
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Alexander, Steven Wilson (2007) Efficient arithmetic for high speed DSP
implementation on FPGAs. EngD thesis.

http://theses.gla.ac.uk/856/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/

Efficient Arithmetic for High Speed
DSP Implementation on FPGAs

Steven Wilson Alexander (BEng/MSc)

A thesis submitted to

the Universities of

Edinburgh

Glasgow

Heriot-Watt

Strathclyde

For the Degree of

Doctor of Engineering in System Level Integration

@ Steven Wilson Alexander, Feb. 2007

Author's Declaration

I declare that no portion of the work in this thesis has been submitted in support of any

application for any other degree or qualification of this or any other university or
institute of learning.

I also declare that the work presented in this thesis is entirely my own

contribution unless otherwise stated.

Slý;
4,0

&Vý
SA'

Steven W. Alexander

ii

Abstract

This thesis presents the work that was carried out by the author to obtain the degree of
Doctorate of Engineering (EngD). The author was sponsored for the duration of the
degree by EnTegra Ltd, a company who develop hardware and software products and

services for real time implementation of DSP and RIF systems.
The field programmable gate array (FPGA) is being used increasingly in the

field of DSP. This is due to the fact that the parallel computing power of such devices

is ideal for today's truly demanding DSP algorithms. Algorithms such as the QR-RLS

update are computationaly intensive and must be carried out at extremely high speeds
(MHz). This means that the DSP processor is simply not an option. ASICs can be used
but the expense of developing custom logic is prohibitive.

The increased use of the FPGA in DSP means that there is a significant
requirement for efficient arithmetic cores that utilise the resources on such devices.
This thesis presents the research and development effort that was carried out to produce
fixed point division and square root cores for use in a new Electronic Design

Automation (EDA) tool from EnTegra, which is targeted at FPGA implementation of
DSP systems. Further to this, a new technique for predicting the accuracy of CORDIC

systems computing vector magnitudes and cosines/sines is presented. This work

allows the most efficient CORDIC design for a specified level of accuracy to be found

quickly and easily without the need to run lengthy simulations, as was the case before.

The CORDIC algorithm is a technique using mainly shifts and additions to compute

many arithmetic functions and is thus ideal for FPGA implementation.

iii

Acknowledgments

There are many people that I would like to thank for their help and support during the
Engl) degree. Firstly I owe a huge thank you to Professor R. W. Stewart who has been

my academic supervisor for the past four years. The opportunities that he has presented
to me and the experience that I have gained are invaluable in terms of personal and

career development. I'd also like to thank my industrial supervisor Tim Bigg and
EnTegra Ltd. for their support during the degree. A big thanks must also go to Sandie

Buchanan and Sian Williams for their help and guidance in all EngD matters.
I have made some fantastic friends and colleagues during the EngD, each of

which deserves thanks for either helping with some problem or simply providing some
needed distraction. Everyone in Glasgow - Daniel, lain, Garrey, Graham F, Jamie,
Graham S, Louise, Karen, Amreet, Faisal, Ken and Neil - thanks to each of you, a great
bunch of people! I'd also like to say a special thank you to Eugen Pfarm for all his help

with reviewing papers and reports as and when it was needed. His advice and direction

has had a huge benefit to this work.
My family have been a great source of help and inspiration over the years.

Dad, Jane, Alistair, Jen, Sean and Sandy -I thank you all for your love and support. I

owe a special mention to my Mum who has worked so hard to provide for her family. -
She is the most selfless person I know and I owe so much of my success to her.

Finally I want to thank Kerry for supporting me throughout the Engl) in what
has been a challenging experience at times. Her sense of humour and ability to make

me laugh have been a major help during this time. She is my best friend and partner

and I couldn't have completed this work without her.

iv

Acronyms & Symbols

ALM Adaptive Logic Module

ALU Arithmetic Logic Unit

AMS Analogue Mixed Signal

ASIC Application Specific Integrated Circuit

CDMA Code Division Multiple Access

CLB Configurable Logic Block

CORDIC COrdinate Rotational DIgital Computer

DSP Digital Signal Processing

EDA Electronic Design Automation

ESL Electronic System Level

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HDS HDL Design Studio

Ic Integrated Circuit

IIR Infinite Impulse Response

IOB Input Output Block

IP Intellectual Property

LAB Logic Array Block

V

CHAPTER - Acronyms & Symbols

LMS Least Mean Squares

LSB Least Significant Bit

LUT Look Up Table

MAC Multiply Accumulate

MSB Most Significant Bit

OQE Overall Quantisation Error

PFU Programmable Functional Unit

RE Research Engineer

RF Radio Frequency

RLS Recursive Least Squares

ROM Read Only Memory

RTL Register Transfer Level

SOC System On Chip

SRAM Static Random Access Memory

VLSI Very Large Scale Integration

vi

Contents

Contents

Author's Declaration

Abstract

Acknowledgments

Acronyms & Symbols

Vil

iv

v

1 Introduction 1

1.1 Project Timeline .. 1

1.2 Thesis Organisation
.. 4

1.3 Contribution to Knowledge
.................................. 4

1.3.1 Novel contribution to knowledge
....................... 4

1.3.2 Contribution to practical knowledge 5

2 Taught Modules 6
2.1 Technical Modules .. 6
2.2 Business Modules ... 7

3 Publications 9
3.1 Poster Presentations .. 9

3.2 Oral Presentations ... 10

3.3 Journal Publications - Confirmed 11

3.4 Journal Publications - Awaiting Notification 12

4 Commercial Relevance 13

4.1 IC Design - The Current Situation 13

4.1.1 Electronic Design Automation (EDA) Tools 15

4.1.2 Commercial Interest 17

4.2 DSP - From Sequential Processors To Parallel Arrays 18

Contents viii

4.2.1 FPGAs For DSP 19

4.3 Project Contribution 20

4.3.1 HDL Design Studio IP Development 20

4.3.2 Analysis Of Pipelined Feedback Loops
.................. 21

4.3.3 CORDIC Quantisation Error Analysis 22

5 Technical Background 24

5.1 The Limit Of A DSP Processor 24

5.2 FPGAs .. 25

5.2.1 FPGA Architecture Basics 26

5.2.2 DSP Functionality 29

5.3 Rethinking Algorithm Implementation 30

5.4 Adaptive Equalisation 32

5.4.1 The LMS Algorithm 33
5.4.2 The RLS Algorithm

................................. 34

5.4.3 QR Decomposition 36

5.4.4 QRD-RLS ... 39

6 Division & Square Root Core Development 43

6.1 Long Division .. 43

6.2 Specification ... 47

6.3 The Hardware Implementation 47

6.3.1 The Top Level 47

6.3.2 Inside The Fixed Point Divider 48

6.3.3 Computing The Quotient 50

6.3.4 Pipelined. Design Latency 55

6.3.5 Folding The Pipeline 55

6.4 The Software Implementation 58

6.4.1 Pseudo Code for Software Division 59

6.4.2 Full C++ Model 62

6.4.3 How Many Loops? 63

Contents

6.4.4 Replacing The Binary Point 64

6.4.5 Simulating The Delay 64

6.4.6 Performance 65

6.5 Direct Square Root .. 66

6.6 Specification ... 69

6.7 The Hardware Implementation 69

6.7.1 The Top Level 70

6.7.2 Inside The Fixed Point Square Root Core 70

ix

6.7.3 Truncate/Pad Input 71

6.7.4 Computing The Square Root 71

6.7.5 Pipelined Latency 74

6.8 The Software Implementation 75

6.8.1 The Basic Algorithm 76
6.8.2 Full C++ Model 77
6.8.3 How Many Loops? 78
6.8.4 Replacing The Binary Point 80
6.8.5 Simulating The Delay 80
6.8.6 Perfonnance 80

6.9 Verification Of Cores 82

7 CORDIC 83

7.1 Introduction .. 83

7.2 COordinate Rotational DIgital Computer (CORDIC) 83

7.2.1 Givcns Rotations 84

7.2.2 Pseudo-Rotations 85

7.2.3 Basic Iterations 86

7.2.4 Angle Accumulator 87

7.2.5 Shift-Add Algorithm 87

7.2.6 The Scaling Factor 88

7.2.7 Modes Of Operation 89

Contents

7.2.8 Coordinate Systems 92
7.2.9 Convergence 94

7.2.10 CORDIC Summary 94

7.3 CORDIC Precision .. 96

7.4 Predicting The Accuracy Of Vector Magnitude Calculations 97

7.4.1 Using CORDIC To Compute The Magnitude Of A Vector ... 97

7.4.2 Assessing The Overall Quantisation Error 99

7.4.3 Taking The OQE Further 101

x

7.4.4 The Approximation Error 102

7.4.5 Improving The Approximation Error Estimate 104

7.4.6 Verifying The New Algoriflun 106

7.4.7 SystemVue (HDS) Simulations 107

7.4.8 Hardware Comparison
............................... 110

7.5 Predicting The Accuracy Of Sine/Cosine Calculations 114

7.5.1 The Algorithm
...................................... 114

7.5.2 The Overall Quantisation Error (OQE) 115

7.5.3 The Approximation Error 116
7.5.4 Simulations .. 121

7.5.5 Predicting The Accuracy 122

7.5.6 Fixed Point Simulations 122

7.5.7 Results And Discussion 125

7.5.8 Design Example 126

8 Pipelined Feedback Loops 127

8.1 Introduction .. 127

8.2 Pipelining A Feedback Loop 128

8.3 To Pipeline Or Not To Pipeline? 129

8.3.1 Givens Rotation With Feedback 129

8.3.2 Non-Pipelined Design 131

8.3.3 Pipelined Design 131

Contents xi

8.3.4 Synthesis Results 133
8.4 Filling The Pipeline .. 133
8.5 Discussion ... 134
8.6 Conclusions .. 136

9 Conclusions 137
9.1 Core Development for HDS 137
9.2 CORDIC Accuracy Research 138

9.3 Adaptive Equalisation 141

Appendix A- Old Algorithm - Effective Fractional Bits Table 143

Appendix B- New Algorithm - Effective Fractional Bits Table 148

Appendix C- CORDIC Cos/Sin - Effective Fractional Bits Table 153

References 156

Chapter I

Introduction

The industry sponsor for the duration of this Engl) (October 2001 - October 2005) has

been EnTegra Ltd. EnTegra develop hardware and software products and services for

real time implementation of DSP and RIF systems. The majority of the Engl) project

was spent at Strathclyde University under the guidance of Professor Bob Stewart,

academic supervisor. Regular contact was maintained with the industrial supervisor
Tim Bigg throughout the project.

1.1 Project Timeline

Figure 1.1 shows the activities that were carried out during the four years of the EngD

project. During the first 10 months, 108 credits worth of technical modules were

completed at ISLI. The final 12 credits required to obtain the necessary 120 were

completed in early 2002. A ftu-ther requirement of the EngD programme is that each

student must obtain 60 credits of MBA level modules. Heriot-Watt Business School

offers intensive MBA modules where the taught element can be completed in 6 full

days rather than an entire semester. Hence, the decision was taken to study the business

modules here to minimise the time spent away from the project. During 2004, three

modules totalling 60 credits were completed.
In June 2002 work began on the project under the supervision of Professor

I

CHAPTER I- Introduction 2

Stewart at Strathclyde University. Working from here, the research and development

effort began into efficient algorithms for high speed DSP implementation on FPGAs.

The first task was to research the CORDIC algorithm as it was felt that this technique
had great potential in DSP. This has since been proven correct as downconverters using
CORDIC have been seen in the market [45] as well as commercial FPGA EDA tools

containing CORDIC cores [52]. The result of this research was a comprehensive report
detailing the CORDIC algorithm. Through this examination a major problem with the
CORDIC technique was found with respect to its use in fixed point DSP systems. The

only way to find the worst case error in a fixed point CORDIC system was to run
lengthy simulations and compare the output to a reference solution, which is not an
ideal situation. In some DSP algorithms it is vitally important that the worst case error
is known. This Problem was to be solved later in the project.

Taught
Modules

Technical
Work

Conference
Attendances

Journal
Papers

Training
Courses

Technical Technical Business

Pipelined Loops
CORDIC

..
HDS Core Development

HCORDIC
Accuracy

FPGA Dev. DATE
XilinxPW ForuT ICASP ICASSP ICASP

UWB Colloq. DSPeR GSPx
Set f6r Britain

VHDL&FPGA DSPforFPGAs Basics
00

Microl? & MicroS Joumal
Dcc'05

EPSRC Grad School

Oct'04
Jin Aýr JýI

Oct'05
I Jan Apr Jul , Jan Apr Jul I Jan Apr

Oct, 01 Oct'02 Oct'03

Figure: 1.1: Project Timeline

Following the CORDIC analysis, a major new product development began at
EnTegra. A new software package called HDL Design Studio (HDS) [44] was to be

developed which would work as a plugin to the existing DSP simulation tool
SystemVue [50]. The idea behind HDS was that it would allow SystemVue

simulations to be automatically converted into bit and cycle equivalent hardware

CHAPTER 1- Introduction 3

designs. Thus, the DSP development lifecycle could be reduced considerably as no
hand coded hardware description language (HDL) would need to be written. The Engl)

role in this project was to develop Division and Square Root cores for inclusion in

HDS. Hence, software and hardware fimctions for efficient implementation of a fixed-

point Divider and Square Rooter were developed and verified.
The use of pipelined IP in feedback loops was a topic that had been debated

many times amongst several colleagues at EnTegra and Strathclyde University during

the EngD. Hence, the project supervisors agreed that a short paper should be written

where an investigation into the validity of this technique was investigated and

presented. This work had real value as many DSP algorithms use feedback. Also,

pipelined IP cores are frequently provided in today's DSP EDA tools. The decision

whether to use these cores in a pipelined or non-pipelined format within a feedback

loop is not a trivial decision as was found during the investigation. The findings of this

work were that non-pipelined feedback loops have a greater throughput, use less logic

and consume less power than a pipelined equivalent. The results were presented at
ICASSP 2005 in Philadelphia, PA.

The final piece of work that was undertaken during the Engl) was to return to

the CORDIC algorithm to try and solve the accuracy problem. By building on the work

presented in a paper published in 1992 [18] a closed form solution was developed

which allows the accuracy of fixed-point CORDIC systems to be found. Hence, rather
than using the traditional trial and error approach, this breakthrough allows engineers

to quickly find the defining parameters for a fixed-point CORDIC system computing

an output to a desired level of accuracy. The initial work that was developed here was

accepted in late 2005 for publication in the Journal of Microprocessors and
Microsystems.

In addition to the research and development effort that was carried out during

the EngD, several training courses and conferences were attended. Each of these events
helped to improve the EngD students technical skills as well as his personal

effectiveness.

CHAPTER I- Introduction

1.2 Thesis Organisation

4

This document discusses the main outcomes of the Engl) as well as the commercial

and technical background to which the work was carried out. Also, details are given

with respect to the compulsory aspects of the Engl), such as the completion of the

technical and business modules.

The rest of this document is organised as follows. In Chapter 2, the Taught

modules, both technical and business, are discussed along with the reasons for their

selection. Following this, in Chapter 3 all publications that were accepted either for

conference orjournal publication are listed with a brief summary of each. In Chapters

4 and 5 the Commercial and Technical background to which the EngD work was

carried out is set. Chapters 6-8 present the research and development effort during the

Engl) in some detail. Finally, the Conclusions are given in Chapter 9. Note that in

Chapter 6, the screen dumps of any HDS tokens show the logo of a company called
Steepest Ascent Ltd. [49] rather than EnTegra. This is because Steepest Ascent have

taken ownership of the product since the EngD students involvement.

1.3 Contribution to Knowledge

The work presented in this thesis comprises a thorough analysis and discussion of the

Engl) project titled "Efficient Arithmetic for High Speed DSP Implementation on

FPGAS". The following elements are regarded as novel contributions to knowledge

and contributions to practical knowledge.

1.3.1 Novel contribution to knowledge

An extremely accurate equation for predicting the Overall Quantisation Error

(OQE) experienced by fixed point CORDIC systems computing vector

magnitudes has been developed and verified. The equation is derived in terms of

the number of iterations n and the number of fractional bits used in the data path

CHAPTER I- Introduction 5

b. By using the equation it is now possible to find the combination of n and b

resulting in the least hardware required to generate a desired level of accuracy
from the output of a fixed point CORDIC system computing vector magnitudes.

An OQE equation has been developed to predict the accuracy of fixed point
CORDIC systems computing sines and cosines. Again the OQE is derived in

terms of the number of iterations n and the number of fractional bits used in the

data path b. This equation can be used to find the minimal set of parameters

required by such systems to guarantee a desired level of accuracy from the

cosine/sine output.

13.2 Contribution to practical knowledge

Using direct methods of computation, fixed point divider and square root cores

were developed. These cores are capable of generating bit accurate solutions

when compared with floating point equivalent functions that are truncated to the

same level of precision. They also have the added benefit of producing one bit of

the solution per iteration and hence it is easy to know how many iterations it will

take to guarantee a desired level of accuracy.

An analysis of feedback loops has been carried out where the merits of pipelining

such a structure has been considered. This work has shown that pipelining only

serves to reduce the data throughput, increase the resource usage and use more

power than when compared to a non-pipelined feedback loop.

Chapter 2

Taught Modules

In this section, the Technical and Business modules that were undertaken during the
Engl) degree are discussed. The Technical modules were all taken at the Institute for

System Level Integration in Livingston over the first two years of the degree. Normally

the technical modules are completed in the first year of the degree, however the RE

started the EngD approximately one month late. Consequently a first term module was
deferred until the second year to allow the remaining first term classes to be

successfully caught up with.
The Business modules were all taken at Heriot-Watt University. The reason

for choosing this university was the option to attend the classes during the weekends,

which meant that it was possible to complete the Business modules while minimising
the time spent away from the Engl) project.

2.1 Technical Modules

The following Technical modules were taken at ISLI from October 2001 to May 2002.

As mentioned already, an optional module (Microprocessors and Microcontrollers)

was deferred until October 2002 to reduce the workload in the first term while

progressing with the remaining classes.

6

CHAPTER 2- Taught Modules

Foundation Modules Credits

Introduction to Hardware Design Automation 6

Introduction to Embedded Software Engineering 6

Compulsory Modules

Embedded Software I (System on Chip) 6

VLSI Design 12

IP Block Authoring 12

IP Block Integration 12

System Partitioning 12

Optional Modules

Embedded Software 2 (Operating Systems) 12

Communications Algorithms 12

Mobile Communications 6

Broadband & Digital Networks 6

Multimedia & Video 6

Microprocessors & Microcontrollers 12

120

Table 1: Technical Module Breakdown

2.2 Business Modules

7

A requirement of each RE is that they complete 60 credits of Master of Business

Administration (MBA) modules. These can be taken at any of the four participating
Engl) Universities. Heriot-Watt was chosen as they offer taught MBA classes during

the weekends. Table 2 lists the modules that were taken and completed successfully
during 2004.

These modules were chosen as they offered the best fit to the Engl) project.
Marketing was important as at the time EnTegra were developing a new product in

CHAPTER 2- Taught Modules 8

HDS. In addition to this, the ability to manage projects now and in the future whilst

understanding the financial implications was of course important. Hence, Accounting

and Project Management were chosen.

Business Modules Credits

Accounting 20

Project Management 20

Marketing 20

60

Table 2: Business Module Breakdown

Chapter 3

Publications

In this section, the publications submitted and accepted during the Engl) degree are

given.

3.1 Poster Presentations

Rapid Prototyping of DSP Systems for FPGA Implementation Using HDL

Design Studio - this paper was presented at the Institutefor Communications

and Signal Processing Research Colloquium, Glasgow in June 2004, which was

run by the EEE department at Strathclyde University. The paper focused on the
development of a new Electronic Design Automation (EDA) tool which EnTegra

were developing. HDL Design Studio (HDS) was designed as a plugin to the

SysternVue DSP software simulation package. Using HDS, bit/cycle accurate
VHDL designs ready for hardware implementation can be rapidly generated
from SystemVue software simulations. The paper illustrated the benefits of the

tool, including reduced design times via a design example.

The Effects of Pipelining Feedback Loops in High Speed DSP Systems - this

paper was presented at the International Conference on, 4coustics, Speech and
Signal Processing (ICASSP), Philadelphia, PA, USA in March 2005. The

purpose of this paper was to present findings that showed feedback loops

9

CHAPTER 3- Publications 10

containing IP that is pipelined are slower in terms of data throughput and

consume more power than equivalent non-pipelined loops. This is significant for

two reasons. Firstly, many of today's DSP EDA tools supply ready pipelined IP

cores and secondly these cores are increasingly being used in Adaptive

Equalisation systems which often require feedback loops. The work involved in

this paper involved using HDS which provided an opportunity to market the tool

at the conference.

3.2 Oral Presentations

HDL Design Studio - An Integrated Design Flow for the Implementation of
DSP Systems on FPGAs - this paper was presented at the Global Signal

Processing Expo (GSPx), Santa Clara, CA, USA in September 2004. In this

paper HDL Design Studio was presented in more detail with a more complex
design example (adaptive LMS equaliser). Some additional features were also

presented, including the fixed point analysis tools. These tools allow the number

of overflows and underflows resulting from a simulation to be observed. Also,

the maximum and minimum values from a specific output can also be observed

along with the required range and precision that is necessary to represent these

numbers fully. These features are unique to the DSP EDA tool market and are

extremely useful for designing DSP systems that demand numerical stability and
integrity to be maintained.

An Improved Algorithm for Assessing the Overall Quantisation Error in

CORDIC Systems Computing a Vector Magnitude - this paper was presented

at the Institutefor Communications and Signal Processing Research Colloquium

(ICASP), Jordanhill, Glasgow in October 2005. The focus of this paper was on

analysing the accuracy of the output from a CORDIC system computing a vector

magnitude. In DSP it is vital that the accuracy of signals is known if numerical

CHAPTER 3- Publications 11

stability and integrity is to be maintained. There was very little work covering

this aspect of the CORDIC algorithm and traditionally engineers simply used a
trial and error approach to find a system that produced an output with enough

accuracy. Clearly this was not an ideal situation. However, by building on work

presented in [18] an accurate formula was developed for finding efficient
CORDIC systems to compute the magnitude of a vector to a specified accuracy.

Tools for Implementation of DSP Functionality in FPGAs: CORDIC Vector

Magnitude Calculation Using HDS3 - this paper was presented at the

Electronica Conference, Munich, Germany in November 2006. In this paper the

operation of the CORDIC algorithm and specifically how CORDIC can be used

to calculate vector magnitudes is explained. The HDS3 design software is

introduced (updated version HDS) and selected CORDIC implementations are
developed in HDS3 using a variety of structures. These structures are

synthesised for an FPGA target and the performance and resource usage

presented. A single CORDIC cell was also synthesised as an example of

targeting a CPLD target.

3.3 Journal Publications - Confirmed

An Improved Algorithm for Assessing the Overall Quantisation Error in

FPGA Based CORDIC Systems Computing a Vector Magnitude - this paper

was accepted in December 2005 for publication in the Special Issue on FPGA-

hased Reconfigurable Computing, Journal of Microprocessors and
Microsystems. Note that it is not due to be published until early 2007. This paper

covered the work that was presented at ICASP '05 in more detail. In addition to

discussing the derivation of a formula for assessing the error in CORDIC

systems computing a vector magnitude, the improvements in terms of FPGA

hardware utilisation and clock speed were illustrated compared with other

CHAPTER 3- Publications 12

techniques for computing the same function.

3.4 Journal Publications - Awaiting Notification

Assessing The Overall Quantisation Error In CORDIC Systems Computing

Cosines And Sines - this paper was submitted in January 2007 to the IEEE

Transactions on Circuits and Systems H. This paper presented the work that was

carried out to find the most efficient CORDIC systems for computing cosines

and sines to a required level of accuracy.

Chapter 4

Commercial Relevance

In this section, the commercial background to which the Engl) project was carried out

will be discussed. Further to this, the contribution that the project has made towards the

commercial interests of EnTegra Ltd. and the research community will also be

highlighted.

4.1 IC Design - The Current Situation

In 1965 Gordon Moore [25] predicted that, for the foreseeable future, the number of
transistors on an integrated circuit would double every 12 - 24 months. Over 40 years
later the trend that he predicted still holds true, although for how much longer no one

really knows. However, the rapid progress of IC process technology during these 40

years has resulted in a phenomenon known as the "Design Gap" [5][7][16]. This gap
is the difference between the total number of transistors on current IC's and the number

of transistors that are actually utilised in today's designs as show in Figure 4.1. There

are several contributing factors to this gap which include mask costs, time to market
demands and increased system complexity. Together, these factors mean that today's

engineers cannot design and verify systems that utilise the full capability of current
IC's in a time that gets the product to market fast enough.

13

CHAPTER 4- Commercial Relevance

1000000C

100000C

I 0000C
I OOOC

looc

to loc

0

1-4
ic

Years '80 '85 190 195 100 105

Figure: 4.1: Design Complexity versus Designer Productivity

14

100000000

10000000 ci

1000000

1000o0

10000

1000
"U

100

-110
110

At present, the solution to the design gap is believed to involve changes in all
three interacting dimensions of the design environment. These are:

Design IP - these are the building blocks of a design. Traditionally these are

written in an HDL (hardware) or C/Assembly (software).

Design Tools - these are the application programs and techniques that designers

use to capture, verify, refte, and translate design descriptions for particular tasks

and subsystems. Historically, tools such as RTL compilation and verification,

code assemblers and compilers, and standard-cell placement and routing have

comprised the essential tool box for complex chip design.

- Design Methodology - is the design team's strategy for combining the available
IP and tools into a systematic process for implementing the target silicon and

software. A methodology specifies which elements and tools are available,
describes how the tools are used at each step of the design refinement, and

outlines the sequence of design steps. Typically the sequence involves four steps
in the following order: hardware-software partitioning, detailed RTL block

loý ý-
-, 0

D sign Gap
'3

ý-
F

VTO

CHAPTER 4- Commercial Relevance 15

design and verification, chip integration of RTL blocks, processors and

memories, and post-silicon software bring-up.

In the next section the commercial interests of EnTegra Ltd. with respect to

today's design tools are discussed.

4.1.1 Electronic Design Automation (EDA) Tools

There are many different types of electronic design tool that come under the EDA

label. For example, System On Chip (SOC) designers may use Electronic System

Level (ESL) tools. These tools allow software and hardware to be partitioned and
designed within the one tool. Often these tools use extensions to the C/C++ languages

or variations of these. These include Handel-C [43], SystemC [51] and SpecC [48].

Other areas of design include Analogue Mixed Signal (AMS), Radio Frequency (RF)

and Electro Magnetic (EM). However, Digital Signal Processing (DSP) is the area that

EnTegra Ltd. operate in and hence this shall be the focus here.

The traditional approach to DSP system design is to use a simulation package

such as SystemVue or Simulink [47] to build and verify a system before creating an

equivalent software design by writing C code to target a DSP processor. Alternatively,

an equivalent hardware design is created by writing VHDLNerilog. However, this

method is becoming less common. The reason for this is that Field Programmable Gate

Arrays (FPGAs) are being used in DSP more than ever before, meaning that support
for this design flow is increasing. Consequently several new tools have now entered

the market [55][40] which allow bit/cycle accurate FPGA designs to be automatically

generated from software simulations. This means that design times have been

dramatically cut due to the fact that HDL code does not need to be hand crafted

anymore [9]. So, where previously it may have taken several weeks/months to hand

code an HDL design and test, verify and implement it, this process is now automated

and takes hours/days. There are arguments that suggest that well constructed hand

crafted HDL code will generally outperform automatically generated code. However,

CHAPTER 4- Commercial Relevance 16

the response to this tends to be that the amount of time saved writing code can be spent

exploring more of the design space to find an optimal solution that might otherwise not
have been found using a traditional approach.

In Figure 4.2 it is clear that making changes to a design using the traditional

flow takes a significant amount of time. First, the software simulation has to be altered

and checked against the original specification. The main time consumer is the manual

coding of the altered design, which of course must be re-implemented, tested and
debugged. With today's design flow, once the software simulation has been altered, the

new HDL design is generated in minutes. The added bonus of this approach is that the

generated hardware designs are bit and cycle accurate compared to the original

software model. Also, testbenches can be automatically generated, thus verification

takes much less time.

DSP Specification

I

Hand Crafted
C or HDL Code

Software Simulation 14 ----------I

Implement - Test - Debug

Traditional Design Flow
Wceks/Months Per Iteration

Automatically Generated
Bit/Cycle Accurate

HDL Design

Implement - Test - Debu

II
L

Today's Design Flow
Mins/Days Per Iteration

Figure: 4.2: Traditional DSP Design Flow versus New Design Flow

CHAPTER 4- Commercial Relevance

4.1.2 Commercial Interest

17

SystemVue is a DSP/RF software simulation package that was originally developed by

Elanix, Los Angeles, CA. However, in recent years due to company buyouts, its

ownership has moved to Eagleware and more recently Agilent Technologies [50]. For

several years now EnTegra Ltd. have been involved with SystemVue as a UK

distributor. In addition to this, they have also developed several DSP training courses

that teach and use SystemVue during laboratory sessions. However, a major part of

EnTegra's involvement with SystemVue has been in the development of several

software libraries for use with the tool. These include 3G, CDMA2000, Equaliser and
Adaptive libraries [42].

