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Abstract
Analog integrated circuit (IC) design remains a major bottleneck in modern electronic
systems due to its reliance on expertise-driven iteration and the growing complexity of
performance, robustness, and variability requirements. This dissertation aims to advance
artificial intelligence (AI)-driven analog IC design methodologies across three hierarchical
levels: building blocks, subsystems, and systems.

At the block level, a design–insight–aware comparison is conducted across representative
circuits including a StrongARM comparator, two Miller-compensated operational amplifi-
ers, and an LC voltage-controlled oscillator (VCO) to benchmark AI-assisted optimization
against conventional systematic flows. Post-layout and silicon measurement results demon-
strate that AI-assisted frameworks can achieve superior performance and robustness while
preserving design intent.

At the subsystem level, the first AI-driven co-design flow for VCO–LDO integration is
introduced. By simultaneously optimizing both blocks under supply–noise coupling and
frequency–pushing effects, the method improves phase noise, figure of merit (FoM), and
runtime efficiency compared to sequential design, demonstrating the value of cross-block
optimization.

At the system level, a global–local optimization framework with multi-fidelity simulation
is proposed for asynchronous successive-approximation register analog-to-digital converter.
This methodology cascades surrogate model-based global exploration with parallel pattern
search refinement, achieving competitive FoM across 12 design cases (7–12 bit, up to 250
MHz) with significantly reduced runtime and minimal manual effort.

Together, these contributions establish a practical pathway for AI-driven analog IC design
automation. By combining black-box optimization, learning-based acceleration, and designer-
in-the-loop validation, this work demonstrates measurable gains in design quality, robust-
ness, and time efficiency, offering a foundation for future system-level EDA tools.

iii



Contents

Abstract iii

List of Publications vii

List of Tables ix

List of Figures xi

Acknowledgements xii

Declaration xiv

Abbreviations xv

1 Introduction 1
1.1 Analog Circuit Design Automation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Optimization-Based Analog IC Sizing . . . . . . . . . . . . . . . . . . . . . 2
1.3 Challenges and Research Objectives . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Block Level Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Subsystem Co-Design . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 System Level Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Literature Review 11
2.1 Background on Analog Circuits . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Three Generations of Analog Circuit Design Methods . . . . . . . . . . . . 14

2.2.1 Generation I: Quadratic Hand Analysis . . . . . . . . . . . . . . . . 14
2.2.2 Generation II: The gm/ID Method . . . . . . . . . . . . . . . . . . . 15
2.2.3 Generation III: Optimization-Centric Sizing . . . . . . . . . . . . . 16
2.2.4 Common Verification Loop . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Local Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Gradient-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Nelder-Mead (Simplex) . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



2.3.3 Pattern Search Method . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Global Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Evolutionary and Swarm-Based Heuristics . . . . . . . . . . . . . . 22
2.4.2 Surrogate Model-Assisted Optimization . . . . . . . . . . . . . . . 24
2.4.3 ANN vs. GPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Assessing AI-Empowered Optimization Techniques for Analog Build-
ing Block Sizing 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The AI-Empowered Analog Building Block Sizing Approach . . . . . . . . 34

3.3.1 AI-Empowered Sizing Framework . . . . . . . . . . . . . . . . . . . 34
3.3.2 Global Optimization Engine . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Comparative Study Using Four Design Cases . . . . . . . . . . . . . . . . . 37
3.4.1 StrongARM Latch Comparator . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Two-Stage Miller-Compensated Op-Amp (3.3 V) . . . . . . . . . . 44
3.4.3 Two-Stage Miller-Compensated Op-Amp (1.8 V) . . . . . . . . . . 52
3.4.4 LC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Subsystem Design: VCO with LDO Integration 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Architecture of LDO-VCO . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Design Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 Testbench and Measures . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.4 Objective and Constraints . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 AI-Driven Co-Design Method . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Sizing Flow and Considerations . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Sizing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Pre-layout Sizing Results and Analysis . . . . . . . . . . . . . . . . . . . . 71
4.7 Post-Layout Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 System-Level Design Automation for SAR ADCs 77
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Architecture and Design Considerations of SAR ADC . . . . . . . . . . . . 80

5.4.1 Architecture and Operation . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Design Considerations and Trade-Offs . . . . . . . . . . . . . . . . 86

5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.2 Automatic Specification Derivation . . . . . . . . . . . . . . . . . . 89
5.5.3 Low-Cost Simulation-Based Global Optimization . . . . . . . . . . 92
5.5.4 Fast Local Optimization Using Parallel Multi-Fidelity Transient

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions and Future Work 101
6.1 Analog Bulding Block Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 LDO and VCO Co-Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 SAR ADC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendices 105
A Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vi



List of Publications

1. M. Chen, Y. Hao, et al., ”Trade-off-Aware Analog Circuit Sizing Based on a Mul-
titask Surrogate Model-Assisted Evolutionary Algorithm,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2025. (Under
Review)

2. Y. Hao, et al., ”A Global–Local Optimization Approach for Asynchronous SAR ADC
Design,” IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II),
2025. (Under Review)

3. Y. Hao, et al., ”From Systematic to Intelligent: Assessing AI-Empowered Optimiz-
ation Techniques for Analog Building Block Sizing,” IEEE Access, 2025.

4. Y. Hao, et al., ”An AI-Driven EDA Algorithm-Empowered VCO and LDO Co-
Design Method,” IEEE International Conference on Synthesis, Modeling, Analysis
and Simulation Methods, and Applications to Circuit Design (SMACD), 2025.

5. J. Wang, Y. Hao, et al., ”Pose-Guided Focal Loss for Enhancing Vision Trans-
formers in Continuous Sign Language Recognition,” IEEE 35th International Work-
shop on Machine Learning for Signal Processing (MLSP), 2025.

6. Y. Hao, et al., ”Integrating AI in Engineering Education: A Comprehensive Re-
view and Student-Informed Module Design for UK Students,” IEEE Transactions
on Education, 2025.

7. A. Alexandrou,Y. Hao, et al., ”Properties of Textured Piezoceramics Measured with
Miniature Samples,” IEEE International Ultrasonics, Ferroelectrics, and Frequency
Control Symposium (UFFC), 2024.

8. Y. Hao, et al., ”Design of a Two-Stage Miller-Compensated Operational Amplifier
Using an EDA Tool-Centered Approach,” IEEE International Conference on Syn-
thesis, Modeling, Analysis and Simulation Methods, and Applications to Circuit
Design (SMACD), 2024.

vii



List of Tables

2.1 A comparison between static and dynamic analog circuits. . . . . . . . . . . . 12
2.2 ANN vs. GPR as analog surrogate modeling. . . . . . . . . . . . . . . . . . . . 30

3.1 Design variables and search ranges of StrongARM latch comparator. . . . . . 40
3.2 Pre-layout performance values of the design obtained by AI-empowered method

and the reference design of StrongARM latch comparator. . . . . . . . . . . . 41
3.3 Post-layout performance values of the AI-empowered design (left) and the

reference design of StrongARM latch comparator (right). . . . . . . . . . . . . 43
3.4 Design variables and search ranges of two-stage Miller-compensated op-amp. . 46
3.5 Pre-layout performance values of the AI-empowered designs and the reference

design of the two-stage Miller-compensated op-amp. . . . . . . . . . . . . . . . 47
3.6 Measured performance values of the AI-empowered design and the reference

design of the two-stage Miller-compensated op-amp. . . . . . . . . . . . . . . . 50
3.7 Design variables and search ranges of low power design. . . . . . . . . . . . . . 53
3.8 Pre-layout performance values of the AI-empowered 3.3 V design and 1.8 V

design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.9 Measured performance values of the AI-empowered 3.3 V design and 1.8 V

design of the two-stage Miller-compensated op-amp. . . . . . . . . . . . . . . . 54
3.10 Performance values of the AI-empowered 1.8 V design of the instrumentation

amplifier and the state-of-the-art. . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.11 Design variables and search ranges of the CMOS cross-coupled LC oscillator. . 58
3.12 Performance values of the AI-empowered design and the reference design (pre-

layout simulation results) of the CMOS cross-coupled LC oscillator. . . . . . . 59
3.13 Performance values of the AI-empowered design (measurement result) of the

CMOS cross-coupled LC oscillator and the state-of-the-art. . . . . . . . . . . . 60
3.14 Summary of the comparison of typical contemporary AI-empowered and con-

ventional systematic manual sizing methods based on the four case studies. . . 61

4.1 Design variables and search ranges of the CMOS cross-coupled LC oscillator
and the LDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Specifications and pre-layout simulation results of the sequentially and co-
designed LDO-VCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Specifications and post-layout simulation results of the co-designed LDO-VCO. 75

5.1 Summary of specifications used in optimization. . . . . . . . . . . . . . . . . . 92

viii



5.2 Simulation performance versus number of segments M with a 12-bit 20 MHz
SAR ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Comparison with prior SAR ADC designs. . . . . . . . . . . . . . . . . . . . . 99

1 Pre-layout performance comparison of the AI-empowered design and the ref-
erence design of the two-stage Miller-compensated op-amp with an additional
area constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



List of Figures

1.1 The design optimization paradigms in analog circuit sizing. . . . . . . . . . . . 3

2.1 The gm/ID based method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Three generations of analog design methods. . . . . . . . . . . . . . . . . . . . 18
2.3 The illustration of PS in a 2-D problem. . . . . . . . . . . . . . . . . . . . . . 20
2.4 The surrogate model-assisted optimization flow. . . . . . . . . . . . . . . . . . 24
2.5 An 1D GPR example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 An ANN with two hidden layers. . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 The illustration of Beta distribution. . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 The flow diagram of the AI-empowered analog building block sizing approach. 34
3.2 Workflow of the experimental implementation. . . . . . . . . . . . . . . . . . . 38
3.3 Schematic of the classic StrongARM latch comparator. . . . . . . . . . . . . . 39
3.4 Transient response of the AI-empowered design and the reference design [94]

at output nodes VOUT P and VOUT N . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Layouts for the AI-empowered design and the reference design [94] of the

StrongARM latch comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Comparison of the post-layout responses of the AI-empowered design and the

reference design [94] of the StrongARM latch comparator. . . . . . . . . . . . 43
3.7 Comparison of the speed of the AI-empowered design and the reference design

[94] across 16 corners of the StrongARM latch comparator, with post-layout
(a) delay time and (b) reset time grouped by four process corners. . . . . . . . 44

3.8 Schematic of the two-stage Miller-compensated op-amp. The devices shown in
gray (M12–M14) are auxiliary transistors used for startup and shutdown control. 45

3.9 A comparison of the op-amp unity-gain step responses. The input step size is
1 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 CMRR of the AI-empowered design 3rd iteration. . . . . . . . . . . . . . . . . 48
3.11 Chip microphotograph of the reference design, the AI-empowered design, 3.3V

CCIA, and 1.8V CCIA on the same die. . . . . . . . . . . . . . . . . . . . . . 50
3.12 Comparison of the measurement results of transient responses between the AI-

empowered design and the reference design of the two-stage Miller-compensated
op-amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Schematic of the CMOS cross-coupled LC oscillator. An 8-bit capacitor bank
is used for frequency tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



3.14 Chip microphotograph of the AI-empowered oscillator design. . . . . . . . . . 59
3.15 The measured PN performance of the AI-empowered design of the oscillator. . 60

4.1 The VCO and LDO co-design method including the schematic diagram of the
LC-tank VCO with an integrated LDO. Two design approaches: the sequen-
tial approach, which involves two distinct design phases, and the co-design
approach, which optimizes both building blocks simultaneously. . . . . . . . . 67

4.2 (a) Output noise of the LDOs. (b) PSR of the LDOs. (c) Phase noise perform-
ance of the VCO designs with 1.2 V ideal supply and with LDO. . . . . . . . . 72

4.3 Oscillation transients for LDO-VCO designs. The co-designed VCO has a
slower oscillation start-up and smaller oscillation amplitude. . . . . . . . . . . 73

4.4 (a) Corner spread of PN for the co-designed LDO-VCO. (b) Corner spread of
PN for the sequentially designed LDO-VCO. . . . . . . . . . . . . . . . . . . 74

4.5 Co-designed LDO-VCO layout. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 The architecture of an N-bit asynchronous SAR ADC. . . . . . . . . . . . . . 81
5.2 The circuit diagram for SAR ADC building blocks, including: (a) bootstrap

switch, (b) CDAC, (c) SAR logic, and (d) dynamic comparator. . . . . . . . . 83
5.3 The timing diagrams of synchronous and asynchronous SAR ADCs. . . . . . . 85
5.4 The flow diagram of the proposed global-local sizing approach. The red blocks

are based on the single-point test, while the blue block represents the full sine
wave test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Illustration of phase-shifted and time-interleaved parallel transient simulation:
16-point coverage via 4×4 samples. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 SNDR and FoM of 12 design cases: (a) 12 bit (b) 7 bit. 10 design cases with
α = 1 and 2 design cases with α = 2. . . . . . . . . . . . . . . . . . . . . . . 98

5.7 An example sizing process for the 12 bit SAR ADC, with the convergence plots
of both the global and local optimization. . . . . . . . . . . . . . . . . . . . . 98

xi



Acknowledgements

This dissertation marks the culmination of several years of research, learning, and per-
severance, and it would not have been possible without the guidance and support of many
individuals to whom I am sincerely grateful.

First and foremost, I would like to express my heartfelt gratitude to my academic su-
pervisors, Prof. Bo Liu and Prof. Sandy Cochran, as well as my industrial supervisor,
Dr. Miguel Gandara, for their invaluable guidance, insightful feedback, and unwavering
encouragement throughout this journey. Their patience, expertise, and dedication have
been instrumental in shaping both this thesis and my growth as a researcher.

I would like to extend my gratitude to EPSRC for funding this research and supplying
the resources that made it possible. This support played a vital role in enabling me to
complete this thesis.

My heartfelt thanks go to my collaborators and colleagues, including Dr. Maarten Strackx
(Magics Technologies), Dr. Srinjoy Mitra (University of Edinburgh), Prof. Francisco V.
Fernandez (Universidad de Sevilla), Mr. Ken Li and Prof. Shaolan Li (Georgia Tech),
Prof. Rami Ghannam, Mr. Minyang Chen, Mr. Yushi Liu, and Mr. Jingyan Wang (Uni-
versity of Glasgow). Their valuable input, thoughtful discussions, and generous sharing
of expertise have been a constant source of inspiration, and I feel truly fortunate to have
worked alongside them. I would also like to thank Dr. Alexandru Moldovan, Dr. Bartas
Abaravicius, Dr. Meraj Ahmet and Mr. Huxi Wang for their training and help with my
first tapeout and measurement.

I would also like to acknowledge the support of James Watt School of Engineering, whose
facilities, resources, and administrative assistance have provided an excellent environment
in which to conduct my studies. Special thanks go to FUSE CDT for their help behind
the scenes.

xii



Finally, I am deeply thankful to my family, friends, boyfriend for their love, patience, and
encouragement during the most challenging times. Their constant support has sustained
me through the challenges of this journey and made its completion possible. A special
thanks to my cat, whose companionship and occasional distractions reminded me to take
breaks and kept my spirits high.

To all who have contributed in ways big and small, I extend my deepest gratitude.

xiii



Declaration

Name: Yijia Hao

Registration Number: XXXXXXX

I certify that the thesis presented here for examination for a PhD degree of the Uni-
versity of Glasgow is solely my own work other than where I have clearly indicated that 
it is the work of others (in which case the extent of any work carried out jointly by me 
and any other person is clearly identified i n i t) and t hat t he t hesis has not b een edited 
by a third party beyond what is permitted by the University’s PGR Code of Practice.

The copyright of this thesis rests with the author. No quotation from it is permitted 
without full acknowledgement.

I declare that the thesis does not include work forming part of a thesis presented success-
fully for another degree.

I declare that this thesis has been produced in accordance with the University of Glasgow’s 
Code of Good Practice in Research.

I acknowledge that if any issues are raised regarding good research practice based on 
review of the thesis, the examination may be postponed pending the outcome of any 
investigation of the issues.

Yijia Hao

xiv



Abbreviations

ABC Artificial Bee Colony
AC Alternating Current
ACO Ant Colony Optimization
ADM Differential-Mode Gain
AI Artificial Intelligence
AMS Analog and Mixed-Signal
ANNs Artificial Neural Network
BGR Bandgap Reference
BO Bayesian Optimization
CCIA Capacitively Coupled Instrumentation Amplifier
CDF Cumulative Distribution Function
CMRR Common Mode Rejection Ratio
DACs Digital-to-Analog Converters
DFFs D Flip-Flops
DE Differential Evolution
DNL Differential Nonlinearity
EDA Electronic Design Automation
EI Expected Improvement
ESSAB Efficient Surrogate Model-Assisted Sizing Method for High-

Performance Analog Building Blocks
FFT Fast Fourier Transform
FF Fast NMOS/Fast PMOS
FoM Figure of Merit
FS Fast NMOS/Slow PMOS
GA Genetic Algorithm
GBW Gain Bandwidth
GPR Gaussian Process Regression
GWO Grey Wolf Optimizer
HT High Temperature
HV High Voltage
ICs Integrated Circuits
INL Integral Nonlinearity

xv



IoT Internet of Things
IRN Input-Referred Noise
LDOs Low-Dropout Regulators
LNA Low-Noise Amplifier
LCB Lower Confidence Bound
LPTV Linear Periodically Time-Varying
LSB Least Significant Bit
LTE Long-Term Evolution
LTI Linear Time-Invariant
LT Low Temperature
LUTs Lookup Tables
LV Low Voltage
MC Monte Carlo
MSB Most Significant Bit
NEF Noise Efficiency Factor
NM Nelder-Mead
op-amps Operational Amplifiers
PDF Probability Density Function
PDK Process Design Kit
PFI Probability of Further Improvement
PI Probability of Improvement
PLLs Phase-Locked Loops
PN Phase Noise
PNOISE Periodic Noise
PS Pattern Search
PSO Particle Swarm Optimization
PSR Power Supply Rejection
PSRR Power Supply Rejection Ratio
PSS Periodic Steady-State
PVT Process, Voltage, Temperature
RF Radio Frequency
RL Reinforcement Learning
SAR ADCs Successive Approximation Register Analog-to-Digital Convert-

ers
S/H Sample-and-Hold
SC Switched-Capacitor
SerDes Serializer/Deserializer
SF Slow NMOS/Fast PMOS
SNDR Signal-to-Noise and Distortion Ratio
SoC System on Chip

xvi



SPGP Sparse Pseudo-Input Gaussian Process
SQP Sequential Quadratic Programming
SS Slow NMOS/Slow PMOS
SSRE Step Size Ratio Error
THD Total Harmonic Distortion
TR Tuning Range
UGB Unity Gain Bandwidth
UCB Upper Confidence Bound
VCOs Voltage-Controlled Oscillators
WCC Worst Case Corner

xvii



Chapter 1

Introduction

1.1 Analog Circuit Design Automation

In modern integrated circuit (IC) design, analog circuit design remains one of the most
complex and resource-intensive tasks. High-performance analog blocks, such as operational
amplifiers (op-amps), low-dropout regulators (LDOs), comparators, and data converters,
require delicate trade-offs among gain, bandwidth, noise, stability, power consumption,
and robustness across process, voltage, and temperature (PVT) variations [1]–[3]. Tradi-
tional manual flows are based on designer expertise and heuristic iterations, which are
increasingly inefficient and error-prone as circuit complexity continues to grow [4]. As a
result, automated analog circuit design has become an indispensable research direction,
offering the promise of reducing design turnaround time while improving performance,
robustness and yield.

The field of electronic design automation (EDA) has a long history. Digital design auto-
mation matured rapidly beginning in the 1980s with the advent of logic synthesis, static
timing analysis, and automated place-and-route [5], [6]. This maturity allowed digital
ICs to scale in complexity and performance, while design cycles were kept manageable
[7]. By contrast, analog design automation followed a slower trajectory. Early efforts in
the 1980s and 1990s focused on symbolic analysis, sensitivity-based optimization, and
quadratic law approximations for MOSFET behavior [8]–[10]. In the 2000s, geometric
programming and convex optimization methods [11] provided new avenues, particularly
for circuits where design constraints could be expressed as posynomials. However, many
analog circuits (e.g., dynamic comparators, oscillators, switched-capacitor filters) exhibit
strong nonlinearity, time-varying dynamics, and layout-dependent effects that defy simple
convex formulations.
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In the last decade, research has increasingly shifted toward simulation-driven optimiza-
tion and machine learning-assisted frameworks. These approaches leverage SPICE-in-the-
loop evaluation, surrogate models, and evolutionary search to explore large design spaces
without relying exclusively on analytical equations [12]–[17]. This trend reflects a recog-
nition that accurate modeling of modern CMOS circuits requires high-fidelity simulation
data.

Commercial EDA platforms such as Cadence Virtuoso ADE and Synopsys Custom Com-
piler offer environments for schematic capture, simulation management, layout gener-
ation, and PVT verification. While these tools provide automation at the verification
and layout levels, true automation at the circuit sizing level remains limited. Designers
are still responsible for selecting architectures, biasing strategies, and device dimensions.
Built-in optimizers (e.g., gradient descent and heuristic search) are often generic and do
not scale effectively to the nonlinear, constraint-rich nature of analog design. Therefore,
practical analog design continues to rely heavily on expertise-driven iteration, which is
time-consuming, error-prone, and difficult to scale across increasing design complexity
and variability. This gap motivates the development of artificial intelligence (AI)-driven
optimization methodologies.

1.2 Optimization-Based Analog IC Sizing

Analog circuit optimization in this context refers to the systematic selection of design
variables (e.g., transistor dimensions, biasing, passive component values) to maximize
performance while satisfying constraints such as stability, noise, linearity, and PVT ro-
bustness. It is often called sizing in the domain. Unlike digital logic synthesis, analog
circuit sizing problem is inherently nonlinear, nonconvex, and strongly affected by PVT
variations.

Analog circuit sizing problems can be formulated either as single-objective or multi-
objective optimization tasks depending on the design goals [18]. Single-objective optim-
ization [19], [20] focuses on improving a dominant metric, such as minimizing power or
maximizing bandwidth, while treating other specifications as constraints. This contrasts
with multi-objective optimization [21]–[23], which explicitly formulates competing goals
and generates Pareto-optimal trade-off fronts. While multi-objective approaches provide
richer design insight, they also incur significantly higher computational cost. In this thesis,
only single-objective optimization is considered, targeting one design goal while ensuring
all other specifications are satisfied.
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Over the past two decades, optimization for analog circuit design has evolved from
equation-driven formulations to simulation-based methods and, more recently, to learning-
assisted approaches, as depicted in Fig. 1.1. Each generation reflects a different balance
between interpretability, accuracy, and computational cost.

Solver
(Geometric Programming)

Equation-Driven

Solver

Simulation-Driven

Simulator

Evaluate
(Exact)

Solver

Learning-Assisted

Simulator

Evaluate
(Exact)

Surrogate Model
(GPR/ANN)

Construct/
Update

Evaluate/
Approximate

Figure 1.1: The design optimization paradigms in analog circuit sizing.

Equation-driven methods rely on analytical circuit models and first-order approximations,
often cast into convex or geometric programming formulations [11]. These techniques
offer high interpretability and computational efficiency, making them effective for early-
stage design. However, their accuracy degrades in nanoscale technologies, where velocity
saturation, mismatch, and layout parasitics dominate.

Simulation-driven methods embed SPICE simulations directly into optimization loops [15],
[16], [24], ensuring high fidelity for dynamic and nonlinear circuits such as comparators,
oscillators, and data converters. Their main drawback lies in inefficiency: repeated tran-
sient and noise simulations lead to prohibitive runtimes, particularly when PVT corners
and Monte Carlo (MC) analyses are included.

To alleviate simulation cost, surrogate or learning-assisted methods approximate circuit
responses using statistical or machine learning models. Gaussian process regression (GPR)
[25], [26] and artificial neural networks (ANNs) [27] have been adopted within surrogate
model-assisted frameworks to accelerate design space exploration. While these methods
drastically reduce the number of expensive simulations, they introduce challenges in model
fidelity, training overhead, and generalization across design spaces.
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Overall, design optimization for analog circuits needs to handle complex performance
trade-offs, nonconvex search spaces, and variability-aware robustness, while ensuring ac-
curacy and efficiency. Recent trends move toward hybrid frameworks that combine global
and local optimization, multi-fidelity simulations, and parallel computing to achieve both
efficiency and accuracy.

