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Abstract 

This thesis presents the work that was carried out by the author to obtain the degree of 
Doctorate of Engineering (EngD). The author was sponsored for the duration of the 
degree by EnTegra Ltd, a company who develop hardware and software products and 

services for real time implementation of DSP and RIF systems. 
The field programmable gate array (FPGA) is being used increasingly in the 

field of DSP. This is due to the fact that the parallel computing power of such devices 

is ideal for today's truly demanding DSP algorithms. Algorithms such as the QR-RLS 

update are computationaly intensive and must be carried out at extremely high speeds 
(MHz). This means that the DSP processor is simply not an option. ASICs can be used 
but the expense of developing custom logic is prohibitive. 

The increased use of the FPGA in DSP means that there is a significant 
requirement for efficient arithmetic cores that utilise the resources on such devices. 
This thesis presents the research and development effort that was carried out to produce 
fixed point division and square root cores for use in a new Electronic Design 

Automation (EDA) tool from EnTegra, which is targeted at FPGA implementation of 
DSP systems. Further to this, a new technique for predicting the accuracy of CORDIC 

systems computing vector magnitudes and cosines/sines is presented. This work 

allows the most efficient CORDIC design for a specified level of accuracy to be found 

quickly and easily without the need to run lengthy simulations, as was the case before. 

The CORDIC algorithm is a technique using mainly shifts and additions to compute 

many arithmetic functions and is thus ideal for FPGA implementation. 
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Chapter I 

Introduction 

The industry sponsor for the duration of this Engl) (October 2001 - October 2005) has 

been EnTegra Ltd. EnTegra develop hardware and software products and services for 

real time implementation of DSP and RIF systems. The majority of the Engl) project 

was spent at Strathclyde University under the guidance of Professor Bob Stewart, 

academic supervisor. Regular contact was maintained with the industrial supervisor 
Tim Bigg throughout the project. 

1.1 Project Timeline 

Figure 1.1 shows the activities that were carried out during the four years of the EngD 

project. During the first 10 months, 108 credits worth of technical modules were 

completed at ISLI. The final 12 credits required to obtain the necessary 120 were 

completed in early 2002. A ftu-ther requirement of the EngD programme is that each 

student must obtain 60 credits of MBA level modules. Heriot-Watt Business School 

offers intensive MBA modules where the taught element can be completed in 6 full 

days rather than an entire semester. Hence, the decision was taken to study the business 

modules here to minimise the time spent away from the project. During 2004, three 

modules totalling 60 credits were completed. 
In June 2002 work began on the project under the supervision of Professor 

I 
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Stewart at Strathclyde University. Working from here, the research and development 

effort began into efficient algorithms for high speed DSP implementation on FPGAs. 

The first task was to research the CORDIC algorithm as it was felt that this technique 
had great potential in DSP. This has since been proven correct as downconverters using 
CORDIC have been seen in the market [45] as well as commercial FPGA EDA tools 

containing CORDIC cores [52]. The result of this research was a comprehensive report 
detailing the CORDIC algorithm. Through this examination a major problem with the 
CORDIC technique was found with respect to its use in fixed point DSP systems. The 

only way to find the worst case error in a fixed point CORDIC system was to run 
lengthy simulations and compare the output to a reference solution, which is not an 
ideal situation. In some DSP algorithms it is vitally important that the worst case error 
is known. This Problem was to be solved later in the project. 

Taught 
Modules 

Technical 
Work 

Conference 
Attendances 

Journal 
Papers 

Training 
Courses 

Technical Technical Business 

Pipelined Loops 
CORDIC 

.. 
HDS Core Development 

HCORDIC 
Accuracy 

FPGA Dev. DATE 
XilinxPW ForuT ICASP ICASSP ICASP 

UWB Colloq. DSPeR GSPx 
Set f6r Britain 

VHDL&FPGA DSPforFPGAs Basics 
00 

Microl? & MicroS Joumal 
Dcc'05 

EPSRC Grad School 

Oct'04 
Jin Aýr JýI 

Oct'05 
I Jan Apr Jul , Jan Apr Jul I Jan Apr 

Oct, 01 Oct'02 Oct'03 

Figure: 1.1: Project Timeline 

Following the CORDIC analysis, a major new product development began at 
EnTegra. A new software package called HDL Design Studio (HDS) [44] was to be 

developed which would work as a plugin to the existing DSP simulation tool 
SystemVue [50]. The idea behind HDS was that it would allow SystemVue 

simulations to be automatically converted into bit and cycle equivalent hardware 
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designs. Thus, the DSP development lifecycle could be reduced considerably as no 
hand coded hardware description language (HDL) would need to be written. The Engl) 

role in this project was to develop Division and Square Root cores for inclusion in 

HDS. Hence, software and hardware fimctions for efficient implementation of a fixed- 

point Divider and Square Rooter were developed and verified. 
The use of pipelined IP in feedback loops was a topic that had been debated 

many times amongst several colleagues at EnTegra and Strathclyde University during 

the EngD. Hence, the project supervisors agreed that a short paper should be written 

where an investigation into the validity of this technique was investigated and 

presented. This work had real value as many DSP algorithms use feedback. Also, 

pipelined IP cores are frequently provided in today's DSP EDA tools. The decision 

whether to use these cores in a pipelined or non-pipelined format within a feedback 

loop is not a trivial decision as was found during the investigation. The findings of this 

work were that non-pipelined feedback loops have a greater throughput, use less logic 

and consume less power than a pipelined equivalent. The results were presented at 
ICASSP 2005 in Philadelphia, PA. 

The final piece of work that was undertaken during the Engl) was to return to 

the CORDIC algorithm to try and solve the accuracy problem. By building on the work 

presented in a paper published in 1992 [18] a closed form solution was developed 

which allows the accuracy of fixed-point CORDIC systems to be found. Hence, rather 
than using the traditional trial and error approach, this breakthrough allows engineers 

to quickly find the defining parameters for a fixed-point CORDIC system computing 

an output to a desired level of accuracy. The initial work that was developed here was 

accepted in late 2005 for publication in the Journal of Microprocessors and 
Microsystems. 

In addition to the research and development effort that was carried out during 

the EngD, several training courses and conferences were attended. Each of these events 
helped to improve the EngD students technical skills as well as his personal 

effectiveness. 
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1.2 Thesis Organisation 

4 

This document discusses the main outcomes of the Engl) as well as the commercial 

and technical background to which the work was carried out. Also, details are given 

with respect to the compulsory aspects of the Engl), such as the completion of the 

technical and business modules. 

The rest of this document is organised as follows. In Chapter 2, the Taught 

modules, both technical and business, are discussed along with the reasons for their 

selection. Following this, in Chapter 3 all publications that were accepted either for 

conference orjournal publication are listed with a brief summary of each. In Chapters 

4 and 5 the Commercial and Technical background to which the EngD work was 

carried out is set. Chapters 6-8 present the research and development effort during the 

Engl) in some detail. Finally, the Conclusions are given in Chapter 9. Note that in 

Chapter 6, the screen dumps of any HDS tokens show the logo of a company called 
Steepest Ascent Ltd. [49] rather than EnTegra. This is because Steepest Ascent have 

taken ownership of the product since the EngD students involvement. 

1.3 Contribution to Knowledge 

The work presented in this thesis comprises a thorough analysis and discussion of the 

Engl) project titled "Efficient Arithmetic for High Speed DSP Implementation on 

FPGAS". The following elements are regarded as novel contributions to knowledge 

and contributions to practical knowledge. 

1.3.1 Novel contribution to knowledge 

An extremely accurate equation for predicting the Overall Quantisation Error 

(OQE) experienced by fixed point CORDIC systems computing vector 

magnitudes has been developed and verified. The equation is derived in terms of 

the number of iterations n and the number of fractional bits used in the data path 
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b. By using the equation it is now possible to find the combination of n and b 

resulting in the least hardware required to generate a desired level of accuracy 
from the output of a fixed point CORDIC system computing vector magnitudes. 

An OQE equation has been developed to predict the accuracy of fixed point 
CORDIC systems computing sines and cosines. Again the OQE is derived in 

terms of the number of iterations n and the number of fractional bits used in the 

data path b. This equation can be used to find the minimal set of parameters 

required by such systems to guarantee a desired level of accuracy from the 

cosine/sine output. 

13.2 Contribution to practical knowledge 

Using direct methods of computation, fixed point divider and square root cores 

were developed. These cores are capable of generating bit accurate solutions 

when compared with floating point equivalent functions that are truncated to the 

same level of precision. They also have the added benefit of producing one bit of 

the solution per iteration and hence it is easy to know how many iterations it will 

take to guarantee a desired level of accuracy. 

An analysis of feedback loops has been carried out where the merits of pipelining 

such a structure has been considered. This work has shown that pipelining only 

serves to reduce the data throughput, increase the resource usage and use more 

power than when compared to a non-pipelined feedback loop. 



Chapter 2 

Taught Modules 

In this section, the Technical and Business modules that were undertaken during the 
Engl) degree are discussed. The Technical modules were all taken at the Institute for 

System Level Integration in Livingston over the first two years of the degree. Normally 

the technical modules are completed in the first year of the degree, however the RE 

started the EngD approximately one month late. Consequently a first term module was 
deferred until the second year to allow the remaining first term classes to be 

successfully caught up with. 
The Business modules were all taken at Heriot-Watt University. The reason 

for choosing this university was the option to attend the classes during the weekends, 

which meant that it was possible to complete the Business modules while minimising 
the time spent away from the Engl) project. 

2.1 Technical Modules 

The following Technical modules were taken at ISLI from October 2001 to May 2002. 

As mentioned already, an optional module (Microprocessors and Microcontrollers) 

was deferred until October 2002 to reduce the workload in the first term while 

progressing with the remaining classes. 

6 
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Foundation Modules Credits 

Introduction to Hardware Design Automation 6 

Introduction to Embedded Software Engineering 6 

Compulsory Modules 

Embedded Software I (System on Chip) 6 

VLSI Design 12 

IP Block Authoring 12 

IP Block Integration 12 

System Partitioning 12 

Optional Modules 

Embedded Software 2 (Operating Systems) 12 

Communications Algorithms 12 

Mobile Communications 6 

Broadband & Digital Networks 6 

Multimedia & Video 6 

Microprocessors & Microcontrollers 12 

120 

Table 1: Technical Module Breakdown 

2.2 Business Modules 

7 

A requirement of each RE is that they complete 60 credits of Master of Business 

Administration (MBA) modules. These can be taken at any of the four participating 
Engl) Universities. Heriot-Watt was chosen as they offer taught MBA classes during 

the weekends. Table 2 lists the modules that were taken and completed successfully 
during 2004. 

These modules were chosen as they offered the best fit to the Engl) project. 
Marketing was important as at the time EnTegra were developing a new product in 
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HDS. In addition to this, the ability to manage projects now and in the future whilst 

understanding the financial implications was of course important. Hence, Accounting 

and Project Management were chosen. 

Business Modules Credits 

Accounting 20 

Project Management 20 

Marketing 20 

60 

Table 2: Business Module Breakdown 



Chapter 3 

Publications 

In this section, the publications submitted and accepted during the Engl) degree are 

given. 

3.1 Poster Presentations 

Rapid Prototyping of DSP Systems for FPGA Implementation Using HDL 

Design Studio - this paper was presented at the Institutefor Communications 

and Signal Processing Research Colloquium, Glasgow in June 2004, which was 

run by the EEE department at Strathclyde University. The paper focused on the 
development of a new Electronic Design Automation (EDA) tool which EnTegra 

were developing. HDL Design Studio (HDS) was designed as a plugin to the 

SysternVue DSP software simulation package. Using HDS, bit/cycle accurate 
VHDL designs ready for hardware implementation can be rapidly generated 
from SystemVue software simulations. The paper illustrated the benefits of the 

tool, including reduced design times via a design example. 

The Effects of Pipelining Feedback Loops in High Speed DSP Systems - this 

paper was presented at the International Conference on, 4coustics, Speech and 
Signal Processing (ICASSP), Philadelphia, PA, USA in March 2005. The 

purpose of this paper was to present findings that showed feedback loops 

9 
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containing IP that is pipelined are slower in terms of data throughput and 

consume more power than equivalent non-pipelined loops. This is significant for 

two reasons. Firstly, many of today's DSP EDA tools supply ready pipelined IP 

cores and secondly these cores are increasingly being used in Adaptive 

Equalisation systems which often require feedback loops. The work involved in 

this paper involved using HDS which provided an opportunity to market the tool 

at the conference. 

3.2 Oral Presentations 

HDL Design Studio - An Integrated Design Flow for the Implementation of 
DSP Systems on FPGAs - this paper was presented at the Global Signal 

Processing Expo (GSPx), Santa Clara, CA, USA in September 2004. In this 

paper HDL Design Studio was presented in more detail with a more complex 
design example (adaptive LMS equaliser). Some additional features were also 

presented, including the fixed point analysis tools. These tools allow the number 

of overflows and underflows resulting from a simulation to be observed. Also, 

the maximum and minimum values from a specific output can also be observed 

along with the required range and precision that is necessary to represent these 

numbers fully. These features are unique to the DSP EDA tool market and are 

extremely useful for designing DSP systems that demand numerical stability and 
integrity to be maintained. 

An Improved Algorithm for Assessing the Overall Quantisation Error in 

CORDIC Systems Computing a Vector Magnitude - this paper was presented 

at the Institutefor Communications and Signal Processing Research Colloquium 

(ICASP), Jordanhill, Glasgow in October 2005. The focus of this paper was on 

analysing the accuracy of the output from a CORDIC system computing a vector 

magnitude. In DSP it is vital that the accuracy of signals is known if numerical 
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stability and integrity is to be maintained. There was very little work covering 

this aspect of the CORDIC algorithm and traditionally engineers simply used a 
trial and error approach to find a system that produced an output with enough 

accuracy. Clearly this was not an ideal situation. However, by building on work 

presented in [18] an accurate formula was developed for finding efficient 
CORDIC systems to compute the magnitude of a vector to a specified accuracy. 

Tools for Implementation of DSP Functionality in FPGAs: CORDIC Vector 

Magnitude Calculation Using HDS3 - this paper was presented at the 

Electronica Conference, Munich, Germany in November 2006. In this paper the 

operation of the CORDIC algorithm and specifically how CORDIC can be used 

to calculate vector magnitudes is explained. The HDS3 design software is 

introduced (updated version HDS) and selected CORDIC implementations are 
developed in HDS3 using a variety of structures. These structures are 

synthesised for an FPGA target and the performance and resource usage 

presented. A single CORDIC cell was also synthesised as an example of 

targeting a CPLD target. 

3.3 Journal Publications - Confirmed 

An Improved Algorithm for Assessing the Overall Quantisation Error in 

FPGA Based CORDIC Systems Computing a Vector Magnitude - this paper 

was accepted in December 2005 for publication in the Special Issue on FPGA- 

hased Reconfigurable Computing, Journal of Microprocessors and 
Microsystems. Note that it is not due to be published until early 2007. This paper 

covered the work that was presented at ICASP '05 in more detail. In addition to 

discussing the derivation of a formula for assessing the error in CORDIC 

systems computing a vector magnitude, the improvements in terms of FPGA 

hardware utilisation and clock speed were illustrated compared with other 
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techniques for computing the same function. 

3.4 Journal Publications - Awaiting Notification 

Assessing The Overall Quantisation Error In CORDIC Systems Computing 

Cosines And Sines - this paper was submitted in January 2007 to the IEEE 

Transactions on Circuits and Systems H. This paper presented the work that was 

carried out to find the most efficient CORDIC systems for computing cosines 

and sines to a required level of accuracy. 



Chapter 4 

Commercial Relevance 

In this section, the commercial background to which the Engl) project was carried out 

will be discussed. Further to this, the contribution that the project has made towards the 

commercial interests of EnTegra Ltd. and the research community will also be 

highlighted. 

4.1 IC Design - The Current Situation 

In 1965 Gordon Moore [25] predicted that, for the foreseeable future, the number of 
transistors on an integrated circuit would double every 12 - 24 months. Over 40 years 
later the trend that he predicted still holds true, although for how much longer no one 

really knows. However, the rapid progress of IC process technology during these 40 

years has resulted in a phenomenon known as the "Design Gap" [5][7][16]. This gap 
is the difference between the total number of transistors on current IC's and the number 

of transistors that are actually utilised in today's designs as show in Figure 4.1. There 

are several contributing factors to this gap which include mask costs, time to market 
demands and increased system complexity. Together, these factors mean that today's 

engineers cannot design and verify systems that utilise the full capability of current 
IC's in a time that gets the product to market fast enough. 

13 
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At present, the solution to the design gap is believed to involve changes in all 
three interacting dimensions of the design environment. These are: 

Design IP - these are the building blocks of a design. Traditionally these are 

written in an HDL (hardware) or C/Assembly (software). 

Design Tools - these are the application programs and techniques that designers 

use to capture, verify, refte, and translate design descriptions for particular tasks 

and subsystems. Historically, tools such as RTL compilation and verification, 

code assemblers and compilers, and standard-cell placement and routing have 

comprised the essential tool box for complex chip design. 

- Design Methodology - is the design team's strategy for combining the available 
IP and tools into a systematic process for implementing the target silicon and 

software. A methodology specifies which elements and tools are available, 
describes how the tools are used at each step of the design refinement, and 

outlines the sequence of design steps. Typically the sequence involves four steps 
in the following order: hardware-software partitioning, detailed RTL block 
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design and verification, chip integration of RTL blocks, processors and 

memories, and post-silicon software bring-up. 

In the next section the commercial interests of EnTegra Ltd. with respect to 

today's design tools are discussed. 

4.1.1 Electronic Design Automation (EDA) Tools 

There are many different types of electronic design tool that come under the EDA 

label. For example, System On Chip (SOC) designers may use Electronic System 

Level (ESL) tools. These tools allow software and hardware to be partitioned and 
designed within the one tool. Often these tools use extensions to the C/C++ languages 

or variations of these. These include Handel-C [43], SystemC [51] and SpecC [48]. 

Other areas of design include Analogue Mixed Signal (AMS), Radio Frequency (RF) 

and Electro Magnetic (EM). However, Digital Signal Processing (DSP) is the area that 

EnTegra Ltd. operate in and hence this shall be the focus here. 

The traditional approach to DSP system design is to use a simulation package 

such as SystemVue or Simulink [47] to build and verify a system before creating an 

equivalent software design by writing C code to target a DSP processor. Alternatively, 

an equivalent hardware design is created by writing VHDLNerilog. However, this 

method is becoming less common. The reason for this is that Field Programmable Gate 

Arrays (FPGAs) are being used in DSP more than ever before, meaning that support 
for this design flow is increasing. Consequently several new tools have now entered 

the market [55][40] which allow bit/cycle accurate FPGA designs to be automatically 

generated from software simulations. This means that design times have been 

dramatically cut due to the fact that HDL code does not need to be hand crafted 

anymore [9]. So, where previously it may have taken several weeks/months to hand 

code an HDL design and test, verify and implement it, this process is now automated 

and takes hours/days. There are arguments that suggest that well constructed hand 

crafted HDL code will generally outperform automatically generated code. However, 
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the response to this tends to be that the amount of time saved writing code can be spent 

exploring more of the design space to find an optimal solution that might otherwise not 
have been found using a traditional approach. 

In Figure 4.2 it is clear that making changes to a design using the traditional 

flow takes a significant amount of time. First, the software simulation has to be altered 

and checked against the original specification. The main time consumer is the manual 

coding of the altered design, which of course must be re-implemented, tested and 
debugged. With today's design flow, once the software simulation has been altered, the 

new HDL design is generated in minutes. The added bonus of this approach is that the 

generated hardware designs are bit and cycle accurate compared to the original 

software model. Also, testbenches can be automatically generated, thus verification 

takes much less time. 

DSP Specification 

I 

Hand Crafted 
C or HDL Code 

Software Simulation 14 ----------I 

Implement - Test - Debug 

Traditional Design Flow 
Wceks/Months Per Iteration 

Automatically Generated 
Bit/Cycle Accurate 

HDL Design 

Implement - Test - Debu 

II 
L 

Today's Design Flow 
Mins/Days Per Iteration 

Figure: 4.2: Traditional DSP Design Flow versus New Design Flow 
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SystemVue is a DSP/RF software simulation package that was originally developed by 

Elanix, Los Angeles, CA. However, in recent years due to company buyouts, its 

ownership has moved to Eagleware and more recently Agilent Technologies [50]. For 

several years now EnTegra Ltd. have been involved with SystemVue as a UK 

distributor. In addition to this, they have also developed several DSP training courses 

that teach and use SystemVue during laboratory sessions. However, a major part of 

EnTegra's involvement with SystemVue has been in the development of several 

software libraries for use with the tool. These include 3G, CDMA2000, Equaliser and 
Adaptive libraries [42]. 

One of the major competitors to SystemVue is Simulink from The Mathworks 

[47]. Simulink is a block based software simulation package, similar to SystemVue, 

which is purchased as a plugin to the popular Matlab tool. However, Simulink differs 

from SystemVue in that it supports many different engineering disciplines. It is 

tailored to each industry through the purchase of blocksets which provide industry 

specific functionality. So for example, to build DSP systems would require at least the 

Signal Processing blockset to be purchased. 
In 2001 The Mathworks, a leader in modelling and simulation software, 

started a partnership with the leading FPGA vendor, Xilinx. This partnership involved 

creating a new design flow that allowed Simulink DSP systems to be automatically 

generated into equivalent HDL designs targeted at Xilinx FPGAs. The result of this 

collaboration was System Generator [55]. This new tool was basically a Xilinx 

blockset for use with Simulink. By building DSP systems using Xilinx blocks it was 

possible to generate equivalent VHDL or Verilog designs for any Xilinx chip. Shortly 

after System Generator was released, a similar tool called DSP Builder [40] was 
developed. This was the offering from the other major FPGA vendor, Altera, which 

again was available as a blockset for use with Simulink. 

Both of these tools have a common feature, which is that neither of them 

generate HDL code that can be used independently of the tool. Instead, a top level HDL 
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file is generated which instantiates electronic design files (edif) for each of the 

components in the design. This means for example, that if a multiplier block is used in 

the design, then it is represented using an edif file instead of actual HDL code. The 

reason for this is that it protects the IP of each core. It is extremely difficult to obtain 

useful information regarding IP from an edif file. 

Another common feature of both tools is that neither of them have support for 

integrating the rest of the system with the DSP component. System Generator and DSP 

Builder are aimed at DSP design, however in a real system this is only part of the 

overall system. Once the DSP section has been designed it must be integrated with the 

rest of the system. 
These issues were brought to the attention of EnTegra through speaking to 

engineers who had used the software. When EnTegra decided to develop their own 

tool, this information was crucial to the design of HDS. 

4.2 DSP - From Sequential Processors To Parallel Arrays 

Traditionally, specialised processors have been used for implementing DSP algorithms 
in software. These specialised processors differ from CPUs in that they often have 

single cycle instructions that are particularly useful in DSP, such as multiply- 

accumulate. The problem with this type of DSP implementation is processing 

throughput. A processor can only carry out one instruction at a time, each of which 

consumes clock cycles. As there are a fixed number of clock cycles between each data 

sample arriving, there is a limit to the number of instructions that can be executed 
before the next sample arrives. This limitation has meant that many DSP algorithms 

simply could not be implemented with this type of technology due to the high data 

processing requirements that they have. The solution to this problem is either to 
increase the clock speed so that more instructions can be executed in between samples 

or move to a parallel implementation where more than one function is computed during 

a clock period. Unfortunately technology limits the speed at which modem DSP 
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processors can be clocked. This leaves a parallel implementation as the solution. 
Application Specific Integrated Circuits (ASICs) offer a high degree of 

parallelism, however the significant investment required to develop and manufacture 

such devices means that they cannot always be used. Fortunately, FPGAs have the 

parallelism required as well as several other attributes that are ideal for use in DSP 

systems. Over the last twenty years they have evolved from simple devices that were 

used as glue logic to the sophisticated multi-functional devices that exist today. This 

has had a significant effect on the DSP industry and its markets. 

4.2.1 FPGAs For DSP 

Today's FPGAs have many resources specifically targeted at DSP design. These 

include dedicated embedded multipliers, fast carry logic, flexible memory and more 

recently, embedded processors within the FPGA fabric. As has already been discussed, 

DSP has been dominated by the microprocessor for many years, which has led to 

engineers developing algorithms with a software implementation in mind. However, a 

rethink is now required as there are alternative approaches to implementing many 

algorithms which are more suited to a hardware implementation. One such approach is 

the CORDIC algorithm [33][34] which has been around since the 1950's. This 

technique can be used to compute many different functions using only shifts, additions/ 

subtractions and table look-ups. Hence, it is ideal for implementing on FPGAs. 

Another area where FPGAs have created an opportunity is in the development 

of truly demanding DSP techniques. The serial nature of DSP processors has already 
been highlighted. FPGAs permit the design of computationaly intensive systems such 

as Adaptive Equalisers. There are two techniques which are often associated with 
Adaptive Equalisation, which are the Least Mean Squares (LMS) [37][38] and the 

Recursive Least Squares (RLS) [13][15][23]. The order of the computational 

requirements for these techniques where the filter length is N is: 
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LMS., O(N) MACs/s RLS. O(M) MACs/s 

Clearly, the RLS technique requires significantly more computations than the LMS. 

However, this is not the only issue for the RLS as it also requires division and square 

root functions. These functions alone have traditionally been avoided in DSP due to 

their high computational requirements. However, there is significant commercial 
interest in RLS systems as they outperform LMS systems by equalising much faster 

and producing a cleaner output. 

4.3 Project Contribution 

The EngD project has made a substantial contribution to the commercial interest of 
EnTegra Ltd. and the DSP research community. This has been achieved through the 

following mini-projects which combine to make up the thesis. Each of these mini- 

projects are covered in detail in later chapters. 

4.3.1 HDL Design Studio IP Development 

As has been discussed already, EnTegra have been involved in developing a new 

software package called HDL Design Studio (HDS). The benefit of this tool is that it 

is used as an additional library within the SystemVue software simulation tool. By 

designing systems using this library it is possible to automatically generate equivalent 
hardware designs therefore removing the need to hand-code VHDL/Verilog. 

The design of HDL Design Studio has involved creating two separate IP 

repositories. The first contains the IP for simulating any HDS functions within 
SystemVue. This IP is written using the C++ language. The second repository contains 

the equivalent hardware functionality. This IP is written using VHDL. Hence, for each 
C++ function there is an equivalent bit/cycle accurate VHDL representation. 

Many of the functions that were written for the HDS repositories were 
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minimal, such as addition and subtraction. However, division and square root are two 

of the more complicated functions and these were assigned to the EngD project. From 

a business perspective these functions were significant for two reasons. The first was 

that neither Xilinx or Altera had direct division or square root functions within their 

tools. The second, and probably the most important reason for developing these cores, 

was that Adaptive Equalisation techniques are becoming more and more popular due 

to the fact that the technology now exists to implement them. These techniques often 

require division and square root functionality and hence, the inclusion of such cores 

within HDS would hopefully appeal to engineers working in this area. 
A significant amount of the EngD project was spent developing, testing and 

upgrading the division and square root cores. However, they are now embedded within 

HDL Design Studio and are part of the commercial product that is available on the 

market today. 

