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Abstract 

Thermoacoustic systems can either generate acoustic work (i.e., p-v work) from thermal 

energy, or consume acoustic work to transfer heat from low to high temperature 

sources. They are the so-called thermoacoustic prime movers or heat pumps, essentially 

acting as the acoustical equivalents of Stirling engines or coolers. If a travelling sound 

wave propagates through a regenerator with a positive temperature gradient along the 

direction of sound wave propagation, the gas parcels experience a Stirling-like 

thermodynamic cycle. As such, thermal energy can be converted to acoustic power. 

Similar to Stirling engines and thermo-fluidic oscillators, thermoacoustic engines can be 

externally heated with various heat sources and are capable of utilising low-grade 

thermal energy such as industrial waste heat and solar thermal energy. Both the 

simplicity, and even the absence of moving parts of thermoacoustic engines 

demonstrate that they have the potential for developing low-cost power generators 

therefore, they ‎ have attracted significant research effort for developing coolers or 

electric generators. 

 

The target design principle of a thermoacoustic engine is to maximise 

acoustic ‎power ‎production within the thermoacoustic core whilst minimising the 

acoustic losses ‎in the resonator. One of the ‎main issues with current thermoacoustic 

systems is low ‎efficiency, ‎which is largely attributed to ‎acoustic losses in the resonator 

and ‎the regenerator. There would be a significant impact on the thermoacoustic field if 

a ‎suitable travelling wave resonator were ‎developed with ‎the least losses. Despite the 

different engine configurations for developing these engines, ‎they all work on the same 

thermodynamic principle, i.e., the Stirling cycle. In this study, ‎the first issue is resolved 

by employing a by-pass configuration, and the second is ‎addressed by using a side-

branched volume technique.‎ 

The current study focuses on the investigation of looped-tube ‎travelling-wave 

thermoacoustic engines ‎with a by-pass pipe. The novelty of such a by-pass 

configuration is that the by-pass and ‎feedback pipes actually ‎create a pure travelling 
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wave resonator. The ‎engine unit extracts a small amount of acoustic work ‎from the 

resonator, ‎amplifies it and sends it back to it. As the pure travelling wave 

resonator ‎has ‎very low losses, it requires very little acoustic power to sustain an 

acoustic ‎resonance. This idea is analogous to children playing on ‎swings, where a small 

push could sustain ‎the swinging for a long time. ‎The present research demonstrates that 

travelling wave thermoacoustic ‎engines with such a by-pass ‎configuration can achieve 

comparable ‎performances with other types of travelling wave ‎thermoacoustic 

engines ‎which have been intensively researched. ‎  

According to the ‎results, this type of engine essentially operates on the 

same ‎thermodynamic ‎principle as other travelling wave thermoacoustic engines, 

differing only in ‎the ‎design of the acoustic resonator. The looped-tube ‎travelling-wave 

thermoacoustic engine ‎with a by-pass pipe was then implemented in the design of an 

engine with a much longer regenerator and higher mean pressure to increase its power 

density. A thermoacoustic cooler was also coupled to the engine to utilise its acoustic 

power, allowing evaluation of thermal efficiency. A linear alternator has also been 

coupled to the tested engine to develop an ‎electric generator.  

This research additionally addresses the effect of a side-branched ‎Helmholtz resonator 

to tune the phase in looped-‎tube travelling wave thermoacoustic engine. This action is 

performed in order to obtain the correct‎ time-phasing between the acoustic velocity and 

pressure oscillations ‎within the regenerator, to force gas parcels to execute a Stirling-

like ‎thermodynamic cycle, so that thermal energy can be converted to ‎mechanical work 

(i.e., high-intensity pressure waves). ‎By changing its volume one can ‎change the 

acoustic impedance at the opening of the Helmholtz resonator, ‎and thus adjust the 

acoustic field within the loop-tubed engine‎. It can essentially shunt away part of the 

volumetric velocity at the low ‎impedance region of the engine, so that the acoustic loss 

can be reduced ‎within the engine. ‎ Both the simulations and the experimental results 

have demonstrated that ‎the proposed side-branched volume can effectively adjust the 

acoustic field ‎within the looped-tube engine and affect its performance. There is 
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an ‎optimal acoustic compliance corresponding to the best performance in ‎terms of 

acoustic power output and energy efficiency when the heating ‎power input is fixed.  



Table of contents 

iv 
 

 Table of Contents 

 

Abstract ....................................................................................................................... ii 

Table of Contents ....................................................................................................... iv 

List of Tables ............................................................................................................ viii 

List of Figures ............................................................................................................ ix 

List of Symbols ......................................................................................................... xiv 

Acknowledgement .................................................................................................. xviii 

Author’s Declaration ................................................................................................ xx 

Definitions/Abbreviations ........................................................................................ xxi 

Chapter 1 Introduction ............................................................................................. 1 

1.1 Overview of thermoacoustics ............................................................................ 1 

1.2 Thermoacoustic engine ...................................................................................... 2 

1.3 Thermoacoustic refrigerator .............................................................................. 4 

1.4 Travelling-wave and standing-wave thermoacoustic systems ............................. 4 

1.4.1 ‎ Standing-Wave-Engine (SWE)‎ ................................................................. 5 

1.4.2 Travelling-Wave-Engine (TWE)‎ ................................................................ 6 

1.5 Motivation for the present research .................................................................... 8 

1.6 Aims and objectives of this research .................................................................. 8 

1.7 Outline of the thesis......................................................................................... 10 

Chapter 2 Literature review ................................................................................... 12 

2.1 Introduction ..................................................................................................... 12 

2.2 Review of developments in thermoacoustics ................................................... 12 

2.2.1 A historical perspective and developments in thermoacoustics engine ..... 12 

2.2.2 ‎Themoacoustic‎ coolers/refrigerators ........................................................ 24 

2.2.3 ‎Themoacoustic‎ generators ....................................................................... 31 

2.3 Related work and justification of the current study .......................................... 44 

2.4 Concluding remarks ........................................................................................ 46 

Chapter 3  Theory of thermoacoustics .................................................................... 47 

3.1 Introduction ..................................................................................................... 47 



Table of contents 

v 
 

3.2 Thermodynamics ............................................................................................. 47 

3.2.1 Stirling cycle ........................................................................................... 48 

3.3 Thermoacoustic power cycles .......................................................................... 49 

3.3.1 Standing-wave engine .............................................................................. 49 

3.3.2 Travelling-wave engine ........................................................................... 51 

3.3.3 Key parameters ‎ ....................................................................................... 53 

3.3.3.1      Wavelength ..................................................................................... 54 

3.3.3.2      Thermal penetration depth .............................................................. 54 

3.3.3.3      Viscous penetration depth ............................................................... 55 

3.3.3.4      Gas parcel displacement .................................................................. 55 

3.3.3.5      Relative pressure amplitude‎ ............................................................ 57 

3.3.3.6      Working gas.................................................................................... 57 

3.3.3.7      Mean pressure ................................................................................. 57 

3.3.3.8      Frequency ....................................................................................... 58 

3.4 Linear thermoacoustic theory .......................................................................... 58 

3.4.1 Thermoacoustics continuity equation ....................................................... 59 

3.4.2 Thermoacoustics momentum equation ..................................................... 64 

3.4.3 Thermoacoustics energy flow equation .................................................... 65 

3.5 Regenerators‎ ................................................................................................... 69 

3.5.1 Regular geometries of regenerators ‎ ......................................................... 69 

3.5.2 Stacked-screen regenerators ..................................................................... 71 

3.6 Heat exchangers .............................................................................................. 72 

3.7 Thermal buffer tubes ....................................................................................... 74 

3.8 Feedback pipes ................................................................................................ 76 

3.9 DeltaEC software ............................................................................................ 77 

Chapter 4 Analysis of a looped-tube travelling-wave thermoacoustic engine with a 

by-pass configuration................................................................................................ 79 

4.1 Introduction ..................................................................................................... 79 

4.2 Modelling and simulations of a by-pass engine ................................................ 79 

4.3 Discussion the by-pass configuration ............................................................... 86 

4.4 Conclusions ..................................................................................................... 92 

Chapter 5 Application of a looped-tube travelling-wave thermoacoustic engine 

with a by-pass configuration to cooler ..................................................................... 94 

5.1 Introduction ..................................................................................................... 94 

5.2 The concept ..................................................................................................... 94 

5.3 Effect of important design parameters ............................................................. 95 

5.4 The ‎final ‎design model .................................................................................... 99 



Table of contents 

vi 
 

5.5 Conclusions ................................................................................................... 106 

Chapter 6 Looped-tube travelling-wave thermoacoustic generator with a by-pass 

pipe …………………………………………………………………………...107 

6.1 Introduction ................................................................................................... 107 

6.2 The concept ................................................................................................... 107 

6.3 Loudspeaker selection ................................................................................... 109 

6.4 Effect of important design parameters ........................................................... 111 

6.5 The final ‎design model .................................................................................. 114 

6.6 Conclusions ................................................................................................... 119 

Chapter 7 Two-stage travelling-wave thermoacoustic engine with a by-pass 

configuration ........................................................................................................... 121 

7.1 Introduction ................................................................................................... 121 

7.2 Two-stage travelling-wave thermoacoustic engine with a by-pass configuration 

without acoustic load ............................................................................................ 121 

7.2.1 The concept ........................................................................................... 121 

7.2.2 Effect of important design parameters .................................................... 123 

7.2.3 The ‎final ‎design model .......................................................................... 129 

7.3 Two-stage travelling-wave thermoacoustic engine with a by-pass configuration 

driving two coolers ............................................................................................... 135 

7.3.1 The concept ........................................................................................... 135 

7.3.2 Effect of important design parameters .................................................... 136 

7.3.3 The ‎final ‎design model .......................................................................... 138 

7.4 Conclusions ................................................................................................... 145 

Chapter 8 Investigation of side-branched Helmholtz resonator to tune phase in 

looped-tube travelling wave thermoacoustic engine .............................................. 146 

8.1 Introduction ................................................................................................... 146 

8.2 Experimental setup ........................................................................................ 147 

8.2.1 Key components .................................................................................... 147 

1.1.1.1 Ambient Heat Exchanger (AHX)‎ ................................................... 147 

8.2.1.2 Hot Heat Exchanger (HHX)‎ ........................................................... 148 

8.2.1.3 Regenerator (REG)‎ ........................................................................ 150 

8.2.2 Electric and water supply ....................................................................... 152 

8.2.2.1 Electric power supply .................................................................... 152 

8.2.2.2 Water cooling system ..................................................................... 152 

8.2.3 Data acquisition system ......................................................................... 155 

8.2.4 Acoustic power measurements in TA systems........................................ 156 

8.2.4.1 Two-‎microphone method ............................................................... 157 

8.2.4.2 RC-acoustic load‎ method ............................................................... 158 



Table of contents 

vii 
 

8.2.5 Integrated system ................................................................................... 159 

8.2.6 Experimental procedures ....................................................................... 161 

8.3 Analysis of the system without RC-load ........................................................ 164 

8.3.1 Simulations results and discussion ......................................................... 164 

8.3.2 Experimental results and discussion ....................................................... 169 

8.4 ‎Analysis of the ‎system with RC-load ............................................................. 173 

8.4.1 Simulation results and discussion ‎ .......................................................... 173 

8.4.2 Experimental results and discussion ....................................................... 182 

8.5 Conclusions ................................................................................................... 193 

Chapter 9 Summary and future work .................................................................. 194 

9.1 Summary ....................................................................................................... 194 

9.2 Future work ................................................................................................... 197 

Appendices .............................................................................................................. 199 

Appendix One: DeltaEC Simulations ..................................................................... 199 

A1.1: Simulation code of a looped-tube travelling-wave thermoacoustic engine 

with a by-pass configuration.............................................................................. 199 

A1.2: Simulation code of a side-branched Helmholtz resonator to tune phase in 

looped-tube travelling wave thermoacoustic engine (without RC-load) ............. 208 

Appendix Tow: Additional details of the  experimental rigs.................................. 215 

A2.1: Hot heat exchanger case .......................................................................... 215 

A2.2: Cold heat exchanger case‎ ......................................................................... 216 

A2.3: Copper of cold heat exchanger ‎ ................................................................ 217 

A2.4: Case of regenerator .................................................................................. 218 

A2.5: Flange ..................................................................................................... 219 

A2.6: Flange hole‎ .............................................................................................. 220 

A2.7: Flange cone‎ ............................................................................................. 221 

A2.8: Pressure sensor adapter‎ ............................................................................ 222 

Appendix Three: Publications ................................................................................ 223 

A3.1: Journal publications: ................................................................................ 223 

A3.2: Conference contributions: ........................................................................ 223 

Appendix Four: Awards and achievements ........................................................... 225 

Appendix Five: Calibration of pressure sensors .................................................... 226 

A5.1: Calibration of pressure sensors 1: ............................................................ 226 

A5.2: Calibration of pressure sensors 2: ............................................................ 227 

A5.3: Calibration of pressure sensors 3: ............................................................ 228 



Table of contents 

viii 
 

List of References .................................................................................................... 229 

 



List of Tables 

viii 
 

List of Tables 

Table ‎2.1: Summary of results from cooler/refrigerator papers. ................................... 30 
Table ‎2.2: Summary of results from generator papers.‎ ................................................. 44 

Table ‎4.1: The dimensions used in the present model of a by-pass engine. .................. 81 
Table ‎5.1: The dimensions of the components of the thermally driven thermoacoustic 

cooler. ......................................................................................................................... 95 
Table ‎5.2: Summary of the simulation results of the thermoacoustic engine driven 

cooler. ....................................................................................................................... 100 
Table ‎6.1:‎The‎dimensions‎of‎the‎system’s‎components. ........................................... 108 

Table ‎6.2: Parameters of the linear alternator used in the research [84] B&C Speakers.

 ................................................................................................................................. 110 

Table ‎6.3: Summary of simulation results of the thermoacoustic electric generator. .. 114 
Table ‎7.1: The dimensions of the system. .................................................................. 123 

Table ‎7.2: Ideal dimensions of the important parameters. .......................................... 129 
Table ‎7.3: Summary of simulation results. ................................................................ 134 

Table ‎7.4: The dimensions of the system. .................................................................. 136 
Table ‎7.5: Ideal dimensions of the important parameters. .......................................... 137 

Table ‎7.6: Summary of simulation results. ................................................................ 144 
Table ‎8.1: The data of measured and simulated pressure amplitudes ......................... 173 



List of Figures 

ix 
 

List of Figures 

Figure ‎1.1‎: ‎ ‎ Demonstrates the basic principles of the thermoacoustic engine process [4].

 ..................................................................................................................................... 3 

Figure ‎1.2‎: ‎ Demonstrate the basic principle of process‎ of the thermoacoustic 

refrigerator [4].‎ ............................................................................................................. 4 

Figure ‎1.3: Standing-wave feedback configurations pressure and velocity ‎amplitude are 

out of phase ‎by 90°‎. ...................................................................................................... 6 

Figure ‎1.4: Travelling-wave feedback configurations pressure and velocity amplitude 

are nearly in ‎phase. ....................................................................................................... 7 

Figure ‎2.1:‎Higgins’‎singing flame [15]....................................................................... 12 
Figure ‎2.2:‎Sondhaus’s‎tube‎[16]. ................................................................................ 13 

Figure ‎2.3:‎Rijke’s‎tube‎[17] ....................................................................................... 13 
Figure ‎2.4 Traveling wave heat engine [30]. ............................................................... 16 

Figure ‎2.5: Travelling wave thermoacoustic engine [33]. ............................................ 17 
Figure ‎2.6: Longitudinal cross section of the apparatus. All dimensions are to scale, 

except for the pore sizes in the heat exchangers and stacks which have been exaggerated 

by a factor of 5 for clarity. Sensor locations are indicated by small circles [35]. .......... 18 

Figure ‎2.7: Normalized measurements of heater power and hot temperatures carded out 

over a range of load values [35]. ................................................................................. 19 

Figure ‎2.8: Schematic view of the experimental device used by Yazaki et al. [36]....... 20 
Figure ‎2.9: Schematic of experimental apparatus [38]. ................................................ 21 

Figure ‎2.10: By-pass configuration of two stages engines [39]. ................................... 22 
Figure ‎2.11: 4-stage Atmospheric test rig [32]............................................................. 23 

Figure ‎2.12: Schematic diagram of the traveling wave thermoacoustic refrigerator 

driven by the traveling wave thermoacoustic engine [46]. ........................................... 25 

Figure ‎2.13: Schematic diagram of the thermoacoustic-Stirling cooler [47]. ................ 26 
Figure ‎2.14: Schematic diagram of the waste heat-powered thermoacoustic air 

conditioner [48]. ......................................................................................................... 27 
Figure ‎2.15: Schematic view of the acoustically resonant cooling system [49]. ........... 28 

Figure ‎2.16: Schematic view of 3-stage looped thermoacoustically driven cooling 

system [50]. ................................................................................................................ 29 

Figure ‎2.17: Schematic diagram of the test rig [52]. .................................................... 32 
Figure ‎2.18: Schematic of the travelling-wave thermoacoustic electricity generator 

(TWTAEG) [53]. ........................................................................................................ 33 
Figure ‎2.19: Output electrical power for different load resistances as a function of 

heating temperature [53]. ............................................................................................ 33 
Figure ‎2.20: Schematic of the travelling-wave thermoacoustic electricity generator 

(TWTAEG) [55].‎ ........................................................................................................ 35 
Figure ‎2.21: Schematic of the demonstrator unit and the lumped acoustic circuit [56]. 36 

Figure ‎2.22: Schematic of thermoacoustic generator [58]. ........................................... 37 
Figure ‎2.23: Schematic of the travelling-wave thermoacoustic electric generator [59]. 38 

Figure ‎2.24: Diagram of the experimental system [60]. ............................................... 39 
Figure ‎2.25: Schematic of the double-acting thermoacoustic Stirling electric generator 

[61]. ............................................................................................................................ 39 



List of Figures 

x 
 

Figure ‎2.26: Schematic of travelling-wave thermoacoustic electric generator [62]....... 40 
Figure ‎2.27: The photo of the thermoacoustic generator [63]. ...................................... 41 

Figure ‎2.28: Schematic of the three-stage the travelling-wave thermoacoustic electricity 

generator (TWTAEG) [64].......................................................................................... 42 

Figure ‎2.29: Schematic diagram of travelling-wave thermoacoustic electric generator 

and the equivalent electric circuit network [65]. .......................................................... 43 

Figure ‎3.1: Stirling cycle: P-V digram [75], T-S digram [8]. ....................................... 48 
Figure ‎3.2: Velocity (-) and pressure (--) as a function of time in a gas supporting a 

standing wave [22]. ..................................................................................................... 50 
Figure ‎3.3: Pressure and velocity versus time in standing wave device, Phase difference 

of 90° between acoustic pressure and velocity [30]. .................................................... 51 

Figure ‎3.4: Practical regenerator in a travelling-wave thermoacoustic engine. ............. 52 
Figure ‎3.5: Pressure and velocity variation with time in a travelling-wave 

thermoacoustic device [30]. ........................................................................................ 53 
Figure ‎3.6:‎Schematic‎of‎the‎thermodynamic‎cycle‎that‎a‎‘‘gas‎parcel”‎experiences‎in‎

the regenerator [76]. .................................................................................................... 53 
Figure ‎3.7: The gas displacement amplitude variation [79]. ......................................... 56 

Figure ‎3.8: A simple short thermoacoustic engine model............................................. 58 
Figure ‎4.1: Schematic diagram of a travelling wave thermoacoustic engine with a by-

pass configuration [39]................................................................................................ 80 
Figure ‎4.2: Distribution of the amplitude of acoustic pressure along the engine. .......... 82 

Figure ‎4.3: Distribution of acoustic power along the engine. ....................................... 83 
Figure ‎4.4: Distribution of the normalized specific acoustic impedance along the engine.

 ................................................................................................................................... 85 
Figure ‎4.5:‎Phase‎angle‎θ‎between‎pressure‎and‎velocity‎oscillations‎along‎the‎engine. 85 

Figure ‎5.1: Schematic diagram of the thermoacoustic engine driven cooler with a by-

pass configuration. ...................................................................................................... 96 

Figure ‎5.2: Engine efficiency changes as the length of the regenerator varies. ............. 96 
Figure ‎5.3: Engine efficiency changes as the length of the by-pass pipe varies. ........... 98 

Figure ‎5.4: Engine efficiency changes as the length of the phase shifting pipe varies. . 98 
Figure ‎5.5: Engine efficiency changes as the length of the compliance volume varies. 99 

Figure ‎5.6: Engine efficiency changes as the length of the thermal buffer tube varies. . 99 
Figure ‎5.7: Distribution of the amplitude of acoustic pressure along the thermoacoustic 

engine driven cooler.................................................................................................. 101 
Figure ‎5.8: Distribution of the amplitude of volumetric velocity along the 

thermoacoustic engine driven cooler. ........................................................................ 102 
Figure ‎5.9: Distribution of the normalized specific acoustic impedance along the 

thermoacoustic engine driven cooler. ........................................................................ 103 
Figure ‎5.10:‎Phase‎angle‎θ‎between‎pressure‎and‎velocity‎oscillations‎along‎the‎

thermoacoustic engine driven cooler. ........................................................................ 104 
Figure ‎5.11: Distribution of acoustic power along the thermoacoustic engine driven 

cooler. ....................................................................................................................... 104 
Figure ‎6.1: Schematic diagram of the thermoacoustic electric generator with a by-pass 

configuration. ........................................................................................................... 108 
Figure ‎6.2:‎Schematic‎of‎the‎alternator’s‎physical‎model‎[80]. .................................. 110 

Figure ‎6.3: Electric power output as function of the length of the by-pass pipe.......... 111 



List of Figures 

xi 
 

Figure ‎6.4: Electric power output as function of the length of the inertance tube. ...... 112 
Figure ‎6.5: Electric power output as function of the length of the compliance. .......... 112 

Figure ‎6.6: Electric power output as function of the TBT. ......................................... 113 
Figure ‎6.7: Electric power output as function of the operating frequency. ................. 114 

Figure ‎6.8: Distribution of acoustic power along the system. ..................................... 115 
Figure ‎6.9: Distribution of the amplitude of acoustic pressure along the system. ....... 116 

Figure ‎6.10: Distribution of the amplitude of volumetric velocity along the system. .. 117 
Figure ‎6.11:‎Phase‎angle‎θ‎between‎the‎pressure‎and‎velocity‎oscillations‎along‎the‎

system....................................................................................................................... 117 
Figure ‎6.12: Distribution of the normalized acoustic impedance along the system. .... 118 
Figure ‎6.13: Electric power output as function of the heat input of the system. .......... 119 

Figure ‎7.1: Schematic diagram of the two engines by-pass configuration system....... 123 
Figure ‎7.2: Engine efficiency as function of the area of the by-pass. ......................... 124 

Figure ‎7.3: Engine efficiency as function of the length of the by-pass. ...................... 124 
Figure ‎7.4: Engine efficiency as function of the area of the inertance. ....................... 125 

Figure ‎7.5: Engine efficiency as function of the length of the inertance. .................... 126 
Figure ‎7.6: Engine efficiency as function of the area of the compliance..................... 126 

Figure ‎7.7: Engine efficiency as function of the length of the compliance. ................ 127 
Figure ‎7.8: Engine efficiency as function of the area of the FBP. .............................. 128 

Figure ‎7.9: Distribution of acoustic power along the engine. ..................................... 129 
Figure ‎7.10: Distribution of the amplitude of acoustic pressure along the engine. ...... 131 

Figure ‎7.11: Distribution of the amplitude of volumetric velocity along the engine. .. 132 
Figure ‎7.12:‎Phase‎angle‎θ‎between‎pressure‎and‎velocity‎oscillations‎along‎the‎engine.

 ................................................................................................................................. 133 
Figure ‎7.13: Distribution of the normalized specific acoustic impedance along the 

engine. ...................................................................................................................... 133 
Figure ‎7.14: Schematic diagram of the two engines, two coolers by-pass configuration 

system....................................................................................................................... 135 
Figure ‎7.15: Engine efficiency as a function of the length of the by-pass pipe. .......... 137 

Figure ‎7.16: Engine efficiency as a function of the length of inertance. ..................... 138 
Figure ‎7.17: Distribution of acoustic power along the engine. ................................... 139 

Figure ‎7.18: Distribution of the amplitude of acoustic pressure along the engine. ...... 140 
Figure ‎7.19: Distribution of the amplitude of volumetric velocity along the engine ... 140 

Figure ‎7.20:‎Phase‎angle‎θ‎between‎pressure‎and velocity oscillations along the engine.

 ................................................................................................................................. 141 

Figure ‎7.21: Distribution of the normalized specific acoustic impedance along the 

engine. ...................................................................................................................... 142 

Figure ‎8.1: Photograph of the ambient heat exchanger. ............................................. 148 
Figure ‎8.2: Photograph of a: the wire resistance and b: ceramic tubes. ...................... 149 

Figure ‎8.3: Photograph of the hot heat exchanger (HHX). ......................................... 149 
Figure ‎8.4: Photograph of the case of the regenerator and mesh screen...................... 150 

Figure ‎8.5: A tortuous porous medium (mesh screen), a: a screen bed [79], b: schematic 

of the mesh screen. ................................................................................................... 150 

Figure ‎8.6: Photograph of the ‎water cooling system for the AHX. ............................. 152 
Figure ‎8.7: Schematic of the RC-load........................................................................ 153 

Figure ‎8.8: Photograph of the RC-load. ..................................................................... 154 



List of Figures 

xii 
 

Figure ‎8.9: Photograph of Helmholtz resonator. ........................................................ 155 
Figure ‎8.10: Schematic diagram of two-microphone method. .................................... 157 

Figure ‎8.11: Thermocoustic engine unit as a whole by SolidWork. ........................... 160 
Figure ‎8.12: Photograph of the thermoacoustic engine unit. ...................................... 160 

Figure ‎8.13: Photograph of the experiment system as a whole and all the measurement 

equipment. ................................................................................................................ 161 

Figure ‎8.14 : Schematic of the thermoacoustic engine system and measurement 

instrumentation. ........................................................................................................ 162 

Figure ‎8.15: Schematic of the experimental system without RC-load. ....................... 164 
Figure ‎8.16: Distribution of acoustic power along the loop. ....................................... 166 
Figure ‎8.17: Optimisation of acoustic compliance Cs for efficiency of the engine. ..... 167 

Figure ‎8.18: The relationship between pressure amplitude of the engine Cs. ............. 167 
Figure ‎8.19: Phase angle at the two ends of the regenerator (ϴREGC&ϴREGH) versus Cs.

 ................................................................................................................................. 168 
Figure ‎8.20: Normalised acoustic impedance at the two ends of the regenerator (ZREGC 

and ZREGH) versus Cs. ................................................................................................ 168 
Figure ‎8.21: The measured temperature at the two ends of the regenerator, and within 

the hot heat exchanger. ............................................................................................. 170 
Figure ‎8.22: Pressure distribution along the loop. ...................................................... 171 

Figure ‎8.23: Measured and calculated pressure at PB. ................................................ 172 
Figure ‎8.24: Schematic of the experimental system with RC-load. ............................ 174 

Figure ‎8.25: The photo of the experimental rig.‎ ......................................................... 174 
Figure ‎8.26: The block diagram of the segments in DeltaEC simulation. ................... 175 

Figure ‎8.27: Distribution of acoustic power along the engine. ................................... 176 
Figure ‎8.28: Distribution of the amplitude of acoustic pressure along the engine. ...... 176 

Figure ‎8.29: Distribution of the amplitude of volumetric velocity along the engine. .. 177 
Figure ‎8.30: Phase angle Ө between pressure and velocity oscillations along the engine.