1.3 Challenges and Research Objectives

Although EDA has evolved over several decades, its application in practical analog circuit
design remains limited. Most EDA-driven approaches emphasize algorithm improvement
but are often criticized for failing to capture design intent. Consequently, analog design
continues to rely on manual iteration and expert intuition, particularly at the subsystem
and system levels where strong cross-block interactions exist. Motivated by this gap, this
research aims to bridge the divide between EDA methods and practical analog design by
developing the next-generation design methodology based on AI-driven EDA tools. The
thesis first validates an AI-empowered analog IC sizing framework with design insights and
silicon results, and then extending it toward system-level sizing to account for cross-block
effects. Specifically, this research focuses on the AI-empowered optimization for analog
building blocks, the development of co-design method for interacting modules, and the
implementation of system-level optimization. Given that these represent three specific
research topics with unique challenges, the following subsections provide a brief analysis
of each. A more detailed discussion of each topic can be found in the corresponding
chapters outlined in Section 1.5.

1.3.1 Block Level Sizing

At the block level, analog circuit optimization represents the foundation of EDA-based ana-
log IC design. While recent advances have significantly improved optimization algorithms
and surrogate modeling techniques, two central challenges remain unresolved:

• Lack of Wide Silicon Validation. Most optimization approaches are evaluated
only on limited analog building blocks through simulation results. Comprehensive
silicon-based validation across multiple building blocks and technology nodes is
scarce. Without such evidence, it is difficult to establish confidence in the wide
applicability of proposed optimization frameworks.
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• Lack of Design Insight–Based Comparison. Existing evaluations focus primar-
ily on algorithmic outcomes such as convergence, runtime, or numerical performance
metrics. Far less attention is given to whether the optimization results preserve
meaningful design insights, such as power–speed–noise trade-offs. This gap limits
the ability to judge whether automated techniques align with designer intent and
can be seamlessly adopted in practice.

Motivated by these limitations, this study is structured around two key objectives:

• Systematic Comparison across Representative Case Studies. The object-
ive is to perform a comprehensive comparison between manual and AI-empowered
design approaches on key analog building blocks such as op-amps, comparators,
and oscillators. The study aims to evaluate both design quality and efficiency, with
silicon measurement incorporated to ensure practical relevance beyond simulation.

• Benchmarking with Design Insights. The objective is to move beyond numer-
ical metrics to assess whether optimization outcomes align with established design
knowledge and designer intent. By examining circuit sizings, trade-offs, and inter-
pretability, the study seeks to determine the extent to which automated methods
can complement or enhance human expertise.

1.3.2 Subsystem Co-Design

In conventional analog IC design, individual blocks such as LDOs or voltage-controlled
oscillators (VCOs) are often optimized in isolation under fixed assumptions about their
operating environment. While this block-level approach simplifies the design process, it
overlooks important interactions between connected circuits, which can lead to suboptimal
overall performance once the blocks are integrated. Considering a VCO integrated with
an LDO as an example, several key challenges can be identified:

• Limitations of Sequential Design. Conventional practice treats the VCO and
LDO as independent blocks: the VCO is optimized under an ideal supply and the
LDO is later tuned around it. This separation neglects block interactions and often
forces iterative redesign, reducing design efficiency.

• Noise Co-Optimization Challenges. Low phase noise (PN) depends on the joint
treatment of multiple sources such as thermal, flicker, and regulator-induced supply
noise, which interact in nontrivial ways during integration. These coupling effects
are difficult to capture with manual design, and block-level optimizations often fail
to hold at the subsystem level.
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• Scalability Limits of Manual Tuning. With dozens of design variables across
both circuits, manual optimization is labor-intensive and error-prone. Evaluating
design corners under PVT variations further compounds the complexity, making a
systematic automated approach essential.

Motivated by these challenges, this work is guided by two primary objectives:

• Subsystem-Level Co-Design of VCO and LDO. The first objective is to de-
velop an AI-driven co-design methodology that simultaneously optimizes the VCO
and LDO as an integrated subsystem. By jointly considering power consumption,
frequency pushing effect, and LDO-induced noise, the method seeks to minimize
overall PN while maintaining energy efficiency and robustness across corners.

• Efficiency and Robustness Demonstration. The second objective is to validate
the proposed co-design flow by implementing it with a machine learning–assisted
optimization engine and applying it to a 65 nm CMOS LC-tank VCO with in-
tegrated LDO. Its performance is benchmarked against a sequential design flow to
demonstrate improvements in figure of merit (FoM), PVT robustness and runtime ef-
ficiency, thereby establishing the practical advantages of subsystem-level co-design.

While this work focus on LDO-VCO as a representative case study, it should be em-
phasized that the co-design framework is not restricted to this particular combination of
building blocks. The same principles can be readily extended to other subsystem config-
urations, such as oscillator–mixer pairs.

1.3.3 System Level Sizing

Scaling sizing from block-level circuits to system-level architectures introduces new chal-
lenges. To tackle these challenges, this work focuses on asynchronous successive-approximation
register analog-to-digital converters (SAR ADCs) as a representative case study. For asyn-
chronous SAR ADCs, these challenges manifest as pressing constraints that restrict the
applicability of current AI-driven sizing methods:

• Block-Level Optimization Limitations. Prior design sizing methods typically
operate at the block level, where individual components such as the comparator,
digital-to-analog converters (DACs), and sample-and-hold (S/H) are sized separ-
ately. This decomposition requires manual specification allocation and cannot fully
capture inter-block interactions, leading to suboptimal system performance and it-
erative design loops. In some cases, it may fail to meet the requirements of high-
resolution and high-speed ADCs.
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• High Dimensionality and Long Simulation Time. System-level SAR ADC
design involves dozens of design variables spanning transistor sizes, capacitor sizes,
and timing parameters. As the number of variables increases, the design space grows
exponentially, making exhaustive exploration impractical. Although global optimiz-
ation methods are theoretically capable of addressing such complexity, their compu-
tational cost often results in prohibitively long runtime. In addition, accurate fast
Fourier transform (FFT)-based signal-to-noise and distortion ratio (SNDR) charac-
terization requires long simulation durations at Nyquist rate, which is impractical
to embed in an iterative optimization loop.

To overcome these challenges, this piece of work is guided by two main objectives:

• Global–Local Optimization with Multi-Fidelity Simulation. To handle the
high dimensionality and long simulation time, the first objective is to develop a
hierarchical system-level optimization framework that integrates fast global search
using ANN-based surrogate modeling with local refinement via parallel multi-fidelity
pattern search (PS). The approach balances exploration and exploitation: the global
optimizer efficiently scans the design space with low-cost approximations, while the
local optimizer ensures convergence to high-quality solutions using accurate full
sine-wave simulations.

• System-Level SAR ADC Sizing. The second objective is to validate the pro-
posed framework across 12 design cases spanning 7- and 12-bit resolutions with
sampling rates up to 250 MHz. The goal is to demonstrate competitive SNDR and
FoM with reduced runtime and minimal manual effort, thereby advancing practical
system-level sizing for SAR ADC design.

While the discussion here is centered on SAR ADCs, the underlying issues such as the lim-
its of block-level optimization and the complexity of high-dimensional system-level search
spaces, are common across many analog and mixed-signal (AMS) subsystems. Thus, while
SAR ADCs serve as a representative example in this study, the proposed methodology is
applicable to a broad range of system-level AMS design problems.
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1.4 Main Contributions

This dissertation advances next-generation AI-driven design methodology at the block,
subsystem, and system levels through three distinct studies that combine black-box op-
timization with learning-based acceleration and designer-in-the-loop validation. The works
demonstrate measurable gains in design quality, PVT robustness, and turnaround time
with post-layout or silicon validation.

Block-Level Sizing: from Systematic to Intelligent. A rigorous, design insight-aware
comparison was performed between contemporary AI-empowered sizing and conventional
systematic (e.g., gm/ID) methods across four representative blocks: a StrongARM com-
parator, two Miller-compensated op-amps (standard- and low-power targets), and a cross-
coupled LC VCO, spanning 0.35 µm – 65 nm. The flow adopts an AI-driven global search
in two phases (worst-case corner optimization followed by all-corner optimization), fol-
lowed by MC analyses. Designers remain in the loop only to validate design intent and, if
needed, adjust specifications, avoiding experience-heavy decisions. The optimizer is based
on an online surrogate-assisted differential evolution (DE) framework that trains a light
ANN surrogate on-the-fly and selects infill samples via beta distribution-based ranking.
Quantitatively, the comparator case achieves a 62% reduction in the power–noise FoM
(from 6.32 nW·V to 2.42 nW·V) while meeting all 16 corners, with delay and power both
improved over the literature reference. Similar all-corner gains are observed post-layout.
In the op-amp case, overshoot in unity-gain configuration is eliminated by constraint
reformulation, obtaining lower power (476 µW vs. 856 µW), while sustaining other per-
formance metrics. For the LC VCO, the measured design reaches a PN of −120.6 dBc/Hz
at 1MHz and a FoM of 187.9 dBc/Hz, competitive with state-of-the-arts. These results,
including three silicon validations, show that AI-empowered sizing can match designer
intent while improving both efficiency and design performance, with human focusing on
encoding high-level objectives rather than device-level heuristics.

Subsystem Co-Design: LDO–VCO with AI-Driven EDA. The first AI-driven co-
design flow was proposed that optimizes an LC-tank VCO and its integrated LDO simul-
taneously, explicitly capturing the trade-off between various noise sources. 32 PVT corners
are considered using the same optimization engine for an apple-to-apple comparison with
the sequential (first VCO then LDO) approach. On a 65 nm design targeting 5.5–5.6GHz,
co-design improves PN by 1.2 dB at 1MHz offset, reduces dynamic power by 28.8%, and
increases FoM by 2.4 dBc/Hz relative to the sequential flow. The runtime drops from
18 hours (7 hours VCO + 11 hours LDO) to 6 hours on a 32-core workstation, evidencing
scalability of learning-assisted optimization beyond single blocks.
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System-Level Sizing: Global–Local Framework for Asynchronous SAR ADCs.
A SAR-ADC sizing framework is developed that cascades a fast global explorer with a
derivative-free local optimizer under multi-fidelity simulation. The global phase enforces
automatically derived coarse constraints including step-size ratio error (SSRE), sampling
error, thermal noise, and power, obtained analytically from top-level SNDR targets and
it finishes within 3–4 hours. The local phase then applies a parallel, multi-fidelity PS
that interleaves inexpensive checks with periodic full-cycle FFT analysis accelerated by
time-interleaved transient runs, converging within another 3 hours. Across 12 cases (7–
12 bit, 100 kHz–250MHz, 65 nm), the framework achieves up to 72.2 dB SNDR and FoM
of 177.3 dB, while automating specification allocation and inter-block co-optimization,
which addressed the key limitations of block-level methods.

Overall Impact. Together, these studies (i) link the EDA and design communities, show-
ing that designer-in-the-loop, AI-empowered sizing with silicon validation can surpass
experience-driven flows while preserving design intent; (ii) demonstrate the effectiveness
of the co-design approach using AI-driven EDA algorithms that remain beyond the reach
of systematic manual design; and (iii) propose a holistic design methodology for ana-
log small systems, bridging a gap previously unaddressed by both the EDA and design
communities.

1.5 Thesis Outline

This dissertation comprises six chapters. Chapter 1 introduces the motivation for analog
design automation, reviews challenges of manual design, and outlines the role of EDA tools,
research objectives, and contributions. Chapter 2 provides the background and literature
review. It surveys common analog building blocks, reviews traditional and automated
methodologies, and analyzes EDA sizing techniques, with emphasis on mathematical op-
timization, evolutionary algorithms, and surrogate-assisted methods. Chapter 3 addresses
block-level sizing. An AI-empowered flow with designer interaction is developed for schem-
atic sizing, and case studies on op-amps, comparators, and VCOs demonstrate improved
efficiency and design performance over manual design with measurement results. Chapter
4 extends to subsystem-level design through a co-design framework integrating VCOs
and LDOs for communication applications. Post-layout validation shows gains in PSRR,
noise, and efficiency. Chapter 5 advances to system-level sizing with a hybrid framework
combining surrogate model-assisted optimization and multi-fidelity PS. Twelve SAR ADC
design cases are explored, with benchmarking against conventional block-level methods
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highlighting improvements in quality and efficiency. Finally, Chapter 6 summarizes the
contributions across block-, subsystem-, and system-level sizing, discusses practical im-
pact, and outlines future directions including layout optimization and advanced machine
learning methods for full analog synthesis.
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Chapter 2

Background and Literature Review

2.1 Background on Analog Circuits

Analog ICs process signals that vary continuously in time and amplitude. They provide the
indispensable interface between the physical world and digital world: amplifying microvolt-
level sensor outputs, filtering noise, generating clocks, converting between analog and
digital domains, and regulating on-chip supplies, etc.. This section classifies analog cir-
cuits by their time behavior (static vs. dynamic) and details the working principles of
representative blocks that are widely found in modern applications.

As summarized in Table 2.1, static and dynamic analog circuits differ fundamentally in
time behavior, design intent, and verification focus. Static analog circuits operate around
a fixed bias point and can be approximated as linear time-invariant (LTI) systems under
small-signal conditions. This enables accurate frequency domain analysis (e.g., gain, band-
width, loop stability) within a limited operating region where device behavior remains
approximately linear. Dynamic circuits are time-varying, either linear but periodically
time-varying (LPTV) due to clocked switching, or strongly nonlinear due to regeneration,
quantization, or oscillation. These distinctions determine the appropriate analysis tech-
niques and dictate which performance metrics become most critical to meeting design
specifications.

Static blocks draw a continuous quiescent current IQ to establish transconductances and
pole locations. Power is primarily static and can be calculated with Pstatic ≈ IQVDD, with
minimal dynamic components. LPTV blocks typically exhibit negligible static power con-
sumption within their core switching networks, while consuming energy predominantly
from capacitive charging and the overhead of clock or local oscillator drive circuits, exem-
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Table 2.1: A comparison between static and dynamic analog circuits.

Static Dynamic

Time behavior Continuous bias, steady operating
point

Clocked, sampled, regenerative,
or autonomous oscillation

Linearity Small-signal linear around bias Strongly nonlinear or LPTV

Power profile Quiescent Often zero static power, dynamic
charging/switching dominates

Primary
analysis

AC/noise models, loop gain and
PM

Transient, PSS/PNOISE for
periodic, timing and metastability

Core
specifications

Power, DC gain, UGB, phase
margin, PSRR, CMRR, noise,
offset

Decision time, jitter/PN, SNDR,
INL/DNL

Typical
nonidealities

Limited swing, finite ro, flicker
noise, stability margins

Kickback, metastability, limit
cycles, reference drop

Verification
focus

PVT corners, MC for offset/noise,
stability

Timing across PVT, metastability
probability, jitter/PN, settling

Example
blocks

Op-amps (telescopic,
folded-cascode, two-stage), active
filters, bandgaps, LDOs, buffers

Dynamic comparators
(StrongARM, double-tail),
VCOs/PLLs (LC, ring), SC
filters, mixers, SAR ADCs

plified by
Pdyn ≈∑

i

(
CiV 2

i ftog
)
+Pclk +Pref, (2.1)

where Ci is the capacitance being charged, Vi is the corresponding voltage swing, ftog is
the effective switching frequency (i.e., toggle rate), Pclk is the power required to drive
clock, and Pref accounts for additional reference or biasing circuitry. Oscillators and phase-
locked loops (PLLs) are an important exception, which require a steady bias to sustain
oscillations in addition to divider and loop switching.

Representative static blocks include op-amps such as telescopic [28], folded-cascode [29],
and two-stage Miller compensated op-amps [30] together with active-RC/Gm–C filters
[31], bandgap references (BGR) [32], LDOs [33], and unity gain buffers [34]. The design
emphasis is small-signal gain, stability, and noise. First-order approximations can guide
architecture selection and sizing, for example, the gain and unity gain bandwidth (UGB)
can be estimated with:

Av ≈ gmro, (2.2)

fu ≈
gm

2πCL
, (2.3)
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where gm is the transconductance, ro is the output resistance, and CL is the load capacit-
ance.

Verification is primarily conducted in the frequency domain through alternating current
(AC) and noise analyses. This is complemented by PVT corner and MC simulations to as-
sess performance spread, mismatch, and offset distributions. Typical nonidealities include
finite output resistance, flicker noise, headroom limits, and compensation trade-offs. Core
specifications include power, DC gain, UGB, phase margin (PM), power supply rejection
ratio (PSRR), common mode rejection ratio (CMRR), noise, and offset.

Dynamic circuits comprise two broad classes. The first is LPTV, exemplified by switched-
capacitor (SC) networks [35] and passive mixers [36], where circuit parameters change
with clock or local oscillator, and performance is captured by periodic steady-state (PSS)
and periodic noise (PNOISE) analyses. Canonical behaviors include effective resistance
in SC networks and frequency translation in mixers, for example:

Req =
1

C fs
, (2.4)

where C is the switched capacitance and fs is the switching frequency. The second category
comprises strongly nonlinear circuits, such as dynamic comparators (e.g., StrongARM [37]
and double-tail latches [38]), VCOs [39], PLLs [40], and SAR ADCs [41], where regenerat-
ive feedback, limit-cycle behavior, or quantization effects dominate [42]–[45]. Represent-
ative behavioral models aid in initial sizing and provide insight into dominant dynamic
characteristics, such as decision time and oscillation frequency:

td ≈ τ ln
(

Vswing

V0

)
, (2.5)

τ ≈ CL

gm,eff
, (2.6)

f0 =
1

2π
√

LC
, (2.7)

where td is the decision time, τ is the time constant, Vswing is the output voltage swing,
V0 is the initial input differential voltage, CL is the load capacitance, gm,eff is the effective
transconductance, L is the inductor value, and C is the capacitance in the resonant tank.
Corresponding core specifications shift to decision time and metastability probability for
comparators, PN and tuning range for VCOs/PLLs, and SNDR and integral nonlinearity
(INL) and differential nonlinearity (DNL) for SAR ADCs.
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2.2 Three Generations of Analog Circuit Design Meth-
ods

This section organizes analog circuit design practice into three methodological “genera-
tions” [1], [4]. Generation I relies on long-channel quadratic laws and closed-form hand
analysis. Generation II centers on the transconductance efficiency gm/ID for navigating
weak–moderate–strong inversion with process-portable sizing. Generation III formulates
design as an optimization problem, either with analytic constraints or simulation-driven.

2.2.1 Generation I: Quadratic Hand Analysis

Under long-channel, strong-inversion assumptions, MOS devices follow simple relations
enabling paper-and-pencil sizing. For an NMOS,

ID ≈ 1
2 µCox

W
L
(VGS−VT H)

2 (1+λVDS) , gm ≈
2ID

Vov
, ro ≈

1
λ ID

, (2.8)

where ID is the drain current, µ is the carrier mobility, Cox is the gate-oxide capacitance
per unit area, W and L are the channel width and length, VGS is the gate–source voltage,
VT H is the threshold voltage, λ is the channel-length modulation parameter, VDS is the
drain–source voltage, gm is the transconductance, Vov =VGS−VT H is the overdrive voltage,
and ro is the output resistance. These lead to first-order block metrics such as

Av ≈ gmro, ωp ≈
1

RoutCL
, fu ≈

gm

2πCC
, (2.9)

where Av is the low-frequency gain, gm is the effective transconductance, ro is the output
resistance, ωp is the dominant pole frequency, Rout is the output resistance seen at the
node of interest, CL is the load capacitance, fu is the UGB, and CC is the compensation
capacitance.

A representative design flow based on the quadratic long-channel law proceeds as follows:
(i) select the circuit topology and establish the bias point; (ii) choose the overdrive Vov

and bias currents from bandwidth and noise requirements; (iii) back-solve the device
dimensions (W/L) from the targeted gm and ro; (iv) select the compensation network (e.g.,
CC and zero placement) to satisfy the desired PM; and (v) validate the design and iterate
using SPICE simulation. This approach offers high interpretability, enables rapid first-
order sizing, and is effective for static, approximately LTI blocks. However, its accuracy
degrades in deep-submicron technologies (e.g., modern CMOS nodes < 130 nm) due to
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velocity saturation, mobility degradation, short-channel effects, and body effect. Moreover,
weak/moderate inversion operation, device mismatch, and PSRR/CMRR constraints are
captured only at a coarse level. Therefore, it is largely used in educational settings and
for initial sizing of some low-frequency designs with legacy processes (> 180 nm).

2.2.2 Generation II: The gm/ID Method

The transconductance efficiency gm/ID parameterizes the speed–noise–power trade-space
via inversion level and maps directly to device sizing through EKV/BSIM lookup tables
(LUTs) or process curves as shown in Fig. 2.1. Asymptotically,

gm

ID

∣∣∣∣
weak
≈ 1

nVT
(typically 20∼ 30V−1), (2.10)

gm

ID

∣∣∣∣
strong

≈ 2
Vov

, (2.11)

where gm is the transconductance, ID is the drain current, n is the subthreshold slope
factor, VT is the thermal voltage, and Vov is the overdrive voltage.

A typical gm/ID–based sizing flow proceeds as follows: (i) select a target gm/ID band from
bandwidth, noise, and energy objectives; (ii) set gm from the UGB fu or from a noise
budget, then compute ID = gm/(gm/ID); (iii) map to device dimensions (W/L), overdrive
Vov, and operating region using process curves or LUTs; (iv) verify ro, headroom, PM,
PSRR/CMRR, and layout feasibility; and (v) refine.

Figure 2.1: The gm/ID based method.
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The method is technology-portable, spans weak–moderate–strong inversion, and makes
the power–speed–noise trade-offs explicit. It is most effective for quasi-LTI blocks, such
as op-amps, gm–C filters, and LDOs, where performance metrics such as UGB and PSRR
map directly to gm and ro. However, strongly time-varying or nonlinear behaviors (e.g.,
regeneration, limit cycles, quantization in dynamic circuits) are only indirectly captured.
Furthermore, process curves are sampled at coarse intervals to reduce characterization
time and memory cost, which limits its accuracy and may still require further tuning. In
practice, the gm/ID-based design methodology is widely adopted in both academia and in-
dustry, particularly for initial transistor sizing and early-stage performance estimation. It
enables efficient exploration of power-constrained design spaces, such as those encountered
in Internet of things (IoT) and biomedical applications. Supported by EKV models, LUT-
based sizing environments, and some commercial EDA tools such as those from Synopsys
and Mentor, this approach balances intuition and numerical accuracy. However, it is not
fully automated and still relies on designer expertise for iterative refinement and results
interpretation.

2.2.3 Generation III: Optimization-Centric Sizing

Analog circuit sizing is formulated as an optimization problem with objective(s) and
constraints, solved either from analytic models or via simulation-in-the-loop search with
PVT considerations. Below is a single-objective example.

min
x

P(x)

s.t. A0(x)≥ Amin,

fu(x)≥ fmin,

PM(x)≥ ϕmin,

PSRR(x)≥ ρmin,

x ∈ X .

(2.12)

Equation-Driven/Convex Optimization. When specifications can be formulated as
analytic, convex-like constraints (e.g., small-signal gain, UGB, PM and noise), geometric
programming provides fast, globally optimal sizing, where global optimality is guaranteed
[11]. However, the range of problems that can be addressed is limited by whether the
underlying model can be transformed into a convex form. Many important behaviors,
such as regeneration, sampling, and oscillation, cannot generally be expressed in convex
terms, and therefore fall outside the scope of these methods. In addition, the accuracy of
the equations is limited compared with BSIM models.
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Simulation-Driven (Black-Box) Optimization. In this approach, SPICE analyses
(AC, Transient, PSS, PNOISE) serve directly as evaluators within single- or multi-objective
search frameworks, such as gradient-based, heuristic, or Bayesian methods. Surrogate mod-
els are often used to reduce the number of expensive simulations. This strategy is well
suited for dynamic and nonlinear blocks, which supports capturing behaviors that are dif-
ficult to approximate analytically including comparator decision time and metastability,
VCO PN, and SAR ADC SNDR. However, the computational cost is inevitably higher
than that of quadratic law or gm/ID-based methods. Recent advances in surrogate mod-
eling and efficient search algorithms have made the runtime increasingly manageable in
practice, which will be discussed in Section 2.4.

