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Abstract

Convection occurs naturally in the atmospheres of giant planets and within electrically conduct-
ing regions of terrestrial planets, such as Earth’s outer core. Over time, increasing attention
has been given to these conducting fluid regions in astrophysical and geophysical bodies, as
they are believed to generate magnetic fields through dynamo action. Therefore, understand-
ing convection and the dynamo process is fundamental to explaining how magnetic fields are
sustained in astrophysical and geophysical bodies.

This thesis investigates convective fluid flows under the influence of rotation and magnetic fields.
Numerical simulations are conducted using two models: an annulus model with an imposed
magnetic field, and a spherical shell model that allows for the self-excitation of magnetic fields.
Throughout this thesis, particular attention is given to the forces governing the flow dynamics.
The first part presents a literature review of existing work and outlines the methods used in
both models.

New results from nonlinear simulations of an annulus model with an imposed magnetic field
are presented. The study examines how varying the strength of magnetic field and convection
affects the prevailing force balances and flow patterns. Additionally, the characteristics of zonal
flows and multiple jets within the annulus model are investigated, with particular emphasis on
the influence of magnetic field strength and the force balances required to sustain these flows.
Zonal flows and multiple jet solutions are typically found at weak magnetic field strength where
a strong inertial force is present, although some cases of zonal flows and multiple jets are found
at strong magnetic field strength where a strong Lorentz force is present. Force balances occur
that are similar to those found in the main regimes of dynamo action.

Finally, spherical shell simulations are performed to investigate both forces and solenoidal
forces, where flow lengthscales in two distinct directions are examined. Dynamically rele-
vant flow lengthscales are identified by introducing a triple balance point involving key forces
characteristic of the main dynamo regimes. These dynamically relevant lengthscales are then
successfully compared with energetically dominant scales, highlighting how force balances at
particular scales set the size of the flow. The forces and solenoidal forces across different regions
of the spherical shell are further analysed. Transitions between the main dynamo regimes are
examined, where solenoidal forces are used to explain the mechanisms driving these transitions.
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Chapter 1

Introduction

Convection driven by thermal and/or compositional gradients occurs naturally in the atmo-
spheres of giant planets and within regions of terrestrial planets such as the outer core of
Earth. Such fluids are often electrically conducting and act as the seat of their planet’s dy-
namo, generating the planetary magnetic field. This idea was first introduced by Larmor
(1919), where they proposed that electrically conducting fluid generated the magnetic field
and provided an explanation for the magnetisation of sunspots. Therefore, an understanding
of convection is necessary to provide an explanation for dynamo action in astrophysical and
geophysical systems.

Our understanding of planetary magnetic field generation has been made possible through nu-
merical simulations, which are the focus of this thesis, and through observations from satellites
and paleomagnetic studies. Magnetic field generation in convecting fluid regions is governed
by the Navier-Stokes and Maxwell’s equations. Due to their complexity, these equations can
only be solved analytically in certain limits. However, over recent decades, advancements in
computational power have made it possible to solve these equations numerically. In the first
part of this thesis, we investigate magnetoconvection using an annulus model. This is a lo-
calised model of spherical geometry, which we use to focus on the force balances controlling
the dynamics of the flow (see Section 1.5.2) and zonal flows which are azimuthal large scale
flows. The second part centres on a three-dimensional spherical shell model capable of the
self-excitation of magnetic fields. Here we analyse globally averaged and lengthscale dependent
force balances, by considering the entire shell and specific localised regions.

This chapter discusses the structure of Earth and Jupiter. We introduce the Navier-Stokes
and Maxwell’s equations and discuss planetary magnetic field generation. A literature review
is presented, focusing on studies involving an annulus model and a spherical shell model. We
introduce the main regimes of dynamo action which will be essential for interpreting the force
dynamics observed in our simulations.

1
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1.1 Earth’s structure

The Earth has a radius of approximately 6370 km and is composed of several distinct layers.
At the surface lies the crust, which is relatively thin compared to Earth’s total radius. Below
the crust is the rocky mantle which extends to approximately 2900 km. Beneath the mantle lies
a dense iron rich core. This core is divided into two distinct regions: a solid inner core and a
liquid outer core. The outer core, composed of liquid metal, is believed to generate and sustain
the Earth’s magnetic field due to its electrically conducting nature. The boundary separating
the mantle and the core is known as the core-mantle boundary (Fig. 1.1).

Figure 1.1: Earth’s internal structure. Taken from Roberts and King (2013)

Our understanding of Earth’s internal structure has largely been shaped through the study of
seismology, which is the study of vibrations of waves generated by earthquakes through the
interior of Earth. Two types of waves studied in seismology are longitudinal waves (P-waves)
and transverse waves (S-waves). These waves reveal the density of the material they pass
through, as P-waves can pass through any material, but S-waves can only pass through solids.
S-waves are unable to propagate in the outer core, demonstrating that it must be a fluid. The
core itself was first identified by Oldham (1906), but it wasn’t until 1926 that the liquid state
of the outer core was confirmed by Jeffreys (1926), and the solid inner core was discovered a
decade later by Lehmann (1936). The iron rich core is convecting and it is believed to be the
source of Earth’s magnetic field. This is due to the release of heat from Earth’s inner core which
drives convection in the electrically conducting fluid, generating a magnetic field. While the
mantle is also convecting, its weak electrical conductivity and poor electrical properties make
it incapable of generating or sustaining the Earth’s magnetic field.

Understanding the behaviour of Earth’s magnetic field has advanced significantly through pa-
leomagnetic studies, satellite observations, and numerical simulations. Paleomagnetic research
provides insights into the geodynamo by analysing the magnetisation preserved in rocks and
archaeological artifacts, providing an understanding of the magnetic field’s evolution. In con-
trast, satellite data provides a detailed view of the present day geodynamo, confirming that
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Earth’s magnetic field is predominantly dipolar. Paleomagnetic evidence has also revealed that
the magnetic field undergoes polarity reversals. Numerical simulations complement these ap-
proaches by offering valuable insights into the convective processes within Earth’s core that
cannot be directly observed through satellites.

Paleomagnetic evidence indicates that Earth’s magnetic field has existed for at least 3.7 billion
years, but the material in Earth’s outer core responsible for generating the geodynamo exhibits
electrical resistance, leading to energy loss through Ohmic dissipation. Moffatt (1978) demon-
strated that in the absence of an energy source to sustain fluid motion, such dissipation would
cause the magnetic field to decay on a timescale of approximately 20, 000 years unless there is
another source driving the fluid in the outer core. This is likely driven by thermal and composi-
tional convection due to the temperature difference in the core. Thermal convection occurs due
to the crystallisation of the inner core releasing latent heat, forming a temperature gradient.
Compositional convection occurs as the inner core solidifies and releases light elements into the
surrounding fluid. These lighter elements mix with the dense iron rich fluid creating differences
in composition that drive the fluid motion. While both types of convection play a significant
role in the geodynamo, this thesis focuses on thermal convection.

1.2 Jupiter’s structure

Jupiter is the largest planet of the Solar System and is mainly composed of hydrogen and
helium. Jupiter is believed to have a rocky core surrounded by hydrogen and helium gas. Deep
in the gaseous region of the planet it is very hot and dense, and this pressure causes the release
of electrons. This release of electrons creates an electrically conducting metallic hydrogen.
Jupiter’s magnetic field is driven by dynamo action and it is expected to be generated in the
metallic hydrogen region. As Jupiter is rapidly rotating the convection caused by the release
of heat from the centre causes the electrically conducting metal to generate the magnetic field.
Surrounding the core is an outer layer of molecular hydrogen and helium. This region helps to
transport heat from the interior.

Figure 1.2: Jupiter’s surface. Taken from Klesman (2020)
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Jupiter’s visible atmosphere is dominated by alternating light and dark bands known as zones
and belts respectively (Fig. 1.2). The banded structure is made up of zonal flows propagating in
either the prograde or retrograde direction and are believed to be driven by the turbulent motion
caused by convection. The rapid rotation of Jupiter is key in driving these jets. The depths of
the zonal flows have long been unknown but recent evidence using data from the Juno mission
suggests that the flows extend 3000 km below the surface (Kaspi et al., 2023). Busse (1976b)
introduced a deep model proposing that zonal flows are driven deep in the interior. However,
this model is often unable to produce jets, possibly due to the inability to reach sufficiently
large rotation rates. Shallow models have also been proposed that assume that zonal flows are
confined to a thin layer at the surface and driven by small scale turbulence. However, this
model can produce jets but cannot produce the correct equatorial structure. This suggests that
a combination of both models is required to reproduce the structures observed in the Jovian
atmosphere. High resolution simulations by Heimpel et al. (2005) have produced multiple jets
using deep and shallow processes. Other features of Jupiter include large scale vortices like the
Great Red Spot (Fig. 1.2). These are not expected to extend deep into Jupiter’s atmosphere.

1.3 Governing equations of magnetohydrodynamics

To analyse the behaviour of fluid flow, the basic equations governing the motion need to be
defined. We begin by discussing the equations governing fluid dynamics, followed by an in-
troduction to Maxwell’s equations, before combining these to form the governing equations of
magnetohydrodynamics (MHD).

1.3.1 Equations governing fluid dynamics

The equations governing fluid dynamics can be found in many textbooks, for example Batchelor
(2000). The Navier-Stokes equation or the momentum equation is given by

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= Fi +
∂Pij
∂xj

(1.1)

where ρ is the density of the fluid, x is the position, U is the velocity, t is time and F is the
body force acting on the system. The fluid is assumed to be isotropic and the stress is linearly
proportional to the strain so the stress tensor Pij can be written as

Pij = −pδij + γ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
γ
∂Uk
∂xk

δij

where p is the isotropic pressure at xi in the absence of strain and γ is the coefficient of
viscosity. The derivation for this form of the stress tensor can be found in Chandrasekhar
(1961). Substituting the stress tensor into the Navier-Stokes equation we obtain

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= Fi −
∂p

∂xi
+

∂

∂xj

(
γ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
γ
∂Uk
∂xk

δij

)
. (1.2)
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We also have the continuity equation which is given by

∂ρ

∂t
+

∂

∂xj
(ρUj) = 0 (1.3)

which expresses the conservation of mass. Also required is a governing equation for the tem-
perature as we will be looking at the effects of temperature changes, giving rise to thermally
driven buoyancy. The equation of heat conduction expresses the conservation of energy and is
given by

ρ
∂

∂t
(cV T ) + ρUj

∂

∂xj
(cV T ) =

∂

∂xj

(
k
∂T

∂xj

)
− p

∂Uj
∂xj

+ Φ (1.4)

where cV is the specific heat at constant volume, T is the temperature, k is the coefficient of
heat conduction and Φ is the rate at which energy is dissipated and is given by

Φ =
γ

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)2

− 2

3
γ

(
∂Uj
∂xj

)2

.

An equation of state is also required which can be expressed as

ρ = ρ0

[
1− α

(
T − T̃

)]
(1.5)

where α is the coefficient of volume expansion, ρ0 is a reference density and T̃ is the temperature
at which ρ = ρ0.

1.3.1.1 Boussinesq approximation

In the previous section no assumptions were made regarding the variables α, cV , γ or k. We can
use the Boussinesq approximation, developed by Boussinesq (1903), where it was highlighted
that the density can be neglected when we have variations in the temperature of small amounts.
We follow a similar method to Chandrasekhar (1961). Fluids of interest in this thesis usually
have 10−4K−1 < α < 10−3K−1, which means that the density varies by small amounts provided
the variation in temperature is small. This allows variations in density to be ignored and ρ can
be treated as a constant. The only exception to this is when the density is coupled with gravity.
This occurs in the Fi term in the Navier-Stokes equation where we have a buoyancy force given
by ρgi acting on the system. Under the Boussinesq approximation we can also assume that α,
cV , γ and k are constant. Under the Boussinesq approximation (1.3) becomes

∂Uj
∂xj

= 0 (1.6)

meaning the fluid is incompressible. Equation (1.2) becomes

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − 1

ρ0

∂p

∂xi
+
ρgi
ρ0

+ ν∇2Ui (1.7)
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where ν = γ/ρ0 is the kinematic viscosity. We can substitute in ρ given by (1.5) and rewrite
T − T̃ as T to obtain (1.7) in vector form as

∂U

∂t
+ (U · ∇)U = − 1

ρ0
∇p− αTg + ν∇2U. (1.8)

The heat conduction equation (1.4) becomes

∂T

∂t
+ Uj

∂T

∂xj
= κ∇2T (1.9)

where κ = k/ρ0cV is the coefficient of thermal diffusivity and we have ignored the dissipation
term Φ as it is smaller than the convecting terms. The heat equation can be written in vector
form which gives

∂T

∂t
+ (U · ∇)T = κ∇2T. (1.10)

1.3.1.2 The effects of rotation on the hydrodynamic equations

As our work considers a rotating system we need to include the effects of rotation on the
governing equations. The only equation affected by rotation is the Navier-Stokes equation.
Suppose our fluid is rotating about a fixed axis with constant angular velocity Ω. The motion
is described by an observer at rest in a frame rotating about the same axis with the same
angular velocity. In this rotating frame the velocities and accelerations will differ from the
velocities and accelerations observed in an inertial frame. This gives the rotational terms in
the Navier-Stokes equation. The Coriolis force given by 2ρΩ ×U and the centrifugal force is
given by 1

2
ρ ∂
∂xi

(|Ω× x|2) (Chandrasekhar, 1961). We assume the Boussinesq approximation
also applies to these terms. The Euler force is also important but this involves a time derivative
and we have constant Ω so it can be neglected. Hence the Navier Stokes equation given by
(1.7) becomes

∂Ui
∂t

+ Uj
∂Ui
∂xj

+ 2ϵijkΩjUk = − 1

ρ0

∂p

∂xi
+

1

2

∂

∂xi

(
|ϵjklΩkxl|2

)
+
Fi
ρ0

+ ν
∂2Ui
∂x2j

. (1.11)

Expressing (1.11) in vector form we obtain

∂U

∂t
+ (U · ∇)U+ 2Ω×U = − 1

ρ0
∇pm +

F

ρ0
+ ν∇2U (1.12)

where pm = p + 1
2
ρ0|Ω× x|2. The effects of rotation play an important role as two new terms

have been introduced to the momentum equation.
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1.3.2 Maxwell’s equations

Maxwell’s equations underpin electromagnetism and they describe how electric charges and
currents form electric and magnetic fields. Maxwell’s equations are

Gauss’ law: ∇ · E =
ρc
ϵ

(1.13)

Faraday’s law: ∇× E = −∂B
∂t

(1.14)

Gauss’ law for magnetism: ∇ ·B = 0 (1.15)

Ampere’s law: ∇×B = µj+ µϵ
∂E

∂t
(1.16)

where E is the electric field, B is the magnetic field, ρc is the charge density, j is the current
density, µ is the magnetic permeability and ϵ is the permittivity. These can be found in many
textbooks, for example Davidson (2017). The current density can be expressed with Ohm’s
law, j = σE, where σ is the electrical conductivity. We take ϵ = ϵ0 and µ = µ0 which are the
permittivity and magnetic permeability in free space.

In (1.16) the last term was introduced by Maxwell as a correction to Ampere’s law and is known
as the displacement current. If we take the divergence of Ampere’s law we obtain

∇ · (∇×B) = µ0

(
∇ · j+ ϵ0

∂

∂t
∇ · E

)
= 0

=⇒ ∇ · j = −ϵ0
∂

∂t
∇ · E = −∂ρc

∂t

using the conservation of charge which states that

∇ · j = −∂ρc
∂t

.

In MHD, ∂ρc/∂t is negligible which suggests that ϵ0∂E/∂t is small. We have

ϵ0
∂E

∂t
∼ ϵ0
σ

∂j

∂t
≪ j.

Therefore Ampere’s law reduces to
∇×B = µ0j (1.17)

and taking the divergence of this gives

∇ · j = 0.

Using (1.15) the magnetic field can be expressed in terms of a vector potential A which is
divergence-free so

B = ∇×A =⇒ ∇ · ∇×A = 0

which guarantees that B is solenoidal.
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1.3.2.1 The Lorentz force

The force per unit volume on a fluid with charge density ρc and current density j is

F = ρcE+ j×B (1.18)

where the first term is the electric force and the second term is the magnetic force (Davidson,
2017). In MHD we are interested in the case where |u| ≪ c where c is the speed of light. We
can show that the first term in Equation (1.18) can be ignored as it is much smaller than the
Lorentz force. Let U be a typical speed, T a typical time scale, L a typical length scale, B a
typical magnetic field strength and E a typical electric field strength. From (1.13) and (1.17)

|ρc| ∼ ϵ0
E

L
and |j| ∼ B

µ0L

and from Faraday’s law given by (1.14) we have

E

L
∼ B

T
=⇒ E

B
∼ L

T
= U. (1.19)

Then considering the terms in (1.18) we have

|ρcE|
|j×B|

∼ µ0ϵ0
E2

B2
∼ U2

c2
≪ 1

where we have used (1.19) and the fact that c = 1/
√
ϵ0µ0. Therefore ρcE is small in comparison

with j×B so we can neglect it. Hence, from here on in, the Lorentz force will take the form

F = j×B.

The Lorentz force can be rewritten so that it is made up of magnetic tension and magnetic
pressure. Taking the reduced form of Ampere’s law given in (1.17) we can express j as

j =
1

µ0

∇×B

so that
F = j×B =

1

µ0

(∇×B)×B.

We can then use the vector identity

∇ (A ·B) = (B · ∇)A+ (A · ∇)B+B× (∇×A) +A× (∇×B)

and noting that (∇×B)×B = −B× (∇×B) to obtain

F = j×B =
1

µ0

(B · ∇)B− 1

2µ0

∇B2. (1.20)
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When considering magnetised terms, the Lorentz force is included in the external force term
given by F in the Navier-Stokes equation.

1.3.2.2 The induction equation

We now obtain the induction equation, which is the evolution equation for B relating the
magnetic field and velocity of the electrically conducting fluid. To do this we start with Ohm’s
law (Davidson, 2017) which is given by

j = σ (E+U×B) =⇒ E = σ−1j−U×B.

Taking the curl of this, and making use of (1.14) and (1.17), gives

∇× E = −∂B
∂t

= ∇× σ−1j−∇× (U×B)

=⇒ ∂B

∂t
= ∇× (U×B)−∇×

(
σ−1µ−1

0 ∇×B
)

=⇒ ∂B

∂t
= ∇× (U×B)−∇× (λ∇×B)

where λ = 1/σµ0 is the magnetic diffusivity. Assuming λ is a constant and using the identity
∇× (∇×B) = ∇ (∇ ·B)−∇2B and (1.15) gives

∂B

∂t
= ∇× (U×B) + λ∇2B (1.21)

which is the transport equation for the magnetic field, known as the induction equation or the
advection-diffusion equation for the magnetic field. On the left-hand side we have the rate of
change of the magnetic field. The first term on the right-hand side is the advection or induction
term and the second term is the magnetic diffusion.

1.3.3 Full system of equations

In the previous sections we have derived the set of equations that will govern the models used
in this thesis. For clarity, these are restated here. The full set of equations governing MHD are

∂U

∂t
+ (U · ∇)U+ 2Ω×U = − 1

ρ0
∇Pm − αTg +

1

ρ0µ0

(∇×B)×B+ ν∇2U (1.22)

∂T

∂t
+ (U · ∇)T = κ∇2T (1.23)

∂B

∂t
= ∇× (U×B) + λ∇2B (1.24)

∇ ·U = 0 (1.25)

∇ ·B = 0. (1.26)
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1.3.4 Taylor-Proudman theorem

An important result occurring in rapidly rotating systems where the Rossby number is small is
given by the Taylor-Proudman theorem. Suppose we have a slow-moving, inviscid, incompress-
ible, homogeneous fluid with constant density and steady velocity. Based on these assumptions
(1.12) becomes

2Ω×U = −∇
(
Pm
ρ0

)
.

This balance between the Coriolis force and the pressure gradient is known as a geostrophic
balance. Taking the curl of this gives

∇× (Ω×U) = 0. (1.27)

Expanding the left hand side we have

∇× (Ω×U) = (U · ∇)Ω−U (∇ ·Ω)− (Ω · ∇)U+Ω (∇ ·U) .

Using the continuity equation ∇·U = 0 and assuming a constant rotation rate, (1.27) becomes

(Ω · ∇)U = 0. (1.28)

This is known as the Taylor-Proudman theorem (Proudman, 1916; Taylor, 1922). Physically
this means that the velocity of a rotating fluid is invariant in the direction of the rotation axis.
Therefore the fluid must move in columns that are independent of the rotation axis (aligned
with the axis of rotation), which means the motion of the fluid must be two-dimensional.

1.4 Magnetic field generation

The phenomenon of magnetism has been recognised since ancient times, when the Chinese
used lodestones to demonstrate magnetic properties. Gilbert (1600) was the first to propose
that Earth itself behaves like a giant magnet. He demonstrated how Earth’s magnetic field
could be modelled using a spherical lodestone. Gauss (1839) introduced the first mathematical
description of Earth’s magnetic field using spherical harmonics. Gauss was able to distinguish
between internal and external sources of magnetic fields leading to the conclusion that the
dominant part of Earth’s magnetic field originates from within the planet. In the early 1900s,
Larmor (1919) first proposed that the electrically conducting fluid generated and maintained
the magnetic field, known as dynamo action. Cowling (1933) introduced his anti-dynamo
theorem where he stated that no steady axisymmetric magnetic field can be maintained by a
steady axisymmetric flow. Despite this anti-dynamo theorem Elsasser (Elsasser, 1946a,b, 1947)
demonstrated how electrically conducting fluid motions in Earth’s outer core could produce
a dynamo. The geomagnetic field (and other planetary magnetic fields) is not axisymmetric.
Cowling’s theorem only applies to a steady axisymmetric field, so a dynamo can produce a field
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that is not axisymmetric.

Cowling’s theorem led researchers to focus on alternative flows that could generate a self-
sustaining magnetic field. Cowling’s antidynamo theorem only ruled out steady axisymmetric
fields. This moved the focus toward more realistic flows, resulting in a focus on kinematic
dynamos. These models simplify the system as the flow is prescribed and does not consider
the distortion to the flow by the magnetic field. By prescribing the flow, only the induction
equation needs to be solved. Bullard and Gellman (1954) introduced a spectral decomposition
of the flow and field which is still used today to investigate dynamo action. They claimed
to obtain dynamo action for a chosen fluid motion. However, analysis by Lilley (1970) and
Gubbins (1973) disproved this, and showed that the dynamo action was caused by insufficient
resolution. They truncated the spherical harmonics at a low degree without any justification
for this. Backus (1958) and Herzenberg (1958) found flows that produced dynamo action and
were able to provide justification for the truncation of the spherical harmonics. Although the
flows were geophysically unrealistic, the results were important as they demonstrated that fluid
flow can maintain a magnetic field.

Kinematic dynamos consider a prescribed flow so only the induction equation is required to be
solved. However the magnetic field is expected to be strong enough to alter the fluid motions,
meaning the velocity field is affected by the Lorentz force. The Lorentz force enters the system
through the momentum equation, leading to a complex system of equations to be solved. This
moved the focus to models where the flow is dynamically determined. Convectively-driven
dynamos were studied early on in a plane layer by Childress and Soward (1972) and Soward
(1974) and in spherical geometry by Zhang and Busse (1989, 1990). The advancement of
computing power led to numerical studies of convectively-driven dynamos in spherical shells.
This allowed the complex system to be solved numerically. The first simulation of this was
performed by Glatzmaier and Roberts (1995) where they demonstrated a polarity reversal.
Since 1995, a large number of studies of numerical dynamos in spherical shells have been
performed studying various aspects such as parametric studies, diffusivity profiles and effects
of different boundary conditions. These have been discussed in a review paper by Roberts and
King (2013). Despite these results, challenges in dynamo modelling still remain, and we discuss
this further in the next section.

1.5 Models

Various models are employed to better understand magnetic field generation in planetary inte-
riors. Spherical geometry is the most suitable model as this can completely capture the effects
of the geometry on the dynamics of the flow. However, simplified models, such as a Cartesian
box or cylindrical geometry, can often be more useful when the aim is to isolate and study
specific physical processes without the added complexity of spherical geometry. This thesis
explores two models. Chapters 3 and 4 focus on a cylindrical annulus model and Chapters 5
and 6 focus on a spherical dynamo model. A literature review on the annulus model is given
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in Section 1.5.1 and a review of spherical dynamo models is discussed in Section 1.5.2, where
concepts relevant to the work in this thesis are discussed.

1.5.1 Annulus model

Often, simplified models are used to examine different aspects of planetary magnetic field
generation. Chapters 3 and 4 examine simulations in an annulus model with an imposed
magnetic field. In order to understand where in Earth’s core the annulus model is most relevant,
we can define a hypothetical tangent cylinder (TC). This runs from pole to pole and touches
the inner core boundary, as shown in Figure 1.3. In the annulus model, rotation acts vertically
upwards in the z-direction and gravity acts inwards so these are orthogonal to each other. This
model is most relevant outside the tangent cylinder (OTC) near the equator where gravity and
rotation are orthogonal to each other. A plane layer model with gravity and rotation parallel to
one another in the z-direction is most relevant inside the tangent cylinder (ITC) at the poles.

Figure 1.3: Hypothetical tangent cylinder shown within Earth’s core. Taken from Aurnou et al.
(2003)

Three-dimensional spherical simulations are the most suitable models for understanding mag-
netic field generation in planetary interiors as they capture the full dynamics of the flow.
However, these can be computationally expensive to run and it is impossible to explore such
extreme parameter values relevant to the physical systems in question. For example, rotation
rates cannot as easily be made as extreme in spherical models compared to simplified geometry
models. This means spherical models are often unable to produce some of the more detailed
features such as multiple jet structures generated by zonal flows, as very large rotation rates are
necessary for these features to appear. The annulus model is a simplified model of spherical ge-
ometry and the setup of the model is discussed in detail in Section 2.1. The non-magnetic case
has successfully reproduced some key features of planetary convection that are often difficult to
capture in full spherical shell simulations (e.g., Jones et al., 2003; Rotvig and Jones, 2006; Teed
et al., 2012). The simplicity and reduced numerical complexity of the model make it possible to
explore a wider range of parameter space than is typically feasible in three-dimensional spheri-
cal simulations. This allows us to investigate phenomena such as multiple jets and zonal flows,
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like those observed on Jupiter, which are often challenging to capture in spherical simulations.

The annulus model was first developed by Busse (1970) where the linear theory of non-magnetic
convection was explored in a collection of papers (Busse, 1970; Busse and Or, 1986; Or and
Busse, 1987; Schnaubelt and Busse, 1992). Non-linear theory of convection in the non-magnetic
case has been discussed in depth by Brummell and Hart (1993), Jones et al. (2003), Rotvig
and Jones (2006) and Teed et al. (2012) through numerical simulations. These studies have
produced bursts of convection and multiple jet solutions. Bursts of convection are a competition
between convection and zonal flows. During a burst, the convection drives the zonal flow but
eventually the zonal flow becomes large enough to disturb the convection which can no longer
maintain the zonal flow. The zonal flow dies away and allows convection to occur again. This
process repeats in a quasi-periodic fashion. Multiple jet are zonal flows which display a banded
structure, similar to the jets on Jupiter’s surface (Fig. 1.2).

Work in this thesis examines non-linear numerical magnetoconvection simulations in an annulus
model. Linear and weakly non-linear studies of an annulus with an imposed magnetic field have
previously been carried out (e.g., Busse, 1976a; Hori et al., 2014; Hutcheson and Fearn, 1995).
The main control parameters involved in these studies are the Rayleigh number Ra which
determines the strength of convection, η∗ which controls the rotation rate, the Prandtl number
Pr measuring viscous to thermal diffusivities, the magnetic Prandtl number Pm measuring
viscous to magnetic diffusivities, and the Chandrasekhar number Q which controls the strength
of the magnetic field. In a system subject to convective instability, there is a critical Rayleigh
number Rac which needs to be exceeded for convection to onset. Rotating convective flows
without a magnetic field can hinder convection due to the Taylor-Proudman theorem (see
Section 1.3.1). Magnetic fields in a convective fluid without rotation can also hinder convection.
However, rotation and magnetic effects combined can promote convection (Chandrasekhar,
1961). If the magnetic field is strong enough when combined with rotation, it can relax the
Taylor-Proudman constraint and aid convection, by accessing ‘magnetostrophic modes’. The
rotation and magnetic field form a balance allowing convection to onset at lower Rac. Details
of magnetoconvection can be found in Chandrasekhar (1961) and more recently by Weiss and
Proctor (2014). A recent study by Horn and Aurnou (2022) demonstrated the co-existence of
both geostrophic and magnetostrophic modes, for an interval of Q-space. Without a magnetic
field only geostrophic modes are present but for large enough magnetic field and a sufficiently
supercritical value of Ra, magnetostrophic and geostrophic modes appear together but the
geostrophic modes are no longer the preferred mode.

Busse (1976a) discussed the effects of magnetic diffusion in the annulus, finding the dispersion
relation for modes modified by weak magnetic diffusion. Busse and Finocchi (1993) examined
the system in the limit of strong magnetic diffusion, where the marginal curves are examined
for different magnetic field strengths. A linear stability analysis by Hori et al. (2014) found a
variety of different waves depending on the parameter space. They found that strong magnetic
diffusion (small Pm) suppressed MHD waves, but when magnetic diffusion was weak (large
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Pm) they obtained MHD waves. They also considered both fixed temperature and heat flux
conditions and found that these had an effect on the critical Rayleigh number. Weakly non-
linear studies of an annulus model with a magnetic field have also been studied, for example by
Hutcheson and Fearn (1995) and Kurt et al. (2004). The setup for the weakly non-linear studies
differ to the setup in our work as we consider sloped top and bottom boundaries, in keeping
with the classical model of Busse (1970). Previous work has used a variety of setups including
through different boundary conditions, boundary geometry, and morphology of the imposed
magnetic field. This work extends previous work on the subject by exploring the non-linear
regimes of magnetoconvection in an annulus with a particular focus on how the magnetic field
changes the known results of non-magnetic convection in the same model.

Although non-linear magnetoconvection simulations in an annulus model have not been ex-
plored, other geometries have been used to explore magnetoconvection. This has been explored
in detail in spherical geometry, for example by Cardin and Olson (1995), Gillet et al. (2007)
and Teed et al. (2015). Most recently Mason et al. (2022) examined magnetoconvection in
a spherical shell where the effect of an imposed magnetic field on the flow dynamics, force
balances, and zonal flow generation is examined.

1.5.2 Spherical dynamo model

The first geodynamo simulation was carried out by Glatzmaier and Roberts (1995) where they
demonstrated a polarity reversal of the magnetic field. Since then there have been numerous
studies examining dynamo simulations which aim to better understand magnetic field gener-
ation. Some of the key findings which are relevant to the work carried out in this thesis are
highlighted below.

In convectively-driven dynamos, the four main non-dimensional input parameters are the
Rayleigh number, the Ekman number, Prandtl number and the magnetic Prandtl number.
The Ekman number measures the rotation rate with smaller Ekman number meaning a larger
rotation rate.

The behaviour of the flow and magnetic field can be categorised by the Elsasser number Λ which
measures the strength of the magnetic field, the Reynolds number Re which determines the
ratio of inertial to viscous forces, the magnetic Reynolds number Rm which measures magnetic
induction to diffusion and the Rossby number Ro which measures the ratio of inertial to Coriolis
forces. We can relate Rm, Re and Pm by Rm = PmRe. Larger Re means the flow becomes
more turbulent which means Rm must exceed some value for dynamo action to commence.
This means Rm must be large enough and the flow complex enough for a magnetic field to be
generated.

As we are unable to directly observe the flow in planetary cores, numerical dynamo simulations
aim to provide a better understanding of core dynamics and the generation of planetary mag-
netic fields. Numerical simulations are able to provide good approximations for core dynamics
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Parameter Core Simulations
E 10−15 10−6 − 10−3

Ra 1010 10− 104

Pr 0.1 0.1− 10
Pm 10−6 0.1− 10

Table 1.1: Table of (approximate) parameter values for Earth’s core and input parameter values
used in (typical) simulations.

but the input parameters achievable in these models differ vastly from the realistic values ex-
pected in the core. The differences between the input parameters in typical simulations and
approximate values for Earth’s core are shown in Table 1.1. The most well known example is
the Ekman number which is O (10−15) in Earth’s core but this is usually set at 10−6 ≤ E ≤ 10−3

in numerical simulations. This causes the viscous forces to have an unrealistically large role in
the simulation and may impact on the large scale dynamics in numerical simulations which is
not expected to be the case in Earth’s core.

Despite simulations being unable to run at the expected core values, there has been signifi-
cant advancement in numerical dynamo simulations since the first geodynamo simulation by
Glatzmaier and Roberts (1995). Several studies followed this, where they demonstrated that
geodynamo simulations were able to produce a dipole dominated magnetic field similar to Earth
(Kageyama and Sato, 1997; Kuang and Bloxham, 1997). As computing resources expanded,
simulations pushed towards lower Ekman number and larger Rayleigh number. However in do-
ing this, studies commonly found a non-dipolar field (Kageyama et al., 2008) or a weak dipolar
field that is unrealistic for Earth (Takahashi et al., 2008). These studies managed to reach
values of E = 10−6 and E = 10−7 but were unable to produce Earth-like results. Therefore,
other options need to be considered in order to reach an Earth-like solution.