4.3.2 Analysis Of Pipelined Feedback Loops 

Feedback loops are a common feature of Adaptive Equalisation techniques. A common 

feature of FPGA systems is that they are often pipelined to increase the clock rate. This 

effectively costs nothing on an FPGA as registers are in plentiful supply. However, 

should pipelining be used in a feedback loop? This was a question that had been 

debated several times amongst colleagues at Strathclyde University and EnTegra. With 

FPGAs being increasingly used for Adaptive Equalisation it was felt that this was an 
ideal time to try and answer this question by using HDL Design Studio. This of course 
had the added benefit of generating publicity for HDS should any of the work lead to 

a publication. 
Through experiment and analysis it was found that feedback loops containing 

pipeline registers operate with _a slower throughput, consume more power and use 

more resources than feedback loops without pipelining. This was an important finding 

and was significant in the development of the IP for HDS. Until this point, much of the 
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IP developed for HDS, as with it's competitors, was pipelined. However, based on 
these findings, some of the cores, including the division and square root cores, were 

updated to allow all pipeline registers to be removed. Hence, should they be used 

within a feedback loop, an optimal design could be realised. This work also led to a 

paper being accepted for a conference publication at the International Conference on, 
Acoustics, Speech and Signal Processing (ICASSP), Philadelphia, 2005, which also 

offered an ideal opportunity to promote HDS to the research community. 

4.3.3 CORDIC Quantisation Error Analysis 

The CORDIC algorithm is a technique that can be used to compute many different 

functions. It is ideal for FPGA implementation because it requires mainly shifts and 

additions/subtractions which are easily achieved on this type of device. For this reason, 
both Xilinx and Altera have included CORDIC cores within their tools. 

The problem with the CORDIC algorithm is that there has been very little 

work done to assess the accuracy of the output it generates. It is easy to setup a 
CORDIC core that computes a desired function but there is no method of assessing its 

accuracy other than running time consuming simulations and comparing the output to 

a reference design. To overcome this problem, a project was undertaken to develop a 
formula for quantifying the error in such systems. If this could be achieved, the need 

to run tedious simulations could be avoided, thus saving time. Also, it would allow the 

most efficient CORDIC design to found for a specific level of accuracy. A ftuther 

benefit of this work would be the ability to create a CORDIC core where all that was 

required from the user was to specify the desired function and a level of required 

accuracy. Using the error analysis work, the core could then automatically configure 
itself to use as few resources as possible to achieve this. None of the tools that compete 

with HDS have anything as sophisticated as this, and hence it would be a significant 

addition to the software. 
The result of this project was that an algorithm was successftilly developed to 
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predict the accuracy of CORDIC systems computing vector magnitude and sine/cosine 

calculations. Unfortunately, due to time restrictions the work has not been carried out 

to its full potential. There are many other CORDIC ftinctions that have yet to be 

analysed. However, the methods that have been applied so far could be extended to the 

remaining CORDIC functions. Also, it is still possible that this work will lead to a new 

core within HDS, which will generate efficient CORDIC systems based on the derived 

algorithm. Further to this, the work that has been completed so far has resulted in the 

first journal publication of this Engl) project. In early 2007, the paper titled "An 

Improved Algorithm for Assessing the Overall Quantisation Error in FPGA Based 

CORDIC Systems Computing a Vector Magnitude" will be published in the Special 

Issue on FPGA-based Reconrigurable Computing, Journal of Microprocessors and 

Microsystems. 



Chapter 5 

Technical Background 

In this section the technical background is discussed to illustrate why the work that has 

been carried out is relevant, valuable and solves a real industrial problem. Much of the 

technical background focuses on the development of the FPGA, the effect this has had 

on the DSP industry and how it has enabled the realisation of computationaly 
demanding tasks such as adaptive equalisation using the least squares technique. 

5.1 The Limit Of A DSP Processor 

A processor has to use sequential clock cycles to perform an algorithm. Usually it takes 

one clock cycle for every operation that must be carried out in an algorithm. This 

means that there is a limit to the number of operations that can be carried out on one 

data sample before the next one arrives. This limit defines the operating envelope for 

a processor. 
Table 3 illustrates the comparison between an Arithmetic Logic Unit (ALU) 

with a single multiplier clocked at I OOMHz against an ALU with 2 multipliers clocked 

at 20OMHz. By comparing the number of operations that both ALU's can complete per 

sample period it is clear that the bigger ALU is 4 times more capable. 
For applications where the sampling rate is relatively low, like Audio for 

example (8KHz - 20KHz) a DSP processor is an excellent option. However, for a 

24 
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control loop algorithm such as an FIR filter with 512 weights, it becomes unusable. 
Some modem communications systems (CDMA chip rates) use sample rates of 

1.2288MHz and 3.84MHz [30], which means that only 26 operations can be carried 

out between samples. This is not enough to do anything really useful. For technologies 

such as Video (27MHz) and HDTV (74MHz) there is very little that can be done with 

a processor. Hence, for high sample rate applications a more parallel approach is 

required and this is where FPGAs excel in DSP. 

Sample Operations per sample period 
Rate 

Single Multiplier 
ALU @ 100 MHz 

Two Multipliers 
ALU @ 200 MHz 

8KHz 12,500 50,000 

44. IKHz 2,267 9,070 

300KHz 333 1,333 

1.2288MHz 81 325 

3.84MHz 26 104 

27MHz 3 14 

74MHz 1 5 

102.4MHz Not Possible T3 
Table 3: DSP Processor Operating Envelope 

5.2 FPGAs 

Twenty years ago, Field Programmable Gate Arrays (FPGAs) were used for tasks such 

as glue logic and routing [8]. Today, however, they are complex devices capable of 
housing an entire system (4]. Here, the basics of current FPGAs will be discussed as 

well as the features that are targeted directly at DSP applications. 
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The basic FPGA architecture follows the structure shown in Figure 5.1. The device is 

made up of block memory, Input/Output Blocks (1013s), logic blocks and routing, 

although routing has been omitted from the figure for clarity. The FPGA is usually a 

fully SRAM based device, which is configured following the application of power or 

reconfigured during operation. The building blocks can be configured to provide many 
functions, with programmable interconnect used to join these small functions to form 

larger functions and systems. This flexibility means that the FPGA provides a huge 

degree of freedom for the creation of DSP processing functions. 
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El 
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0EE -0 0E0D0 

Input/Output Blocks -' 
(1013) Figure: 5.1: Basic FPGA Architecture 

The logic blocks within an FPGA and the names that are given to them differ 

from vendor to vendor. However, as will be shown, the logic shares many similarities 

across vendors, although may be in different sizes or widths. For example, the basic 

logic block in Xilinx devices is called the Configurable Logic Block (CLB) which is 

made up of Slices [56]. Depending on the device, each CLB can contain either 2 or 4 

Slices. Each Slice contains two 4-input LUTs, flip-flops, multiplexers, arithmetic 

logic, carry chain and dedicated routing. The contents of a single Slice can be seen in 
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In contrast, Altera. devices are made up of Logic Array Blocks (LABs) [41] 

which contain eight Adaptive Logic Modules (ALMs), carry chains, shared arithmetic 

chains, control signals, local interconnect and registers. The contents of an ALM can 
be seen in Figure 5.3. Note that the Combinational Logic block contains two LUTs 

which can be configured in several different ways offering a wide range of options. 
Lattice Semiconductors is another major FPGA vendor. The building blocks 

used in their devices are called Programmable Functional Units (PFUs) [46] which are 

made up of four Slices. Each Slice contains LUTs, multiplexers, carry logic and flip- 

flops. A single Lattice Slice is shown in Figure 5.4. 

Figure: 5.2: Xilinx Slice Logic - Reproduced from [56] 
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The FPGA architecture shown in Figure 5.1 shows the fundamental components of 
today's devices. However, there are many more features that are not included in this 

figure which are extremely useful in DSP design. These include the following: 

Embedded Multipliers: Multiplication is one of the most common operations in 

DSP. The largest FPGAs that exist today have several hundred dedicated 

multipliers embedded into the FPGA fabric. These are typically set up for 18 bit 

inputs and produce a 36 bit output although they can be cascaded for larger input 

widths. In the latest devices the multipliers can be clocked at up to 40OMHz [53] 

when fully pipelined. 

Fast Carry Chains: Addition is another very common operation in DSP, hence 

fast carry chains have been included to allow the carry bit to propagate between 

each full adder as fast as possible. For large 32 bit carry chains, 150 - 20OMHz 

is achievable. The full adders can be constructed from the logic within the logic 

blocks. 

MULTAND: Xilinx has included a single AND gate with each LUT in its Virtex 

family specifically for creating distributed multipliers. A parallel multiplier can 
be made from a series of cells, where each cell is made from one Full Adder and 

an AND gate. Hence, in the FPGA world, a LUT is used to form the Full Adder 

and the single AND gate is used to complete the multiplication cell. A single 
AND gate takes up very little of the FPGA fabric and yet if it didn't exist, other 
FPGA resources would be used to form the AND gate which would be an 
inefficient use of this logic. 

Flexible Memory: The LUTs that are included within an FPGA are flexible and 

can be used in several different ways. LUTs can be used as dual port RAM, ROM 

and as Shift Registers. In some devices LUTs can be split to form two LUTs of 
differing sizes [41]. These options have many uses within DSP and extend the 



CHAPTER 5- Technical Background 

flexibility of FPGAs even further. 

30 

Dedicated DSP Modular Blocky: This is the latest DSP feature to be included in 

today's FPGAs. As well as the array of logic blocks that have always existed on 
FPGAs, modular blocks containing hardware multipliers and adders/subtractors, 

are now being included in the FPGA fabric [26]. 

5.3 Rethinking Algorithm Implementation 

Due to the extensive use of the DSP processor, many algorithms have been developed 

to make use of the operations available on these devices. This has meant that 

algorithms requiring square root and division operations have been avoided or worked 

around as they are too demanding in terms of computational requirements. However, 

now that the FPGA has arrived, a whole new set of resources are available to use. This 

has meant than the way in which many algorithms can been implemented has had to be 

re-thought. An ideal example of this is the re-emergence of the CORDIC algorithm 

which was developed in the 1950's for use in Radar systems [33]. This technique can 

be used to compute many different functions using only shifts, additions/subtractions 

and table lookups, all of which are ideal for FPGA implementation. Figure 5.5 gives a 

summary of the functions that can be directly computed using this technique. There are 

many more functions that can then be computed by combining more than one CORDIC 

block. So for example, a single CORDIC core operating in Rotation mode with a 
Circular coordinate system, can compute cosz and sinz. The results could then be 

passed to another CORDIC core computing xly (Vectoring mode, Linear coordinate 

system) which would yield tanz = sinz 
cosz 

There has always been a problem with CORDIC regarding the accuracy of the 

results it produces. It is an iterative technique and the more iterations that are 

performed the more accurate the solution will be. Traditionally engineers have used a 
lengthy trial and error approach to CORDIC design. Obviously this could take a long 
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Figure: 5.5: CORDIC Output 

time and was not an ideal situation. Hence, one of the mini-projects carried out during 

the Engl) was to find a formula for predicting the error of CORDIC systems, thus 

removing the need for lengthy simulations. The CORDIC algorithm and the work that 

has been carried out in this area during the Engl) is covered in detail in Chapter 7. 
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In many communications applications, such as an Ethernet transceiver, the channel 

over which data is transmitted can change significantly. To cope with this scenario, 

Adaptive Equalisers are used in the receiver to adapt to the changes in the channel. An 

equallser is basically a digital filter with an adaptive algorithm as shown in Figure 5.6. 

The digital filter can be either Finite Impulse Response (FIR) or Infinite Impulse 

Response (11R), although FIR adaptive equalisers are more common due to the fact that 

they do not suffer from instability issues that can occur in systems with feedback such 

as the IIR. The Adaptive Algorithm tries to alter the weights in the filter so that the 

error signal e(k) is reduced to zero. When this occurs, the output signal y(k) has 

matched the desired signal d(k) and the channel has been equalised. The success of 

the filter in minimising e(k) will depend on the nature of the input signals, the length 

of the adaptive filter and the adaptive algorithm used. 

dqsired d(k)l signal 

input + 

output 
signal Digital y(k) e(k) 
x(k) Filter output qrror 

signal signal 

e (k) = d(k) -y (k) 

y(k) = Filter(x(k)) 

Figure: 5.6: Generalised Adaptive Equaliser 

In this section, the background behind two of the available Adaptive 

Algorithms is presented. Until recently, the Least Mean Squares (LMS) [37][38] 

algorithm has been one of the most commonly used adaptive algorithms due to its 

minimal structure, stable performance and relatively low computational requirements. 

However, applications such as mobile communications now require extremely fast 
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adaptation which the LMS is not able to achieve. Fortunately another adaptive 

algorithm called the Recursive Least Squares (RLS) [13](15][23] technique is able to 

adapt fast enough and with a smaller equalisation error relative to the LMS as is shown 
in [1][29]. As is nearly always the case in DSP, improved performance comes at a cost 

and the RLS is no exception. It requires significantly more computational capability 
than the LMS and until recently has been difficult to realise due to economic and 
technological factors. 

In section 5.4.3 it will be shown that one alternative method for calculating 
the LS solution is the QR-RLS approach [24], which requires Square Root and 
Division operations. These operations are expensive to implement and are often 

avoided in DSP. However, with the advancements in chip technology there is no reason 

why these functions cannot be used and so there is a need for them in today's EDA 

tools. It will also be shown that the QR-RLS has a significant amount of feedback 

within the algorithm. Although the feedback loops can be pipelined, an important 

question that needs answered is whether or not this is a good thing to do? 

5.4.1 The LMS Algorithm 

The Least Mean Squares (LMS) [37][38] algorithm attempts to minimise the mean 

squared error between the output of the filter y(k) and the desired answer d(k). 

Referring to Figure 5.6, the output y(k) of the filter is given in (5.1): 

N-1 

y(k) =T 
I 

WnX(k - n) =w x(k) 

n=0 

where w is the weight vector, 

W= IWOWIW2-*, 
*WN-11 

T 

and x(k) is the data matrix: 

x(k) = [x(k) x(k - 1) x(k - 2) ...... x(k-N+ 1)] T 
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Therefore, the FIR filter requires N multiply-accumulates (MACs) per iteration, where 
N is the number of weights in the filter. 

The LMS algorithm coefficient vector update equation is given by: 

w(k + 1) = w(k) + 2ýte(k)x(k) (5.2) 

where the error e(k) is the difference between the desired and obtained output: 

e(k) = y(k) - d(k) 

and ýt is a scalar called the step-size. Hence, the adaptive algorithm requires N+I 

MACs per LMS iteration. This means that the total number of MACs per LMS iteration 

is 2N+ I as shown in [37]. So, for a filter of length N, the LMS requires O(N) MACs. 

The step-sizc controls the speed of convergence of the LMS. For a very small 

step-size, the LMS will converge slowly but when it does converge the error signal 

e(k) will be very close to zero. However, if a large step-size is used, the LMS will 

quickly converge to a solution but the power of e(k) will be large. If too large a step- 

size is chosen, the LMS will go unstable and will not converge at all. 
The key point to note on the LMS is that the only operations required to 

implement an adaptive equaliser using this algorithm are multiplication and addition. 
The number of these of operations required is 2N + 1, where N is the number of 

weights. 

5.4.2 The RLS Algorithm 

The Recursive Least Squares (RLS) [13][15][23] algorithm is based on the Least 

Squares solution which minimises the total sum of squared errors for all inputs up to 

and including time k. The total squared error, v(k), is: 

k 

v(k) = 
j: [e(s) ]2 =e 

2(o) + e2(l) + e2(2) . ...... 
+ e2 

T (k) = ekek (5.3) 

s=0 

where 
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ek = [e(O) e(l) e(2) ........ e(k)] 

The total sum of square errors can then be written as: 
T2 

v(k) = ekek ý IlekI12 

= [dk-XkW] T [dk-XkW] 

TTTT didk+w XiXkW-2diXkW 

where 

Xk = [x(O) x(l) x(2) ...... x(k)] T 
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The equation for v(k) is quadratic in w, therefore the minimum value of v(k) is 

obtained by finding where the gradient vector is zero: 

av(k) 
Tw 

The function v(k) is a hyperparabaloid when plotted in N dimensional space and there 

exists exactly one minimum point on its surface. The gradient vector is therefore: 

TTT 
, jwv(k) = 2XiXkw-2Xidk = -2Xi[dk-XkW] 

and therefore: 
T 

-2Xk[dk-Xkw] =0 

TT 
=: ýXAW = Xjdk 

The Least Squares solution, denoted as WLS and based on data received up to and 
including time k and can be formed from the above equation as: 

XkTXk, -IT 
WLS =I Xk dk (5.4) 

Solving this equation is not easy as it requires inverting a matrix, which is extremely 
demanding in terms of the computation that it requires. The greater the number of 

weights N, the bigger Xk will be and the more demanding the inversion of the matrix 

will become, which requires multiplication and division operations. This would be 

hard enough to compute if it was only carried out once, but an inversion would have to 

be carried out for every new sample of x(k) and d(k). Hence, this is not a realistic 
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AL w xxxx 
NW=N Xxxx 

w xxxx 

IF IF XXXX 

k 10 

xT WLS 
[' 

k 

xxxx 
xxxx k 
xxxx 
XXXX 

N 

xxxx " 

xxxx N 
xxxx 
XXXX IF 
4 10 

XT d ik 

Figure: 5.7: Least Squares Matrix Solution 
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option for solving this equation. Figure 5.7 gives a visual indication of the size of the 

task involved in solving (5.4). In addition to the complexities of matrix inversion, 

forming the inner product XT. X is known to be extremely damaging from a numerical 

point of view. The square doubles the dynamic range, and hence the wordlength has to 

be doubled, otherwise precision is approximately halved. However, there is an 

approach which reduces the computational complexity of the Least Squares equation 

known as QR matrix decomposition and this is discussed in the following section. 

5.4.3 QR Decomposition 

The QR matrix decomposition [17] is an extremely useful technique in least squares 

signal processing systems where a full rank mxn data matrix Xk is decomposed into 

an upper triangular matrix, R and an orthogonal matrix Q (Q TQ= I). 

Xk = QR 

A xxxx A qqqq rrrrA 

k xxxx k qqqq 0rrrk 
xxxx qqqq 00rr 

IF XXXX IF qqqq 000r ir 
NkN 10 

Xk QR 

Figure: 5.8: QR Decomposition 
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Using the QR decomposition to solve the least squares equation gives: 
TTT 

WL 
ýs 

= [XjXk] Xkdk = [(QR) (QR)] (QR)Tdk 

= [R TQ TQR]-IR TQ Tdk 

= [RTR]-IR TQ Tdk 

=R -1 R -T RT QTdk 

= -1 T 

wLs ý R-ldk' 

where 

dk' =QT dk 
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The result of the decomposition still requires the matrix R to be inverted before WLS 

can be found. However, it will be shown shortly that this is not actually the case and 
that it is possible to solve wLS without inverting any matrices. 

To be able to solve wLS using the QR decomposition requires R to be found 

starting from the data matrix Xk. This process can be carried out using Givens rotations 

to zero the lower half of the matrix Xk resulting in the matrix R. The series of Givens 

rotations is actually the matrix QT and is illustrated in the following example: 

159 -0.27 -0.51 -0.82 3.74 -1.07 16-57 
X= QR --)' 26 10 = -0.53 -0.63 0.56 0 10.43 4.19 

3 -7 11 -0.80 0.57 -0.10 00 -3.20 
xQR 

The process of getting from X to R is computed using a series of Givens rotations 

which is achieved in a row-wise fashion. Each element in X that must be zeroed is done 

so by multiplying by the G matrix which is a modification of the identity matrix I-. 

(cosO)jj (sinO)j, 0 
Gjj ý-- (-sinO), j (cosO),, 0 

-001 
where [i, A is the location of the element to be zeroed. 
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Givens Givens Givens 
Rotation G2,1 Rotation G. 3,1 Rotation G3,2 

59 2ý4 7.60 12 . 97] 3.74 16.571 3.74 -1.07 16.57 
26 101 0 -179-358 0 -1.79 -3.5 80 10.43 4.19 
3 -7 1; 

] 
m -*7 I'l 

10 
-3.8; 

] 
00 -3.20 

x R 
---------- Ak --------- G2,1 ----------- xx 

2- coso x 
- 

0* 45 sinO 0 Cos 0 15 91 . 24 7.60 12.97 
2 

X+ 
2 

j 

1 1 1 

Y 

1 

0 -sinO Cos 0D 10 8 6D0 -1.79 -3.58 

sinO Y 0.89 001 3 -7 11 3 -7 11 
0 J-2 0 

Pý X +Y2 j 

I cosO + 2sinO +0=2.24 5cosO +6sinO+O = 7.6 9cosO + 10sinO +0= 12.0- 

-1 sinO +2 cosO +0=0 -5sinO+6cosO+O = -1.79 -9 sinO + 10cosO +0= -3.58 
0+0+3 =3 0+0-7 = -7 0+0+11 = 11 

- 
--------- 

19 k 
---------- 

G3, I 

----------- 
x xv 

3- coso x 
2 

, fi x+ 
2 

- - 0.60 cosO 0 sinO . 
24 7.60 12.97 . 74 -1.07 16.571 

Y " 
0 010 8 -1.79-3.58 0 -1.79 -3.58 

sinO y 

1 

= 0.80 : -sinO 0 cosO 0 
-7 11 0 -10.26 -3.82 0j 

2+ 2 
0 

"' Y - x 
2. f4 

24cosO+0+3sinO = 3.74 7.6cosO+0-7sinO = -1.07 12.97cosO+O+IlsinO = 16.57 

0+0+0 =0 0-1.79+0 = -1.79 0-3.58+0 = -3.58 

1 

2.24sinO +0+3 cosO =0 
-- 

7.6sinO+0-7cosO =- 10.26 -12.97 sinO +0+II cos 0= -3.82 
-- -------- ------ - ------- 

G 2 
---- 

xv R 
0 Cos 0= J- 

3, 
= -0.10 0 74 0 

- 
-1.07 16.57 

. 
74 -1.07 16 57 72 X+ 

2 . 
Y 0 cw 0 sin 00 

1 

-1.79 -3.58 0 10.43 4.19 

sinO y 1.00 
[0 
0 -sinO Cos 0 0 (ýý3.82 00 -3.20 J-2 

+Y2 x -10.26 v 
3.74+0+0 = 3.74 -1.07+0+0 = -1.07 16.57+0+0 = 16.5j 

0+0+0 =00-1.7 9 cos 0- 10.26 sin 0= 10.43 0-3.58cosO-3.82sinO = 4.19 

0+0+0 =00+1.79 sin 0- 10.26 cos 0=0 
-- ----------------- 

0+3.58sinO - 3.82cosO = -3.2- 
----------- 

The series of Givens rotations G2,1, G3,1, G3,2 combine to give Qr. Once the 

matrix R has been formed it is possible to find wLS without carrying out matrix 
inversion. This process is called backsubstitution. Going back to the QR 



CHAPTER 5- Technical Background 

XI I X12 X13 d, rl, r12 r13 dl' 

X21 X22 X23 d2 0 r22 r23 d2' 

X31 X32 X33 d3 00 r33 d3' 

x dk R dk' 

rl, r, 2 r13 wl dl' 

0 r22 r23 W2 d2' 

00 r33 W3 d3' 

R WLS dk' 

Figure: 5.9: Single QR Decomposition 

decomposition it was shown that: 

wLs -= R-'QTdk 

=* R wLs =Q 
Tdk 

TT 
Q XwLs =Q dk = dk' 
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Using this version of the decomposition it can be seen that QT is applied to both the 

X and the dk matrices. Thus, in practice these two matrices are combined and QT is 

applied to this single matrix as illustrated in Figure 5.9. From here, the process of 
backsubstifution can be used to find wLS. In theory this process is easy. However, it is 

computationally expensive as it requires division, multiplication and addition. From 

Figure 5.9 it can be seen that for this example the weights can be found by starting with 

'V3 as can be seen below. 

W3 = 
d3' 

W2 = 
d2 I- r23W3 

Wi = 
dif- r, 2W2 - r, 3W3 

r33 r22 rl, 

5.4.4 QRD-RLS 

The QR decomposition shown so far only illustrates how the weights are found once. 
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rl, r12 r13 dl' - 3.741 11.759 6.4143 0.534- 
(k) dk' 0 r22 r23 42' 

- 
0.000 -3.273 -1.091 -3.273 

T+I dk 
+00 r33 d3' 0.000 0.000 17.962 -2.449 

XI X2 X3 dL49 -13 -2 j 

3.741 11.759 6.4143 0.534 5.477 14.605 -5.112 -1.095 
0.000 -3.273 -1.091 -3.273 _+ 

0.000 -3.273 -1.091 -3.273 
0.000 0.000 17.962 -2.449 0.000 0.000 17.962 -2.449 

_49 -13 -2 j 
0.000 -2.439 -13.565 -1.756J 

5.477 14.605 -5.112 -1.095 5.477 14.605 -5.112 -1.095 
0.000 -4.082 -8.981 -3.674 0.000 -4.082 -8.981 -3.674 -> 0.000 0.000 17.962 -2.449 0.000 0.000 20.668 -2.399 
0.000 0.000 -10.224 0.547_ 0.000 0.000 0.000 -0.735J 

R(k + 1) dk+ I 
' 

0 

Figure: 5.10: Recursive QR Decomposition 
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In a real system the weights are computed for every new x(k) and d(k). However, 

rather than update the X and dk matrices and repeat the process illustrated in Figure 

5.9, a recursive technique can be used which cuts down the computational requirement 
[ 15] [24]. This recursive technique can be seen in Figure 5.10. Here, an additional row 
is used to allow the new x (4,9, -13) and d (-2) data to be added to the upper triangular 

matrix containing R d;. Hence, the original matrix grows from a3x4 to a square 

matrix of dimension 4x4. The decomposition then proceeds to zero each of the new 

x data entries working from left to right. Once complete, the backsubstitution process 

can be carried out to find the new wLS. Note that although there are now 4 rows in the 

matrix, there are still only 3 weights to be found as in Figure 5.9. 

The QR decomposition can be computed using a triangular array, as 
developed in [23] and [36], which is shown in Figure 5.11. This diagram shows that 

the array is made up Of two types of cell. The cells on the left edge of the array are used 
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x(k) - 

I 

A... 
rATA 

N7-w, 
wýý 

rl, r12 r13 dl' 

r22 r23 r-d, ' 
0 

-.,. 
c? sO = a1r 
smO = b1r 

r -.. 
, Ja" + b" =r 

0 

ir r33 I d3' 

p 
q qv 

cos cos 
sind- sin0 0 

q' = qcos0 +psin0 

p pf = peos0-qsin0 

Figure: 5.11: QR-RLS Triangular Array 
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to rotate the vector (a, b) by 0 degrees onto the x-axis. The other cells in the array 

rotate their respective vectors (p, q) by the angle 0 that was used by the edge cell on 
their row. Every cell in the array has a delay which stores the previous R and dk' 

elements. Before each stored element is used in the next iteration of the decomposition 

it is multiplied by a forgetting factor 1. The QR-RLS computes the least squares 

vector based on all previous data which means old data is given as much relevance as 

new data. To overcome this, theforgettingJactor X is used. This parameter is a fixed 

constant less than 1. The computational requirement of the triangular array can be 

summarised as: 

Each 
8 

requires 5 multiplies, I addition, I division, 1 square root 

Each 
0 

requires 5 multiplies, laddition, I subtraction 
Figure: 5.12: QR-RLS Computational Requirement 
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There are other QR-RLS techniques that do not require the use of square root 

operations as presented in [3][12][14] where the idea is to store values in a squared 
form. However, this comes at a cost as the dynamic range is doubled and hence the 

wordlength has to be doubled, otherwise precision is approximately halved. 

