represents

the scalar order parameter. Additionally, the vorticity field is displayed with arrows

indicating the velocity, and the +1/2 and -1/2 topological defects are represented by
red and blue colours, respectively. [105].

Other simulations include simulations of microswimmer-driven dynamics in active ne-
matics Mondal et al. [137]. Giomi [59] performed numerical simulations of active nemat-
ics in a two-dimensional channel. These studies showed that activity drives spontaneous
flows and the creation and annihilation of topological defects. Stronger activity leads
to finer spatial structures and faster defect dynamics. The simulations revealed that
turbulence emerges when the characteristic defect spacing is intermediate between the
defect core size and the system size. As activity increases, the number of defects grows
until reaching a saturation point. These results highlight how the interplay between
activity, elasticity, and viscous dissipation controls the patterns and dynamics in active

nematic systems [59, 81].

In the next section, we introduce the concepts of kickback and backflow mechanisms,

starting with kickback in passive liquid crystals and concluding with backflow in active
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nematics. One objective of this study is to investigate the effect of activity on kickback

and the interplay between activity and the orienting field.

1.3.2 Kickback and backflow mechanisms

Kickback is an effect observed in nematic liquid crystals in which the director orienta-
tion, instead of relaxing monotonically after the removal of an external orienting field
(electric or magnetic), initially increases in magnitude beyond its equilibrium orienta-
tion. This leads to a temporary overshoot and a slower eventual relaxation to the final
state [68]. This occurs due to the response delay in the flow field created by back-
flow [223], which acts after the external forcing is removed. Essentially, the director
tries to return to equilibrium, but the backflow—driven flow pushes the director away

from equilibrium, resulting in a kickback mechanism.

Beyond fundamental studies, backflow dynamics have been found to influence several
physical processes, including defect core advection [17,222,225]|, as well as the alter-
ation and anisotropic aggregation of colloidal particles [168,169]. Additionally, Kos and
Ravnik [259] demonstrated that backflow can generate microflows under the influence

of external fields.

While these effects are well understood in passive nematics, their role in active nematics,
where internal activity drives continuous energy injection, remains an open question.
Unlike passive systems, backflow in active nematics arises not only from external fields
but also from intrinsic active stresses that generate spontaneous flow and director dis-
tortions [60, 183,259|. In particular, when an orienting field is present in the limit of
zero activity, the system behaves like a classical “Fréedericksz transition”, where the di-
rector realigns with the field. However, as activity increases, it perturbs this transition,

modifying the interplay between backflow and field-induced alignment.

In summary, backflow in Ericksen—Leslie theory arises from the coupling terms in the
stress tensor, particularly the Leslie viscous stress, where the reorientation of the di-

rector feeds back into the flow field. This effect is crucial for capturing phenomena
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such as director relaxation, defect dynamics, and spontaneous flow, and plays a more

prominent role in active nematic systems.

Understanding the effect of activity on kickback and the interplay between the ori-
enting field and the backflow mechanism is crucial to advancing theoretical models of
active nematics. Chapter 3 aims to explore the influence of activity on kickback-driven

dynamics and the hydrodynamic interactions of external fields and activity.

We now discuss the “classical Fréedericksz transition” in the next section.

1.3.3 Fréedericksz transition

Fréedericksz transition is a fundamental phenomenon in the physics of liquid crystals
that describes how the orientation of liquid crystal molecules changes in response to an
external field, such as an electric or magnetic field [54,202]. In the undistorted state,
the molecules are uniformly aligned due to surface anchoring at the boundaries, which
enforces a stable configuration. When an external field (magnetic or electric field) is
applied perpendicular to this alignment, it exerts a torque on the anisotropic molecules,
trying to reorient them along the field direction. However, the surface anchoring resists
this change, and the orientation remains undistorted until the field strength exceeds a
critical threshold, also known as the Fréedericksz threshold. At this threshold, the torque
from the external field becomes strong enough to overcome the anchoring, making the
uniform state unstable. This makes the liquid crystal molecules reorient to form a new
configuration that minimises the combined elastic and field energies. This transition
leads to deformations (such as splay, bend, or twist) of the director, depending on the

geometry and the nature of the applied field.

For example, consider a sample of liquid crystal sandwiched between two parallel plates,
a distance d apart, of splay geometry (a situation where the director, n, is strongly
anchored parallel to the plates) as shown in Figure 1.7. In this setup, it can be shown
that the Fréedericksz threshold is H,. = (7/d)~/K1/Xa, Where Y, is the anisotropy of the

magnetic susceptibility, and K is the splay elastic constant. Assuming y, > 0, which
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indicates that the director tends to align with the magnetic field. For H < H,, the
sample of liquid crystal parallel to the plates remains undistorted (see Figure 1.7(a)),
but as H increases via the Fréedericksz threshold H., a Fréedericksz transition occurs

when H > H,, the director reorients in response to the effect of the magnetic field H

(see Figure 1.7(b)).
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Figure 1.7: Geometry of the classical Fréedericksz transition, where 6 is the director,
n makes with x—axis. Note that the magnetic field H is initially perpendicular to the
director n. (a) The original state of the liquid crystal sample, where H < H., shows
no reorientation. (b) When H > H,, the applied magnetic field induces a
reorientation of the director toward alignment with H.

In active nematics, recent experimental work by Alam et al. [3|, demonstrates how
active nematic droplets in 3D undergo Fréedericksz transition. The study shows that
increasing droplet size beyond a critical diameter triggers a shift from a quiescent to a
spontaneously flowing state. The critical threshold depends on activity, elasticity, and
geometry, while energy consumption remains constant, which confirms the inactivity

phase as a stable nonequilibrium state.

In the next Section, we discuss active instabilities, which will be essential in Chapter 3

for analysing homeotropic and planar alignments.

1.3.3.1 D- and S-modes in active hydrodynamic instabilities

We review here the spontaneous flow transition observed in active nematics, reminiscent
of the classical Fréedericksz transition in passive liquid crystals but driven by activity
rather than external fields. Building on the analysis presented in Walton’s thesis, we
review the reorientation dynamics of active nematic liquid crystals under external fields,
with particular focus on how activity modifies the accessible director configurations

[238].
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Activity destabilises the uniform director state, leading to two distinct eigenmodes:
the symmetric (S-mode) and the degenerate (D-mode) [172], also referred to as Mode
I and Mode II [238]. The S-mode corresponds to the director tilting away from the
vertical with an “S-shaped” profile across the cell thickness: at one boundary, the tilt
is in one direction, while at the opposite boundary it reverses. This mode breaks in-
plane rotational symmetry by selecting a preferred axis (e.g. the z-axis) and generates
shear flow along it. The D-mode also involves titling of the director but produces a
“D-shaped” director profile with maximum distortion at mid-cell and vanishing tilt at

the boundaries.

Figure 1.8 illustrates how strong external orienting fields drive the reorientation dynam-
ics of contractile active nematics, comparing symmetric and anti-symmetric director
responses. In both cases, the director aligns with the applied field during switch-on
and relaxes back after switch-off, with no evidence of kickback at the chosen moderate

activity strength [238].
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Figure 1.8: Time evolution of the director angle 6(z,t) for a contractile active nematic
with activity ¢ = 50 Pa during switch-on and switch-off of a strong external orienting
field. Panels (a) and (b) show the symmetric mode: (a) rapid alignment of the
director in the bulk during switch-on, reaching 6 ~ 7/2, and (b) relaxation to the
symmetric equilibrium configuration after field removal, with no kickback. Panels (c)
and (d) show the anti-symmetric mode (Mode II): (c) director aligns with the field
across the channel during switch-on, and (d) relaxation after field removal, where the
anti-symmetric structure is transiently maintained due to system symmetry,
remaining largely unchanged over long times with no kickback [238].

In the classical Fréedericksz transition, a uniform director becomes unstable when an

external electric or magnetic field exceeds a critical threshold, the field torque overcom-

ing the elastic restoring torque. By contrast, the spontaneous flow transition in active

nematics is internally driven: instability occurs once active stresses exceed a threshold

set by the balance of elasticity and viscous dissipation.

Other studies also investigated in- vs out-of-plane instabilities in active films, which

conceptually maps to S/D-modes [199]. Other instabilities include wrinkling instability
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in bulk 3D active nematics [203|, where the director field spontaneously buckles.

In Chapter 3 of the thesis, we will investigate the combined effect of internal active
stresses and external fields on active nematics. This aims to develop a comprehensive
understanding of how these competing influences govern director orientation, flow in-
stabilities, and pattern formation. This combined effect promises to bridge classical

liquid crystal theory with emerging phenomena in active soft matter.

1.4 Active nematics in confinement

Since our study concerns active nematics in a channel, this section will review the
existing literature on active nematics in confined geometries, ranging from circular

confinement to periodic boundary conditions.

Since our study involves the HAN geometry, which includes both planar and homeotropic
alignments, it is worth mentioning that HAN anchoring occurs when the director is par-
allel to one wall and perpendicular to the other. The planar alignment and the HAN

geometry setups are given in Figures 1.9(a) and 1.9(b), respectively.

- /
/

(a) Planar sketch (b) HAN sketch

Figure 1.9: Sketches of the equilibrium director configurations in the limit of no flow
for the planar and HAN anchoring.

In circular confinement, active nematics exhibit periodic, steady, or vortical flow de-
pending on their hydrodynamic interactions, surface interactions, or spatial forces be-
tween particles [42,245]. In confined nematic liquid crystals, the input energy of the

active stresses can be dissipated by friction on the substrate and viscous flows [135]. Ac-
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tive nematics confined to a quasi-one-dimensional geometry in hybrid alignment show
different velocity profiles compared to homogeneous alignment [184|. Boundary layers
in confined active nematics in an annular-shaped channel are also a factor in active

turbulence, characterised by topological defects [77].

Flow patterns of active nematics confined in a channel with periodic boundary condi-
tions are summarised in Figure 1.10 [41,197]. The flow ranges from no flow to active
turbulence flow depending on the channel height or activity strength, which allows
flows to wrap around and mimic an effectively unbounded system while maintaining
computational feasibility. Doostmohammadi et al. [41] and Shendruk et al. [197] demon-
strated that confinement, boundary conditions, and activity strength critically shape
these turbulent flows, with defects exhibiting coordinated patterns (“dancing disclina-
tions”) under narrow channel confinement. A similar study of active nematics confined
in a two-dimensional channel with planar anchoring [187] demonstrated that the system
exhibits a rich variety of flow behaviours depending on the activity strength. At low
activity, the nematic aligns along the channel, producing unidirectional laminar flow
with minimal defect formation. As the activity increases, the system transitions to more
complex flow regimes, including bidirectional flow and vortex-like structures, eventu-
ally culminating in fully developed active turbulence characterised by the spontaneous
creation, motion, and annihilation of topological defects. Their results highlight how
confinement and boundary conditions interact with activity to shape the spatiotempo-
ral dynamics of active nematics, providing insight into both the fundamental physics
of active fluids and potential applications where controlled flow patterns are desirable.
A recent study by Chimming et al. [190] show that spatially patterned activity in 2D
active nematics can drive transitions from chaotic active turbulence to ordered vortex
states. If active nematics are going to be used for technological applications, such as
sensors, controlling their behaviour is of immense importance. As mentioned earlier,

one way to control the behaviour of active nematics is via confinement.

While studies such as [42,187,245| focused on extensile active systems in a channel using
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Figure 1.10: Plot showing the flow profiles for various activity parameter values.
Black lines (streamlines), black arrows (direction of the flow), colourmap (vorticity
field), circles (green), and diamonds (magenta) mark +1/2 and —1/2 topological
defects, respectively [41].
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planar anchoring, our study focuses on both extensile and contractile active nematics in
a channel using a combination of planar and homeotropic anchoring. Building on these
studies, we have developed one-dimensional and two-dimensional hydrodynamic models
to explore the behaviour of active nematics subjected to orienting fields. As previously
mentioned, the one-dimensional model covered in Chapter 3, incorporating infinite
planar anchoring, demonstrates that the application of an orienting field reduces the
kickback effect in extensile nematics but sustains the kickback in contractile nematics.
Additionally, the nonlinear aspects of the model reveal different solution states, such

as uniform, symmetric, and antisymmetric states.

In the two-dimensional model (covered in Chapters 4 and 5), we combine planar and
hybrid anchoring. In contractile systems, the flow patterns include non-flow, circula-
tory, and oscillatory states, while in extensile systems, we observe unidirectional and
bidirectional flows, as well as combinations of unidirectional and bidirectional flows.
Notably, the combination of unidirectional and bidirectional flow in extensile systems
has not been observed in previous studies. Additionally, the transient dynamics of ac-
tive nematics using the periodic boundaries show how the hybrid state evolves and how

bidirectional transitions to unidirectional flow occur.

1.5 Experimental observations of active fluids

So far, we have reviewed the theoretical studies of active matters in a confined and
unconfined geometry. The experimental study of active matter has been developing
for many years. Research increasingly shows a correlation between computational and
experimental active matter. Wioland et al. [244] experimentally and computationally
studied the collective motion of bacteria under channel confinement using a thin pe-
riodic racetrack and periodic boundary conditions, respectively. Experimentally, the
suspension of the dense bacteria into a thin periodic racetrack suggests stable circula-
tion. Computationally, the net flow and correlation profile as a function of the channel

width suggests fluid flows generated by the bacteria. The hydrodynamics interactions
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and the confinement lead to microscopic flow circulation. The study also suggests that
strong confinement stabilises the turbulence collection motion of the bacteria stream-

line.

The effects of boundary layers on confined active nematics have been studied experimen-
tally by placing a mixture of a few kinesin/tubulin active microliters in a custom-made
open pool covered with silicon oil [77]. The results show active turbulence away from the
walls with +1/2 topological defects formed due to the boundary layers. It also suggests
that bulk active flow can be controlled by direct intervention of the active boundary

layer via indentations that are smaller than the length of the active nematics.

Other experimental work [42] suggests that active turbulence can be suppressed giving
rise to steady or periodic flow. In circular confinement, the active matter exhibits
either periodic, steady, or vortical flow depending on the hydrodynamics interactions
of the active matters, surface interactions, or spatial inter—particle forces [42,245].
Doostmohammadi et al . [39] experimentally studied the microtubule-motor systems
by placing the active layer in contact with a smectic A liquid crystal, giving rise to
different flow patterns accompanied by £1/2 topological defects. Varghese et al., also
experimentally demonstrated that confinement can control bend instability [229] in

active nematics.

Other studies, such as |72, 73], have also demonstrated the controllability of active
nematics by changing the properties of the viscous fluid lying next to the active layer. A
recent study by Repula et al. [181] demonstrates the dual role of light as both an energy
source and a control signal for active nematics composed of filamentous, phototactic
cyanobacteria—organisms capable of transforming light into energy and motion. The
study employed patterned illumination to locally activate the motility of these cells,
which facilitated their self-assembly into organised nematic states. The intensity of the
light influenced both the speed of this ordering process and the degree of alignment

achieved among the cells.

Since our goal is to explore active nematics for potential applications in sensor design,
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the next section reviews the existing literature on sensors and sensing devices based on
smart materials with tunable rheological properties, including electrorheological fluids,

magnetorheological materials, and liquid crystal-based sensors.

1.6 Sensors and sensing devices

The use of active fluids in sensor design presents a promising direction due to their
unique ability to translate small local changes, such as the alignment of self-driven
units, into long-range effects in flow and orientation. This sensitivity to local perturba-
tions makes active fluids attractive candidates for developing highly responsive sensing
systems. Motivated by this potential, it is essential to review existing sensors and
sensing devices based on smart materials with tunable rheological properties, such as
electrorheological fluids (ERFs) and magnetorheological materials (MRMs). These ma-
terials exhibit controllable stiffness and damping under external stimuli, electric fields
for ERFs and magnetic fields for MRMs, and have already found use in diverse appli-
cations requiring dynamic response and precision [151]. By examining current sensor
technologies based on ERFs and MRMs, we aim to identify principles and strategies
that could inform the development of next-generation sensors, including those leverag-
ing the emergent properties of active fluids. We also review liquid crystal biosensors to
ensure a comprehensive understanding of smart materials that respond to environmen-

tal changes through alterations in molecular alignment and optical properties.

1.6.1 ERF sensors

An electrorheological fluid is a suspension made up of fine dielectric particles dispersed
in a viscous carrier oil. As a result, it demonstrates rapidly varying rheological proper-
ties when an electric field is applied. In other words, its stiffness and damping charac-

teristics depend on the strength of the applied electric field [151].

Studies on ERFs have explored methods to enhance their field-dependent properties by

utilising various particles, carrier fluids, and additives, such as liquid crystals and carbon
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nanotubes. Other studies have also focused on their dynamic behaviour, rheological
models, and flow modes [19,110,119,241]. Due to their quick response and controllable
viscosity, ERFs have been applied in shock absorbers, vibration control, medical devices,

brakes, clutches, and energy systems [34,201,250].

Kim et al. [99] developed a wave transmission sensor by incorporating an ERF into alu-
minium sandwich structures, using a small piezoelectric patch as both the transmitter
and receiver. Their findings showed that the magnitude and frequency of the transmit-
ted signals, as well as the device’s sensitivity, could be determined in either the time
or frequency domain. In another work, a bidirectional clutch incorporating a spherical
ERF joint was developed, where torque is measured as a function of the applied electric
field intensity [75|. Zhang et al. [258] designed a sensor combining an ERF actuator and
a conducting polymer sensor, capable of accurately measuring displacements up to 20
Hz. At higher frequencies, the conducting polymer sensor’s performance declined. This
system shows potential for applications like ERF microvalves and precision microchip
control. A sensing mechanism using a strain gauge and an ERF-filled viscous brake was
developed to measure pressing force based on motor speed and applied voltage. The
goal was to create a device to exert a constant pressing force that maintains a constant
pressing force, enabling optimal control of braking force in various brake and clutch

systems [200].

A novel type of ERF has been developed using a nano-silica grafting method to over-
come the limitations of traditional ERFs, which typically use carbonyl iron particles.
These particles have high electrical conductivity, which can restrict the fluid’s field-
responsive rheological behaviour [158]. Another limitation of ERF-based sensors lies in
their operational constraints. While they are capable of detecting high-frequency sig-
nals in dynamic settings and offer high sensitivity in tactile sensing applications, they
are typically suited only for low-force measurements and require high voltage input to
function effectively. In contrast, MRF-based sensors, though slightly limited in signal

sampling frequency compared to ERF sensors, offer broader applicability and avoid the
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high-voltage requirement [151].

1.6.2 MRF Sensors

Magnetorheological fluids exhibit field-dependent rheological characteristics, such as
yield stress, which are significantly higher and more stable than those of ERFs, owing
to their responsiveness to magnetic fields rather than high voltages. As a result, MRFs

have a broader range of applications in actuators and sensors compared to ERFs [151].

The use of MRFs for in vitro cancer therapy by blocking blood flow to tumours using
magnetic fields [51]. In another study, a black-box model was developed to identify
magnetorheological damper behaviour using self-sensing capabilities. The resulting
model functions as a virtual sensor for measuring damping force in vibration control
systems with MR dampers [224]. Kaluvan et al. [93]| introduced a novel method to
measure the dynamic response of MRF under squeeze mode. This method enabled the
measurement of field-dependent dynamic forces and vibration amplitude reductions
across various actuation angles. Other innovative tactile and sensing devices using
MRFs have been developed for biomedical and automotive applications. These include
tactile sensors mimicking human organ viscoelasticity for robotic surgery [101,152-154],
advanced vehicle suspension systems with sensor-integrated MR dampers [163], and
a magnetic-field-sensitive displacement sensor based on soft MRF films [116]. These
studies demonstrate the ability of MRF-based systems to replicate dynamic biological
motions, control repulsive forces, and improve system responsiveness through magnetic

field manipulation.

Recent advances in magnetorheological elastomer and magnetorheological fluid tech-
nologies have enabled the development of various sensor and feedback systems. MREs,
composed of magnetizable particles like Cabonyl Iron Particles, are responsive to mag-

netic fields and suitable for applications such as pressure and force sensors [94,117].

ERF-based sensors face specific limitations, such as the requirement for high voltage

input and suitability only for low-force measurements. Similarly, MRF-based sensors
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are constrained by lower sampling frequencies and slower response times. These chal-
lenges in ERF and MRF technologies have led researchers to explore alternative smart
materials such as liquid crystals, which offer unique advantages for biosensing applica-
tions. Liquid crystal biosensors respond to molecular interactions through changes in
optical properties, enabling label-free, highly sensitive detection, particularly valuable

in biomedical and biochemical systems.

1.6.3 Liquid crystal biosensors

The optical properties of LC, such as birefringence [92,149], as well as high sensitivity of
the molecules to external stimuli, such as electromagnetic fields [129,210], surface effects
[21, 206], optics [231], temperature [205], and chemical analytes [12] have made LCs
useful for sensing applications [171]|. Their ability to amplify and transmit molecular-
scale changes to macroscopic signals underpins LC-based biosensing strategies [143,247],
particularly in detecting biological interactions through changes in molecular orientation
and birefringence [48,142]. Surface-induced orientation changes can be amplified over
distances up to 100 pm, which enables label-free detection [249]. These principles have
supported the development of advanced LC-based optoelectronic biosensors [58,159].
LC optical anisotropy and fluidic nature make them ideal for optofluidic systems, which
combine optics and microfluidics for biomedical sensing [32,195]|. Such systems integrate
sample handling, detection, and data transfer in a single platform, enhancing sensitivity

and efficiency.

Based on their sensing interfaces, LC biosensors are generally categorised into three
types: LC-solid interface [204], LC—aqueous interface [27|, and LC—droplet interface
[27]. Each configuration offers distinct advantages for biomolecule detection. The
LC-solids interface is straightforward in design and allows for the creation of array
structures. The LC-aqueous interface provides direct contact with biological samples,
enhancing mobility and accessibility for biotargets. Sensitivity can be further increased

by integrating LC droplets with laser spectroscopy techniques. Additionally, microflu-
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idic technology can be employed to fabricate LC biosensors with varied geometries,
reducing manual errors, enabling precise determination of sensing parameters, and im-

proving overall sensitivity [239].

1.6.4 Toward active nematic-based sensors

The use of active fluids in sensor design represents an exciting frontier due to their in-
trinsic ability to amplify local disturbances, such as changes in surface alignment, into
long-range orientational and flow effects. This responsiveness positions active fluids
as promising candidates for next—generation sensing technologies. Existing studies on
smart materials, including ERFs, MRFs, and LCs, provide foundational principles and
technological benchmarks, yet they also reveal certain limitations which active nemat-
ics may overcome. RF and MRF offer field-controllable mechanical properties, such
as stiffness and damping. However, these systems are inherently limited to responding
to applied external fields and typically require active electronics and feedback loops to
detect mechanical perturbations. Their spatial resolution and sensitivity are often con-
strained to the localised region of stimulus application, and the signal propagation is not
inherently built into the material’s dynamics. LC-based biosensors, particularly those
using nematic and cholester phases, utilise their optical anisotropy and sensitivity to
surface alignment changes to detect biological and chemical analytes [12,32]. Such sen-
sors work by translating surface anchoring alterations, caused by molecular interactions
or physical forces, into detectable optical signals through birefringence changes. While
these systems enable label-free detection and work well in optofluidic platforms, the
effects remain spatially confined. That is, surface-induced distortions typically affect
only the liquid crystal orientation within a narrow region, which limits their effective-
ness for detecting small, localised stimuli unless they occur directly within the optical

path. This is where active nematic liquid crystals might be useful.

Our proposed sensor system exploits the intrinsic activity of the material to convert a

local anchoring change, caused by the presence of a small object at the upper boundary
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of the LC layer, into a global response throughout the entire domain. In passive systems,
such a perturbation would be localised, which makes it difficult to detect. But in active
nematics, this same perturbation induces flow that reorients the director configuration
far beyond the source of disturbance. This allows for the indirect detection of the object
through the observation of long-range distortions in the director or flow patterns, even
when the object itself is invisible or microscale. The mechanism is analogous to throwing
a small pebble into a calm lake: although the pebble is tiny, its impact creates ripples
that spread widely across the water’s surface. Similarly, the active nematic medium
propagates director disturbances initiated at the anchoring surface, turning localised

anchoring changes into large-scale, observable effects.

In Chapter 4 of this thesis, we will develop a two-dimensional model incorporating
a combination of anchoring conditions. This setup allows changes in the top surface
anchoring, which we imagine to have been caused by an object that we wish to detect,
to induce flow, which in turn can influence the liquid crystal director far from the region

of disturbance.

In the next chapter, we will focus on the mathematical framework, including the for-
mulation of the Frank-Oseen elastic energy and the Ericksen-Leslie dynamic theory of
nematic liquid crystals, as they form the underlying theory of our study. We will then
summarise the Ericksen-Leslie theory for active nematics, which serves as the main the-
ory behind the governing equations we will investigate, and conclude with a discussion

of the anchoring and boundary conditions relevant to this research.
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Chapter 2

Theoretical Frameworks for Passive

and Active Nematic Liquid Crystals

2.1 Introduction

In this chapter, we explore the mathematical theories of nematic liquid crystals. We fo-
cus on the Ericksen-Leslie theory for both passive and active nematic liquid crystals. We
begin by introducing the Frank—Oseen static elastic energy, detailing the contributions
from splay, twist, and bend configurations in Section 2.2. Section 2.3 covers electric and
magnetic fields, as our study involves the contribution of an external field. Section 2.4
reviews the dynamic Ericksen-Leslie theory of nematic liquid crystals. In Section 2.4.1,
we formulate Ericksen-Leslie’s theory for active nematics and discuss energy dissipation
in Section 2.4.2. We outline the Ericksen-Leslie equations for active nematics in Section
2.5, and discuss activity strength and derive the active stress tensor in Sections 2.5.1
and 2.5.1.1, respectively. Section 2.6 addresses the boundary conditions for the director
and velocity, including infinite planar and homeotropic anchorings and a hybrid aligned
nematic (HAN) state for the director, as well as the no-slip and no-penetration condi-
tions for velocity. Finally, in Section 2.7, we summarise the parameter values we use in

this thesis.

46



Mathematical Modelling of Active Fluids in a Channel

2.2 Frank—Oseen elastic energy

Oseen’s 1933 paper “The Theory of Liquid Crystals” [148] was one of the first at-
tempts to build a mathematical framework for describing liquid crystals. He represented
molecules as rigid bodies with symmetry axes, described by unit vectors (e.g., Ly and
Ly, where L; denotes the unit vector along the symmetry axis of the i*" molecule),
and initially characterised their relative configuration using the intermolecular separa-
tion vector ryy (defined as the vector pointing from the centre of molecule 1 to that
of molecule 2), together with angular relationships between their axes. However, these
four quantities were insufficient to fully specify the configuration because they could
not distinguish between mirror-image (left- and right-handed) arrangements, known as
“chirality.” To resolve this, Oseen introduced a fifth scalar quantity, (L X Lg)-rq2, which
explicitly accounts for chirality by changing sign under inversion. His analysis further
suggested that the molecular interactions giving rise to cholesteric ordering cannot be
explained solely by simple electrostatic considerations but must also involve orientation-
dependent forces that favour a particular handedness. This work provided the basis for
the Oseen—Frank elastic theory, in which macroscopic distortions such as splay, twist,
and bend are described in terms of underlying molecular interactions. This theory is
limited in that the equilibrium configurations do not account for the dynamic behaviour
of the liquid crystal. It also lacks hydrodynamic coupling, which means the interactions
between molecular orientation and fluid flow are ignored. Moreover, singularities in the
director field, such as defects, lead to predictions of infinite energy, which is physically
unrealistic. The model assumes constant density and rigid molecules, which neglects

both density variations and thermal or molecular fluctuations.

In an attempt to study the curvature properties of liquid crystals, F.C. Frank in 1958
extended Oseen’s work, which paved the way for the exact experimental determination
of the elastic constants [53]. In general, Frank-Oseen elastic theory explains how the

director field can be distorted away from a uniform state [53,148,193|. The free energy
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density is the result of the possible changes in the orientation of the director n, which
result in six components of the curvature called curvature strains [202]. Here, we will
summarise the Frank—Oseen static elastic theory, which will serve as a foundation for

the subsequent chapters.

We consider a unit vector field n called the director, which describes the mean molecular

alignment at a point x in a given volume S so that n = n(x), and n.n = 1.

It is assumed that the system is isothermal and in the nematic phase, so that distortions
in the orientation of the anisotropic axis (represented by the director field n) incur an
energy cost. This energy cost is captured by the elastic component of the Helmholtz free
energy, referred to here as the elastic free energy density. The term total Helmholtz
elastic free energy refers to the internal energy stored in the distortion of the director
when temperature is held constant. This assumption of constant temperature is impor-
tant because it means the model does not account for temperature changes or phase
transitions. In line with [202], we assume that the free energy density w depends on

both the local orientation n and its spatial gradient Vn
w=w(n,Vn), (2.1)

where V denotes the spatial gradient operator. The total elastic free energy W over

the domain V' is then given by

W = / w (n, Vn) dV. (2.2)

By focusing solely on the elastic energy from director distortions, the model excludes
bulk free energy terms that represent the thermotropic effect. Such bulk terms appear
in more general theories (like Landau—de Gennes bulk free energy terms), where tem-
perature influences the material’s order and phase behaviour [35,36]. In other words,
since temperature effects are not included here, the free energy only captures how the

spatial variation costs energy of the director, not how temperature changes the degree
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of order of the liquid crystal.

The liquid crystal sample associated with this energy (2.2) is assumed to be incom-
pressible [202]. Since the nematic liquid crystals are apolar, the director n has the

same physical meaning as —n.

It is also assumed that the energy density remains unchanged under rigid body rota-
tions. This means that if the entire liquid crystal configuration is rotated, the energy
should remain the same. Mathematically, this requires that the function w, which

defines the energy density, must be invariant under rotations.

In practical terms, if both the director n and its spatial gradient Vn are transformed
by a proper orthogonal linear map Q : R® — R3, with det(Q) = 1, then the value of w

should not change. That is,

w(n,Vn) = w (Qn, QVnQT) , (2.3)

where () is a linear map that preserves lengths and angles, and its matrix representation
in an orthonormal basis belongs to the special orthogonal group. This invariance reflects
the physical principle that the internal energy of the system depends only on the relative

distortions of the director field, not on its absolute orientation in space.