1.5.2.1 Dynamo regimes

Parameter space studies were carried out (Christensen et al., 1999; Christensen and Aubert,
2006; Christensen et al., 2001) which resulted in phase diagrams showing regions of parameter
space where dipolar and non-dipolar dynamos were present and areas where no dynamo oc-
curred. This led to the identification of two branches by Kutzner and Christensen (2000). These
two branches of solutions showed either a dipolar solution or a multipolar solution. Oruba and
Dormy (2014) demonstrated the transition between these two branches is controlled by the
inertial term entering the main balance with viscous and Coriolis forces found in the dipolar
solution. Bistability between these branches occurs. This was demonstrated using stress-free
boundary conditions by Simitev and Busse (2009) and later shown using no-slip conditions by
Petitdemange (2018).

The parameter space study carried out by Christensen and Aubert (2006) produced regime
diagrams as shown in Figure 1.4. These regime diagrams considered the different types of
solutions found for 6 different Ekman numbers, when Pm and Ra are varied. For moderate E,
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Figure 1.4: Regime diagrams at Pr = 1 for six different Ekman numbers, taken from Chris-
tensen and Aubert (2006). Circles show dipolar solutions, diamonds are non-dipolar solutions
and crosses are failed dynamos. The size of the symbol represents the magnitude of Λ.

both dipolar and multipolar solutions are obtained. However, as E is decreased, only dipolar
solutions are found for the values of Pm and Ra explored. This is due to computational
limitations where it is hard to run at large enough Ra at low E where the multipolar regime
manifests at larger Ra. These regime diagrams also show that the minimum Pm required for
dynamos to exist decreases as E is decreased. The size of the shapes represents the magnitude
of the Elsasser number Λ. These plots show evidence of dynamos with larger magnetic field
strengths as Pm is increased for all E. This led to the identification of the strong field (SD)
and weak field (WD) dipolar branches in numerical simulations by Dormy (2016). The WD
and SD branches were first suggested by Roberts (1978), as shown in the bifurcation diagram
in Figure 1.5. Convection onsets at Rac and increasing Ra to Ram generates a magnetic field.
However, the magnetic field is weak and does not have a significant effect on the dynamics so
this can be termed a weak field branch of solutions. Ra can be increased further to Rar at
which point a runaway growth occurs and the magnetic field becomes strong enough to affect
the flow dynamics, and solutions now lie on the strong field branch.

The possible behaviour of the weak and strong field branches has been illustrated by Dormy
(2025) in a three-dimensional bifurcation diagram for a fixed value of E (Fig. 1.6). The value
Em is the magnetic Ekman number and can be related to E and Pm by Em = E/Pm. For fixed
E, Em can be can be interpreted as inversely proportional to Pm. The blue circle represents a
weak field solution, where two distinct paths can be followed to reach the strong field solution,
given by the red circle. The Rayleigh number can be increased until the runaway growth is
reached, beyond which the system undergoes a transition to the strong field branch. This path
is analogous to the bifurcation diagram proposed by Roberts (1978) and is shown by the dotted
green curve. Alternatively, the magnetic Ekman number can be increased and then Ra can
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Figure 1.5: Theorised bifurcation diagram applicable to the geodynamo as suggested by Roberts
(1988). The yellow region represents the space where bistability occurs and the orange region
separates the two types of magnetic fields identified. This was taken from Morin et al. (2011).

be increased in order to reach the strong field solution. This is represented by the dotted red
curve. The lower projection of the diagram highlights regions of bistability in parameter space,
where both weak and strong field solutions can coexist. The different possible bifurcations can
be explained by considering three different cases of Em. Firstly for large Em and low Ra only
the hydrodynamical solution is found. As Ra is increased, dynamo action onsets on the weak
field branch and remains there for larger Ra (until onset of the multipolar solution, which is
not shown in the figure). Secondly for moderate Em at low Ra, we lie in parameter space
where only the hydrodynamical solution is possible. As Ra is increased, dynamo action onsets
on the weak field branch. Then, at even larger Ra, bistability occurs where both weak and
strong field solutions are found and increasing Ra further destabilises the weak field branch
leading to only strong field solutions. Finally, at small enough Em we again obtain only the
hydrodynamical case at low Ra. However, there is now a region of Ra-space which allows us
to obtain the hydrodynamical solution and the subcritical strong field solution. Then as we
increase Ra further, we again obtain bistability between the weak field and strong field solution.
Pushing Ra even further loses the bistability and only strong dipolar solutions are obtained.

The three main branches of dynamo action are the SD branch, the WD branch and the fluc-
tuating multipolar (FM) branch. The SD branch is primarily controlled by contributions from
the Lorentz, buoyancy and Coriolis forces (MAC balance) and is considered to be the most
relevant to Earth’s core. The WD branch contains solutions where the Lorentz force does not
enter the main balance and is primarily controlled by viscous, buoyancy and Coriolis forces
(VAC balance) although in some cases on this branch the inertial force might enter the main
balance instead of or together with the viscous force. The FM branch contains solutions which
are primarily controlled by contributions from the Coriolis, buoyancy and inertial forces (CIA
balance). Rather than pushing input parameters to match Earth’s core values, it has been
proposed that numerical simulations of the geodynamo focus on the SD regime, which can
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Figure 1.6: Bifurcation diagram expected for transition between weak and strong field branches.
The blue circle represents the weak field solution and red circle represents the strong field
solution. The dotted green curve represents the runaway field growth and the dotted red curve
represents a continuous path from the weak to the strong field branch. This was taken from
Dormy (2025).

be achieved using moderate input parameters. One way to assess whether simulations have
successfully reached the SD regime without relying on bifurcation diagrams is to examine the
force balances in the system. This is discussed in more detail in the next section.

1.5.2.2 Force balances

Force balance studies are used to assess which regime a simulation lies in and are usually
guided by bifurcation diagrams. Studies by Soderlund et al. (2015) and Yadav et al. (2016)
have examined globally averaged force balances which allowed them to study the interaction
of Lorentz and Coriolis forces. Aubert et al. (2017) extended this by studying the lengthscale
dependence of the forces controlling the dynamics of the flow. In this analysis they found a
leading order geostrophic balance, at least at large scales. However, the pressure gradient is
not important as it does not impact the dynamics of the flow (Hughes and Cattaneo, 2019).
This is because when solving the system of equations we take the curl and double curl of the
momentum equation (Equation 1.1). In order to recover the important first order balance, they
formed the ageostrophic Coriolis force by subtracting the pressure gradient from the Coriolis
force. It is the first order balance which is most important as this controls the dynamics of the
flow. Therefore, from now on, we refer to the forces controlling the dynamics as the first order
balance and the unimportant balance involving the pressure gradient at leading order will be
referred to as the zeroth order balance.

The ageostrophic Coriolis force is formed based on the assumption that only the gradient parts
of the Coriolis force balance the pressure gradient. However, all forces may have gradient parts
that balance with the pressure gradient. An alternative approach to deal with the gradient parts
of forces was discussed in a recent study by Teed and Dormy (2023) where balances of forces and
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solenoidal forces are examined. Solenoidal forces are a way to represent forces without gradient
parts. One way of forming the solenoidal forces is by taking the curl of each force, allowing for
the removal of the pressure gradient and gradient parts of other forces which do not impact the
dynamics of the flow. In forming these they found that this removed the geostrophic balance
at zeroth order and instead recovered the important force balance found at leading order. This
thesis will use this approach for forming solenoidal forces. Force balances in rotating spherical
shell convection has been studied by Naskar et al. (2025), where forces and curls of forces were
discussed. At low Ra, they found the VAC balance to be important and as Ra was increased
the inertial force also entered the VAC balance. Guervilly and Dormy (2025) also examined
rapidly rotating convection in both spherical and planar geometries. Their results show that,
regardless of geometry, the dominant flow length scale is determined by either viscous or inertial
scale depending on the flow speed.

Studies of the lengthscale dependent forces in dynamo simulations have been examined in
great detail by Schwaiger et al. (2019) and Schwaiger et al. (2021), where they focused on
relating energetically relevant lengthscales to dynamically relevant lengthscales. In order to
do this, they examined crossover points of the relevant forces in the lengthscale dependence
plots. This was done by considering crossing points of the Lorentz and buoyancy forces and
inertia and buoyancy forces which were compared with the peaks in the poloidal kinetic energy
spectrum. For magnetically dominated results they argued that the crossing points of Lorentz
and buoyancy forces determine the peak lengthscale in the poloidal kinetic energy spectrum, and
for hydrodynamical runs with sufficient driving they argued that the crossing between inertial
and buoyancy forces determines the peak lengthscale in the poloidal kinetic energy spectrum.
Another relevant balance in simulations is the VAC balance. However, they did not consider
the crossing between viscous and buoyancy forces. In Chapter 5 we examine simulations by
comparing the kinetic energy spectra with crossings examined by Schwaiger et al. (2019) and
Schwaiger et al. (2021) and also consider crossing points between viscous and buoyancy forces.
These studies by Schwaiger et al. (2019) and Schwaiger et al. (2021) only considered two of the
three forces usually involved in the main balance. In all three cases, the Coriolis force is also
important. Naskar et al. (2025) showed that curls of forces in rotating spherical convection did
not have clear crossing points when examining the lengthscale dependence of curls of forces. In
Chapter 5 we expand on this work by forming a triple balance point between the three relevant
forces and compare these to the peak lengthscale in the kinetic energy spectra. This allows us
to include the relevant Coriolis force and analyse simulations which do not have crossing points
of relevant forces.

1.5.2.3 Convection inside and outside the tangent cylinder

As discussed earlier, a hypothetical tangent cylinder can be defined which runs from pole to
pole and touches the inner core boundary (Fig. 1.3). This helps to improve our understanding
of convection in the spherical shell. Busse and Cuong (1977) conducted an analytical study
of rotating spherical shell convection in the limit of rapid rotation and demonstrated that



Introduction 20

convective behaviour differs significantly inside and outside the tangent cylinder with convection
OTC onsetting at lower Ra and convection ITC developing only when the temperature gradient
is sufficiently large. Subsequent studies have investigated these dynamics in more detail where
Gillet and Jones (2006) demonstrated the behaviour outside the tangent cylinder and studies
by Sreenivasan and Jones (2005) and Cao et al. (2018) demonstrated the behaviour inside
the tangent cylinder using spherical dynamo simulations. Most recently, Gastine and Aurnou
(2023) performed spherical shell simulations to analyse heat transfer properties inside and
outside the tangent cylinder. They found that the dynamics in a spherical shell at the polar
regions exhibit good agreement with Cartesian simulations. Furthermore, they showed that
although convection ITC onsets at a higher Ra than OTC, once it does so it becomes more
turbulent and is able to transport heat more efficiently as Ra is increased further. Since the flow
patterns and development of flows ITC and OTC might differ as Ra is varied, it is reasonable
to speculate that the hierarchy of forces ITC and OTC may also differ. Chapter 6 discusses
the force balances ITC and OTC.

1.6 Thesis outline

This thesis explores convective fluid flows under the influence of rotation and magnetic fields.
Simulations are performed using two models: in an annulus model with an imposed magnetic
field and a spherical shell model capable of the self-excitation of magnetic fields. Chapter 2
discusses the mathematical setup, numerical methods and output parameters of both models
and Chapter 7 concludes the work in this thesis and outlines potential future work. The main
research chapters are as follows:

• Chapter 3 examines force balances in the annulus model by performing a wide parame-
ter sweep. Non-magnetic results are discussed and compared with known previous work.
Globally averaged quantities and lengthscale dependence of the curls of forces are exam-
ined as the magnetic field strength, magnetic diffusion and Rayleigh number are varied.
We examine how these compare with force balances found in the main regimes of dynamo
action and summarise our findings in a regime diagram.

• Chapter 4 discusses multiple jet solutions with a focus on the effect of varying magnetic
field strength on the multiple jet structures known to exist in the non-magnetic case. The
forces required to produce multiple jet solutions are discussed. This chapter has been
published in Geophysical and Astrophysical Fluid Dynamics (Hunter and Teed, 2024).

• Chapter 5 examines force balances in spherical dynamo simulations. We focus on two
different lengthscales for forces and curls of forces, discussing the types of force balance,
flow pattern and magnetic field morphology that occur in the main regimes of dynamo ac-
tion. A triple force balance point (dynamic lengthscale) is introduced and this is compared
with peaks in the energy (energetic lengthscale), with the aim of finding a correlation be-
tween dynamically relevant lengthscales and energetically relevant lengthscales for forces
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and curls of forces. This triple balance point extends work by Schwaiger et al. (2021)
where triple balance points are formed instead of crossovers for two different lengthscales
and the forces and solenoidal forces are presented, rather than only the forces.

• Chapter 6 compares balances of forces and solenoidal forces ITC and OTC. Firstly, the
balances ITC and OTC for the main regimes of dynamo action are examined. Secondly,
solenoidal forces are presented as transitions occur between dynamo regimes, in order to
compare similarities and differences between the regions ITC and OTC.



Chapter 2

Methods

This thesis explores convective fluid flows under the influence of rotation and magnetic fields.
Simulations are performed using two models: an annulus model with an imposed magnetic
field and a spherical shell model capable of the self-excitation of magnetic fields. This chapter
discusses the mathematical setup, numerical method and various input and output parameters
of each model.

2.1 Busse annulus model with an imposed magnetic field

In Chapters 3 and 4 we consider a cylindrical annulus filled with fluid as shown in Figure 2.1.
We have sloped top and bottom boundaries which have angle χ with the horizontal. The gap
between the two cylinders is of width D, the height of the outer walls of the annulus is L, and
the mean radius is given by ro. The annulus rotates about the axial direction with the rotation
rate given by Ω. We have a temperature gradient β which acts between the outer and inner side
walls of the annulus. In our model gravity acts inwards so that the gravity and rotation axes
are orthogonal to each other. We impose a uniform azimuthal magnetic field of strength B0.
The obvious choice for a coordinate system would be to use cylindrical coordinates. However,
we can make the small gap approximation which means we assume the distance D between
the cylindrical side walls is small compared with the mean radius ro, allowing us to ignore the
effects of curvature and use a Cartesian coordinate system. We have coordinates x which is the
azimuthal coordinate, y is the radial coordinate with 0 ≤ y ≤ D and z is the axial coordinate
with −L/2 ≤ z ≤ L/2. Then the annulus rotates with angular velocity Ω = Ωẑ, gravity is
given by g = g0ŷ and the imposed magnetic field has the form B0 = B0x̂. In the context of
the geodynamo this corresponds to a toroidal magnetic field. The fluid is contained within the
annulus so we require a no-penetration condition on all boundaries. This means that

U · n = 0

22
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Figure 2.1: Diagram showing the setup of the annulus model. Taken from Jones (2007).

where n is a normal vector at the boundary. At the annulus lids, this condition depends on the
angle χ between the sloped walls and the horizontal where we obtain

cos (χ)uz ∓ sin (χ)uy = 0 (2.1)

on z = ±L/2.

2.1.1 Governing equations

2.1.1.1 Momentum equation

To derive a set of equations we start from the Navier-Stokes equation given by Equation (1.22)
and take the curl to obtain

∂Z

∂t
+ (U · ∇)Z− ((2Ω+ Z) .∇)U = −αg ×∇T + ν∇2Z+

1

µ0ρ0
∇× ((B · ∇)B) (2.2)

where Z = ∇×U and is the vorticity. We can then take the z-component of (2.2) and substitute
in the forms of g and Ω to obtain

∂Z

∂t
+U · ∇Z − 2Ωẑ · ∂U

∂z
= −g0α

∂T

∂x
+ ν∇2Z +

1

µ0ρ0
ẑ · [∇× ((B · ∇)B)] (2.3)

where Z is the z-component of the vorticity. We have neglected the (Z · ∇)U term when taking
the curl of the Navier-Stokes equation as we are interested in the case where we have rapid
planetary rotation. This means |2Ω| ≫ |Z| as the planetary rotation dominates over the fluid
vorticity. The term which involves ∇ × ((B · ∇)B) is made up of two terms. One of these is
(B · ∇)∇ × B and another term which contains no z-components. Therefore we can rewrite
the last term in (2.3) as ẑ · [(B · ∇)∇×B].

The basic state is given by U = U0 = 0, Z = ζ0 = 0, B = B0, T = T0 = βy and we perturb
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around this by setting
U = u

Z = ζ

B = B0 + b

T = T0 + θ.

(2.4)

In the rapidly rotating limit, we assume the sloped boundaries are nearly flat so χ≪ 1, the flow
can be assumed to be quasi-geostrophic meaning the z-component of the velocity u is small
compared with the x and y-components. This allows us to make the ansatz

u = ∇× ψ (x, y) ẑ =
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ, (2.5)

for the velocity where the vertical component, uz ≪ ux, uy. Following Hori et al. (2014), and
for convenience, we choose an equivalent form for the magnetic field:

b = ∇× g (x, y) ẑ =
∂g

∂y
x̂− ∂g

∂x
ŷ. (2.6)

We can obtain ζ by considering

ζ = ∇× u

= ∇×∇× ψẑ

= ∇ (∇ · ψẑ)−∇2ψẑ

= −∇2ψẑ

=⇒ ζ = −∇2ψ. (2.7)

Similarly, taking the curl of (2.6) gives

∇× b = ∇×∇× gẑ

= ∇ (∇ · gẑ)−∇2gẑ

= −∇2gẑ. (2.8)

Since χ is small, the end wall boundary conditions given by Equation (2.1) become

uz = ±χuy

=⇒ uz = ∓χ∂ψ
∂x

on z = ±L/2. In our model we are also interested in studying multiple jet solutions which are
more readily produced through the addition of a bottom friction term in the equations (Rotvig
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and Jones, 2006; Teed et al., 2012). We add this term to uz at the boundary to obtain

uz = ∓χ∂ψ
∂x

+ UE. (2.9)

In the equation above UE is the optional Ekman suction term derived using a method by
Greenspan (1968) and is given by

UE = ∓1

2

( ν
Ω

)1/2
n̂ · ∇ ×

(
1

|n̂ · ẑ|1/2
(n̂× u+ u)

)
. (2.10)

The Ekman suction term has been used in quasi-geostrophic models, for example Jones et al.
(2003), and Rotvig and Jones (2006), and is added to replicate the effects of an Ekman boundary
layer when rigid top and bottom boundaries are implemented. This is absent in the case of
stress-free top and bottom boundaries. This term dampens the zonal flow in the system, but
increases the possibility of multiple jets. Taking n̂ = ẑ, Equation (2.10) becomes

UE = ∓1

2

( ν
Ω

)1/2
ζ.

Substituting this into (2.9) gives

uz = ∓χ∂ψ
∂x

∓ 1

2

( ν
Ω

)1/2
ζ (2.11)

on z = ±L/2.

We can then substitute the perturbed forms given by (2.4) into (2.3) to obtain

∂ζ

∂t
+ ux

∂ζ

∂x
+ uy

∂ζ

∂y
− 2Ω

∂uz
∂z

= −g0α
∂θ

∂x
+ ν∇2ζ

− 1

µ0ρ0
B0
∂∇2g

∂x
+

1

µ0ρ0

(
∂g

∂x

∂∇2g

∂y
− ∂∇2g

∂x

∂g

∂y

)
=⇒ ∂ζ

∂t
+
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
− 2Ω

∂uz
∂z

= −g0α
∂θ

∂x
+ ν∇2ζ

− 1

µ0ρ0
B0
∂∇2g

∂x
+

1

µ0ρ0

(
∂g

∂x

∂∇2g

∂y
− ∂∇2g

∂x

∂g

∂y

)
=⇒ ∂ζ

∂t
++

∂ (ζ, ψ)

∂ (x, y)
− 2Ω

∂uz
∂z

= −g0α
∂θ

∂x
+ ν∇2ζ

− 1

µ0ρ0
B0
∂∇2g

∂x
+

1

µ0ρ0

∂ (g,∇2g)

∂ (x, y)
(2.12)

where we have substituted for u using (2.7) and for b using (2.8) and have used the Jacobian
defined by

∂ (f1, f2)

∂ (x, y)
=
∂f1
∂x

∂f2
∂y

− ∂f2
∂x

∂f1
∂y

for some functions f1 and f2.
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We now aim to remove the uz term in (2.12). To do this we integrate over z between −L/2
and L/2 to obtain

L
∂ζ

∂t
+ L

∂ (ζ, ψ)

∂ (x, y)
− 2Ω [uz]

L/2
−L/2 = −Lg0α

∂θ

∂x
+ Lν∇2ζ

− L

µ0ρ0
B0
∂∇2g

∂x
+

L

µ0ρ0

∂ (g,∇2g)

∂ (x, y)
.

(2.13)

Using (2.11) we obtain

∂ζ

∂t
+
∂ (ζ, ψ)

∂ (x, y)
+

4Ωχ

L

∂ψ

∂x
+

2Ω

L

( ν
Ω

)1/2
ζ = −g0α

∂θ

∂x
+ ν∇2ζ

− 1

µ0ρ0
B0
∂∇2g

∂x
+

1

µ0ρ0

∂ (g,∇2g)

∂ (x, y)
.

(2.14)

Using (2.7), Equation (2.14) becomes

− ∂∇2ψ

∂t
− ∂ (∇2ψ, ψ)

∂ (x, y)
+

4Ωχ

L

∂ψ

∂x
− 2Ω

L

( ν
Ω

)1/2
∇2ψ

= −g0α
∂θ

∂x
− ν∇4ψ − 1

µ0ρ0
B0
∂∇2g

∂x
+

1

µ0ρ0

∂ (g,∇2g)

∂ (x, y)

=⇒ ∂∇2ψ

∂t
+
∂ (∇2ψ, ψ)

∂ (x, y)
− 4Ωχ

L

∂ψ

∂x
+

2Ω

L

( ν
Ω

)1/2
∇2ψ

= g0α
∂θ

∂x
+ ν∇4ψ +

1

µ0ρ0
B0
∂∇2g

∂x
− 1

µ0ρ0

∂ (g,∇2g)

∂ (x, y)
. (2.15)

2.1.1.2 Heat equation

We now consider the heat equation given by Equation (1.23) and substitute in the perturbed
forms given by (2.4) to obtain

∂θ

∂t
+

(
ux

∂

∂x
+ uy

∂

∂y

)
(T0 + θ) = κ∇2θ

=⇒ ∂θ

∂t
+ uy

∂T0
∂y

+ ux
∂θ

∂x
+ uy

∂θ

∂y
= κ∇2θ

=⇒ ∂θ

∂t
− β

∂ψ

∂x
+
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
= κ∇2θ

=⇒ ∂θ

∂t
− β

∂ψ

∂x
+
∂ (θ, ψ)

∂ (x, y)
= κ∇2θ (2.16)

where we have substituted in ux and uy and have used T0 = βy.
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2.1.1.3 Induction equation

We consider the induction equation given by (1.24), taking the curl and substituting in the
perturbed forms given by (2.4) we have

∂∇×B

∂t
= ∇× (∇× (U×B)) + λ∇2∇×B

=⇒ ∂∇× b

∂t
= ∇×∇× (u× (B0 + b)) + λ∇2∇× (B0 + b)

=⇒ − ∂∇2gẑ

∂t
= ∇×∇× (u× (B0 + b))− λ∇4gẑ. (2.17)

The first term on the right-hand side can be expanded to obtain

∇×∇× (u× (B0 + b)) = ∇×∇× (u×B0) +∇×∇× (u× b) .

Considering both terms individually, for the first term we have

u×B0 = B0
∂ψ

∂x
ẑ

and hence

∇×∇× (u×B0) = ∇
(
∇ ·B0

∂ψ

∂x
ẑ

)
−∇2

(
B0
∂ψ

∂x
ẑ

)
= −B0

∂∇2ψ

∂x
ẑ. (2.18)

We now consider the second term. First, we calculate

u× b = (∇× ψẑ)× (∇× gẑ)

=

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

)
×
(
∂g

∂y
x̂− ∂g

∂x
ŷ

)
=
∂ (ψ, g)

∂ (x, y)
ẑ.

Then we have

∇×∇× (u× b) = ∇
(
∇ · ∂ (ψ, g)

∂ (x, y)
ẑ

)
−∇2∂ (ψ, g)

∂ (x, y)
ẑ

= −∇2∂ (ψ, g)

∂ (x, y)
ẑ. (2.19)

Substituting equations (2.18) and (2.19) into (2.17) and taking the z-component we obtain the
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induction equation in the non-linearised form given as

∂∇2g

∂t
= B0

∂∇2ψ

∂x
+∇2∂ (ψ, g)

∂ (x, y)
+ λ∇4g. (2.20)

2.1.1.4 Non-dimensionalisation

We now non-dimensionalise using a length scale D, a temperature scale βD, a viscous timescale
D2/ν and a magnetic scale B0. This means that x → Dx̃, y → Dỹ, ψ → ψ̃ν, θ → θ̃βD,

t→ t̃D2/ν, B0 → B̃0 and g → g̃B0D. Then the momentum equation (2.15) becomes

ν2

D4

∂∇2ψ̃

∂t̃
+
ν2

D4

∂
(
∇2ψ̃, ψ̃

)
∂ (x̃, ỹ)

− 4χΩν

DL

∂ψ̃

∂x̃
+

2Ων

LD2

( ν
Ω

)1/2
∇̃2ψ̃

= g0αβ
∂θ̃

∂x̃
+
ν2

D4
∇4ψ̃ +

1

µ0ρ0

B0B̃0

D2

∂∇2g̃

∂x̃
− 1

µ0ρ0

B2
0

D2

∂ (g̃,∇2g̃)

∂ (x̃, ỹ)

=⇒ ∂∇2ψ̃

∂t̃
+
∂
(
∇2ψ̃, ψ̃

)
∂ (x̃, ỹ)

− 4χΩD3

νL

∂ψ̃

∂x̃
+

2ΩD2

Lν

( ν
Ω

)1/2
∇̃2ψ̃

=
g0αβD

4

ν2
∂θ̃

∂x̃
+∇4ψ̃ +

1

µ0ρ0

B0D
2

ν2
B̃0
∂∇2g̃

∂x̃
− B2

0D
2

µ0ρ0ν2
∂ (g̃,∇2g̃)

∂ (x̃, ỹ)
.

The temperature equation (2.16) becomes

βν

D

∂θ̃

∂t̃
− βν

D

∂ψ̃

∂x̃
+
βν

D

∂
(
θ̃, ψ̃

)
∂ (x̃, ỹ)

=
κβ

D
∇2θ̃

=⇒ ∂θ̃

∂t̃
− ∂ψ̃

∂x̃
+
∂
(
θ̃, ψ̃

)
∂ (x̃, ỹ)

=
κ

ν
∇2θ̃.

The induction equation (2.20) becomes

B0ν

D3

∂∇2g̃

∂t̃
=
B̃0ν

D3

∂∇̃2ψ̃

∂x̃
+
B0ν

D3
∇̃2

∂
(
ψ̃, g̃

)
∂ (x̃, ỹ)

+
B0λ

D3
∇̃4g̃

=⇒ ∂∇2g̃

∂t̃
=
∂∇̃2ψ̃

∂x̃
+ ∇̃2

∂
(
ψ̃, g̃

)
∂ (x̃, ỹ)

+
λ

ν
∇̃4g̃.

We now introduce dimensionless parameters and drop the tildes (for convenience) to obtain the
momentum equation as

∂∇2ψ

∂t
+
∂ (∇2ψ, ψ)

∂ (x, y)
− η∗

∂ψ

∂x
+Bf |η∗|1/2∇2ψ

=
Ra

Pr

∂θ

∂x
+∇4ψ +

Q

Pm

∂∇2g

∂x
− Q

Pm

∂ (g,∇2g)

∂ (x, y)
,

(2.21)
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the temperature equation as

∂θ

∂t
− ∂ψ

∂x
+
∂ (θ, ψ)

∂ (x, y)
=

1

Pr
∇2θ, (2.22)

and the induction equation as

∂∇2g

∂t
=
∂∇2ψ

∂x
+∇2∂ (ψ, g)

∂ (x, y)
+

1

Pm
∇4g, (2.23)

where

η∗ =
4χΩD3

νL
, Pr =

ν

κ
, Pm =

ν

λ
, Ra =

g0αβD
4

νκ
, Q =

B2
0D

2

ρ0µ0νλ
and Bf =

(
D

Lχ

)1/2

.

The rotation rate is given by η∗, Pr is the Prandtl number, Pm the magnetic Prandtl number,
Ra is the Rayleigh number determining the strength of convection, Q measures the magnetic
field strength and Bf is a parameter controlling the strength of the effect of the bottom friction.
In the annulus model η∗ is inversely related to the Ekman number through E = (2Dχ) / (Lη∗)

and therefore in the limit of rapid rotation η∗ is large. The Prandtl number measures the
strength of viscous to thermal diffusivities, magnetic Prandtl number measures the strength
of viscous to magnetic diffusivities. The Rayleigh number is essential for convection problems.
This was introduced by Rayleigh (1916) and determines whether a system is convecting or
not. For a given system there exists a critical Rayleigh number Rac. If Ra exceeds Rac then
convective instabilities will grow. However if Ra is less than Rac then the instabilities will
decay. The magnetic field strength Q is similar to the Chandrasekhar number introduced by
Chandrasekhar (1961). The parameter Bf has been found to be important in previous non-
magnetic studies, as this promotes the creation of multiple jets in the solution. If we are
considering stress-free boundaries then Bf = 0 and for rigid boundaries we require Bf ̸= 0.

On the inner and outer annular walls, we assume stress-free, electrically conducting, constant
temperature boundaries. Hence the boundary conditions are

uy = 0 =⇒ ∂ψ

∂x
= 0, (2.24)

∂ux
∂y

= 0 =⇒ ∂2ψ

∂y2
= 0, (2.25)

θ = 0, (2.26)

by = 0 =⇒ ∂g

∂x
= 0, (2.27)

on y = 0, 1. Equations (2.24) and (2.27) implies that ψ and g are constant at the boundary.
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2.1.1.5 Obtaining a critical Rayleigh number

Equations (2.21)-(2.23) can be solved linearly in the non-magnetic and magnetic case. In the
non-magnetic case the magnetic and non-linear terms in (2.21) are dropped and the induction
equation given by (2.23) is ignored. The system can then be solved to obtain a critical Rayleigh
number in the hydrodynamical case denoted by RaHDc . In the magnetic case, the non-linear
terms are dropped and the system can be solved for a critical Rayleigh number in the magnetic
case denoted by RaMC

c . In our simulations, we set the Rayleigh number Ra by considering
Ra/RaHDc , as this allows for a more direct comparison between runs instead of using the
magnetic critical Rayleigh numberRaMC

c . In order to obtain an expression for a critical Rayleigh
number Rac we consider the linear form of equations (2.21)-(2.23), which are

∂∇2ψ

∂t
− η∗

∂ψ

∂x
=
Ra

Pr

∂θ

∂x
+∇4ψ +

Q

Pm

∂∇2g

∂x
(2.28)

∂θ

∂t
− ∂ψ

∂x
=

1

Pr
∇2θ (2.29)

∂∇2g

∂t
=
∂∇2ψ

∂x
+

1

Pm
∇4g (2.30)

where non-linear terms have been dropped and Bf = 0. We can expand ψ, θ and g as

{ψ, θ, g} =
N∑
n=1

{ψn, θn, gn} sin (nπy) exp (i (kx+ ωt)) (2.31)

where k is the wavenumber and ω is the frequency, following a similar method to Hori et al.
(2014). Substituting (2.31) into (2.28)-(2.30) gives a dispersion relation of the form

(
K2

Pr
+ iω

)(
K2
(
K2 + iω

)
+ ikη∗

)
− Ra

Pr
k2 +

Q

Pm
k2K2

(
K2

Pr
+ iω

)(
K2

Pm
− iω

)
K4

Pm2 + ω2
= 0 (2.32)

where K2 = k2 + (nπ)2. We set n = 1 as we solve for the fundamental mode. This means
that K2 = k2 + π2. We can take the real part to obtain an expression for the critical Rayleigh
number for each wavenumber given by

Rac (k) =
K6

k2
− Pr

k2
(
K2ωc + η∗k

)
ωc +

Pr

Pm
QK2

(
K4

PrPm
+ ω2

c

K4

Pm2 + ω2
c

)
(2.33)

and taking the imaginary part gives an expression for the critical frequency ωc as

K4ωc

(
1 +

1

Pr

)
+ η∗k

K2

Pr
+

Q

Pm
k2ωcK

4

(
1
Pm

− 1
Pr

)
K4

Pm2 + ω2
c

= 0. (2.34)

in the magnetic case, Equations (2.33) and (2.34) can be solved and minimised over k to find
Rac and ωc for different values of Pr, Pm, η∗ and Q. This has been discussed in detail by Hori
et al. (2014).
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In the non-magnetic case (2.33) becomes

Rac =
K6

k2
− Pr

k2
(
K2ωc + η∗k

)
ωc (2.35)

and (2.34) becomes

ωc =
−η∗k

K2 (Pr + 1)
. (2.36)

Substituting ωc given by (2.36) into (2.35), minimising over k and taking η∗ → ∞ we obtain
an expression for the non-magnetic critical Rayleigh number RaHDc as

RaHDc = 3

(
η∗Pr√

2 (1 + Pr)

)4/3

. (2.37)

We could instead solve (2.33)-(2.34) for RaMC
c but this value would change for each η∗, P r,

Pm and Q, making it difficult for direct comparisons between simulations. Hence we measure
our level of supercriticality against RaHDc given by (2.37) as this depends on η∗ and Pr, both
of which are fixed in our simulations.