Earlier it was shown that the LMS technique required O(N) MACs per sample 
[37][38]. This means that the LMS will scale well if the number of weights are 
increased. Unfortunately this is not the case for the RLS and the QR-RLS as can be 

seen in Figure 5.11. The computational requirement is a function of O(M) which does 

not scale well [15][24]. In addition to this the QR-RLS requires square roots and 
divides which are also very costly in terms of hardware. This is the reason for the delay 

in moving to the RLS technique even though it offers better performance. However, 

today's technology is now at a stage where the QR-RLS and the RLS are realistic 

options. This means that to exploit the advantages of the QR-RLS method that the 

development of efficient square root and division cores is required. 
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Division & Square Root Core Development 

This chapter discusses the work that was carried out to develop a Square Root and 
Division core for inclusion in HDL Design Studio. Both cores were based on direct 

methods for computing these functions. The direct methods discussed are straight 
forward "paper and pencil" techniques that generate a solution with a known level of 

accuracy within a known number of cycles which is a major benefit in Digital Signal 

Processing (DSP) Systems. Other techniques for computing division and square roots 

exist but these usually involve an iterative approach such as Newton's method. For 

DSP design this is not ideal as the number of iterations required to achieve a desired 

level of accuracy are unknown. 
As well as illustrating these techniques, software and hardware 

implementations for both operations are discussed. The software implementations 

must model the delay and output of the equivalent hardware implementations. This is 

vitally important as HDL Design Studio is marketed as producing bit and cycle 

accurate VHDL code. 

6.1 Long Division 

Long Division is a method for dividing two integers. Many people learn how to use 
long division while at school but tend to forget how to use it. 

43 
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Decimal Long Division 

To illustrate long division, consider the following calculation: 2467/ 

13 
13 

The working can be broken down into the following steps: Tj I 
1161 I. L2/13J =0 104 
ul: z/ 2.0*13 0 0117 
om 3.2 -02 AnAQ 

4. bring down the 4 and append to 2 to get 24 

I. L24/13J =1 
2.1*13 = 13 

3.24 - 13 = 11 

4. bring down the 6 and append to 11 to get 116 

I-LI16/13J =8 
2.8*13 = 104 

3.116 - 104 = 12 

4. bring down the 7 and append to 12 to get 127 

I-LI27/13J =9 
2.9*13 = 117 

3.127 - 117 = 10 

4. bring down the 0 and append to 10 to get 100 

1. LIOO/13J =7 
2.7*13 = 91 

3.100 - 91 =9 
4. bring down the 0 and append to 9 to get 90 

etc. 
Note that the number of cycles through the algorithm is dependent on the size 

of the dividend. In this case, the dividend is 8 digits wide and thus it takes 8 cycles to 

achieve the result. Note also that if more accuracy is desired then the number of zeroes 

after the decimal point on the dividend is simply extended. In this example, there are 4 
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zeroes which gives a result with 4 decimal points of accuracy. 

Binary Long Division 

To illustrate binary long division, again 000010L 
consider the case 2467/13 (100110100011/ 1101 F10011011 

I 
1101). 0 
The example can be broken down into the 0 

100 
following steps: 000 

1.1/1101 =0 
1001 
0000 

2.0*1101 =0 10011 
01101. 

3.1 -01 001100 
000000. 

, t. appena next aigit m aiviaena ku) to 

result of step 3 (1) to get 10 

1.10/1101 =0 
2.0*1101 =0 
3.10 -0= 10 

4. append next digit in dividend (0) to 

result of step 3 (10) to get 100 

1.100/1101 =0 
2.0*1101 =0 
3.100 -0= 100 

4. append next digit in dividend (1) to 

result of step 3 (100) to get 1001 

1.1001/1101 =0 
2.0*1101 =0 
3.1001 -0= 1001 

4. append next digit in dividend (1) to 

result of step 3 (100 1) to get 100 11 

00011011 
00011000 
00001101 
000010110 
000001101 
0000010011 
nnnnnniin 
uuuuuuuiuii 
AAAAnAnAnnn 

L. ( 

uuuuuuuiuiiii 
000000001101 
000000001010 0 
0000000001101 

C K 
X 

45 

189.75 

000000000011 101 
00000000001101 
000000000000 010 
000000000000 000 
uuuuuuuuuuuu uI uu 
000000000000 0000 
000000000000 0100 
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1.10011/1101 =1 
2.1*1101 = 1101 

3.10011 - 1101 = 110 

etc. 
Note again that the number of cycles through the algorithm depends on the 

width of the dividend. In this example the dividend is 16 bits wide, hence it takes 16 

cycles to complete the calculation. Also, ifx fractional bits are required from the result, 
then the dividend needs x zeroes padded onto the end. 

The division method shown here is a non-restoring technique [20] which 
means that the partial remainder is never restored to its previous value. The divider 

designed for HDS is a full parallel, unrolled implementation that offers high 

throughput but with the expense of using more logic. In [22] a non-restoring divider is 

implemented using a bit serial/word parallel approach which offers a smaller 
implementation for slower data rates. There are restoring techniques [6] where the 

partial remainder is restored to a previous value if it is found to be negative. However, 

this type of algorithm uses more operations and is less efficient than a non-restoring 
technique. Another technique that produces 1 -bit of the quotient per iteration is SRT 
division which refers to Sweeney, Robertson [28] and Tocher [32] who independently 
discovered the same algorithm around 1958. SRT division is similar to non-restoring 
division, but it uses a lookup table based on the dividend and the divisor to determine 

each quotient digit. It is a popular method for floating-point division on 
microprocessors. Finally, the Newton-Raphson [35] and Goldschmidt [I I] algorithms 
differ from those already discussed in that they start with an estimate of the quotient 
and then proceed to generate a more accurate estimate with each iteration. These 

techniques can produce a result faster than the 1-bit per iteration schemes already 
discussed but they tend to be avoided in DSP due to the fact that the number of 
iterations required to generate a desired level of accuracy cannot be pre-detennined 
easily. 
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6.2 Specification 

The specification that was originally drawn up for the development of a Divider core 
for HDS included the following requirements: 

Develop a parameterisable VHDL core able to: 

- Perform division on any combination of inputs using signed fixed point and 

unsigned integers (HDS does not support unsigned fixed point data). 

- Return either signed fixed point of unsigned integer output at the request of the 

user. 

* Allow the user to specify output parameters such as the number of integer and 
fractional bits with the option to truncate, round or saturate. 

- Be able to pipeline to increase throughput. 

Develop a C++ model able to: 

- Mimic the VHDL output exactly, hence must be bit and cycle accurate. 

6.3 The Hardware Implementation 

In this section the hardware implementation that was designed for calculating long 

division is discussed. The architecture is based on the long division technique 

discussed earlier. 

6.3.1 The Top Level 

The Divider core has a fixed number of 1/0 ports which include input ports for the 

Dividend, Divisor, Clock, Enable and Reset signals. The output ports are for the 

Quotient and Ready signals. To allow the core to be parameterisable, generic 

parameters are used within the VHDL. Hence, information on the width and data type 
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of the Dividend, Divisor and Quotient signals is passed to the generics as well as 

whether rounding, saturation or truncation is to be used. A summary of the information 

used to configure the top-level of the Division core can be seen in Figure 6.1 below. 

All data signals 
Generics: 

are parallel 
1/0 widths & data types 

Round, Sat, Trunc. 

Dividend (INA) 01 

Divisor (INB) 10 
Fixed Point Divider 

Clock 10 (FXPDiv. vhd) 
Enable 

Reset 
Figure: 6.1: Fixed Point Divider Top Level 

6.3.2 Inside The Fixed Point Divider 

Quotient (Qout) 

Ready 

Inside the divider there are several steps that must be carried out to allow the output to 
be generated correctly. Although the binary division example shows the division 

algorithm to be fairly straight forward, it does not illustrate how signed division, 

rounding, saturation or truncation is handled. Of course, all these options must be 

handled within the divider core. In Figure 6.2 the sequence of steps that are carried out 

within the divider are illustrated. 
Convert to Compute unsigned 

INA 
unsigned quotient Correct Convert to specified 

I sign output format 

234 
INB sIvRes 

Convert to 
unsigned Figure: 6.2: Divider Sequence Of Operations 
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Step 1: At this stage the numerator (INA) and the denominator (INB) are 

converted to equivalent unsigned numbers if they are in 2's complement format. 

Hence, negative signed data must be converted to equivalent unsigned values. 

Step 2: The unsigned quotient is computed using the algorithm shown in the 

example earlier. Note that this section of the divider is covered in greater detail 

in the following subsection. 

Step 3: Here, the unsigned quotient is converted back into a signed number if 

either of the inputs were signed. Of course, the sign of each quotient must be 

corrected too as some will be negative and some positive signed values. The 

VHDL signal at the output of this stage is sIvRes. 

Step 4: Finally the s1vRes output, which at this stage is signed, unless both inputs 

were unsigned, is converted into the desired output format specified by the user. 
Hence, if the user has chosen to Round and/or Saturate the output, it will occur 
here. There are some important points to note about the signals entering and 
leaving this stage of the divider. Firstly, the number of integer bits in the s1vRes 

signal are exactly sufficient to avoid overflow. This is precomputed and will be 

discussed in the following subsection. The number of integer bits that finally exit 
the divider is specified by the user. Therefore, at this stage either truncation or 

sign extension is performed depending on the number of bits specified. This 

means the user must be aware that they are responsible for maintaining signal 
integrity. If they choose to have an output signal with only 2 integer bits but a 

minimum of 6 are required to avoid overflow then signal integrity will be 

compromised. It is not possible to only generate the number of integer bits that 

are specified by the user. This is because the divider generates the result MSB 
first. Hence, the full integer result is computed and then converted to the user 
specified format. The number of fractional bits that exist within s1vRes is equal 
to the desired output fractional width if Rounding is not selected. If Rounding is 

selected, an extra fractional bit will exist to allow rounding to occur. Therefore, 
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if 8 fractional bits are required from the output but Rounding is enabled, then 9 

fractional bits will exist in the sIvRes signal. The result from the divider will of 

course have only 8 bits after rounding has been performed. Figure 6.3 shows the 

Fixed Point Divider parameters window where the width of the integer and 

fractional result is specified. The option to Round and Saturate is also shown. 

Fixed Point Dividei 

FXP I FXP Analyser I HDS About 

- Fixed point parameters---------- -- -- ---- 

Variable All variables 
to this size 

Integer Size (bits) Set All 

Fraction Size (bits) SetAll 

Saturate Mode Set All 

Unsigned Integer Set All 

Rounding Set All 

iteepest ascent F-0 K -1 Apply 
zigival proccssin Q 

Figure: 6.3: Fixed Point Divider Parameters 

6.3.3 Computing The Quotient 

After the numerator and denominator signals have been converted into unsigned 

values, they are used to compute the unsigned quotient. In this section the hardware 

that is used to do this shall be focussed on. 
Before the hardware is discussed, the number of bits that are required to 

represent the integer part of the result without overflow occurring is important to know. 
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As the division algorithm generates the most significant bits (MSB) of the quotient 
first, it is vital that enough iterations are performed to at least allow the full integer part 

of the solution to be generated. By using equation (6.1), the number of integer bits 

required can be easily computed. 

for signed division: ±(x'y) 
= ±(x +b+1, ?) 

± (a, b) 
(6.1) 

for unsigned division: (x'y) 
= (x+b,? ) (a, b) 

where ± (x, y) represents a signed number with x integer and y fractional bits. 

This can be proven by considering an example. Consider the following 

division: 

Consider: ±(7,3) 
0 

largest 
= -64 - : F2048 -requires-+ ±( 13, ?) 

+(3,5) smallest ±0.03125 

Consider: (7' 3) 
No 

largest 
= 

127.875 
= 4092 -requires-* ( 12, 

(3,5) smallest 0.03125 

Figure: 6.4: Quotient Integer Width 

Note that the number of fractional bits cannot be worked out in the same way. For 

example, 1/3 = 0.33333..., which recurs forever requiring an infinite number of 
fractional bits. 

In the fixed point divider, an unsigned division is computed and the result is 

converted back into a signed number if required. Hence, the number of iterations 

through the algorithm is worked out according to the following: 

Iterations = INA Int. Width + INB Frac. Width + Desired Frac. Width 

Iterations required to Iterations required to 
generate the integer part generate the fractional part 

of the quotient of the quotient 
'0 INA = numerator 

INB = denominator Note: if Rounding is enabled, an extra 
fractional bit is computed 

Figure: 6.5: Required Iterations for Division Calculation 
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If the user does not require any fractional bits, then at least the full integer result will 
be computed. Also, if the user specifies that the output is to be Rounded, then an 

additional fractional bit will need to be computed and so one extra iteration will be 

performed. 
The hardware used to compute the unsigned quotient is made up of a series of 

cells. Each cell computes one iteration of the division algorithm and thus generates one 
bit of the quotient. Hence, the number of cells is equal to the number of iterations. So 

for example, if the division was ±(1,4) /± (2,2) then 3 cells would be required to 

compute the integer part of the quotient, although once the result is converted back into 

signed format, there will be 4 integer bits. For this example, consider that the user 

wants 0 fractional bits of accuracy, but has enabled Rounding on the output. This 

means that 1 fractional bit will need to be computed so that Rounding can be 

performed, although the final result will have 0 fractional bits. Thus, a total of 4 cells 

are required to compute the unsigned quotient. This can be seen in Figure 6.6. Note that 

this figure has omitted the control signals (clock, reset, enable, ready) for clarity. 

Cell I Cell 2 Cell 3 Cell 4 
diviLdend 

fisor, d fsl 

dividcnd-oul dvend-in dvend-out dvend-in dvend_out -fdvend_in dvend-OUt o clout 

or divisor-oUt divis in _ divisý out ivisor, divis oUt divis oUt divis-Out divi 
_ out 

rem 
1 131: 11: .............. . +Iremd in remd citili .................. . 01 remd in rem 11, oild ....... .... .... ýremd in 

neg out cg_in neg_put --ý ncgjn ne&_in ne"ut ---I. neg 

-- 
- 

9! -sol-U. 
'r 4 

out 

MSB LSB 
3 integer bits generated I fractional bit generated 

Figure: 6.6: 4 Cells Required to Compute 3 Integer Bits and I Fractional Bit 

As mentioned previously, a negative flag must accompany each data sample pair to 
indicate whether or not the resulting unsigned quotient must be converted into a 

negative signed number. Figure 6.6 shows this flag passing through each cell 

accompanying the quotient that it relates to. The other signals passing through each cell 

are used as follows: 

- dividend out., is used to store the developing quotient as each bit is generated. 
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divisor out: is simply the divisor passing through each iteration. It does not 

change during the computation. 

remd out: is used to store the partial remainder as it is generated at each 
iteration. 

To look at the hardware that actually computes the division algorithm requires 

us to look within a cell. Figure 6.7 shows that a cell is made up of an adder, which is 

actually set up to subtract (invert bits of divisor_in and add 1), a comparator, two 

multiplexers and registers on each output signal. The registers in each cell are required 

to fully pipeline the design. 

1 D. t3 im Gl)DI 1 

divisor-out[3: 01 

actually a subtractor 

+ 

temp_l 12: 01 

Dr-vl O= 
it 

remd-oLgi2: 01 

unl-remdshl 
t divWend_otA_P(4. dividend 

- otA[4. D] 

is divisor <-- partial remainder? 

unl-m-l 

Figure: 6.7: Hardware Within A Division Cell 

Note that two versions have been written. The first is for a fully pipelined divider, as 

shown in Figure 6.7, and the second implementation is for a fully combinatorial design 

where the pipelining registers on each data path in Figure 6.7 do not exist. 
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To understand how this hardware is used to generate the unsigned quotient, it 

is best to consider an example. Take the case ±(5,0)1±(5,0) and consider that the 

user has specified 0 fractional bits from the output with no Rounding. Hence, 5 cells 

are required to compute the unsigned quotient. Consider the division of 11/4. The 

individual steps that are carried out within each cell are now stepped through. Note that 

the ampersand (&) denotes the concatenation of two numbers. 

Division Cell 1: 

dividend_in =0 10 11, divisor_in = 00 100, initial remdsh I= 0000 & dividend_in(msb) 

= 00000; 

divisor_in <= remdshl = False=> dividend_out = dividend_in &0= 10110 

=> remd_out = remdshl. (msb removed) = 0000 

Division Cell 2: 

dividend_in = 10 110, divisor_in = 00 100, remd_in = 0000; 

remdsh I= remd_in & dividend_in(msb) = 0000 1 

divisor-in <= remdshl = False=> dividend_out = dividend_in &0= 01100 

=> remd_out = remdsh I (msb removed) = 000 1 

Division Cell 3: 

dividend_in =0 1100, divisor_in. = 00 100, remd_in = 000 1; 

remdshl = remd_in & dividend_in(msb) = 00010 

divisor_in <-- remdsh I= False=> dividend_out = dividend_in & O= I 1000 

=> remd-out = remdsh I (msb removed) = 00 10 

Division Cell 4: 

dividend_in =I 1000, divisor_in = 00 100, remd_in = 00 10; 

remdsh I= remd_in & dividend_in(msb) = 00 10 1 

divisor_in <= remdsh I= True=> dividend_out = dividend_in &I= 1000 1 

=> remd-out = remdshl(msb removed) - divisor_in(msb removed) 

= 0101 - 0100 = 0001 
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Division Cell 5: 

dividend_in = 1000 1, divisor_in = 00 100, remd_in = 000 1; 

remdshl = remd_in & dividend_in(msb) = 00011 

divisor_in <= remdsh I= False=> dividend_out = dividend_in &0= 00010 

=> remd-out = remclsh I (msb removed) = 00 11 

And so the result is: dividend_out = 000 10 =2 

remd_, out = 0011 =3 

6.3.4 Pipelined Design Latency 

The latency through the pipelined design is dependent on the width of the numerator 

and denominator, and on the number of fractional bits required from the output. There 

are two registers that exist in the data path before the numerator and denominator reach 
the stage where the quotient is computed. These registers are used to break up the data 

path before the quotient is generated. Within the quotient generator there is a single 
delay in each cell. Hence, the total delay here is equal to the number of cells. Finally, 

there is a single delay before the quotient is passed out. The latency through the data 

path can be seen in Figure 6.8. 

quotient generator 
INA---* 

Z-celIs Z-1 Quot 
INB I f, 

Figure: 6.8: Hardware Latency 

Thus the latency is equal to: 

latency =2+ number of cells +1 (6.2) 

6.3.5 Folding The PipeHne 

One feature of the divider that was researched but never fully implemented due to the 
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limitations of SystemVue, was the ability to optimise the core in terms of speed and 

area. The architecture illustrated so far is fully unrolled, thus for the pipelined divider 

the maximum data rate is equal to the maximum clock speed. This is the fastest 

implementation, however it is also the largest in terms of area. If area is the key 

constraint, rather than speed, it would be useful to optimise the design for this situation. 
By considering an example it is possible to see just how this could be 

achieved. For example, if 4 cells are needed to compute a quotient, the architecture 

would look like that shown in Figure 6.9: 

Cell I Cell 2 Cell 3 Cell 4 

qout 

rem 

However, by "folding" the structure in two, the number of cells is halved. Then if the 

results from Cell 2 are fed back into Cell I the correct result can still be obtained. The 

trade-off is that data can only be fed into the structure at half the clock rate. Therefore, 

although the number of cells has been halved, the data rate has been halved too. If area 
is the key constraint rather than speed, then this is a better design than the fully unrolled 

approach. Figure 6.10 below illustrates the "folded" structure. 

qout 

rem 

I control counter F -J Figure: 6.10: Folded Structure 

Folding is not straightforward though. A situation can occur where the feed ' 

Figure: 6.9: 4 Cells Fully Unrolled 
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back data arrives at the same time as new data. Hence, a rule must be followed to avoid 
this situation occurring. The number of delays through the feedback section can be 

denoted as x and the number of clock cycles between arriving samples as y, then to 

avoid data collision, x and y must be coprime. This means that x and y must have no 

common factor other than 1 and - 1. To illustrate what happens when this rule is broken, 

consider the following scenario where x=4 and y=6, which are clearly not coprime. 
As can be seen in Figure 6.11, data sample 3 (denoted by triangle) arrives at the 

multiplexer feeding the quotient generator at the same time as data sample I (denoted 

by circle) is fed back for the third time. Clearly this causes a problem as only one of 
these samples can enter the quotient generator, which means that one piece of data will 
be lost. By obeying the coprime rule this situation is avoided. 

Unfortunately due to limitations with SystemVue the Folding option was 

never fully implemented. The problem with SystemVue was that it was not possible to 
have a token with an input rate of x Hz and an internal rate higher than this, which is 

required for such an architecture. 
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Number of delays in feedback loop =x=4 
Number of cycles between data samples =y =6 

new data every 
6 clock cycles - unsigned 

quotient 

data sample I=0 
data sample 2=0 
data sample 3=A 

delay 4t 
;p ýp ýp 

A 

delay 3-- (21 

delay 2-- ; 51 0/ collision 

delay I 
rAK 
UO 

23456789 10 1 
+ve clk edges 

Figure: 6.11: Data Collision in Folded Divider 

6.4 The Software Implementation 

In this section the software model that was written in C++ to simulate the hardware 

divider is discussed. The code is used within a SystemVue token, which can be seen in 

collision 
quotient generator 
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Figure 6.12 along with the token parameters window: 

FNpDiy 

FXP I FXP Analyse( IHDSI About I 

Fixed point parameters - 

Variable All variables 
to this size 

Integer Size (bits) Set All 

F- Fraction Size (bits) Set All 

Saturate Mode Set All 

Unsigned Integer Set All 

Rounding Set All 

ýepest ascere? Apply 

Figure: 6.12: Divider Token & Token Parameters 

6.4.1 Pseudo Code for Software Division 

59 

To compute binary long division in software, the following pseudo code was 
developed. As was illustrated in the decimal and binary long division examples given 

earlier, the number of cycles through the algorithm is determined by the width of the 

dividend. 

The remainder variable is used to build the partial remainders at each stage of 

the algorithm and the dividend is used to store the quotient as it is generated. The 

divisor does not change during the algorithm. By shifting the remainder variable left I 

position (step 1) room is created in the LSB to add aI (or not) depending on what the 
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initially remainder =0 

for(i = 0; i< dividend_width; i ++) 

remainder = remainder << 1; //step I 

if (dividend msb = 1) //step 2 

remainder ++; 

dividend = dividend << 1; //step 3 

if (divisor <= remainder) Hstep 4 

dividend ++; 

remainder = remainder - divisor; 

60 

MSB of the divisor is at that point in the algorithm (step 2). Step 3 is used to shift the 

dividend left I bit so that the MSB is updated for the next iteration. Step 4 deals with 

whether or not the divisor will divide into the partial remainder. If it will, aI is 

generated in the quotient, which the dividend holds. Also, the new partial remainder is 

calculated by subtracting the divisor from the current remainder. 
To illustrate how this algorithm maps to the long division technique shown 

earlier requires stepping through an example. For this, consider the example 30/4. 

30/4 =II 110/100 

00111 =7 
100111 10 

00 
ill 
100 
0111 
01001 
00110 
00100 
00010 
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I st cycle: step I: remainder starts at 0 

step2: dividend msb =1 => remainder =I 

step3: dividend= 11100 

step4: does divisor (100) divide into remainder (1)? No 

2nd cycle: step 1: remainder = 10 

step2: dividend msb =I => remainder =II 

step3: dividend = 11000 

step4: does divisor (100) divide into remainder (11)? No 

3rd cycle: step 1: remainder =I 10 

step2: dividend msb =I => remainder =III 

step3: dividend = 10000 

step4: does divisor (100) divide into remainder (I 11)? Yes 

dividend = 1000 1 (use dividend to store result) 

remainder = 111 - 100 = 011 

4th cycle: step 1: remainder =0 110 

step2: dividend msb =1 => remainder =0 111 

step3: dividend= 000 10 

step4: does divisor (100) divide into remainder (0 111)? Yes 

dividend = 00011 (use dividend to store result) 

remainder = 0111 - 100 = 0011 

5th cycle: step 1: remainder = 00 110 

step2: dividend msb =0 => remainder = 00 110 

step3: dividend = 00 110 

step4: does divisor (100) divide into remainder (00110)? Yes 

dividend = 00 111 (use dividend to store result) 

remainder = 00110 - 100 = 00010 

Hence, the result is correct: 

- quotient= dividend= 00111 = 7, remainder= 00010 =2 
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6.4.2 Full C++ Model 

The pseudo code shown in Chapter 6.4.1 is used to compute unsigned division. 

Therefore, to use it with signed inputs requires the inputs to be converted into unsigned 

numbers and then the result corrected, similar to the way the VHDL works. There are 

several steps within the full model which are summarised below and in Figure 6.13. 

- Step 1- At this stage if the denominator is equal to 0, then a precomputed result 
is returned which matches with the VHDL output for this event. 

- Step 2- The numerator and denominator are now converted to unsigned numbers 

and the isResulfNegafive flag is set appropriately. 

- Step 3- The number of loops that are required to compute the result is covered 
in detail in the following subsection. 

- Step 4- The unsigned result is computed using a C++ version of the pseudo code 

shown earlier. 

- Step 5: The quotient is converted back into signed (+ve/-ve) if necessary and then 

retumed. 
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pass in data & parameters for: 
numerator. denominator. result 

r----I------I 
I handle divide by 0 Step II return result handle divide by 0 due to underflow 

convert inputs to unsigned numbers Step 2 
set isResultNegative flag 

Step 3 compute number of loops require 

Step 4 compute unsigned division result 

Step 51 convert result to signed (+ve/-ve) if n-eq-uire-dý--* return result 
L----------------- 

Figure: 6.13: DivideFXP Data Flow Diagram 

6.4.3 How Many Loops? 

The algorithm shown earlier is used as the basis of the full software model. However, 

the number of times that the algorithm is looped around varies depending on the 

numerator and denominator widths and with the number of fractional bits in the output 

requested by the user, as can be seen in (6.3). Before discussing the derivation of the 

equation for the number of loops, it is important to realise that at this stage the 

numerator and denominator are stored in 64 bit unsigned integer variables. 

For the case* 
t (X, Y) wheref fractional bits are required in the output ±(a, b) (6.3) 

loops = 64 +b +f-y 

The derivation of (6.3) is now given below: 
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4 64 loops 
*- 64 bits 

numerator P 10 00000.... xxxxyyyy 

result 101000000 ..... rrrrrrrr 

64 

For 64 loops of the divider 
algorithm, x+y bits of the 
result will be generated. 

However, the number of bits that are required from the result are: x+b +f bits. 
Therefore, the difference that needs to be accounted for is: 

difference = (x +b +J) - (x + y) =b +f- y 
This means that the total number of loops required is: 

loops = 64 + difference = 64 +b +f-y 

6.4.4 Replacing The Binary Point 

The output from the division algorithm is contained in an unsigned 64 bit variable. At 

this point it is converted into a signed fonnat if either of the inputs was signed 

otherwise it is left unsigned. Before the result is returned it is vitally important that the 

binary point is inserted in the correct place. However, it has already been shown that 
for signed and unsigned division, the result takes the format given by (6.4). 

:ý ýx'y) 
=+ (x +b+ Ij ) 

± (a, b) - 
(X'Y) 

= (x + b, f ) 
(a, b) 

6.4.5 Simulating The Delay 

(6.4) 

As the C++ model must simulate the hardware divider, it is important to replicate the 
delay between the first sample entering the core and the corresponding result reaching 
the output. This delay is called latency. In this case the latency is a function of the width 

of the inputs and the desired fractional output. The relationship is given in (6.5) which 
is another way of writing (6.2). 
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latency =x+b +f+ 3 (6.5) 

Again, if the user has enabled Rounding on the output, then an additional fractional bit 

1) will be computed and consequently the latency will increase by 1. 