To derive the elastic free energy density for nematic liquid crystals, we begin by consid-
ering a local Cartesian coordinate system x,y, z, with the undistorted director aligned

along the z-axis:

ny = (0,0,1). (2.4)

In this reference configuration, distortions in the director field are characterised by six

independent components of curvature strain, corresponding to the classical deformation

49



Mathematical Modelling of Active Fluids in a Channel

modes: splay, twist, and bend. These are defined as follows:

on, on
Splay : 51 = or So = (?_yy’
) on on,
Twist :  t; = _0_;’ ty = 9y (2.5)
on on
Bend: b =—2=, by=—2

where (n,, n,,n,) are the components of the director field n [53,202]. These quantities
represent local changes in the orientation of the director field due to spatial gradients.
Splay terms correspond to divergence-like distortions (expansion or compression along
the director), twist terms represent rotational distortions of the director axis, and bend
terms capture curvature of the director away from its initial orientation. Together, they
form the foundation of the Frank—Oseen theory of elastic distortions in nematic liquid

crystals.
The graphical representations of the distortions of splay, twist, and bend and their
associated elastic constants, Ky, K> and K3, are given in Figure (2.1) [226].

Splay Twist Bend
K1 (V-n)>£0 Ky(n-Vx n)>#0 Ks(mxVxn)®#£0

Lo
Zé gl

Figure 2.1: Graphical representations of the distortions of splay, twist, and bend and
their associated elastic constants, K, Ky and K3 [192].

The director field n(x) is defined as a unit vector at every point x in the 3D domain
Q) C R? occupied by the liquid crystal, so that n-n = 1 everywhere in ). Taking the
gradient of this identity yields V(n - n) = 0, which can be expanded as 0 = V(n;n;) =

2e;n;n;;, where n; are the components of n, n;; = dn;/0z;, and e; are the basis

20



Mathematical Modelling of Active Fluids in a Channel

vectors in R? for j = 1,2,3. This implies
nini,j = 0, j = ]_, 27 3, (26)

meaning that the directional derivative of n along itself vanishes; any spatial variation

of the director lies in the plane orthogonal to n.

Using the reference (undistorted) configuration from equation (2.4), where ny = (0,0, 1),
the only nonzero component is n, = 1. In this uniform state, the derivative of the z-

component with respect to any spatial coordinate vanishes. The notation

nZ,]<O> = O? j = 17 27 37 (27)

refers to evaluation at the “reference director” ng, not at the spatial origin (z,y,z) =
(0,0,0). This clarification ensures that in the undistorted state, all spatial derivatives

of n, vanish.

To analyse the local structure of the director field, we perform a Taylor expansion of
its components about the origin. Using the undistorted reference state defined in equa-
tion (2.4), and applying the orthogonality condition from equation (2.6), the director

field n near the origin can be written as

ny = ax + agy + azz + O (|z)?)
Ty :a4x+a5y+aﬁz+(’)(]:c|2), (2.8)

n,=1+0 (|z]*),

where the a; are constants determined by the first derivatives of the director field

components, and higher-order terms in the expansion are denoted by O(|z|?).

These linear terms can be re-expressed using partial derivatives of the director field
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components as follows

— 2
_ Ony on, ony, 9 9.9
my = a2t +y G+ 22+ Ollaf), (29)

Relating these terms to the curvature strain components (splay, twist, and bend) defined

earlier in equation (2.5), we obtain the identifications

ay = 81, a9 = tQ, as = bl, ay = _th as = So, g = bQ. (210)

Using this expansion, the elastic free energy density can now be approximated as a
quadratic function of the six independent curvature strain components. This yields the

general form
1 o
w :Kiai—|—§Kijaiaj, 1,] = 1,2,...,6, (211)

where K; and K;; are material-dependent curvature constants that account for the

elastic response of the nematic liquid crystal to different types of distortions [53,202].

However, since physical properties must remain invariant under rigid body rotations,
we can equivalently describe the system in a rotated coordinate frame (z’,y’, z’). This
invariance implies that the energy density has the same functional form in the rotated

frame

1
w = K;a, + éKijaga;-, i,j=1,2,...,6. (2.12)

The requirement of rotational invariance plays a crucial role in constraining the form
of the elastic free energy. Specifically, the functional form of the energy density must

remain invariant under coordinate rotations, as the physical properties of the liquid crys-
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tal are unchanged by such transformations. This symmetry requirement significantly
reduces the number of allowable terms in the energy expression. A comprehensive dis-
cussion of how these arguments lead to the general structure of the elastic energy can

be found in Stewart [202, p. 19].

By enforcing the requirement of rotational invariance, specifically under a rotation of
7/2 about the z-axis, and applying symmetry arguments along with the transformation

properties of the strain tensor A’ = QAQ”, we obtain the constraint

al(k:l — k?5) + (IQ(]CQ + k4) + ag(kig + k‘6)

+ CL4(:I€2 + k?4) + (l5(]€5 — k?l) —f- CL(,'(:I{ZG — kg) = O (213)

Next, noting that the quadratic terms in the free energy must also be rotationally
invariant, and using the fact that k;;a;a;/2 = kijaja}/2, and further impose rotational
symmetry under another 7/2 rotation and derive the transformation of the curvature

strain components

1 1
(a)) = (§(a1 +as + ay + as), 5(&2 +as —a; — ay),

1 1
—(&6 + ag), 5(@4 +as—ay — CLQ), (214)

TN

1
—(a1+a5+a2—a4), —(aﬁ—ag) .
2 V2

Substituting these transformed variables into the energy density and requiring invari-
ance under such rotations, we arrive at a specific symmetric form for the coefficient

matrix [k;;]. The resulting matrix, consistent with the Oseen-Frank elastic theory and
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Stewart’s derivation [202, p. 19|, is

11 kio 0 —kio kin—kooy—koy O
E12 koo 0 koy k1o 0
0 0 ks 0 0 0
) = @)
—Fk19 kos 0 ko —Fk19 0
ki1 — koo — koa kiz 0 —kio k11 0
0 0 0 0 0 k33

This matrix structure reflects the physical constraints imposed by rotational symme-
try and simplifies the elastic energy density to a form with fewer independent elastic
constants. The entries capture interactions between the curvature modes (splay, twist,

and bend) and account for possible couplings such as kjo and koy.

The elastic energy density for a nematic liquid crystal in terms of the curvature strain

components can now be written as

1 1
w = ki(s1 + s2) + kolts +t2) + §k11(81 + 82)2 + §k22(t1 + t2)2

1
+ §k33(bl + b9)? + Eio(s1 + 82)(t1 + t2) — (koo + kog)(s182 + tita), (2.16)

where s1, sy denote splay components, t;,ts correspond to twist, and by, by to bend, as
defined in equation (2.5). The constants ki, ks, k11, k2o, k33, k12, and koy are material-

dependent elastic coefficients.

To simplify the energy density further and incorporate intrinsic curvature terms, we
define new constants sg = —ky/k11, to = —ko/kse. Using these, we can rewrite the

energy density in a shifted quadratic form by introducing a new free energy term

1 1
W =W + éknsg + ékQth, (217)
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which leads to a more compact and physically meaningful expression

1 1 1
Wp = §k’11(81 + S9 — 30)2 + §k22(t1 +t9 — t0)2 + §k33(b1 + 52)2
(2.18)

+ kia(ty + t2)(s1 4 S2) — (koo + ko) (S152 + tata).

This formulation is often advantageous in applications, as it centers the energy about a
preferred (nonzero) curvature, which reflects the spontaneous distortions that may be

present in the material.

To connect the curvature strain terms with standard vector calculus operations, we

recall the following identities

on, 0
(81+82>: 87;' %:Vna

on, Ong
—(t1+t2)—%— 8y =n (VXH),

(2.19)

2 gy ()L (O >
(b1+b2>_ az + az —|n><(V><n)| )

_ Ony0On, OngOn, 1 B
—(s189 + tity) = g 9y 0x oy —2V (n-V)n— (V- -n)n].

These vector identities allow for the elastic free energy density to be expressed more
compactly. The expressions for splay, twist, and bend given in equation (2.19) represent
intrinsic geometric distortions of the liquid crystal director field that do not depend on
the choice of coordinate system. These quantities are formulated using vector calculus

operators, which describe how the director field can deform in space.

Thus, the coordinate-independent splay, twist, and bend can be represented by simple
combinations of the linearised derivatives of the director components. This justifies
expressing the elastic free energy density in terms of these linearised curvature strains, to
ensure consistency between the fundamental geometric definitions of distortion and their

approximations used in practical calculations near a uniform director configuration.
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Using equation (2.19), equation (2.18) can be rewritten in vector form as

1 1 1
wF:Ekll(v'n—50)2+§k22(n~vxn—t0)2+§k33|nxVxn|2
. (2.20)
—k‘lg(V-n)(n-V><n)—|—§(k22+k‘24)[(n-V)n—(V-n)n]Q.

For nematic liquid crystals, the spontaneous splay and twist parameters vanish, i.e.,
sg = tp = 0. When sy and ¢y are nonzero, they describe chiral or polar nematic phases,
or systems exhibiting intrinsic distortions due to molecular asymmetry or external fields.
The parameter k15, when nonzero, introduces anisotropic coupling between splay and
twist deformations, modifying the balance of elastic distortions, which potentially af-

fects phase transition thresholds.

We now redefine the Frank elastic constants as K; = ki1, Ko = kog, K3 = k33, and

K4 = ko4, the free energy density simplifies to

1 1 1
wF:§K1<V.n)2—|—§K2(n-vXn)2+§K3|nXVXH|2
(2.21)

2 (K 1) [ (V%) = (7 0],

where the constants K, K5, and K3 correspond to the splay, twist, and bend elastic
moduli, respectively. The term K, + K, is known as the saddle-splay constant. The
saddle-splay term is often omitted in practical problems with strong boundary anchoring
because it can be expressed as the divergence of a vector field and therefore does not
affect the bulk equilibrium equations [235]. While it can influence surface phenomena,

its contribution to bulk energy minimisation is typically small.

The Oseen-Frank free energy functional is phenomenological, motivated by experi-
mental observations and symmetry considerations rather than derived from molecular
theory. Additional terms, such as the saddle-splay term or couplings to external fields,
are sometimes included to capture more complex effects. Their inclusion is guided by
invariance principles or experimental data, and must be critically assessed to ensure

they are physically justified.
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In this Thesis, we neglect the saddle-splay contribution because it is very small com-
pared with the bulk elastic terms. Using the values of K; and K, in Table 1.1 and
estimating K, = (K; — K3)/2 [234], we find that the saddle-splay term is non-zero but
negligible. Experimental studies [5,102,134] indicate that K, is difficult to measure ac-
curately and subject to large uncertainties. As noted by Selinger [194], the saddle-splay
term K54 should not automatically be treated as a surface term, particularly in systems

with defects or internal surfaces, where it can contribute to the bulk elastic free energy.

It is common practice to align LC samples using external fields, such as magnetic
or electric fields, which cause nematics to align parallel or perpendicular to the field
[202,235]. The following section will introduce the concepts of electric and magnetic

fields, as this study considers active nematics subject to an orienting field.

2.3 Electric and magnetic fields

Since this work incorporates the contribution of external fields, such as electric and
magnetic fields, it is essential to discuss the concepts of these fields and their associated

energies in the context of liquid crystals.

The general form of electric displacement is given by [202]
D = ¢ye, E + ¢peq(n - E)n, (2.22)

where E is the applied electric field to a sample of nematic, € is the permittivity
of the free space, ¢, = €|—e, is the dielectric anisotropy of the nematic, €, is the
dielectric constant when the field and director are perpendicular and ¢|| is the dielectric
constant when the field and director are parallel, where these last three constants are
dimensionless, all of which are dimensionless since they are measured relative to the
€9- The dielectric anisotropy is €, > 0 when the energetic preference is for the director
to align parallel to the field and ¢, < 0 when the preference is for the director to be

perpendicular to the field [25,35].
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The commonly used electric energy density in modelling nematics is then given by

[35, 70]

1
Wejee = —§eoea(n ‘E)*. (2.23)

For a magnetic field, H, the equivalent of the electric displacement is the magnetisation,
M, which is due to the weak magnetic dipole moments imposed on the molecular
alignments by the magnetic field. The magnetisation and magnetic energy, expressed

in Gaussian units, are given in the following forms, respectively

M = X, H+ xo(n-H)n, (2.24)

1
Wnag = —5M - H, (2.25)

Equation (2.24) represents the magnetisation M as a sum of the contributions from X,
and x,, where x,,, denotes the diamagnetic susceptibility when the field and director
are perpendicular to each other and Yy, is the magnetic anisotropy. It should be noted

that the effects of gravity are neglected in this thesis. For details, refer to [202].

In the next section, we will explore the Ericksen—Leslie dynamic theory of nematic
liquid crystals, which serves as the fundamental framework for this study. This theory
is formulated based on the principles of conservation laws, including the conservation
of mass, linear momentum, and angular momentum, as detailed in Stewart [202]. By
incorporating these fundamental physical laws, the Ericksen-Leslie theory provides a
comprehensive description of the hydrodynamics of nematic liquid crystals, capturing
both their viscous and elastic properties. This theory will be essential for our analysis

and will be used to develop the mathematical models presented in Chapters 3, 4 and 5.
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2.4 FEricksen-Leslie dynamic theory of nematic liquid
crystals

This section introduces the Ericksen—Leslie dynamic theory of nematic liquid crystals,
which has been widely successful in providing a mathematical framework for describing
the behaviour of liquid crystals [47]. This theory describes the coupling between the ve-
locity field and the orientational dynamics of the liquid crystal molecules [113,162]|. By
establishing this framework, we can extend our discussion to active nematics. Active ne-
matics theory builds upon the Ericksen—Leslie formulation by incorporating additional

stresses arising from activity, leading to hydrodynamic instabilities [45,236].

Building on the theories of Oseen and Frank, mentioned above, Ericksen [47] developed
a more general theory of liquid crystals. Later, Leslie [113] extended Ericksen’s work to
derive the governing equations for the hydrodynamic theory of nematics, now known

as the Ericksen—Leslie theory.

We now focus on the formulation of the Ericksen-Leslie dynamic theory in the section,

and subsequently summarise the active nematics theory.

2.4.1 Ericksen-Leslie dynamic theory

Ericksen—Leslie theory was formulated using the conservation laws of mass, linear mo-
mentum and angular momentum, and the point-wise equations for mass, linear mo-

mentum, and angular momentum are given [202]| by

0?&‘

=0 2.26
8$7; ’ ( )

DUZ' 8151]
— pk; — =0, 2.27
"o PE T, (2.27)
Ko+ eptay + 2 — (2.28)

i T Gkl T 5— = U, .
p jhlkj oz,

where p denotes fluid density, F; are the components of the external body force per
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unit mass, K; are the components of the external moments per unit area, t;; are the
components of the stress tensor, /;; are the components of the couple stress tensor, and
€i;x 1s the Levi-Civita symbol (also known as the alternator), with indices ¢, j, k = 1,2, 3.
For a detailed derivation, refer to Stewart [202]. We apply the summation convention
here and throughout this work. The Ericksen—Leslie equations can be viewed as the
Navier-Stokes equations supplemented by an additional equation accounting for the

balance of angular momentum, often referred to as the director equation.

The incompressibility condition dv;/dz; = 0 (equation (2.26)) assumes that the fluid
density is constant. This is a common assumption for liquid crystals under standard
conditions, but may not hold if density variations or compressibility effects are signifi-
cant, such as in flows under extreme pressure or temperature gradients. Equation (2.27)
generalises the Navier—Stokes momentum equation by incorporating anisotropic stress

components t;;, which depend on both velocity gradients and director distortions. It

ij>
captures the coupling between fluid flow and the director orientation. However, the
precise constitutive form of ¢;; is phenomenological and requires experimentally deter-
mined material parameters (Leslie viscosities), which can vary widely between different
liquid crystal materials and phases. Equation (2.28) introduces the balance of torques
acting on the director field via the couple stress tensor /;; and the antisymmetric parts

of the stress tensor, which is captured via the Levi-Civita symbol ¢;;;. This additional

balance is critical for describing director reorientation dynamics.

While the Ericksen—Leslie theory is powerful for modelling nematic liquid crystals, it
has several limitations. Firstly, the theory relies on several experimentally determined
material parameters, such as the Leslie viscosities and elastic constants, which can vary
significantly between different materials and phases, making parameter identification
challenging and limiting predictive accuracy for new systems. The assumption of in-
compressibility, reflected in the mass conservation equation, restricts the model to flows
with constant density, which may not be valid in scenarios involving high-speed flows or

significant thermal gradients where compressibility effects become important. Addition-
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ally, the continuum approximation inherent in these equations neglects molecular-level
fluctuations, discrete defects, and nanoscale effects, which can be crucial near phase
transitions or in confined geometries. Furthermore, thermal fluctuations and stochastic
noise are also ignored, despite their importance in defect nucleation and dynamics in
some contexts. In particular, the theory cannot capture topological defects in the di-
rector field, such as disclinations, which play a central role in the dynamics of nematic
materials. Furthermore, thermal fluctuations and stochastic noise are also ignored,

despite their importance in defect nucleation and dynamics in some contexts.

Following the work of Leslie [113], the energy gain or loss is accounted for through

viscous dissipation, D [202], given as

8wp awF
tij + ;i ) Vi + |l — Calla g, —Wpi | Wi
81UF
+ Wikigp (tm - (9n—kpnkq> =D, (2.29)

where n,,; = 0;n, denotes the spatial gradient of the director components, €, is the
Levi-Civita symbol. Equation (2.29) quantifies the rate at which mechanical energy is
irreversibly lost due to viscous processes in a nematic liquid crystal. This formulation
arises from the rate of work postulate and represents the residual energy after account-
ing for changes in free energy wp associated with distortions in the director field n. It
is assumed that all kinetic energy input from body and surface forces is either stored
elastically or dissipated. The first term in the left-hand side of equation (2.29) mea-
sures the viscous contribution to the rate of work due to strain rate v; ;, corrected for
contributions from director field gradients, second term accounts for dissipation due to
gradients in the angular velocity of the director field and a torque contribution, respec-
tively. The third term vanishes when the stress tensor is symmetric or when director

dynamics are decoupled from antisymmetric stress parts.

This framework assumes passive dissipation, implying that the dissipation function D

is always non-negative. However, in active nematic systems where energy is continu-
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ously injected at the microscale, and extending this analysis to active systems demands
caution and potential modifications to the dissipation framework. In the latter part
of this Chapter, we will derive the active stress and dissipation separately from their

viscous (passive) counterparts.

Since the rate of viscous dissipation is always positive for passive liquid crystals. We
therefore consider equation (2.29) as only having passive components, and since the
sign of w;, w;; and v; ; can be chosen arbitrarily, any terms linear in these quantities
must vanish. As a result, the stress tensor ¢;; and the couple stress tensor /;; appearing

in equations (2.27), (2.28) and (2.29) are given by

8U)F ~
tij = —pdij — Wmnp,i + i (2.30)
awp ~
J Prq paan J

where p is the isotropic pressure and ¢;; is the Kronecker delta. The terms ﬂ;j and l~ij
correspond to dynamic dissipative contributions to the stress and couple stress tensors,

respectively.

Physically, the stress tensor t;; describes the internal forces per unit area within the
nematic liquid crystal, which combines the isotropic fluid pressure, elastic distortions re-
lated to director gradients through the free energy derivative term, and viscous stresses
arising from flow. The couple stress tensor [;; arises due to the microstructure of the
liquid crystal, accounting for internal moments transmitted across surfaces, which do
not appear in classical fluids. The inclusion of /;; reflects the anisotropic and orienta-
tional degrees of freedom unique to nematic phases, capturing the effects of director

rotations and elastic torques.

The dependency on the spatial gradients of the director field through 0wg/0n, ; links
these stresses directly to the elastic free energy, thus coupling mechanical deformations
with orientational order. This coupling is essential to model phenomena such as defect

dynamics, director reorientation under flow, and the response to external fields.
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However, there are important limitations and considerations in these formulations. The
separation into an elastic free energy contribution and a viscous dissipative part assumes
a clear distinction between reversible and irreversible processes, which may not always
hold, especially in active or out-of-equilibrium systems. The Ericksen-Leslie framework,
from which these expressions derive, presumes a continuum approximation valid at
scales large compared to molecular dimensions, neglecting microscopic fluctuations and
stochastic effects that can dominate near defects or phase transitions. Moreover, the
treatment assumes smooth director fields and well-defined gradients, which can break

down in the presence of singularities or topological defects.

Finally, while the couple stress [;; introduces additional complexity compared to isotropic
fluids, it is often neglected or simplified in some models for computational tractability,
especially when the focus is on macroscopic flow behaviour rather than detailed mi-
crostructural dynamics. However, omitting /;; may overlook important torque balance

effects critical for accurately capturing nematic rheology and stability.

To complete the discussion of the Ericksen—Leslie dynamic equations for nematic liquid
crystals, we write the dynamic viscous stress fij is given via the constitutive equations

as follows

tz‘j = alnkAkpnpnmj + ongZ-nj + Oég?’LiNj + CY4AZ']‘ + Oé5nink’l’Lk + Oz6TLZ'Ajk7’lk, (232)

1
Aij = B (Vi + i), (2.33)
1
Ni = le — Wijnj, m = § (Ui,j — Uj,i) s (234)

where A;; and W;; are the rate of strain tensor and vorticity tensor, respectively,
a1, 0o, ...,0q are the Leslie viscosities, and N; is the co-rotational time flux of the
director n [202]. N is the co-rotational derivative of the director, n; is the material
derivative of n;, defined as n; = Dn;/Dt = On;/0t 4+ v;(On;/0z;). Physically, N cap-
tures how the director evolves in time relative to the local rotation of the fluid. It

represents the intrinsic rotation of the director field due to molecular reorientation, ex-
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cluding contributions from the rigid body rotation of the surrounding fluid. Therefore,
while n describes molecular orientation, IN describes its rate of change in a deform-
ing and rotating flow, which makes it essential for describing viscous dissipation and

director dynamics in the Leslie-Ericksen theory.

The elastic energy, wg for nematics given by equation (2.21),can be written in a Carte-

sian component form as

1 1 1
wr =3 (K1 — Ky — Ky) (ni;)* + §K2ni,jni,j + §K4nj,inj,i

+ (Kg - Kg)njn,;,jnkni7k. (235)

N —

The viscous dissipation inequality, following from equation (2.29) together with restric-

tion by the Parodi relation, v9 = ag — a5 = ag + as [156], is given by

1
D :5 [al(niAijnj)Q + (062 + Qs + ’}/Q)NiAl'jnj + Oé4Al'inj

+(Oé5 + OZG)TLZ‘AZ'jAjkTLk + 'lezNz] Z 0. (236)

The requirement for the viscous dissipation function, D, to be semi-positive definite
results in a set of inequalities that nematic viscosities must satisfy. These inequalities

derived by Leslie in [113] are given explicitly by

Y=z —ag >0, (2.37)

aq >0, (2.38)

g+ %(045 + ;) > 0, (2.39)

2a1 + 3oy + 2a5 + 209 > 0, (2.40)
7 (204 + a5 + ag) > i(% + ay + az)’. (2.41)

The viscosities «; can be challenging to describe physically but can be determined

through experimental measurements, as presented by [133]. The measured viscosities,
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known as Miesowicz viscosities, can then be expressed in terms of Leslie viscous coeffi-

cients as

m = (o3 + aq + ag)/2, (2.42)
M2 = (u + a5 — az)/2, (2.43)
N3 = au/4, (2.44)
M= Q3 — Qg (2.45)
V2 = Qp — Q5 = Q3 + Qg (2.46)
T2 = ai, (2.47)

where v, is the rotational viscosity, which determines the relaxation of the director
via rotation, 7, is the torsion viscosity and satisfies the Parodi relation vo = n; — 19
[156]. The remaining viscosities 71, 72, 13 [133,202] and ;2 [139], can be measured
experimentally by analysing the orientation of the director n with respect to the velocity
v and the velocity gradient. For details on these measurements, refer to [133,202]. The
combination of viscosities ap and a3 is crucial in determining the flow alignment of the
director in nematic liquid crystals. When both asas > 0 and as < a3 < 0, the nematic
liquid crystal is referred to as “flow-aligning.” Conversely, when asas < 0, the liquid

crystal is considered “non-flow aligning [202].”

We now discuss the Leslie viscosities as and a3 in relation to the director angle and the

shear flow.

2.4.2 Leslie angle

The Leslie angle, also known as flow aligning angle, often denoted 0, is the steady-state
angle between the director and the flow direction in a simple shear flow. In nematic
liquid crystals, when a shear is applied between two plates moving in opposite directions,
the director tends to align at a fixed angle rather than perfectly along or perpendicular

to the flow. This angle results from the balance between viscous torques, which arise
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from the fluid motion, and elastic restoring torques due to the molecular alignment.

In the Leslie-Ericksen theory [167,202], the Leslie angle, defined as

0, = tan™! (M) . (2.48)

Using the values of ay and a3 from Table 1.1 and equation (2.48), the predicted Leslie
angle is 07 ~ 0.099 rad. This helps in understanding how the liquid crystal director

responds even in the presence of an external field and boundary effects.

2.4.3 Reformulation of Ericksen-Leslie dynamic theory

We now rewrite the Ericksen—Leslie dynamic equations, to ensure that the unit-length
constraint of the director n is naturally enforced, by parameterising the director in

terms of angular variables.

The Ericksen—Leslie dynamic equations for nematic liquid crystals at constant temper-

ature, under the assumption of negligible director inertia, are given as

vii =0, (2.49)

pE; — (p+wr) ; + gingi + Gy + iy = pii, (2.50)
awp 8wF ~

- i + Gy = Ay, 2.51

(0711,]- ) g 8nz + g + " ( )

where F; are the components of the external body force per unit mass, fij are the
components of the dynamic viscous stress tensor, the vector g;, defined as g; = —y, N; —
Y2 Aipn, are the components of the vector expressed in terms of the viscosities y; and
Y9, wr is the elastic energy density for nematic liquid crystals. The generalized body
force is denoted by G, and is defined as G; = x,npHpH;, where H is the magnetic
field and x, is the magnetic anisotropy. The scalar function A denotes the Lagrange

multiplier associated with the condition that n is a unit vector, and p is the pressure.

To describe explicitly the dynamics of the nematic liquid crystal orientation, we rewrite
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the balance of angular and linear momentum in terms of the director angles. The

director is defined as

n = (cos 6y cos by, cos Oy sin by, sin ;) , (2.52)

where 0; = 6;(x,t) is the polar (tilt) angle measuring the out-of-plane inclination
of the director, and 6y = 0y(x,t) is the azimuthal (twist) angle describing the in-
plane rotation about the vertical axis. These angular variables provide a compact
representation of the three-dimensional director field n. This formulation naturally
incorporates the orientational degrees of freedom, simplifies the handling of constraints
such as fixed director length without explicitly introducing Lagrange multipliers, and

facilitates coupling between the director dynamics and the flow field.

Following the derivation in [113,202], the angular momentum balance can be expressed

as

9, (aawp ) _ Owp 81? n A 0, a=1,2, (2.53)

dz; \ (8,0, 0, 06, 00,

while the linear momentum equation can be reformulated as

oD oD
1.)1': ——.9,“-— Ni, Oé:]_,Q. 2.54
’ (avi,),j 06, " 25

These equations enable the dynamic behaviour of the nematic system to be described
more succinctly and efficiently, without the explicit need for the Lagrange multiplier A

used to enforce director length constraints in other formulations.

2.4.4 Energy dissipation

As mentioned previously, active nematics rely on the continuous production of energy by
the individual self-driven units. The emergence of dynamic structures in active systems

is heavily influenced by the role of nonequilibrium forces, and understanding these
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effects the system are crucial. In active systems, the stress and dissipation functions

can be thought of as consisting of active and viscous parts [4].

The concept of active dissipative can be confusing, as it does not exactly fall under
the category of “energy dissipation” since it is not positive definite. However, it can be
considered as the “rate of energy input,” as mentioned in a study by Tang et al. [207].
Paarth et al. [74] also consider this approach and suggest that viscous dissipation plays
a role in balancing the active dissipation and stabilising the uniform state in the bulk

of the system.

The rate of dissipation using Ericksen-Leslie’s theory of nematics [4,202] is often given
by the sum of the classical viscous dissipation and a single term denoting the active

dissipation,

1
D, D) [a1(nidijng)* + (a2 + as +72) Nidijn; + aa A Ay

+(Oé5 + a6)niAijAjknk + ’VlNzNz] + §niAijnj, (255)

where £ is the activity strength coefficient. The last term in equation (2.55) is then
the active dissipation (derived from the active forces exerted by collections of active
systems), while the first term is the usual viscous dissipation, given by equation (2.36).

In the next section, we will derived the active stress in equation (2.55).

2.4.5 Activity strength

The magnitude and sign of the activity coefficient ¢ depends on the influence of the
active fluid on the surrounding flow [187]. In an active system, flows can be induced
depending on the activity strength [45,187], and spontaneous symmetry breaking can
occur as the activity increases, and flow is induced. Increasing the activity can lead to
oscillatory flow, and at higher activity, the so-called ceilidh dancing flow [65,187,197]

is observed.

A collection of active living organisms are characterised by the activity coefficient £ and
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the sign of € has a significant physical meaning: £ > 0 is associated with extensile agents
(pushers) and ¢ < 0 is associated with contractile agents (pullers), which describe the

dipolar flow field (see Figure 2.2) [1].

o
)

\ A

(a) Extensile b) Contractile

Figure 2.2: Schematic sketches of the local flow induced by the active systems, (a)
extensile (£ > 0) and (b) contractile ({£ < 0) flow, where straight vertical arrows
represent the director field.

Next, we will discuss the activity strength, &, in equation (2.55), and derive the active

stress.

2.4.5.1 Derivation of the active stress tensor

The concept of “active stress” in living things was first mentioned in the work by Fin-
layson and Scriven in 1969 [50]. They suggested that active stress is responsible for
convective instabilities in living things. Traditionally, active stress can arise from either

bulk, interfacial or slip surfaces, which depend on strain or rate of strain.

In this section, we will summarise the derivation of the active stress 0 = {(n ® n)
mentioned above. We derive the active stress based on Newton’s third law of motion,
which states that the force exerted by the self-propelled particle (SPP) on the fluid is

equal and opposite to the force exerted by the fluid on the SPP.