One of the major competitors to SystemVue is Simulink from The Mathworks

[47]. Simulink is a block based software simulation package, similar to SystemVue,

which is purchased as a plugin to the popular Matlab tool. However, Simulink differs

from SystemVue in that it supports many different engineering disciplines. It is

tailored to each industry through the purchase of blocksets which provide industry

specific functionality. So for example, to build DSP systems would require at least the

Signal Processing blockset to be purchased.
In 2001 The Mathworks, a leader in modelling and simulation software,

started a partnership with the leading FPGA vendor, Xilinx. This partnership involved

creating a new design flow that allowed Simulink DSP systems to be automatically

generated into equivalent HDL designs targeted at Xilinx FPGAs. The result of this

collaboration was System Generator [55]. This new tool was basically a Xilinx

blockset for use with Simulink. By building DSP systems using Xilinx blocks it was

possible to generate equivalent VHDL or Verilog designs for any Xilinx chip. Shortly

after System Generator was released, a similar tool called DSP Builder [40] was
developed. This was the offering from the other major FPGA vendor, Altera, which

again was available as a blockset for use with Simulink.

Both of these tools have a common feature, which is that neither of them

generate HDL code that can be used independently of the tool. Instead, a top level HDL

CHAPTER 4- Commercial Relevance 18

file is generated which instantiates electronic design files (edif) for each of the

components in the design. This means for example, that if a multiplier block is used in

the design, then it is represented using an edif file instead of actual HDL code. The

reason for this is that it protects the IP of each core. It is extremely difficult to obtain

useful information regarding IP from an edif file.

Another common feature of both tools is that neither of them have support for

integrating the rest of the system with the DSP component. System Generator and DSP

Builder are aimed at DSP design, however in a real system this is only part of the

overall system. Once the DSP section has been designed it must be integrated with the

rest of the system.
These issues were brought to the attention of EnTegra through speaking to

engineers who had used the software. When EnTegra decided to develop their own

tool, this information was crucial to the design of HDS.

4.2 DSP - From Sequential Processors To Parallel Arrays

Traditionally, specialised processors have been used for implementing DSP algorithms
in software. These specialised processors differ from CPUs in that they often have

single cycle instructions that are particularly useful in DSP, such as multiply-

accumulate. The problem with this type of DSP implementation is processing

throughput. A processor can only carry out one instruction at a time, each of which

consumes clock cycles. As there are a fixed number of clock cycles between each data

sample arriving, there is a limit to the number of instructions that can be executed
before the next sample arrives. This limitation has meant that many DSP algorithms

simply could not be implemented with this type of technology due to the high data

processing requirements that they have. The solution to this problem is either to
increase the clock speed so that more instructions can be executed in between samples

or move to a parallel implementation where more than one function is computed during

a clock period. Unfortunately technology limits the speed at which modem DSP

CHAPTER 4- Commercial Relevance 19

processors can be clocked. This leaves a parallel implementation as the solution.
Application Specific Integrated Circuits (ASICs) offer a high degree of

parallelism, however the significant investment required to develop and manufacture

such devices means that they cannot always be used. Fortunately, FPGAs have the

parallelism required as well as several other attributes that are ideal for use in DSP

systems. Over the last twenty years they have evolved from simple devices that were

used as glue logic to the sophisticated multi-functional devices that exist today. This

has had a significant effect on the DSP industry and its markets.

4.2.1 FPGAs For DSP

Today's FPGAs have many resources specifically targeted at DSP design. These

include dedicated embedded multipliers, fast carry logic, flexible memory and more

recently, embedded processors within the FPGA fabric. As has already been discussed,

DSP has been dominated by the microprocessor for many years, which has led to

engineers developing algorithms with a software implementation in mind. However, a

rethink is now required as there are alternative approaches to implementing many

algorithms which are more suited to a hardware implementation. One such approach is

the CORDIC algorithm [33][34] which has been around since the 1950's. This

technique can be used to compute many different functions using only shifts, additions/

subtractions and table look-ups. Hence, it is ideal for implementing on FPGAs.

Another area where FPGAs have created an opportunity is in the development

of truly demanding DSP techniques. The serial nature of DSP processors has already
been highlighted. FPGAs permit the design of computationaly intensive systems such

as Adaptive Equalisers. There are two techniques which are often associated with
Adaptive Equalisation, which are the Least Mean Squares (LMS) [37][38] and the

Recursive Least Squares (RLS) [13][15][23]. The order of the computational

requirements for these techniques where the filter length is N is:

CHAPTER 4- Commercial Relevance 20

LMS., O(N) MACs/s RLS. O(M) MACs/s

Clearly, the RLS technique requires significantly more computations than the LMS.

However, this is not the only issue for the RLS as it also requires division and square

root functions. These functions alone have traditionally been avoided in DSP due to

their high computational requirements. However, there is significant commercial
interest in RLS systems as they outperform LMS systems by equalising much faster

and producing a cleaner output.

4.3 Project Contribution

The EngD project has made a substantial contribution to the commercial interest of
EnTegra Ltd. and the DSP research community. This has been achieved through the

following mini-projects which combine to make up the thesis. Each of these mini-

projects are covered in detail in later chapters.

4.3.1 HDL Design Studio IP Development

As has been discussed already, EnTegra have been involved in developing a new

software package called HDL Design Studio (HDS). The benefit of this tool is that it

is used as an additional library within the SystemVue software simulation tool. By

designing systems using this library it is possible to automatically generate equivalent
hardware designs therefore removing the need to hand-code VHDL/Verilog.

The design of HDL Design Studio has involved creating two separate IP

repositories. The first contains the IP for simulating any HDS functions within
SystemVue. This IP is written using the C++ language. The second repository contains

the equivalent hardware functionality. This IP is written using VHDL. Hence, for each
C++ function there is an equivalent bit/cycle accurate VHDL representation.

Many of the functions that were written for the HDS repositories were

CHAPTER 4- Commercial Relevance 21

minimal, such as addition and subtraction. However, division and square root are two

of the more complicated functions and these were assigned to the EngD project. From

a business perspective these functions were significant for two reasons. The first was

that neither Xilinx or Altera had direct division or square root functions within their

tools. The second, and probably the most important reason for developing these cores,

was that Adaptive Equalisation techniques are becoming more and more popular due

to the fact that the technology now exists to implement them. These techniques often

require division and square root functionality and hence, the inclusion of such cores

within HDS would hopefully appeal to engineers working in this area.
A significant amount of the EngD project was spent developing, testing and

upgrading the division and square root cores. However, they are now embedded within

HDL Design Studio and are part of the commercial product that is available on the

market today.

4.3.2 Analysis Of Pipelined Feedback Loops

Feedback loops are a common feature of Adaptive Equalisation techniques. A common

feature of FPGA systems is that they are often pipelined to increase the clock rate. This

effectively costs nothing on an FPGA as registers are in plentiful supply. However,

should pipelining be used in a feedback loop? This was a question that had been

debated several times amongst colleagues at Strathclyde University and EnTegra. With

FPGAs being increasingly used for Adaptive Equalisation it was felt that this was an
ideal time to try and answer this question by using HDL Design Studio. This of course
had the added benefit of generating publicity for HDS should any of the work lead to

a publication.
Through experiment and analysis it was found that feedback loops containing

pipeline registers operate with _a slower throughput, consume more power and use

more resources than feedback loops without pipelining. This was an important finding

and was significant in the development of the IP for HDS. Until this point, much of the

CHAPTER 4- Commercial Relevance 22

IP developed for HDS, as with it's competitors, was pipelined. However, based on
these findings, some of the cores, including the division and square root cores, were

updated to allow all pipeline registers to be removed. Hence, should they be used

within a feedback loop, an optimal design could be realised. This work also led to a

paper being accepted for a conference publication at the International Conference on,
Acoustics, Speech and Signal Processing (ICASSP), Philadelphia, 2005, which also

offered an ideal opportunity to promote HDS to the research community.

4.3.3 CORDIC Quantisation Error Analysis

The CORDIC algorithm is a technique that can be used to compute many different

functions. It is ideal for FPGA implementation because it requires mainly shifts and

additions/subtractions which are easily achieved on this type of device. For this reason,
both Xilinx and Altera have included CORDIC cores within their tools.

The problem with the CORDIC algorithm is that there has been very little

work done to assess the accuracy of the output it generates. It is easy to setup a
CORDIC core that computes a desired function but there is no method of assessing its

accuracy other than running time consuming simulations and comparing the output to

a reference design. To overcome this problem, a project was undertaken to develop a
formula for quantifying the error in such systems. If this could be achieved, the need

to run tedious simulations could be avoided, thus saving time. Also, it would allow the

most efficient CORDIC design to found for a specific level of accuracy. A ftuther

benefit of this work would be the ability to create a CORDIC core where all that was

required from the user was to specify the desired function and a level of required

accuracy. Using the error analysis work, the core could then automatically configure
itself to use as few resources as possible to achieve this. None of the tools that compete

with HDS have anything as sophisticated as this, and hence it would be a significant

addition to the software.
The result of this project was that an algorithm was successftilly developed to

CHAPTER 4- Commercial Relevance 23

predict the accuracy of CORDIC systems computing vector magnitude and sine/cosine

calculations. Unfortunately, due to time restrictions the work has not been carried out

to its full potential. There are many other CORDIC ftinctions that have yet to be

analysed. However, the methods that have been applied so far could be extended to the

remaining CORDIC functions. Also, it is still possible that this work will lead to a new

core within HDS, which will generate efficient CORDIC systems based on the derived

algorithm. Further to this, the work that has been completed so far has resulted in the

first journal publication of this Engl) project. In early 2007, the paper titled "An

Improved Algorithm for Assessing the Overall Quantisation Error in FPGA Based

CORDIC Systems Computing a Vector Magnitude" will be published in the Special

Issue on FPGA-based Reconrigurable Computing, Journal of Microprocessors and

Microsystems.

Chapter 5

Technical Background

In this section the technical background is discussed to illustrate why the work that has

been carried out is relevant, valuable and solves a real industrial problem. Much of the

technical background focuses on the development of the FPGA, the effect this has had

on the DSP industry and how it has enabled the realisation of computationaly
demanding tasks such as adaptive equalisation using the least squares technique.

5.1 The Limit Of A DSP Processor

A processor has to use sequential clock cycles to perform an algorithm. Usually it takes

one clock cycle for every operation that must be carried out in an algorithm. This

means that there is a limit to the number of operations that can be carried out on one

data sample before the next one arrives. This limit defines the operating envelope for

a processor.
Table 3 illustrates the comparison between an Arithmetic Logic Unit (ALU)

with a single multiplier clocked at I OOMHz against an ALU with 2 multipliers clocked

at 20OMHz. By comparing the number of operations that both ALU's can complete per

sample period it is clear that the bigger ALU is 4 times more capable.
For applications where the sampling rate is relatively low, like Audio for

example (8KHz - 20KHz) a DSP processor is an excellent option. However, for a

24

CHAPTER 5- Technical Background 25

control loop algorithm such as an FIR filter with 512 weights, it becomes unusable.
Some modem communications systems (CDMA chip rates) use sample rates of

1.2288MHz and 3.84MHz [30], which means that only 26 operations can be carried

out between samples. This is not enough to do anything really useful. For technologies

such as Video (27MHz) and HDTV (74MHz) there is very little that can be done with

a processor. Hence, for high sample rate applications a more parallel approach is

required and this is where FPGAs excel in DSP.

Sample Operations per sample period
Rate

Single Multiplier
ALU @ 100 MHz

Two Multipliers
ALU @ 200 MHz

8KHz 12,500 50,000

44. IKHz 2,267 9,070

300KHz 333 1,333

1.2288MHz 81 325

3.84MHz 26 104

27MHz 3 14

74MHz 1 5

102.4MHz Not Possible T3
Table 3: DSP Processor Operating Envelope

5.2 FPGAs

Twenty years ago, Field Programmable Gate Arrays (FPGAs) were used for tasks such

as glue logic and routing [8]. Today, however, they are complex devices capable of
housing an entire system (4]. Here, the basics of current FPGAs will be discussed as

well as the features that are targeted directly at DSP applications.

CHAPTER 5- Technical Background

5.2.1 FPGA Architecture Basics

26

The basic FPGA architecture follows the structure shown in Figure 5.1. The device is

made up of block memory, Input/Output Blocks (1013s), logic blocks and routing,

although routing has been omitted from the figure for clarity. The FPGA is usually a

fully SRAM based device, which is configured following the application of power or

reconfigured during operation. The building blocks can be configured to provide many
functions, with programmable interconnect used to join these small functions to form

larger functions and systems. This flexibility means that the FPGA provides a huge

degree of freedom for the creation of DSP processing functions.

El 1: 1 1: 1 1-: 1 E] El El E 11

E] F- I DOE]

-

Block
Memory

--j
- 1 1 El

El 1-1 El I -]
- -

Logic
Bc loks

El

L: 1 F--]--- El F1
0EE -0 0E0D0

Input/Output Blocks -'
(1013) Figure: 5.1: Basic FPGA Architecture

The logic blocks within an FPGA and the names that are given to them differ

from vendor to vendor. However, as will be shown, the logic shares many similarities

across vendors, although may be in different sizes or widths. For example, the basic

logic block in Xilinx devices is called the Configurable Logic Block (CLB) which is

made up of Slices [56]. Depending on the device, each CLB can contain either 2 or 4

Slices. Each Slice contains two 4-input LUTs, flip-flops, multiplexers, arithmetic

logic, carry chain and dedicated routing. The contents of a single Slice can be seen in

CHAPTER 5- Technical Backgound

m
03
132
G, f

By
FEIN

EX

Fl
F3
F2
Fl

SRI
CLK
cr!

Figure 5.2.

27

In contrast, Altera. devices are made up of Logic Array Blocks (LABs) [41]

which contain eight Adaptive Logic Modules (ALMs), carry chains, shared arithmetic

chains, control signals, local interconnect and registers. The contents of an ALM can
be seen in Figure 5.3. Note that the Combinational Logic block contains two LUTs

which can be configured in several different ways offering a wide range of options.
Lattice Semiconductors is another major FPGA vendor. The building blocks

used in their devices are called Programmable Functional Units (PFUs) [46] which are

made up of four Slices. Each Slice contains LUTs, multiplexers, carry logic and flip-

flops. A single Lattice Slice is shown in Figure 5.4.

Figure: 5.2: Xilinx Slice Logic - Reproduced from [56]

CHAPTER 5- Technical Background

carry_in

datafO

dataaO

dataa

dalab

datac

datad

datael

dataf 1

FCI To DRerant SficgPFU

FXR
FXA
Al
al
61

MI
D

AD
BO
Ba

o

c r=
CLK
LSR

SLICE

bý C()
Fis

-I _b,
Al*

LUT4 &D
CARRY'

A cl

T Mux

Co

LUT4 &f -K

LUT

Co

IT4
CARRYr* FiStitj +D

cl FF*

* Not In So= 3f FCI From 61foront SlicWPFU

Figure: 5.4: Lattice Slice Logic - Reproduced from [46]

28

To genaral or
local rowng
To ganaral or
local rouling

To general or
local routng

To general or
local routng

OFXI

Fl

of

To
uting

OFXG

FO

QO

sharcd_srhh-out rng_chMn_oLit

Figure: 5.3: Altera, Adaptive Logic Module (ALM) -Reproduced from [41]

CHAPTER 5- Technical Background

5.2.2 DSP FunctionaUty

29

The FPGA architecture shown in Figure 5.1 shows the fundamental components of
today's devices. However, there are many more features that are not included in this

figure which are extremely useful in DSP design. These include the following:

Embedded Multipliers: Multiplication is one of the most common operations in

DSP. The largest FPGAs that exist today have several hundred dedicated

multipliers embedded into the FPGA fabric. These are typically set up for 18 bit

inputs and produce a 36 bit output although they can be cascaded for larger input

widths. In the latest devices the multipliers can be clocked at up to 40OMHz [53]

when fully pipelined.

Fast Carry Chains: Addition is another very common operation in DSP, hence

fast carry chains have been included to allow the carry bit to propagate between

each full adder as fast as possible. For large 32 bit carry chains, 150 - 20OMHz

is achievable. The full adders can be constructed from the logic within the logic

blocks.

MULTAND: Xilinx has included a single AND gate with each LUT in its Virtex

family specifically for creating distributed multipliers. A parallel multiplier can
be made from a series of cells, where each cell is made from one Full Adder and

an AND gate. Hence, in the FPGA world, a LUT is used to form the Full Adder

and the single AND gate is used to complete the multiplication cell. A single
AND gate takes up very little of the FPGA fabric and yet if it didn't exist, other
FPGA resources would be used to form the AND gate which would be an
inefficient use of this logic.

Flexible Memory: The LUTs that are included within an FPGA are flexible and

can be used in several different ways. LUTs can be used as dual port RAM, ROM

and as Shift Registers. In some devices LUTs can be split to form two LUTs of
differing sizes [41]. These options have many uses within DSP and extend the

CHAPTER 5- Technical Background

flexibility of FPGAs even further.

30

Dedicated DSP Modular Blocky: This is the latest DSP feature to be included in

today's FPGAs. As well as the array of logic blocks that have always existed on
FPGAs, modular blocks containing hardware multipliers and adders/subtractors,

are now being included in the FPGA fabric [26].

5.3 Rethinking Algorithm Implementation

Due to the extensive use of the DSP processor, many algorithms have been developed

to make use of the operations available on these devices. This has meant that

algorithms requiring square root and division operations have been avoided or worked

around as they are too demanding in terms of computational requirements. However,

now that the FPGA has arrived, a whole new set of resources are available to use. This

has meant than the way in which many algorithms can been implemented has had to be

re-thought. An ideal example of this is the re-emergence of the CORDIC algorithm

which was developed in the 1950's for use in Radar systems [33]. This technique can

be used to compute many different functions using only shifts, additions/subtractions

and table lookups, all of which are ideal for FPGA implementation. Figure 5.5 gives a

summary of the functions that can be directly computed using this technique. There are

many more functions that can then be computed by combining more than one CORDIC

block. So for example, a single CORDIC core operating in Rotation mode with a
Circular coordinate system, can compute cosz and sinz. The results could then be

passed to another CORDIC core computing xly (Vectoring mode, Linear coordinate

system) which would yield tanz = sinz
cosz

There has always been a problem with CORDIC regarding the accuracy of the

results it produces. It is an iterative technique and the more iterations that are

performed the more accurate the solution will be. Traditionally engineers have used a
lengthy trial and error approach to CORDIC design. Obviously this could take a long

CHAPTER 5- Technical Background 31

Rotation Mode: Vectoring Mode:
di = sign(z(i)); z(i) -1p. 0 di = -sign(x(i)y(i)); y(i) -*-- 0

X-00-
C

-No- K(x. cos z-y. sin z) x --10-
C

--10- K(x2 + Y2)1/2
0 0

Cd R R :3 0 Y--41- -00-- K(y. cos z+x. sin z) Y-0- -00-0

U
Z-00.1 0 LC-[--10- Z-10-

Iz+
tan7l (y/x) Lcýý

For cos z& sin z, set x= I/K, y=0 For tan"' y, set x=1, z=0

X-00-
C

-IN- x X --*-
C

-0- x
0 0

R
-010, y+ (x. z) D

R
-00-0 D

Z-11'. Lcýý*- 0 z+ (Y/X)
For multiplication, set y=0 For division, set z=0

X-101-
C

--im-k*(x. coshz-y. sinhz) X--jjI. - C --P, -K* (X2 _
ý2)1/2

0 0

0

-a y ---0- -IN- K (y. cosh z+x. sinh z) Y-00ý -10-0

Z--10-
1

-010-0 Z-00-
I

--Op- z+ tanh- 1 (y/x)

For cosh z& sinh z, set x= I/K*, y=0 For tanh-ly, set x=1, z=0

Figure: 5.5: CORDIC Output

time and was not an ideal situation. Hence, one of the mini-projects carried out during

the Engl) was to find a formula for predicting the error of CORDIC systems, thus

removing the need for lengthy simulations. The CORDIC algorithm and the work that

has been carried out in this area during the Engl) is covered in detail in Chapter 7.

CHAPTER 5- Technical Background

5.4 Adaptive Equalisation

32

In many communications applications, such as an Ethernet transceiver, the channel

over which data is transmitted can change significantly. To cope with this scenario,

Adaptive Equalisers are used in the receiver to adapt to the changes in the channel. An

equallser is basically a digital filter with an adaptive algorithm as shown in Figure 5.6.

The digital filter can be either Finite Impulse Response (FIR) or Infinite Impulse

Response (11R), although FIR adaptive equalisers are more common due to the fact that

they do not suffer from instability issues that can occur in systems with feedback such

as the IIR. The Adaptive Algorithm tries to alter the weights in the filter so that the

error signal e(k) is reduced to zero. When this occurs, the output signal y(k) has

matched the desired signal d(k) and the channel has been equalised. The success of

the filter in minimising e(k) will depend on the nature of the input signals, the length

of the adaptive filter and the adaptive algorithm used.

dqsired d(k)l signal

input +

output
signal Digital y(k) e(k)
x(k) Filter output qrror

signal signal

e (k) = d(k) -y (k)

y(k) = Filter(x(k))

Figure: 5.6: Generalised Adaptive Equaliser

In this section, the background behind two of the available Adaptive

Algorithms is presented. Until recently, the Least Mean Squares (LMS) [37][38]

algorithm has been one of the most commonly used adaptive algorithms due to its

minimal structure, stable performance and relatively low computational requirements.

However, applications such as mobile communications now require extremely fast

CHAPTER 5- Technical Background 33

adaptation which the LMS is not able to achieve. Fortunately another adaptive

algorithm called the Recursive Least Squares (RLS) [13](15][23] technique is able to

adapt fast enough and with a smaller equalisation error relative to the LMS as is shown
in [1][29]. As is nearly always the case in DSP, improved performance comes at a cost

and the RLS is no exception. It requires significantly more computational capability
than the LMS and until recently has been difficult to realise due to economic and
technological factors.

In section 5.4.3 it will be shown that one alternative method for calculating
the LS solution is the QR-RLS approach [24], which requires Square Root and
Division operations. These operations are expensive to implement and are often

avoided in DSP. However, with the advancements in chip technology there is no reason

why these functions cannot be used and so there is a need for them in today's EDA

tools. It will also be shown that the QR-RLS has a significant amount of feedback

within the algorithm. Although the feedback loops can be pipelined, an important

question that needs answered is whether or not this is a good thing to do?

5.4.1 The LMS Algorithm

The Least Mean Squares (LMS) [37][38] algorithm attempts to minimise the mean

squared error between the output of the filter y(k) and the desired answer d(k).

Referring to Figure 5.6, the output y(k) of the filter is given in (5.1):

N-1

y(k) =T
I

WnX(k - n) =w x(k)

n=0

where w is the weight vector,

W= IWOWIW2-*,
*WN-11

T

and x(k) is the data matrix:

x(k) = [x(k) x(k - 1) x(k - 2) x(k-N+ 1)] T

CHAPTER 5- Technical Backgound 34

Therefore, the FIR filter requires N multiply-accumulates (MACs) per iteration, where
N is the number of weights in the filter.

The LMS algorithm coefficient vector update equation is given by:

w(k + 1) = w(k) + 2ýte(k)x(k) (5.2)

where the error e(k) is the difference between the desired and obtained output:

e(k) = y(k) - d(k)

and ýt is a scalar called the step-size. Hence, the adaptive algorithm requires N+I

MACs per LMS iteration. This means that the total number of MACs per LMS iteration

is 2N+ I as shown in [37]. So, for a filter of length N, the LMS requires O(N) MACs.

The step-sizc controls the speed of convergence of the LMS. For a very small

step-size, the LMS will converge slowly but when it does converge the error signal

e(k) will be very close to zero. However, if a large step-size is used, the LMS will

quickly converge to a solution but the power of e(k) will be large. If too large a step-

size is chosen, the LMS will go unstable and will not converge at all.
The key point to note on the LMS is that the only operations required to

implement an adaptive equaliser using this algorithm are multiplication and addition.
The number of these of operations required is 2N + 1, where N is the number of

weights.

5.4.2 The RLS Algorithm

The Recursive Least Squares (RLS) [13][15][23] algorithm is based on the Least

Squares solution which minimises the total sum of squared errors for all inputs up to

and including time k. The total squared error, v(k), is:

k

v(k) =
j: [e(s)]2 =e

2(o) + e2(l) + e2(2)
+ e2

T (k) = ekek (5.3)

s=0

where

CHAPTER 5- Technical Background

ek = [e(O) e(l) e(2) e(k)]

The total sum of square errors can then be written as:
T2

v(k) = ekek ý IlekI12

= [dk-XkW] T [dk-XkW]

TTTT didk+w XiXkW-2diXkW

where

Xk = [x(O) x(l) x(2) x(k)] T

35

The equation for v(k) is quadratic in w, therefore the minimum value of v(k) is

obtained by finding where the gradient vector is zero:

av(k)
Tw

The function v(k) is a hyperparabaloid when plotted in N dimensional space and there

exists exactly one minimum point on its surface. The gradient vector is therefore:

TTT
, jwv(k) = 2XiXkw-2Xidk = -2Xi[dk-XkW]

and therefore:
T

-2Xk[dk-Xkw] =0

TT
=: ýXAW = Xjdk

The Least Squares solution, denoted as WLS and based on data received up to and
including time k and can be formed from the above equation as:

XkTXk, -IT
WLS =I Xk dk (5.4)

Solving this equation is not easy as it requires inverting a matrix, which is extremely
demanding in terms of the computation that it requires. The greater the number of

weights N, the bigger Xk will be and the more demanding the inversion of the matrix

will become, which requires multiplication and division operations. This would be

hard enough to compute if it was only carried out once, but an inversion would have to

be carried out for every new sample of x(k) and d(k). Hence, this is not a realistic

CHAPTER 5- Technical Background

AL w xxxx
NW=N Xxxx

w xxxx

IF IF XXXX

k 10

xT WLS
['

k

xxxx
xxxx k
xxxx
XXXX

N

xxxx "

xxxx N
xxxx
XXXX IF
4 10

XT d ik

Figure: 5.7: Least Squares Matrix Solution

36

option for solving this equation. Figure 5.7 gives a visual indication of the size of the

task involved in solving (5.4). In addition to the complexities of matrix inversion,

forming the inner product XT. X is known to be extremely damaging from a numerical

point of view. The square doubles the dynamic range, and hence the wordlength has to

be doubled, otherwise precision is approximately halved. However, there is an

approach which reduces the computational complexity of the Least Squares equation

known as QR matrix decomposition and this is discussed in the following section.

5.4.3 QR Decomposition

The QR matrix decomposition [17] is an extremely useful technique in least squares

signal processing systems where a full rank mxn data matrix Xk is decomposed into

an upper triangular matrix, R and an orthogonal matrix Q (Q TQ= I).

Xk = QR

A xxxx A qqqq rrrrA

k xxxx k qqqq 0rrrk
xxxx qqqq 00rr

IF XXXX IF qqqq 000r ir
NkN 10

Xk QR

Figure: 5.8: QR Decomposition

CHAPTER 5- Technical Background

Using the QR decomposition to solve the least squares equation gives:
TTT

WL
ýs

= [XjXk] Xkdk = [(QR) (QR)] (QR)Tdk

= [R TQ TQR]-IR TQ Tdk

= [RTR]-IR TQ Tdk

=R -1 R -T RT QTdk

= -1 T

wLs ý R-ldk'

where

dk' =QT dk

37

The result of the decomposition still requires the matrix R to be inverted before WLS

can be found. However, it will be shown shortly that this is not actually the case and
that it is possible to solve wLS without inverting any matrices.

To be able to solve wLS using the QR decomposition requires R to be found

starting from the data matrix Xk. This process can be carried out using Givens rotations

to zero the lower half of the matrix Xk resulting in the matrix R. The series of Givens

rotations is actually the matrix QT and is illustrated in the following example:

159 -0.27 -0.51 -0.82 3.74 -1.07 16-57
X= QR --)' 26 10 = -0.53 -0.63 0.56 0 10.43 4.19

3 -7 11 -0.80 0.57 -0.10 00 -3.20
xQR

The process of getting from X to R is computed using a series of Givens rotations

which is achieved in a row-wise fashion. Each element in X that must be zeroed is done

so by multiplying by the G matrix which is a modification of the identity matrix I-.

(cosO)jj (sinO)j, 0
Gjj ý-- (-sinO), j (cosO),, 0

-001
where [i, A is the location of the element to be zeroed.