2.2.4 Common Verification Loop

Design verification follows a common procedure regardless of the methodology. Sign-off
requires PVT analysis to guarantee functionality and stability margins, and MC simu-
lations to quantify mismatch-induced variability such as input-referred offset and pole
dispersion. For realistic yield assessment, MC should be performed at the identified worst-
case corners.

2.2.5 Comparison

In summary, Generation I enables rapid, first-order design via long-channel models and
remains useful for early-stage estimation. Generation II introduces inversion-aware siz-
ing through the gm/ID methodology, widely applied in power-constrained designs for its
balance of efficiency and portability. Generation III formulates sizing as an optimization
problem, supporting accurate and relatively efficient analog IC sizing. Fig. 2.2 summarizes
the comparison across generations.

2.3 Local Optimization Methods

Local optimization techniques represent the earliest approaches adopted for analog circuit
sizing. During the 1980s and early 1990s, gradient-based methods such as steepest descent,
Newton methods, and sequential quadratic programming (SQP) were used, where circuit
equations could be approximated in convex or near-convex form for efficient optimization.
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Fast, interpretable
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Accurate and surrogate
model reduces runtime
Higher computation cost

Closed-form/intuition Systematic sizing Automated sizing

Figure 2.2: Three generations of analog design methods.

Representative efforts, such as OPASYN [46], demonstrated the utility of convex and
geometric programming frameworks for structured circuit classes. With the increasing
reliance on simulation-based flows in the 1990s, derivative-free algorithms, including the
Nelder–Mead (NM) simplex method and PS, were introduced to handle highly nonlinear
behaviors where analytic gradients were unavailable.

2.3.1 Gradient-Based Methods

When analytic or adjoint sensitivities are available, quasi-Newton or SQP [47], [48] provides
fast refinement. While gradient-based methods (e.g., Newton/BFGS/SQP, interior-point)
converges rapidly on smooth small-signal objectives, many analog performance metrics
(e.g., transient settling, comparator decision time, SAR ADC SNDR) are noisy, nonsmooth,
or even discontinuous, making gradient-free local methods more practical. Moreover, when
reliable derivatives are unavailable, finite-difference approximations become both compu-
tationally expensive and brittle in the presence of SPICE noise, further motivating the
adoption of derivative-free alternatives.

2.3.2 Nelder-Mead (Simplex)

The NM algorithm [49], [50] is a derivative-free local optimization technique that has been
widely applied in engineering design problems, including analog circuit sizing. Unlike
gradient-based methods, NM requires single objective function evaluations, making it
suitable for noisy or nonsmooth responses often encountered in SPICE simulations.
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The method maintains a simplex, i.e., a set of n+ 1 vertices in an n-dimensional design
space. At each iteration, the vertices are ordered by their objective values, and the worst
point is replaced by a new candidate generated through geometric operations relative to
the centroid of the remaining vertices. The standard update rules include:

• Reflection: xrefl = c+ρ(c− xmax), where c is the centroid, ρ > 0 is the reflection
coefficient and xmax is the worst vertex.

• Expansion: xexp = c+ χ(xrefl− c), with χ > 1 promoting aggressive search when
reflection improves the solution.

• Contraction: xcon = c+ γ(xmax−c), with 0 < γ < 1 for conservative search if reflec-
tion fails.

• Shrink: xi← xmin+σ(xi−xmin), with 0 < σ < 1 contracting the simplex around the
best vertex xmin.

By iteratively applying these steps, NM adaptively explores the local design space without
derivatives. Its strengths are simplicity, robustness to noise, and low overhead in low-to-
moderate dimensions. In analog sizing, NM is typically used to fine-tune design parameters
after global exploration, either in hybrid flows that interleave global and local updates or
through simple concatenation where NM refines the best solution returned by a global
search. Its limitations include potential stagnation in high dimensions and lack of conver-
gence guarantees beyond low-dimensional smooth functions.

2.3.3 Pattern Search Method

PS [51] is another derivative-free local optimization method designed for black-box and
nonsmooth problems. Unlike simplex-based schemes, PS explores the design space by
evaluating a set of candidate directions around the current solution and accepts a move
if any candidate improves the objective.

At iteration t, given the incumbent x(t) and mesh size ∆(t), PS evaluates trial points of the
form

x(t)+∆(t)d, d ∈ D, (2.13)

where D is a positive spanning set of directions (e.g., the coordinate basis {±ei}n
i=1). In

each iteration, the algorithm evaluates the objective at the poll points x(t)+∆(t)d for all
d ∈ D, as shown in Fig. 2.3.
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Figure 2.3: The illustration of PS in a 2-D problem.

If at least one poll point improves upon the incumbent, the best improving point is accep-
ted as the new incumbent x(t+1), and the mesh size ∆(t) may be expanded to accelerate
progress. If no poll point improves the objective, the incumbent is retained, the mesh size
is reduced (typically by a constant factor such as 1/2), and a new poll step is attempted.

This poll-and-update cycle is repeated until a convergence criterion is satisfied, commonly
when the mesh size ∆(t) falls below a prescribed threshold, or when successive iterations
yield negligible improvement in the objective. In this way, PS adaptively balances global
exploration (through larger mesh sizes) and local refinement (through progressively finer
meshes).

The strengths of PS are its ability to handle nonsmooth, discontinuous, or noisy objective
functions without requiring gradients. Its convergence is guaranteed under mild condi-
tions to a Clarke stationary point [52]. In analog circuit sizing, PS is particularly useful
for tuning mixed discrete–continuous parameters (e.g., unit capacitor counts, transistor
fingers) and for refining post-layout designs where SPICE responses may be noisy or ir-
regular. Compared to NM, PS scales more reliably in higher dimensions and supports
parallel evaluation of the poll set, making it attractive in simulation-driven optimization
flows. The pseudo code is shown in Algorithm 1.
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Algorithm 1 PS for Analog Circuit Sizing
Require: Objective f (·), initial point x0, initial mesh size ∆0, direction set D, bounds [l,u],

integer mask isInt, expansion factor α > 1, contraction factor 0 < β < 1, tolerance ε ,
maximum iterations T .

1: x← ProjectAndRound(x0, l,u, isInt)
2: fx← f (x), ∆← ∆0
3: for t = 1→ T do
4: xbest← x, fbest← fx, improved ← false
5: for each d ∈ D do
6: xtrial← x+∆d
7: xtrial← ProjectAndRound(xtrial, l,u, isInt)
8: ftrial← f (xtrial)
9: if ftrial + ε < fbest then

10: xbest← xtrial, fbest← ftrial
11: improved ← true
12: end if
13: end for
14: if improved then
15: x← xbest, fx← fbest
16: ∆← α∆ ▷ expand mesh
17: else
18: ∆← β∆ ▷ contract mesh
19: end if
20: if ∆ < ∆min then
21: break
22: end if
23: end for
24: return x, fx

As a rule of thumb, NM is lightweight and effective for n ≤ 15 with moderate noise. PS
scales better to mixed discrete and continuous variables and parallel evaluation. Both are
robust and are now used frequently as second stages after global exploration.

2.3.4 Summary

Gradient-based local methods are ideal when small-signal, differentiable models exist.
Otherwise, NM and PS provide practical, derivative-free refinement that respects search
bounds and constraints, tolerates SPICE noise, and integrates cleanly after global optim-
izer.
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2.4 Global Optimization Methods

Different from local methods, global optimization algorithms do not require an initial
design and are capable of escaping local minima in highly nonlinear, multimodal ana-
log design spaces. Evolutionary and swarm-based heuristics use population-based search
strategies to explore the design space efficiently. More recently, surrogate model-assisted
global optimization has been introduced to accelerate convergence by combining data-
driven models with heuristic exploration, reducing the number of circuit simulations while
maintaining global search capability.

2.4.1 Evolutionary and Swarm-Based Heuristics

Evolutionary and swarm-based algorithms represent a major branch in analog design siz-
ing, motivated by their robustness in handling nonconvex, nonlinear, and discrete search
spaces. Representative examples include genetic algorithms (GA), particle swarm optim-
ization (PSO), ant colony optimization (ACO), DE, artificial bee colony (ABC), and grey
wolf optimizer (GWO) [15], [53]–[57]. These methods operate on a population of candidate
solutions or probabilistic perturbations, iteratively improving performance by exploring
diverse regions of the design space.

A common feature of evolutionary and swarm-based heuristics is that they maintain
a population of candidate solutions rather than a single trajectory. Their effectiveness
relies on two key principles: (i) the update strategy, which defines how new candidates
are generated from existing ones (e.g., via mutation and crossover), and (ii) the elitism
mechanism, which ensures that the best solutions identified to date are retained, thereby
avoiding degradation of the objective value across iterations.

DE exemplifies these principles. Each candidate vector xi is perturbed to form a mutant
ui through weighted difference operations among randomly chosen individuals:

Mutation and crossover. For a population matrix X (t) ∈ RNP×D, with NP individuals
and D design variables, the following strategies are commonly applied:

• Strategy 1 (current-to-best/1):

ui = xi +F(xbest− xi)+F(xr1− xr2), (2.14)
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where xbest is the current best solution, F is a scaling factor, and r1,r2 are distinct
random indices.

• Strategy 2 (rand/2):

ui = xr5 +F
[
(xr1− xr2)+(xr3− xr4)

]
, (2.15)

with r1, . . . ,r5 chosen as distinct random indices.

Crossover is applied through a binomial mask:

ui j =

ui j, if rand(0,1)<CR,

xi j, otherwise,
(2.16)

where CR denotes the crossover rate. This preserves some parent components while intro-
ducing mutant traits.

Elitism mechanism. Each trial vector competes directly with its parent and the one
with the better objective survives:

x(t+1)
i =

ui, if f (ui)≤ f (x(t)i ),

x(t)i , otherwise.
(2.17)

This guarantees monotonic preservation of the best solution across generations and pre-
vents performance regression.

Other heuristics, such as GA, PSO, and ACO, adopt different update rules such as ve-
locity updates in PSO, or pheromone trails in ACO, but all adopt some form of elitism
to ensure monotonic improvement in the population’s best solution. They have been
applied to transistor sizing and analog layout generation. In analog design automation,
these properties make evolutionary and swarm-based heuristics attractive for black-box
optimization, since they require no derivatives and can accommodate non-convexity, dis-
continuities, and discrete design choices. Their key advantage is the ability to escape
local minima without requiring derivatives or convex approximations, making them well
suited for simulation-in-the-loop optimization. However, their major limitation is compu-
tational cost: convergence is slow and often requires thousands of simulations, making
them challenging for large-scale circuits or post-layout verification.
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2.4.2 Surrogate Model-Assisted Optimization

To alleviate the computational burden of simulation-driven optimization, surrogate model
and machine learning-assisted methods have gained increasing popularity [17], [26], [58]–
[60]. The surrogate model-assisted optimization process is described in Fig. 2.4. It begins
with an initial set of candidate designs evaluated by high-fidelity simulations, which forms
the initial database. An optimization algorithm (e.g., DE) then generates new candidates,
while a surrogate model is trained with history data from database and iteratively updated
to approximate expensive simulations. Candidate designs are screened using infill sampling
criteria based on the prediction result from the trained surrogate model, and only the most
promising one(s) are validated through accurate simulations. The database will then be
updated with the new design(s). This cycle continues until convergence, at which point
the best design is obtained.

Simulate the most
promising design (s)

Update the database

Initialization
(generate initial pop and

simulate)

Optimization algorithm
(generate new pop)

Train surrogate model
(with current pop)

Predict for new pop

Ranking with infill sampling
criteria

Stopping 
criteria met?End

Figure 2.4: The surrogate model-assisted optimization flow.

24



Surrogates such as GPR, random forests, or neural networks are used to approximate
the expensive SPICE evaluation function. In analog design, surrogates are particularly
useful for dynamic or strongly nonlinear blocks where one simulation is expensive (e.g.,
PSS/PNOISE analysis for VCO PN or transient for SAR ADC SNDR evaluation). By
learning from a small set of simulations, surrogate-assisted methods reduce the number of
evaluations by orders of magnitude. The trade-off lies in model fidelity: accuracy depends
heavily on the quality and coverage of the training samples. Sparse sampling can result
in degraded predictive accuracy and wasted evaluations.

Two surrogate modeling approaches are particularly popular in analog circuit sizing. The
first is GPR, which provides not only a smooth approximation of circuit performance
but also an explicit measure of predictive uncertainty, making it well suited for Bayesian
optimization and active learning frameworks. The second is the use of ANNs, which can
capture highly nonlinear relationships between design variables and performance metrics
and scale effectively to high-dimensional problems. GPR excels in sample efficiency and
uncertainty quantification but struggles in very high dimensions, whereas ANNs handle
large-scale, complex mappings but require larger training sets and careful regularization to
avoid overfitting. Both approaches are widely used to accelerate optimization by reducing
the number of expensive SPICE evaluations.

2.4.2.1 Gaussian Process Regression

GPR [25] is a nonparametric Bayesian method used to approximate black-box functions
when observations are limited and potentially noisy. It models an unknown scalar-valued
function f (x) as a distribution over functions, such that the outputs corresponding to any
finite set of inputs follow a multivariate Gaussian distribution.

Let f : Rd → R be a latent function modeled as a Gaussian process:

f (x)∼ GP(m(x),k(x,x′)),

where m(x) is the mean function, and k(x,x′) is a positive semi-definite kernel function.

Given training inputs X = [x1, . . . ,xN ]
T and noisy observations y = f (X) + ε with ε ∼

N(0,σ2
n I), the joint distribution of training outputs and the function value at a test point

x∗ is: [
y

f (x∗)

]
∼ N

([
m(X)

m(x∗)

]
,

[
K(X ,X)+σ2

n I K(X ,x∗)
K(x∗,X) K(x∗,x∗)

])
,
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where K(A,B) denotes the kernel matrix with entries [K(A,B)]i j = k(ai,b j).

The posterior predictive distribution for f (x∗) is Gaussian:

f (x∗) | X ,y∼ N(µ∗,σ2
∗ ),

where:
µ∗ = m(x∗)+K(x∗,X)[K(X ,X)+σ2

n I]−1(y−m(X)),

σ2
∗ = K(x∗,x∗)−K(x∗,X)[K(X ,X)+σ2

n I]−1K(X ,x∗).

This formulation provides both prediction and uncertainty estimation at new points as
shown in Fig. 2.5, enabling trade-off between exploration and exploitation in Bayesian
optimization (BO) framework. However, computational complexity scales cubically with
the number of training points O(N3), which limits GPR to moderate-sized datasets. [61]
introduces a sparse pseudo-input Gaussian process (SPGP) surrogate model for analog
circuit sizing. By using M≪N inducing pseudo-inputs, training and prediction costs drop
from O(N3) and O(N2) to approximately O(NM2) and O(M2), respectively. This achieves
substantial runtime reduction without sacrificing surrogate modeling power. Another lim-
itation is that, for constrained optimization problems, a distinct GPR is required for each
constraint, leading to the need for parallel training and higher computational overhead.

3 2 1 0 1 2 3
Design variable

1

0

1

2

Pe
rfo

rm
an

ce
 m

et
ric

True function
GP mean
95% Confidence intervel
Training samples

Figure 2.5: An 1D GPR example.

In GP–based BO, acquisition functions are used to convert the GP posterior mean µ(x)
and uncertainty σ(x) into a scalar criterion for guiding the next evaluation. Several clas-
sical acquisition functions are widely adopted [62], [63]. The probability of improvement
(PI) selects points most likely to outperform the current best f+ but is often overly greedy.
The upper (or lower) confidence bound (UCB/LCB) balances exploration and exploita-
tion through a tunable parameter κ in the form µ(x)∓κσ(x), and is especially suitable
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for parallel optimization. For multi-objective optimization, the expected hypervolume
improvement [64] is frequently applied, preferring samples that enlarge the dominated
hypervolume of the Pareto front. Constrained variants, such as constrained expected im-
provement (cEI) or feasibility-weighted UCB, incorporate the probability of satisfying
specifications, making them well suited for engineering design tasks.

Among these, EI is widely used due to its closed form, omitting tuning parameters, and
effective trade-off between exploitation and exploration. For a minimization task, let
f (x) ∼ N(µ(x),σ2(x)) be the GP posterior at candidate x, and let f+ denote the best
observed value so far. The improvement is defined as I(x) = max( f+− f (x),0). The EI
criterion is its posterior expectation:

EI(x) = E[I(x)] = ( f+−µ(x))Φ(z)+σ(x)ϕ(z), z =
f+−µ(x)

σ(x)
, (2.18)

where Φ(·) and ϕ(·) denote the standard normal cumulative distribution function (CDF)
and probability density function (PDF), respectively. The first term in (2.18) favors can-
didates with small predicted mean (exploitation), while the second term favors those with
large uncertainty (exploration). Extensions such as batch EI, noisy EI, and cEI [65], [66]
are commonly used in practice for parallel, noisy, or constrained optimization tasks.

2.4.2.2 Artificial Neural Networks

ANNs [67] provide flexible, differentiable function approximators that map design vari-
ables to circuit performance metrics without requiring explicit physics-based models. An
example ANN with two hidden layers is shown in Fig. 2.6. More generally, for an ANN
with L layers:

ŷ = fθ (x) = ϕL
(
WL ϕL−1(· · ·ϕ1(W1x+b1) · · ·)+bL

)
,

where x represents design variables (e.g., device sizes, biases, capacitor ratios), ŷ stacks
one or more performance metrics (e.g., gain, UGB, PM, PSRR, noise), {ϕℓ} are nonlinear
activations (e.g., ReLU, GELU, tanh), and parameters θ = {Wℓ,bℓ} are trained from
simulation data.

The ANN model is trained on a dataset {(xi,yi)}N
i=1 generated by circuit simulations,

where the network parameters θ are obtained by minimizing a regularized least-squares
objective,

min
θ

1
N

N

∑
i=1
||yi− fθ (xi)||22 +λ ||θ ||22, (2.19)
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Figure 2.6: An ANN with two hidden layers.

with the first term representing the mean squared error and the second term providing
L2-regularization to mitigate overfitting. Once trained, the ANN acts as a computationally
efficient surrogate model in the optimization frameworks, substantially reducing the num-
ber of costly SPICE evaluations. To improve conditioning, inputs are typically normalized
(z-score or min–max), and bounded through logit or hyperbolic tangent transformations.
Discrete variables can be encoded via ordinal embeddings.

Unlike GPR, vanilla ANNs do not provide uncertainty. To include uncertainty, deep en-
sembles, MC dropout, or heteroscedastic heads [68]–[70] can be included, which yield
variance estimates usable by acquisition functions or trust-region gating at higher ma-
chine learning cost. While ANNs scale well to high-dimensional, nonlinear problems, they
exhibit limited data efficiency compared with GPR. In analog circuit sizing, where simu-
lations are expensive and datasets are typically small, this limitation increases the risk of
overfitting.

Similarly, when an ANN surrogate is used, it is trained or updated in each iteration and
used to obtain predicted performance ŷi j for n candidates with m metrics. To select the
next design for expensive evaluation, probability of further improvement (PFI) can be
computed on top of the ANN predictions.
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First, each performance column j is normalized to [0,1] and fitted by a Beta distribution
(Fig. 2.7) [71] Yj ∼ Beta(α j,β j) with CDF Fj(·), capturing the empirical shape (skewed,
U-shaped, etc.) induced by the current ANN outputs across the population. For a metric
with lower bound specification S j, the PFI for candidate i is

Bi
j =

Fj

(
Y i

j

)
−Fj

(
S j
)
, if Y i

j > S j,

0, otherwise,
(2.20)

where S j is the jth specification. The candidate’s potential is then calculated by summing
the PFIs across all performance metrics,

PO(i) =
m

∑
j=1

Bi
j, (2.21)

and candidates are ranked by PO(i) to choose the design for next expensive simulation.
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Figure 2.7: The illustration of Beta distribution.

There are several advantages using PFI:

• Surrogate-aligned, uncertainty-robust: PFI integrates over the Beta fit of the
ANN’s population predictions instead of relying on a single, potentially inaccurate
variance estimate.

• Constraint-aware without penalties: Equation 2.20 truncates the tail on the
feasible side of each specification S j, avoiding ad hoc penalty coefficients and directly
relating violation to feasibility.
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2.4.3 ANN vs. GPR

For low–moderate dimensions and limited data, GPR is typically preferable due to its
sample efficiency and calibrated uncertainty. For higher dimensions, large datasets, or
multi-output regressions, ANNs scale better, offer fast training and evaluation. The com-
parison is detailed in Table 2.2.

Table 2.2: ANN vs. GPR as analog surrogate modeling.

Aspect GPR ANN

Data regime Small N (tens)/ low–mid d Mid-to-large N/ mid–high d

Uncertainty Native, posterior variance Not native, use ensembles/MC-
dropout/heteroscedastic heads

Scalability O(N3) in train, O(N) in inference,
sparse GP for relief

O(N2) in train, O(N) in inference,
scales well with N

Expressiveness Strong with kernels, limited in
high d

Very high (nonlinear interac-
tions)

Hyperparameters Few, interpretable Many (architecture, regulariza-
tion), tuning needed

Typical use in EDA Small-to-mid d circuits with ex-
pensive SPICE

High d circuits, multi-output
specs

2.5 Summary

This chapter establishes the theoretical foundation for the thesis by first classifying analog
circuits into static and dynamic types, emphasizing their differing behaviors, performance
metrics, and verification focuses. It then reviews three generations of analog circuit design
methodologies, from analytical hand design to optimization-centric approaches, emphas-
izing the shift toward automation and data-driven design. Local optimization techniques
such as gradient-based methods, the NM, and PS are then introduced, followed by global
optimization approaches including evolutionary heuristics and surrogate model-assisted
methods. The discussion concludes with a comparison of ANN and GPR for surrogate
modeling. Together, these topics form the methodological basis for the AI-empowered
optimization frameworks developed in later chapters.
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Chapter 3

Assessing AI-Empowered
Optimization Techniques for Analog

Building Block Sizing

3.1 Introduction

This chapter provides a comprehensive, design insight–based comparison between an AI-
empowered analog building block sizing framework and the conventional manual meth-
odology. Sizing is a critical step in analog circuit design, but the process is highly time-
consuming because of the large number of design variables and possible solutions. Tradi-
tionally, sizing has relied heavily on iterative manual effort. As a result, both the analog
IC design community and the EDA communities have proposed numerous methods to
address this challenge. The two communities, however, adopt fundamentally different
perspectives: the design community emphasizes design insights and systematic manual
optimization, whereas the EDA community focuses on automation through optimization
algorithms.

In the design community, the first-generation sizing methodology is based on transistor
equivalent circuit models [1]. Its major challenge is accuracy [72]. Results based on de-
rivation using the equivalent circuit model tend to exhibit large discrepancies from both
SPICE simulation and actual silicon behavior. To address this challenge, the gm/ID-based
sizing methods have become widely used in the industry [73], in which, transistor equival-
ent circuit models are replaced by SPICE simulation/measurement-based LUTs. While
this approach has demonstrated effectiveness [74]–[77], to make the LUTs manageable,

31



simplifications are necessary. For example, the tables are often restricted to a small num-
ber of fixed grid points for L, VGS, VDS and VBS [78]. Moreover, the effect of width on
the behavior of the transistor, such as Vth, is often neglected [79], [80], which can lead to
inaccuracies [81].

Building on key decisions derived from transistor equivalent circuit models or gm/ID (e.g.,
selecting width-to-length ratios of critical transistors or applying variable conversions for
low-voltage design), optimization techniques have also been used in the analog design com-
munity. Recent works include applications to oscillators and analog filters [82]–[84]. These
approaches complement manual optimization and have demonstrated excellent results.