 ................................................................................................................................. 178 
Figure ‎8.31: Distribution of the normalized specific acoustic impedance along the 

engine. ...................................................................................................................... 178 
Figure ‎8.32: Optimisation of acoustic compliance Cs for efficiency of the engine. ..... 179 

Figure ‎8.33: Phase angle at the two ends of the regenerator (ϴcold end of REG&ϴhot end of REG) 

versus Cs. .................................................................................................................. 179 

Figure ‎8.34: Normalised acoustic impedance at the two ends of the regenerator (Zcold end 

of REG&Zhot end of REG) versus Cs. .................................................................................. 180 

Figure ‎8.35: Pressure amplitudes before the valve of the RC-load versus Cs. ............. 181 
Figure ‎8.36: Pressure amplitudes after the valve of the RC-load versus Cs. ............... 181 

Figure ‎8.37: Acoustic power consumed by the RC-load versus Cs. ............................ 182 
Figure ‎8.38 : Pressure distribution at location PB versus valve opening in turns, 

Cs=2.9x10
-9

 m
3
/Pa. .................................................................................................... 184 

Figure ‎8.39: Pressure distribution at location PC versus valve opening in turns, 

Cs=2.9x10
-9

 m
3
/Pa. .................................................................................................... 184 

Figure ‎8.40 : Pressure distribution at locations PB and PC versus valve opening in turns, 

Cs =2.9x10
-9

 m
3
/Pa. ................................................................................................... 185 

Figure ‎8.41 : Acoustic power versus valve opening in turns, Cs=2.9x10
-9

 m
3
/Pa. ....... 186 



List of Figures 

xiii 
 

Figure ‎8.42: Phase angle difference between PB & PC locations versus valve opening in 

turns, Cs=2.9x10
-9

 m
3
/Pa. .......................................................................................... 186 

Figure ‎8.43: Pressure amplitude at location PB changes as Cs varies when the heating 

power is constant. ..................................................................................................... 187 

Figure ‎8.44: Pressure amplitude at PC location versus Cs. .......................................... 188 
Figure ‎8.45: Pressure distribution at locations PB and PC locations versus Cs, turns=4.

 ................................................................................................................................. 188 
Figure ‎8.46: Acoustic power changes as Cs varies when the heating power is kept as 

constant‎, turns=4 ....................................................................................................... 189 
Figure ‎8.47:‎Engine’s‎energy‎efficiency‎changes‎as‎Cs varies when the heating power is 

kept as constant. ‎turns=4 ........................................................................................... 190 

Figure ‎8.48: Phase angle difference between PB & PC locations versus Cs, turns=4. .. 191 



List of Symbols 

xiv 
 

List of Symbols 

Symbol Description and Unit 

 

A Cross-sectional area (m
2
) 

Ag Cross-sectional occupied by working gas (m
2
) 

a Speed of sound (m/sec) 

BL Force factor (--) 

Cp Isobaric specific heat (J kg
-1

K
-1

) 

Cv Isochoric specific heat (J kg
-1

K
-1

) 

Cs Acoustic compliance (m
3
/Pa) 

d Diameter (m) 

Dr Drive ratio (--) 

E  Net production acoustic power (W) 

f Frequency (Hz) 

fm Mean Frequency (Hz) 

ƒv Spatially averaged viscous functions of hv (--) 

ƒk Spatially averaged thermal function of hk (--) 

g The complex gain constant for the volume flow rate (--) 

hv Function dependant on geometry and δv (thermoviscous function) (--) 

hk Function dependant on geometry and δk (thermoviscous function) (--) 

H  Total powers flux (W)                                     

h Enthalpy (J kg
-1

) 

Im [•] Imaginary part of • (--) 

J  Bessel function 

km Stiffness (mm N
-1

)  

k Thermal conductivity (W K
-1

m
-1

) 

L Length (m) 

Le Electric Inductance (Henry) 

m Mesh number of the screen (--)  

m  Flow rate (kg/sec) 



List of Symbols 

xv 
 

Mm Moving mass (g) 

p Charging pressure (Pa) 

pm Mean pressure (Pa) 

patm Atmospheric pressure (Pa) 

Q Heat energy (W) 

QH Heat source at high temperature (W) 

QC Heat sink at low temperature or cooling load of cooler (W) 

Q  Heat flow per unit time (W) 

q Heat flux (W m
-2

)  

R Acoustic resistance (Pa s m
-3

) 

Re Electric resistance (Ω) 

Re [•] Real part of • (--) 

Re Reynold number (--) 

Rm Mechanical resistance (kg s
-1

) 

Rl Load resistor (Ω) 

r Radius (m) 

rh Hydraulic radius (m) 

S Entropy (J K
-1

) 

s Specific entropy (J kg
-1

K
-1

) 

sm Mean entropy (J K
-1

) 

S Effective area of alternator (m
2
) 

T Temperature (K, °C) 

Tm Mean Temperature (K, °C) 

TH High temperature (hot) (K, °C) 

TC Low temperature (cold) (K, °C) 

Th Solid Temperature of HHX (K, °C) 

Ta Solid Temperature of AHX (K, °C) 

Tc Solid Temperature of CHX (K, °C) 

t Time (sec) 

u Acoustic velocity oscillation (m s
-1

) 

U Volumetric velocity (m
3 

s
-1

) 



List of Symbols 

xvi 
 

V Volume of Helmholtz resonator (m
3
) 

V Volume of compliance (m
3
) 

V Voltage (Volt) 

W Work (W) 

W  Acoustic power (W) 

Win Electricity produced by ALT (W) 

Wa, in Acoustic power inlet (W) 

Wa, out  Acoustic power outlet (W) 

Wa, net Net acoustic power (W)  

Wa,c Acoustic power consumed in cooler (W) 

X Aperture width (m) 

Xmax Maximum excursion (mm) 

0y  Half of the plate spacing (m) 

Z Impedance (Pa s/ m
3
) 

Zc Compliance impedance (Pa s/ m
3
) 

ξ Gas parcel displacement (m) 

ƟBC Phase angle difference between two pressure signals (rad, °)  

β Thermal expansion coefficient (K
-1

) 

βm Mean thermal expansion coefficient (K
-1

) 

δ  Penetration depth (m) 

δk Thermal penetration depth (m) 

δv Viscous penetration depth (m) 

λ Wave length (m) 

  Perimeter (m) 

Ɛ, E Internal energy (J) 

μ Dynamic (shear) viscosity (Pa s) 

μm Mean Dynamic (shear) viscosity (Pa s) 

ρ Density (kg m
-3

) 

ρm Mean density (kg m
-3

) 

ω Angular frequency of the acoustic oscillations (rad s
-1

) 



List of Symbols 

xvii 
 

θ Phase angle (rad or °) 

Ø Porosity (--) 

γ Ratio of specific heat capacity (--) 

s  Correction factor for finite solid heat capacity (--) 

  Gradient operator (--) 

γm Mean Ratio of specific heat capacity (--) 

γpf  Effective thickness (--) 

σ Prandtl number (--) 

σ’ Fluid stress tensor (Pa) 

∂ Partial derivative (--) 

   Spatial‎average‎of‎• (--) 

[‎  ] Average value (--) 

[~] Complex conjugate (--) 

|   | Magnitude of complex number 

  Efficiency (%) 

e  Engine efficiency (%) 

i  Efficiency for each Engine (%) 

R   Relative efficiency (%) 

C  Carnot efficiency (%) 

m  Average engine efficiency (%) 

h a   Thermal to acoustic efficiency (engine efficiency) (%) 

h e   Thermal to electricity efficiency (generator efficiency) (%) 

a e              Acoustic to electricity efficiency (alternator efficiency (%) 



Acknowledgement 

xviii 
 

Acknowledgement 

First and foremost, all the praises be to Allah (God), the Most Merciful and Beneficent. 

I wish to express my huge gratitude to my supervisor, Dr Zhibin Yu, for giving me 

constant and invaluable support throughout the long years with his academic expertise, 

patience, encouragement and understanding. His support has contributed to my 

academic development, in particular my confidence in undertaking independent and 

rigorous research. With his skilled supervision and inspirational advice, my PhD 

research has become an enjoyable experience. In addition, his wisdom made it easier for 

me to accomplish my work, despite the hard circumstances I faced throughout my 

study. Without his supervision during the period, this research would not have been 

possible. 

My special gratitude goes to the Iraqi government, especially the Ministry of 

Higher ‎Education and Scientific Research for nominating me to study aboard 

and ‎supporting me and my family with a fully-funded scholarship. ‎ 

Special thanks to my wife for her patience and providing me comfort, and 

my ‎lovely ‎children Aya, Mohammed, Rukya and Hussain, for their affectionate 

support ‎and ‎love during this period of study.‎ 

I would like to thank my best friend from Iraq Prof. Hussein A. Lafta from 

the ‎bottom ‎of my heart for his continuing support,‎‏ without his contribution I would not 

have been ‏able to continue this study.‏ 

Moreover, I wish to express my warm thanks and appreciation to the most helpful 

people in Iraq during my studies, to the spirit of my beloved father who passed away, 

my loving mother and every person who had a direct and indirect contact with me 

during my studies and who had a positive influence on my progress and outcomes. 

I wish to thank all tecnicians at the Univesity of Glasgow for their help and support. 

They were very friendly in their treatment when any problem arose. Special thanks to 



Acknowledgement 

xix 
 

Mr. Stephen Monaghan for his assistance with the experimental works, he was really 

helpful and very friendly in manufacturing all the parts which were used in my rig. 

Also, I wish to express my thanks to Mr. Denis Kearns, Mr.Brian Robb, for their 

assistance. I am also grateful to Mr. Bernard Hoer and Neil Owen in the electronics 

workshop for their assistance. Also, I wish to express my thanks to the members of IT 

support team, especially Mr Chris Nicol, Mr Walter Robinson and Mr Ken McColl for 

their help in fixing any problems with my computer. 

I give special thanks to my colleagues, friends and the department staff for their 

generous help and assistance; Andrew Mckeown, Peter Collings, Jim Blunn, Douglas 

Iron, Ian Scouller, and every person who had a contact with me during my studies and 

who had a positive influence on my progress. 

 

Finally, I wish to deliver my sincere thanks to the University of Glasgow for giving me 

the opportunity to develop my research skills in a great working environment 



Author’s Declaration 

xx 
 

Author’s Declaration 

This thesis is entirely my own work, except where mentioned and acknowledged. This 

work has not been previously submitted for other degree or qualification in any 

university. 

Ali Al-Kayiem 

July 2017



Definitions/Abbreviations 

xxi 
 

Definitions/Abbreviations 

ALT Alternator  

AHX Ambient heat exchanger 

AHXC Ambient heat exchanger for cooler 

CHX Cold heat exchanger 

CHXC Cold heat exchanger for cooler 

COP Coefficient of performance   

COPC Carnot coefficient of performance 

COPR Percentage of Carnot COP 

COPm Average coefficient of performance 

DeltaEC Design Environment for Low-Amplitude ThermoAcoustic Energy             

 Conversion   

FBP Feedback pipe 

HHX Hot heat exchanger 

HR Helmholtz resonator 

LANL Los Alamos National Laboratory 

REG Regenerator 

REGC Regenerator for cooler 

RPA Relative pressure amplitude 

RPN Reverse Polish Notation 

RC RC-acoustic load 

SAHX Secondary ambient heat exchanger  

SWR Standing wave ratio  

SWE Standing wave engine 

SX Screen-type heat exchangers 

TX Shell-and-Tube-type heat exchangers 

TADTAR Thermoacoustically Driven Thermoacoustic Refrigerator  

TWE Travelling wave engine  

TBT Thermal buffer tube  

TA  Thermoacoustic  



Definitions/Abbreviations 

xxii 
 

ϴREGC Phase angle at the cold end of the regenerator  

ϴREGH Phase angle at the hot end of the regenerator  

ZREGC Normalised impedance at the cold end of the regenerator  

ZREGH Normalised impedance at the hot end of the regenerator 



Chapter 1.  Introduction 

 
1 

 

Chapter 1 Introduction 

1.1 Overview of thermoacoustics 

Thermoacoustic technology deals ‎with the ‎interactions between acoustic fields and 

heat ‎transfer, and ultimately, the resultant thermoacoustic energy 

conversion ‎effects. ‎‏Thermoacousic engines ‎‏convert ‎thermal energy to acoustic energy, 

and normally ‎consist of a porous material ‎ (regenerator or stack‎  ‎ sandwiched between‏)‏

two ‎heat ‎exchangers (hot and ambient heat exchanger). The ‎‏regenerator is made from 

a ‎porous ‎material such as steel wool, metal ‎gauze ‎or metal foam, in which heat can be 

stored for a ‎period of time. 

 

It should be noted ‎that the regenerator is generally‎referred‎to‎as‎a‎“stack”‎in‎standing-

‎wave ‎thermoacoustic ‎devices (where the phase ‎difference between pressure and 

velocity ‎is close to ‎‎90°), and ‎as‎a‎“regenerator”‎ in‎ travelling-wave ‎devices (where the 

phase ‎difference ‎between ‎pressure and velocity is close to 0°) [1].‎‏‎ Two heat 

exchangers ‎impose ‎a ‎temperature gradient along the porous material, which is 

required ‎to amplify ‎the ‎acoustic wave that is spontaneously generated.‎ A 

thermoacoustic heat engine or heat ‎pump can operate at power levels ranging from a 

few ‎hundred Watts up to one ‎megawatt [2].‎‏‏‏ 

 

Thermoacoustic systems can either generate acoustic work (i.e., p-v work) ‎from 

thermal ‎energy, or consume acoustic work to transfer heat from low ‎to high 

temperature. Thus, ‎there are two types of thermoacoustic device: the prime mover (heat 

engine) and the heat pump ‎‎(refrigerator/cooler). Heat engines deal with heat power and 

convert it into acoustic ‎power, while a heat pump consumes acoustic power to pump 

heat from a low to high ‎temperature level. It should be noted that there is a difference 

between a heat pump ‎and a refrigerator; a heat pump keeps the temperature of a given 

space above that of its‎‎ ‎surroundings, but a refrigerator keeps the temperature of given 

space below that of the ‎surroundings Tijani [3].‎ 

 



Chapter 1.  Introduction 

 
2 

 

In a travelling wave thermoacoustic engine, when a modulated sound wave 

propagates ‎through a regenerator from the cold to the hot end, the gas parcels undergo a 

Stirling-‎like thermodynamic cycle at a microscopic level. This is due to the 

complicated ‎interactions between their displacement and heat transfer with the solid 

porous material ‎of the regenerator. Based on this principle, a travelling wave 

thermoacoustic engine can ‎be built by employing a delicately designed acoustic network 

to tune the pressure ‎oscillation to be virtually‎ in phase with the velocity oscillation 

within the regenerator, so ‎that thermal energy can be converted to mechanical work 

(i.e., high-intensity pressure ‎waves) at macroscopic level.‎ 

 

In general, thermoacoustic technology has many advantages. The lack of ‎ moving 

parts ‎means that ‎little maintenance is required. In addition, it is environmentally 

friendly since it uses noble gases ‎as ‎the working gas, and can utilise low-temperature 

heat sources. These ‎advantages have ‎attracted many researchers and companies across 

the ‎world to research in this field. The ‎overwhelming benefit of these ‎systems is that 

they can utilise low-temperature energy ‎sources, such as industrial waste heat, to 

generate acoustic power that in turn can be ‎converted into ‎useful power. Furthermore, 

they can be used to generate power ‎from solar ‎energy, which has particular promise in 

countries which have abundant solar ‎energy, such as the‎ Middle East. ‎ 

 

 

1.2 Thermoacoustic engine  

A thermoacoustic engine converts some heat from a high-temperature heat source into 

acoustic power, rejecting waste heat to a low-temperature heat sink [4]. Figure ‎1.1 

demonstrates the basic principles of the process.‎ 
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Figure  1.1 :     Demonstrates the basic principles of the thermoacoustic engine process [4]. 

a: Heat exchangers and a stack in a half-wavelength acoustic resonator (Plots below show gas 

pressure and gas displacement in the horizontal direction and average temperature as functions of 

location in the resonator), b: Magnified view of part of the stack shows a typical parcel of gas, c : 

Pressure-volume (p-V) diagram for the parcel of gas.  

It can be seen that the gas parcels absorb heat (Qh) from a heat source at 

high ‎temperature Th, reject heat (Qc) to a heat sink at low temperature Tc and then 

generates ‎acoustic power W [4].‎The thermoacoustic effect can be defined as the energy 

transfer between a compressible fluid and a solid material in the presence of any 

acoustic wave. The effect of thermoacoustics ‎is demonstrated‎ by imposing a 

temperature gradient within the ‎solid material, by supplying heat energy which in turn 

results in spontaneous ‎generation of an acoustic wave along the direction of the 

temperature gradient ‎in its vicinity [5]. Over 100 years ago, Rayleigh [6] understood 

that heating and cooling could create acoustic power. He set out the criterion for the 

production of any type of thermoacoustic oscillation as follows:  

“If‎heat‎be‎given‎to‎the‎air‎at‎the‎moment‎of‎greatest‎condensation,‎or‎be‎taken‎from‎it‎at 

the‎moment‎of‎greatest‎rarefaction,‎the‎vibration‎is‎encouraged”. 

The‎Rayleigh’s‎criterion‎has‎been‎generally‎accepted‎as‎an‎explanation‎of‎sustaining‎the 

thermoacoustic oscillations [7]. 
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If the temperature gradient in the stack exceeds the onset temperature (which is the 

difference between the temperature of hot and cold side of the stack) an acoustic wave 

in the stack is spontaneously generated.‎ 

 

1.3 Thermoacoustic refrigerator 

A thermoacoustic refrigerator device uses acoustic power to absorb heat from a low-

temperature medium and reject it to a high-temperature medium. The main objective of 

the refrigerator is to maintain the temperature of the low-temperature medium by 

constantly removing heat that leaks into the cold space from the surroundings at a 

higher temperature [5]. 

 

The basic principle of operation is very similar to that of thermoacoustic engines (see 

Figure ‎1.2), but the ‎temperature gradient in the stack is much lower. The reason behind 

that is that the working fluid experiences changes in temperature when it 

oscillates ‎along the stack.‎ This change comes from adiabatic compression 

and ‎expansion of the gas by the acoustic pressure, resulting in heat transfer with ‎the 

stack [4] 

 

Figure  1.2 :   Demonstrate the basic principle of process  of the thermoacoustic refrigerator [4].  

a: Electroacoustic transducer at the left end delivers acoustic power to theresonator, b: Magnified 

view of part of the stack shows a typical parcel of gas as it moves heat up the temperature gradient. 

1.4 Travelling-wave and standing-wave thermoacoustic 

systems 

Standing wave is a vibration of a system in which some particular points remain fixed 

while others between them vibrate with the maximum amplitude. Travelling wave is a 
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wave in which the positions of maximum and minimum amplitude travel through the 

medium [8]. 

The thermoacoustic devices can be categorised into standing wave and travelling 

wave ‎devices. ‎This categorisation is based on whether acoustic pressure and acoustic 

velocity ‎are in phase  or 90° out of phase.‎ In the standing wave devices, the gas parcel 

movement ‎is comparable to the Brayton cycle, ‎consisting of two reversible adiabatic 

and two ‎constant pressure processes, while the cycle in the ‎travelling wave devices is 

similar to ‎the Stirling cycle, comprising two constant temperature processes and ‎two 

reversible ‎constant volume processes [7]. ‎ 

 

1.4.1   Standing-Wave-Engine (SWE)  

The configuration of the Standing-Wave-Engine is often simple, but their efficiency is 

low. In standing-wave feedback configurations pressure and velocity ‎oscillation are out 

of phase by 90°, as shown in Figure ‎1.3.‎ However, in a real standing-wave 

thermoacoustic device, the phase difference drops slightly below 90° to permit power 

flow to the acoustic load. It is worth mentioning here that there is a thermal contact 

imperfection between the ‎working ‎gas and the stack. This has the effect of creating the 

desired phase difference, by ‎delaying ‎the heating and cooling processes so that heating 

follows compression and cooling ‎follows ‎expansion.‎‎ The spacing in the stack of a 

standing-wave device should be greater than that for the regenerator in a travelling-

wave device, in the order of k , which provides imperfect heat transfer between the gas 

parcels and the solid surface of the stack, thus causing the necessary phase shift between 

the pressure and velocity waves [9]. 
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Figure  1.3: Standing-wave feedback configurations pressure and velocity  amplitude are out of phase  by 

90° . 

 

1.4.2 Travelling-Wave-Engine (TWE)   

The configuration of Travelling-Wave-Engines is complex, and their efficiency is 

higher than Standing-Wave-Engines efficiency‎, because they operate in a nearly 

reversible manner in terms of heat transfer within the engine ‎core. This is because, in an 

ideal thermodynamically reversible process, the work done by the system would be 

maximised, and the heat consumed by the system would be minimised, leading to a 

maximum efficiency. In travelling-wave feedback configurations pressure and velocity 

oscillations are nearly in phase within the regenerator, as shown in Figure ‎1.4. The 

maximum efficiency (thermal to acoustic efficiency) reached by a standing-wave 

thermoacoustic engine was 18%, while a travelling-wave thermoacoustic engine 

reached a maximum efficiency of 30%, corresponding to 41% of the Carnot efficiency 

of the system developed by the researchers [10, 11]. 
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Figure  1.4: Travelling-wave feedback configurations pressure and velocity amplitude are nearly in  phase. 

 

Generally, in the standing wave engine, the heat transfer is delayed due to the ‎pressure 

and velocity not being in phase. The thermal transfer processes in the standing 

wave ‎engine are lagging behind the acoustic velocity by 90°. This thermal delay is not 

required in the ‎travelling wave engine. Moreover, the pore size of the regenerator in the 

travelling wave devices ‎is much smaller than the thermal penetration depth (the thermal 

penetration depth is the thickness of the layer of gas within a stack plate through which 

the heat diffuses, and it gives an idea about heat diffusion, according to the distance 

between the ‎working gas and solid surface of the stack or regenerator), Thus the small 

pore size of the regenerator definitely leads to small thermal penetration depth, which 

gives a almost uniform temperature between the gas bulk temperature and the gas 

located at the regenerator surface [7].‎ 

 

In general‎, the travelling wave thermoacoustic engine usually consists of a pair of cold 

and hot heat ‎exchangers, a regenerator, and the acoustic resonator. The regenerator of 

the travelling wave ‎thermoacoustic engine is a section of porous material which is 

similar to that of the conventional ‎Stirling engine. Perfect thermal contact between the 

gas and solid material is maintained, and ‎therefore the gas has the same temperature as 

the local solid material within the regenerator. The hot ‎heat exchanger extracts heat 

from heat sources and transfers it to the working gas within the ‎thermoacoustic engine, 

while the ambient heat exchanger removes the heat from the working gas ‎and rejects it 
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to the external heat sink. This pair of heat exchangers builds up and maintain a ‎steep 

temperature gradient along the axle of the regenerator where the thermodynamic cycle 

takes ‎place and converts the thermal energy to acoustic power [12]. Thermoacoustic 

systems require an acoustic ‎resonator to keep an acoustic wave; the ‎resonator 

determines the operating frequency of the ‎system and confines ‎the pressurized working 

gas [13]. ‎ 

 

1.5 Motivation for the present research 

The motivation behind the current study is to improve the thermoacoustic system 

performance in terms ‎of maximising acoustic power production within the engine core 

and minimising ‎acoustic losses in the FBP. These goals are achieved in two ways by the 

current ‎work. First, a by-pass configuration that shunts a part of the volumetric ‎velocity 

away from the engine core leads to decreased velocity, an increase in the ‎pressure and 

acoustic impedance, which ultimately increases the system’s ‎efficiency. Second, the 

design forces the phase angle between pressure and velocity ‎oscillation to an ideal phase 

using a side-branched volume. This technique helps to create a pure travelling-wave, 

leading to a ‎high acoustic power ‎production.‎ 

DeltaEC software [14] has been employed to ‎simulate ‎and ‎analyse ‎this by-pass 

configuration. Thereafter, a linear alternator or cooler is coupled ‎to the by-

pass ‎configuration to further check the working principle. ‎  

As for the side-branched volume configuration, it is investigated numerically and 

experimentally. It is also simulated numerically using DeltaEC software. Based on the 

obtained model, an experimental rig is designed, constructed and then tested.    

1.6 Aims and objectives of this research 

The objective of this research is twofold: 1) to analyse different ‎configurations 

of ‎thermoacoustic engine; and 2) to design, construct and ‎test a prototype of looped-

tube ‎travelling-wave ‎thermoacoustic engine‎ ‎with a ‎side-branched Helmholtz ‎resonator 
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for phase tuning. The ‎simulation part is carried out using DeltaEC ‎software and the 

experiment part employed an experimental rig, which was designed and built during this 

PhD project. ‎Finally, the results from the two parts will be compared to each ‎other to 

validate the numerical model.‎ 

 

One of the main challenges to any thermoacoustic system is low efficiency, which 

is ‎mainly due to acoustic losses in the resonator. It is important to develop a resonator 

with very low acoustic losses. ‎Based on this, a comprehensive simulation effort will be 

conducted in this research, with ‎the aim to decrease acoustic losses at the resonator. The 

phase angle difference ‎between the acoustic velocity and the pressure oscillations within 

the regenerator has ‎significant impact on the acoustic losses‎. From the thermoacoustic 

point of ‎view, reducing the phase angle towards zero leads to low reflection (SWR=1) 

and very ‎low acoustic losses. This mainly happens in the travelling-wave 

thermoacoustic engine. This issue ‎has been addressed in the second part of this research.‎ 

 

Based on the above challenges, the main goals of this work are: 

 To simulate a looped-tube travelling-wave thermoacoustic engine with a by-

pass configuration 

 To analyse the looped-tube travelling-wave thermoacoustic engine with a by-

pass ‎configuration, and reveal its advantages and disadvantages 

 To find out whether this new configuration operates on the same 

thermodynamic principle 

 To understand how the by-pass configuration decreases the acoustic losses, 

leading to improving the  thermoacoustic system performance 

 To analyse the application of this configuration for a cooler 

 To analyse the application of this configuration for a electric generator 

 To investigate a two-stage travelling wave thermoacoustic engine ‎with a by-

pass configuration to find out how the new resonator affects the  thermoacoustic 

system performance 
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 To investigate a two-stage travelling wave thermoacoustic engine with a by-

pass configuration without acoustic load 

 To investigate a two-stage travelling wave thermoacoustic engine with a by-

‎pass configuration with acoustic loads 

 To tune the phase between the pressure amplitude and the volumetric velocity 

of ‎the sound ‎wave towards zero by using a side-branched Helmholtz resonator 

 To investigate the affect of a side-branched Helmholtz resonator to tune the 

phase ‎in looped-tube travelling wave ‎thermoacoustic engine with RC-load 

 To design, construct and test a prototype thermoacoustic engine of the ‎ side-

branched Helmholtz resonator in looped-tube travelling wave ‎thermoacoustic 

engine 

 

1.7 Outline of the thesis 

Following the introduction as shown in this section, Chapter 2 reviews the previous 

experimental and numerical studies to gain ‎a comprehensive understanding of the 

physics of thermoacoustic process, providing the context and technical background for 

this PhD research project. Chapter 3 then describes the theory of thermoacoustic, and 

the equations which govern this thermoacoustic process.  