2.1.2 Numerical method

Equations (2.21)-(2.23) have been solved analytically in the linear case by Hori et al. (2014) and
weakly non-linear solutions have also been examined by Hutcheson and Fearn (1995). However,
the full non-linear system of equations are complex and cannot be solved analytically. We solve
the full non-linear system by integrating forward in time using a collocation method written in
Fortran. We expand our fields ψ, θ and g using a Fourier expansion in x and a sine expansion
in y, similar to the method used in previous non-magnetic simulations (e.g. Rotvig and Jones
(2006), Teed et al. (2012)). Therefore we have

ψ (x, y, t) =
1

2

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

ψ̂lm (t) sin (mπy) e−ilx(2π/Lx) (2.38)

θ (x, y, t) =
1

2

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

θ̂lm (t) sin (mπy) e−ilx(2π/Lx) (2.39)

g (x, y, t) =
1

2

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

ĝlm (t) sin (mπy) e−ilx(2π/Lx) (2.40)

where Nx is the x resolution, Ny is the y resolution and Lx = 2π is the length of the x

domain. We apply a semi-implicit scheme by treating the linear terms implicitly using the
Crank-Nicolson method and we treat the non-linear terms explicitly using the second order
Adams-Bashforth method. Suppose we have an equation of the form du/dt = F (u, t). Then
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the Crank-Nicolson method rewrites the equation as

un+1 − un

∆t
=
F (un+1, tn+1) + F (un, tn)

2

and similarly, the second order Adams-Bashforth method rewrites the equation as

un+1 − un

∆t
=

3

2
F (un, tn)− 1

2
F
(
un−1, tn−1

)
where ∆t is the size of the timestep, n is the timestep index, tk is the time at the kth timestep
and uk = u

(
tk
)
.

We rewrite the equations given by (2.21)-(2.23) as

∂∇2ψ

∂t
− η∗

∂ψ

∂x
+Bf |η∗|1/2∇2ψ − Ra

Pr

∂θ

∂x
−∇4ψ − Q

Pm

∂∇2g

∂x
= F (2.41)

∂θ

∂t
− ∂ψ

∂x
− 1

Pr
∇2θ = G (2.42)

∂∇2g

∂t
− ∂∇2ψ

∂x
− 1

Pm
∇4g = H (2.43)

where we have introduced F , G and H to represent the non-linear terms on the right hand side
of the equations and are given by

F =
∂ (ψ,∇2ψ)

∂ (x, y)
− Q

Pm

∂ (g,∇2g)

∂ (x, y)

G =
∂ (ψ, θ)

∂ (x, y)

H = ∇2∂ (ψ, g)

∂ (x, y)
.

We can substitute in the fields for ψ, θ and g given by equations (2.38)-(2.40) and apply the
methods above to (2.41)-(2.43) to obtain

(
−1

2

(
l2 +m2π2

)
+

∆t

4

(
ilη∗ −Bf |η∗|1/2

(
l2 +m2π2

)
−
(
l2 +m2π2

)2))
ψ̂n+1
lm sin (mπyj)

+
ilRa∆t

4Pr
θ̂n+1
lm sin (mπyj)−

Q∆til (l2 +m2π2)

4Pm
ĝn+1
lm sin (mπyj)

=

(
−1

2

(
l2 +m2π2

)
− ∆t

4

(
ilη∗ −Bf |η∗|1/2

(
l2 +m2π2

)
−
(
l2 +m2π2

)2))
ψ̂nlmsin (mπyj)

− ilRa∆t

4Pr
θ̂nlmsin (mπyj) +

Q∆til (l2 +m2π2)

4Pm
ĝnlmsin (mπyj)

+
∆t

2

(
3F̂ n

lm − F̂ n−1
lm

)
sin (mπyj) , (2.44)
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(
1

2
+

∆t (l2 +m2π2)

4Pr

)
θ̂n+1
lm sin (mπyj) +

il∆t

4
ψ̂n+1
lm sin (mπyj)

=

(
1

2
− ∆t (l2 +m2π2)

4Pr

)
θ̂nlmsin (mπyj)−

il∆t

4
ψ̂nlmsin (mπyj)

+
∆t

2

(
3Ĝn

lm − Ĝn−1
lm

)
sin (mπyj) , (2.45)

(
−1

2

(
l2 +m2π2

)
− ∆t

4Pm

(
l2 +m2π2

)2)
ĝn+1
lm sin (mπyj)−

il∆t (l2 +m2π2)

4
ψ̂n+1
lm sin (mπyj)

=

(
−1

2

(
l2 +m2π2

)
+

∆t

4Pm

(
l2 +m2π2

)2)
ĝnlmsin (mπyj) +

il∆t (l2 +m2π2)

4
ψ̂nlmsin (mπyj)

+
∆t

2

(
3Ĥn

lm − Ĥn−1
lm

)
sin (mπyj) (2.46)

where we have dropped the summation signs and F̂ , Ĝ and Ĥ are the Fourier coefficients of
the functions F , G and H respectively. The system of equations needs to be solved for each l.
In order to do this, we can rewrite the system of equations as

AXn+1
l = BXn

l +
∆t

2

(
3F̂n

l − F̂n−1
l

)
(2.47)

where

Xn
l =

[
ψ̂nl1 . . . ψ̂

n
l(Ny−1), θ̂

n
l1 . . . θ̂

n
l(Ny−1), ĝ

n
l1 . . . ĝ

n
l(Ny−1)

]T
,

Fn
l =

[
F̂ n
l1 . . . F̂

n
l(Ny−1), Ĝ

n
l1 . . . Ĝ

n
l(Ny−1), Ĥ

n
l1 . . . Ĥ

n
l(Ny−1)

]T
.

The matrix A contains the coefficients of ψ̂n+1
lm , θ̂n+1

lm and ĝn+1
lm and B contains the coefficients

of ψ̂nlm, θ̂nlm and ĝnlm. The rows and columns of A and B correspond to the collocation points
and the sine expansion respectively.

Linear terms and their derivatives can be calculated directly in spectral space. However, the
terms in the non-linear Jacobian terms must be evaluated in real space. Multiplication of these
non-linear terms are carried out in real space and are then transformed back to spectral space
to use in Fn

l . The vector Xn+1
l can be found by multiplying equation (2.47) through on the

left by A−1. The vector Xn+1
l then contains ψ̂lm, θ̂lm and ĝlm for 1 ≤ m ≤ Ny − 1 at the new

timestep for any l. At any timestep the real fields ψ, θ and g can be calculated using equations
(2.38)-(2.40).

This numerical method is similar to that used by Rotvig and Jones (2006), Jones et al. (2003)
and Teed et al. (2012) in the non-magnetic case. We have validated our code by reproducing
some of these previous results and are discussed in Chapters 3 and 4.
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2.1.3 Output parameters

Various output parameters are computed in our system. We calculate the kinetic, magnetic and
zonal energy in our simulations. We also output the zonal flow and the various forces involved
in the system.

2.1.3.1 Calculating kinetic and magnetic energy

The kinetic energy density is defined by

EK =
1

2LxLy

∫
ρu2dS.

The dimensions of energy are [E] =ML2T−2, which means we have

EK = ρD2D2

(
D2

ν

)−2

ẼK

= ρν2ẼK

where tildes represent non-dimensionalised quantities. We can non-dimensionalise EK to get

EK =
1

2LxLy
ρ
( ν
D

)2
D2

∫
ũ2dS̃ =

1

2LxLy
ρν2

∫
ũ2dS̃

=⇒ ẼK =
1

LxLy

∫
ũ2dS̃ =

1

2LxLy

∫ (
∇̃ψ̃
)2

dS̃

since ũ = ∇̃ × ψ̃ẑ = ∂ψ̃
∂ỹ
x̂− ∂ψ̃

∂x̃
ŷ =⇒ ũ2 =

(
∂ψ̃
∂ỹ

)2
+
(
∂ψ̃
∂x̃

)2
=
(
∇ψ̃
)2
. Dropping the tildes we

obtain
EK =

1

2LxLy

∫
(∇ψ)2 dS. (2.48)

The magnetic energy is defined by

EM =
1

2LxLyµ0

∫
B2dS,

and using the dimensions of energy above we get

EM = ρν2ẼM .

Then, non-dimensionalising EM , we have

EM =
1

2LxLyµ0

B2
0D

2

∫
B̃2dS̃ =

1

2LxLy
Qρνη

∫
B̃2dS̃

=⇒ ẼM =
Q

2PmLxLy

∫
B̃2dS̃ =

Q

2PmLxLy

∫ (
∇̃g̃
)2

dS̃,
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where we have used Q =
B2

0D
2

ρ0νµ0λ
=⇒ Qνρ0λ =

B2
0D

2

µ0
. Then dropping the tildes we obtain

EM =
Q

2PmLxLy

∫
(∇g)2 dS. (2.49)

We wish to calculate these quantities in the numeric code. In order to do this we use the
expansions given in (2.38) and (2.40). First considering the equation for the kinetic energy
given by (2.48) with Lx = 2π and Ly = 1 we have

EK =
1

4π

∫
(∇ψ)2 dS = − 1

4π

∫
ψ∇2ψdS

=
1

16π

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

Nx−1∑
l′=−(Nx−1)

Ny−1∑
m′=1

ψ̂l′m′ψ̂lm
(
l2 +m2π2

) ∫ 2π

0

∫ 1

0

sin (m′πy) sin (mπy) e−i(l+l
′)xdydx

using integration by parts. We find∫ 1

0

sin (m′πy) sin (mπy) dy

=
1

2

∫ 1

0

cos (m′πy −mπy) + cos (m′πy +mπy) dy

=
1

2

[
sin ((m′ −m πy)

(m′ −m) π

]1
0

+
1

2

[
sin ((m′ +m πy)

(m′ +m)

]1
0

= 0

unless m = m′. Conversely, when m = m′, we find∫ 1

0

sin2 (mπy) dy =
1

2

∫ 1

0

1− cos (2mπy) dy

=
1

2

[
y − sin (2mπy)

2mπ

]1
0

=
1

2
.

Similarly, considering ∫ 2π

0

e−i(l+l
′)xdx = 0

unless l′ = −l. Conversely, when l = −l′ we have
∫ 2π

0
dx = 2π. Combining these results yields

EK =
1

16π
ψ̂−lmψ̂lm

(
l2 +m2π2

)
(2π)

(
1

2

)
=

1

16

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

| ψ̂lm |2
(
l2 +m2π2

)
(2.50)

since ψ̂−lm = ψ̂∗
lm. We follow a similar process to obtain the magnetic energy given by

EM =
Q

16Pm

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

| ĝlm |2
(
l2 +m2π2

)
. (2.51)
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2.1.3.2 Calculating zonal flow and zonal energy

In Chapters 3 and 4 we study zonal flows and multiple jet solutions. The zonal flow is the
azimuthal average (i.e. x-average) of the azimuthal component of the velocity. Therefore the
zonal flow, Ū, is given by

Ū = Ū x̂ = ⟨ux⟩x x̂ = −∂ ⟨ψ⟩x
∂y

x̂ (2.52)

where

⟨ψ⟩x =
1

Lx

∫ Lx

0

ψ dx.

Using this and Lx = 2π, Equation (2.52) becomes

Ū = − 1

2π

∫ 2π

0

∂ψ

∂y
dx

= − 1

2π

∫ 2π

0

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

mπψ̂lme
−ilx cos (mπy) dx.

Then clearly
∫ 2π

0
e−ilxdx = 0 unless l = 0. Therefore there is no contribution to the zonal flow

from the modes where l ̸= 0. With l = 0, we have
∫ 2π

0
e−ilxdx = 2π and hence

Ū = −
Ny−1∑
m=1

mπψ̂0m cos (mπy) . (2.53)

The zonal energy is the contribution to the total energy from the zonal flow defined by

EZ =
1

2π

∫
(⟨∇ψ⟩x)

2 dS.

This can be calculated in a similar way to the zonal flow Ū which gives

EZ =
1

8

Ny−1∑
m=1

m2π2ψ2
0m. (2.54)

2.1.3.3 Calculating forces

In Chapter 3 we perform a force balance study in the annulus model. To do this we consider
the curl of each force by starting from the vorticity equation given by

∂∇2ψ

∂t
+
∂ (∇2ψ, ψ)

∂ (x, y)︸ ︷︷ ︸
Inertia

− η∗
∂ψ

∂x︸ ︷︷ ︸
Coriolis

+Bf |η∗|1/2∇2ψ︸ ︷︷ ︸
bottom friction

=
Ra

Pr

∂θ

∂x︸ ︷︷ ︸
Buoyancy

+ ∇4ψ︸︷︷︸
Viscosity

+
Q

Pm

∂∇2g

∂x
+

Q

Pm

∂ (∇2g, g)

∂ (x, y)︸ ︷︷ ︸
Lorentz

.

This approach, where the curl of forces have been used, was examined by Teed and Dormy
(2023) where they show that the curl of forces provides an alternative option for exploring the
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force balances in the system. We use this approach as we solve the curl of the Navier-Stokes
equation (i.e. the vorticity equation) rather than the Navier-Stokes equation itself. Also, if we
were to consider the forces using the Navier-Stokes equation a few complications arise; one of
these being that we do not obtain the same input parameters. Instead of η∗ which measures the
rotation rate we would obtain the Ekman number E, but this is not involved in our system when
solving numerically. Therefore, it makes sense to form the forces from the vorticity equation
allowing us to consider the curl of each force.

For a given curl of a force, C, we compute

C2 =
1

Lx

∫
C2dS =

Nx∑
l=0

Ny∑
m=1

C2
lm

allowing us to form a spectrum of the curl of each force in l or m. Taking each force and
substituting in the forms for ψ, θ and g from Equations (2.38)-(2.40) we have

CC = −η∗ilψ̂lm sin (mπy) e−ilxẑ

CA = −ilRa
Pr

θ̂lm sin (mπy) e−ilxẑ

CV =
(
l2 +m2π2

)2
ψ̂lm sin (mπy) e−ilxẑ

CL =
Q

Pm
Alm sin (mπy) e−ilxẑ

CI = Blm sin (mπy) e−ilxẑ

Cbf = Bf |η∗|1/2
(
l2 +m2π2

)
ψ̂lm sin (mπy) e−ilxẑ

where CC is the Coriolis force, CA is the buoyancy force, CV is the viscous force, CL is the
Lorentz force, CI is the inertial force and Cbf is the force resultant from the bottom friction.
The terms Alm and Blm denote the non-linear terms in the curl of the Lorentz and inertial
force respectively. These are calculated in a similar manner to the energy integrals. We have
dropped the time derivative in the inertial force and the x derivative in the Lorentz force as
these are very small compared to the non-linear terms. Then considering C2 for each we have

C2
C =

η∗2

8

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

l2|ψ̂lm|2 (2.55)

C2
A =

Ra2

8Pr2

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

l2|θ̂lm|2 (2.56)

C2
V =

1

8

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

(
l2 +m2π2

)4 |ψ̂lm|2 (2.57)

C2
bf =

B2
fη

∗

8

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

(
l2 +m2π2

)2 |ψ̂lm|2 (2.58)
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C2
L =

Q2

2Pm2

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

|Alm|2 (2.59)

C2
I =

1

2

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

|Blm|2. (2.60)

We study both the lengthscale dependence of forces in l and globally averaged quantities.
To form the l spectrum for Equations (2.55)-(2.97) we perform the summation over m, we
compensate by dividing by l and take the square root of these quantities. For example, the
spectrum over l of the curl of the Coriolis force can be obtained by

C2
l =

η∗2

8

Ny−1∑
m=1

l2|ψ̂lm|2 (2.61)

and the compensated curl of this is calculated by

Ĉ2
l =

C2
l

l
. (2.62)

This method is used similarly for other forces. To form globally averaged quantities, the sum
over l and m is carried out for each force, allowing us to obtain a value for the globally averaged
force.

2.2 Spherical dynamo model

In Chapters 5 and 6 we consider a rotating spherical shell filled with an electrically conducting
fluid in the Boussinesq approximation using a spherical coordinate system (r, θ, ϕ). The fluid is
contained between r = ri and r = ro where ri and ro are the inner and outer radius respectively
with ro > ri. The rotation rate is given by Ω = Ωẑ, gravity acts inwards given by g = −gr and
we assume the fluid has constant density except in the buoyancy term. We have a temperature
gradient between the top and bottom boundaries so that T0 (ri) = Ti and T0 (ro) = To. We
apply only differential heating so we have no source term in the heat equation. The basic state
temperature is ∇2T0 = 0 and solving this using T0 (ri) = Ti and T0 (ro) = To we obtain a
differential heating profile given by

T0 (r) =
riro∆T

ro − ri
r−1 +

roTo − riTi
ro − ri

where ∆T = Ti−To. For convenience, since Ti and To are arbitrary reference temperatures, we
set To = 0 so that ∆T = Ti. The basic state for the velocity and magnetic field is U0 = B0 = 0.

In the equations that follow u and B are used for the total flow and field.
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2.2.1 Governing equations

To obtain a set of equations we start from the Navier Stokes, heat and induction equations
given by Equations (1.22)-(1.26). We non-dimensionalise these equations using a lengthscale
d = ro − ri, a timescale d2/λ, a temperature scale ∆T and a magnetic scale

√
ρ0µ0λΩ. This

gives

λ2

d3
∂ũ

∂t̃
+
λ2

d3

(
ũ · ∇̃

)
ũ+

2λΩ

d
ẑ× ũ = − 1

ρ0

ρ0λ
2

d3
∇̃P̃ (2.63)

+ α∆T T̃ gr+
ρ0µ0λΩ

ρ0µ0d

(
∇̃ × B̃

)
× B̃+

νλ

d3
∇̃2ũ, (2.64)

∆T
λ

d2
∂T̃

∂t̃
+
λ

d2
∆T

(
ũ · ∇̃

)
T̃ =

κ∆T

d2
∇̃2T̃ , (2.65)

λ
√
ρ0µ0λΩ

d2
∂B̃

∂t̃
− λ

√
ρ0µ0λΩ

d2
∇̃ ×

(
ũ× B̃

)
=
λ
√
ρ0µ0λΩ

d2
∇̃2B̃, (2.66)

λ2

d3
∇̃ · ũ = 0 (2.67)

√
ρ0µ0λΩ

d
∇̃ · B̃ = 0. (2.68)

We can then rearrange and drop the tildes to obtain a set of non-dimensionalised equations
given by

∂u

∂t
+ (u · ∇)u+

2Pm

E
ẑ× u = −∇P +

RaPm2

Pr
Tr+

Pm

E
(∇×B)×B+ Pm∇2u, (2.69)

∂T

∂t
+ (u · ∇)T =

Pm

Pr
∇2T, (2.70)

∂B

∂t
−∇× (u×B) = ∇2B, (2.71)

∇ · u = 0, (2.72)

∇ ·B = 0, (2.73)

where the non-dimensional parameters are the Ekman number E, the Rayleigh number Ra,
the Prandtl number Pr and the magnetic Prandtl number Pm which are defined as

E =
ν

Ωd2
, Ra =

αg∆Td3

νκ
, Pm =

ν

λ
and Pr =

ν

κ
.

2.2.2 Numerical method

In order to solve the equations above we apply a poloidal-toroidal decomposition, where the
velocity and magnetic fields are decomposed into poloidal and toroidal scalars as

u = ∇× (Tr) +∇×∇× (Pr) (2.74)

B = ∇× (T r) +∇×∇× (Pr) (2.75)
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where P , T , P and T are the poloidal and toroidal scalar fields of the magnetic field and velocity
and are functions of space and time. This form is chosen as it reduces the number of scalars
to solve for. For each of u and B, we are required to solve for the three components of the
vector. There is a degree of freedom in both vector fields because each is subject to a solenoidal
constraint. The poloidal-toroidal decompositions automatically satisfy these constraints and
utilise the degree of freedom by using only two scalars. The poloidal and toroidal parts are
then expanded in terms of spherical harmonics so that each take a similar form given by

A =
lmax∑
l=0

l∑
m=−l

Alm (t, r)Y m
l (θ, ϕ) (2.76)

for some scalar field, A, and where Alm are the set of coefficients and lmax is the truncation of
the spherical harmonic degree. The spherical harmonic function of degree l and order m are of
the form

Y m
l (θ, ϕ) = P

|m|
l (cos θ) eimϕ

where P
|m|
l are the associated Legendre functions. This expansion deals with the angular

decomposition. We discuss the radial formulation in the numerical method section below.

In order to obtain equations for the poloidal and toroidal parts of the velocity and magnetic
field, the curl and double curl of these have to be computed. For any br we have

∇× (br) =
1

sin θ

∂b

∂ϕ
θ̂ − ∂b

∂θ
ϕ̂,

and taking the r̂ component gives
r̂ · (∇× br) = 0. (2.77)

Calculating

∇×∇× (br) = −
(

1

r sin θ

∂

∂θ

(
∂b

∂θ
sin θ

)
− 1

r sin2 θ

∂2b

∂ϕ2

)
r̂+

1

r

∂

∂r

(
r
∂b

∂θ

)
θ̂ +

1

r sin θ

∂

∂r

(
r
∂b

∂ϕ

)
ϕ̂

= −1

r
L2br̂+

1

r

∂

∂r

(
r
∂b

∂θ

)
θ̂ +

1

r sin θ

∂

∂r

(
r
∂b

∂ϕ

)
ϕ̂,

and taking the r̂ component of this gives

r̂ · ∇ ×∇× (br) = −1

r
L2b, (2.78)

where
L2 =

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
.

We can then calculate

∇×∇×∇× br = ∇×
(
∇ (∇ · br)−∇2br

)
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= −∇×∇2br = −∇× b̃r

where b̃ = ∇2b and have used the identity ∇×∇×A = ∇ (∇ ·A)−∇2A. We can take the r̂

component of this which gives r̂ ·
(
−∇× b̃r

)
= 0 using (2.77). We also consider

∇×∇×∇×∇× br = ∇×∇×
((
∇ (∇ · br)−∇2br

))
= −∇×∇×

(
∇2br

)
= −∇×∇× b̃r

and taking the r̂ component we obtain

r̂ ·
(
−∇×∇× b̃r

)
=

1

r
L2b̃ =

1

r
L2∇2b

using equation (2.78).

Then expressing the momentum equation, given by Equation (2.69), as

∂u

∂t
+ (u · ∇)u = Nu

where
Nu = −∇P − 2Pm

E
ẑ× u+

RaPm2

Pr
Tr+

Pm

E
(∇×B)×B+ Pm∇2u,

equations for the poloidal and toroidal parts of the velocity can be found by considering r̂ ·∇×
and r̂·∇×∇× of the momentum equation and using [L2A]

m
l = −l (l + 1)Aml from the properties

of spherical harmonics for the expansion given by equation (2.76) we obtain[(
∂

∂t
− Pm∇2

)
T

]m
l

=
r

l (l + 1)
r̂ · ∇ ×Nu (2.79)[(

∂∇2

∂t
− Pm∇4

)
P

]m
l

= − r

l (l + 1)
r̂ · ∇ ×∇×Nu. (2.80)

The induction equation can be expressed as

∂B

∂t
−∇2B = NB

where NB = ∇× (u×B) . Taking r̂· and r̂ ·∇× of the induction equation, we obtain evolution
equations for the poloidal and toroidal parts of the magnetic field as[(

∂

∂t
−∇2

)
P
]m
l

=
r

l (l + 1)
r̂ ·NB, (2.81)[(

∂

∂t
−∇2

)
T
]m
l

=
r

l (l + 1)
r̂ · ∇ ×NB. (2.82)

Equations (2.79)-(2.82) are solved alongside the temperature equation given by (2.70).
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Our simulations are carried out using the Leeds Spherical dynamo code (Willis et al., 2007).
This is written in Fortran which solves the equations given by (2.70) and (2.79) - (2.82) in
3D spherical geometry. The code uses a predictor-corrector method to integrate the equations
forward in time. Each evolution equation is of the form(

a
∂

∂t
− b∇2

)
f = N,

where the non-linear terms N have been evaluated in real space at each radial point and then
transformed back to spectral space. The code starts by computing a predictor at time tq with
implicitness c. The predictor at j is given by(

a
1

∆t
− bc∇2

)
f q+1
j =

(
a
1

∆t
+ b (1− c)∇2

)
f q + cN q+1

j−1 + (1− c)N q,

and the corrector at j + 1 is given by(
a
1

∆t
− bc∇2

)
f q+1
j+1 =

(
a
1

∆t
+ b (1− c)∇2

)
f q + cN q+1

j + (1− c)N q,

and an equation for the corrector fcorr can be obtained by subtracting the predictor iteration
from the corrector iteration to obtain(

a
1

∆t
− bc∇2

)
fcorr = cN q+1

j − cN q

where fcorr = f q+1
j+1 − f q+1

j . The timestep is set through the Courant number C where 0.01 <

C < 0.1. The timstep is dynamically controlled to ensure that it remains small enough so that
fcorr is satisfactorily small.

The code is parallelised in both the r and θ direction. First the data is split into Nr sections
in radius. Then within each of these sections a transpose is performed between radial points
and modes, resulting in all modes being present at each rn. The summation over l at each θj is
performed on each core which gives data for all θj being present for each m. The data within
each radial section is then split into Nth sections in θ. A transpose between the m modes and
θ points is carried out resulting in data for all m being present for each (r, θ) section. The sum
over m then takes place to obtain data for all ϕi in each (r, θ) section. In the radial direction,
a finite difference method is applied using a 7 point stencil which takes a grid point and the
three neighbouring points at each side of the grid point.

2.2.2.1 Boundary conditions

We solve using no-slip, rigid and impenetrable boundary conditions. This is equivalent to

T = 0, P = 0, ∂rP = 0
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at r = ri, ro. For the magnetic boundary conditions we decompose the electric current density
j into poloidal and toroidal components by writing

j = ∇× (jtr) +∇×∇× (jpr) .

The poloidal and toroidal parts of j are related to B as

jp = T , jt = −∇2P .

Outside the spherical shell the electric current density is zero so j = 0. Therefore the exterior
magnetic field must satisfy

T = ∇2P = 0

which gives

T = 0,[
r2

d2

dr2
+ 2r

d

dr
− l (l + 1)

]
Plm = 0. (2.83)

Solutions to (2.83) are of the form Plm ∼ rα. Substituting this into (2.83) gives α (α + 1) =

l (l + 1) which has solution α = l (for external sources) and α = −l − 1 (for internal sources).
For insulating boundary conditions we require there to be no external sources so the exterior
magnetic field is Plm = Ar−l−1 for some constant A. This gives boundary conditions on the
magnetic field as

T = 0,

(
∂r −

l

r

)
P = 0 on ri, (2.84)

T = 0,

(
∂r +

l + 1

r

)
P = 0 on ro. (2.85)

We have a temperature difference of ∆T maintained between boundaries so T = 1 at ri and
T = 0 at ro.

2.2.3 Output parameters

2.2.3.1 Kinetic and magnetic energy

The kinetic energy is defined by

EK =
1

2

∫
ρudV

and the dimensions of energy are [E] =ML2T−2 so we have

EK = ρd3d2
(
d2

ν

)−2

ẼK = ρν2dẼK .
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Non-dimensionalising EK gives

EK =
1

2
ρ
(ν
d

)2
d3
∫

ũ2dṼ

=
1

2
ρν2d

∫
ũ2dṼ

=⇒ ẼK =
1

2

∫
ũ2dṼ .

Dropping the tildes we obtain EK in non-dimensionalised form as

EK =
1

2

∫
u2dV.

To calculate the magnetic energy we have

EM =
1

2µ0

∫
B2dV

and non-dimensionalising we have

EM =
1

2µ0

ρ0µλΩd
3

∫
B̃2dṼ

=
ρ0λΩd

3

2

∫
B̃2dṼ

and using EM = ρ0λ
2dẼM we get

EM =
Pm

2E

∫
B2dV.

2.2.3.2 Calculating energy integrals

The energy integrals both take a similar form. For any vector A we can express this as a
combination of scalar potentials R, S, and T as

A = Rr̂+ r∇S + r×∇T , (2.86)

where R, S and T represent the radial, spheroidal and toroidal fields respectively. We can
expand these scalar potentials using spherical harmonics such that

R =
lmax∑
l=0

l∑
m=−l

Rm
l (r)Y m

l (θ, ϕ) (2.87)

S =
lmax∑
l=0

l∑
m=−l

Sml (r)Y m
l (θ, ϕ) (2.88)
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T =
lmax∑
l=0

l∑
m=−l

T m
l (r)Y m

l (θ, ϕ) (2.89)

where Y m
l are spherical harmonic functions. We can then substitute Equations (2.87)-(2.89)

into Equation (2.86) which gives

A =
lmax∑
l=0

l∑
m=−l

Rm
l Y

m
l r̂+ rSml ∇Y m

l + T m
l r×∇Y m

l

=
lmax∑
l=0

l∑
m=−l

Rm
l Y

m
l + Sml Ψm

l + T m
l Φm

l ,

where Yl
m = Y m

l r̂, Ψm
l = r∇Y m

l and Φm
l = r ×∇Y m

l are the vector spherical harmonics and
lmax is the truncation of the spherical harmonic degree. The energy of the vector A is given by

A2 =

∫
A2dV

=
lmax∑
l=0

l∑
m=−l

∫ 2π

0

∫ π

0

∫ ro−b

ri+b

[
Rm
l Rm′

l′ Y
m
l ·Ym′

l′ + Sml Sm′

l′ Ψm
l ·Ψm′

l′ + T m
l T m′

l′ Φm
l ·Φm′

l′

]
r2 sin θdrdθdϕ

=
lmax∑
l=0

l∑
m=−l

∫ ro−b

ri+b

[
Rm
l Rm′

l′ δll′δmm′ + l (l + 1)Sml Sm′

l′ δll′δmm′ + l (l + 1) T m
l T m′

l′ δll′δmm′

]
r2dr

=
lmax∑
l=0

∫ ro−b

ri+b

[∣∣R0
l

∣∣2 + l (l + 1)
(∣∣S0

l

∣∣2 + ∣∣T 0
l

∣∣2)] r2dr
+ 2

lmax∑
l=0

l∑
m=1

∫ ro−b

ri+b

[
|Rm

l |
2 + l (l + 1)

(
|Sml |2 + |T m

l |2
)]
r2dr

= 2
lmax∑
l=0

l∑
m=0

′
∫ ro−b

ri+b

[
|Rm

l |
2 + l (l + 1)

(
|Sml |2 + |T m

l |2
)]
r2dr. (2.90)

where b is the boundary layer thickness and the primed sum denotes a halving of the m = 0

term. We have made use of the orthonormal properties of vector spherical harmonics given by∫ 2π

0

∫ π

0

Ym
l ·Ym′

l′ sinθdθdϕ = δll′δmm′∫ 2π

0

∫ π

0

Ψm
l ·Ψm′

l′ sinθdθdϕ = l (l + 1) δll′δmm′∫ 2π

0

∫ π

0

Φm
l ·Φm′

l′ sinθdθdϕ = l (l + 1) δll′δmm′ .

In Chapter 6, the poloidal and toroidal parts of the kinetic energy are considered. The poloidal
energy is the sum of the energy in the radial and spheroidal parts and the toroidal energy is
obtained from the energy in the toroidal part. The total energy is obtained by summing the
radial, spheroidal and toroidal parts. We set b = 0 when calculating the energy integrals but
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this can be non-zero if boundary layers are to be removed from the radial integration.

2.2.3.3 Strength and dipolarity of the magnetic field

We output the dipolarity of the field which is defined by

fdip =

√√√√ E
(1,0)
M (ro)∑12

l=1

∑l
m=0E

(l,m)
M (ro)

(2.91)

where E(l,m)
M (r) is the magnetic energy in the (l,m) harmonic at radius r. The parameter fdip

is such that fdip ∈ [0, 1] with a value close to 1 being dipolar and a value close to 0 being
multipolar.

The Elsasser number denoted by Λ is a measure of the Lorentz to Coriolis force. Different
assumptions can lead to different definitions Λ. The classical definition is given by

Λ =
|B|2

ρµλΩ
(2.92)

and the dynamic Elsasser number is given by (Dormy, 2016; Soderlund et al., 2015)

Λ′ =
Λd

RmlB
=

|B|2

ρµλΩUlB
(2.93)

are both computed. The value lB measures the typical magnetic dissipation lengthscale and is
defined as

l2B =

∫
V
B2dV∫

V
(∇×B)2 dV

(2.94)

and Rm is the magnetic Reynolds number, which measures the ratio of magnetic induction to
diffusion and is given by

Rm =
Ud

λ
. (2.95)

The Gauss coefficients are also important for determining the dipolarity of the magnetic field.
We can find these as the magnetic field can be given by a vector potential as B = −∇V . The
potential field V can be written as a multipole expansion given by

V = a
∑
l

l∑
m=0

(a
r

)l+1

Pm
l (cos θ) (glm cosmϕ+ hlm sinmϕ)

where glm and hlm are the Gauss coefficients (Lowes, 1974). From this we can obtain the axial
dipole component g10 and the axial quadrupole component g20 as

g10 =
P0

1 (ro)

ro
and g20 =

2P0
2 (ro)

ro
(2.96)
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respectively, where Pm
l is defined using Equation (2.76) for the poloidal field.