6.4.6 Performance 

To give an indication of how many resources and how fast the hardware Divider can 

operate at, several instances were implemented using the following: 

- Target Technology: Xilinx Virtex II Pro XC2 VP30 

o Synthesis: Synplify Pro 7.1 

* Map and Place & Route: Xilinx ISE 8.1 

Table 4 and Table 5 show the results for the pipelined and non pipelined cores 

respectively. In both cases, dividers were implemented with 48,32 and 16 bits in the 
inputs and the same number of bits on the output. As would be expected, the pipelined 
implementations are bigger and significantly faster than the corresponding non 

pipelined implementations. 

Divider 1/0 Slices LUTs Clock Speed 

48 bits 6895 6930 >100 MHz 

32 bits 3027 3066 >104 MHz 

16 bits 746 769 >134 MHz 

Table 4: Pipelined Divider Results 

Divider Impl. Slices LUTs Clock Speed 

48 bits 2552 4882 >2 MHz 

32 bits 1184 2224 >4 MHz 

16 bits 315 579 >9 MHz 

Table 5: Non Pipelined Divider Results 
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6.5 Direct Square Root 

Performing a direct square root on an integer can be achieved using a pencil and paper 

technique. As fixed-point binary numbers can be considered as integers it is possible 

to use the paper and pencil method to calculate the square root of fixed-point binary 

numbers, although the binary point must be tracked and re-inserted to the result. 
As with division there are fast iterative techniques that require an estimation 

of the root to begin the algorithm such as the Goldschmidt technique [10]. However, it 

is not easy to predict the accuracy of such techniques for a given number of iterations 

and hence a direct approach was taken. 

Decimal Square Root 

The paper and pencil technique for performing a direct square root can be surnmarised 
by the following steps: 

1. split argument into pairs (starting from left hand side) 
2. write down I st square root by inspection 

3. subtract its square from I st two digits 

4. draw down next two digits to obtain remainder 
5. double square root and append 0 (= approximate divisor) 

6. estimate next root digit by dividing remainder by approximate divisor 

7. substitute next root digit for last digit of approximate divisor (= divisor) 

8. verify next root digit by dividing remainder by divisor. If result = next root 
digit, ok, otherwise backtrack 

9. multiply next root digit by divisor 

10. subtract result from remainder 
11. repeat from step 4 until done 

The best way to illustrate the direct method for calculating a decimal square root is by 

considering an example. Consider the calculation ý-12-3456.0000: 
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351.3 64 result 
3 12 56. 

-- 
00 

65 334 

-5 701 95 
701 

7023 25500 
21069 

70266 443100 
421504 

21504 

Working through the steps it is clear how the above working is obtained: 
1. split argument into pairs 
2. JI-2 =3 (square root) 

2 3.12-3 =3 
4. remainder =3 34 

S. 3*2 = 6, append 0= 60 (= approximate divisor) 

6. L334/60J =5 
7. substitute 5 into 60 = 65 (= divisor) 

8. L334/65j = 5, therefore ok (no need to backtrack) 

9.65*5 =325 
10.334 - 325 =9 
4. remainder =9 56 

5.35*2 = 70, append 0= 700 

6. L956/700J =1 
7. substitute I into 700 = 701 

8. L956/701 J=I, therefore ok (no need to backtrack) 

9.701*1 = 701 

10.956 - 701 = 255 

etc. 

67 

One point to note from this working is that the number of cycles through the algorithm 
depends upon the number of digits within the operand. More specifically, it is clear that 

each pair of operand digits yields one digit of the root. Hence, the number of cycles 
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through the algorithm is equivalent to the number of pairs formed from the argument. 
Another important point to note from the above example is that the accuracy 

of the result can be increased by padding the argument with zeroes. Without padding 

the argument, the integer result (3 5 1) would only have been obtained. Therefore, with 

every two zeroes that are padded to the argument, a ftulher decimal point of accuracy 
is obtained. 

Binary Square Root 

The direct method for calculating a binary square root is easier than decimal. This is 

now explained via an example where F5-. 75 is computed: 
1 0.0 1=2.25 
0101.1100 

olT - 
lo, oo o, 

T 
1001000111 

00010001 10001 0,0,1"o 100001011 
The steps involved with this working are: 

1: split the argument into pairs 
2: as long as the first pair of bits # 0, the first root is always =1 
3: subtract root from 1 st pair (0 1 -0 1) to give partial remainder (0) 

4. append next pair (0 1) to partial remainder to form remainder (0 0 1) 

5. append 01 to the root (1) to form divisor (10 1) 

6. divisor > remainder therefore root =0 
7. append next pair (11) to remainder to from new remainder (0 01 11) 

8. append 01 to the root (10) to form divisor (10 0 1) 

9. divisor > remainder therefore root =0 
10. append next pair (00) to remainder to from new remainder (0 01 1100) 

11. append 01 to the root (100) to form divisor (1000 1) 

12. divisor < remainder therefore root =1 
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13. subtract divisor from remainder to form partial remainder (= 10 11) 

6.6 Specification 

The specification that was developed for a Square Root core to be included within the 
HDL Design Studio library included the following: 

Develop a parameterisable VHDL core able to: 

Compute the square root of either unsigned or signed fixed point inputs. 

Unsigned fixed-point numbers are not supported in HDS, thus to have fixed- 

point square root functionality meant that signed fixed-point numbers must be 

supported. 

- Return the output in either signed fixed point or unsigned integer format at the 

request of the user. 

- Allow the user to specify output parameters such as the integer and fractional 

widths of the output. Also, the option to Round and Saturate should be available. 

- Be pipelined to increase throughput. 

Develop a C++ model able to: 

- Mimic the VHDL exactly, hence must be bit and cycle accurate. 

6.7 The Hardware Implementation 

In this section, the hardware implementation that was designed for computing a direct 

square root is presented. The architecture is derived from the illustrated paper and 

pencil technique. 
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6.7.1 The Top Level 

The Square Root core has a fixed number of 1/0 ports which include input ports for the 
Input, Clock, Enable and Reset signals. The output ports include the Sqrt and Ready 

signals. Similar to the Divider, generic parameters are used within the VHDL to pass 
information on the width and data type of the input and output data signals as well as 

whether rounding, saturation or truncation is to be used. A summary of the information 

used to configure the top-level of the Square Root core can be seen in Figure 6.14. 

Generics: 
1/0 widths & data types 

All data signals 
Round, Sat, Trunc. 

are parallel 
II 

Input 

Clock 
Fixed Point Square Root 

Enable 

I 
(FXPSqrt. vhd) 

Reset 

Figure: 6.14: Fixed Point Square Root Top Level 

6.7.2 Inside The Fixed Point Square Root Core 

Inside the Square Root core there are several steps that are carried out to allow the 

result to be generated correctly. In Figure 6.15 the sequence of operations are shown. 

- Step 1: At this point the input is either truncated or padded with zeroes to produce 

an input that has twice as many bits as the desired output. This is discussed in 

more detail in the next subsection. 

- Step 2: Here the square root is computed using an algorithm based on the paper 
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and pencil technique shown earlier. 

- Step 3: As with the Divider, a final stage exists to convert the output to the 

desired format which may include Saturation and/or Rounding. 

Compute Sqrt Convert to specified 
Truncate/Pad Input output format 

Input 01203o Sqrt 
slvRes 

Figure: 6.15: Square Root Sequence Of Operations 

6.7.3 Truncate/Pad Input 

Depending on the width of the input fractional part and the desired output fractional 

width, the input may be either truncated or padded with zeroes. Truncation of the input 

fractional bits will occur if there are more fractional bits than are needed to produce the 

required level of accuracy. So for example, if the input has 10 fractional bits then the 

output will have 5 fractional bits. But if only 2 fractional bits are required from the 

output, then only 4 fractional bits are required at the input, not 10. Thus by truncating 

the input, computing unnecessary bits is avoided. Conversely, if the input has only 4 

fractional bits but the user requires 10 fractional bits from the output, then the input 

needs padded with 16 zeroes so that 20 fractional bits exist in the input. By doing this 

the output will have 10 fractional bits of accuracy. 

6.7.4 Computing The Square Root 

Unlike division, it is impossible for the integer width of the output of a square root to 

be greater than the integer width of the input. The integer output width obeys the 

following for signed and unsigned inputs: 
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for signed input: F± -(x, y) = (-! + 1, ?) 
2 

(6.6) 
for unsigned input: I-(xy) = (1, ?) 2 

This can be shown by considering the following example. Consider the following 

division: 

The number of fractional bits cannot be worked out in the same way, as for many inputs 

an infinite amount of fractional bits may be required. Hence, the number of fractional 

bits to be calculated must be specified by the user. 
When the Square Root algorithm was discussed earlier, it was clear that for 

every 2 bits of the input, an output bit was generated. This is an important point to 

remember when calculating the number of iterations required to generate a result with 

a particular resolution. The algorithm for computing the number of iterations is given 
below: 

Iterations = 
Input Int. Width + Desired Frac. Width 

2 

Iterations required to tions required to 
generate the integer part generate the fractional part 

of the result of the result 

Note: if Rounding is enabled, an extra 
fractional bit is computed 

Figure: 6.16: Required Iterations for Division Calculation 

So that there are twice as many bits in the input as there are iterations, the input may 
be either truncated or padded with zeroes. So for example, if the input has the format 

±(4,10), then the natural output would be ±(3,5) which would require 7 iterations. 

However, the user may only want 2 fractional bits from the output, thus the input would 
be truncated to a± (4,4) format to cut down the number of iterations to 4 and save 

computing unnecessary bits. Conversely, the user may require 10 fractional bits from 
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the output, thus the input would have to be padded to a ±(4,20) format and 12 

iterations would be required. If the user does not require any fractional bits, then at 
least the full integer result will be computed. Also, if the user specifies that the output 
is to be Rounded, then an additional fractional bit will be computed, thus one extra 
iteration will be performed. 

Like the divider, the hardware used to compute the unsigned quotient is made 

up of a series of cells. Each cell computes one iteration of the algorithm and thus 

generates one bit of the result. Hence, the number of cells is equal to the number of 
iterations. So for example, if the input format was ±(4,2) then 2 cells would be 

required to compute the integer part of the result. For this example, also consider that 

the user wants I fractional bit of accuracy and has enabled Rounding on the output. 

This means that 2 fractional bit will need to be computed so that Rounding can be 

performed, although the final result will have I fractional bit. Thus, a total of 4 cells 

are required to compute the result. This can be seen in Figure 6.17. Note that this figure 

has omitted the control signals (clock, reset, enable, ready) for clarity. 

Cell I Cell 2 Cell 3 Cell 4 

sqrt 

Figure: 6.17: 4 Cells Required to Compute 2 Integer Bits and 2 Fractional Bits 

The signals passing through each cell are used as follows: 

,, root_out: is used to store the developing result as each bit is generated. 

temp_out: is simply the input passing through each iteration. Each time it is 

shifted left two places thus the 2 MSBs are ready for the next iteration. 

9 remd out. is used to store the partial remainder as it is generated at each 

MSB II LSB 
2 integer bits generated 2 fractional bits generated 
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iteration. 

The actual hardware within a cell is shown in Figure 6.18. Note how similar 
it is to the hardware used in the Divider cell. It is made up of an adder, which is actually 

set up to subtract (same as divider), a comparator, a multiplexer and registers. 

Two versions have been written, one fully pipelined and one fully combinatorial. 
Figure 6.18 shows the hardware within a pipelined cell. The combinatorial version is 

exactly the same although there are no registers within the cells. 

6.7.5 Pipelined Latency 

The latency through the pipelined design is dependent on the width of the input and on 

the number of fractional bits in the result requested by the user. There are two registers, 

each with a single delay, that exist in the data path before the input gets to the stage 

where the square root is computed. These registers break up the data path between the 

Figure: 6.18: Hardware Within A Square Root Cell 
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input being truncated/paddcd and entering the square root generator. Within the square 

root calculator there is a single delay in each cell. Hence, the total delay here is equal 
to the number of cells. Finally, there is a single delay after the result is converted to the 

final output format. The latency through the data path can be seen in Figure 6.19. 

square root generator 

-z-, TF- Z-cells 

Figure: 6.19: Hardware Latency 

Thus the latency can be computed according to: 

latency =2+ number of cells +1 (6.7) 

6.8 The Software Implementation 

This section presents the software version of the Square Root core, which was written 
in C++ to model the hardware design. This implementation must be cycle and bit 

accurate when compared to the hardware. The code is included within a SystemVue 

token, which can be seen in Figure 6.20. 
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al 

FXP FXP Analyser HDS About 

-Fixed point parameters 

F&I All variables Variable 
FmpScpt 

\ 
to this size 

5 Integer Size (bits) Set All 

15 Fiaction Size (bits) Set All 

F Saturate Mode S et All 

F Unsigned Integer Set All 

F Rounding Set All 

Figure: 6.20: Square Root Token & Token Parameters 

6.8.1 The Basic Algorithm 

Pseudo code representing an algorithm for calculating direct square roots is now givcn-. 

Initially the variables rem, root and divisor = 0. 

for (i=O; i< (input_width); i++) 

root = root << 1; 

rem = ((rem << 2) + (input >> (Input_width - 2))); 

input = input << 2; 

divisor= (root<< 1) + 1; 

if (divisor <= rem) 



CHAPTER 6- Division & Square Root Core Development 77 

rem = rem - divisor; 

root++; 

This code is repeated n times, where n is the width of the input. Hence, the output is n 
bits wide. In the full version of the code, the number of iterations varies depending on 

the width of the input and the desired number of fractional bits in the output. 

6.8.2 Full C++ Model 

For negative and zero inputs the pseudo code shown earlier will produce results that 

differ from the hardware. Therefore, these cases must be identified and the appropriate 

result returned without using the square root algorithm. There are several steps within 

the full model which are summarised below and in Figure 6.21. 

" Step I- At this stage if the input is negative or equal to 0, then a precomputed 

result is returned which matches the VHDL output for these events. 

" Step 2- The number of loops that are required to compute the result is covered 
in detail in the following subsection. 

" Step 3- The square root is computed using a C++ version of the pseudo code 

shown earlier. 

Step 4- The result is converted to a signed format if the input was signed. Also, 

Saturation and/or Rounding are performed if requested. Note also that the integer 

result may be extended of truncated depending on the number of integer bits 

requested by the user. Hence, it is entirely down to the user to request enough bits 

to fully represent the integer part of the result. 
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pass m data & parameters I-or: I 
invut. result 

I 

r 

step I 
handle FO 

handle F--ve 

step 2 

step 3 

- compute number of loops required 

- compute square root result 

step 4 [ýýesult to requested output formatý 

L---------------- 

return result 

return result 

Figure: 6.21: SqrtFXP Data Flow Diagram 

6.8.3 How Many Loops? 

78 

The number of times that the square root algorithm is repeated varies depending on the 
input width and the number of fractional bits requested by the user from the output. 
Before discussing the derivation of the equation for the number of loops, it is important 

to realise that at this stage the input is stored in a 64 bit unsigned integer variable. Also, 

SystemVue signals are stored in double precision floating point format, which means 

that the mantissa is 53 bits wide. Hence, the maximum number of bits that can be stored 
for a fixed point result is 53. The approach that was taken for the square root token was 

to always compute a 53 bit result and then truncate accordingly after. This was 

supposed to be a temporary measure, which would be replaced by an algorithm that 

computed only the desired number of bits (full integer width + desired fractional 

width) as is done in the divider. However, due to time constraints this was never carried 

out. 
The number of loops required to compute 53 bit results is given by 
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For the case: J±- -(x, y) 53 bit results are computed using: 

loops = 32 + mantissa width - 
ý+) (6.8) 

2) 

The derivation of (6.8) is now given below: 

4 32 loops 0 
4 64 bits ON 

input 0000000 .... xxxxvvvv For 32 loops of the sqrt 
algorithm, (x +y)12 bits 
of the result will be 
generated. 

result 000...... rrrr 

However, the number of bits that are required from the result are 53 bits. 
Therefore, the difference that needs to be made up is: 

difference = 53 - 
V) 

This means that the total number of loops required are: 
loops = 32 + difference = 32 + 53-( 

2 

A better algorithm for computing the number of loops required to only generate the 
desired number of bits is: 

For the case: J±--(xy) where f fractional bits are requested: 

loops = 32 +f-, E 
2 

The derivation of (6-9) is now given below: 

32 loops of the sqrt algorithm, gives (x +y)12 bits of the result. 
However, the number of bits that are required from the result are (x/2) +f bits. 
Therefore, the difference that needs to be made up is: 

x difference =j +f- 
ý- +2 V) f- '2 

This means that the total number of loops required are: 

(6.9) 

loops = 32 +difference = 32 +f- Y- 
2 
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6.8.4 Replacing The Binary Point 

The result from the square root algorithm is contained in an unsigned 64 bit variable. 

At this point it is converted into a signed format if the input was signed otherwise it is 

left unsigned. Before the result is returned it is vitally important that the binary point 

is inserted in the correct place. However, it has already been shown that for signed and 

unsigned inputs, the result takes the following respective formats, thus the binary point 
location can be found accordingly: 

ý, FI -(x, y) =± d' + i, f> 
JZ -xy) =(ý, f) 

6.8.5 Simulating The Delay 

As the C++ model must simulate the hardware square rooter, it is important to replicate 

the delay between the first sample entering the core and the corresponding result 

reaching the output. In this case the latency is a function of the width of the input and 

the desired fractional output. The relationship is given in (6.11) (see Figure 6.19). 

latency X +f+ 3 (6.11) 
2 

Again, it worth remembering that if the user has enabled Rounding on the output, then 

an additional fractional bit (f+ 1) will be computed in the divider and consequently the 

latency will increase by 1. 

6.8.6 Performance 

To give an indication of how many resources and how fast the hardware Square Rooter 

can operate at, several instances were implemented using the following: 

* Target Technology: Xilinx Virtex II Pro XC2VP30 
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- Synthesis: Synplify Pro 7.1 

9 Map and Place & Route: Xilinx ISE 8.1 

Table 6 and Table 7 show the results for the pipelined and non pipelined cores 

respectively. In both cases, square root cores were implemented with 48,32 and 16 bits 

in the input and the same number of bits on the output.. 

Sqrt 1/0 Slices LUTS Clock Speed 

48 bits 5835 8192 >100 MHz 

32 bits 2477 3623 >IOIMHz 

16 bits 610 L 930 >104 MHz 

Table 6: Pipelined Square Root Core Results 

Sqrt 1/0 Slices LUTs Clock Speed 

48 bits 3719 7171 >1 MHz 

32 bits 1606 3073 >3 MHz 

16 bits 397 777 >9 MHz 

Table 7: Non Pipclined Square Root Results 

A significant observation regarding the above results is that they are similar 

to that of the Divider, both in terms of the number of slices used and the maximum 

clock speed available. This is a surprising result as it has been shown that a square root 

can be carried out using approximately half the logic that a divider requires [31][20]. 

However, the reason that the square rooter is of similar size to the divider in this case 
is because of the use of generic parameters within the VHDL. Generics are used to 

parameterise the square root core. For example, they specify the width of the signals 

within each square root cell. The problem is that they must be set to be a fixed value 

and cannot vary for each cell. This means that the widths used for each cell must be set 

to the maximum that will be required by any particular cell (the final cell). Obviously 

this leads to a very inefficient design but as yet a solution has not been found. 
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Consequently, the square root core uses nearly the same amount of hardware as the 

divider, when in actual fact it should use approximately half the logic. 

6.9 Verification Of Cores 

The verification process for both cores involved two stages. The first was to make sure 

that the output from the cores was actually correct. Secondly, the software and 
hardware for each core had to be examined to make sure that the output from both 

implementations were bit and cycle identical. 

To verify that the output from the Divider and Square Rooter were correct, a 
floating point version of both functions was used. First of all the difference between 

the floating point reference solution and the fixed point solution is computed for each 
input. Then, for the case of a Truncated output, the magnitude of the difference is 

checked to see if it is ever greater than or equal to one LSB. If so, the fixed point core 
has failed otherwise it has passed. For the case of a Rounded output, the magnitude of 

the difference is checked to see if it is ever greater than one LSB/2. If so, the fixed point 

core has failed otherwise it has passed. This process was carried out for many cases 

where the full range of inputs and outputs were tested. Specific cases such as division 

by zero and the square root of negative numbers generated different outputs from the 
floating point design but this was expected. 

To verify that the software and hardware were bit and cycle identical required 

running many cases where the output from one implementation was subtracted from 

the other. If the result was zero for each sample then the latency and output for both 

implementation was identical, otherwise a problem would be identified. This process 

was automated via scripts due to the huge amount of testing required. It should be 

noted that this was not carried out as part of the EngD project and that other engineers 
involved in the development of HDS performed this task. 



Chapter 7 

CORDIC 

7.1 Introduction 

The CORDIC (COordinate Rotational DIgital Computer) algorithm is an iterative 

technique based on the rotation of a vector which allows many trigonometric and 

algebraic functions to be calculated. The key aspect of this method is that it is achieved 

using only shifts, additions/subtractions and table look-ups which map well into 

hardware and are ideal for FPGA implementation. The work presented in this chapter 
focusses on the effort to develop a closed form equation for analysing; the error in fixed 

point CORDIC systems computing vector magnitudes and cosines/sines. By doing 

this, the most efficient parameters required to produce a desired level of accuracy from 

such CORDIC systems could be found. One goal of this work was to compare 
CORDIC implementations to direct implementations computing the same ftinctions to 

see which were the most efficient. Hence, the division and square root cores developed 

for HDS were used as part of this assessment. 

7.2 COordinate Rotational DIgital Computer (CORDIC) 

The original work on CORDIC was done by Jack Volder [33] in the 1950's although 
this was limited to computing trigonometric functions with the purpose of developing 

83 
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a digital solution to real-time navigation problems. This work was then extended by 

John Walther [34] to provide solutions to a broader range of functions. Since then, 

much research has been carried out on the algorithm, with a thorough survey of this 

work with respect to FPGAs being published by Andraka [2]. The CORDIC algorithm 
has been used in applications such as calculators, math-coprocessors, radar signal 

processors and robotics. 
In this chapter the CORDIC algorithm is introduced as well as the problems 

associated with its use. These problems relate to finding the key parameters required 

to guarantee a desired level of accuracy from the output of CORDIC systems. 
However, for the cases of Vector Magnitude calculations and S ine/Cosine calculations, 

a technique has been developed to solve the aforementioned problems. The technique 

for both types of calculation is presented in sections 7.4 and 7.5 respectively. 

7.2.1 Givens Rotations 

The CORDIC method is based on the rotation of a vector from position [x(O), y(O)] to 

[x(l), y(l)] as shown in Figure 7.1. 

YM 

Y(O) 

The new position can be calculated using the Givens rotation given in (7.1). 

X(I) X(O) 
Figure: 7.1: Vector Rotation 
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x(l) = x(O)cosO-y(O)sinO (7.1) 
y(I) = x(O)sinO+y(O)cosO 

Note that equation (7.1) gives the new position for an anticlockwise rotation of the 

initial vector. To rotate in a clockwise direction, equation (7.2) should be used. 

x(l) = x(O)cosO+y(O)sinO (7.2) 
y(l) = y(O)cosO-x(O)sinO 

7.2.2 Pseudo-Rotations 

With some manipulation, (7.1) becomes, 

x(l) = cosO(x(O)-y(O)tanO) (7.3) 
y(l) = cosOCv(O)+x(O)tanO) 

which, through dropping the cos 0 term can be reduced to, 

x(l) = x(O)-y(O)tanO (7.4) 
y(l) = y(O)+x(O)tanO 

By dropping the cos 0 term the rotation that is achieved is no longer a true rotation and 
is referred to as a pseudo-rotation which can be seen in Figure 7.2. 

[x0), y(1)1 

, 
cp, R(l) R(O) cosO 110" 

R(l) 

NO), Y(O)l 
R(O) 

Figure: 7.2: Pseudo Rotation 
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The effect of the pseudo-rotation is that the length of the vector R(O) is increased to 

R(l). However, the values of x(l) and y(l) for a true rotation are still desired and 

clearly a pseudo-rotation does not give this. 

713 Basic Iterations 

From equation (7.4), it can be observed that addition, subtraction and multiplication 

operations are required to achieve a pseudo-rotation. However, the key to the CORDIC 

algorithm is that the multiplication term can be simplified to a shift operation using the 

following technique. 

The CORDIC algorithm is altered such that rotating by an angle 0 is now 

achieved by performing a series of iterations i, which represent successively smaller 

rotations 0, that accumulate to approximate 0. However, the key is that each rotation 

step is chosen such that tanO, = 2-' at the P iteration. Therefore, multiplication by 

tan 0i reduces to a shift operation, which is much cheaper to implement in hardware. 

Table 8 illustrates the first few angles that must be used to achieve 0. The direction of 

each rotation obviously affects the accumulative angle. With this iterative scheme 

arbitrary angles can be approximated within the range -99.7: 5 0: 5 99.7 as the sum of 

all angles obeying the law tanO i= 2-' is 99.7. For angles outside this range, 

trigonometric identities can be used to convert the desired angle into one within the 

range. 

iteration (i) tanO, = 2-' Oi 

0 1 45 

1 0.5 26.565 

2 0.25 14.036 

3 0.125 7.125 

4 0.0625 3.576 

Table 8: CORDIC Rotation Angles 
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7.2.4 Angle Accumulator 
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The simplified Givens rotation given in (7.4) can now be expressed in the following 

format, which gives the new position of the vector after each iteration. 

x(i + 1) = x(i) - di(2-1 (i)) y 

y(i + 1) = y(i) + di(2-'X(i)) (7.5) 

where di = +/-I 

The variable di is called the decision operator which is used to decide which direction 

to rotate. At this stage a 3rd equation is introduced called the Angle Accumulator which 
is used to keep track of the accumulative angle rotated at each iteration. 

z(i + 1) = z(i) - di0i (7.6) 

The conditions of di depend on the mode of operation which shall be discussed shortly. 
These equations now represent the CORDIC algorithm for rotations in a Circular 
Coordinate System. It will be shown later that there are other coordinate systems that 

can be used with the CORDIC method to calculate a greater range of functions. 

7.2.5 Shift-Add Algorithm 

The original Givens rotation has now been reduced to an iterative shift-add algorithm 

where pseudo-rotations are made rather than true rotations. The algorithm is now 

comprised of the following 3 equations. 

x(i + 1) = x(i) - di(2-'Y(i)) 

y(i + 1) = y(i) + di(2-'X(i)) 

z(i + 1) = z(i) - diOl 

Looking at these equations it is clear that this algorithm requires the following 

operations per iteration, 

*2 shifts, I table look-up (Oi values) and 3 additions/subtractions 

Each of these operations is easy to implement on an FPGA and hence the interest in the 
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x Register 
Initial xI Shift I Iteration Co nter I 

Shift 
Initial yr y Register 

z Register + 
Initial z 

III Lookup 
Mux 6ntrol 

III 
Table 

IIL 
IL---- 
L------ Poo. 

Figure: 7.3: A CORDIC Architecture Using Feedback 

CORDIC algorithm. One potential architecture for this algorithm [2] can be seen in 

Figure 7.3. Note, that this architecture uses feedback although another approach is to 

unroll this structure so that all data paths are feedforward. This type of design decision 

depends on how fast and how small the hardware has to be. 