We follow the work of [1,10], where the i SPP is considered to have an axis n;(t) at a
time, ¢, and opposite point forces of equal magnitude, F, at each end of the SPP, which

is centered at R; (see Figure 2.3). We assume that the shape of the SPP is symmetric
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around the midpoint between the two forces, which ensures that the stress distribution
is evenly balanced around the midpoint. This means that the center of mass R; is

equidistant from the point forces.

—F

Figure 2.3: Geometry of the force dipole, where n; is the SPP orientation and L is the
length of the SPP.

We model a single force dipole of magnitude F, oriented along the director n;, centered
at position R;, and displaced by +L/2 along n;. Instead of using a Dirac delta, we use

a smooth, symmetric approximation d.(r), such as a normalised Gaussian kernel

5.(r) = m exp (—g) | (2.56)

which satisfies lim,_,o d.(r) = d(r) in the distributional sense.

The force density, f(r), acting in the fluid solvent due to a single dipole magnitude F
is [1,10].

f(r) = Fnyo. (r -R;i - %n) — Fn;o. (r ~R;+ %n) : (2.57)

We now expand each term using a Taylor expansion around r = R,; (assuming L is

small)
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Substituting equation (2.58) into the force density (equation (2.57))

f(r) ~ Fn {56(1« ~R,) - %ni - Vo.(r — Ri)}
— Fn; {56@ ~R)+ %ni V6. (r — R,.)}

— —FL(n; ® n;) - Vi (r — Ry). (2.59)

In component form

For a collection of dipoles, we have
fk(r) ~ —FLV] Z nikni]— 66(1' — Rz); (261)

where 6. (r — R;) is related to the local concentration of the SPPs,; denoted as C(r),

and we assume that it is constant; thus, equation (2.61) reduces to
fi = —FLCVJHZTL] = §anmj, (262)

where ¢ = —FLC denotes the activity parameter proportional to the strength of the
force dipoles, the SPP length and the concentration. Hence, the active stress tensor is

given explicitly as

oy = &niny. (2.63)

2.5 FEricksen—Leslie equations for active nematics

This section summarises the Ericksen—Leslie equations for active nematics 114,115,202,

238]. In the presence of an orienting field, the conservation of mass and the balance of
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angular and linear momentum are given explicitly by

ov;
ox;
8(3wp>_3wp_87)+8\11m
Ox; \ 0 2, 00, 0,
0 oD dD 30, 0p Dy
an ( ) G ar oe =D

—0, (2.64)

=0 (a=1,2), (2.65)

(i=1,2,3, a=1,2), (2.66)

where p = p + wp is the modified pressure, defined in terms of the isotropic pressure p
and free elastic energy wp and V¥, is the orienting field given in equation (2.25). The
coupling term (9D/88,)(96,/0z;) in the momentum equation (2.66) is responsible for
backflow mechanism. It represents the force density exerted on the fluid by changes in
the director field, coupling the rate of director reorientation 6, to its spatial gradient
00,,/0z;. This feedback from director dynamics to flow induces fluid motion as the

director evolves, capturing the essence of backflow in nematic liquid crystals.

In the static case, the dissipation function and activity are absent, and the Ericksen—

Leslie equations reduce to

0 (aﬁwp > B owp 0V, _o. (2.67)

oz \ (0,6, ) ~ o0, T o8,

Equation (2.67) is the Euler-Lagrange equilibrium equation of static theory or the

minimisation of the energy density for the angles 6,.

Having described the governing equation in the bulk of the system, in the following
section, we will discuss the relevant boundary conditions for this research, including
the classical no-slip and no-penetration conditions for velocity and the infinite director

anchoring.

2.6 Boundary conditions

Boundary conditions play an essential role in determining both the orientation of the

nematic director and the hydrodynamic response of the suspension. In classical nematic
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liquid crystals, two common types of anchoring are typically considered at the boundary:
planar anchoring, in which the director n aligns parallel to the surface, and homeotropic

anchoring, in which the director aligns perpendicularly to the surface [127,202].

In continuum models, these conditions are often expressed by fixing the director field

n at the boundary 02

Planar anchoring: n-z =0, (2.68)

Homeotropic anchoring: n x z = 0, (2.69)

where z is the surface normal. More generally, one can model anchoring via a Rapini—

Papoular surface energy term [177],

_"

F
2 Joq

[1— (n-ng)?] ds, (2.70)

where ng is the preferred anchoring direction, W is the anchoring strength, and dS is

the surface element.

In passive liquid crystals, both planar and homeotropic anchoring can be achieved ex-
perimentally by mechanical rubbing, surface patterning, or chemical treatments |33,
100, 184|. However, in active nematics, controlled anchoring of the director field at
solid boundaries remains an open challenge. Unlike passive systems, active nematics
are typically realised in microtubule-kinesin or actomyosin mixtures, where the ac-
tive stresses and continuous creation/annihilation of defects prevent stable, long-lived

anchoring [40, 184].

Besides director anchoring, the choice of hydrodynamic boundary conditions is equally
important. The most common include the (i) no-slip and no-penetration v|so= 0,
which enforces vanishing tangential and normal velocity at solid boundaries, (ii) free-
slip / stress-free: v |go= 0 and o |sn= 0, where L and || denote components normal
and tangential to the boundary, respectively, and o is the stress tensor, (iii) periodic

boundaries, where both velocity v and director field n repeat identically across opposite
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sides of the simulation domain. These different velocity boundary conditions have been

employed depending on the geometry and intended flow regime [40,238,240].

Several numerical studies have shown that imposed director anchoring conditions dra-
matically affect defect dynamics and emergent flows in confined active nematics. In
channels with planar anchoring, active nematics often exhibit spontaneous unidirec-
tional flow at low activity, which transitions to oscillatory and eventually turbulent
regimes as activity increases; in such cases, defects tend to align with the walls, lead-
ing to extended shear bands [18,187]. By contrast, homeotropic anchoring typically
induces bend instabilities near the walls, driving stronger defect nucleation and en-
hanced turbulence in confined geometries [28,138,172,240|. In domains with periodic
boundary conditions, the active nematic generally evolves toward the well-known active
turbulence state, characterised by motile +1/2 defects and mesoscale vortices. Here, no
preferred alignment exists, and defect dynamics are governed solely by the interplay of
activity and elastic stresses [40,59|. Thus, while strong anchoring remains a mathemat-
ically convenient assumption in models, it must be emphasised that such conditions are
not experimentally achievable in active nematics. Nevertheless, simulations employing
planar or homeotropic boundary conditions remain useful for probing how confinement

and wall alignment would influence defect dynamics and collective flows.

In our study, we apply the infinite planar and homeotropic anchoring conditions for the
director and the no-slip and no-penetration boundary conditions for the velocity (v = 0

on the boundaries).

2.7 Summary

In summary, we have considered the Frank—Oseen and Ericksen—Leslie dynamic theory
of nematic liquid crystals. The Frank-Oseen elastic theory was formulated based on
the six components of the curvature strains described by the splay, twist, and bend
configurations, while the Ericksen-Leslie theory was formulated using the conservation

laws of mass, linear, and angular momentum. The dissipation function is written in
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terms of the director and the rate of strain tensor, with an additional term that models
the internal energy production in an active nematic fluid. We also summarised the
derivation of the active stress tensor based on Newton’s third law of motion, using self-
propelling particles as an example of living matter. We concluded this chapter with
the concept of some necessary boundary conditions for both the director and the fluid

velocity.

In Chapters 1 and 2, we have provided the historical background on passive and active
fluids, with a particular focus on active nematics, as well as the theoretical framework

based on the Ericksen-Leslie theory to set the stage for our study.
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Chapter 3

Effects of Activity on

Kickback /Backflow in a

One-dimensional Geometry

3.1 Introduction

As previously mentioned in Chapter 2, the kickback mechanism occurs when a strong
enough field (beyond the critical field strength) is applied, causing the director to reori-
ent rapidly. When the field is suddenly removed, the director overshoots, temporarily
aligning at 6§ > /2, before relaxing to its equilibrium state. In active nematics, flow
also arises due to director distortions. However, the influence of activity on the kickback
mechanism and the interplay between activity and the orienting field remain an open

question.

In this chapter, we investigate the combined effects of the activity and an orienting
field on the active nematic. We formulate a one-dimensional model of active nematics
using a planar or homeotropic initial alignment. Activity can be seen as an internal
orienting field because there is a critical value of activity, below which the director is

uniform /undistorted, and above which there is director distortion. We investigate how
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applying an orienting field will affect this transition.

To understand the system’s behaviour at early times, we solve the governing equations
analytically by linearising around a uniform director. We first examine the effect of
activity in the absence of an orienting field for planar alignment. For extensile nemat-
ics, the director remains close to its initial configuration with minimal distortion. In
contrast, for contractile nematics, the director undergoes a reorientation, resulting in
sustained flow, a situation that is now well known [236]. When an orienting field is
applied, the system is characterised by a critical orienting field below which the elastic
forces resist director orientation and remain in their original state. However, if the field
is much greater than the critical threshold, the director realigns more closely with the

field. This phenomenon is called “Fréedericksz transitions” as mentioned earlier.

To capture how activity affects kickback, we start with an initial homeotropic alignment
and then set H = 0. For ¢ = 0, the system exhibits the classical kickback effect, where
the director initially starts at § = m/2 rad and overshoots as time progresses before
gradually relaxing to the uniform equilibrium state. However, for extensile nematics, the
kickback effect diminishes as the activity parameter increases, whereas for contractile

nematics, it remains sustained.

Next, we explore the nonlinear behaviour of the system at later times by solving the
governing equations numerically using a finite difference method. Our results show
that the system exhibits either a uniform, symmetric, or antisymmetric state. It is
worth noting that for extensile systems, the transition from a trivial to a non-trivial
state occurs above a critical field strength. In contrast, for contractile nematics, the
transition occurs below a critical field strength. Interestingly, for weakly contractile
systems, the director exhibits an overshoot and tends to align at 6 ~ 7 rad, leading to

complex flow. This finding has implications for sensor design applications.

Finally, we examine a nonlinear model of activity in a hybrid-aligned nematic (HAN) ge-
ometry. The results indicate that the system exhibits bistability in contractile systems

due to different director profiles, whereas in extensile systems, the director remains con-
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stant at approximately 1.24 rad in the bulk of the channel. This difference in behaviour
highlights the fundamental asymmetry between contractile and extensile systems in the

HAN channel, arising due to antagonistic boundary conditions.

We begin by formulating the model in Section 3.2, followed by a linear analysis for
planar alignment in the absence and presence of an orienting field to examine the effect
of activity and an orienting field on the backflow mechanism in Sections 3.3.1 and 3.3.2,
respectively. We finish our linear analysis by examining homeotropic alignment in the
absence of an orienting field in Section 3.3.3. Section 3.4 presents our nonlinear analysis
under planar alignment, employing a series of computations to identify the transitions
between different types of solutions. This is followed by a nonlinear analysis of activity
in a Hybrid Aligned Nematic (HAN) cell in Section 3.5. We finish with concluding

remarks in Section 3.6.

3.2 Model formulation

We consider the effect of a combination of activity and orienting field between two
parallel plates, at z = 0 and z = d, subject to infinite planar anchoring for the director

and no-slip conditions on the boundaries of the channel as shown in Figure 3.1.

We now seek the solutions to the governing equations (2.64)—(2.66) in one dimension,
and with a director that remains in the x — z—plane so that #; = 0 in (2.52). In
particular, the director n = n(z,t), the velocity v = v(z,t) and the orienting field H

take the form

n = (cosf(z,t), 0, sinf(z,t)), (3.1)
v = (v(z,t), 0, 0), (3.2)
H=(0,0, H), H=|H|, (3.3)

where 0(z,t) is the director angle measured with respect to the z-direction and v(z,t)

is the flow velocity. We also specify that the orienting field H is applied along the
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z-direction. This choice is compatible with the assumed director orientation in the x—=z

plane and the geometry of the problem.

Substituting equations (3.1) and (3.2) into equation (2.35), we find the Frank-Oseen

elastic free energy, wg, given by

1
wp = 505 (K1 cos®0 + Kssin®6) (3.4)

and from (2.36), the dissipation function, D, is
1 2 L o
D= ég(e)vz +m(0)v.0; + 5719t, (3.5)

where 7 is the rotational viscosity, g(0) is the effective shear viscosity of the liquid

crystal, and m(0) is the viscosity term, which are expressed in terms of Leslie viscosities

as follows:
1
g(0) = 3 [ + (a5 — @) sin® 0 + (a3 + ag) cos® 0] + a sin® 6 cos™ 6, (3.6)
m(0) = as cos® f — aysin? 6. (3.7)

Substituting equation (3.1) into (2.24), we obtain the orienting field term

1 1
v, = X, H? + §XQH2 sin? 6. (3.8)

The balance of angular momentum, equation (2.65), using the Frank-Oseen elastic free

energy (3.4) and dissipation function (3.5), becomes

Y10; — (K1 cos? 0 + K sin® 9) 0.. — (K3 — K;)sinf cos 6 67

+m(0)v, + xoH? sinf cosd = 0. (3.9)

Similarly, we obtain the linear momentum equations from (2.66) using (3.2) and (3.5),
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v(d,t) =0 0(d,t) =0
z=d
\
—) <
N
v(z,t) _> ~ director, n
’ A_@(Z,t)
—
z=0 ’

v(0,t) =0 6(0,t) =0 z

Figure 3.1: Active nematic in a channel between two solid plates at z =0 and z = d
with flow parallel to the x-direction. The black solid rods show the director
orientation.

in the low-Reynolds-number approximation [26,115,167| as follows

0= (g9(0)v, +m(0)0, + &sinb cosh), — py, (3.10)
0 = py, (3.11)
0 = (&sin(20) — m(0)v, — 16;) 0, — p., (3.12)

where p = p+ wr — V,,. Since p is translationally invariant in the z-direction, then by
equation (3.12), we have that p = p(z,t). This implies that p = p(z,t), and hence the
full pressure p = p(z,t), since wr and ¥, also depend only on 2z and ¢. To deduce that
pr = 0 from the z-momentum equation (3.10), we require an additional assumption
of no externally applied pressure gradient along the channel. In the absence of such a

gradient, we set p, = 0.

Hence, from equations (3.10)—(3.12), we obtain

p(z,t) = / (&sin(20) — m(0)v, — 110;) 0.dz — wp + V. (3.13)
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From equation (3.10), we now have
(g(@)v. +m(0)0; + {sinfcosl), = 0. (3.14)

We will subsequently solve the nonlinear coupled governing dynamical equations given

by equations (3.9) and (3.14).

We impose infinite planar anchoring and a no-slip condition on the wall of the parallel

plates, giving rise to the following boundary conditions

0(0,t) =0, 6(d,t) =0, (3.15)

v(0,t) = v(d,t) = 0. (3.16)

It is important to note that equations (3.9) and (3.14) remain unchanged via the trans-

formations 0(z,t) = —0(d — z,t) and v(z,t) — v(d — z,t).

3.3 Linear analysis for activity-driven channel flow

To simplify the problem, we linearise about the uniform alignment state in the absence
and presence of an orienting field, assuming that 6 is close to its initial state in the
early stages of the dynamics. We consider a initial state of the form § = ® and v = 0,

where @ is a constant.

We now explore the stability of the system by considering small perturbations about

this initial state. Let

0(z,t) = ® + €l(z,1), (3.17)

v(z,t) = ev(z,t), (3.18)

where € < 1 and 6 is the linearised perturbation. This notation will be used consistently

throughout the linear analysis. We denote (z,t) as the director angle and 6(z, t) as its
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perturbation about the initial state.

Substituting into equations (3.17) and (3.18) equations (3.9) and (3.14), and applying

a Taylor expansion, we obtain

(eg(@)@z + em(®)f; 4 & sin @ cos B + e£0 cos(2<I>)> +O() =0, (3.19)

671@5 —€ (K1 cos? @ + K sin® (ID) 0., — e(K3 — K;)sin ® cos @(éz)Q

+ em(D)D, + exa H?0 cos(2®) + O(e?) = 0. (3.20)

At zeroth order, we require sin ® cos ® = 0 only when H # 0 due to the presence of the
orienting field term. In the case where H = 0, no such condition arises, and the only
constraint on ® comes from the boundary condition. Since we are linearising about a
steady state that satisfies 0(0,t) = 0(d,t) = 0, we set & = 0. Retaining only the O(¢)

terms, we obtain the linearised system

(g(@)@z (@), + €0 cos(2<1>)) —0, (3.21)
’ylét — (K1 cos® & + K5 sin? @) 0., + m(P)v,

— (K3 — K1) sin ® cos PO + x, H?0 cos(2P) = 0. (3.22)

We now consider the solutions to equations (3.21) and (3.22) for possible combinations
of ® =0 when H =0o0or H # 0 and ® = 7/2 when H = 0. We consider the case
® = 7/2 when A(0) = 0 = 6(d) because it is similar to the system relaxation from a

switched-on state 6 ~ /2 towards an equilibrium state.

3.3.1 Linearising about planar alignment in the absence of an

orienting field

In this section, we consider switch-on dynamics in active systems akin to the situation
where the Fréedericksz transition occurs in planar to homeotropic alignment when the

orienting field is suddenly switched on, with the orienting field much greater than the
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threshold value. In active nematics, the activity effectively acts as an orienting field
because the active stresses couple to the director, driving spontaneous flow and reorien-
tation. This means that activity itself provides a symmetry-breaking mechanism that
aligns the director field, as discussed previously. When the activity is sufficiently strong,
it can drive a transition similar to the Fréedericksz transition, leading to pronounced
flow effects. Although this section outlines previously known results, it establishes the

procedure for introducing an orienting field.

In the absence of the orienting field (H = 0) and setting ® = 0 in equations (3.21) and

(3.22), we obtain a coupled linear system of partial differential equations given by

0% %0 00

i oo 92
Moz T % g Teg, =0 (3.23)
020 90 o0
Ki— — v — — i = 24
1552 ~ Mg T3y 0, (3.24)

where 11 = £ (as+as+ag) is a Miesowicz viscosity [202]. As expected, when the activity
strength & = 0, we revert to the passive nematic linearised partial differential equations
given in Stewart [202, p. 226]. Multiplying equation (3.24) by 7y, differentiating with
respect to z and adding the result to (3.23) multiplied by a3, we obtain an equation for

6 only

930 o0 0%0
@‘i‘ﬁla—i‘@azat =0, (3.25)

where

B = By = (a3 —mm)- (3.26)

3.3.1.1 Characteristic length and time scales

The dynamics of é(z, t) in the active system is described by equation (3.25), where the

coefficients 5; and [y encapsulate the physical properties of the system. Specifically,
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the intrinsic active length scale

1 m K
l, = = , 3.27
V151 \/ e (3.27)

sets the characteristic spatial extent over which active stresses deform the nematic

director. This active length scale is consistent with [81]. Physically, [, measures the
size of the region driven by activity before elasticity dominates and suppresses further

distortions.

The coefficient 3y = (1/m K1) (a3 — mim1), together with 8; = Eag/n K, defines the

active time scale,

2 _
S R NP Sk 41 (3.28)

B €] as

Ta

which characterises how quickly the director field responds to active forcing. Together,
l, and 7, capture the essential scales governing the onset and evolution of activity-driven

patterns in active nematics.

We now discuss the implications of these scales using the parameters in Table 1.1, for
the smallest and largest activity values. In this Chapter, we consider a channel height
of d = 200 pm for capturing general flow behaviour. In our system, the active length
scale is [, ~ 11.4/\/\§+|um. For the smallest activity, £ = 0.001Pa, [, ~ 360 pum, larger
than the channel height, indicating almost uniform behaviour and weak distortions.
The corresponding active time scale is 7, ~ 2375 s. For this situation, we expect no
activity-induced distortions because of the large active lengthscale, and we need not
run a simulation for the full duration of the active timescale. For the largest activity,
¢ =2Pa,l, = 8.06 um, much smaller than the channel height, which produces strongly
localised distortions. The corresponding active time scale is 7, ~ 1.19 s. For this
situation, the suggested active lengthscale suggests distortion will occur, and we must
ensure we run the simulation for greater than the active timescale to ensure we observe

the full behaviour of the system.
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Simulation times of 200 s are therefore sufficient to capture both slow and fast dynamics:
for the smallest activity, this corresponds to only about 0.08 active response times, while
for the largest activity it spans over 400 active response times, ensuring that both nearly
uniform behaviour and rapid, localized responses are fully resolved. Thus, varying &
from very small to very large changes both the length scale of active distortions and
the time scale of their evolution, from almost uniform, slowly-evolving systems at low

& to highly localized, rapidly-evolving dynamics at high &.

3.3.1.2 Solution of the linearised system

We now solve equation (3.25) using a separation of variables approach. Let us assume

a solution of the form
0(z,t) =0(z)e ", (3.29)

where 7 is a decay timescale to be determined. Substituting equation (3.29) into equa-

tion (3.25) gives

0" (z) + (51 — %) 0'(z) = 0. (3.30)

This is a third-order ODE for é(z) and thus requires three boundary conditions. Two

of these are provided by the anchoring conditions

0(0,t) =0(d,t)=0 = 0(0)=0(d) = 0. (3.31)

The third condition arises from the no-slip boundary condition on the velocity field
v, which is coupled to 6 through equation (3.23). Substituting the ansatz (equation

(3.29)) into (3.23) and integrating, we impose the condition

(0,4) = o(d, t) = 0. (3.32)
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These constraints on ¢ yield an effective third boundary condition for 6, ensuring a

well-posed eigenvalue problem.

A particular solution satisfying the boundary conditions can be written as

0(z,t) =0 [cos (q - Ez) - cos(q)] el (3.33)

where § and ¢ are constants.

To determine the associated velocity, we differentiate (3.33) with respect to ¢t and z and

substitute into equation (3.23), giving

%0 2¢0 [as : 2q —t/r
57 = pa 7€) (q - ?) e (334)

Integrating equation (3.34) twice and using the no-slip conditions 0(0,t) = 0(d,t) = 0,

we obtain

2q

oz t) = 7 [sin (q _ Ez) + <§z - 1> sin(q)} et/ (3.35)

where

7= —Qf_:q (% - g) . (3.36)

In the passive case (£ = 0), equation (3.36) reduces to the known result for passive

nematics [202, p. 227|

Q_dOég
2mqr’

(3.37)

V=

To determine the admissible values of ¢, we substitute equations (3.33) and (3.35)

into the original system (3.24)—(3.23) and use (3.36), yielding the following pair of
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transcendental equations

1 2
n cosq— — (ﬁ - foz3> sing =0, (3.38)
T mg \ T
4K, q?
RS U (% _5> = 0. (3.39)
T d? T

Solving equation (3.39) for 7 gives

4K, 02 -1 2
T=oam ( W 04_35) , where a=1-— s (3.40)
Y1Th

The positivity of the dissipation function means that 7; > 0 and 771 — a2 > 0 hold,
which means that v, > a3/n; > 0. These inequalities mean that 0 < a < 1 [202].

When £ = 0, equation (3.40) reverts to the passive nematic problem.

Substituting (3.40) into (3.38) and simplifying, we obtain

r(q) =q— (1—a)tang + aséa <4K1q2 asé

-1
t =0. 3.41
(T -5E) wamo G

Equation (3.41) has a countable set of solutions g, referred to as mode numbers, ordered
by their real parts satisfying $(q) < R(q1) < R(¢g2) < .... The index n denotes the

mode number. The corresponding 7,, values are referred to as the time constants.

The time constants, 7,, with positive real parts, correspond to decaying modes, while
those with negative real parts represent exponentially growing modes. The mode with
the most negative real part dominates at long times, which we call the dominant growing

mode, and which we denote as 7.

Figure 3.2 illustrates the behaviour of the function r(g) as a function of ¢, together with
the first few solutions of the equation r(¢) = 0 that satisfy the condition (¢) > 0, and
for £ = 0 no admissible root exists. Note that the asymptotes of r(q) coincide either

with the asymptotes of tan (q) or the solutions of 4K;¢*/d* — az&/n; = 0.

To determine 7,, we first solve for ¢,. However, since the equation for ¢ has both
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Figure 3.2: Plot of the function r(gq) as a function of ¢ for £ = [—0.15, 0, 0.06] Pa.
The blue and black markers indicate the values of ¢ corresponding to & = —0.15 Pa
and £ = 0.06 Pa, respectively.

polynomial and trigonometric components, it is a transcendental equation with no
solution that can be written in terms of a finite combination of standard functions.

Therefore, we solve for ¢, numerically and use the obtained solutions to compute 7,.

To determine the transition from a uniform state to an unstable state, we need to
solve for the critical value of the activity, denoted by &.. This transition occurs when
4K 1q?/d* — azé/m = 0. The critical activity occurs at the first mode, n = 1, also

known as the (fundamental mode), and is given explicitly as

. 4K1Q%771

= i 3.42
b= (3.42)

where ¢, represents the mode number associated with the first mode. We note that all
the parameters in the definition of critical activity &. are positive, except the viscosity
az [202]. So, when ag < 0, we have . < 0, which is the usual case when the active
nematic is rod-like. On the other hand, when a3 > 0, then £. > 0, which is associated

with disc-like active nematics [238].

From equation (3.26), the expression for the parameter, 3;, together with equation (3.42)

can be written as 3; = 4¢?/d?. Introducing the non-dimensional parameter £ = 3d?,
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the corresponding critical activity is then given by

&= fud® = (2q1)%. (3.43)

To then find the solutions for é(z, t) and 0(z,t), we employ the superposition principle

n=1 n

=> o, [sm ( 221;2) + (27; - 1) sin(qn)] exp (—%) : (3.45)

n=1

with 7, = —j"d (% - g)

i oo (s 252 et e (1), o

where 6, are the constant coefficients chosen to satisfy the initial conditions

0(z,0) = 0y(2), (3.46)

0(2,0) = 0, (3.47)

where 0 < 2z < d and éo(z) describes the initial director configuration. For our anal-
ysis, we specify éo(z) = Osin(rz/d), with © = 0.0001, which satisfies the boundary

conditions and provides a physically realistic small perturbation.

We choose y(z) to satisfy equation (3.46)
) z)—ié cos | ¢ —%z — cos(qn) (3.48)
g n n d n . .
To determine 6, let

Fn(2) = cos (qm - 2%’"2) — co8(qm)- (3.49)

Multiplying both sides of equation (3.48) by f,, and integrating with respect to z from
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0 to d YIGIdS

Since f,, is not orthogonal, this problem does not have an analytical solution, so we
resort to determining 6,, numerically. Since f, and f,, are known functions, evaluation of
the left-hand side of equation (3.50) will give constants for m = 1,2, 3. .. and integration
of fnfm will give us a positive semidefinite matrix, while the f,, are unknown variables
that will be determined. To achieve this, we use the parameter values listed in [202]
to first compute ¢, and 7, numerically, and then use these results to evaluate 6,. Our

numerical calculations were performed using Maple [88], Version 2018.

Since equation (3.48) involves an infinite sum, we must truncate the series in practice
to compute a numerical approximation of the initial condition. Specifically, we consider

the truncated expansion

z) & Z On fr(2), (3.51)

where f,(z) is defined in equation (3.49), and N is chosen such that increasing it further

has a negligible impact on the accuracy of the reconstructed initial condition.

The truncation effectively reduces the infinite-dimensional system (3.50) to a finite-

dimensional linear system of the form

AG =D, (3.52)

RNXN

where the entries of the matrix A € are given by

A, = /0 Fa(2)fn(2) dz, (3.53)

90



Mathematical Modelling of Active Fluids in a Channel

and the entries of the right-hand side vector b € RV are
d A~
by, = / 0o(2) fm(z) dz. (3.54)
0

In practice, we select N large enough to ensure convergence of the solution for éo(z). The
actual initial condition used in simulations is this truncated reconstruction, evaluated

numerically using the computed coefficients.

Regarding the possibility of deriving an orthogonality condition using an adjoint for-
mulation, while such an approach might in principle lead to an appropriate basis with
orthogonal functions, in our case, the functions f,(z) depend on parameters g, that are
not linearly spaced, and the functional form of f,, does not naturally lend itself to a
Sturm—Liouville framework. Therefore, finding a self-adjoint operator that yields f,, as
eigenfunctions with guaranteed orthogonality is non-trivial and lies outside the scope of
this work. Instead, we treat the system numerically, using the fact that f,, and f,, are
explicitly known functions, which allows us to compute all necessary integrals and solve

the resulting linear system efficiently using standard numerical tools in Maple [88|.
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Figure 3.3: Plot of the director angle perturbation as a function of t at z = d/2 for
¢ =[-0.2,-0.13,—-0.001,0,0.2] Pa.
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In Figure 3.3, we plot the director angle perturbation at the center of the channel
as a function of time for different values of the activity parameter . For positive
activity (¢ = 0.2 Pa), the perturbation decreases over time and relaxes towards the
undistorted state. When the activity parameter is reduced to zero, the perturbation
also decays, consistent with the passive case. For weak negative activity (£ = —0.13
Pa), the perturbation again decreases in time, corresponding to the regime £ < .. At
the critical activity £ = £, =~ —0.13 Pa, the system is marginally stable, and for values
of £ below this threshold (e.g., £ = —0.2 Pa), the perturbation grows with time as the

higher activity drives instability and distortion.

It should be noted that the curves shown are obtained from a linear theory. Within
this framework, the system does not evolve to a steady state; instead, the solutions
continue to grow or decay in time without saturating. Consequently, even at extended
simulation times, the curves do not reach a steady state, which is inherent to the

theoretical approach rather than a limitation of the simulation duration.

For weak activity, the system decays from its uniform state. However, as the magnitude
of the activity increases, the director undergoes significant reorientation, leading to
sustained flow. These behaviours align with the classical scenario studied by [1,45,236],

where the system exhibits flow.

In the next sections, we will introduce an orienting field, and examine how the coupling
between the activity and the orienting field affects the dynamics of the system’s flow

and director orientation.

3.3.2 Linearising about planar alignment in the presence of an

orienting field

As mentioned in the introduction, in passive nematics, the system is characterised by a
critical orienting field when an orienting field is applied. For an applied field below this

critical threshold, the elastic forces resist the director’s reorientation, and the system
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remains in its original undistorted state. However, when the applied field exceeds the
critical threshold, the director undergoes a reorientation, aligning more closely with the
direction of the field. This transition is referred to as the “Fréedericksz transition”. This

reveals the balance between elastic resistance and external field-induced alignment.