CHAPTER 5- Technical Background 38

Givens Givens Givens
Rotation G2,1 Rotation G. 3,1 Rotation G3,2

59 2ý4 7.60 12 . 97] 3.74 16.571 3.74 -1.07 16.57
26 101 0 -179-358 0 -1.79 -3.5 80 10.43 4.19
3 -7 1;

]
m -*7 I'l

10
-3.8;

]
00 -3.20

x R
---------- Ak --------- G2,1 ----------- xx

2- coso x
-

0* 45 sinO 0 Cos 0 15 91 . 24 7.60 12.97
2

X+
2

j

1 1 1

Y

1

0 -sinO Cos 0D 10 8 6D0 -1.79 -3.58

sinO Y 0.89 001 3 -7 11 3 -7 11
0 J-2 0

Pý X +Y2 j

I cosO + 2sinO +0=2.24 5cosO +6sinO+O = 7.6 9cosO + 10sinO +0= 12.0-

-1 sinO +2 cosO +0=0 -5sinO+6cosO+O = -1.79 -9 sinO + 10cosO +0= -3.58
0+0+3 =3 0+0-7 = -7 0+0+11 = 11

-

19 k

G3, I

x xv

3- coso x
2

, fi x+
2

- - 0.60 cosO 0 sinO .
24 7.60 12.97 . 74 -1.07 16.571

Y "
0 010 8 -1.79-3.58 0 -1.79 -3.58

sinO y

1

= 0.80 : -sinO 0 cosO 0
-7 11 0 -10.26 -3.82 0j

2+ 2
0

"' Y - x
2. f4

24cosO+0+3sinO = 3.74 7.6cosO+0-7sinO = -1.07 12.97cosO+O+IlsinO = 16.57

0+0+0 =0 0-1.79+0 = -1.79 0-3.58+0 = -3.58

1

2.24sinO +0+3 cosO =0
--

7.6sinO+0-7cosO =- 10.26 -12.97 sinO +0+II cos 0= -3.82
-- -------- ------ - -------

G 2

xv R
0 Cos 0= J-

3,
= -0.10 0 74 0

-
-1.07 16.57

.
74 -1.07 16 57 72 X+

2 .
Y 0 cw 0 sin 00

1

-1.79 -3.58 0 10.43 4.19

sinO y 1.00
[0
0 -sinO Cos 0 0 (ýý3.82 00 -3.20 J-2

+Y2 x -10.26 v
3.74+0+0 = 3.74 -1.07+0+0 = -1.07 16.57+0+0 = 16.5j

0+0+0 =00-1.7 9 cos 0- 10.26 sin 0= 10.43 0-3.58cosO-3.82sinO = 4.19

0+0+0 =00+1.79 sin 0- 10.26 cos 0=0
-- -----------------

0+3.58sinO - 3.82cosO = -3.2-

The series of Givens rotations G2,1, G3,1, G3,2 combine to give Qr. Once the

matrix R has been formed it is possible to find wLS without carrying out matrix
inversion. This process is called backsubstitution. Going back to the QR

CHAPTER 5- Technical Background

XI I X12 X13 d, rl, r12 r13 dl'

X21 X22 X23 d2 0 r22 r23 d2'

X31 X32 X33 d3 00 r33 d3'

x dk R dk'

rl, r, 2 r13 wl dl'

0 r22 r23 W2 d2'

00 r33 W3 d3'

R WLS dk'

Figure: 5.9: Single QR Decomposition

decomposition it was shown that:

wLs -= R-'QTdk

=* R wLs =Q
Tdk

TT
Q XwLs =Q dk = dk'

39

Using this version of the decomposition it can be seen that QT is applied to both the

X and the dk matrices. Thus, in practice these two matrices are combined and QT is

applied to this single matrix as illustrated in Figure 5.9. From here, the process of
backsubstifution can be used to find wLS. In theory this process is easy. However, it is

computationally expensive as it requires division, multiplication and addition. From

Figure 5.9 it can be seen that for this example the weights can be found by starting with

'V3 as can be seen below.

W3 =
d3'

W2 =
d2 I- r23W3

Wi =
dif- r, 2W2 - r, 3W3

r33 r22 rl,

5.4.4 QRD-RLS

The QR decomposition shown so far only illustrates how the weights are found once.

CHAPTER 5- Technical Backgound

rl, r12 r13 dl' - 3.741 11.759 6.4143 0.534-
(k) dk' 0 r22 r23 42'

-
0.000 -3.273 -1.091 -3.273

T+I dk
+00 r33 d3' 0.000 0.000 17.962 -2.449

XI X2 X3 dL49 -13 -2 j

3.741 11.759 6.4143 0.534 5.477 14.605 -5.112 -1.095
0.000 -3.273 -1.091 -3.273 _+

0.000 -3.273 -1.091 -3.273
0.000 0.000 17.962 -2.449 0.000 0.000 17.962 -2.449

_49 -13 -2 j
0.000 -2.439 -13.565 -1.756J

5.477 14.605 -5.112 -1.095 5.477 14.605 -5.112 -1.095
0.000 -4.082 -8.981 -3.674 0.000 -4.082 -8.981 -3.674 -> 0.000 0.000 17.962 -2.449 0.000 0.000 20.668 -2.399
0.000 0.000 -10.224 0.547_ 0.000 0.000 0.000 -0.735J

R(k + 1) dk+ I
'

0

Figure: 5.10: Recursive QR Decomposition

40

In a real system the weights are computed for every new x(k) and d(k). However,

rather than update the X and dk matrices and repeat the process illustrated in Figure

5.9, a recursive technique can be used which cuts down the computational requirement
[15] [24]. This recursive technique can be seen in Figure 5.10. Here, an additional row
is used to allow the new x (4,9, -13) and d (-2) data to be added to the upper triangular

matrix containing R d;. Hence, the original matrix grows from a3x4 to a square

matrix of dimension 4x4. The decomposition then proceeds to zero each of the new

x data entries working from left to right. Once complete, the backsubstitution process

can be carried out to find the new wLS. Note that although there are now 4 rows in the

matrix, there are still only 3 weights to be found as in Figure 5.9.

The QR decomposition can be computed using a triangular array, as
developed in [23] and [36], which is shown in Figure 5.11. This diagram shows that

the array is made up Of two types of cell. The cells on the left edge of the array are used

CHAPTER 5- Technical Background

x(k) -

I

A...
rATA

N7-w,
wýý

rl, r12 r13 dl'

r22 r23 r-d, '
0

-.,.
c? sO = a1r
smO = b1r

r -..
, Ja" + b" =r

0

ir r33 I d3'

p
q qv

cos cos
sind- sin0 0

q' = qcos0 +psin0

p pf = peos0-qsin0

Figure: 5.11: QR-RLS Triangular Array

41

to rotate the vector (a, b) by 0 degrees onto the x-axis. The other cells in the array

rotate their respective vectors (p, q) by the angle 0 that was used by the edge cell on
their row. Every cell in the array has a delay which stores the previous R and dk'

elements. Before each stored element is used in the next iteration of the decomposition

it is multiplied by a forgetting factor 1. The QR-RLS computes the least squares

vector based on all previous data which means old data is given as much relevance as

new data. To overcome this, theforgettingJactor X is used. This parameter is a fixed

constant less than 1. The computational requirement of the triangular array can be

summarised as:

Each
8

requires 5 multiplies, I addition, I division, 1 square root

Each
0

requires 5 multiplies, laddition, I subtraction
Figure: 5.12: QR-RLS Computational Requirement

CHAPTER 5- Technical Background 42

There are other QR-RLS techniques that do not require the use of square root

operations as presented in [3][12][14] where the idea is to store values in a squared
form. However, this comes at a cost as the dynamic range is doubled and hence the

wordlength has to be doubled, otherwise precision is approximately halved.

Earlier it was shown that the LMS technique required O(N) MACs per sample
[37][38]. This means that the LMS will scale well if the number of weights are
increased. Unfortunately this is not the case for the RLS and the QR-RLS as can be

seen in Figure 5.11. The computational requirement is a function of O(M) which does

not scale well [15][24]. In addition to this the QR-RLS requires square roots and
divides which are also very costly in terms of hardware. This is the reason for the delay

in moving to the RLS technique even though it offers better performance. However,

today's technology is now at a stage where the QR-RLS and the RLS are realistic

options. This means that to exploit the advantages of the QR-RLS method that the

development of efficient square root and division cores is required.

Chapter 6

Division & Square Root Core Development

This chapter discusses the work that was carried out to develop a Square Root and
Division core for inclusion in HDL Design Studio. Both cores were based on direct

methods for computing these functions. The direct methods discussed are straight
forward "paper and pencil" techniques that generate a solution with a known level of

accuracy within a known number of cycles which is a major benefit in Digital Signal

Processing (DSP) Systems. Other techniques for computing division and square roots

exist but these usually involve an iterative approach such as Newton's method. For

DSP design this is not ideal as the number of iterations required to achieve a desired

level of accuracy are unknown.
As well as illustrating these techniques, software and hardware

implementations for both operations are discussed. The software implementations

must model the delay and output of the equivalent hardware implementations. This is

vitally important as HDL Design Studio is marketed as producing bit and cycle

accurate VHDL code.

6.1 Long Division

Long Division is a method for dividing two integers. Many people learn how to use
long division while at school but tend to forget how to use it.

43

CHAPTER 6- Division & Square Root Core Development 44

Decimal Long Division

To illustrate long division, consider the following calculation: 2467/

13
13

The working can be broken down into the following steps: Tj I
1161 I. L2/13J =0 104
ul: z/ 2.0*13 0 0117
om 3.2 -02 AnAQ

4. bring down the 4 and append to 2 to get 24

I. L24/13J =1
2.1*13 = 13

3.24 - 13 = 11

4. bring down the 6 and append to 11 to get 116

I-LI16/13J =8
2.8*13 = 104

3.116 - 104 = 12

4. bring down the 7 and append to 12 to get 127

I-LI27/13J =9
2.9*13 = 117

3.127 - 117 = 10

4. bring down the 0 and append to 10 to get 100

1. LIOO/13J =7
2.7*13 = 91

3.100 - 91 =9
4. bring down the 0 and append to 9 to get 90

etc.
Note that the number of cycles through the algorithm is dependent on the size

of the dividend. In this case, the dividend is 8 digits wide and thus it takes 8 cycles to

achieve the result. Note also that if more accuracy is desired then the number of zeroes

after the decimal point on the dividend is simply extended. In this example, there are 4

CHAPTER 6- Division & Square Root Core Development

zeroes which gives a result with 4 decimal points of accuracy.

Binary Long Division

To illustrate binary long division, again 000010L
consider the case 2467/13 (100110100011/ 1101 F10011011

I
1101). 0
The example can be broken down into the 0

100
following steps: 000

1.1/1101 =0
1001
0000

2.0*1101 =0 10011
01101.

3.1 -01 001100
000000.

, t. appena next aigit m aiviaena ku) to

result of step 3 (1) to get 10

1.10/1101 =0
2.0*1101 =0
3.10 -0= 10

4. append next digit in dividend (0) to

result of step 3 (10) to get 100

1.100/1101 =0
2.0*1101 =0
3.100 -0= 100

4. append next digit in dividend (1) to

result of step 3 (100) to get 1001

1.1001/1101 =0
2.0*1101 =0
3.1001 -0= 1001

4. append next digit in dividend (1) to

result of step 3 (100 1) to get 100 11

00011011
00011000
00001101
000010110
000001101
0000010011
nnnnnniin
uuuuuuuiuii
AAAAnAnAnnn

L. (

uuuuuuuiuiiii
000000001101
000000001010 0
0000000001101

C K
X

45

189.75

000000000011 101
00000000001101
000000000000 010
000000000000 000
uuuuuuuuuuuu uI uu
000000000000 0000
000000000000 0100

CHAPTER 6- Division & Square Root Core Development 46

1.10011/1101 =1
2.1*1101 = 1101

3.10011 - 1101 = 110

etc.
Note again that the number of cycles through the algorithm depends on the

width of the dividend. In this example the dividend is 16 bits wide, hence it takes 16

cycles to complete the calculation. Also, ifx fractional bits are required from the result,
then the dividend needs x zeroes padded onto the end.

The division method shown here is a non-restoring technique [20] which
means that the partial remainder is never restored to its previous value. The divider

designed for HDS is a full parallel, unrolled implementation that offers high

throughput but with the expense of using more logic. In [22] a non-restoring divider is

implemented using a bit serial/word parallel approach which offers a smaller
implementation for slower data rates. There are restoring techniques [6] where the

partial remainder is restored to a previous value if it is found to be negative. However,

this type of algorithm uses more operations and is less efficient than a non-restoring
technique. Another technique that produces 1 -bit of the quotient per iteration is SRT
division which refers to Sweeney, Robertson [28] and Tocher [32] who independently
discovered the same algorithm around 1958. SRT division is similar to non-restoring
division, but it uses a lookup table based on the dividend and the divisor to determine

each quotient digit. It is a popular method for floating-point division on
microprocessors. Finally, the Newton-Raphson [35] and Goldschmidt [I I] algorithms
differ from those already discussed in that they start with an estimate of the quotient
and then proceed to generate a more accurate estimate with each iteration. These

techniques can produce a result faster than the 1-bit per iteration schemes already
discussed but they tend to be avoided in DSP due to the fact that the number of
iterations required to generate a desired level of accuracy cannot be pre-detennined
easily.

CHAPTER 6- Division & Square Root Core Development 47

6.2 Specification

The specification that was originally drawn up for the development of a Divider core
for HDS included the following requirements:

Develop a parameterisable VHDL core able to:

- Perform division on any combination of inputs using signed fixed point and

unsigned integers (HDS does not support unsigned fixed point data).

- Return either signed fixed point of unsigned integer output at the request of the

user.

* Allow the user to specify output parameters such as the number of integer and
fractional bits with the option to truncate, round or saturate.

- Be able to pipeline to increase throughput.

Develop a C++ model able to:

- Mimic the VHDL output exactly, hence must be bit and cycle accurate.

6.3 The Hardware Implementation

In this section the hardware implementation that was designed for calculating long

division is discussed. The architecture is based on the long division technique

discussed earlier.

6.3.1 The Top Level

The Divider core has a fixed number of 1/0 ports which include input ports for the

Dividend, Divisor, Clock, Enable and Reset signals. The output ports are for the

Quotient and Ready signals. To allow the core to be parameterisable, generic

parameters are used within the VHDL. Hence, information on the width and data type

CHAPTER 6- Division & Square Root Core Development 48

of the Dividend, Divisor and Quotient signals is passed to the generics as well as

whether rounding, saturation or truncation is to be used. A summary of the information

used to configure the top-level of the Division core can be seen in Figure 6.1 below.

All data signals
Generics:

are parallel
1/0 widths & data types

Round, Sat, Trunc.

Dividend (INA) 01

Divisor (INB) 10
Fixed Point Divider

Clock 10 (FXPDiv. vhd)
Enable

Reset
Figure: 6.1: Fixed Point Divider Top Level

6.3.2 Inside The Fixed Point Divider

Quotient (Qout)

Ready

Inside the divider there are several steps that must be carried out to allow the output to
be generated correctly. Although the binary division example shows the division

algorithm to be fairly straight forward, it does not illustrate how signed division,

rounding, saturation or truncation is handled. Of course, all these options must be

handled within the divider core. In Figure 6.2 the sequence of steps that are carried out

within the divider are illustrated.
Convert to Compute unsigned

INA
unsigned quotient Correct Convert to specified

I sign output format

234
INB sIvRes

Convert to
unsigned Figure: 6.2: Divider Sequence Of Operations

CHAPTER 6- Division & Square Root Core Development 49

Step 1: At this stage the numerator (INA) and the denominator (INB) are

converted to equivalent unsigned numbers if they are in 2's complement format.

Hence, negative signed data must be converted to equivalent unsigned values.

Step 2: The unsigned quotient is computed using the algorithm shown in the

example earlier. Note that this section of the divider is covered in greater detail

in the following subsection.

Step 3: Here, the unsigned quotient is converted back into a signed number if

either of the inputs were signed. Of course, the sign of each quotient must be

corrected too as some will be negative and some positive signed values. The

VHDL signal at the output of this stage is sIvRes.

Step 4: Finally the s1vRes output, which at this stage is signed, unless both inputs

were unsigned, is converted into the desired output format specified by the user.
Hence, if the user has chosen to Round and/or Saturate the output, it will occur
here. There are some important points to note about the signals entering and
leaving this stage of the divider. Firstly, the number of integer bits in the s1vRes

signal are exactly sufficient to avoid overflow. This is precomputed and will be

discussed in the following subsection. The number of integer bits that finally exit
the divider is specified by the user. Therefore, at this stage either truncation or

sign extension is performed depending on the number of bits specified. This

means the user must be aware that they are responsible for maintaining signal
integrity. If they choose to have an output signal with only 2 integer bits but a

minimum of 6 are required to avoid overflow then signal integrity will be

compromised. It is not possible to only generate the number of integer bits that

are specified by the user. This is because the divider generates the result MSB
first. Hence, the full integer result is computed and then converted to the user
specified format. The number of fractional bits that exist within s1vRes is equal
to the desired output fractional width if Rounding is not selected. If Rounding is

selected, an extra fractional bit will exist to allow rounding to occur. Therefore,

CHAPTER 6- Division & Square Root Core Development 50

if 8 fractional bits are required from the output but Rounding is enabled, then 9

fractional bits will exist in the sIvRes signal. The result from the divider will of

course have only 8 bits after rounding has been performed. Figure 6.3 shows the

Fixed Point Divider parameters window where the width of the integer and

fractional result is specified. The option to Round and Saturate is also shown.

Fixed Point Dividei

FXP I FXP Analyser I HDS About

- Fixed point parameters---------- -- -- ----

Variable All variables
to this size

Integer Size (bits) Set All

Fraction Size (bits) SetAll

Saturate Mode Set All

Unsigned Integer Set All

Rounding Set All

iteepest ascent F-0 K -1 Apply
zigival proccssin Q

Figure: 6.3: Fixed Point Divider Parameters

6.3.3 Computing The Quotient

After the numerator and denominator signals have been converted into unsigned

values, they are used to compute the unsigned quotient. In this section the hardware

that is used to do this shall be focussed on.
Before the hardware is discussed, the number of bits that are required to

represent the integer part of the result without overflow occurring is important to know.

CHAPTER 6- Division & Square Root Core Development 51

As the division algorithm generates the most significant bits (MSB) of the quotient
first, it is vital that enough iterations are performed to at least allow the full integer part

of the solution to be generated. By using equation (6.1), the number of integer bits

required can be easily computed.

for signed division: ±(x'y)
= ±(x +b+1, ?)

± (a, b)
(6.1)

for unsigned division: (x'y)
= (x+b,?) (a, b)

where ± (x, y) represents a signed number with x integer and y fractional bits.

This can be proven by considering an example. Consider the following

division:

Consider: ±(7,3)
0

largest
= -64 - : F2048 -requires-+ ±(13, ?)

+(3,5) smallest ±0.03125

Consider: (7' 3)
No

largest
=

127.875
= 4092 -requires-* (12,

(3,5) smallest 0.03125

Figure: 6.4: Quotient Integer Width

Note that the number of fractional bits cannot be worked out in the same way. For

example, 1/3 = 0.33333..., which recurs forever requiring an infinite number of
fractional bits.

In the fixed point divider, an unsigned division is computed and the result is

converted back into a signed number if required. Hence, the number of iterations

through the algorithm is worked out according to the following:

Iterations = INA Int. Width + INB Frac. Width + Desired Frac. Width

Iterations required to Iterations required to
generate the integer part generate the fractional part

of the quotient of the quotient
'0 INA = numerator

INB = denominator Note: if Rounding is enabled, an extra
fractional bit is computed

Figure: 6.5: Required Iterations for Division Calculation

CHAPTER 6- Division & Square Root Core Development 52

If the user does not require any fractional bits, then at least the full integer result will
be computed. Also, if the user specifies that the output is to be Rounded, then an

additional fractional bit will need to be computed and so one extra iteration will be

performed.
The hardware used to compute the unsigned quotient is made up of a series of

cells. Each cell computes one iteration of the division algorithm and thus generates one
bit of the quotient. Hence, the number of cells is equal to the number of iterations. So

for example, if the division was ±(1,4) /± (2,2) then 3 cells would be required to

compute the integer part of the quotient, although once the result is converted back into

signed format, there will be 4 integer bits. For this example, consider that the user

wants 0 fractional bits of accuracy, but has enabled Rounding on the output. This

means that 1 fractional bit will need to be computed so that Rounding can be

performed, although the final result will have 0 fractional bits. Thus, a total of 4 cells

are required to compute the unsigned quotient. This can be seen in Figure 6.6. Note that

this figure has omitted the control signals (clock, reset, enable, ready) for clarity.

Cell I Cell 2 Cell 3 Cell 4
diviLdend

fisor, d fsl

dividcnd-oul dvend-in dvend-out dvend-in dvend_out -fdvend_in dvend-OUt o clout

or divisor-oUt divis in _ divisý out ivisor, divis oUt divis oUt divis-Out divi
_ out

rem
1 131: 11: +Iremd in remd citili 01 remd in rem 11, oild ýremd in

neg out cg_in neg_put --ý ncgjn ne&_in ne"ut ---I. neg

--
-

9! -sol-U.
'r 4

out

MSB LSB
3 integer bits generated I fractional bit generated

Figure: 6.6: 4 Cells Required to Compute 3 Integer Bits and I Fractional Bit

As mentioned previously, a negative flag must accompany each data sample pair to
indicate whether or not the resulting unsigned quotient must be converted into a

negative signed number. Figure 6.6 shows this flag passing through each cell

accompanying the quotient that it relates to. The other signals passing through each cell

are used as follows:

- dividend out., is used to store the developing quotient as each bit is generated.

CHAPTER 6- Division & Square Root Core Development 53

divisor out: is simply the divisor passing through each iteration. It does not

change during the computation.

remd out: is used to store the partial remainder as it is generated at each
iteration.

To look at the hardware that actually computes the division algorithm requires

us to look within a cell. Figure 6.7 shows that a cell is made up of an adder, which is

actually set up to subtract (invert bits of divisor_in and add 1), a comparator, two

multiplexers and registers on each output signal. The registers in each cell are required

to fully pipeline the design.

1 D. t3 im Gl)DI 1

divisor-out[3: 01

actually a subtractor

+

temp_l 12: 01

Dr-vl O=
it

remd-oLgi2: 01

unl-remdshl
t divWend_otA_P(4. dividend

- otA[4. D]

is divisor <-- partial remainder?

unl-m-l

Figure: 6.7: Hardware Within A Division Cell

Note that two versions have been written. The first is for a fully pipelined divider, as

shown in Figure 6.7, and the second implementation is for a fully combinatorial design

where the pipelining registers on each data path in Figure 6.7 do not exist.

CHAPTER 6- Division & Square Root Core Development 54

To understand how this hardware is used to generate the unsigned quotient, it

is best to consider an example. Take the case ±(5,0)1±(5,0) and consider that the

user has specified 0 fractional bits from the output with no Rounding. Hence, 5 cells

are required to compute the unsigned quotient. Consider the division of 11/4. The

individual steps that are carried out within each cell are now stepped through. Note that

the ampersand (&) denotes the concatenation of two numbers.

Division Cell 1:

dividend_in =0 10 11, divisor_in = 00 100, initial remdsh I= 0000 & dividend_in(msb)

= 00000;

divisor_in <= remdshl = False=> dividend_out = dividend_in &0= 10110

=> remd_out = remdshl. (msb removed) = 0000

Division Cell 2:

dividend_in = 10 110, divisor_in = 00 100, remd_in = 0000;

remdsh I= remd_in & dividend_in(msb) = 0000 1

divisor-in <= remdshl = False=> dividend_out = dividend_in &0= 01100

=> remd_out = remdsh I (msb removed) = 000 1

Division Cell 3:

dividend_in =0 1100, divisor_in. = 00 100, remd_in = 000 1;

remdshl = remd_in & dividend_in(msb) = 00010

divisor_in <-- remdsh I= False=> dividend_out = dividend_in & O= I 1000

=> remd-out = remdsh I (msb removed) = 00 10

Division Cell 4:

dividend_in =I 1000, divisor_in = 00 100, remd_in = 00 10;

remdsh I= remd_in & dividend_in(msb) = 00 10 1

divisor_in <= remdsh I= True=> dividend_out = dividend_in &I= 1000 1

=> remd-out = remdshl(msb removed) - divisor_in(msb removed)

= 0101 - 0100 = 0001

CHAPTER 6- Division & Square Root Core Development 55

Division Cell 5:

dividend_in = 1000 1, divisor_in = 00 100, remd_in = 000 1;

remdshl = remd_in & dividend_in(msb) = 00011

divisor_in <= remdsh I= False=> dividend_out = dividend_in &0= 00010

=> remd-out = remclsh I (msb removed) = 00 11

And so the result is: dividend_out = 000 10 =2

remd_, out = 0011 =3

6.3.4 Pipelined Design Latency

The latency through the pipelined design is dependent on the width of the numerator

and denominator, and on the number of fractional bits required from the output. There

are two registers that exist in the data path before the numerator and denominator reach
the stage where the quotient is computed. These registers are used to break up the data

path before the quotient is generated. Within the quotient generator there is a single
delay in each cell. Hence, the total delay here is equal to the number of cells. Finally,

there is a single delay before the quotient is passed out. The latency through the data

path can be seen in Figure 6.8.

quotient generator
INA---*

Z-celIs Z-1 Quot
INB I f,

Figure: 6.8: Hardware Latency

Thus the latency is equal to:

latency =2+ number of cells +1 (6.2)

6.3.5 Folding The PipeHne

One feature of the divider that was researched but never fully implemented due to the

CHAPTER 6- Division & Square Root Core Development 56

limitations of SystemVue, was the ability to optimise the core in terms of speed and

area. The architecture illustrated so far is fully unrolled, thus for the pipelined divider

the maximum data rate is equal to the maximum clock speed. This is the fastest

implementation, however it is also the largest in terms of area. If area is the key

constraint, rather than speed, it would be useful to optimise the design for this situation.
By considering an example it is possible to see just how this could be

achieved. For example, if 4 cells are needed to compute a quotient, the architecture

would look like that shown in Figure 6.9:

Cell I Cell 2 Cell 3 Cell 4

qout

rem

However, by "folding" the structure in two, the number of cells is halved. Then if the

results from Cell 2 are fed back into Cell I the correct result can still be obtained. The

trade-off is that data can only be fed into the structure at half the clock rate. Therefore,

although the number of cells has been halved, the data rate has been halved too. If area
is the key constraint rather than speed, then this is a better design than the fully unrolled

approach. Figure 6.10 below illustrates the "folded" structure.

qout

rem

I control counter F -J Figure: 6.10: Folded Structure

Folding is not straightforward though. A situation can occur where the feed '

Figure: 6.9: 4 Cells Fully Unrolled

CHAPTER 6- Division & Square Root Core Development 57

back data arrives at the same time as new data. Hence, a rule must be followed to avoid
this situation occurring. The number of delays through the feedback section can be

denoted as x and the number of clock cycles between arriving samples as y, then to

avoid data collision, x and y must be coprime. This means that x and y must have no

common factor other than 1 and - 1. To illustrate what happens when this rule is broken,

consider the following scenario where x=4 and y=6, which are clearly not coprime.
As can be seen in Figure 6.11, data sample 3 (denoted by triangle) arrives at the

multiplexer feeding the quotient generator at the same time as data sample I (denoted

by circle) is fed back for the third time. Clearly this causes a problem as only one of
these samples can enter the quotient generator, which means that one piece of data will
be lost. By obeying the coprime rule this situation is avoided.

Unfortunately due to limitations with SystemVue the Folding option was

never fully implemented. The problem with SystemVue was that it was not possible to
have a token with an input rate of x Hz and an internal rate higher than this, which is

required for such an architecture.

CHAPTER 6- Division & Square Root Core Development 58

Number of delays in feedback loop =x=4
Number of cycles between data samples =y =6

new data every
6 clock cycles - unsigned

quotient

data sample I=0
data sample 2=0
data sample 3=A

delay 4t
;p ýp ýp

A

delay 3-- (21

delay 2-- ; 51 0/ collision

delay I
rAK
UO

23456789 10 1
+ve clk edges

Figure: 6.11: Data Collision in Folded Divider

6.4 The Software Implementation

In this section the software model that was written in C++ to simulate the hardware

divider is discussed. The code is used within a SystemVue token, which can be seen in

collision
quotient generator

CHAPTER 6- Division & Square Root Core Development

Figure 6.12 along with the token parameters window:

FNpDiy

FXP I FXP Analyse(IHDSI About I

Fixed point parameters -

Variable All variables
to this size

Integer Size (bits) Set All

F- Fraction Size (bits) Set All

Saturate Mode Set All

Unsigned Integer Set All

Rounding Set All

ýepest ascere? Apply

Figure: 6.12: Divider Token & Token Parameters

6.4.1 Pseudo Code for Software Division

59

To compute binary long division in software, the following pseudo code was
developed. As was illustrated in the decimal and binary long division examples given

earlier, the number of cycles through the algorithm is determined by the width of the

dividend.

The remainder variable is used to build the partial remainders at each stage of

the algorithm and the dividend is used to store the quotient as it is generated. The

divisor does not change during the algorithm. By shifting the remainder variable left I

position (step 1) room is created in the LSB to add aI (or not) depending on what the

CHAPTER 6- Division & Square Root Core Development

initially remainder =0

for(i = 0; i< dividend_width; i ++)

remainder = remainder << 1; //step I

if (dividend msb = 1) //step 2

remainder ++;

dividend = dividend << 1; //step 3

if (divisor <= remainder) Hstep 4

dividend ++;

remainder = remainder - divisor;

60

MSB of the divisor is at that point in the algorithm (step 2). Step 3 is used to shift the

dividend left I bit so that the MSB is updated for the next iteration. Step 4 deals with

whether or not the divisor will divide into the partial remainder. If it will, aI is

generated in the quotient, which the dividend holds. Also, the new partial remainder is

calculated by subtracting the divisor from the current remainder.
To illustrate how this algorithm maps to the long division technique shown

earlier requires stepping through an example. For this, consider the example 30/4.

30/4 =II 110/100

00111 =7
100111 10

00
ill
100
0111
01001
00110
00100
00010

CHAPTER 6- Division & Square Root Core Development 61

I st cycle: step I: remainder starts at 0

step2: dividend msb =1 => remainder =I

step3: dividend= 11100

step4: does divisor (100) divide into remainder (1)? No

2nd cycle: step 1: remainder = 10

step2: dividend msb =I => remainder =II

step3: dividend = 11000

step4: does divisor (100) divide into remainder (11)? No

3rd cycle: step 1: remainder =I 10

step2: dividend msb =I => remainder =III

step3: dividend = 10000

step4: does divisor (100) divide into remainder (I 11)? Yes

dividend = 1000 1 (use dividend to store result)

remainder = 111 - 100 = 011

4th cycle: step 1: remainder =0 110

step2: dividend msb =1 => remainder =0 111

step3: dividend= 000 10

step4: does divisor (100) divide into remainder (0 111)? Yes

dividend = 00011 (use dividend to store result)

remainder = 0111 - 100 = 0011

5th cycle: step 1: remainder = 00 110

step2: dividend msb =0 => remainder = 00 110

step3: dividend = 00 110

step4: does divisor (100) divide into remainder (00110)? Yes

dividend = 00 111 (use dividend to store result)

remainder = 00110 - 100 = 00010

Hence, the result is correct:

- quotient= dividend= 00111 = 7, remainder= 00010 =2

CHAPTER 6- Division & Square Root Core Development 62

6.4.2 Full C++ Model

The pseudo code shown in Chapter 6.4.1 is used to compute unsigned division.