2.2.3.4 Calculating forces

We examine the forces by considering the Navier Stokes equation given by Equation (2.69). We
define the forces as

FI =
∂u

∂t
+ (u · ∇)u, (2.97)

FP = −∇P, (2.98)

FC = −2Pm

E
ẑ× u, (2.99)

FL =
Pm

E
(∇×B)×B, (2.100)

FA =
RaPm2

Pr
Tr, (2.101)

FV = Pm∇2u, (2.102)

where FI , FP , FC , FL, FA, and FV are the inertial, pressure, Coriolis, Lorentz, buoyancy and
viscous forces respectively. An individual force can be calculated by considering the energy of a
force vector. We can express F as a combination of scalar potentials similar to Equation (2.86)
and using Equation (2.90) gives

F 2 =

∫
F2dV

= 2
lmax∑
l=0

l∑
m=0

′
∫ ro−b

ri+b

[
|Rm

l |
2 + l (l + 1)

(
|Sml |2 + |T m

l |2
)]
r2dr. (2.103)

The curl of each force can be calculated using the same method as the forces. The curl of each
force can be written as

C (F) = ∇× F = R̂r̂+ r∇Ŝ + r×∇T̂

for some different scalars R̂, Ŝ and T̂ . Using the same method as the forces we obtain

C2 =

∫
(∇× F)2 dV

= 2
lmax∑
l=0

l∑
m=0

′
∫ ro−b

ri+b

[∣∣∣R̂m
l

∣∣∣2 + l (l + 1)

(∣∣∣Ŝml ∣∣∣2 + ∣∣∣T̂ m
l

∣∣∣2)] r2dr. (2.104)

The focus of Chapter 5 is to examine the lengthscale dependence of forces and curls of forces
in our simulations. The lengthscale dependence in both l and m are examined. We can form
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the power spectrum of an individual force as a function of spherical harmonic degree l as

F 2
l = 2

l∑
m=0

′
∫ ro−b

ri+b

[
|Rm

l |
2 + l (l + 1)

(
|Sml |2 + |T m

l |2
)]
r2dr (2.105)

and similarly we can form the power spectrum as a function of spherical harmonic order m as

F 2
m = 2

lmax∑
l=0

∫ ro−b

ri+b

[
|Rm

l |
2 + l (l + 1)

(
|Sml |2 + |T m

l |2
)]
r2dr. (2.106)

For the curl of force spectra we can form a similar power spectra for l as

C2
l = 2

l∑
m=0

′
∫ ro−b

ri+b

[∣∣∣R̂m
l

∣∣∣2 + l (l + 1)

(∣∣∣Ŝml ∣∣∣2 + ∣∣∣T̂ m
l

∣∣∣2)] r2dr (2.107)

and for m we have

C2
m = 2

lmax∑
l=0

∫ ro−b

ri+b

[∣∣∣R̂m
l

∣∣∣2 + l (l + 1)

(∣∣∣Ŝml ∣∣∣2 + ∣∣∣T̂ m
l

∣∣∣2)] r2dr. (2.108)

In the integrals above for forces and curls of forces we remove the boundary layers in our simu-
lations, where b is set sufficiently large to ensure the boundary layers are removed completely.
By excluding the boundary layers, we obtain the balance which is relevant to the bulk flow.
The spectra for the curls of forces tend to peak at smaller scales due to the extra derivative
involved. Hence to compensate for this we define the spectrum over l as

Ĉ2
l =

C2
l

l (l + 1)
(2.109)

and the spectrum over m as

Ĉ2
m =

C2
m

m
. (2.110)

2.2.3.5 Spherical to cylindrical grid

The focus of Chapter 6 is to examine the lengthscale dependence of forces and curls of forces
ITC and OTC. In order to do this we form a power spectra in m. This is chosen since the
dissection of the domain at the TC occurs along a cylindrical surface. The only coordinate in
spherical geometry that does not cross this surface is the ϕ coordinate. Hence them-dependence
of quantities can be naturally split and compared ITC and OTC.

In the previous section, each force can be expressed as a combination of scalar potentials given
by Equation (2.86). These are then expanded in terms of spherical harmonics which gives data
points in the θ and ϕ direction in spectral space and data points in the r direction in physical
space. However, to obtain the power spectra of forces and curls of forces ITC and OTC we
want to transform data points in the ϕ direction to spectral space but keep data points in the
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r and θ direction in physical space. Therefore we consider a Fourier decomposition in the ϕ
direction only, which means for an individual force we obtain

F =
M∑
m=0

Fm (r, θ) eimϕ. (2.111)

Then, the energy of the force vector is given by

F 2 =

∫
F2dV

=
M∑
m=0

M∑
m′=0

∫ 2π

0

∫ π

0

∫ ro−b

ri+b

Fm (r, θ)F ′
m (r, θ) eimϕeim

′ϕr2 sin θdrdθdϕ

=
M∑
m=0

2π

∫ π

0

∫ ro−b

ri+b

F 2
m (r, θ) r2 sin θdrdθ (2.112)

Equation (2.112) gives a scalar which is a function of three variables, where data points in
(r, θ) are in physical space and ϕ points are in spectral space, represented by m. At each m, we
take the grid of points in (r, θ) and convert these to a cylindrical (s, z) grid, meaning we are
converting the double integral in r and θ in Equation (2.112) to s and z.

In order to do this, a four point interpolation method is used. For each value of (s, z) on the
cylindrical grid we can define a target point (rt, θt) using

rt =
√
s2 + z2 and θt = tan−1

(s
z

)
.

We then find the closest four neighbouring points of (rt, θt) , given by (r1, θ1), (r2, θ1), (r1, θ2)
and (r2, θ2). This allows us to form a rectangle around the target point. From this we compute
the weighted interpolation at each of the 4 points as

w1 = (r2 − rt) (θ2 − θt) f (r1, θ1)

w2 = (rt − r1) (θ2 − θt) f (r2, θ1)

w3 = (r2 − rt) (θt − θ1) f (r1, θ2)

w4 = (rt − r1) (θt − θ1) f (r2, θ2) .

The interpolated value on the (s, z) grid is given by

f (s, z) =
w1 + w2 + w3 + w4

(r2 − r1) (θ2 − θ1)
.

This allows us to obtain the energy of a force of the form F 2 (s, z,m) . The (s, z) grid allows the
spherical shell to be split up into the regions ITC and OTC. We can then integrate over s and
z in physical space to form a lengthscale dependence for each force in m either globally, ITC or
OTC. For lengthscale dependent forces we consider the lengthscale dependent force densities.
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These are given by

F 2
OTC =

1

VOTC

M∑
m=0

∫ √
r2o−s2

−
√
r2o−s2

∫ ro

ri

F 2
m (s, z) dsdz (2.113)

F 2
ITCN =

1

VITCN

M∑
m=0

∫ √
r2o−s2

√
r2i−s2

∫ ri

0

F 2
m (s, z) dsdz (2.114)

F 2
ITCS =

1

VITCS

M∑
m=0

∫ −
√
r2i−s2

−
√
r2o−s2

∫ ri

0

F 2
m (s, z) dsdz (2.115)

where FOTC , FITCN and FITCS denotes the forces outside the tangent cylinder, inside the
tangent cylinder north and inside the tangent cylinder south and VOTC , VITCN and VITCS

denotes the volume outside the tangent cylinder, inside the tangent cylinder north and inside
the tangent cylinder south respectively. The force density ITC can be calculated by FITC =

FITCN + FITCS. The curls of forces are formed using the same method and are given by
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The boundary layers in these integrals were removed before transforming from a spherical to
cylindrical grid where data points where r < ri + b and r > ro + b on the spherical grid were
set to zero before moving to a cylindrical grid. The curls of forces are compensated by dividing
by m. This gives

Ĉ2
OTC =

C2
OTC

m
(2.119)

Ĉ2
ITCN =

C2
ITCN

m
(2.120)

Ĉ2
ITCS =

C2
ITCS

m
. (2.121)

The global lengthscale dependence produced using this method should match the lengthscale
dependence produced using Equation (2.106). Unlike the calculation of forces explained in
the previous section, the calculation of forces and curls of forces ITC and OTC is performed
outwith the main part of the code. The method described above is applied in post-processing
after the simulations have finished.
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2.3 Summary

The annulus model and the spherical dynamo model have been described. The Boussinesq
approximation is applied to both models. The annulus model is a simplified model of spherical
geometry and has an imposed magnetic field. The spherical shell model is more representative
of Earth’s core as it uses spherical geometry and is capable of the self-excitation of magnetic
fields. The simplified nature of the annulus model means it is less computationally intensive,
whereas the spherical dynamo model, though more representative of Earth’s core, requires
significantly more computing power. The governing equations and numerical methods for both
models are explained, and the output parameters are also discussed. The methods described
in Section 2.1 are used in Chapters 3 and 4, and the methods described in Section 2.2 are used
in Chapters 5 and 6.



Chapter 3

Force balances in an annulus model

Convection occurring in planetary cores and atmospheres is strongly affected by magnetic fields
generated through dynamo action. It is therefore of interest to consider the effect of magnetic
fields on convection in planetary interiors in isolation to the dynamo process. Three-dimensional
spherical simulations are the most suitable models as they capture the full dynamics of the flow.
However, these can be computationally expensive to run. An alternative is to use a simplified
model to explore the parameter space more cheaply. The Busse annulus model (Busse, 1970)
is a simplified model of spherical geometry, which has been shown to produce features found
in planetary cores and atmospheres in the non-magnetic case by Jones et al. (2003), Rotvig
and Jones (2006) and Teed et al. (2012). A review of non-magnetic and magnetic work in an
annulus model is discussed in Section 1.5.1.

This chapter examines forces balances in an annulus model with an imposed magnetic field.
We extend previous non-magnetic work by carrying out non-linear simulations of Boussinesq
convection within the annulus model, but additionally subject to an imposed azimuthal mag-
netic field. The mathematical setup, numerical method, and various output parameters were
discussed in Chapter 2. We consider Pr = 1, Bf = 0, η∗ = 5 × 105, 0.01 ≤ Pm ≤ 5 and
103 ≤ Q ≤ 5×105 for varying Ra which is presented in terms of its supercriticality (Ra/RaHDc ).
We solve using stress-free, electrically conducting, constant temperature boundaries. The key
features of bursts of convection and multiple jet solutions are discussed before presenting 4

different cases for Pm. The importance of the magnetic field can be determined by considering
the Elsasser number, Λ = Q/η∗. The forces controlling the dynamics of the flow are discussed
where we examine the force balances required for multiple jets, bursts of convection and other
solutions in an annulus model. The force balances and types of solution are summarised in a
regime diagram, which allows us to classify which area of parameter space is required in order
to produce bursts of convection or multiple jets.

In Section 3.1 and 3.2 we discuss some possible regimes that occur in the model to form the
basis for the regime diagrams presented in Section 3.4. A wider parameter sweep is performed
upon discussion of the forces in Section 3.3. The properties of multiple jet solutions are explored

52
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in greater detail in Chapter 4.

3.1 Bursts of convection

In a system with bursts of convection, periods of convection will occur which drives a zonal flow
through the Reynolds stresses. Once the zonal flow becomes large enough, its shearing effect
inhibits the convection causing it to weaken. In turn, this removes the source of generation
of the zonal flow, so these also weaken allowing the convection to restart. This process keeps
repeating in a quasi-periodic fashion. Bursts of convection have been demonstrated in the
annulus model (e.g., Rotvig and Jones, 2006; Teed et al., 2012) and in spherical convection
(e.g., Grote and Busse, 2001; Simitev and Busse, 2003). A non-magnetic and a magnetic case
are discussed, highlighting the similarities and differences between them.

(a) Time series of the energy

(b) ψ at ×1 (c) θ at ×1

(d) ψ at ×2 (e) θ at ×2

Figure 3.1: Non-magnetic run showing bursts of convection for Pr = 1, η∗ = 5 × 105, Bf = 0
and Ra/RaHDc = 3.

Oscillatory behaviour has been found in the kinetic energy profile for some of our magnetic
runs, similar to bursts of convection found in the non-magnetic case by Teed et al. (2012). Two
cases of bursts of convection are presented starting with a case from non-magnetic results by
Teed et al. (2012) where it is known that bursts of convection occur, and then we discuss a
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magnetic case where bursts of convection are found. In both cases the kinetic energy EK given
by (2.50), the zonal energy EZ given by (2.54) and the difference between the two denoted by
ED are plotted. The value ED is the convective energy. The flow patterns for each are also
shown and in the magnetic case the magnetic energy given by (2.51) is plotted.

Figure 3.1 shows an example of bursts of convection in the non-magnetic case. The peak
in zonal flow energy is just after the peak in convective energy (Fig. 3.1a). The convective
energy performs a slow decay during which the zonal energy also decays and the trough in the
convective energy occurs near to where the trough in zonal energy occurs (Fig. 3.1a). This is
the point where the zonal flow has weakened enough for convection to fire up in another burst.
Figures 3.1b-3.1e shows plots of the fields at the peaks and troughs of the kinetic energy which
are marked by the points ×1 and ×2. The zonal energy is always larger than the convection but
at ×1 the convection is more prominent (Figs 3.1b, 3.1c) compared to the more zonal period
at ×2 (Figs 3.1d, 3.1e).

(a) Time series of the energy (b) Time series of the magnetic energy

(c) ψ at ×3 (d) θ at ×3

(e) ψ at ×4 (f) θ at ×4

Figure 3.2: Magnetic run showing bursts of convection for Pr = 1, η∗ = 5 × 105, Bf = 0,
Pm = 0.5, Q = 103 and Ra/RaHDc = 4.

Figure 3.2 shows a magnetic run with bursts of convection. The behaviour is similar to the
non-magnetic case where the peak in zonal flow energy is just after the peak in convective
energy (Fig. 3.2a). The convective energy slowly decays as does the zonal energy. The troughs
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in both occur at roughly the same time at which point the zonal energy has diminished and
the convection starts again in another burst. The magnetic energy is plotted where we observe
peaks in the magnetic energy but with a very flat nature for extended periods of time (Fig.
3.2b). The magnetic energy is much smaller than the kinetic energy and thus does not play a
role in the bursting nature observed in the kinetic energy. Figures 3.2c-3.2f show plots of ψ and
θ at the peaks and troughs of the kinetic energy marked by ×3 and ×4. These plots are very
similar to the plots for the non-magnetic case shown in Figure 3.1. In both cases a zonal chaotic
behaviour occurs in ψ at the peak in kinetic energy. At the trough, zonal behaviour also occurs
in both cases but the flow pattern is less chaotic. In both the magnetic and non-magnetic case,
the magnitudes of ψ and θ are larger at the peak in kinetic energy than the trough. These runs
behave as magnetically adjusted hydrodynamical runs. The bursts of convection observed in
the magnetic case are only found at low values of Q, where the magnetic field does not play
an important role on the convection in our system. As Q is increased, we lose the oscillatory
behaviour in the kinetic energy and end up with a more chaotic system.

3.2 Multiple jet solutions

Multiple jet solutions have mainly been found in the non-magnetic case when rigid boundaries
have been considered, meaning when Bf ̸= 0. This has been shown by Jones et al. (2003),
Rotvig and Jones (2006) and by Teed et al. (2012), where multiple jet solutions are explored
as the bottom friction parameter Bf is varied. There is also evidence of multiple jet solutions
for stress-free boundary conditions, but these are limited. This has been discussed in Jones
et al. (2003) where multiple jet solutions have been found for stress-free conditions in a small
window of parameter space. We also find multiple jet solutions for Bf = 0 in a small window
of parameter space. We mainly find these where Q is small compared to η∗ and close to critical
Ra. However, we have found a few cases of multiple jet solutions for Pm = 5 at larger Q and
small Ra with Bf = 0.

Previous studies require two conditions to be satisfied for a solution to be described as ‘multiple
jets’. First, the dominant (time-averaged) mode m̂ of the l = 0 component should satisfy m̂ ≥ 3.
Second, the (time-averaged) ratio of zonal to kinetic energy should satisfy EZ/EK > 0.05. We
follow these criteria but with an additional condition. We also require the l = 0 mode to be the
dominant azimuthal mode. This extra condition is added because the magnetic field is found
to be capable of breaking the axisymmetry of the flow pattern, which is always axisymmetric
in the non-magnetic case. We denote the number of jets found in a simulation by M = m̂+ 1

meaning a ‘multiple jet’ solution has at least 4 jets.

Four jet solutions are found at low Q (i.e. Q = 103, Q = 5× 103 and Q = 104) and low Ra for
Pm = 0.01, Pm = 0.1, Pm = 0.5 and Pm = 5. At Q = 5 × 105 and Pm = 5, 4 jet solutions
have been found at low Ra. We have also found a 5 jet solution for Pm = 0.1. In Figure 3.3 we
show an example of a 4 jet solution. This is observed in the plot of ψ as shown in Figure 3.3a,
where we observe a banded structure. We also plot the zonal flow given by (2.53) as shown in
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(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.3: Multiple jet solution for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 0.5, Q = 103 and
Ra/RaHDc = 2.

(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.4: Multiple jet solution for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 0.1, Q = 104 and
Ra/RaHDc = 2.

Figure 3.3d where we observe a 4 jet structure. In Figure 3.4 we present a 5 jet solution. We
also observe a banded structure in the plot of ψ as shown in Figure 3.4a and we observe a 5 jet
structure in the zonal flow as shown in Figure 3.4d. The plots of θ and g as shown in Figures
3.3b-3.3c and 3.4b-3.4c are very similar in both cases. These multiple jet solutions are similar
to those found in the hydrodynamical case (see for example Figure 2(a) in Teed et al. (2012)).

For each case the energy spectra in m is considered (Fig. 3.5). In Figure 3.5a we have a peak in
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the kinetic energy at m = 3. This matches the plot of ψ where we observe an m = 3 structure
in y, confirming an m = 3 dominant mode. Figure 3.5b shows a peak in the kinetic energy at
m = 4 matching the plot of ψ and confirms an m = 4 dominant mode. The magnetic energy is
smaller than the kinetic energy in these cases as Q is small. If the magnetic field is larger, this
would likely inhibit the formation of zonal flows including multiple jets.

(a) 4 jet solution (b) 5 jet solution

Figure 3.5: Energy spectra in m.

These multiple jet solutions only appear in a small window of parameter space and vanish as
we increase Ra and Q, at least for small Pm. This is similar to the non-magnetic case where
the multiple jets appear close to critical Ra when the rotation rate is large and vanish as Ra
is increased. We discuss multiple jet solutions in greater detail in Chapter 4, where solutions
with Bf ̸= 0 are examined.

3.3 Force balances

We now discuss force balances in the system by varying Q and Ra for four different values of
Pm retaining Pr = 1, η∗ = 5× 105 and Bf = 0. Each parameter regime produces a particular
force balance that can be used to aid identification of bursts of convection, multiple jets and
other solutions. Although we refer to forces, the analysis that follows presents the curls of
forces.

3.3.1 Pm = 0.01

Figure 3.6 shows the lengthscale dependent forces for Pr = 1, η = 5× 105, Bf = 0, Pm = 0.01

and Ra/RaHDc = 5 for different values of Q. These are constructed by considering Equations
(2.55)-(2.60) where we have summed over each m forming a spectrum of each force in l. At
Q = 103 a strong inertial force and a weak Lorentz force is observed (Fig. 3.6a). At this value of
Q we obtain a multiple jet solution. At Q = 104 we observe similar behaviour but multiple jet
solutions are no longer obtained. This is most likely due to the increase in all other forces. As
Q is increased the system transitions to a new balance. The Lorentz force starts to grow with
the inertial force remaining strong and we see contributions from the Coriolis and buoyancy
(Archimedean) forces in the force balance at larger scales, as shown in Figure 3.6c. Figure 3.6d
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shows the forces at Q = 5 × 105, where the rotation rate and input magnetic field strength
are equal. At these parameter values, the inertial and Lorentz forces swap positions and we
now have a strong balance between Lorentz and buoyancy forces with contributions from the
Coriolis force at large scales.

(a) Q = 103 (b) Q = 104 (c) Q = 105 (d) Q = 5× 105

Figure 3.6: Curl of forces for Pr = 1, η∗ = 5× 105, Bf = 0, Pm = 0.01 and Ra/RaHDc = 5 for
different values of Q.

(a) Q = 103 (b) Q = 104

(c) Q = 5× 105

Figure 3.7: Globally averaged curl of forces against Ra/RaHDc for Pr = 1, η∗ = 5×105, Bf = 0,
Pm = 0.01 for different values of Q.

In Figure 3.7 the different force balances are shown by summing over l and m for each force
as given by Equations (2.55)-(2.60), forming globally averaged quantities of each force. For
Q = 103 and Q = 104 a strong inertial force with a weak Lorentz force occurs which remains
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the case as the Rayleigh number increases (Figs 3.7a-3.7b). At Q = 104 the buoyancy force has
increased, but remains in the secondary balance with Coriolis and viscous forces (Fig. 3.7b).
The Lorentz force remains weak but has increased slightly compared with Q = 103 (Fig. 3.7a).
At Q = 5 × 105 a balance between Lorentz and buoyancy forces occurs, which persists as we
increase the Rayleigh number (Fig. 3.7c).

(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.8: Plots of the fields for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 0.01, Q = 104 and
Ra/RaHDc = 5.

(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.9: Plots of the fields for Pr = 1, η∗ = 5× 105, Bf = 0, Pm = 0.01, Q = 5× 105 and
Ra/RaHDc = 5.

Different flow patterns are observed between the inertially dominated regime and the regime
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where buoyancy and Lorentz forces are in balance. In the inertially dominated regime a turbu-
lent flow pattern is observed (Fig. 3.8). For all cases where the inertial force is strong, similar
flow patterns to Figure 3.8 are observed where all have zonal flows in the form of multiple jets
at low Ra and bursts of convection as Ra is increased. In the area of parameter space between
Q = 105 and Q = 5 × 105 we observe a transition from an inertially dominant regime to a
balance between the buoyancy and Lorentz forces. In this regime, the inertial force becomes
weaker and no longer plays a role in the main force balance. The flow patterns in this regime
show that the magnetic field has a stabilising effect on the flow (Fig. 3.9). The magnitude of ψ
has decreased and g has increased between Figures 3.8 and 3.9. Here we observe a flow pattern
which is very similar to onset. Considering the plot for g we see that the convection cells fill
the entire column which matches convection at onset. The plot of ψ has been stretched in the
y direction and θ has been changed in the x direction but they still look very similar to onset
where the convection cells fill the entire radial direction. This is the only value of Pm where
the magnetic field has a stabilising effect on the flow and the only value of Pm where a balance
between the Lorentz and buoyancy forces occur.

3.3.2 Pm = 0.1

For Pm = 0.1 we find similar results to Pm = 0.01. Multiple jet solutions are observed at low
Q and close to onset. As we increase Ra at low Q we observe bursts of convection. Figure 3.10
shows the lengthscale dependent forces found for Pr = 1, η∗ = 5× 105, Bf = 0, Pm = 0.1 and
Ra/RaHDc = 7 for different values of Q. For low Q a strong inertial force and a weak Lorentz
force occurs across all lengthscales (Figs 3.10a, 3.10b), similar to Pm = 0.01. As we increase
Q the Lorentz force gradually increases (Figs 3.10c, 3.10d). However, in contrast with the
case presented for Pm = 0.01 we never observe a balance between the Lorentz and buoyancy
force. If Q > 5× 105 was considered then it might be possible to reach a leading order balance
involving the buoyancy and Lorentz force similar to Pm = 0.01. For all values of Q, a turbulent
flow pattern is observed similar to that shown for Pm = 0.01 (Fig. 3.8).

(a) Q = 103 (b) Q = 104 (c) Q = 105 (d) Q = 5× 105

Figure 3.10: Curls of forces for Pr = 1, η∗ = 5× 105, Bf = 0, Pm = 0.1 and Ra/RaHDc = 7 for
different values of Q.

Figure 3.11 shows the global average of each force. At Q = 103 we observe a strong inertial
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(a) Q = 103 (b) Q = 104

(c) Q = 105

Figure 3.11: Globally averaged curl of forces against Ra/RaHDc for Pr = 1, η∗ = 5 × 105,
Bf = 0, Pm = 0.1 for different values of Q.

(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.12: Plots of the fields for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 0.1, Q = 105 and
Ra/RaHDc = 0.5.

force and weak Lorentz force, similar to that found for Pm = 0.01. At Q = 104 we still have
a strong inertial force but a slight increase in the Lorentz force is observed. At Q = 105 we
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observe a MAC balance close to critical with a weak inertial force, where the flow pattern looks
similar to onset as we are only just supercritical (Fig. 3.12). The MAC balance is found for
Ra < RaHDc because at Pm = 0.1 and Q = 105, the magnetic critical Rayleigh number is
smaller than RaHDc . As Ra is increased the MAC balance is lost and the system transitions to
an inertially dominant regime.

3.3.3 Pm = 0.5

For Pm = 0.5 we observe three different force balances as we vary Q and Ra. At low Q and
close to critical we observe multiple jet solutions and as Ra is increased we observe bursts of
convection, similar to results found for Pm = 0.01 and Pm = 0.1. Figure 3.13 shows the forces
for Pr = 1, η∗ = 5× 105, Bf = 0, Pm = 0.5 and Q = 103 for two different values of Ra/RaHDc .

At Ra/RaHDc = 2 where multiple jets occur (Fig. 3.13a) and at Ra/RaHDc = 5 where bursts of
convection occur (Fig. 3.13b) we observe a strong inertial force and weak Lorentz force at all
lengthscales. In Figure 3.13a we see a peak occurring in the inertial force but in Figure 3.13b
we do not observe an obvious sharp peak in the force spectra.

(a) Ra/RaHDc = 2 where multiple jets occur (b) Ra/RaHDc = 5 where bursts occur

Figure 3.13: Curl of forces for Pr = 1, η∗ = 5× 105, Bf = 0, Pm = 0.5 and Q = 103.

(a) Ra/RaHDc = 2 (b) Ra/RaHDc = 5 (c) Ra/RaHDc = 7

Figure 3.14: Curl of forces for Pr = 1, η∗ = 5× 105, Bf = 0, Pm = 0.5 and Q = 105.

Figure 3.14 shows the lengthscale dependent forces for Pr = 1, η∗ = 5×105, Bf = 0, Pm = 0.5

and Q = 105 for different values of Ra/RaHDc . A MAC balance occurs at low Ra with a weak
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(a) Q = 103 (b) Q = 104

(c) Q = 105

Figure 3.15: Globally averaged curls of forces against Ra/RaHDc for Pr = 1, η∗ = 5 × 105,
Bf = 0, Pm = 0.5 for different values of Q.

(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.16: Plots of the fields for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 0.5, Q = 105 and
Ra/RaHDc = 5.

inertial force (Fig. 3.14a). As we increase Ra a leading order balance is observed between
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(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.17: Plots of the fields for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 0.5, Q = 105 and
Ra/RaHDc = 8.

the Coriolis and buoyancy force with the Lorentz force also involved in the leading order force
balance at some scales (Fig. 3.14b). As we increase Ra further we see a transition from the
MAC balance to a balance between Lorentz and inertial forces (Fig. 3.14c). This balance
dominates at all lengthscales. In all cases the viscous force remains weak. The flow pattern for
this type of force balance are discussed later (Fig. 3.17).

As considered for the previous cases, we plot the globally averaged quantities of each force. For
Q = 103 we observe a strong inertial force and weak Lorentz force at all values of Ra (Fig.
3.15a). This is similar to Pm = 0.01 and Pm = 0.1 although comparing with Figures 3.7a
and 3.11a we see an increase in the other forces. For Q = 104, at low Ra we observe a balance
between the Coriolis and buoyancy force and a secondary balance between Lorentz and viscous
forces with a weak inertial force. As we increase Ra, we observe a transition to the case where
the inertial force dominates (Fig. 3.15b). Figure 3.15c shows a MAC balance with a weak
inertial and viscous force for Ra/RaHDc ≤ 6. We then clearly see the jump between 6 and 7

times critical, where we lose the MAC balance and now have a balance between inertial and
Lorentz forces. Also, as we increase Ra the inertial force gradually increases before we reach
the transition between force balances. The flow patterns found for the inertially dominated
regimes are similar to those at Pm = 0.01 (Fig. 3.8). For runs where a MAC balance occurs
at low Ra and Q = 105 (see 3.14b), we observe no zonal flows and the scale of convection is
smaller compared to the cases with zonal flows (Fig. 3.16). This differs to the runs with a MAC
balance at Pm = 0.01 where the magnetic field had a stabilising effect on the flow (Fig. 3.9).
For runs where the Lorentz and inertial force are in balance (see 3.14b) we no longer observe
zonal flows (Fig. 3.17).
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3.3.4 Pm = 5

Similar force balances are found at Pm = 5 to the other values of Pm considered. However, at
Q = 5×105 we find a dominant Lorentz force for some runs that has not been observed for any
other Pm explored (Figs 3.18a and 3.18b). In this area of parameter space we find multiple
jet solutions, similar to those found at low Q (Fig. 3.3, 3.4). Plots of a 5-jet solution found
at Q = 5 × 105 and Ra = 3RaHDc is shown in Figure 3.19. However unlike at low Q where a
dominant inertial force was required for multiple jets, the system now has a dominant Lorentz
force. It is clear from this balance that the magnetic field plays a role in producing the multiple
jets. As we increase Ra, we no longer obtain multiple solutions and the system transitions to
a dominant balance between Lorentz and inertial forces (Fig. 3.18c).

(a) Ra = 3Rac (b) Ra = 5Rac (c) Ra = 6Rac

Figure 3.18: Curls of forces for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 5 and Q = 5 × 105 for
different values of Ra.

(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.19: Plots of the fields for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 5, Q = 5 × 105 and
Ra/RaHDc = 3.
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(a) Q = 103 (b) Q = 104

(c) Q = 5× 105

Figure 3.20: Globally averaged curls of forces against Ra/RaHDc for Pr = 1, η∗ = 5 × 105,
Bf = 0, Pm = 5 for different values of Q.

(a) Snapshot of ψ (b) Snapshot of θ

(c) Snapshot of g (d) Ū

Figure 3.21: Plots of the fields for Pr = 1, η∗ = 5 × 105, Bf = 0, Pm = 5, Q = 103 and
Ra/RaHDc = 3.

We plot the globally averaged quantity of each force in order to summarise the balances found.
A strong inertial force occurs throughout at Q = 103 and Q = 104 (Figs 3.20a and 3.20b). The
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flow patterns for these runs are shown in Figure 3.21 and are similar to those at smaller Pm
and low Q (Fig. 3.8) where zonal flows occur as either jets or bursting. At Q = 5 × 105 we
obtain a strong Lorentz force at smaller Ra which then transitions to a balance between Lorentz
and inertial forces at higher Ra (Fig. 3.20c). This is similar to Q = 5 × 105 for Pm = 0.5

although instead of a MAC balance occurring before the transition to dominant Lorentz and
inertial forces, only the Lorentz force is dominant. In the regime where inertial and Lorentz
forces are in balance, the flow patterns are similar to those in Figure 3.16.

3.4 Regime diagrams

We summarise our findings in different regime diagrams for each value of Pm (Figs 3.22a -
3.22d). We have plotted Q against Ra/RaHDc where the colour of each run is determined by
the total Lorentz term over the total inertial term denoted by CL/CI . We focus on this ratio
because every run that has been considered either has the inertial term, Lorentz term or both
involved in the leading order force balance. Each run is marked by a square if multiple jets are
present, a triangle if we have bursts of convection, or a circle to represent convection without
bursting or multiple jets. We mark runs where convection does not occur with a cross. We
have also plotted the critical curve of RaMC

c /RaHDc to highlight that in some cases convection
occurs for Ra < RaHDc . This is because we have measured the level of supercriticality using
the non-magnetic critical Rayleigh number. The magnetic critical Rayleigh number varies for
each value of Q and each value of Pm. Therefore, in some cases convection will onset below
RaHDc and in other cases it will onset above RaHDc .

The behaviour is similar for the cases at the 3 lowest values of Pm tested (Figs 3.22a - 3.22c).
Multiple jets only appear in a small area of parameter space as discussed earlier. These appear
close to critical Ra when Q is small, where the inertial force is strong. Bursts of convection
occur for small Q and persist as we increase Ra. In all cases where bursts of convection occur,
a strong inertial force and weak Lorentz force is obtained as shown by the blue colour for each
run. As Q is increased the inertial force weakens and the Lorentz force takes over, losing bursts
of convection. This is the case for most values of Q even as Ra is increased and the inertial
term becomes larger. This occurs in the trough of the RaMC

c /RaHDc curve. This suggests that
when magnetostrophic modes become important at onset, as was demonstrated by Horn and
Aurnou (2022), bursts of convection are not possible. These runs still have strong zonal flows,
which tells us that bursts are reliant on weak magnetic fields and/or pre-eminent geostrophic
modes. Outside of the trough (i.e. at lower Q) it is possible to retrieve bursts of convection at
large enough Ra even if they were not present at onset (i.e. at lower Ra). This is the case for
all values of Pm for Q = 103, Q = 5×103 and Q = 104. This behaviour extends to Q = 5×104

for Pm = 5. For the case with strongest magnetic diffusion (Pm = 0.01), the Lorentz force
impacts at a larger value of Q compared with Pm = 0.1 and Pm = 0.5. In all three cases there
is a clear transition from an inertially dominated regime to a magnetically dominated regime
as Q is increased. At Pm = 0.1 and Pm = 0.5, a strong Lorentz force appears at large Q and



Force balances in an annulus model 68

small Ra. As we increase Ra the system transitions back to an inertially dominated regime.
For Pm = 0.01 and Pm = 0.5 at Q = 5× 105 the solutions stay in the magnetically dominated
regime for all Ra explored. It might be possible to reach the regime where the inertial force
dominates if we considered runs at Q = 5× 105 for Ra/RaHDc > 10.