Here, we extend the above analysis by introducing an orienting field in addition to
the activity strength parameter. This allows us to investigate how the presence of an
external orienting field modifies the critical activity threshold and the resulting director
configurations. This is crucial for understanding the combined effects of activity and
the applied orienting field, which is relevant in understanding the dynamics of active

systems.

Specifically, by letting ® = 0 and H # 0, equations (3.21) and (3.22) become

L.
Moz T g0 5__ ’ (3:39)

o0 020 O

— - Ki— — Y H?0 = .
T a1 152 + « 35, Xa 6 =0. (3.56)

As expected, when the orienting field H = 0, we revert to equations (3.24) and (3.23),
which are the activity-driven state. Introducing the dimensionless parameters A; =
Ki/xoH? Ay = v1/xaH? and A3 = a3/x.H?, equations (3.55) and (3.56) can be

rewritten as

020 00 v
A18 +0— AQa A?@ =0, (3.57)
0% 820 o0

We again search for solutions of the form of equations (3.33) and (3.35) and obtain

0(zt) = @ [Cos (q _ %’z) _ cos(q)] exp (-é) , (3.59)

o(zt) = 7 [Sin (q _ %z) + <§z _ 1) sin(q)] exp ({) | (3.60)
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where § and © are non-zero constants and 7 = /(85 — (2¢/d)?) with 5 = (1 +

§A2)/mAy and B = (Azas — Aomy) /m Ay

Substituting (3.59) and (3.60) into equation (3.58) shows that the condition

oo 0d (5 _ %) , (3.61)

must hold to ensure consistency.

In order to determine 7 and ¢, we substitute equations (3.59) and (3.60) together with

(3.61) into the linearised form of equation (3.58), and obtain

AK,1¢®  agg 2 o
T=am ( 2 m — XoH ) (3.62)
1 (o 2
qg—(1—a)tang+ — | —tanqg+ x.Hq ) 7= 0. (3.63)
Y1\

If H=0, we resort to (3.40), and whenever £ = 0, we obtain

2172\ —1
q°H:
T =al, (1 — 47r2H2> . (3.64)

For a detailed explanation of the Fréedericksz transition in the planar to homeotropic
alignment, refer to Stewart [202|. Again, if { = H = 0, we revert to the passive nematic

liquid crystal problem.

Setting £ = 0 and H # 0, equation (3.63) reduces to equation (3.41), in which case we

get back to the equation for the passive nematic liquid crystal, given explicitly by

4¢? tanq—q/(l—a)] _ (g)i (3.65)

2 tang — ¢ H.

where H., is the critical field strength, define as H. = (w/d)(v/K1/Xa)-

Next, we analyse the critical activity, ., when a field is applied. For planar alignment,
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the critical activity &. occurs at the first mode, n = 1, and is given by

_ M [4Kigim

. H?. 3.66
v | X (3.66)

€e
For x, > 0, the orienting field H tends to align the director n parallel to H [202|. In the
definition of critical activity, all parameters are positive except the viscosity as, which
can be positive for rod-like active nematics or negative for disc-like active nematics.
For case the as > 0, then & > 0 if and only if 4K,¢n, /azd?* > x.H?, or & < 0 if and
only if 4K1q¢3n;/asd® < x.H? For az < 0, then & < 0 if 4K,¢3n/asd® > x.H?, or
& > 0if AK g2y Jasd?® > x H?.

From equations (3.62) and (3.62), we get a new version of equation (3.41) given as

1 4K\ ¢ -
g— (1 —a)tang+ — (a—ggtanquXaHQq) ( 19 —a—?’f—xaHQ) =0, (3.67)
71\

which will be solved numerically.

We introduce the magnetic field in dimensionless form by writing H in terms of the
critical field H., such that H = pH., where H. is defined in Table 1.1. So that if
o= 1, we have H = H., which corresponds to the Fréedericksz transition. The general

solution for the velocity amplitude in dimensionless form can then be expressed as

~

| 203G asé § as
vy = | — 3 ~ — — ~
mayr  2n7avigqn  2mdn  2maign

0, (3.68)

where G, = ¢,d is the dimensionless wavenumber, ¢ = H/H,. dimensionless magnetic
field, € = &d?/7%K,0? is the dimensionless activity and o and 0% are dimensionless

amplitudes, corresponding to v, and 6,,.

We now examine the behaviour of the director angle perturbation é(z, t) in the presence
of an orienting field. We first determine 6, numerically, using the initial conditions

specified in equations (3.46) and (3.47) and choose ¢ = [0.5, 1, 3, 5].
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In Figure 3.4, we present the director angle perturbation as a function of time for
different values of the activity parameter and orienting field strengths. For activity
magnitudes below the critical value (¢ > &, e.g., & = —0.001 Pa), the perturbation
decays over time, relaxing toward the undistorted state. At the critical activity & =
&, ~ —0.13 Pa, the perturbation is marginally stable for H < H., and begins to decay
in time as the orienting exceeds the threshold field. For magnitude of activity above
the critical value (§ < &, e.g., £ = —0.2 Pa), the perturbation grows over time. When
orienting fields are applied, the perturbation grows for H < H. whenever the activity
magnitudes below the critical value, and decays for activity magnitudes above the
critical value (see Figure 3.4(a)—(b)), while for H > H. (e.g., 0 = 3 and p = 5), the

field suppresses the activity effect, resulting in decay, as shown in Figure 3.4(c)—(d).

The physical intuition behind the stability of extensile systems (£ > 0) compared to
the instability of contractile systems (£ < 0) arises from the coupling between director
distortions and the flows they generate under planar boundary conditions. For an
initially planar orientation, small bend perturbations in the director field tend to orient
toward the channel walls. In extensile systems, it tries to create a flow towards the
walls, but since the walls are impermeable, this cannot happen. In contrast, small
splay perturbations in contractile systems drive flow along the channel, reinforcing
the perturbation and causing instability. When an orienting field is applied (H >
H.), the director tends to align with the field, which suppresses the growth of splay

perturbations, stabilising the system.

In conclusion, the evolution of the director over time is governed by the interplay
between activity and orienting fields. For activity magnitudes below the critical value,
perturbations decay, consistent with the behaviour of passive nematics. Above the
critical activity, contractile systems exhibit growth in perturbations, while extensile
systems remain stable due to boundary constraints. The introduction of an orienting
field (H > H.) suppresses activity-induced instabilities by aligning the director with the

field, stabilising the system and limiting perturbation growth. These results underscore
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Figure 3.4: The director angle perturbation 0 and flow velocity perturbation v as a
function of ¢: (a) 0 = 0.5 (b) 0 = 1.0, (¢) 0 = 3.0 and (d) o = 5.0, for
¢ =[-0.2, —0.13, —0.001, 0, 0.2] Pa.

the competing effects of activity-driven dynamics and orienting fields in determining
the temporal evolution of the director.

In the following section, we will analyse how the activity affects the kickback subject
to homeotropic alignment, characterised by an anchoring angle of § = 7/2 rad. This

investigation will help in understanding how activity affects the kickback response.

3.3.3 Linearsing about homeotropic alignment in the absence
of an orienting field

In contrast to the initial planar alignment considered in the last section, we now consider
an initial homeotropic alignment so that the initial director alignment is orthogonal to

the substrate. It is therefore assumed that 6 =~ /2 rad. This situation is similar to the
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classical kickback situation where it is assumed that for ¢ < 0, an orienting field has
aligned the director to # = 7/2 rad and that the orienting field is removed at t = 0. We
now examine the system’s behaviour by setting H = 0 and & = 7/2 rad with ¢ > 0 into
equations (3.21) and (3.22), and we obtain a coupled linear system of partial differential

equations given by

0% 020 90

PR P M (3.69)
a0 020 B0
71@ - sz - 042& =0, (3-7())

where 7y = %(oz4 + a5 — ay) is a Miesowicz viscosity.

Note that the linearised system in initial planar alignment is associated with the splay
deformation elastic constant K, and the viscosities ag and 7;, while initial homeotropic
alignment is associated with the bend deformation elastic constant K3, and the viscosi-
ties ap and 79. The equations are identical following the transformation K; — Kj,

Qg — —ag, M — Ny and € — —¢&.

Solving for 7 and ¢, we obtain the new time constant 7 and an equation for g given by

AK3q°  axé -
= - 71
rma (-2 (3.11)
AK3q° -
r(q) =q¢— (1 —«a)tang + aa ( ?2,61 n 0625) tang = 0. (3.72)
T2 d 72

For £ = 0 Pa (see Figure 3.5), we revert to the case of a passive nematic liquid crystal,
where the system behaves according to the classical dynamics of passive nematics. In
this scenario, the perturbation 0 undergoes the “classical kickback effect.” Initially,
after the orienting field is removed, the perturbation 0 is greater than 7/2. This is
because the director initially tries to align with the field, but once the field is removed,
the director undergoes a relaxation process where the director tends to return to its
equilibrium state, but the high-order modes decay quickly, leaving the low mode, which

pushes the director above 7/2 in the center of the cell [202].
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Figure 3.5: Plot showing the (a) director angle perturbation 8 and (b) flow velocity
perturbation v as a function of z for various time when the director is initially aligned
at 0 = m/2 rad.

Next, we turn our attention to the impact of activity on this behaviour. As the activity
parameter value, ¢ is introduced, we expect the director’s relaxation dynamics to be
altered. The activity introduces a new term into the governing equations, which can
lead to deviations from the classical passive nematic behaviour, causing realignment and
overshooting the director angle. We examine the behaviour of the system for various

activity parameter values.

We present the behaviour of the system for active contractile and extensile nematics in
Figure 3.6, showing the director angle perturbation at the channel center as a function
of time for various activity parameters. For ¢ = 0, the system exhibits the classical kick-
back behaviour of passive nematics, where the perturbation initially aligns at 6=rm /2
rad, increases, and then decays over time (Figure 3.6(a)). As the activity increases to
¢ = 0.01 Pa, the kickback diminishes (Figure 3.6(b)), and at £ = 0.2 Pa, the kick-
back disappears entirely, with 0 ~ 1.53 rad initially and the perturbation immediately
relaxing to the equilibrium state (Figure 3.6(c)). In contrast, for contractile activity

€ = —0.0095 Pa, the kickback persists with 6 ~ 3.33 rad (Figure 3.6(d)).

We further investigate the behaviour system by plotting the director angle perturbation
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Figure 3.6: Plot of the director angle perturbation in the center of the channel as a
function of time, ¢, for (a) £ = 0 Pa, (b) £ = 0.01 Pa, (c) £ = 0.2 Pa, and (d)
¢ = —0.0095 Pa under homeotropic alignment.

100



Mathematical Modelling of Active Fluids in a Channel

0(z,t) (m/s)

z (m)

15 2
%107

-------- t=0
-------- t=1
-------- t=2
-------- t=3
-------- t=4
77777777 t=5

Figure 3.7: The director angle perturbation 6 and the flow velocity perturbation v in
the absence of a field for various time ¢ when £ = —0.02 Pa and ¢ = 0.02 pa, for
homeotropic alignment, respectively. For clarity, we use the arrow-headed lines to

indicate the direction of increasing time.
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and flow velocity perturbation as a function of z for various times. Figure 3.7 illustrates
the evolution of the perturbation of the director angle and flow velocity for £ = —0.02
Pa and & = 0.02 Pa, respectively. For the case of negative activity, the perturbation
begins at 7/2 rad, indicating the initial alignment, and increases over time, as shown

in Figure 3.7(a).

For extensile systems, the director angle perturbation is initially at f = 7/2 rad, then
increases before finally decreasing to the non-zero equilibrium state, as observed in
Figure 3.7(b). This behaviour suggests that positive activity suppresses any initial
director orientation, driving the director smoothly toward its non-zero equilibrium state.
Figures 3.7(c) and 3.7(d) depict the evolution of perturbed flow velocity under the same
conditions. For both contractile and extensile nematics, the flow velocity shows distinct

profiles with respect to time, influenced by director distortions.

These results are consistent with those reported in [238]. In particular, the study showed
that in active nematic liquid crystals subject to a uniform orienting field, the presence
of sufficient activity can suppress the transient overshoot of the director angle, known as
kickback. For symmetric director configurations, the director may exhibit kickback only
for activity below a critical value, whereas for anti-symmetric configurations, kickback
is generally absent. Similarly, in our simulations of extensile active nematics with
activity exceeding the critical value, we observe that the director relaxes smoothly to

its pre-switched configuration upon removal of the field, with no evidence of kickback.

Throughout Section 3.3, we investigated the short-time behaviour of active nematics
across three distinct scenarios. These included planar alignment in both the absence and
presence of an orienting field, where the dynamics involved the Fréedericksz transition.
Additionally, we analysed the system under homeotropic alignment in the absence of an
orienting field. In these cases, the system is characterised by kickback when & = 0 and
low activity strengths. However, for extensile nematics, the kickback effect diminishes
as the activity increases. These studies provide an understanding of the short-time

behaviour of the system, capturing Fréedericksz transition and kickback effects, which
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reveal the sensitivity of active nematics to both activities and applied orienting fields.

Building on this, the next section will extend the analysis by examining the longer-time
behaviour of the system under planar alignment in the presence of an orienting field.
By solving the governing equations numerically, we aim to characterise the solution
transitions for various activity parameter values and orienting fields to provide a more

comprehensive understanding of the interplay between activity and orienting fields.

3.4 Nonlinear analysis under planar alignment sub-
ject to an orienting field

In the previous section, we analysed the system using linear stability theory to iden-
tify key transitions and gain insight into the initial dynamics. These results provide
valuable context for understanding the mechanisms that govern the system’s response
and establish a foundation for the more complex behaviour observed in the nonlinear

regime.

Building on this foundation, we now extend our investigation to the long-term dynamics
by numerically solving the full nonlinear equations of motion. This approach allows
us to explore the emergence of distinct transition states and capture the asymptotic

behaviour that cannot be accessed through linear analysis alone.

Specifically, we aim to investigate how variations in the activity parameter and orient-
ing fields affect flow regimes, director distortions, active energy dissipation and elastic
energy. The results obtained will allow us to identify the different solution regimes.
Additionally, investigating the contribution of active energy dissipation will help us

understand how changes in the orienting field and activity affect the system.
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3.4.1 Finite difference approximation for Ericksen-Leslie equa-

tions

In this section, we present the details of the finite difference approximations in Section
(3.4). The nonlinear coupled governing dynamical equations (3.9) and (3.14), together

with the infinite planar anchoring and a no-slip condition, can be reformulated as

0= A0, + B10? — Cyv, + Dysinf cos 6, (3.73)

0 = B3ezzz + (g(e) - C4> Vzz + (A2 + AB + 234) ezezz

+ (Alvz 20y, + Dysinfcosf + By + EQ) 0. + <32 v 03> 0, (3.74)

and
0(0,1) = 0(d, t) = B, (3.75)
v(0,1) = v(d,t) = 0, (3.76)

where 6 is a material derivative of §, which is the as the d /dt, and

A= fi/v, Bi=fo/m1, Ci=m/y, ®,=0or7/2,
Ay = A1y, By = DBi\y, Cy=C1Ay, Az =CiAs,
B?’ = Alm’ B4 = Blm? 03 = CIA47 C4 = Clm7 D2 = Xa(QHc)z/PYla

E1 = (Xa(0H)?)Aom /1) (cos® 6 — sin®0) ,  Ep = & (cos® 0 —sin® ) , (3.77)
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and

=K, cos? 0 + K5sin? 0

fo= (K3 — K;)sinf cosf

Ay = [(a5 — as) — (a6 — a3) + 20 cos® § — 20y sin® 6] sin 6 cos 6

Ay = (—2a3 — 2ap) sin 6 cos 0 (3.78)
A3 = (—2K, + 2K3) sinf cos

Ay =— (K3 — K;)sin? 0 + (K3 — K;) cos? 6.

We now define the discretisation used in the finite difference scheme in the following

steps.

Step one: We divide the domain into a series of discrete nodes:

Y 'y 'y Py Py 'y

21:0 ZQZd/N Z3=2d/N Zj:d(j—l)/N ZN:d(N—l)/N ZN+1:d

j=1 j=2 j=3 ... j j=N j=N+1
k=1 k=2 k k=N-1

Here, h = d/N is the distance between nodes, N is the number of intervals, and d is
the domain size. We refer to j index as the global index, which is useful for defining the
full discretised system, particularly when imposing boundary conditions. The index
k is used only for the interior points, excluding the boundaries, which is convenient
when solving the governing equations. The interior points are indexed from k = 1 to

k = N — 1, mapping onto the global indices j =2,... N.

We create a solution vector, denoted by y with index ¢ such that the entries from i = 1
toi = N — 1 are given by 61, 05, ..., Oy_1 and the entries from i = N to i = 2(N — 1)
are given by vy, va, ..., vy_1. The index j represents all discrete points in the domain,

including the boundary nodes at j =1 and j = N + 1.
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The solution vector is therefore given by

Yy = (017 02"'70]\[—1’ V1, Vg, UN—I)T~ (379)

Step two: We approximate the spatial gradients using a second-order accurate finite
difference approximation. In our case, we have used central or skewed finite difference
approximations for the interior # equations, but because the boundary conditions enter
the equations for the outer nodes at j = 1 and 5 = N + 1, this will result in differ-
ent cases. We need five possible cases for the v equations because of the third-order
derivative that appears in equation (2.50). We now discretise the various derivatives as

follows. We approximate 6" using the following discretisation:

(_q)b + 391 - 3&2 + 93) /h3 for ] = 2,
Dy + 20, — 205 4 04) /203 for j =3,

0 — Oi-9) + 20 2) — 20+ 041)) /20° ford<j<N -2, (380)

(—
(-
( Ouv—1) + 203 — 20— +¢>b)/2h3 for j=N-—1,
(-

O—) + 302 — 30v—1) + ®) [h¥ for j=N.

Similarly, we approximate 6" using the following discretisation:

(92 — 20, + <I>b>/h2 for j = 2,

0 =3 (05=26060+050) /0 for3<j<N-1, (3.81)

(q)b — 29(1\771) + Q(N,Q))/h2 for j = N.
\
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For ¢, we have

.

(02 - <1>b> /20 for j =2,

(@ —0iv-)) /2 for j = N.

\

1imilar or v and v', we have
Similarly, fi " and v, h

(

(vg — 20 —|—0>/h2 for j = 2,

Vi T (UJ' = 2y + U(j—2))/h2 for3<j<N-1, (3.:83)

<0 - 21)(]\],1) + U(N,2)>/h2 for ] = N.
\

/

(02 . 0> /20 for j =2,

v; = (vj — v(j,2)>/2h for3<j <N -1, (3.84)

(0 — U(N_2)>/2h for j = N.

Next, we substitute equations (3.80) - (3.84) into equations (3.73) and (2.50) and obtain

the following discretised differential equations:

. 2
9]' = Ale;, + Blj <9;> — CUU; + D2 sin 9]' COS 9]', (385)
O = ngﬁg»" + (g(QJ) — 04]')1);»/ + (Agj + Agj + 2B4J>6;,9;
+ ((Alj - 202]')1]; + D2 sin 9]' COS ‘9]' + (Elj + EQJ))QQ + (ng + ng) (9;)3 s
(3.86)
for j =2... ,N. Here, Alj; Blj; Clj7 Agj, ng, ng, Agj, ng, ng, Elj; Egj are the

values of Ay, By, Cy, Ay, Bs, Cy, As, Bs, Cs, E), Es, respectively, where 6 = 0;

and v = v;.

Step three: We can now write the system in the form of Differential Algebraic Equa-
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tions (DAE) or matrix notation as M Y =F (Y'). The mass matrix, M, the vectors Y

and F(Y) are given as follows

(100 0 000 0 |
010 0 000 0
001 0 000 0
000 000 0
M=1000 0 100 0 |, (3.87)
000 0 00O 0
000 0 00O 0
000 0 000 0 0

02
03
On-1
Y — oy , (3.88)
V2

U3

UN-1

and
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(A/1?) (02 — 201 + @) — (B/2h) (v — 0)

(A/h2) (On—3 — 205_s + On_1) — (B/2h) (Un_1 — On_3)
(A/(h2) (®y — 2051 + On_s) — (B/2R) (0 — vy_)
(G/h3) (= @y + 361 — 305 + 63) + (C/h?) (va — 201 + 0) + (£/2h) (62 — Pp)
(G/2h3) (= Dy + 201 — 205 + 04) + (C/h?) (v3 — 209 + vy1) + (£/2h) (05 — 6y)

(G/th) (—QN,5 +20n_4 — 20N_o + (9N,1) + (C/h2> (’UN,Q — 2Uun_3+ ’UN,4) + (f/?h) ((9]\7,2 — (9]\/,4)
(G/2h?) (=On—4 + 20n_3 — 20N_1 + ®}) + (C/h?) (un—1 — 2un—2 + vn—3) + (§/2h) (On—1 — On_3)
(G/hg) (—9]\/_3 +30n_2 —30Nn_1 + (I)b) + (C/hQ) (0 — 2UN_1 + UN_Q) + <§/2h) ((I)b — eN_Q)

(3.89)
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Step four: We use the odel5s solver in Matlab (R2022a) Version 9.13 [130] to integrate
the non-linear coupled partial differential equations in time using an initial condition

0= @(sin(wz/d) +0.5 sin(27rz/d)) at t =0, where © = 0.0001.

To characterise the solution profiles of the director and flow velocity, the simulations
were run up to t = 500 seconds to capture the subsequent development and saturation
of instabilities into fully developed steady state. For transitions in the director angle
distortion, the focus is on the asymptotic behaviour at the final simulation time, t = 500
seconds. The system typically reaches steady or quasi-steady states well before t = 500
seconds, with convergence occurring around ¢ ~ 100 — 150 seconds depending on the

activity strength and orienting field.

To gain insight into the underlying physics, the system is analysed for various activ-
ity strengths and orienting field values, using N = 200 spatial intervals to resolve the
director angle and flow velocity profiles. The linear stability results provide an im-
portant guide to understanding the onset of instabilities and the early-time dynamics,
which in turn inform the interpretation of the fully nonlinear behaviour observed in
the simulations. By comparing linear predictions with the nonlinear outcomes, we can
identify how initial perturbations evolve, and how activity amplifies or suppresses flow.
This approach ensures that the linear analysis is used not in isolation, but as a tool
to develop intuition for the more complex nonlinear dynamics. Later in this section,
we explicitly compare the numerical and analytical solutions by computing the critical
activity, which marks the transition from a homogeneous to a nonhomogeneous director

configuration.

An important quantity governing the system response is the active time scale, 7,, which
characterises how quickly the director field responds to active forcing relative to viscous
dissipation and elastic relaxation (see equations (3.62) and (3.63)). This timescale,
together with the active length scale [, captures the essential physics of activity-driven
pattern formation in active nematics. For low activity, 7, ~ 2375 s, indicating extremely

slow evolution, whereas for the largest activity considered, |¢|= 2 Pa, the corresponding
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length and time scales are [, =~ 8.06 um and 7, ~ 1.19 s, which shows that active

distortions are strongly localised and the system responds quickly to activity.

We discretise the governing equations using the finite difference method, and perform
our simulations for different values of the activity parameter values, £, and the orienting
fields, o = H/H,., where H is the orienting field and H, is the critical orienting field.

Note that the Fréedericksz transition occurs when H = H,., which corresponds to o = 1.

Initially, we perform our computations for fixed values of an orienting field and varying
values of the activity parameter and observe three distinct solutions: an undistorted
uniform solution and symmetric and antisymmetric director distortion solutions. For
low values of the activity parameter, the orienting field dictates the behaviour, and the
director angle in the center of the channel prefers to align along the field direction.
We will find that increasing the activity decreases the director angle in the center of
the channel, indicating that the activity is reducing director distortion in the center of
the channel and eventually overriding the field effect, giving rise to the antisymmetric
solution. Interestingly, for extensile systems, the transition from a trivial state to a
nontrivial state occurs at the orienting field above the critical field strength, while for
contractile systems, the transition occurs at the orienting field below the critical field

strength.

3.4.2 Characterisation of the solution profiles

In this section, we investigate the forms of the director and flow profile, demonstrating

the effects on the solution symmetry and critical activity.

We define a solution as “symmetric” if it exhibits even symmetry about the center point
of the geometry, meaning the director and flow velocity profiles remain unchanged
under reflection across the center. Conversely, a solution is considered “antisymmetric”
if it exhibits odd symmetry; in this case, the profiles reverse their sign upon reflection.
Note that a symmetric director profile is associated with an antisymmetric low velocity

profile, where the flow changes from positive to negative across the center. Similarly, an
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antisymmetric director profile is associated with a symmetric low velocity profile, where
the velocity remains unchanged under reflection, highlighting the inherent coupling

between the director and flow fields in the system.

We first consider the classical case where o = 0 for different activity parameter val-
ues. Specifically, we choose & = [—0.03,0,—0.24,0.3] Pa, covering passive, weakly and

strongly active systems.

We present the director angle and flow velocity as a function of z for £ = 0.3 Pa (see
Figures 3.8(a) and 3.8(e)). In this activity regime, the director remains undistorted,
aligning with the uniform director state, and no flow is generated. This occurs because,
under planar anchoring, extensile nematics relax to an equilibrium state. We decrease
the activity to & = 0 and plot the director angle and flow velocity as a function of z as
shown in Figures 3.8(b) and 3.8(f), respectively. As expected, when & = 0, the system
remains undistorted and does not generate flow. This behaviour is similar for a weakly
active system (£ = —0.03 Pa), as shown in Figures 3.8(c) and 3.8(g), respectively.
However, as the activity decreases to £ = —0.24 Pa (Figures 3.8(d) and 3.8(h)), the
system exhibits director distortion, which eventually induces flow due to the coupling
between the director and flow. This regime is characterised by an antisymmetric director
angle profile and a symmetric flow velocity profile. This suggests that when & = 0
and the activity is below the critical value, the director remains undistorted, and no
flow is generated. However, when the activity magnitude exceeds the threshold value

(£ = —0.126 Pa), the director becomes distorted, leading to flow generation.

We now vary the orienting field to examine its influence on the system’s behaviour.
We choose ¢ = [0.5,1, 1.5, 2, 2.5], covering values below, at, and above the critical field.
Note that the orienting field reaches the critical value when p = 1. This is to characterise

the director and the flow velocity profile as the orienting field increases above zero.

For weak orienting fields such as ¢ = 0.5, the system exhibits a similar behaviour as
the base case (p = 0), as shown in Figures 3.9(a)-3.9(h). This occurs because the

orienting field remains below the threshold value (¢ = 1). Increasing the orienting
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Figure 3.8: Director angle and flow velocity plots for an orienting field, o = 0, and for
¢ =1[0.3,0,-0.03, —0.24] Pa.
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Figure 3.9: Director angle and flow velocity plots for an orienting field, o = 0.5, and
for £ =0.3,0,—0.03, —0.24] Pa.

field to o = 1 (a classical critical field value, corresponding to Fréedericksz transitions)

results in behaviour similar to the cases of p = 0 and ¢ = 0.5, but above the critical

field, we begin to see director distortion, leading to flow, and giving rise to various

solution states.

In Figure 3.10, we present the director angle and flow velocity for an orienting field

o= 1.5, and for £ = [—0.03,—0.24,0,0.3] Pa. For extensile nematics ({ = 0.3 Pa), the
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system remains in a uniform state, like the case when o < 1, as depicted in Figures
3.10(a) and 3.10(e). Decreasing the activity to £ = 0, the director becomes distorted,
leading to flow because the field orienting exceeds the critical value, as shown in Figures
3.10(b) and 3.10(f). This occurs because the director tends to align with the field
direction for field strengths greater than the critical field and activity strength zero. For
¢ = —0.03 Pa (Figures 3.10(c) and 3.10(g)), we observe increased director distortion
and enhanced flow, resulting in a symmetric director angle profile and an antisymmetric
velocity profile. For activity strength above the critical value (¢ = —0.24 Pa), these
profiles reverse, leading to antisymmetric director angle and symmetric velocity profiles,

as shown in Figures 3.10(d) and 3.10(h).
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Figure 3.10: Director angle and flow velocity plots for an orienting field, o = 1.5, and
for £ =0.3 Pa, £ =0 Pa, £ = —0.03 Pa and £ = —0.24 Pa.

We further increased the orienting field to o = 2 and plot the director angle and flow
velocity for the same activity values, as shown in Figure 3.11. For £ = 0.3 Pa, the
director becomes distorted and reorients to align § = 7/2, leading to flow generation
(Figure 3.11(a) and 3.11(e)). In this case, the field is strong enough to align the director
at § = m/2 rad, which shows the field effect overrides the activity effect. Decreasing
the activity to & = 0, the director still wants to align in the field direction but with a
different structure and low flow (Figures 3.11(b) and 3.11(f)). For & = —0.03 Pa, the
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Figure 3.11: Director angle plot and flow velocity plots for an orienting field, o = 2,
and for £ = 0.3 Pa, £ =0 Pa, £ = —0.03 Pa and £ = —0.24 Pa.

activity suppresses the field effect, reducing the director angle, leading to the emergence
of an antisymmetric velocity profile (Figures 3.11(c) and 3.11(g)). This indicates a
competition between activity and the orienting field effects. For & = —0.24 Pa, the
director angle and flow velocity exhibit a similar structure to the case where p = 1.5,

as shown in Figures 3.11(d) and 3.11(h)).