Therefore, to use it with signed inputs requires the inputs to be converted into unsigned

numbers and then the result corrected, similar to the way the VHDL works. There are

several steps within the full model which are summarised below and in Figure 6.13.

- Step 1- At this stage if the denominator is equal to 0, then a precomputed result
is returned which matches with the VHDL output for this event.

- Step 2- The numerator and denominator are now converted to unsigned numbers

and the isResulfNegafive flag is set appropriately.

- Step 3- The number of loops that are required to compute the result is covered
in detail in the following subsection.

- Step 4- The unsigned result is computed using a C++ version of the pseudo code

shown earlier.

- Step 5: The quotient is converted back into signed (+ve/-ve) if necessary and then

retumed.

CHAPTER 6- Division & Square Root Core Development 63

pass in data & parameters for:
numerator. denominator. result

r----I------I
I handle divide by 0 Step II return result handle divide by 0 due to underflow

convert inputs to unsigned numbers Step 2
set isResultNegative flag

Step 3 compute number of loops require

Step 4 compute unsigned division result

Step 51 convert result to signed (+ve/-ve) if n-eq-uire-dý--* return result
L-----------------

Figure: 6.13: DivideFXP Data Flow Diagram

6.4.3 How Many Loops?

The algorithm shown earlier is used as the basis of the full software model. However,

the number of times that the algorithm is looped around varies depending on the

numerator and denominator widths and with the number of fractional bits in the output

requested by the user, as can be seen in (6.3). Before discussing the derivation of the

equation for the number of loops, it is important to realise that at this stage the

numerator and denominator are stored in 64 bit unsigned integer variables.

For the case*
t (X, Y) wheref fractional bits are required in the output ±(a, b) (6.3)

loops = 64 +b +f-y

The derivation of (6.3) is now given below:

CHAPTER 6- Division & Square Root Core Development

4 64 loops
*- 64 bits

numerator P 10 00000.... xxxxyyyy

result 101000000 rrrrrrrr

64

For 64 loops of the divider
algorithm, x+y bits of the
result will be generated.

However, the number of bits that are required from the result are: x+b +f bits.
Therefore, the difference that needs to be accounted for is:

difference = (x +b +J) - (x + y) =b +f- y
This means that the total number of loops required is:

loops = 64 + difference = 64 +b +f-y

6.4.4 Replacing The Binary Point

The output from the division algorithm is contained in an unsigned 64 bit variable. At

this point it is converted into a signed fonnat if either of the inputs was signed

otherwise it is left unsigned. Before the result is returned it is vitally important that the

binary point is inserted in the correct place. However, it has already been shown that
for signed and unsigned division, the result takes the format given by (6.4).

:ý ýx'y)
=+ (x +b+ Ij)

± (a, b) -
(X'Y)

= (x + b, f)
(a, b)

6.4.5 Simulating The Delay

(6.4)

As the C++ model must simulate the hardware divider, it is important to replicate the
delay between the first sample entering the core and the corresponding result reaching
the output. This delay is called latency. In this case the latency is a function of the width

of the inputs and the desired fractional output. The relationship is given in (6.5) which
is another way of writing (6.2).

CHAPTER 6- Division & Square Root Core Development 65

latency =x+b +f+ 3 (6.5)

Again, if the user has enabled Rounding on the output, then an additional fractional bit

1) will be computed and consequently the latency will increase by 1.

6.4.6 Performance

To give an indication of how many resources and how fast the hardware Divider can

operate at, several instances were implemented using the following:

- Target Technology: Xilinx Virtex II Pro XC2 VP30

o Synthesis: Synplify Pro 7.1

* Map and Place & Route: Xilinx ISE 8.1

Table 4 and Table 5 show the results for the pipelined and non pipelined cores

respectively. In both cases, dividers were implemented with 48,32 and 16 bits in the
inputs and the same number of bits on the output. As would be expected, the pipelined
implementations are bigger and significantly faster than the corresponding non

pipelined implementations.

Divider 1/0 Slices LUTs Clock Speed

48 bits 6895 6930 >100 MHz

32 bits 3027 3066 >104 MHz

16 bits 746 769 >134 MHz

Table 4: Pipelined Divider Results

Divider Impl. Slices LUTs Clock Speed

48 bits 2552 4882 >2 MHz

32 bits 1184 2224 >4 MHz

16 bits 315 579 >9 MHz

Table 5: Non Pipelined Divider Results

CHAPTER 6- Division & Square Root Core Development 66

6.5 Direct Square Root

Performing a direct square root on an integer can be achieved using a pencil and paper

technique. As fixed-point binary numbers can be considered as integers it is possible

to use the paper and pencil method to calculate the square root of fixed-point binary

numbers, although the binary point must be tracked and re-inserted to the result.
As with division there are fast iterative techniques that require an estimation

of the root to begin the algorithm such as the Goldschmidt technique [10]. However, it

is not easy to predict the accuracy of such techniques for a given number of iterations

and hence a direct approach was taken.

Decimal Square Root

The paper and pencil technique for performing a direct square root can be surnmarised
by the following steps:

1. split argument into pairs (starting from left hand side)
2. write down I st square root by inspection

3. subtract its square from I st two digits

4. draw down next two digits to obtain remainder
5. double square root and append 0 (= approximate divisor)

6. estimate next root digit by dividing remainder by approximate divisor

7. substitute next root digit for last digit of approximate divisor (= divisor)

8. verify next root digit by dividing remainder by divisor. If result = next root
digit, ok, otherwise backtrack

9. multiply next root digit by divisor

10. subtract result from remainder
11. repeat from step 4 until done

The best way to illustrate the direct method for calculating a decimal square root is by

considering an example. Consider the calculation ý-12-3456.0000:

CHAPTER 6- Division & Square Root Core Development

351.3 64 result
3 12 56.

--
00

65 334

-5 701 95
701

7023 25500
21069

70266 443100
421504

21504

Working through the steps it is clear how the above working is obtained:
1. split argument into pairs
2. JI-2 =3 (square root)

2 3.12-3 =3
4. remainder =3 34

S. 3*2 = 6, append 0= 60 (= approximate divisor)

6. L334/60J =5
7. substitute 5 into 60 = 65 (= divisor)

8. L334/65j = 5, therefore ok (no need to backtrack)

9.65*5 =325
10.334 - 325 =9
4. remainder =9 56

5.35*2 = 70, append 0= 700

6. L956/700J =1
7. substitute I into 700 = 701

8. L956/701 J=I, therefore ok (no need to backtrack)

9.701*1 = 701

10.956 - 701 = 255

etc.

67

One point to note from this working is that the number of cycles through the algorithm
depends upon the number of digits within the operand. More specifically, it is clear that

each pair of operand digits yields one digit of the root. Hence, the number of cycles

CHAPTER 6- Division & Square Root Core Development 68

through the algorithm is equivalent to the number of pairs formed from the argument.
Another important point to note from the above example is that the accuracy

of the result can be increased by padding the argument with zeroes. Without padding

the argument, the integer result (3 5 1) would only have been obtained. Therefore, with

every two zeroes that are padded to the argument, a ftulher decimal point of accuracy
is obtained.

Binary Square Root

The direct method for calculating a binary square root is easier than decimal. This is

now explained via an example where F5-. 75 is computed:
1 0.0 1=2.25
0101.1100

olT -
lo, oo o,

T
1001000111

00010001 10001 0,0,1"o 100001011
The steps involved with this working are:

1: split the argument into pairs
2: as long as the first pair of bits # 0, the first root is always =1
3: subtract root from 1 st pair (0 1 -0 1) to give partial remainder (0)

4. append next pair (0 1) to partial remainder to form remainder (0 0 1)

5. append 01 to the root (1) to form divisor (10 1)

6. divisor > remainder therefore root =0
7. append next pair (11) to remainder to from new remainder (0 01 11)

8. append 01 to the root (10) to form divisor (10 0 1)

9. divisor > remainder therefore root =0
10. append next pair (00) to remainder to from new remainder (0 01 1100)

11. append 01 to the root (100) to form divisor (1000 1)

12. divisor < remainder therefore root =1

CHAPTER 6- Division & Square Root Core Development 69

13. subtract divisor from remainder to form partial remainder (= 10 11)

6.6 Specification

The specification that was developed for a Square Root core to be included within the
HDL Design Studio library included the following:

Develop a parameterisable VHDL core able to:

Compute the square root of either unsigned or signed fixed point inputs.

Unsigned fixed-point numbers are not supported in HDS, thus to have fixed-

point square root functionality meant that signed fixed-point numbers must be

supported.

- Return the output in either signed fixed point or unsigned integer format at the

request of the user.

- Allow the user to specify output parameters such as the integer and fractional

widths of the output. Also, the option to Round and Saturate should be available.

- Be pipelined to increase throughput.

Develop a C++ model able to:

- Mimic the VHDL exactly, hence must be bit and cycle accurate.

6.7 The Hardware Implementation

In this section, the hardware implementation that was designed for computing a direct

square root is presented. The architecture is derived from the illustrated paper and

pencil technique.

CHAPTER 6- Division & Square Root Core Development 70

6.7.1 The Top Level

The Square Root core has a fixed number of 1/0 ports which include input ports for the
Input, Clock, Enable and Reset signals. The output ports include the Sqrt and Ready

signals. Similar to the Divider, generic parameters are used within the VHDL to pass
information on the width and data type of the input and output data signals as well as

whether rounding, saturation or truncation is to be used. A summary of the information

used to configure the top-level of the Square Root core can be seen in Figure 6.14.

Generics:
1/0 widths & data types

All data signals
Round, Sat, Trunc.

are parallel
II

Input

Clock
Fixed Point Square Root

Enable

I
(FXPSqrt. vhd)

Reset

Figure: 6.14: Fixed Point Square Root Top Level

6.7.2 Inside The Fixed Point Square Root Core

Inside the Square Root core there are several steps that are carried out to allow the

result to be generated correctly. In Figure 6.15 the sequence of operations are shown.

- Step 1: At this point the input is either truncated or padded with zeroes to produce

an input that has twice as many bits as the desired output. This is discussed in

more detail in the next subsection.

- Step 2: Here the square root is computed using an algorithm based on the paper

CHAPTER 6- Division & Square Root Core Development 71

and pencil technique shown earlier.

- Step 3: As with the Divider, a final stage exists to convert the output to the

desired format which may include Saturation and/or Rounding.

Compute Sqrt Convert to specified
Truncate/Pad Input output format

Input 01203o Sqrt
slvRes

Figure: 6.15: Square Root Sequence Of Operations

6.7.3 Truncate/Pad Input

Depending on the width of the input fractional part and the desired output fractional

width, the input may be either truncated or padded with zeroes. Truncation of the input

fractional bits will occur if there are more fractional bits than are needed to produce the

required level of accuracy. So for example, if the input has 10 fractional bits then the

output will have 5 fractional bits. But if only 2 fractional bits are required from the

output, then only 4 fractional bits are required at the input, not 10. Thus by truncating

the input, computing unnecessary bits is avoided. Conversely, if the input has only 4

fractional bits but the user requires 10 fractional bits from the output, then the input

needs padded with 16 zeroes so that 20 fractional bits exist in the input. By doing this

the output will have 10 fractional bits of accuracy.

6.7.4 Computing The Square Root

Unlike division, it is impossible for the integer width of the output of a square root to

be greater than the integer width of the input. The integer output width obeys the

following for signed and unsigned inputs:

CHAPTER 6- Division & Square Root Core Development 72

for signed input: F± -(x, y) = (-! + 1, ?)
2

(6.6)
for unsigned input: I-(xy) = (1, ?) 2

This can be shown by considering the following example. Consider the following

division:

The number of fractional bits cannot be worked out in the same way, as for many inputs

an infinite amount of fractional bits may be required. Hence, the number of fractional

bits to be calculated must be specified by the user.
When the Square Root algorithm was discussed earlier, it was clear that for

every 2 bits of the input, an output bit was generated. This is an important point to

remember when calculating the number of iterations required to generate a result with

a particular resolution. The algorithm for computing the number of iterations is given
below:

Iterations =
Input Int. Width + Desired Frac. Width

2

Iterations required to tions required to
generate the integer part generate the fractional part

of the result of the result

Note: if Rounding is enabled, an extra
fractional bit is computed

Figure: 6.16: Required Iterations for Division Calculation

So that there are twice as many bits in the input as there are iterations, the input may
be either truncated or padded with zeroes. So for example, if the input has the format

±(4,10), then the natural output would be ±(3,5) which would require 7 iterations.

However, the user may only want 2 fractional bits from the output, thus the input would
be truncated to a± (4,4) format to cut down the number of iterations to 4 and save

computing unnecessary bits. Conversely, the user may require 10 fractional bits from

CHAPTER 6- Division & Square Root Core Development 73

the output, thus the input would have to be padded to a ±(4,20) format and 12

iterations would be required. If the user does not require any fractional bits, then at
least the full integer result will be computed. Also, if the user specifies that the output
is to be Rounded, then an additional fractional bit will be computed, thus one extra
iteration will be performed.

Like the divider, the hardware used to compute the unsigned quotient is made

up of a series of cells. Each cell computes one iteration of the algorithm and thus

generates one bit of the result. Hence, the number of cells is equal to the number of
iterations. So for example, if the input format was ±(4,2) then 2 cells would be

required to compute the integer part of the result. For this example, also consider that

the user wants I fractional bit of accuracy and has enabled Rounding on the output.

This means that 2 fractional bit will need to be computed so that Rounding can be

performed, although the final result will have I fractional bit. Thus, a total of 4 cells

are required to compute the result. This can be seen in Figure 6.17. Note that this figure

has omitted the control signals (clock, reset, enable, ready) for clarity.

Cell I Cell 2 Cell 3 Cell 4

sqrt

Figure: 6.17: 4 Cells Required to Compute 2 Integer Bits and 2 Fractional Bits

The signals passing through each cell are used as follows:

,, root_out: is used to store the developing result as each bit is generated.

temp_out: is simply the input passing through each iteration. Each time it is

shifted left two places thus the 2 MSBs are ready for the next iteration.

9 remd out. is used to store the partial remainder as it is generated at each

MSB II LSB
2 integer bits generated 2 fractional bits generated

CHAPTER 6- Division & Square Root Core Development 74

iteration.

The actual hardware within a cell is shown in Figure 6.18. Note how similar
it is to the hardware used in the Divider cell. It is made up of an adder, which is actually

set up to subtract (same as divider), a comparator, a multiplexer and registers.

Two versions have been written, one fully pipelined and one fully combinatorial.
Figure 6.18 shows the hardware within a pipelined cell. The combinatorial version is

exactly the same although there are no registers within the cells.

6.7.5 Pipelined Latency

The latency through the pipelined design is dependent on the width of the input and on

the number of fractional bits in the result requested by the user. There are two registers,

each with a single delay, that exist in the data path before the input gets to the stage

where the square root is computed. These registers break up the data path between the

Figure: 6.18: Hardware Within A Square Root Cell

CHAPTER 6- Division & Square Root Core Development 75

input being truncated/paddcd and entering the square root generator. Within the square

root calculator there is a single delay in each cell. Hence, the total delay here is equal
to the number of cells. Finally, there is a single delay after the result is converted to the

final output format. The latency through the data path can be seen in Figure 6.19.

square root generator

-z-, TF- Z-cells

Figure: 6.19: Hardware Latency

Thus the latency can be computed according to:

latency =2+ number of cells +1 (6.7)

6.8 The Software Implementation

This section presents the software version of the Square Root core, which was written
in C++ to model the hardware design. This implementation must be cycle and bit

accurate when compared to the hardware. The code is included within a SystemVue

token, which can be seen in Figure 6.20.

CHAPTER 6- Division & Square Root Core Development 76

al

FXP FXP Analyser HDS About

-Fixed point parameters

F&I All variables Variable
FmpScpt

\
to this size

5 Integer Size (bits) Set All

15 Fiaction Size (bits) Set All

F Saturate Mode S et All

F Unsigned Integer Set All

F Rounding Set All

Figure: 6.20: Square Root Token & Token Parameters

6.8.1 The Basic Algorithm

Pseudo code representing an algorithm for calculating direct square roots is now givcn-.

Initially the variables rem, root and divisor = 0.

for (i=O; i< (input_width); i++)

root = root << 1;

rem = ((rem << 2) + (input >> (Input_width - 2)));

input = input << 2;

divisor= (root<< 1) + 1;

if (divisor <= rem)

CHAPTER 6- Division & Square Root Core Development 77

rem = rem - divisor;

root++;

This code is repeated n times, where n is the width of the input. Hence, the output is n
bits wide. In the full version of the code, the number of iterations varies depending on

the width of the input and the desired number of fractional bits in the output.

6.8.2 Full C++ Model

For negative and zero inputs the pseudo code shown earlier will produce results that

differ from the hardware. Therefore, these cases must be identified and the appropriate

result returned without using the square root algorithm. There are several steps within

the full model which are summarised below and in Figure 6.21.

" Step I- At this stage if the input is negative or equal to 0, then a precomputed

result is returned which matches the VHDL output for these events.

" Step 2- The number of loops that are required to compute the result is covered
in detail in the following subsection.

" Step 3- The square root is computed using a C++ version of the pseudo code

shown earlier.

Step 4- The result is converted to a signed format if the input was signed. Also,

Saturation and/or Rounding are performed if requested. Note also that the integer

result may be extended of truncated depending on the number of integer bits

requested by the user. Hence, it is entirely down to the user to request enough bits

to fully represent the integer part of the result.

CHAPTER 6- Division & Square Root Core Development

pass m data & parameters I-or: I
invut. result

I

r

step I
handle FO

handle F--ve

step 2

step 3

- compute number of loops required

- compute square root result

step 4 [ýýesult to requested output formatý

L----------------

return result

return result

Figure: 6.21: SqrtFXP Data Flow Diagram

6.8.3 How Many Loops?

78

The number of times that the square root algorithm is repeated varies depending on the
input width and the number of fractional bits requested by the user from the output.
Before discussing the derivation of the equation for the number of loops, it is important

to realise that at this stage the input is stored in a 64 bit unsigned integer variable. Also,

SystemVue signals are stored in double precision floating point format, which means

that the mantissa is 53 bits wide. Hence, the maximum number of bits that can be stored
for a fixed point result is 53. The approach that was taken for the square root token was

to always compute a 53 bit result and then truncate accordingly after. This was

supposed to be a temporary measure, which would be replaced by an algorithm that

computed only the desired number of bits (full integer width + desired fractional

width) as is done in the divider. However, due to time constraints this was never carried

out.
The number of loops required to compute 53 bit results is given by

CHAPTER 6- Division & Square Root Core Development 79

For the case: J±- -(x, y) 53 bit results are computed using:

loops = 32 + mantissa width -
ý+) (6.8)

2)

The derivation of (6.8) is now given below:

4 32 loops 0
4 64 bits ON

input 0000000 xxxxvvvv For 32 loops of the sqrt
algorithm, (x +y)12 bits
of the result will be
generated.

result 000...... rrrr

However, the number of bits that are required from the result are 53 bits.
Therefore, the difference that needs to be made up is:

difference = 53 -
V)

This means that the total number of loops required are:
loops = 32 + difference = 32 + 53-(

2

A better algorithm for computing the number of loops required to only generate the
desired number of bits is:

For the case: J±--(xy) where f fractional bits are requested:

loops = 32 +f-, E
2

The derivation of (6-9) is now given below:

32 loops of the sqrt algorithm, gives (x +y)12 bits of the result.
However, the number of bits that are required from the result are (x/2) +f bits.
Therefore, the difference that needs to be made up is:

x difference =j +f-
ý- +2 V) f- '2

This means that the total number of loops required are:

(6.9)

loops = 32 +difference = 32 +f- Y-
2

CHAPTER 6- Division & Square Root Core Development 80

6.8.4 Replacing The Binary Point

The result from the square root algorithm is contained in an unsigned 64 bit variable.

At this point it is converted into a signed format if the input was signed otherwise it is

left unsigned. Before the result is returned it is vitally important that the binary point

is inserted in the correct place. However, it has already been shown that for signed and

unsigned inputs, the result takes the following respective formats, thus the binary point
location can be found accordingly:

ý, FI -(x, y) =± d' + i, f>
JZ -xy) =(ý, f)

6.8.5 Simulating The Delay

As the C++ model must simulate the hardware square rooter, it is important to replicate

the delay between the first sample entering the core and the corresponding result

reaching the output. In this case the latency is a function of the width of the input and

the desired fractional output. The relationship is given in (6.11) (see Figure 6.19).

latency X +f+ 3 (6.11)
2

Again, it worth remembering that if the user has enabled Rounding on the output, then

an additional fractional bit (f+ 1) will be computed in the divider and consequently the

latency will increase by 1.

6.8.6 Performance

To give an indication of how many resources and how fast the hardware Square Rooter

can operate at, several instances were implemented using the following:

* Target Technology: Xilinx Virtex II Pro XC2VP30

CHAPTER 6- Division & Square Root Core Development 81

- Synthesis: Synplify Pro 7.1

9 Map and Place & Route: Xilinx ISE 8.1

Table 6 and Table 7 show the results for the pipelined and non pipelined cores

respectively. In both cases, square root cores were implemented with 48,32 and 16 bits

in the input and the same number of bits on the output..

Sqrt 1/0 Slices LUTS Clock Speed

48 bits 5835 8192 >100 MHz

32 bits 2477 3623 >IOIMHz

16 bits 610 L 930 >104 MHz

Table 6: Pipelined Square Root Core Results

Sqrt 1/0 Slices LUTs Clock Speed

48 bits 3719 7171 >1 MHz

32 bits 1606 3073 >3 MHz

16 bits 397 777 >9 MHz

Table 7: Non Pipclined Square Root Results

A significant observation regarding the above results is that they are similar

to that of the Divider, both in terms of the number of slices used and the maximum

clock speed available. This is a surprising result as it has been shown that a square root

can be carried out using approximately half the logic that a divider requires [31][20].

However, the reason that the square rooter is of similar size to the divider in this case
is because of the use of generic parameters within the VHDL. Generics are used to

parameterise the square root core. For example, they specify the width of the signals

within each square root cell. The problem is that they must be set to be a fixed value

and cannot vary for each cell. This means that the widths used for each cell must be set

to the maximum that will be required by any particular cell (the final cell). Obviously

this leads to a very inefficient design but as yet a solution has not been found.

CHAPTER 6- Division & Square Root Core Development 82

Consequently, the square root core uses nearly the same amount of hardware as the

divider, when in actual fact it should use approximately half the logic.

6.9 Verification Of Cores

The verification process for both cores involved two stages. The first was to make sure

that the output from the cores was actually correct. Secondly, the software and
hardware for each core had to be examined to make sure that the output from both

implementations were bit and cycle identical.

To verify that the output from the Divider and Square Rooter were correct, a
floating point version of both functions was used. First of all the difference between

the floating point reference solution and the fixed point solution is computed for each
input. Then, for the case of a Truncated output, the magnitude of the difference is

checked to see if it is ever greater than or equal to one LSB. If so, the fixed point core
has failed otherwise it has passed. For the case of a Rounded output, the magnitude of

the difference is checked to see if it is ever greater than one LSB/2. If so, the fixed point

core has failed otherwise it has passed. This process was carried out for many cases

where the full range of inputs and outputs were tested. Specific cases such as division

by zero and the square root of negative numbers generated different outputs from the
floating point design but this was expected.

To verify that the software and hardware were bit and cycle identical required

running many cases where the output from one implementation was subtracted from

the other. If the result was zero for each sample then the latency and output for both

implementation was identical, otherwise a problem would be identified. This process

was automated via scripts due to the huge amount of testing required. It should be

noted that this was not carried out as part of the EngD project and that other engineers
involved in the development of HDS performed this task.

Chapter 7

CORDIC

7.1 Introduction

The CORDIC (COordinate Rotational DIgital Computer) algorithm is an iterative

technique based on the rotation of a vector which allows many trigonometric and

algebraic functions to be calculated. The key aspect of this method is that it is achieved

using only shifts, additions/subtractions and table look-ups which map well into

hardware and are ideal for FPGA implementation. The work presented in this chapter
focusses on the effort to develop a closed form equation for analysing; the error in fixed

point CORDIC systems computing vector magnitudes and cosines/sines. By doing

this, the most efficient parameters required to produce a desired level of accuracy from

such CORDIC systems could be found. One goal of this work was to compare
CORDIC implementations to direct implementations computing the same ftinctions to

see which were the most efficient. Hence, the division and square root cores developed

for HDS were used as part of this assessment.

7.2 COordinate Rotational DIgital Computer (CORDIC)

The original work on CORDIC was done by Jack Volder [33] in the 1950's although
this was limited to computing trigonometric functions with the purpose of developing

83

CHAPTER 7- CORDIC 84

a digital solution to real-time navigation problems. This work was then extended by

John Walther [34] to provide solutions to a broader range of functions. Since then,

much research has been carried out on the algorithm, with a thorough survey of this

work with respect to FPGAs being published by Andraka [2]. The CORDIC algorithm
has been used in applications such as calculators, math-coprocessors, radar signal

processors and robotics.
In this chapter the CORDIC algorithm is introduced as well as the problems

associated with its use. These problems relate to finding the key parameters required

to guarantee a desired level of accuracy from the output of CORDIC systems.
However, for the cases of Vector Magnitude calculations and S ine/Cosine calculations,

a technique has been developed to solve the aforementioned problems. The technique

for both types of calculation is presented in sections 7.4 and 7.5 respectively.

7.2.1 Givens Rotations

The CORDIC method is based on the rotation of a vector from position [x(O), y(O)] to

[x(l), y(l)] as shown in Figure 7.1.

YM

Y(O)

The new position can be calculated using the Givens rotation given in (7.1).

X(I) X(O)
Figure: 7.1: Vector Rotation

CHAPTER 7- CORDIC 85

x(l) = x(O)cosO-y(O)sinO (7.1)
y(I) = x(O)sinO+y(O)cosO

Note that equation (7.1) gives the new position for an anticlockwise rotation of the

initial vector. To rotate in a clockwise direction, equation (7.2) should be used.

x(l) = x(O)cosO+y(O)sinO (7.2)
y(l) = y(O)cosO-x(O)sinO

7.2.2 Pseudo-Rotations

With some manipulation, (7.1) becomes,

x(l) = cosO(x(O)-y(O)tanO) (7.3)
y(l) = cosOCv(O)+x(O)tanO)

which, through dropping the cos 0 term can be reduced to,

x(l) = x(O)-y(O)tanO (7.4)
y(l) = y(O)+x(O)tanO

By dropping the cos 0 term the rotation that is achieved is no longer a true rotation and
is referred to as a pseudo-rotation which can be seen in Figure 7.2.

[x0), y(1)1

,
cp, R(l) R(O) cosO 110"

R(l)

NO), Y(O)l
R(O)

Figure: 7.2: Pseudo Rotation

CHAPTER 7- CORDIC 86

The effect of the pseudo-rotation is that the length of the vector R(O) is increased to

R(l). However, the values of x(l) and y(l) for a true rotation are still desired and

clearly a pseudo-rotation does not give this.

713 Basic Iterations

From equation (7.4), it can be observed that addition, subtraction and multiplication

operations are required to achieve a pseudo-rotation. However, the key to the CORDIC

algorithm is that the multiplication term can be simplified to a shift operation using the

following technique.

The CORDIC algorithm is altered such that rotating by an angle 0 is now

achieved by performing a series of iterations i, which represent successively smaller

rotations 0, that accumulate to approximate 0. However, the key is that each rotation

step is chosen such that tanO, = 2-' at the P iteration. Therefore, multiplication by

tan 0i reduces to a shift operation, which is much cheaper to implement in hardware.

Table 8 illustrates the first few angles that must be used to achieve 0. The direction of

each rotation obviously affects the accumulative angle. With this iterative scheme

arbitrary angles can be approximated within the range -99.7: 5 0: 5 99.7 as the sum of

all angles obeying the law tanO i= 2-' is 99.7. For angles outside this range,

trigonometric identities can be used to convert the desired angle into one within the

range.

iteration (i) tanO, = 2-' Oi

0 1 45

1 0.5 26.565

2 0.25 14.036

3 0.125 7.125

4 0.0625 3.576

Table 8: CORDIC Rotation Angles

CHAPTER 7- CORDIC

7.2.4 Angle Accumulator

87

The simplified Givens rotation given in (7.4) can now be expressed in the following

format, which gives the new position of the vector after each iteration.

x(i + 1) = x(i) - di(2-1 (i)) y

y(i + 1) = y(i) + di(2-'X(i)) (7.5)

where di = +/-I

The variable di is called the decision operator which is used to decide which direction

to rotate. At this stage a 3rd equation is introduced called the Angle Accumulator which
is used to keep track of the accumulative angle rotated at each iteration.

z(i + 1) = z(i) - di0i (7.6)

The conditions of di depend on the mode of operation which shall be discussed shortly.
These equations now represent the CORDIC algorithm for rotations in a Circular
Coordinate System. It will be shown later that there are other coordinate systems that

can be used with the CORDIC method to calculate a greater range of functions.