(a) Pr = 1, η∗ = 5× 105, Bf = 0 and Pm = 0.01 (b) Pr = 1, η∗ = 5× 105, Bf = 0 and Pm = 0.1

(c) Pr = 1, η∗ = 5× 105, Bf = 0 and Pm = 0.5 (d) Pr = 1, η∗ = 5× 105, Bf = 0 and Pm = 5

Figure 3.22: Regime diagrams for varying Pm.

For large Pm (Pm = 5) the system behaves slightly differently. We obtain bursts of convec-
tion at low Q which persist as Ra is increased, similar to the other values of Pm explored.
The bursting behaviour of the solutions persist for larger Q than cases with strong magnetic
diffusion. At low Q and small Ra, where the inertial force is strong we find one solution with
multiple jets. As Q is increased the system transitions to a regime dominated by the Lorentz
force, where we now find jets at large Q and small Ra. It is clear that the magnetic field is play-
ing a role in producing these multiple jets as the Lorentz force is controlling the system. This
differs to previous multiple jet solutions at low Q where the system behaved like a magnetically
adjusted hydrodynamical run.

The destruction of multiple jets does not depend greatly on Pm. At the three lowest values
of Pm a similar pattern is observed, where multiple jet solutions are destroyed at approxi-
mately Q ≈ 104. Tobias et al. (2007) investigated magnetohydrodynamic turbulence using a
β-plane model and identified a threshold magnetic field strength above which zonal flows were
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completely suppressed. They also reported a scaling between this threshold magnetic field and
magnetic diffusivity. To obtain a comparison with their results, a wider range of Pm values
would need to be explored.

3.5 Summary

The work in this chapter extended previous non-magnetic work by imposing an azimuthal
magnetic field. The force balances were considered as the magnetic field strength was varied.
We also discussed bursts of convection and multiple jet solutions found in our magnetic work,
similar to those found in the non-magnetic case by Rotvig and Jones (2006) and Teed et al.
(2012). Similar to the non-magnetic case without bottom friction, we found multiple jets in
a small window of parameter space. For strong magnetic diffusion these occurred at low Q

and small Ra. In this case, these solutions behaved like a weakly adjusted hydrodynamical run
where the multiple jets were driven by the inertial force. Multiple jets were also obtained where
the magnetic diffusion was weak at small Ra but large Q. These jets looked similar to the jets
at low Q but were produced by magnetic effects as the Lorentz force dominated. Multiple jet
solutions are explored in greater detail in Chapter 4.

We also found bursts of convection at low Q for all values of Pm, where solutions behaved
as a weakly magnetically adjusted hydrodynamical run. In all cases with bursts the inertial
terms dominated. The bursts were lost in the trough of the RaMC

c /RaHDc curve suggesting
that when different magnetostrophic modes become important at onset, bursts of convection
are not possible. This was discussed by Horn and Aurnou (2022) where they found that
increasing magnetic field strength produced both magnetostrophic and geostrophic modes but
the magnetostrophic modes become the preferred mode at onset rather than the geostrophic
mode. Future work could examine bursts of convection in more detail.

Balances other than a dominant inertial or Lorentz force were also possible. A MAC balance
was possible for all values of Pm except Pm = 5 when Q was large enough. For all values of
Pm except Pm = 0.01, a balance between inertial and Lorentz forces was possible when both
Q and Ra were sufficiently large. The regimes found in our simulations show similarities in
the force hierarchy to the different branches found in spherical dynamo simulations (Schwaiger
et al. (2019), Teed and Dormy (2023)). The MAC balance found in our simulations at high
Q is similar to the strong field dipolar branch where the dipolar magnetic field is strong and
a MAC balance occurs. The inertially dominated regime at low Q has a similar force balance
to the fluctuating multipolar branch. However on the fluctuating multipolar branch we usually
expect contributions from the Coriolis and buoyancy force. We only found this to be the case
close to critical Ra before the system transitioned to a dominant inertial force at all scales.
For the parameter space explored, we have not found a regime similar to the weak field dipolar
dynamo branch where a VAC balance prevails. This might not be possible to obtain in the
annulus model or we might not have studied the correct area of parameter space to obtain
solutions involving a VAC balance. This balance may exist at Pm = 5 for values of Ra larger
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but close to RaMC
c , which we haven’t explored in detail. This is speculated because the weak

field dynamo branch where a VAC balance occurs, is known to exist at very low Ra and large
Pm. Bistable solutions have been observed in spherical dynamo simulations. Bistability might
also occur for some input parameters in our annulus model which has prevented the observation
of solutions with a VAC balance. The search for a VAC balance in the annulus model could be
investigated in future work.



Chapter 4

Multiple jet solutions in an annulus

model

Convecting systems are known to generate strong ‘zonal flows’ in the azimuthal direction,
typically driven by the Reynolds stresses. Zonal flows are most readily observed on the surface
of Jupiter, which has a banded structure consisting of alternating prograde and retrograde
jets. The depth of these flows has long been the subject of debate although recent evidence
suggests they extend only to 3000 kilometres below the surface (Kaspi et al., 2023). A simplified
model of (non-magnetic) convection in Jupiter, where zonal flows go deeper than the surface
was proposed by Busse (1976b). Convection occurring in planetary cores and atmospheres is
strongly affected by magnetic fields generated through dynamo action. It is therefore of interest
to consider the effect of magnetic fields on zonal flow and multiple jet generation in planetary
interiors.

This chapter expands on work from Chapter 3 where multiple jet solutions in the Busse annulus
model with an imposed magnetic field are explored. We know from previous non-magnetic
studies (by, e.g., Jones et al. (2003), Rotvig and Jones (2006) and Teed et al. (2012)) that
non-linear simulations of the annulus model produce zonal flows which can have a multiple jet
structure, determined by the boundary conditions imposed on the annular lids. We focus on
solutions with multiple jets and aim to determine where in parameter space multiple jets are
found and discuss the impact of a magnetic field on the multiple jet structure. The mathematical
setup, numerical method, and various output parameters were discussed in Chapter 2. We start
by confirming known multiple jet solutions in the absence of a magnetic field before examining
the effect of varying input magnetic field strength and magnetic Prandtl number. Various
regimes are identified by considering the kinetic, magnetic and zonal energy and the various
forces acting within the system. We also examine how well our results fit with the Rhines
scaling theory (Rhines (1975)).

71
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4.1 Non-magnetic case

The non-magnetic case has been examined in great detail, where multiple jets are mainly found
for Bf ̸= 0 (Jones et al., 2003; Rotvig and Jones, 2006; Teed et al., 2012). A few isolated cases
of multiple jets have been found for Bf = 0 in a small window of parameter space close to onset
with a suitably large rotation rate (Jones et al., 2003). Figure 4.1a shows a plot of the ratio of
zonal to kinetic energy against Ra/RaHDc , for different values of Bf with the number of edges of
each symbol indicating the time-averaged dominant mode m̂. For Bf = 0, we find strong zonal
flows but no cases of multiple jets. Instead the dominant dynamics are quasi-periodic bursts
of convection and zonal flow, in agreement with previous non-magnetic studies. At Bf = 0.5,
EZ/EK is very small close to onset but builds as the driving increases (Figure 4.1a). Multiple jet
solutions are also obtained for this value of Bf at the expense of a reduced zonal flow strength
compared to the cases with Bf = 0. This matches the trend found by Rotvig and Jones (2006)
where EZ/EK is large when Bf = 0 and then decreases for larger Bf . This is expected since
Bf increases the likelihood of multiple jets but weakens the zonal flow contribution through
additional friction. A 6 jet solution is found at Ra/RaHDc = 3, transitioning to 5 jets and
then to 4 jets with increased driving before then dropping off to a solution without multiple
jets. Each transition is associated with a reduction in the contribution of the zonal energy
and highlights that the multiple jet phenomenon is restricted to a small window of Ra-space.
Figure 4.1b provides further evidence of the nature of the solutions since the (0, m̂) is shown
to dominate over all other (l, m̂) for solutions identified as having multiple jets. Therefore we
can be satisfied these are azimuthally axisymmetric jets. The quantity plotted in Figure 4.1b
decreases when multiple jets are lost but remains large enough that l = 0 still dominates. In
this regime the bottom friction is likely not so important because the driving is large and is
evidenced by the fact that the blue and red points are located in very similar positions. This
is similar to the case where Bf = 0, where the ratio decreases at larger Ra but still remains
large enough for (0, m̂) to dominate.

Typical solutions with and without multiple jets are shown in Figures 4.2 and 4.3, respectively.
A banded structure in ψ with 5 bands in the y-direction can be observed in Figure 4.2a,
confirming an m̂ = 5 dominant mode. The l = 0 component also dominates which is clear from
the azimuthally axisymmetric nature of the flow. The zonal flow displays a multiple jet pattern,
where a 6 jet solution is found. In θ we observe small structures and a negative temperature
gradient in y attempting to erase the imposed basic state gradient. Solutions with multiple jets
are quasi-steady and move across the x-domain. We never observe the jets change direction,
although we occasionally see the number of jets found in simulations change as we integrate in
time. The case presented in Figure 4.2 is typical of a multiple jet solution, matching previous
work (Jones et al. (2003), Rotvig and Jones (2006) and Teed et al. (2012)). In Figure 4.3 we
no longer have multiple jets but, otherwise, the solution remains similar to that of Figure 4.2.
Axisymmetric flow and large Ū confirm the zonal nature of the solution despite the lack of
multiple jets as expected from Figure 4.1b.
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(a) EZ/EK against Ra (b) E0m̂/
∑

lElm̂ against Ra

Figure 4.1: Plots of energy against Ra/RaHDc for Pr = 1, η∗ = 5× 105, and Q = 0. Quantities
have been globally averaged in space and time. The number of edges of each symbol represents
the dominant time averaged mode m̂. Plus symbols represent solutions with m̂ ≥ 7 and circles
represent solutions with m̂ ≤ 2.

(a) ψ (b) θ

(c) Ū (y)

Figure 4.2: Snapshots of ψ, θ and zonal flow Ū for Pr = 1, η∗ = 5× 105, Q = 0, Bf = 0.5, and
Ra/RaHDc = 3.

The curls of forces shown in Figure 4.4 are formed by summing over l and m for each force
as given by Equations (2.55)-(2.60), forming globally averaged quantities of each force. Figure
4.4 highlights the dominance of the inertial term in our solutions with a secondary Coriolis
force typically in a balance with buoyancy and/or viscous forces. Figure 4.4a shows the global
time-averaged curl of each force against Ra/RaHDc for Bf = 0. As we increase the driving, the
inertial force increases at a faster rate than the other forces. The main difference between cases
without (Figure 4.4a) and with (Figure 4.4b) bottom friction is increased contributions from
the secondary forces in the latter. Indeed, the Coriolis and inertial terms are nearly in balance
for low Ra when Bf ̸= 0. These increased contributions, along with bottom friction, appear
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(a) ψ (b) θ

(c) Ū (y)

Figure 4.3: Snapshots of ψ, θ and zonal flow Ū for Pr = 1, η∗ = 5× 105, Q = 0, Bf = 0.5, and
Ra/RaHDc = 9.

(a) Bf = 0 (b) Bf = 0.5

Figure 4.4: Curl of each force against Ra/RaHDc for Pr = 1, η∗ = 5×105, and Q = 0. Quantities
have been globally averaged in space and time. The number of edges of each symbol represents
the dominant time averaged mode m̂. Plus symbols represent solutions with m̂ ≥ 7 and circles
represent solutions with m̂ ≤ 2.

to be the catalyst for multiple jet solutions. An increase in the driving separates the inertial
force from the secondary terms and solutions without multiple jets are preferred, in line with
the Bf = 0 cases.

4.2 Magnetic case

From previous work and earlier discussion it is clear that multiple jet solutions are more probable
with a large rotation rate and bottom friction imposed. Our focus here will therefore be on
cases with Bf ̸= 0; in particular, in Sections 4.2.2 and 4.2.3, we will study Bf = 0.5 for
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two values of the magnetic Prandtl number: Pm = 0.5 and Pm = 5. This value of Bf was
chosen based on a multiple jet study in the non-magnetic case by Teed et al. (2012). We fix
η∗ = 5×105 throughout so we do not expect the magnetic field to have a significant impact until
Q ∼ η∗. However, we first briefly examine multiple jets found when Bf = 0 with a magnetic
field imposed, discussing the main features and how this compares with the non-magnetic case.

4.2.1 No bottom friction

When Bf = 0, multiple jets are possible at Pm = 0.5 and Pm = 5 close to onset (similar to
results in the non-magnetic case by Jones et al. (2003)). Figure 4.5 shows an example of such
a solution for a weak magnetic field and close to onset. A similar flow structure is found to
the multiple jets in the non-magnetic case with ψ featuring a banded structure and a dominant
l = 0 and m̂ = 3 mode. The structures in θ are small, g is very weak, and Ū displays a multiple
jet structure. In line with the non-magnetic case, very few cases of multiple jets are found for
Bf = 0. This is particularly true when the field strength is increased. Indeed, at large enough
values of Q, no multiple jet solutions are found in the absence of bottom friction, even close
to onset. For this reason the remainder of our results focus on Bf ̸= 0. We also note that,
when Bf = 0, cases with ‘bursts of convection’ remain common in this magnetic case. These
solutions are thus found in similar regions of parameter space to that in previous non-magnetic
results (Jones et al. (2003), Rotvig and Jones (2006), Teed et al. (2012)). Multiple jets and
bursts of convection are never found together and bursting is uncommon at Bf ̸= 0. We find
no cases of bursting at Bf = 0.5. Since our current study is focused on multiple jet solutions,
a thorough examination of the bursting solutions is left to a future study.

(a) ψ (b) θ

(c) g (d) Ū (y)

Figure 4.5: Snapshots of ψ, θ, g, and zonal flow Ū for Pr = 1, η∗ = 5×105, Q = 103, Pm = 0.5,
Bf = 0, and Ra/RaHDc = 2.
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4.2.2 With bottom friction and Pm = 0.5

We now impose bottom friction, which is known to increase the likelihood of multiple jet
solutions. We start by examining a magnetic Prandtl number Pm = 0.5, gradually increasing
the magnetic field strength and driving to identify regions of parameter space where multiple
jets are found.

Figure 4.6 highlights where multiple jet solutions are found and relative strengths of the zonal
and magnetic energy for different values of Q and Ra. For Q = 103, multiple jets are readily
found across Ra-space. A dip in EZ/EK occurs at 5 times critical, associated with a reduction
in the number of jets. For all Ra at Q = 103 the magnetic field does not play an important
role as the ratio EM/EK is small, meaning the zonal and total kinetic energy dominate. For
this value of Q, rotation remains far more important than the magnetic field (since the Elsasser
number, Λ = Q/η∗ ≪ 1) and the system essentially behaves as a magnetically adjusted version
of the hydrodynamical solutions of Section 4.1. It is notable that multiple jets persist for all
values of Ra tested for Q = 103. This is in contrast to the Q = 0 case (cf. Figure 4.2a) where
multiple jets ceased at ∼ 8 times critical. A magnetic field of weak enough strength is therefore
conducive to multiple jet production at increased driving.

(a) EZ/EK against Ra (b) E0m̂/
∑

lElm̂ against Ra

(c) EM/EK against Ra

Figure 4.6: Plots of energy against Ra/RaHDc for Pr = 1, η∗ = 5 × 105, Pm = 0.5, Bf = 0.5
and varying Q. Quantities have been globally averaged in space and time. The number of
edges of each symbol represents the dominant time averaged mode m̂. Plus symbols represent
solutions with m̂ ≥ 7 and circles represent solutions with m̂ ≤ 2.
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(a) ψ (b) θ

(c) g (d) Ū (y)

Figure 4.7: Snapshots of ψ, θ, g and zonal flow Ū for Pr = 1, η∗ = 5×105, Q = 103, Pm = 0.5,
Bf = 0.5, and Ra/RaHDc = 3.

At Q = 104, multiple jet solutions emerge at low driving (albeit with small zonal energy)
but soon transition to solutions with m̂ < 3 as Ra is increased. This suggests there is an
optimal value of field strength for production of multiple jets at larger Ra; for the current set
of input parameters this optimal value of Q satisfies 0 < Q < 104. The magnetic field has
become important as the ratio of EM/EK has increased significantly from Q = 103, reaching
an O (1) value for some values of Ra. It is clear from Figure 4.6b that solutions for Q = 103

and Q = 104 (at least far from onset) are axisymmetric in nature with a strong zonal flow
contribution, regardless of value of m̂.

The snapshot plots of Figure 4.7 are similar to equivalent plots of multiple jets for the non-
magnetic case (cf. Figure 4.2). Again, the flow displays strong axisymmetry in azimuth (Figure
4.7a), the structures in θ and g are small (Figure 4.7b and 4.7c) and the zonal flow shows a
multiple jet pattern (Figure 4.7d). The zonal flow is less symmetric than the equivalent non-
magnetic case as the position of jets have moved. This suggests the magnetic field is capable
of disturbing jet positioning locally at various times. The snapshots of Figure 4.7 are typical of
all multiple jet solutions found at Q = 103 and Q = 104, although, as we have seen, the precise
number of jets is a function of the input control parameters.

At Q = 105, the behaviour is strikingly different to that seen at other values of Q; this can first
be noted through Figure 4.6. The fraction of zonal energy is small for all values of Ra tested
although a gradual increase in its value begins at ∼ 6 times critical; nevertheless it remains
small compared with its values when Q is lower. The value of EM/EK is O(1) or greater
confirming that the magnetic field has now become dynamically important in the solutions.
Figure 4.8 shows a typical solution for Q = 105 at low Ra. It is immediately clear that the
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zonal flow pattern has been lost at these input parameters. The solution in ψ is no longer
azimuthally axisymmetric, structures are larger and the zonal flow is very weak.

(a) ψ (b) θ

(c) g (d) Ū (y)

Figure 4.8: Snapshots of ψ, θ, g and zonal flow Ū for Pr = 1, η∗ = 5×105, Q = 105, Pm = 0.5,
Bf = 0.5, and Ra/RaHDc = 3.

The value of m̂ (given by the number of edges on the symbols in Figure 4.6) suggests multiple
jet solutions may be possible at Q = 105, once the driving is strong enough. However, Figure
4.6b shows that l = 0 no longer dominates indicating that the axisymmetric nature of the
solution has been destroyed. Figure 4.9 shows a typical solution for Q = 105 at larger Ra where
m̂ ≥ 3. The zonal flow displays a multiple jet structure but we no longer have azimuthally
axisymmetric bands as shown in the snapshot for ψ (Figure 4.9a). Instead we observe a 3-fold
symmetry in the x-direction, confirming that the magnetic field is strong enough to break the
axisymmetric nature of the flow. Through the snapshots of Figure 4.9, it is clear that this is
a different regime to both the multiple jet regimes at lower Q and the regimes at low Ra for
Q = 105.

The effect of magnetic field strength on the zonal flow can be summarised by Figure 4.10 where
two values of Ra are considered. It is clear in both cases that increasing the magnetic field
strength dampens the zonal flow strength. We find strong zonal flows at Q = 103 which are
almost completely suppressed at Q = 105. This matches results by Tobias et al. (2007) where
the effect of an imposed magnetic field on a β-plane was examined. For the larger value of Ra,
the number of jets also reduces with increased field strength.

Figure 4.11 demonstrates different balances of (curls of) forces taking place at each Q tested.
Figure 4.11a, for Q = 103, is remarkably similar to the pattern observed in the non-magnetic
case at Bf = 0.5 (Figure 4.4b), albeit with the addition of a weak Lorentz force. Very close to
onset, the inertial and Coriolis terms are nearly in balance, and the buoyancy is also strong.
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(a) ψ (b) θ

(c) g (d) Ū (y)

Figure 4.9: Snapshots of ψ, θ, g and zonal flow Ū for Pr = 1, η∗ = 5×105, Q = 105, Pm = 0.5,
Bf = 0.5, and Ra/RaHDc = 9.

(a) Ra/RaHDc = 4 (b) Ra/RaHDc = 10

Figure 4.10: Zonal flow strength for increasing Q at two different values of Ra/RaHDc with
Pr = 1, η∗ = 5× 105, Pm = 0.5, and Bf = 0.5. The flow strength has been normalised by the
largest value of Ū at each Ra/RaHDc .

As Ra is increased, all forces increase with the inertial term increasing at a faster rate and
dominating throughout. In all cases the Lorentz term remains very weak but gradually in-
creases relative to Coriolis, buoyancy and viscous terms. At the largest values of Ra tested, the
Lorentz term begins to come into a secondary balance with the other forces. This highlights
its role in preserving multiple jets at larger values of Ra (in contrast to the non-magnetic case
where the force balance is otherwise equivalent). Figure 4.11b shows the (curls of) forces at
Q = 104 where the hierarchy is similar to Q = 103, but with an increased Lorentz term for all
Ra. Once supercriticality is high enough, a secondary balance between Lorentz, buoyancy, and
Coriolis (MAC) emerges at moderate Ra where multiple jets occur. At larger Ra the hierarchy
transitions such that the Lorentz term becomes the dominant secondary term; it is here that
multiple jets are lost (though zonal flows remain). This indicates that, in contrast to Q = 103,
the magnetic field can have a negative effect on multiple jet production, if its Lorentz force be-
comes strong enough. Nevertheless, with the Lorentz term remaining a secondary contribution
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(a) Q = 103 (b) Q = 104

(c) Q = 105

Figure 4.11: Curl of each force against Ra/RaHDc for Pr = 1, η∗ = 5 × 105, Pm = 0.5 and
varying Q. Quantities have been globally averaged in space and time. The number of edges of
each symbol represents the dominant time averaged mode m̂. Plus symbols represent solutions
with m̂ ≥ 7 and circles represent solutions with m̂ ≤ 2.

below the inertia, zonal flows remain strong and prevalent. At Q = 105 (Figure 4.11c) there is
a stark change in the hierarchy of (curls of) forces. The dominant position of the inertial force
is replaced with a quasi-MAC balance at low and moderate Ra. At Ra ≈ 6.5RaHDc , a sudden
change of regime occurs. The Coriolis and buoyancy terms increase entering a secondary bal-
ance with the viscous term, and the inertial and Lorentz terms increase drastically, forming the
primary balance. This new balance coincides with the previously observed change in m̂. There
occurs a slight increase in EZ/EK (Figure 4.6a) as the inertial enters the primary balance but,
ultimately, zonal flows and jets remain weak by the presence of the Lorentz term in the primary
balance. This confirms that a strong enough magnetic field is able to suppress the development
of zonal flows, as well as multiple jets.

4.2.3 With bottom friction and Pm = 5

We now consider a larger value of Pm = 5, retaining bottom friction given by Bf = 0.5. Figure
4.12a, for Pm = 5, can be compared with Figure 4.6a, the equivalent for Pm = 0.5. The
picture for low Q at Pm = 5 is very similar to that at Pm = 0.5. Again, at Q = 103, multiple
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jets persist for all Ra explored and at Q = 104 multiple jets appear at low and moderate Ra
before being lost as the driving is increased. At 9.5RaHDc and 10RaHDc multiple jets reappear.
In both cases, there is a drop in EZ/EK coinciding with a reduction in the number of jets, with
Q = 103 transitioning from a 5 jet to 4 jet solution and Q = 104 transitioning from multiple
jets to a solution without multiple jets. This behaviour is similar to Pm = 0.5, where a drop
in EZ/EK occurred coinciding with a decrease in m̂ although it is of note that the transition
occurs at larger Ra compared to the Pm = 0.5 case. The solutions at Q = 103 are multiple
jets, behaving similarly to those found in the non-magnetic case (Figure 4.2) and equivalent
magnetic case at Pm=0.5 (Figure 4.7). For both Q = 103 and Q = 104, EM/EK is small and
the solutions behave as magnetically adjusted hydrodynamical solutions with the magnetic field
not having a clear discernible impact on the flow.

At Q = 105, close to onset the behaviour at Pm = 5 is similar to Pm = 0.5. The ratio EZ/EK
is very small, EM/EK is large and the magnetic field is now strong enough to suppress the
development of zonal flows and multiple jets. Solutions at this value of Q are similar to those
at Pm = 0.5 (e.g. Figure 4.8) although the dominant azimuthal mode l has increased so the
structures are smaller. As the driving is increased, the picture at Pm = 5 diverges from that
at Pm = 0.5. The contribution of zonal energy increases steeply leading to the emergence of
solutions with strong zonal flows and there is a gradual decrease in EM/EK . In this region of
parameter space, solutions are similar to those found in previous non-magnetic and magnetic
cases where zonal flows are strong but no multiple jets are found (e.g. Figure 4.3). This is in
stark contrast to the equivalent region of parameter space at Pm = 0.5, where the magnetic
field was able to suppress zonal flows and non-axisymmetric flow patterns emerged. Figure
4.12b confirms that, for Pm = 5, solutions with zonal flows and bands are produced at all
values of Q provided driving is strong enough. This also differs to the Pm = 5 case with
Bf = 0 discussed in Section 3.3.4 where zonal flows occur as multiple jets, close to critical
RaHDc (Fig. 3.19). The addition of the bottom friction term combined with large magnetic
field suppresses multiple jets.

The effect of increasing the magnetic field strength on the zonal flow strength can be summarised
through Figure 4.13. At Ra/RaHDc = 4, the results are similar to Pm = 0.5 (cf. Figure 4.10a),
where increasing magnetic field strength suppresses zonal flows. However, at Ra/RaHDc = 9,
the increasing magnetic field does not suppress the zonal flow strength significantly but does
reduce the jet number.

Figure 4.14, showing contributions from the curl of each force, gives a similar picture to the
equivalent figure for Pm = 0.5 (cf. Figure 4.11) but the contribution of the Lorentz term is
boosted in each plot. At Q = 103, the inertial term is dominant throughout, similar to the
Pm = 0.5 case, but with the Lorentz term being the leading secondary term. The inertial term
remains an order of magnitude greater than all other terms and hence strong zonal flows and
multiple jets exist. The plots for Q = 104 and Q = 105 each show the Lorentz term entering
the primary balance. It is therefore evident that (compared with Pm = 0.5) at Pm = 5
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(a) EZ/EK against Ra (b) E0m̂/
∑

lElm̂ against Ra

(c) EM/EK against Ra

Figure 4.12: Plots of energy against Ra/RaHDc for Pr = 1, η∗ = 5×105, Pm = 5, Bf = 0.5 and
varying Q. Quantities have been globally averaged in space and time. The number of edges of
each symbol represents the dominant time averaged mode m̂. Plus symbols represent solutions
with m̂ ≥ 7 and circles represent solutions with m̂ ≤ 2.

(a) Ra/RaHDc = 4 (b) Ra/RaHDc = 9

Figure 4.13: Zonal flow strength for increasing Q at two different values of Ra/RaHDc with
Pr = 1, η∗ = 5× 105, Pm = 5, and Bf = 0.5.

the system requires a lower value of Q to transition from an inertially dominated regime to
a balance between Lorentz and inertial terms. At Pm = 0.5 such a balance resulted in a
loss of solutions with zonal flows (cf. Figure 4.11c). Therefore it is somewhat surprising to
find that the zonal flows (and in some cases, multiple jets) persist under this balance. Other
than the boosted Lorentz force, the main difference in the hierarchy of curls of forces at the
different values of Pm is a boosted viscous term. Unlike at Pm = 0.5, this strong secondary
contribution preserves the axisymmetric nature of the solution so that zonal flows exist even
when the Lorentz and inertial terms are in balance. Nevertheless, multiple jet solutions still
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(a) Q = 103 (b) Q = 104

(c) Q = 105

Figure 4.14: Curl of each force against Ra/RaHDc for Pr = 1, η∗ = 5×105, Pm = 5 and varying
Q. Quantities have been globally averaged in space and time. The number of edges of each
symbol represents the dominant time averaged mode m̂. Plus symbols represent solutions with
m̂ ≥ 7 and circles represent solutions with m̂ ≤ 2.

remain elusive at large magnetic field strengths.

The MAC balance found at Q = 105 and low Ra in the Pm = 0.5 case is also found at Pm = 5

but over a much smaller window of Ra-space. It is worth noting that, for simplicity, our study
has focused on Rayleigh numbers normalised by the onset value for non-magnetic convection,
RaHDc . However, at Pm = 5, the Rayleigh numbers studied are more supercritical to the onset
of magnetoconvection compared with Pm = 0.5 (since RaMC

c (Pm = 5) < RaMC
c (Pm = 0.5)).

Further exploration at lower Ra may well extend this MAC regime in the Pm = 5 case. The
stronger effective driving at Pm = 5 could also be enabling a zonal flow regime to emerge at
larger Ra that is unseen in the lower Pm case.
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4.3 Rhines scaling

By considering a balance between the inertial and Coriolis terms, we can obtain the Rhines
scaling theory. A balance between inertial and Coriolis terms gives

η∗
∂ψ

∂x
∼ ∂ (ψ,∇2ψ)

∂ (x, y)

=⇒ η∗U ∼ U2

L2

=⇒ LR ∼

√
U

η∗

where U is a typical flow strength and LR is the lengthscale of the flow. From this it follows
that the dominant wavenumber mr is given by

mr = c

√
η∗

U
, (4.1)

for some scaling factor, c, determined to best match simulation data (Rhines, 1975). Rhines
suggested that the convective (i.e. radial) speed should be used as the typical flow speed and
some studies use this (e.g. Schneider and Liu, 2009). Other studies, both in numerical simu-
lations (Teed et al. (2012) and Heimpel and Aurnou (2007)) and in experimental work (Gillet
et al., 2007), have instead defined U to be the zonal speed. In the non-magnetic case Jones
et al. (2003) used the convective flow speed whereas Teed et al. (2012) examined both, and
found the zonal flow speed to fit best with the scaling theory.

In order to test our results against the theory, we define a convective flow speed and zonal flow
speed as

UC = (max {uy} −min {uy}) /2,

UZ =
(
max

{
Ū
}
−min

{
Ū
})
/2,

respectively. These quantities are averaged over time. We wish to consider how our results
match with the theory as well as which of UC and UZ best fits. The quantities UC and UZ are
separately used in Equation (4.1) to determine two values of mr for each simulation.

Figure 4.15 shows plots of the predicted wavenumber mr from the Rhines scaling theory against
the dominant wavenumber m̂ obtained from simulations using the convective velocity (Figs
4.15a, 4.15c) and the zonal velocity (Figs 4.15b, 4.15d), where the scaling factor c has been
calculated to best match results obtained from simulations. For the Rhines scaling theory to
hold, we expect a line of best fit where mr ≈ m̂. We have excluded runs at Q = 105 and any
runs where EZ/EK ≤ 0.05 because the theory does not hold for either the convective or zonal
velocity. This is explained by the small zonal flows in these runs which result in unrealistically
large values ofmr in Equation (4.1). When the convective velocity UC is used (Figs 4.15a, 4.15c)
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(a) UC (using c = 0.1917) (b) UZ (using c = 0.1562)

(c) UC (using c = 0.1917) (d) UZ (using c = 0.1562)

Figure 4.15: Plots of the predicted dominant mr from the scaling theory against the dominant
mode m̂ from simulations. Non-magnetic results are plotted for both Bf = 0 and Bf = 0.5 and
both values of Pm with Bf = 0.5 for Q = 103 and Q = 104, all for integer values of Ra/RaHDc
are plotted. Runs at Q = 105 and any runs where EZ/EK ≤ 0.05 are excluded.

the theory does not provide a good linear fit between mr and m̂. When the zonal velocity is
used (Figs 4.15b, 4.15d), the results indicate a linear fit exists between mr and m̂ especially at
lower mr. The theory arguably becomes less accurate at larger values of m̂ but overall when
considering a linear fit between mr and m̂, the zonal velocity provides the best fit. This matches
the non-magnetic results of Teed et al. (2012) where they found the theory using the zonal flow
speed to provide the best fit.

A Wilcoxon Matched-Pairs Test (Wilcoxon, 1945) is performed to assess the statistical sig-
nificance of this result. This uses a threshold α = 0.05 to reject the null hypothesis, where
p-values above this threshold indicate statistically significant results. This helps to determine
whether the dominant wavenumber mr obtained from (4.1) differs significantly from the dom-
inant wavenumber m̂ obtained from simulations. A p-value of 0.96 is obtained for Fig. 4.15b
and a p-value of 0.98 for Fig. 4.15d, indicating there is no significant difference between mea-
surements. For the convective velocity we obtain a p-value of 0.19 for Fig. 4.15a and 0.02 for
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Fig. 4.15c.