Finally, we further increased the orienting field to o = 2.5 and plot the director angle
and flow velocity in Figure 3.12. We focus on Figures 3.12(c) and 3.12(g) since the
solution profiles for the other values of £ have already been observed in previous cases.
A different behaviour emerges for & = —0.03 Pa, where the director increases above
7/2 and tends align at 6 ~ 0.87 rad, as shown in Figures 3.12(c) and 3.12(g). This
can cause a significant optical effect, and so may be useful for a sensor. This leads to
distinct director angles and flow velocity profiles, highlighting a new regime. In contrast
to the works of Voituriez et al. [236] and Edwards and Yeomans [45], who considered
how activity alone can destabilize the uniform state and lead to spontaneous flows, our
study demonstrates that the solution states are further tuned by the strength of an

external orienting field in addition to the activity strength.
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As observed in Figures 3.9-3.12, the system exhibits a range of behaviours depending
on the orienting field and activity strength. For weaker fields (¢ < 1), the director
largely remains in the undistorted or slightly distorted states, while increasing activity
leads to symmetric or antisymmetric distortions. As the field is strengthened beyond
the critical value, a crossover emerges: the director and flow profiles transition between
different solution states, sometimes reversing the symmetry of the director angle and
flow velocity. This crossover behaviour is already hinted at in Figures 3.10 and 3.11,
where small changes in activity induce significant shifts in the flow and director profiles.
We note that these observations foreshadow the more precise characterisation of critical
activities and behavioural reversals that will be discussed later in this chapter (Figures
3.17-3.19), where we systematically determine the critical activities &1, &0, &3, and
&4 and show how transitions between symmetric and antisymmetric states occur as
a function of activity and orienting field. This approach allows us to understand not
only the qualitative crossover, but also the quantitative thresholds at which the system

behaviour changes.
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Figure 3.12: Director angle and flow velocity plots for an orienting field, o = 2.5, and
for ¢ = 0.3 Pa, £ =0 Pa, £ = —0.03 Pa and £ = —0.24 Pa.

In the following section, we will summarise these results by analysing the director

angle solution at the middle, quarter, and three-quarter positions of the channel to
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identify different types of director distortions. These measures allow us to systematically

determine how different critical activities emerge as the orienting field increases.

3.4.2.1 Summary of transitions in the director distortion solutions

We summarise the effects of the orienting field and activity on the director, by plot-
ting the late-time director angle value at the middle, quarter and third quarter of the
channel, denoted as 0(d/2), 0(d/4) and 6(3d/4) for varying activity parameter values,
&, and fixed values of the orienting field, ¢. In this way, we can understand the vari-
ous transition states of the system as activity varies. We compute these measures for

various activity values and o = [0, 0.5, 1, 1.025, 1.5, 2, 2.5].

In Figures 3.13-3.22, we define four critical activity thresholds, &.4—., which mark
transitions between qualitatively different solution states of the director. These are
identified numerically using the classification tests based on the integrals of 6 and |0
We define £.; as the critical activity threshold corresponding to the onset of director
distortion, |0(d/4) — 6(3d/4)|> €, with e = 1075, This ensures that there is no net tilt
and no residual local distortion. The threshold &.,, marks the onset of any distortion
and is defined by the condition (1/d) f0d|0(z)| dz > e. We define {5 and .4 as transi-
tions between symmetric states. Within the distorted (even-symmetric) branch, further
thresholds are identified by comparing 6(d/2) when activity is decreasing or decreasing.
Specifically, .3 is defined as the critical activity reached when decreasing &, at which
the director angle satisfies 0(d/2) > 7/2, whereas &, is defined as the critical activity

reached when increasing &, at which the director angle satisfies 6(d/2) < 7/2.

The director angles are computed for 101 discrete activity values in the range & €
[—0.3,0.6] Pa. In Figures 3.13-3.16, the horizontal axis is restricted to £ € [—0.3,0.3]
Pa for clarity, giving a spacing of A¢ = 0.006 Pa and a numerical uncertainty of ap-
proximately £A¢/2 = +0.003 Pa. For Figures 3.18-3.19, the full range £ € [—0.6, 3.5]
Pa is used, giving A¢ = 0.041 Pa and a numerical uncertainty of approximately

+AE/2 = +£0.0205 Pa.
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Along with these measures, we also include inset plots of the director angle as a function
of z to illustrate the profiles of the undistorted uniform state, as well as the symmetric
and antisymmetric states. We denote these states as = 0 for the uniform state, 0.y,

for the symmetric state, and 6,44 for the antisymmetric state.

We first examine the classical case where o = 0 and plot the measures 6(d/2), 6(d/4)
and 0(3d/4) as a function of activity, as shown in Figure 3.13. The director remains
undistorted for &4 < &, where £, = & =~ —0.13 Pa, corresponding to the undistorted
uniform state (6 = 0) as illustrated by the inset plot on the right of the Figure 3.13.
As the activity decreases, in the range £ < ., a transition occurs, leading to an
antisymmetric state, as depicted in the inset plot on the left of Figure 3.13. This
demonstrates that activity drives a transition from the undistorted uniform state to

the antisymmetric state.
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Figure 3.13: Sketch of the director angle at the middle, quarter and third quarter of
the channel for p = 0, with £, = &, — 0.13 Pa.
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We now examine the effect of orienting fields on these transitions, starting from weak
field values and increasing beyond the critical field value. Figure 3.14 presents the
director angle at the middle, quarter, and third-quarter positions of the channel for
0 = 0.5. On the right side of Figure 3.14, we observe an undistorted uniform state
(0 = 0) for £ < &, where £ ~ —0.102 Pa marks a new critical activity value at
which a transition occurs. We classify this transition to a symmetric state (Gepen1), as
illustrated by the inset plot in the region between &. and ., indicated by the red
dashed arrowhead line. Additionally, the critical activity value associated with the
change to an antisymmetric distortion shifts to £,; = —0.138 Pa, indicating that the

critical activity value changes as the orienting field increases.
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Figure 3.14: Sketch of the director angle at the middle, quarter and third quarter of
the channel for p = 0.5, with ¢, = —0.138 Pa and £ = —0.102 Pa. The red dashed
arrowhead line indicates the region where the symmetric state (feyen1) occurs.

We increase the orienting field to o = 1, the critical field value where the classical
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Fréedericksz transition occurs, and plot the measures 6(d/2), 6(d/4) and 6(3d/4) as a
function of £, as shown in Figure 3.15. The undistorted uniform state (6§ = 0) now
occurs for £ < &, where {5 reduces to approximately 0 (see the inset plot in the right
side of 3.15). The symmetric state (fepen1) now falls in the range £, < £ < 0, where
&0 has shifted to —0.003 Pa, indicating that the orienting field effect dominates the
activity effect. We choose o = 1.025 and plot Figure 3.16 just to show how a new

solution evolves.
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Figure 3.15: Sketch of the director angle at the middle, quarter, and third quarter of
the channel for o = 1, with £,; = —0.138 Pa and &, = —0.003 Pa.

Increasing the orienting field to o = 1.5 leads to the emergence of a new distorted
symmetric solution, denoted by feyen2, as shown in the inset of Figure 3.17 for the range
€ < € < —0.0001. This results in two different director profile: one where the director
tends to align approximately at 7/2 rad, and other where the director aligns below 7/2

rad. The appearance of this new director structure can be attributed to the stronger
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Figure 3.16: Sketch of the director angle at the middle, quarter, and third quarter of
the channel for p = 1.025, with &, = —0.138 Pa and &, = 0.006 Pa.

orienting field, which enhances the coupling between the elastic distortions and activity.

Further increasing the p from 1.5 to 2.0, we observe the range of activity for this

new state growing, as shown in Figure 3.18. This change in the critical activity value

suggests that stronger activity is required to counterbalance the increasing effect of the

orienting field.
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Figure 3.17: Sketch of the director angle at the middle, quarter, and third quarter of

the channel for p = 1.5, with {4 = —0.138 Pa and &., = 0.31 Pa. The vertical dashed

line separates the two types of director profiles, distinguishing those that tend to align
near 7/2 rad from those that align below it.
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those that tend to align near 7/2 rad from those that align below it.
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Figure 3.19: Sketch of the director angle at the middle, quarter, and third quarter of the channel, for o = 2.5. The region between
&1 =0— .15 Pa and &4 = —0.04 Pa corresponds to the first symmetric solution, denoted as 6.,.,1, as indicated by the solid red
arrowhead line. The region between .3 = —0.006 Pa and &.4 corresponds to the new symmetric solution, denoted as 0.y en3, as

indicated by the red dashed arrow-headed line. Here, the critical activity &.o now becomes 2.84 Pa.
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Finally, we increased o to 2.5 and observed the emergence of two new symmetric states,
marked by £.3 and &4, as shown in Figure 3.19. At the critical activity £.3 = —0.006
Pa, reached by decreasing &, the director angle rises above 7/2 rad and tends towards
0 ~ 0.87 rad, as illustrated in the inset plot labelled f.yen3. In contrast, &4 = —0.04
Pa marks the transition obtained by increasing the magnitude of activity, where the
director angle falls below 7/2 rad and approaches 6 ~ 0.57, as shown in the inset plot
labelled @gyen1- This behaviour is similar to what we previously observed in Figure
3.12(b) for o = 2.5 and £ &~ —0.03 Pa, and is characterised by complex flow dynamics
in which the director structure exhibits a “kink” profile arising from the kickback effect.
This kink arises due to the kickback effect, whereby the director field cannot relax
smoothly. Such overshoot phenomena are interesting for sensing applications, as even

small changes can lead to significant distortions and flow in the system.

In conclusion, our results indicate that the system exhibits one of three solution states:
symmetric, antisymmetric, and uniform states, with several subclassifications of sym-
metric solutions. The uniform state corresponds to a uniform alignment of the director
parallel to the boundaries of the channel. For field strengths greater than a critical
value, the uniform state is replaced by the symmetric director distortion solution. This
is essentially the Fréedericksz transition, where the trivial solution is unstable above a
critical field strength. However, the value of the critical field changes as we increase the
magnitude of the activity. For contractile systems, the orienting field is below the clas-
sical field strength, and for extensile systems, the orienting field is above the classical

field strength.

For antisymmetric solutions, there is a reorientation in the middle of the layer for
high elastic energy. For low activity parameter values, the orienting field dictates the
behaviour, and the director angle in the middle of the layer prefers to align along the
field direction. However, increasing the activity increases flow, which tends to align
the directors to the 60, flow alignment angles also referred to as Leslie angles, hence

reducing the director angle in the center and overriding the field effect, giving rise to
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the antisymmetric solution.

We can summarise the behaviour of the system with a sketch of the boundaries between
the various late-time solutions in the p-§ parameter space. We use a 201 x 201 grid in
both the orienting field, o, and activity, &, with g € [0,3] and £ € [-0.3,0.3] Pa. Figure
3.20 displays this information with a sketch of the critical activities, showing the regions
where the various solutions exist. We see uniform solutions for £ > £, (displayed in
the region above the solid red line). As the orienting field exceeds a critical value, three
different symmetric director distortion solutions emerge: going down Figure 3.20, we
get a distorted symmetric solution for . < & < &3, where the solid cyan line marks
a critical activity value (£.3) for which another state emerges. In this solution regime,
the director angle tends to align approximately at 7/2 rad. For {3 < £ < .4, a new
symmetric solution corresponds to a situation where the director tends to align at an
angle above 7/2 rad (see the region between solid blue and green lines), where the solid
green marks new critical activity (&.4). For £ < £ < &4, we get another symmetric
distorted state, which corresponds to a case where the director wants to align at an
angle below 7/2 rad. Lastly, for £ < ., where the solid purple line marks a critical
activity (&.1), there is a transition from a symmetric to an antisymmetric state. Below
the critical activity &1, activity overrides the field effect, resulting in an antisymmetric

solution, as shown by the inset plot labelled 6,44.

Our results show that the critical field strength depends strongly on the activity type.
For contractile systems, the critical field lies below the classical Freedericksz threshold,
whereas for extensile systems, it lies above this value. This indicates that contractile
activity facilitates director alignment, while extensile activity resists alignment. From
the perspective of applications such as sensors, this distinction is significant. Contractile
systems reach alignment under weaker external fields, making them more responsive and
energy-efficient in detecting small perturbations. Extensile systems, on the other hand,
require stronger applied fields and therefore exhibit lower sensitivity. Consequently,

contractile active nematics offer a clear advantage for sensing applications, as they
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enhance sensitivity and reduce the energy cost of operation.

Essentially, for & = 0, a classical field strength occurs at o = 1, corresponding to
the Fréedericksz transition. Interestingly, for extensile systems, the transition from
a uniform state to a symmetric state occurs above the critical field strength. For
the contractile system, the transition occurs below the critical field strength. This
asymmetry implies that negative activity facilitates reaching the reorientation threshold
at a smaller field due to contractile effects enhancing alignment more efficiently than
extensile effects. At higher-magnitude of negative activities, there is no critical activity
because the activity effect dominates the field effect, resulting in an antisymmetric

solution.
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Figure 3.20: The boundaries between the various late-time solutions in (g, §)
parameter space, where, £, to &4 are the different critical activities. The various lines
represent the boundaries where transitions between different states occur. The black
arrow-headed line points to the region where the symmetric state (fepen3) occurs.

It is useful to investigate the effects that changes in the orienting field and activity have
on the system. To achieve this, we consider a measure of how activity induces changes

in the system, specifically the total active dissipation in terms of the director and the
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strain rate tensor, given by

d d
D, = / En; Aijng|dz = / |€ sin 6 cos 0dz. (3.90)
0 0

Note that active dissipation can be positive or negative, so we integrate the modulus
to avoid D, = 0 for the odd solutions, and the total nematic elastic energy denoted by

wq and defined by
d
= / wrdz. (3.91)
0

We present the total active dissipation and the total elastic energy in the contour plots
of Figure 3.21 and 3.22, respectively. For these figures, the data are computed on a
201 x 201 grid in both the orienting field o and activity & directions. This corresponds
to step sizes Ap = 0.015, A& = 0.003, with ¢ € [0, 3] and £ € [—0.3,0.3] Pa, ensuring
high resolution in capturing the variations of total active dissipation and elastic energy

across the parameter space.

These figures clearly mimic the behaviour observed in Figure 3.20. High values of o,
result in high total elastic energy, and when both ¢ and £ are large, the total active
dissipation increases significantly. The total active dissipation is low whenever £ < 0.
However, as £ < 0, the total active dissipation starts to grow while the total elastic
energy remains small. This is because, in the antisymmetric state, the director angle

stabilises at +6;,, where 0, is small.

3.4.3 Prediction of critical activity, &.

We now determine the critical activity at which the solution transitions from a ho-
mogeneous to a nonhomogeneous state, denoted by &.. According to equation (3.59),
the most unstable solutions occur when 7 < 0, while for 7 > 0, the solutions be-
come stable. However, in the limit 7 — oo, the solution becomes independent of time ¢,

which indicates a transition from an undistorted director solution to a distorted director
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Figure 3.21: Contour plot of total active dissipation, D, against the orienting field
and activity. In the region . and &3, the system exhibits a symmetric solution
(Oevenz), between &5 and .4, a different symmetric solution (feyens), and in the region
s t0 &a1, another symmetric solution (fepen1) and antisymmetric solution (6y44) for
activities below &.;. These are the solutions shown in Figure 3.20.
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Figure 3.22: Contour plot of total nematic elastic energy, wy against the orienting field
and activity. The dark region appears due to the high density of contour lines. In the
region £ and &3, the system exhibits a symmetric solution (feyen2), between €3 and
€4, a different symmetric solution (feyens), and in the region .4 to &, another
symmetric solution (fe,en1) and antisymmetric solution (0,44) for activities below ..

solution.

To identify this transition point, we use equations (3.62) and (3.63). From equation

(3.62), we see that 7 — oo precisely when the denominator vanishes. This gives

4K > osé 9
- = —y,H*=0. .92
D o X (3.92)

Next, substituting this condition into equation (3.63), and taking the limit 7 — oo, the

equation can remain finite only if the coefficient of 7 vanishes. This leads to the second

condition

st tang + v H%q = 0. (3.93)
m

Equations (3.92) and (3.93) therefore provide two simultaneous relations linking &, ¢,

and H. Solving these equations together, and recalling that H = g2 H,. with H. =
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(m/d)\/K1/Xa, we obtain

4m K¢ cot q
= , 3.94
ez asd?(geotq —1) (3:94)
4 2
02 = a (3.95)

w2(qeotq—1)

Equations (3.94) and (3.95) are transcendental equations, and so cannot be solved
analytically. To proceed, we find the approximate solution by applying the Taylor

series expansion around ¢ ~ 0 and ¢ ~ 7, and we obtain

_127’]1K1 67’]1K1(—12+7T2Q%>

c2 — - ) fi ~ U, .
ez a2 aad? org~0 (3.96)
(b 2 Kir (—r+ 3(3+ V1-243) )
@ a3d2 CY3d2
2
gk (43 (3+V1-23))
+ - , for ¢ =~ 7, (3.97)
3

respectively. Equations (3.96) and (3.97) approximate the critical activities when g ~ 0
and ¢ = m, respectively, indicating a transition from a uniform state to a distorted
state. For validation, we compare the analytical and numerical results, as illustrated
in Figure 3.23. The two approaches show a good agreement, especially at ¢ ~ 0 and
q ~ 7, which confirms the accuracy of the analytical forms. In addition, we include
the numerical plot £ as a function of the orienting field, o5. This comparison further
demonstrates a strong match between the two methods, reinforcing the reliability of

the analytical expressions used to describe the onset of the distortion transition.
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Figure 3.23: Comparison of analytical and numerical solutions for the transition from
an undistorted to a distorted state. The red and green lines represent the analytical
solution, while the solid blue line denotes the numerical solution.

3.5 Nonlinear analysis of activity in a hybrid aligned
nematic Channel

In this section, we explore the distortion-driven active flow for a channel in which there is
antagonistic anchoring, by which we mean planar anchoring on the lower substrate and
homeotropic anchoring on the upper substrate—the so-called hybrid aligned nematic
(HAN) system. The motivation for considering a HAN cell is that the quantity to be
sensed may alter the anchoring condition at the top boundary. It is therefore instructive
to examine a configuration where the two boundaries impose different anchoring types,
with one planar and one homeotropic. The HAN state represents an extreme case
chosen to test the largest possible effect of such boundary changes; in a more general
situation, the top boundary might instead exhibit a smaller deviation from planar
anchoring. We characterise the behaviour of the system for various activity parameters,
and concentrate on the flow that occurs because of the antagonistic boundary conditions
rather than on the aligning field, so we set ¢ = 0. This work will inform the study in

the next chapter, where we will look at the situation where part of the channel involves
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planar conditions and part involves HAN anchoring conditions.

3.5.1 Mathematical model

In a HAN geometry, the director is anchored parallel to the substrate at z = 0 and

perpendicular to the substrate at z = d, as shown in Figure 3.24.

v(d,t) =0 0(d,t) =m/2
z=d
-\ |
director, n
v(z,t) —> /
7\ 0(2,1)
—>
z=0 >
v(0,t) =0 6(0,t) =0 r

Figure 3.24: Active nematic in a channel between two solid plates at z = 0 and
z = d/2 with flow parallel to the z-direction. The rods show director orientation.

In the absence of an orienting field, equations (3.9) and (3.14) reduce to

(9(@)v. + m(0)0, + Esinbcosf), =0, (3.98)

Y10, — (K7 cos® 0 + Kzsin®0) 6., — (K3 — K;)sinf cos6(6.)* + m(f)v, =0, (3.99)
and the new boundary conditions are

0(0,t) =0, 6(d,t) =r/2, (3.100)

0(0,t) = v(d, t) = 0. (3.101)

Again, we use the odelbs solver in Matlab (R2022a) Version 9.13 [130] to integrate

the nonlinear coupled partial differential equations in time using an appropriate initial
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condition 6y = wz/2d at t = 0, which corresponds to uniform distortion between the
two boundaries. The initial flow velocity condition, given by vg = 0. As before, we set
d = 200 microns to ensure consistency with previous sections. We examine the effects
of activity in the range £ € [—2, 2] Pa and run our simulations for a maximum of

t = 200 seconds to ensure a steady state has been reached.

3.5.2 Solution regimes for contractile and extensile active ne-

matics

In a similar way to the previous section, Figure 3.25 illustrates the sketch of the solution
profiles of the director angle and flow velocity for contractile and extensile nematics. In
particular, we plot the values of the director angle in the center of the channel to examine
the symmetry of the solutions. In these simulations, we vary activity incrementally and
use the previously obtained solution (for a similar value of the activity) as the initial
conditions. We use this continuation method as we increase the activity (blue line) and

then as we decrease the activity (black line).

For positive activity values (0 < & < 2) Pa, we see that the director ranges from 0 to 7 /2
in line with the boundary conditions, but in the bulk of the cell, the director aligns at a
constant angle # ~ 1.24 rad. As the magnitude of the activity reduces, moving towards
the left of Figure 3.25, we see that the system goes through a transition at £ = 0,
and two different director solutions are possible. For negative activities (—2 < ¢ < 0),
the flow tends to align the director at nm + 6, (n € Z) for positive flow gradients,
where 67, is the Leslie angle (flow alignment angle) and nm — 0, (n € Z) for negative
flow gradients (see the inset plots on the left-hand side of Figure 3.25). There are
two possible solutions: one with a negative flow velocity and another with a positive
flow velocity, indicating that bistability is present in this system. In one solution, the
director goes from 0 to m — 6, and we see significant director distortion characterised
by a large gradient in . However, for the other solution, the director goes from —60;, to

the positive value 6, and there is a small director distortion characterised by a small
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gradient in 6.
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Figure 3.25: Sketch of the director angle at the middle of the channel for —2 < ¢ <2
Pa.

Our results correspond to the study by Marenduzzo et al. [127] on active nematics
in a HAN geometry using lattice Boltzmann simulations of the hybrid lattice, where
spontaneous flow was observed for both extensile and contractile nematics. Rorai et
al. [184] also shows that active nematics in a quasi-one-dimensional channel geometry

with a HAN alignment have nonzero flow velocity for relatively low activities.

To investigate the potential of active nematics for sensing applications, in Section 3.5
we explored how increasing and decreasing the activity induces a hysteresis-like be-
haviour (Figure 3.25). We note that a similar procedure of increasing and decreasing
activity was also performed in Section 3.4 (Figures (3.13)-(3.19)). However, under the
conditions considered there, bistability was not observed. In contrast, the hysteresis

study in Section 3.5 is designed to understand how changes in activity interact with the
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HAN anchoring to produce distortion-driven active flows, concentrating on the effect

of antagonistic boundary conditions rather than the external orienting field.

3.6 Conclusions

3.6.1 Linear analysis

We investigated the effects of activity and orienting fields on active nematics with
a director between two parallel plates in a 1D geometry, subject to infinite planar
anchoring and non-slip conditions on the channel boundaries. In the linear analysis, we
investigated three cases, including planar alignment in the absence and presence of an

orienting field and homeotropic alignment in the absence of an orienting field.

We first examined the effect of activity in the absence of an orienting field for planar
alignment. For extensile nematics, the director remains close to its initial configuration
with minimal distortion. For contractile nematics, the director undergoes reorientation,

resulting in a sustained flow.

Next, we examined the system’s behaviour when an orienting field is applied. In this
case, the system exhibits a critical threshold for the orienting field strength. For fields
weaker than this critical value, elastic forces oppose the realignment of the director,
causing it to remain in its initial configuration. However, when the field strength
exceeds the critical threshold, the director realigns more closely with the direction of

the applied field, which is characteristic of the Fréedericksz transition.

For homeotropic initial alignment in the absence of an orienting field and when & = 0,
the system initially experiences an overshoot, aligning at § > 7/2 rad, before relaxing
to the equilibrium state, also known as the kickback effect. However, for extensile
nematics, the kickback effects gradually diminish as the activity strength increases. In
contrast, for contractile nematics, the kickback effect remains even as the magnitude of

activity increases.
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3.6.2 Nonlinear analysis

We first explored the longer-time behaviour of active systems under planar alignment.
Our findings show that the system exhibits either undistorted uniform states or sym-

metric and antisymmetric distorted states.

The uniform state corresponds to a uniform alignment of the director parallel to the
boundaries of the channel. For field strengths greater than a critical value, the uniform
state is replaced by the symmetric director distortion solution. This is essentially the
Fréedericksz transition, where the trivial solution is unstable for a field greater than
the critical field. However, the value of the critical field changes as we increase the
magnitude of the activity. For contractile systems, the orienting field is below the
classical field strength, and for extensile systems, the orienting field is above the classical
field strength. For antisymmetric solutions, there is a reorientation in the middle of
the layer for high elastic energy. For low activity parameter values, the orienting field
dictates the behaviour, and the director angle in the middle of the layer prefers to align
along the field direction. However, increasing the activity increases flow, which tends
to align the directors at the Leslie angle, hence reducing the director angle in the center
of the channel and overriding the field effect, which gives rise to the antisymmetric

solution.

Additionally, an analysis of total active dissipation and elastic energy provides further
insight into solution transitions. Higher orienting field values lead to increased elastic
energy, while large activity values enhance active dissipation. Active dissipation grows
for strongly negative activity, whereas elastic energy remains low. These findings con-
tribute to a broader understanding of how external fields influence the behaviour of

active systems.

We also examined active nematics in a one-dimensional HAN cell in order to inform work
in the next chapter. For positive activity values, the director stabilises at approximately

1.24 rad in the bulk of the channel, but as activity decreases, a transition occurs at
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zero activity, leading to two possible director solutions: one with negative flow velocity

and the other with positive flow velocity.

A key finding in both the linear and nonlinear analysis is that in weakly contractile
systems, the director increase above 7/2 rad and tends to align to # ~ 0.87 rad,

resulting in complex flow, which has implications for sensor design.
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Chapter 4

Activity and Geometric Effects in a

Two-Dimensional Model in a Channel

4.1 Introduction

Various studies have investigated the flow patterns of active nematics in 2D regions,
including rectangular domains, using planar or hybrid-aligned nematic (HAN) anchor-
ing [63,184,211]. However, little attention has been paid to the two-dimensional analysis
of systems combining planar and HAN anchoring. To address this gap, we investigate
the interplay of these two anchoring conditions, which may be beneficial in the design
of sensors, where small changes in alignment can lead to pronounced effects. To do so,
we present a 2D theoretical and computational study that involves the mathematical
modelling of active nematics in a channel, using a modified form of the Ericksen-Leslie

equations for active nematics.

In this Chapter, we examine a model under two types of inlet/outlet boundary condi-
tions: normal flow, which is a model of a single HAN region and periodic, which is a
model of a periodic array of HAN regions. We explore the resulting flow regimes for
both contractile and extensile nematics under both types of boundary conditions. Un-

der normal flow and periodic conditions, we perform a spectral analysis to examine the
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oscillatory behaviour for a high magnitude of activity. For extensile nematics, we also
find that the system exhibits both unidirectional and bidirectional flow. We have shown
that local disturbances in the director orientation influence the global flow, which may

be useful for potential applications in sensor design.

Under periodic conditions, we also analyse the flow regimes for contractile and extensile
active nematics by considering the effects of varying both the activity strength and the
width of the HAN region. The system exhibits behaviour similar to that observed under
normal flow conditions for both contractile and extensile nematics. Furthermore, we
examine the effect of the splay-to-bend ratio, which plays a vital role in determining
the director orientation in the HAN region, and how the flux changes from negative to
positive. Our analysis shows that the ratio of splay and bend elastic constants influences
the preferred director orientation and causes the flux to transition from positive to
negative for lower positive activity values and all negative activities, while remaining

positive for higher positive activity.

4.2 Model formulation

We present a 2D theoretical and computational model of an active nematic sandwiched
in a channel, with normal flow or periodic conditions at the ends of the channel. The
channel has width w and height d. We again use 6 to denote the director angle, which
is the angle the director makes with a fixed z—axis [202], as shown in Figure 4.1.
We apply planar anchoring of the director everywhere except for the region between
coordinates (—1/2, d/2) and (1/2, d/2), where we apply homeotropic anchoring. This
means that § = 7/2 for —1/2 < x < d/2, z = d/2, and 6 = 0 elsewhere on z = —d/2
and z = d/2. For the velocity, we impose the no-slip and no-penetration boundary
conditions at z = +d/2. The flow is driven by activity, and we do not apply a pressure
gradient to drive the flow. That is, the flow and any pressure variations result from

internal activity or director distortion.

140



Mathematical Modelling of Active Fluids in a Channel

I d L d
<_§7§> l (272)
(-2 d) - (w g>
272 279
——————— HEAE RS AP NEENNNNIEEEFREESE S/ Sttin b b
s )
———————— C e PP POV IIINIINVIIIV 2 /zaaa———————-‘
d X
—————————— PR R 4 P PP PP P PP PP e m
(0,0) -‘
(—2 d) (v _d)
T 99 9 27 2
27 2 w
Figure 4.1: Active nematic sandwiched between two solid plates at z = —d/2 and

z =d/2. The gray solid line between the points (—{/2, d/2) and (I/2, d/2) represents
the region of homeotropic anchoring. The black solid lines represent the director. The
background lilac lines represent the streamlines.

4.2.1 Governing equations

We now seek solutions of the governing equations for the director n = n(z, z,t) and the

velocity field v = v(z, z,t) in the form

n = (cosf(x, z,t), 0, sinf(x, z,t)), (4.1)
v = (u(z, z,t), 0, v(z,2,t)), (4.2)
p=npx,z1), (4.3)

where 6 is the director angle, (z,z) are the Cartesian coordinates and ¢ denotes time

[202]. The flow speeds in the x and z directions are u(z, z,t) and v(z, z,t), respectively.

Using this director and velocity, the Ericksen-Leslie equations for active nematics based

on the conservation of mass, and the balance of linear and angular momentum |[114,
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115,202,238|, as given in Chapter 2, are given by

_8u ov

0=2t+ 2L, (4.4)

— % (SZ) +§% (cos?0) + % (gi) +§% (sin 0 cos ) — %—?@ — Ds,  (4.5)
e (4.6)
0= % (SZ) +g% (sin @ cos ) + % (gi) +5% (sin” @) — %—?92 — D, (47)
- (5) 2 () -5

where the subscripts  and z in 0, 6., u,, u., v, and v, represent partial derivatives
with respect to the respective variable. To complete equations (4.5)—(4.8), we need two

quantities - the elastic free energy wp and the dissipation function D [202].

By substituting equations (4.1) and (4.2) into equation (2.36), and simplifying, we

obtain the Frank-Oseen elastic free energy wp, given explicitly as

92 (Kl sin? 6 + K cos? 9) + 95 (K1 cos? 0 + K sin? 9)

1
’LUF:§

+ (K3 — K1) sin(26)6,0, | . (4.9)
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Using equations (4.1) - (4.2) together with equation (2.55) and simplifying, we get

D =a, [um ( (=, — v,) hyp sin® @ + (u, + v,) by — v, sin® 6 + sin® (%Z)

+ u, (hll sin® Ov, — v, sin* 0 + sin? 9%) + hyy sin? v, v,

1 1 1 1 1 1 1
ux< — —U, + —v; — 5&) hi1 + uz(—vx + ~hyv, — = sin? 06, — —9t>

t o 1T 1Ty 2 A

=~

1 1 . 3 1 1
+ ’Ux< — _h'llvz — 5 sm2 ‘9975 + Z&) -+ §hllvz9t — 56‘?]