In summary, the dominant approach in the analog IC design community remains design
insight–driven systematic manual or algorithm-assisted optimization, where the design
insights are the key. As a result, the obtained sizing solutions are typically consistent
with the designer’s intentions. However, this reliance on experience presents a drawback:
intuitions and estimations based on prior design knowledge play a critical role, which can
limit both the quality and efficiency of the sizing process, particularly for less experienced
designers.

On the other hand, the EDA community approaches sizing from a different perspective.
The sizing problem is formulated into a SPICE simulation-based black-box optimization
problem and the target is to develop efficient solvers (i.e., optimizers). Design insights are
largely omitted aside from straightforward cases (e.g., enforcing identical dimensions for
differential pair transistors), and most methods in the literature aim for a fully automated
“one-button” flow [85], [86]. Since SPICE simulations are used throughout, the challenges
on model accuracy are naturally addressed and complex design experience-based decisions
are avoided. However, a major challenge is time consumption [82], [87]. When considering
complete and stringent specifications across full PVT corners, the optimization can be
highly time-consuming due to the many necessary SPICE simulations.

To improve efficiency, AI techniques were introduced. An online machine learning-assisted
evolutionary algorithm was proposed for radio frequency (RF) IC synthesis in 2014 [88].
Machine learning-assisted optimization was then introduced into analog building block
sizing such as BO-based methods [86], [89], [90]. However, analog building block sizing
sometimes needs to consider more than 20 performance metrics, and some of them are hard
to handle by machine learning techniques (e.g., transient response-related ones) [17]. As
a result, although many methods significantly reduce the number of required simulations,
machine learning cost becomes a new challenge [59].
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Recently, this challenge was addressed and novel machine learning-assisted analog IC siz-
ing methods have been proposed. These include surrogate model-assisted optimization
frameworks [17], [59], [60] and reinforcement learning (RL)–based design flows [20], [91],
[92]. Efficient surrogate model-assisted sizing method for high-performance analog build-
ing blocks (ESSAB) [17] is one of the algorithms that addresses this challenge and shows
effectiveness when considering the whole set of specifications, including all the hard-to-
learn ones, which will be used later in this chapter as an optimization engine example.

Although recent new progress in the EDA community shows potential for practical use,
the conventional design insight/experience-based systematic manual sizing method still
dominates the design community. This raises the necessity of a comprehensive compar-
ative study of the above two methods. In the literature, most EDA research works that
focus on sizing algorithms provide only schematic-level simulation results. Even for those
with silicon validation, often only one kind of circuit is considered. Moreover, comparison
with solutions obtained by conventional systematic manual design methods using com-
prehensive design insights is little, but this could be most important for convincing the
design community.

3.2 Contributions

To fill this gap, this work performs a comparative study. In this thesis, the term AI-
empowered emphasizes workflows that involve designer participation, whereas AI-driven
denotes processes in which AI algorithms make all decisions with minimal human inter-
vention. The focus here is on AI-empowered sizing, which leverages AI capabilities while
maintaining designer interactions. Using four case studies, including a comparator, two
amplifiers (one standard and one low power design), and an oscillator, from 65 nm to 0.35
µm technologies, the design solutions obtained by the AI-empowered sizing are compared
with expert designs from literature and/or industry, where the design insight-dominated
systematic sizing is used. Comprehensive design insight-based comparison for all the case
studies (i.e., why a design from a certain kind of method is better based on circuit working
principles) and silicon validation for three of them are provided. The remainder of this
chapter is organized as follows. Section 4.2 introduces the AI-empowered analog building
block sizing approach. Section 4.3 demonstrates the comparison using four case studies.
Concluding remarks are presented in Section 4.4. The key contributions of this work are
listed below:
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1. Reliability and Designer Intent Alignment: The study evaluates whether solu-
tions obtained by AI-empowered analog IC sizing methods are reliable and consist-
ent with the designer’s intentions, addressing a long-standing concern in the design
community [93].

2. Quality and Efficiency Comparison: It investigates how the AI-empowered
analog IC sizing methods perform in terms of design solution quality and efficiency
compared to the dominant method in the design community.

3. Role of Design Insights: The research investigates the role of design insights in
AI-empowered sizing.

3.3 The AI-Empowered Analog Building Block Siz-
ing Approach

3.3.1 AI-Empowered Sizing Framework

Fig. 3.1 shows the framework for an AI-empowered sizing method with human interactions,
where * is used to annotate human interactions. It has eight main steps.
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Figure 3.1: The flow diagram of the AI-empowered analog building block sizing approach.
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• Step 1*: Problem Formulation
The inputs include the circuit topology, design variables with wide search ranges
(i.e., without needing much design insight or any initial design), design specifications,
the FoM (objective function), and PVT corners. In this step, the analog IC sizing
problem is formulated as a single-objective constrained optimization problem.

• Step 2: First-Phase Optimization: Worst Case Corner
An AI-empowered global optimization is performed considering the worst-case corner
(WCC), which is case dependent. This choice is motivated by the observation that
satisfying the specification at the WCC often promotes robustness across the re-
maining PVT corners. In this work, the corner with high temperature, low supply
voltage, and slow NMOS/slow PMOS serves as the WCC example. The goal of this
phase is to obtain an optimal design that satisfies the specifications under the WCC.

• Step 3*: Designer Validation and Feedback
Designers analyze the obtained design by observing its responses in the time and/or
frequency domain. The responses to be analyzed are case-dependent. For example,
the transient waveform of a step response may be examined for a unity-gain buffer.

• Step 4*: Problem Re-Formulation (If Necessary)
If the obtained design is not aligned with the designer’s intentions, the optimization
problem can be reformulated. This may involve structural modifications (e.g., to-
pology changes) or specification adjustments (e.g., adding an overshoot constraint).
The optimization is then reinitiated from Step 2.

• Step 5: Second-Phase Optimization: All Corners
Once the WCC solution is approved, the second phase optimization is carried out.
Here, another AI-driven global optimization using full-corner simulations is executed
to obtain a PVT-robust design.

• Step 6*: Designer Validation
The designer re-validates the results. A successful outcome satisfies all specifications
across PVT corners and achieves an optimal FoM. At this stage, second phase
sizing is considered complete, and the process advances to layout and post-layout
verification. If validation fails, the process returns to Step 4*.

• Step 7*: Layout and Post-Layout Analysis
After passing all-corner validation, the design undergoes layout generation and post-
layout simulations, followed by MC simulations. Passing this step indicates that the
design process is nearly complete.

• Step 8*: Final Designer Validation
If the design fails to meet specifications in layout stage, the reasons must be iden-
tified. One approach is to first attempt layout-level optimization. If the design still
fails, a straightforward remedy is to apply over-design by leaving additional margin
for the violated specification. Since layout optimization is not considered in this
framework, Step 4* may need to be revisited based on this analysis.
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The role of the human designer in AI-empowered analog IC sizing is crucial. While many
EDA methods aim for a fully automated, “one-button” approach where the user simply
specifies targets and the tool outputs a complete design in one go, designers should remain
in the loop. Their involvement enhances AI-driven sizing by interpreting intermediate
results and refining specifications (i.e., designer validation and problem re-formulation in
Fig. 3.1), which ensures that the design aligns with intent, as initial specifications (i.e.,
problem formulation in Fig. 3.1) may not fully capture requirements, and a mathematically
optimal solution may not always be desirable.

Note that this is different from using optimizers in the conventional systematic manual
sizing. In such methods, although optimizers are used, key sizing decisions (e.g., the
ratio between width and lengths of key transistors [82]) come from design insights. These
design insights need strong experience and may compromise the design quality. In contrast,
in AI-empowered analog IC sizing, the designer does not make such experience-based
decisions. Instead, they only need to validate the solution obtained by the optimizer and
(re)formulate the sizing problem to better represent the design requirements. Therefore,
this AI-empowered analog IC sizing approach does not replace the designer, but avoids the
reliance on extensive design experience required in conventional manual sizing methods.
In other words, the designer only needs to analyze the sized circuits.

3.3.2 Global Optimization Engine

A global optimization engine is required in the AI-empowered sizing framework to effi-
ciently explore the design space of analog building blocks. In this work, ESSAB algorithm
[17] is used as the optimizer. ESSAB is an online machine learning-assisted global optimiz-
ation approach specifically designed for analog IC sizing problems, where simulation-based
evaluations are computationally expensive.

Surrogate-assisted optimization is a well-established technique that builds an approxim-
ate model (surrogate) of the optimization target to reduce the number of expensive sim-
ulations. ESSAB follows this principle and integrates three key components: a search
engine, a surrogate modeling method, and an infill sampling strategy. It uses an ANN to
model the relationship between circuit parameters and performance metrics, which has
lower training cost than a Gaussian surrogate model when the number of specifications
is large. DE is used as the core global search technique. And the infill strategy uses a
Beta distribution-based ranking mechanism to guide the selection of new sample points
for simulation, effectively balancing exploration and exploitation. The ESSAB algorithm
[17] proceeds through seven steps as shown in Fig. 3.1, which are detailed as follows:
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1. Initialization: Sample a small number α of candidate solutions from the design
space [a,b]d using the Latin hypercube sampling method, where d is the number of
design variables. Perform SPICE simulations for each sample and store the results
in the initial database.

2. Stopping Criterion Check: If a predefined stopping condition is met (e.g., max-
imum number of iterations or convergence threshold), output the best design found
so far. Otherwise, proceed to the next step.

3. Candidate Selection for Search: Rank all designs in the database using the infill
sampling criterion to balance exploration and exploitation. Select the top λ designs
as a parent population P.

4. Offspring Generation: Apply DE mutation and crossover operations to P to
generate λ child candidate solutions.

5. Surrogate Model Construction: Select the top τ solutions from the database and
use them as training data to construct an ANN model for performance prediction.

6. Child Solution Evaluation: Evaluate the λ child solutions using the ANN model
and rank them using the infill sampling criterion.

7. Simulation and Update: Simulate the estimated best child solution from Step 6
using SPICE. Add its performance to the database, then return to Step 2.

In this work and the other works in this thesis, α , λ , τ are set to be 5× d following
an empirical design rule. The initial search space is defined to be relatively large, while
ensuring full compliance with process design kit (PDK) limits and design common sense.
This allows the exploration to cover all potentially feasible regions without violating man-
ufacturing or reliability limits. The machine learning-assisted nature of ESSAB, with its
adaptive surrogate modeling and infill sampling, makes the algorithm rapidly learns from
evaluated designs and focuses the search on promising regions, enabling efficient conver-
gence even when the search space is large. This property is particularly advantageous for
inexperienced designers, as it reduces the need for precise search space specification at
the outset. The robustness of ESSAB to large search spaces is further demonstrated in
four representative design cases presented in Section III.

3.4 Comparative Study Using Four Design Cases

In this section, four case studies, including a comparator, an amplifier (standard and low
power design), and an oscillator, are used to compare the AI-empowered analog building
block sizing method and the conventional systematic design method. These four circuits
are selected as representative analog building blocks encompassing both static and dy-
namic behaviors, enabling a comprehensive evaluation of the AI-empowered sizing method
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across diverse design objectives. The designs for the former method are obtained by follow-
ing the flow in Section 2. For the latter method, the selected reference designs are expert
designs, which are obtained from various resources: the reference comparator design is
from the literature [94]; the reference amplifier design using the standard voltage is from
an industry IP core; the low-power amplifier design is compared with state-of-the-art in
the literature; for the oscillator, the reference design is from industry experts, and it is
also compared with state-of-the-arts in the literature. Measurement results are provided
for the amplifier and oscillator designs, and post-layout simulation results are used for
the comparator.

The experimental implementation is illustrated in Fig. 3.2. User inputs are specified in
YAML format and processed by MATLAB R2024a, which serves as the global optimization
engine. Circuit performance evaluation is carried out using the Spectre simulator within
Cadence Virtuoso 23.1, with communication between MATLAB and Cadence managed
through Ocean scripts. PVT corners are defined in the Virtuoso Assembler. All simulations
run on a workstation equipped with an AMD Ryzen Threadripper PRO 3975WX CPU and
290 GB of RAM, utilizing 32 cores for parallel execution. Reported runtimes correspond
to wall-clock time.

Global
Optimization

Engine
Interface Simulation

Engine

Design
variables
Performance

metrics

Ocean
scripts
Raw
results

Initialization (with
YAML)
Black-box
optimization loop

Data management 
Design preprocessing 
Ocean script generation
Raw result
postprocessing 

Project management
PVT corner definition 
Circuit simulation with
Spectre
Layout

Figure 3.2: Workflow of the experimental implementation.

3.4.1 StrongARM Latch Comparator

As a representative dynamic circuit, the StrongARM latch comparator is selected as the
first case study due to its widespread use in high-speed and low-power mixed-signal sys-
tems. The StrongARM latch comparator to be designed is shown in Fig. 3.3. It operates
in two phases: during reset, internal nodes are reset to VDD; during evaluation, the in-
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put differential pair first performs a pre-amplification by discharging the internal nodes
proportionally to the input difference, after which the cross-coupled latch regenerates
this imbalance to full-swing outputs at exponential rate. This clocked operation enables
high-speed, low-power decision without static current, which makes the StrongARM latch
especially attractive for energy-efficient ADC applications [95].

The 13 design variables to be decided are shown in Table 3.1. The search ranges for
the design variables are wide. 16 corners include slow NMOS/slow PMOS (SS), slow
NMOS/fast PMOS (SF), fast NMOS/slow PMOS (FS), and fast NMOS/fast PMOS (FF)
in combination with high temperature (HT, 125°C) and low temperature (LT, −40°C),
and with high supply voltage (HV, 1.26V) and low supply voltage (LV, 1.08V). The clock
frequency is 20 MHz and the supply voltage is 1.2 V. The common-mode input voltage is
0.8 V. The reference design is from [94], based on which the specifications are set (Table
3.2). It can be seen that the specifications are demanding. The same 180 nm CMOS
technology is used for both designs.

VI-VI+

CX (NH) 

CL CL

Mb

M1 M2

M3 M4

M5 M6

M7 M8

M10M9

VDD

clkc clkc

clkc

VOUTP VOUTN

VX- VX+
CX (NH) 

Figure 3.3: Schematic of the classic StrongARM latch comparator.

In this case study, the ESSAB algorithm finds a reliable and optimal design in Step 2 and
Step 4. Validation shows that there is no need to re-formulate the optimization problem.
The AI-empowered sizing method takes 4 hours to finish the whole sizing process. The
transient responses are shown in Fig. 3.4.
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Table 3.1: Design variables and search ranges of StrongARM latch comparator.

Variables Min. Max. Ref. design
[94]

AI-
empowered

design

LMb (µm) 0.18 1 0.18 0.34
L1,2 (µm) 0.18 1 0.18 0.20
L3,4 (µm) 0.18 1 0.18 0.265
L5,6 (µm) 0.18 1 0.18 0.39
L7,8 (µm) 0.18 1 0.18 0.58
L9,10 (µm) 0.18 1 0.18 0.18
WMb (µm) 1.76 80 8.8 10.76
W1,2 (µm) 2.2 100 44 91.5
W3,4 (µm) 0.88 40 4.4 24.0
W5,6 (µm) 0.88 40 8.8 16.44
W7,8 (µm) 0.88 40 4.4 17.04
W9,10 (µm) 0.88 40 2.2 19.49
CX/NH (F) 22f/10 17.5p/288 1.1p/72 0.28p/36

The comparison results between the AI-empowered design and the reference design in [94]
are shown in Table 3.1 and Table 3.2 (both are pre-layout simulation results). It can be
seen that the AI-empowered design outperforms the reference design using the conven-
tional method considering most performance metrics. Particularly, a 62% enhancement is
demonstrated for the power and noise product (i.e., the FoM). Additionally, the proposed
design satisfies the specifications for all 16 corners, in contrast to the reference design.

It can be seen that compared to the reference design, the RMS input-referred noise (IRN)
is reduced by approximately 40% with power reduced by 35% without speed trade-off.
More design insights are as follows. Referring to [94], the IRN is contributed by both the
dynamic integrator and the latch, illustrated by

σn,in =

√
σ2

n,int +
σ2

n,latch

A2
int

(3.1)

where Aint is approximate as
Aint =

gm

ID
·VT HN (3.2)

which is determined by the input transistor gm/ID and the threshold voltage VT HN .
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Table 3.2: Pre-layout performance values of the design obtained by AI-empowered method
and the reference design of StrongARM latch comparator.

Performances Specifi-
cations

Ref. design
[94]

(Nominal)

AI-
empowered

design
(Nominal)

Ref. design
[94]

(WCC)

AI-
empowered

design
(WCC)

Power· IRN (nW·V) Minimize 6.32 2.42 5.77 2.24
Power (µW) ≤ 90 89 53 89 51
Delay (ns) ≤ 6 3.77 2.69 8.88 5.82
Reset (ns) ≤ 1 1.8 0.47 3.56 0.85
Reset error (µV) ≤ 20 0.75 0.02 16.16 0.04
Set error (µV) ≤ 20 4.31 1.13 3.28 2.28
Pos_res_int1 (µV) ≤ 15 2.99 0.85 1.72 1.29
Neg_res_int2 (µV) ≤ 15 3.58 1.03 1.56 0.97
Pos_res_out3 (µV) ≤ 15 0.83 0.04 13.53 0.07
Neg_res_out4 (µV) ≤ 15 0.08 0.02 2.63 0.03
IRN (µVrms) ≤ 70 70.68 45.95 64.65 53.97

1 Reset error at integration node VX+.
2 Reset error at integration node VX−.
3 Reset error at output node VOUTP.
4 Reset error at output node VOUTN.

A larger integration gain, Aint , is preferred to obtain lower noise, which is achieved by
AI-empowered sizing (i.e., 8.7 vs. 6 of the reference design). A larger Aint needs a larger
gm/ID of the input transistor pair. For the input pair, the transistor width is doubled
(91.5 µm compared to 44 µm), providing a larger gm/ID. Additionally, the AI-empowered
design increases the enable switch resistance by approximately two times, resulting in
reduced Vgs for the input transistor pair and hence increases the gm/ID. Moreover, a 100 fF
capacitance increase at the output nodes due to cross-coupled pair and pull-up transistors
also contributes to noise reduction, while a minimum value is used in the reference design.

Compared to the reference design, a 48.8% speed improvement is shown. Referring to [94],
[96], [97], the integration time can be approximated as

Tint =
CX

ID
·VT HN , (3.3)

where ID is the common-mode drain current of the input pair and VT HN is the value for
transistors M3 and M4.
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Although ID is higher, the CX of the reference design is 1.1 pF compared to 0.28 pF in the
AI-empowered design, causing larger delays in the pre-amplification phase. Considering
the integration time (Fig. 3.4), the AI-empowered design records 2 ns in contrast with 3
ns of the reference design. In the latch regeneration phase, the differential output voltage
has an exponential dependence on time controlled by the time constant C/(gmn + gmp).
The dominance of the pull-down behavior in the latch regeneration phase is noted. The
increased value of W3,4/L3,4 in the proposed design enhances gmn, thereby decreasing the
pull-down time. Specifically, the pull-down time in the AI-empowered design is measured
at 0.43 ns, as opposed to 0.62 ns in the reference design. Combining the effects, the total
delay for the AI-empowered design is reduced. It should also be noted that the power
consumption is halved because the AI-empowered design has a CX of 0.28 pF compared
to 1.1 pF of the reference design.
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Figure 3.4: Transient response of the AI-empowered design and the reference design [94]
at output nodes VOUT P and VOUT N .

Using the design obtained from Step 5, Step 6* is carried out and all the specifications
are satisfied in MC analysis. The layout is then carried out (Fig. 3.5) and the post-layout
simulation results are shown in Table 3.3, Fig. 3.6, and Fig. 3.7.
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Figure 3.5: Layouts for the AI-empowered design and the reference design [94] of the
StrongARM latch comparator.
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Table 3.3: Post-layout performance values of the AI-empowered design (left) and the
reference design of StrongARM latch comparator (right).

Performances Specifi-
cations

Ref. design
[94]

(Nominal)

AI-
empowered

design
(Nominal)

Ref. design
[94] (WCC)

AI-
empowered

design
(WCC)

Power· IRN (nW·V) Minimize 7.81 3.21 6.26 5.11
Power (µW) ≤ 90 106 67 96 59.6
Delay (ns) ≤ 6 4.68 3.4 9.88 6.78
Reset (ns) ≤ 1 2.25 0.58 4.06 0.98
Reset error (µV) ≤ 20 3.1 0.7 53.05 0.01
Set error (µV) ≤ 20 0.61 0.59 0.50 7.37
Pos_res_int (µV) ≤ 15 0.22 0.35 0.58 3.89
Neg_res_int (µV) ≤ 15 0.01 0.31 0.17 3.85
Pos_res_out (µV) ≤ 15 2.96 0.83 48.54 0.48
Neg_res_out (µV) ≤ 15 0.15 0.13 4.52 0.48
IRN (µVrms) ≤ 70 73.71 47.88 65.21 52.67
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Figure 3.6: Comparison of the post-layout responses of the AI-empowered design and the
reference design [94] of the StrongARM latch comparator.

It can be observed that, in this case, the ESSAB solver, when applied to PVT corners, not
only generates designs consistent with the working principles of the targeted comparator
but also makes subtle decisions (particularly, several subtle decisions together) that are
challenging for conventional systematic design methods, leading to superior performance.
This is because ESSAB is driven by data (i.e., machine learning and heuristic optimization
techniques), instead of a series of empirical decisions affected by model accuracy and the
designer’s experience and intuition. After validating the obtained design, the optimization
problem does not need to be reformulated and a one-button design process is achieved.
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Figure 3.7: Comparison of the speed of the AI-empowered design and the reference design
[94] across 16 corners of the StrongARM latch comparator, with post-layout (a) delay
time and (b) reset time grouped by four process corners.

3.4.2 Two-Stage Miller-Compensated Op-Amp (3.3 V)

In this case study, a two-stage Miller-compensated op-amp is used. It is one of the most
widely adopted amplifier topologies in analog IC design. Compared with the previous
dynamic circuit case, this static analog circuit exhibits more intricate design trade-offs
among gain, bandwidth, stability, power consumption, and linearity. It consists of a dif-
ferential input stage that provides high gain and a second gain stage that further boosts
overall amplification and drives the load. A compensation capacitor is connected between
the output of the second stage and the intermediate node, serving primarily for pole split-
ting, which separates the high-impedance first-stage output node from the second-stage
output node and improves stability.

Fig. 3.8 shows the structure of the two-stage Miller-compensated op-amp, which is an IP
core from a leading semiconductor company to demonstrate its 0.35 µm technology. Its
16 design variables are shown in Table 3.4. The search ranges for the design variables
are very wide. The following 16 corners are considered: SS, SF, FS, FF in combination
with HT (125°C) and LT (0°C), and with HV (3.47 V) and LV (2.97 V). It is designed
to drive a 10 pF capacitor and a 10 MΩ resistor load. The supply voltage is 3.3 V and
the common mode input voltage is 1.65 V. 10 performance specifications are shown in the
first column of Table 3.5. The optimization goal is to minimize the power consumption
of the IP core while keeping all other performances comparable, including high CMRR,
PSRR, differential-mode gain (ADM), adequate PM, and gain bandwidth (GBW). Ad-
ditionally, IRN and total harmonic distortion (THD) are considered in the optimization
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process. Meanwhile, consistent performance across PVT corners is expected. All perform-
ance metrics are measured in unity gain feedback configuration except CMRR, which is
measured using a capacitively coupled instrumentation amplifier (CCIA) structure. The
same 0.35 µm technology is used.
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M11 VBP

XPD

VIP VIN

VOUTCCRC

M12PD

M13PD

M14XPD

IBIAS

VBP

VBP

Figure 3.8: Schematic of the two-stage Miller-compensated op-amp. The devices shown in
gray (M12–M14) are auxiliary transistors used for startup and shutdown control.