For runs at Q = 105, we explore a different scaling by considering a balance between Coriolis
and Lorentz terms due to the increased role of the magnetic field. A balance between Coriolis
and Lorentz terms gives

η∗
∂ψ

∂x
∼ Q

Pm

∂ (g,∇2g)

∂ (x, y)

=⇒ η∗U ∼ Q

Pm

B2

L2

=⇒ LCL ∼

√
QB2

η∗UPm
,

where U is a typical flow strength and B is a typical magnetic field strength. This gives a
dominant wavenumber mCL as

mCL = c

√
η∗UPm

QB2
, (4.2)

for some scaling factor c. In order to test our results using (4.2) we define two different magnetic
field strengths. These are

By = (max {by} −min {by}) /2,

Bx = (max {bx} −min {bx}) /2,

where By is used together with UC and Bx is used with UZ . We tested how well mCL correlated
to our simulations for which a MAC balance occurs. However, we did not find a good linear
fit between m̂ in simulations and mCL given by Equation (4.2) using the convective or zonal
velocity, indicating that this balance does not provide a prediction for the radial lengthscale
(Fig. 4.16).

4.4 Summary

These non-linear simulations of convection in the Busse annulus model show good agreement
with previous non-magnetic simulations (Jones et al. (2003), Rotvig and Jones (2006), Teed
et al. (2012)). In particular, we found that rigid top and bottom boundary conditions promoted
the development of multiple jet solutions but also weakened the zonal flows. Many of the
properties of the non-magnetic problem have been studied in detail previously but here we
also examined the balances of the (curls of) forces of non-magnetic results. We found that
a strong inertial term, with secondary contributions from the remaining terms, occurred for
all runs. This is expected for zonal flows driven through the Reynolds stresses. For those
simulations which displayed a multiple jet pattern of zonal flows (found typically at low driving
with rigid boundaries), the inclusion of bottom friction provides an increased contribution from
all secondary forces. Hence multiple jet structures appear to be facilitated in regimes where
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(a) UC and By (using c = 0.0825) (b) UZ and Bx (using c = 0.0377)

Figure 4.16: Plots of the predicted dominant mCL from the scaling theory against the dominant
mode m̂ from simulations.

the inertial force is strong enough to produce zonal flows but secondary forces remain ‘only’ 1-2
magnitudes weaker. This also provides an explanation as to why multiple jets are found in a
small number of cases (at low Ra) where bottom friction is absent since weaker driving leads to
weaker Reynolds stresses. Our non-magnetic results agreed well with the Rhines scaling when
the zonal velocity was used, in agreement with previous work (Teed et al., 2012).

In this chapter we extended non-magnetic work by imposing an azimuthal magnetic field and
examining the effect on multiple jet solutions as the magnetic field strength was varied. Several
interesting conclusions can be drawn in the magnetic case. We found zonal flows and solutions
with multiple jets are retained under the ‘correct’ conditions. Typically, this requires a weak
enough imposed field strength to either restrain the Lorentz force to be a secondary contributor
or to maintain the inertial force in the primary balance alongside the Lorentz force. The
remaining secondary forces, especially the viscous force, can also promote the retention of
multiple jets. For multiple jets, relatively weak driving is also required (matching the non-
magnetic case). Broadly speaking, an increased magnetic field strength reduces the number of
jets and can, ultimately, completely suppress the development of multiple jets and zonal flows.
However, a weak enough field can preserve multiple jets at larger driving, even compared to
the non-magnetic case. The zonal flows of Mason et al. (2022) exhibit similar dependence on
magnetic field strength. They find the magnetic field can increase the role of the zonal energy
in the total kinetic energy (up to ≈ 30%) but stronger imposed field suppresses the zonal flow.
However, the flows in their spherical geometry appear to be driven by a thermal or magnetic
wind whereas the importance of the inertial force in our work confirms that the flows are formed
through Reynolds stresses. The flows in our (magnetic) work also form a far greater proportion
of the kinetic energy budget (up to ≈ 50%).

We found a MAC balance can be achieved in the annulus model. This was not necessarily
expected since the setup of the model is geared towards generation of zonal flows through a
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strong inertial force (even at low driving) which must be absent in the MAC balance. The
zonal flows (and multiple jets) are suppressed under such a balance. The effect of the magnetic
Prandtl number, Pm, is subtle. Two values, an order of magnitude apart, were tested and we
found the effect on zonal flow and multiple jet development to be minimal for the low values of
imposed magnetic field (i.e. at Q = 103 and Q = 104 in our work). The patterns of a lowering
of the number of jets and a reduction in the amplitude of the zonal energy as the driving
is increased exist, regardless of the value of Pm. At larger field strengths (i.e. at Q = 105

in our work), where the Elsasser number Λ = Q/η∗ approaches its O(1) optimal value for
convective onset (Hori et al., 2014; Soward, 1979), the available regimes depend greatly on Pm.
At low driving, regimes are characterised by a MAC balance and weak zonal flow regardless
of Pm but, with stronger driving, two different regimes are possible depending on Pm. Zonal
flows, jets, and bands are replaced by non-axisymmetric solutions when the magnetic diffusion
is large whereas the enhanced role of the viscous term when the magnetic diffusion is weak
allows zonal flows to develop. Our results with large magnetic diffusion are in line with the
spherical simulations of Mason et al. (2022), where imposing a strong enough magnetic field
also suppresses zonal flows (although that work did not vary magnetic diffusion). The magnetic
field morphology chosen here acts in the same direction as the zonal flow. A radial magnetic
field may have more impact on multiple jets at a smaller value of Q, as it acts in a different
direction from the zonal flow.

The Rhines scaling theory (using zonal flow speed) was unable to predict the number of jets if
the imposed magnetic field is too large. The theory breaks down in regimes where the Lorentz
force enters the primary balance with inertia since the theory is based on the assumption of a
balance between only Coriolis and inertial forces.



Chapter 5

Force balances in a spherical dynamo

model

Since the first numerical simulation of the geodynamo by Glatzmaier and Roberts (1995) many
parameter space studies have been conducted which have identified three main branches of
dynamo action. Two of these branches were identified by Christensen and Aubert (2006) where
they found one branch of solutions characterised by a dominant dipole field and the other
branch was mainly multipolar with a fluctuating dipolar component. For multipolar solutions,
all components of the field are of a similar size unlike the dipolar case where the dipolar
component is much larger than the others. In all three branches, the Coriolis and buoyancy
forces are important. The dipolar branch is controlled by the Coriolis, buoyancy and viscous
forces (VAC balance), whilst the multipolar branch is controlled by Coriolis, buoyancy and
inertial forces (CIA balance) (Teed and Dormy, 2023). The third branch was identified by
Dormy (2016) where solutions have a strong dipolar field and there is a dominant balance
between Coriolis, buoyancy and Lorentz forces (MAC balance). The expected force balance in
Earth’s core is widely believed to be a MAC balance with weak contributions from the viscous
and inertial forces (Schwaiger et al., 2019, 2021; Teed and Dormy, 2023). Hence, the strong
dipolar branch of solutions is believed to be most relevant to the geodynamo.

With recent advancements in computing power, it has been possible to perform simulations
with input parameters closer to the expected parameter values of Earth’s core. However, these
parameter values are still far from the geophysically relevant parameter values and in some
cases these solutions do not display a dominant dipolar field or the expected force balance of
Earth. For example the Ekman number of Earth is O(10−15), but simulations are only able to
reach O(10−7) for the most powerful computations (Kageyama et al., 2008; Takahashi et al.,
2008). Instead, it has been proposed that simulations of the geodynamo should be carried out
at the expected force balance of Earth’s core (Aubert et al., 2017; Dormy, 2016). In order to
check for the correct force balance, the lengthscale dependence of the forces can be examined
in simulations. This concept was first introduced by Aubert et al. (2017) where, over a series of
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papers (Aubert, 2019, 2023; Aubert and Gillet, 2021; Aubert et al., 2022), they then attempt
to define a path in parameter space where a MAC balance is preserved as the input parameters
are moved closer to the values expected in Earth’s core. The path in parameter space defined
by Aubert et al. (2017) is another name for the distinguished limit first proposed by Dormy
(2016).

A systematic study of the lengthscale dependence of forces in dynamo simulations was carried
out by Schwaiger et al. (2019). In this analysis, the forces are complicated by the pressure force
which always appears with the Coriolis force in the leading order force balance (at least at large
scales). However, the pressure gradient is not dynamically important so it is not relevant in the
force balance (Hughes and Cattaneo, 2019; Teed and Dormy, 2023). One method of dealing
with this is to form an ageostrophic Coriolis force by subtracting the pressure gradient from the
Coriolis force. We can then analyse the ageostrophic force in the balance instead and ignore the
leading order balance between pressure and Coriolis forces that usually appears in simulations.
This approach implicitly assumes that the pressure gradient is only balancing the gradient parts
of the Coriolis force. However other forces might also have gradient parts which are in balance
with the pressure gradient. Another method is to form solenoidal forces by taking the curl of
each force which eliminates the gradient parts of the forces and removes the pressure gradient
from the balance. This has been studied most recently by Teed and Dormy (2023) where they
examined lengthscale dependence of solenoidal forces. At leading order they recovered the first
order balance which usually appears in the forces, and no longer obtained the leading order
geostrophic balance. They also found that the small scale balance of the solenoidal forces to
be different to the primitive forces as the viscous force enters the small scale balance.

Schwaiger et al. (2021) compared dynamically relevant lengthscales with energetically relevant
lengthscales. This was done by extracting the lengthscale at which the two most relevant forces
cross each other and comparing these with the peaks in the poloidal kinetic energy spectrum.
The crossover points are defined in Section 5.3.1. A correlation was found between inertial
and buoyancy force crossover with the poloidal kinetic energy for non-magnetic runs at large
enough Ra and a correlation between Lorentz and buoyancy force crossover with the poloidal
kinetic energy for magnetically dominated runs. However, they are only able to characterise
runs which have a well-defined crossing, and they do not consider runs in the multipolar regime
or separate between viscously and magnetically dominated branches of dipolar dynamo action.
In this chapter, a triple balance point is introduced and compared with the peaks in the kinetic
energy spectra. Unlike crossover analyses that consider only two forces and focus on runs
with a well-defined crossing point (Schwaiger et al., 2021), our new method introduces a triple
balance point. This approach takes into account the fact that there are usually three main
forces controlling the dynamics and allows us to examine all runs regardless of a crossover of
forces being present.

This chapter examines force balances in spherical dynamo simulations. Details of the model and
methods used are discussed in Chapter 2. We focus on a comparison of the forces and solenoidal
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forces in l and m. The hydrodynamical (HD) case is presented first where the forces and curls
of forces in l and m are presented for E = 10−4 and E = 10−5 at different Rayleigh numbers.
Then dynamo solutions are presented in the 3 different dynamo regimes where the forces and
curls of forces in l and m are examined for E = 10−4 and E = 10−5. The triple balance point in
each regime is analysed and related to the peaks in the kinetic energy spectrum. The position of
the three regimes in parameter space are guided by previous studies by Christensen and Aubert
(2006), Dormy (2016), Dormy et al. (2018) and Teed and Dormy (2025). For all runs Pr = 1

and the aspect ratio is set to χ = ri/ro = 0.35. We have a constant temperature difference
between boundaries and use no-slip, impenetrable, rigid and electrically insulating conditions.

5.1 Comparison of force spectra

We examine the force spectra for the hydrodynamical case at E = 10−4 and for the three main
regimes of dynamo action at E = 10−4 and E = 10−5. The l dependence of forces has been
considered previously (Schwaiger et al., 2019; Teed and Dormy, 2023). The l dependence is
discussed here and we extend these results by examining the m dependence of forces. It should
be noted that the meaning of l and m now changes with respect to the annulus model.

Run E Pr Pm Ra/Rac Rm Λ′ fdip
WD 10−4 1 12 2.07 212.862 0.009 0.826
SD 10−4 1 12 2.07 202.147 0.661 0.828
SD 10−4 1 12 10 889.86 2.551 0.555
MP 10−4 1 1 30 285.826 0.112 0.133
WD 10−5 1 5 3 187.415 0.015 0.971
SD 10−5 1 5 4 322.047 0.393 0.765
MP 10−5 1 0.2 100 311.053 0.167 0.201

Table 5.1: Input and output parameters for dynamo solutions presented in Sections 5.1.2 and
5.1.3.

Table 5.1 shows the input and output parameters for the simulations analysed in Sections
5.1.2 and 5.1.3. We include values for the magnetic Reynolds number Rm, the dynamic El-
sasser number Λ′ and fdip. These parameters were defined in Section 2.2.3.3.The difference in
magnetic field strength between the weak field and strong field dipolar case can be seen by
comparing values of Λ′, which increases by at least an order of magnitude in the strong field
case. The parameter fdip is large in the weak field and strong field dipolar regimes but decreases
significantly in the multipolar regime, which is to be expected since the field is no longer of a
dipolar nature. Some of the runs presented in this chapter have been initialised using state files
from existing simulations in Teed and Dormy (2025).

5.1.1 Hydrodynamical solutions at E = 10−4

Figure 5.1a shows the forces in l for an HD run at Ra = 2Rac where a zeroth order geostrophic
balance occurs at all lengthscales. At large scales a first order balance occurs between buoyancy
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and ageostrophic Coriolis force which is broken at larger scales by inertia, where this replaces
the buoyancy force. Similar behaviour occurs for the lengthscale dependence in m (Fig. 5.1b)
although the curves drop off at larger scales compared with l. The ageostrophic Coriolis force
can be larger than the Coriolis force, as observed at some scales in Fig. 5.1b. This occurs when
geostrophy does not hold, and in such cases, the pressure gradient is balanced by gradient parts
of the Coriolis force and gradient parts of the other forces.

(a) (b)

Figure 5.1: Comparison of forces for a HD run at E = 10−4 and Ra = 2Rac. (a) forces in
l (modes with l odd removed), (b) forces in m (every 7m plotted). All quantities are time
averaged and boundary layers have been removed.

(a) (b)

Figure 5.2: Energy spectrum for a HD run at E = 10−4 and Ra = 2Rac. (a) energy spectrum
in l (modes with l odd removed) (b) energy spectrum in m (every 7m plotted). All quantities
are time averaged.

The run at Ra = 5Rac behaves similarly to Ra = 2Rac but the system is more supercritical
so convection is more developed, causing an increase in the inertial force. The forces in l (Fig.
5.3a) show a zeroth order geostrophic balance at most scales and a first order balance between
buoyancy and ageostrophic Coriolis forces at large scales, with the inertial and viscous forces
being less important. At small scales the inertia breaks the geostrophic balance as it enters
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(a) (b)

Figure 5.3: Comparison of forces for a HD run at E = 10−4 and Ra = 5Rac. (a) forces in l,
(b) forces in m. All quantities are time averaged and boundary layers have been removed.

(a) (b)

Figure 5.4: Energy spectrum for a HD run at E = 10−4 and Ra = 5Rac. (a) energy spectrum
in l (b) energy spectrum in m. All quantities are time averaged.

the first order balance and replaces the Coriolis force. Similar behaviour for the lengthscale
dependence in m is found (Fig. 5.3b). The l and m spectra for the total, toroidal and poloidal
kinetic energy are plotted for Ra = 2Rac (Fig. 5.2) and Ra = 5Rac (Fig. 5.4). At Ra = 2Rac,
in l-space, the total and poloidal energy have similar peaks but the toroidal energy differs. In
m-space both toroidal and poloidal parts have a similar peak to the total energy. At Ra = 5Rac,

for both l and m, the toroidal energy spectrum is very similar to the total energy spectrum
with peaks occurring at the same values of l and m whereas the peak in the poloidal energy
spectrum differs to the total and toroidal kinetic energy. These plots indicate that the toroidal
energy dominates for most (or all) scales for all runs. In particular, the toroidal energy is
much larger at large scales probably as a result of the development of large scale zonal flows
(especially at increased Ra). The position of the peaks in energy are discussed as these will be
important in Section 5.3 when they are compared to crossing points and triple balance points.
The structured behaviour of the flow is observed in plots of the meridional sections of uϕ, where
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(a) (b)

Figure 5.5: Comparison of forces for a HD run at E = 10−4 and Ra = 30Rac. (a) forces in l,
(b) forces in m. All quantities are time averaged and boundary layers have been removed.

(a) (b)

Figure 5.6: Energy spectrum for a HD run at E = 10−4 and Ra = 30Rac. (a) energy spectrum
in l (b) energy spectrum in m. All quantities are time averaged.

20 0 20

(a) Ra = 2Rac

100 0 100

(b) Ra = 5Rac

1000 500 0 500 1000

(c) Ra = 30Rac

Figure 5.7: Plots of meridional sections of uϕ. All plots are ϕ averaged.
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(b) Ra = 5Rac
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Figure 5.8: Plots of equatorial sections of ur.

the flow is z-invariant at both Ra = 2Rac (Fig 5.7a) and Ra = 5Rac (Fig 5.7b). Equatorial
sections of ur also show a highly ordered flow similar to the convective onset mode at Ra = 2Rac

(Fig. 5.8a). At Ra = 5Rac (Fig. 5.8b) the flow is no longer made up of only Taylor columns
but the flow retains the z-invariance.

At Ra = 30Rac (Fig. 5.5) the inertial force has increased and now enters the first order balance.
This is observed in both l and m. The change in behaviour between the runs at low Ra and
high Ra is clear from the differences in the hierarchy of forces and the changes in flow patterns.
At Ra = 30Rac zonal flows are now observed ITC and OTC (Fig. 5.7c) and a wider range
of azimuthal modes are excited at this larger supercriticality with the flow becoming more
chaotic (Fig. 5.8c). The total and toroidal kinetic energy spectrum are very similar but the
poloidal energy spectrum has differing behaviour and peaks at a different l and m to the other
components (Fig. 5.6). Overall the plots of the forces in l and m match well qualitatively,
where the hierarchy of forces are similar. The main difference between l and m is the point at
which the forces decrease and become less important.

5.1.2 Dynamo solutions at E = 10−4

Figure 5.9 shows the forces for a weak field dipolar run. The forces in l and m are similar. A
zeroth order geostrophic balance occurs throughout with the viscous, inertial and Lorentz force
remaining weak in both cases. The dipolar nature of the field is clear from the spherical surface
plot of Br (Fig. 5.17a). The flow patterns shown in the meridional sections of uϕ and equatorial
sections of ur (Figs 5.16a, 5.18a) are similar to those at low Ra in the hydrodynamical case. The
flow patterns and hierarchy of forces are similar to the hydrodynamical runs at low Ra, with
the inclusion of a weak Lorentz force, so this regime acts like a weakly magnetically adjusted
hydrodynamical regime. The energy spectra in l and m (Fig. 5.10) display similar results to
the energy spectrum at low Ra for the hydrodynamical case (Fig. 5.2) where the total, toroidal
and poloidal kinetic energy spectra peak at the same l and m.

Figure 5.11 shows the forces for the same parameters used in Figure 5.9 but this run has been
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(a) (b)

Figure 5.9: Comparison of forces for weak field dipolar run at E = 10−4, Pm = 12 and
Ra = 2.07Rac. (a) forces in l (modes with l odd removed), (b) forces in m (every 4m plotted).
All quantities are time averaged and boundary layers have been removed.

(a) (b)

Figure 5.10: Energy spectrum for weak field dipolar run at E = 10−4, Pm = 12 and Ra =
2.07Rac. Blue and red lines represent kinetic and magnetic energy respectively. (a) energy
spectrum in l (modes with l odd removed) (b) energy spectrum in m (every 4m plotted). All
quantities are time averaged.

initialised from the final state of a run on the strong field branch in nearby parameter space
to obtain a strong field dipolar solution (Teed and Dormy, 2025). These weak and strong field
solutions are bistable. The forces in l and m are very similar (Figs 5.11a and 5.11b) where a
zeroth order geostrophic balance occurs at larger scales and at smaller scales the Coriolis force
drops off and instead a balance between the pressure gradient and Lorentz force occurs. The
buoyancy force is also strong at larger lengthscales but drops off at smaller scales. The viscous
and inertial forces are weak across all scales. The energy spectra in l shows that the toroidal
part of the kinetic energy is the main contributor to the total energy but the poloidal energy
differs with peaks occurring at a different l to the toroidal and total energy (Fig. 5.12a). In
m, all three parts display similar behaviour (Fig. 5.12b). Again, the dipolar nature of the
field is clear from Br (Fig. 5.17b) where the field is dipolar but more small scale structures
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(a) (b)

Figure 5.11: Comparison of forces for strong field dipolar run at E = 10−4, Pm = 12 and
Ra = 2.07Rac. (a) forces in l, (b) forces in m. All quantities are time averaged and boundary
layers have been removed.

(a) (b)

Figure 5.12: Energy spectrum for strong field dipolar run at E = 10−4, Pm = 12 and Ra =
2.07Rac. Blue and red lines represent kinetic and magnetic energy respectively. (a) energy
spectrum in l (b) energy spectrum in m. All quantities are time averaged.

appear compared with the weak field dipolar regime. For the strong field dipolar case (Fig.
5.16b), convection is now present inside the tangent cylinder which is not observed for the weak
field dipolar case. The likely reason for convection ITC being present in the strong field case
and not the weak field case (despite the unchanged value of Ra) is that the magnetic field
relaxes the rotational constraint thereby lowering the effective Rac. Hence the strong field is
more supercritical than the weak field case as the magnetic field is stronger. This is similar to
the magnetoconvection study in Chapter 3 where a larger Q usually leads to RaMC

c < RaHDc .
Outside the tangent cylinder, the flow loses its z-invariance. An increase in the dominant
azimuthal wavenumber occurs in the strong dipolar case (Fig 5.18b).

Figure 5.13 shows the forces for another strong field run on the same branch as the run shown
in Figure 5.11 but the Rayleigh number has been increased to Ra = 10Rac. The results are
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(a) (b)

Figure 5.13: Comparison of forces for strong field dipolar run at E = 10−4, Pm = 12 and
Ra = 10Rac. (a) forces in l, (b) forces in m. All quantities are time averaged and boundary
layers have been removed.

(a) (b)

Figure 5.14: Comparison of forces for multipolar run at E = 10−4, Pm = 1 and Ra = 30Rac.
(a) forces in l, (b) forces in m. All quantities are time averaged and boundary layers have been
removed.

broadly similar to those at Ra = 2.07Rac (Fig. 5.11) but the inertial force has increased slightly
in both l and m, due to the increase in Ra. This is to be expected as increasing the Rayleigh
number creates a more turbulent flow, driven by the non-linear inertial term. The turbulent
behaviour can also be observed from the plots of the flow and magnetic field (Figs 5.16c, 5.17c
and 5.18c) where more modes are excited so more small scale structures are observed.

Figure 5.14 shows the forces for a fluctuating multipolar run at E = 10−4, Pm = 1 and
Ra = 30Rac. The hierarchy of forces between l and m are similar. A zeroth order geostrophic
balance occurs at large scales followed by a first order balance between buoyancy, inertial and
ageostrophic Coriolis forces. The Lorentz and viscous forces remain weak throughout. This
balance is similar to the strong field dipolar case but the inertial and Lorentz forces have
switched, with the inertial force now controlling the behaviour for this multipolar run. The
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(a) (b)

Figure 5.15: Energy spectrum for fluctuating multipolar run at E = 10−4, Pm = 1 and
Ra = 30Rac. Blue and red lines represent kinetic and magnetic energy respectively. (a) energy
spectrum in l (b) energy spectrum in m. All quantities are time averaged.
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Figure 5.16: Meridional sections of uϕ. All plots are ϕ averaged.
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Figure 5.17: Spherical surface plots of Br at r = ro.
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Figure 5.18: Equatorial sections of ur.

energy spectra show similar results to the strong field dipolar runs and hydrodynamical runs
at larger Ra where in l-space the toroidal part of the kinetic energy has similar behaviour to
the total energy but the poloidal energy curve has a different shape and peaks at a different
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l (Fig. 5.15a). In m-space the poloidal kinetic energy is smaller than the toroidal kinetic
energy but both curves have a similar shape to the total energy spectrum (Fig. 5.15b). The
magnetic energy is now smaller than the kinetic energy indicating that the magnetic field is
much weaker in the multipolar regime (Fig. 5.15) compared to the strong dipolar regime
(Fig. 5.12). The multipolar nature of this run can be observed from the spherical surface
plot of Br (Fig. 5.17d) where blue and red patches appear in approximately equal density at
both sides of the equator. This multipolar solution is found due to the increase in Rayleigh
number combined with decreasing magnetic Prandtl number. The flow patterns found for the
fluctuating multipolar run (Figs 5.16d, 5.18d) are similar to the hydrodynamical run at high
Ra. This is to be expected as the force balances are similar, with the main difference being the
addition of the weak Lorentz force for the dynamo run in the multipolar regime.

5.1.3 Dynamo solutions at E = 10−5

Simulations at E = 10−5 are presented, to ensure similar balances persist as the rotation rate
is increased. The results match well to those found at E = 10−4 where both the hierarchy of l
and m are similar and the balances in each regime at E = 10−5 match well when comparing to
E = 10−4.

(a) (b)

Figure 5.19: Comparison of forces for weak field dipolar run at E = 10−5, Pm = 5 and
Ra = 3Rac. (a) forces in l, (b) forces in m. All quantities are time averaged and boundary
layers have been removed.

Figure 5.19 shows the forces in l and m for a weak field dipolar case. In both cases a zeroth
order geostrophic balance occurs and at first order a balance is found between buoyancy and
ageostrophic Coriolis forces at large scales. The Lorentz, inertial and viscous forces remain
small. The Lorentz force is larger than the inertial and viscous forces at E = 10−5 which was
not the case at E = 10−4 and is most likely because of the larger Ra/Rac. However it still
remains small and only enters the main balance at the smallest scales, similar to the case at
E = 10−4. The results for a strong field dipolar solution show a zeroth order geostrophic balance
and at first order a balance between buoyancy, Lorentz and ageostrophic Coriolis forces occurs
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(a) (b)

Figure 5.20: Comparison of forces for strong field dipolar run at E = 10−5, Pm = 5 and
Ra = 4Rac. (a) forces in l, (b) forces in m. All quantities are time averaged and boundary
layers have been removed.

at large scales (Fig. 5.20). The Lorentz force enters the zeroth order balance at small scales.
This is similar to the results found at E = 10−4. The dipolar magnetic field for both runs is
clear from the plots of Br (Figs 5.23a, 5.23b) where there is a clear divide of red and blue across
the equator. The radial velocity for both runs is similar to those at E = 10−4 where the flow is
similar to the onset state in the sense that convection is still only localised near the TC in the
weak dipolar case (Fig. 5.24a). It then becomes more chaotic for the strong dipolar case (Fig.
5.24b). The size of the structures become smaller at E = 10−5 compared with E = 10−4 and
can be seen by comparing Figure 5.16 with Figure 5.22 and Figure 5.18 with Figure 5.24.

(a) (b)

Figure 5.21: Comparison of forces for a fluctuating multipolar run at E = 10−5, Pm = 0.2 and
Ra = 100Rac. (a) forces in l, (b) forces in m. All quantities are time averaged and boundary
layers have been removed.

The forces for a fluctuating multipolar run are shown in Figure 5.21. The hierarchy of forces
in l and m are similar where a zeroth order geostrophic balance occurs followed by a first
order balance between buoyancy, ageostrophic Coriolis and inertial forces. These results are
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Figure 5.22: Meridional sections of uϕ. All plots are ϕ averaged.
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Figure 5.23: Spherical surface plots of Br at r = ro.
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Figure 5.24: Equatorial section of ur.

similar to the fluctuating multipolar case at E = 10−4 (Fig. 5.14). Fluctuating multipolar runs
are obtained by increasing Ra (at fixed low enough, Pm). As the Ekman number decreases,
multipolar runs are harder to obtain. This was discussed in Section 1.5.2 where regime diagrams
demonstrated that lowering the Ekman number moves onset of the multipolar regime to larger
values of Ra, which makes the fluctuating multipolar regime harder to obtain numerically (Fig.
1.4). Hence, the value of Ra has increased so Ra = 100Rac and Pm is decreased to Pm = 0.2.
The multipolar behaviour of the magnetic field is shown in Figure 5.23c, where red and blue
patches appear at both sides of the equator. The azimuthal wavenumber has increased (Fig.
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5.24c) compared with the weak and strong field dipolar case (Figs 5.24a, 5.24b).

Overall, the forces in the three main regimes of dynamo action display similar results between
E = 10−4 and E = 10−5. The lengthscale dependence of forces in l were discussed and
compared with new results examining the m-dependence of forces. The m-dependence show
good agreement with the l-dependence where the hierarchy of forces remain similar. Therefore
the forces and their hierarchy are not highly dependent on whether a representation in l or m
is used. Hence, either representation (l or m) can be used in further analysis. There are small
differences between the force spectra in l and m which are important for further analysis in
Section 5.3. The strong field dipolar runs (Figs. 5.11, 5.13) in l-space have scales where certain
forces are in balance and cross each other. Figure 5.11a has clear crossing points of Lorentz
and buoyancy forces and ageostrophic Coriolis and buoyancy forces. In m-space crossing points
for Lorentz and ageostrophic Coriolis forces occur but the crossover of buoyancy and Lorentz
forces occurs at m = 1 as a result of activity in the m = 0 mode, which is not representative
in the same way as the crossing in l-space. This is also the case for the multipolar run, where
in l-space (Fig. 5.14a) we can obtain crossing points of buoyancy and inertial forces but in
m-space the crossing occurs at m = 1 (Fig. 5.14b).

5.2 Comparison of curls of forces

The curls of forces in l and m are now examined. As mentioned previously, Teed and Dormy
(2023) demonstrated that taking the curl of each force provided a clearer view of the force
balances, as this removed the large pressure gradient which does not impact the flow dynamics.
Their study showed that taking the curl recovered the relevant force balance at leading order.
Here, similar results to their study are presented by discussing the l-dependence of curls of
forces, and new results are introduced by examining the m-dependence. The curls of forces in l
and m are compared with each other, and the curls of forces are compared to the force balances
presented in the previous section.

5.2.1 Hydrodynamical solutions at E = 10−4

Figures 5.25 - 5.27 show the curls of forces for the same runs presented in Section 5.1.1. At
Ra = 2Rac the lengthscale dependence in l (Fig. 5.25a) shows a leading order balance at large
scales between Coriolis and buoyancy forces. The viscous force also enters this balance at a
wide range of scales to form a VAC balance. In m the hierarchy of forces remain similar to
l, but the curves become smaller much sooner in m than in l. Taking the curl has allowed us
to retrieve the relevant balance at leading order which was not possible when examining the
forces, as the geostrophic balance usually occurred at leading order (Fig. 5.1a).

At Ra = 5Rac, the lengthscale dependence in l shows a first order balance between Coriolis and
buoyancy forces at large scales (Fig. 5.26a) and at smaller scales the inertial and viscous forces
break this and these forces now form the first order balance. Similar behaviour is observed for



Force balances in a spherical dynamo model 105

(a) (b)

Figure 5.25: Comparison of curl of forces for a HD run at E = 10−4 and Ra = 2Rac. (a)
curl of forces in l (modes with l odd removed), (b) curl of forces in m (every 7m plotted). All
quantities are time averaged and boundary layers have been removed.

(a) (b)

Figure 5.26: Comparison of curl of forces for a HD run at E = 10−4 and Ra = 5Rac. (a) curl of
forces in l, (b) curl of forces in m. All quantities are time averaged and boundary layers have
been removed.

the curls in m, where the hierarchy of forces remains similar between l and m but there is an
increase in the inertial and viscous terms at large scales and the curl of forces are smoother in
m (Fig. 5.26b) than in l (Fig. 5.26a).

At Ra = 30Rac, the system transitions to an inertially dominated run. In l, the Coriolis and
inertial terms are in balance at small scales, with the Coriolis term dropping off at larger scales
(Fig. 5.27a). In m a similar balance occurs, but the Coriolis term does not balance the inertia
term at any scale and instead the inertial term remains dominant throughout (Fig. 5.27b). In
all cases, taking the curl has allowed the relevant balance to be obtained at leading order. This
was not possible for the forces as a zeroth order geostrophic balance occurs at least at large
scales.
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(a) (b)

Figure 5.27: Comparison of curl of forces for a HD run at E = 10−4 and Ra = 30Rac. (a) curl
of forces in l, (b) curl of forces in m. All quantities are time averaged and boundary layers have
been removed.

5.2.2 Dynamo solutions at E = 10−4

Curls of forces are presented for the same runs discussed in Section 5.1.2. The weak field dipolar
case at Ra = 2.07Rac shows a first order balance between Coriolis and buoyancy terms in l

with the viscous term also entering the balance for a wide range of scales (Fig. 5.28a). In m,
the same balance occurs but is only present at large scales before dropping off (Fig. 5.28b).
At small scales the main balance is between the Lorentz and viscous terms. This behaviour is
similar to the hydrodynamical case at low Ra (albeit with the addition of a weak Lorentz force)
and again confirms that the weak field dipolar case behaves like a weakly magnetically adjusted
hydrodynamical run. For the strong field dipolar case also at Ra = 2.07Rac, a triple balance
between Coriolis, buoyancy and Lorentz terms occurs in l at large scales and at small scales
the buoyancy drops off leaving a balance between Coriolis and Lorentz terms (Fig. 5.29a). In
m, the buoyancy contribution is strong but does not reach the same magnitude as the Coriolis
and Lorentz terms to be included in the main balance at any scale (Fig. 5.29b). As a result
of this, a crossing point between Lorentz and buoyancy terms cannot be defined. This will be
discussed in more detail in Section 5.3. A slight increase in the viscous term is also observed
in m, and the inertial contribution remains weak throughout.

