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Abstract
Active fluids, such as active nematics, consist of self-driven units that convert energy

into directed motion. Examples include suspensions of cytoskeletal filaments, motor

proteins, bacteria, schools of fish, cellular layers, and cell tissues. This thesis presents

a theoretical and computational study of active nematics using an adapted Ericksen-

Leslie dynamical theory, with a focus on understanding how activity, external fields, and

geometry influence flow and director patterns in confined systems. In one dimension, we

investigate the effects of an orienting field on extensile and contractile nematics under

planar and homeotropic anchoring. Extensile systems with planar anchoring exhibit

minimal director distortion, whereas contractile systems display significant distortion

when the orienting field exceeds a threshold from the initial homeotropic alignment. A

kickback effect is observed in contractile nematics, which diminishes in extensile systems

as activity increases. Nonlinear analyses reveal uniform, symmetric, and antisymmet-

ric states, with activity enhancing flow and inducing bistability in contractile systems.

In two-dimensional channels, we analyse the influence of activity and non-constant

boundary conditions. Under inlet/outlet normal flow conditions, low activities pro-

duce localised flows, while higher activities generate spatial fluctuations in contractile

systems. Extensile nematics at high activity exhibit transitions from unidirectional to

bidirectional flow. For inlet/outlet periodic conditions, the system behaviour is similar

to that under normal flow conditions. Variation in the splay-to-bend elastic constant ra-

tio leads to transitions from positive to negative flux, demonstrating that active stresses

can dominate elastic forces and produce unidirectional flow with positive flux for ex-

tensile systems. We also explore time-dependent boundary conditions as a conceptual

demonstration of object sensing, showing that the speed of anchoring transitions af-
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fects flow patterns: slower transitions delay system activation, while faster transitions

reduce bidirectional flows. These results indicate that small local disturbances can pro-

duce large-scale flows. In a biological context, such as wound healing, the tissue edge

acts as a dynamic boundary where cells actively migrate and reorganise. Our findings

on time-dependent boundary anchoring and activity-driven flows suggest that localised

changes at wound margins can trigger large-scale tissue flows, mimicking the collective

migration observed during wound closure. Overall, this work provides a theoretical

framework for understanding how activity and confinement can be harnessed in sys-

tems that respond sensitively to local perturbations, highlighting potential applications

for active-nematic-based sensing.
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Chapter 1

Introduction: Passive and Active

Liquid Crystals

Active fluids are systems composed of self-driven units that consume and convert energy

into directed motion [42, 45, 76, 187, 236]. Typical examples of active fluids include a

suspension of cytoskeletal filaments [126] and motor protein [78, 188, 211], as well as

cellular layers and cell tissues [44,255]. In this thesis, we focus on active nematics, which

are a type of active fluid characterised by nematic symmetry, which may arise from the

elongated shape of the self-driven units similar to the rod-like molecules in nematic

liquid crystals or an abstract orientational symmetry exhibited by the constituents

[40,211].

The behaviour and flow patterns of active fluids, particularly active nematics, have

been a growing area of interest in the active matter physics community. Recently,

research has also focused on their practical applications, such as microfluidic pumps

[230], biomedical applications related to tumour dynamics [44], the spread of bacterial

biofilms [144, 251], embedding responsive control systems within biomimetic materials

[80] and the growth of bacterial biofilms [79], further expanding the scope of the field.

Studies have shown that active fluids exhibit spontaneous flows and vortices [147,197],

along with backflow resulting from internal activity in active nematics [60, 183]. Var-
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ious flow patterns, ranging from steady flow to turbulent flow, have been observed

in a confined infinitely long channel [41, 197], depending on the activity strength or

channel width and the study of confined active nematics has potential applications in

morphogenesis, biofilm formation, and wound healing/closure [6, 69,144].

Controlling the behaviour of active fluids is crucial to their potential applications in

microfluidic devices and energy harvesting [211], yet achieving effective control has

proven to be challenging. One well-established method for attaining this control is by

confinement [43,77,248], and a promising application of active nematics in a confinement

is in the design of sensors, since small changes in alignment or external forces can lead

to significant effects, such as flow, in the active system. However, the effect of applied

orienting fields, such as electric and magnetic fields, on the behaviour of these systems,

as well as the influence of local disturbances on flow, remains an open question.

To address these gaps, we develop a theoretical and computational study of active

nematics using a modified form of the Ericksen-Leslie equations. Our work aims to

deepen the understanding of active nematics, which will provide insights into potential

future devices such as sensors and understanding of biological processes such as biofilm

formations and morphogenesis.

A key finding of our study is that local disturbances drive global flow in active nematic

systems. This is demonstrated in the two-dimensional models, where localised distur-

bances at the center of a channel induce global flow. Similarly, in the 1D model, a high

orienting field causes a significant director orientation. This behaviour is important

for sensing applications, as small alignment changes can lead to large-scale flow and

director distortion.

The thesis is organised as follows. In the remainder of Chapter 1, we begin by re-

viewing the historical background of liquid crystals, including their synthesis, phase

formation, and mathematical foundations. Particular attention is given to the classi-

cal classification of liquid crystals into nematic, smectic, and cholesteric phases, with

emphasis on nematic liquid crystals. This emphasis is motivated by our adoption of
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the Ericksen–Leslie framework for modelling active nematics, as well as the capacity

of nematic liquid crystals to align and flow under external fields [202], in addition to

their wide range of technological applications [23, 82, 145, 146, 239]. We then provide

an overview of active fluids, their classifications based on damping and symmetry, and

their behaviour in low-Reynolds-number regimes. This naturally leads to a discussion

of hydrodynamic instabilities in active fluids. We subsequently focus on active nematics

as a class of wet active systems, presenting their hydrodynamic theory and governing

equations, including active length and time scales. Special attention is given to kickback

and backflow mechanisms, as well as the Fréedericksz transition and the associated D-

and S-mode instabilities. The chapter concludes with a review of active nematics under

confinement, which is directly relevant to the present study, followed by an overview of

experimental observations of active fluids. Finally, we highlight applications in sensing

technologies, including electrorheological and magnetorheological sensors, liquid crystal

biosensors, and efforts toward the development of active nematic-based sensing devices.

In Chapter 2, we review the mathematical theories centered around the Ericksen-Leslie

framework, including the formulation of Frank–Oseen elastic energy and the Ericksen-

Leslie dynamic theory of nematic liquid crystals, which forms the underlying theory of

our study. This formulation is based on the conservation laws of mass, linear momen-

tum, and angular momentum. Recognising the importance of activity in these systems,

we also derive the activity term, which introduces an extra stress term into the original

Ericksen-Leslie equations for passive nematics. We conclude the chapter by discussing

anchoring conditions, focusing on planar, homeotropic anchoring and the hybrid aligned

(HAN) nematic cell, as well as the no-slip and no-penetration flow boundary conditions,

which will be used in Chapters 3, 4, and 5.

Chapters 1 and 2 present a comprehensive literature review that establishes the founda-

tional context for this research, highlighting key theories, methodologies, and previous

findings relevant to the study, while the remaining chapters focus on our original con-

tributions. To achieve the first objective of this research: examining the effect of the

orienting field on the behaviour of active nematics, Chapter 3 presents a linear analysis
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using planar and homeotropic alignments, as well as a nonlinear analysis, both under

the influence of an orienting field. We begin by linearising the governing equations

around a uniform director to understand early-time dynamics, followed by solving the

nonlinear analysis for longer times using a numerical approximation. We characterise

the solution based on activity strength and orienting field. Since mixed boundary con-

ditions will later be used, we conclude Chapter 3 by investigating the system in a simple

hybrid-aligned nematic (HAN) cell without an orienting field.

Chapter 4 presents a two-dimensional model of active nematics in a channel, considering

the effects of activity strength and channel width. To achieve the second objective of

this research: investigating the system using planar and homeotropic alignments, we

first examine the system under inlet/outlet normal flow conditions, which mimics a

single disturbance in anchoring, and characterises the solution by varying the activity

strength while fixing the channel width. We then investigate the system by varying both

activity and channel width. Next, we consider the system under periodic conditions,

inlet/outlet flow, which mimics a periodic disturbance in anchorings, where we also

examine the effect of the elastic constant ratio on director orientation and flow.

Chapter 5 focuses on the two-dimensional transient dynamics of HAN state formation,

which aligns with our third objective: understanding the transient dynamics of HAN

state formation. While Chapters 3 and 4 applied static boundary conditions on the top

solid wall, Chapter 5 introduces dynamic boundary conditions, enabling control of the

top boundary and allowing the system to switch from planar to homeotropic alignment.

Chapter 6 provides a summary of each chapter and offers suggestions for further work,

including the consideration of the three-dimensional form of this model and conducting

experimental validation for sensor design.

4



Mathematical Modelling of Active Fluids in a Channel

1.1 Historical background of liquid crystals

In this section, we provide an overview of the historical background of liquid crystals

and their traditional classifications, which include nematic, smectic, and cholesteric

phases. While we discuss these three phases, our primary focus for the rest of the thesis

will be on nematic liquid crystals, the most relevant phase for active fluids.

Understanding the origins of liquid crystal helps us appreciate how this state of matter

was discovered and how its study evolved to become essential in both physics and

biology. Instead of a simple chronology of names and dates, this history reveals key

conceptual advances and how early research laid the ground for modern studies of active

nematics.

We divide the historical background into two aspects: the chemistry of liquid crys-

tals, focusing on their synthesis, and the mathematical foundation, beginning with the

Frank–Oseen elastic energy and ending with Ericksen-Leslie theory. These theories form

the mathematical basis of this thesis and will be discussed in detail in Chapter 2.

1.1.1 Synthesis of liquid crystals and their phase formation

Liquid crystals (LCs) are materials that possess intermediate phases of matter between

a crystalline solid and an isotropic liquid [25,35]. These intermediate phases are referred

to as mesomorphic phases. This means that LCs exhibit fluidity like that of viscous

fluids, which allows their molecules to flow or rearrange. At the same time, they retain

certain properties of solid crystals, such as specific optical behaviours [202]. LCs are also

anisotropic, meaning their physical properties vary depending on orientation [166,202].

Some notable properties of liquid crystals include electric anisotropy [8, 29], magnetic

anisotropy [180], anisotropic elasticity, and anisotropic viscosity [166].

The early history begins with Virchow in 1854 [233], who observed an unusual liquid

state formed by dissolving myelin in water. Myelin–a fatty substance found in nerve

cells, which exhibits intermediate phase properties between solid and liquid. This phase
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of matter displayed double refraction (birefringence), a phenomenon where light splits

into two rays with different velocities, indicating an anisotropic internal structure. In

1857, Mettenheimer [132] further studied this optical behaviour and documented the

unique properties of myelin suspensions under polarised light.

The birefringence of myelin was one of the first experimental pieces of evidence that

certain fluids can have directional order. These early studies linked biology with the

physics of soft matter, suggesting that the anisotropic phases were not just found as

curiosities but could also be observed in living tissues.

Following this, in 1861, Valentin [228] extended these observations by investigating

plant and animal tissues under polarised light microscopy, revealing that such lyotropic

liquid crystal phases (formed by dissolving amphiphilic molecules in solvents like water)

may have been observed before the known thermotropic phases (formed by temperature

changes). This highlights the biological relevance of liquid crystals and foreshadows the

role of anisotropic ordering in cellular and tissue structures.

The formal discovery of liquid crystals is credited to Friedrich in 1888 [180], who studied

cholesterol derivatives and observed two distinct melting points: a cloudy intermediate

phase followed by a clear liquid phase. This “mesophase” showed both fluidity and

crystalline optical properties, which led Lehmann to describe these materials as “flowing

crystals” in 1889 [112]. These discoveries established liquid crystals as a new phase of

matter, distinct from solids and isotropic liquids.

In 1911, Manguin studied the optical properties of liquid crystals. He aligned a liquid

crystal by rubbing glass with paper and observed that light polarisation followed the

nematic director [131]. Hence, the idea that liquid crystals can influence light was

established. By 1922 [56], Friedel introduced the foundational concept of “orientational

order” and classified liquid crystals into nematic, smectic, and cholesteric phases. This

classification describes how molecules organise in different patterns and how defects

and external fields affect their behaviour, which remains central to understanding liquid

crystals and active nematics today.
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The ability to control molecular orientation in liquid crystals using external fields, such

as magnetic or electric fields [25, 35, 55, 89, 104, 254], has been a major focus since

the early 20th century, exemplified by the Fréedericksz transition observed in 1933

[54], where an applied field reorients the average orientation of LC molecules, above a

threshold strength. Such control mechanisms are crucial in applications ranging from

displays to modern research on active nematics.

More recently, Guillamat et al. [71] demonstrated how magnetic fields can control active

nematic turbulence, using a mixture of biologically relevant microtubule gels coupled

to passive thermotropic liquid crystals. The study shows that a magnetic field can in-

directly transform the chaotic “active turbulence” (a chaotic, self-sustained flow regime

observed in active nematic systems at high activity, characterised by the spontaneous

creation, motion, and annihilation of topological defects and vortices on mesoscopic

scales) of an active nematic into ordered laminar flows by coupling it to a passive

thermotropic liquid crystal: 4’-Octyl-4-biphenylcarbonitrile (8CB) that responds to

magnetic alignment. When the 8CB is cooled into its smectic-A phase under a uni-

form magnetic field, its layered “bookshelf” structure orients perpendicular to the field,

creating an anisotropic interfacial resistance that channels active flows into straight,

antiparallel lanes. This alignment is reversible and reconfigurable, which, when heated

above the smectic-A transition, restores turbulence, while rotating the magnetic field

rotates the layers. This represents a direct link from liquid crystal to the current interest

in active nematics, which are non-equilibrium systems driven by internal energy con-

sumption. Extending this concept to sensing, an object placed above the active nematic

layer could locally perturb the surface anchoring, for example, through an electrostatic

effect, applied force, or torque, which would reorient the director locally. In an active

nematic, this small local perturbation can then be amplified by activity-driven flows

to produce a global, detectable response, effectively translating a microscopic stimulus

into a macroscopic signal.

In our study, we will consider the effect of an external field, such as a magnetic field,
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on the behaviour of the active nematics.

Beyond these historical accounts, there are many other significant developments in the

chemical aspects of liquid crystals. For a more comprehensive review of these histories,

refer to [20, 95, 166]. In the next section, we will shift our focus to the historical

background of the mathematical theories that have shaped our understanding of liquid

crystals, which lay a foundation for their theoretical modelling and applications.

1.1.2 Mathematical foundations of liquid crystals

The mathematical understanding of liquid crystals has evolved through key theoreti-

cal breakthroughs, which together provide the foundation for modelling their complex

behaviours. This section outlines the major developments relevant to nematic liquid

crystals and active nematics, which emphasise the physical insights each theory con-

tributed.

The notion of orientational order introduced by Friedel in the early 20th century inspired

the first mathematical description of nematic liquid crystals by Oseen in 1929 [148]. He

formulated how anisotropic molecules tend to align along a common direction, called the

director, capturing the essential ordered structure of nematics. Building on this, in 1933,

Fréedericksz and Zolina [55], experimentally discovered the “Fréedericksz transition”, a

fundamental phenomenon where applying an external electric or magnetic field above

a threshold causes the liquid crystal molecules to reorient. This demonstrated how

external fields can dynamically control molecular alignment, which is crucial to both

applications like Liquid Crystal Displays (LCDs) and current active nematic research.

Around the same time, Zöcher [260], further explored magnetic field effects, which

deepens the understanding of how fields influence liquid crystal properties.

While early theories treated nematics as continuous media, a molecular-level expla-

nation was needed to connect microscopic interactions with macroscopic behaviour.

In 1959, Maier and Saupe [124] proposed a molecular theory describing how correla-

tions and flexibility between rod-like molecules determine the nematic order parameter,
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quantifying the degree of alignment. Their theory also explained the first-order phase

transition from isotropic (disordered) to nematic (ordered) phases, clarifying the molec-

ular origins of liquid crystal behaviour.

A crucial advance came in the 1960s with the development of continuum hydrodynamic

theories to describe how nematic liquid crystals flow and deform under stress. Ericksen,

in 1962 [47], introduced a hydrostatic theory that accounted for elastic deformations

and orientational order. Building on this, Leslie, [113], formulated a dynamical theory

incorporating viscous and elastic effects, resulting in the well-known Ericksen–Leslie

theory. This framework successfully couples flow and director dynamics, enabling ac-

curate predictions of nematic behaviours under various conditions, and is foundational

to many applications and further research.

Active nematics differ from traditional liquid crystals because their constituent par-

ticles consume energy to generate internal stresses and flows, driving the system out

of equilibrium [45, 176, 212, 236]. In this thesis, we adopt an active nematic extension

of the Ericksen–Leslie theory, where an additional stress term captures these active

contributions. This extension allows us to model spontaneous flows, instabilities, and

complex dynamics observed in biological and synthetic active nematic systems.

Building on this foundational work, we will explore the effect of external fields, particu-

larly magnetic fields, on the behaviour of active nematics. This includes understanding

how such fields interact with the internal dynamics of active nematics. Chapter 3 will

present a detailed discussion of these effects and their implications.

1.1.3 Classification of liquid crystals

Liquid crystals exhibit several distinct phases characterised by varying degrees of molec-

ular order. While this thesis focuses primarily on the nematic phase due to its funda-

mental role in modelling active nematics, as well as its remarkable ability to undergo

alignment and flow behaviours [202] under external fields, as well as their applica-

tions in force sensors [85], pressure sensors [155], light sensors [82, 239], chemical sen-

9



Mathematical Modelling of Active Fluids in a Channel

sors [23, 145, 146] and emerging potential application in designing sensors. However, a

brief overview of other traditional phases, such as smectic and cholesteric, is provided

for context and completeness. However, smectic and cholesteric phases are not directly

involved in the models or analyses presented in this thesis.

Liquid crystals are classified using either their molecular structure or their phase struc-

ture. The molecular structure is the geometrical representation of liquid crystals in

terms of the constituent mesogenic molecules. The mesogenic molecules can include

disk-shaped, lath-shaped, and rod-shaped molecules. The most common form of liq-

uid crystal is derived from rod-shaped molecules, which are termed calamitic from the

Greek word “calamos”, which means “rod”. Liquid crystal phases can also be classified

by their dependence on the temperature and concentration in the solvent [20,25]. The

phase structure is then characterised by the conformation and intermolecular interac-

tion of the molecules, and the arrangements of these include the nematic, smectic and

cholesteric phases as shown in Figure 1.1.

(a) nematic (b) smectic A (c) smectic C (d) cholesteric

Figure 1.1: Sketches of liquid crystal phases, where the blue ellipsoids represent
molecules.

1.1.3.1 Nematic liquid crystals

The nematic phase has long-range orientational order but no positional order [57,67,96].

In the nematic phase, the long axes of the constituent molecules tend to align parallel

to a preferred direction, often called the anisotropic axis. In modelling nematic liquid

crystals, a unit vector n, called the director, is used to describe the average direction

of the long molecular axes of all molecules in the liquid crystal. While maintaining

this alignment on average, the molecules can still translate freely [202]. Although
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individual nematogen molecules can be polar, with a permanent dipole moment, the

nematic phase as a whole is apolar. This is because the molecules tend to align along

a common axis but with no preferred head or tail direction, resulting in a head-to-

tail symmetry. Consequently, the macroscopic order is invariant under inversion of the

director (that is, n → n), so the nematic phase lacks large-scale polarity [202]. Because

the relevant molecular axis is rotationally symmetric, the only distinguished direction

in the nematic phase is this anisotropic axis defined by n. Hence, the nematic phase is

uniaxial. The stability of this phase and electro-optic anisotropy make it very useful in

LCDs [149,179].

n

Figure 1.2: Schematic depicting an idealised nematic liquid crystal, where molecules
align with the director n, demonstrating orientational order [141].

1.1.3.2 Smectic liquid crystals

Unlike nematics, the smectic phase has both long-range orientational order and a one-

dimensional positional order [25,150]. Smectics are usually found at a lower temperature

than nematic liquid crystals. There are many subclassifications of smectic liquid crys-

tals, but the most important are smectic A and C [8]. The smectic A phase consists of

classical rod-shaped molecules that align along the layer normal, whereas the smectic

C phase features a tilted molecular arrangement [25,35].
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1.1.3.3 Cholesteric liquid crystals

Cholesteric liquid crystals, also called “chiral nematics”, involve a nematic alignment of

molecules, which varies throughout the medium. They differ from the nematic phase

in that the director varies in direction throughout the medium in a regular way [7].

The structure of the cholesteric liquid crystals defines a distance (called the pitch of

the cholesteric) measured along an axis over which the director rotates [7, 30, 38]. It

is the molecular chirality that induces an azimuthal twist from one layer to the next,

producing this spiral twist of the molecules along an axis.

Having introduced the concept of classical liquid crystals and their discovery, from a

chemical aspect to developing mathematical theories, we now shift our focus to active

fluids. The remainder of this chapter will cover active fluids, beginning with a general

overview before and concluding with active nematics, which is our primary area of

interest.

1.2 Active fluids

This section covers active fluids and their classification based on symmetry properties

and damping mechanism, distinguishing between “wet” and “dry” active systems. Be-

fore the classification, we will briefly introduce the concept of active fluids and their

hydrodynamic properties. In this thesis, we specifically focus on wet active systems,

with particular emphasis on active nematic liquid crystals.

Active fluids are composed of self-driven elongated units and exhibit collective be-

haviour due to the interplay between activity and liquid crystalline order, making an

interesting study of nonequilibrium dynamics [61, 126, 243, 252, 257]. These self-driven

units consume and convert energy into directed motion. Some examples of active fluids

include schools of fish [52], flocks of birds [191], bacteria [157], motor proteins and in-

sects or animals [76] as shown in Figure 1.3. Another class of active fluids is active gels,

which include cytoskeletal networks [76, 173]. Active fluids possess physical properties
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such as the appearance of defect structures, hydrodynamic instabilities, and unusual

viscoelastic properties [22,120,217].

1

Figure 1.3: A sketch showing some examples of active fluids: From the left to the
right, we have bacteria [157], a school of fish [52], a flock of birds [191], and a group of

sheep [66].

Our next focus is the classification of active fluids to provide a background for under-

standing their behaviour, properties, and interactions, which are essential for modelling

these systems.

1.2.1 Classifications of active fluids

Active fluids can be classified based on damping mechanisms and symmetry properties

[126]. This section provides a review of these different classifications of active fluids.

However, our primary focus in this thesis is on the dynamics of active nematic liquid

crystals, which are classified based on symmetry and fall under the category of “wet”

active systems. These systems exhibit hydrodynamic interactions, distinguishing them

from “dry” active systems where frictional damping dominates over viscous dissipation

[126].

In our study, we specifically consider both contractile and extensile active nematics.

Contractile systems are characterised by internal stresses that pull the surrounding

fluid inward along their symmetry axis, leading to flow patterns distinct from those of

extensile systems, which push fluid outward along their symmetry axis [45]. Under-

standing their behaviours is essential for characterising their flow regimes and emergent

properties, as well as exploring potential applications, such as the design of sensors.
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1.2.1.1 Classification based on damping

Active fluids move within a medium that facilitates interactions with the substrate or

induces frictional damping [126,198,213].

Active particles suspended in a viscous fluid with viscosity η and subject to frictional

drag γ can generally be described as a fluid/particle system that either conserve mo-

mentum or that do not, depending on physical factors such as particle density and

the relevant length scales [126]. When the fluid acts simply as an inert background

providing frictional resistance, the ensemble of active particles transferring momentum

to the fluid can be modelled with overdamped dynamics that ignore particle momen-

tum conservation [209]. Such systems are referred to as “dry.” In this system, it is

always assumed that momentum is damped by friction with the substrate. In other

words, the viscous dissipation in the dry active system is dominated by friction. The

conserved quantity is the number of particles, which is characterised by the density

number, and the associated hydrodynamic field is the local density of active units [126].

Examples of such systems include flocks or herds of animals, birds [66, 191], schools of

fish [52], vibrated granular particles on a plate [213, 220], and the collective motion of

self-propelled hard rods [9]. On the other hand, if hydrodynamic interactions mediated

by the solvent play a significant role, the fluid’s dynamics must be explicitly included,

resulting in a coupled description of both the active particles and the fluid, where total

momentum is conserved [135]. These are known as “wet” systems. Examples include

unicellular organisms such as bacteria [10], algae [126] and also cytoskeleton biopoly-

mers and suspensions [40]. It is important to note that labelling a system as wet or

dry pertains to the modelling approach and the scale of observation, rather than an in-

trinsic property of the system itself. Generally, hydrodynamic effects can be neglected

only at length scales larger than
√
η/γ [126]. In wet active systems, the long-range

hydrodynamic interactions between self-propelled particles play a crucial role in the

dynamics [135,209].

14



Mathematical Modelling of Active Fluids in a Channel

1.2.1.2 Classification based on symmetry

Active fluids can also be classified based on their symmetry. The first symmetry classi-

fication consists of polarity, where self-propelled units can interact to affect polar order.

In polar systems, the units align head-to-head and tail-to-tail, examples include schools

of fish and flocks of flying birds or self-propelled rods [164, 232, 253]. Apolar systems

also exists, examples of which include fibroblasts [189] and melanocytes [69], which can

form an apolar nematic liquid crystal at high cell densities [69], which exhibit inter-

actions that align particles in opposite directions on the same axis regardless of their

polarity [188]. Beyond polar and apolar systems, active fluids can also be described by

scalar and hexatic order parameters. Scalar active fluids lack orientational order, and

their behaviour is governed primarily by variations in density or concentration [216].

Hexatic active fluids exhibit sixfold orientational symmetry, with units arranging locally

in hexagonal patterns without long-range positional order, as seen in certain bacterial

colonies or colloidal monolayers [103].

In the next section, we will explore the active fluids in the low Reynolds number regime.

This review provides a foundation for modelling active systems in which viscous forces

dominate over inertial effects.

1.2.2 Low Reynolds number flow of active fluids

Even though our primary focus is on the collective behaviour of active nematics, it is

useful to briefly discuss individual microswimmers in low Reynolds number regimes, as

they illustrate the fundamental mechanisms of self-propelled motion in highly viscous,

inertia-negligible environments. Reynolds number is defined as the ratio of inertial to

viscous forces. Specifically, studying microswimmers helps understand how propulsion

arises purely from active stresses, how hydrodynamic interactions affect trajectories,

and how collective patterns emerge from individual motions. In this thesis, we neglect

the inertia term because the Reynolds number is small. To provide a foundation for

this approach, we first review microswimmers and then follow with continuum models
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of microswimmers.

Microswimmers such as bacteria exhibit motility by self-propelling in fluids using flagella

or cilia arranged in various geometric patterns [111,161]. Their shapes, behaviours, and

ability to rotate about their swimming direction [13] can all be used in mathematical

models to describe their motion.

Several mathematical models have been developed to describe their behaviours, begin-

ning with Taylor’s model in 1951 [208], which examined how a self-propelled organism

moves in a highly viscous medium. Although originally formulated for a single swim-

mer, this model illustrates how individual propulsion generates flow fields, a concept

that underlies the active stresses driving collective motion in active nematics. Build-

ing on this, Lighthill [118] introduced the concept of a spherical deformable body that

swims by performing small oscillations of its surface, demonstrating how individual

surface motions generate local flows even in the absence of inertia. Blake [16] extended

this idea through the spherical envelope model, which approximates the dense cilia of

a microorganism as a continuous waving envelope, allowing calculation of propulsion

velocities and efficiency, while accounting for collective ciliary motion. These models

provide a foundational framework for understanding how individual self-propelled units

generate flow and hydrodynamic interactions, which are central to emergent patterns

in active matter. Building on this, Pedley and Kessler [161] explored the swimming

behaviour of microorganisms such as Chlamydomonas and Bacillus, focusing on their

responses to external stimuli like chemical gradients (chemotaxis), shear (rheotaxis),

and magnetic fields (magnetotaxis). These studies also contributed to the understand-

ing of bioconvection, where the collective movement of microorganisms generates fluid

flow patterns [98,160], providing further context for the emergence of collective dynam-

ics in active nematics.

At low Reynolds numbers, viscosity dominates fluid dynamics, as emphasised by Pur-

cell [174], who formulated the “Scallop Theorem,” demonstrating that reciprocal motion

alone cannot generate net propulsion in this regime. He simplified the Navier-Stokes
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equation to the Stokes equation, where inertia is negligible, highlighting the distinct me-

chanics governing microswimmers compared to macroscopic organisms. Further studies,

such as mesoscale hydrodynamic simulations of E. coli, have revealed that propulsion

mechanisms rely on coordinated flagellar and cell body rotation [84]. Additionally, Hu-

ber et al. [86] showed that hydrodynamic interactions significantly affect their swimming

efficiency and trajectories.

The mathematical theories underlying the study of active fluids can be viewed at dif-

ferent length scales. This includes macro, micro, and molecular scales depending on

the Reynolds number. The corresponding Reynolds numbers, might for, instance be

104 for macroscopic turbulent flows, 102 for certain mesoscopic systems, and 10−2 or

smaller for microscale active suspensions [11]. In this Thesis, our focus is on the hy-

drodynamic theories governing microscale active fluids, which typically operate in the

low-Reynolds-number regime where viscous forces dominate over inertia.

The Reynolds number in a typical fluid is defined as

Re =
ρUL

η
, (1.1)

which quantifies the ratio of inertial to viscous forces, where ρ is the fluid density, U a

characteristic velocity, L a characteristic length scale, and η the fluid viscosity.

In this thesis, we assume Re ≪ 1, so that fluid inertia can be neglected. Since the

flow velocity is induced by activity, we define the velocity scale as U = |ξ|d/η3, where

|ξ| is the magnitude of the activity, d is the characteristic length scale, and η3 is the

fluid viscosity. This velocity scale will be explained and justified later in Section 3.3.1.1

(see equation (3.27)), where the characteristic active length and time scales are derived

from the linearised hydrodynamic equations.

Substituting this into the definition of Re gives

Re =
ρ|ξ|d2

η23
≪ 1. (1.2)
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Specifically, we use the physical parameters of the nematic LC N-(4-Methoxybenzylidene)

-4-butylaniline (MBBA) at 25◦C throughout this thesis, as outlined in Table 1.1. MBBA

is chosen because its material parameters are well-characterised and widely reported,

making it a convenient reference for setting physical scales. We emphasise, however,

that MBBA has no explicit relation to active nematics, which may exhibit a broad

range of properties. The parameter values marked by ∗∗ are the varying parameters.

Quantity Description MBBA 25◦C
Elastic constant (N)
K1 Splay elastic constant 6× 10−12

K2 Twist elastic constant 3.8× 10−12

K3 Bend elastic constant 7.5× 10−12

Viscosity (Pa s)
α1 Leslie viscosity −0.0181
α2 Leslie viscosity −0.1104
α3 Leslie viscosity −0.001104
α4 Leslie viscosity 0.0826
α5 Leslie viscosity 0.0779
α6 Leslie viscosity −0.0336
η1 Miesowicz viscosity 0.0240
η2 Miesowicz viscosity 0.1361
η3 Miesowicz viscosity 0.0413
γ1 = α3 − α2 Rotational viscosity 0.1093
γ2 = α3 + α2 Torsion viscosity −0.1121
Leslie angle (rad)
θL Leslie angle 0.099
χa (dimensionless) Magnetic anisotropy 1.219× 10−6

ρ (Kg/m3) Density 1088
Activity strength (Pa)
ξ 1D [−2, 2]

2D [−100, 150]
Geometry (µm)
d channel height (1D) 200
d channel height (2D) 2
w channel width (2D) 20∗∗

l HAN region length [w/1000, w/3]
Applied field (A m−1)
H Orienting field [0, 5]∗∗

Hc Critical field strength (π/d)(
√
K1/χa)

Table 1.1: Table of parameter values

The Reynolds numbers corresponding to the range of activity values considered in this
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study, ξ = ±0.0001,±0.3, and ±150, are summarised Table 1.2. These values confirm

Dimension Characteristic length d (µm) Activity ξ (Pa) Reynolds number (Re)
1D 200 0.001 2.5515× 10−5

1D 200 0.3 7.6544× 10−3

1D 200 2 5.1029× 10−2

2D 2 0.001 2.5515× 10−9

2D 2 100 2.5515× 10−4

2D 2 150 3.8272× 10−4

Table 1.2: Reynolds numbers for 1D and 2D flows for weak and high activity cases.

that both 1D and 2D flows are in the low-Reynolds-number regime, justifying the

neglect of inertia in our simulations.

The choice of different activity values for 1D and 2D systems arises from both scaling

considerations and practical motivations. In the 1D channel geometry (d = 200µm),

relatively small activity values (ξ = 0.0001–2 Pa) are sufficient to generate measurable

hydrodynamic effects because the larger characteristic length amplifies the impact of

active stresses. By contrast, in the 2D case (d = 2µm), the smaller system size ne-

cessitates higher activity parameters (up to ξ = 150 Pa) to produce comparable flow

instabilities. Moreover, exploring strong activity in 2D is motivated by potential ap-

plications in the design of microscale sensors, where enhanced active stresses could be

exploited to improve sensitivity and response.

The choice of a 2 µm channel height in the present study is primarily motivated by

potential applications in sensor design, rather than experimental convenience. While

experimentally filling channels of this dimension is challenging, and typical confinements

in active nematic systems are larger (5–50 µm for microtubule–kinesin networks and 1–

10 µm for bacterial suspensions) [40,188,242], a 2 µm channel provides a highly confined

geometry that is relevant for integrating active nematics into micro- and nano-fluidic

devices. At this height, microtubules (diameter 25 nm) would form only about 80 layers

across the channel, which is sufficient to capture collective dynamics while maintaining

a quasi-two-dimensional flow regime. Therefore, despite being smaller than typical

experimental channels, this choice allows exploration of active nematic behaviour under
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conditions directly relevant to sensing applications.

Having established this background by reviewing studies on active fluids, we now focus

on hydrodynamic instabilities in these systems.

1.2.3 Hydrodynamic instabilities in active fluids

This section reviews various instabilities in active fluids, with a primary focus on ac-

tive nematics. To provide context, we first examine the broader literature on active

fluids, highlighting the types of flow, instabilities, and hydrodynamic interactions in

these systems. Specifically, Section 1.5 covers active nematics and their hydrodynamic

interactions.

Hydrodynamic theory-based studies on active matter have been ongoing, covering both

microscopic and macroscopic modelling [91, 107, 126]. One approach to developing a

hydrodynamic theory for these systems is to start with a microscopic model and apply

statistical physics tools to coarse-grain it, deriving the long-wavelength and long-time-

scale equations [108,120]. For example, large density fluctuations due to the continuous

energy input at the microscopic scale [136,176] have been observed in active systems.

Theoretical and computational studies, supported by simulations and experiments, have

predicted or observed spontaneous flow in active fluids [65,127,236]. These systems may

exhibit steady flows [61] with instabilities that disrupt nematic order, often triggering

motion [214, 219, 236]. A study of active systems such as active nematics shows that

the interaction between non-uniform nematic order, activity, and flow leads to spatially

modulated relaxation oscillations [62, 63]. In our study, we will later demonstrate that

active nematics exhibit oscillatory flow in contractile active systems. Other studies

have observed turbulence in active systems even at a low Reynolds number [212, 214].

In all these studies, the stress term, dependent on the nematic tensor, and the order

parameter are important activity parameters [178].

Hydrodynamic instabilities in active fluids occur due to their intrinsic non-equilibrium
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nature [46,126,175,185,237]. Unlike passive liquid crystals, where instabilities typically

arise from external perturbations or thermal fluctuations [83], active fluids experience

internally generated stresses that can lead to spontaneous flow patterns [44, 236] and

symmetry breaking [37, 218]. These instabilities are crucial for understanding the self-

organisation observed in active matters, including bacteria suspensions, self-propelled

rods and active gels.

For instance, linear stability analysis of collective hydrodynamics behaviour of self-

propelled hard rods reveals that fluctuations in the isotropic state are stable for low

density but unstable for high density [9]. Similarly, a study of the hydrodynamics

of bacterial suspensions using statistical mechanics indicates that the homogeneous

isotropic suspension of contractile systems becomes unstable at concentrations above

the critical concentration and is stable at concentrations below the critical concentration

[10]. In these contractile systems, the homogeneous ordered state is destabilised by the

growth of the splay configuration, while growth of a bend configuration destabilises

the homogeneous ordered state in extensile systems [1]. In further investigations of

the viscoelastic properties of active filament solutions under different phases (isotropic,

polarised, and nematic), a molecular model suggests that the system is disturbed from

its equilibrium state by external energy sources, such as shear stress, and internal

sources (like motor activity) [121]. A study of active gels indicates that the interaction

between the elasticity of semiflexible filaments and the mechanical properties of the

system results in the contractile behaviour of the active gels [122]. In many such

systems, these instabilities can be controlled by confining the system or applying an

external shear [49,128,140].

The analysis of hydrodynamic instabilities in active fluids demonstrates how continuous

energy input at the microscale generates spontaneous flows and complex spatiotemporal

patterns. In low-Reynolds-number regimes, as encountered in microswimmer systems,

viscous forces dominate over inertia, leading to creeping flows where activity-induced

stresses drive the dynamics. This highlights the importance of self-driven activity and
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anisotropic interactions in shaping the collective behaviour of active fluids. Active ne-

matics extend these concepts by considering elongated, rod-like particles whose align-

ment and activity produce characteristic defect structures, spontaneous flows, and rich

nonequilibrium phenomena, making them an ideal system to study the interplay of

activity, symmetry, and hydrodynamic instabilities.

1.3 Active nematics

As previously mentioned, active nematics are a class of active fluids that operate out of

equilibrium, driven by the continuous energy consumption of their constituent particles

[215]. This intrinsic energy dissipation leads to instabilities and topological defects in

the system, making them fascinating subjects of study [40, 182, 214, 236]. Although

lyotropic active nematics are composed of suspensions of elongated particles rather

than molecular liquid crystals, their orientational order and defect dynamics can be

described using the continuum theory of thermotropic nematics. This is because the

coarse-grained alignment and elastic stresses in both systems are governed by similar

symmetry principles and free-energy considerations, which allows the well-established

hydrodynamic equations of thermotropic nematics to be applied to lyotropic active

systems.