 

Chapter 4  presents a comprehensive ‎numerical analyse of a by-pass type (a looped-tube 

with a by-pass pipe) travelling wave thermoacoustic engine, which was 

recently ‎proposed for low temperature applications. The research results show that an 

engine with such a by-pass configuration ‎essentially operates on the same 

thermodynamic principle as other ‎travelling wave thermoacoustic engines, differing 

only in the design of the ‎acoustic resonator. The model was then applied to design an 

engine with a much longer ‎regenerator and higher mean pressure to increase its power 

density. ‎ 

 

Chapter 5 demonstrates the application of a looped-tube travelling-wave thermoacoustic 

engine with a by-pass  configuration to the cooler. In this chapter, a thermoacoustic 
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cooler is coupled to the engine to utilise its ‎acoustic power, allowing for evaluation of 

thermal efficiency. It also investigates how to improve the power density and thermal 

efficiency of this ‎by-pass type engine without violating its working principle‎. ‎ 

 

Chapter 6 shows the application of a looped-tube travelling-wave thermoacoustic 

engine with a by-pass  configuration to electric generator. A linear alternator has been 

coupled to the ‎ engine to develop an electric generator. This research demonstrates that 

a travelling wave thermoacoustic engine ‎with such a new by-pass configuration can 

achieve comparable performances ‎as other types of travelling wave thermoacoustic 

engines. ‎ 

 

Chapter 7 presents the numerical investigation of a two-stage travelling-wave 

thermoacoustic engine with a by-pass configuration. This ‎study consists of two 

numerical sections: 1) a numerical investigation ‎of such a system without acoustic load; 

and 2) a numerical investigation ‎of a two-stage thermally driven travelling-wave 

thermoacoustic heat pump. ‎It introduces a new configuration to reduce the acoustic 

losses without ‎violating the working principle. By-pass configuration travelling-

wave ‎thermoacoustic engines essentially employ a near pure-travelling wave ‎acoustic 

resonator to provide acoustic resonance to the engine unit. ‎ 

 

Chapter 8 summarises the design, construction, and test of ‎the experimental rig used in 

this thesis. In addition, all the instrumentation and equipment are described in detail. 

Furthermore, ‎this chapter investigates how to use a side-branched Helmholtz resonator 

to tune phase in looped-tube ‎travelling wave thermoacoustic engine. This chapter 

reports a new phase tuning method, i.e., using a side-‎branched volume to tune the time-

phasing within a looped-tube travelling ‎wave thermoacoustic engine. This concept has 

been investigated both numerically and ‎experimentally. ‎ 

 

Chapter 9 summarises the research of this thesis, and points out future work to be done.
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Chapter 2 Literature review 

2.1 Introduction 

The thermoacoustic effect was probably first observed by glass blowers, who noticed 

the generation of a loud sound when connecting a long and narrow pipe to a molten 

glass blob. This phenomenon was noticed and studied more than 200 years ago; 

however, the research on thermoacoustic phenomena has progressed over the recent 

decades. There have been many developments in this field, including theoretical 

models, numerical simulations, experimental apparatus etc. However, the most 

important studies relevant to the present work are reviewed and summariesed in this 

chapter. 

 

2.2 Review of developments in thermoacoustics 

2.2.1 A historical perspective and developments in thermoacoustics 

engine 

In 1777, Dr Bryan Higgins produced an acoustic standing wave by placing a hydrogen 

flame inside an open vertical glass tube, which was the so-called singing flame [15]. 

 

Figure ‎2.1:‎Higgins’‎singing‎flame [15]. 
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In 1850, Soundhauss [16] conducted‎ an experiment, which was different from previous 

research. He kept the tube open at one end, closed (with a glass bulb) at the other, and 

rotated it horizontally. When the gas flame is placed in the bulb, the temperature at the 

closed end of the tube rises and emits a sound from the open end of the tube. 

 

 

Figure ‎2.2:‎Sondhaus’s‎tube‎[16]. 

 

In 1859, Rijke [17] reported a similar observation, but he replaced the hydrogen flame 

with a hot iron mesh disc, Rijke noted that the maximum density of sound may be 

located where the distance of the disc from the lower end of the glass is one-fourth of its 

length. In addition, he pointed out that closing the tube would stop the sound, ‎meaning 

the air  contained within the tube influenced the acoustic phenomenon acting as a 

working fluid as will explained in next chapter.‎ 

 

Figure ‎2.3:‎Rijke’s‎tube‎[17] 
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In 1896, Rayleigh [6], a British physicist, qualitatively understood that these heat-driven 

tones (thermoacoustic pressure oscillations) would occur if heat flowed into the gas 

while its density is high, and out of the gas while its density is low. However, through 

the mid-20
th 

century these coupled pressure and temperature oscillations in a 

Soundhauss tube were considered to be nothing more than a science demonstration that 

could make a loud noise [18].  

 

In 1949, Kramers [19] made the first attempt to study thermoacoustic phenomena, his 

work being based on boundary-layer approximation. While he did not obtain acceptable 

results when he compared the numerical results with experimental data, he encouraged 

others to study the thermoacoustic phenomenon in depth. This study was followed by  

Taconis's research who suggested that the spontaneous vibrations may occur in gas columns 

if the temperature of the tube containing the column varies along its length especially in 

low-temperature experiments. Kramers investigated in detail the sign of the damping of the 

small oscillations which the gas may perform. To study Taconis's‎‏ idea ‏‎(occurrence of 

spontaneous vibrations in gas columns)‎‏ more a ‏rigorously, ‏the vibrations of a gas in a 

cylindrical tube were investigated taking into ‎account; on one hand the existence of a 

temperature gradient along the tube and on the ‎other hand the influence both of the heat 

conductivity and of the internal friction of the ‎gas. After a long numerical analysis, the 

final result of the study of the very small ‎vibrations which a gas column can perform in 

a tube along which there exists a ‎temperature gradient, cannot satisfactorily account for 

the spontaneous vibrations so ‎often observed. The reason for this is that only extremely 

small vibration ‎amplitudes were considered. It ‎should be mentioned that Rott and Swift 

did not take the boundary layer effect into account in their ‎research, as it will be 

explained in the next section.‎ 

 

In 1951 and 1958, Bell Telephone Laboratories proposed that they would use the 

thermoacoustic phenomenon to produce electricity. The proposed concept would 

convert heat into a pressure wave (acoustic power) with a thermoacoustic engine, and 

then the acoustic power would be converted into electricity. These concepts were very 

encouraging in their attempts to convert heat energy into electricity, but they were not 
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considered applicable because the conversion of heat into acoustic power was not very 

efficient [20, 21]. 

 

In 1962, the Sondhauss tube was greatly improved by Carter et al. [22] who placed a 

stack of parallel plates inside the tube which made the heat transfer with the working 

gas more efficiently. Thereafter, in order to create a large temperature gradient across 

the stack, hot and cold heat exchangers are placed on both sides of the stack to exchange 

heat with external reservoirs. Thereby, part of the supplied heat from the hot to the cold 

side will be converted to work in the form of an acoustic standing wave. This work can 

be conducted with a piston to drive a flywheel, or it can be used to run a thermoacoustic 

heat pump or refrigerator.  

 

The first successful attempt to establish a ‎thermoacoustic theory was done by Rott [23-

28] between 1969 and 1980. He introduced a linear theory which is based on 

linearisation of continuity, momentum and energy equations, and wrote an impressive 

series of articles in which a linear theory of thermoacoustics was derived. Rott 

abandoned the boundary-layer approximation as used by Kramers [19], and formulated 

the mathematical framework for small-amplitude damped and excited oscillations in 

wide and narrow tubes with an axial temperature gradient, only assuming that the tube 

radius was much smaller than the length of the tube. In 1980, Rott summarised his 

results in a review work, which became the cornerstone for the ‎subsequent intensified 

interest in thermoacoustics. ‎ 

 

Merkli and Thomann in 1975 [29] discovered‎ ‎a  thermoacoustic cooling effect in the 

resonator tube at a velocity antinode. This discovery stimulated intense research at the 

Los Alamos National Laboratory (LANL) during the 1980s. The results showed cooling 

in the section of the tube with maximum velocity amplitude (dissipation) and heating in 

the region of the velocity nodes. A strong dependence of these effects on the Prandtl 

number was noted. This study gave an idea on what happens when nonlinear effects 

dominate and laminar flow was assumed. The important result from this research was 

that cooling exists in the region of greatest dissipation due to friction. 
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In 1979 and 1985,‎‎Ceperley [30, 31] improved the efficiency of thermoacoustic devices 

by using a toroidal geometry which permits the propagation of a travelling wave inside 

the device instead of a standing wave. The propagation of acoustical waves through a  

heated regenerator results in gas in the regenerator experiencing a Stirling 

thermodynamic cycle. This results in; amplification of the waves and conversion of 

thermal energy into acoustical energy with the acoustical energy being used to pump 

heat. The basic energy conversion process involves an acoustical traveling wave 

propagating through a differentially heated regenerator, as shown in Figure ‎2.4. This 

device is similar to a singing pipe except in its use of traveling waves instead of 

standing waves. Acoustical traveling waves propagating through the differentially 

heated regenerator from cold to hot are amplified. This device is reversible and 

promises higher efficiency than the singing pipe. 

 

 

Figure ‎2.4 Traveling wave heat engine [30]. 

 

One reason for this improvement in efficiency is that a standing wave is the result of 

positive interference between two travelling waves, so that the pressure and velocity 

local amplitudes can be nearly twice the amplitudes of the initial travelling wave 

generated in the engine, resulting in high acoustic losses [32], as shown in Figure ‎2.5. It 

can be seen that inertance and compliance are required to maintain the travelling wave 

phasing in a single-stage engine. The thermal buffer tube helps thermally isolate the hot 

heat exchanger from ambient-temperature components below, thus limiting heat losses 

[33]. 
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Figure ‎2.5: Travelling wave thermoacoustic engine [33]. 

 

 

In 1988, Swift [34] published‎ a‎ review‎ article,‎ showing‎ how‎ Rott’s‎ thermoacoustic‎

theory can be implemented to create practical thermoacoustic engines and refrigerators. 

Historical details, theoretical calculations and discussions on how to build these devices 

as well as experimental results were presented. The governing equations were derived 

starting from the single plate to the stack. He also described the components of the 

thermoacoustic engine, such as heat exchangers and resonators.  

 

In 1995, Olson and Swift [35] presented the measurements and analysis of the 

performance of a thermoacoustic engine driving a dissipative load, and investigated the 

effect of a thermoacoustic load on a thermoacoustic engine.‎ They reported that the 

effect of the acoustic load can be explained using a simple low amplitude 

approximation. The heater power and the hot temperature were measured as a function 

of the complex ‎impedance of the acoustic load.‎‎They pointed out that the acoustic load 

increases the engine's hot temperature and the ratio of input heater power to the square 

of the pressure amplitude. As for the numerical calculations, DeltaEC software was 

employed. The experimental rig is shown in Figure ‎2.6 below, the working fluid was 

helium at 3.1 MPa mean pressure. 
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Figure ‎2.6: Longitudinal cross section of the apparatus. All dimensions are to scale, except for the pore 
sizes in the heat exchangers and stacks which have been exaggerated by a factor of 5 for clarity. Sensor 

locations are indicated by small circles [35]. 

 

Heat exchangers were cooled by water at their ends, with a cooling water temperature of 

17°C. The temperatures were assured using thermocouples with an accuracy of ±2°C, 

and the pressures amplitude and its phase were measured by using a piezoresistive 

pressure sensor and lock-in amplifier to an accuracy of 2%. This experimental study 

showed that the dummy acoustic load consumed 5% of the supplied heat. The 

experimental and simulation results were shown in Figure ‎2.7. It should be mentioned 

here that this analysis is not sufficient to describe the engine because it assumed that the 

thermal penetration depth, pressure amplitude, and gas velocity are uniform throughout 

the entire length of the stack, which is not the case. 
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Figure ‎2.7: Normalized measurements of heater power and hot temperatures carded out over a range of 

load values [35]. 

 

In 1998, Yzaki et al. [36] demonstrated a practical travelling-wave thermoacoustic 

engine for the first time. They had relatively low efficiency because of a low acoustic 

impedance within the thermoacoustic core, the latter being caused by large viscous 

losses resulting from high acoustic velocities in the regenerator and the resonator 

feedback. The experimental rig is schematically shown in Figure ‎2.8. The purpose of 

Yazaki's study was overcoming the problems that Ceperley had faced, which was 

generating acoustic power in travelling-wave mode. The experimental results of this 

study concluded that a travelling-wave device could perform significantly better than a 

standing-wave device at the same frequency and wavelength. One of the excellent 
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advantages of such a system is that the onset temperature (which is the ‎difference 

between the hot and cold sides of the regenerator) would be lower than that in ‎an‎ onset 

standing wave devices,‎ leading to better utilisation of the low temperature difference 

resources. This group found that the phase difference between the pressure oscillation 

and the velocity oscillation was neither 90° nor 0° but between these limits and closer to 

zero, resulting in a travelling-wave in the looped tube. 

 

 

Figure ‎2.8: Schematic view of the experimental device used by Yazaki et al. [36]. 

 

Backhaus and Swift [10, 37]‎ tried to solve Yazaki's problem by proposing a new type of 

thermoacoustic engine consisting of a loop tube connected to a long resonator pipe. The 

working fluid of this system was helium at the mean pressure of 30 bar and frequency 

of 80 Hz. They found out from the first round of results that there was a big difference 

between the measured and estimated value of the temperature at the midpoint of the 

regenerator. This is mainly due to the acoustic streaming processes i.e. Gedeon 

streaming and Rayleigh streaming. 

 

This group made several changes to improve the thermoacoustic engine under study and 

overcome the viscosity losses which Yazaki had encountered in the previous study. The 

first change they made was to force the phase angle between the pressure and velocity 
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oscillations in the regenerator by employing an inertance in the torus part. Secondly, 

they reduced the acoustic losses and achieved high acoustic impedance in the 

regenerator by designing the compact acoustic configuration. Finally, they suppressed 

acoustic streaming by using a jet pump and a tapered thermal buffer tube. The new 

thermoacoustic engine configuration reached a higher thermal efficiency (30%), equivalent 

to 41% of the Carnot efficiency. 

 

In 2006, Bao [38] studied the effect of the RC-load (it is a resistance-compliance 

acoustic load which is used to consume the acoustic power) impedance on the 

performance of a symmetric standing-wave thermoacoustic engine experimentally and 

numerically. He found that maximum acoustic power may be obtained when the 

acoustic resistance is equal to its compliance impedance for the RC-load, and a low 

compliance impedance Zc of RC-load causes a higher acoustic power. The experimental 

apparatus is schematically shown in Figure ‎2.9. 

 

 

Figure ‎2.9: Schematic of experimental apparatus [38]. 

 

In 2008, Ward and Swift [14] another important development in thermoacoustics is the 

numerical simulation tool named DeltaEC (Design Environment for Low-Amplitude 

ThermoAcoustic Energy Conversion) was developed at LANL DeltaEC is a tool 

implementing the linear theory for the design of the real devices, to achieve a desired 

performance. Currently, it is widely used in the design, analysis, assessment and 

prediction of the performance of thermoacoustic systems [7].  
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Since we know that the wasted heat energy in factories is often at low temperatures, a 

significant proportion of research in thermoacoustic systems in focused on this low 

temperature heat application.  The most significant development in this area is by Kees 

[39] who developed in 2008 a thermoacoustic system for utilising low temperature 

differences from solar collectors or waste heat, with a temperature ‎in the range of 70-

200°C. In order to increase the power of the thermoacoustic system at low operator 

temperature it is necessary‎ to cascade multi engine stages. He also noticed that the 

viscous losses must be reduced by enlarging the regenerator cross-section with respect 

to the FBP. He experimentally studied a novel acoustic geometry based on travelling 

wave thermoacoustic engine with by-pass configuration, as shown in Figure ‎2.10. His 

prototype using atmosphere air as the working gas achieved an onset temperature 

difference as low as 65 K. Kees concluded that; firstly, in standing wave type resonators 

high acoustic loses (as compared to loop) is the  fundamental limitation at low operating 

temperature and high regenerator impedance. Secondly, the new hybrid configuration is 

more suitable for low operating temperatures with the low onset temperature giving an 

indication for low acoustic loss. Thirdly, the proposed hybrid configuration allows for 

simple cascading multiple regenerator units including a heat pump. 

 

Figure ‎2.10: By-pass configuration of two stages engines [39]. 

 

In addition, Kees published two papers that support the same trend in his previous 

research in terms of utilization of low-temperature energy sources. In 2010 and 2012, 

Kees de Blok [32, 40] developed a four stage self-matching travelling wave 
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thermoacoustic engine that can operate at a temperature difference as low as 40 K at 

each stage. As utilizing low temperature differences from solar vacuum tube collectors 

or waste heat in such a range seems to be the most promising and commercial 

interesting field of applications for thermoacoustic systems. He enlarged the regenerator 

cross-sectional area with respect to the FBP diameter in order to reduce the velocity in 

the regenerator, leading to a reduction in viscous losses. It should be mentioned here 

that the travelling wave resonator is not only to have low acoustic losses but also has to 

be capable of handling an arbitrary number of regenerator units. Also in standing wave 

configuration adding any additional engine to the system requires additional loops or 

branches, increasing the acoustic losses. The four regenerator units were placed on a 

mutual distance of ¼ λ, as shown in Figure ‎2.11. 

 

Figure ‎2.11: 4-stage Atmospheric test rig [32] 

 

This study showed that thermoacoustic engines have the potential for utilising waste 

heat sources, which is a hot research topic, and has attracted much attention with regard 

to the development of innovative thermal energy technologies. 

 

In the past three decades, thermoacoustic devices including, refrigerators/coolers or 

generators have been developed rapidly in many institutes around the world. Owing to their 
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simplicity and absence of moving parts, travelling wave ‎thermoacoustic engines have 

the potential to develop low-cost power ‎generators, and therefore have attracted much 

research effort for developing ‎coolers or electric generators.‎ 

 

 

2.2.2  Themoacoustic  coolers/refrigerators 

In 1986, a first successful attempt of a standing wave thermoacoustic refrigerator was 

demonstrated by Hofler [41] by using a loudspeaker as ‎acoustic source. The COP of 

Hofler’s‎ refrigerator‎ was‎ 12%‎ relative‎ to‎ the‎ Carnot‎ ‎COP.‎ He designed the 

thermoacoustic refrigerator by employing Root's linear thermoacoustic theory. A 

comparison between theoretical and experimental results was made, which showed ‎a 

good ‎agreement between them. 

 

In 1999, Hofler [42] built a thermoacoustically driven thermoacoustic refrigerator 

(TADTAR). The unit had a total COP of 15% and delivered a cooling power of 91 W 

across a temperature span of 25
o
C with the hot side heat addition temperature being 

450
o
C. A helium-Argon mixture was used as the working fluid. 

 

In 2000, Adeff and Hofler [43] demonstrated experimentally a standing wave engine 

powered by solar energy and coupled to a refrigerator. The working fluid was argon-

helium mixture at 6 bar. Few watts of cooling load were obtained from this device. The 

largest temperature span of 18°C and 2.5 W of cooling power at cold end temperature of 

5°C were observed in such a thermoacoustic refrigerator [7]. 

 

In 2001, Chen [44] built a thermoacoustic cooler using solar power to generate acoustic 

power. A device based on harnessing solar power in combination with 

thermoacoustic ‎principles was built and tested.‎ ‎A‎ solar collector was used to focus 

radiation from the sun to the engine side to convert it into acoustic power and then 

produce the refrigeration effect. The working gas was argon at mean pressure of 6.8 bar. 

The achieved cooling power was computed as 5.7 W. 
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The bulky shape of the thermoacoustic-Stirling refrigerator leads to discomfort in 

practical use. A coaxial configuration is an alternative which is more compact and has 

relatively high performance [7]. Therefore, in 2004; Poese et al. [45] investigated the 

first systematic study of the coaxial ‎thermoacoustic refrigerator to avoid the bulky shape 

in the previous ‎research. The main purpose of this study was to develop an 

environmentally friendly ice-cream freezer. It was an acoustic network based on the 

same principle as a ‎torus-shaped design. The system was filled with helium at 10 bar, 

and the frequency was100 Hz. The maximum cooling capacity was about 119 W at ‎the 

temperature of -24.6°C.‎ 

 

In 2006, Dai et al. [46] designed and constructed a travelling wave thermoacoustic 

refrigerator driven by a travelling wave thermoacoustic engine, as shown in Figure ‎2.12. 

The device reached a lowest temperature of -66
o
C. 250 W of cooling power at -22

o
C 

was obtained when using helium gas at 3 MPa mean pressure, 220 W of input power, 

and the operating frequency was 57.7 Hz. The results showed good application potential 

for the system in the field of ‎domestic ‎refrigeration, particularly when the cooling 

power required is around‎−20°C‎or‎‎lower.‎ 

 

Figure ‎2.12: Schematic diagram of the traveling wave thermoacoustic refrigerator driven by the 

traveling wave thermoacoustic engine [46]. 

 

In order for the measurements to be comprehensive, it is better to take those 

measurements with different mean pressures and heating powers. 

 



Chapter 2 . Literature review 

 
26 

 

In 2008, Tijani and Spoelstra [47] developed another coaxial thermoacoustic 

refrigerator.‎ The linear motor was employed to produce acoustic power for the heat 

pumping effect. The experimental configuration has a compliance and inertance which 

are important to create the travelling wave phasing for the operation in a Stirling-like 

cycle. The operating frequency was 60 Hz, and the working gas was argon at 15 bar. 

The cooler achieved a coefficient of performance relative to Carnot of 25% at cooling 

load Qc=25 W and Tc= -11°C of cooling temperature and a low temperature of -54°C 

without heat load. The experimental system of the thermoacoustic-Stirling cooler is 

shown in Figure ‎2.13. 

 

 

Figure ‎2.13: Schematic diagram of the thermoacoustic-Stirling cooler [47].  

 

Travelling wave resonator reduces the acoustic losses, and the multi-stage 

thermoacoustic engine allows utilization of a heat source with a low temperature 

difference. These two points are described in the next two papers. 

 

In 2013, Yu [48] studied the design and analysis of a thermally driven thermoacoustic 

cooler. The goal of this study was to utilise industrial waste heat to provide air-

conditioning for buildings. The working gas was helium at 3.0 MPa, and the operating 

frequency was around 100 Hz. A three-stage travelling wave thermoacoustic engine was 

designed to convert waste heat to acoustic power, and a single stage travelling wave 

thermoacoustic cooler connected to the engine to provide cold water at temperature of 

0-5°C for air conditioning. The ambient temperature was set as 40°C. The simulation 

results showed that the engine could convert 9.9% of the 15 kW heat input to 1.5 kW 

acoustic power, and that the cooler could deliver 2.6 kW cooling power at 0°C with a 
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coefficient of performance (COP) of 2.25. This system is schematically shown in 

Figure ‎2.14. 

 

 

Figure ‎2.14: Schematic diagram of the waste heat-powered thermoacoustic air conditioner [48]. 

 

In 2014, Yu and Al-Kayiem [12] improved this research [48], and investigated 

numerically a 4-staged system to utilise industrial waste heat to provide air conditioning 

for buildings where waste heat is abundant but air conditioning is required. A three-

stage travelling wave thermoacoustic engine was designed to convert waste heat to 

acoustic power, and a single-stage travelling wave thermoacoustic cooler connected to 

the engine to provide cooling at a temperature of 0°C for air conditioning. The ambient 

temperature was set as 40°C. A system with symmetric geometric configuration was 

initially modelled and validated using published experimental data. The author 

introduced an asymmetric impedance distribution and the asymmetric system, which 

has different geometric dimensions at each stage modelled to improve the acoustic 

conditions within the system. The simulation results showed that the overall energy 

efficiency of the tested system for the given temperature range could reach 15–17%, 
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which showed the feasibility of and potential in developing thermally driven 

thermoacoustic heat pump systems for utilising waste heat to produce air conditioning.  

 

In 2015, Xu et al. [49] introduced a looped-tube three-stage thermoacoustically-driven 

cryocooler system. Simulations were performed to investigate the effects of 

three ‎representative coupling positions of the resonance tube the inlet, middle, 

and ‎outlet respectively.‎ Their efficiency was found to depend on the dimensions of the 

resonance tube, indicating the importance of this parameter. The results showed that 

better phase distribution in the regenerator and less exergy loss in the resonance tube 

contribute significantly to the superior performance of the system. The system which 

was investigated is shown in Figure ‎2.15. 

 

 

Figure ‎2.15: Schematic view of the acoustically resonant cooling system [49]. 

THE: Thermoacoustic Heat Engines, PTC: Pulse Tube Coolers, OR-coupling: the outlet of the 

resonance tube, MR-coupling: the middle of the resonance tube, IR-coupling: the inlet of the 

resonance tube. 

 

For the same resonance tube length, the highest exergy efficiency of 16.3% is achieved 

for the outlet coupling position, whereas the middle and inlet coupling positions only 

achieved highest exergy efficiencies of 9% and 14.93%, respectively. There are two 
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reasons for the acceptable performance of OR-coupling. Firstly, a satisfying phase 

difference in the branch of the thermoacoustic heat engine at the inlet of the PTC was 

achieved. Secondly, increasing the cross-sectional area of the resonator pipe leading to 

reduced flow velocity, and ultimately decreasing the viscosity resistance losses. 

 

One of the important applications of the thermoacoustic technology is liquefaction of 

natural gas, so the same above group investigated this application. In 2016, Xu et al. 

[50] studied numerically and experimentally an efficient looped multiple-stage 

thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas. 

This system operates in the temperature range of natural gas liquefaction. The 

experimental results showed good agreement with the simulation results. The 

experimental system reached a maximum total cooling capacity of 880 W and exergy 

efficiency of 7.8% at 110 K. The three-stage thermoacoustically-driven PTC system is 

schematically shown in ‎ Figure ‎2.16. 

 

Figure ‎2.16: Schematic view of 3-stage looped thermoacoustically driven cooling system [50]. 

 

The analysis showed that flow-area ratio and the acoustic load impedance are one of the 

key factors determining thermoacoustic conversion and acoustic power transmission, 
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and ultimately determining system performance. The results from cooler/refrigerator 

papers are listed in Table ‎2.1 

Table ‎2.1: Summary of results from cooler/refrigerator papers. 

 

One of the most important applications of thermoacoustic technology is the generation 

of electric power using low-temperature energy sources. Energy sources include; solar 

energy, waste heat energy and cooking stoves. Thus the thermoacoustic generator would 

be the perfect solution for people living in rural areas, providing them with electricity 

by utilising the cooking stove energy. ‎ The original concept is employing the 

thermoacoustic‎ ‎system  to convert heat to sound wave and then to electricity using an 

alternator.‎ 
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2.2.3  Themoacoustic  generators 

In the past decades, great efforts have been made to develop thermoacoustic ‎generators 

with different configurations and transducers. This research have been distributed 

between several joints in terms of heat resources, the number of ‎engine stages, working 

fluids, the type of study, whether numerical, experimental or ‎both, as explained in next 

section.‎ 

 

In 2004, Backhaus et al. [51] demonstrated the ability of‎ travelling-wave 

thermoacoustic heat engines to convert high-temperature heat to acoustic power with 

high efficiency. A small-scale travelling-wave thermoacoustic engine was optimised for 

use with an electrodynamic linear alternator. A travelling-wave thermoacoustic electric 

generator was created; a power conversion system suitable for demanding applications 

such as electricity generation aboard spacecraft. The engine efficiency, alternator 

efficiency, system efficiency (thermal-to-electric), driven ratio, electrical power output 

and frequency were 24%, 75%, 18%, 6.3%, 39 W and 120 Hz respectively.‎‎The electric 

power output increased from 39 W to 58 W when the driven ratio ‎increases from 6.3% 

to 9.8%.‎‎High-cost alternator was used in this study, however, commercial loudspeakers 

as ‎inexpensive electro-dynamic transducers used to convert the acoustic power to 

electricity can be used, as demonstrated by Yu et al. [54, 56]‎ 

 

In 2006, Telesz [18] built a thermoacoustic power converter consisting of a 

thermoacoustic-Stirling engine interfacing with a pair of linear alternators to produce 

100 W of electricity. Helium at 31 bar was used as the working fluid. The operating 

frequency was 100 Hz. The heat to acoustic power conversion had an efficiency of 

26.3% (40% of the Carnot efficiency), while the efficiency of conversion of heat to 

electricity was 16.8%. 