Figure 5.30 shows the curls of forces for another strong dipolar run where the supercriticality
has been increased to Ra = 10Rac. The curls in l behave similarly to those at Ra = 2.07Rac

where a MAC balance occurs at large scales and then the buoyancy decreases at smaller scales.
An increase in the inertial term occurs, which is to be expected as the Rayleigh number has
increased. The lengthscale dependence of the curls in m behave differently to l. Like the run at
2.07Rac, a balance between Coriolis and Lorentz terms occurs with the buoyancy contribution
never quite entering the main balance. However, the viscous term is now larger than the
buoyancy term and this remains the case throughout, which did not occur at lower Ra (Fig.
5.29b). The viscous and Lorentz terms balance at small scales, similar to lower Ra.
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(a) (b)

Figure 5.28: Curl of forces for weak field dipolar case at E = 10−4, Pm = 12 and Ra = 2.07Rac.
(a) curl of forces in l (modes with l odd removed), (b) curl of forces in m (every 4m plotted).
All quantities are time averaged and boundary layers have been removed.

(a) (b)

Figure 5.29: Curl of forces for strong field dipolar case at E = 10−4, Pm = 12 and Ra =
2.07Rac. (a) curl of forces in l, (b) curl of forces in m. All quantities are time averaged and
boundary layers have been removed.

Figure 5.31 shows the curl of forces for a fluctuating multipolar run at E = 10−4, Pm = 1

and Ra = 30Rac. The curls in l show a balance between Coriolis and inertial terms, and the
buoyancy force also enters this main balance at some scales. In m, the inertial term is dominant
throughout and is balanced by the Coriolis term at large scales. The buoyancy contribution is
also strong but never enters the main balance, which is similar to the strong field dipolar runs.

In all cases, both the l and m dependence provide a similar representation of the forces control-
ling the system. We are able to recover the relevant force balances in the different regimes at
leading order, as we have removed the pressure gradient by taking the curl. In the weak field
dipolar case we obtain a balance between buoyancy and Coriolis terms, with the viscous term
becoming important at a wide range of scales in both l and m. The strong field case displays
a MAC balance in l at larger scales with the buoyancy term dropping off at smaller scales.
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(a) (b)

Figure 5.30: Curl of forces for strong field dipolar case at E = 10−4, Pm = 12 and Ra = 10Rac.
(a) curl of forces in l, (b) curl of forces in m. All quantities are time averaged and boundary
layers have been removed.

(a) (b)

Figure 5.31: Curl of forces for the multipolar case at E = 10−4, Pm = 1 and Ra = 30Rac. (a)
curl of forces in l, (b) curl of forces in m. All quantities are time averaged and boundary layers
have been removed.

The m-dependence also shows the importance of the Coriolis, buoyancy and Lorentz terms but
the buoyancy does not quite enter the main balance with Coriolis and Lorentz terms at any
scales. However, both l and m show that the MAC contributions control the dynamics of the
flow. The multipolar regime shows similar results where a CIA balance is important in l and
m although the buoyancy never enters the main balance with Coriolis and inertial terms in m.

5.2.3 Dynamo solutions at E = 10−5

The curls of forces are presented for the same runs discussed in Section 5.1.3. The weak field
dipolar case at E = 10−5 (Fig. 5.32) is similar to the run at E = 10−4 (Fig. 5.28) although the
Lorentz term is larger than the viscous term at E = 10−5, most likely due to the larger Ra/Rac.
The strong field dipolar runs at E = 10−4 (Fig. 5.29) and E = 10−5 (Fig. 5.33) are also similar
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where a MAC balance occurs in l at large scales and transitions to a balance between Coriolis
and Lorentz terms at small scales. In m a MAC balance is found, but similarly to E = 10−4,
the buoyancy contribution never quite enters the main balance with the Lorentz and buoyancy
terms.

(a) (b)

Figure 5.32: Curl of forces for weak field dipolar run at E = 10−5, Pm = 5 and Ra = 3Rac.
(a) forces in l, (b) forces in m. All quantities are time averaged and boundary layers have been
removed.

(a) (b)

Figure 5.33: Curl of forces for strong field dipolar run at E = 10−5, Pm = 5 and Ra = 4Rac.
(a) curl of forces in l, (b) curl of forces in m. All quantities are time averaged and boundary
layers have been removed.

For the multipolar case (fig. 5.34), the inertial term is dominant throughout in l and m. In l,
the inertial term dominates across all lengthscales and the Coriolis force is also strong but never
reaches the same magnitude as the inertial force. This differs to the multipolar run at E = 10−4

(Fig. 5.31a) where the inertial force was dominant across all lengthscales but was balanced by
the Coriolis force at larger scales. This is due to the stronger driving at E = 10−5. In m, the
inertial term is strong throughout, and the Coriolis term is also strong but never enters the
main balance. Again, like other runs, an increase in the viscous contribution is observed in m

compared with l.
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(a) (b)

Figure 5.34: Curl of forces for a multipolar run at E = 10−5, Pm = 0.2 and Ra = 100Rac. (a)
curl of forces in l, (b) curl of forces in m. All quantities are time averaged and boundary layers
have been removed.

There are subtle differences between the curl spectra in l and m which are important for further
analysis in the next section. For the strong field dipolar runs (Figs 5.29, 5.30) in l there are
scales at which certain curls of forces are in balance and cross each other. For example, Figure
5.29a has a clear crossing point between Lorentz and buoyancy terms and Coriolis and buoyancy
terms. However, in m, there are no clear crossing points of Lorentz and buoyancy or Coriolis
and buoyancy terms (Fig. 5.29b). The run displays a solution typical of those in a MAC regime
but the buoyancy never balances the Coriolis or Lorentz terms at any scale. This tends to be
the case when examining the m-dependent curls of forces. Figure 5.31 displays similar results
where an inertially dominated solution is obtained and the l dependence shows clear crossovers
and balances of Coriolis, inertial and buoyancy terms. In m a combination of Coriolis, inertial
and buoyancy terms are also controlling the dynamics. However, there are no clear crossing
points of Coriolis, inertial and buoyancy terms or scales at which two or three of these terms
are completely in balance.

5.3 Relating flow lengthscales to triple force balances

Studies by Schwaiger et al. (2019, 2021) have related flow lengthscales to force balances by
considering the crossover points of relevant forces in simulations. In order to do this, they
considered the poloidal kinetic energy spectrum in l and the spectra of forces in l, taking the
peak of the poloidal kinetic energy and comparing this with the crossing points of different
forces. For magnetically dominated runs they considered the crossover point between Lorentz
and buoyancy forces, and in non-magnetic runs with large Ra which are dominated by the
inertial force they considered the crossover point between inertia and buoyancy. They were
able to relate the dynamically relevant lengthscales (crossover points) to the energetically rele-
vant lengthscales (poloidal energy peaks). They also examined crossover points of viscous and
buoyancy forces but were unable to relate these to the energetically relevant lengthscales, most
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likely because the boundary layers have been removed in the simulations examined. Only runs
which have a clear crossover point of relevant forces were considered and other simulations
which do not have clear crossover points were ignored, which leaves open the question of how
the dynamic lengthscales are set in such solutions.

Simulations without crossover points are still important and should be considered in the anal-
ysis. In our previous analysis we discussed l and m-dependence of forces and curls of forces,
where some of our simulations do not contain clear crossover points, especially in m. It should
also be noted that Schwaiger et al. (2019, 2021) only consider two of the three relevant forces
in each regime. In the non-magnetic runs at large enough Ra, only the inertial and buoyancy
forces are considered and for magnetically dominated runs the Lorentz and buoyancy forces are
considered when examining the dynamically relevant lengthscales. However, it is clear from the
analysis discussed in the previous section and studies by Aubert et al. (2017), Schwaiger et al.
(2019) and Teed and Dormy (2023) that the Coriolis term is also important in the main balance
and impacts the flow dynamics. Therefore, the triple balance of forces could be considered to
obtain a dynamically relevant lengthscale.

We wish to relate both the forces and curls of forces to the flow lengthscales in l and m in our
simulations. Clear crossover points of the dominant forces occur in some of the runs discussed in
the previous section but not all. In m especially, crossing points do not occur for the majority of
runs. Instead, we can construct a triple balance point for the three different regimes of dynamo
action. For the strong field dipolar case a balance between Coriolis, Lorentz and buoyancy
terms (MAC) is considered, for the multipolar case a balance between Coriolis, inertia and
buoyancy (CIA) terms is considered, and for the weak field dipolar case a balance between
viscous, Coriolis and buoyancy (VAC) terms is considered. We also include non-magnetic runs
to compare with Schwaiger et al. (2021). In this chapter, the work of Schwaiger et al. (2021) is
extended in four key ways:

1. Examine the crossover points in m-space.

2. Examine the crossover points of curls of forces in l-space and m-space.

3. Introduce a new dynamically relevant lengthscale by forming a triple balance point which
can be compared to energetically relevant lengthscales.

4. Separate runs based on dynamo branch.

Runs at 10−5 ≤ E ≤ 3 × 10−4 are considered and are categorised by separating solutions into
the three main regimes of dynamo action. Hydrodynamical runs are also separated based on
Rayleigh number by considering those with Ra < 20Rac and those with Ra ≥ 20Rac. This
was chosen by examining the force balances where runs with Ra < 20Rac mainly lie in a VAC
balance and those with Ra ≥ 20Rac mainly lie in a CIA balance, allowing us to approximate a
distinction between runs in a CIA balance and those in a VAC balance.
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5.3.1 Crossovers

We begin by analysing our simulations using the method by Schwaiger et al. (2021) and doing
similar for m and for curls of forces. Schwaiger et al. (2021) define the crossover points between
the forces in l as

lMA = argmin
l

(|FM,l − FA,l|) (5.1)

lIA = argmin
l

(|FI,l − FA,l|) (5.2)

lV A = argmin
l

(|FV,l − FA,l|) (5.3)

and to obtain a similar method for comparing the crossover points in m we define

mMA = argmin
m

(|FM,m − FA,m|) (5.4)

mIA = argmin
m

(|FI,m − FA,m|) (5.5)

mV A = argmin
m

(|FV,m − FA,m|) , (5.6)

where the notation FA,l and FA,m represents the value of the Archimedean force at l and m

respectively, and likewise for the other forces. The formulae above are also applied to the curls
of forces, but the definitions are not repeated for brevity. An example of an lMA crossover is
illustrated on Figure 5.11a. These crossover points are compared with the peaks in the total
kinetic energy, poloidal kinetic energy and toroidal kinetic energy spectra in l and m denoted
by ltot, lpol and ltor and similar for m. We aim to find a correlation between peaks in the energy
and crossover points to allow us to relate dynamically relevant lengthscales to energetically
relevant lengthscales. Unlike Schwaiger et al. (2021), we include all of our runs, even those
which do not have a well-defined crossover of forces. This means the largest l or m is extracted
for runs without a well-defined crossover, as a result of the definitions of Equations (5.1)-(5.6).
This occurs since the difference of the two forces being considered in (5.1)-(5.6) will be smallest
at the largest l or m. Hence, we expect simulations without crossovers to cluster at the largest
l and m in our plots.

For the forces in l, for multipolar runs and hydrodynamical runs at large enough Ra, our plots
show that lpol ≈ lIA (Fig. 5.35b). Some of these runs also show a correlation with ltot (Fig.
5.35a) and ltor (Fig. 5.35c) but lpol shows the best match. Similarly, for some runs on the
strong field branch, there is a correlation between crossings in Lorentz and buoyancy forces and
lpol (Fig. 5.35e). Similar to lIA, some of the strong field runs show a correlation between lMA

and ltot (Fig. 5.35d) and ltor (Fig. 5.35f) but lpol provides the best match. For runs on the
weak field branch and low Ra hydrodynamical runs, there is no correlation between lV A and
any of ltot, lpol or ltor (Figs 5.35g, 5.35h, 5.35i). Crossover points of lV A are always at a much
larger scale than the peak of the flow. This could be due to removal of the boundary layers in
our simulations, causing a reduction in the viscous force. These results match with Schwaiger
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(g) (h) (i)

Figure 5.35: Crossover points of forces in l-space as a function of (a-c) IA crossover, (d-f) MA
crossover and (g-i) VA crossover. Each column is for a different energetic lengthscale (ltot, lpol
and ltor).

et al. (2021) where they found that crossing points between Lorentz and buoyancy forces in
magnetically dominated runs and crossing points between inertial and buoyancy forces in non-
magnetic runs (at large enough Ra) matched well with lpol. We have extended this work by
including runs in the multipolar regime where the inertial force dominates and have found that
these follow a similar pattern to the non-magnetic runs at large Ra, demonstrating the weak
role of the magnetic field in the multipolar regime. Figures 5.35a, 5.35d and 5.35g are nearly
identical to Figures 5.35c, 5.35f and 5.35i respectively, so it is clear that the total kinetic energy
spectrum is controlled by the toroidal energy. The poloidal energy spectrum provides a better
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Figure 5.36: Crossover points of curls of forces in l-space as a function of (a-c) IA crossover,
(d-f) MA crossover and (g-i) VA crossover. Each column is for a different energetic lengthscale
(ltot, lpol and ltor).

correlation between crossing points and peaks in the energy than the total or toroidal energy.
This could be caused by the possible development of large scale zonal flows which means the
peak of the toroidal energy spectrum no longer represents the scale of convection.

For the curls of forces in l, we find that the crossing points between inertial and buoyancy
forces for the multipolar and non-magnetic runs do not correlate well to any of ltot, lpol or ltor
(Figs 5.36a, 5.36b, 5.36c) as the crossovers occur at a larger scale than the peak of the flow.
For some of the runs in the strong field regime where the Lorentz force is important, we find
that lMA ≈ lpol. However, it is not as accurate as lMA for the forces. For runs in the weak field
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.37: Crossover points of forces in m-space as a function of (a-c) IA crossover, (d-f) MA
crossover and (g-i) VA crossover. Each column is for a different energetic lengthscale (mtot,
mpol and mtor).

regime which have a VAC balance, no correlation is found between lV A and any of ltot, lpol or
ltor.

The forces in m show no correlation for any of the crossovers with mtot, mpol or mtor. For mIA

(Figs 5.37a - 5.37c) for simulations in the multipolar regime or large Ra hydrodynamical runs,
there is no well-defined crossover so all purple points are clustered at the largest m. This is
also the case for mMA (Figs. 5.37d - 5.37f) where the majority of strong dipolar runs lie at
the largest values of mMA. For the crossover between mV A, we are able to extract well-defined
crossovers but these crossovers are at a much larger scale than the flow, similar to l-space. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.38: Crossover points of curls of forces in m-space as a function of (a-c) IA crossover,
(d-f) MA crossover and (g-i) VA crossover. Each column is for a different energetic lengthscale
(mtot, mpol and mtor).

curl of forces in m display a similar behaviour. For runs in the multipolar regime or large Ra
hydrodynamical runs, there is no clear mIA so points cluster around the largest m (Figs 5.38a
- 5.38c). For runs in the strong field regime, we do not obtain a crossover for mMA and again
points cluster around the largest m (Figs 5.38d - 5.38f). For mV A we do not find a correlation
for any of mtot, mpol or mtor (Figs 5.38g - 5.38i), similar to the other cases examined.
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5.3.2 Triple balances

The crossing points of Section 5.3.1 only consider the point at which two of the forces are most
in balance, but, as shown in Section 5.2, the three regimes appear to be primarily controlled
by a triple balance of forces. Therefore, we define a point where the three relevant forces are
most in balance. These are given by

lMAC = argmin
l

(
|FL,l − FA,l|+ |FC,l − FA,l|+ |FL,l − FC,l|

max (FL,l, FA,l, FC,l)

)
(5.7)

lCIA = argmin
l

(
|FI,l − FA,l|+ |FC,l − FA,l|+ |FI,l − FC,l|

max (FI,l, FA,l, FC,l)

)
(5.8)

lV AC = argmin
l

(
|FV,l − FA,l|+ |FC,l − FA,l|+ |FV,l − FC,l|

max (FV,l, FA,l, FC,l)

)
(5.9)

and similarly for m we define

mMAC = argmin
m

(
|FL,m − FA,m|+ |FC,m − FA,m|+ |FL,m − FC,m|

max (FL,m, FA,m, FC,m)

)
(5.10)

mCIA = argmin
m

(
|FI,m − FA,m|+ |FC,m − FA,m|+ |FI,m − FC,m|

max (FI,m, FA,m, FC,m)

)
(5.11)

mV AC = argmin
m

(
|FV,m − FA,m|+ |FC,m − FA,m|+ |FV,m − FC,m|

max (FV,m, FA,m, FC,m)

)
. (5.12)

The formulae above are also applied to curls of forces but the definitions are not repeated for
brevity. Forming a triple balance point in this way allows us to extract the lengthscale at
which the three forces are most in balance. Equation 5.7, extracts the lengthscale at which
Lorentz, buoyancy and Coriolis are most in balance. We divide by the maximum of the three
relevant forces at each l to obtain the lengthscale where the three forces are most in balance,
but also where these forces are large and important to the flow dynamics. If no normalisation
was performed, then we are likely to extract the largest values of l or m, where all forces
are small in magnitude and are not impacting the main dynamics of the flow. These triple
balance points are compared to the peaks in the total kinetic energy, poloidal kinetic energy
and toroidal kinetic energy spectra in l and m. To find a triple balance point for the forces,
the Coriolis force is replaced with the ageostrophic Coriolis force and the balance between
ageostrophic Coriolis, buoyancy and either of viscous, inertia or Lorentz forces is considered.
The ageostrophic Coriolis force is considered as this is what has been argued (Schwaiger et al.,
2019) to be the dynamically important part of the Coriolis force. These triple balance points are
referred to as lMACag , lCagIA and lV ACag and similarly for m. For the curls, the usual (solenoidal)
Coriolis force is used in the definition.

For the triple balance of forces in l, multipolar runs and non-magnetic runs at large Ra show
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.39: Triple balance of forces in l-space as a function of (a-c) CagIA, (d-f) MACag and
(g-i) VACag triple balance point. Each column is for a different energetic lengthscale (ltot, lpol
and ltor).

that lCagIA ≈ lpol (Fig. 5.39b). Similarly for runs in the strong field branch where forces are
dominated by a MAC balance a correlation is found between lMACag and lpol (Fig. 5.39e). The
plots involving ltot and ltor for lCagIA (Figs 5.39a, 5.39c) and lMACag (Figs 5.39d, 5.39f) are
very similar, again highlighting that the total energy is controlled by the toroidal energy but
neither the total nor toroidal energy peaks show a correlation with lCagIA or lMACag . There is no
correlation between peaks in the energy and the viscous, buoyancy and ageostrophic Coriolis
force balance for any of ltot, lpol or ltor (Figs 5.39g - 5.39i). These results are similar to the
crossover points where lIA ≈ lpol and lMA ≈ lpol but the VAC scale did not correlate to any of
the peaks in energy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.40: Triple balance of curl of forces in l-space as a function of (a-c) CIA, (d-f) MAC
and (g-i) VAC triple balance point. Each column is for a different energetic lengthscale (ltot,
lpol and ltor).

The curls of forces (Fig. 5.40) show similar results to the forces (Fig. 5.39). The values of lpol
are best at relating the peaks in energy to the triple balance point. For lCIA, only some of the
multipolar and non-magnetic runs show a correlation with lpol (Fig. 5.40b). This differs from
the crossover points of curls of forces where no correlation was found between lIA and lpol. We
find a correlation between lMAC and lpol for some of the strong field runs (Fig. 5.40e), similar
to the crossover point lMA in the curl of the forces. Both ltot and ltor do not show a correlation
with either lCIA (Figs 5.40a, 5.40c) or lMAC (Figs 5.40d, 5.40f). For runs in the weak field
regime where viscous forces dominate, the VAC triple balance point cannot be related to any
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.41: Triple balance of forces in m-space as a function of (a-c) CagIA, (d-f) MACag and
(g-i) VACag triple balance point. Each column is for a different energetic lengthscale (mtot, mpol

and mtor).

of the energy peaks (Figs 5.40g - 5.40i). This is similar to the results for the forces and the
crossover of curls of forces and could be due to the removal of the boundary layers.

For the triple balance point of forces in m no relationship is found between mtot, mpol or mtor

and the appropriate triple balance point for any of the regimes. For mCagIA, the triple balance
point for most runs occurs at a small m compared to the peak of the flow (Figs 5.41a - 5.41c).
Similar results are found for mMACag where the triple balance point for most runs occurs at a
small m compared with the peak of the flow (Figs 5.41d - 5.41f). Although no correlation is
found between the triple balance points and peaks in the flow, we are able to obtain a triple
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.42: Triple balance of curls of forces in m-space as a function of (a-c) CIA, (d-f) MAC
and (g-i) VAC triple balance point. Each column is for a different energetic lengthscale (mtot,
mpol and mtor).

balance point unlike the crossovers, where in most cases in m space the crossover points are
not well-defined. Once again no relationship is found between mV ACag and any of mtot, mpol or
mtor (Figs 5.41g - 5.41i).

For the curls of forces in m-space, a correlation is obtained between triple balance points of
the curls and peaks in the flow. Multipolar runs and hydrodynamical runs at large enough Ra
show that mCIA ≈ mpol in some cases (Fig. 5.42b). We also find that mtot and mtor show some
correlation with mCIA for multipolar and hydrodynamical runs (Figs 5.42a, 5.42c). Similarly,
for most runs in the strong field regime mMAC ≈ mpol (Fig. 5.42e), and mtot and mtor (Figs.
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5.42d, 5.42f) also show correlation with mMAC for some runs in the strong field regime. This
differs to the crossovers in m space where no correlation is found between the crossover points
and peaks in the flow, as most runs do not have a well-defined crossover of relevant forces. For
mV AC no relationship is found between this and any of mtot, mpol or mtor (Figs 5.42h - 5.42g),
similar to all other cases involving the viscous force.

5.4 Summary

This analysis shows that the l-dependence and m-dependence of forces show good agreement,
where both display a similar hierarchy of forces. Similarly, the l-dependence of curls of forces
matches well with the m-dependence and offer a cleaner way of accessing the dynamical bal-
ances controlling the behaviour of the system (Teed and Dormy, 2023). The dynamo solutions
presented demonstrated that decreasing the Ekman number still produced the relevant force
balance in each regime of dynamo action, although the multipolar regime was harder to reach
at lower Ekman number as stronger driving is required. For this reason, fewer multipolar runs
are found. Hence, the correlation of lCIA with lpol shows less agreement than the correlation of
lMAC with lpol and similarly for m.

Crossover points of relevant forces and curls of forces were discussed using the method followed
by Schwaiger et al. (2021). In most cases for the l-dependence of forces the crossing points of
Lorentz and buoyancy forces in the strong field dipolar regime were successfully related to the
poloidal kinetic energy peak. Similarly, the crossing points of inertial and buoyancy forces in
the multipolar regime and hydrodynamical runs at large Ra correlated well with the poloidal
kinetic energy peaks in l-space. However, no relationship was found between crossover points
for the curls of forces in l and the polodial kinetic energy peak, as the crossing points occur
at much smaller scales than the poloidal energy peak or the crossover points do not exist. In
m-space, the forces and curls of forces showed no correlation to the poloidal kinetic energy peak
because most do not have crossing points of the relevant forces.

The triple balance points demonstrated an alternative approach for forming dynamically rel-
evant lengthscales and, unlike the crossovers, we were able to extract a triple balance point
for every run regardless of whether crossover points occurred or not. Separating runs by their
branch (weak field or strong field) of dynamo action helped to confirm that weak field runs are
not in a MAC balance. For forces in l-space, the MAC triple balance point for the strong field
dipolar runs correlated well to the poloidal kinetic energy peak, as did the CIA triple balance
point for multipolar runs and hydrodynamical runs at large driving, but in m-space we were
unable to relate the triple balance point of forces to the kinetic energy peaks. For the curls
of forces, the MAC triple balance point for strong field dipolar runs was successfully matched
to the poloidal kinetic energy peak for both l-space and m-space. This was also the case for
the CIA triple balance point for multipolar runs and hydrodynamical runs at large Ra. In this
work the branch of dynamo action clearly determines whether or not the MAC triple balance
point sets the poloidal scale, whereas work by Schwaiger et al. (2021) uses the ratio of magnetic
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to kinetic energy which can act as a proxy to the weak and strong field branches. The VAC
triple balance point for the weak field dipolar runs and hydrodynamical runs at low Ra show no
correlation with the poloidal kinetic energy peak. This is possibly caused by the removal of the
boundary layers in the calculation of the forces and curls of forces, which causes a reduction in
the viscous force. Further analysis would be required to confirm this (see discussion of future
work in Chapter 7). The VAC balance may be found in the hydrodynamical case at Ra closer
to onset which has not been explored.

The analysis in this chapter demonstrates that the poloidal kinetic energy is most appropriate
for defining the energetic lengthscale. Table 5.2 summarises the results presented in Section 5.3
in order to highlight the key findings based on the poloidal kinetic energy. A Wilcoxon Matched-
Pairs Test (Wilcoxon, 1945) is again performed here to obtain a p-value for cases that indicate a
linear fit. This helps to determine whether the peak in poloidal energy differs significantly from
crossover or triple balance points in the cases where we cannot reject the null hypothesis of the
test. Note this test uses a threshold α = 0.05 to reject the null hypothesis, where p-values above
this threshold indicate statistically significant results. For certain regimes the triple balance
point between curls of forces determines the convective lengthscale. This method worked for
the strong field dipolar regime and strongly driven regimes (i.e. the multipolar regime and
large Ra hydrodynamical states). These results reinforce that using the curls of forces offers a
better way to understand the forces controlling the flow dynamics.



Chapter 6

Force balances inside and outside the

tangent cylinder

The linear theory of non-magnetic convection in a rotating sphere, as proposed by Busse (1970),
suggests that convection onsets at a higher Rayleigh number inside the tangent cylinder (ITC)
compared to outside the tangent cylinder (OTC). This was later confirmed through numerical
simulations by Dormy et al. (2004). The differences in convection modes ITC and OTC was
shown by Busse (1976a). Experimental investigations by Aurnou et al. (2003) and Aujogue et al.
(2018) have also demonstrated differences in convection ITC and OTC. Most recently Gastine
and Aurnou (2023) performed spherical shell simulations to analyse heat transport properties
ITC and OTC. They found that although convection ITC onsets at a higher Ra than OTC,
once it does so it becomes more turbulent and is able to transport heat more efficiently as Ra is
increased further. Despite this, studies of force balances in dynamo simulations often emphasise
globally averaged quantities or the lengthscale dependence of these quantities across the entire
spherical shell. In this chapter, we investigate the lengthscale dependence of forces and curls
of forces ITC and OTC. A detailed description of the methods used is discussed in Section
2.2.3.5. The dissection of the domain at the TC occurs along a cylindrical surface. The only
coordinate in spherical geometry that does not cross this surface is the ϕ coordinate. Hence
the m-dependence of quantities can be naturally split and compared ITC and OTC. Chapter
5 examined the m-dependence of forces and curls of forces across the entire shell, comparing
these to the global l-dependence, and demonstrated that both displayed a similar hierarchy
of (curls of) forces. When discussing the lengthscale dependence of forces and curls of forces
across the entire shell we will refer to these as the global m-dependence.

The behaviour of forces and curls of forces ITC and OTC in hydrodynamical simulations at
E = 10−4 for varying Ra are examined. Then, forces and curls of forces ITC and OTC for the
main branches of dynamo action at E = 10−4 and E = 10−5 are discussed. Finally, transitions
between the different branches of dynamo action are analysed. Firstly from weak field dipolar
to multipolar and then from strong field dipolar to multipolar, with the aim of identifying

125
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differences between the forces ITC and OTC that may influence the transition between regimes.

6.1 Comparison of force density spectra

In this section, the force density spectra globally, ITC and OTC are examined. We discuss
similarities and differences between the behaviour ITC and OTC, examining how the solutions
ITC and OTC change for the main regimes of dynamo action. The simulations presented are
the same as those discussed in Chapter 5. However, the alternative method discussed in Section
2.2.3 is used for computing the m-dependence of forces and curls of forces. The global hierarchy
of forces in Chapter 5 match those discussed in Section 5.1, confirming the alternative method
for extracting the forces provides the correct results. Some of the runs presented in this chapter
have been initialised using state files from existing simulations in Teed and Dormy (2025). In
the cases presented below, the spectra for the force density is formed, given by Equations
(2.113) - (2.115).

6.1.1 Hydrodynamical solutions at E = 10−4

At Ra = 2Rac a zeroth order geostrophic balance occurs across the total spherical shell with
a first order balance between buoyancy and ageostrophic Coriolis forces. The viscous and
inertial forces remain small. The behaviour OTC is very similar to the total shell (Fig. 6.1b).
Changes are observed ITC where a decrease in inertial and viscous forces occur (Fig. 6.1c).
The behaviour is mainly controlled OTC as the forces in this region are similar to the total
spherical shell. Convection is underdeveloped ITC at this low supercriticality which is why the
contribution of forces are lower. At Ra = 5Rac a zeroth order geostrophic balance occurs at
all scales, similar to Ra = 2Rac (Fig. 6.2). The inertial force has increased as the strength of
convection is larger. Similar to Ra = 2Rac, the behaviour OTC (Fig. 6.2b) matches the global
behaviour (Fig. 6.2a) and the inertial force decreases ITC (Fig. 6.2c).

(a) Total (b) OTC (c) ITC

Figure 6.1: Force density spectra. Hydrodynamical run at E = 10−4 and Ra = 2Rac. All
quantities are time averaged and boundary layers have been removed. Only every 7m mode is
plotted.

At Ra = 30Rac (Fig. 6.3), the solution becomes inertially dominated as an increase in the
inertial force is observed across all regions. A zeroth order geostrophic balance occurs followed
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(a) Total (b) OTC (c) ITC

Figure 6.2: Force density spectra. Hydrodynamical run at E = 10−4 and Ra = 5Rac. All
quantities are time averaged and boundary layers have been removed.

by a strong inertial force OTC and ITC (Figs 6.3b, 6.3c). The inertial force is slightly larger ITC
which is likely because at this level of supercriticality, convection ITC has begun in earnest and,
since it quickly becomes more efficient than OTC Gastine and Aurnou (2023), it is effectively
in a more supercritical state than OTC. The viscous force remains weak throughout, both
ITC and OTC. Again, similar to the runs at lower Ra, the behaviour OTC is similar to the
behaviour across the entire shell. The hierarchy of forces for each case match those in Section
5.1.1. Overall, for all values of Ra examined, we do not find significant differences in behaviour
ITC and OTC.

(a) Total (b) OTC (c) ITC

Figure 6.3: Force density spectra. Hydrodynamical run at E = 10−4 and Ra = 30Rac. All
quantities are time averaged and boundary layers have been removed.

6.1.2 Dynamo solutions at E = 10−4

The behaviour of the weak dipolar run at Ra = 2.07Rac and Pm = 12 is very similar to the
hydrodynamical run at low Ra, but a weak Lorentz force is now included and the magnitudes
of all quantities have increased. The lengthscale dependence OTC (Fig. 6.4b) is similar to the
global lengthscale dependence (Fig. 6.4), as was observed in the hydrodynamical case at low
Ra. The inertial force decreases ITC (Fig. 6.4c), similar to the hydrodynamical run, and a
slight decrease in the Lorentz force is observed in this region. The weaker Lorentz force ITC
could be due to weaker convection ITC so the dynamo mechanism is less supercritical. For the
strong dipolar case at Ra = 2.07Rac and Pm = 12 a zeroth order geostrophic balance occurs
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at large scales and at small scales there is a balance between Lorentz and pressure forces, which
is observed globally, OTC and ITC (Figs 6.5a-6.5c). A notable reduction in the large scale
geostrophic balance ITC is observed to the point where a balance between pressure, Coriolis
and Lorentz forces (magnetostrophic) almost forms. The inertial and viscous force remain weak
across all regions of the shell and the hierarchy OTC matches the hierarchy across the total
shell. The buoyancy force balances the Lorentz force OTC at some scales but ITC this decreases
in magnitude at larger scales compared with OTC.

(a) Total (b) OTC (c) ITC

Figure 6.4: Force density spectra. Dynamo solution for a weak field dipolar run at E = 10−4,
Ra = 2.07Rac and Pm = 12. All quantities are time averaged and boundary layers have been
removed. Only every 4m mode is plotted.

(a) Total (b) OTC (c) ITC

Figure 6.5: Force density spectra. Dynamo solution for a strong field dipolar run at E = 10−4,
Ra = 2.07Rac and Pm = 12. All quantities are time averaged and boundary layers have been
removed.

For another strong field run at larger Ra (Fig. 6.6), a zeroth order geostrophic balance occurs at
large scales and at small scales a balance between Lorentz and pressure occurs OTC (Fig. 6.6b).
However, ITC at zeroth order, a fully formed magnetostrophic balance is found at large scales,
in contrast with the strong field dipolar run at lower Ra (Fig. 6.5c). This magnetostrophic
balance transitions to a balance between Lorentz and pressure forces at small scales (Fig. 6.6c).
The buoyancy force decreases at a larger scale ITC (Fig. 6.6c) compared to OTC (Fig. 6.6b),
similar to the other strong field dipolar solution at lower Ra (Fig. 6.5). The strong Lorentz
force ITC is expected as we have a strong field dipolar solution.
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(a) Total (b) OTC (c) ITC

Figure 6.6: Force density spectra. Dynamo solution for a strong field dipolar run at E = 10−4,
Ra = 10Rac and Pm = 12. All quantities are time averaged and boundary layers have been
removed.