7.2.5 Shift-Add Algorithm

The original Givens rotation has now been reduced to an iterative shift-add algorithm

where pseudo-rotations are made rather than true rotations. The algorithm is now

comprised of the following 3 equations.

x(i + 1) = x(i) - di(2-'Y(i))

y(i + 1) = y(i) + di(2-'X(i))

z(i + 1) = z(i) - diOl

Looking at these equations it is clear that this algorithm requires the following

operations per iteration,

*2 shifts, I table look-up (Oi values) and 3 additions/subtractions

Each of these operations is easy to implement on an FPGA and hence the interest in the

CHAPTER 7- CORDIC 88

x Register
Initial xI Shift I Iteration Co nter I

Shift
Initial yr y Register

z Register +
Initial z

III Lookup
Mux 6ntrol

III
Table

IIL
IL----
L------ Poo.

Figure: 7.3: A CORDIC Architecture Using Feedback

CORDIC algorithm. One potential architecture for this algorithm [2] can be seen in

Figure 7.3. Note, that this architecture uses feedback although another approach is to

unroll this structure so that all data paths are feedforward. This type of design decision

depends on how fast and how small the hardware has to be.

7.2.6 The Scaling Factor

Previously, the cosO term was removed from the Givens rotation equations and this

resulted in pseudo-rotations instead of true rotations. In Figure 7.2 it is clear that a

pseudo-rotation results in the magnitude of the initial vector growing once rotated.

Hence, the coordinates of the new vector are not the true values and are in fact scaled.

However, the scaling can be measured and removed.

Looking back at Figure 7.2, the new vector is seen to be related to the initial

vector by the following equation.

R(l) = R(O)/(cosO) (7.7)

Applying this to the iterative scheme that has now been derived gives the scaling

factor, K,,

CHAPTER 7- CORDIC 89

n-I n-I n-I

K,, = rl 1/(cos0i) = n(JI +
;; 'Oi)

= rj(ýl + (7.8)

i=O i=O i=O

As the number of iterations are usually known when using CORDIC, K,, and

consequently IIK,, can be precomputed. Therefore, the scaling factor can be removed
by multiplying with its inverse. Note that:

K,, -). 1.6476 as n oo
I IK,, --> 0.607 as n oo

7.2.7 Modes Of Operation

The CORDIC algorithm can be used in 2 modes of operation. Each mode determines

the condition of the decision operator, d,, and is selected depending on the particular
function to be computed.

Rotation Alode

In Rotation Mode, d, is given by:

di = sign z(i) (7.9)

In this mode the input vector is rotated by a specified angle, which is given as
the argument z(O). The aim then is to reduce the angle accumulator to zero although
in a real system this is unlikely to occur and a small amount will remain. In an ideal

system, after n iterations, the CORDIC equations give,

x(n) = K. (x(O)cosz(O)-y(O)sinz(O))

y(n) = K,, (y(O)cosz(O)+x(O)sinz(O)) (7.10)

z(n) =

From equation (7.10) it can be seen that cosO and sinO can be computed by setting

x(O) = I/K,,, yfO) =0 and z(O) = 0. Thus, x(n) = cosO andAn) = sinO.

CHAPTER 7- CORDIC 90

By considering an example it is clear to see what is happening at each iteration

of the algorithm. In this example cosO and sinO shall be computed for 0= 30.

Looking at Figure 7.4, the first 3 pseudo-rotations can be seen. To accompany this

figure, Table 9 shows the values of each of the parameters as the algorithm converges

on the solution.

Akvj
Start

Figure: 7.4: Rotation Mode Example

di oi Z(i) y(i) X(i)

0 +1 45 +30 0 0.607

1 -1 26.6 -15 0.607 0.607

2 +1 14 +11.6 0.303 0.910

3 -1 7.1 -2.4 0.531 0.835

4 +1 3.6 +4.7 0.427 0.901

5 +1 1.8 +1.1 0.483 0.875

6 -1 0.9 -0.7 0.510 0.859

7 +1 0.4 +0.2 0.497 0.867

8 -1 0.2 -0.2 0.504 0.863

Table 9: Rotation Mode Example

CHAPTER 7- CORDIC 91

Vectoring Mode

With Vectoring Mode, d, is givcn by:

di = -sign (x(i)y(i))

In this mode the input vector is rotated onto the x-axis and the angle required to achieve
this is accumulated in the angle accumulator. Hence, the aim here is to drive y(n) to

zero. After n iterations the CORDIC equations ideally give,

x(n) = K,, (J(x(O)ý + (y(O)ý)

y(n) =0

z(n) = z(O) + tan-1
(LUO
ýX(O))

Equation (7.12) shows that tan"jfO) can be computed by setting x(O) =I and z(O) 0.

Using an example it is clear to see how this is achieved. In this example, y(O) 2.

Figure 7.5, shows the first 3 pseudo-rotations and it is clear that the rotated vector is

converging on the x-axis as desired. Table 10 accompanies this example to show the

values of the variables at each iteration of the algorithm.

y(O)--2

Figure: 7.5: Vectoring Mode Example

CHAPTER 7- CORDIC

i Z(i) oi
YO)

0 0 45 2

1 45 26.6 1

2 71.6 14 -0.5
3 57.6 7.1 0.375

4 64.7 3.6 -0.078

Table 10: Vectoring Mode Example

7.2.8 Coordinate Systems

92

So far, rotations in a Circular coordinate system have been considered. The functions

that can be computed using this system are summarised in Figure 7.6.

oordinate Rotation Mode Vectoring Mode
System

I

z(i) ----* 0; di = sign (z(i)) y(i) --p. 0; di = -sign(x(i)y(i))

x K(x. cos z-y. sin z) Ix
0
R
D

C
For tan-' z,

set x=1, z-

K(X2+y2)1/2

Circular I

z
For cos z& sin z,
set x= I/K, y=0

0

z+ tan" (Y/X)

I
Figure: 7.6: Circular Coordinate System Summary

However, by using other coordinate systems, the set of functions that can be computed
using the CORDIC algorithm can be extended. There are two other coordinate systems
that can be used with CORDIC. These are Linear and Hyperbolic which can be seen in
Figure 7.7 and Figure 7.8 respectively.

K(y. cos z+x. sin z) IY

0

CHAPTER 7- CORDIC

Figure: 7.8: Rotations In A Hyperbolic Coordinate System

93

The CORDIC equations can be altered to give the Unified CORDIC Equations which

can be applied to any of the 3 coordinate systems discussed. These are given by:

x(i + 1) = x(i) - pdi(2-'Y(i))

y(i + 1) = y(i) + di(2-'X(i)) (7.13)

zQ + 1) = zQ) - de(i)

where the values of p and e(') depend on the coordinate system according to,

Figure: 7.7: Rotations In A Lincar Coordinate System

CHAPTER 7- CORDIC

o Circular System: ýL = 1, e(') = tan-' 2-'

- Linear System: ýt = 0, e(1) = -i

- Hyperbolic System: ýL =-1,
P) = tanh- 12-'

7.2.9 Convergence

94

With 2 modes of operation and 3 coordinate systems, there are several ways in which

the CORDIC algorithm can be used. Convergence is guaranteed for Circular and
Linear coordinate systems where rotations are constrained to the range [-99.70,99.70].

For rotations outside this range, the angle can be pre-processed to move it into the

range and then the output can be post-processed accordingly to give the correct result.

However, convergence is not guaranteed using elemental rotations in a Hyperbolic

coordinate system. To guarantee convergence certain iterations must be repeated. The

sequence of rotations is [1,2,3,4,4,5,6,7,8,9,10,11,12,13,13,14,15 n,.. 3n+l,..].

Hence, iterations (4,13,40,.. n,.. 3n+l,..) should be repeated [34].

Little work has been carried out to assess the precision of CORDIC across the

different functions that it can be used for except for [18][21] which specifically
focusses on circular co-ordinate systems. However, a significant part of the work

presented in this thesis is in this area and shall be discussed in Section 7.3 with

references to [18] and [2 1].

7.2.10CORDIC Summary

The functions that can be computed directly using CORDIC with either of the 3

coordinate systems that have been discussed in this document are surnmarised in

Figure 7.9. Note that many more functions can be computed indirectly by combining

several CORDIC implementations. A list of some of the potential functions that can be

computed indirectly are given in Figure 7.10.

CHAPTER 7- CORDIC 95

Rotation Mode: Vectoring Mode:
di = sign(z(i)); z(i) 0 di = -sign(x(i)y(i)); y(i) 0

X--*.
C

--Do- K(x. cos z-y. sin z) X--Nm- C --IP-K(x2+ y
2)1/2

0 0

$ý
Cq

0 R Y---w- -No- K(Y. cos z+x. sin z) R Y--00- --00-0
.2 D D
U I

Z--jP. [L 0 C
J-10- I

Z-00- z+ tan-' (y/x)
-CýJ-10- For cos z& sin z, set x= I/K, y=0 For tan" y, set x=1, z=0

X--NO-
C

-410- x X-00-
C

--Do- x
0 0

ti R Y--40- y+ (X. Z) D
R Y--00- --00-0 D

0.4 1 1
Z--ap. ý C0 Z-00. Cz+ (Y/X) C
For multiplication, set y=0 For division, set z=0

C
-Op. K*(x. cosh z-y. sinh z) X---O, ý

C
-NO- K*(X2 _ Y2)1/2 0 0

0
701

R Y--*- -Do-- K (y. cosh z+x. sinh z) R y No. -0-0 D D
=

Z-00-
1

-10-0
.C

-Ism- z+ tanh" (y/x)
.C

For cosh z& sinh z, set x= I/K*, y=0 For tanh-ly, set x=1, z=0
Figure: 7.9: CORDIC Output

K* is defmcd as,

n-I

K*n

1=0

K*n -> 0.82816 as n -> oo

CHAPTER 7- CORDIC

tanz = sinz
cosz

tanhz = sinhz
coshz

In w=2 tanh- 1 W- 11 lw+
I

ez= sinhz + coshz

t tlnw
w =e

tan-
Iw=

tan-

sin -1 w= tan- 1w
ji- -_wl

cosh -1 w= In (w
+

11 --w

-1
F-2-\

sinh w= In(w + 41 +w -)

141W =
ý(w

+ (1 /4))2 (w _ (1/4))2

Figure: 7.10: Possible CORDIC Functions

7.3 CORDIC Precision

96

Traditionally, fixed point CORDIC systems have been designed using a trial and error

approach where a system is designed and then the accuracy of the output is assessed

via lengthy simulations. If the desired accuracy is not observed then the number of
iterations and/or the number of bits in the data path is altered before re-running the

simulations. This is a very inefficient way of designing CORDIC systems.
Little work has been carried out to try and quantify the error in fixed point

CORDIC systems so that the error can be predicted thus avoiding lengthy simulations.
However, Yu Hen Hu [18] developed an algorithm to compute the Overall

Quantisation Error in CORDIC systems using vectoring mode with a circular

coordinate system. After assessing the work done in this paper it was found that the

algorithm that was developed was not very accurate. Further, it was also found that this

work could be extended and applied to other CORDIC systems using, for example,

rotation mode with a circular coordinate system. Hence, the following sections present
the work that was carried out to improve, extend and verify the original work published

CHAPTER 7- CORDIC 97

in [18]

7.4 Predicting The Accuracy Of Vector Magnitude Calculations

This section highlights the work that was carried out to predict the accuracy of
CORDIC systems computing a Vector Magnitude.

7.4.1 Using CORDIC To Compute The Magnitude Of A Vector

By designing a CORDIC system using vectoring mode with a circular coordinate

system it is possible to calculate the magnitude of a vector. As is the case with some
CORDIC functions, the output is scaled by a factor K which must be removed to obtain

the true result. This can be confirmed by consulting the top right entry in Figure 7.9. A

common method for removing the scaling factor is to multiply the result by 11K.

The Generalised CORDIC equations are given by:

(P) - ýtdj(2-'y(i)))

y (1+1) = (Y(') + di(2-'x (i) (7.14)

P+ 1) = P)
- die()

where i is the ith iteration, and [t and e(') are defined depending on the rotation system

used:

- Circular Rotations: g=1, e(') = arctan(2-')

- Linear Rotations: ýt = 0, e(') = 2-'

- Hyperbolic Rotations: pt =-1, e(') = arctanh(2-')

Also, d, is known as the decision operator and is used to control the direction in which

the vector is rotated at each iteration. Thus, it takes the value of ±1. Note that when

computing the magnitude of a vector [x, y], the expression for z
(i+ 1) is redundant and

can be ignored. Further, when using circular rotations, (7.14) can be simplified to the

CHAPTER 7- CORDIC 98

fonn shown in (7.15).

di (2 -'y (i)))

(Y(') + di(2-'x(')))

This is the starting point for designing a CORDIC system to compute the

magnitude of a vector. Clearly the operations that are required are addition/subtraction

and shifting. Also, the decision operator must be handled. To do this, the MSB of P)

and y(') must be determined to allow di to be computed with the use of an XOR gate.

Finally, an inverter is required to ensure that when one expression adds the other

subtracts and vice versa. This can been seen in Figure 7.11 which illustrates a single
CORDIC cell (representing one iteration) designed using HDL Design Studio (I IDS).

Note that a combined adder/subtractor token is not yet available in HDS, thus an addcr,

subtractor and switch combination was used instead.

Shift

-Ami A)

MSB capture
XOR

Add/Sub sel. --*[3
Aw

MSB capture

NOTWAdd/Sub sel. --*p

Figure: 7.11: A CORDIC Cell Designed Using H DL Design Studio

CHAPTER 7- CORDIC 99

7.4.2 Assessing The Overall Quantisation Error

Choosing the number of iterations n and deciding on the number of fractional bits to

be used in the data path b so that the magnitude is computed to a desired accuracy is

not trivial. However, an equation for computing the Overall Quantisation Error (OQE)

using these parameters was developed by Yu Hen Hu. Examining (7.16), it is cleat that

the OQE is made up of two distinct errors. The first part is the Approximation Error

ca, which relates to the error due to the quantised representation of a CORDIC rotation

angle by finite numbers of elementary angles. The second part is the Rounding Error

er, which is due to the finite precision arithmetic used in a practical implementation.

ea ý a�(n - 1)iv(0)1

Er : -- 2- b-0.5 G(ýt, n+, [
K�(n)

1
(7.16)

OQE= ga +er = a. (n - 1)iv(0)1 +2 -b-0,5 G(g, n [
K�(n)

To investigate this equation in more detail, the variables need to be explained.
First of all, g is the same variable as in (7.14) (here ýt = 1). The variable a, (n - 1)

represents the final quantised rotation angle, Iv(O)l is the magnitude of the largest

vector possible and b represents the number of fractional binary digits used in the data

paths. The remaining variables are defined as:

n-In-I

G(ýt, n) + Irl ký, (i)

j= I i=j (7.17)
n-I n-I

jkýt(i) "A + .
C,, (n) =I

i=O i=O

where K,, (n) represents the factor by which the magnitude is scaled by after n
iterations, and G(g, n) is used to compute the worst case rounding error.

By computing the OQE it is possible to determine the number of effective
fractional bits d,, ff that a CORDIC system generates using:

CHAPTER 7- CORDIC 100

d, ff =- (10920QE) -1 (7.18)

In [18], Yu Hen Hu computed dff using (7.18) for a set of n and b. To verify the

results, simulations were also carried out for the same set of n and b. The two sets of

results were very close for certain n and b, which suggested that these equations could

be used to estimate these parameters for a desired accuracy. From here a search could
begin to find the optimum combination of these parameters which would lead to the

most efficient design for a specific accuracy.
To illustrate the tables that Yu Hen Hu developed, a small section has been

given in Table 11 below. It is clear from this section that to obtain 6 effective
(fractional) bits of accuracy requires either 9 iterations and 10 fractional binary bits in

the data paths or 8 iterations with 11 fractional bits.

n1b 8 9 10 11 12

3 1.43 1.47 1.48 1.49 1.5

4 2.35 2.42 2.46 2.48 2.49

5 3.17 3.32 3.41 3.45 3.48

6 3.82 4.12 4.3 4.4 4.45

7 4.27 4.76 5.08 5.28 5.38

8 4.5 5.18 5.69 6.04 6.25

9 4.57 5.4 6.09 6.63 7.0

10 4.55 5.46 6.3 7.01 7.57

Table 11: Section of Yu Hen Hu Tables

However, an issue with these tables was discovered when, after confirming

via a SystemVue simulation that 9 iterations with 10 fractional bits actually did result
in 6 effective fractional bits, fin-ther simulations showed that 6 effective fractional bits

could be obtained with as few as 4 iterations and 10 fractional bits. According to the

table, only 2 effective bits should be obtainable. The test results showed that the

equations developed by Yu Hen Hu were consistently underestimating the number of

effective fractional bits. Ideally the equations should allow the user to select the most

efficient architecture for a desired accuracy and clearly they did not. Hence, a further

CHAPTER 7- CORDIC 101

examination of the OQE was required, and this work is presented in the next section.

7.43 Taking The OQE Further

To verify the work presented in [18] and to allow further analysis of this work,
MATLAB code was written to compute the OQE and consequently dff for a set of n

and b. First of all functions for computing KI(n) and G(l, n) were written. These

functions can be seen below in Figure 7.12 and Figure 7.13 respectively.

kunction x- Fgencn)
;; Cotiputes CORDIC scale factor X(n-1)
2; Kgen returns the CORDIC scale factor for a given number of iterations n

for i-O: n-1
k(i+l) = (1 + 2A(-2*(i)))AO. S;
K- K*k(i+l), *

end
Figure: 7.12: MATLAB Function for Computing KI(n)

function G- GgenCn)
IsComputes GCn)
4; Ggen returns G(n) uhich is used to compute the worst case rounding error in I
U-0,

for j-I: n-I
K-1,
for i-j: n-I

k(i) - (I + 2^(-Z*(i)))^O. S;
K= Ktk(i);

end
G=G+K;

end
G- G+I;

Figure: 7.13: MATLAB Function for Computing G(l, n)

A function to compute dff was also written. This function calls the two

previous functions and uses them to compute the Approximation Error and Rounding

Error. The total error (OQE) is then computed before the number of effective bits is

determined and returned. This function takes in the number of iterations n, the
fractional bit width b and the maximum magnitude of the vector m, as can be seen in

CHAPTER 7- CORDIC

Figure 7.14.

102

function Deff = EffBits(n, b, m)
ý'sEffftt3 returns the number of effective fractional bits computed in

ka fixed point CORDIC system relative to a floating point CORDIC system
UffBits inputs: na iterations, b- bits used, m= max. magnitude of
kinpur. vector; Returns the number of effective bits computed.
0- Ggen(n);
K= Kqen(n);

appxox_ezxot - ZIC-n+l)*m;

roundinq_error = ZAC-b-0.5)*((G/K)+l);

OQE approx_erxox + xounding_exxor;
Deff -(log2COQE))-I;

Figure: 7.14: MATLAB Function for Computing dff

To allow d,, ff to be computed for a set of n and b, a final function was written

as in Figure 7.15 below. This function computes all values of dff for 1 :9n: 5 40,

1 :5b :ý 40 and m= ý0-. 5

f=ction bits - exror-testo
f or b=1: 401

for n-1: 40
bits(n, b) = EffBits(n, b, O. SAO. 5);

end
end

Figure: 7.15: MATLAB Code for Computing dfffor a set of n&b

The results that were produced for dff have been verified against the small

set of n and b presented in [18] and can be found in Appendix A. As mentioned already,

simulations showed that the equations used here consistently underestimate the

number of effective fractional bits that are achievable for a given n and b. Hence, it was
important to find out the reason for this behaviour and to try and improve on this work.

7.4.4 The Approximation Error

By considering the OQE in more detail it was found that the Approximation Error is

more dominant than the Rounding Error, especially for small n. Hence, an initial

assumption was that this error was being overestimated thus causing the number of

CHAPTER 7- CORDIC

effective bits to be underestimated.

103

When using CORDIC to computc the magnitude of a vector, the aim is to
drive the initial vector onto the x-axis. This mode of operation is known as Vectoring

or sometimes Backward rotation mode. However, due to finite rotations, a small angle
8 is usually left between the rotated vector and the x-axis thus resulting in the
Approximation Error ca. This angle is known as the Angle Approximation Error.
Figure 7.16 shows the effect that 5 has on ca for an exaggerated angle 8 to illustrate

the problem. It is clear that as 5 is reduced the rotated vector gets closer to the x-axis
and the smaller the Ea will be. Clearly an accurate estimation of 5 is required to obtain
an accurate estimation of the Approximation Error.

80

CORDIC
magnitude
before removing
scaling

CORDIC
'11'\\True

mag. a. fter a magnitude
removing scaling

Figure: 7.16: The Angle Approximation Error 5

In Yu Hen Hu's paper, the upper bound on 8 is given as 8: 5 aI (n - 1), where

aI (n - I) is the final rotation angle. Obviously the more iterations there are, the

smaller Sa will be. For n sufficiently large, aI (n - I) can be approximated by:

a, (n- l)--2-n +I (in radians)

Yu Hen Hu used this simplification to compute the Approximation Error as:

CHAPTER 7- CORDIC 104

Eaý 2 -n+ I lv(o)l (7.20)

where Jv(O)j is the magnitude of the largest vector that can be represented using the

chosen fixed point format. It is this simplification that results in the underestimation of

the number of effective fractional bits. Both n and Jv(O)j are required to compute the

Approximation Error but as will be shown shortly, (7.20) is simply not accurate.

7.4.5 Improving The Approximation Error Estimate

A more accurate equation for calculating the Approximation Error was developed by

considering the diagram shown in Figure 7.16. A simplified version of this diagram is

given below in Figure 7.17.

Figure: 7.17: CORDIC Approximation Error

It can be observed in Figure 7.17 that the CORDIC magnitude, after removing the

scaling factor, is equal to:

CORDIC Magnitude = x(n - 1) =I v(O)l cos 5

Then, clearly the error between the true magnitude and the CORDIC magnitude is the
Approximation Error which is computed via:

F", = lv(O)l - lv(O)l COS8 (7.22)

Finally, if the upper bound for 8 is applied, the equation becomes:

CHAPTER 7- CORDIC 105

E. = lv(O)I-lv(O)Icos(al(n-1)) (7.23)

where

aI (n - I) = arctan (2- "+I) (7.24)

Note that (7.24) is preferred to (7.19) when computing aI (n - I) as it is more accurate

for small n.
To see the difference between this new algorithm for computing the

Approximation Error and the one given in Yu Hen Hu's paper, both were plotted for a

set of n and can be seen in Figure 7.18. The graph clearly shows that Yu Hen Hu's

algorithm generates a larger error which consequently causes the number of effective
fractional bits to be underestimated. Another way to view the Approximation Error is

as the number of effective fractional bits that it represents. This can be seen in Figure

7.19 which clearly shows that as n increases the approximation error predicted by the

new algorithm is much smaller than that given by the original algorithm. However, if

we look at Appendices A and B it can be seen that the OQE in both tables converge to

the same results as n increases. So for example, looking at the b=5 column in

0

x 2W
0.
0.

U.

NewAlgorithri
Yu Hen Hu NImg

ýo

dZ
01

0.4-

0.3-

0.2

0.1-

01234567a9
10

Iterabons (n)

Figure: 7.18: Approximation Effor vs Iterations (n)

CHAPTER 7- CORDIC

60

0
50

0
12

40

w 20

E
x
20 lo c 2.
0.

Yu Hen Hu
New Algodthm

0
0 10 15 20 25 30 35 40

Iterations (n)

106

Figure: 7.19: Approximation Error As Effective Fractional Bits vs Iterations (n)

Appendices A and B, the results in both columns are the same from n= 11 onwards if

we add I bit onto the results in Appendix A due to the fact that (7.18) was used instead

of (7.25). The reason for this is discussed in the next section. This trend in both tables

shows that as n increases the Approximation Error becomes less relevant and the

Rounding Error starts to dominate. Hence, the reason for both tables converging.

Clearly the new algorithm had to be verified and this work is covered in the next

section.

7.4.6 Verifying The New Algorithm

To verify (7.23), the Matlab code shown earlier in Figure 7.14 was altered to use the

new algorithm as can be seen in Figure 7.20. Note also that (7.25) was used to compute
d, ff rather than (7.18).

d, ff = -(10920QE) (7.25)

CHAPTER 7- CORDIC 107

function Deff - EffBits2(n, b, m)
UffBits returns the number of effective tractional bits computed in

%a fixed point CORDIC system relative to a floating point CORDIC system
UffBits inputs: n- iterations, ba bits used, m- max. magnitude of
%input vector; Returns the number of effective bits computed.

G- Ggen(n):
K= Rgen(n);
Z- aten(2A(-n+l)):
approx_error -m- (mt(cos(Z)));
rounding-ezKor a 2AC-b-0.5)*((G/K)+1);
OQE - approx-error + rounding_error,
Deft - -(log2(OQE)):

Figure: 7.20: New MATLAB Function for Computing dff

This is because, in [18] subtracting a bit from dff is justified to counter growth of the

wordlength by I integer bit due to the scaling factor K(n). However, as it is fractional

bits that this analysis is interested in, there is no need to subtract a bit from dff to

counter the integer bit growth. It will be shown later that when comparisons were made
between simulations and predicted values, that this correction was justified.

Using the code in Figure 7.20 with the other Matlab functions shown earlier,

a new table was generated for d.. ff, for 1: 5 n: 5 40,1: 5 b:! ý 40 and m= 'FO-. 5. This

table can be seen in Appendix B. A quick comparison of the table in Appendix A with
the new table shows that for a given b, the values for d,, ff become very close as n
increases. It should be kept in mind when making this comparison that the values in
Appendix A were computed using (7.18) and effectively represent dff -I when

compared to Appendix B. However, the major difference between the two tables can
be seen as n decreases. This is because, as was shown in Figure 7.18, the equation
developed by Yu Hen Hu overestimates the Approximation Error, particularly for

small n, causing the number of effective fractional bits to be underestimated.

7.4.7 SystemVue (HDS) Simulations

To verify the accuracy of the new algorithm, a number of simulations were carried out.
Figure 7.21 shows the top-level of the SystemVue model that was used for the

CHAPTER 7- CORDIC 108

simulations. A floating point Golden Reference Design was used with a fixed point

CORDIC design. Both designs were driven by the same fixed point input data

generated by two Uniforin Noise tokens set to produce data in the range ±0.5. With

this range the limit for Jv(O)j is [0-. 5, which matches with the parameter /71 = /0-. 5

which was used when producing the tables. The fixed point format for the input data

was set to ±<I, b> where b is the number of fractional bits used in the data paths.

34 Ooklen Rafaw*e Bei

------------ Finil Vidue Bink Ul ON vC Wn Err
01 F-IX&d POW COR1031C Loop N Tkno Vmli

1 $5631 55.6360000009001*. 3 q
1CMI

- ----- -- --

L=-j

Figure: 7.21: Top-Level Of Simulation

To compute dff from the simulations, the output from the fixed point

CORDIC design is subtracted from the output of the Golden Reference design. The

maximum positive error and the maximum negative error are then captured before

(7.26) is applied to the error with the greatest magnitude.

d, ff = -0o92 error) (7.26)

Before discussing the results from the simulations, the full fixed point

CORDIC design should be discussed in more detail. Earlier, the design of an individual

CORDIC cell was discussed. Figure 7.22 shows a full design using 3 cells which

corresponds to the number of iterations n. The design is fully parallel and is unrolled

as presented in [19]. Before the x data reaches the first cell it must be converted to be

positive, if it is negative, which is achieved via a negator. A switch token is used to

control whether or not the negated version or the original is allowed to pass through.

The control signal for the switch is generated via a compare to zero token. If negative

values for the x data are allowed to pass, the computed magnitude will be negative and

CHAPTER 7- CORDIC 109

q

cbmpare ko zero
AM-[

------------ ---------------
-TR negator

2>19
input I/K

--- ----------- --------
I ------- I ------- , ý, O -------------- Cell I Cell: 2 Cell 3

L5 3-4

-*E LOJ LOJ input

Figure: 7.22: Full CORDIC Design

although close to the correct result, will be slightly less accurate. There is no such

concem for they data.

To remove the scaling factor, K, a multiplier is used which is fed the Input I/

K via a constant token. The Matlab code shown in Figure 7.12 was used to compute

this value before each simulation. The format of the constant token is set to ±< 1, b> as

is the initial output of the multiplier, although this can be reduced later to ±<1, de. fl >

once dff has been verified. Note that Rounding must be enabled on the multiplier once
format. Only then will cý, f the output is reduced to the ±<1, df

,,.
bits of accuracy be

maintained. Within each cell, the adders/subtractor and shift tokens take the format

+<2ý b> where the extra integer bit is required to allow for the growth due to the

scaling factor, K.

A sub-set of the results for these simulations are given in Table 12 along witli

the predicted values generated using the Yu Hen Hu approach and the new algorithm.

It is clear that the new algorithm predicts the simulated values far more accurately thati

the original algorithm. For examPle, examining the case where 6 effective fractional

bits are required. The Yu Hen Hu algorithm predicts that at least 9 iterations with 10

fractional bits are required. However, the simulation shows that only 4 iterations with

CHAPTER 7- CORDIC

8 fractional bits are needed and the new algorithm predicts this exactly.