1 1 1 1 1 1 3
+ a3 um( — —U, + —v; — §8t> hi1 + uz( — —v, + =hyv, — 3 sin® 00, + 19t>

4 4 4 4

1 1. 1 1 1
+ ’Ux( — Zhllvz — 5 sm2 9(915 — Zet) + §h111)Z9t + 59?

+ a5 | uy (%uz + i% + %Qt) hii + u, (ivx + ihnvz + %sin2 00, — i@)
+ v, (Zhnvz + %sin2 00, — i%) — %hnvzet]
+ o |y (iuz + va — %@) hi + uz(ivm + zhuvz — %sin2 00, + £0t>
+ v, (ihnvz — %sin2 00, + i@) + %hnvzet]

1 2 2 2 2
+ 2vxuza4 + gsu,, + giu, + G20, + gav,

+¢£ [COSQ O u, + hiy (v + uy) + sin® 0 vy} , (4.10)
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where
g1(0) = % (s + (a3 4 ag) cos® 0 + sin® (a5 — )] + a sin® 6 cos™ 6, (4.11)
g2(0) = % [ + (a6 — a3) cos® 0 + (a5 + az) sin® 0] + a sin® 6 cos™ 6, (4.12)
g3(0) = %al cos’ 0 + %oq + %(0% + a) cos? 6, (4.13)
g4(0) = %al sin 0 + %O@; + %(ag, + ag) sin” 6, (4.14)
h11(0) = sinf cos 6. (4.15)

For a detailed derivation of the rate of dissipation, refer to Appendix A. The equations

describing the conservation of mass, linear and angular momentum are therefore

0= u, + v, (4.16)
0 1 1
0= B uhy + vohe — yohghy — 7o cos(20)v, + Zf (cos(20) + 2hi3u,)
X
o[ 1 , 1 1
+ o |uahy + vhg + v hy + Yohg cos® 0 + ~hiiyihg + sv2hs + 201U,
0z 4 2 2
00 [ i
B azt, cos(20) + anv, cos(20) + vo (v, — uy) hiy + Y1hs | + Ehe — Pry,  (4.17)

144



Mathematical Modelling of Active Fluids in a Channel

0= _ﬁyv (418)

0 1 1 1 1
0= B uzhs + Ehmuz + v he — 571h8h12 — 5'72h8 cos? 0 + 3 (Ehi + 293%)]
0 [ 2 -4
+ & uzh7 + Uxh(a + ozlhnum + h14vz + 72h8h11 + U, SIN 0
o0 [ .y
+ 9 uzhio0y — 1 8in° Qv + y1hghia — Y2 (ug — v2) b
+& [2 sin 6 cos 00, + 0, cos? 8} — Da, (4.19)

1
10, = 20,0 (K1 = K) sin® 0 + K — K1) = 7 (u+ 00) = Sz (1 + 72 c0s(20))

2
1
— 5l (=71 + 72 cos(20)) + (Kl(ei —0%) + K3(6? — 92)) sin 0 cos 0
+ (uz - vz) Y2 sin 6 cos + f29:r:p + f3ezz + flezza (420)
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where
f1(0) = K;sin?0 + K3 cos® 0, (4.21)
f2(0) = Ky cos® 0 + Kysin® 0, (4.22)
f3(0) = (K3 — K1) sinf cos ), (4.23)
hi(6) = sin 6 cos _al cos(20) — as — o sin 6 cos® 9} : (4.24)
ha(0) = sinf cos 6 _al cos(26) + ag — ay sin  cos® 0} : (4.25)
hs(0) = sin 6 cos O -041 cos(26) — a; cos 0 + a6] , (4.26)
ha(0) = aysin® 0 + as + ag — v1 + 20y, (4.27)
hs(0) = sin 6 cos 0 [al cos® 6 + o + o cos B sin® 9} , (4.28)
he(6) = assinf cos ) + oy cos fsin® 6, (4.29)
h7(0) = agsin 6 cos § + oy cos fsin® 6, (4.30)
hs(0,u,v) = 0, + ub, +v0,, (4.31)
ho(0) = 0, cos(260) — 2 cos 0 sin 00,,, (4.32)
hio(0) = | (a5 + ag) sin® § + 1] - M (sin2 0 + 1) + 20 sin? 6 + oy, (4.33)
hi(0) = sin? 60 + 1, (4.34)
hi3(0) = ay cos @ sin® @ + ag cos O sin 6, (4.35)
h14(0) = v sin @ cos® 6 + i cos O sin 6. (4.36)

(4.37)

4.2.2 Boundary conditions

To solve equations (4.16)—(4.19), we need appropriate boundary conditions for 6, u, v and p.
For components u and v of the velocity, we impose no-slip and no-penetration boundary

conditions on the solid walls at z = —d/2 and z = d/2. Specifically, the appropriate
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boundary conditions are

u(z,—d/2) =0, v(z,—d/2) =0, (4.38)

u(z,d/2) =0, v(z,d/2) = 0. (4.39)

For the director angle, we use a combination of planar and homeotropic anchoring
conditions. We imposed planar anchoring (0 = 0) everywhere on the solid walls except
in the region defined by the coordinates (—1/2, d/2) to (I/2, d/2). Within this specific

region, we impose homeotropic anchoring 6 = /2 rad.

Both the left- and right-hand boundaries are modelled as open, and we choose two
different possible sets of boundary conditions. The first we called normal flow, which
models the large distance from the HAN region, so that there is no variation in the

director and the flow is normal. The appropriate boundary conditions are then,

0, =0at z =zw/2, (4.40)

v=0atz=+tw/2 (4.41)

For the horizontal velocity u, we apply the stress-free boundary condition on the lateral
walls, which requires that the tangential (shear) stress vanishes. This condition is

written as
oc-x=0 atrx==£—, (4.42)

where o is the stress tensor and x is the outward unit normal to the wall. In a two-

dimensional z—z configuration, this gives

Oazlpmsw =0, (4.43)
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The second situation is periodic conditions, so that

0(—w/2,z) =0(w/2, z), (4.44)

v(—w/2,z) = v(w/2,z). (4.45)

4.3 Numerical calculations I: normal flow conditions

To numerically solve equations (4.16)—(4.20) together with boundary conditions (4.38)—
(4.45), we use the COMSOL Multiphysics@®) Software Version 6.1 to perform our cal-
culations [31]. To solve for the velocity field in COMSOL, we adopt the incompressible
creeping flow model to solve the linear momentum equations (4.17) and (4.19). The
active nematic elements of these equations are used as input for a volume force node

added to the Newtonian system.

To solve for the director angle, we first rewrite equation (4.20) in COMSOL’s general
PDE form

020 00
V- = 4.4
ot2 da ot / (4.46)

€q

where V = [0/0x,0/0z] and I" = [ — f2(6)0,, — f1(0)0.] is the conservative flux. In this
formulation, d, is the damping coefficient, here identified with the rotational viscosity
as d, = 71, and e, is the mass coefficient. Although, e, = 0 in our system, we retain it in
the equation because COMSOL’s PDE interface requires the standard form to include
both mass and damping terms. Writing the director equation in this form therefore
makes the implementation straightforward and consistent with COMSOL’s framework,

while still preserving the original physical variables. The forcing term f is given by

f=—2f30%+ f30,. + (K3 — K1) cos(20)0,0, + 72 (uz — v.)sin  cos 0

1 1
- 5 (72 005(29) + 71) Uy — 5 (72 COS(QQ) - 71) Uy — 18, — ub,, (4'47)
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where ~; is the rotational viscosity, which governs the relaxation of the director angle,

and 7y, is the torsion viscosity.

We choose an appropriate initial condition to satisfy approximately the anchoring for
the director angle, given explicitly by

fof2) = T [mh (U2 (= U2) ] [

2 € €

{LW} , (4.48)

and appropriate initial velocities ug = vg = 0, where € is the size of the transition from
planar to HAN anchoring. We choose ¢ = 1 pym throughout this thesis to closely match
the boundary conditions with the initial conditions. For reference, the domain width is
w = 20 pm, so that €/w < 1, to ensure a rapid transition to the HAN region compared
with the lateral size of the system. In this Chapter, we revert to the more standard

d = 2 pm, since we are considering a sensor device.

To interpret the results, we divide the channel into different subregions: the left planar
region, the HAN region, the right planar region and the transition regions, as shown in
Figure 4.2. In order to investigate the flow dependence on the geometry, we first consider
the case where the HAN channel width is fixed and then vary the channel width. This
is to verify that a small channel width does not significantly impact the flow or the
overall dynamics of the system. Next, we vary the activities and fix the channel width
and the HAN channel length. We also consider changing the activity parameter value

and the HAN channel width for both contractile and extensile nematics.

4.3.1 Effects of varying channel width

In this section, we fix the HAN region width, [, and activity, £, and vary the channel
width, w. The goal is to understand how the channel width affects the system’s be-
haviour under weak activity, which is vital for applications where the geometry of the
environment significantly impacts system behaviour, such as in microfluidic devices and

biological systems. The simulation is run for 2 seconds (in model time) to allow the
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Figure 4.2: A schematic showing the division of the channel into planar left, HAN,
planar right and transition regions.

initial changes in the system to stabilise, and so captures the long-term behaviour.

We first present a summary of the simulations for weakly active systems, both contrac-
tile and extensile, for various channel width. Specifically, we choose w = 20, w = 40,
w = 60, and w = 80 microns, with [ = 6.667 um, and ¢ = 40.001 Pa, although we
present the results for only ¢ = —0.001 Pa because the results are very similar for weakly
active systems. The apparent symmetry breaking arises from the choice of initial di-
rector field 6(z, z). In particular, the imposed orientation leads to different behaviours
in the left and right regions of the system, so the initial condition itself introduces the

asymmetry.

Figure 4.3 shows a plot of the director for various values of channel widths. Note that
in this plot, we have scaled the xr—axis. We use the background colour to represent
the director angle, black lines to represent the streamlines, white rods to represent the

director, and black arrows to represent the flow direction.
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Figure 4.3: Plot of the director angle for different region widths at £ = —0.001 Pa and
t =2sfor: (a) w=20pum, (b) w=40pum, (c) w = 60 um, and (d) w = 80 um. Each
panel shows streamlines (black lines), the director (white rods), flow direction (black
arrows), and the director angle (background colour). Horizontal velocity profiles for
the different channel widths are included, with the x-axis fixed to [—1,1] x 10~ m in
all cases to facilitate comparison. The HAN region width used in the simulations is

[ = 6.667 pm.

For all chosen values of channel width, the director in both left and right planar re-
gions remains undistorted, indicating a uniform solution aligned to planar anchoring.
However, in the transition and HAN regions, the director is distorted because of the
boundary conditions, leading to flow even for this very low activity strength (see Figures
4.3 (a)—(d)). In addition, the system is characterised by an approximately rectilinear
flow in the left and right planar regions and a circulatory flow where there are localised
distortions in the HAN and transition regions. The system has almost the same flow

for all the chosen values of channel width.

The minimal dependence of the flow on the channel width, w, allows us to choose

w = 20 microns in the following work to aid computation efficiently.

Before we proceed, it is pertinent to discuss the characteristic length and time scales
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of the 2D model. We use equations (3.27) and (3.28), together with the parameters in
Tables 1.1 and 1.2. For example, we choose ¢ = 0.0001 Pa and ¢ = 150 Pa, as these
represent the smallest and largest activity values considered in this thesis. The channel
spans a height d = 2 pym and a width w = 20 pym. The active length scale evaluates
to I, &~ 11.4/+/]€] pm. For a small activity, |¢|= 0.0001 Pa, this gives I, ~ 11400 pm,
which is much larger than both the channel height and width, indicating that distortions
will be weakly resolved. The corresponding active time scale is 7, ~ 2375 s, implying

extremely slow dynamics.

For large activity, |£|= 150 Pa, the active length scale is I, &~ 0.93 pm, which is smaller
than the channel height, so distortions are strongly confined and well-resolved. The
active time scale is 7, &= 0.016 s, meaning the system evolves very rapidly, and a short

simulation of a few seconds captures multiple active response times.

This means that the channel dimensions and simulation duration relative to the active
scales lead to distinct regimes. For very small activity, we have d,w < [, and t < 7,
indicating that the system is effectively uniform and evolves extremely slowly, so the
natural activity-driven patterns cannot develop due to high level of spatial confinement,

compared to the active length scale.

In contrast, for very large activity, we have d,w > [, and t > 7,, meaning that the
system dimensions can contain activity-induced distortions and evolves rapidly, allowing

simulations to capture the relevant dynamics within short times.

In the thin channel of d = 2 um, relevant for sensor design, even small local pertur-
bations can generate significant director distortions and flow across the channel, which
allows the system to effectively “sense” changes in boundary conditions or the presence
of objects. The channel height is therefore chosen to match the spatial scale of active

distortions and optimize sensitivity for potential active nematic sensors.
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4.3.2 Effects of varying activity strength and HAN region width

for contractile nematics

This section focuses on contractile active nematics, where we examine the solution pro-
files for varying HAN region width and activity strength values. We begin by exploring
the solution profiles for varying activity while keeping the HAN region width fixed,
revealing how the director angle and flow patterns evolve under different activity mag-
nitudes. We observe distinct behaviours, including the reduction of circulations and
changes in the flow direction as activity increases. In particular, at high activity values,

oscillations become apparent in both the HAN and planar regions.

Next, we analyse the systems by varying both the width of the HAN region and the
activity strength. To measure the effects, we calculate the flux on the left boundary. We
find that larger HAN region widths and higher activity magnitudes result in a higher

flux into the system.

Finally, we investigate the oscillatory nature of the flow, particularly at high activities.
By performing a spatial frequency analysis via the Fast Fourier Transform (FFT), we
assess the oscillations in both the left and right planar regions, as well as in the HAN

region in Section 4.3.2.3.

4.3.2.1 Solution profiles for a fixed HAN region width and varying activity

strengths

In this section, we vary the activity parameter while keeping the HAN region width
fixed. Figure 4.4 presents the director and streamlines for w = 20 microns, [ = 20/3
microns and ¢ = [0,—0.1,—1,—10,—100] Pa. For the activity strength & = 0, the
system is characterised by very small flow (u = 9.7 x 1078 m/s), which is simply due
to the small elastic relaxation to an equilibrium state since the initial condition for the
director structure is not exactly the same as the equilibrium structure. For £ = —0.1

Pa, the director remains largely undistorted in both the left and right planar regions
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with maximum flow velocity of u = 1.6 x 107® m/s, as shown in Figures 4.4(a)—(b). In
addition, the system is characterised by a rectilinear flow moving to the right-hand side
of the channel. In the HAN region, the system exhibits flow distortions, characterised
by four distinct circulations. For ¢ = —1 Pa and £ = —10 Pa, the circulations reduce to
two distinct loops and one large loop, respectively. In this regime of activity strength,
the flow is in fact in a reversed direction with a lower maximum velocity of 107° m/s
(see Figures 4.4(c)—(d)), suggesting that circulation in the HAN region decreases with
increasing activity strength. At all these orders of activity, the director distortion leads

to the generation of bulk flow in the system.

In Figure 4.4(e), where the activity has increased to £ = —100 Pa, the director angle
is seen to oscillate in the planar regions. Similar results were seen for extensile active
nematics using planar anchoring |63, 126, 187]. Thampi [211] also observes oscillatory
behaviour accompanied by distorted streamlines for high values of activity parameters

using periodic anchoring.

Our results suggest that increasing the magnitude of the activity eventually results in

oscillations in the system accompanied by high flow in most of the region.

4.3.2.2 Flux measurement for varying activity strength and HAN region

width

To measure the flux of fluid into the system, we explore our results by numerically
integrating the velocity u at the inlet/outlet with respect to z for & € [—100, 0] Pa
and for [ € [w/1000, w/3] microns. Since both left and right boundaries are modelled
as open boundaries, so that no flux is lost, [u;dz = [ ugrdz, where u;, and up denote
the flow velocity at the left and right boundaries, respectively. This equality reflects
the inherent left-right symmetry of the governing equations and boundary conditions.
However, this symmetry is broken by the choice of initial conditions, in particular the
initial theta configuration in the HAN region, which can bias the system towards flow

in a preferred direction. As a result, although the equations are symmetric, the system

154



Mathematical Modelling of Active Fluids in a Channel

=
w/2 B
Na
ES
G =
R=R 0 Ed
N N A e <
o
BRSO N e =7 S A NS RS 8
|53
<
—-m/2 2
a
w/2 B
<
A 0 4
n a
3
3
—-m/2 .2
a
/2 F
13
=
ES
=5 0 24
N <
]
8
-m/2 .2
o
/2

2z [m]

—7/2

/2

2z [m]

Director angle, 6 (rad) Director angle, 6 (rad)

|

5
S~
o

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.4: Plot of the director angle for (a) £ =0 Pa, (b) £ = —0.1 Pa, (¢) £ = —1
Pa, (d) £ = —10 Pa, (d) and (e) £ = —100 Pa with w = 20 microns and ¢ = 2 seconds,
seconds, depicting the streamlines (black lines), director (white rods), flow direction
(black arrows) and the director angle (background colour).
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dynamically evolves with a flow pattern that breaks left-right symmetry. Therefore, in
this section, we present only the results for the left boundary.

x10710

Activity, ¢ [Pa]

1 2 3 4 5 6
HAN region width, [ [m)] %1078

Figure 4.5: Plot of [ u;dz against activity and HAN region width, I. The dots
represent the parameter values that have been simulated, and the background colour
is interpolated between the values at the dots.

Figure 4.5 presents [ urdz for varying & and [ for contractile active nematics. We see
that the flux decreases, indicating a greater flow out of the region on the left boundary,
as both the activity, & and HAN region width, [, increase. Thus, larger HAN region

width and activity strength lead to more fluid leaving the system at the left boundary.

4.3.2.3 Oscillatory flow for a fixed HAN region width

To fully understand the nature of the oscillations observed in Section 4.3.1, we explore
the results at higher magnitudes of the activity. To achieve this, we perform both
temporal and spatial spectral analyses of the director angle. We show only the results

for the spatial analysis because the temporal analysis shows that after a short time, the

system does not oscillate in time.

The FFT transforms the space into a frequency domain, which we use to perform a
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spatial frequency analysis for the entire domain in each of the subregions. First, we
provide an example plot of the director angle along the centre of the channel, z = 0,

for the entire region and the sub-regions.

Figure 4.6 displays the director angle as a function of x at z = 0 (that is, along the
center of the channel) for the entire channel, the planar regions left and right and the
HAN region. We observe relatively uniform oscillations in both the left and right hand
planar regions and less regular oscillations in the HAN region.

(b) Planar left region

(a) Entire domain

Director angle, 0 [rad]
o

Director angle, 6 [rad]
o

-1 05 0 05 1 10 -8 6 4
z [m] %10® x [m] %107®

(c) Planar right region (d) HAN region

RN

0.5

o
[

o

-0.5

o
o
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o
Director angle, 6 [rad]

4 6 8 10 2 0 2
 [m] 10 z [m] x10°

Figure 4.6: The director angle as a function along the centreline z = 0 across the (a)
whole region, (b) planar left region, (c) planar right region, and (d) HAN region.

We present the results of our spatial analysis in Figure 4.7. We plot the magnitude of the
Fourier mode against the wavenumber k (spatial frequency) for the entire domain, the
two planar regions, and the HAN region to characterize the nature of the oscillations in

each region. The wavenumber k is scaled in ym™!, corresponding to lengths L = 27 /k.

Figure 4.7(a) shows the magnitude of the mode versus k for the entire domain. The dom-
inant peak occurs at kpeax ~ 5.98 um™?, corresponding to a wavelength L ~ 1.051 pm.

The left and right planar regions feature similar peak wavenumbers, kpeax = 5.94 pm™1,
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Figure 4.7: Plot of spatial frequency (Hz) against the mode magnitude for & = —100
Pa: (a) entire region (k= 5.98 um™'), (b) planar left region (k ~ 5.94 um™!), (c)
planar right region (k ~ 5.94 ym™"), and (d) HAN region (k &~ 2.97 ym™!).
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corresponding to L =~ 1.058 pm, but with differing magnitudes of the modes: approxi-
mately 31.81 for the left region and 37.81 for the right region (Figures 4.7(b) and (c)).

The HAN region exhibits a dominant peak at kpea & 2.97 pm™*

, corresponding to
a larger wavelength L ~ 2.116 um, with a smaller mode magnitude of 11.02 (Figure

4.7(d)).

The differences in magnitude between the left and right planar regions are noteworthy:.
Although the peak wavenumbers are similar, which indicates comparable spatial scales
of oscillations, the differing mode magnitudes suggest that the director distortions are
stronger on one side than the other. This asymmetry arises from the HAN region, where
the director tilt is positive rather than negative, which breaks the symmetry between
the planar regions. For the HAN region, the lower ke, and smaller magnitude indicate
that oscillations are longer in wavelength and weaker, which reflects the more complex

and diffuse nature of director variations under hybrid alignment conditions.

Overall, the Fourier analysis reveals that the planar regions support fine-scale, high-
magnitude oscillations, whereas the HAN region supports broader, lower-amplitude
oscillations. This information give an intuition into the characteristic spatial patterns

that may influence active flow and potential sensing applications.

It is interesting to note that, although the system exhibits spatial fluctuations for suffi-
ciently high magnitudes of activity, no time-dependent oscillations are observed. Similar
flow patterns were reported by Samui et al. [187], who examined flow transitions in ac-
tive nematics and their length scales in a confined 2D geometry under planar anchoring
conditions. Their study reveals flow transitions in extensile active nematics, ranging
from unidirectional flow to fully developed active turbulence as the activity strength
increases. In contrast, our study applies a combination of planar and homeotropic

anchoring, and oscillations were observed in contractile rather than extensile nematics.

159



Mathematical Modelling of Active Fluids in a Channel

4.3.2.4 Oscillatory flow measure for varying activity and HAN region width

In this Section, using the above methodology, we examine how the oscillations change
with respect to the HAN region width and the activity strength. We consider & €
[—100, 0] Pa and [ € [w/1000, w/3] microns, and perform a spatial frequency analysis
of the director angle for the entire domain as well as for subregions, including the planar
left, HAN, and planar right regions. However, we present detailed results only for the
planar left and right regions, as the oscillations in the HAN region are more complex

and difficult to characterise.

After computing the Fourier transform of the director angle §(x) for the entire domain
and subregions, the peak magnitudes and corresponding frequencies are identified using
the findpeaks function in MATLAB. For each subregion, the Fourier transform is
computed as 0(k) = FFT[0(z) — (8(x))], where (A(x)) is the mean director angle along

the x-direction. The fftshift function is applied to center the zero frequency.

The peaks of the Fourier spectrum are then identified for frequencies exceeding a thresh-
old Ty = 10° and magnitudes exceeding T,,, = 0.15. Specifically, for each set of peaks,
the largest peak above these thresholds is selected as the dominant oscillatory mode.
Denoting the peak frequency and magnitude as p; and p,,, respectively, a region is

classified as oscillatory if |ps|> Ty and |pm|> T

The uncertainty in the peak frequency, dpy, is estimated from the frequency resolution
of the Fourier transform, dp; = 1/L,, where L, is the number of spatial points in the
subregion. The uncertainty in the peak magnitude, dp,,, is estimated from the noise
floor of the Fourier spectrum. These uncertainties are reported for all peak measure-

ments to ensure the reliability of the oscillation classification.

In Figure 4.8, we present plots of the spatial frequencies as a function of £ and [ for the
left- and right-planar regions. We use red dots to represent oscillations and cyan dots
to represent non-oscillations. Figure 4.8(a) shows the results for the planar left region,

which suggests that the system oscillates for a high magnitude of activity parameter
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values and all HAN region widths. However, for the planar right region, the system
oscillates for intermediate- and high-magnitude activity parameter values, as shown in
Figure 4.8(b). Overall, it was found that oscillations are likely seen in the planar right
region. The sudden jump in the frequency plots occurs because, for certain parameter
values, the peak at zero frequency becomes dominant. However, as the parameters
change, the peak shifts, and the non-zero frequency becomes dominant. This switch

between dominant peaks creates the appearance of a sudden jump in the plot.

4.3.3 Effects of varying activity strength and HAN region width

for extensile nematics

This section explores the solution profiles for extensile active nematics. Using the
same analysis framework as in Section 4.3.2, we examine the solution profiles under
varying activity strength and HAN region widths. This includes observing changes in
the director angle and flux patterns, as well as the flow measure for varying activity and
the HAN region width. The behaviour of the system is studied for activity magnitudes
ranging from low values, where the system behaves in a similar way to contractile
active nematics, to high activity values, where a more complex bidirectional flow regime
emerges. For these simulations, we chose £ € [0, 150] Pa because the bidirectional flow

regime is captured within this activity strength range, and we chose | = w/3 microns.

4.3.3.1 Solution profiles for a fixed HAN region width and varying activity

strength

In this section, we present results for varying positive activity parameter values. Figure
4.9 shows a plot of the director angle £ = [0.1, 1, 10, 100] Pa. For activities £ = 0.1
and 1, extensile active nematics behave similarly to contractile active nematics, with
an undistorted director angle in both the left and right planar regions and localised
flow in the HAN and transition regions. This is because the activity strength values are

too weak to generate significant flow. In this flow regime, the system is characterised

161



Mathematical Modelling of Active Fluids in a Channel

O T T T T T | 0

Non-oscillation
10 «  Oscillation 1 4 -1

L
'
w

1
5

Activity, & [Pa]
&
Wavenumber [pym 1]

'
(o))

'
~

'
[e2)

1 2 3 4 5 6 x10°
HAN region width, [ [m] %107

(a)

0 T T T T T T — 0

Non-oscillation
-0 e Oscillation T 1-1

1
'
w

1
n

Activity, £ [Pa
&
Wavenumber [pm ']

'
»

1 2 3 4 5 6 %10°
HAN region width, [ [m)] %107

(b)

Figure 4.8: Sketches showing oscillations for planar left and planar right regions
spanning (,1). (a) Sketch showing oscillations for the planar left region. (b) Sketch
showing oscillations for the planar right region. The red dots represent oscillatory flow
and the cyan dots represent non-oscillatory flow. The black region indicates
significant frequency, and the cyan dots within this black region represent very
low-amplitude oscillations that are not classified as oscillations.
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by approximately rectilinear flow in both planar regions, with a maximum velocity
of the order of 1077 m/s, as shown in Figures 4.9(a)—(b). In the HAN region, the
system is characterised by circulatory flow with director distortion. Increasing activity
to 10 retains the flow structure but with a maximum velocity of the order of 107°
m/s (see Figure 4.9(c)). The flow direction also remains unchanged, unlike in the
case of contractile nematics, for which the flow changes direction for £ = —1 Pa. For
higher activity strengths, the system displays bidirectional flow at the inlet and outlet,
with a maximum velocity of the order of 107* m/s (see Figure 4.9(d)). This flow is
characterised by a significant change in the form of velocity induced by the HAN region.
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Figure 4.9: Plot of the director angle in region (z, z) for (a) £ = 0.1 Pa, (b) { =1 Pa,
(c) £ =10 Pa, (d) £ = 100 Pa with w = 20 microns and at ¢ = 2 seconds. The panels
display the streamlines (black lines), director (white rods), flow direction (black
arrows), and the director angle (background colour).

4.3.3.2 Flow measure for varying activity and fixed HAN region width

To fully assess the nature of the flow in the left and right planar regions, we numerically

integrate u and |u| at the left and right boundaries. We denote the velocity on the left
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and right boundaries with u;, and ug, respectively. For a unidirectional flow, we expect

[ udz = [|u|dz and for a bidirectional flow, we expect [udz # [|u|dz.

_><10'10 (a)

J lu|dz [m*/s]

0 50 100 150
Activity, £ [Pa]

x1 0'10 (b)

J lur|dz [m?/s]

Activity, £ [Pa]

Figure 4.10: (a) [wu;dz and [|ur|dz, (b) [ugrdz and [|ug|dz as a function of activity
for [ = w/3 microns.

Figure 4.10 shows that the system exhibits two different types of flow for extensile active
nematics. In Figure 4.10(a), for the left boundary, we observe a unidirectional flow for
approximately £ € [0, 67] Pa, since [wuydz = [|ur|dz, and for approximately £ > 67
Pa, we have a bidirectional flow. On the right boundary, we observe unidirectional flow
for approximately ¢ € [0, 80] Pa and bidirectional flow for approximately £ > 80 Pa as
shown in Figure 4.10(b).

Our results reveal the emergence of bidirectional flow in the planar regions at sufficiently
high activity values. By integrating the velocity along the left and right boundaries,
we find that the flow transitions from unidirectional at low activity to bidirectional at

higher activity, with [udz # [|u|dz. On the left boundary, bidirectional flow appears
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for £ = 67 Pa (see Figure 4.10(a)), while on the right boundary it appears for £ 2 80
Pa (Figure 4.10(b)). This behaviour is consistent with observations in [211], where
bidirectional flows arise in sufficiently wide channels due to hydrodynamic instabilities
of extensile active nematics. Similar to the review by Thampi, our bidirectional flow is
anti-parallel with zero velocity at the channel centerline and maxima near the bound-
aries. However, unlike the review by Thampi, which employed periodic or circular
channels to facilitate unidirectional flow, our simulations use standard flow conditions
with fixed boundaries, leading naturally to a transition from unidirectional to bidirec-
tional flow. This shows the influence of boundary anchoring and channel confinement

on the symmetry and threshold of the flow transition.

The significant change in flux, with a sharp transition, results from symmetry breaking
driven by the interaction between activity and boundary conditions. This phenomenon
is crucial for applications like controlling fluid transport in microfluidic devices, where
precise flow measurement is essential. Additionally, it holds potential for sensing tech-
nologies, as such large-scale transitions can be used to detect small changes in system

parameters.

4.3.3.3 Flow profiles for varying activity and HAN region width

One of the objectives of this research is to explore the potential application of sensor
design. Active nematics can cause long-range effects in the orientation and flow of
active fluids through small changes in their alignment. This could potentially be useful
in the development of sensors. To investigate whether geometric parameters can change
the system from unidirectional flow to bidirectional flow, we consider a range of HAN

region widths from w/1000 to w/3 microns.