 

In 2010, Yu et al. [52] described the construction and testing of a prototype 

thermoacoustic electricity generator to test the concept of a low-cost device for 

application in remote or rural areas of developing countries. A travelling-wave 
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thermoacoustic engine with the configuration of a looped-tube resonator was designed 

and constructed to convert heat to acoustic power. A commercially available 

loudspeaker was employed as an alternator to convert the acoustic power to electricity. 

The system was supplied with 800 W as a heat input and produced 5.17 W of electricity 

at an acoustic–electric conversion efficiency of 0.65 %. These results showed that the 

approach is possible in principle, to produce electric power levels in the order of 4–5 W, 

with overall heat-to-electric efficiencies in the order of 1%. The experimental set-up is 

shown schematically in Figure ‎2.17. 

 

 

Figure ‎2.17: Schematic diagram of the test rig [52]. 

 

This group used a commercial loudspeaker as an ‎inexpensive electro-dynamic 

transducer, which is considered in chapter 6 in this thesis. 

 

In 2011, Wu et al. [53] introduced an experimental investigation of a travelling-wave 

thermoacoustic electricity generator, which consists of a travelling-wave thermoacoustic 

heat engine and a linear alternator driven by that engine. This system is based on the 

Stirling thermodynamic cycle and can convert heat into acoustic work (i.e. mechanical 

work) with a high intrinsic efficiency. 450.9 W of electrical power was obtained with a 

maximum thermal-to-electrical efficiency of 15.03% and the system produced 481 W 
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electric power with an efficiency of 12.65%.  The experimental rig is schematically 

shown in Figure ‎2.18. 

 

 

Figure ‎2.18: Schematic of the travelling-wave thermoacoustic electricity generator (TWTAEG) [53]. 

 

Figure ‎2.19 below shows the output electrical power for different load resistances as a 

function of heating temperature. It can be seen in general that the output electrical 

power increases as the heating temperature increases. With the note that there is a 

tradeoff between the heat input and the output electrical power. 

 

 

Figure ‎2.19: Output electrical power for different load resistances as a function of heating temperature 

[53]. 
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In 2011, Yu et al. [54] studied the feasibility of using commercially available 

loudspeakers as low-cost linear alternators for thermoacoustic applications, to convert 

acoustic power to electricity. They presented a case study in which the characteristics of 

acoustic-to-electric energy conversion of a candidate loudspeaker (alternator) as well as 

parameters such as high force factor, low electrical resistance and low mechanical loss 

were measured. The experimental results showed that the selected candidate 

loudspeaker could reach acoustic–electric transduction efficiency of around 60%. The 

experimental results also showed that the displacement amplitude does not significantly 

affect the acoustic–electric transduction efficiency. Furthermore, this work also showed 

that the measurement methodology developed is useful and reliable for characterising 

acoustic–electric alternator efficiencies, and that the linear model is still quite useful to 

describe the behaviour of such alternators. 

 

In 2012, Wu et al. [55] developed a solar-powered travelling-wave thermoacoustic 

electric ‎generator. This system is a new device capable of converting heat, ‎such as solar 

energy, into electric power. This system consists of a travelling-wave thermoacoustic 

electricity generator, a solar dish ‎collector and a heat receiver.‎  Electric cartridge heaters 

were used to simulate the solar energy, leading to a maximum electric power of 481 W 

and a maximum thermal-to-electric efficiency of 15.0%  with 3.5 MPa pressurized 

helium and 74 Hz operating frequency. Thereafter, the system was integrated with the 

solar dish collector and the heat receiver. ‎Experimentally, 200 W was achieved as a 

maximum electric power. It is notable that the electric power output decreased 

dramatically; this is mainly due to solar dish ‎collector problems.‎  
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Figure ‎2.20: Schematic of the travelling-wave thermoacoustic electricity generator (TWTAEG) [55].‎ 

1: feedback tube, 2: main ambient HX, 3: regenerator, 4: heater block, 5: thermal buffer tube, 6: 

secondary ambient HX, 7: heat receiver, 8: linear alternator. 

 

In 2012, Yu et al. [56] investigated the novel concept of a travelling-wave 

thermoacoustic electricity generator ‎numerically and experimentally. ‎They utilised a 

looped-tube travelling-wave thermoacoustic engine to convert thermal ‎energy 

to ‎acoustic power, then, an ultra-compliant alternator was coupled to the system to 

convert ‎the acoustic power to electrical power. ‎ A stub was used for phase and 

impedance tuning.‎The cold heat exchanger was designed carefully to have a phase 

shifting inertance‎ ‎in‎order  to improve its performance. The whole system was simulated 

numerically by using DeltaEC tool. Numerically, this system's performance can be 

improved further when using high pressure helium as the working gas and an improved 

alternator. A prototype was designed, constructed and tested. In conclusion, they found 

out that the small-scale inexpensive prototype generator produced 11.6 W of electrical 

power, indicating the potential to develop cheap thermoacoustic electricity generators 

for ‎energy recovery from waste heat sources.‎ The system which was studied is shown in 

Figure ‎2.21. 
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Figure ‎2.21: Schematic of the demonstrator unit and the lumped acoustic circuit [56]. 

 

In 2012, Chen et al. [57, 58] reviewed the development and assessment of two types of 

thermoacoustic engine powered by waste heat from cooking stoves, either using 

Propane gas or burning wood as cooking energy to produce an acceptable amount of 

electricity for the use of rural communities. The design, system architecture and power 

assessment of these two types of thermoacoustic engine were discussed. Regarding the 

Propane gas, stove efficiency was found to be 25.13%. The wood burning 

thermoacoustic engine was tested and found to generate about 57 W of acoustic power, 

which in turn was converted into 22.7 W of electricity by employing a commercially 

available loudspeaker as alternator; the studied system is shown in Figure ‎2.22. 
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Figure ‎2.22: Schematic of thermoacoustic generator [58]. 

 

In 2013, Sun et al. [59] developed a travelling-wave ‎thermoacoustic electric generator 

using helium at 3.0 MPa as the working gas, at around 65 Hz. They pointed out that the 

acoustic coupling of the linear alternators to the travelling-wave thermoacoustic engine 

is crucial to the performance of the system, and achieved a maximum electric power of 

345.3 W with a thermal-to-electric ‎efficiency of 9.3%. At the most efficient operating 

point, the system produced electric power of 321.8 W with a thermal-to-electric 

efficiency of 12.33%. The group pointed out that the system's performance can be 

improved by increasing the pressure amplitude and minimising the acoustic losses in the 

FBP. The schematic of the travelling-wave thermoacoustic electric generator is shown 

in Figure ‎2.23. 
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Figure ‎2.23: Schematic of the travelling-wave thermoacoustic electric generator [59]. 

 

In 2014, Wu et al. [60] investigated a 1-kW travelling-wave thermoacoustic electrical 

generator. A prototype of the 1 kW travelling-wave thermoacoustic electrical generator 

was designed and tested. In the first test, only 638 W electric power with 16.6% 

thermal-to-electrical efficiency was obtained. This is mainly due to the high clearance 

seal loss that was caused by the pistons of the alternator. After further comprehensive 

analysis, a maximum electric power of 1043 W with a thermal-‎to-electrical efficiency of 

17.7% with a maximum thermal-to-electrical efficiency of 19.8% ‎and an electric power 

of 970 W were successfully obtained. Operating conditions with ‎a mean pressure of 4.0 

MPa, a heating temperature of 650°C and a cooling temperature of 15°‎C (see 

Figure ‎2.24 below). 
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Figure ‎2.24: Diagram of the experimental system [60].  

 

In 2014, Wu et al. [61] developed a double-acting ‎thermoacoustic Stirling electric 

generator which had three thermoacoustic ‎Stirling engine stages and three linear 

alternators, using 5 MPa pressurised ‎helium as working gas and 86 Hz working 

frequency. The prototype achieved a maximum electric power of ‎about 1.57 kW and a 

maximum thermal-to-electric conversion efficiency of 16.8%. The schematic of the 

double-acting thermoacoustic Stirling electric generator is shown in Figure ‎2.25‎. 

 

 

Figure ‎2.25: Schematic of the double-acting thermoacoustic Stirling electric generator [61]. 
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In 2015, Wang et al. ‎‎ [62] studied‎ numerically and experimentally a travelling-wave 

thermoacoustic electric generator capable of generating about 500 W electric power 

both. This study showed that the resonator causes most of the acoustic power losses, 

and that losses in the HHX, TBT, and FBP are also significant. They pointed out that 

the performance of the system can be improved by increasing the heating temperature 

and the mean pressure. Experimentally, this system achieved a maximum electric power 

of 473.6 W and a highest thermal-to-electric efficiency of 14.5%, when the mean 

pressure is 2.48 MPa and the heating temperature is 650°C. Numerically, results showed 

that the maximum electric power can be increased to 718 W and 1005 W when the 

mean pressures are kept at 2.48 MPa and 3.20 MPa. The experimental rig which was 

studied is shown in Figure ‎2.26. 

 

 

Figure ‎2.26: Schematic of travelling-wave thermoacoustic electric generator [62]. 

 

In 2015, Kang et al. [63] reported the design, construction and tests of a ‎two-stage 

travelling wave thermoacoustic electric generator, using two audio ‎loudspeakers as 

transducers. A two-stage travelling-wave thermoacoustic engine converted thermal 

energy to acoustic power. This study employed two linear alternators to extract and 

convert‎the‎engine’s‎acoustic‎power‎to‎electricity.‎The‎working‎fluid‎was‎helium‎at‎1.8‎

MPa, the operating frequency was 171 Hz. Based on the experimental results, a 

maximum electric power of 204 W was achieved‎‎,when the hot end temperature of the 



Chapter 2 . Literature review 

 
41 

 

two regenerators reached 512°C and 452°C, respectively. A maximum thermal-to-

electric efficiency of 3.43% was achieved when the hot end temperature of the two 

regenerators reached 597°C and 511°C, respectively. In conclusion, the results of this 

study demonstrated that multi-stage travelling-wave thermoacoustic electricity 

generators have great potential for developing inexpensive electric generators. The 

experimental rig is shown in Figure ‎2.27. 

 

 

Figure ‎2.27: The photo of the thermoacoustic generator [63]. 

 

In 2016, Bi et al. [64] proposed‎ a new travelling-wave thermoacoustic electric 

generator, consisting of a multi-stage travelling-wave thermoacoustic heat engine and 

linear alternators. In this system, as shown in Figure ‎2.28, the engines are connected by 

a slim resonance tubes to create a travelling ‎wave in the regenerator, which is important 

in achieving a high efficiency.‎ It can be seen that the alternator is connected as a bypass 

at the end of each resonance tube. From the experiment tests, the maximum electric 

power of 4.69 kW with thermal-to-electric efficiency of 15.6% and the maximum 

thermal-to-electric efficiency of 18.4% with electric power of 3.46 kW were achieved 

with 6 MPa pressurized helium, 650°C and 25°C heating and cooling temperatures. 
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Figure ‎2.28: Schematic of the three-stage the travelling-wave thermoacoustic electricity generator 

(TWTAEG) [64]. 

 

In 2016, Wang et al. [65] further developed and tested a TWTEG (travelling-wave 

thermoacoustic electric generator). A maximum electric power output of 750.4 W and a 

highest thermal-to-electric efficiency of 16.3% were achieved, with helium of 3.16 MPa 

as the working gas. The experimental rig which was studied is shown in Figure ‎2.29. 
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Figure ‎2.29: Schematic diagram of travelling-wave thermoacoustic electric generator and the equivalent 

electric circuit network [65]. 

P1 denotes the location of a piezoresistive pressure sensor, and P2-P5 denote that of piezoelectric 

pressure sensors. Heating temperature Th, temperatures of the inlet Ta1 and outlet Ta2 of chilling 

water were measured by K-type thermocouples. The coils of the linear alternators are connected in 

series with a variable electric R-C load to extract electric power. Electric power Wl was measured 

by a power meter. 

According to the above research, the loudspeaker transducer is the best choice for an 

experimental study, as it efficient, cheap and widely available. In the current study, the 

loudspeaker transducer is coupled numerically to the travelling wave thermoacoustic 

system with a by-pass configuration, which is a novel concept compared to the previous 

studies in this field. The main goal of this study is to reveal whether the loudspeaker can 

work with a by-pass without violating the thermodynamic principles, and to what extent 

the loudspeaker affects the thermoacoustic system. These issues will be addressed in 

detail in chapter 6. The results from generator papers are listed in Table ‎2.2 
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Table ‎2.2: Summary of results from generator papers.‎ 

 

 

‎ 

2.3 Related work and justification of the current study 

My current research covers a broad range of areas within traveling wave thermoacoustic 

engines with my work involving several aspects including by-pass configurations [39], 

inertance [66, 67, 68 and 69], multi-stage systems [12,  32, 40, 48 and 70], travelling 

wave thermoacoustic engine driven cooler [7, 12, 48 and 71] or alternator [51, 55 and 

63], travelling wave thermoacoustic engine with Helmholtz resonator or RC-load ‎‎ [7, 

38, 55 and 72] ‎ ‎ ,connected‎ along with associated experimental works and measuring 

techniques[73]. Due to the broad range of applications and various branches covered by 
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my work the majority of traveling wave engine literature was relevant to my study. 

With regard to the by-pass configuration, the first relevant research I reviewed was by 

Kees [39] which studied and analysed the by-pass configuration to reduce acoustic 

losses.‎ Therefore,‎I‎ reviewed‎ this‎ research‎carefully‎ to‎understand‎ the‎mechanism’s‎at‎

work‎of‎ this‎new‎configuration,‎and‎discovered‎that‎ the‎researcher’s‎ focus‎was‎not on 

system efficiency and as a result chose heat exchangers (type SX) which are inefficient 

when compared to other alternatives. In addition, the author did not employ DeltaEC 

software to analyses his system. My focus was on trying to increase the efficiency of the 

system and changing the type of heat exchangers to type TX (shell and tube) as well as 

to employ DeltaEC software to analysing this new configuration to reveal whether 

DeltaEC can capture the essence of this system. 

Therefore, based on what has been mentioned above about by-pass configuration, this 

work has been divided up in most of this thesis with: ‎ 

 Chapter 4 dedicated to analysis and validation of the by-pass configuration using 

DeltaEC. 

 Chapter 5, after the success of the validation in chapter 4, encouraged me to 

keep improving this configuration in terms of changing the type of heat 

exchangers to shell and tube kind, and then add an acoustic load to 

the ‎system(i.e. cooler). 

 Chapter 6, the success of Chapters 4 and 5 allowed me to broaden the 

application of my work and add an alternative acoustic load, ‎namely alternator, 

to generate electricity. 

 Chapter 7, in order to enhance this study and to overcome the problem of 

acoustic losses associated with the length of feedback pipe, a two engine system 

was investigated. This concept leads to sharing the feedback pipe between the 

two engines and thus reduces the acoustic losses. 
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Regarding to the Chapter 8, by reviewing the previous research which studied a looped 

tube travelling wave thermoacoustic engine experimentally and numerically, it can be 

observed that all of these studies used various techniques (for example a stub) to 

decrease the velocity and then reduce viscosity losses but did not employ these 

techniques to shift phase between the pressure and velocity oscillations.  

Therefore, I decided to study such a system by using a side-branched Helmholtz 

resonator to force the phase angle between the pressure and velocity oscillations 

towards zero, which in turn leads to reduced acoustic losses and increases the system 

performance. This concept combines between the RC-load to consume the acoustic 

power and the Helmholtz resonator which can be varied manually to reveal their effects 

on the system performance. 

 

2.4 Concluding remarks 

This chapter has been dedicated to the review of the related research in the field 

of ‎thermoacoustic technologies. This chapter focuses on the history of development to 

date, and the applications of this technology (i.e. engines, coolers, and generators).‎ 

 

‎These topics mainly focus on maximising acoustic power production, and minimising ‎ 

acoustic ‎losses in the FBPs. The current research focuses on a looped-tube travelling-

wave thermoacoustic engine in two ‎respects. First, numerical investigation of a looped-

tube travelling-wave thermoacoustic engine ‎with a by-pass pipe and its applications 

(cooler and generator). Secondly, fundamental investigation of a side-branched ‎volume 

to tune the acoustic ‎field in a ‎looped tube travelling-wave thermoacoustic engine, both 

with ‎and without a RC-load.‎‎The first aspect has been investigated numerically using 

DeltaEC software to ‎analyse and simulate this configuration. The second aspect has 

been studied experimentally and ‎numerically, then a comparison has been carried out to 

validate the model.‎ 
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Chapter 3   Theory of thermoacoustics 

3.1 Introduction 

The thermoacoustic ‎effect can be defined as heat transfer between a fluid and solid 

metal in the ‎presence of an acoustic wave.‎‎ A sound wave consists of pressure, motion 

and temperature oscillations. When ‎the sound travels in small channels, oscillating heat 

flows to and from the channel ‎walls. The combination of all oscillations produces 

thermoacoustic effects.‎‎Thermoacoustics is based on a complex physical principle 

drawing on many scientific ‎disciplines (acoustics, fluid mechanics, thermodynamics, 

heat transfer, dynamic ‎systems, solid-state physics, and electronics) [74]. The effect of 

thermoacoustics is demonstrated by imposing a temperature gradient ‎within the 

generator.‎ Supplying heat energy leads to a spontaneous generation of an acoustic wave 

along ‎the ‎direction of the temperature gradient according to Rayleigh's criteria as 

mentioned before.The acoustic wave itself comes from molecular collisions and the 

random motion leads to ‎expansion and compression, causing heat transfer to and from a 

solid surface.This chapter presents the thermodynamic cycle i.e. Stirling cycle, and the 

thermoacoustic power ‎cycles i.e. travelling and standing wave cycle. ‎Thereafter, it 

describes the key parameters for the thermoacoustic system i.e. wavelength, thermal 

penetration depth, viscous penetration depth, gas parcel displacement, relative pressure 

amplitude, working gas, mean pressure and frequency. Furthermore, this chapter 

explains the theory of thermoacoustic by deriving the thermoacoustics continuity, 

momentum, and energy flow equations. 

 

3.2 Thermodynamics 

In this section, the basic thermodynamic concepts on which the thermoacoustic 

phenomenon is based will be described. The prime mover receives heat (QH) from a 

high-temperature source at (TH) and rejects heat (QC) to a low-temperature (TC) to 

generate work (W).  
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3.2.1  Stirling cycle 

The Stirling cycle is a thermodynamic cycle that‎describes‎the‎general‎class‎of‎Stirling’s‎

devices. This includes the original Stirling engine that was invented, developed and 

patented in 1816 by Reverend Dr Robert Stirling [8]. The Stirling cycle machine is a 

device which operates on a closed regenerative thermodynamic cycle, with cyclic 

compression and expansion of a working fluid between different temperature levels. 

The cycle consists of four processes; namely isothermal compression, isothermal 

expansion,‎‎isentropic heat addition and ‎isentropic heat rejection, as shown in Figure ‎3.1.  

 

Figure ‎3.1: Stirling cycle: P-V digram [75], T-S digram [8]. 

 

Considering a piston acting upon a cylinder containing a working fluid. If heat can be 

added or removed from the cylinder, then the Stirling cycle can be described as follows. 

Process 1–2 isothermal compression process: The piston moves inward, reducing the 

enclosed volume of the cylinder, compressing the gas and increasing its pressure from 

P1 to P2. Heat generated by the compression process is rejected from the cylinder so that 

the temperature of the working fluid is maintained. Work is done on the fluid equal to 

the heat rejected from the cycle. There is no change in internal energy and a decrease in 

entropy.  

Process 2–3, constant volume heat addition process: The piston maintains a constant 

volume in the cylinder while heat is added to the system. The temperature of working 

http://en.wikipedia.org/wiki/Thermodynamic_cycle
http://en.wikipedia.org/wiki/Stirling_engine
http://en.wikipedia.org/wiki/Robert_Stirling
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fluid increases from Tmin to Tmax, increasing the working fluid pressure. No work is 

done, and there is an increase in the entropy and internal energy of the working fluid. 

Process 3– 4, isothermal expansion process: The piston now moves outward increasing 

the volume of the cylinder, expanding the gas and reducing its pressure from P3 to P4. 

The temperature of the working fluid is maintained with the addition of heat. Work is 

done by the working fluid on the piston, equal in magnitude to the heat supplied. There 

is no change in the internal energy, but an increase in the entropy of the working fluid. 

Process 4–1, constant volume heat rejection process: The piston maintains a constant 

volume in the cylinder while heat is rejected from the system. The temperature of the 

working fluid decreases from Tmax to Tmin, reducing the working fluid pressure. No work 

is done; and there is a decrease in the internal energy and the entropy of the working 

fluid [75]. 

 

 

3.3 Thermoacoustic power cycles   

There are two types of thermoacoustic device, depending on the type of acoustic wave 

which will be used: standing-wave and travelling-wave devices.  

 

3.3.1 Standing-wave engine 

The standing-wave is one version of a thermoacoustic engine; and is generated inside a 

tube with an open end, while the other is closed. The phase angle between the pressure 

and velocity oscillations is 90
o
. In other words, the velocity at the closed end is zero 

(because it is a closed area and there is no movement of the gas molecules), the pressure 

is a maximum value (because, as it is well known physically, the pressure is inversely 

proportional to the velocity, so when the velocity is zero, the pressure is maximum) and 

the opposite is true at the open end, as shown in Figure ‎3.2. 

 

Generally, in the standing wave engine, heat transfer is delayed due to the ‎pressure ‎and 

velocity not being in phase, meaning that the pressure and velocity ‎amplitude are out of 
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phase by 90° (‎in a real standing-wave thermoacoustic device, the phase difference drops 

slightly ‎below 90° to permit power flow to the acoustic load).‎‎ ‎The spacing in the stack 

of a standing-wave device should be greater than that for the ‎regenerator in a travelling 

wave device, which provides imperfect heat transfer ‎between the gas parcels and the 

solid surface of the stack, thus causing the necessary ‎phase shift between the pressure 

and velocity waves.‎ The large space between stack plates is wanted, resulting in a 

standing-wave which is needed ‎for some applications.‎ 

 

Figure ‎3.2: Velocity (-) and pressure (--) as a function of time in a gas supporting a standing wave [22]. 

 

A basic concept for generating acoustic power from heat energy was introduced by 

Ceperley [30] by using the singing pipe which produces sound‎when‎the‎closed‎tube’s‎

end is placed in a flame. The kind of wave which is generated is the standing-wave, this 

concept uses acoustic standing waves to force the gas inside the tube to undergo cyclic 

processes (compression, heating, expansion and cooling) similar to what happens in the 

conventional heat engine [30]. It should be mentioned here that the maximum 

thermoacoustic effect can be reached when the phase angle between pressure and 

velocity oscillations is zero, as it will be explained in the next section. To further 

understand the different processes and the phase angle between pressure and velocity 

one can refer to Figure ‎3.3 below. 
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Figure ‎3.3: Pressure and velocity versus time in standing wave device, Phase difference of 90° between 

acoustic pressure and velocity [30]. 

 

3.3.2  Travelling-wave engine 

The oscillating gas pressure and velocity are in phase, which means that the phase angle 

difference between pressure and velocity is zero. The travelling-wave engine can be 

referred to as the thermoacoustic-Stirling engine, because the gas in it follows a 

Stirling-like-thermodynamic cycle.  

 

A travelling wave thermoacoustic engine usually consists of a pair of cold and hot heat 

exchangers, a regenerator, and the acoustic resonator. The regenerator of the travelling 

wave thermoacoustic engine is a section of porous material. Perfect thermal contact 

between the gas and solid material is maintained; therefore the gas has the same 

temperature as the local solid material within the regenerator. The hot heat exchanger 

extracts heat from the heat sources and transfers it to the working gas within the 

thermoacoustic engine, while the ambient heat exchanger removes the heat from the 

working gas and rejects it to the external heat sink. This pair of heat exchangers build 

up and maintain a steep temperature gradient along the axle of the regenerator where the 

thermodynamic cycle takes place and converts the thermal energy to acoustic power. As 
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shown in Figure ‎3.4, acoustical travelling waves propagating through the differentially 

heated ‎regenerator from cold to hot are amplified [76].  

 

 

Figure ‎3.4: Practical regenerator in a travelling-wave thermoacoustic engine. 

 

A continuous temperature gradient is set up along the length of the regenerator by 

external sources which heat one end and cool the other. When a wave forces a volume 

of gas to move towards the hot end, it is heated by the higher temperature regenerator 

and travels towards the colder end, where it is likewise cooled. 

Figure ‎3.5 shows the travelling wave’s‎ pressure‎ and‎ velocity‎ which‎ is‎ propagating‎

through the regenerator as a function of time. A sound wave travelling from the cold to 

the hot end of a differentially heated regenerator would cause a build-up of pressure 

(compression), then a flow of gas towards the hot end (heating), followed by a drop in 

pressure (expansion), and finally a flow of gas towards the cool end (cooling). This is 

similar to the thermodynamic cycle a gas volume would undergo in a standard Stirling 

engine (compression, heating, expansion, and cooling). However, since the acoustical 

wave is responsible for the compression, expansion, and gas movement, the mechanical 

energy produced by the cycle in the travelling wave heat engine will amplify the sound 

wave [30].  



Chapter 3.  cheoro oo ther oacoustic 

 

 
53 

 

 
Figure ‎3.5: Pressure and velocity variation with time in a travelling-wave thermoacoustic device [30]. 

 

In Figure ‎3.6, there is a comparison between the Stirling cycle and travelling wave 

thermoacoustic cycle. It can be seen that the ‎thermoacoustic Stirling cycle will be less 

efficient than the Stirling cycle [76]. 

 

Figure ‎3.6: Schematic‎of‎the‎thermodynamic‎cycle‎that‎a‎‘‘gas‎parcel”‎experiences‎in‎the‎regenerator‎[76]. 

 

3.3.3 Key parameters   

There are several important length scales and parameters which are used to design and 

operate the thermoacoustic devices. They will be introduced and described in this 

section. 
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3.3.3.1      Wavelength 

The wavelength of the sound wave can be calculated by equation (3.1) below. The 

wavelength has a strong effect on the length of the thermoacoustic device, and in turn 

the power density of the system. For example, if helium is used, the length of the 

thermoacoustic device will be much longer than a device which uses nitrogen as a 

working gas‎.  

 

/ ,a f                                             (3.1) 

where, λ is the wavelength (m), a is the speed of sound (m/sec), and  f  is the oscillation 

frequency (rad/sec). 

 

3.3.3.2      Thermal penetration depth 

The thermal penetration depth is perpendicular to the direction of the wave 

propagation, and is important in thermoacoustics. The thermal penetration gives an idea 

about heat diffusion, according to the distance between the working gas and solid 

surface of the stack or regenerator. In other words, it is the thickness of the layer 

around the stack plate through which the heat diffuses. This length scale is important 

for understanding the performance of the thermodynamic cycle, since the diffusive heat 

transport between the gas and the solid boundary is only significant within this region 

[77]. It can be expressed‎ as 

 

2
,k

p

k

c


 
                                                             (3.2) 

  

where k is the thermal conductivity of fluid, ρ is the density of fluid, Cp is the specific 

heat of fluid (heat capacity per unit mas), ω is the angular frequency of fluid. 

 



Chapter 3.  cheoro oo ther oacoustic 

 

 
55 

 

3.3.3.3      Viscous penetration depth 

The viscous penetration depth is the thickness of the layer around the stack plate where 

the viscous effects are ‎significant‎. Viscous shear forces occur within this layer, ‎which 

results in the dissipation of acoustic power.  It can be expressed‎ as 

 

2
,v





                                                             (3.3) 

where μ is the dynamic viscosity (Pa s). 