110

Predicted
(Yu Hen Hu)

Predicted
(New Algorithm)

Simulated

n/b 8 9 10 8 9 10 8 9 10

3 1.43 1.47 1.48 5.09 5.31 5.43 5.32 5.71 5.80

4 2.35 2.42 2.46 6.03 6.59 6.98 6.22 6.88 7.34
5 3.17 3.32 3.41 6.28 7.13 7.88 6.52 7.56 8.27
6 3.82 4.12 4.30 6.21 7.17 8.10 6.55 7.11 8.12
7 4.27 4.76 5.08 6.06 7.05 8.04 6.42 7.29 8.29
8 4.50 5.18 5.69 5.92 6.91 7.91 6.33 7.29 8.31
9 4.57 5.40 6.09 5.78 6.78 7.78 6.00 7.00 8.00
10 4.55 5.46 6.30 5. 7.65

1

5.68 6.68

Table 12: Predicted vs Simulated Values Of dff

7.4.8 Hardware Comparison

To assess how efficient the CORDIC algorithm is, comparisons were made between
CORDIC systems found using both versions of the OQE algorithm and Direct systems

2 +Y2 computing the same level of accuracy but performing xY directly using two
multipliers, an adder and the square root operator developed for HDS- A comparison
was made in terms of gate count to give an estimation of the resources required by each
design.

Gate Count

To assess the gate count of each design, the case where 16 effective fractional bits are
required from the vector magnitude calculation was considered. The CORDIC design
found using the new OQE, requires n=9 and b= 20. The number of gates in this design

can be assessed by breaking it down into individual components. First of all the circuit
that converts any negative values to equivalent positive ones is considered. This

CHAPTER 7- CORDIC III

requires one XOR gate and one half adder per input bit, therefore 3 gates/bit are
required.

Now the CORDIC cells must be examined. Each cell uses one NOT gate and
two adder/subtractors. The shift operations are all achieved using wiring and do not

contribute to any hardware consumption. An adder/subtractor requires one XOR gate
and a full adder per bit, which means there is a total of 6 gates/bit required for each one.
It is important to note that the final cell (cell 9) uses only I adder/subtractor as it is only
the x output that is of interest. Therefore, cell 9 uses only half the logic relative to the

other cells.
Finally, the parallel multiplier used to remove the scaling factor requires ax

b cells where a and b are the width of the inputs to the multiplier. Each cell in the

multiplier represents an AND gate and a full adder, so there are 6 gates/cell.
This means that with an input width of ±<1,20>, the total number of gates for

this CORDIC dcsign is:

IxI = 21 x3= 63

cells = 8.5 x ((22 x6x 2) + 1) = 2252.5

mult = 22 x 22 x6= 2904
Total -- 5220

Note that the width of the data paths through the cells is 22 bits, as 2 integer bits are
required plus 20 fractional bits.

If a similar analysis is made to the design that was found using the original
OQE algorithm (n = 17 and b=2 1), the number of gates is assessed as:

IxI = 22 x3= 66

cells = 16.5 x ((23 x6x 2) + 1) = 4570.5

mult = 23 x 23 x6= 3174
Total sz: s 7810

A similar approach was taken with a Direct design which can be seen in
Figure 7.23.

To assess the number of gates in this design first remember that multipliers require 6

gates/cell as described previously. However, in this case the multipliers are computing

CHAPTER 7- CORDIC

1 . 20).

-------------- ---------------- ---------- -----

------------- -------------
Figure: 7.23: Direct Dcsign

112

squares and therefore the number of cells required is approximately halfthat required

by a normal multiplication [27]. This has been taken into consideration when

estimating the gate count. An adder requires 5 gates/bit as each full adder uses 5 gates.

Finally, a square root function can be viewed as half the logic required for a divider

array [3 1] which requires mxm cells where m is the width ofthe numerator and the

denominator. Each cell is made up of an XOR gate and a full adder, hence 6 gates are

required per cell. This means that if the inputs are +<1,20>, and the number of'

fractional bits in the multipliers and the adder are allowed to only grow to 28, which is

required to achieve 16 effective fractional bits from the square rootcr, the number of'

gates is assessed as:

multipliers 21 x 21 x6= 2646

adder 29 x5= 145

square root = (30 x 30 x 6)/2 = 2700

Total z: ý 5491

Clearly the CORDIC design found using the new OQE equation is tile most

efficient in terms of the number of gates required. Relative to the CORDIC system

found using the original OQE equation, a saving of 33% is achieved. Thc saviiig

relative to the Direct design is not quite as impressive but is still significant at 51yo. It

should be noted that the gate count for the Direct design is an optimistic estimate and

that in reality it would be greater. Also, this saving will increase with lai-gci- designs as

the Direct design will not scale well due to the design of the HDS square rooter. 'I'lic

structure of the square root core requires m2 /2 cells where m the width ofthe input to

CHAPTER 7- CORDIC 113

the core. Clearly this will not scale well as m increases. Also, the large critical path that

this structure experiences means that it will have a relatively slow clock rate when

compared to the CORDIC design. This is confmned in the Synthesis results.

Synthesis Results

Using HDL Design Studio, VHDL for each of the 3 designs previously analysed was

automatically generated. Xilinx ISE v8.1 was then used to implement the designs on a
Virtex-II Pro device. The results are given in Table 13, which illustrates the efficiency

of the CORDIC design found using the new OQE algorithm relative to the other two
designs. Not only does it use fewer slices but it also permits a higher clock frequency.

It should be noted that both CORDIC designs have been implemented using only slice
logic, therefore the post scaling multiplier has been generated using the FPGA fabric

rather than a dedicated multiplier. This means that the slice count for the CORDIC

designs could be reduced even further by forcing the synthesis tool to use a dedicated

multiplier instead.

The results for the Direct design are slightly unfair as the VHDL for the

square root design is not as efficient as it could be. It uses twice the logic actually

required. Hence, the slice count for the Direct design should be approximately 700.

Also, it is possible that the synthesis tool has not optimised the multipliers for

computing squares.

CORDIC
n9 b20

CORDIC
n17 b2l

Direct

Slices 364 670 1234(700)

18x 18 Mults 0 0 0

MHz >20 >10 >10

Table 13: Post Implementation Results For Each Design

CHAPTER 7- CORDIC 114

7.5 Predicting The Accuracy Of Sine/Cosine Calculations

In this section the work that has been carried out to allow the accuracy of CORDIC

systems computing sine and cosine to be predicted is presented.

7.5.1 The Algorithm

To compute the cosine and sine of an angle z using CORDIC, a Circular coordinate

system must be used in Rotation mode. The output that is produced from the CORDIC

algorithm when operated in this mode is shown in Figure 7.24.

x

y

z

K(xcosz-ysinz)

K(ycosz+xsinz)

0

Figure: 7.24: CORDIC Output For Circular Rotations In Rotation Mode

However, by setting the initial values of x and y to:

11K, y=0 (7.27)

the output from the x and y equations can be forced to equal cosz and sinz

respectively. Thus, the scaling factor K is removed without having to use a post scaling

multiplier.
The CORDIC algorithm is given in (7.28) where, e(') = arctan(2-1) is used

due to the Circular rotations that are being implemented.

x+ (P) - di(2-'y (i)

y (Y(') + di(2-'x (i)

+ P) de(')
(7.28)

where, di = sign(z('))

CHAPTER 7- CORDIC

First 3 pseudo-rotations

fnd I. sin(z) ---------
End (mag. 1)

0
z

ACO

Start: x(O) =I /K I. Cos(z)

Figure: 7.25: Rotation Mode Example

115

By considering Figure 7.25, the first 3 rotations for some arbitrary angle z can be seen.
It is clear that by starting with a magnitude of 11K, then after n iterations, because the

magnitude has been scaled by K, the magnitude of the final vector is equal to 1. Hence,

the x component and y component are equal to cosz and sinz respectively.

7.5.2 The Overall Quantisation Error (OQE)

The Overall Quantisation Error (OQE) of a CORDIC system is presented in [18] and
has already been presented as consisting of two parts:

- The Approximation Error Sa: the error due to the quantised representation of a
CORDIC rotation angle by finite numbers of elementary angles.

The Rounding Error er: the error due to the finite precision arithmetic used in a

practical implementation.

In 18], an equation for the Rounding error was developed and is defined in terms of

the number of iterations n and the number of fractional bits in the data path b. This

equation is given as:

CHAPTER 7- CORDIC 116

Er = 2- b-0.5[G(R, n +1]
K,, (n)

n-In-I

where, G(R, n) + 1]

_. d (7.29)

j= I I=j

n-I n-I

and, K,, (n) kýt(i) + ýt

i=O 1=0

The Rounding Error can apply to any CORDIC system using Circular rotations.

However, to predict the error in CORDIC systems computing sine and cosine, a new

Approximation Error needed to be developed and this is presented next.
In [2 1] the work presented in [18] was extended to develop an equation for the

precision of CORDIC systems operating in rotation mode. The equation is given as:

x= n+1092 n+2 (7.30)

where n is the number of iterations and x is the total number of bits in the data path.
According to [21] this should be sufficient to obtain n bits of precision from the output.
Note that the total number of bits uses only two for the integer part and the remaining
(n + 1092 n) bits are for the factional part. However, by comparing floating point
CORDIC simulations computing cosines and sines with a floating point reference
design, it has been found that, at best, n-I bits of precision can be achieved for n
iterations. Hence, (7.30) has been found to be inaccurate.

7.5.3 The Approximation Error

To analyse the Approximation Error of a CORDIC system computing cosines and

sines a graphical approach was initially taken. An important parameter in predicting

this error is to know the maximum angle that is left between the ideal finishing position

at z and the actual CORDIC finishing position after a number of iterations n. This

parameter is known as the Angle Approximation Error 8. This error at the nth iteration

CHAPTER 7- CORDIC 117

is given in [18] as 5: 5 a(n - 1) where a(n - 1) represents the rotation angle at the n-I
iteration. This can be illustrated by considering the simple case of n=3. Figure 7.26

shows all the possible fmishing angles for this case. By assuming that the input z -,! 5 90'

45'+26.6'+14 = 85.6'
tl 45'+26.6*-14=57.6'

45'-26.6*+14 = 32.4'

o 145P-26.60-14 = 4.4'

8= 28/2 = 14'

Figure: 7.26: The Approximation Effor 8

then it is clear that the greatest value that Scan achieve is 14'(a(n- 1)) which would

occur if the input angle was either z= 71.60 or z= 18.40.

With this limit in mind, the relation that the Angle Approximation Error 5 has

on the error in the cosz and sinz calculation must be examined. For this, consider the

case of n=2. In Figure 7.27 the worst case input, which for this case is 450, has been

drawn along with the two nearest CORDIC outputs, 71.6' and 18.40. Clearly the upper
limit to the worst case error for the x output (cosz) can be seen to be 0.39146 which is

y

t
c

CORDIC Output
45'+26.6' = 71.6*

Worst Case z
450

18=26.6
d

c= sin 71.6 - sin 45 = 0.24177
d= sin 45 - sin 18.4 = 0.39146

RI C CORDIC Output
45'-266.6* = 18.4'

Z-6.6 5.6

4ao. 4 b-* x
a= cos 45 - cos 71.6 = 0.39146
b= cos 18.4 - cos 45 = 0.24177

Figure: 7.27: Assessing The Approximation Error

CHAPTER 7- CORDIC

also the Iiinit for the y output (sinz).

118

Taking a mathematical view of the situation in Figure 7.27 for the

Approximation Error in both the cosine and sine components gives:

Cos Cos (z ± cosz Sa

Sm Ca sin (z ± 5) - sinz

Expanding both equations in (7.3 1) gives:

, cos = (coszcosB sinzsin5) - cosz a (7.32)
sin = (sinzcos8 coszsinS) - sinz a

Now, as n increases cos8 -+ 1. This allows (7.32) to be simplified to:

Cos = :F sinzsinB a (7.33)
c

sin =± coszsin8 a

Finally, as it is the worst case error that is of interest, it is possible to reduce (7.33)

further. Clearly the upper limit for sin z and cos z is 1. Hence, both equations reduce to:
ISalmax

= sin8 (7.34)

To confirm (7.34), simulations were run for a set of n using the DSP package
SystemVue. The simulations involved comparing the output of two systems. The first

system was a double precision floating point CORDIC design computing cosines and

sines for inputs in the range -900 -< z: 5 900. The second system also computed these

functions using a floating point direct computation and was considered as the reference

output. Both sets of output data were then compared and the worst case CORDIC error

tracked. As double precision floating point data was used, the Rounding Error can be

neglected and consequently any difference between the two simulations can be

attributed to the Approximation Error F,,,. This was repeated for several n and the

results can be seen in Table 14. Clearly as n increases, the predicted results get very

CHAPTER 7- CORDIC

close to the simulated results thus verifying (7.34).

n 8 s" (Sim.) ca ý sin8

1 45' 0.7071 0.7071

2 26.60 0.3909 0.4472

3 14' 0.2395 0.2425

4 7.10 0.1242 0.1240

5 3.580 0.0619 0.0624

6 1.79' 0.0312 0.0312

7 0.900 0.0156 0.0156

8 0.450 0.0078 0.0078

Table 14: Simulation Results for e. Versus Predicted Results

119

To ftirther confirm the simplification of the Approximation Error in (7.34), a
fuller examination was also carried out. This began by considering the Eco' equation a
in (7.32), which can be rewritten as:

Cos Ca : Fsinzsin5 + cosz(cos8 - 1) (7.35)

If the values of z and 8 are in the range:

0 -5 z: 5 n/2
0: 5 8: 5 ic/2

then the maximum Approximation Error is given with:
JET I.

a., = max., I-sinzsin8 + cosz(cos8 - I)l (7.36)

for each 8 requires (7.36) to be differentiated To find the z,,,,,,, which causes
I
&a

with respect to z. This gives:

d
ecos (z) = -cosz sin8 - sinz(cos 8- 1) (7.37) , Tz- a

Then, the value of z where the maximum occurs (z,,,,,,) can be found from:

-CoSzmaxsin8 - sinz,,,,,,, (cos8 - 1) =0 (7.38)

CHAPTER 7- CORDIC

Rearranging (7.38) leads to:

120

..
(Coss -I Zmax ý acotý- S-- (7.39)

siN
1)

Now, with some manipulation it can be found that (7.39) can be written as:
5 7t-5

Zmax
2

(7.40)

co' for each 8, (7.40) can be used with (7.36) to give: To fmd lea

l

Co 1 max sin sin 5+ cos
(" D (COS ea

2)

This function can then be plotted against 8. This is shown in Figure 7.28 where the

simplified equation for (7.34) has also been plotted. It is clear from this plot

that both equations give almost identical results for 5<0.2 rads (<I 10). The

difference between the two algorithms can be seen in Table 15. The number of

effective fractional bits that each error represents is also shown. It can be seen that as

1.5

Full App. Error
Simplified App. Error

w
a 0
E
x 2
CL CL 0.5
x

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
8 (0 to W2)

C4
0

Figure: 7.28: IQ.,. versus 8 for the Full and Simplified Approximation Error Equations

CHAPTER 7- CORDIC 121

n increases from 4 to 7 both equations start to give almost exactly the same results and
hence it can be concluded that the simplified equation is a relatively accurate

approximation for a real system.

Full App. Error Result Simplified App. Error Results

n Error Eff. Frac. Bits Error Eff. Frac. Bits

4 0.1242748831 3.0083933485 0.1240347345 3.0111839065

5 0.0624086775 4.0021095485 0.0623782861 4.0028122745

6 0.0312385631 5.0005280943 0.0312347523 5.0007040971

7 0.0156235697 6.0001320678 1 0.0156230930 6.0001760887

Table 15: Comparison of Full versus Simplified Approximation Error Equations

As mentioned already, the OQE is made up of two parts, the Approximation

Error and the Rounding Error. Having developed an expression for s", the complete
OQE equation, in terms of n and b, is given as:

OQE = &a +Er= sin5 + 2-
b-0.5[G(n)

+ 1]
K(n) (7.42)

where 8= a(n- 1) = arctan(2-n+ I)

7.5.4 Simulations

To verify the OQE given in (7.42), two steps were taken:

- Matlab code was written to compute the OQE for various n and b and then

convert it into the number of effective fractional bits that it represents.

* Fixed point CORDIC simulations for various n and b were carried out and the

number of effective fractional bits that were produced relative to a direct floating

point cosine and sine calculation were measured.

With two sets of effective fractional bits (d,, #) it was then possible to verify how

accurate the OQE is at predicting the accuracy of fixed point CORDIC systems

CHAPTER 7- CORDIC 122

computing cosinc and sincs.

7.5.5 Predicting The Accuracy

To allow the OQE to be assessed for many combinations of n and b, Matlab code was

written which allowed this to be done quickly and accurately. First of all functions to

compute K and G were written (see Figure 7.12 and Figure 7.13). These functions were
then called and used to compute the Rounding Error according to (7.29). The

Approximation Error (sinS) was also computed before both errors were added
together to form the OQE. Finally, using (7.43), the OQE was converted to represent
the number of effective fractional bits (d,, O) that are achievable. The Matlab code can
be seen in Figure 7.29.

d, ff = -(10920QE) (7.43)
kunction Deft - EffBitsZ(n, b)
IEffBita returns the number of effective fractional bits computed in
la fixed point CORDIC system relative to a floating point CORDIC s7s
ýEffBits inputs: n= iterations, bý bits used

linput vector; Returns the number of effective bits computed.
G= Ggen(n),

K= Kgen(n),
Z= atan(2-(-n+1)),

approx-error = oin(Z);

rounding_error - 2^(-b-0.5)*((G/K)+l),

OQE approx
-

error+rounding_error,
Deft -(Iog2(OQE)), *

Figure: 7.29: Matlab Code For Computing The OQE

Using this code, a table listing dff values for all combinations of 1 :5n: -5 40

and 1: 5 b: 5 40 was produced. This table can be seen in Appendix C.

7.5.6 Fixed Point Simulations

To verify the predicted dffvalues, a number of fixed point CORDIC simulations were

carried out for various n and b. In Figure 7.30 a fixed point CORDIC system computes

CHAPTER 7- CORDIC 123

cosz and smz. At the same time, a Sin token computes the floating point solution to

cosz and sinz and this is used as the reference solution. The corresponding fixed an(]
floating point versions are then subtracted from each other yielding the fixed point

error for each specific Z. The worst case error for both cosine and sine cornputations is

tracked for the duration of the simulation. Finally the dff value is computed and
displayed.

F-77

II Ij

. --

122

........... -------

Figure: 7.30: Fixed Point CORDIC Simulation

Figure 7.30 shows the top level of the simulation but to understand what is
happening within the CORDIC system, it is helpful to drop down a level and look

inside the CORDIC box. Figure 7.31 shows that the CORDIC algorithm is made lip of'

several cells indicating that a fully unrolled implementation has been selected as shown
in [19]. Each cell computes one iteration. In the example shown, n=4. To further

understand the algorithm, the logic within one of these cells must be viewed. Figure

7.32 shows the logic that makes up each cell and clearly reflects tile algontlini

according to (7.28). It should be noted that every cell is almost identical, differing only

in the size of the shift that is made and the angle that is rotated. The same bit widths

are used in each cell. So for example, every addition/subtraction uses ± (2, b) forniat.

CHAPTER 7- CORDIC 124

----------- ------- --------

-------------------- 17 cIM con 127 c-4113 176 o 11

Lai

k

L4MJ

----------- -----------------------------------

L

2",
r

Figure: 7.31: CORDIC Cells

This is also the output format for every shift. However, each rotation angle uses only

±ý 1, b) bits, as radians are used. Note that the biggest rotation angle is 0.785398 rads
(45'). Other parameters that are of interest are the input z and the x=I IK input. Again,

radians are used for z and hence, as the largest input is 1.570796 rads (90'), only

±ý2, b) bits are used. As x is always less than 1, only ±(1, b) bits are required. Of

course, I IK is computed (using Matlab) for every simulation as it varies for each n.

I
F; Wl

FY

---- - ----- ---

13] FY -
A9

: (2, h) J9

Fr 77

L-4 -----------

Figure: 7.32: Inside A CORDIC Cell

A final point to note on bit widths regards the rotation angle e('). The rotation

CHAPTER 7- CORDIC 125

angle must have enough fractional bits so that it does not underflow. This means that
if b fractional bits are used, a maximum of n= b+1 iterations should be used or else
this situation will occur.

7.5.7 Results And Discussion

To assess how accurate the OQE algorithm is at predicting the actual accuracy of fixed

point CORDIC systems computing cosines and sines, both sets of dff values must be

compared.

Predicted Simulated

n/b 9 10 11 9 10 11

3 2.02 2.03 2.04 2.06 2.06 2.06

4 2.96 2.98 3.00 3.00 3.01 3.01

5 3.88 3.94 3.97 3.99 4.00 4.01

6 4.72 4.86 4.93 4.91 4.95 4.98

7 5.44 5.69 5.84 5.67 5.82 5.91

8 5.96 6.39 6.66 6.18 6.53 6.75

9 6.26 6.88 7.34 6.41 6.99 7.41

10 1 6.39 7.17 7.81 1 6.1 7.18

Table 16: Predicted dff Versus Simulated dff

Table 16 shows the predicted and simulated values for dff obtained for all

combinations of 3 <n:! ý 10 and 9: 5b: 5 11 At is clear to see that both sets of numbers

are very close. The first observation is that all the predicted values are slightly less than

the equivalent simulated ones. This indicates that the OQE has been slightly over

estimated in each case resulting in a conservative approximation. However, it is only

the integer part of each value that is of interest as a real system can only have an integer

number of fractional bits. The purpose of showing the dffvalues to two decimal places

allows a judgement to be made as to whether it is likely that the actual system might
be slightly more accurate than the predicted value suggests. For example, by

considering the case of n=4, b=9 the predicted value is 2.96. As the OQE seems to

CHAPTER 7- CORDIC 126

slightly over estimate each error, it is likely that 3 fractional bits of accuracy are
obtainable. Indeed, by looking at the actual simulated result for this scenario, it is clear
that this is the case.

7.5.8 Design Example

It is useful to work through a design example to illustrate one way of using the dff

table. In this case cosz and sinz must be computed with an accuracy of 10 fractional
bits. The first step is to look at the table and find the first location that yields 10
fractional bits. A useful rule to remember is that by ignoring Cr, b fractional bits of
accuracy require a minimum of b+1 iterations. This can be verified by computing dff
for each Ca in Table 14. However, when Cr is added b+2 iterations are required to

achieve b fractional bits of accuracy. Looking at the table in Appendix C, 10.2
fractional bits are achievable with n= 12 and b= 14. A simulation using these

parameters confirms that this is actually the case. This illustrates the ease with which
a CORDIC system can now be designed to guarantee a desired level of accuracy when
computing cosines and sines.

Chapter 8

Pipelined Feedback Loops

8.1 Introduction

This chapter presents the work that was carried out to investigate the effects of

pipelining a feedback loop. Much of the work presented in this thesis can be related to
least squares adaptive equalisation techniques such as QR-RLS systems. Such systems
have feedback within the systolic array as illustrated in Figure S. 11.

Chapter 8.2 starts by considering the issues involved with pipelining a
feedback loop. In Chapter 8.3 the consequences of doing so are examined. Two
hardware designs using feedback, one with pipelining and one without, which arc
algorithmically identical, are presented. It should be noted that the square root and
divider cores developed for HDS are used in this analysis as they have the ability to
have pipelining turned on and off. This comparison is used to show differences in

speed, area and power consumption and ultimately to reveal which approach is best. In

Chapter 8.4, a scenario is presented where pipelining a feedback loop can offer
benefits. This is based on channel interleaving for a suitable multichannel scenario and

offers a low cost hardware solution for low data-rate applications. Chapter 8.5 reviews
the generic outcomes of the work before the conclusions are given in Chapter 8.6.

127

CHAPTER 8- Pipelined Feedback Loops

data-rate tt
= f. , 21--* bb >UPul , >U, Pul

L
reg 2

z11 clk
j

fý 1 f7 4

T- clk @ f,
Figure: 8.1: Feedback loop

8.2 Pipelining A Feedback Loop

128

It is possible to pipeline a feedback loop while still preserving the original algorithm.
Figure 8.1 shows a feedback loop with an adder and some logic containing no registers.
A single delay (reg 2) is required to synchronise the feedback data with the new data

as it arrives.
The maximum speed at which a system can be clocked at is determined by the

greatest delay between any two connected registers. This delay represents the time it

takes for data to travel between two registers and thus limits the clock speed. If the
device is clocked faster than this limit, data to be captured by the receiving register will
arrive after the clocking signal and so will not get registered. Thus, the longest delay

between two registers in a design is known as the critical path. In Figure 8.1, the

critical path is either the connection between reg I and reg 2 or it could be the feedback

path connecting the output of reg 2 with its own input.

Figure 8.2 illustrates a pipelined version of the feedback loop shown in Figure

8.1, where it is assumed that pipelining registers in the feedback logic block will reduce
the critical path. This circuit still represents the same algorithm as the non-pipelincd
design. To achieve this the registers in the feedback loop must be clocked at n xf, The

pipelined registers need to be clocked at this rate so that the feedback result arrivcs at
the adder at the same time as the next sample. However, now the critical path will have

been reduced as there are more registers in the data path. This means that the maximum

CHAPTER 8- Pipelined Feedback Loops

data- tý output @ f.
P, 2ý1 1-

ý fs Lýý*F+-ý + P- logic with
z' delay

clk @ f,

clk @ n*f, -J

Figure: 8.2: Feedback loop with pipelining

129

clock speed has now increased. To determine the maximum data-rate at which this

circuit can operate with, the maximum clock rate must be obtained and divided by V.

The question is then which of the two designs is faster and what are the respective

power and logic resource requirements?

8.3 To Pipeline Or Not To Pipeline?

To try to answer these questions, two circuits were designed using HDL Design Studio.

This tool is used for the design, simulation and implementation of DSP systems on
FPGAs. The methodology is based on the professional DSP design software,
SystemVue by Elanix, and uses a bit true fixed-point library (FXP-Lib) which maps
directly to synthesisable HDL code.

8.3.1 Givens Rotation With Feedback

The circuits designed were based on logic found in a QR decomposition (QRD) using
Givens rotations. This technique is used for QR-RLS optimisation and has a wide

range of application in adaptive filtering. The QR algorithm can be implemented using

a parallel array of cells as illustrated in Figure 8.3 and discussed in Section 5.4.3. Each

cell in the array performs a Givens rotation according to (8.1). However, the boundary

cell on each row differs from the other cells in that it must calculate 01 and pass it along

the row to the other cells (the Givens Generation), as well as perform a Givens rotation
itselL

CHAPTER 8- Pipelined Feedback Loops

ei

00

9i
Lj

bounda /10 1

Lj

cells
ry------*

II
LJ

4L

Figure: 8.3: QR-Update Array

130

a/= acosO, +bsin0i

b= bcosOi-asin0i

For the purpose of the experiment, a pipelined and a non-pipelined implementation of

this particular cell was chosen. A schematic illustrating one implementation of a
boundary cell is shown in Figure 8.4.

r acosul-+ sin0i

cosoj,

ý--4cosoj

I a- 00
IG

sinO,
G

sinO, 111i
cc

bcosOi-asin 0
L--------- i- - _; j

0 Figure: 8.4: QR-Update Boundary Cell

In this implementation, rather than compute Oi to pass onto the other cells in the row,

cos0i and sinO, are computed and passed on. The other cells must then perform 4

multiplies, I addition and I subtraction to complete a Givens rotation. (8.2) shows the

relationship between the input vector [a, b] and the calculated values cos 01 and sin 0,,

CHAPTER 8- Pipellned Feedback Loops 131

tanO, = bla

Cos 0
JI

+ tan2 0, JI
+

-(bla) 2
(8.2)

sin 0, tan 0ix cos 0 bla
JI

+
-(blaý

8.3.2 Non-Pipelined Design

Figure 8.5 illustrates the non-pipelined boundary cell implemented using I IDL Design

Studio. The cos0i and sin0i components are computed using a combination of'
division, multiplication, addition and square root tokens in accordance with (8.2). The

only register in the cell occurs in the feedback loop and is used to synchronise the

feedback data with the next sample arriving. Note that the critical path Is highlighted

by dashed arrows and follows the path of the feedback loop.

Z-1 a cos0i +b sin0i

coso.

+
-'llptIM-1 -

b cos0i -a sin0i =04
Figure: 8.5: Non-Pipelined Boundary Cell

8.3.3 Pipelined Design

The pipelined boundary cell is shown in Figure 8.6. Only the two dividers and the

square root tokens are pipelined and combine to produce an overall delay of' 80

samples. This delay is due to the fact that the divider and square root cores are fidly

CHAPTER 8- Pipelined Feedback Loops 132

pipelined. Both dividers calculate signed 32 bit results. This requires 31 cells to

generate the unsigned result. Looking at section 6.3.4 it can be seen that as wcll as

having a delay in each cell, there is also 3 additional delays. Hence, a total ot'34 delays

is incurred in this case. The square rooter computes a signed 16 bit result although this

only requires 15 cells. Just like the divider, there are 3 extra delays (section 6.7.5) In

addition to the delay incurred by each cell. Hence, the square rooter incurs 18 dclays.

Thus, the pipelined stages are clocked at (n = 86) xf,. Clocking at this spccd is

required to synchronise the feedback result with the next sample arriving at the, /, ' data-

rate thus maintaining the algorithm. The critical path in this design is also highlighted

by dashed arrows. Note how much shorter it is compared to the non-plpellned dcsigil

thus allowing the clock speed to be higher.

It should be noted that this is not the only pipelining option, there are niaily

others that could have been employed. However, unfortunately the I IDS squarc root

and division cores only have the option to be fully pipelined or not at all. Anotlicr

approach could have been to pipeline the path by adding individual dclays In betwceii

each functional block.

------ -I -- - --- -I -
Figure: 8.6: Pipelined Boundary Cell

CHAPTER 8- Pipelined Feedback Loops

8.3.4 Synthesis Results

133

The results from synthesising both boundary cell designs are presented in Table 17.