Figure 1.4 is a sketch that shows bacteria aligning in a nematic phase, where n represents

the self-driven units aligned along a local axis. We use the hydrodynamic theory of

thermotropic nematic liquid crystals to study the collective behaviour of active nematic

liquid crystals [64,69,106,107].

In terms of phase formation, active fluids can exhibit either nematic apolar or polar

ordering [64, 126]. Active polar fluids consist of head-tail structures, forming polar or

ferromagnetic orders, as illustrated in Figure 1.5(a) [126,135]. These systems may also

form apolar states, where the particles align in either direction along the same axis of

mean orientation, exhibiting global symmetry of n → −n (Figure 1.5(b)). The steric

interactions between particles often dominate, leading to nematic phase formation [1].
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Figure 1.4: Schematic showing bacteria align into a nematic phase.

(a) (b) (c)

Figure 1.5: Schematics of active particles: (a) polar particle, (b) apolar particle, and
(c) self-propelling particles.

1.3.1 Hydrodynamics of active nematics

In active nematics, the key idea is that the constituent particles, such as elongated

biological filaments or synthetic rods, consume energy to generate motion. Unlike

passive systems, where disturbances typically decay over time due to viscosity and

friction, active nematics can increase disturbances because of the continuous input of

energy at the microscopic level. Imagine a uniform alignment of rod-like particles (the

nematic director field). If there is a small bend or splay in this alignment, the active

stresses generated by the particles push or pull the fluid around them, which will either

enhance or suppress the distortion. These flows, driven by active stresses, couple with

the orientation of the nematic field. If this coupling is strong enough, the feedback loop

leads to a hydrodynamic instability: the nematic order breaks into chaotic, swirling

patterns known as active turbulence [2, 10, 126].

Continuum theory of active nematics, building on the system’s symmetries, extends the
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theory of liquid crystals, particularly the hydrodynamic theory of thermotropic nematic

liquid crystals by incorporating activity term in the stress tensor [107, 211, 221]. This

theory can be applied to systems operating over extended periods and on length scales

that are significantly larger than the size of active particles [227].

Many recent studies [2,9,15,87,123] have explored the phase transitions and collective

behaviour of active nematics. For example, in 2D systems, activity can drive transitions

from homogeneous states to chaotic ones, with the formation of vortices and sponta-

neous flow [64, 176, 256]. In one-dimensional geometry, active systems exhibit inherent

hydrodynamic instabilities under planar anchoring [215,243,252]. These hydrodynamic

instabilities in active nematics can also be suppressed by shear near walls [215], and

interactions between director orientation and flow can lead to sustained steady spon-

taneous flow [126]. These hydrodynamic instabilities can also drive the emergence of

topological defects [105].

One of the foundational models of polar active matter, which later inspired the de-

velopment of theories for active nematics, can be traced back to the Vicsek model in

1995 [232], which reveals that self-propelled agents interacting via simple alignment

rules and subjected to noise undergo a genuine phase transition from disordered to

ordered motion. This demonstrated that long-range order and collective dynamics can

emerge in dry active matter systems. Despite its success in capturing essential features

of collective motion, the Vicsek model has several notable limitations. First, it assumes

particles move on a fixed substrate and neglects fluid interactions or hydrodynamics.

Second, the model lacks steric or volume exclusion effects; the particles are treated as

point-like and can freely overlap, thereby ignoring physical constraints and interactions.

Moreover, the alignment rule is overly simplistic, relying only on local averaging and

not accounting for more realistic mechanisms such as delayed responses or torque-driven

reorientation. Another limitation is the assumption of constant particle speed, even in

conditions where crowding or interactions would realistically alter velocity. Further-

more, due to its stochastic and discrete nature, the model is analytically intractable,
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meaning that most of the understanding relies heavily on numerical simulations rather

than exact theory.

Later in 1998, Toner and Tu developed a theory of flocking [220], to describe a collec-

tive motion in systems of self-propelled particles (SPPs) that break rotational symmetry

and exhibit macroscopic order. This theory provided the theoretical justification for

the observations in the Vicsek model and generalised its results beyond the computa-

tional setting. They write down the most general continuum equations of motion for a

long-wavelength description of the flock, which is consistent with symmetries and con-

servation laws, including a continuity equation for density, a Navier-Stokes-like equation

for the velocity with nonlinear convective terms, active stresses, and noise.

The Toner–Tu theory thus elevated the Vicsek model from a simulation-based descrip-

tion of polar active matter to a continuum hydrodynamic framework for flocking. It

predicted groundbreaking features such as long-range order in two dimensions, giant

number fluctuations, and propagating density modes. However, since both the Vic-

sek and Toner–Tu models describe polar systems, where particles possess a head–tail

asymmetry, they cannot capture the full richness of active nematics, which exhibit ap-

olar symmetry. Moreover, their simplifying assumptions, such as motion over a solid

substrate with friction (which damps momentum) and the neglect of hydrodynamic

interactions, mean they cannot describe phenomena that require later developments,

such as the Simha–Ramaswamy or active gel theories.

While the Simha–Ramaswamy theory describes hydrodynamic instabilities in active

nematic systems, it was primarily a linearised treatment, which focuses only on the

onset of instabilities without exploring the nonlinear steady states that can emerge, such

as active turbulence. Additionally, the theory assumed a fixed concentration or small

fluctuations around a homogeneous density, limiting its applicability to systems where

density inhomogeneities or motility-induced phase separation play a crucial role. It also

did not account for viscoelastic effects, complex rheological responses, or cytoskeletal

mechanics, which are central to biologically active matter such as actomyosin gels or
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the cell cortex. Later in 2003, Ramaswamy et al. [176] constructed the more general

universal equations of motion, valid for all systems of dry active nematogenic particles.

However, this theory is only applicable to dry active systems and cannot be applied

to wet active systems. Additionally, the theory is limited by its linear approxima-

tion, neglect of fluid flow, viscoelasticity, defect dynamics, strong density fluctuations,

boundary effects, and simplified noise assumptions.

Beyond these theories, Kruse et al. [106] developed a generalised hydrodynamic theory

for active viscoelastic gels composed of polar filaments, motivated by the cytoskeleton

dynamics in living cells. The theory describes how continuous chemical energy con-

sumption drives these gels out of equilibrium, which produces flows and stresses not

possible in passive materials. The cytoskeletal network is modelled as a polar viscoelas-

tic gel with macroscopic polarity described by a polarisation field. The constitutive

hydrodynamic equations were derived, combining the flow velocity field and the polar-

isation dynamics, including active terms proportional to the ATP chemical potential

difference driving the system. The model generalises liquid crystal hydrodynamics by

incorporating active stresses generated by molecular motors and polymerisation pro-

cesses.

Analyses of the governing equations reveal distinct patterns of filament orientation,

such as asters (radial), vortices (circular), and rotating spirals, and demonstrate that

when active stress exceeds a critical threshold, these defects spontaneously begin to

rotate.

The limitation of this theory is that it assumes small activity near equilibrium, sim-

plified geometry, uniform ATP concentration, and neglects complex motor dynamics,

boundary effects, chirality and fluctuations. However, a hydrodynamic theory for multi-

component active polar gels was developed to capture possible chiral symmetry of the

filaments [90], and later describe the physics of active gels [173].

We now shift from continuum-level ideas to mesoscopic models because continuum
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theories, which capture large-scale behaviours, often miss crucial particle-level details

such as defect core structure, steric interactions, and noise. However, microscopic

theories, though more detailed, can be computationally intensive and may lack the

ability to generalise emergent collective behaviour. This makes mesoscopic models a

practical middle ground that incorporates nematic alignment, active stresses, and defect

dynamics.

A study of the collective motion of self-propelled particles with noisy local interac-

tions provided a microscopic foundation for the study of active systems [15]. Bertin, et

al. [14], derived a mesoscopic theory of active nematics, starting with a simple Vicsek-

style model for active nematics, using a combination of kinetic theory and Itô calculus

approaches (a framework in stochastic calculus used to handle integration and differen-

tiation when randomness is involved). Other mesoscopic and kinetic theories include a

nonlinear field theory for aligning self-propelled rods [165], which bridges microscopic

Vicsek-type models to mesoscopic equations using a Boltzmann–Ginzburg–Landau ex-

pansion; kinetic theory using the Smoluchowski equation for hard rods with nematic

alignment, which leads to continuum equations for density and order parameter fields

[9]; theories of binary fluid mixtures, which extend the Doi–Onsager kinetic theory

for passive liquid crystals to include activity, enabling the mesoscopic description of

defect dynamics, flows, and spontaneous ordering [24]; a nonlinear model of active

suspensions, which uses the Smoluchowski equation to describe distribution functions

of swimmers, incorporating alignment, hydrodynamic interactions, and noise to de-

rive continuum descriptions [186]; and the dynamics of active Brownian particles using

Fokker–Planck equations, which lead to mesoscopic phase-field models for motility-

induced phase separation (MIPS) [246]. Mesoscopic theories often simplify microscopic

details and fluctuations, sometimes missing complex hydrodynamic effects and exact

defect behaviour.

We conclude the sections on microscopic and mesoscopic theories of active systems by

summarising the governing equations for active nematics, including the dry and wet
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active systems.

Active nematic theories, whether wet or dry, are constructed based on fundamental

conservation laws. These include conservation of mass, linear momentum, angular

momentum, and particle number. The dynamics of the nematic is described by an order

parameter whose evolution depends on the interplay of elastic stresses, active stresses,

and viscous dissipation. As earlier mentioned, in wet active nematics, momentum is

conserved and hydrodynamic interactions play a key role, while in dry active nematics,

substrate friction dominates and momentum is effectively dissipated. Activity enters

the theory as an additional stress or flux term that drives spontaneous flows and defect

formation. For a detailed formulation of the governing equations, see [39,196,240].

These governing equations have been solved by the hybrid lattice Boltzmann method

by Wang and Zhang [240]. The results suggest unsteady director dynamics in a 2D

study of self-assembled active nematics below threshold activity. This behaviour of

the system is invariant with the interplay between active stress and driven flow. The

study also suggests that the system exhibits discontinuity for activity values above the

threshold activity, leading to a complex periodic spatiotemporal director pattern.

Simulations have also been used to bridge the gap between microscopic and meso-

scopic theories. For example, Duclos et al. [44], investigates the emergence of sponta-

neous shear flows in confined cellular nematics, using experiments, theory, and simula-

tions to understand how activity and confinement lead to self-organised flow patterns.

Kozhukhov and Shendruk [105] introduce an algorithm for simulating active nematics

using multi-particle collision dynamics.

The accompanying figures (A-D) provide visual representations of the local director

field, with the colour denoting the scalar order parameter, while additional figures

(i-iv) illustrate vorticity, with arrows depicting velocity. At an initial time step (0),

the director remains undistorted, accompanied by a uniform flow field, as depicted in

Figures 1.6 (A) and 1.6(i) respectively. Subsequently, at time step 110, the system

displays bend instabilities characterised by high-bend kink boundaries with a net force
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density parallel to the bend (refer to Figures 1.6 (B) and 1.6(ii)). Progressing to time

step 160, a pair of ±1/2 topological defects emerge, distinguished by the red and blue

colours (see Figures 1.6 (C) and 1.6(iii)). Finally, at time step 245, the system evolves

into active turbulence, as illustrated in Figures 1.6 (D) and 1.6(iv).

Figure 1.6: Snapshots of the director field (labeled A-D) where the colour represents
the scalar order parameter. Additionally, the vorticity field is displayed with arrows
indicating the velocity, and the +1/2 and -1/2 topological defects are represented by

red and blue colours, respectively. [105].

Other simulations include simulations of microswimmer-driven dynamics in active ne-

matics Mondal et al. [137]. Giomi [59] performed numerical simulations of active nemat-

ics in a two-dimensional channel. These studies showed that activity drives spontaneous

flows and the creation and annihilation of topological defects. Stronger activity leads

to finer spatial structures and faster defect dynamics. The simulations revealed that

turbulence emerges when the characteristic defect spacing is intermediate between the

defect core size and the system size. As activity increases, the number of defects grows

until reaching a saturation point. These results highlight how the interplay between

activity, elasticity, and viscous dissipation controls the patterns and dynamics in active

nematic systems [59,81].

In the next section, we introduce the concepts of kickback and backflow mechanisms,

starting with kickback in passive liquid crystals and concluding with backflow in active
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nematics. One objective of this study is to investigate the effect of activity on kickback

and the interplay between activity and the orienting field.

1.3.2 Kickback and backflow mechanisms

Kickback is an effect observed in nematic liquid crystals in which the director orienta-

tion, instead of relaxing monotonically after the removal of an external orienting field

(electric or magnetic), initially increases in magnitude beyond its equilibrium orienta-

tion. This leads to a temporary overshoot and a slower eventual relaxation to the final

state [68]. This occurs due to the response delay in the flow field created by back-

flow [223], which acts after the external forcing is removed. Essentially, the director

tries to return to equilibrium, but the backflow–driven flow pushes the director away

from equilibrium, resulting in a kickback mechanism.

Beyond fundamental studies, backflow dynamics have been found to influence several

physical processes, including defect core advection [17, 222, 225], as well as the alter-

ation and anisotropic aggregation of colloidal particles [168,169]. Additionally, Kos and

Ravnik [259] demonstrated that backflow can generate microflows under the influence

of external fields.

While these effects are well understood in passive nematics, their role in active nematics,

where internal activity drives continuous energy injection, remains an open question.

Unlike passive systems, backflow in active nematics arises not only from external fields

but also from intrinsic active stresses that generate spontaneous flow and director dis-

tortions [60, 183, 259]. In particular, when an orienting field is present in the limit of

zero activity, the system behaves like a classical “Fréedericksz transition”, where the di-

rector realigns with the field. However, as activity increases, it perturbs this transition,

modifying the interplay between backflow and field-induced alignment.

In summary, backflow in Ericksen–Leslie theory arises from the coupling terms in the

stress tensor, particularly the Leslie viscous stress, where the reorientation of the di-

rector feeds back into the flow field. This effect is crucial for capturing phenomena

30



Mathematical Modelling of Active Fluids in a Channel

such as director relaxation, defect dynamics, and spontaneous flow, and plays a more

prominent role in active nematic systems.

Understanding the effect of activity on kickback and the interplay between the ori-

enting field and the backflow mechanism is crucial to advancing theoretical models of

active nematics. Chapter 3 aims to explore the influence of activity on kickback-driven

dynamics and the hydrodynamic interactions of external fields and activity.

We now discuss the “classical Fréedericksz transition” in the next section.

1.3.3 Fréedericksz transition

Fréedericksz transition is a fundamental phenomenon in the physics of liquid crystals

that describes how the orientation of liquid crystal molecules changes in response to an

external field, such as an electric or magnetic field [54, 202]. In the undistorted state,

the molecules are uniformly aligned due to surface anchoring at the boundaries, which

enforces a stable configuration. When an external field (magnetic or electric field) is

applied perpendicular to this alignment, it exerts a torque on the anisotropic molecules,

trying to reorient them along the field direction. However, the surface anchoring resists

this change, and the orientation remains undistorted until the field strength exceeds a

critical threshold, also known as the Fréedericksz threshold. At this threshold, the torque

from the external field becomes strong enough to overcome the anchoring, making the

uniform state unstable. This makes the liquid crystal molecules reorient to form a new

configuration that minimises the combined elastic and field energies. This transition

leads to deformations (such as splay, bend, or twist) of the director, depending on the

geometry and the nature of the applied field.

For example, consider a sample of liquid crystal sandwiched between two parallel plates,

a distance d apart, of splay geometry (a situation where the director, n, is strongly

anchored parallel to the plates) as shown in Figure 1.7. In this setup, it can be shown

that the Fréedericksz threshold is Hc = (π/d)
√

K1/χa, where χa is the anisotropy of the

magnetic susceptibility, and K1 is the splay elastic constant. Assuming χa > 0, which
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indicates that the director tends to align with the magnetic field. For H < Hc, the

sample of liquid crystal parallel to the plates remains undistorted (see Figure 1.7(a)),

but as H increases via the Fréedericksz threshold Hc, a Fréedericksz transition occurs

when H > Hc, the director reorients in response to the effect of the magnetic field H

(see Figure 1.7(b)).

H

z

x

Figure 1.7: Geometry of the classical Fréedericksz transition, where θ is the director,
n makes with x−axis. Note that the magnetic field H is initially perpendicular to the
director n. (a) The original state of the liquid crystal sample, where H < Hc, shows

no reorientation. (b) When H > Hc, the applied magnetic field induces a
reorientation of the director toward alignment with H.

In active nematics, recent experimental work by Alam et al. [3], demonstrates how

active nematic droplets in 3D undergo Fréedericksz transition. The study shows that

increasing droplet size beyond a critical diameter triggers a shift from a quiescent to a

spontaneously flowing state. The critical threshold depends on activity, elasticity, and

geometry, while energy consumption remains constant, which confirms the inactivity

phase as a stable nonequilibrium state.

In the next Section, we discuss active instabilities, which will be essential in Chapter 3

for analysing homeotropic and planar alignments.

1.3.3.1 D- and S-modes in active hydrodynamic instabilities

We review here the spontaneous flow transition observed in active nematics, reminiscent

of the classical Fréedericksz transition in passive liquid crystals but driven by activity

rather than external fields. Building on the analysis presented in Walton’s thesis, we

review the reorientation dynamics of active nematic liquid crystals under external fields,

with particular focus on how activity modifies the accessible director configurations

[238].
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Activity destabilises the uniform director state, leading to two distinct eigenmodes:

the symmetric (S-mode) and the degenerate (D-mode) [172], also referred to as Mode

I and Mode II [238]. The S-mode corresponds to the director tilting away from the

vertical with an “S-shaped” profile across the cell thickness: at one boundary, the tilt

is in one direction, while at the opposite boundary it reverses. This mode breaks in-

plane rotational symmetry by selecting a preferred axis (e.g. the x-axis) and generates

shear flow along it. The D-mode also involves titling of the director but produces a

“D-shaped” director profile with maximum distortion at mid-cell and vanishing tilt at

the boundaries.

Figure 1.8 illustrates how strong external orienting fields drive the reorientation dynam-

ics of contractile active nematics, comparing symmetric and anti-symmetric director

responses. In both cases, the director aligns with the applied field during switch-on

and relaxes back after switch-off, with no evidence of kickback at the chosen moderate

activity strength [238].
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Figure 1.8: Time evolution of the director angle θ(z, t) for a contractile active nematic
with activity ξ = 50Pa during switch-on and switch-off of a strong external orienting

field. Panels (a) and (b) show the symmetric mode: (a) rapid alignment of the
director in the bulk during switch-on, reaching θ ≈ π/2, and (b) relaxation to the

symmetric equilibrium configuration after field removal, with no kickback. Panels (c)
and (d) show the anti-symmetric mode (Mode II): (c) director aligns with the field

across the channel during switch-on, and (d) relaxation after field removal, where the
anti-symmetric structure is transiently maintained due to system symmetry,

remaining largely unchanged over long times with no kickback [238].

In the classical Fréedericksz transition, a uniform director becomes unstable when an

external electric or magnetic field exceeds a critical threshold, the field torque overcom-

ing the elastic restoring torque. By contrast, the spontaneous flow transition in active

nematics is internally driven: instability occurs once active stresses exceed a threshold

set by the balance of elasticity and viscous dissipation.

Other studies also investigated in- vs out-of-plane instabilities in active films, which

conceptually maps to S/D-modes [199]. Other instabilities include wrinkling instability
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in bulk 3D active nematics [203], where the director field spontaneously buckles.

In Chapter 3 of the thesis, we will investigate the combined effect of internal active

stresses and external fields on active nematics. This aims to develop a comprehensive

understanding of how these competing influences govern director orientation, flow in-

stabilities, and pattern formation. This combined effect promises to bridge classical

liquid crystal theory with emerging phenomena in active soft matter.

1.4 Active nematics in confinement

Since our study concerns active nematics in a channel, this section will review the

existing literature on active nematics in confined geometries, ranging from circular

confinement to periodic boundary conditions.

Since our study involves the HAN geometry, which includes both planar and homeotropic

alignments, it is worth mentioning that HAN anchoring occurs when the director is par-

allel to one wall and perpendicular to the other. The planar alignment and the HAN

geometry setups are given in Figures 1.9(a) and 1.9(b), respectively.

(a) Planar sketch (b) HAN sketch

Figure 1.9: Sketches of the equilibrium director configurations in the limit of no flow
for the planar and HAN anchoring.

In circular confinement, active nematics exhibit periodic, steady, or vortical flow de-

pending on their hydrodynamic interactions, surface interactions, or spatial forces be-

tween particles [42, 245]. In confined nematic liquid crystals, the input energy of the

active stresses can be dissipated by friction on the substrate and viscous flows [135]. Ac-
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tive nematics confined to a quasi-one-dimensional geometry in hybrid alignment show

different velocity profiles compared to homogeneous alignment [184]. Boundary layers

in confined active nematics in an annular-shaped channel are also a factor in active

turbulence, characterised by topological defects [77].

Flow patterns of active nematics confined in a channel with periodic boundary condi-

tions are summarised in Figure 1.10 [41, 197]. The flow ranges from no flow to active

turbulence flow depending on the channel height or activity strength, which allows

flows to wrap around and mimic an effectively unbounded system while maintaining

computational feasibility. Doostmohammadi et al. [41] and Shendruk et al. [197] demon-

strated that confinement, boundary conditions, and activity strength critically shape

these turbulent flows, with defects exhibiting coordinated patterns (“dancing disclina-

tions”) under narrow channel confinement. A similar study of active nematics confined

in a two-dimensional channel with planar anchoring [187] demonstrated that the system

exhibits a rich variety of flow behaviours depending on the activity strength. At low

activity, the nematic aligns along the channel, producing unidirectional laminar flow

with minimal defect formation. As the activity increases, the system transitions to more

complex flow regimes, including bidirectional flow and vortex-like structures, eventu-

ally culminating in fully developed active turbulence characterised by the spontaneous

creation, motion, and annihilation of topological defects. Their results highlight how

confinement and boundary conditions interact with activity to shape the spatiotempo-

ral dynamics of active nematics, providing insight into both the fundamental physics

of active fluids and potential applications where controlled flow patterns are desirable.

A recent study by Chimming et al. [190] show that spatially patterned activity in 2D

active nematics can drive transitions from chaotic active turbulence to ordered vortex

states. If active nematics are going to be used for technological applications, such as

sensors, controlling their behaviour is of immense importance. As mentioned earlier,

one way to control the behaviour of active nematics is via confinement.

While studies such as [42,187,245] focused on extensile active systems in a channel using
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Figure 1.10: Plot showing the flow profiles for various activity parameter values.
Black lines (streamlines), black arrows (direction of the flow), colourmap (vorticity
field), circles (green), and diamonds (magenta) mark +1/2 and −1/2 topological

defects, respectively [41].
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planar anchoring, our study focuses on both extensile and contractile active nematics in

a channel using a combination of planar and homeotropic anchoring. Building on these

studies, we have developed one-dimensional and two-dimensional hydrodynamic models

to explore the behaviour of active nematics subjected to orienting fields. As previously

mentioned, the one-dimensional model covered in Chapter 3, incorporating infinite

planar anchoring, demonstrates that the application of an orienting field reduces the

kickback effect in extensile nematics but sustains the kickback in contractile nematics.

Additionally, the nonlinear aspects of the model reveal different solution states, such

as uniform, symmetric, and antisymmetric states.

In the two-dimensional model (covered in Chapters 4 and 5), we combine planar and

hybrid anchoring. In contractile systems, the flow patterns include non-flow, circula-

tory, and oscillatory states, while in extensile systems, we observe unidirectional and

bidirectional flows, as well as combinations of unidirectional and bidirectional flows.

Notably, the combination of unidirectional and bidirectional flow in extensile systems

has not been observed in previous studies. Additionally, the transient dynamics of ac-

tive nematics using the periodic boundaries show how the hybrid state evolves and how

bidirectional transitions to unidirectional flow occur.

1.5 Experimental observations of active fluids

So far, we have reviewed the theoretical studies of active matters in a confined and

unconfined geometry. The experimental study of active matter has been developing

for many years. Research increasingly shows a correlation between computational and

experimental active matter. Wioland et al. [244] experimentally and computationally

studied the collective motion of bacteria under channel confinement using a thin pe-

riodic racetrack and periodic boundary conditions, respectively. Experimentally, the

suspension of the dense bacteria into a thin periodic racetrack suggests stable circula-

tion. Computationally, the net flow and correlation profile as a function of the channel

width suggests fluid flows generated by the bacteria. The hydrodynamics interactions
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and the confinement lead to microscopic flow circulation. The study also suggests that

strong confinement stabilises the turbulence collection motion of the bacteria stream-

line.

The effects of boundary layers on confined active nematics have been studied experimen-

tally by placing a mixture of a few kinesin/tubulin active microliters in a custom-made

open pool covered with silicon oil [77]. The results show active turbulence away from the

walls with ±1/2 topological defects formed due to the boundary layers. It also suggests

that bulk active flow can be controlled by direct intervention of the active boundary

layer via indentations that are smaller than the length of the active nematics.

Other experimental work [42] suggests that active turbulence can be suppressed giving

rise to steady or periodic flow. In circular confinement, the active matter exhibits

either periodic, steady, or vortical flow depending on the hydrodynamics interactions

of the active matters, surface interactions, or spatial inter–particle forces [42, 245].

Doostmohammadi et al . [39] experimentally studied the microtubule-motor systems

by placing the active layer in contact with a smectic A liquid crystal, giving rise to

different flow patterns accompanied by ±1/2 topological defects. Varghese et al., also

experimentally demonstrated that confinement can control bend instability [229] in

active nematics.

Other studies, such as [72, 73], have also demonstrated the controllability of active

nematics by changing the properties of the viscous fluid lying next to the active layer. A

recent study by Repula et al. [181] demonstrates the dual role of light as both an energy

source and a control signal for active nematics composed of filamentous, phototactic

cyanobacteria–organisms capable of transforming light into energy and motion. The

study employed patterned illumination to locally activate the motility of these cells,

which facilitated their self-assembly into organised nematic states. The intensity of the

light influenced both the speed of this ordering process and the degree of alignment

achieved among the cells.

Since our goal is to explore active nematics for potential applications in sensor design,
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the next section reviews the existing literature on sensors and sensing devices based on

smart materials with tunable rheological properties, including electrorheological fluids,

magnetorheological materials, and liquid crystal-based sensors.

1.6 Sensors and sensing devices

The use of active fluids in sensor design presents a promising direction due to their

unique ability to translate small local changes, such as the alignment of self-driven

units, into long-range effects in flow and orientation. This sensitivity to local perturba-

tions makes active fluids attractive candidates for developing highly responsive sensing

systems. Motivated by this potential, it is essential to review existing sensors and

sensing devices based on smart materials with tunable rheological properties, such as

electrorheological fluids (ERFs) and magnetorheological materials (MRMs). These ma-

terials exhibit controllable stiffness and damping under external stimuli, electric fields

for ERFs and magnetic fields for MRMs, and have already found use in diverse appli-

cations requiring dynamic response and precision [151]. By examining current sensor

technologies based on ERFs and MRMs, we aim to identify principles and strategies

that could inform the development of next-generation sensors, including those leverag-

ing the emergent properties of active fluids. We also review liquid crystal biosensors to

ensure a comprehensive understanding of smart materials that respond to environmen-

tal changes through alterations in molecular alignment and optical properties.

1.6.1 ERF sensors

An electrorheological fluid is a suspension made up of fine dielectric particles dispersed

in a viscous carrier oil. As a result, it demonstrates rapidly varying rheological proper-

ties when an electric field is applied. In other words, its stiffness and damping charac-

teristics depend on the strength of the applied electric field [151].

Studies on ERFs have explored methods to enhance their field-dependent properties by

utilising various particles, carrier fluids, and additives, such as liquid crystals and carbon
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nanotubes. Other studies have also focused on their dynamic behaviour, rheological

models, and flow modes [19,110,119,241]. Due to their quick response and controllable

viscosity, ERFs have been applied in shock absorbers, vibration control, medical devices,

brakes, clutches, and energy systems [34,201,250].

Kim et al. [99] developed a wave transmission sensor by incorporating an ERF into alu-

minium sandwich structures, using a small piezoelectric patch as both the transmitter

and receiver. Their findings showed that the magnitude and frequency of the transmit-

ted signals, as well as the device’s sensitivity, could be determined in either the time

or frequency domain. In another work, a bidirectional clutch incorporating a spherical

ERF joint was developed, where torque is measured as a function of the applied electric

field intensity [75]. Zhang et al. [258] designed a sensor combining an ERF actuator and

a conducting polymer sensor, capable of accurately measuring displacements up to 20

Hz. At higher frequencies, the conducting polymer sensor’s performance declined. This

system shows potential for applications like ERF microvalves and precision microchip

control. A sensing mechanism using a strain gauge and an ERF-filled viscous brake was

developed to measure pressing force based on motor speed and applied voltage. The

goal was to create a device to exert a constant pressing force that maintains a constant

pressing force, enabling optimal control of braking force in various brake and clutch

systems [200].

A novel type of ERF has been developed using a nano–silica grafting method to over-

come the limitations of traditional ERFs, which typically use carbonyl iron particles.

These particles have high electrical conductivity, which can restrict the fluid’s field-

responsive rheological behaviour [158]. Another limitation of ERF–based sensors lies in

their operational constraints. While they are capable of detecting high-frequency sig-

nals in dynamic settings and offer high sensitivity in tactile sensing applications, they

are typically suited only for low-force measurements and require high voltage input to

function effectively. In contrast, MRF–based sensors, though slightly limited in signal

sampling frequency compared to ERF sensors, offer broader applicability and avoid the
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high-voltage requirement [151].

1.6.2 MRF Sensors

Magnetorheological fluids exhibit field-dependent rheological characteristics, such as

yield stress, which are significantly higher and more stable than those of ERFs, owing

to their responsiveness to magnetic fields rather than high voltages. As a result, MRFs

have a broader range of applications in actuators and sensors compared to ERFs [151].

The use of MRFs for in vitro cancer therapy by blocking blood flow to tumours using

magnetic fields [51]. In another study, a black–box model was developed to identify

magnetorheological damper behaviour using self-sensing capabilities. The resulting

model functions as a virtual sensor for measuring damping force in vibration control

systems with MR dampers [224]. Kaluvan et al. [93] introduced a novel method to

measure the dynamic response of MRF under squeeze mode. This method enabled the

measurement of field–dependent dynamic forces and vibration amplitude reductions

across various actuation angles. Other innovative tactile and sensing devices using

MRFs have been developed for biomedical and automotive applications. These include

tactile sensors mimicking human organ viscoelasticity for robotic surgery [101,152–154],

advanced vehicle suspension systems with sensor-integrated MR dampers [163], and

a magnetic-field-sensitive displacement sensor based on soft MRF films [116]. These

studies demonstrate the ability of MRF-based systems to replicate dynamic biological

motions, control repulsive forces, and improve system responsiveness through magnetic

field manipulation.

Recent advances in magnetorheological elastomer and magnetorheological fluid tech-

nologies have enabled the development of various sensor and feedback systems. MREs,

composed of magnetizable particles like Cabonyl Iron Particles, are responsive to mag-

netic fields and suitable for applications such as pressure and force sensors [94,117].

ERF-based sensors face specific limitations, such as the requirement for high voltage

input and suitability only for low-force measurements. Similarly, MRF-based sensors
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are constrained by lower sampling frequencies and slower response times. These chal-

lenges in ERF and MRF technologies have led researchers to explore alternative smart

materials such as liquid crystals, which offer unique advantages for biosensing applica-

tions. Liquid crystal biosensors respond to molecular interactions through changes in

optical properties, enabling label-free, highly sensitive detection, particularly valuable

in biomedical and biochemical systems.

1.6.3 Liquid crystal biosensors

The optical properties of LC, such as birefringence [92,149], as well as high sensitivity of

the molecules to external stimuli, such as electromagnetic fields [129,210], surface effects

[21, 206], optics [231], temperature [205], and chemical analytes [12] have made LCs

useful for sensing applications [171]. Their ability to amplify and transmit molecular-

scale changes to macroscopic signals underpins LC-based biosensing strategies [143,247],

particularly in detecting biological interactions through changes in molecular orientation

and birefringence [48, 142]. Surface–induced orientation changes can be amplified over

distances up to 100 µm, which enables label-free detection [249]. These principles have

supported the development of advanced LC–based optoelectronic biosensors [58, 159].

LC optical anisotropy and fluidic nature make them ideal for optofluidic systems, which

combine optics and microfluidics for biomedical sensing [32,195]. Such systems integrate

sample handling, detection, and data transfer in a single platform, enhancing sensitivity

and efficiency.

Based on their sensing interfaces, LC biosensors are generally categorised into three

types: LC–solid interface [204], LC–aqueous interface [27], and LC–droplet interface

[27]. Each configuration offers distinct advantages for biomolecule detection. The

LC–solids interface is straightforward in design and allows for the creation of array

structures. The LC–aqueous interface provides direct contact with biological samples,

enhancing mobility and accessibility for biotargets. Sensitivity can be further increased

by integrating LC droplets with laser spectroscopy techniques. Additionally, microflu-
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idic technology can be employed to fabricate LC biosensors with varied geometries,

reducing manual errors, enabling precise determination of sensing parameters, and im-

proving overall sensitivity [239].

1.6.4 Toward active nematic-based sensors

The use of active fluids in sensor design represents an exciting frontier due to their in-

trinsic ability to amplify local disturbances, such as changes in surface alignment, into

long-range orientational and flow effects. This responsiveness positions active fluids

as promising candidates for next–generation sensing technologies. Existing studies on

smart materials, including ERFs, MRFs, and LCs, provide foundational principles and

technological benchmarks, yet they also reveal certain limitations which active nemat-

ics may overcome. RF and MRF offer field-controllable mechanical properties, such

as stiffness and damping. However, these systems are inherently limited to responding

to applied external fields and typically require active electronics and feedback loops to

detect mechanical perturbations. Their spatial resolution and sensitivity are often con-

strained to the localised region of stimulus application, and the signal propagation is not

inherently built into the material’s dynamics. LC-based biosensors, particularly those

using nematic and cholester phases, utilise their optical anisotropy and sensitivity to

surface alignment changes to detect biological and chemical analytes [12,32]. Such sen-

sors work by translating surface anchoring alterations, caused by molecular interactions

or physical forces, into detectable optical signals through birefringence changes. While

these systems enable label-free detection and work well in optofluidic platforms, the

effects remain spatially confined. That is, surface-induced distortions typically affect

only the liquid crystal orientation within a narrow region, which limits their effective-

ness for detecting small, localised stimuli unless they occur directly within the optical

path. This is where active nematic liquid crystals might be useful.

Our proposed sensor system exploits the intrinsic activity of the material to convert a

local anchoring change, caused by the presence of a small object at the upper boundary
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of the LC layer, into a global response throughout the entire domain. In passive systems,

such a perturbation would be localised, which makes it difficult to detect. But in active

nematics, this same perturbation induces flow that reorients the director configuration

far beyond the source of disturbance. This allows for the indirect detection of the object

through the observation of long-range distortions in the director or flow patterns, even

when the object itself is invisible or microscale. The mechanism is analogous to throwing

a small pebble into a calm lake: although the pebble is tiny, its impact creates ripples

that spread widely across the water’s surface. Similarly, the active nematic medium

propagates director disturbances initiated at the anchoring surface, turning localised

anchoring changes into large-scale, observable effects.

In Chapter 4 of this thesis, we will develop a two-dimensional model incorporating

a combination of anchoring conditions. This setup allows changes in the top surface

anchoring, which we imagine to have been caused by an object that we wish to detect,

to induce flow, which in turn can influence the liquid crystal director far from the region

of disturbance.

In the next chapter, we will focus on the mathematical framework, including the for-

mulation of the Frank–Oseen elastic energy and the Ericksen-Leslie dynamic theory of

nematic liquid crystals, as they form the underlying theory of our study. We will then

summarise the Ericksen-Leslie theory for active nematics, which serves as the main the-

ory behind the governing equations we will investigate, and conclude with a discussion

of the anchoring and boundary conditions relevant to this research.
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Chapter 2

Theoretical Frameworks for Passive

and Active Nematic Liquid Crystals

2.1 Introduction

In this chapter, we explore the mathematical theories of nematic liquid crystals. We fo-

cus on the Ericksen-Leslie theory for both passive and active nematic liquid crystals. We

begin by introducing the Frank–Oseen static elastic energy, detailing the contributions

from splay, twist, and bend configurations in Section 2.2. Section 2.3 covers electric and

magnetic fields, as our study involves the contribution of an external field. Section 2.4

reviews the dynamic Ericksen-Leslie theory of nematic liquid crystals. In Section 2.4.1,

we formulate Ericksen-Leslie’s theory for active nematics and discuss energy dissipation

in Section 2.4.2. We outline the Ericksen-Leslie equations for active nematics in Section

2.5, and discuss activity strength and derive the active stress tensor in Sections 2.5.1

and 2.5.1.1, respectively. Section 2.6 addresses the boundary conditions for the director

and velocity, including infinite planar and homeotropic anchorings and a hybrid aligned

nematic (HAN) state for the director, as well as the no-slip and no-penetration condi-

tions for velocity. Finally, in Section 2.7, we summarise the parameter values we use in

this thesis.
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2.2 Frank–Oseen elastic energy

Oseen’s 1933 paper “The Theory of Liquid Crystals” [148] was one of the first at-

tempts to build a mathematical framework for describing liquid crystals. He represented

molecules as rigid bodies with symmetry axes, described by unit vectors (e.g., L1 and

L2, where Li denotes the unit vector along the symmetry axis of the ith molecule),

and initially characterised their relative configuration using the intermolecular separa-

tion vector r12 (defined as the vector pointing from the centre of molecule 1 to that

of molecule 2), together with angular relationships between their axes. However, these

four quantities were insufficient to fully specify the configuration because they could

not distinguish between mirror-image (left- and right-handed) arrangements, known as

“chirality.” To resolve this, Oseen introduced a fifth scalar quantity, (L1×L2)·r12, which

explicitly accounts for chirality by changing sign under inversion. His analysis further

suggested that the molecular interactions giving rise to cholesteric ordering cannot be

explained solely by simple electrostatic considerations but must also involve orientation-

dependent forces that favour a particular handedness. This work provided the basis for

the Oseen–Frank elastic theory, in which macroscopic distortions such as splay, twist,

and bend are described in terms of underlying molecular interactions. This theory is

limited in that the equilibrium configurations do not account for the dynamic behaviour

of the liquid crystal. It also lacks hydrodynamic coupling, which means the interactions

between molecular orientation and fluid flow are ignored. Moreover, singularities in the

director field, such as defects, lead to predictions of infinite energy, which is physically

unrealistic. The model assumes constant density and rigid molecules, which neglects

both density variations and thermal or molecular fluctuations.