These two parameters are very important in thermoacoustic processes, which determine 

the required spacing within the stack or regenerator. Thereby, at a distance much greater 

than these penetration depths from the solid boundary (e.g. plates of stack) the gas feels 

no thermal or viscous contact with the solid boundaries [74]. In other words, the heat 

transfer between the gas parcel and the stack plate occurs only at the distance less than 

the thermal penetration depth ( k ) from the stack plate.  It should be noted here that 

there is a trade-off between the value of the thermal penetration depth and the viscous 

penetration depth. The Prandtl number describes the ratio between the viscous and 

thermal penetration depth, which is written as 

 

2

.
pv

k

c

k






 
  
 

                                                           (3.4) 

 

The Prandtl number should be as small as possible in regenerators for travelling wave 

thermoacoustics engines [78].  

 

3.3.3.4      Gas parcel displacement 

Gas parcel displacement is an important length scale in the direction of motion of the 

gas. The displacement amplitude at a certain position along the wave-propagation 

direction is given as [78] 
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,au



                                                             (3.5) 

 

where; au is the gas velocity amplitude (m/sec), ω‎ is the angular frequency (rad/sec) 

which can be calculated as 2 f  .  

 

Gas parcel displacement represents half of the total tour of the gas parcel during one 

acoustic cycle. It is interesting to note that the peak-to-peak displacement amplitude 

(2ξ) represents the maximum displacement of the gas parcel in the axial direction during 

each acoustic oscillation cycle [1]. In thermoacoustic engines and refrigerators, the gas 

displacement amplitudes are much larger than the penetration depths, but still much 

smaller than acoustic wavelengths [74], 

 

, .v k                                                                 (3.6) 

 

It should be noted that the perfect length of a heat exchanger, which will be used in a 

thermoacoustic model later, is equal to 2 . The gas displacement amplitude is a very 

small fraction; if compared to a standing-wave device with length of tube equal to half 

the wavelength,  it can be seen that the amplitude is largest in the middle (velocity 

antinode) and smallest at the hard end (velocity node) [78], as shown in Figure ‎3.7 

below. 

 

 

Figure ‎3.7: The gas displacement amplitude variation [79]. 
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3.3.3.5      Relative pressure amplitude‎ 

‎Relative pressure amplitude (RPA)‎‎is the ratio of pressure amplitude 1| |p  to the mean 

pressure mp which can be expressed as 

1| |
100%.

m

p
RPA

p
                                                              (3.7) 

RPA is an important parameter for evaluating the strength of self-excited 

thermoacoustic oscillations [7]. 

 

 

3.3.3.6      Working gas 

To choose a working gas for a thermoacoustic system there are several properties that 

should be considered: Prandtl number, sound speed, thermal conductivity and viscosity. 

As was mentioned before the best working gas for thermoacoustic devices should have 

a low Prandtl number, low viscosity to avoid large viscous dissipation, low sound 

speed, and high thermal conductivity [80]. 

 

 

3.3.3.7      Mean pressure 

The power density in a thermoacoustic system is proportional to the mean pressure  

( mE P ) [30], high mean pressure results in high acoustic power.  However, there is a 

limitation here, for Pm higher than atmospheric pressure the resonator needs to be 

designed and built as a conventional pressure vessel, which results in high material and 

manufacturing costs. It should be noted that the thermal penetration depth δk is inversely 

proportional to square root of Pm (
1

k

mp
  ), so a high pressure results in a small δk, 

which in turn results in a small flow channel size in the regenerator. This makes its 

construction difficult [80]. 
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3.3.3.8      Frequency 

The power density in the thermoacoustic devices is linearly proportional to frequency  

(  mE f ) [48]. Thermal penetration depth δk is inversely proportional to the operating 

frequency (
1

k

mf
  ). High frequency leads to small channel size for the regenerator, 

which will increase the cost of the regenerator material [15]. 

 

 

3.4 Linear thermoacoustic theory 

The important concepts which govern the thermoacoustic phenomena are explained in 

this section. As shown in Figure ‎3.8 below, a half-wavelength resonator of length L, 

which contains a stack, sandwiched between two heat exchangers, generates an acoustic 

wave. The required assumptions are: 

1. Steady state  

2. The plates are rigid and stationary. 

3. The acoustic pressure is x direction only. 

4. Radiation is negligible. 

5. Viscosity is independent of temperature. 

6. The average fluid velocity is zero. 

7. The length of the plates is small compared to the length of the resonator. 

 

 

Figure ‎3.8: A simple short thermoacoustic engine model. 

  



Chapter 3.  cheoro oo ther oacoustic 

 

 
59 

 

The derivations of the thermoacoustics governing equations (continuity, momentum and 

energy) are listed below‎ 

 

3.4.1 Thermoacoustics continuity equation 

The continuity equation is based on a scientific principle ‎that mass is conserved within 

any control volume of the fluid. The change in the amount of mass within a fixed 

control volume can only be caused by the difference between the amount of fluid 

flowing into the control volume and the amount flowing out [81]. This equation is 

expressed as follows [74] 

( ) 0.V
t





 


                                                            (3.4.1) 

                                                       

Equation (3.4.1) consists of the density and velocity of the fluid, so these two variables 

can be expressed in complex notation as mentioned before 

 

   1 1, , , ( ) , , ,i t

m mx y z t x x y z e                                                               (3.4.2) 

 

   1 1, , , , , .i tV x y z t V x y z e V                                                              (3.4.3) 

 

These two equations can be substituted into equation (3.4.1), resulting in 

 

1 1 1( ) ([ ]V ) 0,m m
t
   


   


                                                            (3.4.4) 

  

there is no temporal dependence for the mean density which leads to 
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[ ( )] 0,m x
t






                                                            (3.4.5) 

  

substituting  equation (3.4.5) into equation (3.4.4) will give 

 

1
1 1([ ]V ) 0.m

t


 


  


                                                            (3.4.6) 

  

In addition, assuming the oscillating parts of the variables are very small, then 

multiplying the density by the velocity leads to a very small value, and therefore can be 

neglected. Based on that, equation (3.4.6) becomes 

 

1
1( V ) 0.m

t





 


                                                            (3.4.7) 

  

Complex notation allows replacing the temporal part of the variables by
i te 

 

 

1 1( V ) 0.mi                                                               (3.4.8) 

 

One knows that the velocity vector consists of three components; in the x, y and z 

direction, but the velocity in the x direction is greater than the velocities in y and z 

directions, which can be neglected so equation (3.4.8) will be as follows 

 

1 1( ) 0.m

d
i u

dx
                                                               (3.4.9) 

  

By using the ideal gas law, the density can be written as a function   of the pressure and 

the temperature  
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1 1 1( ) ( )( ).m m mp p R T T                                                                 (3.4.10) 

  

Expanding this equation and taking the second order term out ( 1 1T ) to get 

 

1 1 1( ) ( ),m m m m mp p R T T T                                                                  (3.4.11) 

 

11
1 .m

m m

Tp

T R T


                                                               (3.4.12) 

   

Equation (3.4.12) can be substituted back into equation (3.4.9) to get 

 

 11
1 0.m

m

m m

Tp d
i u

T R T dx


 
 

   
 

                                                            (3.4.13) 

 

By applying the first law of thermodynamics to a control volume and rewriting it in 

temporal form 

 

,
dQ dW dE

dt dt dt
                                                              (3.4.14) 

 

with;  

 

,

,

,p

dQ dT
kA

dt dx

W p V

E c T

 





 



                                                            (3.4.15)  

where Q, W, and E are heat flux, work done on the control volume, and internal energy 

respectively. 
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Combining equation (3.4.15) and (3.4.14) gives 

 

.p p

T p
c c V T k T

t t
 

 
    

 
                                                            (3.4.16)  

 

Based on the last assumptions, the velocity in the x direction is much greater than the 

velocities in y and z direction 

 

1 .p p

T p
c c u T k T

t t
 

 
    

 
                                                            (3.4.17)

      

Also the temperature gradient in x direction is smaller than the temperature gradient in y 

and z directions 

 

2 2

1 2 2
.p p

T T T T p
c c u k

t x y z t
 

     
    

     
                                                            (3.4.18)

  

By replacing the temporal derivatives with i  and rearranging we will get 

 

2 2

1 1 1 2 2
.m

m p

dT T T
c i T u i p k

dx y z
  

   
          

                                                      (3.4.19) 

 

When / 0mdT dx  . Regarding this as a differential equation for the y and 

z ‎dependences of T1, and following the same procedure as before but now including 

y ‎and z dependences of u1 and allowing for arbitrary channel cross section, gives [74] 
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 
   

  
1 1 1

1 11 1
1 ,

1 1

k vm
k

m p v

h hdT
T h p U

c i A dx f



  

  
  

 
                                         (3.4.20) 

where, 

hv function dependant on geometry and δv (thermoviscous function) 

hk function dependant on geometry and δk (thermoviscous function)  

k subscript refers to the thermal penetration depth 

v subscript refers to the viscous penetration depth  

kf  spatial average of hk 

vf  spatial average of hv 

   Prandtl number.   

 

This is most easily verified by direct substitution into equation (3.4.19), using the 

general property that hv and hk satisfy
2 2 2 2 2/ / 2 /h y h z ih      . 

The spatial average of equation (3.4.20) can be found by replacing all the h functions 

with their spatially averaged counterparts as follows 

 

 
   

  
1 1 1

1 11 1
1 .

1 1

k vm
k

m p v

f fdT
T f p U

c i A dx f



  

  
  

 
                                        (3.4.21)

  

By putting the constant pressure specific heat in terms of the ratio of specific heat gives 

 

 
   

  
1 1 1

1 11 1
1 .

1 1

k vm
k

m v

f fdT
T f p U

R i A dx f



   

  
  

 
                                        (3.4.22)

  

Equation (3.4.22) combined with equation (3.4.13) with algebraic arrangements results 

in  the continuity equation of thermoacoustics phenomenon as follows 
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 
 

  
1 1 11 1 .

1 1

k v m
k

m v m

f f dTi Adx
dU f p U

p f T




 


        

                                   (3.4.23)

  

Equation (3.4.23) is the thermoacoustic version of continuity equation. This equation is 

a first order differential equation which describes how the volumetric flow changes as a 

function of pressure, volumetric flow, and the mean temperature gradient. This 

dependence on the mean temperature gradient is what causes the thermoacoustic effect 

to take place. 

 

3.4.2 Thermoacoustics momentum equation 

Starting from Navier Stokes equation 

 

  2 .
V

V V p V
t

 
 

       
                                                            (3.4.24)  

Based on the previous assumptions: 

1. The second term on the left-hand side of equation ( 3.4.24 ) can be neglected as  it is 

made up of the second order terms.   

2. Many of the velocity components are removed since their values are negligible. 

Thereby, the final version of the equation (3.4.24) will be as follows 

 

2 2

1 1 1
1 2 2

.m

dp u u
i u

dx y z
 

  
    

  
                                                            (3.4.25) 

  

Equation (3.4.25) is a differential equation for  1 ,u y z , with boundary condition 1 0u 

at the solid surface. 

By solving this second order differential equation for 1u  
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  1
1 1 ,v

m

dpi
u h

dx
                                                              (3.4.26) 

   

integration of this equation over the cross sectional area of the channel gives 

 

1 1

/
.

1

m

v

i dx A
dp U

f


 


                                                            (3.4.27) 

  

Equation (3.4.27) is the thermoacoustic version of momentum equation. This equation 

is a first order differential equation describing how the pressure changes as a function of 

the volumetric flow and geometrical properties of the channel. 

 

3.4.3 Thermoacoustics energy flow equation 

Based on the first law of thermodynamics, the energy contained within a control volume 

of fluid is the internal plus kinetic energy 

 

21
,

2
V dxdydz 

 
 

 
                                                            (3.4.28) 

  

where, Ɛ is the internal energy. According to the first law of thermodynamics, the 

change in energy must be equal to the heat flow into the system plus the work done on 

the system and the energy gained or lost by mass flow into and out of the control 

volume. The energy equation for a fluid control volume is then described by 
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2 2'1 1
.

2 2
V k T V h V V

t
    

     
                

                               (3.4.29)

  

The term on the left hand side in equation (3.4.29) is the time derivative of equation 

(3.4.28). There are three terms on the right hand side in equation (3.4.29). They are heat 

conduction into the control volume, work done on the control volume (where the stress 

tensor for the fluid is 
' ), and the energy flow due to mass flux into the control volume. 

From the equation (3.4.29), the total power flux H is as follows 

 

2' 1
.

2
H k T V h V V  

 
       

 
                                                            (3.4.30) 

  

The kinetic energy term on the right hand side of the equation (3.4.30) will be ignored 

because it is third order, and the equation will be as follows 

 

 

 ' ,H k T V h V                                                                   (3.4.31)  

 

the V vector represents just the velocity in the x direction; the velocities in y and z 

direction are very small. 

 

The velocity in the x direction is once again assumed to be much greater than the 

velocities in the transverse directions, so the velocity vector is simplified for the 

enthalpy flow term. Also, due to the sinusoidal nature of the time dependence of the 

variables, an average over one period is assumed, and denoted by the over bar in the 

equations below. The second order power flow across the cross sectional area of a duct 

can then be written as follows 
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2 .
T

H k V hu dA
dx

 
 

     
 
                                                             (3.4.32) 

  

Rott’s‎acoustic‎approximation‎can‎ now‎be‎used‎ to‎ simplify‎ this‎equation.‎Because‎all‎

the terms inside the integral are time averaged, the first order parts of all the variables 

are zero. Keeping this in mind and examining the first term which is due to thermal 

conduction, it is assumed that the second order part is much less than the first order part, 

allowing the following simplification 

 

  .m
solid solid

dTT
k dA Ak A k

dx dx

 
  

 
                                                            (3.4.33) 

 

The second term in equation (3.4.32) is due to the stress tensor, and it is assumed that 

this term is of the same order of magnitude as the viscous penetration depth, while the 

last term in equation (3.4.32) is on the order of the acoustic wavelength. The third term 

is evaluated as follows [74, 81] 

 

      112 2
.muh dA u h dA u h dA                                                                  (3.4.34)

   

For a standing wave refrigerator or engine 

 

 
2

0,u dA m                                                               (3.4.35) 

                               

this means that equation (3.4.34) is simplified as follows 

 

   1 1
2

1
Re .

2
muh dA h u dA                                                                      (3.4.36)  

Combining the above results means that 

 



Chapter 3.  cheoro oo ther oacoustic 

 

 
68 

 

 

   2 1 1

1
( ) Re ,

2

m
m solid solid

dT
H x h u dA Ak A k

dx
                                                   (3.4.37)

  

the enthalpy as a function of temperature and pressure is as follows 

 

 1
.p

T dp
dh c dT






                                                              (3.4.38) 

At first order, this becomes 

 

1 1,ph c T                                                                                (3.4.39)  

 

This result can be plugged back into (3.4.37) to obtain the following 

 

 

   2 1 1

1
( ) Re .

2

m
m p solid solid

dT
H x c Tu dA Ak A k

dx
                                               (3.4.40) 

 

Expressions for T1 and u1 were found in equations (3.4.22) and (3.4.26) respectively. If 

these results are plugged into (3.4.40), and the integration is carried out results in the 

following equation  

 

  

 
   

2 1 1

2

1

22

1
Re 1

2 1 1

Im .
2 1 1

k v

v

m p m m
k v solid solid

v

f f
H p U

f

c U dT dT
f f Ak A k

dx dxA f






 

       
     

  
 

                           (3.4.41)
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Equation (3.4.41) describes the energy flow through standing wave thermoacoustic 

devices only. The energy equation used in unison with the thermoacoustic continuity 

and momentum equations is the basis for most, if not all, models of thermoacoustic 

devices [81]. 

 

3.5 Regenerators  

3.5.1 Regular geometries of regenerators   

According to the linear thermoacoustic theory [34] and [74], the time-averaged acoustic 

power in a length ‎of channel can be written in complex notation form as 

 

2 1 1
1 1

1
Re

2

dE dp dU
U p

dx dx dx

 
  

 
,                                              (3.5.1) 

 

where, 1U  is the complex volumetric velocity and 1p  is the pressure.‎ “~”‎ indicates‎a‎

complex conjugate. Subscript 2 indicates that it is a second order quantity.  Re 

denotes the real part of a complex number.  

 

For regular geometries: Parallel-plates, pin-array and circular-pores, equation (3.5.1) 

can be written as 

 

 

 
2 22

1 1 1 1

1 1
Re ,

2 2 2

v

k

rdE
U p gpU

dx r
                                            (3.5.2) 

 

where vr  is the viscous resistance per unit length of the channel, kr1  is the thermal-

relaxation conductance per unit length of the channel, and g is the complex gain. They 

can be written as 
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 
2

1

Im

v

v

g

m
v

f

f

A
r







,                                                           (3.5.3) 

 k

m

g

k

f
p

A

r



 Im

11 




,                                                      (3.5.4) 

and  

 

  
1

,
1 1

k v m

v m

f f dT
g

f T dx




 
                                                  (3.5.5) 

 

where,  ,  , m , mp  and mT  are the ratio of specific heat capacities, Prandtl number, 

mean density, mean pressure and mean temperature of the working gas, respectively. 

gA  is the cross sectional area of gas channels in the regenerator.  

vf and kf  have analytical formulae. For the parallel-plates it can be wrttien as follows 

 

 

 
0

0

tanh 1 /
,

1 /

k

k

k

i y
f

i y





  


                                                  (3.5.6) 

 

 
 

 
0

0

tanh 1 /
,

1 /

v

v

v

i y
f

i y





  


                                                  (3.5.7) 

 

where 0y  is the half of the plate spacing (m), k  is the thermal penetration depth (m),  

v  is the viscous penetration depth (m). 

Also, for the circular-pores vf and kf  can be wrttien using complex Bessel functions as 

follows 
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the effective radius to be defined 0 2 /r A  and J  is the Bessel function. 

It should be mentioned here that the first term on the right hand side of equation (3.5.2) 

demonstrates viscous dissipation, and the second term represents thermal-relaxation 

dissipation. Both of these consume acoustic power, leading to high losses. The third 

term denotes the acoustic power produced from heat energy. 

 

3.5.2 Stacked-screen regenerators 

A set of thermoacoustic equations for a stacked-screen (wire-meshes) regenerator with 

the method of simple harmonic analysis were proposed by Swift and Ward [79]. Thus, 

the analysis of the acoustic power dissipation and production in the stacked-screen 

regenerator can be further developed. Substituting their continuity and momentum 

equations into equation (3.5.2) leads 
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where,  denotes a local spatial average. m , m  and m are the mean thermal expansion 

coefficient, mean ratio of specific heats, and mean dynamic viscosity of the gas, 

respectively.  b  ,  1c  ,  2c  ,  1cg Re , and  1g Re  are factors resulting from the 

fitting of data of Kays and London [82].  

 

p , T , s  and h are defined as 

 

   1 1phase ,p phase u p                                                       (3.5.11) 

   1 ,1
,T u

phase u phase T                                                       (3.5.12) 

 , , ,1 ,s m p m s m s mc c                                                         (3.5.13) 

 2 1/3 28 ,h h kir b                                                        (3.5.14) 

 

subscript s  means solid. 

s  is the correction factor for finite solid heat capacity, which gives the ratio of gas heat 

capacity to solid heat capacity. Typically, regenerators have s << 1.  

Reynolds number is a positive real number, and it can be written as 

 

1 14 .h m mRe u r                                                       (3.5.15) 

 

3.6 Heat exchangers 

In DeltaEC software, heat exchangers are used to inject or remove heat. DeltaEC heat 

exchangers have surface area, so they experience both viscous and thermal dissipation 

of acoustic power. 
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In heat exchangers, wave propagation is calculated using the below equations which 

come from simplification of equations (3.4.23) and (3.4.27) 
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The following equations can be used to calculate kf , vf  and s for a heat exchanger 

using parallel plate geometry  
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Similarly, for heat exchangers with cylindrical geometry and if 0 / kr  < 25, kf  and vf  

can be calculated using complex Bessel functions. 
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If ‎ ‎ 0 / kr   > 30, the boundary-layer approximation is used 

 

  01 / ,k kf i r                                                       (3.6.8) 

 

  01 / .v vf i r                                                       (3.6.9) 

  

For intermediate values, linear interpolation is used to make a smooth match between 

the two regimes. In both cases, s  is calculated using equation (3.6.5). 

 

3.7 Thermal buffer tubes 

The thermal buffer tube provides a thermal buffer between the hot heat exchanger and 

room temperature, thus limiting heat losses. Usually, it is located behind the HHX to 

insulate it from the ‎surroundings. There is a trade-off between the length of the TBT 

and heat losses to the ‎surroundings. If it is short, the pipe cannot be insulated to prevent 

heat losses. In contrast, if ‎the TBT is too long the viscous losses will be high, leading to 

low system performance.‎ The TBT length should be longer than the peak-to-peak gas 

displacement amplitude ‎2 | | [74]. 
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In thermal buffer tubes, wave propagation is calculated using the below equations 

which ‎come from simplification of equations (3.4.23) and (3.4.27)‎ 
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Subject to the condition that the energy flow ‎ 2,kH ‎ is independent of x, which imposes 

the ‎following condition on ‎  mT x  
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 (3.7.3) 

For the thermal buffer tube 
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where =wall cross-sectional area/ perimeter.  

 

3.8 Feedback pipes  

A FBP is necessary to contain the working fluid of the thermoacoustic system, sustain 

the ‎transmission of the acoustic power through the system and close the looped 

waveguide. ‎Based on the FBP length, the operating system frequency can be calculated.‎ 

In FBPs with no superimposed steady flow, p1 and U1 evolve according to 
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which is equivalent to 
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In narrow FBPs, for 0 / kr  < 25, kf  and vf  are calculated using complex Bessel 

functions [1], as expressed in equations (3.6.6) and (3.6.7). 

 

If 0 / kr   > 30, the boundary-layer approximation is used 

 

 

 

 1 / 2 ,k kf i A                                                        (3.8.4) 
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 1 / 2 .v vf i A                                                        (3.8.5) 

 

In both cases, s  is calculated using equation (3.6.5). 

 

3.9 DeltaEC software 

DeltaEC‎ “Design Environment for Low-amplitude ThermoAcoustic Energy 

Conversion”‎ is‎ a‎ computer‎ program‎ that‎ can‎ calculate‎ details‎ of‎ how‎ thermoacoustic‎

systems perform. The program was originally written by Dr Bill Ward and Dr Gregory 

Swift of Los Alamos National Laboratories.  

 

DeltaEC numerically integrates the continuity, momentum, and energy equations for 

thermoacoustic devices. It is based on the linear thermoacoustic theory discussed in 

earlier sections. It uses a simplified one-dimensional approximation and assumes that 

the amplitude of oscillation is low and has sinusoidal time dependence. Models include 

a number of segments, which are combined together by the user. These segments reflect 

the physical properties of the thermoacoustic devices and assume the problem is one 

dimensional throughout the segment. The solver assumes that all oscillating variables 

have a time dependence of Re ( i te  ). This assumption on the time dependence 

transforms the temporal part of the governing equations from differential equations in 

time to algebraic equations of time. This leaves the governing equations as spatial 

differential equations, which are much easier to solve than the starting partial 

differential equations [81]. 

 

DeltaEC numerically integrates the one-dimensional wave equation to get a 

converged ‎solution by employing an iterative shooting process. The shooting method 

starts with a guess value of the model parameters and integrates through 

the ‎model. ‎After‎each‎ ‎‎integration ‎round‎ DeltaEC compares the values of targets (outputs) 
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to the guess (inputs). If the targets do not match, the guess is adjusted and the 

integration is repeated. In other words, if the difference between guess and target 

( ) 0r g t   is zero, leading to a converged solution, where g is the guess, t is the target 

and r is the calculated results. If any of the guesses are too far off from the ultimate 

solution, then the procedure will not converge on the targets [83]. 

 

Essentially, the users can build a thermoacoustic system by selecting required 

acoustic ‎elements as needed. DeltaEC software gives a high flexibility to choose 

various ‎thermoacoustic‎ system’s‎ segments,‎ such‎ as‎ compliance‎ volumes,‎ inertance‎

ducts, heat ‎exchangers and regenerators‎, etc. After having a complete system, DeltaEC‎ 

starts to solve the ‎appropriate 1-D wave equation through each of these segments‎. The 

program does this for the ‎whole system of segments, by ensuring that the pressure 

and ‎volumetric flow rates are ‎matched at the boundaries of ‎each segment [18] 

 

In general, ‎DeltaEC‎ is a computer program that can calculate details of how 

thermoacoustic systems perform. It is based on the linear theory and assumes that ‎the 

amplitude of oscillation is low and has ‎sinusoidal time dependence. ‎It‎ should‎ to‎ be‎

mentioned‎here‎that‎‎ the linear theory means all variables oscillate at angular velocity w. 

Temporal parts are replaced by i te  by using complex notation methods, where i te  is        

known as the oscillatory part. At the beginning of the numerical solution, the shooting 

method starts with a guess value of the model parameters and integrates ‎through 

the ‎model. ‎After each ‏‎‏‏‏integration‏ round ‏DeltaEC compares the values of targets ‎‎(outputs) 

to the guess (inputs). If the targets do not match, the guess is adjusted and the ‎integration 

is repeated. 
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Chapter 4 Analysis of a looped-tube travelling-wave 

thermoacoustic engine with a by-pass 

configuration 

4.1 Introduction 

A new configuration of thermoacoustic system (a looped-tube with a by-pass pipe) was 

recently proposed for low ‎temperature travelling wave thermoacoustic engines, and a 

prototype using atmospheric ‎air, as the working gas achieved a minimum onset 

temperature difference of 65°C [39]. ‎However, no further research has been reported 

about this new configuration to reveal ‎its advantages and disadvantages. This chapter 

aims to analyse this type of engine ‎through comprehensive numerical research. DeltaEC 

software has been employed ‎to ‎simulate and ‎analyse ‎this configuration. An engine of 

this type having dimensions ‎similar to the reported prototype was firstly modelled. The 

calculated results were then ‎qualitatively compared with the reported experimental data. 

The verified model was ‎then used to further understand the working principle of this 

type of thermoacoustic ‎engine.  ‎ 

 

4.2 Modelling and simulations of a by-pass engine     

A travelling wave thermoacoustic engine with the by-pass configuration is 

schematically shown‎ in Figure ‎4.1. It is denoted as a by-pass engine hereafter, and is 

modelled using DeltaEC software ‎‎(Design Environment for Low-amplitude 

ThermoAcoustic Energy Conversion) [14, 74]. ‎The purpose of this modelling is to 

qualitatively capture and demonstrate the working ‎principle of this type of engine [39], 

rather than to accurately reproduce the prototype. ‎ 
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Figure ‎4.1: Schematic diagram of a travelling wave thermoacoustic engine with a by-pass configuration 

[39]. 

The arrows indicate the direction of the acoustic power flow according to the simulations presented 

later in this paper. HHX: hot heat exchanger, REG: regenerator, AHX: ambient heat exchanger, 

TBT: thermal buffer tube.   

As shown in Figure ‎4.1, this engine has two stages, each stage having a hot heat 

exchanger (HHX), a regenerator (REG), and an ambient heat exchanger (AHX). The 

system also has a feedback pipe (FBP), a by-pass pipe, a compliance volume, and a 

“phase‎shifting‎pipe”.‎It‎should‎be‎noted‎that‎the‎“phase‎shifting‎pipe”‎was‎denoted‎as‎

an‎ “inertance‎ tube”‎ in‎ reference‎ [39]. As explained later in this chapter, the inertance 

tube, widely used in pulse-tube coolers, usually has a very small cross-sectional area 

and long length to provide a significant phase shifting effect [66] Strictly speaking, the 

pipe that connects the compliance volume and the engine core in the reference [39] does 

not have‎the‎characteristics‎of‎an‎“inertance‎pipe”,‎and‎therefore‎is‎denoted‎as‎a‎“phase‎

shifting‎pipe”‎instead‎in‎this‎research.    