7.2.6 The Scaling Factor 

Previously, the cosO term was removed from the Givens rotation equations and this 

resulted in pseudo-rotations instead of true rotations. In Figure 7.2 it is clear that a 

pseudo-rotation results in the magnitude of the initial vector growing once rotated. 

Hence, the coordinates of the new vector are not the true values and are in fact scaled. 

However, the scaling can be measured and removed. 

Looking back at Figure 7.2, the new vector is seen to be related to the initial 

vector by the following equation. 

R(l) = R(O)/(cosO) (7.7) 

Applying this to the iterative scheme that has now been derived gives the scaling 

factor, K,, 



CHAPTER 7- CORDIC 89 

n-I n-I n-I 

K,, = rl 1/(cos0i) = n(JI + 
;; 'Oi) 

= rj(ýl + (7.8) 

i=O i=O i=O 

As the number of iterations are usually known when using CORDIC, K,, and 

consequently IIK,, can be precomputed. Therefore, the scaling factor can be removed 
by multiplying with its inverse. Note that: 

K,, -). 1.6476 as n oo 
I IK,, --> 0.607 as n oo 

7.2.7 Modes Of Operation 

The CORDIC algorithm can be used in 2 modes of operation. Each mode determines 

the condition of the decision operator, d,, and is selected depending on the particular 
function to be computed. 

Rotation Alode 

In Rotation Mode, d, is given by: 

di = sign z(i) (7.9) 

In this mode the input vector is rotated by a specified angle, which is given as 
the argument z(O). The aim then is to reduce the angle accumulator to zero although 
in a real system this is unlikely to occur and a small amount will remain. In an ideal 

system, after n iterations, the CORDIC equations give, 

x(n) = K. (x(O)cosz(O)-y(O)sinz(O)) 

y(n) = K,, (y(O)cosz(O)+x(O)sinz(O)) (7.10) 

z(n) = 

From equation (7.10) it can be seen that cosO and sinO can be computed by setting 

x(O) = I/K,,, yfO) =0 and z(O) = 0. Thus, x(n) = cosO andAn) = sinO. 



CHAPTER 7- CORDIC 90 

By considering an example it is clear to see what is happening at each iteration 

of the algorithm. In this example cosO and sinO shall be computed for 0= 30. 

Looking at Figure 7.4, the first 3 pseudo-rotations can be seen. To accompany this 

figure, Table 9 shows the values of each of the parameters as the algorithm converges 

on the solution. 

Akvj 
Start 

Figure: 7.4: Rotation Mode Example 

di oi Z(i) y(i) X(i) 

0 +1 45 +30 0 0.607 

1 -1 26.6 -15 0.607 0.607 

2 +1 14 +11.6 0.303 0.910 

3 -1 7.1 -2.4 0.531 0.835 

4 +1 3.6 +4.7 0.427 0.901 

5 +1 1.8 +1.1 0.483 0.875 

6 -1 0.9 -0.7 0.510 0.859 

7 +1 0.4 +0.2 0.497 0.867 

8 -1 0.2 -0.2 0.504 0.863 

Table 9: Rotation Mode Example 
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Vectoring Mode 

With Vectoring Mode, d, is givcn by: 

di = -sign (x(i)y(i)) 

In this mode the input vector is rotated onto the x-axis and the angle required to achieve 
this is accumulated in the angle accumulator. Hence, the aim here is to drive y(n) to 

zero. After n iterations the CORDIC equations ideally give, 

x(n) = K,, (J(x(O)ý + (y(O)ý) 

y(n) =0 

z(n) = z(O) + tan-1 
(LUO 
ýX(O)) 

Equation (7.12) shows that tan"jfO) can be computed by setting x(O) =I and z(O) 0. 

Using an example it is clear to see how this is achieved. In this example, y(O) 2. 

Figure 7.5, shows the first 3 pseudo-rotations and it is clear that the rotated vector is 

converging on the x-axis as desired. Table 10 accompanies this example to show the 

values of the variables at each iteration of the algorithm. 

y(O)--2 

Figure: 7.5: Vectoring Mode Example 
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i Z(i) oi 
YO) 

0 0 45 2 

1 45 26.6 1 

2 71.6 14 -0.5 
3 57.6 7.1 0.375 

4 64.7 3.6 -0.078 

Table 10: Vectoring Mode Example 

7.2.8 Coordinate Systems 
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So far, rotations in a Circular coordinate system have been considered. The functions 

that can be computed using this system are summarised in Figure 7.6. 

oordinate Rotation Mode Vectoring Mode 
System 

I 

z(i) ----* 0; di = sign (z(i)) y(i) --p. 0; di = -sign(x(i)y(i)) 

x K(x. cos z-y. sin z) Ix 
0 
R 
D 

C 
For tan-' z, 

set x=1, z- 

K(X2+y2)1/2 

Circular I 

z 
For cos z& sin z, 
set x= I/K, y=0 

0 

z+ tan" (Y/X) 

I 
Figure: 7.6: Circular Coordinate System Summary 

However, by using other coordinate systems, the set of functions that can be computed 
using the CORDIC algorithm can be extended. There are two other coordinate systems 
that can be used with CORDIC. These are Linear and Hyperbolic which can be seen in 
Figure 7.7 and Figure 7.8 respectively. 

K(y. cos z+x. sin z) IY 

0 
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Figure: 7.8: Rotations In A Hyperbolic Coordinate System 
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The CORDIC equations can be altered to give the Unified CORDIC Equations which 

can be applied to any of the 3 coordinate systems discussed. These are given by: 

x(i + 1) = x(i) - pdi(2-'Y(i)) 

y(i + 1) = y(i) + di(2-'X(i)) (7.13) 

zQ + 1) = zQ) - de(i) 

where the values of p and e(') depend on the coordinate system according to, 

Figure: 7.7: Rotations In A Lincar Coordinate System 
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o Circular System: ýL = 1, e(') = tan-' 2-' 

- Linear System: ýt = 0, e(1) = -i 

- Hyperbolic System: ýL =-1, 
P) = tanh- 12-' 

7.2.9 Convergence 
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With 2 modes of operation and 3 coordinate systems, there are several ways in which 

the CORDIC algorithm can be used. Convergence is guaranteed for Circular and 
Linear coordinate systems where rotations are constrained to the range [-99.70,99.70]. 

For rotations outside this range, the angle can be pre-processed to move it into the 

range and then the output can be post-processed accordingly to give the correct result. 

However, convergence is not guaranteed using elemental rotations in a Hyperbolic 

coordinate system. To guarantee convergence certain iterations must be repeated. The 

sequence of rotations is [1,2,3,4,4,5,6,7,8,9,10,11,12,13,13,14,15 n,.. 3n+l,.. ]. 

Hence, iterations (4,13,40,.. n,.. 3n+l,.. ) should be repeated [34]. 

Little work has been carried out to assess the precision of CORDIC across the 

different functions that it can be used for except for [18][21] which specifically 
focusses on circular co-ordinate systems. However, a significant part of the work 

presented in this thesis is in this area and shall be discussed in Section 7.3 with 

references to [ 18] and [2 1 ]. 

7.2.10CORDIC Summary 

The functions that can be computed directly using CORDIC with either of the 3 

coordinate systems that have been discussed in this document are surnmarised in 

Figure 7.9. Note that many more functions can be computed indirectly by combining 

several CORDIC implementations. A list of some of the potential functions that can be 

computed indirectly are given in Figure 7.10. 
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Rotation Mode: Vectoring Mode: 
di = sign(z(i)); z(i) 0 di = -sign(x(i)y(i)); y(i) 0 

X--*. 
C 

--Do- K(x. cos z-y. sin z) X--Nm- C --IP-K(x2+ y 
2)1/2 

0 0 

$ý 
Cq 

0 R Y---w- -No- K(Y. cos z+x. sin z) R Y--00- --00-0 
.2 D D 
U I 

Z--jP. [L 0 C 
J-10- I 

Z-00- z+ tan-' (y/x) 
-CýJ-10- For cos z& sin z, set x= I/K, y=0 For tan" y, set x=1, z=0 

X--NO- 
C 

-410- x X-00- 
C 

--Do- x 
0 0 

ti R Y--40- y+ (X. Z) D 
R Y--00- --00-0 D 

0.4 1 1 
Z--ap. ý C0 Z-00. Cz+ (Y/X) C 
For multiplication, set y=0 For division, set z=0 

C 
-Op. K*(x. cosh z-y. sinh z) X---O, ý 

C 
-NO- K*(X2 _ Y2)1/2 0 0 

0 
701 

R Y--*- -Do-- K (y. cosh z+x. sinh z) R y No. -0-0 D D 
= 

Z-00- 
1 

-10-0 
.C 

-Ism- z+ tanh" (y/x) 
.C 

For cosh z& sinh z, set x= I/K*, y=0 For tanh-ly, set x=1, z=0 
Figure: 7.9: CORDIC Output 

K* is defmcd as, 

n-I 

K*n 

1=0 

K*n -> 0.82816 as n -> oo 



CHAPTER 7- CORDIC 

tanz = sinz 
cosz 

tanhz = sinhz 
coshz 

In w=2 tanh- 1 W- 11 lw+ 
I 

ez= sinhz + coshz 

t tlnw 
w =e 

tan- 
Iw= 

tan- 

sin -1 w= tan- 1w 
ji- -_wl 

cosh -1 w= In (w 
+ 

11 --w 

-1 
F-2-\ 

sinh w= In(w + 41 +w -) 

141W = 
ý(w 

+ (1 /4))2 (w _ (1/4))2 

Figure: 7.10: Possible CORDIC Functions 

7.3 CORDIC Precision 
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Traditionally, fixed point CORDIC systems have been designed using a trial and error 

approach where a system is designed and then the accuracy of the output is assessed 

via lengthy simulations. If the desired accuracy is not observed then the number of 
iterations and/or the number of bits in the data path is altered before re-running the 

simulations. This is a very inefficient way of designing CORDIC systems. 
Little work has been carried out to try and quantify the error in fixed point 

CORDIC systems so that the error can be predicted thus avoiding lengthy simulations. 
However, Yu Hen Hu [18] developed an algorithm to compute the Overall 

Quantisation Error in CORDIC systems using vectoring mode with a circular 

coordinate system. After assessing the work done in this paper it was found that the 

algorithm that was developed was not very accurate. Further, it was also found that this 

work could be extended and applied to other CORDIC systems using, for example, 

rotation mode with a circular coordinate system. Hence, the following sections present 
the work that was carried out to improve, extend and verify the original work published 
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in [18] 

7.4 Predicting The Accuracy Of Vector Magnitude Calculations 

This section highlights the work that was carried out to predict the accuracy of 
CORDIC systems computing a Vector Magnitude. 

7.4.1 Using CORDIC To Compute The Magnitude Of A Vector 

By designing a CORDIC system using vectoring mode with a circular coordinate 

system it is possible to calculate the magnitude of a vector. As is the case with some 
CORDIC functions, the output is scaled by a factor K which must be removed to obtain 

the true result. This can be confirmed by consulting the top right entry in Figure 7.9. A 

common method for removing the scaling factor is to multiply the result by 11K. 

The Generalised CORDIC equations are given by: 

(P) - ýtdj(2-'y(i) )) 

y (1+1) = (Y(') + di(2-'x (i) (7.14) 

P+ 1) = P) 
- die() 

where i is the ith iteration, and [t and e(') are defined depending on the rotation system 

used: 

- Circular Rotations: g=1, e(') = arctan(2-') 

- Linear Rotations: ýt = 0, e(') = 2-' 

- Hyperbolic Rotations: pt =-1, e(') = arctanh(2-') 

Also, d, is known as the decision operator and is used to control the direction in which 

the vector is rotated at each iteration. Thus, it takes the value of ±1. Note that when 

computing the magnitude of a vector [x, y], the expression for z 
(i+ 1) is redundant and 

can be ignored. Further, when using circular rotations, (7.14) can be simplified to the 



CHAPTER 7- CORDIC 98 

fonn shown in (7.15). 

di (2 -'y (i) )) 

(Y(') + di(2-'x('))) 

This is the starting point for designing a CORDIC system to compute the 

magnitude of a vector. Clearly the operations that are required are addition/subtraction 

and shifting. Also, the decision operator must be handled. To do this, the MSB of P) 

and y(') must be determined to allow di to be computed with the use of an XOR gate. 

Finally, an inverter is required to ensure that when one expression adds the other 

subtracts and vice versa. This can been seen in Figure 7.11 which illustrates a single 
CORDIC cell (representing one iteration) designed using HDL Design Studio (I IDS). 

Note that a combined adder/subtractor token is not yet available in HDS, thus an addcr, 

subtractor and switch combination was used instead. 

Shift 

-Ami A) 

MSB capture 
XOR 

Add/Sub sel. --*[3 
Aw 

MSB capture 

NOTWAdd/Sub sel. --*p 

Figure: 7.11: A CORDIC Cell Designed Using H DL Design Studio 
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7.4.2 Assessing The Overall Quantisation Error 

Choosing the number of iterations n and deciding on the number of fractional bits to 

be used in the data path b so that the magnitude is computed to a desired accuracy is 

not trivial. However, an equation for computing the Overall Quantisation Error (OQE) 

using these parameters was developed by Yu Hen Hu. Examining (7.16), it is cleat that 

the OQE is made up of two distinct errors. The first part is the Approximation Error 

ca, which relates to the error due to the quantised representation of a CORDIC rotation 

angle by finite numbers of elementary angles. The second part is the Rounding Error 

er, which is due to the finite precision arithmetic used in a practical implementation. 

ea ý a�(n - 1)iv(0)1 

Er : -- 2- b-0.5 G(ýt, n+, [ 
K�(n) 

1 
(7.16) 

OQE= ga +er = a. (n - 1)iv(0)1 +2 -b-0,5 G(g, n [ 
K�(n) 

To investigate this equation in more detail, the variables need to be explained. 
First of all, g is the same variable as in (7.14) (here ýt = 1). The variable a, (n - 1) 

represents the final quantised rotation angle, Iv(O)l is the magnitude of the largest 

vector possible and b represents the number of fractional binary digits used in the data 

paths. The remaining variables are defined as: 

n-In-I 

G(ýt, n) + Irl ký, (i) 

j= I i=j (7.17) 
n-I n-I 

jkýt(i) "A + . 
C,, (n) =I 

i=O i=O 

where K,, (n) represents the factor by which the magnitude is scaled by after n 
iterations, and G(g, n) is used to compute the worst case rounding error. 

By computing the OQE it is possible to determine the number of effective 
fractional bits d,, ff that a CORDIC system generates using: 
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d, ff =- (10920QE) -1 (7.18) 

In [18], Yu Hen Hu computed dff using (7.18) for a set of n and b. To verify the 

results, simulations were also carried out for the same set of n and b. The two sets of 

results were very close for certain n and b, which suggested that these equations could 

be used to estimate these parameters for a desired accuracy. From here a search could 
begin to find the optimum combination of these parameters which would lead to the 

most efficient design for a specific accuracy. 
To illustrate the tables that Yu Hen Hu developed, a small section has been 

given in Table 11 below. It is clear from this section that to obtain 6 effective 
(fractional) bits of accuracy requires either 9 iterations and 10 fractional binary bits in 

the data paths or 8 iterations with 11 fractional bits. 

n1b 8 9 10 11 12 

3 1.43 1.47 1.48 1.49 1.5 

4 2.35 2.42 2.46 2.48 2.49 

5 3.17 3.32 3.41 3.45 3.48 

6 3.82 4.12 4.3 4.4 4.45 

7 4.27 4.76 5.08 5.28 5.38 

8 4.5 5.18 5.69 6.04 6.25 

9 4.57 5.4 6.09 6.63 7.0 

10 4.55 5.46 6.3 7.01 7.57 

Table 11: Section of Yu Hen Hu Tables 

However, an issue with these tables was discovered when, after confirming 

via a SystemVue simulation that 9 iterations with 10 fractional bits actually did result 
in 6 effective fractional bits, fin-ther simulations showed that 6 effective fractional bits 

could be obtained with as few as 4 iterations and 10 fractional bits. According to the 

table, only 2 effective bits should be obtainable. The test results showed that the 

equations developed by Yu Hen Hu were consistently underestimating the number of 

effective fractional bits. Ideally the equations should allow the user to select the most 

efficient architecture for a desired accuracy and clearly they did not. Hence, a further 
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examination of the OQE was required, and this work is presented in the next section. 

7.43 Taking The OQE Further 

To verify the work presented in [18] and to allow further analysis of this work, 
MATLAB code was written to compute the OQE and consequently dff for a set of n 

and b. First of all functions for computing KI(n) and G(l, n) were written. These 

functions can be seen below in Figure 7.12 and Figure 7.13 respectively. 

kunction x- Fgencn) 
;; Cotiputes CORDIC scale factor X(n-1) 
2; Kgen returns the CORDIC scale factor for a given number of iterations n 

for i-O: n-1 
k(i+l) = (1 + 2A(-2*(i)))AO. S; 
K- K*k(i+l), * 

end 
Figure: 7.12: MATLAB Function for Computing KI(n) 

function G- GgenCn) 
IsComputes GCn) 
4; Ggen returns G(n) uhich is used to compute the worst case rounding error in I 
U-0, 

for j-I: n-I 
K-1, 
for i-j: n-I 

k(i) - (I + 2^(-Z*(i)))^O. S; 
K= Ktk(i); 

end 
G=G+K; 

end 
G- G+I; 

Figure: 7.13: MATLAB Function for Computing G(l, n) 

A function to compute dff was also written. This function calls the two 

previous functions and uses them to compute the Approximation Error and Rounding 

Error. The total error (OQE) is then computed before the number of effective bits is 

determined and returned. This function takes in the number of iterations n, the 
fractional bit width b and the maximum magnitude of the vector m, as can be seen in 
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Figure 7.14. 
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function Deff = EffBits(n, b, m) 
ý'sEffftt3 returns the number of effective fractional bits computed in 

ka fixed point CORDIC system relative to a floating point CORDIC system 
UffBits inputs: na iterations, b- bits used, m= max. magnitude of 
kinpur. vector; Returns the number of effective bits computed. 
0- Ggen(n); 
K= Kqen(n); 

appxox_ezxot - ZIC-n+l)*m; 

roundinq_error = ZAC-b-0.5)*((G/K)+l); 

OQE approx_erxox + xounding_exxor; 
Deff -(log2COQE))-I; 

Figure: 7.14: MATLAB Function for Computing dff 

To allow d,, ff to be computed for a set of n and b, a final function was written 

as in Figure 7.15 below. This function computes all values of dff for 1 :9n: 5 40, 

1 :5b :ý 40 and m= ý0-. 5 

f=ction bits - exror-testo 
f or b=1: 401 

for n-1: 40 
bits(n, b) = EffBits(n, b, O. SAO. 5); 

end 
end 

Figure: 7.15: MATLAB Code for Computing dfffor a set of n&b 

The results that were produced for dff have been verified against the small 

set of n and b presented in [ 18] and can be found in Appendix A. As mentioned already, 

simulations showed that the equations used here consistently underestimate the 

number of effective fractional bits that are achievable for a given n and b. Hence, it was 
important to find out the reason for this behaviour and to try and improve on this work. 

7.4.4 The Approximation Error 

By considering the OQE in more detail it was found that the Approximation Error is 

more dominant than the Rounding Error, especially for small n. Hence, an initial 

assumption was that this error was being overestimated thus causing the number of 
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effective bits to be underestimated. 
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When using CORDIC to computc the magnitude of a vector, the aim is to 
drive the initial vector onto the x-axis. This mode of operation is known as Vectoring 

or sometimes Backward rotation mode. However, due to finite rotations, a small angle 
8 is usually left between the rotated vector and the x-axis thus resulting in the 
Approximation Error ca. This angle is known as the Angle Approximation Error. 
Figure 7.16 shows the effect that 5 has on ca for an exaggerated angle 8 to illustrate 

the problem. It is clear that as 5 is reduced the rotated vector gets closer to the x-axis 
and the smaller the Ea will be. Clearly an accurate estimation of 5 is required to obtain 
an accurate estimation of the Approximation Error. 

80 

CORDIC 
magnitude 
before removing 
scaling 

CORDIC 
'11'\\True 

mag. a. fter a magnitude 
removing scaling 

Figure: 7.16: The Angle Approximation Error 5 

In Yu Hen Hu's paper, the upper bound on 8 is given as 8: 5 aI (n - 1), where 

aI (n - I) is the final rotation angle. Obviously the more iterations there are, the 

smaller Sa will be. For n sufficiently large, aI (n - I) can be approximated by: 

a, (n- l)--2-n +I (in radians) 

Yu Hen Hu used this simplification to compute the Approximation Error as: 
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Eaý 2 -n+ I lv(o)l (7.20) 

where Jv(O)j is the magnitude of the largest vector that can be represented using the 

chosen fixed point format. It is this simplification that results in the underestimation of 

the number of effective fractional bits. Both n and Jv(O)j are required to compute the 

Approximation Error but as will be shown shortly, (7.20) is simply not accurate. 

7.4.5 Improving The Approximation Error Estimate 

A more accurate equation for calculating the Approximation Error was developed by 

considering the diagram shown in Figure 7.16. A simplified version of this diagram is 

given below in Figure 7.17. 

Figure: 7.17: CORDIC Approximation Error 

It can be observed in Figure 7.17 that the CORDIC magnitude, after removing the 

scaling factor, is equal to: 

CORDIC Magnitude = x(n - 1) =I v(O)l cos 5 

Then, clearly the error between the true magnitude and the CORDIC magnitude is the 
Approximation Error which is computed via: 

F", = lv(O)l - lv(O)l COS8 (7.22) 

Finally, if the upper bound for 8 is applied, the equation becomes: 
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E. = lv(O)I-lv(O)Icos(al(n-1)) (7.23) 

where 

aI (n - I) = arctan (2- "+I) (7.24) 

Note that (7.24) is preferred to (7.19) when computing aI (n - I) as it is more accurate 

for small n. 
To see the difference between this new algorithm for computing the 

Approximation Error and the one given in Yu Hen Hu's paper, both were plotted for a 

set of n and can be seen in Figure 7.18. The graph clearly shows that Yu Hen Hu's 

algorithm generates a larger error which consequently causes the number of effective 
fractional bits to be underestimated. Another way to view the Approximation Error is 

as the number of effective fractional bits that it represents. This can be seen in Figure 

7.19 which clearly shows that as n increases the approximation error predicted by the 

new algorithm is much smaller than that given by the original algorithm. However, if 

we look at Appendices A and B it can be seen that the OQE in both tables converge to 

the same results as n increases. So for example, looking at the b=5 column in 

0 

x 2W 
0. 
0. 

U. 

NewAlgorithri 
Yu Hen Hu NImg 

ýo 

dZ 
01 

0.4- 

0.3- 

0.2 

0.1- 

01234567a9 
10 

Iterabons (n) 

Figure: 7.18: Approximation Effor vs Iterations (n) 
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Figure: 7.19: Approximation Error As Effective Fractional Bits vs Iterations (n) 

Appendices A and B, the results in both columns are the same from n= 11 onwards if 

we add I bit onto the results in Appendix A due to the fact that (7.18) was used instead 

of (7.25). The reason for this is discussed in the next section. This trend in both tables 

shows that as n increases the Approximation Error becomes less relevant and the 

Rounding Error starts to dominate. Hence, the reason for both tables converging. 

Clearly the new algorithm had to be verified and this work is covered in the next 

section. 

7.4.6 Verifying The New Algorithm 

To verify (7.23), the Matlab code shown earlier in Figure 7.14 was altered to use the 

new algorithm as can be seen in Figure 7.20. Note also that (7.25) was used to compute 
d, ff rather than (7.18). 

d, ff = -(10920QE) (7.25) 
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function Deff - EffBits2(n, b, m) 
UffBits returns the number of effective tractional bits computed in 

%a fixed point CORDIC system relative to a floating point CORDIC system 
UffBits inputs: n- iterations, ba bits used, m- max. magnitude of 
%input vector; Returns the number of effective bits computed. 

G- Ggen(n): 
K= Rgen(n); 
Z- aten(2A(-n+l)): 
approx_error -m- (mt(cos(Z))); 
rounding-ezKor a 2AC-b-0.5)*((G/K)+1); 
OQE - approx-error + rounding_error, 
Deft - -(log2(OQE)): 

Figure: 7.20: New MATLAB Function for Computing dff 

This is because, in [ 18] subtracting a bit from dff is justified to counter growth of the 

wordlength by I integer bit due to the scaling factor K(n). However, as it is fractional 

bits that this analysis is interested in, there is no need to subtract a bit from dff to 

counter the integer bit growth. It will be shown later that when comparisons were made 
between simulations and predicted values, that this correction was justified. 

Using the code in Figure 7.20 with the other Matlab functions shown earlier, 

a new table was generated for d.. ff, for 1: 5 n: 5 40,1: 5 b:! ý 40 and m= 'FO-. 5. This 

table can be seen in Appendix B. A quick comparison of the table in Appendix A with 
the new table shows that for a given b, the values for d,, ff become very close as n 
increases. It should be kept in mind when making this comparison that the values in 
Appendix A were computed using (7.18) and effectively represent dff -I when 

compared to Appendix B. However, the major difference between the two tables can 
be seen as n decreases. This is because, as was shown in Figure 7.18, the equation 
developed by Yu Hen Hu overestimates the Approximation Error, particularly for 

small n, causing the number of effective fractional bits to be underestimated. 

7.4.7 SystemVue (HDS) Simulations 

To verify the accuracy of the new algorithm, a number of simulations were carried out. 
Figure 7.21 shows the top-level of the SystemVue model that was used for the 
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simulations. A floating point Golden Reference Design was used with a fixed point 

CORDIC design. Both designs were driven by the same fixed point input data 

generated by two Uniforin Noise tokens set to produce data in the range ±0.5. With 

this range the limit for Jv(O)j is [0-. 5, which matches with the parameter /71 = /0-. 5 

which was used when producing the tables. The fixed point format for the input data 

was set to ±<I, b> where b is the number of fractional bits used in the data paths. 

34 Ooklen Rafaw*e Bei 

------------ Finil Vidue Bink Ul ON vC Wn Err 
01 F-IX&d POW COR1031C Loop N Tkno Vmli 

1 $5631 55.6360000009001*. 3 q 
1CMI 

- ----- -- -- 

L=-j 

Figure: 7.21: Top-Level Of Simulation 

To compute dff from the simulations, the output from the fixed point 

CORDIC design is subtracted from the output of the Golden Reference design. The 

maximum positive error and the maximum negative error are then captured before 

(7.26) is applied to the error with the greatest magnitude. 

d, ff = -0o92 error) (7.26) 

Before discussing the results from the simulations, the full fixed point 

CORDIC design should be discussed in more detail. Earlier, the design of an individual 

CORDIC cell was discussed. Figure 7.22 shows a full design using 3 cells which 

corresponds to the number of iterations n. The design is fully parallel and is unrolled 

as presented in [19]. Before the x data reaches the first cell it must be converted to be 

positive, if it is negative, which is achieved via a negator. A switch token is used to 

control whether or not the negated version or the original is allowed to pass through. 

The control signal for the switch is generated via a compare to zero token. If negative 

values for the x data are allowed to pass, the computed magnitude will be negative and 
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q 

cbmpare ko zero 
AM-[ 

------------ --------------- 
-TR negator 

2>19 
input I/K 

--- ----------- -------- 
I ------- I ------- , ý, O -------------- Cell I Cell: 2 Cell 3 

L5 3-4 

-*E LOJ LOJ input 

Figure: 7.22: Full CORDIC Design 

although close to the correct result, will be slightly less accurate. There is no such 

concem for they data. 