Figure 6.7 shows a multipolar run at Pm = 1 and Ra = 30Rac. The global force density shows a
zeroth order geostrophic balance with a first order balance between inertial and buoyancy forces
and weak Lorentz and viscous forces (Fig. 6.7). The hierarchy of forces OTC (Fig. 6.7b) is
similar to the total force density (Fig. 6.7a) but a slight decrease in the inertial force is observed.
The force density ITC shows an increase in inertial and buoyancy forces and is likely due to
convection being more efficient ITC compared to OTC at this level of supercriticality (Gastine
and Aurnou, 2023). The buoyancy force decreases at a larger scale (Fig. 6.7c), compared with
OTC. The Lorentz and viscous force are in balance ITC but both remain weak.

(a) Total (b) OTC (c) ITC

Figure 6.7: Force density spectra. Dynamo solution for a fluctuating multipolar at E = 10−4,
Ra = 30Rac and Pm = 1. All quantities are time averaged and boundary layers have been
removed.

6.1.3 Dynamo solutions at E = 10−5

Simulations at E = 10−5 are now examined for the three main branches of dynamo action to
ensure that similar results persist as the rotation rate is increased. The results for the weak
field dipolar case are similar to E = 10−4, where the force density OTC (Fig. 6.8b) matches
the total force density (Fig. 6.8a). A zeroth order geostrophic balance occurs with other forces
remaining weak. The buoyancy force has decreased ITC (Fig. 6.8c) and the peak in this force
which occurs in the total force density and the force density OTC is less prominent ITC. The
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viscous and inertial forces remain weak ITC and OTC. For the strong field case, the forces
OTC (Fig. 6.9b) match the total shell (Fig. 6.9a). A leading order balance occurs between
the pressure gradient and Coriolis force, followed by a balance between buoyancy and Lorentz
forces with the viscous and inertial forces remaining weak. The buoyancy force has decreased
ITC (Fig. 6.9c). The multipolar run (Fig. 6.10) shows similar results to the multipolar run
at E = 10−4 (Fig. 6.7). The behaviour OTC (Fig. 6.10b) is similar to the total force density
(Fig. 6.10a) but a slight decrease in the buoyancy and viscous forces occur. The inertial force
is strong in both cases, but it is larger ITC (Fig. 6.10c).

(a) Total (b) OTC (c) ITC

Figure 6.8: Force density spectra. Dynamo solution for weak field dipolar run at E = 10−5,
Ra = 3Rac and Pm = 5. All quantities are time averaged and boundary layers have been
removed.

(a) Total (b) OTC (c) ITC

Figure 6.9: Force density spectra. Dynamo solution for strong field dipolar run at E = 10−5,
Ra = 4Rac and Pm = 5. All quantities are time averaged and boundary layers have been
removed.

The results at E = 10−5 are similar to those discussed at E = 10−4. The hydrodynamical cases
and dynamo solutions at E = 10−4 and E = 10−5 show no significant difference in the regions
ITC and OTC. The most notable differences are the increased inertial force ITC compared
with OTC for the multipolar runs and hydrodynamical runs at large Ra (i.e. Ra = 30Rac)
and there is a tendency for the forces to decrease at a larger scale ITC compared with OTC.
In particular, the buoyancy drops off at a much larger scale ITC than OTC. For all cases
examined, the behaviour of the forces OTC matches the behaviour across the total shell, which
tells us that the behaviour OTC is primarily controlling the dynamics of the flow.
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(a) Total (b) OTC (c) ITC

Figure 6.10: Force density spectra. Dynamo solution for fluctuating multipolar run at E = 10−5,
Ra = 100Rac and Pm = 0.2. All quantities are time averaged and boundary layers have been
removed.

6.2 Comparison of curl of force density spectra

The curl of forces are examined for hydrodynamical runs at E = 10−4 and for dynamo solutions
at E = 10−4 and E = 10−5. The similarities and differences between the behaviour ITC and
OTC are discussed. We expect to recover the first order balance occurring in the force density
spectra in Section 6.1 at leading order in the curl spectra, as the pressure gradient has been
removed. The curl density spectra presented in this section match the hierarchy of curls of
forces discussed in Section 5.2, confirming that the alternative method, which is discussed in
Section 2.2.3 where the m-dependence is computed by moving from a spherical to cylindrical
grid, provides the correct results.

6.2.1 Hydrodynamical solutions at E = 10−4

(a) Total (b) OTC (c) ITC

Figure 6.11: Curl density spectra. Hydrodynamical run at E = 10−4 and Ra = 2Rac. All
quantities are time averaged and boundary layers have been removed. Only every 7m mode is
plotted.

At low Ra (Fig. 6.11) a balance between Coriolis and buoyancy forces occurs. Similar to the
force density spectra, the behaviour OTC (Fig. 6.11b) is similar to the total shell (Fig. 6.11a).
The Coriolis and buoyancy forces are still in balance ITC but have decreased in magnitude,
and are balanced by the viscous force at some scales, including near the peak in the spectra
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(Fig. 6.11c). At Ra = 5Rac, a balance between Coriolis and buoyancy forces occurs across the
total shell (Fig. 6.12a) with similar behaviour occurring OTC (Fig. 6.12b). A slight increase in
the viscous force is observed ITC (Fig. 6.12c). At Ra = 30Rac, we no longer obtain a balance
between Coriolis and buoyancy forces. Instead the inertial force dominates OTC (Fig. 6.13b)
and ITC (Fig. 6.13c). OTC the inertial force dominates at all scales with the Coriolis force
also strong but never entering the main balance. ITC the inertial force remains strong but is
balanced at large scales by the Coriolis force, despite the fact that in the forces, ITC showed
the biggest increase in inertia.

(a) Total (b) OTC (c) ITC

Figure 6.12: Curl density spectra. Hydrodynamical run at E = 10−4 and Ra = 5Rac. All
quantities are time averaged and boundary layers have been removed.

(a) Total (b) OTC (c) ITC

Figure 6.13: Curl density spectra. Hydrodynamical run at E = 10−4 and Ra = 30Rac. All
quantities are time averaged and boundary layers have been removed.

6.2.2 Dynamo solutions at E = 10−4

The weak field dipolar run at E = 10−4 and Ra = 2.07Rac (Fig. 6.14) behaves similarly to
the hydrodynamical case at low Ra (Fig. 6.11) with the addition of a weak Lorentz force. For
the strong field dipolar run at E = 10−4 and Ra = 2.07Rac (Fig. 6.15) the behaviour changes.
The behaviour of the curl of forces OTC (Fig. 6.15b) matches those across the total shell (Fig.
6.15a). A balance between Coriolis and Lorentz terms is obtained OTC which is balanced by
the buoyancy term at some scales. A balance between Coriolis and Lorentz terms is still found
ITC (Fig. 6.15c) but this is never balanced by the buoyancy term at any scale. Instead, a
second order balance occurs between buoyancy and viscous forces ITC. For the other strong
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field dipolar solution at Ra = 10Rac the behaviour OTC (Fig. 6.16b) and ITC (Fig. 6.16c)
both match the total curl density (Fig. 6.16a) where a leading order balance between Coriolis
and Lorentz terms is now found at both sides of the TC, with a second order balance between
buoyancy and viscous terms.

(a) Total (b) OTC (c) ITC

Figure 6.14: Curl density spectra. Dynamo solution for weak field dipolar run at E = 10−4,
Ra = 2.07Rac and Pm = 12. All quantities are time averaged and boundary layers have been
removed. Only every 4m mode is plotted.

(a) Total (b) OTC (c) ITC

Figure 6.15: Curl density spectra. Dynamo solution for strong field dipolar run at E = 10−4,
Ra = 2.07Rac and Pm = 12. All quantities are time averaged and boundary layers have been
removed.

(a) Total (b) OTC (c) ITC

Figure 6.16: Curl density spectra. Dynamo solution for strong field dipolar run at E = 10−4,
Ra = 10Rac and Pm = 12. All quantities are time averaged and boundary layers have been
removed.
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(a) Total (b) OTC (c) ITC

Figure 6.17: Curl density spectra. Dynamo solution for fluctuating multipolar run at E = 10−4,
Ra = 30Rac and Pm = 1. All quantities are time averaged and boundary layers have been
removed.

For the multipolar run at E = 10−4, the balance ITC (Fig. 6.17c) matches the total curl
density (Fig. 6.17a) although the force density is larger ITC. At large scales there is a balance
between Coriolis and inertial forces with the Coriolis force dropping out at smaller scales. The
buoyancy is also strong but never enters the main balance. The behaviour OTC (Fig. 6.17b) is
similar to the region ITC. However OTC the inertial term dominates throughout and although
the Coriolis term is also strong, it does not balance the inertial force at any scale. This is unlike
the region ITC where both terms are in balance at large scales.

6.2.3 Dynamo solutions at E = 10−5

The behaviour OTC for the weak field dipolar run at E = 10−5 (Fig. 6.18b) matches the total
curl density (Fig. 6.18a) where for the peak scales the Coriolis and buoyancy terms balance
and for the largest scales a MAC balance occurs. The small scales show a balance between
Lorentz and Coriolis terms. In the region ITC (Fig. 6.18c) the Coriolis and Lorentz terms are
in balance for almost all lengthscales. A balance between buoyancy and viscous forces occurs at
second order. Although this solution lies on the weak field branch it is clear, especially from the
balance ITC, that the Lorentz term has become more important as it enters the main balance
at some scales. Figure 6.19 shows a strong field dipolar solution where the behaviour OTC
(Fig. 6.19b) matches the behaviour across the total shell (Fig. 6.19a). In all cases a leading
order balance occurs between Coriolis and Lorentz terms at all scales. The buoyancy term is
also large but never enters the main balance.

For the multipolar run all three regions display a dominant inertial force but some subtle differ-
ences occur at second order. Similar to the multipolar run at E = 10−4 and the hydrodynamical
run at large Ra, the behaviour OTC (Fig. 6.20b) differs slightly to the behaviour across the
total shell (Fig. 6.20a). Across the total shell, the inertial term dominates at all scales, and a
large Coriolis term is also found but never enters the leading order balance. The buoyancy term
is also relatively important and viscous and Lorentz terms remain weak. In the region OTC,
inertial and Coriolis terms remain important but a decrease in the buoyancy term occurs and
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(a) Total (b) OTC (c) ITC

Figure 6.18: Curl density spectra. Dynamo solution for weak field dipolar run at E = 10−5,
Ra = 3Rac and Pm = 5. All quantities are time averaged and boundary layers have been
removed.

(a) Total (b) OTC (c) ITC

Figure 6.19: Curl density spectra. Dynamo solution for strong field dipolar run at E = 10−5,
Ra = 4Rac and Pm = 5. All quantities are time averaged and boundary layers have been
removed.

(a) Total (b) OTC (c) ITC

Figure 6.20: Curl density spectra. Dynamo solution for fluctuating multipolar run at E = 10−5,
Ra = 100Rac and Pm = 0.2. All quantities are time averaged and boundary layers have been
removed.

now balances the Lorentz force. The viscous term remains unimportant. The region ITC (Fig.
6.20c) shows an increase magnitude of inertial and Coriolis terms and are nearly in balance but
the inertial term remains most important. The buoyancy term is relatively important, similar
to the region OTC but the Lorentz term becomes less important ITC.
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Although small differences are obtained in the regions ITC and OTC, the main balance expected
in the three main regimes of dynamo action appear both ITC and OTC. The biggest differences
occur in the multipolar regime where both regions remain inertially dominated with small
changes in the hierarchy of terms at second order.

6.3 Transitions between different regimes of dynamo action

In this section, the transition between different branches of solutions is explored. Two cases are
examined: from weak field dipolar to multipolar, and from strong field dipolar to multipolar. We
start from input parameters of a known multipolar solution and give the initial state as either
a weak dipolar state or a strong dipolar state. Previous analysis demonstrated that taking
the curl reproduced the expected force balance, without being complicated by the pressure
gradient at zeroth order. Therefore, when looking at these solutions, only the curls of forces
are presented. To determine the dipolarity of the solution, we examine the dipolarity of the
field fdip and the Gauss coefficients. The parameter fdip ∈ [0, 1] measures the dipolarity of the
magnetic field with a value close to 1 being dipolar and a value close to 0 being multipolar.
The magnetic energy EM is also presented. These output parameters were discussed in Section
2.2.3.3.

6.3.1 From weak field dipolar to multipolar

A solution is tracked as it transitions from weak field dipolar to multipolar. The input parame-
ters are E = 10−4, Pr = 1, Pm = 1 and Ra = 30Rac and the run has been initialised from the
output state of a weak field dipolar solution with input parameters E = 10−4, Pr = 1, Pm = 1

and Ra = 20Rac. We provide snapshots of the curl density spectra, meridional sections of uϕ
and spherical surface plots of Br that are representative of the changes as it transitions from
the weak field dipolar regime to the multipolar regime.

The time series plots of EM , fdip and the Gauss coefficients show the solution changing from
a dipolar to a multipolar solution. At the beginning, fdip ≈ 0.8 and as the simulation moves
forward in time fdip decreases significantly. The multipolar nature of the solution is also clear
from the Gauss coefficients where, at the start, g10 which is the dipole component dominates
and as the solution reaches the multipolar state both g10 and g20 fluctuate around zero. From
the outset the inertial force is in the main balance (Fig. 6.22) combined with Lorentz, buoyancy
and Coriolis terms, occurring in the regions ITC (Fig. 6.22c) and OTC (Fig. 6.22b). At ×2,
the magnetic energy has decreased significantly but fdip still remains relatively large. The curls
of forces change from those at ×1, where the inertial term now dominates and the Lorentz term
has decreased significantly across the total shell. The buoyancy and Coriolis terms remain
large but do not balance with the dominant inertial term at any scale (Fig. 6.23a). This is
also the case OTC (Fig. 6.23b). The behaviour ITC is still dominated by the inertial term but
this is balanced by Coriolis and buoyancy terms at large scales (Fig. 6.23c). Eventually the
solution settles to a multipolar state which can be observed in the time series of fdip and Gauss
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(a) Time series of EM (b) Time series of fdip

(c) Time series of Gauss coefficients

Figure 6.21: Time series of magnetic energy, dipolarity and Gauss coefficents. Transition from
weak field dipolar to multipolar regime with input parameters E = 10−4, Pr = 1, Pm = 1 and
Ra = 30Rac. Curls of forces are shown below at points marked with a cross.

(a) Total (b) OTC (c) ITC

Figure 6.22: Curl density spectra at ×1 marked on Fig. 6.21 for weak field dipolar to multipolar
transition.

(a) Total (b) OTC (c) ITC

Figure 6.23: Curl density spectra at ×2 marked on Fig. 6.21 for weak field dipolar to multipolar
transition.
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(a) Total (b) OTC (c) ITC

Figure 6.24: Curl density spectra at ×3 marked on Fig. 6.21 for weak field dipolar to multipolar
transition.

(a) Total (b) OTC (c) ITC

Figure 6.25: Curl density spectra at ×4 marked on Fig. 6.21 for weak field dipolar to multipolar
transition.

500 0 500

(a) ×1

500 0 500

(b) ×2

500 0 500

(c) ×3

500 0 500

(d) ×4

Figure 6.26: Meridional sections of uϕ for weak field dipolar to multipolar transition. All plots
are ϕ averaged. Points ×1, ×2, ×3 and ×4 correspond to the points marked on Fig. 6.21.

coefficients (Figs 6.21b, 6.21c). At ×3 and ×4, the curls of forces are inertially dominated both
ITC and OTC with a weak Lorentz term (Figs 6.24, 6.25). Overall, no significant differences
in the curl of forces ITC and OTC are found. However, the Lorentz term reduces more rapidly
and the inertial term increases more rapidly ITC before OTC catches up. In both regions the
system is in an inertially dominated regime which persists as the simulation moves forward in
time.

The flow patterns and magnetic field at ×1 (Figs 6.26a, 6.27a) match those of a weak field



Force balances inside and outside the tangent cylinder 139

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(a) ×1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(b) ×2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

(c) ×3

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

(d) ×4

Figure 6.27: Spherical surface of Br at r = ro for weak field dipolar to multipolar transition.
Points ×1, ×2, ×3 and ×4 correspond to the points marked on Fig. 6.21.

dipolar solution discussed in Chapter 5 (e.g. Figs 5.16a, 5.17a). As the simulation is integrated
forward in time, the solution transitions from a dipolar field to a multipolar field, as shown in
the snapshots of the field in Figures 6.27a - 6.27d. The simulation reaches a state similar to
the multipolar regime discussed in Chapter 5 (Figs 5.16d, 5.17d).

6.3.2 From strong field dipolar to multipolar

The transition from a strong field dipolar solution to a multipolar solution is analysed. The
input parameters are E = 10−4, Pr = 1, Pm = 1 and Ra = 30Rac and the run has been
initialised from the output state of a strong field dipolar solution at E = 10−4, Pr = 1,
Pm = 12 and Ra = 20Rac. Similarly to the previous case examined, snapshots are provided
of the curl density spectra, meridional sections of uϕ and spherical surface plots of Br that are
representative of the changes as the solution transitions from the strong field dipolar regime to
the multipolar regime.

The time series plots of EM , fdip and the Gauss coefficients show the solution changing from
a dipolar to a multipolar solution. At the beginning, fdip ≈ 0.6 and as the simulation moves
forward in time, an increase to fdip ≈ 0.8 occurs before decreasing significantly. The multipolar
nature of the solution is also clear from the Gauss coefficients where, at the start, g10 dominates
and as the solution reaches the multipolar state both g10 and g20 fluctuate around zero.

Initially a strong field dipolar solution is obtained (Fig. 6.29) as a MAC balance occurs. The
inertial term is also stronger than has been observed previously in strong field solutions but
this is unsurprising given the input parameters of the solution. The behaviour OTC (Fig.
6.29b) is similar to the behaviour across the entire shell (Fig. 6.29a). At ×2, the value of
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(a) Time series of EM (b) Time series of fdip

(c) Time series of Gauss coefficients

Figure 6.28: Time series of magnetic energy, dipolarity and Gauss coefficents. Transition from
strong field dipolar to multipolar regime with input parameters E = 10−4, Pr = 1, Pm = 1
and Ra = 30Rac. Curls of forces are shown below at points marked with a cross.

(a) Total (b) OTC (c) ITC

Figure 6.29: Curl density spectra at ×1 marked on Fig. 6.28 for strong field dipolar to multipolar
transition.

(a) Total (b) OTC (c) ITC

Figure 6.30: Curl density spectra at ×2 marked on Fig. 6.28 for strong field dipolar to multipolar
transition.
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(a) Total (b) OTC (c) ITC

Figure 6.31: Curl density spectra at ×3 marked on Fig. 6.28 for strong field dipolar to multipolar
transition.

(a) Total (b) OTC (c) ITC

Figure 6.32: Curl density spectra at ×4 marked on Fig. 6.28 for strong field dipolar to multipolar
transition.
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Figure 6.33: Meridional sections of uϕ for strong field dipolar to multipolar transition. All plots
are ϕ averaged. Points ×1, ×2, ×3 and ×4 correspond to the points marked on Fig. 6.28.

fdip increases slightly but both the magnetic energy and g10 decrease. This suggests that the
total energy in the non-axial dipole components must be significantly reduced between ×1 and
×2. The system is possibly first adapting to the change in Pm so is reconfiguring to a weak
dipolar branch solution, given the increase in fdip, before moving to the multipolar branch. At
this point, a change in the forces controlling the dynamics of the flow is observed. The global
behaviour of the curl spectra is unclear (Fig. 6.30a) as all terms except the viscous term are
impacting the flow, at least at the largest scales. ITC a MAC balance is still observed at the
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Figure 6.34: Spherical surface of Br at r = ro for strong field dipolar to multipolar transition.
Points ×1, ×2, ×3 and ×4 correspond to the points marked on Fig. 6.28.

largest scales (Fig. 6.30c) but OTC the flow is in an inertially dominated regime as the inertial
term is in the main balance with the Coriolis force (Fig. 6.30b). At ×3 the system transitions
to an inertially dominant regime ITC (Fig. 6.31c) and the behaviour across the total shell (Fig.
6.31a) now resembles the forces in the multipolar regime. At ×4, the system is now clearly in
the multipolar regime, where the forces OTC and ITC (Fig. 6.32b, 6.32c) resemble the global
behaviour (Fig. 6.32a) and are also similar to those shown in Figure 6.25 as expected.

The behaviour of the different states can also be observed from the flow patterns and magnetic
field. Meridional sections of uϕ at ×1 and ×2 (Figs 6.33a, 6.33b) show similar flow patterns to
strong field dipolar runs discussed in Chapter 5 (e.g. Fig. 5.16c). The magnetic field at these
points is dipolar (Figs 6.34a, 6.34b), although the field has decreased in strength slightly at
×2, which is expected given the decrease in g10. At ×3 where the behaviour ITC and OTC is
inertially dominated, the flow patterns start to change before reaching the multipolar state at
×4 where the flow pattern and magnetic field (Figs 6.33d, 6.34d) are similar to those discussed
in Chapter 5 (e.g. Figs 5.16d, 5.17d) and match the same solution reached in Figures 6.26d
and 6.27d.

6.4 Summary

In this chapter, the force balances ITC and OTC have been analysed for a small number of
simulations. Forces and curls of forces for hydrodynamical solutions at E = 10−4 and dynamo
solutions at E = 10−4 and E = 10−5 were discussed. The behaviour ITC and OTC was
very similar with both regions showing the balance expected for the given dynamo regime.
The terms tended to drop off at a larger scale ITC than OTC and was most apparent in the



Force balances inside and outside the tangent cylinder 143

buoyancy term. The biggest difference was observed for the multipolar run at E = 10−5 where
the hierarchy of curl of forces changed. In that case the inertial term dominated ITC and OTC
but at lower order the buoyancy and viscous forces increased ITC compared with OTC. This
could be due to convection becoming more efficient ITC compared to OTC at large enough Ra
(Gastine and Aurnou, 2023).

The transition from a weak field dipolar solution to a multipolar solution did not show differing
behaviour ITC and OTC. The inertial term became important in the balance near the beginning
and became more dominant as the simulation moved forward in time. This was the case ITC
and OTC. This transition only involved altering a single control parameter (Ra). Hence, the
transition between the input state and final state may be relatively smooth as a result. However,
our analysis from a strong field dipolar to a multipolar solution showed that it is possible to
find differences in behaviour ITC and OTC. The solution started from a MAC balance both
ITC and OTC. Early in the transition between regimes, the MAC balance persisted ITC but
OTC the inertial term entered the main balance and the Lorentz force decreased. This change
in behaviour OTC provoked the change in balance globally from a MAC balance to a CIA
balance.

Although only one case where significant differences occur ITC and OTC has been found, a
way to compute forces and curls of forces in different regions of the spherical shell has been
demonstrated which has shown that it is possible for different balances to occur ITC and OTC.
We have only examined this for a small number of simulations and analysis of other simulations
could be carried out to find differences in behaviour ITC and OTC.



Chapter 7

Conclusion

This chapter concludes the work carried out in this thesis, which has centred on understanding
the forces controlling the dynamics of the flow in planetary interiors. Chapters 3 and 4 focused
on magnetoconvection in the Busse annulus model, highlighting the force balances responsible
for the emergence of multiple jets, bursts of convection, and other solutions. The magnetic field
strength and magnetic diffusivity were varied to assess how this influenced multiple jet forma-
tion. Chapters 5 and 6 shifted the focus to spherical shell dynamo simulations, where the l and
m dependence of forces and curls of forces were examined. Dynamically relevant lengthscales
were discussed by forming a triple balance point. These were compared to energetically relevant
lengthscales by considering the peak in kinetic energy. The force balances both inside (ITC)
and outside the tangent cylinder (OTC) were analysed, identifying transitions between different
dynamo regimes and demonstrating how local changes in force balances can drive changes in
the system globally.

Our non-linear simulations of convection in the Busse annulus model show good agreement
with previous non-magnetic studies (Jones et al., 2003; Rotvig and Jones, 2006; Teed et al.,
2012), particularly regarding the emergence of multiple jets and bursts of convection. This the-
sis extended non-magnetic work by imposing a magnetic field on the system. We were able to
identify different force balance regimes, some of which are similar to those observed in dynamo
simulations. Solutions dominated by the inertial term were found, similar to the inertially dom-
inated multipolar regime in spherical shell simulations. However, on the fluctuating multipolar
branch in dynamo simulations, contributions from the Coriolis and buoyancy terms are usually
expected. In the annulus model, this was only found close to critical Ra before the system
transitioned to a dominant inertial force at all scales. This could either be due to the differ-
ent boundary conditions used in the two models, or could be caused by the annular geometry
failing to account for an effect due to spherical geometry. Alternatively, the correct region of
parameter space to obtain this balance may not have been found. A MAC balance can also be
achieved under certain conditions, similar to the MAC balance in the strong dipolar regime.
To obtain this balance low Ra and small Pm was required. This balance was not expected, as
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the model is geared towards generation of zonal flows through a strong inertial force (even at
low driving), which must be absent in the MAC balance.

In the annulus model we studied in detail the effects of an imposed toroidal magnetic field on the
production of multiple jets. Recent work has shown that the multiple jets found on the surface
of Jupiter extend roughly 3000 kilometres below the surface (Kaspi et al., 2023). Although a
simplified model is used in this thesis, the analysis demonstrated that increasing magnetic field
strength suppressed multiple jets. This confirms that jets found on Jupiter’s surface, where a
toroidal field is absent, will likely not penetrate into the metallic hydrogen region where the
toroidal field is strong. The mechanism that creates multiple jets seen on Jupiter’s surface is
a feature of non-magnetic convection and models of the Jovian dynamo struggle to produce
multiple jet structures in combination with a strong dipolar magnetic field (e.g., Duarte et al.,
2013; Jones, 2014) without invoking the use of a stably-stratified layer (Gastine and Wicht,
2021; Moore et al., 2022). Work in this thesis has shown that it is possible to obtain multiple
jets in the presence of a toroidal magnetic field without the need for a stably-stratified layer.
However, whether this remains the case when the model is subject to a strong ‘poloidal-like’
field (as appropriate for the molecular region of Jupiter) and under a wider parameter survey,
remains to be seen. Nevertheless, magnetic fields may still have an observable effect on surface
features even if they do not contribute to the generation of multiple jets (Hori et al., 2023). The
results presented also suggest that zonal flows and multiple jets driven by Reynolds stresses may
not be a feature of Earth’s core where, like Jupiter, the expected balance of forces is ‘MAC’.
However, a magnetic or thermal wind driven by, for example, spatially heterogeneous heat flux
on the core-mantle boundary, provides an alternative zonal flow generation mechanism within
Earth’s core (Zhang and Gubbins, 1996). The effects of an imposed magnetic field of different
strengths on such a flow would need to be studied using a different set-up to the model discussed
here, which assumes fixed temperature conditions. Finally, the magnetic field strengths found
to preserve, and even promote, zonal flow and jet production in the annulus model are likely
not relevant to many known natural dynamos, which have strong dipolar fields under a ‘MAC
balance’. However, they may be relevant to weak field spherical dynamos found numerically at
low driving (Dormy et al., 2018), or to dynamos of a non-dipolar nature.

Work in the annulus model could be extended in various ways. For simplicity, only a single
value of the rotation rate was considered. Although the value chosen was appropriate for the
rapidly rotating regimes of planetary atmospheres and Earth’s core, it should be varied to
confirm existing results more widely. A second widely observed phenomenon of non-magnetic
convection in the annulus model is the development of bursts of convection, interrupted by
periods of strong zonal flows (Jones et al., 2003; Rotvig and Jones, 2006; Teed et al., 2012).
Such behaviour has been observed in this thesis, but a detailed study has been left for future
work. The annulus model with an imposed magnetic field is known to admit various MHD waves
(Hori et al., 2014) including the slow magnetic Rossby waves that are thought to be important
in Earth’s core and planetary atmospheres (Hori et al., 2018). The model may therefore be
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appropriate for studying the non-linear behaviour of such waves in a simplified setting. In
this work an imposed azimuthal (i.e. toroidal) magnetic field has been chosen. Other options
of field morphology are possible but this configuration was focused on both for mathematical
simplicity and because of the strong toroidal fields expected to be found in Earth’s core and
planetary atmospheres where magnetic field generation occurs.

In the spherical shell model, the l-dependence and m-dependence of forces showed good agree-
ment where both showed a similar hierarchy of forces and both were representative of the forces
controlling the flow dynamics. Similarly, the l-dependence of curls of forces matched well with
the equivalent m-dependence and curls offered a cleaner way of representing the forces control-
ling the behaviour of the system (Teed and Dormy, 2023). Spherical shell simulations discussed
weak field dipolar, strong field dipolar, multipolar and hydrodynamical solutions (Teed and
Dormy, 2025). The dynamo solutions presented, demonstrated that decreasing the Ekman
number still produced the relevant force balances in each regime of dynamo action, although
the multipolar regime was harder to reach at lower Ekman number as stronger driving was
required. We were able to extract a dynamically relevant lengthscale from these simulations
by forming a triple balance point of (curls of) forces. This work extended and refined that of
Schwaiger et al. (2021) where they examined only horizontal lengthscales (i.e. l-space), only
the forces themselves and did not distinguish between the distinct branches of dynamo action.
Results in this thesis showed that for certain regimes the triple balance point between curls of
forces determined the convective lengthscale. This method worked for the strong field dipolar
regime, multipolar regime, and the large Ra hydrodynamical states. A method for examin-
ing the force balances ITC and OTC has also been demonstrated. The behaviour ITC and
OTC were very similar, with both regions showing the balance of forces expected for the given
dynamo regime. Analysis of a transition from a strong field dipolar to a multipolar solution
showed that it was possible to find differences in behaviour of the force hierarchy ITC and OTC.
The solution started from a MAC balance at leading order with contributions from the inertial
term, both ITC and OTC. Early in the transition between regimes, the MAC balance persisted
at large scales ITC but OTC the inertial term entered the main balance and the Lorentz force
decreased. This change in behaviour OTC provoked the change in balance globally from a
MAC balance to a CIA balance.

The spherical shell simulations could also be extended in future work. In this study, triple
balance points were computed and compared with the peaks in kinetic energy. For weak field
dipolar runs exhibiting a VAC balance, no relationship was obtained between the dynamically
relevant lengthscales and the kinetic energy peak. This may be due to the absence of boundary
layers in these simulations. To confirm this, further analysis would be required to assess whether
the inclusion of boundary layers allows dynamically relevant lengthscales in weak field regimes
to align more closely with energetically relevant lengthscales. Simulations at E = 10−4 and E =

10−5 were examined. Further studies could apply the methods developed in this thesis as one
way to determine strong field or multipolar regimes at lower E. Only a small set of simulations
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were analysed for the behaviour of forces ITC and OTC, but these were able to demonstrate
differing behaviour between the different domains. In particular, changes were observed in
force balances when transitioning from the strong field dipolar branch to the multipolar branch.
However, this transition is not likely to be relevant for the geodynamo as the inertia plays too
large a role in multipolar simulations. Instead the weak to strong field transition could be
examined as this may be more applicable to the geodynamo, since it is likely that this is the
route the geodynamo took after onsetting on the weak field branch. In this work, the aspect
ratio between the inner and outer core was fixed. However, Earth’s inner core is known to be
expanding. If the weak to strong field transition is to be modelled more realistically, a different
aspect ratio to the one used in current simulations may be required to reflect the early growth of
Earth’s inner core as the geodynamo transitioned from the weak field to the strong field branch.
It has also been suggested that reversals of the dipole may be triggered by differing behaviour
either side of the tangent cylinder (e.g., Rotvig, 2009), meaning that the regime briefly changes
to multipolar in one part of the domain, which, after a delay, also affects the rest of the solution.
Then, when the dipole solution recovers, it may do so in the reversed configuration. Results
presented here have shown that for a period of time it is possible to have the force balance for
the strong field branch in one part of the domain and the balance for the multipolar branch in
another part of the domain. Although the transition found in this study is not realistic as it
requires an order of magnitude change in Pm, it does suggest that with further investigation
it may be possible to find similar behaviour without varying Pm.

The two models discussed in this thesis differ significantly, both in geometry and setup. The
annulus model employs a cylindrical geometry with an imposed magnetic field, whereas the
spherical shell model uses a spherical geometry and allows for self-sustained dynamo action.
Due to its simplified setup, the annulus model allows a broader exploration of parameter space
than is feasible in spherical geometry. Despite its simplicity, this work has shown that the
annulus model can reproduce force balances similar to those observed in key dynamo regimes
of spherical shell models. In particular, regimes dominated by CIA and MAC balances were
identified, analogous to the multipolar and strong field dipolar branches, respectively. This
suggests that the annulus model could serve as a valuable tool for guiding parameter studies
in numerically demanding spherical dynamo simulations. By identifying regions of parameter
space that provide the desired force balance, such as that expected in Earth’s core, the an-
nulus model could help to optimise parametric studies in spherical simulations. The methods
developed which related triple balance points to energetic lengthscales could also be used to
aid identification of different dynamo regimes. The impact of magnetic fields on the devel-
opment of multiple jets and zonal flows has also been examined. Since reproducing multiple
jets remains a challenge in spherical geometry, the annulus model may provide a foundation
for investigating the conditions required for their formation in more complex systems, both in
terms of parameters and force balances required.
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