Addressing the unexpected overshoot. The sizing result (i.e., AI-empowered design
1) by running Step 2 is shown in Table 3.5 (pre-layout simulation result). Although with
excellent performance (Table 3.5), an overshoot of 2.3 dB is shown in its step response
when configured as a unity-gain buffer (Fig. 3.9). Design insights show that this is because
of the position of the Miller compensation zero, estimated with

z =
1

(1/gm6−RC) ·CC
(3.4)

where gm6 is the transconductance of the transistor M6. The wide range of Miller resist-
ance in the initial search ranges allows for multiple design strategies. The ESSAB solver
places the zero in the left half-plane to enhance PM with gm6 around 0.69 mS and RC

approximately 6 kΩ. This zero contributes to the increased GBW. However, it introduces
a pole-zero doublet [98], thereby engendering undesired oscillations. In contrast, the ref-
erence design aims to push the right half-plane zero to infinity to mitigate the negative
impact of right-half plane zero with gm6 at approximately 2.38 mS and RC around 200
Ω. Our observations in loop gain and closed loop gain responses also verify this design
insight.
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Table 3.4: Design variables and search ranges of two-stage Miller-compensated op-amp.

Vars Min Max Ref.
design

AI-
empowered

design 1

AI-
empowered

design 3

AI-
empowered
design 3rd
iteration

L1,2,8,9 (µm) 0.35 20 14.05 13.1 11.35 14.4
L3,4 (µm) 0.35 20 10.05 1.35 3.05 2.6
L5,7,11 (µm) 0.35 20 1.05 19.5 4.9 13.1
L6 (µm) 0.35 20 0.55 1.5 1.05 0.9
L10 (µm) 0.35 20 0.35 13.7 7.65 16.15
L12,13,14 (µm) 0.35 20 0.35 13.45 5.3 12.8
W1,2,8,9 (µm) 0.22 200 60 173.45 138.55 168.6
W3,4 (µm) 0.22 200 304 138.8 102.2 102.2
N1,2,3,4 (integer) 1 10 1 2 2 2
W5,7,11 (µm) 0.22 200 150 42.1 156.7 35.85
N5 (integer) 2 20 2 4 4 4
N7 (integer) 1 10 1 5 8 8
W6 (µm) 0.22 200 64 177.4 195.55 147.2
W10 (µm) 0.22 200 10 30.05 130.85 166.8
W12,13,14 (µm) 0.22 200 2 53.8 65.5 49
CC (pF) 0.1 100 8.94 6.26 7.75 7.37
RC (Ω) 1 10k 204 6k 4.8k 6k

To reduce this oscillation, the optimization problem needs to be re-formulated and Step
2 needs to be carried out again. Two parallel runs are conducted and compared. In the
first run, an over-damped design similar to the IP core is expected. To achieve this, an
additional specification is added restricting the overshoot value to be 10 mV (1% of the
step size) maximum. The sizing result is shown in Table 3.5 (i.e., AI-empowered design
2). An over-damped design solution is obtained and the power consumption is reduced
by 25% compared to the reference design while keeping other performance superior or
comparable.

In the other run, the overshoot is restricted to an acceptable level of 100 mV by adding a
new specification on overshoot. The sizing result is shown in Table 3.5 (i.e., AI-empowered
design 3). The resultant design satisfies the proposed specifications, with its peak remain-
ing within 1 dB of the designated step size. This is achieved with better overlapping
between the second pole and left half-plane zero. It also shows successful results consid-
ering all PVT corners, and no abnormal response is observed. This design is chosen to
proceed to later steps due to its superior performance in both power consumption and
speed.
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Figure 3.9: A comparison of the op-amp unity-gain step responses. The input step size is
1 V.

Addressing CMRR failure in the MC analysis. In Step 6*, the MC analysis, a
notable 10 dB CMRR variation in common-mode gain (ACM) is observed, originating
primarily from the first stage of the circuit. After excluding the input transistors mismatch
effects and the impact of fluctuations in the tail current source, the current mirror load
is identified as the main source of the CMRR variation. This variation stems from the
random mismatch in the NMOS mirror pair, causing a differential current at the single-
ended output, which degraded ACM and, consequently, CMRR. Hence, an over-design
setting is used and we returned to Step 2 with CMRR specification increased from 90 dB
to 100 dB. As a result, the total width of M1 increased from 277.2 µm to 337.2 µm and
the worst-case MC CMRR satisfies the specification as shown in Fig. 3.10.

90 100 110 120 130 140
CMRR [dB]

0

10

20

30

40

Nu
m

be
r o

f s
am

pl
es

N = 200
Mean = 109 dB
STD = 8.66 dB

Figure 3.10: CMRR of the AI-empowered design 3rd iteration.
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Results comparison & discussion. The whole sizing process to obtain the final design
took 3 hours in total and the comparison results are shown in Table 3.4 and Table 3.5
(pre-layout simulation results). It can be seen that all specifications are satisfied with only
56% power consumption of the reference design. This decrease in power consumption
is noteworthy for its capacity to uphold a consistent noise level across all PVT corners,
consistent with the nominal corner of the reference design. In addition, the AI-empowered
design satisfies the specifications for all 16 corners, in contrast to the reference IP core
design, where 13 corners fail to meet the specifications in the pre-layout simulation.

More design insights are as follows. The input transistors of the AI-empowered design have
a higher W/L ratio (200/2.6) compared to the reference design (300/10). This leads to a
substantial increase in gm3,4 (324 µS vs. 150 µS). Consequently, this yields a substantial
enhancement in the GBW, escalating from 2.97 MHz to 4.23 MHz, as determined by
GBW ≈ gm3,4/CC. Meanwhile, the higher gm of the input PMOS pair in the AI-empowered
design also diminishes the thermal noise, given that the primary noise source is the thermal
noise of the input pair and current mirror load. The current mirror load in the optimal
design is 5 times wider than that of the reference design, which leads to a larger area,
minimizes random mismatch, and also improves the CMRR.

In the second stage, the reference design draws a current of 219 µA to achieve a higher gm6

and a larger second pole. In contrast, the AI-empowered design operates more efficiently
by consuming only 83 µA, achieving a 44% power reduction. This results in a smaller
non-dominant pole. Although this could potentially lead to a compromised PM due to
the increased GBW, the presence of a smaller zero (close to GBW) actually contributes
significantly to a marked increase in PM. In other words, this strategy enables a larger
GBW and lower power of the AI-empowered design. Furthermore, simulations indicate
that this pole-zero cancelation technique is robust under capacitor and resistor corners.

In the layout process, although the layout symmetry is maximized and a common centroid
pattern to enhance capacitor matching is used, a considerable degradation in CMRR per-
formance is noted. This is primarily attributed to mismatch caused by parasitic capacit-
ances and resistances in the capacitor array. Unavoidable routing asymmetries introduced
capacitance mismatch between the two feedback capacitors C f , thereby limiting the ef-
fective common-mode rejection. Nonetheless, this figure remains considerably superior to
the CMRR of 64 dB exhibited by the reference design, which also experiences a similar
degradation after the layout.
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Fig. 3.11 shows the microphotograph of the reference design and the AI-empowered design
on the same die. The comparison is shown in Table 3.6 and Fig. 3.12 using the meas-
urement results. For the reference design, the measurement result is very close to the
performance values in the datasheet from the leading semiconductor company.

AI-
empowered 
opamp

Ref.
opamp

3.3V 
CCIA

1.8V 
CCIA

200 μm

40
0 
μm

310 μm 310 μm

70
0 
μm

900 μm

170 μm

200 μm

Figure 3.11: Chip microphotograph of the reference design, the AI-empowered design,
3.3V CCIA, and 1.8V CCIA on the same die.
Table 3.6: Measured performance values of the AI-empowered design and the reference
design of the two-stage Miller-compensated op-amp.

Performances Specifi-
cations Ref. design AI-empowered

design

Power (µW) Minimize 924 528
CMRR (dB) ≥ 100 62 83
PSRR (dB) ≥ 100 91 102
GBW (MHz) ≥ 2 2.91 4.10
IRN (µVrms) ≤ 6 6.03 4.48
Rise/Fall slew rate (V/µs) ≥ 2/2 2.34/2.39 5.08/4.97
Rise/Fall settling time (µs) ≤ 1/1 0.57/0.56 0.40/0.38
THD at 1Vpp, 1 kHz (dB) ≤ −90 −101 −107
Overshoot (mV) ≤ 100 8 12

From this case study, the following observations can be made: (1) The AI-empowered
sizing approach can lead to superior solutions more efficiently than the conventional sys-
tematic sizing method. Machine learning-assisted global optimization can make correct
and even better decisions than human designers using design experience when the op-
timization problem is appropriately set. This is particularly true when a single decision
affects multiple performance metrics. (2) Instead of a one-button approach, which is a
routine in the literature focusing on analog IC sizing algorithms in the EDA community,
it is essential for designers to engage with the AI-empowered sizing approach. This is be-
cause not all the intentions can be predefined and the designer’s validation and problem
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Figure 3.12: Comparison of the measurement results of transient responses between the
AI-empowered design and the reference design of the two-stage Miller-compensated op-
amp.

re-formulation can effectively guide the machine learning-assisted global optimization. (3)
The AI-empowered sizing approach is more accessible to inexperienced engineers because
the way to use design insights is to understand the generated design and adjust specifica-
tions. Decisions made by intuition and “gut feelings” in the conventional systematic sizing
method are substantially reduced.

Note that area is not considered in the sizing problem. The pre-layout area is estimated
directly from the circuit schematic by summing the active device areas (W ×L) and the
capacitor and resistor area. Using this method, the AI-empowered design occupies 0.0355
mm2 compared to 0.022 mm2 of the reference design, which may prompt the question
of whether the performance gains are primarily due to the increased area. A new sizing
run was carried out in which the total circuit area was included as a performance metric.
Under the area constraint, the optimizer produced a design with reduced PM (75◦ vs.
116◦) compared to the original AI-empowered design, but with similar GBW and noise
performance. Notably, the total pre-layout area of this design is 10.5% smaller than the
reference design (0.0196 mm2 vs. 0.022 mm2), demonstrating that high performance can be
maintained with less area when it is explicitly considered in the sizing problem formulation.
A comparison of the new and reference designs is in the Appendix A.
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3.4.3 Two-Stage Miller-Compensated Op-Amp (1.8 V)

In this case study, the same topology is sized under a VDD of 1.8 V. Low-power design
requires transistors to operate in weak inversion. Although power consumption is saved,
low-power design often results in constrained bandwidth, necessitating the use of larger
devices to ensure small VGS. Additionally, transistors in weak inversion are more sensitive
to process variations and environmental conditions. All of the above compromise circuit
performance. Balancing these trade-offs is challenging for the conventional systematic
design method.

Here, the supply voltage for the two-stage Miller-compensated op-amp in Section III (B) is
reduced from 3.3 V to 1.8 V. With this low power supply, linearity is challenging because
transistors may exhibit nonlinear behavior at the vicinity of the saturation region. This
may lead to distortion and worse THD. Hence, another variable common-mode input
voltage Vcm is introduced to ensure proper transistor operation. The design specifications
are shown in Table 3.8. Four process corners (SS, SF, FS, and FF) are considered in this
case.

After 4 hours of optimization, all active transistors are in the saturation region. The
results are shown in Tables 3.7 and 3.8. It can be seen that compared to the 3.3 V design,
a 56% power reduction is observed while meeting the specifications of GBW, IRN, and
THD.

More design insights are as follows. The dominant noise source is the thermal noise of the
input pair. Compared to the 3.3 V design, the W/L of the input transistors is increased,
which increases transconductance gm3,4 from 324 µS to 716 µS, contributing to lower
thermal noise. The compromise is that the current in the first stage is doubled (i.e., 40.11
µA vs. 20.62 µA) to maintain Vgs and input swing. The W/L of the current source is
increased to achieve this. As L5 decreases, the CMRR decreases due to the reduction in
the output resistance of the current source. The CC is increased by approximately two
times to avoid GBW being too large to be close to the second pole and thus preserves the
PM.

In the second stage, the biasing current is substantially reduced from 80.78 µA in the
3.3 V design to 20.18 µA, resulting in a proportional decrease in gm6 from 1.4 mS to 0.3
mS and a smaller non-dominant pole. Despite this, the GBW remains significantly lower
than the second pole in the 1.8 V design, preserving the PM. The channel length of the
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Table 3.7: Design variables and search ranges of low power design.

Vars Min. Max. 3.3 V
design

1.8 V
design

L1,2,8,9 (µm) 0.35 20 14.4 12.45
L3,4 (µm) 0.35 20 2.6 1.45
L5,7,11 (µm) 0.35 20 13.1 3.5
L6 (µm) 0.35 20 0.9 5.2
L10 (µm) 0.35 20 16.15 8.1
L12,13,14 (µm) 0.35 20 12.8 19.15
W1,2,8,9 (µm) 0.22 200 168.6 148.85
W3,4 (µm) 0.22 200 102.2 97.35
N1,2,3,4 (integer) 1 10 2 4
W5,7,11 (µm) 0.22 200 35.85 82.2
N5 (integer) 2 20 4 8
N7 (integer) 1 10 8 2
W6 (µm) 0.22 200 147.2 132.8
W10 (µm) 0.22 200 166.8 166.75
W12,13,14 (µm) 0.22 200 49 15
CC (pF) 0.1 100 7.37 15.05
RC (Ω) 1 10k 6k 8.15k

transistor M6 is increased from 0.9 µm to 5.2 µm to increase the DC gain of the second
stage. The reduced supply voltage limits the output swing, impacting THD. To enhance
THD, a lower Vgs is required to reduce Vds,sat and increase output swing. Consequently,
W7/L7 is increased to enhance achievable output swing and improve THD.

This design was taped out on the same chip as Case 2, as shown in Fig. 3.11. The meas-
urement results of the 1.8 V design and the 3.3 V design are shown in Table 3.9. In Table
3.10, the 1.8 V design is compared with state-of-the-art low-noise low-power amplifiers
[99]–[102] using noise efficiency factor (NEF) [100], which is defined as

NEF = vrms,in

√
2 · Itot

π ·VT ·4kT ·BW
, (3.5)

where Vrms,in is the rms value of the input-referred noise within the bandwidth, Itot is the
total current consumption, VT is the thermal voltage, k is Boltzmann’s constant, T is the
absolute temperature, and BW is the noise bandwidth.
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Table 3.8: Pre-layout performance values of the AI-empowered 3.3 V design and 1.8 V
design.

Performances Specifications 3.3 V
design

1.8 V
design

Power (µW) Minimize 475 217
CMRR (dB) ≥ 100 128 105
PSRR (dB) ≥ 100 116 109
ADM (dB) ≥ 100 109 103
PM (◦) ≥ 60 87 89
GBW (MHz) ≥ 4 5.82 6.58
IRN (µVrms) ≤ 6 4.62 3.11
THD at 2mVpp, 1 kHz (dB) ≤ −80 −80.91 −81.25

Table 3.9: Measured performance values of the AI-empowered 3.3 V design and 1.8 V
design of the two-stage Miller-compensated op-amp.

Performances Specifications 3.3 V
design

1.8 V
design

Power (µW) Minimize 495 216
CMRR (dB) ≥ 100 83 71
PSRR (dB) ≥ 100 84 82
GBW (MHz) ≥ 4 4.50 5.75
IRN (µVrms) ≤ 6 6.19 3.73
THD at 2mVpp, 1 kHz (dB) ≤ −80 −71 −73

The folded-cascode topology is commonly used in state-of-the-art low-power designs to
improve power efficiency. Compared to them, this work achieves a reasonably high NEF
while maintaining state-of-the-art noise levels, and the topology is much simpler. [100],
[102] adopt a chopping mechanism to shift low-frequency noise out of the signal band, and
their performance gains are achieved beyond sizing. In addition, the 1.8 V design boasts
a high THD comparable to [99].

From this case study, it can be observed that the machine learning–assisted global op-
timization algorithm makes effective design decisions for low-power operation. Despite
operating in weak inversion, the optimized design achieves comparable or even superior
performance to the nominal 3.3 V version, realizing over 50% power reduction while sat-
isfying GBW, IRN, and THD specifications that are typically difficult to size manually.
Moreover, the resulting biasing and sizing choices align well with established analog design
principles, confirming the reliability of the AI-empowered approach.
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3.4.4 LC Oscillator

In this case study, an LC oscillator is used as another representative dynamic circuit, where
PN and power efficiency dominate the design trade-offs. The LC oscillator is a fundamental
building block for generating periodic signals in RF and high-speed systems. Its operation
relies on an inductor–capacitor tank, which defines the oscillation frequency, and an active
negative-resistance core, typically implemented with a cross-coupled transistor pair, that
compensates for energy loss in the tank. Among various implementations, CMOS cross-
coupled LC oscillators [103] are particularly popular because they offer excellent PN
performance. The design process is intricate, given the complex trade-off between PN and
power consumption, resulting in numerous redesign iterations when using the conventional
systematic sizing method.

In this section, a CMOS cross-coupled LC oscillator (Fig. 3.13) is sized using the AI-
empowered sizing method and is compared with both a reference design from the industry
(i.e., expert design) and the state-of-the-art in the literature. The FoM formula is given
as

FoM =−10log[(∆ f
f0
)2 ·

Pdyn

1mW
]−PN(∆ f ), (3.6)

which serves as a natural design objective, encompassing the trade-offs between power
consumption Pdyn, oscillation frequency f0, and PN PN(∆ f ) at a frequency offset ∆ f . The
21 design variables and their search ranges are shown in Table 3.11, which are set by
an experienced designer. 32 corners are considered, including the inductor and capacitor
corners under the worst noise case. A 65 nm CMOS technology is used. The target output
frequency is 5.5-6 GHz. The specifications shown in Table 4.2 adhere to the performance
of the reference design, which is competitive.

For this case study, the ESSAB algorithm finds a reliable and optimal design after Phase 1
and Phase 2 sizing. Validation shows that there is no need to re-formulate the optimization
problem. The AI-empowered method took 7 hours to finish the sizing.

The AI-empowered design achieves a FoM of 191.8 dBc/Hz at 5.65 GHz with a very low
PN of −125 dBc/Hz at 1 MHz offset, indicating improved power efficiency compared to
the expert design using the gm/ID-based systematic design method. Additionally, the AI-
empowered design exhibits superior PN performance across all 32 corners, surpassing the
reference design even in the nominal condition. In contrast, the expert design demonstrates
significant variance in its PN characteristics considering the corners.
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Figure 3.13: Schematic of the CMOS cross-coupled LC oscillator. An 8-bit capacitor bank
is used for frequency tuning.

The primary contributor to noise at 1 MHz offset for the expert design is the thermal
noise from the switching transistors, while the flicker noise of M1-M4 dominates across
corners. To reduce PM in the nominal condition, the fixed capacitance increases from
0.53 pF to 1.28 pF and thus better PN and FoM. This results in a 4.1 dB reduction
in PN at the 1 MHz offset. As a compromise, the tuning range (TR) is reduced from
53.9% to 31.4%. To mitigate the influence of flicker noise, the total widths and lengths of
transistors M1-M4 are increased in the AI-empowered design. While increasing transistor
sizes effectively reduces noise across corners, it concurrently imposes limitations on the
oscillation frequency due to the increased parasitic capacitance. In order to maintain the
desired frequency, the inductance is decreased in the AI-empowered design, specifically
from 589 pH to 347 pH with thicker wire (i.e., 27.86 µm vs 18.6 µm), which not only
improves power efficiency but also the FoM.

During the layout phase, a lower post-layout Q factor was observed, primarily due to para-
sitic effects from the varactor. To counter this, the width of the cross-coupled transistors
was increased by 10% to mitigate the layout-induced varactor effects. This adjustment
resulted in a compromise as the power was increased. Despite this, the PN deteriorates
due to the lowered Q factor resulting from layout-dependent effects.

The AI-empowered oscillator design was fabricated and the microphotograph of the os-
cillator is shown in Fig. 3.14, with an area of 350 µm x 450 µm. The measured PN per-
formance is shown in Fig. 3.15. A comparison was conducted by comparing the measured
results with state-of-the-art oscillator designs and some observations can be made.
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Table 3.11: Design variables and search ranges of the CMOS cross-coupled LC oscillator.

Vars Min. Max. Reference
design

AI-
empowered

design

L1,2 (µm) 0.2 5 0.2 2.07
L3,4 (µm) 0.06 0.24 0.06 0.24
L5,6 (µm) 0.06 0.24 0.06 0.07
W1,2 (µm) 1 10 4 8.17
F1,2 (integer) 2 20 7 2
M1 (integer) 1 10 1 1
M2 (integer) 10 1000 10 872
W3,4 (µm) 1 6 4 4.60
F3,4 (integer) 2 32 3 10
M3,4 (integer) 1 10 5 2
W5,6 (µm) 1 6 4.5 1.72
F5,6 (integer) 2 32 6 13
M5,6 (integer) 1 10 5 10
NH (integer) 10 200 68 94
NV (integer) 10 200 52 88
Mbot (integer) 1 3 1 1
W (µm) 3 30 18.6 27.86
R (µm) 15 90 32 76.58
NT (integer) 1 3 2 1
S (µm) 2 4 4 3.18
GR (µm) 10 40 40 21.72

In Table 3.13, the proposed oscillator design exhibits competitive FoM and the second
highest PN performance of −120.6 dBc/Hz at 1 MHz frequency offset, surpassing refer-
ences [104]–[107]. [108] attains a PN of −123.1 dBc/Hz but with lower FoM and FoMT
[109] of 186.1 dBc/Hz and 198.4 dBc/Hz, respectively. [107] achieves an ultra-low power
and high TR design with a compromised PN at −110.8 dBc/Hz.

3.4.5 Discussion

According to the four case studies, the comparison between a typical contemporary AI-
empowered analog building sizing method and the conventional systematic sizing method
is summarized in Table 3.14.
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Table 3.12: Performance values of the AI-empowered design and the reference design (pre-
layout simulation results) of the CMOS cross-coupled LC oscillator.

Performances Specifi-
cations

Ref. design
(Nominal)

AI-
empowered

design
(Nominal)

Ref. design
(WCC)

AI-
empowered

design
(WCC)

FoM (dBc/Hz) Maximize 190.6 193.2 178.9 189.6
Frequency (GHz) ≥ 5 5.94 5.76 5.50 5.34
PN@100KHz (dBc/Hz) ≤ −94 −95.7 −99.1 −79.3 −98.8
PN@1MHz (dBc/Hz) ≤ −123 −120.9 −123.2 −108.9 −121.6
PN@10MH (dBc/Hz) ≤ −143 −142.4 −144.2 −137.3 −142.3
Power (mV) ≤ 7 4.31 3.32 3.28 4.53

Figure 3.14: Chip microphotograph of the AI-empowered oscillator design.

For all four case studies, the advantages in terms of design quality and efficiency of
the AI-empowered analog building sizing method are shown. In terms of accessibility, in
contrast with requiring extensive experience-based key design decisions for the systematic
sizing method, AI-empowered sizing methods only require the designer to understand the
working principles of the circuits and form appropriate optimization problems. This also
ensures the reliability of the obtained design is as high as systematic sizing.

Alignment with Designer Intent. In the four case studies, the AI-generated solutions
were generally aligned with the designer’s intentions, as observed in Cases 1, 2, and 4.
Rare deviations arose when the specification settings allowed multiple valid trade-offs. In
such situations, the optimizer could select a technically correct solution that nonetheless
differed from the designer’s preferred approach or full design intent. This issue can be
mitigated by refining the specification or constraint set to more accurately encode the
intended design priorities, as illustrated in Fig. 3.1.
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Figure 3.15: The measured PN performance of the AI-empowered design of the oscillator.

Table 3.13: Performance values of the AI-empowered design (measurement result) of the
CMOS cross-coupled LC oscillator and the state-of-the-art.