 

It should be noted that, like other travelling wave thermoacoustic engines, there are 

torus paths within this by-pass configuration. As a result, Gedeon streaming, a second-

order time-averaged mass flow, will be induced along the loop. In such a system, this 
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type of ‎ mass flow can take heat from the hot heat exchanger of the engine and dump it 

at the ambient heat exchanger, causing heat loss and reducing the thermal efficiency 

[10]. This is a well understood effect, which can be supressed using a jet-pump [10] or 

elastic membrane [74]. In this chapter, it is assumed that the Gedeon streaming has been 

supressed in order to simplify the analysis.      

 

From reference [39], some dimensions and operating parameters of the prototype were 

reported in the paper and the associated conference presentation. The working gas was 

air at atmospheric pressure. The operating frequency was 119 Hz. The heat source 

temperature was 148 °C, and the heat sink temperature was 28 °C. The heat exchangers 

of the prototype were made by soldering several lays of copper mesh screen to copper 

water tubes. The regenerators were made of stainless steel mesh discs. 

 

These reported dimensions and operating parameters are used as a basic framework to 

establish the present DeltaEC model. Screen-type heat exchangers (i.e., SX) and 

regenerators (i.e., STKSCREEN) have been used in the model. Some unreported 

parameters are then carefully tuned to force the model to closely approach the reported 

experimental data, including the pressure amplitude at location P2, and the acoustic 

power measured at locations P1 and P2 (see Figure ‎4.1). The final dimensions used in 

this model are summarised in Table ‎4.1.  

Table ‎4.1: The dimensions used in the present model of a by-pass engine. 

Part Area (m
2
)

 
Length(mm)  rh (µm) Porosity  

AHX1 0.012
*
 0.56

†
 40 0.8

*
 

REG1 0.012
*
 1.58

†
 150 0.73

*
 

HHX1 0.012
*
 0.56

†
 120 0.8

*
 

AHX2 0.012
*
 0.56

†
 120 0.8

*
 

REG2 0.012
*
 1.58

†
 130 0.73

*
 

HHX2 0.012
*
 0.56

†
 120 0.8

*
 

 Diameter (mm) Length (cm) 

By-pass pipe 75* 100 

Feedback pipe(FBP) 75* 175 

Phase shifting pipe 50* 120 

Compliance volume 110* 12.7 

Thermal buffer tube  100 mm  120 mm
*
  3

*
 

*
These dimensions were the same as those reported in the paper (

*
) and the associated conference 

presentation (
†
) [39].
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Based on the obtained model, the distribution of pressure amplitude, the acoustic power 

flow along the system, normalised specific acoustic impedance, and phase angle 

between the pressure and velocity oscillations are then calculated and presented in 

Figure ‎4.2-Figure ‎4.5. The coordinate x starts from (and also ends at) Junction 1 as 

shown in Figure ‎4.1.  

 

Figure ‎4.2: Distribution of the amplitude of acoustic pressure along the engine. 

 The solid squares represent the measured data in the paper [39]. 

 

As reported in reference [39], the pressure amplitude at location P2 in the resonator (see 

Figure ‎4.1) was measured as 3430 Pa. According to the estimation, the location P2 is 

about 15-25 cm away from Junction 2. For the convenience of comparison, the pressure 

amplitude is set to 3430 Pa at the location P2 in the present model. Figure ‎4.2 shows the 

calculated pressure amplitude along the main loop (solid line) and by-pass pipe (dashed 

line with symbols). The measured pressure amplitude at location P2 (see Figure ‎4.1) in 

reference [39] is also represented by a solid square in Figure ‎4.2. The horizontal error 

bar shows the uncertainty of the location of P2 due to the estimation.     
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Figure ‎4.3: Distribution of acoustic power along the engine. 

The solid squares represent the measured data in the paper [39]. 

Figure ‎4.3 shows the acoustic power flow along the system according to the present 

model. The simulation starts from the Junction 1 where x=0. The total acoustic power is 

around 80 W, and it splits into two parts. One part (about 47 W) flows into the by-pass 

pipe, and the other part (about 33 W) flows into the compliance volume. The 

compliance volume and phase shifting pipe dissipate about 2 W, and the remaining 31 

W power flows into the first engine stage. The two engine stages slightly amplify the 

acoustic power to 37 W, which then joins with the acoustic power (45 W) exiting from 

the by-pass pipe. The total power of about 82 W flows into the FBP. About 2 W of 

acoustic power has been dissipated in the FBP, and the remaining 80 W flows back to 

starting point (x=0).  

 

In Figure 4.2 and Figure 4.3, only two points have been selected to carry out the 

validation of the current simulation model. This is in line with the procedures ‎ used by 

Kees [39] who used only these two locations to measure the pressure amplitude and 

acoustic power. 

 

In reference [39] acoustic power was measured at two locations, P1 and P2, as 

schematically shown in Figure ‎4.1. Location P1 lies in the centre of the phase shifting 

pipe, and location P2 is located about 15-25 cm away from Junction 2. The measured 
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acoustic power was about 35 W at location P1 and about 78 W at location P2. As shown 

in Figure ‎4.3, in the present model, the calculated acoustic power is 32 W and 79 W at 

locations P1 and P2 respectively, showing a reasonably good agreement.  

 

As reported in reference [39], the design principle of the prototype was so that the 

specific acoustic impedance at the end of the FBP (x=0 or 3.1 m) should be tuned to the 

characteristic impedance ρma for air at atmospheric pressure, so that the acoustic 

reflection within the FBP can be minimised. As such, the acoustic power can be 

transmitted through the FBP with the least losses [39]. Here, the specific acoustic 

impedance is defined as the ratio of acoustic pressure   over acoustic velocity   , 

z=    ⁄  [74].  

 

To check this principle in the present model, normalised specific acoustic impedance 

|z|/ρma has been calculated and presented in Figure ‎4.4. It has been found that |z|/ρma at 

the end of the FBP (x=3.1 m) is about 0.7. The value of |z|/ρma increases along the 

compliance volume from 2.45 to 4, and then sharply drops to 0.7 at the start of the 

phase shifting pipe, due to a sudden change of the cross sectional area, which is in the 

range 4.6-5.4 around the two regenerators of the prototype (see Figure ‎4.4). According 

to reference [39], it was estimated to be in the range of 4.1-6.1 around the two 

regenerators, but no measurement was reported. Furthermore, |z|/ρma is in the range 0.6-

1.4 within the FBP, which is very close to the ideal value of 1 as proposed in the 

reference [39]. As expected, |z|/ρma is close to 1 throughout the by-pass pipe.  
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Figure ‎4.4: Distribution of the normalized specific acoustic impedance along the engine. 

 

To further check the working principle of this by-pass engine, the phase difference 

between the pressure and velocity oscillations has been calculated and shown in 

Figure ‎4.5. The compliance volume section shifts the phase significantly from -56° to 

about -8°. However, the phase shifting pipe (the so-called‎“inertance‎tube”‎in reference 

[39]) works like a section of FBP. The phase shifting effect is insignificant. This is not a 

surprise, because its diameter is 50 mm, which is comparable to the diameter of the FBP 

(i.e., 75 mm). For this reason, it does not have the characteristics of a typical inertance 

tube, and therefore it is denoted as phase shifting pipe in this study.  

 

 

Figure ‎4.5:‎Phase‎angle‎θ‎between‎pressure‎and‎velocity‎oscillations‎along‎the‎engine. 
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Since the regenerator and the heat exchangers have a high porosity, and a much larger 

cross-sectional area than the phase shifting pipe, their large volumes introduce a strong 

compliance effect. As a result, the phase angle has been sharply shifted from 18° to 39° 

within the engine core section, as shown in Figure ‎4.5. This is similar to a typical 

looped-tube travelling wave thermoacoustic engine [12]. The phase angle is then shifted 

back to around 12° where the by-pass pipe re-joins with the engine branch at Junction 2. 

Thereafter, the phase angle changes gradually along the FBP as expected.   

 

 

4.3 Discussion the by-pass configuration   

According to Figure ‎4.3, the directions of the acoustic power flow are then 

schematically shown in Figure ‎4.1. Air is the working gas and the speed of sound is 

around 343 m/s at room temperature. As the operating frequency is 119 Hz, the 

wavelength is 288 cm. According to Table 1, the lengths of by-pass pipe and FBP are 

100 and 175 cm, respectively. Hence the total length of the loop formed by these two 

components is about 275 cm, which is very close to the sound wavelength under these 

conditions. Furthermore, according to Figure ‎4.5, both the by-pass (dashed line with 

symbols) and the FBP have a phase angle in the range -22°<Ɵ<22°, and therefore a near 

travelling wave field has been achieved in these two components. From the acoustic 

viewpoint, these two components seem to form a near-travelling wave acoustic 

resonator for the engine.   

  

Following the above analysis, the engine branch (including compliance, the phase 

shifting pipe, and the engine core) extracts a part (i.e., <50%) of the acoustic work from 

the resonator, slightly amplifies it within the engine core, and then injects it back to the 

resonator. The compliance volume and the phase shifting pipe both provide the required 

phase shifting for the engine core to operate in a right phase condition. As the travelling 

wave resonator has low losses, it requires little acoustic power to sustain acoustic 

resonance, leading to low onset temperature difference.  
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The short regenerator length (<2 mm) is another special design of the prototype. 

According to the linear thermoacoustic theory [14, 74, 79], the time-averaged acoustic 

power 2dE  produced in length dx  of a stack-screen regenerator, can be approximately 

written as [79, 76]  
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In equation (4.1), gA is the cross-sectional occupied by working gas, Re {} denotes the 

real part of a complex variable, and 〈〉 denotes a local spatial average. m , m  and m

are the mean thermal expansion coefficient, mean ratio of specific heats, and mean 

dynamic viscosity of the gas, respectively.  b  ,  1c  ,  2c  ,  1cg Re , and  1g Re

are factors resulting from the fitting of data of Kays and London [82].  

 

p , T  
s  and h are defined as 

 

 

 1 1, ,p p u                                                              (4.2) 
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subscript s  means solid. 

 

 2 1/3 28 .h h kir b                                                                (4.5) 

 

Reynolds number is a positive real number and it can be written as [84], 

 

 1 14 .h m mRe u r                                                               (4.6) 

In the curly brackets at the right hand side of equation (4.1), the first term represents the 

acoustic power dissipation due to thermal relaxation effects, the second and third terms 

together represent the acoustic power dissipation due to flow resistance in the 

regenerator, and the fourth term is the acoustic power generation from thermal energy 

through the thermoacoustic effect. Integrating the right hand side of equation (4.1) over 

the length of the regenerator L leads to the total net acoustic power generation by the 

regenerator as 
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In order to further demonstrate the effect of the length of a regenerator on the power 

production within it, neglecting the dissipations due to thermal relaxation and viscosity 

in equation (4.7) leads to 
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According to equation (4.8), one can see that acoustic power production from the 

regenerator strongly depends on the length of the regenerator L, the temperature 

gradient 
   

  
, and the term   ̃ 〈  〉 that is related to the acoustic power flowing into the 

regenerator. Qualitatively speaking, in order to increase the acoustic power production 

from a regenerator, we should increase the regenerator length, the temperature gradient, 

or the acoustic power flowing into the cold end of the regenerator. However, these 

parameters are strongly dependent on one another. For instance, the average 

temperature gradient along the regenerator depends on the length of the regenerator, and 

can be defined as: 

 

,m H L
dT T T

dx L


                                                             (4.9) 

  

where TH  and TL are the temperatures at the hot and cold end of the regenerator, 

respectively. According to equation (4.9), for a given temperature difference, the 

temperature gradient decreases as the regenerator length increases. Therefore, in a 

practical design, a trade-off is needed to obtain an optimal regenerator length when the 

temperature difference is given. The derivation of these equations has been explained in 

details in chapter 3. ‎ 

 

Looking back to the prototype [39], for the very low temperature heat sources, the 

temperature differential between the two ends of the regenerator is very small. 
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Therefore, the regenerator length has to be very short to achieve a sufficient temperature 

gradient for a positive net power production, according to equation (4.7). The net power 

generation of one engine stage may be still too low, since the regenerator length is so 

short. In order to generate enough acoustic power to maintain the acoustic oscillation, 

the prototype was designed with two engine stages [39].     

 

As analysed above, both the travelling wave resonator and short regenerators are likely 

to be the factors behind ‎ the extremely low onset temperature difference achieved by the 

by-pass engine prototype. Overall, it is a very successful design strategy to reduce the 

engine’s‎ onset‎ temperature‎ difference.‎However,‎ as‎ a‎ power‎ generator,‎ two‎ important‎

performance parameters are power density and thermal efficiency. The researcher ‎ will 

continue to analyse whether‎ there are any drawbacks due to this by-pass engine 

configuration.  

 

Firstly, as shown in Figure ‎4.3, the net power production by the two engine stages is 

only 6 Watts, while the acoustic power flow within the resonator is about 80 Watts, 

leading to a low power density. This problem will get even worse if gas with high speed 

of sound (e.g., helium) is used as working fluid, because the total length of the loop is 

around one wave-length.  

 

Secondly, in the prototype [39], the regenerator is around 1.58 mm in length, while the 

calculated temperature difference between the two ends of the regenerators is over 

100°C. As a result, the axial temperature gradient along the regenerator is over 

60,000°C/m, which is extremely high.‎For‎reference,‎in‎Backhaus‎and‎Swift’s‎travelling‎

wave Stirling engine, the temperature difference is about 600-700°C and the regenerator 

length is 8.89 cm [10], so the temperature gradient along the regenerator is in the range 

6750-7874°C/m. The temperature gradient along the regenerators of the prototype is 10 

times higher‎than‎that‎ in‎Backhaus‎and‎Swift’s‎engine.‎Apparently,‎such‎an‎extremely‎

short regenerator will potentially cause severe heat conduction losses from the hot heat 

exchanger to the ambient heat exchanger through the regenerator. Such heat loss will 

increase dramatically if one increases the temperature difference to increase power 
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production. To reduce such heat conduction loss, the regenerator length has to be 

increased to ensure the temperature gradient is in a reasonable range. 

 

The heat power input to the prototype, its net acoustic power production, and its thermal 

efficiency were not reported in reference [39]. It is therefore unknown how efficient the 

prototype was. This, however, is a very interesting and important question. In the 

present model, the temperatures of the hot heat exchanger and cold heat exchanger are 

kept the same as those in the experiments. Under these conditions, the calculated heat 

input to each hot heat exchanger is around 600 W, and thus the total heat energy input is 

1200 W as the system consists of two engine units. As shown in Figure ‎4.3, the total net 

acoustic power generation is about 6 W. If one roughly assumes this net power 

production‎as‎the‎engine’s‎power‎output,‎the‎thermal‎efficiency‎of‎the‎modelled‎engine‎

is estimated at around 0.5%.  

 

It should be noted that the researcher has used idealised Screen-type heat exchangers in 

this model, which are assumed to have perfect heat transfer between the working gas 

and the metal surface of the heat exchanger. The actual heat exchangers in the prototype 

were made by soldering a few lays of copper mesh to copper tubes [39]. The heat 

transfer to the working gas would be much lower than the prediction based on the 

idealised Screen-type heat exchangers in our simulation. Therefore, the actual efficiency 

of the prototype, which was not reported, should be higher than our predictions here.  

 

Nevertheless, in order to make this type of engine technically attractive, both its power 

density and thermal efficiency need to be better than, or at least as good as other 

travelling wave thermoacoustic engines. A few operations can be performed to achieve 

this‎, such as increasing the charging pressure‎. For‎ instance,‎ Backhaus‎ and‎ Swift’s‎

thermoacoustic Stirling engine used helium at 30 bar as working fluid [10].‎ Luo’s‎

thermoacoustic generators used helium at 50 or 60 bar as the working gas [61, 64]. 

Secondly, the temperature of the heat source can be increased, and the regenerator 

length needs to be increased accordingly.  
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Alternatively, if the heat source temperature is low, the number of engine stages can be 

increased. This, however, will increase the number of heat exchangers, which are 

expensive and bulky. Hence, increasing the regenerator length and mean pressure seem 

to be more feasible. It is unclear however whether‎ such modifications would violate the 

working principle as discussed above. In the next chapter, these problems will be 

investigated. 

 

4.4 Conclusions  

This chapter presents a comprehensive numerical research of a travelling 

wave ‎thermoacoustic engine with a by-pass configuration. Based on the reported 

dimensions ‎and operating parameters, an engine of this type was modelled to 

qualitatively represent ‎this prototype. The working principle was then demonstrated and 

analysed. ‎ 

According to the results, this type of engine essentially operates on the 

same ‎thermodynamic principle as other travelling wave thermoacoustic engines, 

differing only ‎in the design of the acoustic resonator.  The novelty of such a by-pass 

configuration [39] ‎is that the by-pass and FBPs actually created a pure travelling wave 

resonator. ‎The engine unit extracts small amount of acoustic work from the resonator, 

and ‎amplifies and sends it back to it. As the pure travelling wave resonator has very 

low ‎losses, it requires very little acoustic power to sustain an acoustic resonance. This is 

quite ‎similar to the phenomenon of children playing on swings, where a small push 

could ‎sustain the swing for a long time. Both the travelling wave resonator and two 

stages ‎of engines with very short regenerators are effective measures to significantly 

reduce the ‎engine’s‎onset‎temperature‎difference.‎‎ 

The acoustic power fed back to the engine branch is low, because the by-pass pipe 

shunts ‎more than half of the power flow away. As a result, the net acoustic power 

production ‎from the engine core is relatively low. The short regenerator is useful for 

utilising low ‎temperature heat sources, but it also limits the power generation capacity 



Chapter 4.  Analysis of a looped-tube travelling-wave  thermoacoustic engine with a by-

pass configuration 

 

 
93 

 

and potentially ‎causes severe heat conduction losses. Both of these features could lead 

to a low ‎power density and low thermal efficiency.‎ 
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Chapter 5 Application of a looped-tube travelling-

wave thermoacoustic engine with a by-pass 

configuration to cooler 

5.1 Introduction  

In the previous‎ chaper, the working principle of the by-pass type thermoacoustic engine 

has ‎been formulated and analysed. The agreement between the simulations and 

the ‎experimental results demonstrate that the model has captured the essence of working 

principle of ‎this type of thermoacoustic engine. It was also indicated that the protype 

has several ‎drawbacks, such as low power density. In this chapter, a thermoacoustic 

cooler is ‎coupled to the engine to utilise its acoustic power, allowing the evaluation of 

thermal ‎efficiency. The research will then focus on how to improve the power density 

and ‎thermal efficiency of this by-pass type engine without violating the working 

principles of ‎thermodynamics‎. ‎ 

5.2 The concept 

The by-pass configuration will now be applied to design a thermally driven 

thermoacoustic ‎refrigerator with a cooling temperature at about -20°C. The targeted 

waste heat ‎source is the exhaust gas of vehicle engines, which has a temperature in the 

range ‎of 200-300°C. The ambient temperature is set to 28°C. The whole system has 

the ‎same configuration as that shown in Figure ‎4.1 in the last chapter. However, 

the ‎second engine unit is replaced by a cooler stage as shown in Figure ‎5.1, and 

the ‎regenerator of the engine stage has been increased from 1.58 to 10 mm to 

utilise ‎such a heat source. The working gas is nitrogen at 10 bar. The operating 

frequency is ‎reduced to about 76.5 Hz. 

 

The dimensions of the main components are summarised in Table ‎5.1. The regenerators 

are made of stainless steel mesh screen. All of the heat exchangers have a tube-and-shell 

configuration, which is simpler for manufacturing than the idealised Screen-type heat 
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exchanger. In Table ‎5.1, AHX1, REG1 and HHX1 form the engine unit, while AHX2, 

REG2‎and‎CHX2‎form‎the‎cooler‎unit.‎In‎de‎Blok’s‎prototype,‎the‎gap‎between‎the‎two‎

engine stages is only about 3 cm, to act as a TBT, due to the low temperature of the heat 

source. In this system, the temperature difference between HHX1 and AHX2 is about 

230°C, and therefore, its length is increased to 19 cm, to reduce the heat losses from the 

hot heat exchanger of the engine stage to the ambient heat exchanger of the cooler 

stage.  

 

Table  5.1: The dimensions of the components of the thermally driven thermoacoustic cooler. 

Part Diameter (cm) Length (mm) rh (um) Porosity 

REG1 13.8 10 30 0.77 

REG2 13.8 10 30 0.77 

AHX1 13.8 21 700 0.5 

AHX2 13.8 21 800 0.5 

HHX1 13.8 20 800 0.51 

CHX2 13.8 21 800 0.5 

Part Diameter (mm) Length (cm) 

By-pass pipe 55.2 120
 

Feedback pipe(FBP) 71.3 308 

Phase shifting pipe 42.2 120 

Compliance volume 100.9 13.6 

Thermal buffer tube (TBT)  44.0 19 

 

 

5.3 Effect of important design parameters 

In this section, the effect of the important parameters is investigated. The effect of each 

parameter is carried out individually, to reveal how the parameter affects the 

thermoacoustic engine-driven cooler ‎performance. The lengths of the regenerator, by-

pass pipe, phase shifting pipe, compliance volume and TBT are important design 

parameters, and therefore are selected and varied to determine the ideal design 

parameters, as shown in Figure ‎5.2-Figure ‎5.6. 
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Figure ‎5.1: Schematic diagram of the thermoacoustic engine driven cooler with a by-pass configuration. 

HHX: hot heat exchanger, REG: regenerator, CHX: cold heat exchanger, AHX: ambient heat 

exchanger, TBT: thermal buffer tube.  

 

Figure ‎5.2: Engine efficiency changes as the length of the regenerator varies. 

 

Figure ‎5.2 shows the effect of the regenerator length of the engine stage on efficiency. 

Here, the engine efficiency is defined as the ratio of acoustic power consumption of the 
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cooler over the heat input to the engine. It can be found that there is an ideal regenerator 

length of about 10 mm, and it is selected for the final design as summarised in 

Table ‎5.1. The regenerator length is crucial, as on one hand, its flow resistance increases 

when the length increases, leading to high acoustic losses. On the other hand, according 

to equation (4.7) in the previous‎ chapter, the acoustic power production is 

approximately propotional to the temperature gradient. For a given temperature 

difference, the longer the length, the smaller the temperature gradient. Furthermore, the 

shorter the length, the higher the conductive heat loss through the regenerator. Also its 

flow resistance increases when the length increases, leading to high acoustic 

losses.‎Therefore, a very careful trade-off is required.  

 

Figure ‎5.3 shows the relationship between the engine efficiency and length of the by-

pass pipe. The ideal length is about 120 cm, and it is selected for the final design. 

Similarly, Figure ‎5.4 shows the relationship between the length of the phase shifting 

pipe and engine efficiency. The ideal length is about 120 cm, and it is selected for the 

final design. Figure ‎5.5 shows the effect of the length of the compliance volume on the 

engine efficiency. Compared with other parameters, it has a relatively weak effect on 

the engine efficiency. In the final optimised model, the length of the compliance volume 

is selected to be 13.6 cm. The by-pass pipe, compliance volume and phase shifting pipe 

are all the phase control components. Their dimensions are important for achieving the 

right phase and impedance within the engine and cooler units, as well as in the FBP.  

 

Figure ‎5.6 shows engine efficiency as a function of the length of the TBT. It can be 

found from this figure that its length slightly‎ affects the engine efficiency. It is selected 

as 19 cm in the final model. In practice, it provides a thermal buffer between the hot 

heat exchanger and room temperature. Its length should be much greater than the local 

gas displacement. In the present model, the local gas displacement amplitude is around 

3 cm in this system. The length of the TBT is about 6 times this displacement, which is 

in‎ line‎with‎ the‎ arrangement‎ of‎ Backhaus‎ and‎ Swift’s‎ thermoacoustic‎ Stirling‎ engine‎

[10].    
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 Figure ‎5.3: Engine efficiency changes as the length of the by-pass pipe varies. 

 

 

Figure ‎5.4: Engine efficiency changes as the length of the phase shifting pipe varies. 
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Figure ‎5.5: Engine efficiency changes as the length of the compliance volume varies. 

 

 

Figure ‎5.6: Engine efficiency changes as the length of the thermal buffer tube varies. 

 

 

5.4 The  final  design model 

In the ‎final ‎design model, the maximum pressure amplitude is about 54 kPa, and 

therefore the relative pressure amplitude to the mean pressure is about 5.4%, which 

meets the low amplitude criteria to use the DeltaEC software. The whole system is 

schematically shown in Figure ‎5.1. The simulation results of the optimised model are 
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summarised in Table ‎5.2. The heat source temperature (i.e. the solid temperature at 

HHX1) is set as 260°C, and the heat sink temperature (i.e., the solid temperature of 

AHX1 and AHX2) is 28°C. The net acoustic power production from the engine unit 

(i.e., the difference between its inlet and outlet acoustic power) is about 195.8 W. The 

acoustic‎power‎consumed‎by‎the‎cooler‎ is‎159.5‎W.‎The‎heat‎ input‎to‎the‎engine’s‎hot‎

heat exchanger is 1100.7 W. The thermal efficiency ηe, defined as the ratio of the 

acoustic power consumed by the cooler over the heat input to the engine, is 14.5%. This 

is equivalent to 33.4% of the Carnot efficiency for the same heat source and sink 

temperatures. The cooler removes 232.4 W heat at -19.1°C, and rejects it at 28°C. The 

cooler’s‎coefficient‎of‎performance‎(COP)‎is‎defined‎as‎the‎ratio‎of‎the‎heat‎absorbed‎at‎

CHX2 over the acoustic power it consumes. The calculated COP is about 1.46, 

equivalent to 27% of the Carnot COP at this temperature range. The performances 

predicted by this model are comparable to multi-stage travelling wave thermoacoustic 

systems under similar conditions. [12, 70]. 

 

Table ‎5.2: Summary of the simulation results of the thermoacoustic engine driven cooler. 

Symbol Definition Unit Engine Cooler 

Th Solid temperature of HHX °C 260 N/A 

Ta Solid temperature of AHX °C 28 28 

Tc Solid temperature of CHX °C N/A -19.1 

 ̇ , in Acoustic power inlet W 417.6 612.0 

 ̇ , out Acoustic power outlet W 613.0 452.5 

 ̇ , net Net acoustic power production (engine) 

or consumption (cooler) 

W 195.8 -159.5 

 ̇   Heat input to HHX (engine) 

or CHX (cooler)  

W 1100.7 232.4 

   Engine efficiency  % 14.5 

COP Coefficient of performance (COP)   1.46 

        Carnot efficiency: (Th-Ta)/Th % 43.5 

COPC Carnot COP: Tc/(Ta-Tc)  5.4 

   Percentage of Carnot efficiency % 33.4 

COPR Percentage of Carnot COP % 27 
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The details of the acoustic field within the system have been calculated and shown in 

Figure ‎5.7-Figure ‎5.11 to further investigate the final design. In the figures, the solid 

line represents the results for the engine loop (i.e., engine branch and FBP), and the 

dashed line with symbols represents the results of the by-pass pipe. 

 

 

Figure ‎5.7: Distribution of the amplitude of acoustic pressure along the thermoacoustic engine driven 

cooler 

 

Figure ‎5.7 shows the distribution of the acoustic pressure amplitude along the system. 