In an attempt to study the curvature properties of liquid crystals, F.C. Frank in 1958

extended Oseen’s work, which paved the way for the exact experimental determination

of the elastic constants [53]. In general, Frank–Oseen elastic theory explains how the

director field can be distorted away from a uniform state [53,148,193]. The free energy
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density is the result of the possible changes in the orientation of the director n, which

result in six components of the curvature called curvature strains [202]. Here, we will

summarise the Frank–Oseen static elastic theory, which will serve as a foundation for

the subsequent chapters.

We consider a unit vector field n called the director, which describes the mean molecular

alignment at a point x in a given volume S so that n = n(x), and n.n = 1.

It is assumed that the system is isothermal and in the nematic phase, so that distortions

in the orientation of the anisotropic axis (represented by the director field n) incur an

energy cost. This energy cost is captured by the elastic component of the Helmholtz free

energy, referred to here as the elastic free energy density. The term total Helmholtz

elastic free energy refers to the internal energy stored in the distortion of the director

when temperature is held constant. This assumption of constant temperature is impor-

tant because it means the model does not account for temperature changes or phase

transitions. In line with [202], we assume that the free energy density w depends on

both the local orientation n and its spatial gradient ∇n

w = w (n,∇n) , (2.1)

where ∇ denotes the spatial gradient operator. The total elastic free energy W over

the domain V is then given by

W =

∫
V

w (n,∇n) dV. (2.2)

By focusing solely on the elastic energy from director distortions, the model excludes

bulk free energy terms that represent the thermotropic effect. Such bulk terms appear

in more general theories (like Landau–de Gennes bulk free energy terms), where tem-

perature influences the material’s order and phase behaviour [35, 36]. In other words,

since temperature effects are not included here, the free energy only captures how the

spatial variation costs energy of the director, not how temperature changes the degree
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of order of the liquid crystal.

The liquid crystal sample associated with this energy (2.2) is assumed to be incom-

pressible [202]. Since the nematic liquid crystals are apolar, the director n has the

same physical meaning as −n.

It is also assumed that the energy density remains unchanged under rigid body rota-

tions. This means that if the entire liquid crystal configuration is rotated, the energy

should remain the same. Mathematically, this requires that the function w, which

defines the energy density, must be invariant under rotations.

In practical terms, if both the director n and its spatial gradient ∇n are transformed

by a proper orthogonal linear map Q : R3 → R3, with det(Q) = 1, then the value of w

should not change. That is,

w (n,∇n) = w
(
Qn, Q∇nQT

)
, (2.3)

where Q is a linear map that preserves lengths and angles, and its matrix representation

in an orthonormal basis belongs to the special orthogonal group. This invariance reflects

the physical principle that the internal energy of the system depends only on the relative

distortions of the director field, not on its absolute orientation in space.

To derive the elastic free energy density for nematic liquid crystals, we begin by consid-

ering a local Cartesian coordinate system x, y, z, with the undistorted director aligned

along the z-axis:

n0 = (0, 0, 1) . (2.4)

In this reference configuration, distortions in the director field are characterised by six

independent components of curvature strain, corresponding to the classical deformation
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modes: splay, twist, and bend. These are defined as follows:

Splay : s1 =
∂nx

∂x
, s2 =

∂ny

∂y
,

Twist : t1 = −∂ny

∂x
, t2 =

∂nx

∂y
,

Bend : b1 =
∂nx

∂z
, b2 =

∂ny

∂z
,

(2.5)

where (nx, ny, nz) are the components of the director field n [53,202]. These quantities

represent local changes in the orientation of the director field due to spatial gradients.

Splay terms correspond to divergence-like distortions (expansion or compression along

the director), twist terms represent rotational distortions of the director axis, and bend

terms capture curvature of the director away from its initial orientation. Together, they

form the foundation of the Frank–Oseen theory of elastic distortions in nematic liquid

crystals.

The graphical representations of the distortions of splay, twist, and bend and their

associated elastic constants, K1, K2 and K3, are given in Figure (2.1) [226].

Figure 2.1: Graphical representations of the distortions of splay, twist, and bend and
their associated elastic constants, K1, K2 and K3 [192].

The director field n(x) is defined as a unit vector at every point x in the 3D domain

Ω ⊂ R3 occupied by the liquid crystal, so that n · n = 1 everywhere in Ω. Taking the

gradient of this identity yields ∇(n · n) = 0, which can be expanded as 0 = ∇(nini) =

2 ej nini,j, where ni are the components of n, ni,j = ∂ni/∂xj, and ej are the basis
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vectors in R3 for j = 1, 2, 3. This implies

nini,j = 0, j = 1, 2, 3, (2.6)

meaning that the directional derivative of n along itself vanishes; any spatial variation

of the director lies in the plane orthogonal to n.

Using the reference (undistorted) configuration from equation (2.4), where n0 = (0, 0, 1),

the only nonzero component is nz = 1. In this uniform state, the derivative of the z-

component with respect to any spatial coordinate vanishes. The notation

nz,j(0) = 0, j = 1, 2, 3, (2.7)

refers to evaluation at the “reference director” n0, not at the spatial origin (x, y, z) =

(0, 0, 0). This clarification ensures that in the undistorted state, all spatial derivatives

of nz vanish.

To analyse the local structure of the director field, we perform a Taylor expansion of

its components about the origin. Using the undistorted reference state defined in equa-

tion (2.4), and applying the orthogonality condition from equation (2.6), the director

field n near the origin can be written as

nx = a1x+ a2y + a3z +O
(
|x|2
)
,

ny = a4x+ a5y + a6z +O
(
|x|2
)
,

nz = 1 +O
(
|x|2
)
,

(2.8)

where the ai are constants determined by the first derivatives of the director field

components, and higher-order terms in the expansion are denoted by O(|x|2).

These linear terms can be re-expressed using partial derivatives of the director field
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components as follows

nx = x
∂nx

∂x
+ y

∂nx

∂y
+ z

∂nx

∂z
+O(|x|2),

ny = x
∂ny

∂x
+ y

∂ny

∂y
+ z

∂ny

∂z
+O(|x|2),

nz = 1 +O(|x|2).

(2.9)

Relating these terms to the curvature strain components (splay, twist, and bend) defined

earlier in equation (2.5), we obtain the identifications

a1 = s1, a2 = t2, a3 = b1, a4 = −t1, a5 = s2, a6 = b2. (2.10)

Using this expansion, the elastic free energy density can now be approximated as a

quadratic function of the six independent curvature strain components. This yields the

general form

w = Kiai +
1

2
Kijaiaj, i, j = 1, 2, . . . , 6, (2.11)

where Ki and Kij are material-dependent curvature constants that account for the

elastic response of the nematic liquid crystal to different types of distortions [53,202].

However, since physical properties must remain invariant under rigid body rotations,

we can equivalently describe the system in a rotated coordinate frame (x′, y′, z′). This

invariance implies that the energy density has the same functional form in the rotated

frame

w = Kia
′
i +

1

2
Kija

′
ia

′
j, i, j = 1, 2, . . . , 6. (2.12)

The requirement of rotational invariance plays a crucial role in constraining the form

of the elastic free energy. Specifically, the functional form of the energy density must

remain invariant under coordinate rotations, as the physical properties of the liquid crys-
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tal are unchanged by such transformations. This symmetry requirement significantly

reduces the number of allowable terms in the energy expression. A comprehensive dis-

cussion of how these arguments lead to the general structure of the elastic energy can

be found in Stewart [202, p. 19].

By enforcing the requirement of rotational invariance, specifically under a rotation of

π/2 about the z-axis, and applying symmetry arguments along with the transformation

properties of the strain tensor A′ = QAQT , we obtain the constraint

a1(k1 − k5) + a2(k2 + k4) + a3(k3 + k6)

+ a4(k2 + k4) + a5(k5 − k1) + a6(k6 − k3) = 0. (2.13)

Next, noting that the quadratic terms in the free energy must also be rotationally

invariant, and using the fact that kijaiaj/2 = kija
′
ia

′
j/2, and further impose rotational

symmetry under another π/2 rotation and derive the transformation of the curvature

strain components

(a′i) =

(
1

2
(a1 + a2 + a4 + a5),

1

2
(a2 + a5 − a1 − a4),

1√
2
(a6 + a3),

1

2
(a4 + a5 − a1 − a2),

1

2
(a1 + a5 + a2 − a4),

1√
2
(a6 − a3)

)
.

(2.14)

Substituting these transformed variables into the energy density and requiring invari-

ance under such rotations, we arrive at a specific symmetric form for the coefficient

matrix [kij]. The resulting matrix, consistent with the Oseen–Frank elastic theory and
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Stewart’s derivation [202, p. 19], is

[kij] =



k11 k12 0 −k12 k11 − k22 − k24 0

k12 k22 0 k24 k12 0

0 0 k3 0 0 0

−k12 k24 0 k22 −k12 0

k11 − k22 − k24 k12 0 −k12 k11 0

0 0 0 0 0 k33


. (2.15)

This matrix structure reflects the physical constraints imposed by rotational symme-

try and simplifies the elastic energy density to a form with fewer independent elastic

constants. The entries capture interactions between the curvature modes (splay, twist,

and bend) and account for possible couplings such as k12 and k24.

The elastic energy density for a nematic liquid crystal in terms of the curvature strain

components can now be written as

w = k1(s1 + s2) + k2(t1 + t2) +
1

2
k11(s1 + s2)

2 +
1

2
k22(t1 + t2)

2

+
1

2
k33(b1 + b2)

2 + k12(s1 + s2)(t1 + t2)− (k22 + k24)(s1s2 + t1t2), (2.16)

where s1, s2 denote splay components, t1, t2 correspond to twist, and b1, b2 to bend, as

defined in equation (2.5). The constants k1, k2, k11, k22, k33, k12, and k24 are material-

dependent elastic coefficients.

To simplify the energy density further and incorporate intrinsic curvature terms, we

define new constants s0 = −k1/k11, t0 = −k2/k22. Using these, we can rewrite the

energy density in a shifted quadratic form by introducing a new free energy term

wF = w +
1

2
k11s

2
0 +

1

2
k22t

2
0, (2.17)
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which leads to a more compact and physically meaningful expression

wF =
1

2
k11(s1 + s2 − s0)

2 +
1

2
k22(t1 + t2 − t0)

2 +
1

2
k33(b1 + b2)

2

+ k12(t1 + t2)(s1 + s2)− (k22 + k24)(s1s2 + t1t2).

(2.18)

This formulation is often advantageous in applications, as it centers the energy about a

preferred (nonzero) curvature, which reflects the spontaneous distortions that may be

present in the material.

To connect the curvature strain terms with standard vector calculus operations, we

recall the following identities

(s1 + s2) =
∂nx

∂x
+

∂ny

∂y
= ∇ · n,

−(t1 + t2) =
∂ny

∂x
− ∂nx

∂y
= n · (∇× n),

(b21 + b22) =

(
∂nx

∂z

)2

+

(
∂ny

∂z

)2

= |n× (∇× n)|2 ,

−(s1s2 + t1t2) =
∂ny

∂x

∂nx

∂y
− ∂nx

∂x

∂ny

∂y
=

1

2
∇ · [(n · ∇)n− (∇ · n)n] .

(2.19)

These vector identities allow for the elastic free energy density to be expressed more

compactly. The expressions for splay, twist, and bend given in equation (2.19) represent

intrinsic geometric distortions of the liquid crystal director field that do not depend on

the choice of coordinate system. These quantities are formulated using vector calculus

operators, which describe how the director field can deform in space.

Thus, the coordinate-independent splay, twist, and bend can be represented by simple

combinations of the linearised derivatives of the director components. This justifies

expressing the elastic free energy density in terms of these linearised curvature strains, to

ensure consistency between the fundamental geometric definitions of distortion and their

approximations used in practical calculations near a uniform director configuration.
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Using equation (2.19), equation (2.18) can be rewritten in vector form as

wF =
1

2
k11 (∇ · n− s0)

2 +
1

2
k22 (n · ∇ × n− t0)

2 +
1

2
k33 |n×∇× n|2

− k12 (∇ · n) (n · ∇ × n) +
1

2
(k22 + k24) [(n · ∇)n− (∇ · n)n]2 .

(2.20)

For nematic liquid crystals, the spontaneous splay and twist parameters vanish, i.e.,

s0 = t0 = 0. When s0 and t0 are nonzero, they describe chiral or polar nematic phases,

or systems exhibiting intrinsic distortions due to molecular asymmetry or external fields.

The parameter k12, when nonzero, introduces anisotropic coupling between splay and

twist deformations, modifying the balance of elastic distortions, which potentially af-

fects phase transition thresholds.

We now redefine the Frank elastic constants as K1 = k11, K2 = k22, K3 = k33, and

K4 = k24, the free energy density simplifies to

wF =
1

2
K1 (∇ · n)2 + 1

2
K2 (n · ∇ × n)2 +

1

2
K3 |n×∇× n|2

+
1

2
(K2 +K4)

[
tr
(
(∇n)2

)
− (∇ · n)2

]
,

(2.21)

where the constants K1, K2, and K3 correspond to the splay, twist, and bend elastic

moduli, respectively. The term K2 + K4 is known as the saddle–splay constant. The

saddle-splay term is often omitted in practical problems with strong boundary anchoring

because it can be expressed as the divergence of a vector field and therefore does not

affect the bulk equilibrium equations [235]. While it can influence surface phenomena,

its contribution to bulk energy minimisation is typically small.

The Oseen–Frank free energy functional is phenomenological, motivated by experi-

mental observations and symmetry considerations rather than derived from molecular

theory. Additional terms, such as the saddle-splay term or couplings to external fields,

are sometimes included to capture more complex effects. Their inclusion is guided by

invariance principles or experimental data, and must be critically assessed to ensure

they are physically justified.
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In this Thesis, we neglect the saddle-splay contribution because it is very small com-

pared with the bulk elastic terms. Using the values of K1 and K2 in Table 1.1 and

estimating K4 = (K1 −K2)/2 [234], we find that the saddle-splay term is non-zero but

negligible. Experimental studies [5,102,134] indicate that K4 is difficult to measure ac-

curately and subject to large uncertainties. As noted by Selinger [194], the saddle-splay

term K24 should not automatically be treated as a surface term, particularly in systems

with defects or internal surfaces, where it can contribute to the bulk elastic free energy.

It is common practice to align LC samples using external fields, such as magnetic

or electric fields, which cause nematics to align parallel or perpendicular to the field

[202, 235]. The following section will introduce the concepts of electric and magnetic

fields, as this study considers active nematics subject to an orienting field.

2.3 Electric and magnetic fields

Since this work incorporates the contribution of external fields, such as electric and

magnetic fields, it is essential to discuss the concepts of these fields and their associated

energies in the context of liquid crystals.

The general form of electric displacement is given by [202]

D = ϵ0ϵ⊥E+ ϵ0ϵa(n · E)n, (2.22)

where E is the applied electric field to a sample of nematic, ϵ0 is the permittivity

of the free space, ϵa = ϵ||−ϵ⊥ is the dielectric anisotropy of the nematic, ϵ⊥ is the

dielectric constant when the field and director are perpendicular and ϵ|| is the dielectric

constant when the field and director are parallel, where these last three constants are

dimensionless, all of which are dimensionless since they are measured relative to the

ϵ0. The dielectric anisotropy is ϵa > 0 when the energetic preference is for the director

to align parallel to the field and ϵa < 0 when the preference is for the director to be

perpendicular to the field [25,35].
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The commonly used electric energy density in modelling nematics is then given by

[35,70]

welec = −1

2
ϵ0ϵa(n · E)2. (2.23)

For a magnetic field, H, the equivalent of the electric displacement is the magnetisation,

M, which is due to the weak magnetic dipole moments imposed on the molecular

alignments by the magnetic field. The magnetisation and magnetic energy, expressed

in Gaussian units, are given in the following forms, respectively

M = χm⊥H+ χa(n ·H)n, (2.24)

wmag = −1

2
M ·H, (2.25)

Equation (2.24) represents the magnetisation M as a sum of the contributions from χm⊥

and χa, where χm⊥ denotes the diamagnetic susceptibility when the field and director

are perpendicular to each other and χa is the magnetic anisotropy. It should be noted

that the effects of gravity are neglected in this thesis. For details, refer to [202].

In the next section, we will explore the Ericksen–Leslie dynamic theory of nematic

liquid crystals, which serves as the fundamental framework for this study. This theory

is formulated based on the principles of conservation laws, including the conservation

of mass, linear momentum, and angular momentum, as detailed in Stewart [202]. By

incorporating these fundamental physical laws, the Ericksen-Leslie theory provides a

comprehensive description of the hydrodynamics of nematic liquid crystals, capturing

both their viscous and elastic properties. This theory will be essential for our analysis

and will be used to develop the mathematical models presented in Chapters 3, 4 and 5.

58



Mathematical Modelling of Active Fluids in a Channel

2.4 Ericksen-Leslie dynamic theory of nematic liquid

crystals

This section introduces the Ericksen–Leslie dynamic theory of nematic liquid crystals,

which has been widely successful in providing a mathematical framework for describing

the behaviour of liquid crystals [47]. This theory describes the coupling between the ve-

locity field and the orientational dynamics of the liquid crystal molecules [113,162]. By

establishing this framework, we can extend our discussion to active nematics. Active ne-

matics theory builds upon the Ericksen–Leslie formulation by incorporating additional

stresses arising from activity, leading to hydrodynamic instabilities [45,236].

Building on the theories of Oseen and Frank, mentioned above, Ericksen [47] developed

a more general theory of liquid crystals. Later, Leslie [113] extended Ericksen’s work to

derive the governing equations for the hydrodynamic theory of nematics, now known

as the Ericksen–Leslie theory.

We now focus on the formulation of the Ericksen-Leslie dynamic theory in the section,

and subsequently summarise the active nematics theory.

2.4.1 Ericksen-Leslie dynamic theory

Ericksen–Leslie theory was formulated using the conservation laws of mass, linear mo-

mentum and angular momentum, and the point-wise equations for mass, linear mo-

mentum, and angular momentum are given [202] by

∂vi
∂xi

= 0, (2.26)

ρ
Dvi
Dt

− ρFi −
∂tij
∂xj

= 0, (2.27)

ρKi + ϵijktkj +
∂lij
∂xj

= 0, (2.28)

where ρ denotes fluid density, Fi are the components of the external body force per
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unit mass, Ki are the components of the external moments per unit area, tij are the

components of the stress tensor, lij are the components of the couple stress tensor, and

ϵijk is the Levi-Civita symbol (also known as the alternator), with indices i, j, k = 1, 2, 3.

For a detailed derivation, refer to Stewart [202]. We apply the summation convention

here and throughout this work. The Ericksen–Leslie equations can be viewed as the

Navier–Stokes equations supplemented by an additional equation accounting for the

balance of angular momentum, often referred to as the director equation.

The incompressibility condition ∂vi/∂xi = 0 (equation (2.26)) assumes that the fluid

density is constant. This is a common assumption for liquid crystals under standard

conditions, but may not hold if density variations or compressibility effects are signifi-

cant, such as in flows under extreme pressure or temperature gradients. Equation (2.27)

generalises the Navier–Stokes momentum equation by incorporating anisotropic stress

components tij, which depend on both velocity gradients and director distortions. It

captures the coupling between fluid flow and the director orientation. However, the

precise constitutive form of tij is phenomenological and requires experimentally deter-

mined material parameters (Leslie viscosities), which can vary widely between different

liquid crystal materials and phases. Equation (2.28) introduces the balance of torques

acting on the director field via the couple stress tensor lij and the antisymmetric parts

of the stress tensor, which is captured via the Levi-Civita symbol ϵijk. This additional

balance is critical for describing director reorientation dynamics.

While the Ericksen–Leslie theory is powerful for modelling nematic liquid crystals, it

has several limitations. Firstly, the theory relies on several experimentally determined

material parameters, such as the Leslie viscosities and elastic constants, which can vary

significantly between different materials and phases, making parameter identification

challenging and limiting predictive accuracy for new systems. The assumption of in-

compressibility, reflected in the mass conservation equation, restricts the model to flows

with constant density, which may not be valid in scenarios involving high-speed flows or

significant thermal gradients where compressibility effects become important. Addition-
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ally, the continuum approximation inherent in these equations neglects molecular-level

fluctuations, discrete defects, and nanoscale effects, which can be crucial near phase

transitions or in confined geometries. Furthermore, thermal fluctuations and stochastic

noise are also ignored, despite their importance in defect nucleation and dynamics in

some contexts. In particular, the theory cannot capture topological defects in the di-

rector field, such as disclinations, which play a central role in the dynamics of nematic

materials. Furthermore, thermal fluctuations and stochastic noise are also ignored,

despite their importance in defect nucleation and dynamics in some contexts.

Following the work of Leslie [113], the energy gain or loss is accounted for through

viscous dissipation, D [202], given as

(
tij +

∂wF

∂np,j

np,i

)
vi,j +

(
lij − ϵiqpnq

∂wF

∂np,j

wp,i

)
wi,j

+ wiϵiqp

(
tpq −

∂wF

∂nk,p

nk,q

)
= D, (2.29)

where np,i = ∂inp denotes the spatial gradient of the director components, ϵiqp is the

Levi-Civita symbol. Equation (2.29) quantifies the rate at which mechanical energy is

irreversibly lost due to viscous processes in a nematic liquid crystal. This formulation

arises from the rate of work postulate and represents the residual energy after account-

ing for changes in free energy wF associated with distortions in the director field n. It

is assumed that all kinetic energy input from body and surface forces is either stored

elastically or dissipated. The first term in the left-hand side of equation (2.29) mea-

sures the viscous contribution to the rate of work due to strain rate vi,j, corrected for

contributions from director field gradients, second term accounts for dissipation due to

gradients in the angular velocity of the director field and a torque contribution, respec-

tively. The third term vanishes when the stress tensor is symmetric or when director

dynamics are decoupled from antisymmetric stress parts.

This framework assumes passive dissipation, implying that the dissipation function D

is always non-negative. However, in active nematic systems where energy is continu-
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ously injected at the microscale, and extending this analysis to active systems demands

caution and potential modifications to the dissipation framework. In the latter part

of this Chapter, we will derive the active stress and dissipation separately from their

viscous (passive) counterparts.

Since the rate of viscous dissipation is always positive for passive liquid crystals. We

therefore consider equation (2.29) as only having passive components, and since the

sign of wi, wi,j and vi,j can be chosen arbitrarily, any terms linear in these quantities

must vanish. As a result, the stress tensor tij and the couple stress tensor lij appearing

in equations (2.27), (2.28) and (2.29) are given by

tij = −pδij −
∂wF

∂np,j

np,i + t̃ij, (2.30)

lij = ϵipqnp
∂wF

∂nq,j

+ l̃ij, (2.31)

where p is the isotropic pressure and δij is the Kronecker delta. The terms t̃ij and l̃ij

correspond to dynamic dissipative contributions to the stress and couple stress tensors,

respectively.

Physically, the stress tensor tij describes the internal forces per unit area within the

nematic liquid crystal, which combines the isotropic fluid pressure, elastic distortions re-

lated to director gradients through the free energy derivative term, and viscous stresses

arising from flow. The couple stress tensor lij arises due to the microstructure of the

liquid crystal, accounting for internal moments transmitted across surfaces, which do

not appear in classical fluids. The inclusion of lij reflects the anisotropic and orienta-

tional degrees of freedom unique to nematic phases, capturing the effects of director

rotations and elastic torques.

The dependency on the spatial gradients of the director field through ∂ẇF/∂np,j links

these stresses directly to the elastic free energy, thus coupling mechanical deformations

with orientational order. This coupling is essential to model phenomena such as defect

dynamics, director reorientation under flow, and the response to external fields.
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However, there are important limitations and considerations in these formulations. The

separation into an elastic free energy contribution and a viscous dissipative part assumes

a clear distinction between reversible and irreversible processes, which may not always

hold, especially in active or out-of-equilibrium systems. The Ericksen-Leslie framework,

from which these expressions derive, presumes a continuum approximation valid at

scales large compared to molecular dimensions, neglecting microscopic fluctuations and

stochastic effects that can dominate near defects or phase transitions. Moreover, the

treatment assumes smooth director fields and well-defined gradients, which can break

down in the presence of singularities or topological defects.

Finally, while the couple stress lij introduces additional complexity compared to isotropic

fluids, it is often neglected or simplified in some models for computational tractability,

especially when the focus is on macroscopic flow behaviour rather than detailed mi-

crostructural dynamics. However, omitting lij may overlook important torque balance

effects critical for accurately capturing nematic rheology and stability.

To complete the discussion of the Ericksen–Leslie dynamic equations for nematic liquid

crystals, we write the dynamic viscous stress t̃ij is given via the constitutive equations

as follows

t̃ij = α1nkAkpnpninj + α2Ninj + α3niNj + α4Aij + α5njAiknk + α6niAjknk, (2.32)

Aij =
1

2
(vi,j + vj,i) , (2.33)

Ni = ṅi −Wijnj, Wij =
1

2
(vi,j − vj,i) , (2.34)

where Aij and Wij are the rate of strain tensor and vorticity tensor, respectively,

α1, α2, . . . , α6 are the Leslie viscosities, and Ni is the co-rotational time flux of the

director n [202]. N is the co-rotational derivative of the director, ṅi is the material

derivative of ni, defined as ṅi = Dni/Dt = ∂ni/∂t + vj(∂ni/∂xj). Physically, N cap-

tures how the director evolves in time relative to the local rotation of the fluid. It

represents the intrinsic rotation of the director field due to molecular reorientation, ex-
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cluding contributions from the rigid body rotation of the surrounding fluid. Therefore,

while n describes molecular orientation, N describes its rate of change in a deform-

ing and rotating flow, which makes it essential for describing viscous dissipation and

director dynamics in the Leslie-Ericksen theory.

The elastic energy, wF for nematics given by equation (2.21),can be written in a Carte-

sian component form as

wF =
1

2
(K1 −K2 −K4) (ni,i)

2 +
1

2
K2ni,jni,j +

1

2
K4nj,inj,i

+
1

2
(K3 −K2)njni,jnkni,k. (2.35)

The viscous dissipation inequality, following from equation (2.29) together with restric-

tion by the Parodi relation, γ2 = α6 − α5 = α2 + α3 [156], is given by

D =
1

2

[
α1(niAijnj)

2 + (α2 + α3 + γ2)NiAijnj + α4AijAij

+(α5 + α6)niAijAjknk + γ1NiNi] ≥ 0. (2.36)

The requirement for the viscous dissipation function, D, to be semi-positive definite

results in a set of inequalities that nematic viscosities must satisfy. These inequalities

derived by Leslie in [113] are given explicitly by

γ1 = α3 − α2 ≥ 0, (2.37)

α4 ≥ 0, (2.38)

α4 +
1

2
(α5 + α5) ≥ 0, (2.39)

2α1 + 3α4 + 2α5 + 2α2 ≥ 0, (2.40)

γ1(2α4 + α5 + α6) ≥
1

4
(γ1 + α2 + α3)

2. (2.41)

The viscosities αi can be challenging to describe physically but can be determined

through experimental measurements, as presented by [133]. The measured viscosities,
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known as Miesowicz viscosities, can then be expressed in terms of Leslie viscous coeffi-

cients as

η1 = (α3 + α4 + α6)/2, (2.42)

η2 = (α4 + α5 − α2)/2, (2.43)

η3 = α4/4, (2.44)

γ1 = α3 − α2, (2.45)

γ2 = α6 − α5 = α3 + α2, (2.46)

γ12 = α1, (2.47)

where γ1 is the rotational viscosity, which determines the relaxation of the director

via rotation, γ2 is the torsion viscosity and satisfies the Parodi relation γ2 = η1 − η2

[156]. The remaining viscosities η1, η2, η3 [133, 202] and γ12 [139], can be measured

experimentally by analysing the orientation of the director n with respect to the velocity

v and the velocity gradient. For details on these measurements, refer to [133,202]. The

combination of viscosities α2 and α3 is crucial in determining the flow alignment of the

director in nematic liquid crystals. When both α2α3 > 0 and α2 < α3 < 0, the nematic

liquid crystal is referred to as “flow-aligning.” Conversely, when α2α3 < 0, the liquid

crystal is considered “non-flow aligning [202].”

We now discuss the Leslie viscosities α2 and α3 in relation to the director angle and the

shear flow.

2.4.2 Leslie angle

The Leslie angle, also known as flow aligning angle, often denoted θL is the steady-state

angle between the director and the flow direction in a simple shear flow. In nematic

liquid crystals, when a shear is applied between two plates moving in opposite directions,

the director tends to align at a fixed angle rather than perfectly along or perpendicular

to the flow. This angle results from the balance between viscous torques, which arise
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from the fluid motion, and elastic restoring torques due to the molecular alignment.

In the Leslie-Ericksen theory [167,202], the Leslie angle, defined as

θL = tan−1
(√

α3/α2

)
. (2.48)

Using the values of α2 and α3 from Table 1.1 and equation (2.48), the predicted Leslie

angle is θL ≈ 0.099 rad. This helps in understanding how the liquid crystal director

responds even in the presence of an external field and boundary effects.

2.4.3 Reformulation of Ericksen-Leslie dynamic theory

We now rewrite the Ericksen–Leslie dynamic equations, to ensure that the unit-length

constraint of the director n is naturally enforced, by parameterising the director in

terms of angular variables.

The Ericksen–Leslie dynamic equations for nematic liquid crystals at constant temper-

ature, under the assumption of negligible director inertia, are given as

vi,i = 0, (2.49)

ρFi − (p+ wF ),i + g̃jnj,i +Gj,i + t̃ij,j = ρv̇i, (2.50)(
∂wF

∂ni,j

)
,j

− ∂wF

∂ni

+ g̃i +Gi = λni, (2.51)

where Fi are the components of the external body force per unit mass, t̃ij are the

components of the dynamic viscous stress tensor, the vector g̃i, defined as g̃i = −γ1Ni−

γ2Aipnp are the components of the vector expressed in terms of the viscosities γ1 and

γ2, wF is the elastic energy density for nematic liquid crystals. The generalized body

force is denoted by Gi, and is defined as Gi = χankHkHi, where H is the magnetic

field and χa is the magnetic anisotropy. The scalar function λ denotes the Lagrange

multiplier associated with the condition that n is a unit vector, and p is the pressure.

To describe explicitly the dynamics of the nematic liquid crystal orientation, we rewrite
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the balance of angular and linear momentum in terms of the director angles. The

director is defined as

n = (cos θ1 cos θ2, cos θ1 sin θ2, sin θ1) , (2.52)

where θ1 = θ1(x, t) is the polar (tilt) angle measuring the out-of-plane inclination

of the director, and θ2 = θ2(x, t) is the azimuthal (twist) angle describing the in-

plane rotation about the vertical axis. These angular variables provide a compact

representation of the three-dimensional director field n. This formulation naturally

incorporates the orientational degrees of freedom, simplifies the handling of constraints

such as fixed director length without explicitly introducing Lagrange multipliers, and

facilitates coupling between the director dynamics and the flow field.

Following the derivation in [113,202], the angular momentum balance can be expressed

as

∂

∂xi

(
∂wF

∂(∂iθα)

)
− ∂wF

∂θα
− ∂D

∂θ̇α
+

∂Ψm

∂θα
= 0, α = 1, 2, (2.53)

while the linear momentum equation can be reformulated as

ρv̇i =

(
∂D
∂vi,j

)
,j

− ∂D
∂θ̇α

θα,i − p̃,i, α = 1, 2. (2.54)

These equations enable the dynamic behaviour of the nematic system to be described

more succinctly and efficiently, without the explicit need for the Lagrange multiplier λ

used to enforce director length constraints in other formulations.

2.4.4 Energy dissipation

As mentioned previously, active nematics rely on the continuous production of energy by

the individual self-driven units. The emergence of dynamic structures in active systems

is heavily influenced by the role of nonequilibrium forces, and understanding these
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effects the system are crucial. In active systems, the stress and dissipation functions

can be thought of as consisting of active and viscous parts [4].

The concept of active dissipative can be confusing, as it does not exactly fall under

the category of “energy dissipation” since it is not positive definite. However, it can be

considered as the “rate of energy input,” as mentioned in a study by Tang et al. [207].

Paarth et al. [74] also consider this approach and suggest that viscous dissipation plays

a role in balancing the active dissipation and stabilising the uniform state in the bulk

of the system.

The rate of dissipation using Ericksen-Leslie’s theory of nematics [4,202] is often given

by the sum of the classical viscous dissipation and a single term denoting the active

dissipation,

Da =
1

2

[
α1(niAijnj)

2 + (α2 + α3 + γ2)NiAijnj + α4AijAij

+(α5 + α6)niAijAjknk + γ1NiNi] + ξniAijnj, (2.55)

where ξ is the activity strength coefficient. The last term in equation (2.55) is then

the active dissipation (derived from the active forces exerted by collections of active

systems), while the first term is the usual viscous dissipation, given by equation (2.36).

In the next section, we will derived the active stress in equation (2.55).

2.4.5 Activity strength

The magnitude and sign of the activity coefficient ξ depends on the influence of the

active fluid on the surrounding flow [187]. In an active system, flows can be induced

depending on the activity strength [45, 187], and spontaneous symmetry breaking can

occur as the activity increases, and flow is induced. Increasing the activity can lead to

oscillatory flow, and at higher activity, the so-called ceilidh dancing flow [65, 187, 197]

is observed.

A collection of active living organisms are characterised by the activity coefficient ξ and
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the sign of ξ has a significant physical meaning: ξ > 0 is associated with extensile agents

(pushers) and ξ < 0 is associated with contractile agents (pullers), which describe the

dipolar flow field (see Figure 2.2) [1].

(a) Extensile (b) Contractile 

Figure 2.2: Schematic sketches of the local flow induced by the active systems, (a)
extensile (ξ > 0) and (b) contractile (ξ < 0) flow, where straight vertical arrows

represent the director field.

Next, we will discuss the activity strength, ξ, in equation (2.55), and derive the active

stress.

2.4.5.1 Derivation of the active stress tensor

The concept of “active stress” in living things was first mentioned in the work by Fin-

layson and Scriven in 1969 [50]. They suggested that active stress is responsible for

convective instabilities in living things. Traditionally, active stress can arise from either

bulk, interfacial or slip surfaces, which depend on strain or rate of strain.

In this section, we will summarise the derivation of the active stress σa = ξ(n ⊗ n)

mentioned above. We derive the active stress based on Newton’s third law of motion,

which states that the force exerted by the self-propelled particle (SPP) on the fluid is

equal and opposite to the force exerted by the fluid on the SPP.

We follow the work of [1,10], where the ith SPP is considered to have an axis ni(t) at a

time, t, and opposite point forces of equal magnitude, F, at each end of the SPP, which

is centered at Ri (see Figure 2.3). We assume that the shape of the SPP is symmetric
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around the midpoint between the two forces, which ensures that the stress distribution

is evenly balanced around the midpoint. This means that the center of mass Ri is

equidistant from the point forces.

Figure 2.3: Geometry of the force dipole, where ni is the SPP orientation and L is the
length of the SPP.

We model a single force dipole of magnitude F, oriented along the director ni, centered

at position Ri, and displaced by ±L/2 along ni. Instead of using a Dirac delta, we use

a smooth, symmetric approximation δϵ(r), such as a normalised Gaussian kernel

δϵ(r) =
1

(2πϵ2)3/2
exp

(
−|r|2

2ϵ2

)
, (2.56)

which satisfies limϵ→0 δϵ(r) = δ(r) in the distributional sense.

The force density, f(r), acting in the fluid solvent due to a single dipole magnitude F

is [1, 10].

f(r) = Fniδϵ

(
r−Ri −

L

2
ni

)
− Fniδϵ

(
r−Ri +

L

2
ni

)
. (2.57)

We now expand each term using a Taylor expansion around r = Ri (assuming L is

small)

δϵ

(
r−Ri ±

L

2
ni

)
= δϵ(r−Ri)±

L

2
ni · ∇δϵ(r−Ri) +O(L2). (2.58)
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Substituting equation (2.58) into the force density (equation (2.57))

f(r) ≈ Fni

[
δϵ(r−Ri)−

L

2
ni · ∇δϵ(r−Ri)

]
− Fni

[
δϵ(r−Ri) +

L

2
ni · ∇δϵ(r−Ri)

]
= −FL(ni ⊗ ni) · ∇δϵ(r−Ri). (2.59)

In component form

fk(r) ≈ −FL∇j (niknijδϵ(r−Ri)) . (2.60)

For a collection of dipoles, we have

fk(r) ≈ −FL∇j

∑
i

niknij δϵ(r−Ri), (2.61)

where δϵ (r−Ri) is related to the local concentration of the SPPs, denoted as C(r),

and we assume that it is constant; thus, equation (2.61) reduces to

fi = −FLC∇jninj = ξ∇jninj, (2.62)

where ξ = −FLC denotes the activity parameter proportional to the strength of the

force dipoles, the SPP length and the concentration. Hence, the active stress tensor is

given explicitly as

σa
ij = ξninj. (2.63)

2.5 Ericksen–Leslie equations for active nematics

This section summarises the Ericksen–Leslie equations for active nematics [114,115,202,

238]. In the presence of an orienting field, the conservation of mass and the balance of
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angular and linear momentum are given explicitly by

∂vi
∂xi

= 0, (2.64)

∂

∂xi

(
∂wF

∂(∂iθα)

)
− ∂wF

∂θα
− ∂D

∂θ̇α
+

∂Ψm

∂θα
= 0 (α = 1, 2), (2.65)

∂

∂xj

(
∂D

∂(∂jvi)
+ ξninj

)
− ∂D

∂θ̇α

∂θα
∂xi

− ∂p̃

∂xi

= ρ
Dvi
Dt

(i = 1, 2, 3, α = 1, 2), (2.66)

where p̃ = p+ wF is the modified pressure, defined in terms of the isotropic pressure p

and free elastic energy wF and Ψm is the orienting field given in equation (2.25). The

coupling term (∂D/∂θ̇α)(∂θα/∂xi) in the momentum equation (2.66) is responsible for

backflow mechanism. It represents the force density exerted on the fluid by changes in

the director field, coupling the rate of director reorientation θ̇α to its spatial gradient

∂θα/∂xi. This feedback from director dynamics to flow induces fluid motion as the

director evolves, capturing the essence of backflow in nematic liquid crystals.