Reference Topo-
logy

CMOS
Techno-

logy
Tuning range
(TR%, GHz)

VDD
(V)

Frequency
(GHz)

Power
(mW)

PN
@1MHz

(dBc/Hz)

FoM
@1MHz

(dBc/Hz)

FoMT[109]
@1MHz

(dBc/Hz)

JSSC2007
[104]

Class-C
P-N

90 nm 4.5-7.1 (45%) 1.6 5.63 14 −108.5 172 185.1

TCASII2011
[105]

Class-C
N-only 65 nm 4.6-6.2 (28.6%) 0.65 5.49 8.7 −113.3 178.7 187.8

TCASII2014
[108]

Class-C
N-only 65 nm 3.36-5.1 (41%) - 4.21 8.7 −123.1 186.1 198.4

TVLSI2015
[106]

Class-C
N-only 180 nm 3.2-5.25 (49.8%) 0.65 5.23 2.37 −115.1 185.7 199.7

TCASI2022
[107]

Class-C
P-only 40 nm 3.2-6.49 (67.9%) 0.36 6.49 0.35 −110.8 191.6 208.2

This work Class-C
P-N 65 nm 3.73-5.75 (42.6%) 1.2 5.75 6.12 −120.6 187.9 200.5

Generalization to Other Algorithms. This work adopts ESSAB as the optimization
engine, hence, a natural question is the generality of the conclusions considering other AI-
empowered sizing methods. BO and RL-based approaches also attracts much attention
in the EDA community. Both ESSAB and BO belong to surrogate model-assisted optim-
ization. While BO commonly uses Gaussian process surrogates with acquisition functions
to guide sampling [88], [89], [17] have noted that standard BO may encounter scalability
challenges when the number of design variables and the number of performance specific-
ations are large, due to the computational cost of surrogate training. RL-based methods
[110], [111] can effectively capture sequential decision-making processes, but often require
a large number of simulations to converge, and this sample inefficiency becomes more
pronounced for high-dimensional, stringently constrained sizing problems. Both BO and
RL are active research areas, and recent advances have sought to improve scalability and
sample efficiency [19], [20], [60], [91], [92], [112]. These developments could be investigated
in future work. Nevertheless, this research demonstrates the existence of advantages and
limitations of AI-empowered analog IC sizing methods with an example (i.e., ESSAB).
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Table 3.14: Summary of the comparison of typical contemporary AI-empowered and con-
ventional systematic manual sizing methods based on the four case studies.

AI-empowered
sizing

Systematic
sizing

Design quality Very high High or medium
Design efficiency Very high Low
Design reliability Very high Very high
Accessibility High or medium Low

Post-Layout Optimization. The optimization results presented in this work are based
on schematic-level simulations, and therefore do not include the impact of layout-dependent
effects such as parasitic capacitances, interconnect resistances, and device mismatches in-
troduced by routing and placement. These effects can influence key performance metrics,
particularly bandwidth, phase margin, and linearity. Incorporating full layout implement-
ation, parasitic extraction, and post-layout simulation into the optimization loop is an
important direction for future work to provide a more comprehensive and layout-aware
comparison.

Scalability to Complex System. This research targets analog building block sizing,
and it is interesting to foresee AMS system sizing. A complex system refers to an AMS
architecture composed of multiple interdependent building blocks, such as amplifiers, com-
parators and oscillators, whose behaviors and performance metrics are strongly coupled
through shared specifications and parasitic interactions. Currently, there are mainly two
approaches. In a top-down approach, system-level specifications are partitioned into build-
ing block requirements, and each building block is optimized individually before system-
level integration. In a holistic approach, the entire system is optimized concurrently, with
all building block interactions considered in the loop. Challenges for ESSAB-like surrogate-
assisted methods include the curse of dimensionality in large design spaces and the long
simulation times associated with complex systems and new AI techniques are needed.

Scalability to Advanced Technology. While this work focus on mature technology
nodes (0.35 µm – 65 nm), the observation is also applicable to more advanced processes.
In this context, advanced technology refers to deep-submicron and nanoscale CMOS nodes,
typically below 28 nm. At modern nodes such as 3 nm, additional challenges arise, includ-
ing pronounced layout-dependent effects, stricter design rules, and greater sensitivity to
parasitics, which require close integration with physical design and layout-aware optimiz-
ation tools. Addressing these challenges lies beyond the scope of this work but represents
a compelling direction for future research.

61



3.5 Summary

While recent AI-empowered analog building block sizing algorithms are showing excellent
performance in the EDA community, conventional systematic manual sizing methods still
dominate the analog IC design community. To link the two communities, this chapter
performs a comprehensive comparative study involving various analog building blocks,
and design insight-based comparisons, which are important but are often missing in the
EDA community, and silicon validation for three case studies have been provided.

This research shows that AI-empowered analog IC sizing can often obtain better design
decisions/solutions (i.e., data-driven) than the conventional systematic sizing method (i.e.,
design experience-driven), while considerably improving the design efficiency (i.e., often
a few hours). With the new sizing methods, designers only need to analyze the obtained
design and re-formulate the sizing problem when necessary, and in some cases, it may be
a one-button approach. This work validates the potential of AI in analog circuit design
and paves the way for further integration of AI-driven methods into design practice.
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Chapter 4

Subsystem Design: VCO with LDO
Integration

4.1 Introduction

In analog IC design, subsystems are pairs of closely interacting blocks that together realize
a distinct function within a larger system. This abstraction lies between block-level design
and full system architecture, simplifying complexity while preserving critical performance
interdependencies. Subsystem-level analysis is particularly valuable in circuit sizing, as
inter-block interactions often dictate key specifications including noise, stability, gain,
and power efficiency.

A prominent example is the LDO–VCO subsystem, widely used in RF transceivers and
frequency synthesizers [113]–[115]. The LDO provides a stable low-noise supply that dir-
ectly impacts the VCO’s PN and frequency stability, while the VCO imposes dynamic
current demands that affect the LDO’s transient response and loop stability. In practice,
this pairing is implemented in smartphone radio, wireless system on chip (SoC), and high-
speed serializer/deserializer (SerDes) [116]–[118], where a dedicated on-chip LDO powers
the VCO to isolate it from noisy digital domains. The co-design at the subsystem level
of the two blocks has been shown to improve PN, reduce supply sensitivity, and improve
overall power efficiency [119].
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Another important subsystem is the BGR combined with an LDO. The BGR generates
a precise, temperature- and supply-independent voltage, which serves as the reference for
the LDO. Since the accuracy and stability of the LDO output are directly tied to the
quality of the BGR, this subsystem is ubiquitous in power management ICs, where stable
supply rails are needed for both analog and digital blocks [120], [121].

Similarly, in RF receivers, a low-noise amplifier (LNA) is often paired with a mixer to
form the front end. The LNA amplifies weak RF signals with minimal added noise, while
the mixer downconverts them to an intermediate or baseband frequency. Together, this
two-block subsystem strongly influences receiver sensitivity and dynamic range, and is
central to wireless standards such as long-term evolution (LTE), Wi-Fi, and Bluetooth
[122]–[125].

Traditionally, subsystem design has followed a sequential approach, where blocks are de-
signed and optimized independently before integration. In an LDO–VCO pair, the VCO
is typically sized to operate under assumed supply conditions, after which the LDO is de-
signed for PSRR, dropout voltage, and output noise. In BGR–LDO subsystems, the BGR
is designed first for accuracy and temperature stability, and then the LDO is adapted
around it. Similarly, in RF receivers, LNAs are optimized for gain and noise figure, while
mixers are subsequently designed for conversion gain and linearity. While this block-by-
block approach simplifies design and leverages established analytical models, it neglects
the strong coupling between blocks. Consequently, metrics such as PN in LDO–VCO sub-
systems, output accuracy in BGR–LDO subsystems, or overall noise figure in LNA–mixer
subsystems may degrade after integration. Designers often compensate through multiple
rounds of simulation and redesign at the transistor level, which increases development
time and leads to conservative overdesign.

In summary, the design of analog subsystems requires both transistor-level expertise and a
clear understanding of inter-block interactions. Sequential design methods offer simplicity
but often result in suboptimal performance once blocks are integrated. Recent research
in subsystem-level co-design emphasizes the need to account for coupling explicitly, par-
ticularly in critical pairs such as LDO–VCO, BGR–LDO, and LNA–mixer, to overcome
performance degradation and inefficiency caused by traditional sequential design. There-
fore, this chapter focuses on subsystem-level design and optimization, with the LDO–VCO
subsystem serving as a representative case study. The discussion begins with a review
of relevant literature to establish foundational concepts, followed by clarification of the
main design challenges. Then the problem is formulated. After that, a novel subsystem-
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level AI-driven optimization framework for automating the design of LDO-VCO circuits
is presented in detail and validated with post-layout simulation results, demonstrating
how subsystem-aware approaches can significantly improve the efficiency and accuracy of
analog circuit sizing.

4.2 Literature Review

VCOs are crucial components in high performance systems, particularly in wireless com-
munication and RF applications. One of the major challenges in designing VCOs is op-
timizing PN, which can lead to degraded signal purity and reduced system performance
[126]. While traditional approaches have focused on improving the inherent noise perform-
ance of the oscillator’s core components, such as minimizing thermal and flicker noise in
the transistors and enhancing the quality factor of the LC tank, external influences also
play a significant role. Power supply noise can introduce additional PN through power
supply rejection (PSR) path and VCO’s frequency pushing factor [127]. To mitigate this
impact, LDOs are commonly used [128]. However, the LDO itself introduces new chal-
lenges, as its low-frequency noise can be up-converted into PN, complicating the overall
noise management strategy in VCO designs.

To improve the PN, a natural idea is to design LDO and VCO together. [119] carries
out a comprehensive analysis between frequency pushing and power supply-induced PN.
Based on the influence of the combined effect of the LDO’s PSR and the VCO’s inherent
PN sensitivity to supply noise, the guidelines of LDO design are obtained. Reducing the
width of the VCO’s switching device is suggested in [119], which mitigates the frequency
pushing effect. However, this may increase thermal noise, potentially degrading the VCO’s
PN performance at higher frequencies. Therefore, a holistic approach to obtain the optimal
trade-off considering various kinds of noise is needed to obtain the truly optimal design.

For the traditional manual design method, it can be challenging to derive formulas con-
sidering all the complex trade-offs described above. Hence, this chapter presents an LDO
and VCO co-design method empowered by the AI-driven algorithm ESSAB [17] men-
tioned in Chapter 3. The method optimizes the PN of an LC-tank VCO and the PSR of
an integrated LDO together while also accounting for PVT corners. Notably, while most
existing AI-driven design research focuses on individual analog building blocks, this work
emphasizes subsystem-level co-design, offering a more holistic and effective optimization
approach.

65



4.3 Contributions

The contributions are summarized in the following points:

1. Subsystem-Level Co-Design Framework: A holistic AI-driven optimization
framework is developed that treats the LDO and LC-tank VCO as a unified sub-
system. By co-optimizing power supply rejection and PN, the approach addresses
trade-offs often overlooked in traditional sequential design methods.

2. AI-Driven Design Automation: The co-design is empowered by a surrogate
model-assisted optimization algorithm, enabling efficient exploration across 43 design
variables and 32 PVT corners. This leads to improved robustness and reduced design
iteration time.

3. PVT-Aware Co-Design Method: PVT variations were explicitly incorporated
during optimization, ensuring robust performance across varying operating condi-
tions. The methodology is validated through post-layout simulations in a 65 nm
CMOS process.

4.4 Problem Formulation

4.4.1 Architecture of LDO-VCO

A diagram of an LDO-regulated VCO is shown in Fig. 4.1, where the cross-coupled LC-
tank VCO from Chapter 3 is adopted [104]. The LC tank comprises an inductor, capacitor,
and a varactor array. In parallel, the cross-coupled transistor pairs produce negative res-
istance to counteract the losses present in the LC tank. The LDO on the top provides the
load current needed for the VCO. It consists of an error amplifier, a low-pass filter, an
NMOS pass transistor, and a feedback divider. The error amplifier is implemented using
a two-stage Miller-compensated op-amp. In addition, a bypass capacitor is used at the
LDO output.
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Figure 4.1: The VCO and LDO co-design method including the schematic diagram of the
LC-tank VCO with an integrated LDO. Two design approaches: the sequential approach,
which involves two distinct design phases, and the co-design approach, which optimizes
both building blocks simultaneously.

4.4.2 Design Variables

In total, there are 43 design variables for the chosen LDO-VCO architecture. Table 4.1
details the ranges of the 43 design variables, where W , R, NT , S, GR denotes the width,
inner radius, number of turns, spacing between conductors and guard ring width of the
inductor; L, W , F , M represent the channel length, width per finger, number of fingers
and number of multiplier of the transistors; NH , NV , and Mbot represent the number of ho-
rizontal fingers, vertical fingers, and bottom starting layer for the MOM capacitors in the
VCO. The inductor and MOM capacitor are implemented using PDK components. The
biasing circuits for VCO and LDO, the LDO feedback divider, the varactor and the by-
pass capacitor are maintained constant. The biasing networks, feedback divider, varactor,
and bypass capacitor are fixed at nominal values to reduce design space complexity. The
biasing networks and feedback divider are fixed since they have limited impact on core
performance optimization, the varactor is pre-optimized to meet frequency tuning require-
ments, and the bypass capacitor is typically determined by design guidelines.
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Table 4.1: Design variables and search ranges of the CMOS cross-coupled LC oscillator
and the LDO.

Var. Unit Lower
bound

Upper
bound

Co-
design

Se-
design

VCO

M2 integer 1 1000 300 872
L3,4 m 60n 240n 225n 239n
W3,4 m 1u 6u 1.22u 4.60u
F3,4 integer 2 32 7 10
M3,4 integer 1 10 8 2
L5,6 m 60n 240n 205n 75n
W5,6 m 1u 6u 1.96u 1.72u
F5,6 integer 2 32 11 13
M5,6 integer 1 10 6 10
NH integer 10 200 74 94
NV integer 10 200 95 88
Mbot integer 1 3 1 1
W m 3u 30u 28.2u 27.9u
R m 15u 90u 89.4u 76.6u
N integer 1 3 1 1
S m 2u 4u 2.67u 3.18u
GR m 10u 40u 28.7u 21.7u

LDO

LnLoad m 500n 10u 6.64u 8.28u
WnLoad m 400n 10u 3.93u 500n
FnLoad integer 2 32 25 3
MnLoad integer 1 10 2 2
LpIn m 400n 10u 5.95u 470n
WpIn m 400n 10u 3.25 1.43
FpIn integer 2 32 29 5
MpIn integer 1 10 5 1
Lbias m 400n 10u 5.55u 3.63u
Wbias m 400n 10u 4.58u 9.14u
Fbias integer 2 32 14 22
Mbias integer 1 10 7 9
MbiasIn integer 1 10 5 6
MbiasOut integer 1 10 8 1
LnOut m 500n 10u 2.53u 3.42u
WnOut m 400n 10u 2.08u 6.35u
FnOut integer 2 32 31 20
MnOut integer 1 10 7 7
CC F 1p 100p 67p 60p
RC ohm 1 1M 989K 514K
CF F 1p 200p 182p 156p
RF ohm 1 2M 1.66M 1.17M
Lpass m 1.2u 10u 1.69u 1.62u
Wpass m 500n 10u 8.86u 5.96u
Fpass integer 2 100 47 35
Mpass integer 1 32 15 15
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4.4.3 Testbench and Measures

A 65 nm CMOS process is used. The VCO varactor is set to work at its highest frequency
where supply pushing is the highest. The performance metrics include oscillation frequency
f0, PN PN(∆ f ) at frequency offsets ∆ f of 100 kHz, 1 MHz and 10 MHz, total power
consumption Pdyn, and the FoM at 1 MHz frequency offset [129]:

FoM =−10log[(∆ f
f0
)2 ·

Pdyn

1mW
]−PN(∆ f ), (4.1)

Additionally, the maximum PSR, PM, and the maximum VDD are extracted. The process
corners considered include FF, FS, SS, and SF in combination with min inductor/max
inductor and min capacitor/max capacitor. −55°C and 125°C are considered as temper-
ature corners. For all corners, the lowest supply voltage VDD_IO (1.8 V · 90%) is used. In
total, 32 corners are considered.

4.4.4 Objective and Constraints

The targeting oscillation frequency is 5.5 GHz with a power consumption less than 7 mW.
The PN constraints at 100 kHz, 1 MHz and 10 MHz are set to be −94 dBc/Hz, −120
dBc/Hz, and −140 dBc/Hz respectively, which meet industrial standards. The optimiz-
ation objective for both approaches is FoM. The remaining performance parameters are
set as constraints. These apply to all 32 corners.

4.5 AI-Driven Co-Design Method

4.5.1 Sizing Flow and Considerations

For the sequential design method, the VCO is first optimized independently with an ideal
1.2 V power supply to achieve an optimal FoM, as illustrated in Fig. 4.1. The LDO is then
incorporated and optimized for this VCO load to generate a clean supply. Although this
approach seems intuitive, the primary challenge lies in preventing the LDO noise from
being upconverted and affecting the PN of the VCO. To mitigate these, the VCO may
need to be re-designed to reduce its sensitivity to the noise introduced by the LDO. This
iterative process often requires multiple sizing loops, which can be time-consuming and
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labor-intensive. Additionally, a bypass capacitor is typically used to reduce high-frequency
supply noise, but its impact is often overlooked in the sizing stage of VCO. Not considering
this can lead to discrepancies between the designed and measured PN performance due
to changed VCO’s voltage swing.

To address above issues, a simultaneous co-design of the LDO and VCO is implemented.
By treating them as an integrated system rather than separate blocks, mutual inter-
action is considered throughout the design process, ensuring that the contributors are
jointly optimized to minimize PN. Fig. 4.1 presents the whole sizing flow. The two phase-
optimization in Chapter 3 is used to handle corners and will not be repeated here.

4.5.2 Sizing Algorithm

The ESSAB algorithm is used for both the sequential and co-design methods for an
apple-to-apple comparison. It starts by initializing a database and iteratively refining
designs until a predefined stopping criterion is met. Each iteration involves selecting the
top candidate and applying DE operations. An online ANN model and beta ranking are
used to guide the selection of the most promising candidate for simulation. The steps are
abstracted as Algorithm 2 and algorithm details can be found either in Chapter 3 or [17].

Algorithm 2 Optimization Framework
1: Initialize Database
2: Finish ← false
3: while Finish = false do
4: Rank and select top λ designs
5: Apply DE operations
6: Train ANN and predict performance
7: Select best predicted design and simulate
8: if Stopping criterion met then
9: Finish ← true

10: else
11: Update Database
12: end if
13: end while
14: Output Final Design
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4.6 Pre-layout Sizing Results and Analysis

To validate the proposed co-design method, a 5.6 GHz LC-tank VCO, regulated by an
LDO, is designed using a TSMC 65 nm CMOS process. Using Cadence Virtuoso and
ESSAB tool implemented in MATLAB on a workstation with an AMD Ryzen Thread-
ripper PRO 3975WX (32 cores, 290 GB RAM, 3.5 GHz), the sequential method used 18
hours in total with 7 hours in VCO sizing and 11 hours in LDO sizing, while the co-design
method used 6 hours in total. The sizing details for the obtained designs are provided
in Table 4.1, labeled as co-design and se-design, respectively. The pre-layout simulation
results are summarized in Table 4.2. The results of nominal corner and the corner with
slow NMOS/slow PMOS, max inductor and max capacitor at 125°C (worst corner) are
listed.

Table 4.2: Specifications and pre-layout simulation results of the sequentially and co-
designed LDO-VCO.

Symbol Specs. Se-design
(Nominal)

Co-design
(Nominal)

Se-design
(Worst
corner)

Co-design
(Worst
corner)

FoM (dBc/Hz) Minimize −190 −192.4 −187.3 −187.8
Frequency (GHz) ≥ 5 5.69 5.60 5.35 5.27
PN@100kHz (dBc/Hz) ≤ −94 −96.2 −95.6 −93.8 −92.0
PN@1MHz (dBc/Hz) ≤ −120 −122.9 −124.1 −120.9 −119.7
PN@10MHz (dBc/Hz) ≤ −140 −143.4 −144.7 −142 −141.5
Pdyn (mW) ≤ 7 6.40 4.56 6.60 4.33
PSRmax (dB) ≤ −30 −33.7 −31.4 −31.6 −31.0
VDD,max (V) ≤ 1.32 1.24 1.23 1.24 1.23
PM (◦) ≥ 50 67 82 59 81

To assess the impact of LDO in two approaches, the LDO output noise and PSR are
analyzed. In addition, the VCO PN is extracted under two conditions: 1) powered by a
1.2 V ideal voltage source, and 2) powered by the LDO with a 1.62 V DC input and a 1.2
V output voltage.

At a 100 kHz offset, the output noise of LDO significantly deteriorates the VCO PN. The
primary contributor to the LDO noise differs between the two designs: For the co-designed
LDO, the main source of noise is the thermal noise from the NMOS load in the input stage.
For the sequential design, the primary contributor is the thermal noise from the PMOS
input pair. In the PMOS input pair, the transconductance is 61.89 µS for the sequential
design and 73.42 µS for the co-designed LDO. For the NMOS load, the transconductance
is 73.9 µS in the co-designed case, compared to 18.7 µS for the sequential design, resulting
in higher output noise floor for the co-designed LDO, as shown in Fig. 4.2 (a). Furthermore,
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Figure 4.2: (a) Output noise of the LDOs. (b) PSR of the LDOs. (c) Phase noise perform-
ance of the VCO designs with 1.2 V ideal supply and with LDO.

as shown in Fig. 4.2 (c), the co-designed VCO with ideal supply has a slightly worse PN
at 100 kHz due to the smaller switching transistors. With LDO’s output noise, the co-
designed system exhibits worse PN performance at the 100 kHz offset when integrated
with the LDO, with −95.6 dB compared to −96.2 dB.

At 1 MHz offset, the primary contributor to PN is the thermal noise from the switching
transistors, while the flicker noise of transistors M3-M6 dominates across corners. With
ideal supply, M5 and M6 have five times smaller W/L in the co-designed VCO, which
reduces the effective transconductance of the switching pairs, resulting in higher thermal
noise and 1 dB worse PN than se-design. However, with LDO incorporated, the PN
performance of the se-design degrades from 124.9 dBc/Hz to 122.9 dBc/Hz, partly due
to frequency pushing mechanism [119], which is significantly suppressed in the co-design.
Consequently, the co-design achieves a 1.2 dB PN reduction at a 1 MHz offset and a
1.3 dB improvement at 10 MHz with the LDO incorporated. Additionally, the power
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consumption is reduced due to the lowered total capacitance at the output nodes with
smaller transistor area. The decrease in transconductance reduces the current flowing to
the LC tank and affects the startup time as shown in Fig. 4.3. However, the startup is
still achieved reliably across corners thanks to the corner analysis during optimization.
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Figure 4.3: Oscillation transients for LDO-VCO designs. The co-designed VCO has a
slower oscillation start-up and smaller oscillation amplitude.

In the sequentially designed LDO-VCO, the effect of the bypass capacitor is not well
accounted for in the VCO design. To maintain low PN, the supply voltage swing is kept
large, which aligns with Leeson’s equation [130].

L(∆ f ) = 10log

[
FkT
2Psig

(
1+
(

f0

2Q∆ f

)2
)(

1+
fc

∆ f

)]
, (4.2)

where L(∆ f ) represents the single-sideband PN at an offset frequency ∆ f from the carrier,
expressed in dBc/Hz. The parameter F denotes the noise factor of the oscillator, k is
Boltzmann’s constant, and T is the absolute temperature in Kelvin. The term Psig refers
to the signal power of the oscillator, while f0 is the oscillation frequency. The quality factor
of the resonator is denoted by Q, and fc represents the flicker noise corner frequency. It
indicates that a larger output swing gives larger signal power according to Psig ∝ A2 and
thus less PN.

However, when a bypass capacitor is added at the supply of the VCO, it flattens the
voltage swing, which worsens the optimized PN performance. In contrast, the co-design
approach considers the impact of the decoupling capacitor from the start. This approach
constrains the reliance on voltage swings, resulting in lower phase noise. The inclusion
of a bypass capacitor also degrades the VCO PN across corners. According to Fig. 4.4,
the pre-designed VCO exhibits a much larger variation in PN (PN@100kHz: best case
−96.19 dBc/Hz, worst case −83.66 dBc/Hz; PN@1MHz: best case −123.1 dBc/Hz, worst
case −115.7 dBc/Hz; PN@10MHz: best case −145.6 dBc/Hz, worst case −140.5 dBc/Hz)
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when the LDO and bypass capacitor are included. In contrast, the co-designed VCO shows
more consistent performance (PN@100kHz: best case −95.59 dBc/Hz, worst case −91.28
dBc/Hz; PN@1MHz: best case −124.3 dBc/Hz, worst case −119.7 dBc/Hz; PN@10MHz:
best case −146.8 dBc/Hz, worst case −141.5 dBc/Hz). Overall, the co-design approach
leads to a better FoM of 2.4 dBc/Hz and superior performance across corners by account-
ing for block interactions and multiple effects.
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Figure 4.4: (a) Corner spread of PN for the co-designed LDO-VCO. (b) Corner spread of
PN for the sequentially designed LDO-VCO.