The maximum pressure amplitude is 54 kPa at the engine core and the minimum 

pressure amplitude is 27 kPa at the middle of the by-pass pipe, so the maximum-to-

minimum ratio is about 2 in the whole system, which is slightly higher than 1.2 in de 

Blok’s‎prototype.‎This‎is‎mainly‎due‎to‎the‎regenerator‎length‎having‎been‎increased‎to‎

10 mm, and therefore the flow resistance at the engine core is higher, and thus the 

acoustic reflection is higher. In the FBP, the maximum pressure amplitude is about 52 

kPa, and the minimum amplitude about 36 kPa, so the maximum-to-minimum ratio is 

about 1.4, which is very close to 1 in the ideal travelling wave condition.  
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Figure ‎5.8: Distribution of the amplitude of volumetric velocity along the thermoacoustic engine driven 

cooler. 

 

Figure ‎5.8 shows the distribution of the amplitude of volumetric velocity along the 

system. It can be seen that the by-pass pipe shunts away more than half of the 

volumetric velocity at the location x=0. As a result, more than half of the acoustic 

power (i.e., 512 W) flows to the by-pass, and only 428 W acoustic flows into the engine 

branch. There is a sharp increase of volumetric velocity at the regenerator of engine 

stage, due to the steep temperature gradient along the regenerator. The other sharp 

increase is due to the by-pass pipe joining after the end of the cooler.     
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Figure ‎5.9: Distribution of the normalized specific acoustic impedance along the thermoacoustic engine 
driven cooler. 

 

Figure ‎5.9 shows the normalised specific acoustic impedance along the system. To 

reduce the acoustic losses with in the regenerator, the specific acoustic impedance |z| 

should be designed in the range of 15-30 times of ρma [10]. In the present model, it can 

be seen that the value of |z|/ρma in most parts of the system is around 1, except for the 

engine and cooler sections, where it is 9.6 and 8.4 respectively. It should be noted that, 

in‎order‎to‎achieve‎a‎very‎low‎onset‎temperature‎difference,‎de‎Blok’s‎prototype‎has‎low‎

impedance within the regenerators due to the short regenerators. In this design, the 

researcher‎ substantially increased the regenerator length to use a heat source with a 

higher temperature. Therefore, the resultant system has relatively higher impedance in 

the regenerator.   
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Figure ‎5.10:‎Phase‎angle‎θ‎between‎pressure‎and‎velocity oscillations along the thermoacoustic engine 

driven cooler. 

 

Figure ‎5.10 shows the phase difference between pressure and velocity oscillations along 

the loop. It can be found that the phase angle is in the range -20°<ϴ<20° in the FBP, 

engine unit, and cooler, as expected. The rest of the system also has a phase angle in the 

range -40°<ϴ<40°.  Therefore, the whole system works in near travelling wave 

conditions as expected.  

 

 

Figure ‎5.11: Distribution of acoustic power along the thermoacoustic engine driven cooler. 
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Figure ‎5.11 shows the acoustic power flow along the system. The simulation starts from 

Junction 1 (x=0). At this point, the 940 W of acoustic power is divided into two parts, 

one part (~512 W) flows into the by-pass and the other part (~428 W) flows into the 

compliance volume section. About 420 W of acoustic power is fed into the engine core, 

which is then amplified to around 613 W. There is a small amount of acoustic loss 

(around 1.35 W) along the TBT. The cooler unit consumes around 159.5 W. Around 

452 W of acoustic power exits the cooler and joins with the acoustic power flow from 

the by-pass pipe (~504 W) at Junction 2. In total, about 956 W of acoustic power then 

flows into the FBP. The FBP transmits the acoustic power back to the starting point 

(x=0) after about 10 W of acoustic power is dissipated. The ratio of power flows to the 

by-pass‎and‎engine‎branch‎is‎quite‎similar‎to‎that‎in‎de‎Blok’s‎prototype.‎‎ 

 

The results presented in this chapter suggest‎that‎the‎working‎principle‎of‎de‎Blok’s‎by-

pass engine can be achieved after the regenerator length and mean pressure are 

substantially‎increased.‎As‎such,‎the‎system’s‎power‎density‎and‎thermal‎efficiency‎can‎

be improved. The modelled thermoacoustic engine driven cooler predicted a 

performance similar to systems having other configurations.  
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5.5 Conclusions  

This chapter presents comprehensive numerical research of a travelling 

wave ‎thermoacoustic engine with a by-pass configuration and its application 

to ‎thermoacoustic engine driven coolers. The validated model which has been used 

in ‎chapter 4 was then applied to design a thermally driven travelling wave 

thermoacoustic ‎cooler with such a by-pass configuration.  ‎ 

 

To improve power density and thermal efficiency, the regenerator length and 

mean ‎pressure can be increased. The model was then applied to design a 

thermoacoustic ‎engine driven thermoacoustic cooler with a much longer regenerator 

and higher mean ‎pressure. The design principle contained in the by-pass type engine 

was successfully ‎implemented in the design. ‎ 

 

Nitrogen at 10 bar was used as the working gas, and the engine had an operating 

frequency around 76.5 Hz. When the engine was loaded with a thermoacoustic cooler, 

the simulation results show that the whole system could achieve a thermal efficiency of 

14.5%, which is equivalent to 33.4% of the Carnot efficiency at the tested temperature 

range. The cooler consumes 159.5 W acoustic power to remove 232.4 W heat at about -

19°C and rejects it at 28°C, which leads to a COP of about 1.46 that is equivalent to 

27% of Carnot COP under these operating conditions. 

 

It is inferred that a longer regenerator length is possible for this by-pass 

engine ‎configuration. The model of the thermoacoustic engine driven cooler predicts 

similar ‎performance with those systems having other configurations [10, 61, and 64].‎ 
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Chapter 6  Looped-tube travelling-wave 

thermoacoustic generator with a by-pass pipe 

6.1 Introduction 

In the previous chapter, the by-pass configuration with cooler was thoroughly 

investigated. In the current chapter, the research will focus on ‎ how engines using a by-

pass configuration can be coupled with an alternator to develop inexpensive electric 

generators.  

 

This chapter proposes and numerically demonstrates ‎a looped-tube travelling wave 

thermoacoustic electric generator using this configuration. It essentially employs a one 

wave-length ‎travelling-wave acoustic resonator which has low acoustic losses. The 

engine branch consists of compliance, an inertance tube, an ‎engine core, and an 

alternator. An ultra-compliant alternator (i.e., a sub-woofer) is installed in the acoustic 

compliance section where ‎the local acoustic impedance is relatively low, but the cross 

sectional area is large. The numerical simulations demonstrate the working ‎principle, 

and show that it can achieve comparable performance to other types of travelling wave 

thermoacoustic electric generators.    ‎ 

 

6.2 The concept 

A linear alternator is coupled to the engine to develop an electric generator, as 

schematically shown in Figure ‎6.1. This system has a very similar configuration to that 

shown in chapter 5, but the cooler unit is now replaced by an alternator to utilise the 

acoustic power. The compliance volume has relatively low acoustic impedance and a 

larger cross sectional area, which is ideal for installing the alternator. As such, the 

alternator housing can work as a compliance volume at the same time. The regenerator 

of the engine stage has been further increased from 10 to 19.7 mm to utilise a high-

temperature heat source.‎‎ 
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Figure  6.1: Schematic diagram of the thermoacoustic electric generator with a by-pass configuration. 

 

The dimensions of the main components are summarised in Table ‎6.1. 

 

Table  6.1:‎The‎dimensions‎of‎the‎system’s‎components. 

Part Diameter (m) Length (mm) rh (µm) Porosity 

REG 0.138 19.7 30 0.77 

AHX 0.138 21 700 0.5 

HHX 0.138 20 800 0.5 

SAHX 0.138 21 700 0.5 

Part Diameter (mm) Length (cm) 

By-pass 55.2 100
 

Resonator 71.3 244 

Inertance 40.68 165 

Compliance 107 28 

TBT 138 5 
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6.3 Loudspeaker selection 

To convert acoustic energy to electrical power, there are some commercially available 

devices, such as linear alternators, piezoelectric generators and audio loudspeakers. Due 

to their cost and efficiency, the linear alternators and piezoelectric generators are not 

suitable for the thermoacoustic applications. Audio loudspeakers might be treated as 

low impedance alternators (because they usually ‎have relatively small moving mass and 

stiffness) with audio loudspeakers being cheaper ‎than comparable linear alternators. 

However, this cost gap may be reduced in the future, ‎if audio loudspeaker 

manufacturing techniques and technologies are utilised in linear ‎alternator 

manufacturing.‎ 

 

To achieve high transduction efficiency, ‎based on the linear theory of alternators, an 

alternator should have a high force factor Bl, low mechanical resistance Rm, and low 

electric resistance Re [80].  

 

It should be mentioned here that the loudspeakers were originally manufactured for high 

audio quality, and not to convert acoustic power to electric power. This might cause 

some matching problems because they are not fitted to the requirements of a 

thermoacoustic generator [56]. The loudspeaker which was used in simulation 

procedures to ‎convert acoustic energy to electricity is schematically shown in 

Figure ‎6.2. The loudspeaker has two sections, one section for the ‎mechanical part (with 

subscript (m)), and the other for the electrical part with subscript (e)) [54]. All the 

components in Figure ‎6.2 are described below 

S: Effective area 

Mm: total mass of the diaphragm and the coil or called moving mass. 

Km:  mechanical stiffness. 

Rm:  mechanical resistance 

Le:  electric inductance. 

Re:  electric resistance. 
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Rl:  load resistor. 

Bl: force factor. 

 

Figure  6.2:‎Schematic‎of‎the‎alternator’s‎physical‎model [80]. 

 

The parameters of the alternator are listed in Table ‎6.2, which are properties based on an 

actual subwoofer (B&C 8NW51 [84]) with slight changes to match acoustic 

characteristics of the engine. The parameters are believed to be achievable using audio 

loudspeaker manufacture technologies, as subwoofers with similar parameters are 

widely available in the market [63]. 

 

Table  6.2: Parameters of the linear alternator used in the research [84] B&C Speakers. 

Data sheet of 6PS38. http://www.bcspeakers.com. 

Parameter Symbol Unit Value  

Resonance frequency Fs Hz 74 

Force factor Bl N/A 30 

Electric inductance Le mH 0.6 

Electric resistance Re Ω 4.2  

Moving mass  Mm g 30 

Stiffness km mm/N 7500 

Mechanical resistance Rm kg/s 0.8 

Maximum excursion Xmax mm 5.7 

Effective area S cm
2
 150
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6.4 Effect of important design parameters 

To further demonstrate the design procedure of this system, the effect of the important 

parameters is investigated. The effect of each ‎parameter is carried out individually, to 

reveal how the parameter affects the ‎thermoacoustic engine-driven 

generator ‎performance. This proceddure aims to gain in-depth understanding and 

ultimately facilitate further development of this type of thermoacoustic system. The 

ideal lengths of the by-pass pipe, inertance tube, the compliance, the thermal buffer tube 

and operating frequency have been determined when the generated electric power from 

the alternator (which is calculated by DeltaEC model) is used as a performance indictor. 

The obtained results are shown in Figure ‎6.3-Figure ‎6.7. 

 
Figure  6.3: Electric power output as function of the length of the by-pass pipe. 
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Figure  6.4: Electric power output as function of the length of the inertance tube. 

 

 
Figure  6.5: Electric power output as function of the length of the compliance. 
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Figure  6.6: Electric power output as function of the TBT. 

 

Figure ‎6.3 shows the effect of the length of the by-pass pipe on the electric power 

output. The ideal length is about 1 m and it is selected for the final design. It can be 

noticed that the generated electric power increases dramatically until the curve reaches a 

maximum value of 126 W when the optimal by-pass length is 1 m, and then decreases 

gradually when the by-pass length increases further. Similarly, Figure ‎6.4 shows the 

relationship between length of the inertance tube and electric power output. The results 

lead to an ideal length about 1.65 m. The by-pass and inertance tube are the components 

affecting the phase angle between the pressure and velocity oscillations in such a 

system. Their dimensions are very sensitive for achieving the correct phase and 

impedance within the engine and the FBP. According to their cross-sectional area they 

act the role of forcing the phase angle between the pressure and velocity oscillations‎ 

towards zero (right phase) which leads to getting a travelling wave system, leading to 

decreasing the acoustic losses and increasing the performance of the system. 

 

Furthermore, Figure ‎6.5 shows the relationship between length of the compliance and 

electrical power output. The ideal ‎length is about 0.281 m and it is selected for the final 

design. In the same way, Figure ‎6.6 shows the relationship between length of the TBT 

and electrical power output. The results lead to an ‎ideal ‎length about 0.05 m. 
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Figure  6.7: Electric power output as function of the operating frequency. 

 

Figure ‎6.7 shows the relationship between the electrical power output and the operating 

frequency of the system. The FBP length has been varied to change the operating 

frequency of the system. It can be seen from Figure ‎6.7 that the electrical power output 

increases rapidly‎ with the frequency. It reaches a maximum value 162 W when the 

optimal frequency is about 76.5 Hz, and then decreases sharply when frequency 

increases further. Referring to Table ‎6.2, one can find that the ideal operating frequency 

is very close to the resonance frequency of the alternator. This phenomenon agrees with 

the experimental observations in previous research work [52].    

 

6.5  The final  design model 

After a series of optimisation procedures, the final simulation results of the final ‎design 

model are summarised in   

Table ‎6.3. The heat source temperature (i.e. the solid temperature at HHX) is now set as 

about 624°C, and heat sink temperature (i.e., the solid temperature of AHX and 2
nd

 

AHX) is set as 28°C. The working gas is still nitrogen at a pressure of 10 bar, and the 

operating frequency is kept as 76.5 Hz. The heat input to the hot heat exchanger is 

1100.7 W.   

Table  6.3: Summary of simulation results of the thermoacoustic electric generator. 
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Symbol Definition Unit Engine  Alternator 

Th Solid temperature at HHX °C 624 N/A 

Ta Solid temperature at AHX °C 28 N/A 

Wa, in Acoustic power inlet W 217 467 

Wa, out Acoustic power outlet W 505 230 

Wa, net Net acoustic power production 

(engine) or consumption (alternator) 

W 288 237 

Qin,i Heat input to HHX (engine) 

or (alternator)  

W 1100.7 N/A 

ηe Engine efficiency  % 21.5 

ηa-e Alternator efficiency % 70 

ηCarnot Carnot efficiency: (Th-Ta)/Th % 66.4 

ηr Percentage of Carnot efficiency % 32.37 

 

The details of the acoustic field within the system have been calculated and shown in 

Figure ‎6.8-Figure ‎6.12 to further investigate the final design. 

 

 

Figure  6.8: Distribution of acoustic power along the system. 

 

Figure ‎6.8 demonstrates the acoustic power flow along the loop. About 465 W of 

acoustic power enters the alternator housing and dissipates around 13 W. The alternator 

extracts about 237 W of acoustic power and produces 166 W of electricity, with an 
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acoustic to electricity efficiency ηa-e=70%. The remaining 227 W acoustic power feeds 

into the cold heat exchanger and dissipates about 6 W. About 210 W acoustic power 

flows into the regenerator where it is amplified to around 514W. On the other hand, 

about 75.7 W of the acoustic power is shunted to the by-pass. After some dissipation, 

about 60 W acoustic power exits and joins with the acoustic power that leaves the 

secondary ambient heat exchanger. Finally, around 556 W of acoustic power goes to the 

FBP. The net acoustic power production from the engine unit is about 288 W. This 

ultimately leads to the engine efficiency of 21.5%, which is about 32.37% of the Carnot 

efficiency for these heat sources and sink temperatures. As a result, the thermal to 

electrical efficiency ηh-e=15%.  

 

 

Figure  6.9: Distribution of the amplitude of acoustic pressure along the system. 

 

Figure ‎6.9 presents the acoustic pressure distribution along the system. The maximum 

value of pressure is 61 kPa at the engine core, and the minimum value is 3 kPa at the 

middle of the by-pass pipe; the resulting standing wave ratio can be estimated by the 

ratio of these two pressure amplitudes as 2.3. This means that the acoustic reflection 

within the resonator is still relatively high. 
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Figure  6.10: Distribution of the amplitude of volumetric velocity along the system. 

 

Figure ‎6.10 shows the distribution of the amplitude of volumetric velocity along 

the ‎system. It can be seen that the by-pass pipe shunts a large amount of volumetric 

velocity as explained in previous chapters. In contrast, a small part of the acoustic 

power (i.e., 75.7 W) ‎flows to the by-pass and the rest (i.e., 466.8 W) flows into the 

alternator branch, enabling the alternator to utilise most of the acoustic power to convert 

it to electricity.‎ 

 

 

Figure  6.11:‎Phase‎angle‎θ‎between‎the‎pressure‎and‎velocity‎oscillations‎along‎the‎system. 
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Figure ‎6.11 shows the phase difference between the pressure and velocity oscillations 

along the system. It can be noticed that phase angle is in the range -55°<ϴ<55° along 

the FBP, -45°<ϴ<50° within the engine branch, and between 38°<ϴ<105° along the by-

pass pipe. It can be found that the phase angles in this thermoacoustic generator system 

are far away from the travelling wave conditions, which indicates that the alternator has 

strongly altered the acoustic field along the system. This can be attributed to the fact 

that the alternator causes a large pressure drop but has the same volumetric velocity at 

its two sides [56], and thus strong acoustic reflections are induced. Further investigation 

is required to understand how the altered acoustic field can be corrected in the future.           

 

 

Figure  6.12: Distribution of the normalized acoustic impedance along the system. 

 

Figure ‎6.12 shows the normalised acoustic impedance along the system. There are two 

high acoustic impedance regions along the system. One is around the engine core with 

ρma = 23, and the other is within the alternator housing with ρma = 16, which is in line 

with the results shown in Figure ‎6.10-Figure ‎6.12. It can also be seen that the alternator 

causes a sharp drop in the acoustic impedance as expected. As proposed by Backhaus 

[10], to reduce the acoustic losses within the regenerator, the acoustic impedance should 

be in the range of 15-30 times of ρma. Hence, the engine core is in the suitable region, 

according to Figure ‎6.12. From Figure ‎6.13, it can be clearly seen that the electric power 

is linearly proportional to the heat input.  
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Figure  6.13: Electric power output as function of the heat input of the system. 

 

6.6 Conclusions  

This chapter presents a comprehensive numerical analysis of the travelling wave 

thermoacoustic engine with a by-pass configuration, and its application to develop a 

thermoacoustic engine driven electric generator. The final design model in chapter 4 

and 5 was applied to design a thermally driven travelling wave thermoacoustic electric 

generator with such a by-pass configuration. The design principle contained in the by-

pass configuration was successfully implemented in this design, although the design 

objectives were changed to achieve higher efficiency. It was found that the design 

strategy for high efficiency engine as suggested by Backhaus [10] can also be 

incorporated in this design.  

 

When the engine was loaded with a linear alternator to generate electricity, the whole 

system achieved a thermal efficiency (engine efficiency h a  ) of 21.5% which is 

equivalent to 32.4% of the Carnot efficiency under the operating conditions. The 

alternator extracted 237 W acoustic power from the engine and generated 166 W 

electricity, which ultimately led to an alternator efficiency (acoustic to electricity 

efficiency a e  ) of about 70%. The overall thermal-to-electrical efficiency (generator 

efficiency h e  ) was about 15%, which is comparable to the experimental results of other 
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types of travelling wave thermoacoustic generators [56, 63, 85, 53, 59, 61, and 62].  It 

can be expected that a better performance could be achieved were pressurised helium to 

be used as a working medium, like other prototypes. 
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Chapter 7  Two-stage travelling-wave 

thermoacoustic engine with a by-pass 

configuration 

7.1 Introduction 

In the two previous chapters, the by-pass engine configuration was applied to 

a ‎thermoacoustic engine-driven cooler and electric generator, ‎respectively.  

Comprehensive analysis has shown that this type of engine can ‎potentially achieve a 

performance similar to other types of travelling wave ‎thermoacoustic engines. As 

discussed in previous chapters, one drawback of this ‎by-pass configuration is the long 

resonator, which has approximately the same ‎length as one sound wave-length under the 

test condition. This becomes a particular ‎challenge when helium is used as the working 

gas, because the speed of sound in helium is ‎much higher than in air, leading to a very 

long resonator, and consequently a low ‎power density. As in multi-stage looped-tube 

travelling wave thermoacoustic ‎engines, it may be possible to install more than one 

engine stage to a by-pass type ‎of travelling wave thermoacoustic engine, so that they 

can share the long ‎resonator to improve‎ the‎ system’s‎ power‎ density.‎ This‎ chapter‎

investigates this ‎possibility. Another engine stage will be added to a single stage by-

pass engine ‎as described in the previous chapters. The working principle and 

performance of ‎the two-stage by-pass type engine will then be analysed.      ‎ 

7.2 Two-stage travelling-wave thermoacoustic engine with a 

by-pass configuration without acoustic load 

7.2.1 The concept 

The design philosophy of the current thermoacoustic system is to reveal whether ‎the by-

pass configuration with two-stage engine can be employed to increase‎ the‎ system’s‎

power density, and improve the performance of such a system, as shown schematically 

in ‎Figure ‎7.1. This section investigates a two-stage travelling-‎wave thermoacoustic 

engine with a by-pass configuration. By-pass travelling-wave thermoacoustic 
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engines ‎essentially employ a near pure-travelling wave acoustic resonator to 

provide ‎acoustic resonance to the engine unit as shown schematically in Figure ‎7.1. 

The ‎physical principles behind the design were explored ‎in detail from previous ‎ 

chapters. This chapter will continue to explore the advantages of a nearly pure 

travelling ‎wave acoustic resonator. ‎ 

 

Two-stages of engine units have been installed to share an acoustic resonator. Each 

engine stage consists of an ambient ‎heat exchanger (AHX), regenerator (REG), and hot 

heat exchanger (HHX).  

The new system consists of a pair of engines, compliances, inertances, ‎FBPs, and ‎by-

passes.‎ The aim is to reduce the length of the ‎resonator and to share it between ‎the two 

engines. This leads to a ‎shared resonator between two engines, which is called the 

Travelling Wave ‎Resonator ‎‎(TWR)‎. The TWR consists of two by-passes and two FBPs. 

Decreasing the length of the resonator leads to a reduction in the ‎acoustic ‎losses, and 

ultimately improves the system performance.‎ The working gas is nitrogen, which leads 

to short thermoacoustic system based on its speed of sound and the mean pressure is 10 

bar, which increases the acoustic production. The operating frequency of the system is 

75 Hz, which is proportional inversely to the length of the FBP of the system. 

To describe how the acoustic power flows through the system, the start ‎point should be 

x=0 (see Figure ‎7.1). At this point, part of the acoustic power feeds to the ‎first ‎engine 

unit, with most of the acoustic power going to by-pass 1. ‎These two parts of acoustic 

power gather at the end of by-pass 1 and flow ‎through FBP1. This scenario will repeat 

itself again at engine-stage 2.‎‎It can be clearly seen that the by-pass affects the acoustic 

power distribution ‎through the whole system, and is explained in detail later in this 

chapter.‎ 

‎ 



Chapter 7.  Two-stage travelling-wave thermoacoustic  engine with a by-pass 

configuration 

 
123 

 

 

Figure  7.1: Schematic diagram of the two engines by-pass configuration system. 

 

The final dimensions used in this model are summarised in Table ‎7.1. 

Table  7.1: The dimensions of the system. 

 Part Diameter (m) Length (mm) rh(µm) Porosity 

Engine1 HHX1 0.138 20 30 0.5 

REG1 0.138 10 40 0.78 

AHX1 0.138 20 30 0.5 

Engine2 HHX2 0.138 20 30 0.5 

REG2 0.138 10 40 0.78 

AHX2 0.138 20 20 0.5 

 

7.2.2 Effect of important design parameters 

To further understand the design principle of this complicated system, as shown in 

Figure ‎7.1, the effect of the important ‎parameters is presented here, including ‎ the areas 

and lengths of the inertance tube, the by-pass pipe, and compliance. It should be ‎ noted 

that only the FBP area has been determined, because its length has already been 

determined by the operating frequency. The phase angle and impedance within the 
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engine unit and the FBP are very sensitive to these dimensions. The obtained results are 

shown in Figure ‎7.2-Figure ‎7.8. All the ideal results are selected in the final design.                   

 
Figure  7.2: Engine efficiency as function of the area of the by-pass. 

 

Figure ‎7.2 shows the engine efficiency as a function of the area of the by-pass.‎‎From 

experience, the dimensions of the by-pass are very sensitive and crucial, particularly the 

length. The engine efficiency increases dramatically with the increase of the by-pass 

area, reaching the ‎maximum efficiency at the ideal by-pass area of 0.002 m
2
.‎‎This value 

has been selected in the ‎final design model‎.‎ 

 

 
Figure  7.3: Engine efficiency as function of the length of the by-pass. 
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Figure ‎7.3 shows the engine efficiency as a function of the length of the by-pass. The 

engine efficiency increases gradually by increasing the by-pass length, reaching the 

maximum efficiency at the ideal length of 0.3 m. This value has therefore been ‎ selected 

in the ‎final ‎design model‎.‎ 

 

 
Figure  7.4: Engine efficiency as function of the area of the inertance. 

 

Figure ‎7.4 presents the engine efficiency as a function of the area of the inertance.‎‏The 

engine efficiency rises rapidly with increasing inertance area, reaching the maximum 

efficiency at the ideal area of 0.0012 m
2
.‎It is well known that the role of the inertance is 

to shift the phase angle between pressure ‎and volumetric velocity amplitude to the right 

phase.‎‎This can be done if the inertance has a small area and long length. The ideal 

value of the inertance area is 0.0012 m
2
, and is selected in ‎the ‎final ‎design model.  
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Figure  7.5: Engine efficiency as function of the length of the inertance. 

 

Figure ‎7.5 shows the engine efficiency as a function of the length of the inertance.‎‎It can 

be clearly seen that the first two points of the curve change slightly, and then 

significantly increase to the maximum efficiency. After reaching the ideal value of the 

inertance length, the curve declines suddenly.‎The ideal value of the inertance length is 

0.7 m and is selected ‎in ‎the ‎final ‎design model. ‎ 

 

 
Figure  7.6: Engine efficiency as function of the area of the compliance. 
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Figure ‎7.6 explains the engine efficiency as a function of the area of the compliance.‎‎

The compliance contributes ‎in adjusting the phase between pressure and velocity. There 

is a significant increase in the engine efficiency associated with ‎ an increase in the 

compliance area. After the maximum efficiency, at the ideal compliance area, there is a 

steep fall in the efficiency curve. The ideal value of the compliance area is 0.006 m
2
 and 

is‎ selected ‎in ‎the ‎final ‎design model. ‎ 

 

 
Figure  7.7: Engine efficiency as function of the length of the compliance. 

 

Figure ‎7.7 addresses the engine efficiency as a function of the length of the compliance.‎ 

This figure shows a rapid climb of the engine efficiency with increase in the ‎compliance 

length, leading to the optimised values of the efficiency and ‎compliance length. After 

the peak point a steady decrease occurs in the efficiency curve. The ideal value of the 

compliance length is 0.1 ‎m ‎and ‎is‎selected ‎in ‎the ‎final ‎design model. ‎ 
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Figure  7.8: Engine efficiency as function of the area of the FBP. 

 

Figure  7.8 gives an indication  of the engine efficiency as a function of the area of the 

FBP. It is important to determine the FBP area, which is related to the velocity of  the 

working fluid in the FBP. A large area of FBP leads to low velocity, resulting in 

a  reduction of acoustic losses and vice versa.  Before and after the maximum point of the 

efficiency there is a sudden increase and decrease in the  efficiency curve. The ideal 

value of the FBP area is 0.004 m
2
 and is selected in the final design. It is worth 

mentioning here that the length of FBP is left as an estimate in the DeltaEC code, 

leading to a calculated   length of the FBP, according to the operating frequency of the 

system. In order to design a thermoacoustic system, it is important to calculate the 

operating frequency and the length of the FBP. Both of these parameters strongly 

depend on each other. Based on the DeltaEC software, to calculate these parameters 

either choose the frequency as a guess and choose a value of the FBP length (this value 

is selected based on the working fluid which is used) or choose the FBP length as a 

guess and select a value of the frequency. In both cases, the guess parameter will be 

calculated according to the selected parameter. Following the above figures, the ideal 

dimensions are listed in Table  7.2 below, and implemented in the final design. 
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Table  7.2: Ideal dimensions of the important parameters. 