In the static case, the dissipation function and activity are absent, and the Ericksen–

Leslie equations reduce to

∂

∂xi

(
∂wF

∂(∂iθα)

)
− ∂wF

∂θα
+

∂Ψm

∂θα
= 0. (2.67)

Equation (2.67) is the Euler–Lagrange equilibrium equation of static theory or the

minimisation of the energy density for the angles θα.

Having described the governing equation in the bulk of the system, in the following

section, we will discuss the relevant boundary conditions for this research, including

the classical no-slip and no-penetration conditions for velocity and the infinite director

anchoring.

2.6 Boundary conditions

Boundary conditions play an essential role in determining both the orientation of the

nematic director and the hydrodynamic response of the suspension. In classical nematic
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liquid crystals, two common types of anchoring are typically considered at the boundary:

planar anchoring, in which the director n aligns parallel to the surface, and homeotropic

anchoring, in which the director aligns perpendicularly to the surface [127,202].

In continuum models, these conditions are often expressed by fixing the director field

n at the boundary ∂Ω

Planar anchoring: n · ẑ = 0, (2.68)

Homeotropic anchoring: n× ẑ = 0, (2.69)

where ẑ is the surface normal. More generally, one can model anchoring via a Rapini–

Papoular surface energy term [177],

Fs =
W

2

∫
∂Ω

[
1− (n · n0)

2] dS, (2.70)

where n0 is the preferred anchoring direction, W is the anchoring strength, and dS is

the surface element.

In passive liquid crystals, both planar and homeotropic anchoring can be achieved ex-

perimentally by mechanical rubbing, surface patterning, or chemical treatments [33,

100, 184]. However, in active nematics, controlled anchoring of the director field at

solid boundaries remains an open challenge. Unlike passive systems, active nematics

are typically realised in microtubule–kinesin or actomyosin mixtures, where the ac-

tive stresses and continuous creation/annihilation of defects prevent stable, long-lived

anchoring [40,184].

Besides director anchoring, the choice of hydrodynamic boundary conditions is equally

important. The most common include the (i) no-slip and no-penetration v|∂Ω= 0,

which enforces vanishing tangential and normal velocity at solid boundaries, (ii) free-

slip / stress-free: v⊥|∂Ω= 0 and σ⊥∥|∂Ω= 0, where ⊥ and ∥ denote components normal

and tangential to the boundary, respectively, and σ is the stress tensor, (iii) periodic

boundaries, where both velocity v and director field n repeat identically across opposite
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sides of the simulation domain. These different velocity boundary conditions have been

employed depending on the geometry and intended flow regime [40,238,240].

Several numerical studies have shown that imposed director anchoring conditions dra-

matically affect defect dynamics and emergent flows in confined active nematics. In

channels with planar anchoring, active nematics often exhibit spontaneous unidirec-

tional flow at low activity, which transitions to oscillatory and eventually turbulent

regimes as activity increases; in such cases, defects tend to align with the walls, lead-

ing to extended shear bands [18, 187]. By contrast, homeotropic anchoring typically

induces bend instabilities near the walls, driving stronger defect nucleation and en-

hanced turbulence in confined geometries [28, 138, 172, 240]. In domains with periodic

boundary conditions, the active nematic generally evolves toward the well-known active

turbulence state, characterised by motile ±1/2 defects and mesoscale vortices. Here, no

preferred alignment exists, and defect dynamics are governed solely by the interplay of

activity and elastic stresses [40,59]. Thus, while strong anchoring remains a mathemat-

ically convenient assumption in models, it must be emphasised that such conditions are

not experimentally achievable in active nematics. Nevertheless, simulations employing

planar or homeotropic boundary conditions remain useful for probing how confinement

and wall alignment would influence defect dynamics and collective flows.

In our study, we apply the infinite planar and homeotropic anchoring conditions for the

director and the no-slip and no-penetration boundary conditions for the velocity (v = 0

on the boundaries).

2.7 Summary

In summary, we have considered the Frank–Oseen and Ericksen–Leslie dynamic theory

of nematic liquid crystals. The Frank–Oseen elastic theory was formulated based on

the six components of the curvature strains described by the splay, twist, and bend

configurations, while the Ericksen-Leslie theory was formulated using the conservation

laws of mass, linear, and angular momentum. The dissipation function is written in
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terms of the director and the rate of strain tensor, with an additional term that models

the internal energy production in an active nematic fluid. We also summarised the

derivation of the active stress tensor based on Newton’s third law of motion, using self-

propelling particles as an example of living matter. We concluded this chapter with

the concept of some necessary boundary conditions for both the director and the fluid

velocity.

In Chapters 1 and 2, we have provided the historical background on passive and active

fluids, with a particular focus on active nematics, as well as the theoretical framework

based on the Ericksen-Leslie theory to set the stage for our study.
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Chapter 3

Effects of Activity on

Kickback/Backflow in a

One-dimensional Geometry

3.1 Introduction

As previously mentioned in Chapter 2, the kickback mechanism occurs when a strong

enough field (beyond the critical field strength) is applied, causing the director to reori-

ent rapidly. When the field is suddenly removed, the director overshoots, temporarily

aligning at θ > π/2, before relaxing to its equilibrium state. In active nematics, flow

also arises due to director distortions. However, the influence of activity on the kickback

mechanism and the interplay between activity and the orienting field remain an open

question.

In this chapter, we investigate the combined effects of the activity and an orienting

field on the active nematic. We formulate a one-dimensional model of active nematics

using a planar or homeotropic initial alignment. Activity can be seen as an internal

orienting field because there is a critical value of activity, below which the director is

uniform/undistorted, and above which there is director distortion. We investigate how
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applying an orienting field will affect this transition.

To understand the system’s behaviour at early times, we solve the governing equations

analytically by linearising around a uniform director. We first examine the effect of

activity in the absence of an orienting field for planar alignment. For extensile nemat-

ics, the director remains close to its initial configuration with minimal distortion. In

contrast, for contractile nematics, the director undergoes a reorientation, resulting in

sustained flow, a situation that is now well known [236]. When an orienting field is

applied, the system is characterised by a critical orienting field below which the elastic

forces resist director orientation and remain in their original state. However, if the field

is much greater than the critical threshold, the director realigns more closely with the

field. This phenomenon is called “Fréedericksz transitions” as mentioned earlier.

To capture how activity affects kickback, we start with an initial homeotropic alignment

and then set H = 0. For ξ = 0, the system exhibits the classical kickback effect, where

the director initially starts at θ = π/2 rad and overshoots as time progresses before

gradually relaxing to the uniform equilibrium state. However, for extensile nematics, the

kickback effect diminishes as the activity parameter increases, whereas for contractile

nematics, it remains sustained.

Next, we explore the nonlinear behaviour of the system at later times by solving the

governing equations numerically using a finite difference method. Our results show

that the system exhibits either a uniform, symmetric, or antisymmetric state. It is

worth noting that for extensile systems, the transition from a trivial to a non-trivial

state occurs above a critical field strength. In contrast, for contractile nematics, the

transition occurs below a critical field strength. Interestingly, for weakly contractile

systems, the director exhibits an overshoot and tends to align at θ ≈ π rad, leading to

complex flow. This finding has implications for sensor design applications.

Finally, we examine a nonlinear model of activity in a hybrid-aligned nematic (HAN) ge-

ometry. The results indicate that the system exhibits bistability in contractile systems

due to different director profiles, whereas in extensile systems, the director remains con-
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stant at approximately 1.24 rad in the bulk of the channel. This difference in behaviour

highlights the fundamental asymmetry between contractile and extensile systems in the

HAN channel, arising due to antagonistic boundary conditions.

We begin by formulating the model in Section 3.2, followed by a linear analysis for

planar alignment in the absence and presence of an orienting field to examine the effect

of activity and an orienting field on the backflow mechanism in Sections 3.3.1 and 3.3.2,

respectively. We finish our linear analysis by examining homeotropic alignment in the

absence of an orienting field in Section 3.3.3. Section 3.4 presents our nonlinear analysis

under planar alignment, employing a series of computations to identify the transitions

between different types of solutions. This is followed by a nonlinear analysis of activity

in a Hybrid Aligned Nematic (HAN) cell in Section 3.5. We finish with concluding

remarks in Section 3.6.

3.2 Model formulation

We consider the effect of a combination of activity and orienting field between two

parallel plates, at z = 0 and z = d, subject to infinite planar anchoring for the director

and no-slip conditions on the boundaries of the channel as shown in Figure 3.1.

We now seek the solutions to the governing equations (2.64)–(2.66) in one dimension,

and with a director that remains in the x − z–plane so that θ2 = 0 in (2.52). In

particular, the director n = n(z, t), the velocity v = v(z, t) and the orienting field H

take the form

n = (cos θ(z, t), 0, sin θ(z, t)) , (3.1)

v = (v(z, t), 0, 0) , (3.2)

H = (0, 0, H) , H = |H|, (3.3)

where θ(z, t) is the director angle measured with respect to the x-direction and v(z, t)

is the flow velocity. We also specify that the orienting field H is applied along the
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z-direction. This choice is compatible with the assumed director orientation in the x–z

plane and the geometry of the problem.

Substituting equations (3.1) and (3.2) into equation (2.35), we find the Frank-Oseen

elastic free energy, wF , given by

wF =
1

2
θ2z
(
K1 cos

2 θ +K3 sin
2 θ
)
, (3.4)

and from (2.36), the dissipation function, D, is

D =
1

2
g(θ)v2z +m(θ)vzθt +

1

2
γ1θ

2
t , (3.5)

where γ1 is the rotational viscosity, g(θ) is the effective shear viscosity of the liquid

crystal, and m(θ) is the viscosity term, which are expressed in terms of Leslie viscosities

as follows:

g(θ) =
1

2

[
α4 + (α5 − α2) sin

2 θ + (α3 + α6) cos
2 θ
]
+ α1 sin

2 θ cos2 θ, (3.6)

m(θ) = α3 cos
2 θ − α2 sin

2 θ. (3.7)

Substituting equation (3.1) into (2.24), we obtain the orienting field term

Ψm =
1

2
χm⊥H

2 +
1

2
χaH

2 sin2 θ. (3.8)

The balance of angular momentum, equation (2.65), using the Frank-Oseen elastic free

energy (3.4) and dissipation function (3.5), becomes

γ1θt −
(
K1 cos

2 θ +K3 sin
2 θ
)
θzz − (K3 −K1) sin θ cos θ θ2z

+m(θ)vz + χaH
2 sin θ cos θ = 0. (3.9)

Similarly, we obtain the linear momentum equations from (2.66) using (3.2) and (3.5),
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xz = 0

z

v(0, t) = 0 θ(0, t) = 0

z = d
v(d, t) = 0 θ(d, t) = 0

θ(z, t)

director, nv(z, t)

1

Figure 3.1: Active nematic in a channel between two solid plates at z = 0 and z = d
with flow parallel to the x-direction. The black solid rods show the director

orientation.

in the low-Reynolds-number approximation [26,115,167] as follows

0 = (g(θ)vz +m(θ)θt + ξ sin θ cos θ)z − p̃x, (3.10)

0 = p̃y, (3.11)

0 = (ξ sin(2θ)−m(θ)vz − γ1θt) θz − p̃z, (3.12)

where p̃ = p+wF −Ψm. Since p is translationally invariant in the x-direction, then by

equation (3.12), we have that p = p(z, t). This implies that p̃ = p̃(z, t), and hence the

full pressure p = p(z, t), since wF and Ψm also depend only on z and t. To deduce that

px = 0 from the x-momentum equation (3.10), we require an additional assumption

of no externally applied pressure gradient along the channel. In the absence of such a

gradient, we set px = 0.

Hence, from equations (3.10)–(3.12), we obtain

p(z, t) =

∫
(ξ sin(2θ)−m(θ)vz − γ1θt) θzdz − wF +Ψm. (3.13)
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From equation (3.10), we now have

(g(θ)vz +m(θ)θt + ξ sin θ cos θ)z = 0. (3.14)

We will subsequently solve the nonlinear coupled governing dynamical equations given

by equations (3.9) and (3.14).

We impose infinite planar anchoring and a no-slip condition on the wall of the parallel

plates, giving rise to the following boundary conditions

θ(0, t) = 0, θ(d, t) = 0, (3.15)

v(0, t) = v(d, t) = 0. (3.16)

It is important to note that equations (3.9) and (3.14) remain unchanged via the trans-

formations θ(z, t) → −θ(d− z, t) and v(z, t) → v(d− z, t).

3.3 Linear analysis for activity-driven channel flow

To simplify the problem, we linearise about the uniform alignment state in the absence

and presence of an orienting field, assuming that θ is close to its initial state in the

early stages of the dynamics. We consider a initial state of the form θ = Φ and v = 0,

where Φ is a constant.

We now explore the stability of the system by considering small perturbations about

this initial state. Let

θ(z, t) = Φ + ϵθ̂(z, t), (3.17)

v(z, t) = ϵv̂(z, t), (3.18)

where ϵ ≪ 1 and θ̂ is the linearised perturbation. This notation will be used consistently

throughout the linear analysis. We denote θ(z, t) as the director angle and θ̂(z, t) as its
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perturbation about the initial state.

Substituting into equations (3.17) and (3.18) equations (3.9) and (3.14), and applying

a Taylor expansion, we obtain

(
ϵg(Φ)v̂z + ϵm(Φ)θ̂t + ξ sinΦ cosΦ + ϵξθ̂ cos(2Φ)

)
z
+O(ϵ2) = 0, (3.19)

ϵγ1θ̂t − ϵ
(
K1 cos

2Φ +K3 sin
2Φ
)
θ̂zz − ϵ(K3 −K1) sinΦ cosΦ(θ̂z)

2

+ ϵm(Φ)v̂z + ϵχaH
2θ̂ cos(2Φ) +O(ϵ2) = 0. (3.20)

At zeroth order, we require sinΦ cosΦ = 0 only when H ̸= 0 due to the presence of the

orienting field term. In the case where H = 0, no such condition arises, and the only

constraint on Φ comes from the boundary condition. Since we are linearising about a

steady state that satisfies θ(0, t) = θ(d, t) = 0, we set Φ = 0. Retaining only the O(ϵ)

terms, we obtain the linearised system

(
g(Φ)v̂z +m(Φ)θ̂t + ξθ̂ cos(2Φ)

)
z
= 0, (3.21)

γ1θ̂t −
(
K1 cos

2Φ +K3 sin
2Φ
)
θ̂zz +m(Φ)v̂z

− (K3 −K1) sinΦ cosΦθ̂2z + χaH
2θ̂ cos(2Φ) = 0. (3.22)

We now consider the solutions to equations (3.21) and (3.22) for possible combinations

of Φ = 0 when H = 0 or H ̸= 0 and Φ = π/2 when H = 0. We consider the case

Φ = π/2 when θ̂(0) = 0 = θ̂(d) because it is similar to the system relaxation from a

switched-on state θ̂ ≈ π/2 towards an equilibrium state.

3.3.1 Linearising about planar alignment in the absence of an

orienting field

In this section, we consider switch-on dynamics in active systems akin to the situation

where the Fréedericksz transition occurs in planar to homeotropic alignment when the

orienting field is suddenly switched on, with the orienting field much greater than the
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threshold value. In active nematics, the activity effectively acts as an orienting field

because the active stresses couple to the director, driving spontaneous flow and reorien-

tation. This means that activity itself provides a symmetry-breaking mechanism that

aligns the director field, as discussed previously. When the activity is sufficiently strong,

it can drive a transition similar to the Fréedericksz transition, leading to pronounced

flow effects. Although this section outlines previously known results, it establishes the

procedure for introducing an orienting field.

In the absence of the orienting field (H = 0) and setting Φ = 0 in equations (3.21) and

(3.22), we obtain a coupled linear system of partial differential equations given by

η1
∂2v̂

∂z2
+ α3

∂2θ̂

∂z∂t
+ ξ

∂θ̂

∂z
= 0, (3.23)

K1
∂2θ̂

∂z2
− γ1

∂θ̂

∂t
− α3

∂v̂

∂z
= 0, (3.24)

where η1 = 1
2
(α3+α4+α6) is a Miesowicz viscosity [202]. As expected, when the activity

strength ξ = 0, we revert to the passive nematic linearised partial differential equations

given in Stewart [202, p. 226]. Multiplying equation (3.24) by η1, differentiating with

respect to z and adding the result to (3.23) multiplied by α3, we obtain an equation for

θ̂ only

∂3θ̂

∂z3
+ β1

∂θ̂

∂z
+ β2

∂2θ̂

∂z∂t
= 0, (3.25)

where

β1 =
ξα3

η1K1

, β2 =
1

η1K1

(
α2
3 − η1γ1

)
. (3.26)

3.3.1.1 Characteristic length and time scales

The dynamics of θ̂(z, t) in the active system is described by equation (3.25), where the

coefficients β1 and β2 encapsulate the physical properties of the system. Specifically,
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the intrinsic active length scale

la =
1√
|β1|

=

√
η1K1

|ξα3|
, (3.27)

sets the characteristic spatial extent over which active stresses deform the nematic

director. This active length scale is consistent with [81]. Physically, la measures the

size of the region driven by activity before elasticity dominates and suppresses further

distortions.

The coefficient β2 = (1/η1K1) (α
2
3 − η1γ1), together with β1 = ξα3/η1K1, defines the

active time scale,

τa =
β1

β2

=
γ

|ξ|
, with γ =

α2
3 − η1γ1
α3

, (3.28)

which characterises how quickly the director field responds to active forcing. Together,

la and τa capture the essential scales governing the onset and evolution of activity-driven

patterns in active nematics.

We now discuss the implications of these scales using the parameters in Table 1.1, for

the smallest and largest activity values. In this Chapter, we consider a channel height

of d = 200 µm for capturing general flow behaviour. In our system, the active length

scale is la ≈ 11.4/
√

|ξ|µm. For the smallest activity, ξ = 0.001Pa, la ≈ 360 µm, larger

than the channel height, indicating almost uniform behaviour and weak distortions.

The corresponding active time scale is τa ≈ 2375 s. For this situation, we expect no

activity-induced distortions because of the large active lengthscale, and we need not

run a simulation for the full duration of the active timescale. For the largest activity,

ξ = 2 Pa, la ≈ 8.06 µm, much smaller than the channel height, which produces strongly

localised distortions. The corresponding active time scale is τa ≈ 1.19 s. For this

situation, the suggested active lengthscale suggests distortion will occur, and we must

ensure we run the simulation for greater than the active timescale to ensure we observe

the full behaviour of the system.
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Simulation times of 200 s are therefore sufficient to capture both slow and fast dynamics:

for the smallest activity, this corresponds to only about 0.08 active response times, while

for the largest activity it spans over 400 active response times, ensuring that both nearly

uniform behaviour and rapid, localized responses are fully resolved. Thus, varying ξ

from very small to very large changes both the length scale of active distortions and

the time scale of their evolution, from almost uniform, slowly-evolving systems at low

ξ to highly localized, rapidly-evolving dynamics at high ξ.

3.3.1.2 Solution of the linearised system

We now solve equation (3.25) using a separation of variables approach. Let us assume

a solution of the form

θ̂(z, t) = θ̃(z)e−t/τ , (3.29)

where τ is a decay timescale to be determined. Substituting equation (3.29) into equa-

tion (3.25) gives

θ̃′′′(z) +

(
β1 −

β2

τ

)
θ̃′(z) = 0. (3.30)

This is a third-order ODE for θ̃(z) and thus requires three boundary conditions. Two

of these are provided by the anchoring conditions

θ̂(0, t) = θ̂(d, t) = 0 ⇒ θ̃(0) = θ̃(d) = 0. (3.31)

The third condition arises from the no-slip boundary condition on the velocity field

v, which is coupled to θ̂ through equation (3.23). Substituting the ansatz (equation

(3.29)) into (3.23) and integrating, we impose the condition

v̂(0, t) = v̂(d, t) = 0. (3.32)
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These constraints on v̂ yield an effective third boundary condition for θ̃, ensuring a

well-posed eigenvalue problem.

A particular solution satisfying the boundary conditions can be written as

θ̂(z, t) = θ̄

[
cos

(
q − 2q

d
z

)
− cos(q)

]
e−t/τ , (3.33)

where θ̄ and q are constants.

To determine the associated velocity, we differentiate (3.33) with respect to t and z and

substitute into equation (3.23), giving

∂2v̂

∂z2
= −2qθ̄

η1d

(α3

τ
− ξ
)
sin

(
q − 2q

d
z

)
e−t/τ . (3.34)

Integrating equation (3.34) twice and using the no-slip conditions v̂(0, t) = v̂(d, t) = 0,

we obtain

v̂(z, t) = v̄

[
sin

(
q − 2q

d
z

)
+

(
2

d
z − 1

)
sin(q)

]
e−t/τ , (3.35)

where

v̄ = − θ̄d

2η1q

(α3

τ
− ξ
)
. (3.36)

In the passive case (ξ = 0), equation (3.36) reduces to the known result for passive

nematics [202, p. 227]

v̄ = − θ̄dα3

2η1qτ
. (3.37)

To determine the admissible values of q, we substitute equations (3.33) and (3.35)

into the original system (3.24)–(3.23) and use (3.36), yielding the following pair of
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transcendental equations

γ1
τ
cos q − 1

η1q

(
α2
3

τ
− ξα3

)
sin q = 0, (3.38)

γ1
τ

− 4K1q
2

d2
−
(α3

τ
− ξ
)
= 0. (3.39)

Solving equation (3.39) for τ gives

τ = αγ1

(
4K1q

2

d2
− α3ξ

η1

)−1

, where α = 1− α2
3

γ1η1
. (3.40)

The positivity of the dissipation function means that η1 > 0 and η1γ1 − α2
3 > 0 hold,

which means that γ1 > α2
3/η1 ≥ 0. These inequalities mean that 0 < α < 1 [202].

When ξ = 0, equation (3.40) reverts to the passive nematic problem.

Substituting (3.40) into (3.38) and simplifying, we obtain

r(q) = q − (1− α) tan q +
α3ξα

η1

(
4K1q

2

d2
− α3ξ

η1

)−1

tan q = 0. (3.41)

Equation (3.41) has a countable set of solutions qn, referred to as mode numbers, ordered

by their real parts satisfying ℜ(q0) ≤ ℜ(q1) ≤ ℜ(q2) ≤ . . .. The index n denotes the

mode number. The corresponding τn values are referred to as the time constants.

The time constants, τn with positive real parts, correspond to decaying modes, while

those with negative real parts represent exponentially growing modes. The mode with

the most negative real part dominates at long times, which we call the dominant growing

mode, and which we denote as τmin.

Figure 3.2 illustrates the behaviour of the function r(q) as a function of q, together with

the first few solutions of the equation r(q) = 0 that satisfy the condition ℜ(q) > 0, and

for ξ = 0 no admissible root exists. Note that the asymptotes of r(q) coincide either

with the asymptotes of tan (q) or the solutions of 4K1q
2/d2 − α3ξ/η1 = 0.

To determine τn, we first solve for qn. However, since the equation for q has both
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Figure 3.2: Plot of the function r(q) as a function of q for ξ = [−0.15, 0, 0.06] Pa.
The blue and black markers indicate the values of q1 corresponding to ξ = −0.15 Pa

and ξ = 0.06 Pa, respectively.

polynomial and trigonometric components, it is a transcendental equation with no

solution that can be written in terms of a finite combination of standard functions.

Therefore, we solve for qn numerically and use the obtained solutions to compute τn.

To determine the transition from a uniform state to an unstable state, we need to

solve for the critical value of the activity, denoted by ξc. This transition occurs when

4K1q
2/d2 − α3ξ/η1 = 0. The critical activity occurs at the first mode, n = 1, also

known as the (fundamental mode), and is given explicitly as

ξc =
4K1q

2
1η1

d2α3

, (3.42)

where q1 represents the mode number associated with the first mode. We note that all

the parameters in the definition of critical activity ξc are positive, except the viscosity

α3 [202]. So, when α3 < 0, we have ξc < 0, which is the usual case when the active

nematic is rod-like. On the other hand, when α3 > 0, then ξc > 0, which is associated

with disc-like active nematics [238].

From equation (3.26), the expression for the parameter, β1, together with equation (3.42)

can be written as β1 = 4q21/d
2. Introducing the non-dimensional parameter ξ = β1d

2,
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the corresponding critical activity is then given by

ξc = β1d
2 = (2q1)

2. (3.43)

To then find the solutions for θ̂(z, t) and v̂(z, t), we employ the superposition principle

θ̂(z, t) =
∞∑
n=1

θ̄n

[
cos

(
qn −

2qn
d

z

)
− cos(qn)

]
exp

(
− t

τn

)
, (3.44)

v̂(z, t) =
∞∑
n=1

v̄n

[
sin

(
qn −

2qn
d

z

)
+

(
2z

d
− 1

)
sin(qn)

]
exp

(
− t

τn

)
, (3.45)

with v̄n = − θ̄nd

2η1qn

(
α3

τn
− ξ

)
,

where θ̄n are the constant coefficients chosen to satisfy the initial conditions

θ̂(z, 0) = θ̂0(z), (3.46)

v̂(z, 0) = 0, (3.47)

where 0 ≤ z ≤ d and θ̂0(z) describes the initial director configuration. For our anal-

ysis, we specify θ̂0(z) = Θ sin (πz/d), with Θ = 0.0001, which satisfies the boundary

conditions and provides a physically realistic small perturbation.

We choose θ̂0(z) to satisfy equation (3.46)

θ̂0(z) =
∞∑
n=1

θ̄n

[
cos

(
qn −

2qn
d

z

)
− cos(qn)

]
. (3.48)

To determine θ̄n, let

fm(z) = cos

(
qm − 2qm

d
z

)
− cos(qm). (3.49)

Multiplying both sides of equation (3.48) by fm and integrating with respect to z from
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0 to d yields

∫ d

0

θ̂0(z)fm(z) =

∫ d

0

∞∑
n=1

θ̄nfn(z)fm(z)dz. (3.50)

Since fm is not orthogonal, this problem does not have an analytical solution, so we

resort to determining θ̄n numerically. Since fn and fm are known functions, evaluation of

the left-hand side of equation (3.50) will give constants for m = 1, 2, 3 . . . and integration

of fnfm will give us a positive semidefinite matrix, while the θ̄n are unknown variables

that will be determined. To achieve this, we use the parameter values listed in [202]

to first compute qn and τn numerically, and then use these results to evaluate θ̄n. Our

numerical calculations were performed using Maple [88], Version 2018.

Since equation (3.48) involves an infinite sum, we must truncate the series in practice

to compute a numerical approximation of the initial condition. Specifically, we consider

the truncated expansion

θ̂0(z) ≈
N∑

n=1

θ̄nfn(z), (3.51)

where fn(z) is defined in equation (3.49), and N is chosen such that increasing it further

has a negligible impact on the accuracy of the reconstructed initial condition.

The truncation effectively reduces the infinite-dimensional system (3.50) to a finite-

dimensional linear system of the form

Aθ̄ = b, (3.52)

where the entries of the matrix A ∈ RN×N are given by

Amn =

∫ d

0

fn(z)fm(z) dz, (3.53)
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and the entries of the right-hand side vector b ∈ RN are

bm =

∫ d

0

θ̂0(z)fm(z) dz. (3.54)

In practice, we select N large enough to ensure convergence of the solution for θ̂0(z). The

actual initial condition used in simulations is this truncated reconstruction, evaluated

numerically using the computed coefficients.

Regarding the possibility of deriving an orthogonality condition using an adjoint for-

mulation, while such an approach might in principle lead to an appropriate basis with

orthogonal functions, in our case, the functions fn(z) depend on parameters qn that are

not linearly spaced, and the functional form of fn does not naturally lend itself to a

Sturm–Liouville framework. Therefore, finding a self-adjoint operator that yields fn as

eigenfunctions with guaranteed orthogonality is non-trivial and lies outside the scope of

this work. Instead, we treat the system numerically, using the fact that fn and fm are

explicitly known functions, which allows us to compute all necessary integrals and solve

the resulting linear system efficiently using standard numerical tools in Maple [88].
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Figure 3.3: Plot of the director angle perturbation as a function of t at z = d/2 for
ξ = [−0.2,−0.13,−0.001, 0, 0.2] Pa.
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In Figure 3.3, we plot the director angle perturbation at the center of the channel

as a function of time for different values of the activity parameter ξ. For positive

activity (ξ = 0.2 Pa), the perturbation decreases over time and relaxes towards the

undistorted state. When the activity parameter is reduced to zero, the perturbation

also decays, consistent with the passive case. For weak negative activity (ξ = −0.13

Pa), the perturbation again decreases in time, corresponding to the regime ξ < ξc. At

the critical activity ξ = ξc ≈ −0.13 Pa, the system is marginally stable, and for values

of ξ below this threshold (e.g., ξ = −0.2 Pa), the perturbation grows with time as the

higher activity drives instability and distortion.

It should be noted that the curves shown are obtained from a linear theory. Within

this framework, the system does not evolve to a steady state; instead, the solutions

continue to grow or decay in time without saturating. Consequently, even at extended

simulation times, the curves do not reach a steady state, which is inherent to the

theoretical approach rather than a limitation of the simulation duration.

For weak activity, the system decays from its uniform state. However, as the magnitude

of the activity increases, the director undergoes significant reorientation, leading to

sustained flow. These behaviours align with the classical scenario studied by [1,45,236],

where the system exhibits flow.

In the next sections, we will introduce an orienting field, and examine how the coupling

between the activity and the orienting field affects the dynamics of the system’s flow

and director orientation.

3.3.2 Linearising about planar alignment in the presence of an

orienting field

As mentioned in the introduction, in passive nematics, the system is characterised by a

critical orienting field when an orienting field is applied. For an applied field below this

critical threshold, the elastic forces resist the director’s reorientation, and the system
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remains in its original undistorted state. However, when the applied field exceeds the

critical threshold, the director undergoes a reorientation, aligning more closely with the

direction of the field. This transition is referred to as the “Fréedericksz transition”. This

reveals the balance between elastic resistance and external field-induced alignment.

Here, we extend the above analysis by introducing an orienting field in addition to

the activity strength parameter. This allows us to investigate how the presence of an

external orienting field modifies the critical activity threshold and the resulting director

configurations. This is crucial for understanding the combined effects of activity and

the applied orienting field, which is relevant in understanding the dynamics of active

systems.

Specifically, by letting Φ = 0 and H ̸= 0, equations (3.21) and (3.22) become

η1
∂2v̂

∂z2
+ α3

∂2θ̂

∂z∂t
+ ξ

∂θ̂

∂z
= 0, (3.55)

γ1
∂θ̂

∂t
−K1

∂2θ̂

∂z2
+ α3

∂v̂

∂z
− χaH

2θ̂ = 0. (3.56)

As expected, when the orienting field H = 0, we revert to equations (3.24) and (3.23),

which are the activity-driven state. Introducing the dimensionless parameters Λ1 =

K1/χaH
2, Λ2 = γ1/χaH

2 and Λ3 = α3/χaH
2, equations (3.55) and (3.56) can be

rewritten as

Λ1
∂2θ̂

∂z2
+ θ̂ − Λ2

∂θ̂

∂t
− Λ3

∂v̄

∂z
= 0, (3.57)

η1
∂2v̂

∂z2
+ α3

∂2θ̂

∂z∂t
+ ξ

∂θ̂

∂z
= 0. (3.58)

We again search for solutions of the form of equations (3.33) and (3.35) and obtain

θ̂(z, t) = θ̄

[
cos

(
q − 2q

d
z

)
− cos(q)

]
exp

(
− t

τ

)
, (3.59)

v̂(z, t) = v̄

[
sin

(
q − 2q

d
z

)
+

(
2

d
z − 1

)
sin(q)

]
exp

(
− t

τ

)
, (3.60)
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where θ̄ and v̄ are non-zero constants and τ = β6/(β5 − (2q/d)2) with β5 = (η1 +

ξΛ2)/η1Λ1 and β6 = (Λ3α3 − Λ2η1)/η1Λ1.

Substituting (3.59) and (3.60) into equation (3.58) shows that the condition

v̄ = − θ̄d

2η1q

(
ξ − α3

τ

)
, (3.61)

must hold to ensure consistency.

In order to determine τ and q, we substitute equations (3.59) and (3.60) together with

(3.61) into the linearised form of equation (3.58), and obtain

τ = αγ1

(
4K1q

2

d2
− α3ξ

η1
− χaH

2

)−1

, (3.62)

q − (1− α) tan q +
1

γ1

(
α3ξ

η1
tan q + χaH

2q

)
τ = 0. (3.63)

If H = 0, we resort to (3.40), and whenever ξ = 0, we obtain

τ = αΛ2

(
1− 4

q2H2
c

π2H2

)−1

. (3.64)

For a detailed explanation of the Fréedericksz transition in the planar to homeotropic

alignment, refer to Stewart [202]. Again, if ξ = H = 0, we revert to the passive nematic

liquid crystal problem.

Setting ξ = 0 and H ̸= 0, equation (3.63) reduces to equation (3.41), in which case we

get back to the equation for the passive nematic liquid crystal, given explicitly by

4q2

π2

[
tan q − q/(1− α)

tan q − q

]
=

(
H

Hc

)2

, (3.65)

where Hc is the critical field strength, define as Hc = (π/d)(
√
K1/χa).

Next, we analyse the critical activity, ξc, when a field is applied. For planar alignment,
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the critical activity ξc occurs at the first mode, n = 1, and is given by

ξc =
η1
α3

[
4K1q

2
1η1

d2
− χaH

2

]
. (3.66)

For χa > 0, the orienting field H tends to align the director n parallel to H [202]. In the

definition of critical activity, all parameters are positive except the viscosity α3, which

can be positive for rod-like active nematics or negative for disc-like active nematics.

For case the α3 > 0, then ξc > 0 if and only if 4K1q
2
1η1/α3d

2 > χaH
2, or ξc < 0 if and

only if 4K1q
2
1η1/α3d

2 < χaH
2. For α3 < 0, then ξc < 0 if 4K1q

2
1η1/α3d

2 > χaH
2, or

ξc > 0 if 4K1q
2
1η1/α3d

2 > χaH
2.

From equations (3.62) and (3.62), we get a new version of equation (3.41) given as

q − (1− α) tan q +
1

γ1

(
α3ξ

η1
tan q + χaH

2q

)(
4K1q

2

d2
− α3ξ

η1
− χaH

2

)−1

= 0, (3.67)

which will be solved numerically.

We introduce the magnetic field in dimensionless form by writing H in terms of the

critical field Hc, such that H = ϱHc, where Hc is defined in Table 1.1. So that if

ϱ = 1, we have H = Hc, which corresponds to the Fréedericksz transition. The general

solution for the velocity amplitude in dimensionless form can then be expressed as

v̄∗n =

[
−2α3q̂n
η1αγ1

+
α3ξ̂

2η21αγ1q̂n
+

ξ̂

2η1q̂n
− α3

2η1αγ1q̂n

]
θ̄∗n, (3.68)

where q̂n = qnd is the dimensionless wavenumber, ϱ = H/Hc dimensionless magnetic

field, ξ̂ = ξd2/π2K1ϱ
2 is the dimensionless activity and v̄∗n and θ̄∗n are dimensionless

amplitudes, corresponding to v̄n and θ̄n.

We now examine the behaviour of the director angle perturbation θ̂(z, t) in the presence

of an orienting field. We first determine θ̄n numerically, using the initial conditions

specified in equations (3.46) and (3.47) and choose ϱ = [0.5, 1, 3, 5].
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In Figure 3.4, we present the director angle perturbation as a function of time for

different values of the activity parameter and orienting field strengths. For activity

magnitudes below the critical value (ξ > ξc, e.g., ξ = −0.001 Pa), the perturbation

decays over time, relaxing toward the undistorted state. At the critical activity ξ =

ξc ≈ −0.13 Pa, the perturbation is marginally stable for H < Hc, and begins to decay

in time as the orienting exceeds the threshold field. For magnitude of activity above

the critical value (ξ < ξc, e.g., ξ = −0.2 Pa), the perturbation grows over time. When

orienting fields are applied, the perturbation grows for H < Hc whenever the activity

magnitudes below the critical value, and decays for activity magnitudes above the

critical value (see Figure 3.4(a)–(b)), while for H > Hc (e.g., ϱ = 3 and ϱ = 5), the

field suppresses the activity effect, resulting in decay, as shown in Figure 3.4(c)–(d).

The physical intuition behind the stability of extensile systems (ξ > 0) compared to

the instability of contractile systems (ξ < 0) arises from the coupling between director

distortions and the flows they generate under planar boundary conditions. For an

initially planar orientation, small bend perturbations in the director field tend to orient

toward the channel walls. In extensile systems, it tries to create a flow towards the

walls, but since the walls are impermeable, this cannot happen. In contrast, small

splay perturbations in contractile systems drive flow along the channel, reinforcing

the perturbation and causing instability. When an orienting field is applied (H >

Hc), the director tends to align with the field, which suppresses the growth of splay

perturbations, stabilising the system.