To remove the scaling factor, K, a multiplier is used which is fed the Input I/ 

K via a constant token. The Matlab code shown in Figure 7.12 was used to compute 

this value before each simulation. The format of the constant token is set to ±< 1, b> as 

is the initial output of the multiplier, although this can be reduced later to ±<1, de. fl > 

once dff has been verified. Note that Rounding must be enabled on the multiplier once 
format. Only then will cý, f the output is reduced to the ±<1, df 

,,. 
bits of accuracy be 

maintained. Within each cell, the adders/subtractor and shift tokens take the format 

+<2ý b> where the extra integer bit is required to allow for the growth due to the 

scaling factor, K. 

A sub-set of the results for these simulations are given in Table 12 along witli 

the predicted values generated using the Yu Hen Hu approach and the new algorithm. 

It is clear that the new algorithm predicts the simulated values far more accurately thati 

the original algorithm. For examPle, examining the case where 6 effective fractional 

bits are required. The Yu Hen Hu algorithm predicts that at least 9 iterations with 10 

fractional bits are required. However, the simulation shows that only 4 iterations with 
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8 fractional bits are needed and the new algorithm predicts this exactly. 
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Predicted 
(Yu Hen Hu) 

Predicted 
(New Algorithm) 

Simulated 

n/b 8 9 10 8 9 10 8 9 10 

3 1.43 1.47 1.48 5.09 5.31 5.43 5.32 5.71 5.80 

4 2.35 2.42 2.46 6.03 6.59 6.98 6.22 6.88 7.34 
5 3.17 3.32 3.41 6.28 7.13 7.88 6.52 7.56 8.27 
6 3.82 4.12 4.30 6.21 7.17 8.10 6.55 7.11 8.12 
7 4.27 4.76 5.08 6.06 7.05 8.04 6.42 7.29 8.29 
8 4.50 5.18 5.69 5.92 6.91 7.91 6.33 7.29 8.31 
9 4.57 5.40 6.09 5.78 6.78 7.78 6.00 7.00 8.00 
10 4.55 5.46 6.30 5. 7.65 

1 

5.68 6.68 

Table 12: Predicted vs Simulated Values Of dff 

7.4.8 Hardware Comparison 

To assess how efficient the CORDIC algorithm is, comparisons were made between 
CORDIC systems found using both versions of the OQE algorithm and Direct systems 

2 +Y2 computing the same level of accuracy but performing xY directly using two 
multipliers, an adder and the square root operator developed for HDS- A comparison 
was made in terms of gate count to give an estimation of the resources required by each 
design. 

Gate Count 

To assess the gate count of each design, the case where 16 effective fractional bits are 
required from the vector magnitude calculation was considered. The CORDIC design 
found using the new OQE, requires n=9 and b= 20. The number of gates in this design 

can be assessed by breaking it down into individual components. First of all the circuit 
that converts any negative values to equivalent positive ones is considered. This 
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requires one XOR gate and one half adder per input bit, therefore 3 gates/bit are 
required. 

Now the CORDIC cells must be examined. Each cell uses one NOT gate and 
two adder/subtractors. The shift operations are all achieved using wiring and do not 

contribute to any hardware consumption. An adder/subtractor requires one XOR gate 
and a full adder per bit, which means there is a total of 6 gates/bit required for each one. 
It is important to note that the final cell (cell 9) uses only I adder/subtractor as it is only 
the x output that is of interest. Therefore, cell 9 uses only half the logic relative to the 

other cells. 
Finally, the parallel multiplier used to remove the scaling factor requires ax 

b cells where a and b are the width of the inputs to the multiplier. Each cell in the 

multiplier represents an AND gate and a full adder, so there are 6 gates/cell. 
This means that with an input width of ±<1,20>, the total number of gates for 

this CORDIC dcsign is: 

IxI = 21 x3= 63 

cells = 8.5 x ((22 x6x 2) + 1) = 2252.5 

mult = 22 x 22 x6= 2904 
Total -- 5220 

Note that the width of the data paths through the cells is 22 bits, as 2 integer bits are 
required plus 20 fractional bits. 

If a similar analysis is made to the design that was found using the original 
OQE algorithm (n = 17 and b=2 1), the number of gates is assessed as: 

IxI = 22 x3= 66 

cells = 16.5 x ((23 x6x 2) + 1) = 4570.5 

mult = 23 x 23 x6= 3174 
Total sz: s 7810 

A similar approach was taken with a Direct design which can be seen in 
Figure 7.23. 

To assess the number of gates in this design first remember that multipliers require 6 

gates/cell as described previously. However, in this case the multipliers are computing 
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1 . 20). 
--------------------- 

-------------- ---------------- ---------- ----- 

------------- ------------- 
Figure: 7.23: Direct Dcsign 
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squares and therefore the number of cells required is approximately halfthat required 

by a normal multiplication [27]. This has been taken into consideration when 

estimating the gate count. An adder requires 5 gates/bit as each full adder uses 5 gates. 

Finally, a square root function can be viewed as half the logic required for a divider 

array [3 1] which requires mxm cells where m is the width ofthe numerator and the 

denominator. Each cell is made up of an XOR gate and a full adder, hence 6 gates are 

required per cell. This means that if the inputs are +<1,20>, and the number of' 

fractional bits in the multipliers and the adder are allowed to only grow to 28, which is 

required to achieve 16 effective fractional bits from the square rootcr, the number of' 

gates is assessed as: 

multipliers 21 x 21 x6= 2646 

adder 29 x5= 145 

square root = (30 x 30 x 6)/2 = 2700 

Total z: ý 5491 

Clearly the CORDIC design found using the new OQE equation is tile most 

efficient in terms of the number of gates required. Relative to the CORDIC system 

found using the original OQE equation, a saving of 33% is achieved. Thc saviiig 

relative to the Direct design is not quite as impressive but is still significant at 51yo. It 

should be noted that the gate count for the Direct design is an optimistic estimate and 

that in reality it would be greater. Also, this saving will increase with lai-gci- designs as 

the Direct design will not scale well due to the design of the HDS square rooter. 'I'lic 

structure of the square root core requires m2 /2 cells where m the width ofthe input to 
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the core. Clearly this will not scale well as m increases. Also, the large critical path that 

this structure experiences means that it will have a relatively slow clock rate when 

compared to the CORDIC design. This is confmned in the Synthesis results. 

Synthesis Results 

Using HDL Design Studio, VHDL for each of the 3 designs previously analysed was 

automatically generated. Xilinx ISE v8.1 was then used to implement the designs on a 
Virtex-II Pro device. The results are given in Table 13, which illustrates the efficiency 

of the CORDIC design found using the new OQE algorithm relative to the other two 
designs. Not only does it use fewer slices but it also permits a higher clock frequency. 

It should be noted that both CORDIC designs have been implemented using only slice 
logic, therefore the post scaling multiplier has been generated using the FPGA fabric 

rather than a dedicated multiplier. This means that the slice count for the CORDIC 

designs could be reduced even further by forcing the synthesis tool to use a dedicated 

multiplier instead. 

The results for the Direct design are slightly unfair as the VHDL for the 

square root design is not as efficient as it could be. It uses twice the logic actually 

required. Hence, the slice count for the Direct design should be approximately 700. 

Also, it is possible that the synthesis tool has not optimised the multipliers for 

computing squares. 

CORDIC 
n9 b20 

CORDIC 
n17 b2l 

Direct 

Slices 364 670 1234(700) 

18x 18 Mults 0 0 0 

MHz >20 >10 >10 

Table 13: Post Implementation Results For Each Design 
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7.5 Predicting The Accuracy Of Sine/Cosine Calculations 

In this section the work that has been carried out to allow the accuracy of CORDIC 

systems computing sine and cosine to be predicted is presented. 

7.5.1 The Algorithm 

To compute the cosine and sine of an angle z using CORDIC, a Circular coordinate 

system must be used in Rotation mode. The output that is produced from the CORDIC 

algorithm when operated in this mode is shown in Figure 7.24. 

x 

y 

z 

K(xcosz-ysinz) 

K(ycosz+xsinz) 

0 

Figure: 7.24: CORDIC Output For Circular Rotations In Rotation Mode 

However, by setting the initial values of x and y to: 

11K, y=0 (7.27) 

the output from the x and y equations can be forced to equal cosz and sinz 

respectively. Thus, the scaling factor K is removed without having to use a post scaling 

multiplier. 
The CORDIC algorithm is given in (7.28) where, e(') = arctan(2-1) is used 

due to the Circular rotations that are being implemented. 

x+ (P) - di(2-'y (i) 

y (Y(') + di(2-'x (i) 

+ P) de(') 
(7.28) 

where, di = sign(z(')) 
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First 3 pseudo-rotations 

fnd I. sin(z) --------- 
End (mag. 1) 

0 
z 

ACO 

Start: x(O) =I /K I. Cos(z) 

Figure: 7.25: Rotation Mode Example 
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By considering Figure 7.25, the first 3 rotations for some arbitrary angle z can be seen. 
It is clear that by starting with a magnitude of 11K, then after n iterations, because the 

magnitude has been scaled by K, the magnitude of the final vector is equal to 1. Hence, 

the x component and y component are equal to cosz and sinz respectively. 

7.5.2 The Overall Quantisation Error (OQE) 

The Overall Quantisation Error (OQE) of a CORDIC system is presented in [ 18] and 
has already been presented as consisting of two parts: 

- The Approximation Error Sa: the error due to the quantised representation of a 
CORDIC rotation angle by finite numbers of elementary angles. 

The Rounding Error er: the error due to the finite precision arithmetic used in a 

practical implementation. 

In 18], an equation for the Rounding error was developed and is defined in terms of 

the number of iterations n and the number of fractional bits in the data path b. This 

equation is given as: 
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Er = 2- b-0.5[G(R, n +1] 
K,, (n) 

n-In-I 

where, G(R, n) + 1] 

_. d (7.29) 

j= I I=j 

n-I n-I 

and, K,, (n) kýt(i) + ýt 

i=O 1=0 

The Rounding Error can apply to any CORDIC system using Circular rotations. 

However, to predict the error in CORDIC systems computing sine and cosine, a new 

Approximation Error needed to be developed and this is presented next. 
In [2 1] the work presented in [ 18] was extended to develop an equation for the 

precision of CORDIC systems operating in rotation mode. The equation is given as: 

x= n+1092 n+2 (7.30) 

where n is the number of iterations and x is the total number of bits in the data path. 
According to [21] this should be sufficient to obtain n bits of precision from the output. 
Note that the total number of bits uses only two for the integer part and the remaining 
(n + 1092 n) bits are for the factional part. However, by comparing floating point 
CORDIC simulations computing cosines and sines with a floating point reference 
design, it has been found that, at best, n-I bits of precision can be achieved for n 
iterations. Hence, (7.30) has been found to be inaccurate. 

7.5.3 The Approximation Error 

To analyse the Approximation Error of a CORDIC system computing cosines and 

sines a graphical approach was initially taken. An important parameter in predicting 

this error is to know the maximum angle that is left between the ideal finishing position 

at z and the actual CORDIC finishing position after a number of iterations n. This 

parameter is known as the Angle Approximation Error 8. This error at the nth iteration 
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is given in [18] as 5: 5 a(n - 1) where a(n - 1) represents the rotation angle at the n-I 
iteration. This can be illustrated by considering the simple case of n=3. Figure 7.26 

shows all the possible fmishing angles for this case. By assuming that the input z -,! 5 90' 

45'+26.6'+14 = 85.6' 
tl 45'+26.6*-14=57.6' 

45'-26.6*+14 = 32.4' 

o 145P-26.60-14 = 4.4' 

8= 28/2 = 14' 

Figure: 7.26: The Approximation Effor 8 

then it is clear that the greatest value that Scan achieve is 14'(a(n- 1)) which would 

occur if the input angle was either z= 71.60 or z= 18.40. 

With this limit in mind, the relation that the Angle Approximation Error 5 has 

on the error in the cosz and sinz calculation must be examined. For this, consider the 

case of n=2. In Figure 7.27 the worst case input, which for this case is 450, has been 

drawn along with the two nearest CORDIC outputs, 71.6' and 18.40. Clearly the upper 
limit to the worst case error for the x output (cosz) can be seen to be 0.39146 which is 

y 

t 
c 

CORDIC Output 
45'+26.6' = 71.6* 

Worst Case z 
450 

18=26.6 
d 

c= sin 71.6 - sin 45 = 0.24177 
d= sin 45 - sin 18.4 = 0.39146 

RI C CORDIC Output 
45'-266.6* = 18.4' 

Z-6.6 5.6 

4ao. 4 b-* x 
a= cos 45 - cos 71.6 = 0.39146 
b= cos 18.4 - cos 45 = 0.24177 

Figure: 7.27: Assessing The Approximation Error 
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also the Iiinit for the y output ( sinz ). 
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Taking a mathematical view of the situation in Figure 7.27 for the 

Approximation Error in both the cosine and sine components gives: 

Cos Cos (z ± cosz Sa 

Sm Ca sin (z ± 5) - sinz 

Expanding both equations in (7.3 1) gives: 

, cos = (coszcosB sinzsin5) - cosz a (7.32) 
sin = (sinzcos8 coszsinS) - sinz a 

Now, as n increases cos8 -+ 1. This allows (7.32) to be simplified to: 

Cos = :F sinzsinB a (7.33) 
c 

sin =± coszsin8 a 

Finally, as it is the worst case error that is of interest, it is possible to reduce (7.33) 

further. Clearly the upper limit for sin z and cos z is 1. Hence, both equations reduce to: 
ISalmax 

= sin8 (7.34) 

To confirm (7.34), simulations were run for a set of n using the DSP package 
SystemVue. The simulations involved comparing the output of two systems. The first 

system was a double precision floating point CORDIC design computing cosines and 

sines for inputs in the range -900 -< z: 5 900. The second system also computed these 

functions using a floating point direct computation and was considered as the reference 

output. Both sets of output data were then compared and the worst case CORDIC error 

tracked. As double precision floating point data was used, the Rounding Error can be 

neglected and consequently any difference between the two simulations can be 

attributed to the Approximation Error F,,,. This was repeated for several n and the 

results can be seen in Table 14. Clearly as n increases, the predicted results get very 
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close to the simulated results thus verifying (7.34). 

n 8 s" (Sim. ) ca ý sin8 

1 45' 0.7071 0.7071 

2 26.60 0.3909 0.4472 

3 14' 0.2395 0.2425 

4 7.10 0.1242 0.1240 

5 3.580 0.0619 0.0624 

6 1.79' 0.0312 0.0312 

7 0.900 0.0156 0.0156 

8 0.450 0.0078 0.0078 

Table 14: Simulation Results for e. Versus Predicted Results 
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To ftirther confirm the simplification of the Approximation Error in (7.34), a 
fuller examination was also carried out. This began by considering the Eco' equation a 
in (7.32), which can be rewritten as: 

Cos Ca : Fsinzsin5 + cosz(cos8 - 1) (7.35) 

If the values of z and 8 are in the range: 

0 -5 z: 5 n/2 
0: 5 8: 5 ic/2 

then the maximum Approximation Error is given with: 
JET I. 

a., = max., I-sinzsin8 + cosz(cos8 - I)l (7.36) 

for each 8 requires (7.36) to be differentiated To find the z,,,,,,, which causes 
I 
&a 

with respect to z. This gives: 

d 
ecos (z) = -cosz sin8 - sinz(cos 8- 1) (7.37) , Tz- a 

Then, the value of z where the maximum occurs (z,,,,,, ) can be found from: 

-CoSzmaxsin8 - sinz,,,,,,, (cos8 - 1) =0 (7.38) 
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Rearranging (7.38) leads to: 
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.. 
( Coss -I Zmax ý acotý- S-- (7.39) 

siN 
1) 

Now, with some manipulation it can be found that (7.39) can be written as: 
5 7t-5 

Zmax 
2 

(7.40) 

co' for each 8, (7.40) can be used with (7.36) to give: To fmd lea 

l 

Co 1 max sin sin 5+ cos 
(" D (COS ea 

2) 

This function can then be plotted against 8. This is shown in Figure 7.28 where the 

simplified equation for (7.34) has also been plotted. It is clear from this plot 

that both equations give almost identical results for 5<0.2 rads (<I 10 ). The 

difference between the two algorithms can be seen in Table 15. The number of 

effective fractional bits that each error represents is also shown. It can be seen that as 

1.5 

Full App. Error 
Simplified App. Error 

w 
a 0 
E 
x 2 
CL CL 0.5 
x 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
8 (0 to W2) 

C4 
0 

Figure: 7.28: IQ.,. versus 8 for the Full and Simplified Approximation Error Equations 
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n increases from 4 to 7 both equations start to give almost exactly the same results and 
hence it can be concluded that the simplified equation is a relatively accurate 

approximation for a real system. 

Full App. Error Result Simplified App. Error Results 

n Error Eff. Frac. Bits Error Eff. Frac. Bits 

4 0.1242748831 3.0083933485 0.1240347345 3.0111839065 

5 0.0624086775 4.0021095485 0.0623782861 4.0028122745 

6 0.0312385631 5.0005280943 0.0312347523 5.0007040971 

7 0.0156235697 6.0001320678 1 0.0156230930 6.0001760887 

Table 15: Comparison of Full versus Simplified Approximation Error Equations 

As mentioned already, the OQE is made up of two parts, the Approximation 

Error and the Rounding Error. Having developed an expression for s", the complete 
OQE equation, in terms of n and b, is given as: 

OQE = &a +Er= sin5 + 2- 
b-0.5[G(n) 

+ 1] 
K(n) (7.42) 

where 8= a(n- 1) = arctan(2-n+ I) 

7.5.4 Simulations 

To verify the OQE given in (7.42), two steps were taken: 

- Matlab code was written to compute the OQE for various n and b and then 

convert it into the number of effective fractional bits that it represents. 

* Fixed point CORDIC simulations for various n and b were carried out and the 

number of effective fractional bits that were produced relative to a direct floating 

point cosine and sine calculation were measured. 

With two sets of effective fractional bits (d,, #) it was then possible to verify how 

accurate the OQE is at predicting the accuracy of fixed point CORDIC systems 
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computing cosinc and sincs. 

7.5.5 Predicting The Accuracy 

To allow the OQE to be assessed for many combinations of n and b, Matlab code was 

written which allowed this to be done quickly and accurately. First of all functions to 

compute K and G were written (see Figure 7.12 and Figure 7.13). These functions were 
then called and used to compute the Rounding Error according to (7.29). The 

Approximation Error (sinS) was also computed before both errors were added 
together to form the OQE. Finally, using (7.43), the OQE was converted to represent 
the number of effective fractional bits (d,, O) that are achievable. The Matlab code can 
be seen in Figure 7.29. 

d, ff = -(10920QE) (7.43) 
kunction Deft - EffBitsZ(n, b) 
IEffBita returns the number of effective fractional bits computed in 
la fixed point CORDIC system relative to a floating point CORDIC s7s 
ýEffBits inputs: n= iterations, bý bits used 

linput vector; Returns the number of effective bits computed. 
G= Ggen(n), 

K= Kgen(n), 
Z= atan(2-(-n+1)), 

approx-error = oin(Z); 

rounding_error - 2^(-b-0.5)*((G/K)+l), 

OQE approx 
- 

error+rounding_error, 
Deft -(Iog2(OQE)), * 

Figure: 7.29: Matlab Code For Computing The OQE 

Using this code, a table listing dff values for all combinations of 1 :5n: -5 40 

and 1: 5 b: 5 40 was produced. This table can be seen in Appendix C. 

7.5.6 Fixed Point Simulations 

To verify the predicted dffvalues, a number of fixed point CORDIC simulations were 

carried out for various n and b. In Figure 7.30 a fixed point CORDIC system computes 
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cosz and smz. At the same time, a Sin token computes the floating point solution to 

cosz and sinz and this is used as the reference solution. The corresponding fixed an(] 
floating point versions are then subtracted from each other yielding the fixed point 

error for each specific Z. The worst case error for both cosine and sine cornputations is 

tracked for the duration of the simulation. Finally the dff value is computed and 
displayed. 

F-77 

II Ij 

. -- 

122 

........... ..... ................ ------- 

Figure: 7.30: Fixed Point CORDIC Simulation 

Figure 7.30 shows the top level of the simulation but to understand what is 
happening within the CORDIC system, it is helpful to drop down a level and look 

inside the CORDIC box. Figure 7.31 shows that the CORDIC algorithm is made lip of' 

several cells indicating that a fully unrolled implementation has been selected as shown 
in [19]. Each cell computes one iteration. In the example shown, n=4. To further 

understand the algorithm, the logic within one of these cells must be viewed. Figure 

7.32 shows the logic that makes up each cell and clearly reflects tile algontlini 

according to (7.28). It should be noted that every cell is almost identical, differing only 

in the size of the shift that is made and the angle that is rotated. The same bit widths 

are used in each cell. So for example, every addition/subtraction uses ± (2, b) forniat. 
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----------- ------- -------- 

-------------------- 17 cIM con 127 c-4113 176 o 11 

Lai 

k 

L4MJ 

----------- ----------------------------------- 

L 

2", 
r 

Figure: 7.31: CORDIC Cells 

This is also the output format for every shift. However, each rotation angle uses only 

±ý 1, b) bits, as radians are used. Note that the biggest rotation angle is 0.785398 rads 
(45'). Other parameters that are of interest are the input z and the x=I IK input. Again, 

radians are used for z and hence, as the largest input is 1.570796 rads (90'), only 

±ý2, b) bits are used. As x is always less than 1, only ±( 1, b) bits are required. Of 

course, I IK is computed (using Matlab) for every simulation as it varies for each n. 

I 
F; Wl 

FY 

---- - ----- --- 

13] FY - 
A9 

: (2, h) J9 

Fr 77 

L-4 ----------- 

Figure: 7.32: Inside A CORDIC Cell 

A final point to note on bit widths regards the rotation angle e('). The rotation 
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angle must have enough fractional bits so that it does not underflow. This means that 
if b fractional bits are used, a maximum of n= b+1 iterations should be used or else 
this situation will occur. 

7.5.7 Results And Discussion 

To assess how accurate the OQE algorithm is at predicting the actual accuracy of fixed 

point CORDIC systems computing cosines and sines, both sets of dff values must be 

compared. 

Predicted Simulated 

n/b 9 10 11 9 10 11 

3 2.02 2.03 2.04 2.06 2.06 2.06 

4 2.96 2.98 3.00 3.00 3.01 3.01 

5 3.88 3.94 3.97 3.99 4.00 4.01 

6 4.72 4.86 4.93 4.91 4.95 4.98 

7 5.44 5.69 5.84 5.67 5.82 5.91 

8 5.96 6.39 6.66 6.18 6.53 6.75 

9 6.26 6.88 7.34 6.41 6.99 7.41 

10 1 6.39 7.17 7.81 1 6.1 7.18 

Table 16: Predicted dff Versus Simulated dff 

Table 16 shows the predicted and simulated values for dff obtained for all 

combinations of 3 <n:! ý 10 and 9: 5b: 5 11 At is clear to see that both sets of numbers 

are very close. The first observation is that all the predicted values are slightly less than 

the equivalent simulated ones. This indicates that the OQE has been slightly over 

estimated in each case resulting in a conservative approximation. However, it is only 

the integer part of each value that is of interest as a real system can only have an integer 

number of fractional bits. The purpose of showing the dffvalues to two decimal places 

allows a judgement to be made as to whether it is likely that the actual system might 
be slightly more accurate than the predicted value suggests. For example, by 

considering the case of n=4, b=9 the predicted value is 2.96. As the OQE seems to 
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slightly over estimate each error, it is likely that 3 fractional bits of accuracy are 
obtainable. Indeed, by looking at the actual simulated result for this scenario, it is clear 
that this is the case. 

7.5.8 Design Example 

It is useful to work through a design example to illustrate one way of using the dff 

table. In this case cosz and sinz must be computed with an accuracy of 10 fractional 
bits. The first step is to look at the table and find the first location that yields 10 
fractional bits. A useful rule to remember is that by ignoring Cr, b fractional bits of 
accuracy require a minimum of b+1 iterations. This can be verified by computing dff 
for each Ca in Table 14. However, when Cr is added b+2 iterations are required to 

achieve b fractional bits of accuracy. Looking at the table in Appendix C, 10.2 
fractional bits are achievable with n= 12 and b= 14. A simulation using these 

parameters confirms that this is actually the case. This illustrates the ease with which 
a CORDIC system can now be designed to guarantee a desired level of accuracy when 
computing cosines and sines. 



Chapter 8 

Pipelined Feedback Loops 

8.1 Introduction 

This chapter presents the work that was carried out to investigate the effects of 

pipelining a feedback loop. Much of the work presented in this thesis can be related to 
least squares adaptive equalisation techniques such as QR-RLS systems. Such systems 
have feedback within the systolic array as illustrated in Figure S. 11. 

Chapter 8.2 starts by considering the issues involved with pipelining a 
feedback loop. In Chapter 8.3 the consequences of doing so are examined. Two 
hardware designs using feedback, one with pipelining and one without, which arc 
algorithmically identical, are presented. It should be noted that the square root and 
divider cores developed for HDS are used in this analysis as they have the ability to 
have pipelining turned on and off. This comparison is used to show differences in 

speed, area and power consumption and ultimately to reveal which approach is best. In 

Chapter 8.4, a scenario is presented where pipelining a feedback loop can offer 
benefits. This is based on channel interleaving for a suitable multichannel scenario and 

offers a low cost hardware solution for low data-rate applications. Chapter 8.5 reviews 
the generic outcomes of the work before the conclusions are given in Chapter 8.6. 

127 
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data-rate tt 
= f. , 21--* bb >UPul , >U, Pul 

L 
reg 2 

z11 clk 
j 

fý 1 f7 4 

T- clk @ f, 
Figure: 8.1: Feedback loop 

8.2 Pipelining A Feedback Loop 
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It is possible to pipeline a feedback loop while still preserving the original algorithm. 
Figure 8.1 shows a feedback loop with an adder and some logic containing no registers. 
A single delay (reg 2) is required to synchronise the feedback data with the new data 

as it arrives. 
The maximum speed at which a system can be clocked at is determined by the 

greatest delay between any two connected registers. This delay represents the time it 

takes for data to travel between two registers and thus limits the clock speed. If the 
device is clocked faster than this limit, data to be captured by the receiving register will 
arrive after the clocking signal and so will not get registered. Thus, the longest delay 

between two registers in a design is known as the critical path. In Figure 8.1, the 

critical path is either the connection between reg I and reg 2 or it could be the feedback 

path connecting the output of reg 2 with its own input. 

Figure 8.2 illustrates a pipelined version of the feedback loop shown in Figure 

8.1, where it is assumed that pipelining registers in the feedback logic block will reduce 
the critical path. This circuit still represents the same algorithm as the non-pipelincd 
design. To achieve this the registers in the feedback loop must be clocked at n xf, The 

pipelined registers need to be clocked at this rate so that the feedback result arrivcs at 
the adder at the same time as the next sample. However, now the critical path will have 

been reduced as there are more registers in the data path. This means that the maximum 
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data- tý output @ f. 
P, 2ý1 1- 

ý fs Lýý*F+-ý + P- logic with 
z' delay 

clk @ f, 

clk @ n*f, -J 

Figure: 8.2: Feedback loop with pipelining 
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clock speed has now increased. To determine the maximum data-rate at which this 

circuit can operate with, the maximum clock rate must be obtained and divided by V. 