To classify the solution, we use four Boolean tests based on a threshold parameter
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e = 0.1. Each test returns either true or false:

UU: Hf‘uL’dZ_ [l dz < e} and HfluR’dZ_ [ un] d < e} (4.49)
| [ urldz | [ ug|dz ’

pp. ||[[lualdz =1 usldz) 1 [[Jlealdz = 1] ualdz) ] (4.50)
i | [ uLldz ] i | [ ur|dz N

up: ||tz = ualdz 3 ([ lenldz =[] unldz] (4.51)
i | [ucldz ] i | [ ur|dz N

su: ||L |UL|yC?u: ‘|£Z“L| =] ana [|2 |“R|’dfzu;’|£2“R| = (4.52)

The notations UU, BB, UB, and BU represent different flow patterns. UU is used to
represent unidirectional flow in both the planar left and planar right regions, UB is
used to represent unidirectional flow in the planar left region and bidirectional flow in
the planar right region, BU is used to represent bidirectional flow in the planar left
region and unidirectional flow in the planar right region, and BB is used to represent

bidirectional flow in both regions.

Explicitly, we get unidirectional-unidirectional flow (UU) if UU = true, bidirectional-
bidirectional flow (BB) if BB = true, unidirectional-bidirectional flow (UB) if UB =

true, and bidirectional-unidirectional flow (BU) if BU = true.

Figure 4.11 shows the different solution states of the system for various values of the
activity strength and HAN region width. By analysing this figure, we can capture the
system’s behaviour across the bulk of the channel and better understand the different
solution states. The green dots represent bidirectional flow throughout the region trig-
gered by high activity parameter values. The cyan dots correspond to the flow regime
BU, which indicates asymmetric behaviour for the flow in the planar left region and
symmetric behaviour for the flow in the planar right region. The red dots represent
UU, indicating unidirectional flow throughout the region, which occurs for lower and
intermediate values of the activity strength. It is interesting to note that the transition

from UU to BB depends on both the HAN region width and the activity strength.

Bidirectional flow is due to the HAN distortion, which includes bend and splay distor-
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Figure 4.11: Plot showing the different solutions states as £ and [ vary. The green
dots represent unidirectional-unidirectional (UU), the red dots represent
bidirectional-bidirectional (BB), and the cyan dots represent
bidirectional-unidirectional (BU) flow. The background colour is the flux at the
left-hand boundary.
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tions, but it is mostly bend in one region (left edge of HAN-planar boundary and splay
in another (right edge of HAN-planar boundary), so these might affect where flow is

initiated, which might cause two types of flow, and so bidirectional flow happens.

4.3.4 Numerical calculations II: periodic conditions

In this section, we study the flow of active nematics in a channel under periodic condi-
tions. Additionally, we consider the effect of different elastic constants on the director

orientation and flow velocity.

The normal flow condition in the previous section was a model of an infinite region and
an isolated HAN region. The periodic condition models multiple HAN regions, all a
distance w apart. So, here we consider how multiple HAN regions interact with each

other.

We consider the model in Section 4.3 by applying periodic conditions at the left- and
right-hand side boundaries © = +w/2, keeping the Dirichlet boundary conditions at
the top and bottom walls. This means that 6, = 0y, 0,1, = 0, and u;, = ugr, Uy, =
uyr, where 6, and 0 represent the director angle at the left-hand and right-hand
boundaries, respectively, and u; and ug denote the velocity at the left-hand and right-
hand boundaries, respectively. To ensure convergence of the solution, we enforce the
pressure-point condition at a single point (z,z) = (—d/2,0). Our simulations are
conducted for 2 seconds, again using the COMSOL Multiphysics@®) Software Version
6.1 [31], for contractile and extensile active nematics. In the case of contractile active
nematics, we chose £ € [—100, 0] Pa, whereas for extensile active nematics, we choose

¢ from the range [0, 150] Pa, and we choose [ € [w/1000, w/3] microns.

4.3.4.1 Investigation of flow profiles for contractile nematics

Our results show that, similar to the normal flow boundary condition case, the system is
characterised by unidirectional flow, recirculation, and oscillatory flow as the magnitude

of the activity parameter values increases from low to high values. Here, we present
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only the results for high activity strengths, since other results are very similar to the

normal flow scenario.
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Figure 4.12: Plot of the mode magnitude versus the spatial frequency for & = —100:
(a) entire region, (b) left planar region, (c) right planar region (d) HAN region.

Figure 4.12 displays the mode magnitude against the spatial frequency for the entire
domain, the two planar regions, and the HAN region. The system is characterised
by an oscillatory flow, which is dominant in the left and right planar regions, each
with a magnitude of mode of approximately 32 and spatial frequency of approximately
5.94 um~! for each of the planar regions, as shown in Figures 4.12(b) and 4.12(c),
respectively. The HAN region (see Figure 4.12(d)), is more difficult to characterise
since the frequency spectrum is broader and has a lower peak value. The results are

similar to those we obtained when we applied normal flow conditions.

As in the normal flow scenario, we performed a spectral frequency analysis for contrac-
tile nematics, considering varying the activity strength values and HAN region widths.
Figure 4.13 is similar to Figure 4.7, and so, for the contractile nematics, the bound-

ary condition does not seem to significantly affect the flow and the behaviour of the
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director.

4.3.4.2 Investigation of flow profiles for extensile nematics

We now perform our computation for a fixed value of the width of the HAN region, [,
and vary the value of the activity parameter, £, for extensile nematics. Since we use
periodic boundary conditions, u;, = ug, and so, we need only examine the flux at the

left-hand boundary.

As in the normal flow case, the solutions are characterised by two distinct scenarios:
unidirectional and bidirectional flow. The transition between these states is marked by
a value of a critical activity parameter £ ~ 67 Pa, below which the system exhibits
unidirectional flow, and above, which we get bidirectional flow (see Figure 4.14). In the
current case, the bidirectional flow is characterised by two different forms, as shown in
the inset plots in Figure 4.14. This differs slightly from the system behaviour under
normal flow conditions in that solutions using normal flow conditions are characterised

by critical activity & =~ 67 Pa on the left boundary and £ ~ 80 Pa on the right boundary.

To examine the two transition points illustrated in Figure 4.16, we generate a velocity
plot of the region (Figure 4.15), in which the velocity is represented by the background
colour. We investigate the flow before the first transition at & ~ 33 Pa. The sys-
tem exhibits a unidirectional flow characterised by circulations in the HAN region (see
Figure 4.15(a)). As activity increases to & =~ 83 Pa, the flow becomes bidirectional,
characterised by more circulation, with u;, < 0 on the lower half on the left-hand side
of the channel and uz, > 0 on the upper half of the right-hand side (see Figure 4.15(b)).
Increasing further the activity strength to £ ~ 86 Pa, we observe that the change in
the circulation region has caused a different kind of bidirectional flow, characterised by
ur, > 0 in the upper half and u; < 0 in the lower half of the channel with reduced

circulation as shown in Figure 4.15(c).

Next, we perform simulations by varying the activity and the HAN region width. We
chose ¢ € [0,100] Pa and | = [w/1000, w/3] microns and simulated for 2 seconds. We
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Figure 4.13: Plot of the frequency of oscillations for planar left and right regions as
functions £ and [, respectively. The red dots represent systems we classify as having
oscillatory flow and the cyan dots represent systems with non-oscillatory flow. The
black region indicates significant frequency, and the cyan dots within this black region
represent very low-amplitude oscillations that are not classified as oscillations.
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then apply the test functions defined in equations (4.50)—(4.50) to determine the nature
of the flow. Since the boundary condition is periodic, we know that [wu,dz = [updz.
Therefore, we have only two possibilities UU and BB. In essence, when compared to
the normal flow case, the BU solution is replaced by UU for small and high values of [,
but for intermediate values of [, the BU solution is replaced by BB, as shown in Figure

4.16.
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Figure 4.16: Plot showing the different solutions states as & and [ vary. The green
dots represent unidirectional-unidirectional (UU), and the red dots represent
bidirectional-bidirectional (BB) flow. The background colour is the flux at the
left-hand boundary.

4.3.5 Effect of the elastic constant ratio on director orientation
and flow velocity

In this section, we investigate how the ratio of splay and bend elastic constants influ-
ences the behaviour of the system, particularly the flow and director orientation. The
motivation for this study stems from the fact that distortions in the director field gen-

erate flow in active nematics: extensile systems are unstable to bend distortions, while
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contractile systems are unstable to splay distortions. Therefore, the relative amounts
of splay and bend in the system are expected to have a critical impact on the resulting

flow patterns.

To systematically study this effect, we vary the elastic constants Kj (splay) and Kj
(bend) while keeping the elastic energy of a simple HAN state unchanged. This ap-
proach ensures that changes in the flow behaviour are due to the relative anisotropy of

the elastic constants rather than changes in the overall elastic energy.

For the simple HAN state, the director profile is given by 6(z) = w/4+mz/2d. Using the
expression for the elastic free energy density, the total elastic energy of this configuration

is given as

2

s
E; = 16d (K1 + K3), (4.53)

where F, represents the elastic energy associated with the HAN distortion. To sys-
tematically vary the elastic constants from reference MBBA values [202], we introduce
scaling factors o and (8 such that K1 — aK; and K3 — SKj5. Substituting into equa-
tion (4.53) gives the elastic energy explicitly in terms of the free energy and the scaling

parameters

7T2

E
16d

(K, + BKS) . (4.54)

This formulation allows us to independently control the splay-to-bend ratio while moni-
toring its effect on flow generation, providing insight into how elastic anisotropy shapes
active nematic dynamics. Next, we define a K /SK3 = k. If we require the free energies
(4.53) and (4.54) to remain equal as we change the elastic constant, then equating the

right-hand side of equation (4.53) to the right-hand side of equation (4.54), gives

(K1 + K3)

B= KT D (4.55)
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The definition of x then gives

(K + KS) .
= D™ (4.56)

Substituting the values o and f in equation (4.54) will automatically leave the free

energy unchanged as we change k.

We again perform our simulations until ¢ = 2 seconds using the COMSOL Multi-
physics@®) Software Version 6.1 [31] to analyse the behaviour of both contractile and
extensile active nematics. We choose x € [0.03, 16], and initially consider the activ-
ity values of & = £0.0001 Pa. We chose the range of k to ensure that the splay and
bend elastic constants fall within the range of experimental data [202]. The values of
K, and K3 as functions of k are shown in Figure 4.17. These values (see Table 6) fall
within the range of elastic constants reported experimentally for nematics. For instance,
Kemkemer et al. [97] measured splay and bend elastic moduli in the range Ky ~ (1.3
2.6) x 10713 N and K33 ~ (1.3 x 10713-1.04 x 107'?) N, which are consistent with
the values adopted here. These values are also in agreement with the results of [109],
where the orientational elastic constant of a bulk nematic liquid crystal was found to
be 0.5 x 1071 N. The special case exists where kK = 1, when K; = K3 = 6.75 x 1072 N.
For reference, in previous sections we used K; = 6 x 1072 N and K5 = 7.5 x 10712 N.
By varying k over this range, we explore elastic constants that extend below and above
the values used in previous sections, while remaining within experimentally reported

ranges.

In Figure 4.18, we present a plot showing the director orientation in relation to the
scaling ratio k. Below k = 1, the director tends to favour the splay configuration
because K3 > K; as shown by the first two sketches in Figure 4.18, while above k = 1,
the director tends to favour the bend configuration because K3 < K;. At k = 1, the
director’s orientation balances, resulting in a linear transition from planar orientation

at z = —d/2 to homeotropic orientation at z = d/2.
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Figure 4.17: Plot illustrating the variation of splay and bend elastic constants with
respect to the scaling ratio. The intersection point of the dashed and solid lines occurs
when K; = K3, indicating k = 1, as depicted by the red dashed line. Additionally, the

dashed black line represents the behaviour of the splay elastic constant, while the
black solid line represents the behaviour of the bend elastic constant.

176



Mathematical Modelling of Active Fluids in a Channel

Director distortion switches from bend to splay in the HAN region.
Increasing k.

v R R o oy

Figure 4.18: Schematic showing the director distortion from homeotropic to planar
anchoring as k increases for £ +0.0001 Pa, w = 20 microns, [ = w/3 microns and
k =1[0.04, 0.4, 0.8, 1, 2.31,14.4], respectively. Going down the plots, K increases,
while K3 decreases.
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We then explored the impact of the elastic constants on the flow velocity. Our observa-
tions reveal that the flow is the same regardless of whether it is contractile or extensile
when the value of the activity parameter is very small. To investigate what happens
when the value of the activity parameter increases, we consider the effects of varying
both the splay and bend scaling ratio, x, and the value of the activity strength. We
choose ¢ € [0, £0.5] Pa and « € [0.03, 16].

In Figure 4.19, we plot the director angle, in the center of the channel, that is, for
(x,z) = (0,0), as a function of the scaling ratio k. As expected, the director angle
decreases as the scaling ratio x increases. Bend configuration is induced for the higher
values of x, while the splay configuration K is induced for lower values of k. The
director angles at the centre of the HAN region are consistent across the different

activity strengths.
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Figure 4.19: Plot of director angle in the centre of the channel as function of x for
¢=10 £0.1, £0.15, £0.25, £0.5] Pa.
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4.3.5.1 Flux measurement for varying splay/bend scaling ratio

We also analyse the flux at the left-hand side boundary, as a function of the splay/bend
scaling ratio k for £ = [0, £0.1, +0.15,£0.25, +0.5] Pa. Figure 4.20 shows flux as
a function of k for the chosen values of activity. For negative and very small (both
negative and positive) values of £, the flux transitions from positive to negative as the
splay/bend scaling ratio k increases, as indicated by the green, red, cyan and black
curves. However, for sufficiently extensile systems, the flux remains positive for all
values of k. Therefore, for contractile and weakly extensile systems, elasticity can

determine the direction of flow.

%1072

0 2 4 6 8 10 12 14 16

Figure 4.20: Plot of the flux on the left boundary as a function of  for
¢=10 £0.1, £0.15, £0.25, +0.5] Pa.

4.3.5.2 Tracking circulation relative to the splay/bend scaling ratio

We also track the circulation in the system and analyse the flow profile for 0.03 < xk <
16. Based on the observed behaviour, we categorise the following contour plots into

three groups: kK = 0.03 to kK = 0.35, Kk = 0.4 to k = 1.04, and x = 1.10 to x = 16.
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In the first category, we present velocity plots for k = 0.03, K = 0.15, k = 0.25, and
k = 0.35, as shown in Figure 4.21. For x = 0.03, the system exhibits a relatively
high flow in the HAN region, along with circulations near the bottom wall around the
right transition region, accompanied by noticeable director distortion (Figure 4.21(a)).
As the splay/bend scaling ratio increases to x = 0.15 and x = 0.25, new circulation
emerges near the top wall of the planar left and right regions, as shown in Figures
4.21(b) and 4.21(c). When & increases further to 0.35, additional circulation appears
near the bottom wall of the planar right region (Figure 4.21(d)), while the circulation
in the right transition region decreases in size. This occurs because bend distortion
becomes more difficult over splay distortion, leading to distortions in the director field
at the bottom of the HAN region. Essentially, the system favours the splay configuration

when K; < K3, and splay distortion does not lead to flow in an extensile system.

Next, we examine the velocity profile and circulation in the second category considering
k = 0.40, 0.65, 1.00, and 1.04, where k = 1.04 represents a special case where the flux
is nearly zero. For x = 0.40 and 0.65, we observe a more pronounced circulation in the
transition and HAN regions, with a high flow across the center of the region moving
toward the right-hand side (Figures 4.22(a) and (b)). When & increases to 1.00, which
is equal to the ratio of the standard MBBA nematic elastic constant for the splay
and bend configurations, four distinct loops appear in the HAN region, along with one
loop in each planar region (Figure 4.22(c)). Interestingly, for k = 1.04, the integral of
uy, with respect to z, denoted by [wurdz, is approximately zero, and the loops in the
planar regions extend to the left and right-hand side boundaries, indicating no overall

flux (Figure 4.22(d)).

Upon increasing « to 1.35, the flow becomes negative, indicating a reversal in the
velocity direction, as shown in Figure 4.23(a). Additionally, the number of loops in
the HAN region is reduced to three. When « increases to 1.55, the circulation in the
planar left and right regions begins to diminish in size, along with the loops in the

HAN region, as shown in Figure 4.23(b). Increasing « further to 2.0, the loops in the
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HAN region evolve into two distinct circulations (see Figure 4.23(c)). At a sufficiently
high value of &, specifically k = 4.8 (see Figure 4.23(d)), circulation in the HAN region
disappears, while circulation in the planar regions further diminishes. This indicates
that for k < 1.04, the circulation evolves as k increases, whereas for k > 1.04, the

circulation decreases.
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Figure 4.21: Plot of the velocity in the x—direction for k = 0.03, k = 0.15, Kk = 0.25
and k = 0.35, and t = 2 seconds. The panels depict the streamlines (black lines),
director (white rods), flow direction (black arrows) and velocity (background colour).

Finally, we consider cases where the splay/bend scaling ratio is significantly greater
than k = 0.8 where we select Kk = 2.00, kK = 4.80, k = 14.60, and x = 16.00. This is
illustrated in Figure 4.23, which again depicts the behaviour of the system in terms of
its flow velocity. Within this range of x values, the system displays similar behaviour,
demonstrating negative flow in the bulk of the region, significant distortions of the
director around the transition regions, and single circulations in the left and right-hand
side transition regions, as well as a singular circulation in the right-hand side planar

region, which diminishes as x increases.
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Figure 4.22: Plot of the velocity in the x—direction for xk = 0.4, k = 0.65, k = 1.00,
and k = 1.04, and t = 2 seconds. The panels depict the streamlines (black lines),
director (white rods), flow direction (black arrows) and velocity (background colour).
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Our findings reveal that as the splay/bend ratio increases, i.e. the bend elastic constant
decreases and/or the splay increases, causing significant changes to the flow. For k < 1,
the system behaves more like a regional flow with reduced recirculations. In this case,
the system prefers the splay configuration to minimise energy since K; < Kj3. Since
flow distortion reduces the flow in an extensile nematic, the flow is of low magnitude.
However, for k > 1, the bend configuration is preferred, indicating that K; < K3, and

as extensile nematic in a bend distortion is unstable, increased flow occurs.

4.3.6 Conclusion

In this Chapter, we have examined active nematics in a 2D channel using a mixture of
planar and HAN anchoring. Using normal flow and periodic boundary conditions, we
characterise the range of flow profiles for varying magnitudes of the activity at a fixed
channel width for both contractile and extensile active nematics. We summarised our

findings as follows.

4.3.6.1 Normal flow boundary conditions

For low-magnitude activities, both contractile and extensile systems exhibit approxi-
mately rectilinear flow in the planar regions. In the HAN and transition regions, the
flow is circulatory and is associated with the director distortion. Further increasing
the activity strength, the system exhibits more localised flow, reduced circulation, and
director distortion. The system exhibits spatial fluctuation for sufficiently high mag-
nitudes of activities for the contractile system, although there are no time-dependent
oscillations in the system. In the regime of lower activities for extensile nematics, we
observed unidirectional flow, whereas, for high activity strengths, we observed bidi-
rectional flow characterised by an antisymmetric distorted state in the center of the
channel. Varying both the activity and the HAN region width, the extensile nematic is
characterised by three solutions: UU, BU, and BB. The transition from UU to BB is
influenced by both the value of the activity strength and the width of the HAN region.

The transition from UU to BB is largely dependent on the activity strength.
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We have seen that local disturbances in the director orientation influence the global flow
in the system. This suggests that the local dynamics of the system significantly affect
the overall behaviour of the system. Since global flow is induced by HAN anchoring, it

is plausible to consider its potential use in sensor design.

4.3.6.2 Periodic boundary conditions

For contractile active nematics, the system largely displays behaviour reminiscent of
previous observations when subjected to the normal flow condition. Varying both the
activity and the length of the HAN region, we observed that extensile active nemat-
ics exhibit only unidirectional-unidirectional (UU) flow for both low and intermediate
values of activities and all HAN region widths; and bidirectional-bidirectional (BB)
flow for higher values of activities and the HAN region width. Bidirectional flow is
categorised into two distinct patterns. The first type is characterised by u;, < 0 on
the lower half on the left-hand side of the channel and u; > 0 on the upper half on
the right-hand side. The second type is characterised by u; > 0 in the upper half and

ur, < 0 in the lower half of the channel.

We also investigated the effects of the ratio between the splay and bend elastic constants
on the director orientation and flow behaviour. By varying the splay/bend scaling ratio
scaling factor, x, we observed distinct changes in the elastic properties of the system

and their impact on the flow.

Our analysis revealed that the ratio of the splay and the bend elastic constants plays
a significant role in determining the preferred director distortion, which leads to a role
in determining the flow profile. The system undergoes a transition from positive to
negative flux, which indicates a change in the system’s flow dynamics at a critical value

of elastic constant ratio k.

At k above the critical value the flow transitions to a negative flux with more pronounced
circulation in the HAN region, emphasizing the interaction between the elastic constants

of splay and bend. However, as the activity parameter increases, significant changes
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emerge. For lower values of positive activities and all negative activities, the flux
changes from positive to negative at a critical value of k, indicating a change in the
dominance of active stress over elastic forces. However, for higher positive activities,
the system is characterised by a unidirectional flow with a positive flux, revealing that

activity always dominates the elastic forces.
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Chapter 5

Two-Dimensional Transient Flow

during HAN State Formation

5.1 Introduction

In studying active nematics, the anchoring conditions at the boundaries play a crucial
role in determining the flow patterns and the director orientation within the system.
In previous chapters, we examined the behaviour of such a system with a focus on
static boundary conditions, which reveal that activity strength and the width of the
HAN region affect the flow and director orientation. However, real-world applications of
active nematics, such as sensors, will involve dynamic boundary conditions that evolve
when a disturbance affects the boundary of a layer of liquid crystal. Understanding
how localised disturbances and time-dependent changes affect subsequent dynamics is,
therefore, essential to envisioned applications, for example, in the conceptual design
of sensors. Of particular importance are the timing and mechanism of the system’s
response to changes in anchoring. In particular, quantifying the response time for
characteristic changes to occur following a change in anchoring can help predict the

behaviour of the system in real-world applications.

In this chapter, we explore the effects of localised and evolving changes in anchoring by
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introducing a time-dependent boundary condition that mimics changes to anchoring in
a sensor. In doing so, we aim to capture the transient dynamics and flow evolution in the
formation of the HAN state. For contractile nematics, we show how the system evolves
in time in the HAN region for different activity strengths and boundary effects. For
low activity strengths, the system exhibits behaviours consistent with previous models
in Section 4.3.4.1. For high activity strengths, the system exhibits rectilinear flow for
early times and oscillatory flow characterised by travelling waves at later times. Our
calculations show that the waves travel from right to left in the channel. A temporal
frequency analysis demonstrates that the system oscillates in time but later disappears

when the HAN state is fully formed, which was not seen in Section 4.3.2.4.

Similar transient effects are observed at low activity strengths for extensile nematics.
For high activity strengths, changes in anchoring induce transitions from bidirectional
flow to unidirectional flow. These transitions demonstrate how dynamic boundary

conditions can significantly change the behaviour of an active nematic.

The results provide crucial insights into the transient dynamics of active nematics un-
der time-dependent boundary conditions. By examining how the HAN state forms and
evolves, this investigation lays the groundwork for optimising the design of active ne-
matic systems for practical applications, such as sensors. Furthermore, understanding
the interplay between activity and boundary effects can deepen our understanding of

active nematics, which might be a guide for better control of their complex behaviours.

The Chapter is structured as follows. We begin by formulating the model in Section
5.2, followed by a series of numerical computations to quantify transient dynamics in

Section 5.3. We finish with concluding remarks in Section 5.4.

5.2 Model formulation

To determine the system’s response time to a stimulus or a change in anchoring, we

investigate the transient dynamics as the director at the upper surface reorients from
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planar to homeotropic. We consider the model in Section 4.3.4, where we imposed
periodic boundary conditions for the director and flow at the channel inlet and outlet.
However, we modify the model by introducing a time-dependent function describing
the director orientation at the upper surface in the central region to mimic a change
that is to be sensed. Below, we provide a detailed explanation of its implementation

and usage.

We solve equations (4.16)—(4.20) numerically, using COMSOL Multiphysics@®) Software
Version 6.1 [31] with a modified boundary condition on the top wall, given in terms
of a new ramp function r¢(t) = 0 for ¢t < L,y and r(t) = S,¢(t — L,y) for L,y <t <
1/Sys+ L,y and rp(t) =1 for t > 1/S,; + L, s, where L,y and S, are the location and
slope of the ramp function, respectively, and ¢ is time. The location and slope of the
ramp function have units of seconds and inverse seconds, respectively. This function
involves a user-defined slope for a linear increase that starts at a specified time, which is
determined by the location of the ramp function, L, [31]. We reformulate the boundary
condition at the top wall to incorporate the time-dependent change of anchoring in
terms of the ramp function by setting

o) = Z4 [ () g (120 (5.1)

€ €

When r,¢(t) = 1, we reduce to the model of Chapter 4.

The initial conditions used for all simulations in this chapter are given as

O(x,z) =

o (12 o (22)| [202),

representing a quiescent fluid with a spatially varying initial director that smoothly

N

transitions across the region of interest.
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In our model, the ramp function r¢(¢) prescribes how the director at the upper sur-
face transitions from planar to homeotropic, with the slope S,; controlling the rate of
change. The duration of this transition is At,; = 1/S,;, which can be compared to

the system’s intrinsic active timescale, 7, = /||, to form the dimensionless ramp time
try = [€1/7S0s-

This dimensionless measure quantifies whether the boundary forcing is slow or fast
relative to the system’s natural response. For small S, ¢ (t, 7> 1), the boundary changes
gradually compared to 7,, so the director evolves slowly and the system effectively
follows the ramp quasi-statically. In particular, for small activities where 7, is very
long, a slow ramp delays the development of flows and transient patterns. Conversely,
for large S,¢ (frf < 1), the boundary is forced rapidly relative to 7,, and the director
may be unable to traverse intermediate configurations. Therefore, the relative speed of
the ramp compared to the active timescale determines whether the system has sufficient
time to respond fully to the boundary change, which links the ramp slope directly to

the observed “switch-on” time.

We perform simulations for contractile and extensile active nematics for activity strengths
that capture bidirectional flow behaviour for extensile nematics and oscillatory flow be-

haviour for contractile nematics.

We consider the effects of changing the slope of the ramp function and the value of the
activity parameter on both extensile and contractile active nematics. We choose values
of the activity parameter ¢ € [0, £100] Pa and set the location of the ramp function to
be L,; = 0.5 seconds. We present results for slopes in the interval S,; € [0.1, 15] s7*
as we find that the influence of the ramp function on the system is weak for S,; > 15

s7L.

5.2.1 Transient flow for contractile active nematics

In this section, we explore the effect of the ramp slope, focusing on low and high activity

strengths for contractile nematics. We have previously established that the system
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oscillates spatially, and we now proceed by examining transient dynamics following a
change in anchoring, reflected by properties of the ramp function. To achieve this, we
first consider S,y € [0.1, 2] s™' and ¢ € [—-10, —100] Pa. We simulate for 2 seconds,

setting the width of the HAN region to be [ = w/3 microns, as before.

In Figure 5.1, we present the velocity field at different times to illustrate the evolution
of the flow and the transition of the director from planar to homeotropic alignment at
the upper surface for weakly active systems, specifically, for { = —0.1 Pa and S,y =1
s7!. The black lines represent streamlines, the white rods represent the director, the

black arrows represent the flow direction, and the background colour reflects the flow

velocity.

The plots correspond to times ¢ = [0,0.52,1.10, 1.50] seconds. Initially, the director is
planar everywhere, from which it follows that the system does not exhibit flow. As the
anchoring changes after t = L,; = 0.5 seconds, flow and director distortion begin to
appear. When ¢t = L, s+ 1/S,f = 1.5 seconds, the director at the upper surface in the
HAN region is fully switched to homeotropic alignment. It is interesting to note that
the introduction of the ramp function eliminates the circulations in the planar regions

whenever L,; <t <1/S,;+ L,;.

Figure 5.2 displays the velocity field for ¢ = [0,0.52,0.60, 1.10, 1.50] seconds, a ramp
slope S,y = 1 s and a higher activity of £ = —100 Pa. At ¢ = 0 (Figure 5.2(a)),
as expected, the flow velocity is zero. At t = 0.52 seconds (Figure 5.1(b)), as the
director at the upper boundary starts to switch away from planar anchoring, we begin
to observe a flow. At ¢ = 0.6 seconds (Figure 5.2(c)), oscillations appear with travelling
waves moving from left to right in the channel. When ¢ = 1.1 seconds (Figure 5.2(d)),
the system continues to oscillate, with larger magnitude velocity but now with the
travelling wave in the opposite direction. At t = 1.5 seconds and beyond (Figure
5.2(e)), the oscillations are fully formed, and the travelling waves continue to move

from right to left.

Given our interest in the HAN region, we observe the director angle in the center of
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Figure 5.1: Plots of the flow velocity for £ = —0.1 Pa and (a) t =0, (b) t = 0.52, (c)
t =1.1 and (d) ¢ = 1.5 seconds. The panels depict streamlines (black lines), white
rods represent the director, black arrows represent the flow direction, and the
background colour reflects the flow velocity.
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Figure 5.2: Plots of the flow velocity for £ = —100 Pa and (a) t = 0, (b) t = 0.52, (c)
t=10.6, (d) t =1.1 and (e) t = 1.5 seconds. The panels depict streamlines (black
lines), white rods represent the director, black arrows represent the flow direction, and
the background colour reflects the flow velocity.
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the channel (z, z) = (0, 0), for ¢ = —100 Pa and S,; = 1 s7', and perform a temporal

frequency analysis.

Figure 5.3 displays the magnitude of the Fourier modes against the temporal frequency
of the director angle. The spectrum shows a clear dominant peak at 18.28 Hz, corre-
sponding to a characteristic oscillation period of approximately T~ 0.055s. This main
timescale reflects the natural oscillation of the director field in response to the balance
between active stresses and elastic restoring forces. Physically, it represents the funda-
mental “heartbeat” of the system’s temporal dynamics, where the director undergoes

coherent periodic reorientations.

g
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Figure 5.3: Plot of magnitude of mode against the temporal frequency of the director
angle in the centre of the channel for £ = —100 Pa, S,y = 1 s7! and ¢ = 2 seconds.