In conclusion, the evolution of the director over time is governed by the interplay

between activity and orienting fields. For activity magnitudes below the critical value,

perturbations decay, consistent with the behaviour of passive nematics. Above the

critical activity, contractile systems exhibit growth in perturbations, while extensile

systems remain stable due to boundary constraints. The introduction of an orienting

field (H > Hc) suppresses activity-induced instabilities by aligning the director with the

field, stabilising the system and limiting perturbation growth. These results underscore
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Figure 3.4: The director angle perturbation θ̂ and flow velocity perturbation v̂ as a
function of t: (a) ϱ = 0.5 (b) ϱ = 1.0, (c) ϱ = 3.0 and (d) ϱ = 5.0, for

ξ = [−0.2, −0.13, −0.001, 0, 0.2] Pa.

the competing effects of activity-driven dynamics and orienting fields in determining

the temporal evolution of the director.

In the following section, we will analyse how the activity affects the kickback subject

to homeotropic alignment, characterised by an anchoring angle of θ = π/2 rad. This

investigation will help in understanding how activity affects the kickback response.

3.3.3 Linearsing about homeotropic alignment in the absence

of an orienting field

In contrast to the initial planar alignment considered in the last section, we now consider

an initial homeotropic alignment so that the initial director alignment is orthogonal to

the substrate. It is therefore assumed that θ ≈ π/2 rad. This situation is similar to the
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classical kickback situation where it is assumed that for t < 0, an orienting field has

aligned the director to θ ∼= π/2 rad and that the orienting field is removed at t = 0. We

now examine the system’s behaviour by setting H = 0 and Φ = π/2 rad with t > 0 into

equations (3.21) and (3.22), and we obtain a coupled linear system of partial differential

equations given by

η2
∂2v̂

∂z2
− α2

∂2θ̂

∂z∂t
− ξ

∂θ̂

∂z
= 0, (3.69)

γ1
∂θ̂

∂t
−K3

∂2θ̂

∂z2
− α2

∂v̂

∂z
= 0, (3.70)

where η2 =
1
2
(α4 + α5 − α2) is a Miesowicz viscosity.

Note that the linearised system in initial planar alignment is associated with the splay

deformation elastic constant K1, and the viscosities α3 and η1, while initial homeotropic

alignment is associated with the bend deformation elastic constant K3, and the viscosi-

ties α2 and η2. The equations are identical following the transformation K1 7→ K3,

α2 7→ −α3, η1 7→ η2 and ξ 7→ −ξ.

Solving for τ and q, we obtain the new time constant τ and an equation for q given by

τ = αγ1

(
4K3q

2

d2
− α2ξ

η2

)−1

, (3.71)

r(q) = q − (1− α) tan q +
α2ξα

η2

(
4K3q

2

d2
+

α2ξ

η2

)−1

tan q = 0. (3.72)

For ξ = 0 Pa (see Figure 3.5), we revert to the case of a passive nematic liquid crystal,

where the system behaves according to the classical dynamics of passive nematics. In

this scenario, the perturbation θ̂ undergoes the “classical kickback effect.” Initially,

after the orienting field is removed, the perturbation θ̂ is greater than π/2. This is

because the director initially tries to align with the field, but once the field is removed,

the director undergoes a relaxation process where the director tends to return to its

equilibrium state, but the high-order modes decay quickly, leaving the low mode, which

pushes the director above π/2 in the center of the cell [202].
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Figure 3.5: Plot showing the (a) director angle perturbation θ̂ and (b) flow velocity
perturbation v̂ as a function of z for various time when the director is initially aligned

at θ = π/2 rad.

Next, we turn our attention to the impact of activity on this behaviour. As the activity

parameter value, ξ is introduced, we expect the director’s relaxation dynamics to be

altered. The activity introduces a new term into the governing equations, which can

lead to deviations from the classical passive nematic behaviour, causing realignment and

overshooting the director angle. We examine the behaviour of the system for various

activity parameter values.

We present the behaviour of the system for active contractile and extensile nematics in

Figure 3.6, showing the director angle perturbation at the channel center as a function

of time for various activity parameters. For ξ = 0, the system exhibits the classical kick-

back behaviour of passive nematics, where the perturbation initially aligns at θ̂ = π/2

rad, increases, and then decays over time (Figure 3.6(a)). As the activity increases to

ξ = 0.01 Pa, the kickback diminishes (Figure 3.6(b)), and at ξ = 0.2 Pa, the kick-

back disappears entirely, with θ̂ ≈ 1.53 rad initially and the perturbation immediately

relaxing to the equilibrium state (Figure 3.6(c)). In contrast, for contractile activity

ξ = −0.0095 Pa, the kickback persists with θ̂ ≈ 3.33 rad (Figure 3.6(d)).

We further investigate the behaviour system by plotting the director angle perturbation
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Figure 3.6: Plot of the director angle perturbation in the center of the channel as a
function of time, t, for (a) ξ = 0 Pa, (b) ξ = 0.01 Pa, (c) ξ = 0.2 Pa, and (d)

ξ = −0.0095 Pa under homeotropic alignment.
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1

Figure 3.7: The director angle perturbation θ̂ and the flow velocity perturbation v̂ in
the absence of a field for various time t when ξ = −0.02 Pa and ξ = 0.02 pa, for

homeotropic alignment, respectively. For clarity, we use the arrow-headed lines to
indicate the direction of increasing time.
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and flow velocity perturbation as a function of z for various times. Figure 3.7 illustrates

the evolution of the perturbation of the director angle and flow velocity for ξ = −0.02

Pa and ξ = 0.02 Pa, respectively. For the case of negative activity, the perturbation

begins at π/2 rad, indicating the initial alignment, and increases over time, as shown

in Figure 3.7(a).

For extensile systems, the director angle perturbation is initially at θ̂ = π/2 rad, then

increases before finally decreasing to the non-zero equilibrium state, as observed in

Figure 3.7(b). This behaviour suggests that positive activity suppresses any initial

director orientation, driving the director smoothly toward its non-zero equilibrium state.

Figures 3.7(c) and 3.7(d) depict the evolution of perturbed flow velocity under the same

conditions. For both contractile and extensile nematics, the flow velocity shows distinct

profiles with respect to time, influenced by director distortions.

These results are consistent with those reported in [238]. In particular, the study showed

that in active nematic liquid crystals subject to a uniform orienting field, the presence

of sufficient activity can suppress the transient overshoot of the director angle, known as

kickback. For symmetric director configurations, the director may exhibit kickback only

for activity below a critical value, whereas for anti-symmetric configurations, kickback

is generally absent. Similarly, in our simulations of extensile active nematics with

activity exceeding the critical value, we observe that the director relaxes smoothly to

its pre-switched configuration upon removal of the field, with no evidence of kickback.

Throughout Section 3.3, we investigated the short-time behaviour of active nematics

across three distinct scenarios. These included planar alignment in both the absence and

presence of an orienting field, where the dynamics involved the Fréedericksz transition.

Additionally, we analysed the system under homeotropic alignment in the absence of an

orienting field. In these cases, the system is characterised by kickback when ξ = 0 and

low activity strengths. However, for extensile nematics, the kickback effect diminishes

as the activity increases. These studies provide an understanding of the short-time

behaviour of the system, capturing Fréedericksz transition and kickback effects, which
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reveal the sensitivity of active nematics to both activities and applied orienting fields.

Building on this, the next section will extend the analysis by examining the longer-time

behaviour of the system under planar alignment in the presence of an orienting field.

By solving the governing equations numerically, we aim to characterise the solution

transitions for various activity parameter values and orienting fields to provide a more

comprehensive understanding of the interplay between activity and orienting fields.

3.4 Nonlinear analysis under planar alignment sub-

ject to an orienting field

In the previous section, we analysed the system using linear stability theory to iden-

tify key transitions and gain insight into the initial dynamics. These results provide

valuable context for understanding the mechanisms that govern the system’s response

and establish a foundation for the more complex behaviour observed in the nonlinear

regime.

Building on this foundation, we now extend our investigation to the long-term dynamics

by numerically solving the full nonlinear equations of motion. This approach allows

us to explore the emergence of distinct transition states and capture the asymptotic

behaviour that cannot be accessed through linear analysis alone.

Specifically, we aim to investigate how variations in the activity parameter and orient-

ing fields affect flow regimes, director distortions, active energy dissipation and elastic

energy. The results obtained will allow us to identify the different solution regimes.

Additionally, investigating the contribution of active energy dissipation will help us

understand how changes in the orienting field and activity affect the system.
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3.4.1 Finite difference approximation for Ericksen-Leslie equa-

tions

In this section, we present the details of the finite difference approximations in Section

(3.4). The nonlinear coupled governing dynamical equations (3.9) and (3.14), together

with the infinite planar anchoring and a no-slip condition, can be reformulated as

θ̇ = A1θzz +B1θ
2
z − C1vz +D2 sin θ cos θ, (3.73)

0 = B3θzzz +
(
g(θ)− C4

)
vzz + (A2 + A3 + 2B4) θzθzz

+
(
Λ1vz − 2C2vz +D2 sin θ cos θ + E1 + E2

)
θz +

(
B2 + C3

)
θ3z , (3.74)

and

θ(0, t) = θ(d, t) = Φb, (3.75)

v(0, t) = v(d, t) = 0, (3.76)

where θ̇ is a material derivative of θ, which is the as the d/dt, and

A1 = f1/γ1, B1 = f2/γ1, C1 = m/γ1, Φb = 0 or π/2,

A2 = A1Λ2, B2 = B1Λ2, C2 = C1Λ2, A3 = C1Λ3,

B3 = A1m, B4 = B1m, C3 = C1Λ4, C4 = C1m, D2 = χa(ϱHc)
2/γ1,

E1 = (χa(ϱHc)
2)Λ2m/γ1)

(
cos2 θ − sin2 θ

)
, E2 = ξ

(
cos2 θ − sin2 θ

)
, (3.77)
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and

f1 = K1 cos
2 θ +K3 sin

2 θ

f2 = (K3 −K1) sin θ cos θ

Λ1 =
[
(α5 − α2)− (α6 − α3) + 2α1 cos

2 θ − 2α1 sin
2 θ
]
sin θ cos θ

Λ2 = (−2α3 − 2α2) sin θ cos θ (3.78)

Λ3 = (−2K1 + 2K3) sin θ cos θ

Λ4 = − (K3 −K1) sin
2 θ + (K3 −K1) cos

2 θ.

We now define the discretisation used in the finite difference scheme in the following

steps.

Step one: We divide the domain into a series of discrete nodes:

z1 = 0 z2 = d/N z3 = 2d/N . . . zj = d(j − 1)/N . . . zN = d(N − 1)/N zN+1 = d

j = 1 j = 2 j = 3 . . . j . . . j = N j = N + 1

k = 1 k = 2 . . . k . . . k = N − 1

. . . . . .

Here, h = d/N is the distance between nodes, N is the number of intervals, and d is

the domain size. We refer to j index as the global index, which is useful for defining the

full discretised system, particularly when imposing boundary conditions. The index

k is used only for the interior points, excluding the boundaries, which is convenient

when solving the governing equations. The interior points are indexed from k = 1 to

k = N − 1, mapping onto the global indices j = 2, . . . N .

We create a solution vector, denoted by y with index i such that the entries from i = 1

to i = N − 1 are given by θ1, θ2, . . . , θN−1 and the entries from i = N to i = 2(N − 1)

are given by v1, v2, . . . , vN−1. The index j represents all discrete points in the domain,

including the boundary nodes at j = 1 and j = N + 1.
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The solution vector is therefore given by

y = (θ1, θ2 . . . , θN−1, v1, v2, vN−1)
T. (3.79)

Step two: We approximate the spatial gradients using a second-order accurate finite

difference approximation. In our case, we have used central or skewed finite difference

approximations for the interior θ equations, but because the boundary conditions enter

the equations for the outer nodes at j = 1 and j = N + 1, this will result in differ-

ent cases. We need five possible cases for the v equations because of the third-order

derivative that appears in equation (2.50). We now discretise the various derivatives as

follows. We approximate θ′′′ using the following discretisation:

θ′′′j =



(−Φb + 3θ1 − 3θ2 + θ3) /h
3 for j = 2,

(−Φb + 2θ1 − 2θ3 + θ4) /2h
3 for j = 3,(

− θ(j−3) + 2θ(j−2) − 2θj + θ(j+1)

)
/2h3 for 4 ≤ j ≤ N − 2,(

− θ(N−4) + 2θ(N−3) − 2θ(N−1) + Φb

)
/2h3 for j = N − 1,(

− θ(N−3) + 3θ(N−2) − 3θ(N−1) + Φ
)
/h3 for j = N.

(3.80)

Similarly, we approximate θ′′ using the following discretisation:

θ′′j =



(
θ2 − 2θ1 + Φb

)
/h2 for j = 2,(

θj − 2θ(j−1) + θ(j−2)

)
/h2 for 3 ≤ j ≤ N − 1,(

Φb − 2θ(N−1) + θ(N−2)

)
/h2 for j = N.

(3.81)
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For θ′, we have

θ′j =



(
θ2 − Φb

)
/2h for j = 2,(

θj − θ(j−2)

)
/2h for 3 ≤ j ≤ N − 1,(

Φb − θ(N−1)

)
/2h for j = N.

(3.82)

Similarly, for v′′ and v′, we have

v′′j =



(
v2 − 2v1 + 0

)
/h2 for j = 2,(

vj − 2v(j−1) + v(j−2)

)
/h2 for 3 ≤ j ≤ N − 1,(

0− 2v(N−1) + v(N−2)

)
/h2 for j = N.

(3.83)

v′j =



(
v2 − 0

)
/2h for j = 2,(

vj − v(j−2)

)
/2h for 3 ≤ j ≤ N − 1,(

0− v(N−2)

)
/2h for j = N.

(3.84)

Next, we substitute equations (3.80) - (3.84) into equations (3.73) and (2.50) and obtain

the following discretised differential equations:

θ̇j = A1jθ
′′
j +B1j

(
θ′j

)2
− C1jv

′
j +D2 sin θj cos θj, (3.85)

0 = B3jθ
′′′
j +

(
g(θj)− C4j

)
v′′j +

(
A2j + A3j + 2B4j

)
θ′′j θ

′
j

+
(
(Λ1j − 2C2j)v

′
j +D2 sin θj cos θj + (E1j + E2j)

)
θ′j +

(
B2j + C3j

) (
θ′j
)3

,

(3.86)

for j = 2 . . . , N . Here, A1j, B1j, C1j, A2j, B2j, C2j, A3j, B3j, C3j, E1j, E2j are the

values of A1, B1, C1, A2, B2, C2, A3, B3, C3, E1, E2, respectively, where θ = θj

and v = vj.

Step three: We can now write the system in the form of Differential Algebraic Equa-
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tions (DAE) or matrix notation as MẎ = F (Y ). The mass matrix, M , the vectors Y

and F (Y ) are given as follows

M =



1 0 0 0 0 0 0 · · · 0

0 1 0 0 0 0 0 · · · 0

0 0 1 0 0 0 0 · · · 0

0 0 0
. . . 0 0 0 · · · 0

0 0 0 0 1 0 0 · · · 0

0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0



, (3.87)

Y =



θ1

θ2

θ3

θN−1

v1

v2

v3
...

vN−1



, (3.88)

and
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F (Y ) =



(A/h2) (θ2 − 2θ1 + Φb)− (B/2h) (v2 − 0)

...

(A/h2) (θN−3 − 2θN−2 + θN−1)− (B/2h) (vN−1 − θN−3)

(A/(h2) (Φb − 2θN−1 + θN−2)− (B/2h) (0− vN−2)

(G/h3) (−Φb + 3θ1 − 3θ2 + θ3) + (C/h2) (v2 − 2v1 + 0) + (ξ/2h) (θ2 − Φb)

(G/2h3) (−Φb + 2θ1 − 2θ3 + θ4) + (C/h2) (v3 − 2v2 + v1) + (ξ/2h) (θ3 − θ1)

...

(G/2h3) (−θN−5 + 2θN−4 − 2θN−2 + θN−1) + (C/h2) (vN−2 − 2vN−3 + vN−4) + (ξ/2h) (θN−2 − θN−4)

(G/2h3) (−θN−4 + 2θN−3 − 2θN−1 + Φb) + (C/h2) (vN−1 − 2vN−2 + vN−3) + (ξ/2h) (θN−1 − θN−3)

(G/h3) (−θN−3 + 3θN−2 − 3θN−1 + Φb) + (C/h2) (0− 2vN−1 + vN−2) + (ξ/2h) (Φb − θN−2)



. (3.89)
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Step four: We use the ode15s solver in Matlab (R2022a) Version 9.13 [130] to integrate

the non-linear coupled partial differential equations in time using an initial condition

θ = Θ
(
sin(πz/d) + 0.5 sin(2πz/d)

)
at t = 0, where Θ = 0.0001.

To characterise the solution profiles of the director and flow velocity, the simulations

were run up to t = 500 seconds to capture the subsequent development and saturation

of instabilities into fully developed steady state. For transitions in the director angle

distortion, the focus is on the asymptotic behaviour at the final simulation time, t = 500

seconds. The system typically reaches steady or quasi-steady states well before t = 500

seconds, with convergence occurring around t ∼ 100 − 150 seconds depending on the

activity strength and orienting field.

To gain insight into the underlying physics, the system is analysed for various activ-

ity strengths and orienting field values, using N = 200 spatial intervals to resolve the

director angle and flow velocity profiles. The linear stability results provide an im-

portant guide to understanding the onset of instabilities and the early-time dynamics,

which in turn inform the interpretation of the fully nonlinear behaviour observed in

the simulations. By comparing linear predictions with the nonlinear outcomes, we can

identify how initial perturbations evolve, and how activity amplifies or suppresses flow.

This approach ensures that the linear analysis is used not in isolation, but as a tool

to develop intuition for the more complex nonlinear dynamics. Later in this section,

we explicitly compare the numerical and analytical solutions by computing the critical

activity, which marks the transition from a homogeneous to a nonhomogeneous director

configuration.

An important quantity governing the system response is the active time scale, τa, which

characterises how quickly the director field responds to active forcing relative to viscous

dissipation and elastic relaxation (see equations (3.62) and (3.63)). This timescale,

together with the active length scale la, captures the essential physics of activity-driven

pattern formation in active nematics. For low activity, τa ≈ 2375 s, indicating extremely

slow evolution, whereas for the largest activity considered, |ξ|= 2 Pa, the corresponding

110



Mathematical Modelling of Active Fluids in a Channel

length and time scales are la ≈ 8.06 µm and τa ≈ 1.19 s, which shows that active

distortions are strongly localised and the system responds quickly to activity.

We discretise the governing equations using the finite difference method, and perform

our simulations for different values of the activity parameter values, ξ, and the orienting

fields, ϱ = H/Hc, where H is the orienting field and Hc is the critical orienting field.

Note that the Fréedericksz transition occurs when H = Hc, which corresponds to ϱ = 1.

Initially, we perform our computations for fixed values of an orienting field and varying

values of the activity parameter and observe three distinct solutions: an undistorted

uniform solution and symmetric and antisymmetric director distortion solutions. For

low values of the activity parameter, the orienting field dictates the behaviour, and the

director angle in the center of the channel prefers to align along the field direction.

We will find that increasing the activity decreases the director angle in the center of

the channel, indicating that the activity is reducing director distortion in the center of

the channel and eventually overriding the field effect, giving rise to the antisymmetric

solution. Interestingly, for extensile systems, the transition from a trivial state to a

nontrivial state occurs at the orienting field above the critical field strength, while for

contractile systems, the transition occurs at the orienting field below the critical field

strength.

3.4.2 Characterisation of the solution profiles

In this section, we investigate the forms of the director and flow profile, demonstrating

the effects on the solution symmetry and critical activity.

We define a solution as “symmetric” if it exhibits even symmetry about the center point

of the geometry, meaning the director and flow velocity profiles remain unchanged

under reflection across the center. Conversely, a solution is considered “antisymmetric”

if it exhibits odd symmetry; in this case, the profiles reverse their sign upon reflection.

Note that a symmetric director profile is associated with an antisymmetric flow velocity

profile, where the flow changes from positive to negative across the center. Similarly, an
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antisymmetric director profile is associated with a symmetric flow velocity profile, where

the velocity remains unchanged under reflection, highlighting the inherent coupling

between the director and flow fields in the system.

We first consider the classical case where ϱ = 0 for different activity parameter val-

ues. Specifically, we choose ξ = [−0.03, 0,−0.24, 0.3] Pa, covering passive, weakly and

strongly active systems.

We present the director angle and flow velocity as a function of z for ξ = 0.3 Pa (see

Figures 3.8(a) and 3.8(e)). In this activity regime, the director remains undistorted,

aligning with the uniform director state, and no flow is generated. This occurs because,

under planar anchoring, extensile nematics relax to an equilibrium state. We decrease

the activity to ξ = 0 and plot the director angle and flow velocity as a function of z as

shown in Figures 3.8(b) and 3.8(f), respectively. As expected, when ξ = 0, the system

remains undistorted and does not generate flow. This behaviour is similar for a weakly

active system (ξ = −0.03 Pa), as shown in Figures 3.8(c) and 3.8(g), respectively.

However, as the activity decreases to ξ = −0.24 Pa (Figures 3.8(d) and 3.8(h)), the

system exhibits director distortion, which eventually induces flow due to the coupling

between the director and flow. This regime is characterised by an antisymmetric director

angle profile and a symmetric flow velocity profile. This suggests that when ξ = 0

and the activity is below the critical value, the director remains undistorted, and no

flow is generated. However, when the activity magnitude exceeds the threshold value

(ξ = −0.126 Pa), the director becomes distorted, leading to flow generation.

We now vary the orienting field to examine its influence on the system’s behaviour.

We choose ϱ = [0.5, 1, 1.5, 2, 2.5], covering values below, at, and above the critical field.

Note that the orienting field reaches the critical value when ϱ = 1. This is to characterise

the director and the flow velocity profile as the orienting field increases above zero.

For weak orienting fields such as ϱ = 0.5, the system exhibits a similar behaviour as

the base case (ϱ = 0), as shown in Figures 3.9(a)–3.9(h). This occurs because the

orienting field remains below the threshold value (ϱ = 1). Increasing the orienting
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Figure 3.8: Director angle and flow velocity plots for an orienting field, ϱ = 0, and for
ξ = [0.3, 0,−0.03,−0.24] Pa.

Figure 3.9: Director angle and flow velocity plots for an orienting field, ϱ = 0.5, and
for ξ = [0.3, 0,−0.03,−0.24] Pa.

field to ϱ = 1 (a classical critical field value, corresponding to Fréedericksz transitions)

results in behaviour similar to the cases of ϱ = 0 and ϱ = 0.5, but above the critical

field, we begin to see director distortion, leading to flow, and giving rise to various

solution states.

In Figure 3.10, we present the director angle and flow velocity for an orienting field

ϱ = 1.5, and for ξ = [−0.03,−0.24, 0, 0.3] Pa. For extensile nematics (ξ = 0.3 Pa), the
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system remains in a uniform state, like the case when ϱ < 1, as depicted in Figures

3.10(a) and 3.10(e). Decreasing the activity to ξ = 0, the director becomes distorted,

leading to flow because the field orienting exceeds the critical value, as shown in Figures

3.10(b) and 3.10(f). This occurs because the director tends to align with the field

direction for field strengths greater than the critical field and activity strength zero. For

ξ = −0.03 Pa (Figures 3.10(c) and 3.10(g)), we observe increased director distortion

and enhanced flow, resulting in a symmetric director angle profile and an antisymmetric

velocity profile. For activity strength above the critical value (ξ = −0.24 Pa), these

profiles reverse, leading to antisymmetric director angle and symmetric velocity profiles,

as shown in Figures 3.10(d) and 3.10(h).

Figure 3.10: Director angle and flow velocity plots for an orienting field, ϱ = 1.5, and
for ξ = 0.3 Pa, ξ = 0 Pa, ξ = −0.03 Pa and ξ = −0.24 Pa.

We further increased the orienting field to ϱ = 2 and plot the director angle and flow

velocity for the same activity values, as shown in Figure 3.11. For ξ = 0.3 Pa, the

director becomes distorted and reorients to align θ = π/2, leading to flow generation

(Figure 3.11(a) and 3.11(e)). In this case, the field is strong enough to align the director

at θ = π/2 rad, which shows the field effect overrides the activity effect. Decreasing

the activity to ξ = 0, the director still wants to align in the field direction but with a

different structure and low flow (Figures 3.11(b) and 3.11(f)). For ξ = −0.03 Pa, the
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Figure 3.11: Director angle plot and flow velocity plots for an orienting field, ϱ = 2,
and for ξ = 0.3 Pa, ξ = 0 Pa, ξ = −0.03 Pa and ξ = −0.24 Pa.

activity suppresses the field effect, reducing the director angle, leading to the emergence

of an antisymmetric velocity profile (Figures 3.11(c) and 3.11(g)). This indicates a

competition between activity and the orienting field effects. For ξ = −0.24 Pa, the

director angle and flow velocity exhibit a similar structure to the case where ϱ = 1.5,

as shown in Figures 3.11(d) and 3.11(h)).

Finally, we further increased the orienting field to ϱ = 2.5 and plot the director angle

and flow velocity in Figure 3.12. We focus on Figures 3.12(c) and 3.12(g) since the

solution profiles for the other values of ξ have already been observed in previous cases.

A different behaviour emerges for ξ = −0.03 Pa, where the director increases above

π/2 and tends align at θ ≈ 0.8π rad, as shown in Figures 3.12(c) and 3.12(g). This

can cause a significant optical effect, and so may be useful for a sensor. This leads to

distinct director angles and flow velocity profiles, highlighting a new regime. In contrast

to the works of Voituriez et al. [236] and Edwards and Yeomans [45], who considered

how activity alone can destabilize the uniform state and lead to spontaneous flows, our

study demonstrates that the solution states are further tuned by the strength of an

external orienting field in addition to the activity strength.
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As observed in Figures 3.9–3.12, the system exhibits a range of behaviours depending

on the orienting field and activity strength. For weaker fields (ϱ ≤ 1), the director

largely remains in the undistorted or slightly distorted states, while increasing activity

leads to symmetric or antisymmetric distortions. As the field is strengthened beyond

the critical value, a crossover emerges: the director and flow profiles transition between

different solution states, sometimes reversing the symmetry of the director angle and

flow velocity. This crossover behaviour is already hinted at in Figures 3.10 and 3.11,

where small changes in activity induce significant shifts in the flow and director profiles.

We note that these observations foreshadow the more precise characterisation of critical

activities and behavioural reversals that will be discussed later in this chapter (Figures

3.17–3.19), where we systematically determine the critical activities ξc1, ξc2, ξc3, and

ξc4 and show how transitions between symmetric and antisymmetric states occur as

a function of activity and orienting field. This approach allows us to understand not

only the qualitative crossover, but also the quantitative thresholds at which the system

behaviour changes.

Figure 3.12: Director angle and flow velocity plots for an orienting field, ϱ = 2.5, and
for ξ = 0.3 Pa, ξ = 0 Pa, ξ = −0.03 Pa and ξ = −0.24 Pa.

In the following section, we will summarise these results by analysing the director

angle solution at the middle, quarter, and three-quarter positions of the channel to
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identify different types of director distortions. These measures allow us to systematically

determine how different critical activities emerge as the orienting field increases.

3.4.2.1 Summary of transitions in the director distortion solutions

We summarise the effects of the orienting field and activity on the director, by plot-

ting the late-time director angle value at the middle, quarter and third quarter of the

channel, denoted as θ(d/2), θ(d/4) and θ(3d/4) for varying activity parameter values,

ξ, and fixed values of the orienting field, ϱ. In this way, we can understand the vari-

ous transition states of the system as activity varies. We compute these measures for

various activity values and ϱ = [0, 0.5, 1, 1.025, 1.5, 2, 2.5].

In Figures 3.13–3.22, we define four critical activity thresholds, ξc1–ξc4, which mark

transitions between qualitatively different solution states of the director. These are

identified numerically using the classification tests based on the integrals of θ and |θ|.

We define ξc1 as the critical activity threshold corresponding to the onset of director

distortion, |θ(d/4)− θ(3d/4)|> ϵ, with ε = 10−6. This ensures that there is no net tilt

and no residual local distortion. The threshold ξc2, marks the onset of any distortion

and is defined by the condition (1/d)
∫ d

0
|θ(z)| dz > ε. We define ξc3 and ξc4 as transi-

tions between symmetric states. Within the distorted (even-symmetric) branch, further

thresholds are identified by comparing θ(d/2) when activity is decreasing or decreasing.

Specifically, ξc3 is defined as the critical activity reached when decreasing ξ, at which

the director angle satisfies θ(d/2) > π/2, whereas ξc4 is defined as the critical activity

reached when increasing ξ, at which the director angle satisfies θ(d/2) < π/2.

The director angles are computed for 101 discrete activity values in the range ξ ∈

[−0.3, 0.6] Pa. In Figures 3.13–3.16, the horizontal axis is restricted to ξ ∈ [−0.3, 0.3]

Pa for clarity, giving a spacing of ∆ξ = 0.006 Pa and a numerical uncertainty of ap-

proximately ±∆ξ/2 = ±0.003 Pa. For Figures 3.18–3.19, the full range ξ ∈ [−0.6, 3.5]

Pa is used, giving ∆ξ = 0.041 Pa and a numerical uncertainty of approximately

±∆ξ/2 = ±0.0205 Pa.
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Along with these measures, we also include inset plots of the director angle as a function

of z to illustrate the profiles of the undistorted uniform state, as well as the symmetric

and antisymmetric states. We denote these states as θ ≡ 0 for the uniform state, θeven

for the symmetric state, and θodd for the antisymmetric state.

We first examine the classical case where ϱ = 0 and plot the measures θ(d/2), θ(d/4)

and θ(3d/4) as a function of activity, as shown in Figure 3.13. The director remains

undistorted for ξc1 ≤ ξ, where ξc1 = ξc ≈ −0.13 Pa, corresponding to the undistorted

uniform state (θ ≡ 0) as illustrated by the inset plot on the right of the Figure 3.13.

As the activity decreases, in the range ξ ≤ ξc1, a transition occurs, leading to an

antisymmetric state, as depicted in the inset plot on the left of Figure 3.13. This

demonstrates that activity drives a transition from the undistorted uniform state to

the antisymmetric state.
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Figure 3.13: Sketch of the director angle at the middle, quarter and third quarter of
the channel for ϱ = 0, with ξc1 = ξc − 0.13 Pa.
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We now examine the effect of orienting fields on these transitions, starting from weak

field values and increasing beyond the critical field value. Figure 3.14 presents the

director angle at the middle, quarter, and third-quarter positions of the channel for

ϱ = 0.5. On the right side of Figure 3.14, we observe an undistorted uniform state

(θ ≡ 0) for ξc2 ≤ ξ, where ξc2 ≈ −0.102 Pa marks a new critical activity value at

which a transition occurs. We classify this transition to a symmetric state (θeven1), as

illustrated by the inset plot in the region between ξc1 and ξc2, indicated by the red

dashed arrowhead line. Additionally, the critical activity value associated with the

change to an antisymmetric distortion shifts to ξc1 = −0.138 Pa, indicating that the

critical activity value changes as the orienting field increases.

Figure 3.14: Sketch of the director angle at the middle, quarter and third quarter of
the channel for ϱ = 0.5, with ξc1 = −0.138 Pa and ξc2 = −0.102 Pa. The red dashed

arrowhead line indicates the region where the symmetric state (θeven1) occurs.

We increase the orienting field to ϱ = 1, the critical field value where the classical
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Fréedericksz transition occurs, and plot the measures θ(d/2), θ(d/4) and θ(3d/4) as a

function of ξ, as shown in Figure 3.15. The undistorted uniform state (θ ≡ 0) now

occurs for ξc2 ≤ ξ, where ξc2 reduces to approximately 0 (see the inset plot in the right

side of 3.15). The symmetric state (θeven1) now falls in the range ξc1 ≤ ξ ≤ 0, where

ξc2 has shifted to −0.003 Pa, indicating that the orienting field effect dominates the

activity effect. We choose ϱ = 1.025 and plot Figure 3.16 just to show how a new

solution evolves.

Figure 3.15: Sketch of the director angle at the middle, quarter, and third quarter of
the channel for ϱ = 1, with ξc1 = −0.138 Pa and ξc2 = −0.003 Pa.

Increasing the orienting field to ϱ = 1.5 leads to the emergence of a new distorted

symmetric solution, denoted by θeven2, as shown in the inset of Figure 3.17 for the range

ξc2 ≤ ξ ≤ −0.0001. This results in two different director profile: one where the director

tends to align approximately at π/2 rad, and other where the director aligns below π/2

rad. The appearance of this new director structure can be attributed to the stronger
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Figure 3.16: Sketch of the director angle at the middle, quarter, and third quarter of
the channel for ϱ = 1.025, with ξc1 = −0.138 Pa and ξc2 = 0.006 Pa.

orienting field, which enhances the coupling between the elastic distortions and activity.

Further increasing the ϱ from 1.5 to 2.0, we observe the range of activity for this

new state growing, as shown in Figure 3.18. This change in the critical activity value

suggests that stronger activity is required to counterbalance the increasing effect of the

orienting field.
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Figure 3.17: Sketch of the director angle at the middle, quarter, and third quarter of
the channel for ϱ = 1.5, with ξc1 = −0.138 Pa and ξc2 = 0.31 Pa. The vertical dashed
line separates the two types of director profiles, distinguishing those that tend to align

near π/2 rad from those that align below it.
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Figure 3.18: Sketch of the director angle at the middle, quarter, and third quarter of the channel, for ϱ = 2.0. The region between
ξc1 = −0.15 Pa and ξ = 0.015 Pa corresponds to the first symmetric solution, denoted as θeven1, as indicated by the black dashed

arrowhead line. Here, ξc1 shifted to ξc2 = 1.1 Pa. The dashed vertical line separates the two types of director profiles, distinguishing
those that tend to align near π/2 rad from those that align below it.
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Figure 3.19: Sketch of the director angle at the middle, quarter, and third quarter of the channel, for ϱ = 2.5. The region between
ξc1 = 0− .15 Pa and ξc4 = −0.04 Pa corresponds to the first symmetric solution, denoted as θeven1, as indicated by the solid red
arrowhead line. The region between ξc3 = −0.006 Pa and ξc4 corresponds to the new symmetric solution, denoted as θeven3, as

indicated by the red dashed arrow-headed line. Here, the critical activity ξc2 now becomes 2.84 Pa.
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Finally, we increased ϱ to 2.5 and observed the emergence of two new symmetric states,

marked by ξc3 and ξc4, as shown in Figure 3.19. At the critical activity ξc3 = −0.006

Pa, reached by decreasing ξ, the director angle rises above π/2 rad and tends towards

θ ≈ 0.8π rad, as illustrated in the inset plot labelled θeven3. In contrast, ξc4 = −0.04

Pa marks the transition obtained by increasing the magnitude of activity, where the

director angle falls below π/2 rad and approaches θ ≈ 0.5π, as shown in the inset plot

labelled θeven1. This behaviour is similar to what we previously observed in Figure

3.12(b) for ϱ = 2.5 and ξ ≈ −0.03 Pa, and is characterised by complex flow dynamics

in which the director structure exhibits a “kink” profile arising from the kickback effect.

This kink arises due to the kickback effect, whereby the director field cannot relax

smoothly. Such overshoot phenomena are interesting for sensing applications, as even

small changes can lead to significant distortions and flow in the system.

In conclusion, our results indicate that the system exhibits one of three solution states:

symmetric, antisymmetric, and uniform states, with several subclassifications of sym-

metric solutions. The uniform state corresponds to a uniform alignment of the director

parallel to the boundaries of the channel. For field strengths greater than a critical

value, the uniform state is replaced by the symmetric director distortion solution. This

is essentially the Fréedericksz transition, where the trivial solution is unstable above a

critical field strength. However, the value of the critical field changes as we increase the

magnitude of the activity. For contractile systems, the orienting field is below the clas-

sical field strength, and for extensile systems, the orienting field is above the classical

field strength.

For antisymmetric solutions, there is a reorientation in the middle of the layer for

high elastic energy. For low activity parameter values, the orienting field dictates the

behaviour, and the director angle in the middle of the layer prefers to align along the

field direction. However, increasing the activity increases flow, which tends to align

the directors to the ±θL, flow alignment angles also referred to as Leslie angles, hence

reducing the director angle in the center and overriding the field effect, giving rise to
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the antisymmetric solution.

We can summarise the behaviour of the system with a sketch of the boundaries between

the various late-time solutions in the ϱ-ξ parameter space. We use a 201× 201 grid in

both the orienting field, ϱ, and activity, ξ, with ϱ ∈ [0, 3] and ξ ∈ [−0.3, 0.3] Pa. Figure

3.20 displays this information with a sketch of the critical activities, showing the regions

where the various solutions exist. We see uniform solutions for ξ > ξc2 (displayed in

the region above the solid red line). As the orienting field exceeds a critical value, three

different symmetric director distortion solutions emerge: going down Figure 3.20, we

get a distorted symmetric solution for ξc2 < ξ < ξc3, where the solid cyan line marks

a critical activity value (ξc3) for which another state emerges. In this solution regime,

the director angle tends to align approximately at π/2 rad. For ξc3 < ξ < ξc4, a new

symmetric solution corresponds to a situation where the director tends to align at an

angle above π/2 rad (see the region between solid blue and green lines), where the solid

green marks new critical activity (ξc4). For ξc4 < ξ < ξc1, we get another symmetric

distorted state, which corresponds to a case where the director wants to align at an

angle below π/2 rad. Lastly, for ξ < ξc1, where the solid purple line marks a critical

activity (ξc1), there is a transition from a symmetric to an antisymmetric state. Below

the critical activity ξc1, activity overrides the field effect, resulting in an antisymmetric

solution, as shown by the inset plot labelled θodd.

Our results show that the critical field strength depends strongly on the activity type.

For contractile systems, the critical field lies below the classical Freedericksz threshold,

whereas for extensile systems, it lies above this value. This indicates that contractile

activity facilitates director alignment, while extensile activity resists alignment. From

the perspective of applications such as sensors, this distinction is significant. Contractile

systems reach alignment under weaker external fields, making them more responsive and

energy-efficient in detecting small perturbations. Extensile systems, on the other hand,

require stronger applied fields and therefore exhibit lower sensitivity. Consequently,

contractile active nematics offer a clear advantage for sensing applications, as they
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enhance sensitivity and reduce the energy cost of operation.