The results were obtained after completing the implementation process in ISE 6.2.03i

which was used to target a Virtex-II XC2V8000 device. The power estimates were

obtained using the XPower tool within ISE.

Design Slices Max. Clk Max. Data Total Est.
Speed Rate Power Cons.

Pipelined 4672 45.55 MHz 530 KHz 902 mW

L
Non-Pipedl 2046

1
2.755 MHz

1
2.755 MHzI 787 mW

Table 17: Synthesis Results

From these results it can be seen that the pipelined design can be clocked more than 16

times faster than the non-pipelined design. However, the maximum data rate for the

pipelined design is one 86th of the clock rate due to the fact that each data sample must

wait 86 clock cycles before entering the design. This gives a maximum date rate of

only 530 KHz. The non-pipelined design does not have this constraint and the

maximum data rate is equal to the maximum clock speed. Hence, the non-pipelincd
design has a data rate nearly 5 times faster than the pipelined design. In addition to this,

the non-pipelined design uses less logic as it does not have all the additional registers

of the pipelined design and it uses less power, which is due to the reduced clock specd

and the reduced amount of logic in the design.

8.4 Filling The Pipeline

The results from synthesis would suggest that there is no reason to pipeline a feedback

loop. However, there is redundancy in this structure that can be exploited, making

pipelining viable under certain conditions. The pipeline, in the situation considered so
far, never fills up because a new sample must wait on the result of the previous one
before it can enter the pipeline. Thus, for a single input data channel, a sample will

CHAPTER 8- Pipelined Feedback Loops 134

enter the pipeline and clock through each stage with nothing following it until it has

passed through completely. This means that the majority of the logic is redundant for

the majority of the time.

An approach that exploits this redundancy is to share the same structure with

more than one input data channel (i. e channel interleaving as in Figure 8.7). Here,

assume that the feedback loop has n pipeline stages. This means that up to n
independent input channels can share this hardware. By multiplexing each input

channel into the hardware, the pipeline can be filled. As soon as the first sample enters
the pipeline and clears the first stage, a sample from another channel can enter.

This architecture offers a low cost hardware solution under the corrcct

circumstances. Unless n input channels exist to fill n pipeline stages then there will still
be some redundancy. Also, as n grows, the data-rate reduces, which means that this

structure is only useftil for low data-rate applications.
n input channels @ f, n output channels @ f,
I /-I

33
,, -logic wi;:

ýO 2-
+2 Eze%

delay

f,

J
counter 4- -,

_
rr -1011-c 4-

-clk @n xf, -J
Figure: 8.7: Channel Interleaving

8.5 Discussion

The synthesis results have demonstrated that with a single data channel there is no

reason to use pipelining in a feedback loop. The purpose of pipelining is to speed up
data throughput, but clearly it has the opposite effect in this case. Not only is the

pipelined version slower, but it uses more logic because of the extra registers and it

consumes more power because of the extra clocking requirements.

These findings can be explained ftirther by considering Figure 8.8. Here, a

CHAPTER 8- Pipelined Feedback Loops 135

wire is shown, where z represents the time it takes for a signal to travel from the start
to the finish.

start finish

T

Total time =r
Figure: 8.8: A simple wire

Figure 8.9 shows the same length of wire but this time it has been pipelined with two

registers. The first register splits the wire in half so the time taken for the signal to

travel from the start to Reg I is r/2. Reg 2 then splits the remainder of the wire in half,

thus r/4 is the time taken for a signal to travel through each of the last two sections.
So far, the time the signal takes to travel through the 3 sections of wire has been

accounted for. However, there is also some additional delay that must be accounted for

known as the setup and hold time. The setup time is the minimum amount of time that
data must arrive at a register before the clock signal if it is to be successfully latched.

Similarly, the hold time is the minimum amount of time that data must be held for after

a clock signal has arrived. Thus, the minimum delay between data reaching a register

and getting latched is the accumulation of the setup and hold time, known as -rsh ' If the

setup or hold time is breached, then a situation known as metastability can occur where
the latched value cannot be predicted.

Reg I Reg 2
start finish

Tf2 10 4-T/4-*
-*'rsh 4- -jo. Tsh 4-

Total time =, r/2 + 2T/4 + 2T, h =T+ 2Tsh

Figure: 8.9: A pipelined wire

Accounting for 'r, h of both registers, the total time to travel along the wire
becomes r+ 2Tsh. Hence, it is clear that pipelining has only served to increase the

travel time. This demonstrates that the shortest time for a signal to travel along a wire

occurs without pipelining.

CHAPTER 8- Pipelined Feedback Loops

8.6 Conclusions

136

This chapter has shown that it is not always desirable to work with IP that has bccn

pipelined. In situations involving a feedback loop it has been demonstrated that

pipelined designs produce slower data throughput, use more logic and consume more

power than a non-pipelined design. It has also shown that a non-pipelined design offers
the fastest throughput possible and that a pipelined design cannot match this because

of the additional delay due to the setup and hold time of each register in the pipeline.
A scenario that would benefit from using pipelined IP in a feedback loop was

presented. This involved channel interleaving where the same pipelined feedback loop

was shared with several data channels all ninning at the same data-rate. It was shown

that for a pipeline with n stages, up to n independent data channels could be interleaved

to share the same hardware and produce n independent output channels. This

architecture offers a low cost hardware solution for low data-rate applications.
In summary, the conclusion that can be drawn from this work is that cngincers

using DSP algorithm design tools must fully understand the implications of working

with pipelined IP blocks when implementing algorithms that require feedback.

Chapter 9

Conclusions

In this final chapter the work presented throughout the thesis is summarised and
conclusions are made for each of the main research areas discussed within. Further to
this, ftiture research and development based on this work is proposed, particularly with
regard to the CORDIC algorithm.

9.1 Core Development for HDS

HDL Design Studio (HDS) is a software package developed by EnTegra Ltd. to allow
SystemVue simulations to be used to automatically generate equivalent bit and cycle
accurate hardware designs. The advantage of this approach is that it significantly

reduces design times by removing the need to hand code VHDL.

A major part of the Engl) project was to develop two cores for inclusion in

the HDS function library. These two cores were a Divider and a Square Rooter, both

of which were based on direct methods of computation rather than an iterative

approach. The advantage of using an algorithm based on a direct approach is that for a
known number of iterations the accuracy of the output can be predetermined. This

attribute is a major benefit in DSP. With an iterative technique such as Newton's

method, the accuracy of the output for a given number of iterations is unknown unless
lengthy simulations are run to track the worst case error for a particular scenario. Other

137

CHAPTER 9- Conclusions 138

tools in the FPGA EDA tool market contain cores that will allow square roots and
divisions to be computed. However, the cores tend to use CORDIC to compute these
functions. It was shown within this thesis that the CORDIC algorithm is an iterative

technique where determining the accuracy of the output it produces is not straight
forward. Hence, for this reason and to differentiate HDS from its competitors a direct

approach was taken for these functions.

Another reason for including Square Root and Division cores within IlDS is
that they are required to build Adaptive Equalisers using the QR-RLS update
algorithm. This form of adaptive equalisation is in great demand at the moment due to
its better performance relative to the LMS algorithm which has been traditionally used.
However, increased performance comes at a cost and the QR-RLS uses far more

resources than the LMS. This is why the LMS has been used so much until now as
technology has limited the use of the RLS. Modem FPGAs now contain enough
resources that this is no longer the case.

The importance of Square Root and Divide functionality is illustrated by the
fact that one of Xilinx's latest FPGAs, the Virtex-4, contains logic known as the
DSP48 slice which can be used to compute several math functions, two of which are
Square Root and Divide [57]. Although there is no dedicated logic for these specific
functions, it is the author's belief that this may well become a feature in future FPGAs,
just like the embedded multiplier has become a regular feature since the early Virtex

devices. Further to this, it is also clear that Xilinx see adaptive equalisation as a major
area of interest to their customers as they recently acquired AccelChip [54] who have
developed technology similar to SystemGenerator, but which includes IP for designing

QR-RLS systems amongst other adaptive algorithms [39].

9.2 CORDIC Accuracy Research

The CORDIC algorithm has been shown to be a technique based on the rotation of a

vector, which can be used to compute a large range of mathematical functions. It is

CHAPTER 9- Conclusions 139

cheap to implement on FPGAs due to the fact that it requires mainly shifts and
additions, which are in plentiful supply on todays devices. The problem with the
CORDIC algorithm is that it is not easy to predict the accuracy of the output it

produces. In many DSP algorithms it is vitally important to know the accuracy of each
function in the algorithm to maintain numerical integrity. Obviously using CORDIC in

such algorithms problematic.
The traditional approach to using the CORDIC algorithm in real systems has

been to design the CORDIC component and then run lengthy simulations to test the

output against some reference output. This allows the worst case error to be tracked

thus yielding the accuracy of the CORDIC output. However, this approach takes a lot

of time. If the desired level of accuracy is not found then the CORDIC design must be

altered by adding more iterations and/or increasing the number of bits used in the data

path. The simulations must then be rerun and the worst case error tracked again. This

process is repeated until a CORDIC design with a satisfactory accuracy is found.

Obviously this is not an ideal scenario as the process is lengthy and, importantly, the

most efficient CORDIC design for a given level of accuracy may not be found even

although the output is accurate enough.
To solve this problem, Yu Hen Hu [18] analysed the error in CORDIC

systems computing vector magnitudes. By doing this he was able to develop a formula

for the Overall Quantisation Error (OQE) in terms of the maximum magnitude of the

rotated vector jv(0)j
, the number of iterations n and the number of fractional bits in the

data path b. These three parameters completely define the CORDIC system. To cut
down the number of variables in the OQE, Yu Hen Hu proposed that the maximum

value that x(O) or y(O) could take was 0.5, which meant that Jv(0)j :5 J05.5. With this

parameter fixed the OQE was computed for all combinations of I --ý n: 5 40 and
1 :5b: 5 40. Finally each OQE was converted into the number of effective fractional

bits that it represents and these values were entered into a table. This allowed someone

wishing to design a CORDIC system computing a vector magnitude to scan the table

and find the required level of accuracy for the calculation. Once found, the n and b

CHAPTER 9- Conclusions 140

required to achieve this accuracy were simply read off the corresponding row and
column respectively.

The OQE equation that was developed in [18] has since been found to be quite
inaccurate for many cases. Hence, the author set out to build on and improve on this

work. Consequently a new OQE was developed which has been shown to be far more
accurate at predicting the accuracy of CORDIC systems computing vector magnitudes.
The equation is used to generate a table, as before, which allows a desircd level of
accuracy to be searched for and the corresponding n and b are then given. Further to
this, the work has been extended and an OQE equation has also been developed for
CORDIC systems computing cosines and sines. This equation has also been proven to
be extremely accurate in predicting the accuracy of such systems.

The development of accuracy tables has meant that the most cfficicnt
CORDIC design for a given level of accuracy can now be found quickly and easily

without having to run lengthy simulations, as was the case with the traditional

approach. This is a significant development for the CORDIC algorithm as it can now
be assessed against other techniques for computing similar functions to evaluate which
is best. This was not the case before as it was very difficult to find the most efficient
design for a specified level of accuracy. Hence, a CORDIC design computing a vector

magnitude with x fractional bits of accuracy could be found by trial and error but

without a thorough search it would be very difficult to know whether or not the design

used the very minimum hardware required to achieve this. Unless this is known with

confidence, a fair comparison cannot be made with other techniques for computing the

same function, such as a direct approach where the minimum hardware required is far

easier to find. This type of examination has begun and for the case of vector magnitude

calculations, it has been found that the CORDIC algorithm uses fewer resources.
Finally, this work can be extended in the future to include many more of the

mathematical functions that CORDIC can compute. So far OQE equations for vector

magnitude calculations and sine/cosine calculations have been developed but this is

only the beginning. There are many more functions that can be computed, each of

CHAPTER 9- Conclusions 141

which has its own specific OQE equation.

9.3 Adaptive Equalisation

Mobile communications require fast adaptive equalisers such as those that use the QR-

RLS update algorithm. Such algorithms are extremely sensitive to numerical accuracy
and hence it is vital that the error in each component is known with confidence. Furthcr

to this, such algorithms are also computationally intensive and are expensive in terms

of the hardware required to implement them. Any research that leads towards

minimising the hardware required in such systems is extremely valuable. Much of the

work involved in this thesis can be related to the improvement of both of these areas

of adaptive equalisation.
In the area of numerical accuracy, it has been shown that direct methods of

computing division and square roots are ideal due to the fact that a solution with

guaranteed accuracy can be produced using a known number of iterations. This is not
the case with the CORDIC algorithm, which can be used to compute vcctor

magnitudes, a vital part of the QR-RLS algorithm. However, this thesis illustrates a
new technique for finding the most efficient CORDIC design for such computations

where the accuracy is known for a number of iterations. Thus, it is now possible that
QR-RLS systems could be constructed using a variety of direct and CORDIC

arithmetic. Where the optimal solution may lie is difficult to say although it is the RE's

belief that a combination of CORDIC and direct arithmetic may be the answer,

especially since a CORDIC system computing vector magnitudes has been shown to
be smaller and faster than using two multipliers, an adder and a square rooter. Even if

CORDIC was used to compute this part of the QR-RLS algorithm, multiplication and
division are still required. These functions can be computed using CORDIC but it is

not known yet whether this approach is better than direct arithmetic for these cases.
Finally, it has been shown that the QR-RLS requires feedback within each of its cells.
Often FPGA designs are pipelined to make use of the "free" registers throughout the

CHAPTER 9- Conclusions 142

device with the benefit of increased throughput. However, it has been proven that this
is not the best approach when feedback loops exist. The optimum solution occurs when
no pipelining is used as this gives a design using the least resources yet with the highest
data throughput.

Appendix A

Old Algorithm - Effective Fractional Bits Table

nlb 1 2 3 4 5 6 7 8 9 10
1 -1.39 -1.01 -0.78 -0.65 -0.57 -0.54 -0.52 -0.51 -0.50 -0.50
2 -1-24 -0.62 -0.16 0.13 0.30 0.40 0.45 0.47 0.49 0.49
3 -1.29 -0.48 0.19 0.70 1.05 1.26 1.37 1.43 1.47 1.48
4 -1.43 -0.52 0.31 1.02 1 1.58 1.97 2.21 2.35 2.42 2.46
5 -1.60 -0.64 0.28 1.13 1.87 2.47 2.89 3.17 3.32 3.41
6 -1.77 -0.79 0.17 1.10 1.97 2.74 3.37 3.82 4.12 4.30
7 -1.94 -0.95 0.04 1.01 1.94 2.83 3.62 4.27 4.76 5.08
8 -2.09 -1.09 -0.10 0.89 1.86 2.80 3.69 4.50 5.18 5.69
9 -2.22 -1.23 -0.23 0.76 1.75 2.72 3.67 4.57 5.40 6.09-
10 -2.35 -1.35 -0.35 0.64 1.64 2.63 3.60 4.55 5.46 6.30
11 -2.47 -1.47 -0.47 0.53 1.53 2.52 3.51 _ 4.49 5.44 6.36
12 -2.57 -1.57 -0.57 0.42 1.42 2.42 3.42 4.40 5.38 6.34
13 -2.67 -1.67 -0.67 0.33 1.32 2.32 3.32 4.32 5.31 6.29
14 -2.77 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.22 6.21
15 -2.86 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14 6.13
16 -2.94 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 6.06
17 -3.02 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98 5.98
IS -3.09 -2.09 -1.09 -0.09 0.91 1.91 2.91 3.91 4.91 5.91
19 -3.16 -2.16 -1.16 -0.16 0.84 1.84 2.84 3.84 4.84 5.84
20 -3.23 -2.23 -1.23 -0.23 0.77 1.77 2.77 3.77 4.77 5.77
21 -3.30 -2.30 -1.30 -0.30 0.70 1.70 2.70 3.70 4.70 5.70
22 -3.36 -2.36 -1.36 -0.36 0.64 1.64 2.64 3.64 4.64 1 5.64
23 -3.42 -2.42 -1.42 -0.42 0.58 1.58 2.58 3.58 4.58 5.58
24 -3.47 -2.47 -1.47 -0.47 0.53 1.53 2.53 3.53 4.53 5.53
25 -3.53 -2.53 -1.53 -0.53 0.47 1.47 2.47 3.47 4.47 5.47
26 -3.58 -2.58 -1.58 -0.58 2 0.42 1.42 2.42 3.42 1 4.42 5.42 1
27 -3.63 -2.63 1.63 -0.63 0.37 7 1.37

1
2.37 1 3.37 4.37 1 A 17

28 -3.68 1 -2.68 -1.68 0. -0.68 0.32

143

APPENDIX A 144

29 -3.73 -2.73 -1.73 -0.73 0.27 1.27 2.27 3.27 4.27 5.27
30 -3.77 -2.77 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.23
31 -3.82 -2.82 -1.82 -0.82 0.18 1.18 2.18 3.18 4.18 5.18
32 -3.86 -2.86 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14
33 -3.90 -2.90 1 -1.90 -0.90 0.10 1.10 2.10 1 3.10 4.10 5.10
34 -3.94 -2.94 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06
35 -3.98 -2.98 -1.98 -0.98 0.02 1.02 2.02 3.02 4.02 5.02
36 -4.02 -3.02 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98
37 -4-06 -3.06 -2.06 -1.06 -0.06 0.94 1.94 2.94 3.94 4.94
38 -4.10 -3.10 1 -2.10 1 -1.10 -0.10 0.90 1.90 2.90 3.90 4.90
39 -4.13 -3.13 -2.13 -1.13 -0.13 0.87 1.87 2.87 3.87 4.87
40 -4.17 -3.17 -2.17 1 -1.17 -0.17 0.83 1.83 2.83 3.83 ' -4.83

APPENDIX A 145

nlb 11 12 13 14 15 16 17 18 19 20
1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
3 1.49 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
4 2.48 2.49 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 1
5 3.45 3.48 3.49 3.49 3.50 3.50 3.50 3.50 3.50 3.50
6 4.40 4.45 4.47 4.49 4.49 4.50 4.50 4.50 4.50 4.50
7 5.28 5.38 5.44 5.47 5.48 5.49 5.50 5.50 5.50 5.50
8 6.04 6.25 6.37 6.43 6.47 6.48 6.49 6.50 6.50 6.50
9 6.63 7.00 7.23 7.36 7.43 7.46 7.48 7.49 7.50 7.50
10 7.01 7.57 7.96 8.21 8.35 8.42 8.46 8.48 8.49 8.49
11 7.21 7.94 8.52 8.93 9.18 9.33 9.41 9.46 9.48 9.49
12 7.26 8.12 8.87 9.46 9.89 10.16 10.32 10.41 10.45 10.48
13 7.25 8.17 9.04 9.80 10.41 10.86 11.14 11.31 1 11.40 11.45
14 1 7.19 8.16 9.09 9.96 10.73 11-36 11.82 12.12 12.30 12.40
15 7.13 8.11 1 9.07 10.01 10.89 11.67 12.31 12.79 13.10 13.29
16 7.05 8.04 9.03 10.00 10.93 11.82 12.61 13.26 13.75 14.08
17 6.98 7.97 8.97 9.95 10.92 11.86 12.75 13.55 14.22 14.72
18 6.91 7.90 8.90 9.89 10.88 11.85 12.79 13.69 14.49 15.17
19 6.84 7.83 8.83 9.83 10.82 11-81 12.78 13.73 14.63 15.44
20 6.77 7.77 8.77 9.77 10.76 11.76 12.74 13.72 14.66 15.57
21 6.70 7.70 8.70 9.70 10.70 11.70 12.69 13.68 14.65 15.60
22 6.64 7.64 8.64 9.64 10.64 11.64 12.64 13.63 14. 62 15.59
23 6.58 7.58 8.58 9.58 10.58 11.58 12.58_ 13.58 ý 14.57 15.56
24 6.53 7.53 8.53 9.53 10.53 11.53 12.53 13.52 14.52 15.52
25 6.47 7.47 8.47 9.47 10.47 11.47 12.47 13.47 1-4.47 15.47
26 6.42 7.42 8.42 9.42 10.42 11.42 12.42 13.42 14.42 15.42
27 6.37 7.37 8.37 9.37 10.37 1.1.37 12.37 13.37 14.37 15.37
28 6.32 7.32 8.32 9.32 10.32 11.32 12.32 13.32 14.32 15.32
29 6.27 7.27 8.27 9.27 10.27 11.27 12.27 1 13.27 14.27 15.271
30 6.23 7.23 8.23 9.23 10.23 11.23 12.23 13.23 14.23 15.23
31 6.18 7.18 8.18 9.18 10.18 11.18 12.18 13.18 14.18 15.18
32 6.14 7.14 8.14 9.14 10.14 11.14 12.14 13.14 14.14 15.14
33 6.10 7.10 8.10 9.10 10.10 11.10 12.10 13.10 14.10 15.10
34 6.06 7.06 8.06 9.06 10.06 11.06 12.06 13.06 14.06 15.06
35 6.02 7.02 8.02 9.02 10.02 11.02 12.02 13.02 14.02 15.02
36 5.98 6.98 7.98 8.98 9.98 10.98 11.98 12.98 13.98 14.98
37 5.94 6.94 7.94 8.94 9.94 10.94 11.94 12.94 13.94

_1
4.94

38 5.90 6.90 7.90 8.90 9.90 10.90 11.90 12.90 13.90 14.90
39 5.87 6.87 7.87 8.87 9.87 10-87 11.87. 87 14.87
40 5.83 1 6.83 7.83 8.83 9.83 10.83 11.83 12.83 13.83 14.83

APPENDIX A 146

nib 21 22 23 24 25 26 27 28 29 30
1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
3 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
4 2.50 2.50 2.50 2.50 2.50 1 2.50 2.50 1 2.50 2.50 2.50
5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50
6 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
7 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50
8 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50
9 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
10 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50
11 9.49 9.50 9.50 9.50 9.50 9.50 9.50 1 9.50 9.50 9.50
12 10.49 10.49 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50
13 11.48 11.49 11.49 11.50 11.50 11.50 11.50 11.50 11.50 11.50
14 12.45 12.47 12.49 12.49 12.50 12.50 12.50 12.50 12-50 12.50
15 13.39 13.44 13.47 13.49 13.49 13.50 13.50 13.50 13.50 13.50
16 14.27 14.38 14.44 14.47 14.49 14.49 14.50 14.50 14.50 14.50
17 15.06 15.26 15.38 15.44 15.47 15.48 15.49 15.50 15.50 15.50
18 15.69 16.04 16.25 16.37 1 6.43 16.47 16.48 1 16.49 16.50 16.50
19 16.13 16.66 17.02 17.24 _ 17.36 17.43 17.47 1 17.48 17.49 17.50
20 16.39 17.09 17.63 18.00 18.23 18.36 18.43 18.46 18.48 18.49
21 16.51 17.34 18.05 18.60 18.98 19.22 19.35 19.42 19.46 1 19.48
22 16.55 17.46 18.29 19.01 19.57 19.96 20.21 20.35 20.42 20.46
23 16.54 17.49 18.40 19.24 19.97 1 20.54 20.94 21.19 21.34 21.42
24 16.50 17.48 18.44 19.35 20.20 20-93 21-51 1 21.92 22.18 22.33
25 16.46 17.45 18.43 19.39 20.31 21.16 21.90 22.49 22.91 23.17
26 16.41 17.41 18.40 19.38 20.34 21.26 22.11 22.86 23.46 23.89
27 16.37 17.36 18.36 19.35 20.33 21.29 22.21 23.07 23.83 24.43
28 16.32 17.32 18.31 19.31 20.30 21.28 22.24 23.17 24.03 24.79
29 16.27 17.27 18.27 19.27 20.26 21.25 22.23 23.20 24.13 24.99
30 16.23 17.23 18.22 19.22 20.22 21.22 22.21 23.19 24.15 1 25.08
31 16.18 17.18 18.18 19.18 20.18 21.18 22.17 23.16 24.15 25.11
32 16.14 17.14 18.14 19.14 20.14 21.14 22.13 23.13 24.12- 25.10
33 16.10 17.10 18.10 19.10 20.10 21.10 22.09 23-09 24.09 25.08
34 16.06 17.06 1 8.06 19.06

-
20.06 21.06 22.05 23.05 24.05 25.05

35 16.02 17.02 18.02 19.02 20.02 21.02 22.02 23.01 24.01- 25.01
36 15.98 16.98 17.98 18.98 19.98 20.98 21.98 22.98 23.98 24.98
37 15.94 16.94 17.94 18.94 19.94 20.94 21.94 22.94 23.94 24.94
38 15.90 16.90 17.90 18.90 19.90 20.90 21.90 22.90 23.90 24.90
39 15.87 1 16.87 7.87 18.87 19.87 20.87 21.87 22.87 24.87
40 15.83 1 16.83 17.83 18.83 19.83 20.83 21.83 22.83 23.83 24.83

APPENDDC A 147

nlb 31 32 33 34 35 36 37 38 39 40
1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
3 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
4 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50
5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50
6 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
7 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50
8 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 1 6.50
9 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
10 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50
11 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50
12 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50
13 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50
14 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50
15 13.50 13.50 13.50 13.50 13.50 13.50 13.50 1 13.50 13.50 13.50
16 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50
17 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50
18 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50
19 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50
20 18.50 18.50 18.50 18.50 18.50 18.50 18-50 1 18.50 18.50 18.50
21 19.49 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 1 19.50
22 20.48 20.49 20.50 20.50 20.50 20-50 20.50 20.50 20.50 20.50
23 21.46 21.48 21.49 21.50 21.50 21.50 21.50 21.50 21.50 21.50
24 22.41 22.46 22.48 22.49 22.49 22.50 22.50 22.50 22.50 22.50
25 23.33 23.41 23.46 23.48 23.49 23.49 23.50 23.50 23.50 23.50
26 24.1 6 24.32 24.41 24.45 24.48 24.49 24.49 24.50 24.50 24.50
27 24.87 25.15 25.32 25.40 25.45 25.48 25.49 25.49 25.50 25.50
28 25.41 25.85 26.14 26.31 26.40 26.45 26.48 26.49 26.49 26.50
29 25.76 26.38 26.84 27.13 27.30 27.40 27.45 27.47 27.49 27.49
30 25.96 26.73 27.36 27.82 28.12 28.30 28.40 28.45 28-47 28.49
31 26.04 26.92 27.70 28.33 28.80 29.11 29.29 29.39 29.45 29.47
32 26.07 27.00 27.88 28.66 _ 29.31 29.78 30.10 30.29 30.39 30.44
33 26.06 27.03 27.97 28.85 29.63 30.28 30.77 31.09 31.28 31.39
34 26.04 27.02 27.99 28.93 29.81 30.60 31.26 31.75 32.08 32.27
35 26.01 27.00 27.98 28.95 29.89 30.78 31.58 1 32.24 32.74 33.07
36 25.97 26.97 27.96 28.95 29.92 30.86 31.75 32.55 1 33-22 33.72
37 25.94 26.94 27.93 28.92 29.91 30.88 31.82 32.71 33.52 34.19
38 25.90 26.90 27.90 28.90 29.89 30.87 31.84 32.79 33.68 34.49
39 125.87 26.87 27.87 28.86 29.86 3085 31.4 32.81 33.76

_
34.65

40 125.83 1 26.83 1 27.83 28.83 29. 3 31.82_1 32.80 1 33.78 34.72

Appendix B

New Algorithm - Effective Fractional Bits Table

nib 1 2 3 4 5 6 7 8 9 10
1 0.30 0.97 1.48 1.82 2.03 2.15 2.21 2.24 2.26 2.26
2 0.15 1.03 1.83 2.49 2.98 3.31 3.51 3.62 3.68 3.71
3 -0.09 0.88 1.83 2.72 3.53 4.22 4.74 5.09 5.31 5.43
4 -0.34 0.65 1.64 2.62 1 3.57 4.48 5.31 1 _ 6.03 6.59 6.98
5 -0.56 0.44 1.43 2.43 3.42 4.40 5.36 6.28 7.13 7.88
6 -0.76 0.24 1.24 2.24 3.24 4.23 5.23 6.21 7.17 8.10
7 -0.93 0.07 1.07 2.07 3.07 4.07 5.07 6.06 7.05 8.04
8 -1.08 -0.08 0.92 1.92 2.92 3.92 4.92 5.92 6.91 7.91
9 -1.22 -0.22 0.78 1.78 1 2.78 3.78 4.78 1 5.78 6.78 7.78
10 -1.35 1 -0-35 0.65 1.65 2.65 3.65 4.65 5.65 6.65 7.65
11 -1.47 -0.47 0.53 1.53 2.53 3.53 4.53 5.53 6.53 7.53
12 -1.57 -0.57 0.43 1.43 2.43 3.43 4.43 5.43 6.43 7.43
13 -1.67 -0.67 0.33 1.33 2.33 3.33 4.33 5.33 6.33 7.33
14 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.23 6.23 7.23
15 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14 6.14 7.14
16 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 6.06 7.06
17 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98 5.98 6.98
18 -2.09 -1.09 -0.09 0.91 1.91 2.91 3.91 4.91 5.91 6.91
19 -2.16 -1.16 -0.16 0.84 1.84 2.84 3.84 1 4.84 5.84 6.84
20 -2.23 -1.23 -0.23 0.77 1.77 2.77 3.77 1 4.77 5.77 6.77
21 -2.30 -1.30 -0.30 0.70 1.70 2.70 3.70 4.70 5.70 6.70
22 -2.36 -1.36 -0.36 0.64 1.64 _ 2.64 3.64 4.64 5.64 6.64
23 -2.42 -1.42 -0.42 0.58 1.58 2.58 3.58 4.58 5.58 6.58
24 -2.47 -1.47 -0.47 0.53 1.53 2.53 3.53 4.53 5.53 6.53
25 -2.53 -1.53 -0.53 0.47 1.47 2.47 3.47 4.47 5.47 6.47
26 -2.58 -1.58 -0.58 0.42 1.42 2.42 3.42 4.42 5.42 6.42
27 -2.63 -1.63 -0.63 0.37 1.37 2.7 3.37 4.37 5.37_ 6.37
28 -2.68 -1.68 -0.68 0.32 1.32 2.32 3.32 4.32 5.32 6.32