4.7 Post-Layout Results and Discussion

The layout was manually implemented, shown in Fig. 4.5. The post-layout simulation res-
ults are presented in Table 4.3. PN degrades by only 0.4 dB, and the oscillation frequency
is barely affected. The overall impact of layout on the FoM is limited to 0.3 dB. This minor
degradation is primarily attributed to parasitic capacitance and resistance introduced by
routing in the VP and VN signal nets.
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Figure 4.5: Co-designed LDO-VCO layout.

Table 4.3: Specifications and post-layout simulation results of the co-designed LDO-VCO.

Symbol Specs. Co-design
(Nominal)

Co-design
(Worst corner)

FoM (dBc/Hz) Minimize −192.1 −187.8
Frequency (GHz) ≥ 5 5.51 5.19
PN@100kHz (dBc/Hz) ≤ −94 −95.9 −96.8
PN@1MHz (dBc/Hz) ≤ −120 −123.9 −119.1
PN@10MHz (dBc/Hz) ≤ −140 −144.3 −139.3
Pdyn (mW) ≤ 7 4.67 3.59
PSR (dB) ≤ −30 −30.2 −30.1
VDD,max (V) ≤ 1.32 1.22 1.22
PM (◦) ≥ 50 82 81

4.8 Summary

The design of LDOs and VCOs is critical in achieving clean power delivery and low PN
in RF systems. Traditional sequential design flows often fail to capture the interactions
between these subsystems, leading to suboptimal performance. This chapter presents a
novel co-design approach for LDO–VCO systems.

The proposed co-design methodology leverages an AI-driven surrogate model-assisted op-
timization framework that jointly optimizes 43 design variables across 32 process and
temperature corners. Unlike the sequential approach, which tunes the LDO after the
VCO is finalized, the co-design strategy captures supply sensitivity, noise coupling, and
inter block trade-offs during the entire design process. As a result, it delivers improved
PSR, reduced dynamic power, and enhanced PN performance.
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Pre- and post-layout simulations in a 65 nm CMOS process demonstrate the effective-
ness of the co-design approach compared with the conventional sequential design flow,
achieving a 1.2 dB reduction in PN at 1MHz offset and a 28.8% decrease in dynamic
power consumption. Additionally, the co-designed system maintains robust performance
across PVT variations. Overall, this work establishes an AI-driven subsystem-level design
methodology that improves analog integration in complex RF SoCs.
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Chapter 5

System-Level Design Automation for
SAR ADCs

5.1 Background

In AMS IC design, small systems are compact but complete architectures that integrate
multiple functional blocks to achieve a higher-level function. Unlike subsystems, which
typically capture the interaction between two blocks, small systems may integrate both
analog and digital elements, forming a closed loop where block-level interdependencies
strongly influence overall performance. This abstraction sits above block-level design but
below full SoC integration, making small systems a valuable focus for circuit sizing and
optimization.

A prominent example of such a small system is the SAR ADC. Similar to other ADC archi-
tectures, the data conversion is achieved through sampling and quantization operations.
In SAR ADCs, sampling is implemented using a SC network, where the input voltage is
stored on a capacitor array during the sampling phase and subsequently held for quant-
ization. Quantization is realized with a capacitive digital-to-analog converter (CDAC),
a comparator, and SAR logic in an iterative conversion loop. During quantization, the
CDAC generates trial voltages, the comparator determines the polarity of the input er-
ror, and the logic updates the register to refine the digital code. The process continues
until all bits are determined. The close interaction between these blocks defines key trade-
offs: comparator offset and noise constrain CDAC matching requirements, comparator
and CDAC switching energy dominate power efficiency, and comparison speed limits the
achievable sampling rate. These interdependencies make the SAR ADC a suitable case
study for small system design.
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Other small systems include sigma–delta ADCs, which combine oversampling filters with
feedback loops, and pipeline ADCs, which cascade low-resolution stages with residue
amplifiers. Similarly, time-to-digital converters integrate delay lines and phase detectors
to achieve precise timing resolution. In all cases, overall performance metrics such as
energy efficiency, resolution, and dynamic range emerge not from isolated block behavior
but from the interaction of multiple tightly coupled components.

Traditionally, small systems have been designed using a sequential block-level methodo-
logy. For example, the CDAC is first sized to meet kT/C noise and linearity requirements,
the comparator is then optimized for speed and noise under assumed load, and the SAR
logic is finalized to ensure timing closure. While straightforward, this step-by-step flow
often fails to capture inter-block dependencies. As a result, initial designs may under-
perform once integrated, requiring multiple redesign iterations. For instance, reducing
CDAC capacitance to save energy may increase comparator noise, and comparator delay
may bottleneck the conversion rate despite adequate CDAC sizing. Such issues highlight
the limitations of purely sequential methods.

In summary, small systems represent a crucial level of abstraction in AMS design, where
overall performance is dictated by the coupling of multiple functional blocks. SAR ADCs
exemplify this category, serving as a compact but complete architecture that illustrates
both the opportunities and challenges of small system design. Therefore, this chapter
focuses on AI-driven SAR ADC sizing method, beginning with a review of the relevant
literature, followed by a clarification of the identified limitations. The proposed method-
ology is then discussed in detail and demonstrated through 12 design cases, highlighting
the benefits of small system–level optimization in analog circuit sizing.

5.2 Literature Review

Modern electronic systems increasingly rely on efficient and accurate data conversion
between analog and digital domains. Among various data converter architectures, SAR
ADCs have gained wide adoption due to their energy efficiency, moderate-to-high resol-
ution, and scalability for low-power applications. Despite these advantages, SAR ADC
design remains a complex task due to the intricate interactions among its core build-
ing blocks, including the comparator, DAC, S/H circuit, and digital control logic. Each
of these components introduces specific design constraints that must be carefully bal-
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anced to meet overall performance goals. Traditional manual approaches depend heavily
on designer experience and iterative tuning, making the process labor-intensive and time-
consuming. This has motivated a growing research for automated optimization techniques
to streamline SAR ADC design.

Several automated or semi-automated design methods have been proposed to address the
need for more efficient SAR ADC design. One approach replaces analog building blocks
with synthesizable digital standard cells, reducing manual efforts and improving design
portability across technology nodes [131]. However, this restricts the design flexibility as
digital standard cells may not always meet stringent ADC performance requirements.

Another notable method is hybrid automation, exemplified by [132], [133], which combines
techniques such as optimization algorithms, lookup tables, and library-based selection
for specific blocks. In these methods, designers initially allocate specifications to each
individual block, then optimize them independently without fully considering inter-block
interactions. As a result, overall performance heavily depends on the initial specification
allocation.

A more systematic method determines block-level component sizing in cycles, explicitly
considering inter-block effects [134]. Although system-level trade-offs are accounted for,
this approach still requires significant manual effort, especially for sizing individual blocks.

In summary, current automated methods face two major limitations. First, they remain
restricted to block-level design, which fails to account for inter-block interactions and
system-wide trade-offs, ultimately leading to suboptimal system performance. Second,
they demand significant manual effort when applied to different specifications or techno-
logy nodes.

5.3 Contributions

To address the limitations of prior block-level methods, a system-level design approach
is needed. While global optimization offers a holistic solution, its practical use is limited
by the long simulation time and high-dimensional design complexity [135]. In response to
these challenges, this work proposes an efficient global-local optimization framework. The
framework integrates a computationally inexpensive global search algorithm (executed
within four hours) for broad design space exploration, with a local optimizer that applies
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parallel, multi-fidelity pattern search to unconverged variables (completed within three
hours). During global exploration, performance constraints such as noise, distortion, and
power are automatically derived from top-level requirements and evaluated using low-cost
single points tests, significantly reducing simulation overhead. Once most of the design
variables have converged, the local optimizer is applied to the remaining parameters to
accelerate convergence. To ensure system-level performance accuracy, the local optimizer
targets the remaining variables using blended objective function and full sine wave test,
accelerated by parallel simulation. By combining the two stages, the proposed approach
ensures both computational efficiency and high-performance design. Different from prior
works which focus on optimizing individual building blocks, this work treats the SAR
ADC as an integrated system during sizing, which enables more effective exploration of
design trade-offs.

The contributions are summarized in the following points:

1. System-Level Optimization Framework: An efficient global-local optimization
approach was developed that treats the SAR ADC as a unified system. A fast global
search explores the design space, followed by a parallel local optimizer that refines
unconverged variables, achieving accurate results with practical runtime.

2. Automated Constraint Translation Method: A method was proposed to auto-
matically derive dual-level design constraints from top-level specifications, reducing
manual effort and enhancing design scalability.

3. Multi-Fidelity Evaluation Strategy: A multi-fidelity performance evaluation
method was introduced to accelerate the optimization process while maintaining
accuracy, thereby reducing simulation overhead.

4. Flexible Design Framework: A flexible optimization framework was developed
capable of generating high-performance SAR ADC designs across a wide range of
resolutions and speeds.

5.4 Architecture and Design Considerations of SAR
ADC

This section begins by reviewing the fundamentals of SAR ADC, including its architecture
and basic operation and the differences between synchronous and asynchronous control
schemes [136], [137]. It then discusses key design considerations relevant to their perform-
ances.
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5.4.1 Architecture and Operation

Fig. 5.1 shows the architecture for the selected N-bit differential SAR ADC, which includes
four main blocks: S/H, comparator, control logic, and DAC. In this paper, the topologies
of the S/H, comparator, and DAC are fixed to a bootstrapped sampling switch, a dynamic
comparator, and a top-plate sampling and fully binary-weighted CDAC with a VCM-based
switching scheme [138], shown in Fig. 5.2. These topologies are selected for their wide
applicability and ability to support a broad range of speed and resolution requirements.

Figure 5.1: The architecture of an N-bit asynchronous SAR ADC.

The impedance linearity of single MOSFET switches and transmission gate switches is
inadequate for high-precision applications. To improve the linearity of the sampling switch
in ADCs, a bootstrap switch is commonly used to maintain a constant gate-to-source
voltage (VGS) of the MOS transistor circled in red in Fig. 5.2 (a).

In a traditional N-bit differential VCM-based CDAC, each side of the differential pair
requires 2N−1 unit capacitors. The capacitor splitting technique is applied. As illustrated
in the Fig. 5.2 (b), a single capacitor originally connected to VCM is split into two smaller
capacitors, with one reset to Vre f . and the other to ground during the sampling phase.
During the charge redistribution phase, the bottom plate of the capacitor corresponding
to the current bit is conditionally switched based on the comparator comparison result: on
the higher-voltage side, it transitions from Vre f to ground, whereas on the lower-voltage
side, it switches from ground to Vre f . This symmetric switching operation maintains the
differential nature of the CDAC and ensures that the common-mode voltage remains
centered at VCM throughout the conversion process.
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The adopted synchronous SAR logic architecture in Fig. 5.2 (c) consists of two rows of
D flip-flops (DFFs). The lower row functions as a phase shifter logic circuit, while the
upper row serves as a group of bit registers. Based on the output of the lower row, the
comparison result is stored in the corresponding bit of the upper-row DFF. In this work,
the DFFs are implemented using dynamic DFFs in [139] for their high energy efficiency.

Fig. 5.2 (d) shows the dynamic comparator structure introduced in Chapter 3 and there-
fore not repeated here. It worth noting that although this work focuses on these specific
topologies, the proposed design methodology can be extended to other circuit implement-
ations in a similar way.
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Figure 5.2: The circuit diagram for SAR ADC building blocks, including: (a) bootstrap
switch, (b) CDAC, (c) SAR logic, and (d) dynamic comparator.
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The operation of SAR ADCs can be implemented with the four components. As illustrated
in Fig. 5.3, the analog-to-digital conversion process of an N-bit SAR ADC consists of two
main stages: a sampling phase (orange region) and N-bit conversion phases (green, purple,
and blue). During the sampling phase, the top plates of the differential capacitor arrays
(Vdac,p and Vdac,n) are connected to the input voltages Vinp and Vinn, while the bottom
plates are switched to positive reference Vre f ,p, negative reference Vre f ,n, or the common-
mode voltage VCM, depending on the DAC switching scheme [140], [141]. Once sampling
phase is complete, the top-plate switches are cut off, and the DAC holds the sampled
input voltages.

In each bit-conversion phase, the comparator evaluates the differential voltage across the
top plates (Vdacp and Vdacn) when the comparator clock (CLKC) goes high. The comparison
result determines the current bit value. During the negative phase ofCLKC, the comparator
is reset and the DAC updates Vdacp and Vdacn for the next comparison through the charge
distribution mechanism, based on the DAC switching scheme. This process continues
sequentially until all N bits are resolved.

The comparator output directly determines the ADC output code. In a dynamic SAR logic
architecture, the comparator decisions are latched into output registers and subsequently
buffered to generate the final ADC output code. For performance measurement, the output
is fed to an ideal DAC module which converts the binary code to a decimal value, and
the spectral analysis can then be performed on the output of the ideal DAC.

SAR ADCs can be categorized into two types based on their control mechanism: (1)
synchronous and (2) asynchronous. These schemes differ in key aspects such as reliance
on the external clock, timing constraints, and the verification of sizing results, as detailed
below.

The primary distinction between the two schemes lies in the time interval TCLKC of the
internal comparator clock signal. In the synchronous scheme, TCLKC remains the same
across all bit-cycling phases controlled by the external clock, as shown in Fig. 5.3 (a). Here,
the internal CLKC signal is derived directly from the external clock (CLKEXT ), resulting in
equal time intervals for each bit decision. Even if the comparator completes its comparison
or resets earlier, the system waits for the next clock edge before proceeding to the next
comparison. Since the decision time varies across bits, the conversion time is determined
by the worst-case delay, which may introduce idle intervals between comparisons.
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Figure 5.3: The timing diagrams of synchronous and asynchronous SAR ADCs.

In contrast, the asynchronous scheme decouples CLKC from CLKEXT , which only determ-
ines the duration of one full quantization. The value of Tsamp depends on the duty cycle
of CLKEXT . Then all bit-cycling phases must be completed within the remaining time for
correct conversion. Assuming that CLKEXT has a frequency of FS, the asynchronous SAR
ADC is thus constrained by the following equation:

Tsamp +Tconv,asyn ≤
1
FS

, (5.1)

where Tconv,asyn represents the total conversion time.

As illustrated in Fig. 5.3 (b), the asynchronous control relies on the internal state of the
comparator. Once the comparator determines ith bit after a comparison time Tcmp,i, it
will generate a valid signal to the SAR logic. The SAR logic would change the switching
state of CDAC drivers to enable DAC settling. In the meantime, this signal resets the
comparator in time Trst,i after a delay Tdelay, f . After the reset, the CLKC is toggled after a
delay Tdelay,r to begin the next comparison. Since each operation begins immediately after
the previous one completes, asynchronous SAR ADCs typically achieve higher conversion
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speeds compared to their synchronous counterparts and are thus widely used in recent
years. The asynchronous architecture will be considered in this work due to its high time
efficiency and wide application. However, timing control in asynchronous architectures
must be carefully considered during the design process.

As mentioned above, the asynchronous scheme generates CLKC according to the feedback
signal from the comparator. As shown in Fig. 5.3 (b), this results in an unequal time
interval in each bit conversion. The total conversion time is therefore:

Tconv,asyn =
N

∑
i=1

(Tdelay,r +Tcmp,i +Tdelay, f +Trst,i). (5.2)

Tdelay,r and Tdelay, f can be considered constants, while Tcmp,i depends on the differential
input voltage Vcmp,i in the comparator.

5.4.2 Design Considerations and Trade-Offs

As discussed, the comparator becomes the primary timing bottleneck in high-speed asyn-
chronous SAR ADCs, requiring it to respond within a tight window to achieve high conver-
sion rates. The varying comparison time further complicates the manual design strategy.
Additionally, the sampling duration must be sufficient for complete charge transfer, yet
short enough to support high sampling rates. At the same time, the SAR logic must up-
date the DAC appropriately and the DAC must settle to the correct voltage level before
the next comparison begins.

In traditional manual design, asynchronous SAR ADCs are typically sized by evaluating
the longest total comparison time across the N conversion phases, often dominated by
the final bit decision. To satisfy the speed specification of an asynchronous SAR ADC,
∑Tcmp,i should be shorter than the given time budget for comparison (αcmp× Tasyn,conv,
0 < αcmp < 1). The setting of α relies on designer’s experience. If α is too tight, it will be
hard to meet. If it is large, it will give suboptimal design. In addition to the comparator,
the timing trade-offs among other blocks (e.g., DAC settling and sampling) must also be
carefully balanced. In manual approaches, these allocations are again mainly based on
designer intuition, introducing potential for suboptimality.
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Timing errors in SAR ADCs primarily manifest as distortion. One key source of distor-
tion arises during the sampling phase: if the sampling duration is insufficient, incomplete
charge transfer in the capacitor array occurs, resulting in a voltage-dependent error at the
comparator input. This nonlinearity leads to harmonic distortion in the output spectrum,
particularly for high-frequency or large-amplitude inputs where the required settling time
increases. Another critical timing issue originates from the decoupled operation of the
comparator and SAR logic. Since the comparator initiates the next DAC update only
after each bit decision, any mismatch in timing, such as initiating a comparison before
the DAC has fully settled, can introduce significant errors. These timing violations can
result in inaccurate bit decisions, leading to distortion or even full conversion failure if
not properly managed. Such issues will be directly reflected in the SNDR of ADCs.

Mismatch is another major source of distortion. However, capacitor mismatch is not con-
sidered in the current methodology. This is because such mismatch is typically corrected
through foreground or background calibration techniques, which are widely adopted in
practical designs [142]–[144]. Thus, the focus of this work remains on dynamic distortion,
which is more closely tied to optimization-level decisions and cannot be easily compensated
post-silicon.

Noise is a fundamental limiting factor in the design of high-resolution ADCs, directly
impacting their SNDR. In SAR ADCs, thermal noise primarily originates from two key
sources: the active devices in the S/H and the comparator. During the sampling phase,
thermal noise introduced by the on-resistance of sampling switches and the kT/C noise of
the sampling capacitors sets a baseline noise floor. As resolution increases, the acceptable
noise margin becomes smaller, making even minor contributions significant. The compar-
ator also contributes noise during each bit decision. Its input-referred noise, often modeled
as a Gaussian distribution, can lead to decision uncertainty, particularly when the differ-
ential input voltage is small. In high-resolution applications where the least significant bit
(LSB) voltage is very small, the comparator’s noise can become comparable to or exceed
the LSB, resulting in bit errors and degraded linearity.

Power consumption is a critical design constraint in SAR ADCs, particularly for applica-
tions in battery-powered and energy-constrained systems such as IoT devices, biomedical
implants, and wireless sensors. The total power in a SAR ADC is primarily consumed by
three components: the S/H, the comparator, and the digital control logic including the
CDAC switching activity. Among these, the comparator often dominates the dynamic
power budget, especially at high speeds, due to its frequent regeneration cycles and sens-
itivity requirements. The CDAC also contributes to power consumption through charge
redistribution during each bit decision, with switching energy proportional to the capa-
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citance and the square of the reference voltage. To minimize DAC switching power, the
capacitor size can be reduced. The cost is increased capacitor-array mismatch and higher
kT/C noise. Additionally, the SAR logic can be optimized to further improve energy effi-
ciency. Overall, minimizing power in SAR ADCs requires a holistic design strategy that
balances speed, resolution, and architectural efficiency while leveraging low-power circuit
design techniques.

Speed, accuracy and power are the major trade-offs in SAR ADC design. Manual design
approaches follow the top-down design flow, where system-level specifications (e.g., 10-
bit resolution, 50 MS/s speed, etc.) are allocated manually to individual building blocks.
This manual allocation means the design quality can vary significantly between designers,
even when they start with the same overall architecture and system requirements. In
contrast, the proposed system-level approach eliminates the need for manual specification
allocation and automates the management of design trade-offs. It inherently considers the
interactions between speed, accuracy, and power during optimization without requiring
designers to manually assign specifications to each block. The details of the proposed
method are illustrated in the next section.

5.5 Methodology

First, the sizing task will be formulated as a mathematical optimization problem. Widely
accepted specifications are used as constraints, with two automatically generated spe-
cification sets derived for different optimization stages, eliminating reliance on designer
expertise. Finally, the global and local optimizers will be developed based on prior research
and customized for SAR ADC design.

5.5.1 Overview

Recent systematic approaches often adopt a block-level sizing methodology, where com-
ponents such as the comparator, DAC, S/H, and control logic are designed and validated
independently. System-level performance is typically evaluated only after all blocks have
been sized. If the simulated system-level performance deviates from the target specifica-
tions, designers need to reallocate block-level specifications and repeat the sizing process.
This trial-and-error strategy exhibits several limitations. First, there is often no system-
atic guidance to adjust the specifications or identify which block or combination of blocks
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caused the deviation. Since degradation often arises from inter-block interactions, isolated
sizing is frequently ineffective. Second, the correction process can be time-consuming even
when such interactions are considered, often requiring many iterations to meet system-
level targets, particularly in high-resolution or low-power SAR ADC designs. Although
global optimization can be a holistic solution, its practical application is limited by the
high dimensionality of the design space [135].

To overcome these challenges, the proposed global–local optimization framework explores
the design space in two stages, as illustrated in Fig. 5.4. The process begins with user-
defined inputs, such as supply voltage, sampling rate, topology, and resolution, followed
by automatic specification generation, which derives key performance constraints from
system-level targets. In the global phase, a surrogate model-assisted global optimizer is
used to efficiently explore the high-dimensional design space of x globally and identify
the most promising candidate design that satisfies high-level performance constraints. To
reduce simulation overhead, candidate designs are evaluated using low-cost tests (i.e.,
coarse evaluation) using performance constraints derived from system-level specifications.
The purpose of this stage is to fast prune ’bad’ designs and guide the candidate toward a
promising design region. Once the promising design region is located, the local phase ap-
plies a deterministic pattern search algorithm to refine the unconverged design variables.
This stage leverages parallel, phase-shifted transient simulations (i.e., fine evaluation) and
a multi-fidelity objective to ensure accuracy while maintaining efficiency. By combining
coarse global exploration with targeted local refinement, the proposed framework enables
efficient and agile exploration of the high-dimensional design space, ultimately produ-
cing high-performance SAR ADC solutions. The implementation details of each stage are
presented in the following sections.

5.5.2 Automatic Specification Derivation

Conventional methods decouple sizing from system evaluation. The proposed approach
integrates system-level performance from the outset. Table 5.1 defines two sets of specific-
ations at different levels of evaluation. In single-point tests, the specifications considered
include SSRE, sampling error, thermal noise, and power consumption, which together
capture the dominant nonlinearity, noise, and timing effects. The parameter α serves as
a user-defined scaling factor to tighten or relax SNDR, enabling trade-off control between
performances. α is set to 1 by default.
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Figure 5.4: The flow diagram of the proposed global-local sizing approach. The red blocks
are based on the single-point test, while the blue block represents the full sine wave test.