The question is then which of the two designs is faster and what are the respective 

power and logic resource requirements? 

8.3 To Pipeline Or Not To Pipeline? 

To try to answer these questions, two circuits were designed using HDL Design Studio. 

This tool is used for the design, simulation and implementation of DSP systems on 
FPGAs. The methodology is based on the professional DSP design software, 
SystemVue by Elanix, and uses a bit true fixed-point library (FXP-Lib) which maps 
directly to synthesisable HDL code. 

8.3.1 Givens Rotation With Feedback 

The circuits designed were based on logic found in a QR decomposition (QRD) using 
Givens rotations. This technique is used for QR-RLS optimisation and has a wide 

range of application in adaptive filtering. The QR algorithm can be implemented using 

a parallel array of cells as illustrated in Figure 8.3 and discussed in Section 5.4.3. Each 

cell in the array performs a Givens rotation according to (8.1). However, the boundary 

cell on each row differs from the other cells in that it must calculate 01 and pass it along 

the row to the other cells (the Givens Generation), as well as perform a Givens rotation 
itselL 
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ei 

00 

9i 
Lj 

bounda /10 1 
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ry------* 

II 
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4L 

Figure: 8.3: QR-Update Array 
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a/= acosO, +bsin0i 

b= bcosOi-asin0i 

For the purpose of the experiment, a pipelined and a non-pipelined implementation of 

this particular cell was chosen. A schematic illustrating one implementation of a 
boundary cell is shown in Figure 8.4. 

r acosul-+ sin0i 

cosoj, 

ý--4cosoj 

I a- 00 
IG 

sinO, 
G 

sinO, 111i 
cc 

bcosOi-asin 0 
L--------- i- - _; j 

0 Figure: 8.4: QR-Update Boundary Cell 

In this implementation, rather than compute Oi to pass onto the other cells in the row, 

cos0i and sinO, are computed and passed on. The other cells must then perform 4 

multiplies, I addition and I subtraction to complete a Givens rotation. (8.2) shows the 

relationship between the input vector [a, b] and the calculated values cos 01 and sin 0,, 
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tanO, = bla 

Cos 0 
JI 

+ tan2 0, JI 
+ 

-(bla) 2 
(8.2) 

sin 0, tan 0ix cos 0 bla 
JI 

+ 
-(blaý 

8.3.2 Non-Pipelined Design 

Figure 8.5 illustrates the non-pipelined boundary cell implemented using I IDL Design 

Studio. The cos0i and sin0i components are computed using a combination of' 
division, multiplication, addition and square root tokens in accordance with (8.2). The 

only register in the cell occurs in the feedback loop and is used to synchronise the 

feedback data with the next sample arriving. Note that the critical path Is highlighted 

by dashed arrows and follows the path of the feedback loop. 

Z-1 a cos0i +b sin0i 

coso. 

+ 
-'llptIM-1 - 

b cos0i -a sin0i =04 
Figure: 8.5: Non-Pipelined Boundary Cell 

8.3.3 Pipelined Design 

The pipelined boundary cell is shown in Figure 8.6. Only the two dividers and the 

square root tokens are pipelined and combine to produce an overall delay of' 80 

samples. This delay is due to the fact that the divider and square root cores are fidly 
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pipelined. Both dividers calculate signed 32 bit results. This requires 31 cells to 

generate the unsigned result. Looking at section 6.3.4 it can be seen that as wcll as 

having a delay in each cell, there is also 3 additional delays. Hence, a total ot'34 delays 

is incurred in this case. The square rooter computes a signed 16 bit result although this 

only requires 15 cells. Just like the divider, there are 3 extra delays (section 6.7.5) In 

addition to the delay incurred by each cell. Hence, the square rooter incurs 18 dclays. 

Thus, the pipelined stages are clocked at (n = 86) xf,. Clocking at this spccd is 

required to synchronise the feedback result with the next sample arriving at the, /, ' data- 

rate thus maintaining the algorithm. The critical path in this design is also highlighted 

by dashed arrows. Note how much shorter it is compared to the non-plpellned dcsigil 

thus allowing the clock speed to be higher. 

It should be noted that this is not the only pipelining option, there are niaily 

others that could have been employed. However, unfortunately the I IDS squarc root 

and division cores only have the option to be fully pipelined or not at all. Anotlicr 

approach could have been to pipeline the path by adding individual dclays In betwceii 

each functional block. 

------ -I -- - --- -I - 
Figure: 8.6: Pipelined Boundary Cell 
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The results from synthesising both boundary cell designs are presented in Table 17. 

The results were obtained after completing the implementation process in ISE 6.2.03i 

which was used to target a Virtex-II XC2V8000 device. The power estimates were 

obtained using the XPower tool within ISE. 

Design Slices Max. Clk Max. Data Total Est. 
Speed Rate Power Cons. 

Pipelined 4672 45.55 MHz 530 KHz 902 mW 

L 
Non-Pipedl 2046 

1 
2.755 MHz 

1 
2.755 MHzI 787 mW 

Table 17: Synthesis Results 

From these results it can be seen that the pipelined design can be clocked more than 16 

times faster than the non-pipelined design. However, the maximum data rate for the 

pipelined design is one 86th of the clock rate due to the fact that each data sample must 

wait 86 clock cycles before entering the design. This gives a maximum date rate of 

only 530 KHz. The non-pipelined design does not have this constraint and the 

maximum data rate is equal to the maximum clock speed. Hence, the non-pipelincd 
design has a data rate nearly 5 times faster than the pipelined design. In addition to this, 

the non-pipelined design uses less logic as it does not have all the additional registers 

of the pipelined design and it uses less power, which is due to the reduced clock specd 

and the reduced amount of logic in the design. 

8.4 Filling The Pipeline 

The results from synthesis would suggest that there is no reason to pipeline a feedback 

loop. However, there is redundancy in this structure that can be exploited, making 

pipelining viable under certain conditions. The pipeline, in the situation considered so 
far, never fills up because a new sample must wait on the result of the previous one 
before it can enter the pipeline. Thus, for a single input data channel, a sample will 
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enter the pipeline and clock through each stage with nothing following it until it has 

passed through completely. This means that the majority of the logic is redundant for 

the majority of the time. 

An approach that exploits this redundancy is to share the same structure with 

more than one input data channel (i. e channel interleaving as in Figure 8.7). Here, 

assume that the feedback loop has n pipeline stages. This means that up to n 
independent input channels can share this hardware. By multiplexing each input 

channel into the hardware, the pipeline can be filled. As soon as the first sample enters 
the pipeline and clears the first stage, a sample from another channel can enter. 

This architecture offers a low cost hardware solution under the corrcct 

circumstances. Unless n input channels exist to fill n pipeline stages then there will still 
be some redundancy. Also, as n grows, the data-rate reduces, which means that this 

structure is only useftil for low data-rate applications. 
n input channels @ f, n output channels @ f, 
I /-I 

33 
,, -logic wi;: 

ýO 2- 
+2 Eze% 

delay 

f, 

J 
counter 4- -, 

_ 
rr -1011-c 4- 

-clk @n xf, -J 
Figure: 8.7: Channel Interleaving 

8.5 Discussion 

The synthesis results have demonstrated that with a single data channel there is no 

reason to use pipelining in a feedback loop. The purpose of pipelining is to speed up 
data throughput, but clearly it has the opposite effect in this case. Not only is the 

pipelined version slower, but it uses more logic because of the extra registers and it 

consumes more power because of the extra clocking requirements. 

These findings can be explained ftirther by considering Figure 8.8. Here, a 
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wire is shown, where z represents the time it takes for a signal to travel from the start 
to the finish. 

start finish 

T 

Total time =r 
Figure: 8.8: A simple wire 

Figure 8.9 shows the same length of wire but this time it has been pipelined with two 

registers. The first register splits the wire in half so the time taken for the signal to 

travel from the start to Reg I is r/2. Reg 2 then splits the remainder of the wire in half, 

thus r/4 is the time taken for a signal to travel through each of the last two sections. 
So far, the time the signal takes to travel through the 3 sections of wire has been 

accounted for. However, there is also some additional delay that must be accounted for 

known as the setup and hold time. The setup time is the minimum amount of time that 
data must arrive at a register before the clock signal if it is to be successfully latched. 

Similarly, the hold time is the minimum amount of time that data must be held for after 

a clock signal has arrived. Thus, the minimum delay between data reaching a register 

and getting latched is the accumulation of the setup and hold time, known as -rsh ' If the 

setup or hold time is breached, then a situation known as metastability can occur where 
the latched value cannot be predicted. 

Reg I Reg 2 
start finish 

Tf2 10 4-T/4-* 
-*'rsh 4- -jo. Tsh 4- 

Total time =, r/2 + 2T/4 + 2T, h =T+ 2Tsh 

Figure: 8.9: A pipelined wire 

Accounting for 'r, h of both registers, the total time to travel along the wire 
becomes r+ 2Tsh. Hence, it is clear that pipelining has only served to increase the 

travel time. This demonstrates that the shortest time for a signal to travel along a wire 

occurs without pipelining. 
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This chapter has shown that it is not always desirable to work with IP that has bccn 

pipelined. In situations involving a feedback loop it has been demonstrated that 

pipelined designs produce slower data throughput, use more logic and consume more 

power than a non-pipelined design. It has also shown that a non-pipelined design offers 
the fastest throughput possible and that a pipelined design cannot match this because 

of the additional delay due to the setup and hold time of each register in the pipeline. 
A scenario that would benefit from using pipelined IP in a feedback loop was 

presented. This involved channel interleaving where the same pipelined feedback loop 

was shared with several data channels all ninning at the same data-rate. It was shown 

that for a pipeline with n stages, up to n independent data channels could be interleaved 

to share the same hardware and produce n independent output channels. This 

architecture offers a low cost hardware solution for low data-rate applications. 
In summary, the conclusion that can be drawn from this work is that cngincers 

using DSP algorithm design tools must fully understand the implications of working 

with pipelined IP blocks when implementing algorithms that require feedback. 



Chapter 9 

Conclusions 

In this final chapter the work presented throughout the thesis is summarised and 
conclusions are made for each of the main research areas discussed within. Further to 
this, ftiture research and development based on this work is proposed, particularly with 
regard to the CORDIC algorithm. 

9.1 Core Development for HDS 

HDL Design Studio (HDS) is a software package developed by EnTegra Ltd. to allow 
SystemVue simulations to be used to automatically generate equivalent bit and cycle 
accurate hardware designs. The advantage of this approach is that it significantly 

reduces design times by removing the need to hand code VHDL. 

A major part of the Engl) project was to develop two cores for inclusion in 

the HDS function library. These two cores were a Divider and a Square Rooter, both 

of which were based on direct methods of computation rather than an iterative 

approach. The advantage of using an algorithm based on a direct approach is that for a 
known number of iterations the accuracy of the output can be predetermined. This 

attribute is a major benefit in DSP. With an iterative technique such as Newton's 

method, the accuracy of the output for a given number of iterations is unknown unless 
lengthy simulations are run to track the worst case error for a particular scenario. Other 

137 



CHAPTER 9- Conclusions 138 

tools in the FPGA EDA tool market contain cores that will allow square roots and 
divisions to be computed. However, the cores tend to use CORDIC to compute these 
functions. It was shown within this thesis that the CORDIC algorithm is an iterative 

technique where determining the accuracy of the output it produces is not straight 
forward. Hence, for this reason and to differentiate HDS from its competitors a direct 

approach was taken for these functions. 

Another reason for including Square Root and Division cores within IlDS is 
that they are required to build Adaptive Equalisers using the QR-RLS update 
algorithm. This form of adaptive equalisation is in great demand at the moment due to 
its better performance relative to the LMS algorithm which has been traditionally used. 
However, increased performance comes at a cost and the QR-RLS uses far more 

resources than the LMS. This is why the LMS has been used so much until now as 
technology has limited the use of the RLS. Modem FPGAs now contain enough 
resources that this is no longer the case. 

The importance of Square Root and Divide functionality is illustrated by the 
fact that one of Xilinx's latest FPGAs, the Virtex-4, contains logic known as the 
DSP48 slice which can be used to compute several math functions, two of which are 
Square Root and Divide [57]. Although there is no dedicated logic for these specific 
functions, it is the author's belief that this may well become a feature in future FPGAs, 
just like the embedded multiplier has become a regular feature since the early Virtex 

devices. Further to this, it is also clear that Xilinx see adaptive equalisation as a major 
area of interest to their customers as they recently acquired AccelChip [54] who have 
developed technology similar to SystemGenerator, but which includes IP for designing 

QR-RLS systems amongst other adaptive algorithms [39]. 

9.2 CORDIC Accuracy Research 

The CORDIC algorithm has been shown to be a technique based on the rotation of a 

vector, which can be used to compute a large range of mathematical functions. It is 
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cheap to implement on FPGAs due to the fact that it requires mainly shifts and 
additions, which are in plentiful supply on todays devices. The problem with the 
CORDIC algorithm is that it is not easy to predict the accuracy of the output it 

produces. In many DSP algorithms it is vitally important to know the accuracy of each 
function in the algorithm to maintain numerical integrity. Obviously using CORDIC in 

such algorithms problematic. 
The traditional approach to using the CORDIC algorithm in real systems has 

been to design the CORDIC component and then run lengthy simulations to test the 

output against some reference output. This allows the worst case error to be tracked 

thus yielding the accuracy of the CORDIC output. However, this approach takes a lot 

of time. If the desired level of accuracy is not found then the CORDIC design must be 

altered by adding more iterations and/or increasing the number of bits used in the data 

path. The simulations must then be rerun and the worst case error tracked again. This 

process is repeated until a CORDIC design with a satisfactory accuracy is found. 

Obviously this is not an ideal scenario as the process is lengthy and, importantly, the 

most efficient CORDIC design for a given level of accuracy may not be found even 

although the output is accurate enough. 
To solve this problem, Yu Hen Hu [18] analysed the error in CORDIC 

systems computing vector magnitudes. By doing this he was able to develop a formula 

for the Overall Quantisation Error (OQE) in terms of the maximum magnitude of the 

rotated vector jv(0)j 
, the number of iterations n and the number of fractional bits in the 

data path b. These three parameters completely define the CORDIC system. To cut 
down the number of variables in the OQE, Yu Hen Hu proposed that the maximum 

value that x(O) or y(O) could take was 0.5, which meant that Jv(0)j :5 J05.5. With this 

parameter fixed the OQE was computed for all combinations of I --ý n: 5 40 and 
1 :5b: 5 40. Finally each OQE was converted into the number of effective fractional 

bits that it represents and these values were entered into a table. This allowed someone 

wishing to design a CORDIC system computing a vector magnitude to scan the table 

and find the required level of accuracy for the calculation. Once found, the n and b 
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required to achieve this accuracy were simply read off the corresponding row and 
column respectively. 

The OQE equation that was developed in [ 18] has since been found to be quite 
inaccurate for many cases. Hence, the author set out to build on and improve on this 

work. Consequently a new OQE was developed which has been shown to be far more 
accurate at predicting the accuracy of CORDIC systems computing vector magnitudes. 
The equation is used to generate a table, as before, which allows a desircd level of 
accuracy to be searched for and the corresponding n and b are then given. Further to 
this, the work has been extended and an OQE equation has also been developed for 
CORDIC systems computing cosines and sines. This equation has also been proven to 
be extremely accurate in predicting the accuracy of such systems. 

The development of accuracy tables has meant that the most cfficicnt 
CORDIC design for a given level of accuracy can now be found quickly and easily 

without having to run lengthy simulations, as was the case with the traditional 

approach. This is a significant development for the CORDIC algorithm as it can now 
be assessed against other techniques for computing similar functions to evaluate which 
is best. This was not the case before as it was very difficult to find the most efficient 
design for a specified level of accuracy. Hence, a CORDIC design computing a vector 

magnitude with x fractional bits of accuracy could be found by trial and error but 

without a thorough search it would be very difficult to know whether or not the design 

used the very minimum hardware required to achieve this. Unless this is known with 

confidence, a fair comparison cannot be made with other techniques for computing the 

same function, such as a direct approach where the minimum hardware required is far 

easier to find. This type of examination has begun and for the case of vector magnitude 

calculations, it has been found that the CORDIC algorithm uses fewer resources. 
Finally, this work can be extended in the future to include many more of the 

mathematical functions that CORDIC can compute. So far OQE equations for vector 

magnitude calculations and sine/cosine calculations have been developed but this is 

only the beginning. There are many more functions that can be computed, each of 
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which has its own specific OQE equation. 

9.3 Adaptive Equalisation 

Mobile communications require fast adaptive equalisers such as those that use the QR- 

RLS update algorithm. Such algorithms are extremely sensitive to numerical accuracy 
and hence it is vital that the error in each component is known with confidence. Furthcr 

to this, such algorithms are also computationally intensive and are expensive in terms 

of the hardware required to implement them. Any research that leads towards 

minimising the hardware required in such systems is extremely valuable. Much of the 

work involved in this thesis can be related to the improvement of both of these areas 

of adaptive equalisation. 
In the area of numerical accuracy, it has been shown that direct methods of 

computing division and square roots are ideal due to the fact that a solution with 

guaranteed accuracy can be produced using a known number of iterations. This is not 
the case with the CORDIC algorithm, which can be used to compute vcctor 

magnitudes, a vital part of the QR-RLS algorithm. However, this thesis illustrates a 
new technique for finding the most efficient CORDIC design for such computations 

where the accuracy is known for a number of iterations. Thus, it is now possible that 
QR-RLS systems could be constructed using a variety of direct and CORDIC 

arithmetic. Where the optimal solution may lie is difficult to say although it is the RE's 

belief that a combination of CORDIC and direct arithmetic may be the answer, 

especially since a CORDIC system computing vector magnitudes has been shown to 
be smaller and faster than using two multipliers, an adder and a square rooter. Even if 

CORDIC was used to compute this part of the QR-RLS algorithm, multiplication and 
division are still required. These functions can be computed using CORDIC but it is 

not known yet whether this approach is better than direct arithmetic for these cases. 
Finally, it has been shown that the QR-RLS requires feedback within each of its cells. 
Often FPGA designs are pipelined to make use of the "free" registers throughout the 
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device with the benefit of increased throughput. However, it has been proven that this 
is not the best approach when feedback loops exist. The optimum solution occurs when 
no pipelining is used as this gives a design using the least resources yet with the highest 
data throughput. 



Appendix A 

Old Algorithm - Effective Fractional Bits Table 

nlb 1 2 3 4 5 6 7 8 9 10 
1 -1.39 -1.01 -0.78 -0.65 -0.57 -0.54 -0.52 -0.51 -0.50 -0.50 
2 -1-24 -0.62 -0.16 0.13 0.30 0.40 0.45 0.47 0.49 0.49 
3 -1.29 -0.48 0.19 0.70 1.05 1.26 1.37 1.43 1.47 1.48 
4 -1.43 -0.52 0.31 1.02 1 1.58 1.97 2.21 2.35 2.42 2.46 
5 -1.60 -0.64 0.28 1.13 1.87 2.47 2.89 3.17 3.32 3.41 
6 -1.77 -0.79 0.17 1.10 1.97 2.74 3.37 3.82 4.12 4.30 
7 -1.94 -0.95 0.04 1.01 1.94 2.83 3.62 4.27 4.76 5.08 
8 -2.09 -1.09 -0.10 0.89 1.86 2.80 3.69 4.50 5.18 5.69 
9 -2.22 -1.23 -0.23 0.76 1.75 2.72 3.67 4.57 5.40 6.09- 
10 -2.35 -1.35 -0.35 0.64 1.64 2.63 3.60 4.55 5.46 6.30 
11 -2.47 -1.47 -0.47 0.53 1.53 2.52 3.51 _ 4.49 5.44 6.36 
12 -2.57 -1.57 -0.57 0.42 1.42 2.42 3.42 4.40 5.38 6.34 
13 -2.67 -1.67 -0.67 0.33 1.32 2.32 3.32 4.32 5.31 6.29 
14 -2.77 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.22 6.21 
15 -2.86 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14 6.13 
16 -2.94 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 6.06 
17 -3.02 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98 5.98 
IS -3.09 -2.09 -1.09 -0.09 0.91 1.91 2.91 3.91 4.91 5.91 
19 -3.16 -2.16 -1.16 -0.16 0.84 1.84 2.84 3.84 4.84 5.84 
20 -3.23 -2.23 -1.23 -0.23 0.77 1.77 2.77 3.77 4.77 5.77 
21 -3.30 -2.30 -1.30 -0.30 0.70 1.70 2.70 3.70 4.70 5.70 
22 -3.36 -2.36 -1.36 -0.36 0.64 1.64 2.64 3.64 4.64 1 5.64 
23 -3.42 -2.42 -1.42 -0.42 0.58 1.58 2.58 3.58 4.58 5.58 
24 -3.47 -2.47 -1.47 -0.47 0.53 1.53 2.53 3.53 4.53 5.53 
25 -3.53 -2.53 -1.53 -0.53 0.47 1.47 2.47 3.47 4.47 5.47 
26 -3.58 -2.58 -1.58 -0.58 2 0.42 1.42 2.42 3.42 1 4.42 5.42 1 
27 -3.63 -2.63 1.63 -0.63 0.37 7 1.37 

1 
2.37 1 3.37 4.37 1 A 17 

28 -3.68 1 -2.68 -1.68 0. -0.68 0.32 
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29 -3.73 -2.73 -1.73 -0.73 0.27 1.27 2.27 3.27 4.27 5.27 
30 -3.77 -2.77 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.23 
31 -3.82 -2.82 -1.82 -0.82 0.18 1.18 2.18 3.18 4.18 5.18 
32 -3.86 -2.86 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14 
33 -3.90 -2.90 1 -1.90 -0.90 0.10 1.10 2.10 1 3.10 4.10 5.10 
34 -3.94 -2.94 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 
35 -3.98 -2.98 -1.98 -0.98 0.02 1.02 2.02 3.02 4.02 5.02 
36 -4.02 -3.02 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98 
37 -4-06 -3.06 -2.06 -1.06 -0.06 0.94 1.94 2.94 3.94 4.94 
38 -4.10 -3.10 1 -2.10 1 -1.10 -0.10 0.90 1.90 2.90 3.90 4.90 
39 -4.13 -3.13 -2.13 -1.13 -0.13 0.87 1.87 2.87 3.87 4.87 
40 -4.17 -3.17 -2.17 1 -1.17 -0.17 0.83 1.83 2.83 3.83 ' -4.83 
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nlb 11 12 13 14 15 16 17 18 19 20 
1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
3 1.49 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 
4 2.48 2.49 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 1 
5 3.45 3.48 3.49 3.49 3.50 3.50 3.50 3.50 3.50 3.50 
6 4.40 4.45 4.47 4.49 4.49 4.50 4.50 4.50 4.50 4.50 
7 5.28 5.38 5.44 5.47 5.48 5.49 5.50 5.50 5.50 5.50 
8 6.04 6.25 6.37 6.43 6.47 6.48 6.49 6.50 6.50 6.50 
9 6.63 7.00 7.23 7.36 7.43 7.46 7.48 7.49 7.50 7.50 
10 7.01 7.57 7.96 8.21 8.35 8.42 8.46 8.48 8.49 8.49 
11 7.21 7.94 8.52 8.93 9.18 9.33 9.41 9.46 9.48 9.49 
12 7.26 8.12 8.87 9.46 9.89 10.16 10.32 10.41 10.45 10.48 
13 7.25 8.17 9.04 9.80 10.41 10.86 11.14 11.31 1 11.40 11.45 
14 1 7.19 8.16 9.09 9.96 10.73 11-36 11.82 12.12 12.30 12.40 
15 7.13 8.11 1 9.07 10.01 10.89 11.67 12.31 12.79 13.10 13.29 
16 7.05 8.04 9.03 10.00 10.93 11.82 12.61 13.26 13.75 14.08 
17 6.98 7.97 8.97 9.95 10.92 11.86 12.75 13.55 14.22 14.72 
18 6.91 7.90 8.90 9.89 10.88 11.85 12.79 13.69 14.49 15.17 
19 6.84 7.83 8.83 9.83 10.82 11-81 12.78 13.73 14.63 15.44 
20 6.77 7.77 8.77 9.77 10.76 11.76 12.74 13.72 14.66 15.57 
21 6.70 7.70 8.70 9.70 10.70 11.70 12.69 13.68 14.65 15.60 
22 6.64 7.64 8.64 9.64 10.64 11.64 12.64 13.63 14. 62 15.59 
23 6.58 7.58 8.58 9.58 10.58 11.58 12.58_ 13.58 ý 14.57 15.56 
24 6.53 7.53 8.53 9.53 10.53 11.53 12.53 13.52 14.52 15.52 
25 6.47 7.47 8.47 9.47 10.47 11.47 12.47 13.47 1-4.47 15.47 
26 6.42 7.42 8.42 9.42 10.42 11.42 12.42 13.42 14.42 15.42 
27 6.37 7.37 8.37 9.37 10.37 1.1.37 12.37 13.37 14.37 15.37 
28 6.32 7.32 8.32 9.32 10.32 11.32 12.32 13.32 14.32 15.32 
29 6.27 7.27 8.27 9.27 10.27 11.27 12.27 1 13.27 14.27 15.271 
30 6.23 7.23 8.23 9.23 10.23 11.23 12.23 13.23 14.23 15.23 
31 6.18 7.18 8.18 9.18 10.18 11.18 12.18 13.18 14.18 15.18 
32 6.14 7.14 8.14 9.14 10.14 11.14 12.14 13.14 14.14 15.14 
33 6.10 7.10 8.10 9.10 10.10 11.10 12.10 13.10 14.10 15.10 
34 6.06 7.06 8.06 9.06 10.06 11.06 12.06 13.06 14.06 15.06 
35 6.02 7.02 8.02 9.02 10.02 11.02 12.02 13.02 14.02 15.02 
36 5.98 6.98 7.98 8.98 9.98 10.98 11.98 12.98 13.98 14.98 
37 5.94 6.94 7.94 8.94 9.94 10.94 11.94 12.94 13.94 