In addition to this dominant peak, smaller peaks are visible at both lower and higher fre-
quencies. The lower-frequency peaks correspond to slower oscillations, with timescales
in the range of 0.1-0.3s. These capture longer modulation effects or envelope oscil-
lations in the signal, likely linked to slow relaxation processes or energy redistribu-
tion across modes. The higher-frequency peaks, by contrast, correspond to shorter
timescales (~ 0.01-0.03s) and are interpreted as higher harmonics of the main oscilla-
tion. Their presence arises from nonlinearities in the active nematic dynamics, which

generate additional frequency content beyond the fundamental mode.

From this analysis, we learn that while the system has a well-defined dominant oscilla-

tion period, the dynamics are not purely periodic. Instead, they are enriched by multiple
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interacting timescales: slower modulations at low frequency and nonlinear harmonics
at higher frequency. This richer temporal structure would be difficult to discern from

the time-domain signal alone but is revealed clearly by the frequency-domain analysis.

To understand the nature of oscillations in the system with respect to changes in ac-
tivity and slope, we perform a spectral frequency analysis using the test function and
assumptions in Section 4.3.3.3. Figures 5.4 and 5.5 show the oscillation frequency in the
Sy s —& parameter space for the left planar region and the HAN region, respectively. We
consider only the left planar region because the results are very similar to those of the
planar right region. For the left planar region, oscillations were observed for & < —80
Pa and all values of the slope, which aligns with the findings of Section 4.3.4.1 (see
Figure 4.13(a)), where oscillations start from ¢ = —80 Pa for [ = w/3 microns. Moving
to the HAN region, part of the parameter region for which there were oscillations in the
left planar region becomes non-oscillatory. Specifically, for S,; > 0.31 s™' and £ ~ —80
Pa, oscillations are not observed in the HAN region, even though they are observed
in the left planar region. High-magnitude frequencies are classified as non-oscillatory

because they are very low-amplitude oscillations.

5.2.2 Quantification of travelling waves

Previously, we observed oscillatory behaviour in the system, characterised by travelling
waves. These waves play a significant role in the transient dynamics of active nematics,
particularly in determining the spatial-temporal evolution of the director orientation.
To gain a deeper understanding of the dynamics, we quantify and analyse the properties

of these travelling waves.

To this end, we further analyse the direction and behaviour of these travelling waves by
plotting the director angle along z = 0 and tracking the locations of the peaks at each
point in time. This approach allows us to visualise the wave propagation and identify

key features such as directionality.

Figure 5.6 displays the director angle at z = 0 as a function of x and ¢, where the black
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Figure 5.4: Plot of spatial frequency for the planar left region. The red dots represent
systems categorised as exhibiting oscillatory flow, and the cyan dots represent systems
with non-oscillatory flow. The black region depicts significant frequency, and the cyan
dots within this black region represent very low-amplitude oscillations that are not
classified as oscillations. The criteria used to distinguish oscillatory from
non-oscillatory flow are defined in Section 4.3.2.4, where a system is classified as
oscillatory if both the peak frequency and magnitude satisty |p;|> Ty and |p,,|> T,
with thresholds Ty = 10° and 7,,, = 0.15.
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Figure 5.5: Plot of spatial frequency in the HAN region. The red dots represent
systems categorised as exhibiting oscillatory flow, and the cyan dots represent systems
with non-oscillatory flow. The black region depicts significant frequency, and the cyan

dots within this black region represent very low-amplitude oscillations that are not
classified as oscillations. The criteria used to distinguish oscillatory from
non-oscillatory flow are defined in Section 4.3.2.4, where a system is classified as
oscillatory if both the peak frequency and magnitude satisty |pf|> Tr and |pp,|> T,
with thresholds Ty = 10° and 7,,, = 0.15.
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circles represent peaks. For ¢ < 0.5 seconds, the upper anchoring condition is # = 0,
and thus the director orientation is uniform, corresponding to no flow. However, for
t > 0.5, director distortion and oscillations emerge, resulting in travelling waves moving
to the right in the planar regions but to the left in most of the HAN region, as indicated
by the black circles. We find that the travelling wave reverses direction at ¢ = 0.575
seconds, as highlighted in Figure 5.6, where the black circles start travelling to the left

throughout the channel.

Our observations can be placed in the broader context of the work of Saintillan and
Shelley [185], who analysed instabilities and pattern formation in suspensions of con-
tractile active particles. Their linear stability analysis revealed that for pushers (£ < 0),
low-wavenumber shear stress fluctuations possess a positive growth rate, while at higher
wavenumbers the fluctuations oscillate and eventually damp. This dispersion relation
predicts the coexistence of exponentially growing long-wave modes and oscillatory finite-
wavelength modes, which naturally leads to the emergence of travelling waves. In our
simulations, the dominant oscillation frequency identified by Fourier analysis (Figure
5.3) can be interpreted as the analogue of these unstable oscillatory modes, selected by

the interplay between active driving, elastic restoring forces, and confinement.

Beyond the linear regime, Saintillan and Shelley demonstrated that initially isotropic
suspensions evolve into states characterised by coherent travelling waves, band forma-
tion, and quasiperiodic oscillations of the shear stress. High-wavenumber modes decay,
but nonlinear mode coupling generates low-wavenumber structures that dominate the
long-time dynamics. This mirrors our finding that the director field undergoes coher-
ent oscillations at a well-defined frequency, enriched by secondary peaks at lower and
higher harmonics. Their simulations further revealed the emergence of concentration
bands that fold, break, and reform, driving quasiperiodic dynamics and oscillations in
the global input power. While our system does not explicitly track particle concentra-
tion, the reversal of wave direction observed at ¢ = 0.575 seconds is consistent with

this broader picture of nonlinear mode interactions and temporal modulation. Impor-
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tantly, their instabilities spontaneously selected low-wavenumber modes permitted by
the system size. Our mixed anchoring geometry modifies the propagation direction of

travelling waves and introduces a reversal not seen in periodic domains.

Thus, our results not only confirm the generality of the shear-stress-driven travelling
waves predicted by Saintillan and Shelley but also extend their framework to confined
active nematics with heterogeneous boundary conditions, revealing new dynamical fea-
tures such as wave reversals.

0.6

Director angle, 6 [rad]

-1 -0.5 0 0.5 1
z [m] %107

Figure 5.6: Plot of the director angle along z = 0, for z and ¢t > 0, £ = —100 Pa and
Srr = 15. The black circles indicate the position of the director angle maxima, and
eventually indicate the direction of the travelling waves, while the background colour
depicts the director angle.

5.3 Transient flow for extensile active nematics

We now examine transient flow dynamics for extensile systems. In Section 4.3.4.2,
we found that the flow transitions from unidirectional to bidirectional as the activity
strength changes. With the introduction of the ramp function, the flow transitions from

bidirectional to unidirectional for higher activity strengths.
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In this section, I extend the simulation time from 2 seconds to 5 seconds for the chosen
activity & = |100| Pa. Here, the active length scale evaluates to I, &~ 1.14 pm, which
is smaller than the channel height, so distortions are strongly confined and well re-
solved. The corresponding active time scale is 7, &~ 0.024 s, meaning the system evolves
extremely rapidly, and the essential response occurs within a fraction of a second. Nev-
ertheless, extending the simulation to 5 seconds is important for assessing the flow
regime. In particular, it allows us to determine whether the bidirectional flow observed
at earlier times persists once the ramp has fully developed, or whether it relaxes into a
unidirectional configuration. Thus, the longer duration provides a more reliable picture

of the stability and persistence of bidirectional flow under strong activity forcing.

To demonstrate the flow transition from BB to UU as the slope of the ramp function
increases, we use the test functions in equations (4.49)—(4.52) to determine if the flow
is unidirectional-unidirectional (UU) or bidirectional-bidirectional (BB). We calculate
the times when the flow transitions between BB and UU, and refer to these times as

transition times.

Figure 5.7 displays the transition times from BB to UU with respect to the slope of the
ramp function and activity parameter, where the numerical values (other than those
indicated by 5) represent the transition times from BB to UU and 5 indicates that
there is no transition for ¢ < 5 seconds. For lower values of the slope, the bidirectional
flow takes longer to transition to unidirectional flow, whereas for higher values of the
slope of the ramp function, the bidirectional flow transitions to unidirectional flow more
quickly. Interestingly, increasing the slope weakens the effects of activity, resulting in

the switch from BB to UU.

Figure 5.8 provides a zoomed-in view of the transition times from bidirectional (BB)
to unidirectional (UU) flow in the region S,y < 1, which corresponds to the most
dynamically interesting regime. Similar to Figure 5.7, the numerical values indicate the
transition times from BB to UU, while the value 5 denotes that no transition occurs

for t < 5 seconds. This zoomed figure highlights that, in this low-slope region, the BB
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Figure 5.7: Plot of transition times from BB to UU in parameter { and S, space.
The red dots represent flow we classify as bidirectional, and the cyan dots represent
non-unidirectional flow, while 5 indicates there are no transitions after ¢ > 5 seconds.

flow generally takes longer to transition to UU flow compared to higher slopes, and
the effect of activity is more pronounced. By focusing on S,; < 1, Figure 5.8 shows
more detail in the region where the interplay between ramp slope and activity strongly

influences the transition dynamics, which provides a clearer picture of the underlying

flow behaviour.

5.4 Conclusions

In this Chapter, we examined the transient response of the system as the director at the
upper boundary of the HAN region transitions from planar to homeotropic anchoring.
We introduced a ramp function to control the boundary condition at the upper wall
and mimic the introduction of an object that we wish to sense. We investigated the
impact of the time for the director to change from planar to homeotropic alignment on

the system’s behaviour for various activity strengths.
Weakly active systems exhibit rectilinear flow with few circulations as the director re-

201



Mathematical Modelling of Active Fluids in a Channel

A
3]

n

N

o o
Transition time from BB to UU [s]

-

I
3

1 10 20 30 40 50 60 70 80 90 100
Activity, & [Pa]

Figure 5.8: Transition times from bidirectional (BB) to unidirectional (UU) flow in
the {5, parameter space. Red dots indicate cases classified as bidirectional flow,
cyan dots indicate non-unidirectional flow, and a value of 5 denotes that no transition
occurs within ¢ > 5 seconds. The figure focuses on the interesting region for S, < 1,
where the transition dynamics are most sensitive to the slope of the ramp function
and the activity parameter.

202



Mathematical Modelling of Active Fluids in a Channel

orients from planar to homeotropic as time evolves. For higher activity strengths, con-
tractile nematics exhibit oscillatory flow characterised by travelling waves, which are
prominent at slow anchoring changes and decrease for faster anchoring changes. The
travelling waves travel to the left, indicating that the flow is in the negative x—direction.
For extensile nematics, we observed bidirectional flow for higher activities but transi-

tioned to unidirectional flow as we increased the slope of the ramp function.

Our results suggest that the flow is sensitive to how fast the anchoring changes at the
top boundary. A slower transition from planar to homeotropic delays the system’s
switch-on time and weakens the effect of activity. In contrast, the steepest slopes lead
to faster switching, ultimately leading to the disappearance of bidirectional behaviour.
These findings underscore the importance of the boundary effects in the HAN region
in controlling the system’s transient response and highlight how activity and boundary

conditions interact to drive complex behaviours in active nematic systems.

Our findings on time-dependent boundary anchoring in active nematics provide a physi-
cal framework for understanding wound healing dynamics. In particular, the sensitivity
of the system to the rate of boundary change parallels how the speed of cytoskeletal re-
modelling and adhesion turnover at wound edges dictates collective migration efficiency.
Slow reorganisation of anchoring in our model leads to delayed and weakened flows, re-
sembling impaired or inefficient wound closure, while rapid anchoring changes drive
strong, directed flows similar to the coordinated migration of epithelial sheets during
efficient repair. Furthermore, the emergence of oscillatory, wave-like flows in contractile
nematics at high activity strengths mirrors the pulsatile actomyosin contractions and
travelling mechanical waves observed experimentally at wound margins. The transition
between bidirectional and unidirectional flows in extensile nematics also reflects how
tissues dynamically switch between competing migration fronts and consolidated direc-
tional closure. Thus, by quantifying how localised, time-dependent boundary changes
propagate into large-scale flows, our study provides mechanistic insight into how wounds

convert local edge dynamics into coherent collective migration, bridging active nematic
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physics and biological tissue repair.
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Chapter 6

Summary and Future Work

6.1 Summary

In this thesis, we have examined active nematics in channels, using the planar and
homeotropic anchoring conditions for the director, along with no-slip and non-penetration
boundary conditions for the velocity field. We adopted the Ericksen-Leslie continuum
theory of active nematics and considered 1D and 2D approximations. The summary of

the key findings is as follows.

In Chapter 3, we examined the activity and orienting field effects on kickbacks and back-
flow. We solved the system analytically and numerically using planar or homeotropic
alignment, both with and without an orienting field. As is well known, the solution
for the planar alignment case in the absence of the orienting field is characterised by a
critical activity. Below this critical activity, the system exhibits a no-flow state with an
undistorted director state, and above which the director is distorted, leading to flow.
When an orienting field is present and £ = 0, the system undergoes a classical Fréeder-
icksz transition once the field strength exceeds a certain threshold. In scenarios where
both activity and the orienting field are present, the system exhibits a feedback mecha-
nism due to the competition between the activity and the orienting field. For relaxation

from an initial homeotropic alignment, the system exhibits a kickback mechanism in the
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absence of an orienting field. However, when an orienting field is applied, the kickback
effect disappears if the field strength exceeds a certain threshold for extensile nematics,

while kickback persists for contractile nematics.

To investigate long-time nonlinear behaviour, we used a finite difference approximation
to solve the one-dimensional model. The nonlinear solutions include director angle and
velocity profiles for various combinations of activity parameter values and orienting
fields. These solutions exhibit uniform, symmetrically distorted, or antisymmetrically
distorted states. We also measured active dissipation and elastic energy. Our results
show that higher orienting field values increased elastic energy, while large activity val-
ues enhanced active dissipation. Active dissipation grows for strongly negative activity,
whereas elastic energy remains low. For the HAN cell, the director stabilises at approx-
imately 1.24 rad in the bulk of the channel for extensile systems. As activity becomes
more negative, a transition occurs, leading to bistability in contractile systems. A key
finding from both the linear and nonlinear analyses is that in a weakly contractile sys-
tem, the director exhibits an overshoot, resulting in complex flow behaviour, which has

implications for sensor design.

In Chapter 4, we examined a two-dimensional study of active nematics in a channel by

considering the effects of changing the activity and geometric effects.

Under the normal flow condition, which mimics a single area of homeotropic anchoring
on the upper substrate, the contractile active nematics are characterised by unidirec-
tional uniform flow and localised circulatory flow for low activity strengths and for all
HAN region widths. For sufficiently high magnitudes of activities, the system is charac-
terised by spatial fluctuation, although there are no time-dependent oscillations in the
system. For extensile active nematics, the system exhibits UU, BU, and BB flow pat-
terns depending on the magnitude of the activity. The notations UU, BB, UB, and BU
represent different flow patterns. UU is used to represent unidirectional flow in both
the planar left and planar right regions, UB is used to represent unidirectional flow

in the planar left region and bidirectional flow in the planar right region, BU is used
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to represent bidirectional flow in the planar left region and unidirectional flow in the
planar right region, and BB is used to represent bidirectional flow in both regions. The
transition from UU to BB is largely determined by the value of the activity strengths,

while the BU solution arises from the changes to the width of the HAN region.

For periodic boundary conditions which mimic a periodic array of homeotropic align-
ments, we examined how multiple HAN regions interact with each other. The findings
are reminiscent of findings using the normal flow conditions, except that BU solutions
no longer exist. From the flux measurements, we observed two distinct critical activities
within the bidirectional solution regime. We also examined the effect of the elastic con-
stant deformation on the director orientation and flow. Increasing the ratio of the splay
and bend elastic constants, the flux changes from positive to negative for contractile
nematics and remains positive for extensile active nematics. The key finding in this
Chapter is that local disturbances in the director orientation influence the global flow

in the system.

Chapter 5 explored two-dimensional transient dynamics in the HAN state formation by
controlling the top boundary at the center of the channel. For contractile nematics, the
system exhibits circulatory flow characterised by director distortion in weakly active
nematics and oscillatory flow with travelling waves at higher activity strengths. In ex-
tensile nematics, the behaviour is similar to that of contractile nematics at low activity
strengths. The results showed that flow dynamics are highly sensitive to the rate of
anchoring change at the top boundary. A slower transition from planar to homeotropic
anchoring delays the system’s switch-on time and weakens the effect of activity. In con-
trast, a steeper transition leads to faster switching, ultimately eliminating bidirectional

behaviour.

In conclusion, we have shown that local director distortions generate global flow. This
finding is crucial for sensing applications and provides valuable insights into controlling
the behaviour of active fluids. Additionally, it improves our understanding of biological

processes such as biofilm formation and morphogenesis.
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6.2 Future work

Building on the findings of this thesis, several directions can be pursued to extend and
deepen the understanding of active nematic systems. In this work, we have focused
exclusively on wet active fluids with nematic symmetry, assuming constant concentra-
tion, low Reynolds number, no defects, perfectly strong anchoring, and short simulation
times. While these assumptions allow for analytical and numerical tractability, they
also impose limitations on the generality of the results. Below, we outline potential

extensions and critically discuss their motivations and significance.

6.2.1 Extensions to other active matter systems

One natural extension is to consider active dry fluids, such as schools of fish [52] and
vibrated granular particles [213], where momentum is dissipated primarily through fric-
tion with the surrounding medium or substrate, rather than through viscous stresses in
a continuous fluid. Incorporating dry active matter would allow exploration of collective
motion in regimes where hydrodynamics plays a minor role, broadening the applicabil-
ity of this framework to a wider class of active systems. This is particularly interesting
because it can reveal how frictional damping, rather than viscosity, influences pattern

formation, defect dynamics, and flow instabilities.

Another extension involves relaxing the assumption of constant concentration by in-
cluding dynamic concentration fields and particle interactions. This can be achieved
by introducing stochastic partial differential equations, such as Fokker-Planck equa-
tions [125,170], to account for noise and fluctuations in particle positions and orienta-
tions. The motivation here is to capture emergent phenomena, such as clustering or
spontaneous flow instabilities, that arise due to concentration heterogeneities, which

are absent in the current constant-concentration framework.
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6.2.2 Higher-dimensional and complex geometries

In Chapter 3, we studied kickback and backflow in a one-dimensional channel with
splay and bend geometries. Extending these analyses to two or three dimensions would
provide a more realistic representation of experimental systems, where director orien-
tations and flow patterns are not confined to a single plane. Specifically, incorporating
twist geometries, with the twist elastic constant Ky in the free energy, would allow us
to study how three-dimensional distortions influence backflow dynamics. This is signif-
icant because many real-world nematic systems exhibit complex director deformations

that cannot be captured in one-dimensional models.

Similarly, the HAN problem can be extended to include the effect of an external ori-
enting field. Investigating how this field modifies the HAN state could provide insights
into controlling director alignment and flow patterns in devices, which is crucial for

applications in active materials and microfluidics.

6.2.3 Geometric and activity-driven effects

Chapter 4 considered two-dimensional geometries and the effects of activity on director

and flow patterns. Several extensions are particularly promising:

[. Three-dimensional simulations: Extending the model to three dimensions
and to a Q-tensor formulation would allow for the study of defect lines, complex
flow structures, and interactions between multiple defects. This is motivated by
experimental observations that active nematics in confined geometries often ex-
hibit three-dimensional structures that cannot be captured in two dimensions.
Including 3D effects is therefore essential for quantitative comparisons with ex-

periments.

II. Designing responsive materials and sensors: Experimental studies suggest
that active nematics are highly sensitive to external stimuli such as pressure, elec-

trostatic and light. Exploring this sensitivity can lead to the design of activity-
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I1I.

driven sensors, where small changes in the environment trigger measurable re-
sponses in the nematic configuration. This is an interesting avenue because it

bridges fundamental physics with potential technological applications.

Applications to biophysical systems: Active nematic models can be applied
to cytoskeletal networks, tissue dynamics, or biofilm formations. Extending the
model to capture the mechanical and dynamical properties of these biological
systems would enhance its relevance and allow for predictions about processes
such as cell migration, division, and collective motion. This is particularly com-
pelling because it connects soft matter physics with biological function, offering

opportunities for interdisciplinary research.

6.2.4 Transient dynamics and switch-on/off states

In Chapter 5, we focused on the transient dynamics of the switch-on state, where the

director transitions from planar to homeotropic alignment. A natural extension is to

study the switch-off scenario, where the director returns from homeotropic to planar

alignment. Understanding both transitions is crucial for potential sensor applications,

as real devices must operate under repeated cycles of alignment changes.

6.2.5 Critical assumptions and limitations

Throughout this thesis, several simplifying assumptions were made for analytical and

computational tractability. These include:

L.

IL.

Low-Reynolds number: Neglecting inertia is reasonable for microfluidic sys-
tems, but at higher flow speeds or larger scales, inertial effects could modify defect

motion and flow patterns.

No defects: The absence of defects simplifies analysis, but in practice, defects
often dominate the dynamics of active nematics. Including defects in simulations

would provide a more realistic description.
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ITI. Constant scalar order parameter: Relaxing this assumption could capture

variations in nematic order due to activity, confinement, or temperature gradients.

IV. Perfectly strong anchoring: Real surfaces may exhibit weak or patterned

anchoring, influencing director alignment and flow near boundaries.

V. Absence of noise: Including thermal or active fluctuations would make the
model more robust and allow exploration of stochastic effects on defect nucleation

and collective motion.

Addressing these limitations in future work would strengthen the connection between
simulations, theory, and experiments, and enhance the predictive power of active ne-

matic models.

211



Appendices

A Derivation of the 2D versions of the elastic free
energy and dissipation function

In this section, we derive the Frank-Oseen elastic free energy, wr (equation (4.9)) in

(4.2.1) and the dissipation function (equation (4.10)) as follows.

To derive the Frank-Oseen elastic free energy, we substitute equations (4.1) and (4.2)
into equation (2.35), and calculate each term on the right-hand side. Simplifying, we

obtain the following equations:

(n;;)? = 02sin® § — 2sin 0 cos 09,0, + 0% cos® 6, (A.1)
N NG j = Gi sin?f — Qi cos? 0 + «93 sin? 0 + 03 cos® 0, (A.2)
n; in;; = 02 sin® 0 — 26 cos 00,0, + 02 cos* 0, (A.3)

NN NG | = 02 sin? 6 cos 0% + Qg cos* 0 + 20,0, sin® 0 cos 0

+ 20,0, cos® § cos 0 + 0% sin” § cos® O + 62 sin* 6. (A.4)

Using equations (A.1)-(A.4) into equation (2.35) and simplifying, we obtain the elastic
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free energy as
1
wp = 3 9323 (K1 sin? 0 + K cos? 0) + 93 (K1 cos? 0 + K sin® 9)

+ (K3 — K1) sin(20)8,0. | . (A.5)

In a similar way, we derive the rate of dissipation in Subsection (4.2.1). To achieve
this, we first compute the rate of strain tensor (symmetry velocity tensor): A;; =
1 (v;j + v;,), and vorticity tensor (anti-symmetry velocity tensor): Wi; = 1 (v;; — v;,).
Using equations (4.1) and (4.9), we get the components of the rate of strain tensor and

vorticity tensor, given explicitly as

Al = Uy, (A-G)
1
Ay = 5 (u, +vg), (A7)
1
Aoy = Ayp = B (us +vg), (A.8)
Agy = v, (A.9)
Az = Aoz = A3z =0, (A.10)
and

Wit = Wig = Wiy = Was = Wiz =0, (A.11)

1
W12 = 5 (uz - U:z:) ) (A12>

1
W21 = 5 (Ux — UZ) . (A13)

The co-rotational time flux: N; = n; — Win,, 4,7 = 1,2,3, where 7, is the material
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derivatives. So that

Ny =n; — = (u, — v;)sin#,
Ny =n; — 3 (v — u,) cosb,

N3:07

where n, = sin 00 and T, = COS 06’, and 0 = 0; + ub, + v0,.

Next, we compute each term on the left hand side of equation (2.55). So that

(niAijnj)Q = cos® Qu? + 2 cos® 0 sin Qv u, + 2 cos® O sin Qu,u, + sin? Gv?
+ 2 cos? 0 sin? Ou,v, + cos? 6 sin? «91}5 + 2 cos? O sin? Qv,u,

+ 2 cos O sin® Qv v, + cos? 0 sin? Quz + 2 cos 0 sin® Ou,v,,
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1 1 1
N;A;jn; =u, cosOn, — guxuz cosfsinf + §uzvcc cos fsinf + 5 cos Bu, n,
- 1cos 0%0? + 1Cos Ou,n, + 1Cos 0%u? + 1sin v, ng + 1sin 0%0?
4 T2 S| 202 Ty r

1 1
+ 3 sin Qu, 1, — 1 sin 921@ +v,8in0n, — —v, sin 6 cos Hv,,

1
+ §vzuz sin 6 cos 0, (A.18)
2 Lo Lo, o
AijAi; =u; + 5V + (vz) u, + U + vZ, (A.19)

1
n;AijAjpng = cos® Ou? + cos Ou, (v, + u,) sin 6 + 3 cos? 0 (vy 4 us)?

1
+ cos @ (v, + u,) v, sin @ + 3 sin 0 (v, + u.)” + sin? 02, (A.20)
.2 . . . . 1 .92 2 1 . 9
N;N; = n; — sinQu,n, + sin v, n, + 1 sin” Qu; — 3 sin” Qu,v,
1 1
+ 1 sin? Hvi + ni — cos Bvyn, + cosOu,n, + 1 cos? Qvi

1 1
—3 cos® Qv u, + 1 cos® Ou?, (A.21)

Ajining = cos? Qug + cos 0 (v, + ) sin 0 + sin? Gu,. (A.22)
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Summing all the terms, we get

D =a; [ux< (—u, —v,)sin @ cosfsin® 0 4 (u, + v,)sin 6 cos § — v, sin* § + sin? sz>

+ u, ( sin 6 cos A sin® Ov, — v, sin* 6 + sin? Hvz) + sin 6 cos 6 sin? Gv, v,

1 1 1 1 1 1 1
+ o ux< — Zuz + Z—Lvm — 5915) sin 6 cos 6 + u, <va + 1 sin 6 cos fv, — 3 sin? 00, — Z&)
1 1 3 1 1
+ vx< ~ 1 sin 6 cos v, — 3 sin® 06, + Zet) + 3 sin 6 cos fv,0; — 56’?]
1 1 1 1 1 1 3
+ asg ux< — Zuz + va — 5915) sin @ cos 6 + uz< - va + 1 sin @ cos fv, — 3 sin? 06, + Z@)

1 1 1 1 1
+ vx< — —sinfcosfv, — 5 sin® 06, — Z@) + 3 sin 0 cos 6v.0; + 56’?

e~

3 1 1 1 1 1 1
+ as ux<—u2 + —v, + 59,5) sinf cosf + u, <— + 1 sin 6 cos Qv, + 5 sin? 06, — Z@)

1] 1%

3 1 1 1
+ v, (— sin 6 cos v, + 5 sin? 00, — th) —3 sin 6 cos szﬁt]

N

1 3 1 1 3 1 1
+ ag | Uy (—uz + —v, — —Ht) sinf cosf + u, <—UI + 1 sin 6 cos fv, — 3 sin? 06, + Z%)

4 4 2 4

—_

1 1 1
+ v, (— sin @ cos Bv, — 3 sin’ 06, + 19t> + 3 sin 6 cos Hszt]

W

1 1 1
+ 3 et + (§a1 cos* 0 + 30 + 5(045 + ag) cos” 9) u?
1
+ (5 [ + (a3 + ag) cos® 0 + sin® 6 (a5 — )] )uz
1
+ (5 [044 + (o — 3) cos? O + (a5 + ay) sin? 9] + ay sin? @ cos? 6) v2
Lo 4 1 1 20,2
+ <—a1 sin® 0 4+ —ay + = (a5 + ag) sin 9) s
2 2 2
+¢ [ cos® O u, + sin @ cos O(v, + u,) + sin® 0 vy} : (A.23)
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where

91(0) = = [ + (a3 + ag) cos®  + sin* 0 (a5 — ao)| + ay sin® 0 cos” 6,

1

92(0) = = [ + (o6 — 3) cos® @ + (a5 + az) sin® 0] + vy sin® 0 cos” 6,

2

1 1 1
g3(0) = =y cos* 0+ —ay + = (a5 + ) cos? 0,

2 2

1 1 1
94(0) = —aysin* 0+ —ay + =

2 2

2

2

(a5 + ) sin® 6.

(A.24)
(A.25)
(A.26)

(A.27)

B Splay/bend scaling ratio and their corresponding

splay and bend elastic constants

Here we present the values of the splay/bend scaling ratio, k = aK; /K3, and their

corresponding elastic constants, K; and K3 shown in Figure 4.17 as follows.

K

K, (N)

K3 (N)

0.03
0.07
0.11
0.13
0.40
0.80
0.98
1.00
1.04
1.10
1.22
1.23
1.35
2.00
4.80
7.20
10.40
13.20
14.60
16.00

4.3062 x 10~
8.9143 x 1073
1.3324 x 10712
1.5404 x 1072
3.8571 x 10712
6.0000 x 102
6.6742 x 1072
6.7500 x 1072
6.8934 x 1072
7.0782 x 10712
7.4271 x 10712
7.4372 x 10712
7.7580 x 10712
9.0000 x 1072
1.1172 x 10~
1.1854 x 10~
1.2316 x 10~
1.2549 x 10~
1.2635 x 10~
1.2706 x 10~

1.3457 x 10~ 1
1.2609 x 10~
1.2168 x 10~ 1
1.1960 x 10~
9.6429 x 10712
7.5000 x 1012
6.8258 x 10712
6.7500 x 10712
6.6066 x 10~12
6.4218 x 10712
6.0729 x 1012
6.0628 x 10712
5.7420 x 10712
4.5000 x 1012
2.3276 x 10712
1.6463 x 10712
1.1842 x 1012
9.5070 x 1013
8.6538 x 10713
7.9412 x 10713

Table 6: Table of splay/bend scaling ratio, x and their corresponding splay and bend
elastic constants.
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