Essentially, for ξ = 0, a classical field strength occurs at ϱ = 1, corresponding to

the Fréedericksz transition. Interestingly, for extensile systems, the transition from

a uniform state to a symmetric state occurs above the critical field strength. For

the contractile system, the transition occurs below the critical field strength. This

asymmetry implies that negative activity facilitates reaching the reorientation threshold

at a smaller field due to contractile effects enhancing alignment more efficiently than

extensile effects. At higher-magnitude of negative activities, there is no critical activity

because the activity effect dominates the field effect, resulting in an antisymmetric

solution.

Figure 3.20: The boundaries between the various late-time solutions in (ϱ, ξ)
parameter space, where, ξc1 to ξc4 are the different critical activities. The various lines
represent the boundaries where transitions between different states occur. The black

arrow-headed line points to the region where the symmetric state (θeven3) occurs.

It is useful to investigate the effects that changes in the orienting field and activity have

on the system. To achieve this, we consider a measure of how activity induces changes

in the system, specifically the total active dissipation in terms of the director and the
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strain rate tensor, given by

Da =

∫ d

0

|ξniAijnj|dz =
∫ d

0

|ξ sin θ cos θ|dz. (3.90)

Note that active dissipation can be positive or negative, so we integrate the modulus

to avoid Da = 0 for the odd solutions, and the total nematic elastic energy denoted by

ωd and defined by

ωd =

∫ d

0

wFdz. (3.91)

We present the total active dissipation and the total elastic energy in the contour plots

of Figure 3.21 and 3.22, respectively. For these figures, the data are computed on a

201× 201 grid in both the orienting field ϱ and activity ξ directions. This corresponds

to step sizes ∆ϱ = 0.015, ∆ξ = 0.003, with ϱ ∈ [0, 3] and ξ ∈ [−0.3, 0.3] Pa, ensuring

high resolution in capturing the variations of total active dissipation and elastic energy

across the parameter space.

These figures clearly mimic the behaviour observed in Figure 3.20. High values of ϱ,

result in high total elastic energy, and when both ϱ and ξ are large, the total active

dissipation increases significantly. The total active dissipation is low whenever ξ < 0.

However, as ξ ≪ 0, the total active dissipation starts to grow while the total elastic

energy remains small. This is because, in the antisymmetric state, the director angle

stabilises at ±θL, where θL is small.

3.4.3 Prediction of critical activity, ξc2

We now determine the critical activity at which the solution transitions from a ho-

mogeneous to a nonhomogeneous state, denoted by ξc2. According to equation (3.59),

the most unstable solutions occur when τ ≪ 0, while for τ > 0, the solutions be-

come stable. However, in the limit τ → ∞, the solution becomes independent of time t,

which indicates a transition from an undistorted director solution to a distorted director
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Figure 3.21: Contour plot of total active dissipation, Da against the orienting field
and activity. In the region ξc2 and ξc3, the system exhibits a symmetric solution

(θeven2), between ξc3 and ξc4, a different symmetric solution (θeven3), and in the region
ξc4 to ξc1, another symmetric solution (θeven1) and antisymmetric solution (θodd) for

activities below ξc1. These are the solutions shown in Figure 3.20.
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Figure 3.22: Contour plot of total nematic elastic energy, ωd against the orienting field
and activity. The dark region appears due to the high density of contour lines. In the
region ξc2 and ξc3, the system exhibits a symmetric solution (θeven2), between ξc3 and

ξc4, a different symmetric solution (θeven3), and in the region ξc4 to ξc1, another
symmetric solution (θeven1) and antisymmetric solution (θodd) for activities below ξc1.

solution.

To identify this transition point, we use equations (3.62) and (3.63). From equation

(3.62), we see that τ → ∞ precisely when the denominator vanishes. This gives

4K1q
2

d2
− α3ξ

η1
− χaH

2 = 0. (3.92)

Next, substituting this condition into equation (3.63), and taking the limit τ → ∞, the

equation can remain finite only if the coefficient of τ vanishes. This leads to the second

condition

α3ξ

η1
tan q + χaH

2q = 0. (3.93)

Equations (3.92) and (3.93) therefore provide two simultaneous relations linking ξ, q,

and H. Solving these equations together, and recalling that H = ϱ2Hc with Hc =
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(π/d)
√
K1/χa, we obtain

ξc2 =
4η1K1q

3 cot q

α3d2(q cot q − 1)
, (3.94)

ϱ2 =
4q2

π2(q cot q − 1)
. (3.95)

Equations (3.94) and (3.95) are transcendental equations, and so cannot be solved

analytically. To proceed, we find the approximate solution by applying the Taylor

series expansion around q ≈ 0 and q ≈ π, and we obtain

ξc2 = −12η1K1

α3d2
− 6η1K1(−12 + π2ϱ22)

α3d2
, for q ≈ 0, (3.96)

ξc2 =
4η1K1π

2

α3d2
+

12η1K1π
(
−π + π

4

(
3 +

√
1− 2ϱ22

))
α3d2

+
12η1K1

(
− π + π

4

(
3 +

√
1− 2ϱ22

))2
α3d2

, for q ≈ π, (3.97)

respectively. Equations (3.96) and (3.97) approximate the critical activities when q ≈ 0

and q ≈ π, respectively, indicating a transition from a uniform state to a distorted

state. For validation, we compare the analytical and numerical results, as illustrated

in Figure 3.23. The two approaches show a good agreement, especially at q ≈ 0 and

q ≈ π, which confirms the accuracy of the analytical forms. In addition, we include

the numerical plot ξc2 as a function of the orienting field, ϱ2. This comparison further

demonstrates a strong match between the two methods, reinforcing the reliability of

the analytical expressions used to describe the onset of the distortion transition.
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Figure 3.23: Comparison of analytical and numerical solutions for the transition from
an undistorted to a distorted state. The red and green lines represent the analytical

solution, while the solid blue line denotes the numerical solution.

3.5 Nonlinear analysis of activity in a hybrid aligned

nematic Channel

In this section, we explore the distortion-driven active flow for a channel in which there is

antagonistic anchoring, by which we mean planar anchoring on the lower substrate and

homeotropic anchoring on the upper substrate—the so-called hybrid aligned nematic

(HAN) system. The motivation for considering a HAN cell is that the quantity to be

sensed may alter the anchoring condition at the top boundary. It is therefore instructive

to examine a configuration where the two boundaries impose different anchoring types,

with one planar and one homeotropic. The HAN state represents an extreme case

chosen to test the largest possible effect of such boundary changes; in a more general

situation, the top boundary might instead exhibit a smaller deviation from planar

anchoring. We characterise the behaviour of the system for various activity parameters,

and concentrate on the flow that occurs because of the antagonistic boundary conditions

rather than on the aligning field, so we set ϱ = 0. This work will inform the study in

the next chapter, where we will look at the situation where part of the channel involves
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planar conditions and part involves HAN anchoring conditions.

3.5.1 Mathematical model

In a HAN geometry, the director is anchored parallel to the substrate at z = 0 and

perpendicular to the substrate at z = d, as shown in Figure 3.24.

xz = 0

z

v(0, t) = 0 θ(0, t) = 0

z = d
v(d, t) = 0 θ(d, t) = π/2

θ(z, t)

director, n
v(z, t)

1

Figure 3.24: Active nematic in a channel between two solid plates at z = 0 and
z = d/2 with flow parallel to the x-direction. The rods show director orientation.

In the absence of an orienting field, equations (3.9) and (3.14) reduce to

(g(θ)vz +m(θ)θt + ξ sin θ cos θ)z = 0, (3.98)

γ1θt −
(
K1 cos

2 θ +K3 sin
2 θ
)
θzz − (K3 −K1) sin θ cos θ(θz)

2 +m(θ)vz = 0, (3.99)

and the new boundary conditions are

θ(0, t) = 0, θ(d, t) = π/2, (3.100)

v(0, t) = v(d, t) = 0. (3.101)

Again, we use the ode15s solver in Matlab (R2022a) Version 9.13 [130] to integrate

the nonlinear coupled partial differential equations in time using an appropriate initial
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condition θ0 = πz/2d at t = 0, which corresponds to uniform distortion between the

two boundaries. The initial flow velocity condition, given by v0 = 0. As before, we set

d = 200 microns to ensure consistency with previous sections. We examine the effects

of activity in the range ξ ∈ [−2, 2] Pa and run our simulations for a maximum of

t = 200 seconds to ensure a steady state has been reached.

3.5.2 Solution regimes for contractile and extensile active ne-

matics

In a similar way to the previous section, Figure 3.25 illustrates the sketch of the solution

profiles of the director angle and flow velocity for contractile and extensile nematics. In

particular, we plot the values of the director angle in the center of the channel to examine

the symmetry of the solutions. In these simulations, we vary activity incrementally and

use the previously obtained solution (for a similar value of the activity) as the initial

conditions. We use this continuation method as we increase the activity (blue line) and

then as we decrease the activity (black line).

For positive activity values (0 ≤ ξ ≤ 2) Pa, we see that the director ranges from 0 to π/2

in line with the boundary conditions, but in the bulk of the cell, the director aligns at a

constant angle θ ≈ 1.24 rad. As the magnitude of the activity reduces, moving towards

the left of Figure 3.25, we see that the system goes through a transition at ξ = 0,

and two different director solutions are possible. For negative activities (−2 ≤ ξ ≤ 0),

the flow tends to align the director at nπ + θL (n ∈ Z) for positive flow gradients,

where θL is the Leslie angle (flow alignment angle) and nπ − θL (n ∈ Z) for negative

flow gradients (see the inset plots on the left-hand side of Figure 3.25). There are

two possible solutions: one with a negative flow velocity and another with a positive

flow velocity, indicating that bistability is present in this system. In one solution, the

director goes from θL to π− θL, and we see significant director distortion characterised

by a large gradient in θ. However, for the other solution, the director goes from −θL to

the positive value θL, and there is a small director distortion characterised by a small
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gradient in θ.

Activity, 9 (Pa)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
ir
ec

to
r
an

gl
es

a
t
sp

ec
i-

ed
lo

ca
ti
o
n
s
(r

a
d
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3(d=2) :!
3(d=2) :A

z(7m)
0 100 200

3
(z

;t
)
(r

ad
)

0

2

9 = !2

z(7m)
0 100 200
0
2
4
6

v
(z

;t
)
(m

/
s)

#10-4

9 = !2

z(7m)
0 100 200

3
(z

;t
)
(r

ad
)

0

1

9 = 2

z(7m)
0 100 200

-1

0

1

v
(z

;t
)
(m

/s
) #10-5

9 = 2

z(7m)
0 100 200

3
(z

;t
)
(r

ad
)

0
0.5
1

1.5
9 = !2

z(7m)
0 100 200

-5

0
v
(z

;t
)
(m

/
s)

#10-4

9 = !2

z(7m)
0 100 200

-1

0

1

v
(z

;t
)
(m

/
s)

#10-5

9 = 2

z(7m)
0 100 200

3
(z

;t
)
(r

ad
)

0

1

9 = 2

Figure 3.25: Sketch of the director angle at the middle of the channel for −2 ≤ ξ ≤ 2
Pa.

Our results correspond to the study by Marenduzzo et al. [127] on active nematics

in a HAN geometry using lattice Boltzmann simulations of the hybrid lattice, where

spontaneous flow was observed for both extensile and contractile nematics. Rorai et

al. [184] also shows that active nematics in a quasi-one-dimensional channel geometry

with a HAN alignment have nonzero flow velocity for relatively low activities.

To investigate the potential of active nematics for sensing applications, in Section 3.5

we explored how increasing and decreasing the activity induces a hysteresis-like be-

haviour (Figure 3.25). We note that a similar procedure of increasing and decreasing

activity was also performed in Section 3.4 (Figures (3.13)-(3.19)). However, under the

conditions considered there, bistability was not observed. In contrast, the hysteresis

study in Section 3.5 is designed to understand how changes in activity interact with the
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HAN anchoring to produce distortion-driven active flows, concentrating on the effect

of antagonistic boundary conditions rather than the external orienting field.

3.6 Conclusions

3.6.1 Linear analysis

We investigated the effects of activity and orienting fields on active nematics with

a director between two parallel plates in a 1D geometry, subject to infinite planar

anchoring and non-slip conditions on the channel boundaries. In the linear analysis, we

investigated three cases, including planar alignment in the absence and presence of an

orienting field and homeotropic alignment in the absence of an orienting field.

We first examined the effect of activity in the absence of an orienting field for planar

alignment. For extensile nematics, the director remains close to its initial configuration

with minimal distortion. For contractile nematics, the director undergoes reorientation,

resulting in a sustained flow.

Next, we examined the system’s behaviour when an orienting field is applied. In this

case, the system exhibits a critical threshold for the orienting field strength. For fields

weaker than this critical value, elastic forces oppose the realignment of the director,

causing it to remain in its initial configuration. However, when the field strength

exceeds the critical threshold, the director realigns more closely with the direction of

the applied field, which is characteristic of the Fréedericksz transition.

For homeotropic initial alignment in the absence of an orienting field and when ξ = 0,

the system initially experiences an overshoot, aligning at θ > π/2 rad, before relaxing

to the equilibrium state, also known as the kickback effect. However, for extensile

nematics, the kickback effects gradually diminish as the activity strength increases. In

contrast, for contractile nematics, the kickback effect remains even as the magnitude of

activity increases.
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3.6.2 Nonlinear analysis

We first explored the longer-time behaviour of active systems under planar alignment.

Our findings show that the system exhibits either undistorted uniform states or sym-

metric and antisymmetric distorted states.

The uniform state corresponds to a uniform alignment of the director parallel to the

boundaries of the channel. For field strengths greater than a critical value, the uniform

state is replaced by the symmetric director distortion solution. This is essentially the

Fréedericksz transition, where the trivial solution is unstable for a field greater than

the critical field. However, the value of the critical field changes as we increase the

magnitude of the activity. For contractile systems, the orienting field is below the

classical field strength, and for extensile systems, the orienting field is above the classical

field strength. For antisymmetric solutions, there is a reorientation in the middle of

the layer for high elastic energy. For low activity parameter values, the orienting field

dictates the behaviour, and the director angle in the middle of the layer prefers to align

along the field direction. However, increasing the activity increases flow, which tends

to align the directors at the Leslie angle, hence reducing the director angle in the center

of the channel and overriding the field effect, which gives rise to the antisymmetric

solution.

Additionally, an analysis of total active dissipation and elastic energy provides further

insight into solution transitions. Higher orienting field values lead to increased elastic

energy, while large activity values enhance active dissipation. Active dissipation grows

for strongly negative activity, whereas elastic energy remains low. These findings con-

tribute to a broader understanding of how external fields influence the behaviour of

active systems.

We also examined active nematics in a one-dimensional HAN cell in order to inform work

in the next chapter. For positive activity values, the director stabilises at approximately

1.24 rad in the bulk of the channel, but as activity decreases, a transition occurs at
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zero activity, leading to two possible director solutions: one with negative flow velocity

and the other with positive flow velocity.

A key finding in both the linear and nonlinear analysis is that in weakly contractile

systems, the director increase above π/2 rad and tends to align to θ ≈ 0.8π rad,

resulting in complex flow, which has implications for sensor design.
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Chapter 4

Activity and Geometric Effects in a

Two-Dimensional Model in a Channel

4.1 Introduction

Various studies have investigated the flow patterns of active nematics in 2D regions,

including rectangular domains, using planar or hybrid-aligned nematic (HAN) anchor-

ing [63,184,211]. However, little attention has been paid to the two-dimensional analysis

of systems combining planar and HAN anchoring. To address this gap, we investigate

the interplay of these two anchoring conditions, which may be beneficial in the design

of sensors, where small changes in alignment can lead to pronounced effects. To do so,

we present a 2D theoretical and computational study that involves the mathematical

modelling of active nematics in a channel, using a modified form of the Ericksen-Leslie

equations for active nematics.

In this Chapter, we examine a model under two types of inlet/outlet boundary condi-

tions: normal flow, which is a model of a single HAN region and periodic, which is a

model of a periodic array of HAN regions. We explore the resulting flow regimes for

both contractile and extensile nematics under both types of boundary conditions. Un-

der normal flow and periodic conditions, we perform a spectral analysis to examine the
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oscillatory behaviour for a high magnitude of activity. For extensile nematics, we also

find that the system exhibits both unidirectional and bidirectional flow. We have shown

that local disturbances in the director orientation influence the global flow, which may

be useful for potential applications in sensor design.

Under periodic conditions, we also analyse the flow regimes for contractile and extensile

active nematics by considering the effects of varying both the activity strength and the

width of the HAN region. The system exhibits behaviour similar to that observed under

normal flow conditions for both contractile and extensile nematics. Furthermore, we

examine the effect of the splay-to-bend ratio, which plays a vital role in determining

the director orientation in the HAN region, and how the flux changes from negative to

positive. Our analysis shows that the ratio of splay and bend elastic constants influences

the preferred director orientation and causes the flux to transition from positive to

negative for lower positive activity values and all negative activities, while remaining

positive for higher positive activity.

4.2 Model formulation

We present a 2D theoretical and computational model of an active nematic sandwiched

in a channel, with normal flow or periodic conditions at the ends of the channel. The

channel has width w and height d. We again use θ to denote the director angle, which

is the angle the director makes with a fixed x−axis [202], as shown in Figure 4.1.

We apply planar anchoring of the director everywhere except for the region between

coordinates (−l/2, d/2) and (l/2, d/2), where we apply homeotropic anchoring. This

means that θ = π/2 for −l/2 < x < d/2, z = d/2, and θ = 0 elsewhere on z = −d/2

and z = d/2. For the velocity, we impose the no-slip and no-penetration boundary

conditions at z = ±d/2. The flow is driven by activity, and we do not apply a pressure

gradient to drive the flow. That is, the flow and any pressure variations result from

internal activity or director distortion.
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Figure 4.1: Active nematic sandwiched between two solid plates at z = −d/2 and
z = d/2. The gray solid line between the points (−l/2, d/2) and (l/2, d/2) represents
the region of homeotropic anchoring. The black solid lines represent the director. The

background lilac lines represent the streamlines.

4.2.1 Governing equations

We now seek solutions of the governing equations for the director n = n(x, z, t) and the

velocity field v = v(x, z, t) in the form

n = (cos θ(x, z, t), 0, sin θ(x, z, t)) , (4.1)

v = (u(x, z, t), 0, v(x, z, t)) , (4.2)

p̃ = p(x, z, t), (4.3)

where θ is the director angle, (x, z) are the Cartesian coordinates and t denotes time

[202]. The flow speeds in the x and z directions are u(x, z, t) and v(x, z, t), respectively.

Using this director and velocity, the Ericksen-Leslie equations for active nematics based

on the conservation of mass, and the balance of linear and angular momentum [114,
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115,202,238], as given in Chapter 2, are given by

0 =
∂u

∂x
+

∂v

∂z
, (4.4)

0 =
∂

∂x

(
∂D

∂ux

)
+ ξ

∂

∂x

(
cos2 θ

)
+

∂

∂z

(
∂D

∂uz

)
+ ξ

∂

∂z
(sin θ cos θ)− ∂D

∂θ̇
θx − p̃x, (4.5)

0 = −p̃y, (4.6)

0 =
∂

∂x

(
∂D

∂vx

)
+ ξ

∂

∂x
(sin θ cos θ) +

∂

∂z

(
∂D

∂vz

)
+ ξ

∂

∂z

(
sin2 θ

)
− ∂D

∂θ̇
θz − p̃z, (4.7)

0 =
∂

∂x

(
∂wF

∂θx

)
+

∂

∂z

(
∂wF

∂θz

)
− ∂wF

∂θ
− ∂D

∂θ̇
, (4.8)

where the subscripts x and z in θx, θz, ux, uz, vx and vz represent partial derivatives

with respect to the respective variable. To complete equations (4.5)–(4.8), we need two

quantities - the elastic free energy wF and the dissipation function D [202].

By substituting equations (4.1) and (4.2) into equation (2.36), and simplifying, we

obtain the Frank-Oseen elastic free energy wF , given explicitly as

wF =
1

2

[
θ2x
(
K1 sin

2 θ +K3 cos
2 θ
)
+ θ2z

(
K1 cos

2 θ +K3 sin
2 θ
)

+ (K3 −K1) sin(2θ)θxθz

]
. (4.9)
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Using equations (4.1) - (4.2) together with equation (2.55) and simplifying, we get

D =α1

[
ux

(
(−uz − vx)h11 sin

2 θ + (uz + vx)h11 − vz sin
4 θ + sin2 θvz

)
+ uz

(
h11 sin

2 θvz − vx sin
4 θ + sin2 θvx

)
+ h11 sin

2 θvzvx

]

+ α2

[
ux

(
− 1

4
uz +

1

4
vx −

1

2
θt

)
h11 + uz

(1
4
vx +

1

4
h11vz −

1

2
sin2 θθt −

1

4
θt

)
+ vx

(
− 1

4
h11vz −

1

2
sin2 θθt +

3

4
θt

)
+

1

2
h11vzθt −

1

2
θ2t

]

+ α3

[
ux

(
− 1

4
uz +

1

4
vx −

1

2
θt

)
h11 + uz

(
− 1

4
vx +

1

4
h11vz −

1

2
sin2 θθt +

3

4
θt

)
+ vx

(
− 1

4
h11vz −

1

2
sin2 θθt −

1

4
θt

)
+

1

2
h11vzθt +

1

2
θ2t

]

+ α5

[
ux

(3
4
uz +

1

4
vx +

1

2
θt

)
h11 + uz

(1
4
vx +

1

4
h11vz +

1

2
sin2 θθt −

1

4
θt

)
+ vx

(3
4
h11vz +

1

2
sin2 θθt −

1

4
θt

)
− 1

2
h11vzθt

]

+ α6

[
ux

(1
4
uz +

3

4
vx −

1

2
θt

)
h11 + uz

(1
4
vx +

3

4
h11vz −

1

2
sin2 θθt +

1

4
θt

)
+ vx

(1
4
h11vz −

1

2
sin2 θθt +

1

4
θt

)
+

1

2
h11vzθt

]

+
1

2
vxuzα4 + g3u

2
x + g1u

2
z + g2v

2
x + g4v

2
z

+ ξ
[
cos2 θ ux + h11(vx + uy) + sin2 θ vy

]
, (4.10)
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where

g1(θ) =
1

2

[
α4 + (α3 + α6) cos

2 θ + sin2 θ (α5 − α2)
]
+ α1 sin

2 θ cos2 θ, (4.11)

g2(θ) =
1

2

[
α4 + (α6 − α3) cos

2 θ + (α5 + α2) sin
2 θ
]
+ α1 sin

2 θ cos2 θ, (4.12)

g3(θ) =
1

2
α1 cos

4 θ +
1

2
α4 +

1

2
(α5 + α6) cos

2 θ, (4.13)

g4(θ) =
1

2
α1 sin

4 θ +
1

2
α4 +

1

2
(α5 + α6) sin

2 θ, (4.14)

h11(θ) = sin θ cos θ. (4.15)

For a detailed derivation of the rate of dissipation, refer to Appendix A. The equations

describing the conservation of mass, linear and angular momentum are therefore

0 = ux + vz, (4.16)

0 =
∂

∂x

[
uzh1 + vxh2 − γ2h8h11 −

1

4
α1 cos(2θ)vz +

1

4
ξ (cos(2θ) + 2h13ux)

]

+
∂

∂z

[
uxh1 + vzh3 +

1

4
vxh4 + γ2h8 cos

2 θ +
1

2
h11γ1h8 +

1

2
γ2h8 + 2g1uz

]

+
∂θ

∂x

[
α3uz cos(2θ) + α2vx cos(2θ) + γ2 (vz − ux)h11 + γ1h8

]
+ ξh9 − p̃x, (4.17)
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0 = −p̃y, (4.18)

0 =
∂

∂x

[
uxh5 +

1

2
h10uz + vzh6 −

1

2
γ1h8h12 −

1

2
γ2h8 cos

2 θ +
1

2
(ξh11 + 2g3vx)

]

+
∂

∂z

[
uzh7 + vxh6 + α1h

2
11ux + h14vz + γ2h8h11 + α1ux sin

4 θ

]

+
∂θ

∂z

[
uzh12α2 − γ1 sin

2 θvx + γ1h8h12 − γ2 (ux − vz)h11

]

+ ξ
[
2 sin θ cos θθz + θx cos

2 θ
]
− p̃z, (4.19)

γ1θt = 2θxθz

(
(K1 −K3) sin

2 θ +K3 −K1

)
− γ1(u+ θzv)−

1

2
uz (γ1 + γ2 cos(2θ))

− 1

2
vx (−γ1 + γ2 cos(2θ)) +

(
K1(θ

2
x − θ2z) +K3(θ

2
z − θ2x)

)
sin θ cos θ

+ (ux − vz) γ2 sin θ cos θ + f2θxx + f3θxz + f1θzz, (4.20)
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where

f1(θ) = K1 sin
2 θ +K3 cos

2 θ, (4.21)

f2(θ) = K1 cos
2 θ +K3 sin

2 θ, (4.22)

f3(θ) = (K3 −K1) sin θ cos θ, (4.23)

h1(θ) = sin θ cos θ
[
α1 cos(2θ)− α5 − α1 sin θ cos

3 θ
]
, (4.24)

h2(θ) = sin θ cos θ
[
α1 cos(2θ) + α6 − α1 sin θ cos

3 θ
]
, (4.25)

h3(θ) = sin θ cos θ
[
α1 cos(2θ)− α1 cos

2 θ + α6

]
, (4.26)

h4(θ) = α1 sin
2 θ + α5 + α6 − γ1 + 2α4, (4.27)

h5(θ) = sin θ cos θ
[
α1 cos

2 θ + α6 + α1 cos θ sin
3 θ
]
, (4.28)

h6(θ) = α5 sin θ cos θ + α1 cos θ sin
3 θ, (4.29)

h7(θ) = α6 sin θ cos θ + α1 cos θ sin
3 θ, (4.30)

h8(θ, u, v) = θt + uθx + vθz, (4.31)

h9(θ) = θz cos(2θ)− 2 cos θ sin θθx, (4.32)

h10(θ) =
[
(α5 + α6) sin

2 θ + 1
]
− γ1

(
sin2 θ + 1

)
+ 2α1 sin

2 θ + α4, (4.33)

h12(θ) = sin2 θ + 1, (4.34)

h13(θ) = α1 cos θ sin
3 θ + α6 cos θ sin θ, (4.35)

h14(θ) = α1 sin θ cos
3 θ + α6 cos θ sin θ. (4.36)

(4.37)

4.2.2 Boundary conditions

To solve equations (4.16)–(4.19), we need appropriate boundary conditions for θ, u, v and p̃.

For components u and v of the velocity, we impose no-slip and no-penetration boundary

conditions on the solid walls at z = −d/2 and z = d/2. Specifically, the appropriate
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boundary conditions are

u(x,−d/2) = 0, v(x,−d/2) = 0, (4.38)

u(x, d/2) = 0, v(x, d/2) = 0. (4.39)

For the director angle, we use a combination of planar and homeotropic anchoring

conditions. We imposed planar anchoring (θ = 0) everywhere on the solid walls except

in the region defined by the coordinates (−l/2, d/2) to (l/2, d/2). Within this specific

region, we impose homeotropic anchoring θ = π/2 rad.

Both the left- and right-hand boundaries are modelled as open, and we choose two

different possible sets of boundary conditions. The first we called normal flow, which

models the large distance from the HAN region, so that there is no variation in the

director and the flow is normal. The appropriate boundary conditions are then,

θx = 0 at x = ±w/2, (4.40)

v = 0 at x = ±w/2. (4.41)

For the horizontal velocity u, we apply the stress-free boundary condition on the lateral

walls, which requires that the tangential (shear) stress vanishes. This condition is

written as

σ · x̂ = 0 at x = ±w

2
, (4.42)

where σ is the stress tensor and x̂ is the outward unit normal to the wall. In a two-

dimensional x–z configuration, this gives

σxz|x=±w
2
= 0, (4.43)
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The second situation is periodic conditions, so that

θ(−w/2, z) = θ(w/2, z), (4.44)

v(−w/2, z) = v(w/2, z). (4.45)

4.3 Numerical calculations I: normal flow conditions

To numerically solve equations (4.16)–(4.20) together with boundary conditions (4.38)–

(4.45), we use the COMSOL Multiphysics® Software Version 6.1 to perform our cal-

culations [31]. To solve for the velocity field in COMSOL, we adopt the incompressible

creeping flow model to solve the linear momentum equations (4.17) and (4.19). The

active nematic elements of these equations are used as input for a volume force node

added to the Newtonian system.

To solve for the director angle, we first rewrite equation (4.20) in COMSOL’s general

PDE form

ea
∂2θ

∂t2
+ da

∂θ

∂t
+∇ · Γ = f, (4.46)

where ∇ = [∂/∂x, ∂/∂z] and Γ = [− f2(θ)θx, −f1(θ)θz] is the conservative flux. In this

formulation, da is the damping coefficient, here identified with the rotational viscosity

as da = γ1, and ea is the mass coefficient. Although, ea = 0 in our system, we retain it in

the equation because COMSOL’s PDE interface requires the standard form to include

both mass and damping terms. Writing the director equation in this form therefore

makes the implementation straightforward and consistent with COMSOL’s framework,

while still preserving the original physical variables. The forcing term f is given by

f =− 2f3θ
2
x + f3θxz + (K3 −K1) cos(2θ)θxθz + γ2 (ux − vz) sin θ cos θ

− 1

2
(γ2 cos(2θ) + γ1)uz −

1

2
(γ2 cos(2θ)− γ1) vx − γ1vθz − γ1uθx, (4.47)
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where γ1 is the rotational viscosity, which governs the relaxation of the director angle,

and γ2 is the torsion viscosity.

We choose an appropriate initial condition to satisfy approximately the anchoring for

the director angle, given explicitly by

θ0(x, z) =
π

2

[
tanh

(
(x+ l/2)

ϵ

)
− tanh

(
(x− l/2)

ϵ

)][
z + l/2

d

]
, (4.48)

and appropriate initial velocities u0 = v0 ≡ 0, where ϵ is the size of the transition from

planar to HAN anchoring. We choose ϵ = 1 µm throughout this thesis to closely match

the boundary conditions with the initial conditions. For reference, the domain width is

w = 20 µm, so that ϵ/w ≪ 1, to ensure a rapid transition to the HAN region compared

with the lateral size of the system. In this Chapter, we revert to the more standard

d = 2 µm, since we are considering a sensor device.

To interpret the results, we divide the channel into different subregions: the left planar

region, the HAN region, the right planar region and the transition regions, as shown in

Figure 4.2. In order to investigate the flow dependence on the geometry, we first consider

the case where the HAN channel width is fixed and then vary the channel width. This

is to verify that a small channel width does not significantly impact the flow or the

overall dynamics of the system. Next, we vary the activities and fix the channel width

and the HAN channel length. We also consider changing the activity parameter value

and the HAN channel width for both contractile and extensile nematics.

4.3.1 Effects of varying channel width

In this section, we fix the HAN region width, l, and activity, ξ, and vary the channel

width, w. The goal is to understand how the channel width affects the system’s be-

haviour under weak activity, which is vital for applications where the geometry of the

environment significantly impacts system behaviour, such as in microfluidic devices and

biological systems. The simulation is run for 2 seconds (in model time) to allow the
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planar left region planar right regionHAN region

transition region transition region

Figure 4.2: A schematic showing the division of the channel into planar left, HAN,
planar right and transition regions.

initial changes in the system to stabilise, and so captures the long-term behaviour.

We first present a summary of the simulations for weakly active systems, both contrac-

tile and extensile, for various channel width. Specifically, we choose w = 20, w = 40,

w = 60, and w = 80 microns, with l = 6.667µm, and ξ = ±0.001 Pa, although we

present the results for only ξ = −0.001 Pa because the results are very similar for weakly

active systems. The apparent symmetry breaking arises from the choice of initial di-

rector field θ(x, z). In particular, the imposed orientation leads to different behaviours

in the left and right regions of the system, so the initial condition itself introduces the

asymmetry.

Figure 4.3 shows a plot of the director for various values of channel widths. Note that

in this plot, we have scaled the x−axis. We use the background colour to represent

the director angle, black lines to represent the streamlines, white rods to represent the

director, and black arrows to represent the flow direction.
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Figure 4.3: Plot of the director angle for different region widths at ξ = −0.001 Pa and
t = 2 s for: (a) w = 20µm, (b) w = 40µm, (c) w = 60µm, and (d) w = 80µm. Each
panel shows streamlines (black lines), the director (white rods), flow direction (black
arrows), and the director angle (background colour). Horizontal velocity profiles for
the different channel widths are included, with the x-axis fixed to [−1, 1]× 10−5m in
all cases to facilitate comparison. The HAN region width used in the simulations is

l = 6.667µm.

For all chosen values of channel width, the director in both left and right planar re-

gions remains undistorted, indicating a uniform solution aligned to planar anchoring.

However, in the transition and HAN regions, the director is distorted because of the

boundary conditions, leading to flow even for this very low activity strength (see Figures

4.3 (a)–(d)). In addition, the system is characterised by an approximately rectilinear

flow in the left and right planar regions and a circulatory flow where there are localised

distortions in the HAN and transition regions. The system has almost the same flow

for all the chosen values of channel width.

The minimal dependence of the flow on the channel width, w, allows us to choose

w = 20 microns in the following work to aid computation efficiently.

Before we proceed, it is pertinent to discuss the characteristic length and time scales
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of the 2D model. We use equations (3.27) and (3.28), together with the parameters in

Tables 1.1 and 1.2. For example, we choose ξ = 0.0001 Pa and ξ = 150 Pa, as these

represent the smallest and largest activity values considered in this thesis. The channel

spans a height d = 2 µm and a width w = 20 µm. The active length scale evaluates

to la ≈ 11.4/
√
|ξ| µm. For a small activity, |ξ|= 0.0001 Pa, this gives la ≈ 11400 µm,

which is much larger than both the channel height and width, indicating that distortions

will be weakly resolved. The corresponding active time scale is τa ≈ 2375 s, implying

extremely slow dynamics.

For large activity, |ξ|= 150 Pa, the active length scale is la ≈ 0.93 µm, which is smaller

than the channel height, so distortions are strongly confined and well-resolved. The

active time scale is τa ≈ 0.016 s, meaning the system evolves very rapidly, and a short

simulation of a few seconds captures multiple active response times.

This means that the channel dimensions and simulation duration relative to the active

scales lead to distinct regimes. For very small activity, we have d, w ≪ la and t ≪ τa,

indicating that the system is effectively uniform and evolves extremely slowly, so the

natural activity-driven patterns cannot develop due to high level of spatial confinement,

compared to the active length scale.

In contrast, for very large activity, we have d, w ≫ la and t ≫ τa, meaning that the

system dimensions can contain activity-induced distortions and evolves rapidly, allowing

simulations to capture the relevant dynamics within short times.

In the thin channel of d = 2 µm, relevant for sensor design, even small local pertur-

bations can generate significant director distortions and flow across the channel, which

allows the system to effectively “sense” changes in boundary conditions or the presence

of objects. The channel height is therefore chosen to match the spatial scale of active

distortions and optimize sensitivity for potential active nematic sensors.
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4.3.2 Effects of varying activity strength and HAN region width

for contractile nematics

This section focuses on contractile active nematics, where we examine the solution pro-

files for varying HAN region width and activity strength values. We begin by exploring

the solution profiles for varying activity while keeping the HAN region width fixed,

revealing how the director angle and flow patterns evolve under different activity mag-

nitudes. We observe distinct behaviours, including the reduction of circulations and

changes in the flow direction as activity increases. In particular, at high activity values,

oscillations become apparent in both the HAN and planar regions.

Next, we analyse the systems by varying both the width of the HAN region and the

activity strength. To measure the effects, we calculate the flux on the left boundary. We

find that larger HAN region widths and higher activity magnitudes result in a higher

flux into the system.

Finally, we investigate the oscillatory nature of the flow, particularly at high activities.

By performing a spatial frequency analysis via the Fast Fourier Transform (FFT), we

assess the oscillations in both the left and right planar regions, as well as in the HAN

region in Section 4.3.2.3.

4.3.2.1 Solution profiles for a fixed HAN region width and varying activity

strengths

In this section, we vary the activity parameter while keeping the HAN region width

fixed. Figure 4.4 presents the director and streamlines for w = 20 microns, l = 20/3

microns and ξ = [0,−0.1,−1,−10,−100] Pa. For the activity strength ξ = 0, the

system is characterised by very small flow (u = 9.7 × 10−8 m/s), which is simply due

to the small elastic relaxation to an equilibrium state since the initial condition for the

director structure is not exactly the same as the equilibrium structure. For ξ = −0.1

Pa, the director remains largely undistorted in both the left and right planar regions
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with maximum flow velocity of u = 1.6× 10−6 m/s, as shown in Figures 4.4(a)–(b). In

addition, the system is characterised by a rectilinear flow moving to the right-hand side

of the channel. In the HAN region, the system exhibits flow distortions, characterised

by four distinct circulations. For ξ = −1 Pa and ξ = −10 Pa, the circulations reduce to

two distinct loops and one large loop, respectively. In this regime of activity strength,

the flow is in fact in a reversed direction with a lower maximum velocity of 10−5 m/s

(see Figures 4.4(c)–(d)), suggesting that circulation in the HAN region decreases with

increasing activity strength. At all these orders of activity, the director distortion leads

to the generation of bulk flow in the system.

In Figure 4.4(e), where the activity has increased to ξ = −100 Pa, the director angle

is seen to oscillate in the planar regions. Similar results were seen for extensile active

nematics using planar anchoring [63, 126, 187]. Thampi [211] also observes oscillatory

behaviour accompanied by distorted streamlines for high values of activity parameters

using periodic anchoring.

Our results suggest that increasing the magnitude of the activity eventually results in

oscillations in the system accompanied by high flow in most of the region.

4.3.2.2 Flux measurement for varying activity strength and HAN region

width

To measure the flux of fluid into the system, we explore our results by numerically

integrating the velocity u at the inlet/outlet with respect to z for ξ ∈ [−100, 0] Pa

and for l ∈ [w/1000, w/3] microns. Since both left and right boundaries are modelled

as open boundaries, so that no flux is lost,
∫
uLdz ≡

∫
uRdz, where uL and uR denote

the flow velocity at the left and right boundaries, respectively. This equality reflects

the inherent left-right symmetry of the governing equations and boundary conditions.