_1 
4.94 

38 5.90 6.90 7.90 8.90 9.90 10.90 11.90 12.90 13.90 14.90 
39 5.87 6.87 7.87 8.87 9.87 10-87 11.87. 87 14.87 
40 5.83 1 6.83 7.83 8.83 9.83 10.83 11.83 12.83 13.83 14.83 
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nib 21 22 23 24 25 26 27 28 29 30 
1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
3 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 
4 2.50 2.50 2.50 2.50 2.50 1 2.50 2.50 1 2.50 2.50 2.50 
5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 
6 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 
7 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 
8 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 
9 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 
10 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 
11 9.49 9.50 9.50 9.50 9.50 9.50 9.50 1 9.50 9.50 9.50 
12 10.49 10.49 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 
13 11.48 11.49 11.49 11.50 11.50 11.50 11.50 11.50 11.50 11.50 
14 12.45 12.47 12.49 12.49 12.50 12.50 12.50 12.50 12-50 12.50 
15 13.39 13.44 13.47 13.49 13.49 13.50 13.50 13.50 13.50 13.50 
16 14.27 14.38 14.44 14.47 14.49 14.49 14.50 14.50 14.50 14.50 
17 15.06 15.26 15.38 15.44 15.47 15.48 15.49 15.50 15.50 15.50 
18 15.69 16.04 16.25 16.37 1 6.43 16.47 16.48 1 16.49 16.50 16.50 
19 16.13 16.66 17.02 17.24 _ 17.36 17.43 17.47 1 17.48 17.49 17.50 
20 16.39 17.09 17.63 18.00 18.23 18.36 18.43 18.46 18.48 18.49 
21 16.51 17.34 18.05 18.60 18.98 19.22 19.35 19.42 19.46 1 19.48 
22 16.55 17.46 18.29 19.01 19.57 19.96 20.21 20.35 20.42 20.46 
23 16.54 17.49 18.40 19.24 19.97 1 20.54 20.94 21.19 21.34 21.42 
24 16.50 17.48 18.44 19.35 20.20 20-93 21-51 1 21.92 22.18 22.33 
25 16.46 17.45 18.43 19.39 20.31 21.16 21.90 22.49 22.91 23.17 
26 16.41 17.41 18.40 19.38 20.34 21.26 22.11 22.86 23.46 23.89 
27 16.37 17.36 18.36 19.35 20.33 21.29 22.21 23.07 23.83 24.43 
28 16.32 17.32 18.31 19.31 20.30 21.28 22.24 23.17 24.03 24.79 
29 16.27 17.27 18.27 19.27 20.26 21.25 22.23 23.20 24.13 24.99 
30 16.23 17.23 18.22 19.22 20.22 21.22 22.21 23.19 24.15 1 25.08 
31 16.18 17.18 18.18 19.18 20.18 21.18 22.17 23.16 24.15 25.11 
32 16.14 17.14 18.14 19.14 20.14 21.14 22.13 23.13 24.12- 25.10 
33 16.10 17.10 18.10 19.10 20.10 21.10 22.09 23-09 24.09 25.08 
34 16.06 17.06 1 8.06 19.06 

- 
20.06 21.06 22.05 23.05 24.05 25.05 

35 16.02 17.02 18.02 19.02 20.02 21.02 22.02 23.01 24.01- 25.01 
36 15.98 16.98 17.98 18.98 19.98 20.98 21.98 22.98 23.98 24.98 
37 15.94 16.94 17.94 18.94 19.94 20.94 21.94 22.94 23.94 24.94 
38 15.90 16.90 17.90 18.90 19.90 20.90 21.90 22.90 23.90 24.90 
39 15.87 1 16.87 7.87 18.87 19.87 20.87 21.87 22.87 24.87 
40 15.83 1 16.83 17.83 18.83 19.83 20.83 21.83 22.83 23.83 24.83 
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nlb 31 32 33 34 35 36 37 38 39 40 
1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
3 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 
4 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 
5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 
6 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 
7 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 
8 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 1 6.50 
9 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 
10 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 
11 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 
12 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 
13 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 
14 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 
15 13.50 13.50 13.50 13.50 13.50 13.50 13.50 1 13.50 13.50 13.50 
16 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 
17 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 
18 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50 
19 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 
20 18.50 18.50 18.50 18.50 18.50 18.50 18-50 1 18.50 18.50 18.50 
21 19.49 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 1 19.50 
22 20.48 20.49 20.50 20.50 20.50 20-50 20.50 20.50 20.50 20.50 
23 21.46 21.48 21.49 21.50 21.50 21.50 21.50 21.50 21.50 21.50 
24 22.41 22.46 22.48 22.49 22.49 22.50 22.50 22.50 22.50 22.50 
25 23.33 23.41 23.46 23.48 23.49 23.49 23.50 23.50 23.50 23.50 
26 24.1 6 24.32 24.41 24.45 24.48 24.49 24.49 24.50 24.50 24.50 
27 24.87 25.15 25.32 25.40 25.45 25.48 25.49 25.49 25.50 25.50 
28 25.41 25.85 26.14 26.31 26.40 26.45 26.48 26.49 26.49 26.50 
29 25.76 26.38 26.84 27.13 27.30 27.40 27.45 27.47 27.49 27.49 
30 25.96 26.73 27.36 27.82 28.12 28.30 28.40 28.45 28-47 28.49 
31 26.04 26.92 27.70 28.33 28.80 29.11 29.29 29.39 29.45 29.47 
32 26.07 27.00 27.88 28.66 _ 29.31 29.78 30.10 30.29 30.39 30.44 
33 26.06 27.03 27.97 28.85 29.63 30.28 30.77 31.09 31.28 31.39 
34 26.04 27.02 27.99 28.93 29.81 30.60 31.26 31.75 32.08 32.27 
35 26.01 27.00 27.98 28.95 29.89 30.78 31.58 1 32.24 32.74 33.07 
36 25.97 26.97 27.96 28.95 29.92 30.86 31.75 32.55 1 33-22 33.72 
37 25.94 26.94 27.93 28.92 29.91 30.88 31.82 32.71 33.52 34.19 
38 25.90 26.90 27.90 28.90 29.89 30.87 31.84 32.79 33.68 34.49 
39 125.87 26.87 27.87 28.86 29.86 3085 31.4 32.81 33.76 

_ 
34.65 

40 125.83 1 26.83 1 27.83 28.83 29. 3 31.82_1 32.80 1 33.78 34.72 
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New Algorithm - Effective Fractional Bits Table 

nib 1 2 3 4 5 6 7 8 9 10 
1 0.30 0.97 1.48 1.82 2.03 2.15 2.21 2.24 2.26 2.26 
2 0.15 1.03 1.83 2.49 2.98 3.31 3.51 3.62 3.68 3.71 
3 -0.09 0.88 1.83 2.72 3.53 4.22 4.74 5.09 5.31 5.43 
4 -0.34 0.65 1.64 2.62 1 3.57 4.48 5.31 1 _ 6.03 6.59 6.98 
5 -0.56 0.44 1.43 2.43 3.42 4.40 5.36 6.28 7.13 7.88 
6 -0.76 0.24 1.24 2.24 3.24 4.23 5.23 6.21 7.17 8.10 
7 -0.93 0.07 1.07 2.07 3.07 4.07 5.07 6.06 7.05 8.04 
8 -1.08 -0.08 0.92 1.92 2.92 3.92 4.92 5.92 6.91 7.91 
9 -1.22 -0.22 0.78 1.78 1 2.78 3.78 4.78 1 5.78 6.78 7.78 
10 -1.35 1 -0-35 0.65 1.65 2.65 3.65 4.65 5.65 6.65 7.65 
11 -1.47 -0.47 0.53 1.53 2.53 3.53 4.53 5.53 6.53 7.53 
12 -1.57 -0.57 0.43 1.43 2.43 3.43 4.43 5.43 6.43 7.43 
13 -1.67 -0.67 0.33 1.33 2.33 3.33 4.33 5.33 6.33 7.33 
14 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.23 6.23 7.23 
15 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14 6.14 7.14 
16 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 6.06 7.06 
17 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98 5.98 6.98 
18 -2.09 -1.09 -0.09 0.91 1.91 2.91 3.91 4.91 5.91 6.91 
19 -2.16 -1.16 -0.16 0.84 1.84 2.84 3.84 1 4.84 5.84 6.84 
20 -2.23 -1.23 -0.23 0.77 1.77 2.77 3.77 1 4.77 5.77 6.77 
21 -2.30 -1.30 -0.30 0.70 1.70 2.70 3.70 4.70 5.70 6.70 
22 -2.36 -1.36 -0.36 0.64 1.64 _ 2.64 3.64 4.64 5.64 6.64 
23 -2.42 -1.42 -0.42 0.58 1.58 2.58 3.58 4.58 5.58 6.58 
24 -2.47 -1.47 -0.47 0.53 1.53 2.53 3.53 4.53 5.53 6.53 
25 -2.53 -1.53 -0.53 0.47 1.47 2.47 3.47 4.47 5.47 6.47 
26 -2.58 -1.58 -0.58 0.42 1.42 2.42 3.42 4.42 5.42 6.42 
27 -2.63 -1.63 -0.63 0.37 1.37 2.7 3.37 4.37 5.37_ 6.37 
28 -2.68 -1.68 -0.68 0.32 1.32 2.32 3.32 4.32 5.32 6.32 
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29 -2.73 -1.73 -0.73 0.27 1.27 2.27 3.27 4.27 5.27 6.27 
30 -2.77 -1.77 -0.77 0.23 1.23 2.23 3.23 4.23 5.23 6.23 
31 -2.82 -1.82 -0.82 0.18 1.18 2.18 3.18 4.18 5.18 6.18 
32 -2.86 -1.86 -0.86 0.14 1.14 2.14 3.14 4.14 5.14 6.14 
33 -2.90 -1.90 -0-90 0.10 1.10 2.10 3.10 1 4.10 5.10 6.10 
34 -2.94 -1.94 -0.94 0.06 1.06 2.06 3.06 4.06 5.06 6.06 
35 -2.98 -1.98 -0.98 0.02 1.02 2.02 3.02 4.02 5.02 6.02 
36 -3.02 -2.02 -1.02 -0.02 0.98 1.98 2.98 3.98 4.98 5.98 
37 -3.06 -2.06 -1.06 -0.06 0.94 1.94 2.94 3.94 4.94 5.94 
38 -3.10 - -1.10 -0.10 0.90 1.90 2.90 3.90 4.90 5.90 
39 -3.13 -2.13 -1.13 -0.13 0.87 1.87 2.87 3.87 4.87 5.87 
40 -3.17 -2.17 -1.17 -0.17 0.83 1.83 2.83 3.83 4.83 5.83 
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n/b 11 12 13 14 15 16 17 18 19 20 
1 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 
2 3.73 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 
3 5.50 5.53 5.55 5.56 5.56 5.56 5.56 5.57 5.57 5.57 
4 7.22 7.36 7.44 7.48 7.50 1 7.51 7.51 1 7.51 7.52 7.52 
5 8.47 8.90 9.17 9.33 9.41 9.46 9.48 9.49 9.50 9.50 
6 8.97 9.74 10.37 10.83 11.12 11.30 11.40 11.45 11.47 11.49 
7 9.01 9.94 10.83 11.62 12.27 12.76 13.08 13.28 13.38 13.44 
8 8.90 9.89 10.86 11.80 12.69 13.50 14.18 14.69 15.04 15.25 
9 8.77 9.77 10.76 11.75 12.72 1 13.67 14.57 1 15.40 16.09 16.63 
10 8.65 9.65 10.65 11.65 12.64 13.63 14.60 15.55 16.46 177' 
11 8.53 9.53 10.53 11.53 12.53 13.53 14.52 15.51 16-49 17.45 
12 8.43 9.43 10.43 11.43 12.43 13.43 14.42 15.42 16.42 17.41 
13 8.33 9.33 1 0.33 11.33 12.33 13.33 14.33 15.32 16.32 17.32 
14 8.23 9.23 _ 10.23 11.23 12.23 1 13.23 14.23 15.23 16.23 17.23 
15 8.14 9.14 10.14 11.14 12.14 13.14 14.14 15.14 16.14 17.14 
16 8.06 9.06 10.06 11.06 12.06 13.06 14.06 15.06 16.06 17.06 
17 7.98 8.98 9.98 10.98 11.98 12.98 13.98 14.98 15.98 16.98 
18 7.91 8.91 9.91 10.91 11.91 12.91 13.91 14.91 15.91 16.91 
19 7.84 8.84 9.84 10.84 11.84 12.84 13.84 14.84 15.84 16.84 
20 7.77 8.77 9.77 10.77 11.77 12.77 13.77 14.77 15.77 16.77 
21 7.70 8.70 9.70 10.70 11.70 12.70 13.70 14.70 15.70 16.70 
22 7.64 8.64 9.64 10.64 11.64 12.64 13.64 14.64 15.64 16.64 
23 7.58 8.58 9.58 10.58 11.58 12.58 13.58 14.58 15.58 16.58 
24 7.53 8.53 9.53 10.53 11.53 12.53 13.53 14.53 15.53 16.53 
25 7.47 8.47 9.47 10.47 11.47 12.47 13.47 14.47 15.47' - 16.47 
26 7.42 8.42 9.42 10.42 11.42 12.42 13.42 14.42 15.42 16.42 
27 7.37 8.37 9.37 10.37 11.37 12.37 13.37 14.37 15.37 16.37 
28 7.32 8.32 9.32 10.32 11.32 1 12.32 13.32 14.32 15.32 16.32 
29 7.27 8.27 

_9.27 
10.27 11.27 12.27 13.27 14.27 15.27 16.27 

30 7.23 8.23 9.23 10.23 11.23 12.23 13.23 14.23 . 15.23 16.23 
31 7.18 8.18 9.18 10.18 11.18 12.18 13.18 14.18 15.18 16.18 
32 7.14 8.14 9.14 10.14 11.14 12.14 13.14 14.14 15.14 16.14 
33 7.10 8.10 9.10 10.10 11.10 1 12.10 13.10 14.10 15.10 16.10 
34 7.06 8.06 

_9.06 
10.06 11.06 12.06 13.06 14,06 15.06 16.06 

35 7.02 8.02 9.02 10.02 11.02 12.02 13.02 14.02 15.02 16.02 
36 6.98 7.98 8.98 9.98 10.98 11.98 12.98 13.98 14.98 15.98 
37 6.94 7.94 8.94 9.94 10.94 11.94 12.94 13.94 14.94 15.94 
38 6.90 7.90 8.90 9.90 10.90 11.90 12.90 13.90 14.90 15.90 
39 6.87 7.87 8.87 9.87 10.87 11.87 12.87 13.87 14.87 15.87 
40 6.83 7.83 8.83 9.83 10.83 11.83 12.83 1 13.83 14.83 15.83 
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nib 21 22 23 24 25 26 27 28 29 30 
1 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 
2 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 
3 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 
4 7.52 7.52 1 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 
5 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 
6 11.49 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 
7 13.47 13.49 13.49 13.50 13.50 13.50 13.50 13.50 13.50 13.50 
8 15.37 15.43 15.47 15.48 15.49 15.50 15.50 15.50 15.50 15.50 
9 17.00 17.23 1 17.36 17.43. 17.46 17.48 17.49 17.50 17.50 17.50 
10 18.01 18.57 18.96 19.21 19.35 19.42 1 19.46 19.48 19.49 19.50 
11 18.36 19.21 19.94 20.52 0. 52 20.93 21.19 21.33 21.42 21.46 21.48 
12 18.38 19.34 20.26 21.12 12 21.87 22.46 22.89 23.16 23.32 23.41 
13 18.32 19.31 20.29 21.25 22.17 23.04 23.80 24.41 24.86 25.14 
14 18.23 19.23 1 20.22 21.21 

H 

22.20 23.16 24.09 24.96 m 25.73 26.36 
15 18.14 19.14 20.14 21.1 4 22.14 23.13 24.11 25.08 26.01 26. 

, 
89 

16 18.06 19.06 20.06 21.06 21.06 22.06 23.06 24.05 25.04 26.03 27.00 
17 17.98 18.98 19.98 20.98 20.98 21.98 22.98 23.98 24.98 25.97 26.97 
18 17.91 18.91 19.91 20.91 21.91 22.91 23.91 24.91 25.91 26.90 
19 17.84 18.84 19.84 20.84 21.84 22.84 23.84 1 24.84 25.84 26.84 
20 17.77 18.77 19.77 20.77 21.77 22.177 23.77 24.77 25.77 26.77 
21 17.70 18.70 19.70 20.70 21.70 22.70 23.70 24.70 25.70 26.70 
22 17.64 18.64 19.64 20.64 21.64 22.64 23.64 24.64 25.64 26.64 
23 17.58 18.58 19.58 20.58 21.58 22.58 23.58 24.58 25.58 26.58 
24 17.53 18.53 19.53 20.53 21.53 22.53 23.53 24.53 25.53 26.53 
25 17.47 18.47 19.47 20.47 21.47 22.47 23.47 24.47 25.47 26.47 
26 17.42 18.42 19.42 20.42 21.42 22.42 23.42 24.42 25.42 26.42 
27 17.37 18.37 19.37 20.37 21.37 22.37 23.37 24.37 25.37 26.37 
28 17.32 18.32 19.32 20.32 1 21.32 22.32 23.32 24.32 25.32 26.32 
29 17.27 18.27 19.27 20.27 21.27 22.27 23.27 24.27 25.27 26.27 
30 17.23 18.23 19.23 20.23 21.23 22-23 23-23 24.23 25.23 26.23 
31 17.18 18.18 19.18 20.18 21.18 22.18 23.18 24.18 25.18 26.18 
32 17.14 18.14 19.14 20.14 21.14 22.14 23.14 24.14 25.14 26.14 
33 17.10 18.10 19.10 20.10 21.10 22.10 23.10 24.10 25.10 26.10 
34 17.06 18.06 19.06 20.06 21.06 22.06 23.06 24.06 25.06 26.06 
35 17.02 18.02 19.02 20.02 21.02 22.02 23.02 24.02 25.02 26.02 
36 16.98 17.98 18.98 19.98 20.98 21.98 22-98 23.98 24.98 25.98 
37 16.94 17.94 18.94 19.94 20.94 21.94 22.94 23.94 24.94 25.94 
38 16.90 17.90 18.90 19.90 20.90 21 , 90 22.9 23-90 24.90 25.90 
39 16.87 17.87 18.87 19.87 20.87 21.87 22.87 23.87 24.87 25.87 
40 16.83 17.83 18.83 19.83 20.83 21 8-1 22.83 23.83 24.83 25.83 



APPENDIX B 152 

nib 31 32 33 34 35 36 37 38 39 40 
1 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27 
2 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74 
3 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 
4 7.52 7.52 1 7.52 7.52 7.52 7.52 7.52 7.52 7.52 1 7.52 
5 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 
6 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 
7 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 
8 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 
9 17.50 17.50 1 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 
10 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 
11 21.49 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 
12 23.45 23.48 23.49 23.49 23.50 23.50 23.50 23.50 23.50 23.50 
13 25.31 25.40 25.45 25.48 25.49 1 25.49 25.50 25.50 _ 25.50 25.50 
14 26.82 1 27.12 27.30 27.40 27.45 27.47 27.49 1 27.49 27.50 27.50 
15 27.67 28.31 28.79 29.10 29.29 29.39 29.44 29.47 29.49 29.49 
16 27.93 28.82 29.61 30.26 30.75 31.08 31.27 31.38 31.44 31.47 
17 27.95 28.92 29.86 30.75 31.55 32.22 32.72 33.06 33.26 33.38 
18 27.90 28.89 29.88 30.85 1 31.79 32.69 33.49 34.17 34.69 35.04 
19 27.84 28.83 29.83 30.82 31.81 32.78 33.73 34.63 35.44 36.13 
20 27.77 28.77 29.77 30.77 31.76 32.76 33.74 34.72 35.66 36.57 
21 27.70 28.70 29.70 30.70 31.70 32.70 33.70 34.69 35.68 36.65 
22 27.64 28.64 29.64 30.64 31.64 32.64 33.64 34.64 35.64 36.63 
23 27.58 28.58 29.58 30.58 31.58 32.58 33.58 34.58 35.58 36.58 
24 27.53 28.53 29.53 30.53 31.53 32.53 33.53 34.53 35.53 36.53 
25 27.47 28.47 29.47 30.47 31.47 32.47 33.47 34.47 35.47 36.47 
26 27.42 28.42 29.42 30.42 31.42 32.42 33.42 i4.42 35.42 36.42 
27 27.37 28.37 29.37 30.37 31.37 32.37 33.37 34.37 35.37 36.37 
28 27.32 28.32 29.32 30.32 31.32 32.32 33.32 34.32 35.32 ' -36.32 

29 27.27 28.27 29.27 30.27 31.27 32.27 33.27 34.27 35.27 36.27 
30 27.23 28.23 29.23 30.23 31.23 32.23 33.23 34.23 35.23 36.23 
31 27.18 28.18 29.18 30.18 31.18 32.18 33.18 34.18 35.18 36.18 
32 27.14 28.14 29.14 30.14 31.14 32.14 33.14 34.14 35.14 36.14 
33 27.10 28.10 29.10 30.10 31.10 32-10 33.10 1 34.10 35.10 36.10 
34 27.06 28.06 29.06 30.06 31.06 32.06 33.06 1 34.06 35.06 36.06 
35 27.02 28.02 29.02 30.02 31.02 32.02 33.02 34.02 35.02 36.02 
36 26.98 27.98 28.98 29.98 30.98 31.98 32.98 33.98 34.98 35.98 
37 26.94 27.94 28.94 29.94 30.94 31.94 32.94 33.94 34.94 35.94 
38 26.90 27.90 28.90 29.9 30.9 33.90 34.90 35.90 
39 26.87 27.87 28.87 29.87 30.87 31.87 32 . 87 33.87 34.87 35.87 
40 12 . 83 27.83 28.83 29.83 30.83 31.83 

LM32.83 
33.83 34.83 15 81 
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CORDIC Cos/Sin - Effective Fractional Bits Table 

n/b 1 2 3 4 5 6 7 8 9 10 
1 -0.39 -0.01 0.22 0.35 0.43 0.46 0.48 0.49 0.50 0.56- 
2 -0.35 0.22 0.61 0.86 1.00 1.08 1.12 1.14 1.15 1.16 
3 - 0.39 0.99 1.42 1.70 1.86 1.95 2.00 2. Oi 2.03 
4 1.19 1.83 2.30 2.61 2.80 2.90 2.96 2.98 
5 - 2.02 2.69 3.20 3.55 3.76 3.88 3.94 
6 2.87 3.57 4.12 4.49 4.72 4.86 
7 - 3.73 4.46 5.04 5.44 5.69 
8 - 4.61 5.36 5.96 6.39 
9 5.50 .2 6.88 
10 6.39 7.17 
'1 7.29 

nlb 11 12 13 14 15 16 17 18 19 20 
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
2 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 
3 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 
4 3.00 3.00 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 
5 3.97 3.99 3.99 4.00 4.00 4.00 4.00 4.00 4.00 4.00 
6 4.93 4.96 4.98 4.99 5.00 5.00 5.00 5.00 5.00 5.00 
7 5.84 5.92 5.96 5.98 5.99 5.99 6.00 6.00 6.00 6.00 
8 6.66 6.82 6.91 6.95 6.98 6.99 6.99 7.00 7.00 7.00 
9 7.34 

1 
7.63 7.80 7.90 1 7.95 7.97 7.99 7.99 8.00 8.00 

10 7.8 1 8.29 8.60 8.79 8.89 8.94 8.97 -8.99 8.99 9.00 
11 8.09 8.75 9.24 9.57 9.77 9.88 9.94 9.97 9.98 9.99 
12 . 20 9.01 9.68 10.20 10.54 10.75 10.87 10.93 10.97 10.98 
13 

v 

- 9.12 9.93 10.62 11.15 11.52 11.74 11.86 11.93 11.96 
14 . 1 10.03 10.86 1 11.57 12.11 12.49 12.72 12.85 12.93 
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15 10.96 11.79 12.51 13.07 13.46 13.71 1 13.85 
16 - 11.88 12.73 13.46 14.03 14.44 14.69 
17 - 12.81 13.66 14.40 14.99 15.41 
18 - 13.75 14.60 15.35 l-q 95 
19 14.68 15.55 16.30 
20 15.62 16.49 
21 16.57 

n/b 21 22 1 23 24 25 26 27 28 29 30 
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
2 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 
3 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 
4 3.01 3.01 3.01 3.01 1 3.01 3.01 3.01 1 3.01 3.01 3.01 
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 
6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 
7 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 
8 7.00 7.00 7.00 7.00 7.00 7.00 7.00 

_7.00 
7.00 7.00 

9 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 
10 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 
11 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 
12 10.99 11.00 11.00 11-00 11-00 11-00 11-00 11-00 11-00 11.00 
13 11.98 11.99 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 
14 12.96 12.98 12.99 13.00 13.00 13.00 13.00 13.00 13.00 13.00 
15 13.92 13.96 13.98 13.99 14.00 14.00 14.00 14.00 14.00 14.00 
16 14.84 14.92 14.96 14.98 14.99 15.00 15.00 1 15.00 15.00 15.00 
17 15.67 15.83 15.91 15.96 15.98 15.99 15.99 1 16.00 16.00 16.00 
18 16.38 16.66 16.82 16.91 16.95 16.98 16.99 16.99 17.00 1 17.00 
19 16.92 17.36 17.64 17.81 17.90 17.95 17.98 17.99 17.99 18.00 
20 17.26 17.88 18.33 18.63 18.80 18.90 18.95 18.97 18.99 18.99 
21 17.44 18.21 18.85 19.31 19.61 19.79 19.89 19.95 19.97 19.99 
22 17.51 18.39 19.17 19.81 20.29 20.60 20.79 20.89 1 20.94 20.97 
23 - 18.45 19.34 20.12 20.78 21.26 21.59 21.78 21.88 21.94 
24 - 19.40 20.29 21.08 21.74 22.24 22.57 22.77 22.88 
25 - 20.35 21.24 22.04 22.71 23.22 23.56 23.76 
26 - 21.30 22.20 23-00 23.68 24.19 24.54 
27 22.26 23.15 23.97 24.65 25.17 
28 - 23.21 24.11 24.93 25.62 
29 24.17 25.07 25.89 
30 25.1 2 26.03 
31 26.08 
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nib 31 32 33 34 35 36 37 38 39 40 
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
2 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 
3 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 
4 3.01 3.01 3.01 3.01 1 3.01 3.01 1 3.01 3.01 1 3.01 3.01 
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 
6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 
7 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 
8 7.00 7.00 7.00 7.00 7.00 7.00 7.00 1 7.00 7.00 7.00 
9 8.00 8.00 8.00 8.00 1 8.00 8.00 8.00 8.00 8.00 8.00 
10 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 
11 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 
12 11.00 11.00 11.00 11.00 11.00 11-00 11-00 11-00 11.00 11.00 
13 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 
14 1 13.00 13.00 1 13.00 13.00 1 13.00 13.00 13.00 13.00 13.00 13.00 
15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 
16 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15,00 
17 16.00 16.00 16.00 16.00 16.00 16.00 16.00__ 16.00 16.00 16.00 
18 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 
19 18.00 18.00 1 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 
20 19-00 19-00 19-00 19-00 19.00 19.00 19.00 19.00 19.00 1 9.00 
21 19.99 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 
22 20.99 20.99 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 
23 21.97 21.99 21.99 22.00 22.00 22.00 22.00 22.00 22.00 22.00 
24 22.94 22.97 22.98 22.99 23.00 23.00 23.00 23.00 23.00 23.00 
25 23.88 23.94 23.97 23.98 23.99 24.00 24.00 24.00 24-00 24.00 
26 24.75 24.87 24.93 24.97 24.98 24.99 1 25.00 25.00 25.00 25.00 
27 25.53 25.75 25.87 25.93 25.97 25.98 25.99 26.00 26.00 26.00 
28 26.15 26.51 26.74 26.86 26.93 26.96 26.98 26.99 27.00 27.00 
29 26.59 27.13 27.50 27.73 27.86 27.93 27.96 27.98 27.99 28.00 
30 26.86 27.56 28.11 28.49 28.72 28.85 28.93 28.96 28.98 28.99 
31 26.99 27.82 28.53 29.09 29.47 29.71 29.85 29.92 29.96 29.98 
32 27.04 27.95 28.79 29.51 30.07 30.46 30.71 30.85 30.92 30.96 
33 - 28.00 28.92 29.75 30.48 31.05 31.45 31.70 31.84 31.92 
34 28.96 29.88 30.72 31.45 32.03 32.43 32.69 32.84 
35 - 29.93 30.84 31.69 32.43 33.01 33.42 33.68 
36 - - 30.89 31.81 32.66 33.40 33.99 34.41 
37 - - 31.86 32.78 33.63 34.37 34.97 
38 32.82 33.74 34.60 35.35 
39 - 33.79 

- 
34.71 35.57 

40 1- I - 34.75 
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