148

APPENDIX B 149

29 -2.73 -1.73 -0.73 0.27 1.27 2.27 3.27 4.27 5.27 6.27
30 -2.77 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.23 6.23
31 -2.82 -1.82 -0.82 0.18 1.18 2.18 3.18 4.18 5.18 6.18
32 -2.86 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14 6.14
33 -2.90 -1.90 -0-90 0.10 1.10 2.10 3.10 1 4.10 5.10 6.10
34 -2.94 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 6.06
35 -2.98 -1.98 -0.98 0.02 1.02 2.02 3.02 4.02 5.02 6.02
36 -3.02 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98 5.98
37 -3.06 -2.06 -1.06 -0.06 0.94 1.94 2.94 3.94 4.94 5.94
38 -3.10 - -1.10 -0.10 0.90 1.90 2.90 3.90 4.90 5.90
39 -3.13 -2.13 -1.13 -0.13 0.87 1.87 2.87 3.87 4.87 5.87
40 -3.17 -2.17 -1.17 -0.17 0.83 1.83 2.83 3.83 4.83 5.83

APPENDIX B ISO

n/b 11 12 13 14 15 16 17 18 19 20
1 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27
2 3.73 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74
3 5.50 5.53 5.55 5.56 5.56 5.56 5.56 5.57 5.57 5.57
4 7.22 7.36 7.44 7.48 7.50 1 7.51 7.51 1 7.51 7.52 7.52
5 8.47 8.90 9.17 9.33 9.41 9.46 9.48 9.49 9.50 9.50
6 8.97 9.74 10.37 10.83 11.12 11.30 11.40 11.45 11.47 11.49
7 9.01 9.94 10.83 11.62 12.27 12.76 13.08 13.28 13.38 13.44
8 8.90 9.89 10.86 11.80 12.69 13.50 14.18 14.69 15.04 15.25
9 8.77 9.77 10.76 11.75 12.72 1 13.67 14.57 1 15.40 16.09 16.63
10 8.65 9.65 10.65 11.65 12.64 13.63 14.60 15.55 16.46 177'
11 8.53 9.53 10.53 11.53 12.53 13.53 14.52 15.51 16-49 17.45
12 8.43 9.43 10.43 11.43 12.43 13.43 14.42 15.42 16.42 17.41
13 8.33 9.33 1 0.33 11.33 12.33 13.33 14.33 15.32 16.32 17.32
14 8.23 9.23 _ 10.23 11.23 12.23 1 13.23 14.23 15.23 16.23 17.23
15 8.14 9.14 10.14 11.14 12.14 13.14 14.14 15.14 16.14 17.14
16 8.06 9.06 10.06 11.06 12.06 13.06 14.06 15.06 16.06 17.06
17 7.98 8.98 9.98 10.98 11.98 12.98 13.98 14.98 15.98 16.98
18 7.91 8.91 9.91 10.91 11.91 12.91 13.91 14.91 15.91 16.91
19 7.84 8.84 9.84 10.84 11.84 12.84 13.84 14.84 15.84 16.84
20 7.77 8.77 9.77 10.77 11.77 12.77 13.77 14.77 15.77 16.77
21 7.70 8.70 9.70 10.70 11.70 12.70 13.70 14.70 15.70 16.70
22 7.64 8.64 9.64 10.64 11.64 12.64 13.64 14.64 15.64 16.64
23 7.58 8.58 9.58 10.58 11.58 12.58 13.58 14.58 15.58 16.58
24 7.53 8.53 9.53 10.53 11.53 12.53 13.53 14.53 15.53 16.53
25 7.47 8.47 9.47 10.47 11.47 12.47 13.47 14.47 15.47' - 16.47
26 7.42 8.42 9.42 10.42 11.42 12.42 13.42 14.42 15.42 16.42
27 7.37 8.37 9.37 10.37 11.37 12.37 13.37 14.37 15.37 16.37
28 7.32 8.32 9.32 10.32 11.32 1 12.32 13.32 14.32 15.32 16.32
29 7.27 8.27

_9.27
10.27 11.27 12.27 13.27 14.27 15.27 16.27

30 7.23 8.23 9.23 10.23 11.23 12.23 13.23 14.23 . 15.23 16.23
31 7.18 8.18 9.18 10.18 11.18 12.18 13.18 14.18 15.18 16.18
32 7.14 8.14 9.14 10.14 11.14 12.14 13.14 14.14 15.14 16.14
33 7.10 8.10 9.10 10.10 11.10 1 12.10 13.10 14.10 15.10 16.10
34 7.06 8.06

_9.06
10.06 11.06 12.06 13.06 14,06 15.06 16.06

35 7.02 8.02 9.02 10.02 11.02 12.02 13.02 14.02 15.02 16.02
36 6.98 7.98 8.98 9.98 10.98 11.98 12.98 13.98 14.98 15.98
37 6.94 7.94 8.94 9.94 10.94 11.94 12.94 13.94 14.94 15.94
38 6.90 7.90 8.90 9.90 10.90 11.90 12.90 13.90 14.90 15.90
39 6.87 7.87 8.87 9.87 10.87 11.87 12.87 13.87 14.87 15.87
40 6.83 7.83 8.83 9.83 10.83 11.83 12.83 1 13.83 14.83 15.83

APPENDIX B 151

nib 21 22 23 24 25 26 27 28 29 30
1 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27
2 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74
3 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57
4 7.52 7.52 1 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52
5 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50
6 11.49 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50
7 13.47 13.49 13.49 13.50 13.50 13.50 13.50 13.50 13.50 13.50
8 15.37 15.43 15.47 15.48 15.49 15.50 15.50 15.50 15.50 15.50
9 17.00 17.23 1 17.36 17.43. 17.46 17.48 17.49 17.50 17.50 17.50
10 18.01 18.57 18.96 19.21 19.35 19.42 1 19.46 19.48 19.49 19.50
11 18.36 19.21 19.94 20.52 0. 52 20.93 21.19 21.33 21.42 21.46 21.48
12 18.38 19.34 20.26 21.12 12 21.87 22.46 22.89 23.16 23.32 23.41
13 18.32 19.31 20.29 21.25 22.17 23.04 23.80 24.41 24.86 25.14
14 18.23 19.23 1 20.22 21.21

H

22.20 23.16 24.09 24.96 m 25.73 26.36
15 18.14 19.14 20.14 21.1 4 22.14 23.13 24.11 25.08 26.01 26.

,
89

16 18.06 19.06 20.06 21.06 21.06 22.06 23.06 24.05 25.04 26.03 27.00
17 17.98 18.98 19.98 20.98 20.98 21.98 22.98 23.98 24.98 25.97 26.97
18 17.91 18.91 19.91 20.91 21.91 22.91 23.91 24.91 25.91 26.90
19 17.84 18.84 19.84 20.84 21.84 22.84 23.84 1 24.84 25.84 26.84
20 17.77 18.77 19.77 20.77 21.77 22.177 23.77 24.77 25.77 26.77
21 17.70 18.70 19.70 20.70 21.70 22.70 23.70 24.70 25.70 26.70
22 17.64 18.64 19.64 20.64 21.64 22.64 23.64 24.64 25.64 26.64
23 17.58 18.58 19.58 20.58 21.58 22.58 23.58 24.58 25.58 26.58
24 17.53 18.53 19.53 20.53 21.53 22.53 23.53 24.53 25.53 26.53
25 17.47 18.47 19.47 20.47 21.47 22.47 23.47 24.47 25.47 26.47
26 17.42 18.42 19.42 20.42 21.42 22.42 23.42 24.42 25.42 26.42
27 17.37 18.37 19.37 20.37 21.37 22.37 23.37 24.37 25.37 26.37
28 17.32 18.32 19.32 20.32 1 21.32 22.32 23.32 24.32 25.32 26.32
29 17.27 18.27 19.27 20.27 21.27 22.27 23.27 24.27 25.27 26.27
30 17.23 18.23 19.23 20.23 21.23 22-23 23-23 24.23 25.23 26.23
31 17.18 18.18 19.18 20.18 21.18 22.18 23.18 24.18 25.18 26.18
32 17.14 18.14 19.14 20.14 21.14 22.14 23.14 24.14 25.14 26.14
33 17.10 18.10 19.10 20.10 21.10 22.10 23.10 24.10 25.10 26.10
34 17.06 18.06 19.06 20.06 21.06 22.06 23.06 24.06 25.06 26.06
35 17.02 18.02 19.02 20.02 21.02 22.02 23.02 24.02 25.02 26.02
36 16.98 17.98 18.98 19.98 20.98 21.98 22-98 23.98 24.98 25.98
37 16.94 17.94 18.94 19.94 20.94 21.94 22.94 23.94 24.94 25.94
38 16.90 17.90 18.90 19.90 20.90 21 , 90 22.9 23-90 24.90 25.90
39 16.87 17.87 18.87 19.87 20.87 21.87 22.87 23.87 24.87 25.87
40 16.83 17.83 18.83 19.83 20.83 21 8-1 22.83 23.83 24.83 25.83

APPENDIX B 152

nib 31 32 33 34 35 36 37 38 39 40
1 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27
2 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74
3 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57
4 7.52 7.52 1 7.52 7.52 7.52 7.52 7.52 7.52 7.52 1 7.52
5 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50
6 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50
7 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50
8 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50
9 17.50 17.50 1 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50
10 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50
11 21.49 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50
12 23.45 23.48 23.49 23.49 23.50 23.50 23.50 23.50 23.50 23.50
13 25.31 25.40 25.45 25.48 25.49 1 25.49 25.50 25.50 _ 25.50 25.50
14 26.82 1 27.12 27.30 27.40 27.45 27.47 27.49 1 27.49 27.50 27.50
15 27.67 28.31 28.79 29.10 29.29 29.39 29.44 29.47 29.49 29.49
16 27.93 28.82 29.61 30.26 30.75 31.08 31.27 31.38 31.44 31.47
17 27.95 28.92 29.86 30.75 31.55 32.22 32.72 33.06 33.26 33.38
18 27.90 28.89 29.88 30.85 1 31.79 32.69 33.49 34.17 34.69 35.04
19 27.84 28.83 29.83 30.82 31.81 32.78 33.73 34.63 35.44 36.13
20 27.77 28.77 29.77 30.77 31.76 32.76 33.74 34.72 35.66 36.57
21 27.70 28.70 29.70 30.70 31.70 32.70 33.70 34.69 35.68 36.65
22 27.64 28.64 29.64 30.64 31.64 32.64 33.64 34.64 35.64 36.63
23 27.58 28.58 29.58 30.58 31.58 32.58 33.58 34.58 35.58 36.58
24 27.53 28.53 29.53 30.53 31.53 32.53 33.53 34.53 35.53 36.53
25 27.47 28.47 29.47 30.47 31.47 32.47 33.47 34.47 35.47 36.47
26 27.42 28.42 29.42 30.42 31.42 32.42 33.42 i4.42 35.42 36.42
27 27.37 28.37 29.37 30.37 31.37 32.37 33.37 34.37 35.37 36.37
28 27.32 28.32 29.32 30.32 31.32 32.32 33.32 34.32 35.32 ' -36.32

29 27.27 28.27 29.27 30.27 31.27 32.27 33.27 34.27 35.27 36.27
30 27.23 28.23 29.23 30.23 31.23 32.23 33.23 34.23 35.23 36.23
31 27.18 28.18 29.18 30.18 31.18 32.18 33.18 34.18 35.18 36.18
32 27.14 28.14 29.14 30.14 31.14 32.14 33.14 34.14 35.14 36.14
33 27.10 28.10 29.10 30.10 31.10 32-10 33.10 1 34.10 35.10 36.10
34 27.06 28.06 29.06 30.06 31.06 32.06 33.06 1 34.06 35.06 36.06
35 27.02 28.02 29.02 30.02 31.02 32.02 33.02 34.02 35.02 36.02
36 26.98 27.98 28.98 29.98 30.98 31.98 32.98 33.98 34.98 35.98
37 26.94 27.94 28.94 29.94 30.94 31.94 32.94 33.94 34.94 35.94
38 26.90 27.90 28.90 29.9 30.9 33.90 34.90 35.90
39 26.87 27.87 28.87 29.87 30.87 31.87 32 . 87 33.87 34.87 35.87
40 12 . 83 27.83 28.83 29.83 30.83 31.83

LM32.83
33.83 34.83 15 81

Appendix C

CORDIC Cos/Sin - Effective Fractional Bits Table

n/b 1 2 3 4 5 6 7 8 9 10
1 -0.39 -0.01 0.22 0.35 0.43 0.46 0.48 0.49 0.50 0.56-
2 -0.35 0.22 0.61 0.86 1.00 1.08 1.12 1.14 1.15 1.16
3 - 0.39 0.99 1.42 1.70 1.86 1.95 2.00 2. Oi 2.03
4 1.19 1.83 2.30 2.61 2.80 2.90 2.96 2.98
5 - 2.02 2.69 3.20 3.55 3.76 3.88 3.94
6 2.87 3.57 4.12 4.49 4.72 4.86
7 - 3.73 4.46 5.04 5.44 5.69
8 - 4.61 5.36 5.96 6.39
9 5.50 .2 6.88
10 6.39 7.17
'1 7.29

nlb 11 12 13 14 15 16 17 18 19 20
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
2 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
3 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
4 3.00 3.00 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01
5 3.97 3.99 3.99 4.00 4.00 4.00 4.00 4.00 4.00 4.00
6 4.93 4.96 4.98 4.99 5.00 5.00 5.00 5.00 5.00 5.00
7 5.84 5.92 5.96 5.98 5.99 5.99 6.00 6.00 6.00 6.00
8 6.66 6.82 6.91 6.95 6.98 6.99 6.99 7.00 7.00 7.00
9 7.34

1
7.63 7.80 7.90 1 7.95 7.97 7.99 7.99 8.00 8.00

10 7.8 1 8.29 8.60 8.79 8.89 8.94 8.97 -8.99 8.99 9.00
11 8.09 8.75 9.24 9.57 9.77 9.88 9.94 9.97 9.98 9.99
12 . 20 9.01 9.68 10.20 10.54 10.75 10.87 10.93 10.97 10.98
13

v

- 9.12 9.93 10.62 11.15 11.52 11.74 11.86 11.93 11.96
14 . 1 10.03 10.86 1 11.57 12.11 12.49 12.72 12.85 12.93

153

APPENDIX C 154

15 10.96 11.79 12.51 13.07 13.46 13.71 1 13.85
16 - 11.88 12.73 13.46 14.03 14.44 14.69
17 - 12.81 13.66 14.40 14.99 15.41
18 - 13.75 14.60 15.35 l-q 95
19 14.68 15.55 16.30
20 15.62 16.49
21 16.57

n/b 21 22 1 23 24 25 26 27 28 29 30
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
2 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
3 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
4 3.01 3.01 3.01 3.01 1 3.01 3.01 3.01 1 3.01 3.01 3.01
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
7 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
8 7.00 7.00 7.00 7.00 7.00 7.00 7.00

_7.00
7.00 7.00

9 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
10 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
11 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
12 10.99 11.00 11.00 11-00 11-00 11-00 11-00 11-00 11-00 11.00
13 11.98 11.99 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
14 12.96 12.98 12.99 13.00 13.00 13.00 13.00 13.00 13.00 13.00
15 13.92 13.96 13.98 13.99 14.00 14.00 14.00 14.00 14.00 14.00
16 14.84 14.92 14.96 14.98 14.99 15.00 15.00 1 15.00 15.00 15.00
17 15.67 15.83 15.91 15.96 15.98 15.99 15.99 1 16.00 16.00 16.00
18 16.38 16.66 16.82 16.91 16.95 16.98 16.99 16.99 17.00 1 17.00
19 16.92 17.36 17.64 17.81 17.90 17.95 17.98 17.99 17.99 18.00
20 17.26 17.88 18.33 18.63 18.80 18.90 18.95 18.97 18.99 18.99
21 17.44 18.21 18.85 19.31 19.61 19.79 19.89 19.95 19.97 19.99
22 17.51 18.39 19.17 19.81 20.29 20.60 20.79 20.89 1 20.94 20.97
23 - 18.45 19.34 20.12 20.78 21.26 21.59 21.78 21.88 21.94
24 - 19.40 20.29 21.08 21.74 22.24 22.57 22.77 22.88
25 - 20.35 21.24 22.04 22.71 23.22 23.56 23.76
26 - 21.30 22.20 23-00 23.68 24.19 24.54
27 22.26 23.15 23.97 24.65 25.17
28 - 23.21 24.11 24.93 25.62
29 24.17 25.07 25.89
30 25.1 2 26.03
31 26.08

APPENDIX C iss

nib 31 32 33 34 35 36 37 38 39 40
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
2 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
3 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
4 3.01 3.01 3.01 3.01 1 3.01 3.01 1 3.01 3.01 1 3.01 3.01
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
7 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
8 7.00 7.00 7.00 7.00 7.00 7.00 7.00 1 7.00 7.00 7.00
9 8.00 8.00 8.00 8.00 1 8.00 8.00 8.00 8.00 8.00 8.00
10 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
11 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
12 11.00 11.00 11.00 11.00 11.00 11-00 11-00 11-00 11.00 11.00
13 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
14 1 13.00 13.00 1 13.00 13.00 1 13.00 13.00 13.00 13.00 13.00 13.00
15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00
16 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15,00
17 16.00 16.00 16.00 16.00 16.00 16.00 16.00__ 16.00 16.00 16.00
18 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00
19 18.00 18.00 1 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00
20 19-00 19-00 19-00 19-00 19.00 19.00 19.00 19.00 19.00 1 9.00
21 19.99 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00
22 20.99 20.99 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00
23 21.97 21.99 21.99 22.00 22.00 22.00 22.00 22.00 22.00 22.00
24 22.94 22.97 22.98 22.99 23.00 23.00 23.00 23.00 23.00 23.00
25 23.88 23.94 23.97 23.98 23.99 24.00 24.00 24.00 24-00 24.00
26 24.75 24.87 24.93 24.97 24.98 24.99 1 25.00 25.00 25.00 25.00
27 25.53 25.75 25.87 25.93 25.97 25.98 25.99 26.00 26.00 26.00
28 26.15 26.51 26.74 26.86 26.93 26.96 26.98 26.99 27.00 27.00
29 26.59 27.13 27.50 27.73 27.86 27.93 27.96 27.98 27.99 28.00
30 26.86 27.56 28.11 28.49 28.72 28.85 28.93 28.96 28.98 28.99
31 26.99 27.82 28.53 29.09 29.47 29.71 29.85 29.92 29.96 29.98
32 27.04 27.95 28.79 29.51 30.07 30.46 30.71 30.85 30.92 30.96
33 - 28.00 28.92 29.75 30.48 31.05 31.45 31.70 31.84 31.92
34 28.96 29.88 30.72 31.45 32.03 32.43 32.69 32.84
35 - 29.93 30.84 31.69 32.43 33.01 33.42 33.68
36 - - 30.89 31.81 32.66 33.40 33.99 34.41
37 - - 31.86 32.78 33.63 34.37 34.97
38 32.82 33.74 34.60 35.35
39 - 33.79

-
34.71 35.57

40 1- I - 34.75

References

[1] A. H. Abdullah, M. I. Yusof and S. R. M. Baki, "Adaptive noise cancellation: a practical study of the
least-mean square (LMS) over recursive least-square (RLS) algorithm, " Student Conference on
Research and Development 2002, pp. 448452,16-17 July 2002.

[2] R. Andraka, "A survey of CORDIC algorithms for FPGA based computers, " Proceedings of the
1998 A CMISIGDA sixth international symposium on Field Programmable Gate Arrays, pp. 19 1.
200, Feb. 22-24,1998.

[3] J. L. Barlow and I. C. F. Ipsen, "Scaled Givens rotations for the solution of linear least squares
problems on systolic arrays", SIAMJournalon Scientific andStatistical Computing, 8: pp. 716-734,
1987.

[4] N. Bellas, S. M. Chai, M. Dwyer and D. Linzmcier, "FPGA implementation of a license plate
recognition SoC using automatically generated streaming accelerators", 201h International Parallel
and Distributed Processing Symposium 2006,25-29 April 2006.

[5] N. Bray, "Designing for the IP Supermarket, " Fall VIUF Workshop 1999, pp. 8-13,4-6 Oct. 1999.

[6] J. Canaris, "A High Speed Fixed Point Binary Divider", In Proc. ICASSP-89, pp. 2393-2396,
Glasgow, Scotland, May 1989.

[7] T. A. C. M. Claasen, "An industry perspective on current and future state of the art in systcm-on-chip
(SoC) technology, " Proc. ofthe IEEE, pp. 1121 - 1137, Volume 94, Issue 6, June 2006.

[8] S. Dhanani, "FPGAs Enabling Consumer Electronics -A Growing Trend", FPGA and Structured
ASICJournal, http: //www. fpgajoumal. com/articies-2005/20050614_xilinx. htm.

[9] D. Denning, N. Harold, M. Devlin, J. Irvine, "Using System Generator To Design A Rcconfigurable
Video Encryption System", Proc. 131h FPL Conference, Sep. 1-3,2003, Lecture Notes in Computer
Science, Springer, Vol 2778, pp 980-983.

[IO]M. D. Ercegovac, L. Imbert, D. W. Matula, J. -M. Muller and G. Wei, "Improving Goldschmidt
division, square root, and square root reciprocal", IEEE Transactions on Computers, Vol. 49, Issue
7, pp. 759 - 763, July 2000.

[11] G. Even, P. -M. Seidel and W. E. Ferguson, "A Parametric Error Analysis of Goldsclimidt's Division
Algorithm, " Proc. 16th IEEESymposium on Computer Arithmetic, 2003 ", pp. 165-17 1, June 2003.

12] W. M. Gentleman, "Least Squares computations by Givens transformations without square-roots, "
J. Inst. Math. Its Appl., vol. 12, pp. 329-336.

[13] W. M. Gentleman and H. T. Kung, "Matrix triangularization by systolic arrays", in Proc. SPIE, vol.
298, Real Time Signal Processing IV, pp. 298-303,198 1.

[14] S. Hammarling, "A note on modifications to the Givens plane rotation", J. Inst. Maths Applics, 13:
pp. 215-218,1974.

156

CHAPTER -References 157

[15] S. Haykin. "Adaptive Filter Theory", 2nd ed., Prentice Hall, 1996.
[16]J. Henkel, "Closing The SOC Design Gap", in Computer, Vol 36, Issue 9, p 119-121, Sept 2003.
[17JR. A. Horn and C. R. Johnson, "Matrix Analysis", Section 2.6, Cambridge University Press, 1985.
[18]Y. H. Hu, "The Quantization Effects of the CORDIC Algorithm", in IEEE Trans. On Signal

Processing, Vol 40, No 4, pp. 834-844,1992.
[19]Y. H. Hu, "CORDIC-based VLSI Architectures for Digital Signal Processing", IEEE Signal

Processing Magazine, Vol. 9, Issue 3, July 1992, pp. 16-3 5.
[20] K. Hwang, "Computer Arithmetic: Principles, Architecture, And Design", John Wiley & Sons,

1979.
[21]K. Kota and J. R. Cavallaro, "Numerical Accuracy and Hardware Tradcoffs for CORDIC

Arithmetic for Special-Purpose Processors", IEEE Trans. Computers, Vol. 42, No. 7, pp. 769-779,
July 1993.

[22] W. P. Mamane, S. P. Bellis and P. Larsson-Edefors, "Bit Serial Interleaved High Speed Division",
Electronic Letters, Vol. 33, No. 13, pp. 1124-1125,1997.

[23]J. G. McWhirter, "Recursive least-squares minimization using systolic arrays", Proc. SPIE, Real
Time Signal Processing V1, vol. 43 1, San Diego, pp. 105-112,1983.

[24]J. G. McWhirter, R. L. Walke and J. Kadlec, "Normalised Givens rotations for recursive least
squares processing", IEEE Signal Processing Workshop on VLSI Signal Processing, Vill, 1995, pp,
323-332,16-18 Sept. 1995.

[25] G. Moore, "Cramming More Components Onto Integrated Circuits", in Electronics Alaga. -Ine, Vol
38, No 8,19 April 1965.

[26]D. Phanthavong, "Desigining With DSP48 Blocks Using Precision Synthesis", Xilinx Xcell
Journal, 3rd Quarter 2005. http: //www. xilinx. com/publications/xcellonline/xccll_54/xc_pdf/
xc-dsp48-54. pdf

[27] J. Pihl, EJ Aas, "A multiplier and squarer generator for high performance DSP applications", IEEE
39th Midwest symposium on Circuits and Systems, 1996.

[28] J. E. Robertson, "A new class of digital division methods, " IRE Trans. Electronic Computers, Vol.
EC-7, pp. 218-222, Sept. 1958.

[29] R. Sanz, P. Corral and A. C. de Castro Lima, "Adaptive beamforming techniques for OFDM based
WLAN systems: a comparison between RLS and LMS, " Joint IST Workshop on Mobile Future
2004, SympoTIC '04, pp. 29-32,24-26 Oct. 2004.

[30] B. Sklar. Digital Communications : Fundamenatis and Applications, 2nd Edition, Prcntice-I [all,
ISBN 0-13-084788-7

[31]R. W. Stewart, R. Chapman, T. S. Durrani. "The Square Root in Signal Processing", SPIEReal Time
Signal Processing XII, San Diego, USA, August 1989.

[32] K. D. Tocher, "Techniques of multiplication and division for automatic binary computers, " Quart.
J. Mech. Appl. Math., Vol. 11, pt. 3, pp. 364-384,1958.

[33] J. Volder, "The CORDIC Trigonometric Computing Technique, " IRE Trans Electronic Computing,
Vol EC-8, pp330-334, Sept 1959.

[34] J. S. Walther, "A unified algorithm for elementary functions, " Spring Joint Computer Conf. proc.,
pp379-385,1971

[35] Liang-Kai Wang and M. J. Schulte, "Decimal floating-point division using Newton-Raphson
iteration, " Proc. 15th IEEE Conf on Application-Specific Systems, Architectures and Proccssors,
pp. 84-95,2004.

CHAPTER -References 158

[36] C. P, Ward, P. J. Hargrave and J. G. McWhirter, "A Novel Algorithm and Architecture for Adaptive
Digital Beamforming", IEEE Trans. Antennas andPropagation, Vol. AP-34, No. 3,1986, pp. 33 8-
346..

[37] B. Widrow and M. E. Hoff, Jr., "Adaptive switching circuits, " in IRE WESCONConv. Rec., pt. 4,
1960, pp. 96-104.

[3 8] B. Widrow et. al. "Adaptive Noise Cancelling: Principles and Applications". Proc. IEEE, Vot 53,
No. 12, December 1975.

[39] AccelWare DSP Intellectual Property (IP)

http: //www. accelchip. com/accelware_dsp_ýblock_libraries. htmi
[40] Altera DSP Builder Home Page:

http: //www. altera. com/products/software/products/dsp/dsp-buildcr. htmi
[4 1] Altera Stratix 11 Architecture

http: //www. altera. com/literature/hb/stK2/stx2_sii5lOO2. pdf
[42] EnTegra Simulation Webpage:

http: //www. entegra. co. uk/simulation. htm

[43] The Handel-C Reference Manual:
http: //www. pa. msu. edu/hep/d0/12/Handel-C/Handelý/ý20C. PDF

[44] HDL Design Studio information pages:
http: //www. steepestascent. com

[45] Intersil Programmable Downconverter HSP50214B Data Sheet:

http: //www. intersil. com/data/fn/fn4450. pdf
(46] LatticeXP Family Data Sheet

http: //www. latticesemi. com/lit/docs/datasheets/fpga/DS 100 I. pdf
[47] Simulink Webpage:

http: //www. mathworks. com/products/simulink/
[48] SpecC information pages:

http: //www. ics. uci. edu/-specc/
[49] Steepest Ascent home page:

http: //www. steepestascent. com/contentl
[50] SystemVue information pages:

http: //www. eagieware. com/products/genesys/listing. html#systemview

[5 1] SysternC Language Reference Manual:

http: //www. systemc. org/web/sitedocs/irm-2_1. html

[52] Xilinx CORDIC Core Data Sheet:

http: //www. xilinx. comlbvdocs/ipcenter/data_sheet/cordic. pdf

[53] Xilinx Multiplier Core Data Sheet:

http: //www. xilinx. com/bvdocs/ipcenter/data-sheet/multLgen. pdf
[54] Xilinx Press Release - XILINX ACQUIRES DSP DESIGN TOOL LEADER ACCELCI 11P

http: //www. xilinx. com/prs, _rls/xii-corp/0613xlnx-accelchip.
htm

CHAPTER -References

[551 Xilinx System Generator Home Page:
http: //www. xilinx. com/ise/optional_prod/system,

_generator.
htm

[56] Xilinx Virtex-11 Pro Data Sheet:

http: //direct. xilinx. com/bvdocs/publicationslds083. pdff
[57] Xilinx XtremeDSP for Virtex-4 FPGAs User Guide

http: //www. xilinx. conubvdocstuserguides/ug073. pdf

159