However, this symmetry is broken by the choice of initial conditions, in particular the

initial theta configuration in the HAN region, which can bias the system towards flow

in a preferred direction. As a result, although the equations are symmetric, the system
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Figure 4.4: Plot of the director angle for (a) ξ = 0 Pa, (b) ξ = −0.1 Pa, (c) ξ = −1
Pa, (d) ξ = −10 Pa, (d) and (e) ξ = −100 Pa with w = 20 microns and t = 2 seconds,
seconds, depicting the streamlines (black lines), director (white rods), flow direction

(black arrows) and the director angle (background colour).
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dynamically evolves with a flow pattern that breaks left-right symmetry. Therefore, in

this section, we present only the results for the left boundary.

Figure 4.5: Plot of
∫
uLdz against activity and HAN region width, l. The dots

represent the parameter values that have been simulated, and the background colour
is interpolated between the values at the dots.

Figure 4.5 presents
∫
uLdz for varying ξ and l for contractile active nematics. We see

that the flux decreases, indicating a greater flow out of the region on the left boundary,

as both the activity, ξ and HAN region width, l, increase. Thus, larger HAN region

width and activity strength lead to more fluid leaving the system at the left boundary.

4.3.2.3 Oscillatory flow for a fixed HAN region width

To fully understand the nature of the oscillations observed in Section 4.3.1, we explore

the results at higher magnitudes of the activity. To achieve this, we perform both

temporal and spatial spectral analyses of the director angle. We show only the results

for the spatial analysis because the temporal analysis shows that after a short time, the

system does not oscillate in time.

The FFT transforms the space into a frequency domain, which we use to perform a
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spatial frequency analysis for the entire domain in each of the subregions. First, we

provide an example plot of the director angle along the centre of the channel, z = 0,

for the entire region and the sub-regions.

Figure 4.6 displays the director angle as a function of x at z = 0 (that is, along the

center of the channel) for the entire channel, the planar regions left and right and the

HAN region. We observe relatively uniform oscillations in both the left and right hand

planar regions and less regular oscillations in the HAN region.

Figure 4.6: The director angle as a function along the centreline z = 0 across the (a)
whole region, (b) planar left region, (c) planar right region, and (d) HAN region.

We present the results of our spatial analysis in Figure 4.7. We plot the magnitude of the

Fourier mode against the wavenumber k (spatial frequency) for the entire domain, the

two planar regions, and the HAN region to characterize the nature of the oscillations in

each region. The wavenumber k is scaled in µm−1, corresponding to lengths L = 2π/k.

Figure 4.7(a) shows the magnitude of the mode versus k for the entire domain. The dom-

inant peak occurs at kpeak ≈ 5.98 µm−1, corresponding to a wavelength L ≈ 1.051 µm.

The left and right planar regions feature similar peak wavenumbers, kpeak ≈ 5.94 µm−1,
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Figure 4.7: Plot of spatial frequency (Hz) against the mode magnitude for ξ = −100
Pa: (a) entire region (k ≈ 5.98 µm−1), (b) planar left region (k ≈ 5.94 µm−1), (c)

planar right region (k ≈ 5.94 µm−1), and (d) HAN region (k ≈ 2.97 µm−1).
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corresponding to L ≈ 1.058 µm, but with differing magnitudes of the modes: approxi-

mately 31.81 for the left region and 37.81 for the right region (Figures 4.7(b) and (c)).

The HAN region exhibits a dominant peak at kpeak ≈ 2.97 µm−1, corresponding to

a larger wavelength L ≈ 2.116 µm, with a smaller mode magnitude of 11.02 (Figure

4.7(d)).

The differences in magnitude between the left and right planar regions are noteworthy.

Although the peak wavenumbers are similar, which indicates comparable spatial scales

of oscillations, the differing mode magnitudes suggest that the director distortions are

stronger on one side than the other. This asymmetry arises from the HAN region, where

the director tilt is positive rather than negative, which breaks the symmetry between

the planar regions. For the HAN region, the lower kpeak and smaller magnitude indicate

that oscillations are longer in wavelength and weaker, which reflects the more complex

and diffuse nature of director variations under hybrid alignment conditions.

Overall, the Fourier analysis reveals that the planar regions support fine-scale, high-

magnitude oscillations, whereas the HAN region supports broader, lower-amplitude

oscillations. This information give an intuition into the characteristic spatial patterns

that may influence active flow and potential sensing applications.

It is interesting to note that, although the system exhibits spatial fluctuations for suffi-

ciently high magnitudes of activity, no time-dependent oscillations are observed. Similar

flow patterns were reported by Samui et al. [187], who examined flow transitions in ac-

tive nematics and their length scales in a confined 2D geometry under planar anchoring

conditions. Their study reveals flow transitions in extensile active nematics, ranging

from unidirectional flow to fully developed active turbulence as the activity strength

increases. In contrast, our study applies a combination of planar and homeotropic

anchoring, and oscillations were observed in contractile rather than extensile nematics.
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4.3.2.4 Oscillatory flow measure for varying activity and HAN region width

In this Section, using the above methodology, we examine how the oscillations change

with respect to the HAN region width and the activity strength. We consider ξ ∈

[−100, 0] Pa and l ∈ [w/1000, w/3] microns, and perform a spatial frequency analysis

of the director angle for the entire domain as well as for subregions, including the planar

left, HAN, and planar right regions. However, we present detailed results only for the

planar left and right regions, as the oscillations in the HAN region are more complex

and difficult to characterise.

After computing the Fourier transform of the director angle θ(x) for the entire domain

and subregions, the peak magnitudes and corresponding frequencies are identified using

the findpeaks function in MATLAB. For each subregion, the Fourier transform is

computed as θ̃(k) = FFT[θ(x)− ⟨θ(x)⟩], where ⟨θ(x)⟩ is the mean director angle along

the x-direction. The fftshift function is applied to center the zero frequency.

The peaks of the Fourier spectrum are then identified for frequencies exceeding a thresh-

old Tf = 105 and magnitudes exceeding Tm = 0.15. Specifically, for each set of peaks,

the largest peak above these thresholds is selected as the dominant oscillatory mode.

Denoting the peak frequency and magnitude as pf and pm, respectively, a region is

classified as oscillatory if |pf |> Tf and |pm|> Tm.

The uncertainty in the peak frequency, δpf , is estimated from the frequency resolution

of the Fourier transform, δpf = 1/Lx, where Lx is the number of spatial points in the

subregion. The uncertainty in the peak magnitude, δpm, is estimated from the noise

floor of the Fourier spectrum. These uncertainties are reported for all peak measure-

ments to ensure the reliability of the oscillation classification.

In Figure 4.8, we present plots of the spatial frequencies as a function of ξ and l for the

left- and right-planar regions. We use red dots to represent oscillations and cyan dots

to represent non-oscillations. Figure 4.8(a) shows the results for the planar left region,

which suggests that the system oscillates for a high magnitude of activity parameter
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values and all HAN region widths. However, for the planar right region, the system

oscillates for intermediate- and high-magnitude activity parameter values, as shown in

Figure 4.8(b). Overall, it was found that oscillations are likely seen in the planar right

region. The sudden jump in the frequency plots occurs because, for certain parameter

values, the peak at zero frequency becomes dominant. However, as the parameters

change, the peak shifts, and the non-zero frequency becomes dominant. This switch

between dominant peaks creates the appearance of a sudden jump in the plot.

4.3.3 Effects of varying activity strength and HAN region width

for extensile nematics

This section explores the solution profiles for extensile active nematics. Using the

same analysis framework as in Section 4.3.2, we examine the solution profiles under

varying activity strength and HAN region widths. This includes observing changes in

the director angle and flux patterns, as well as the flow measure for varying activity and

the HAN region width. The behaviour of the system is studied for activity magnitudes

ranging from low values, where the system behaves in a similar way to contractile

active nematics, to high activity values, where a more complex bidirectional flow regime

emerges. For these simulations, we chose ξ ∈ [0, 150] Pa because the bidirectional flow

regime is captured within this activity strength range, and we chose l = w/3 microns.

4.3.3.1 Solution profiles for a fixed HAN region width and varying activity

strength

In this section, we present results for varying positive activity parameter values. Figure

4.9 shows a plot of the director angle ξ = [0.1, 1, 10, 100] Pa. For activities ξ = 0.1

and 1, extensile active nematics behave similarly to contractile active nematics, with

an undistorted director angle in both the left and right planar regions and localised

flow in the HAN and transition regions. This is because the activity strength values are

too weak to generate significant flow. In this flow regime, the system is characterised
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(a)

(b)

Figure 4.8: Sketches showing oscillations for planar left and planar right regions
spanning (ξ, l). (a) Sketch showing oscillations for the planar left region. (b) Sketch

showing oscillations for the planar right region. The red dots represent oscillatory flow
and the cyan dots represent non-oscillatory flow. The black region indicates

significant frequency, and the cyan dots within this black region represent very
low-amplitude oscillations that are not classified as oscillations.
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by approximately rectilinear flow in both planar regions, with a maximum velocity

of the order of 10−7 m/s, as shown in Figures 4.9(a)–(b). In the HAN region, the

system is characterised by circulatory flow with director distortion. Increasing activity

to 10 retains the flow structure but with a maximum velocity of the order of 10−5

m/s (see Figure 4.9(c)). The flow direction also remains unchanged, unlike in the

case of contractile nematics, for which the flow changes direction for ξ = −1 Pa. For

higher activity strengths, the system displays bidirectional flow at the inlet and outlet,

with a maximum velocity of the order of 10−4 m/s (see Figure 4.9(d)). This flow is

characterised by a significant change in the form of velocity induced by the HAN region.

Figure 4.9: Plot of the director angle in region (x, z) for (a) ξ = 0.1 Pa, (b) ξ = 1 Pa,
(c) ξ = 10 Pa, (d) ξ = 100 Pa with w = 20 microns and at t = 2 seconds. The panels

display the streamlines (black lines), director (white rods), flow direction (black
arrows), and the director angle (background colour).

4.3.3.2 Flow measure for varying activity and fixed HAN region width

To fully assess the nature of the flow in the left and right planar regions, we numerically

integrate u and |u| at the left and right boundaries. We denote the velocity on the left
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and right boundaries with uL and uR, respectively. For a unidirectional flow, we expect∫
udz =

∫
|u|dz and for a bidirectional flow, we expect

∫
udz ̸=

∫
|u|dz.

Figure 4.10: (a)
∫
uLdz and

∫
|uL|dz, (b)

∫
uRdz and

∫
|uR|dz as a function of activity

for l = w/3 microns.

Figure 4.10 shows that the system exhibits two different types of flow for extensile active

nematics. In Figure 4.10(a), for the left boundary, we observe a unidirectional flow for

approximately ξ ∈ [0, 67] Pa, since
∫
uLdz =

∫
|uL|dz, and for approximately ξ > 67

Pa, we have a bidirectional flow. On the right boundary, we observe unidirectional flow

for approximately ξ ∈ [0, 80] Pa and bidirectional flow for approximately ξ > 80 Pa as

shown in Figure 4.10(b).

Our results reveal the emergence of bidirectional flow in the planar regions at sufficiently

high activity values. By integrating the velocity along the left and right boundaries,

we find that the flow transitions from unidirectional at low activity to bidirectional at

higher activity, with
∫
u dz ̸=

∫
|u| dz. On the left boundary, bidirectional flow appears
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for ξ ≳ 67 Pa (see Figure 4.10(a)), while on the right boundary it appears for ξ ≳ 80

Pa (Figure 4.10(b)). This behaviour is consistent with observations in [211], where

bidirectional flows arise in sufficiently wide channels due to hydrodynamic instabilities

of extensile active nematics. Similar to the review by Thampi, our bidirectional flow is

anti-parallel with zero velocity at the channel centerline and maxima near the bound-

aries. However, unlike the review by Thampi, which employed periodic or circular

channels to facilitate unidirectional flow, our simulations use standard flow conditions

with fixed boundaries, leading naturally to a transition from unidirectional to bidirec-

tional flow. This shows the influence of boundary anchoring and channel confinement

on the symmetry and threshold of the flow transition.

The significant change in flux, with a sharp transition, results from symmetry breaking

driven by the interaction between activity and boundary conditions. This phenomenon

is crucial for applications like controlling fluid transport in microfluidic devices, where

precise flow measurement is essential. Additionally, it holds potential for sensing tech-

nologies, as such large-scale transitions can be used to detect small changes in system

parameters.

4.3.3.3 Flow profiles for varying activity and HAN region width

One of the objectives of this research is to explore the potential application of sensor

design. Active nematics can cause long-range effects in the orientation and flow of

active fluids through small changes in their alignment. This could potentially be useful

in the development of sensors. To investigate whether geometric parameters can change

the system from unidirectional flow to bidirectional flow, we consider a range of HAN

region widths from w/1000 to w/3 microns.

To classify the solution, we use four Boolean tests based on a threshold parameter
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ϵ = 0.1. Each test returns either true or false:

UU:
[∣∣∣∣∫ |uL| dz − |

∫
uL| dz

|
∫
uL| dz

∣∣∣∣ < ϵ

]
and

[∣∣∣∣∫ |uR| dz − |
∫
uR| dz

|
∫
uR| dz

∣∣∣∣ < ϵ

]
, (4.49)

BB:
[∣∣∣∣∫ |uL| dz − |

∫
uL| dz

|
∫
uL| dz

∣∣∣∣ > ϵ

]
and

[∣∣∣∣∫ |uR| dz − |
∫
uR| dz

|
∫
uR| dz

∣∣∣∣ > ϵ

]
, (4.50)

UB:
[∣∣∣∣∫ |uL| dz − |

∫
uL| dz

|
∫
uL| dz

∣∣∣∣ < ϵ

]
and

[∣∣∣∣∫ |uR| dz − |
∫
uR| dz

|
∫
uR| dz

∣∣∣∣ > ϵ

]
, (4.51)

BU:
[∣∣∣∣∫ |uL| dz − |

∫
uL| dz

|
∫
uL| dz

∣∣∣∣ > ϵ

]
and

[∣∣∣∣∫ |uR| dz − |
∫
uR| dz

|
∫
uR| dz

∣∣∣∣ < ϵ

]
. (4.52)

The notations UU, BB, UB, and BU represent different flow patterns. UU is used to

represent unidirectional flow in both the planar left and planar right regions, UB is

used to represent unidirectional flow in the planar left region and bidirectional flow in

the planar right region, BU is used to represent bidirectional flow in the planar left

region and unidirectional flow in the planar right region, and BB is used to represent

bidirectional flow in both regions.

Explicitly, we get unidirectional-unidirectional flow (UU) if UU = true, bidirectional-

bidirectional flow (BB) if BB = true, unidirectional-bidirectional flow (UB) if UB =

true, and bidirectional-unidirectional flow (BU) if BU = true.

Figure 4.11 shows the different solution states of the system for various values of the

activity strength and HAN region width. By analysing this figure, we can capture the

system’s behaviour across the bulk of the channel and better understand the different

solution states. The green dots represent bidirectional flow throughout the region trig-

gered by high activity parameter values. The cyan dots correspond to the flow regime

BU, which indicates asymmetric behaviour for the flow in the planar left region and

symmetric behaviour for the flow in the planar right region. The red dots represent

UU, indicating unidirectional flow throughout the region, which occurs for lower and

intermediate values of the activity strength. It is interesting to note that the transition

from UU to BB depends on both the HAN region width and the activity strength.

Bidirectional flow is due to the HAN distortion, which includes bend and splay distor-
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Figure 4.11: Plot showing the different solutions states as ξ and l vary. The green
dots represent unidirectional-unidirectional (UU), the red dots represent

bidirectional-bidirectional (BB), and the cyan dots represent
bidirectional-unidirectional (BU) flow. The background colour is the flux at the

left-hand boundary.
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tions, but it is mostly bend in one region (left edge of HAN-planar boundary and splay

in another (right edge of HAN-planar boundary), so these might affect where flow is

initiated, which might cause two types of flow, and so bidirectional flow happens.

4.3.4 Numerical calculations II: periodic conditions

In this section, we study the flow of active nematics in a channel under periodic condi-

tions. Additionally, we consider the effect of different elastic constants on the director

orientation and flow velocity.

The normal flow condition in the previous section was a model of an infinite region and

an isolated HAN region. The periodic condition models multiple HAN regions, all a

distance w apart. So, here we consider how multiple HAN regions interact with each

other.

We consider the model in Section 4.3 by applying periodic conditions at the left- and

right-hand side boundaries x = ±w/2, keeping the Dirichlet boundary conditions at

the top and bottom walls. This means that θL = θR, θxL = θxR and uL = uR, uxL =

uxR, where θL and θR represent the director angle at the left-hand and right-hand

boundaries, respectively, and uL and uR denote the velocity at the left-hand and right-

hand boundaries, respectively. To ensure convergence of the solution, we enforce the

pressure-point condition at a single point (x, z) = (−d/2, 0). Our simulations are

conducted for 2 seconds, again using the COMSOL Multiphysics® Software Version

6.1 [31], for contractile and extensile active nematics. In the case of contractile active

nematics, we chose ξ ∈ [−100, 0] Pa, whereas for extensile active nematics, we choose

ξ from the range [0, 150] Pa, and we choose l ∈ [w/1000, w/3] microns.

4.3.4.1 Investigation of flow profiles for contractile nematics

Our results show that, similar to the normal flow boundary condition case, the system is

characterised by unidirectional flow, recirculation, and oscillatory flow as the magnitude

of the activity parameter values increases from low to high values. Here, we present
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only the results for high activity strengths, since other results are very similar to the

normal flow scenario.

Figure 4.12: Plot of the mode magnitude versus the spatial frequency for ξ = −100:
(a) entire region, (b) left planar region, (c) right planar region (d) HAN region.

Figure 4.12 displays the mode magnitude against the spatial frequency for the entire

domain, the two planar regions, and the HAN region. The system is characterised

by an oscillatory flow, which is dominant in the left and right planar regions, each

with a magnitude of mode of approximately 32 and spatial frequency of approximately

5.94 µm−1 for each of the planar regions, as shown in Figures 4.12(b) and 4.12(c),

respectively. The HAN region (see Figure 4.12(d)), is more difficult to characterise

since the frequency spectrum is broader and has a lower peak value. The results are

similar to those we obtained when we applied normal flow conditions.

As in the normal flow scenario, we performed a spectral frequency analysis for contrac-

tile nematics, considering varying the activity strength values and HAN region widths.

Figure 4.13 is similar to Figure 4.7, and so, for the contractile nematics, the bound-

ary condition does not seem to significantly affect the flow and the behaviour of the
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director.

4.3.4.2 Investigation of flow profiles for extensile nematics

We now perform our computation for a fixed value of the width of the HAN region, l,

and vary the value of the activity parameter, ξ, for extensile nematics. Since we use

periodic boundary conditions, uL = uR, and so, we need only examine the flux at the

left-hand boundary.

As in the normal flow case, the solutions are characterised by two distinct scenarios:

unidirectional and bidirectional flow. The transition between these states is marked by

a value of a critical activity parameter ξ ≈ 67 Pa, below which the system exhibits

unidirectional flow, and above, which we get bidirectional flow (see Figure 4.14). In the

current case, the bidirectional flow is characterised by two different forms, as shown in

the inset plots in Figure 4.14. This differs slightly from the system behaviour under

normal flow conditions in that solutions using normal flow conditions are characterised

by critical activity ξ ≈ 67 Pa on the left boundary and ξ ≈ 80 Pa on the right boundary.

To examine the two transition points illustrated in Figure 4.16, we generate a velocity

plot of the region (Figure 4.15), in which the velocity is represented by the background

colour. We investigate the flow before the first transition at ξ ≈ 33 Pa. The sys-

tem exhibits a unidirectional flow characterised by circulations in the HAN region (see

Figure 4.15(a)). As activity increases to ξ ≈ 83 Pa, the flow becomes bidirectional,

characterised by more circulation, with uL < 0 on the lower half on the left-hand side

of the channel and uL > 0 on the upper half of the right-hand side (see Figure 4.15(b)).

Increasing further the activity strength to ξ ≈ 86 Pa, we observe that the change in

the circulation region has caused a different kind of bidirectional flow, characterised by

uL > 0 in the upper half and uL < 0 in the lower half of the channel with reduced

circulation as shown in Figure 4.15(c).

Next, we perform simulations by varying the activity and the HAN region width. We

chose ξ ∈ [0, 100] Pa and l = [w/1000, w/3] microns and simulated for 2 seconds. We
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(a)

(b)

Figure 4.13: Plot of the frequency of oscillations for planar left and right regions as
functions ξ and l, respectively. The red dots represent systems we classify as having
oscillatory flow and the cyan dots represent systems with non-oscillatory flow. The

black region indicates significant frequency, and the cyan dots within this black region
represent very low-amplitude oscillations that are not classified as oscillations.
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Figure 4.14: Plot of
∫
uLdz and

∫
|uL|dz at the left boundary for fixed l and varying ξ.

Figure 4.15: Plot of the velocity in the region spanned by x and z for (a) ξ = 33.3 Pa,
(b) ξ = 83.3 Pa, and (c) ξ = 86.4 Pa. Streamlines (black lines), director (white rods),

flow direction (black arrows) and (background colour) flow velocity
.
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then apply the test functions defined in equations (4.50)–(4.50) to determine the nature

of the flow. Since the boundary condition is periodic, we know that
∫
uLdz =

∫
uRdz.

Therefore, we have only two possibilities UU and BB. In essence, when compared to

the normal flow case, the BU solution is replaced by UU for small and high values of l,

but for intermediate values of l, the BU solution is replaced by BB, as shown in Figure

4.16.

Figure 4.16: Plot showing the different solutions states as ξ and l vary. The green
dots represent unidirectional-unidirectional (UU), and the red dots represent

bidirectional-bidirectional (BB) flow. The background colour is the flux at the
left-hand boundary.

4.3.5 Effect of the elastic constant ratio on director orientation

and flow velocity

In this section, we investigate how the ratio of splay and bend elastic constants influ-

ences the behaviour of the system, particularly the flow and director orientation. The

motivation for this study stems from the fact that distortions in the director field gen-

erate flow in active nematics: extensile systems are unstable to bend distortions, while
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contractile systems are unstable to splay distortions. Therefore, the relative amounts

of splay and bend in the system are expected to have a critical impact on the resulting

flow patterns.

To systematically study this effect, we vary the elastic constants K1 (splay) and K3

(bend) while keeping the elastic energy of a simple HAN state unchanged. This ap-

proach ensures that changes in the flow behaviour are due to the relative anisotropy of

the elastic constants rather than changes in the overall elastic energy.

For the simple HAN state, the director profile is given by θ(z) = π/4+πz/2d. Using the

expression for the elastic free energy density, the total elastic energy of this configuration

is given as

Eτ =
π2

16d
(K1 +K3) , (4.53)

where Eτ represents the elastic energy associated with the HAN distortion. To sys-

tematically vary the elastic constants from reference MBBA values [202], we introduce

scaling factors α and β such that K1 → αK1 and K3 → βK3. Substituting into equa-

tion (4.53) gives the elastic energy explicitly in terms of the free energy and the scaling

parameters

Eτ =
π2

16d
(αK1 + βK3) . (4.54)

This formulation allows us to independently control the splay-to-bend ratio while moni-

toring its effect on flow generation, providing insight into how elastic anisotropy shapes

active nematic dynamics. Next, we define αK1/βK3 = κ. If we require the free energies

(4.53) and (4.54) to remain equal as we change the elastic constant, then equating the

right-hand side of equation (4.53) to the right-hand side of equation (4.54), gives

β =
(K1 +K3)

K3(κ+ 1)
. (4.55)
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The definition of κ then gives

α =
(K1 +K3)

K1(κ+ 1)
κ. (4.56)

Substituting the values α and β in equation (4.54) will automatically leave the free

energy unchanged as we change κ.

We again perform our simulations until t = 2 seconds using the COMSOL Multi-

physics® Software Version 6.1 [31] to analyse the behaviour of both contractile and

extensile active nematics. We choose κ ∈ [0.03, 16], and initially consider the activ-

ity values of ξ = ±0.0001 Pa. We chose the range of κ to ensure that the splay and

bend elastic constants fall within the range of experimental data [202]. The values of

K1 and K3 as functions of κ are shown in Figure 4.17. These values (see Table 6) fall

within the range of elastic constants reported experimentally for nematics. For instance,

Kemkemer et al. [97] measured splay and bend elastic moduli in the range K11 ≈ (1.3–

2.6) × 10−13 N and K33 ≈ (1.3 × 10−13–1.04 × 10−12) N, which are consistent with

the values adopted here. These values are also in agreement with the results of [109],

where the orientational elastic constant of a bulk nematic liquid crystal was found to

be 0.5×10−14 N. The special case exists where κ = 1, when K1 = K3 = 6.75×10−12 N.

For reference, in previous sections we used K1 = 6× 10−12 N and K3 = 7.5× 10−12 N.

By varying κ over this range, we explore elastic constants that extend below and above

the values used in previous sections, while remaining within experimentally reported

ranges.

In Figure 4.18, we present a plot showing the director orientation in relation to the

scaling ratio κ. Below κ = 1, the director tends to favour the splay configuration

because K3 > K1 as shown by the first two sketches in Figure 4.18, while above κ = 1,

the director tends to favour the bend configuration because K3 < K1. At κ = 1, the

director’s orientation balances, resulting in a linear transition from planar orientation

at z = −d/2 to homeotropic orientation at z = d/2.
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Figure 4.17: Plot illustrating the variation of splay and bend elastic constants with
respect to the scaling ratio. The intersection point of the dashed and solid lines occurs
when K1 = K3, indicating κ = 1, as depicted by the red dashed line. Additionally, the

dashed black line represents the behaviour of the splay elastic constant, while the
black solid line represents the behaviour of the bend elastic constant.
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Figure 4.18: Schematic showing the director distortion from homeotropic to planar
anchoring as κ increases for ξ ± 0.0001 Pa, w = 20 microns, l = w/3 microns and
κ = [0.04, 0.4, 0.8, 1, 2.31, 14.4], respectively. Going down the plots, K1 increases,

while K3 decreases.
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We then explored the impact of the elastic constants on the flow velocity. Our observa-

tions reveal that the flow is the same regardless of whether it is contractile or extensile

when the value of the activity parameter is very small. To investigate what happens

when the value of the activity parameter increases, we consider the effects of varying

both the splay and bend scaling ratio, κ, and the value of the activity strength. We

choose ξ ∈ [0, ±0.5] Pa and κ ∈ [0.03, 16].

In Figure 4.19, we plot the director angle, in the center of the channel, that is, for

(x, z) = (0, 0), as a function of the scaling ratio κ. As expected, the director angle

decreases as the scaling ratio κ increases. Bend configuration is induced for the higher

values of κ, while the splay configuration K1 is induced for lower values of κ. The

director angles at the centre of the HAN region are consistent across the different

activity strengths.
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Figure 4.19: Plot of director angle in the centre of the channel as function of κ for
ξ = [0 ± 0.1, ±0.15, ±0.25, ±0.5] Pa.
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4.3.5.1 Flux measurement for varying splay/bend scaling ratio

We also analyse the flux at the left-hand side boundary, as a function of the splay/bend

scaling ratio κ for ξ = [0, ±0.1, ±0.15,±0.25, ±0.5] Pa. Figure 4.20 shows flux as

a function of κ for the chosen values of activity. For negative and very small (both

negative and positive) values of ξ, the flux transitions from positive to negative as the

splay/bend scaling ratio κ increases, as indicated by the green, red, cyan and black

curves. However, for sufficiently extensile systems, the flux remains positive for all

values of κ. Therefore, for contractile and weakly extensile systems, elasticity can

determine the direction of flow.

0 2 4 6 8 10 12 14 16
-3

-2

-1

0

1

2

3

4

5

6
10-12

 = -0.50
 = -0.25
 = -0.15
 = -0.10
 = 0.00
 = 0.10
 = 0.15
 = 0.25
 = 0.50

Figure 4.20: Plot of the flux on the left boundary as a function of κ for
ξ = [0 ± 0.1, ±0.15, ±0.25, ±0.5] Pa.

4.3.5.2 Tracking circulation relative to the splay/bend scaling ratio

We also track the circulation in the system and analyse the flow profile for 0.03 ≤ κ ≤

16. Based on the observed behaviour, we categorise the following contour plots into

three groups: κ = 0.03 to κ = 0.35, κ = 0.4 to κ = 1.04, and κ = 1.10 to κ = 16.
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In the first category, we present velocity plots for κ = 0.03, κ = 0.15, κ = 0.25, and

κ = 0.35, as shown in Figure 4.21. For κ = 0.03, the system exhibits a relatively

high flow in the HAN region, along with circulations near the bottom wall around the

right transition region, accompanied by noticeable director distortion (Figure 4.21(a)).

As the splay/bend scaling ratio increases to κ = 0.15 and κ = 0.25, new circulation

emerges near the top wall of the planar left and right regions, as shown in Figures

4.21(b) and 4.21(c). When κ increases further to 0.35, additional circulation appears

near the bottom wall of the planar right region (Figure 4.21(d)), while the circulation

in the right transition region decreases in size. This occurs because bend distortion

becomes more difficult over splay distortion, leading to distortions in the director field

at the bottom of the HAN region. Essentially, the system favours the splay configuration

when K1 ≪ K3, and splay distortion does not lead to flow in an extensile system.

Next, we examine the velocity profile and circulation in the second category considering

κ = 0.40, 0.65, 1.00, and 1.04, where κ = 1.04 represents a special case where the flux

is nearly zero. For κ = 0.40 and 0.65, we observe a more pronounced circulation in the

transition and HAN regions, with a high flow across the center of the region moving

toward the right-hand side (Figures 4.22(a) and (b)). When κ increases to 1.00, which

is equal to the ratio of the standard MBBA nematic elastic constant for the splay

and bend configurations, four distinct loops appear in the HAN region, along with one

loop in each planar region (Figure 4.22(c)). Interestingly, for κ = 1.04, the integral of

uL with respect to z, denoted by
∫
uLdz, is approximately zero, and the loops in the

planar regions extend to the left and right-hand side boundaries, indicating no overall

flux (Figure 4.22(d)).

Upon increasing κ to 1.35, the flow becomes negative, indicating a reversal in the

velocity direction, as shown in Figure 4.23(a). Additionally, the number of loops in

the HAN region is reduced to three. When κ increases to 1.55, the circulation in the

planar left and right regions begins to diminish in size, along with the loops in the

HAN region, as shown in Figure 4.23(b). Increasing κ further to 2.0, the loops in the
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HAN region evolve into two distinct circulations (see Figure 4.23(c)). At a sufficiently

high value of κ, specifically κ = 4.8 (see Figure 4.23(d)), circulation in the HAN region

disappears, while circulation in the planar regions further diminishes. This indicates

that for κ < 1.04, the circulation evolves as κ increases, whereas for κ > 1.04, the

circulation decreases.

Figure 4.21: Plot of the velocity in the x−direction for κ = 0.03, κ = 0.15, κ = 0.25
and κ = 0.35, and t = 2 seconds. The panels depict the streamlines (black lines),

director (white rods), flow direction (black arrows) and velocity (background colour).

Finally, we consider cases where the splay/bend scaling ratio is significantly greater

than κ = 0.8 where we select κ = 2.00, κ = 4.80, κ = 14.60, and κ = 16.00. This is

illustrated in Figure 4.23, which again depicts the behaviour of the system in terms of

its flow velocity. Within this range of κ values, the system displays similar behaviour,

demonstrating negative flow in the bulk of the region, significant distortions of the

director around the transition regions, and single circulations in the left and right-hand

side transition regions, as well as a singular circulation in the right-hand side planar

region, which diminishes as κ increases.
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Figure 4.22: Plot of the velocity in the x−direction for κ = 0.4, κ = 0.65, κ = 1.00,
and κ = 1.04, and t = 2 seconds. The panels depict the streamlines (black lines),

director (white rods), flow direction (black arrows) and velocity (background colour).
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Figure 4.23: Plot of the velocity in the x−direction for κ = 1.35 κ = 1.55, κ = 2.00
and κ = 4.80, and t = 2 seconds. The panels depict the streamlines (black lines),

director (white rods), flow direction (black arrows) and velocity (background colour).
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Our findings reveal that as the splay/bend ratio increases, i.e. the bend elastic constant

decreases and/or the splay increases, causing significant changes to the flow. For κ < 1,

the system behaves more like a regional flow with reduced recirculations. In this case,

the system prefers the splay configuration to minimise energy since K1 < K3. Since

flow distortion reduces the flow in an extensile nematic, the flow is of low magnitude.

However, for κ > 1, the bend configuration is preferred, indicating that K1 ≪ K3, and

as extensile nematic in a bend distortion is unstable, increased flow occurs.

4.3.6 Conclusion

In this Chapter, we have examined active nematics in a 2D channel using a mixture of

planar and HAN anchoring. Using normal flow and periodic boundary conditions, we

characterise the range of flow profiles for varying magnitudes of the activity at a fixed

channel width for both contractile and extensile active nematics. We summarised our

findings as follows.

4.3.6.1 Normal flow boundary conditions

For low-magnitude activities, both contractile and extensile systems exhibit approxi-

mately rectilinear flow in the planar regions. In the HAN and transition regions, the

flow is circulatory and is associated with the director distortion. Further increasing

the activity strength, the system exhibits more localised flow, reduced circulation, and

director distortion. The system exhibits spatial fluctuation for sufficiently high mag-

nitudes of activities for the contractile system, although there are no time-dependent

oscillations in the system. In the regime of lower activities for extensile nematics, we

observed unidirectional flow, whereas, for high activity strengths, we observed bidi-

rectional flow characterised by an antisymmetric distorted state in the center of the

channel. Varying both the activity and the HAN region width, the extensile nematic is

characterised by three solutions: UU, BU, and BB. The transition from UU to BB is

influenced by both the value of the activity strength and the width of the HAN region.

The transition from UU to BB is largely dependent on the activity strength.
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We have seen that local disturbances in the director orientation influence the global flow

in the system. This suggests that the local dynamics of the system significantly affect

the overall behaviour of the system. Since global flow is induced by HAN anchoring, it

is plausible to consider its potential use in sensor design.

4.3.6.2 Periodic boundary conditions

For contractile active nematics, the system largely displays behaviour reminiscent of

previous observations when subjected to the normal flow condition. Varying both the

activity and the length of the HAN region, we observed that extensile active nemat-

ics exhibit only unidirectional-unidirectional (UU) flow for both low and intermediate

values of activities and all HAN region widths; and bidirectional-bidirectional (BB)

flow for higher values of activities and the HAN region width. Bidirectional flow is

categorised into two distinct patterns. The first type is characterised by uL < 0 on

the lower half on the left-hand side of the channel and uL > 0 on the upper half on

the right-hand side. The second type is characterised by uL > 0 in the upper half and

uL < 0 in the lower half of the channel.

We also investigated the effects of the ratio between the splay and bend elastic constants

on the director orientation and flow behaviour. By varying the splay/bend scaling ratio

scaling factor, κ, we observed distinct changes in the elastic properties of the system

and their impact on the flow.

Our analysis revealed that the ratio of the splay and the bend elastic constants plays

a significant role in determining the preferred director distortion, which leads to a role

in determining the flow profile. The system undergoes a transition from positive to

negative flux, which indicates a change in the system’s flow dynamics at a critical value

of elastic constant ratio κ.

At κ above the critical value the flow transitions to a negative flux with more pronounced

circulation in the HAN region, emphasizing the interaction between the elastic constants

of splay and bend. However, as the activity parameter increases, significant changes
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emerge. For lower values of positive activities and all negative activities, the flux

changes from positive to negative at a critical value of κ, indicating a change in the

dominance of active stress over elastic forces. However, for higher positive activities,

the system is characterised by a unidirectional flow with a positive flux, revealing that

activity always dominates the elastic forces.

186



Chapter 5

Two-Dimensional Transient Flow

during HAN State Formation

5.1 Introduction

In studying active nematics, the anchoring conditions at the boundaries play a crucial

role in determining the flow patterns and the director orientation within the system.

In previous chapters, we examined the behaviour of such a system with a focus on

static boundary conditions, which reveal that activity strength and the width of the

HAN region affect the flow and director orientation. However, real-world applications of

active nematics, such as sensors, will involve dynamic boundary conditions that evolve

when a disturbance affects the boundary of a layer of liquid crystal. Understanding

how localised disturbances and time-dependent changes affect subsequent dynamics is,

therefore, essential to envisioned applications, for example, in the conceptual design

of sensors. Of particular importance are the timing and mechanism of the system’s

response to changes in anchoring. In particular, quantifying the response time for

characteristic changes to occur following a change in anchoring can help predict the

behaviour of the system in real-world applications.

In this chapter, we explore the effects of localised and evolving changes in anchoring by
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introducing a time-dependent boundary condition that mimics changes to anchoring in

a sensor. In doing so, we aim to capture the transient dynamics and flow evolution in the

formation of the HAN state. For contractile nematics, we show how the system evolves

in time in the HAN region for different activity strengths and boundary effects. For

low activity strengths, the system exhibits behaviours consistent with previous models

in Section 4.3.4.1. For high activity strengths, the system exhibits rectilinear flow for

early times and oscillatory flow characterised by travelling waves at later times. Our

calculations show that the waves travel from right to left in the channel. A temporal

frequency analysis demonstrates that the system oscillates in time but later disappears

when the HAN state is fully formed, which was not seen in Section 4.3.2.4.

Similar transient effects are observed at low activity strengths for extensile nematics.

For high activity strengths, changes in anchoring induce transitions from bidirectional

flow to unidirectional flow. These transitions demonstrate how dynamic boundary

conditions can significantly change the behaviour of an active nematic.

The results provide crucial insights into the transient dynamics of active nematics un-

der time-dependent boundary conditions. By examining how the HAN state forms and

evolves, this investigation lays the groundwork for optimising the design of active ne-

matic systems for practical applications, such as sensors. Furthermore, understanding

the interplay between activity and boundary effects can deepen our understanding of

active nematics, which might be a guide for better control of their complex behaviours.