In a binary-weighted SAR ADCs, the actual step size for bit i can deviate from ideal due
to capacitor mismatch, incomplete settling, parasitics, and other nonidealities. The actual
step can be modeled as:

stepi = Ai(1+δi), with Ai

Ai+1
= 2, (5.3)

where Ai denotes the ideal amplitude of the ith DAC step, and δi represents its devi-
ation due to nonideal effects. The term δi captures both static mismatch and dynamic
errors such as incomplete settling and parasitic-induced distortion. Then, the SSRE of
two succeeding bits can be defined:

SSREi =

∣∣∣∣ stepi

stepi+1
−2
∣∣∣∣= ∣∣∣∣2(1+δi)

1+δi+1
−2
∣∣∣∣ . (5.4)

For small relative errors (i.e., δi,δi+1≪ 1), a first-order approximation gives:

SSREi ≈ 2|δi−δi+1|. (5.5)
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Assume that the dynamic errors are uncorrelated across bits. This assumption holds ap-
proximately when bit-level settling is sufficiently fast to prevent significant error propaga-
tion across bit cycles. Considering the quantization noise power, the upper bound of the
total error voltage power is given by:

N

∑
i=1

V 2
εi
=

(
∆√
12

)2

, (5.6)

with ∆ denoting the least significant bit (LSB) voltage step and the error voltage for bit
i is:

Vεi = 2N−i ·∆ ·δi. (5.7)

If the same error budget is applied for each bit:

V 2
εi
=

(
∆√
12

)2

· 1
N

⇒ δi =
1

2N−i ·
√

12N
(5.8)

Substituting (7) into the (4) gives:

SSREi ≈ 2|δi−δi+1|

= 2 ·
∣∣∣∣ 1
2N−i
√

12N
− 1

2N−i−1
√

12N

∣∣∣∣
=

1
2N−i−1 ·

√
12N

(5.9)

The SSRE reflects the deviation of consecutive DAC step amplitudes from their ideal
binary-weighted ratio, thereby capturing both static and dynamic sources of nonlinearity
such as capacitor mismatch, incomplete settling, and parasitic distortion. As such, SSRE
serves as a system-level indicator of DAC linearity and dynamic accuracy in single-point
tests.

To capture the nonlinearity from the sampling switch and the noise contributions from
both the sampling switch and comparator, the constraints for sampling error and thermal
noise are derived under the assumption that their power equals the quantization noise.
For example, for sampling error,

Sampling Error=
∣∣Videal−Vsampled

∣∣< ∆√
12

=
VDD

2N ·
√

12
. (5.10)
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Table 5.1: Summary of specifications used in optimization.

Level Performance Specification

Coarse
Evaluation

SSREi

(i = 1, . . . ,N−1)

∣∣∣ stepi
stepi+1

−2
∣∣∣< α · 1

2N−i−1·
√

12N

Sampling Error
∣∣Videal−Vsampled

∣∣< α · VDD
2N ·
√

12

Thermal Noise
√

2kT
C + v2

n,cmp < α · VDD
2N ·
√

12

Power min VDD · Iavg

Accurate
Evaluation

SNDR 10log10

(
Psignal

Ptot, max

)
< 6.02N−4.25 dB

ENOB SNDR−1.76
6.02

FoMW min
P

2ENOB · fs

FoMS min SNDR+10log10

(
fs/2
P

)

The corresponding upper bound of the SNDR can be estimated by considering the com-
bined effects of quantization noise, thermal noise, SSRE, and sampling error, as shown
by

Ptot,max = Pq +Pthermal,rms +Pssre +Psample

=
∆2

12
+

∆2

12
+

∆2

12
+

∆2

12
=

∆2

3
. (5.11)

Accordingly, the upper limit of the achievable SNDR is given by

SNDR < 10log10

(
Psignal

Ptot,max

)
= 6.02N−4.25 dB. (5.12)

5.5.3 Low-Cost Simulation-Based Global Optimization

Previous systematic optimization strategies for AMS designs often decouple block-level
sizing from system-level evaluation, deferring architectural exploration until after electrical
parameters are fixed. This sequential flow overlooks critical interactions among system
specifications, limiting global optimality. In contrast, the proposed approach incorporates
system-level objectives directly into the sizing loop from the outset.
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Convergence can be slow without an effective optimization algorithm. Recent work has in-
troduced machine learning into the optimization process as reviewed in Chapter 2. These
approaches, such as the surrogate model–assisted method in [17], combine evolutionary
algorithms with ANN-based performance prediction to reduce the number of required
circuit simulations. This work adopts the same algorithmic components described previ-
ously (Fig. 5.4), including ANN-based surrogate modeling, DE, and infill sampling. The
optimization is applied here to a design problem with 52 variables, as detailed below.

• Bootstrap Switch: The device sizes of the sampling switch are treated as design
variables, as they directly affect both sampling accuracy and speed. To meet high-
speed requirements, the sizes of the transistors in the clocking path are also para-
meterized, given their impact on switching speed.

• CDAC: The unit capacitor size and CDAC driver transistor sizes are optimized.
The driver size is scaled down progressively from the most significant bit (MSB) to
the LSB, typically halving at each step, until reaching the minimum size allowed by
the PDK. This ensures proper settling behavior while minimizing power consump-
tion.

• Comparator:All its transistor sizes are included as key design variables due to their
critical role in determining noise characteristics, power consumption, and timing
accuracy.

• DFF: The transistor sizes of the dynamic DFF are also optimized, as they affect
both timing precision and power efficiency.

Transient simulation is typically required for ADCs to enable spectral analysis and extract
key performance metrics. For medium-resolution ADCs (e.g., 10-bit), such simulations
are essential for evaluating dynamic behavior. However, a single transient simulation can
take from several hours to days, posing significant challenges for design validation and
making it impractical for use in optimization loops. To minimize simulation time and
address this challenge, a coarse performance evaluation can be used during the global
optimization phase. The coarse performance evaluation focuses on key contributors to
SNDR, which are set as constraints during optimization (Table 5.1). The objective of the
optimization is to minimize power consumption. Three tests are performed in parallel.
The first measurement involves a single point transient simulation with the differential
input fixed at VDD. At the end of the sampling period, the sampling error can be directly
evaluated. To check SSRE, voltage steps are measured during each bit cycle, and step
ratios are recorded. The second and third measurements separately simulate the noise
contributions from the CDAC and the comparator. Together, the root mean square value
is used to estimate the total thermal noise with high accuracy.
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The global optimization process is terminated once a specified number of parameters have
converged. Convergence in the global phase is defined by a sufficiently small variance in
the current population. Once the global solver selects the optimal parameter vector xbest,
the local solver is initialized with xbest and runs until full convergence. Design variables
that have already converged during the global phase remain fixed throughout the local
optimization phase to prevent unnecessary move.

5.5.4 Fast Local Optimization Using Parallel Multi-Fidelity Tran-
sient Simulation

Local optimizers guarantee efficiency in finding a nearby optima in the vicinity of a good
global starting point. To reduce the number of simulations, in the local optimization
stage, the converged design variables are fixed and only unconverged ones will be further
optimized in this stage for exploitation. Local optimization algorithms have been well
developed and have been shown to be robust, reliable, and fast in finding a local optimal
solution. Their forms vary depending on whether the problem is constrained and whether
derivative information is available. A modified PS method [51] is used to locally solve the
constrained derivative-free optimization problem, as shown in Fig. 5.4 and Algorithm 3.
It starts from the best-known design and iteratively performs exploratory searches. If an
improvement is found, a pattern move is applied; otherwise, the step size is reduced. Peri-
odically, the current best design is validated using a full sine wave test to ensure accuracy
before continuing. The process repeats until convergence or the maximum iteration limit
is reached. The frozen mask M is used to exclude design variables that have reached local
convergence from further coordinate updates. Once the step size ∆i for a dimension be-
comes smaller than a predefined threshold, that variable is marked as frozen and skipped
in subsequent exploratory searches. For this task, it typically requires 40-50 iterations for
convergence.

Accurate SNDR characterization of high-resolution SAR ADCs through transient simu-
lation is often computationally intensive, due to the long simulation times required to
capture sufficient output samples at the Nyquist rate. As the resolution increases, the
demands on noise and linearity become more stringent, necessitating longer simulation
durations and finer time steps. These computational challenges not only slow down the
verification process but also make it impractical to include conventional SNDR evaluation
within design automation or optimization loops, where rapid and repeated performance
assessments are essential.
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To mitigate this, an efficient and scalable simulation method is proposed that leverages the
periodic and deterministic nature of the input sinewave and the ADC’s response, shown
in Fig. 5.5. Instead of performing a single long simulation at the full ADC sampling rate
fs, the method divides the task into M parallel simulations, each operating at a reduced
sampling rate of fs/M. In each of the M simulations, the input sine wave is phase-shifted
by ∆ϕk =

2πk
M , or equivalently, a time shift of ∆tk =

Tin
M ·k, where Tin is the sine wave period

and k = 0,1, . . . ,M−1. This ensures full phase coverage of the sine wave cycle across all
simulations, while each simulation only needs to capture a reduced portion of the full-
rate behavior. Each parallel simulation collects a subset (e.g., 4 samples) of the 4-bit
ADC output data, which is then interleaved to a 16-point output data for FFT-related
performance extraction.
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Figure 5.5: Illustration of phase-shifted and time-interleaved parallel transient simulation:
16-point coverage via 4×4 samples.

To evaluate the computational benefit, Table 5.2 summarizes the measured simulation
times for various M. The results show that while the SNDR remains virtually constant
(within 0.04 dB of the full Spectre simulation), the total simulation time decreases al-
most linearly with M, yielding over 14× speed-up for M = 16 without any observable loss
in accuracy. This confirms that the proposed multi-phase approach achieves substantial
efficiency improvement over a conventional full-rate simulation. It significantly reduces
simulation time without degrading SNDR accuracy. Owing to its scalable parallel struc-
ture, the proposed method can be seamlessly integrated into automated verification flows
for fast FFT-based performance evaluation.

The proposed phase-shifted time-interleaved parallel simulation method is embedded
within the local optimization algorithm. Even with a parallel setup, a single simulation
can take several minutes. So in this framework, full-accuracy simulations are periodically
invoked using the proposed technique to ensure accurate evaluation of SNDR. For inter-
mediate query points during the local search, low-cost coarse evaluations are applied. A
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Algorithm 3 Blended Hooke-Jeeves with Selective Rollback
1: Init: x0, step sizes ∆i, frozen mask M, tolerance ε
2: xbest← x0, xbackup← x0, w← 0.5, c← 0
3: Evaluate fcheap(xbest) and fexpensive(xbest)
4: fbackup← fexpensive(xbest)
5: for k = 1 to max_iter do
6: Exploratory search around xbest (skip frozen)
7: if improved xnew found then
8: Pattern move: extrapolate while improving
9: xbest← xcurr, c← c+1

10: if c mod λ = 0 then
11: Evaluate fexpensive(xbest)
12: penalty← a ·max(0, fexp− fbackup)
13: fblend← (1−w) fcheap +w ·penalty
14: if fblend > fcheap then
15: Rollback to xbackup, shrink ∆[∼M]
16: w←min(w+δw,1)
17: else
18: Update backup
19: end if
20: end if
21: else
22: Shrink ∆i for non-improved, unfrozen i
23: end if
24: if ||∆[∼M]|| < ε then break
25: end if
26: end for
27: Return: xbest, fcheap, fexpensive

Notes: λ is the frequency of expensive evaluations; a is the penalty scale factor; δw is the update
step for w after rollback; ε is the termination tolerance; w is the weight in the blended cost
function; ∆i are the coordinate step sizes; M is the frozen dimension mask.
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Table 5.2: Simulation performance versus number of segments M with a 12-bit 20 MHz
SAR ADC.

M SNDR (dB) Simulation Time (s) Speed-up Factor
1 72.03 8605 1.00
2 72.04 4320 1.99
4 72.03 2184 3.94
8 72.05 1120 7.68
16 72.06 581 14.81

Reference (Spectre simulation): SNDR = 72.07 dB

blended objective function fblended(x), which linearly combines fcheap(x) and a penalty
term derived from an expensive evaluation. The blending coefficient w ∈ [0,1] determines
the degree of trust in the penalty feedback: when w is small, the optimization follows the
cheap evaluation, while a larger w increases correction based on accurate feedback. This
mechanism maintains convergence reliability while achieving nearly an order-of-magnitude
reduction in total runtime.

5.6 Experimental Results

The sizing tool was developed using Matlab, with user inputs managed through a YAML
file. The simulator is Cadence Spectre. The global optimization phase requires 3 hours on
average, while the local optimization phase takes an additional 3 hours, using a 32-core
machine running at 3.5 GHz.

The proposed methodology was validated in a 65 nm CMOS process using ten designs
with α = 1 and two designs with α = 2, as shown in Fig. 5.6. The designs range from
7-bit to 12-bit resolution and operate over sampling rates between 100 kHz and 250 MHz.
As illustrated, all design cases meet the required specifications, achieving SNDR values
up to 72.2 dB and FoMs up to 177.3 dB. As an example, Fig. 5.7 shows the optimization
process of one design case.

Table 5.3 summarizes and compares the proposed methodology and its performance
with SAR ADC designs using block-level design approaches with similar resolutions and
sampling rates. The proposed approach demonstrates superior speed performance com-
pared to existing synthesized SAR ADC implementations. In addition, it significantly
reduces the manual design effort by automating the whole design process, thereby en-
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Figure 5.6: SNDR and FoM of 12 design cases: (a) 12 bit (b) 7 bit. 10 design cases with
α = 1 and 2 design cases with α = 2.
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Figure 5.7: An example sizing process for the 12 bit SAR ADC, with the convergence
plots of both the global and local optimization.

abling efficient exploration of the performance space. Although the methodology is demon-
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strated in 65 nm CMOS, the sizing framework is technology-independent, requiring only
technology-specific inputs such as the PDK and design specifications. Furthermore, it is
architecture-independent, as critical design decisions are made automatically by the tool
rather than being manually specified by the designer.

Table 5.3: Comparison with prior SAR ADC designs.

Feature TCAS-II-18†
[131]

TVLSI-18†
[132]

ICCAD-22‡
[133] This Work*

Process [nm] 180 28 40 40 40 40 65 65
Power Supply [V] 1.8 1 1 1 1.2 0.7 1 1
Fs [MS/s] 0.1 50 32 1 80 1 150 20
Resolution [bit] 12 11 8 12 10 12 7 12
Power [µW] 31.6 399 187 16.7 754.8 9.6 480 308
SNDR [dB] 63.3 56.8 47.4 61.1 56.3 68.8 42.0 72.2
SFDR [dB] 70.2 69.2 57.8 68.3 70.3 85.8 58.3 89.3
ENOB 10.2 9.1 7.6 9.9 9.1 11.1 6.68 11.7
FoMS [dB]1 155.3 164.8 156.7 165.8 166.8 176.0 153.9 177.3
FoMW [fJ/c.-step]2 265.5 14.1 30.7 18.1 10.8 4.3 31.6 4.6

hhhhh1 FoMS = SNDR + 10·log10(Fs/2/Power).
hhhhh2 FoMW = Power / (2ENOB · Fs).
hhhhh† Measurement results.
hhhhh‡ Post-layout results.
hhhhh* Pre-layout results.

5.7 Summary

The design of SAR ADCs plays a critical role in modern electronic systems due to their en-
ergy efficiency and suitability for moderate-to-high resolution applications. However, their
design remains complex, requiring careful coordination across multiple building blocks
such as the comparator, DAC, S/H, and control logic. This chapter presents a novel con-
tribution to this area through a system-level optimization framework aimed at automating
the SAR ADC design process.

The proposed approach introduces a global-local optimization strategy that balances com-
putational efficiency with design accuracy. The global stage performs fast, low-cost explor-
ation using low-fidelity tests, while the local stage applies parallel, multi-fidelity refinement
to unconverged parameters using full sine-wave simulations. This strategy significantly re-
duces simulation overhead while maintaining high fidelity to system-level performance
metrics.
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In addition, a method was proposed to automatically derive block-level design constraints
from top-level specifications such as SNDR and power. This automation minimizes manual
efforts and enhances the adaptability of the framework to different performance targets
and technology nodes.

The framework was demonstrated to be both practical and scalable, achieving compet-
itive designs across a variety of resolution and speed targets within a typical runtime
of seven hours. This system-level approach addresses key limitations of traditional block-
level methods and contributes a robust, reusable methodology for AI-driven analog circuit
sizing.
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Chapter 6

Conclusions and Future Work

This thesis explores AI-driven methodologies for automating AMS circuit design, aiming
to overcome the inefficiency and heuristic dependence of conventional manual flows. Three
main contributions are presented. First, an AI-empowered sizing framework is validated
in both simulation and silicon, showing consistent improvements over gm/ID-based design
while providing design insights into the trade-offs discovered by AI. Second, a co-design
methodology for LDOs and LC-tank oscillators demonstrates that subsystem-level optim-
ization yields superior PN, power efficiency, and PVT robustness compared to traditional
sequential flows. Third, a hierarchical global-local framework for asynchronous SAR ADCs
achieves state-of-the-art performance across diverse resolutions and sampling rates, while
reducing design time to hours and requiring minimal manual intervention.

Together, these studies establish that intelligent optimization-based approaches can accel-
erate design cycles, improve performance and PVT robustness, and broaden accessibility,
bridging the gap between heuristic methods and fully automated design. The results
highlight the practicality of integrating AI and optimization into future industrial design
flows.

6.1 Analog Bulding Block Sizing

This work investigates the application of AI-empowered optimization for analog building
block sizing, with emphasis on wide silicon validation and comprehensive design insight-
based comparison. An AI-empowered sizing framework is developed using the ESSAB
algorithm, a surrogate model-assisted global optimization technique tailored to analog
design. Unlike prior schematic-level studies, this work incorporates designer-in-the-loop
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validation and extends to fabricated chips, thereby ensuring credibility beyond simulation.
Four representative circuits including a comparator, standard op-amp, low-power op-amp,
and LC oscillator are explored across technology nodes ranging from 65 nm to 0.35 µm,
with three case studies validated through silicon measurements.

Results demonstrate that AI-empowered methods consistently outperform traditional
gm/ID-based manual approaches, achieving substantial reductions in power and noise while
keeping key performances competitive such as UGB, CMRR, and PN. For instance, in the
comparator design, noise was reduced by approximately 40% and power by 35% without
compromising speed, while the op-amp achieved nearly 44% power savings alongside im-
proved frequency response. Beyond numerical superiority, design insight analysis explains
why AI methods succeed: they automatically identify subtle parameter trade-offs, such
as transistor biasing points and pole–zero placement, which are difficult to capture with
manual heuristics. Importantly, the AI-empowered designs remain consistent with circuit
principles while reducing reliance on designer intuition.

Through extensive validation and design-insight comparison, this work provides one of the
first comprehensive demonstrations that AI-empowered analog sizing is both practical and
advantageous in silicon. The findings establish AI as a credible tool for enhancing design
efficiency, reducing development time from weeks to hours, and broadening accessibility
for less experienced designers by shifting expertise from heuristic sizing toward problem
formulation and result validation.

Future work can proceed in several directions. First, while this study has validated AI-
empowered sizing on representative analog building blocks, extending the methodology to
larger and more complex mixed-signal systems remains an open challenge. Such circuits
often involve higher-dimensional design spaces and stricter performance trade-offs, requir-
ing further advances in surrogate modeling and optimization strategies. Second, improving
model generalization across technology nodes would enhance reusability and reduce the
overhead of retraining for each process. Finally, tighter integration of AI-based optimiz-
ation with existing industrial EDA flows could enable a seamless co-design framework,
thereby accelerating deployment in practical design environments.
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6.2 LDO and VCO Co-Design

This work presents an AI-driven EDA methodology for the co-design of LDOs and LC-
tank VCOs, addressing the limitations of traditional sequential design approaches. In
conventional practice, VCOs are optimized first to minimize PN, followed by LDO design
with the VCO load. However, this sequential flow overlooks the mutual noise interactions
between the two blocks, particularly the up-conversion of low-frequency LDO noise into
VCO output PN. To overcome this limitation, the proposed work introduces a co-design
framework powered by the ESSAB algorithm, which is capable of handling complex trade-
offs across subsystems.

Using a TSMC 65 nm CMOS process, a 5.6GHz LC-tank VCO integrated with an LDO
is designed and benchmarked under both sequential and co-design methodologies. The
co-design approach improves PN by 1.2 dB at a 1MHz offset and reduces dynamic power
consumption by 28.8%, which achieves a 2.4 dBc/Hz improvement in FoM compared to the
sequential method. These improvements are attributed to the simultaneous consideration
of VCO transistor sizing, LDO PSR, and bypass capacitor effects, which are traditionally
optimized in isolation. Moreover, pre-layout and post-layout results confirm that the co-
design approach delivers consistent performance across 32 PVT corners, demonstrating
both efficiency and robustness.

By highlighting subsystem-level interactions and leveraging AI-driven sizing method, this
work establishes the feasibility and advantage of co-design for analog building blocks.
It demonstrates that moving beyond block-level optimization to a holistic methodology
yields superior results in terms of noise, power, and robustness, while also reducing design
time by more than half compared to sequential sizing.

Future work will extend the co-design methodology to larger and more heterogeneous
mixed-signal systems, in particular PLLs, where regulators, oscillators, dividers, and amp-
lifiers interact simultaneously. Enhancing the scalability of the optimization framework
will be critical to managing the expanded design space. Another direction is the incorpor-
ation of layout parasitics and electromagnetic effects directly into the optimization loop,
reducing the gap between pre-layout predictions and post-layout outcomes, especially for
high frequency circuits.
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6.3 SAR ADC Design

This work presents a system-level global-local optimization framework for automated
asynchronous SAR ADC design, addressing the limitations of block-level methods that
often yield suboptimal system performance and require significant manual effort. The
proposed methodology integrates a computationally efficient global optimizer based on
ESSAB with a local optimizer using parallel, multi-fidelity pattern search. The global
phase rapidly explores the high-dimensional design space using low-cost evaluations such
as single-point tests, while the local phase refines unconverged variables with accurate full
sine wave simulations. This hierarchical approach ensures both computational efficiency
and precise system-level performance evaluation.

The methodology was validated on 12 design cases implemented in TSMC 65 nm CMOS,
covering resolutions from 7 to 12 bits and sampling rates from 100 kHz to 250MHz. Res-
ults show that the framework achieves state-of-the-art performance, with up to 72.2 dB
SNDR, 11.7-bit ENOB, and 177.3 dB FoMS, while reducing design time to under six hours.
Compared with prior block-level or semi-automated approaches, the proposed framework
delivers superior results by explicitly capturing inter-block interactions, automating spe-
cification allocation, and minimizing manual intervention. Furthermore, the optimization
framework is both technology- and architecture-independent, requiring only PDK inform-
ation and system specifications, making it broadly applicable across different design con-
texts.

By unifying global exploration with local refinement and embedding fast yet accurate
simulation techniques, this work demonstrates that system-level sizing can efficiently gen-
erate high-performance SAR ADC designs. The results establish the practicality of the
proposed framework for accelerating design cycles and enhancing applicability across di-
verse resolution and frequency targets.

Future work will extend the global-local optimization framework to other data converter
architectures, such as pipelined ADCs or hybrid SAR–pipeline structures, where inter-
stage interactions and calibration requirements add further complexity. Incorporating
layout parasitics and mismatch calibration directly into the optimization loop will be essen-
tial for closing the gap between pre-layout and silicon results. Another promising direction
is the integration of machine learning-based performance prediction models to further re-
duce simulation overhead, enabling exploration of even higher-dimensional design spaces.
Finally, deployment of the framework within commercial EDA flows could establish a
practical pathway toward fully automated, system-level design of AMS data converters.
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Appendices

A Tables

Table 1: Pre-layout performance comparison of the AI-empowered design and the reference
design of the two-stage Miller-compensated op-amp with an additional area constraint.

Performance Specifi-
cation

Ref. design
(Nominal)

AI-
empowered

design
(Nominal)

Ref. design
(WCC)

AI-
empowered

design
(WCC)

Power (µW) Minimize 856 443 856 393
CMRR (dB) ≥ 90 91 122 89 120
PSRR (dB) ≥ 100 109 124 111 120
ADM (dB) ≥ 100 101 108 101 107
PM (◦) ≥ 60 66 75 63 79
GBW (MHz) ≥ 2 2.97 5.36 2.80 4.26
IRN (µVrms) ≤ 6 5.71 3.94 7.62 5.66
Rise/Fall slew rate (V/µs) ≥ 2/2 2.28/2.12 2.80/5.16 2.50/2.37 2.54/4.83
Rise/Fall settling time (µs) ≤ 1/1 0.67/0.97 0.57/0.38 1.23/1.05 0.59/0.41
THD at 1Vpp, 1kHz (dB) ≤−90 −115 −116 −101 −93
Area (mm2) ≤ 0.02 0.0220 0.0196 0.0220 0.0196
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