The Chapter is structured as follows. We begin by formulating the model in Section

5.2, followed by a series of numerical computations to quantify transient dynamics in

Section 5.3. We finish with concluding remarks in Section 5.4.

5.2 Model formulation

To determine the system’s response time to a stimulus or a change in anchoring, we

investigate the transient dynamics as the director at the upper surface reorients from
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planar to homeotropic. We consider the model in Section 4.3.4, where we imposed

periodic boundary conditions for the director and flow at the channel inlet and outlet.

However, we modify the model by introducing a time-dependent function describing

the director orientation at the upper surface in the central region to mimic a change

that is to be sensed. Below, we provide a detailed explanation of its implementation

and usage.

We solve equations (4.16)–(4.20) numerically, using COMSOL Multiphysics® Software

Version 6.1 [31] with a modified boundary condition on the top wall, given in terms

of a new ramp function rf (t) = 0 for t < Lrf and rf (t) = Srf (t − Lrf ) for Lrf ≤ t ≤

1/Srf + Lrf and rf (t) = 1 for t > 1/Srf + Lrf , where Lrf and Srf are the location and

slope of the ramp function, respectively, and t is time. The location and slope of the

ramp function have units of seconds and inverse seconds, respectively. This function

involves a user-defined slope for a linear increase that starts at a specified time, which is

determined by the location of the ramp function, Lrf [31]. We reformulate the boundary

condition at the top wall to incorporate the time-dependent change of anchoring in

terms of the ramp function by setting

θ(x) =
πrf (t)

4

[
tanh

(
(x+ l/2)

ϵ

)
− tanh

(
(x− l/2)

ϵ

)]
, (5.1)

When rrf (t) ≡ 1, we reduce to the model of Chapter 4.

The initial conditions used for all simulations in this chapter are given as

u = 0, (5.2)

v = 0, (5.3)

θ(x, z) =
π

4

[
tanh

(
x+ l/2

ϵ

)
− tanh

(
x− l/2

ϵ

)][
z + d/2

d

]
, (5.4)

representing a quiescent fluid with a spatially varying initial director that smoothly

transitions across the region of interest.
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In our model, the ramp function rf (t) prescribes how the director at the upper sur-

face transitions from planar to homeotropic, with the slope Srf controlling the rate of

change. The duration of this transition is ∆trf = 1/Srf , which can be compared to

the system’s intrinsic active timescale, τa = γ/|ξ|, to form the dimensionless ramp time

t̂rf = |ξ|/γSrf .

This dimensionless measure quantifies whether the boundary forcing is slow or fast

relative to the system’s natural response. For small Srf (t̂rf ≫ 1), the boundary changes

gradually compared to τa, so the director evolves slowly and the system effectively

follows the ramp quasi-statically. In particular, for small activities where τa is very

long, a slow ramp delays the development of flows and transient patterns. Conversely,

for large Srf (t̂rf ≪ 1), the boundary is forced rapidly relative to τa, and the director

may be unable to traverse intermediate configurations. Therefore, the relative speed of

the ramp compared to the active timescale determines whether the system has sufficient

time to respond fully to the boundary change, which links the ramp slope directly to

the observed “switch-on” time.

We perform simulations for contractile and extensile active nematics for activity strengths

that capture bidirectional flow behaviour for extensile nematics and oscillatory flow be-

haviour for contractile nematics.

We consider the effects of changing the slope of the ramp function and the value of the

activity parameter on both extensile and contractile active nematics. We choose values

of the activity parameter ξ ∈ [0, ±100] Pa and set the location of the ramp function to

be Lrf = 0.5 seconds. We present results for slopes in the interval Srf ∈ [0.1, 15] s−1

as we find that the influence of the ramp function on the system is weak for Srf > 15

s−1.

5.2.1 Transient flow for contractile active nematics

In this section, we explore the effect of the ramp slope, focusing on low and high activity

strengths for contractile nematics. We have previously established that the system
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oscillates spatially, and we now proceed by examining transient dynamics following a

change in anchoring, reflected by properties of the ramp function. To achieve this, we

first consider Srf ∈ [0.1, 2] s−1 and ξ ∈ [−10, −100] Pa. We simulate for 2 seconds,

setting the width of the HAN region to be l = w/3 microns, as before.

In Figure 5.1, we present the velocity field at different times to illustrate the evolution

of the flow and the transition of the director from planar to homeotropic alignment at

the upper surface for weakly active systems, specifically, for ξ = −0.1 Pa and Srf = 1

s−1. The black lines represent streamlines, the white rods represent the director, the

black arrows represent the flow direction, and the background colour reflects the flow

velocity.

The plots correspond to times t = [0, 0.52, 1.10, 1.50] seconds. Initially, the director is

planar everywhere, from which it follows that the system does not exhibit flow. As the

anchoring changes after t = Lrf = 0.5 seconds, flow and director distortion begin to

appear. When t = Lrf + 1/Srf = 1.5 seconds, the director at the upper surface in the

HAN region is fully switched to homeotropic alignment. It is interesting to note that

the introduction of the ramp function eliminates the circulations in the planar regions

whenever Lrf ≤ t ≤ 1/Srf + Lrf .

Figure 5.2 displays the velocity field for t = [0, 0.52, 0.60, 1.10, 1.50] seconds, a ramp

slope Srf = 1 s−1 and a higher activity of ξ = −100 Pa. At t = 0 (Figure 5.2(a)),

as expected, the flow velocity is zero. At t = 0.52 seconds (Figure 5.1(b)), as the

director at the upper boundary starts to switch away from planar anchoring, we begin

to observe a flow. At t = 0.6 seconds (Figure 5.2(c)), oscillations appear with travelling

waves moving from left to right in the channel. When t = 1.1 seconds (Figure 5.2(d)),

the system continues to oscillate, with larger magnitude velocity but now with the

travelling wave in the opposite direction. At t = 1.5 seconds and beyond (Figure

5.2(e)), the oscillations are fully formed, and the travelling waves continue to move

from right to left.

Given our interest in the HAN region, we observe the director angle in the center of
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Figure 5.1: Plots of the flow velocity for ξ = −0.1 Pa and (a) t = 0, (b) t = 0.52, (c)
t = 1.1 and (d) t = 1.5 seconds. The panels depict streamlines (black lines), white

rods represent the director, black arrows represent the flow direction, and the
background colour reflects the flow velocity.

192



Mathematical Modelling of Active Fluids in a Channel

Figure 5.2: Plots of the flow velocity for ξ = −100 Pa and (a) t = 0, (b) t = 0.52, (c)
t = 0.6, (d) t = 1.1 and (e) t = 1.5 seconds. The panels depict streamlines (black

lines), white rods represent the director, black arrows represent the flow direction, and
the background colour reflects the flow velocity.
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the channel (x, z) = (0, 0), for ξ = −100 Pa and Srf = 1 s−1, and perform a temporal

frequency analysis.

Figure 5.3 displays the magnitude of the Fourier modes against the temporal frequency

of the director angle. The spectrum shows a clear dominant peak at 18.28Hz, corre-

sponding to a characteristic oscillation period of approximately T ≈ 0.055 s. This main

timescale reflects the natural oscillation of the director field in response to the balance

between active stresses and elastic restoring forces. Physically, it represents the funda-

mental “heartbeat” of the system’s temporal dynamics, where the director undergoes

coherent periodic reorientations.

Figure 5.3: Plot of magnitude of mode against the temporal frequency of the director
angle in the centre of the channel for ξ = −100 Pa, Srf = 1 s−1 and t = 2 seconds.

In addition to this dominant peak, smaller peaks are visible at both lower and higher fre-

quencies. The lower-frequency peaks correspond to slower oscillations, with timescales

in the range of 0.1–0.3 s. These capture longer modulation effects or envelope oscil-

lations in the signal, likely linked to slow relaxation processes or energy redistribu-

tion across modes. The higher-frequency peaks, by contrast, correspond to shorter

timescales (∼ 0.01–0.03 s) and are interpreted as higher harmonics of the main oscilla-

tion. Their presence arises from nonlinearities in the active nematic dynamics, which

generate additional frequency content beyond the fundamental mode.

From this analysis, we learn that while the system has a well-defined dominant oscilla-

tion period, the dynamics are not purely periodic. Instead, they are enriched by multiple
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interacting timescales: slower modulations at low frequency and nonlinear harmonics

at higher frequency. This richer temporal structure would be difficult to discern from

the time-domain signal alone but is revealed clearly by the frequency-domain analysis.

To understand the nature of oscillations in the system with respect to changes in ac-

tivity and slope, we perform a spectral frequency analysis using the test function and

assumptions in Section 4.3.3.3. Figures 5.4 and 5.5 show the oscillation frequency in the

Srf −ξ parameter space for the left planar region and the HAN region, respectively. We

consider only the left planar region because the results are very similar to those of the

planar right region. For the left planar region, oscillations were observed for ξ ≤ −80

Pa and all values of the slope, which aligns with the findings of Section 4.3.4.1 (see

Figure 4.13(a)), where oscillations start from ξ = −80 Pa for l = w/3 microns. Moving

to the HAN region, part of the parameter region for which there were oscillations in the

left planar region becomes non-oscillatory. Specifically, for Srf > 0.31 s−1 and ξ ≈ −80

Pa, oscillations are not observed in the HAN region, even though they are observed

in the left planar region. High-magnitude frequencies are classified as non-oscillatory

because they are very low-amplitude oscillations.

5.2.2 Quantification of travelling waves

Previously, we observed oscillatory behaviour in the system, characterised by travelling

waves. These waves play a significant role in the transient dynamics of active nematics,

particularly in determining the spatial-temporal evolution of the director orientation.

To gain a deeper understanding of the dynamics, we quantify and analyse the properties

of these travelling waves.

To this end, we further analyse the direction and behaviour of these travelling waves by

plotting the director angle along z = 0 and tracking the locations of the peaks at each

point in time. This approach allows us to visualise the wave propagation and identify

key features such as directionality.

Figure 5.6 displays the director angle at z = 0 as a function of x and t, where the black
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Figure 5.4: Plot of spatial frequency for the planar left region. The red dots represent
systems categorised as exhibiting oscillatory flow, and the cyan dots represent systems
with non-oscillatory flow. The black region depicts significant frequency, and the cyan

dots within this black region represent very low-amplitude oscillations that are not
classified as oscillations. The criteria used to distinguish oscillatory from

non-oscillatory flow are defined in Section 4.3.2.4, where a system is classified as
oscillatory if both the peak frequency and magnitude satisfy |pf |> Tf and |pm|> Tm,

with thresholds Tf = 105 and Tm = 0.15.
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Figure 5.5: Plot of spatial frequency in the HAN region. The red dots represent
systems categorised as exhibiting oscillatory flow, and the cyan dots represent systems
with non-oscillatory flow. The black region depicts significant frequency, and the cyan

dots within this black region represent very low-amplitude oscillations that are not
classified as oscillations. The criteria used to distinguish oscillatory from

non-oscillatory flow are defined in Section 4.3.2.4, where a system is classified as
oscillatory if both the peak frequency and magnitude satisfy |pf |> Tf and |pm|> Tm,

with thresholds Tf = 105 and Tm = 0.15.
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circles represent peaks. For t ≤ 0.5 seconds, the upper anchoring condition is θ = 0,

and thus the director orientation is uniform, corresponding to no flow. However, for

t > 0.5, director distortion and oscillations emerge, resulting in travelling waves moving

to the right in the planar regions but to the left in most of the HAN region, as indicated

by the black circles. We find that the travelling wave reverses direction at t = 0.575

seconds, as highlighted in Figure 5.6, where the black circles start travelling to the left

throughout the channel.

Our observations can be placed in the broader context of the work of Saintillan and

Shelley [185], who analysed instabilities and pattern formation in suspensions of con-

tractile active particles. Their linear stability analysis revealed that for pushers (ξ < 0),

low-wavenumber shear stress fluctuations possess a positive growth rate, while at higher

wavenumbers the fluctuations oscillate and eventually damp. This dispersion relation

predicts the coexistence of exponentially growing long-wave modes and oscillatory finite-

wavelength modes, which naturally leads to the emergence of travelling waves. In our

simulations, the dominant oscillation frequency identified by Fourier analysis (Figure

5.3) can be interpreted as the analogue of these unstable oscillatory modes, selected by

the interplay between active driving, elastic restoring forces, and confinement.

Beyond the linear regime, Saintillan and Shelley demonstrated that initially isotropic

suspensions evolve into states characterised by coherent travelling waves, band forma-

tion, and quasiperiodic oscillations of the shear stress. High-wavenumber modes decay,

but nonlinear mode coupling generates low-wavenumber structures that dominate the

long-time dynamics. This mirrors our finding that the director field undergoes coher-

ent oscillations at a well-defined frequency, enriched by secondary peaks at lower and

higher harmonics. Their simulations further revealed the emergence of concentration

bands that fold, break, and reform, driving quasiperiodic dynamics and oscillations in

the global input power. While our system does not explicitly track particle concentra-

tion, the reversal of wave direction observed at t = 0.575 seconds is consistent with

this broader picture of nonlinear mode interactions and temporal modulation. Impor-
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tantly, their instabilities spontaneously selected low-wavenumber modes permitted by

the system size. Our mixed anchoring geometry modifies the propagation direction of

travelling waves and introduces a reversal not seen in periodic domains.

Thus, our results not only confirm the generality of the shear-stress-driven travelling

waves predicted by Saintillan and Shelley but also extend their framework to confined

active nematics with heterogeneous boundary conditions, revealing new dynamical fea-

tures such as wave reversals.

Figure 5.6: Plot of the director angle along z = 0, for x and t > 0, ξ = −100 Pa and
Srf = 15. The black circles indicate the position of the director angle maxima, and

eventually indicate the direction of the travelling waves, while the background colour
depicts the director angle.

5.3 Transient flow for extensile active nematics

We now examine transient flow dynamics for extensile systems. In Section 4.3.4.2,

we found that the flow transitions from unidirectional to bidirectional as the activity

strength changes. With the introduction of the ramp function, the flow transitions from

bidirectional to unidirectional for higher activity strengths.
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In this section, I extend the simulation time from 2 seconds to 5 seconds for the chosen

activity ξ = |100| Pa. Here, the active length scale evaluates to la ≈ 1.14 µm, which

is smaller than the channel height, so distortions are strongly confined and well re-

solved. The corresponding active time scale is τa ≈ 0.024 s, meaning the system evolves

extremely rapidly, and the essential response occurs within a fraction of a second. Nev-

ertheless, extending the simulation to 5 seconds is important for assessing the flow

regime. In particular, it allows us to determine whether the bidirectional flow observed

at earlier times persists once the ramp has fully developed, or whether it relaxes into a

unidirectional configuration. Thus, the longer duration provides a more reliable picture

of the stability and persistence of bidirectional flow under strong activity forcing.

To demonstrate the flow transition from BB to UU as the slope of the ramp function

increases, we use the test functions in equations (4.49)–(4.52) to determine if the flow

is unidirectional–unidirectional (UU) or bidirectional–bidirectional (BB). We calculate

the times when the flow transitions between BB and UU, and refer to these times as

transition times.

Figure 5.7 displays the transition times from BB to UU with respect to the slope of the

ramp function and activity parameter, where the numerical values (other than those

indicated by 5) represent the transition times from BB to UU and 5 indicates that

there is no transition for t < 5 seconds. For lower values of the slope, the bidirectional

flow takes longer to transition to unidirectional flow, whereas for higher values of the

slope of the ramp function, the bidirectional flow transitions to unidirectional flow more

quickly. Interestingly, increasing the slope weakens the effects of activity, resulting in

the switch from BB to UU.

Figure 5.8 provides a zoomed-in view of the transition times from bidirectional (BB)

to unidirectional (UU) flow in the region Srf < 1, which corresponds to the most

dynamically interesting regime. Similar to Figure 5.7, the numerical values indicate the

transition times from BB to UU, while the value 5 denotes that no transition occurs

for t < 5 seconds. This zoomed figure highlights that, in this low-slope region, the BB
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Figure 5.7: Plot of transition times from BB to UU in parameter ξ and Srf space.
The red dots represent flow we classify as bidirectional, and the cyan dots represent
non-unidirectional flow, while 5 indicates there are no transitions after t > 5 seconds.

flow generally takes longer to transition to UU flow compared to higher slopes, and

the effect of activity is more pronounced. By focusing on Srf < 1, Figure 5.8 shows

more detail in the region where the interplay between ramp slope and activity strongly

influences the transition dynamics, which provides a clearer picture of the underlying

flow behaviour.

5.4 Conclusions

In this Chapter, we examined the transient response of the system as the director at the

upper boundary of the HAN region transitions from planar to homeotropic anchoring.

We introduced a ramp function to control the boundary condition at the upper wall

and mimic the introduction of an object that we wish to sense. We investigated the

impact of the time for the director to change from planar to homeotropic alignment on

the system’s behaviour for various activity strengths.

Weakly active systems exhibit rectilinear flow with few circulations as the director re-
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Figure 5.8: Transition times from bidirectional (BB) to unidirectional (UU) flow in
the ξ–Srf parameter space. Red dots indicate cases classified as bidirectional flow,

cyan dots indicate non-unidirectional flow, and a value of 5 denotes that no transition
occurs within t > 5 seconds. The figure focuses on the interesting region for Srf < 1,
where the transition dynamics are most sensitive to the slope of the ramp function

and the activity parameter.
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orients from planar to homeotropic as time evolves. For higher activity strengths, con-

tractile nematics exhibit oscillatory flow characterised by travelling waves, which are

prominent at slow anchoring changes and decrease for faster anchoring changes. The

travelling waves travel to the left, indicating that the flow is in the negative x−direction.

For extensile nematics, we observed bidirectional flow for higher activities but transi-

tioned to unidirectional flow as we increased the slope of the ramp function.

Our results suggest that the flow is sensitive to how fast the anchoring changes at the

top boundary. A slower transition from planar to homeotropic delays the system’s

switch-on time and weakens the effect of activity. In contrast, the steepest slopes lead

to faster switching, ultimately leading to the disappearance of bidirectional behaviour.

These findings underscore the importance of the boundary effects in the HAN region

in controlling the system’s transient response and highlight how activity and boundary

conditions interact to drive complex behaviours in active nematic systems.

Our findings on time-dependent boundary anchoring in active nematics provide a physi-

cal framework for understanding wound healing dynamics. In particular, the sensitivity

of the system to the rate of boundary change parallels how the speed of cytoskeletal re-

modelling and adhesion turnover at wound edges dictates collective migration efficiency.

Slow reorganisation of anchoring in our model leads to delayed and weakened flows, re-

sembling impaired or inefficient wound closure, while rapid anchoring changes drive

strong, directed flows similar to the coordinated migration of epithelial sheets during

efficient repair. Furthermore, the emergence of oscillatory, wave-like flows in contractile

nematics at high activity strengths mirrors the pulsatile actomyosin contractions and

travelling mechanical waves observed experimentally at wound margins. The transition

between bidirectional and unidirectional flows in extensile nematics also reflects how

tissues dynamically switch between competing migration fronts and consolidated direc-

tional closure. Thus, by quantifying how localised, time-dependent boundary changes

propagate into large-scale flows, our study provides mechanistic insight into how wounds

convert local edge dynamics into coherent collective migration, bridging active nematic

203



Mathematical Modelling of Active Fluids in a Channel

physics and biological tissue repair.

204



Chapter 6

Summary and Future Work

6.1 Summary

In this thesis, we have examined active nematics in channels, using the planar and

homeotropic anchoring conditions for the director, along with no-slip and non-penetration

boundary conditions for the velocity field. We adopted the Ericksen-Leslie continuum

theory of active nematics and considered 1D and 2D approximations. The summary of

the key findings is as follows.

In Chapter 3, we examined the activity and orienting field effects on kickbacks and back-

flow. We solved the system analytically and numerically using planar or homeotropic

alignment, both with and without an orienting field. As is well known, the solution

for the planar alignment case in the absence of the orienting field is characterised by a

critical activity. Below this critical activity, the system exhibits a no-flow state with an

undistorted director state, and above which the director is distorted, leading to flow.

When an orienting field is present and ξ = 0, the system undergoes a classical Fréeder-

icksz transition once the field strength exceeds a certain threshold. In scenarios where

both activity and the orienting field are present, the system exhibits a feedback mecha-

nism due to the competition between the activity and the orienting field. For relaxation

from an initial homeotropic alignment, the system exhibits a kickback mechanism in the
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absence of an orienting field. However, when an orienting field is applied, the kickback

effect disappears if the field strength exceeds a certain threshold for extensile nematics,

while kickback persists for contractile nematics.

To investigate long-time nonlinear behaviour, we used a finite difference approximation

to solve the one-dimensional model. The nonlinear solutions include director angle and

velocity profiles for various combinations of activity parameter values and orienting

fields. These solutions exhibit uniform, symmetrically distorted, or antisymmetrically

distorted states. We also measured active dissipation and elastic energy. Our results

show that higher orienting field values increased elastic energy, while large activity val-

ues enhanced active dissipation. Active dissipation grows for strongly negative activity,

whereas elastic energy remains low. For the HAN cell, the director stabilises at approx-

imately 1.24 rad in the bulk of the channel for extensile systems. As activity becomes

more negative, a transition occurs, leading to bistability in contractile systems. A key

finding from both the linear and nonlinear analyses is that in a weakly contractile sys-

tem, the director exhibits an overshoot, resulting in complex flow behaviour, which has

implications for sensor design.

In Chapter 4, we examined a two-dimensional study of active nematics in a channel by

considering the effects of changing the activity and geometric effects.

Under the normal flow condition, which mimics a single area of homeotropic anchoring

on the upper substrate, the contractile active nematics are characterised by unidirec-

tional uniform flow and localised circulatory flow for low activity strengths and for all

HAN region widths. For sufficiently high magnitudes of activities, the system is charac-

terised by spatial fluctuation, although there are no time-dependent oscillations in the

system. For extensile active nematics, the system exhibits UU, BU, and BB flow pat-

terns depending on the magnitude of the activity. The notations UU, BB, UB, and BU

represent different flow patterns. UU is used to represent unidirectional flow in both

the planar left and planar right regions, UB is used to represent unidirectional flow

in the planar left region and bidirectional flow in the planar right region, BU is used
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to represent bidirectional flow in the planar left region and unidirectional flow in the

planar right region, and BB is used to represent bidirectional flow in both regions. The

transition from UU to BB is largely determined by the value of the activity strengths,

while the BU solution arises from the changes to the width of the HAN region.

For periodic boundary conditions which mimic a periodic array of homeotropic align-

ments, we examined how multiple HAN regions interact with each other. The findings

are reminiscent of findings using the normal flow conditions, except that BU solutions

no longer exist. From the flux measurements, we observed two distinct critical activities

within the bidirectional solution regime. We also examined the effect of the elastic con-

stant deformation on the director orientation and flow. Increasing the ratio of the splay

and bend elastic constants, the flux changes from positive to negative for contractile

nematics and remains positive for extensile active nematics. The key finding in this

Chapter is that local disturbances in the director orientation influence the global flow

in the system.

Chapter 5 explored two-dimensional transient dynamics in the HAN state formation by

controlling the top boundary at the center of the channel. For contractile nematics, the

system exhibits circulatory flow characterised by director distortion in weakly active

nematics and oscillatory flow with travelling waves at higher activity strengths. In ex-

tensile nematics, the behaviour is similar to that of contractile nematics at low activity

strengths. The results showed that flow dynamics are highly sensitive to the rate of

anchoring change at the top boundary. A slower transition from planar to homeotropic

anchoring delays the system’s switch-on time and weakens the effect of activity. In con-

trast, a steeper transition leads to faster switching, ultimately eliminating bidirectional

behaviour.

In conclusion, we have shown that local director distortions generate global flow. This

finding is crucial for sensing applications and provides valuable insights into controlling

the behaviour of active fluids. Additionally, it improves our understanding of biological

processes such as biofilm formation and morphogenesis.
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6.2 Future work

Building on the findings of this thesis, several directions can be pursued to extend and

deepen the understanding of active nematic systems. In this work, we have focused

exclusively on wet active fluids with nematic symmetry, assuming constant concentra-

tion, low Reynolds number, no defects, perfectly strong anchoring, and short simulation

times. While these assumptions allow for analytical and numerical tractability, they

also impose limitations on the generality of the results. Below, we outline potential

extensions and critically discuss their motivations and significance.

6.2.1 Extensions to other active matter systems

One natural extension is to consider active dry fluids, such as schools of fish [52] and

vibrated granular particles [213], where momentum is dissipated primarily through fric-

tion with the surrounding medium or substrate, rather than through viscous stresses in

a continuous fluid. Incorporating dry active matter would allow exploration of collective

motion in regimes where hydrodynamics plays a minor role, broadening the applicabil-

ity of this framework to a wider class of active systems. This is particularly interesting

because it can reveal how frictional damping, rather than viscosity, influences pattern

formation, defect dynamics, and flow instabilities.

Another extension involves relaxing the assumption of constant concentration by in-

cluding dynamic concentration fields and particle interactions. This can be achieved

by introducing stochastic partial differential equations, such as Fokker-Planck equa-

tions [125, 170], to account for noise and fluctuations in particle positions and orienta-

tions. The motivation here is to capture emergent phenomena, such as clustering or

spontaneous flow instabilities, that arise due to concentration heterogeneities, which

are absent in the current constant-concentration framework.
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6.2.2 Higher-dimensional and complex geometries

In Chapter 3, we studied kickback and backflow in a one-dimensional channel with

splay and bend geometries. Extending these analyses to two or three dimensions would

provide a more realistic representation of experimental systems, where director orien-

tations and flow patterns are not confined to a single plane. Specifically, incorporating

twist geometries, with the twist elastic constant K2 in the free energy, would allow us

to study how three-dimensional distortions influence backflow dynamics. This is signif-

icant because many real-world nematic systems exhibit complex director deformations

that cannot be captured in one-dimensional models.

Similarly, the HAN problem can be extended to include the effect of an external ori-

enting field. Investigating how this field modifies the HAN state could provide insights

into controlling director alignment and flow patterns in devices, which is crucial for

applications in active materials and microfluidics.

6.2.3 Geometric and activity-driven effects

Chapter 4 considered two-dimensional geometries and the effects of activity on director

and flow patterns. Several extensions are particularly promising:

I. Three-dimensional simulations: Extending the model to three dimensions

and to a Q-tensor formulation would allow for the study of defect lines, complex

flow structures, and interactions between multiple defects. This is motivated by

experimental observations that active nematics in confined geometries often ex-

hibit three-dimensional structures that cannot be captured in two dimensions.

Including 3D effects is therefore essential for quantitative comparisons with ex-

periments.

II. Designing responsive materials and sensors: Experimental studies suggest

that active nematics are highly sensitive to external stimuli such as pressure, elec-

trostatic and light. Exploring this sensitivity can lead to the design of activity-
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driven sensors, where small changes in the environment trigger measurable re-

sponses in the nematic configuration. This is an interesting avenue because it

bridges fundamental physics with potential technological applications.

III. Applications to biophysical systems: Active nematic models can be applied

to cytoskeletal networks, tissue dynamics, or biofilm formations. Extending the

model to capture the mechanical and dynamical properties of these biological

systems would enhance its relevance and allow for predictions about processes

such as cell migration, division, and collective motion. This is particularly com-

pelling because it connects soft matter physics with biological function, offering

opportunities for interdisciplinary research.

6.2.4 Transient dynamics and switch-on/off states

In Chapter 5, we focused on the transient dynamics of the switch-on state, where the

director transitions from planar to homeotropic alignment. A natural extension is to

study the switch-off scenario, where the director returns from homeotropic to planar

alignment. Understanding both transitions is crucial for potential sensor applications,

as real devices must operate under repeated cycles of alignment changes.

6.2.5 Critical assumptions and limitations

Throughout this thesis, several simplifying assumptions were made for analytical and

computational tractability. These include:

I. Low-Reynolds number: Neglecting inertia is reasonable for microfluidic sys-

tems, but at higher flow speeds or larger scales, inertial effects could modify defect

motion and flow patterns.

II. No defects: The absence of defects simplifies analysis, but in practice, defects

often dominate the dynamics of active nematics. Including defects in simulations

would provide a more realistic description.
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III. Constant scalar order parameter: Relaxing this assumption could capture

variations in nematic order due to activity, confinement, or temperature gradients.

IV. Perfectly strong anchoring: Real surfaces may exhibit weak or patterned

anchoring, influencing director alignment and flow near boundaries.

V. Absence of noise: Including thermal or active fluctuations would make the

model more robust and allow exploration of stochastic effects on defect nucleation

and collective motion.

Addressing these limitations in future work would strengthen the connection between

simulations, theory, and experiments, and enhance the predictive power of active ne-

matic models.
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Appendices

A Derivation of the 2D versions of the elastic free

energy and dissipation function

In this section, we derive the Frank–Oseen elastic free energy, wF (equation (4.9)) in

(4.2.1) and the dissipation function (equation (4.10)) as follows.

To derive the Frank–Oseen elastic free energy, we substitute equations (4.1) and (4.2)

into equation (2.35), and calculate each term on the right-hand side. Simplifying, we

obtain the following equations:

(ni,i)
2 = θ2x sin

2 θ − 2 sin θ cos θθxθz + θ2z cos
2 θ, (A.1)

ni,jni,j = θ2x sin
2 θ − θ2x cos

2 θ + θ2z sin
2 θ + θ2z cos

2 θ, (A.2)

ni,jnj,i = θ2x sin
2 θ − 2θ cos θθxθz + θ2z cos

2 θ, (A.3)

njni,jnkni,k = θ2x sin
2 θ cos θ2 + θ2x cos

4 θ + 2θxθz sin
3 θ cos θ

+ 2θxθz cos
3 θ cos θ + θ2z sin

2 θ cos2 θ + θ2z sin
4 θ. (A.4)

Using equations (A.1)-(A.4) into equation (2.35) and simplifying, we obtain the elastic
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free energy as

wF =
1

2

[
θ2x
(
K1 sin

2 θ +K3 cos
2 θ
)
+ θ2z

(
K1 cos

2 θ +K3 sin
2 θ
)

+ (K3 −K1) sin(2θ)θxθz

]
. (A.5)

In a similar way, we derive the rate of dissipation in Subsection (4.2.1). To achieve

this, we first compute the rate of strain tensor (symmetry velocity tensor): Aij =

1
2
(vi,j + vj,i), and vorticity tensor (anti-symmetry velocity tensor): Wij =

1
2
(vi,j − vj,i).

Using equations (4.1) and (4.9), we get the components of the rate of strain tensor and

vorticity tensor, given explicitly as

A11 = ux, (A.6)

A12 =
1

2
(uz + vx) , (A.7)

A21 = A12 =
1

2
(uz + vx) , (A.8)

A22 = vz, (A.9)

A13 = A23 = A33 = 0, (A.10)

and

W11 = W13 = W22 = W23 = W33 = 0, (A.11)

W12 =
1

2
(uz − vx) , (A.12)

W21 =
1

2
(vx − uz) . (A.13)

The co-rotational time flux: Ni = ṅi − Wijnj, i, j = 1, 2, 3, where ṅi is the material
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derivatives. So that

N1 = ṅi −
1

2
(uz − vx) sin θ, (A.14)

N2 = ṅi −
1

2
(vx − uz) cos θ, (A.15)

N3 = 0, (A.16)

where ṅx = sin θθ̇ and ṅz = cos θθ̇, and θ̇ = θt + uθx + vθz.

Next, we compute each term on the left hand side of equation (2.55). So that

(niAijnj)
2 =cos4 θu2

x + 2 cos3 θ sin θvxux + 2 cos3 θ sin θuxuz + sin4 θv2z

+ 2 cos2 θ sin2 θuxvz + cos2 θ sin2 θv2x + 2 cos2 θ sin2 θvxuz

+ 2 cos θ sin3 θvxvz + cos2 θ sin2 θu2
z + 2 cos θ sin3 θuzvz, (A.17)
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NiAijnj =ux cos θ ṅx −
1

2
uxuz cos θ sin θ +

1

2
uxvx cos θ sin θ +

1

2
cos θvx ṅz

− 1

4
cos θ2v2x +

1

2
cos θuz ṅz +

1

4
cos θ2u2

z +
1

2
sin θvx ṅx +

1

4
sin θ2v2x

+
1

2
sin θuz ṅx −

1

4
sin θ2u2

z + vz sin θ ṅz −
1

2
vz sin θ cos θvx

+
1

2
vzuz sin θ cos θ, (A.18)

AijAij =u2
x +

1

2
v2x + (vx)uz +

1

2
u2
z + v2z , (A.19)

niAijAjknk =cos2 θu2
x + cos θux (vx + uz) sin θ +

1

2
cos2 θ (vx + uz)

2

+ cos θ (vx + uz) vz sin θ +
1

2
sin2 θ (vx + uz)

2 + sin2 θv2z , (A.20)

NiNi = ṅ2
x − sin θuzṅx + sin θvxṅx +

1

4
sin2 θu2

z −
1

2
sin2 θuzvx

+
1

4
sin2 θv2x + ṅ2

z − cos θvxṅz + cos θuzṅz +
1

4
cos2 θv2x

− 1

2
cos2 θvxuz +

1

4
cos2 θu2

z, (A.21)

Aijninj = cos2 θux + cos θ (vx + uz) sin θ + sin2 θvz. (A.22)
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Summing all the terms, we get

D =α1

[
ux

(
(−uz − vx) sin θ cos θ sin

2 θ + (uz + vx) sin θ cos θ − vz sin
4 θ + sin2 θvz

)
+ uz

(
sin θ cos θ sin2 θvz − vx sin

4 θ + sin2 θvx

)
+ sin θ cos θ sin2 θvzvx

]

+ α2

[
ux

(
− 1

4
uz +

1

4
vx −

1

2
θt

)
sin θ cos θ + uz

(1
4
vx +

1

4
sin θ cos θvz −

1

2
sin2 θθt −

1

4
θt

)
+ vx

(
− 1

4
sin θ cos θvz −

1

2
sin2 θθt +

3

4
θt

)
+

1

2
sin θ cos θvzθt −

1

2
θ2t

]

+ α3

[
ux

(
− 1

4
uz +

1

4
vx −

1

2
θt

)
sin θ cos θ + uz

(
− 1

4
vx +

1

4
sin θ cos θvz −

1

2
sin2 θθt +

3

4
θt

)
+ vx

(
− 1

4
sin θ cos θvz −

1

2
sin2 θθt −

1

4
θt

)
+

1

2
sin θ cos θvzθt +

1

2
θ2t

]

+ α5

[
ux

(3
4
uz +

1

4
vx +

1

2
θt

)
sin θ cos θ + uz

(1
4
vx +

1

4
sin θ cos θvz +

1

2
sin2 θθt −

1

4
θt

)
+ vx

(3
4
sin θ cos θvz +

1

2
sin2 θθt −

1

4
θt

)
− 1

2
sin θ cos θvzθt

]

+ α6

[
ux

(1
4
uz +

3

4
vx −

1

2
θt

)
sin θ cos θ + uz

(1
4
vx +

3

4
sin θ cos θvz −

1

2
sin2 θθt +

1

4
θt

)
+ vx

(1
4
sin θ cos θvz −

1

2
sin2 θθt +

1

4
θt

)
+

1

2
sin θ cos θvzθt

]

+
1

2
vxuzα4 +

(1
2
α1 cos

4 θ +
1

2
α4 +

1

2
(α5 + α6) cos

2 θ
)
u2
x

+
(1
2

[
α4 + (α3 + α6) cos

2 θ + sin2 θ (α5 − α2)
] )

u2
z

+
(1
2

[
α4 + (α6 − α3) cos

2 θ + (α5 + α2) sin
2 θ
]
+ α1 sin

2 θ cos2 θ
)
v2x

+
(1
2
α1 sin

4 θ +
1

2
α4 +

1

2
(α5 + α6) sin

2 θ
)
v2z

+ ξ
[
cos2 θ ux + sin θ cos θ(vx + uy) + sin2 θ vy

]
, (A.23)
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where

g1(θ) =
1

2

[
α4 + (α3 + α6) cos

2 θ + sin2 θ (α5 − α2)
]
+ α1 sin

2 θ cos2 θ, (A.24)

g2(θ) =
1

2

[
α4 + (α6 − α3) cos

2 θ + (α5 + α2) sin
2 θ
]
+ α1 sin

2 θ cos2 θ, (A.25)

g3(θ) =
1

2
α1 cos

4 θ +
1

2
α4 +

1

2
(α5 + α6) cos

2 θ, (A.26)

g4(θ) =
1

2
α1 sin

4 θ +
1

2
α4 +

1

2
(α5 + α6) sin

2 θ. (A.27)

B Splay/bend scaling ratio and their corresponding

splay and bend elastic constants

Here we present the values of the splay/bend scaling ratio, κ = αK1/βK3, and their

corresponding elastic constants, K1 and K3 shown in Figure 4.17 as follows.

κ K1 (N) K3 (N)
0.03 4.3062× 10−14 1.3457× 10−11

0.07 8.9143× 10−13 1.2609× 10−11

0.11 1.3324× 10−12 1.2168× 10−11

0.13 1.5404× 10−12 1.1960× 10−11

0.40 3.8571× 10−12 9.6429× 10−12

0.80 6.0000× 10−12 7.5000× 10−12

0.98 6.6742× 10−12 6.8258× 10−12

1.00 6.7500× 10−12 6.7500× 10−12

1.04 6.8934× 10−12 6.6066× 10−12

1.10 7.0782× 10−12 6.4218× 10−12

1.22 7.4271× 10−12 6.0729× 10−12

1.23 7.4372× 10−12 6.0628× 10−12

1.35 7.7580× 10−12 5.7420× 10−12

2.00 9.0000× 10−12 4.5000× 10−12

4.80 1.1172× 10−11 2.3276× 10−12

7.20 1.1854× 10−11 1.6463× 10−12

10.40 1.2316× 10−11 1.1842× 10−12

13.20 1.2549× 10−11 9.5070× 10−13

14.60 1.2635× 10−11 8.6538× 10−13

16.00 1.2706× 10−11 7.9412× 10−13

Table 6: Table of splay/bend scaling ratio, κ and their corresponding splay and bend
elastic constants.
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