Parameters Optimized value Unit 

Area of by-pass  0.002 m
2
 

Length of by-pass  0.3 m 

Area of compliance  0.006 m
2
 

Length of compliance  0.1 m 

Area of inertance1,2  0.0012 m
2
 

Length of inertance1,2 0.7 m 

Area of FBP1,2 0.004 m
2
 

Length of FBP1,2 2.142 (from the model) m 

 

7.2.3 The  final  design model 

Compared with a one-stage engine (efficiency  is 0.5%), the current system has 

significantly reduced the acoustic losses, leading to an overall efficiency of around 

6.8%. For more accuracy, all the obtained optimised dimensions have been used in the 

final design model. The simulation results of the optimised model are summarised and 

presented in Figure  7.9-Figure  7.13. For convenience of presentation, the by-pass curves 

have been removed from these figures. 

 

 
Figure  7.9: Distribution of acoustic power along the engine. 
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Figure ‎7.9 shows acoustic power distribution along the system. Around 267 W of 

acoustic power is fed into the AHX1, which dissipates around 21 W. The rest of the 

acoustic power 246 W is fed into the cold end of REG1, where the acoustic power will 

be amplified to around 295 W. 276 W of the acoustic power leaves engine unit 1. 276 

W merges with the 910 W acoustic power that comes from by-pass1 to get 1186 W at 

Junction 1.  

 

The acoustic loss in FBP1 is 33 W, similar to the above description, around 262 W of 

acoustic power is fed into the AHX2, which dissipates around 21 W. Therefore, 241 W 

is fed into the cold end of REG2, so the acoustic power will be amplified to around 366 

W at the hot end of REG2. 343 W of acoustic power comes out from engine unit 2, and 

then is merged with the 880 W acoustic power coming from by-pass 2. These two parts 

of acoustic power are gathered at Junction 2 to get 1223 W. FBP2 dissipates around 31 

W from the generated acoustic power. 

 

It is noticeable that the by-pass configuration performs its function as expected, in terms 

of shunting more than half of the volumetric velocity, leading to a reduction in acoustic 

power transmission losses, which ultimately leads to an increase in the performance of 

such a system. As discussed in previous chapters, the key challenge is to increase 

acoustic power production within the engine unit, while minimising acoustic losses 

within the FBP. For this reason, the by-pass configuration has been employed to reduce 

the acoustic power calculation of losses transmission. 
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Figure  7.10: Distribution of the amplitude of acoustic pressure along the engine. 

 

Figure ‎7.10 shows the pressure amplitude distribution along the system. It can be clearly 

seen that there are two maxima of pressure amplitude along the loop. Firstly, at the 

beginning of FBP1 close to engine unit 1, and secondly, exactly at engine unit 1, whose 

values are 86 and 77 kPa respectively. In addition, there are two minimum pressure 

amplitudes along the loop, both at the ends of the FBPs, which have pressures of 27 and 

25 kPa receptively. The ratio between the maximum and minimum pressures for each 

FBP is known as the standing wave ratio (SWR), which gives an indication about the 

acoustic reflection along the system. 

 

The current system has two FBPs, as schematically shown in Figure 7.1, leading to a 

SWR of 2. FBP1 has a SWR equal to 3.1 and FBP2 has a SWR of ‎3. Consequently, the 

value of SWR along this system is far from the ideal condition, i.e., SWR for the ideal 

travelling wave condition should be close to 1). There are many reasons behind that; 

firstly streaming losses are neglected, and secondly the complex configuration in terms 

of containing pairs of by-passes, FBPs, inertances, and compliances. 
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Figure  7.11: Distribution of the amplitude of volumetric velocity along the engine. 

 

Figure ‎7.11 presents the distribution of volumetric velocity along the system. There are 

two peaks and two troughs along the loop. The two troughs are exactly located at the 

end of inertance 1 and 2. In other words, the troughs lie at the beginning of the engine 

units. The two peaks are located nearly at the end of the FBPs. It should be mentioned 

here that the small volumetric velocity within the core engine is required to avoid 

viscous dissipation. The volumetric velocity ‎ is the volume of working fluid which 

passes per unit time.‎ High volumetric velocity leads to high acoustic losses and low 

efficiency. In the current chapter, the volumetric velocity is reduced in the core engine 

by using the by-pass configuration. Also, due to the sharp temperature gradient along 

the regenerator, the volumetric velocity increases significantly. 
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Figure  7.12:‎Phase‎angle‎θ‎between‎pressure‎and‎velocity‎oscillations‎along‎the‎engine. 

 

Figure ‎7.12 shows the phase difference between pressure and velocity oscillation along 

the loop. Most of the system works in the phase region-52°<Ɵ<48°,‎indicating‎that such 

a new configuration works far from the ideal condition. It can be seen that compliance 

and inertance play the role of shifting the phase angle significantly, attempting to force 

it to the ideal range, i.e., around 0°. There are two spikes (unexpected changes) at the 

engine units; which is mainly due to the sudden change of area from a small inertance 

area to a large engine section.  

 

 
Figure  7.13: Distribution of the normalized specific acoustic impedance along the engine. 
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Figure ‎7.13 presents the normalised acoustic impedance along the system. It can be seen 

that the two engines are located at the high impedance region, with values of |z|/ρma 

about 33 and 27 respectively. Usually, the amplitude of acoustic impedance should be 

designed in the range of 15-30 times that of ρma to reduce acoustic losses [10]. It is 

noteable that the second engine unit works within the optimised normalised acoustic 

impedance range, but that the first engine unit exceeded this range to 33. This is 

possibly due to the current complex acoustic system with the multiple by-passes, 

resonators and inertances. Following the above analysis, it could be inferred that the 

new configuration has achieved the expected goal, without violating the working 

principle.  

 

The simulation results of the optimised model are summarised in Table ‎7.3 below. The 

heat source temperature (i.e. the solid temperature at HHX1 and HHX2) are set as 

129°C and 265°C respectively, and the heat sink temperature (i.e., the solid temperature 

of AHX1 and AHX2) are 30°C and 29.6°C respectively. The net acoustic power 

production from the engine units (i.e., the difference between its inlet and outlet 

acoustic power) is about‎15‎W‎and‎81‎W‎respectively.‎The‎heat‎input‎to‎the‎engine’s‎hot‎

heat exchangers is 407 W and 801 W respectively. The thermal efficiency ηe, defined as 

the ratio of the acoustic power generated by the engines over the heat input to the 

engines, is 3.68% and 10.11% respectively. The average engines efficiency is 6.8%.  

Table  7.3: Summary of simulation results. 

Symbol Definition Unit Engine1  Engine2 

Th Solid temperature at HHX °C 129 265 

Ta Solid temperature at AHX °C 30 29.6 

Wa, in Acoustic power inlet W 261 262 

Wa, out Acoustic power outlet W 276 343 

Wa, net Net acoustic power 

production  

W 15 81 

Qin,i Heat input to HHX  W 407 801 

ηi Efficiency for each engine % 3.68 10.11 

ηm Average engine efficiency % 6.8 
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7.3 Two-stage travelling-wave thermoacoustic engine with a 

by-pass configuration driving two coolers 

7.3.1 The concept 

The system studied and presented above does not have any acoustic loads. The key 

challenge for an acoustic system is to verify the extent to which this system can be 

loaded by an acoustic load, such as an alternator or a cooler. For this reason, a two-stage 

engine with a by-pass configuration driving two coolers is investigated in this section. 

Two thermoacoustic heat pumps ‎have been employed to utilise the acoustic power to 

upgrade heat. This section ‎investigates this new concept based on a series of 

comprehensive numerical ‎simulations.  

 

Figure  7.14: Schematic diagram of the two engines, two coolers by-pass configuration system. 

 

The design principles contained in the new by-pass configuration have ‎been 

successfully implemented in the current design to achieve higher efficiency. As shown 

schematically in Figure ‎7.14, there are four stages in this thermoacoustic system, two 

engines to produce acoustic power and two coolers to consume the generated acoustic 

power. Each engine stage consists of an ambient heat exchanger (AHX), regenerator 
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(REG), and hot heat exchanger (HHX). The coolers are designed to consume the 

acoustic power which is generated in the engine units. Each cooler stage consists of an 

ambient heat exchanger (AHX), regenerator (REG), and cold heat exchanger (CHX). 

Furthermore, the system has two by-pass pipes, two inertances, two compliances, two 

TBTs, and two FBPs. 

 

To simplify the analysis, all the system dimensions have been ‎selected to be easy to 

design and manufacture. For example, a shell-and-tube heat exchanger has been 

selected for practical designs. The working gas is nitrogen. The frequency and mean 

pressure ‎ are ‎50 Hz and 10 bar respectively‎‎.All the parameters dimensions are listed in  

Table ‎7.4 below 

 

Table  7.4: The dimensions of the system. 

 Part Diameter (m) Length (mm) rh(µm) Porosity 

Engine1 HHX1 0.138 20 30 0.5 

REG1 0.138 10 40 0.78 

AHX1 0.138 20 30 0.5 

Engine2 HHX2 0.138 20 30 0.5 

REG2 0.138 10 40 0.78 

AHX2 0.138 20 30 0.5 

Cooler1 AHXC1 0.138 20 30 0.5 

REGC1 0.138 8 20 0.78 

CHXC1 0.138 20 30 0.5 

Cooler2 AHXC2 0.138 20 30 0.5 

REGC2 0.138 8 50 0.78 

CHXC2 0.138 20 30 0.5 
 

 

 

7.3.2 Effect of important design parameters 

To find the design parameter of the whole system, there are several important 

parameters which have an influence on the efficiency of the system, such as length of 

the by-pass, inertance and compliance, as listed in Table ‎7.5. These values are selected 

for the final design.  
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Table  7.5: Ideal dimensions of the important parameters. 

Part Diameter (m) Length (m) 

By-pass1,2 0.05 1 

Compliance1,2 0.0797 0.01 

Inertance1,2 0.0422 0.3 

FBP1,2 0.071 3.062 
 

 

The obtained results are shown in the figures below. Figure ‎7.15 demonstrates engine 

efficiency as a function of the length of the by-pass pipe. The engine efficiency 

increases steadily with the increase of the by-pass length to reach maximum efficiency 

at the ideal by-pass length, then the curve goes down moderately. The ideal ‎ value of the 

length of the by-pass is 1 m. 

 

Figure ‎7.16 shows engine efficiency as a function of the length of inertance.  The engine 

efficiency curve goes up steadily when the inertance length increases. The maximum 

efficiency and ideal ‎inertance length are 16.8% and 0.3 m respectively. After that, the 

curve falls substantially. 

 

 

Figure  7.15: Engine efficiency as a function of the length of the by-pass pipe. 
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Figure  7.16: Engine efficiency as a function of the length of inertance. 

 

 

7.3.3 The  final  design model 

The design philosophy of the current thermoacoustic system is to find out two important 

points. Firstly, how the by-pass configuration with two-stage engines driving two 

coolers can be used to reduce acoustic losses. Secondly, the extent to which this system 

is able to drive an acoustic load, i.e., cooler-stage. After a series of comprehensive 

numerical analyses, the acoustic losses have significantly decreased. Compared with the 

last section (efficiency ‎is‎ ‎6.8%), the current system has significantly reduced acoustic 

losses, leading to overall efficiency of around 20.3%. To further understand the final 

design, the acoustic wave propagation along the loop needs to be closely analysed. The 

distribution of acoustic power, pressure amplitude, volumetric velocity, phase angle and 

acoustic impedance are analysed, as shown in Figure ‎7.17-Figure ‎7.21.  
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Figure  7.17: Distribution of acoustic power along the engine. 

 

Figure ‎7.17 shows the distribution of acoustic power along the system. The 

thermoacoustic engine units generate acoustic power, which is fed into the cooler 

stages.  Around 890 W is fed into engine core 1, and it is amplified to about 1208 W 

within the regenerator. The amplified acoustic power of 1208 W will be utilised to drive 

cooler 1, and consumes around 708 W. Exiting the first cooler stage, it merges with the 

acoustic power coming from by-pass pipe 1, thus the acoustic power increases sharply 

from 719 W to around 1450 W at Junction 1. Around 35 W of acoustic power was 

dissipated in FBP1. Around 909 W of acoustic power is fed into engine core 2 and it is 

amplified to 2131 W.  Around 2129 W of acoustic power flows into cooler stage 2 and 

around 1406 W of acoustic power exits it. This cooler consumes around 723 W. 

Similarly, the acoustic power leaving cooler 2 merges with the power coming from by-

pass 2, and, therefore, the acoustic power flow rises from 1406 W to 1800 W at Junction 

2. Around 50 W of acoustic power is dissipated in FBP2. Finally, the remaining 

acoustic power is then fed back to engine core 1, to start the thermodynamics cycle once 

again. 
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Figure  7.18: Distribution of the amplitude of acoustic pressure along the engine. 

 

Figure ‎7.18 shows the pressure amplitude distribution along the system. It can be clearly 

seen that there are two maxima and two minima pressure amplitudes along the loop. 

The two maximum values are 124 and 118 kPa respectively, located at the two engine 

cores, and the two minimum values are 24 kPa, located in the middle of the FBPs. The 

SWR is 5.1 for FBP1, and is 4.9 for FBP2. Although they are far from the ideal value 

they are close to each other, which reflect the fact that the new configuration does not 

violate the working principle.  

 

 

Figure  7.19: Distribution of the amplitude of volumetric velocity along the engine 
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Figure ‎7.19 presents the distribution of volumetric velocity along the system. There are 

two peaks and two troughs along the loop. The two troughs are located exactly at the 

end of the inertance tubes, in other words at the beginning of the two engine units. The 

two peaks are located nearly in the middle of the two FBPs. It should be mentioned here 

that the small volumetric velocity within the engine core is required to avoid viscous 

dissipation. High volumetric velocity leads to high acoustic losses and low efficiency. 

Due to the sharp temperature gradient along the regenerator, the volumetric velocity 

increases significantly.  

 

 

Figure  7.20:‎Phase‎angle‎θ‎between‎pressure‎and‎velocity‎oscillations‎along‎the‎engine. 

 

Figure ‎7.20 shows the phase difference between pressure and velocity oscillations along 

the loop. It can be found that the system as a whole works in the region of -68°<Ɵ<68°.‎

The large phase differences between oscillation pressure and velocity are possibly due 

to the complexity of the design and the resultant reflections.  
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Figure  7.21: Distribution of the normalized specific acoustic impedance along the engine. 

 

Figure ‎7.21 presents the normalised acoustic impedance along the system. It can be seen 

that the two engines are located at the high impedance region, with values of |z|/ρma 

around 33 and 23 respectively. As discussed above in Figure ‎7.18 and Figure ‎7.19, the 

engine units have the highest pressure oscillation and lowest volumetric velocity, which 

in turn leads to a high amplitude of acoustic impedance. Usually, the amplitude of 

acoustic impedance should be designed in the range of 15-30 times of ρma to reduce the 

acoustic losses [10]. It is noteable that the second engine unit works within the 

optimised normalised ‎acoustic impedance range, but that the first engine unit exceeded 

this range to 33. This ‎is possibly due to the current complex acoustic system with the 

multiple by-passes, ‎resonators and inertances.‎ 

 

Finally, the simulation results are summarised in Table ‎7.6. For the engine stages, the 

heat source temperatures (i.e. the solid temperature at HHX1 and HHX2) are set as 

223°C and 535°C respectively, and the heat sink temperatures (i.e., the solid 

temperature of AHX1 and AHX2) are 30°C and 21.5°C respectively. The net acoustic 

power production from the engine units (i.e., the difference between its inlet and outlet 

acoustic power) are about 318 W and 1222 W respectively. The heat input to the 

engine’s‎ hot‎ heat‎ exchangers‎ is 2240 W and 3851 W respectively. The thermal 

efficiency ηe is defined as the ratio of the acoustic power generated by the engines over 

the heat input to the engines, are 21.8% and 18.77% respectively. The average engine 
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efficiency is 20.29%, which is equivalent to 40% of the Carnot efficiency at the tested 

temperature range. 

 

As for the cooler stages, cooler 1 removes 708 W of thermal energy at -36°C, and 

rejects it at 64°C. Also cooler 2 removes 1200.5 W of heat energy at 188°C, and rejects 

it at 372°C.‎The‎cooler’s‎coefficient‎of‎performance‎(COP)‎is‎defined‎as‎the‎ratio‎of‎the‎

heat absorbed at CHXC over the acoustic power it consumes. The calculated COP1 is 

about 1.44, and the calculated COP2 is about 1.66, resulting in the average cooler 

coefficient of performance (COP) of 1.55, which is equivalent to 64% of the Carnot 

COP at this temperature range‎. 
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Table  7.6: Summary of simulation results. 

Symbol Definition Unit Engine1  Engine2 Cooler1 Cooler2 

Th Solid temperature at 

HHX 

°C 223 535 - - 

Ta Solid temperature at 

AHX 

°C 30 21.5 64 372 

Tc Solid temperature at 

CHXC 

°C - - -36 188 

Wa, in Acoustic power inlet W 890 909 1207 2129 

Wa, out Acoustic power 

outlet 

W 1208 2131 719 1406 

Wa, net Net acoustic power 

production (engine) 

or consumption 

(cooler) 

W 318 1222 488 723 

Qin,i Heat input to HHX 

(engine) 

or AHXC (cooler)  

W 2240 3851 708 1200.5 

ηi Efficiency for each 

engine 

% 21.82 18.77   

ηm Average engine 

efficiency 

% 20.29   

COP Coefficient of 

performance for 

each cooler 

   1.44 1.66 

COPm Average Coefficient 

of performance 

   1.55 

ηCarnot Carnot efficiency: 

(Th-Ta)/Th for each 

Engine 

% 39 64   

ηCarnot m Average Carnot 

efficiency 

% 51   

COPC Carnot COP: Tc/(Ta-

Tc) for each cooler 

   2.39 2.49 

COPCm Average Carnot 

COP 

   2.44 

ηr Percentage of Carnot 

efficiency 

% 40  

COPR Percentage of Carnot 

COP 

%   64 

 

This research shows that this new configuration has the potential for developing ‎a low 

cost thermally driven heat pump system, which can achieve high efficiency. ‎Because of 
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the presence of a two-stage engine, the system needs to employ two ‎bypasses. This 

ultimately leads to the creation of a rectangular resonator feedback ‎at the centre of the 

system, which is called a Travelling Wave Resonator ‎‎(TWR). The flow direction of the 

generated acoustic power inside the TWR is ‎counterclockwise,  

7.4 Conclusions  

This chapter presents a series of comprehensive numerical analyses of two-stage 

engines by-pass type travelling-wave thermoacoustic engines. This study has two parts; 

with coolers and without coolers. Nitrogen at 10 bar is used as a working gas, and the 

engine has an operating frequency around 75 Hz. The average engine efficiency of the 

system without acoustic load is 6.8%. When the engine is loaded with a thermoacoustic 

cooler, the simulation results show that the whole system can achieve a thermal 

efficiency of 20.3%, which is equivalent to 40% of the Carnot efficiency at the tested 

temperature range. Cooler 1 consumes 488 W of acoustic power to remove 708 W of 

thermal energy at about -36°C, and rejects it at 64°C.  Cooler 2 consumes 723 W of 

acoustic power to remove 1200.5 W of heat energy at about 188°C, and rejects it at 

372°C, which leads to a COP of about 1.55; that is, equivalent to 64% of the Carnot 

COP under these operating conditions.  

 

The novelty of such a by-pass configuration is that the by-pass and FBPs actually create 

a pure travelling wave resonator. The engine unit extracts small amounts of acoustic 

work from the resonator, amplifies it and sends it back to it. As the pure travelling wave 

resonator has very low losses, it requires very little acoustic power to maintain an 

acoustic resonance.  

 

According to the results shown in this section, it can be found that the design strategies 

proposed by de Blok and Backhaus can be implemented in the current travelling wave 

thermoacoustic engine driven cooler system. It was found that there is a trade-off 

between engine efficiency and cooler COP. This research demonstrates that this new 

configuration has the potential to develop a low cost thermally driven heat pump 

system. 
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Chapter 8  Investigation of side-branched 

Helmholtz resonator to tune phase in looped-

tube travelling wave thermoacoustic engine 

8.1 Introduction 

The studies throughout the previous chapters have been performed‎ numerically. 

These ‎chapters were focused on the numerical investigation of looped-tube 

travelling ‎wave ‎thermoacoustic engines with a by-pass configuration, and obtained 

some ‎interesting results. The by-pass configuration was studied in different 

cases ‎throughout the preceding‎ chapter, to find out how this system works without 

violating the ‎thermodynamics principles. Despite the different cases studied, the results 

were encouraging. Based on this, it is important to ‎understand looped-tube travelling 

wave thermoacoustic engine ‎experimentally.‎ Thus, it ‎is very useful scientifically ‎to 

conduct some practical studies that strengthen and support the ‎theoretical studies in 

previous ‎chapters. This leads to the convenience of comparison ‎between the ‎numerical 

and experimental works.‎ 

The travelling-wave thermoacoustic engine utilises a compact acoustic network to 

obtain the correct‎ time-phasing between the acoustic velocity and pressure oscillations 

within the regenerator, to force gas parcels to execute a Stirling-like thermodynamic 

cycle, so that thermal energy can be converted to mechanical work (i.e., high-intensity 

pressure waves). It is therefore crucial to tune and control time-phasing (i.e. the phase 

angle between pressure and velocity oscillations) carefully to improve the performance 

of thermoacoustic engines. This chapter reports a new phase tuning method, i.e., using a 

side-branched volume to tune the time-phasing within a looped-tube travelling wave 

thermoacoustic engine.  

One of the key challenges in ‎developing a high efficiency ‎travelling wave 

thermoacoustic engine is to accurately control and ‎tune the phase angle between the 

acoustic ‎pressure and velocity to near in-phase (i.e., travelling-‎wave condition). Various 

techniques have been proposed ‎and investigated in recent‎ ‎decades, such as the inertance 
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tube [67, 68 and 69], side branched stub [52, 56], side branched ‎loudspeakers [63], etc. 

This study ‎presents a new phase tuning technique, i.e., a side-branched 

Helmholtz ‎resonator, to tune the ‎phase angle between the acoustic velocity and pressure 

oscillations in a looped-tube ‎travelling ‎wave thermoacoustic engine. The function of 

such a tuning mechanism is firstly modelled ‎and ‎demonstrated through a series of 

comprehensive numerical simulations based on DeltaEC ‎software (Design ‎Environment 

for Low-amplitude ThermoAcoustic Energy Conversion). An ‎experimental rig is then 

designed ‎and constructed. The obtained experimental results have ‎verified the numerical 

model. The performance of the ‎engine is significantly improved after the ‎installation of 

the side-branched Helmholtz resonator, and then the ‎proposed phase tuning ‎technique 

has been demonstrated experimentally.    ‎ 

8.2 Experimental setup 

This section of the current chapter focuses on the instrumentation and experimental 

procedure ‎applied in this ‎research, and the experimental apparatus including the details 

of the engine and ‎the RC-‎load is described. The experimental parts which are used in 

this thesis have ‎been ‎designed ‎by using SolidWorks software (as shown in appendix 

two) and then ‎manufactured ‎in the workshop at ‎the‏University of Glasgow. ‎ ‎ 

8.2.1 Key components 

The thermoacoustic engine core consists of three vital parts: AHX, HHX, and REG, 

where the thermoacoustic processes take place. ‎They are described in the next section in 

detail.‎‎The method of design of such heat exchangers is different from one researcher 

to ‎another, depending on how much heat the system needs to be supplied, and how 

much heat needs to be rejected from the system. 

8.2.1.1 Ambient Heat Exchanger (AHX)‎ 

The heat exchangers are one of the main components of any thermoacoustic device; 

they ‎keep a temperature gradient along the stack or regenerator. AHX transfers heat 
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energy from the working fluid to an external sink of heat such as ‎ambient-temperature 

water.‎‎ It worth to saying that ‎a secondary ambient heat exchanger (SAHX, which is 

exactly the same design of AHX) is used in the thermoacoustic system to cool the TBT, 

which is usually located behind the HHX. 

 

The ambient heat exchanger is made of a copper block which is 65 mm in diameter and 

27 mm long. Gas passages are made of 204 holes (I/D 3 mm) drilled in parallel to the 

heat‎ exchanger’s‎ centreline. Two holes with the diameter of 6 mm are drilled 

perpendicular to the heat exchanger to pass the cooling water. The porosity of the heat 

exchanger is 28%. As shown in Figure ‎8.1 below: 

 

 

Figure ‎8.1: Photograph of the ambient heat exchanger. 

 

8.2.1.2 Hot Heat Exchanger (HHX)‎ 

The hot heat exchanger ‎transfers heat from an external source of heat to the working gas 

in thermoacoustic ‎system.‎ The HHX has been made from Nickel-Chromium resistance 

wire (NIC-80-020-125), which was inserted inside ceramic tubes to prevent any 

electrical contact with the metal surface. This resistance wire is formed as a coil with 

3.2 mm diameter, and the wire diameter is 0.51 mm, as shown in Figure ‎8.2 (a). The 

ceramic tubes (with resistance wire) should line ‎up inside a cylindrical metal container, 

as shown in Figure ‎8.3. 
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The diameter and length of HHX are 65 and 30 mm, respectively. The porosity of the 

hot heat exchanger is around 50%. The length of the ceramic tube is 25 mm, and the 

outside and inside diameters are 6.4 and 4 mm, respectively, as shown in Figure ‎8.2 (b). 

The total resistance of this heater is about 5 Ohms‎. Electrical power is supplied to the 

heater at a maximum voltage of 50 V (which can be varied in the range of 0-50 V) and a 

maximum current of 10 A from an AC power supply by using a feed-through to 

maintain a good pressure seal. Accordingly, the heat energy is supplied to the system in 

the range between 0 and 500 Watt. 

 

 

Figure ‎8.2: Photograph of a: the wire resistance and b: ceramic tubes. 

 

 

Figure ‎8.3: Photograph of the hot heat exchanger (HHX). 
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8.2.1.3 Regenerator (REG)‎ 

‎The regenerator is made of stainless steel mesh screen wire discs with a mesh number of 

50‎, as shown in Figure ‎8.4. The disk diameter is 65 mm. The diameter of the wire and 

the aperture width are 0.14 mm and 0.375 mm, respectively. In total, 60 mesh discs are 

placed inside 20 mm long stainless steel casing (1 mm in ‎thickness). The calculated 

porosity and hydraulic radius are 78.4%‎and‎126.77‎μm,‎respectively,‎as demonstrated 

later in this chapter. 

 

 

Figure ‎8.4: Photograph of the case of the regenerator and mesh screen. 

 

To further clarify the mesh screen, the dimensions and properties are highlighted in the 

schematic figure shown in Figure ‎8.5. 

 

Figure ‎8.5: A tortuous porous medium (mesh screen), a: a screen bed [79], b: schematic of the mesh 

screen. 
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‎where D is the disc diameter, d is the wire diameter, m is the mesh number, and x is the 

aperture width. All these dimensions are in mm. The companies providing these mesh 

screen give information regarding D, d, and m only. The hydraulic radius and porosity 

of the mesh screen are calculated using 

25.4
,m

x d



                                                            (8.1) 
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where     the effective thickness, which is defined as the screen packing density. So 

    =2 corresponds with the non-shifted situation. The normal value of     is expected 

to be around 2, 
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The hydraulic radius hr  of the regenerator is defined as the ratio of the total gas volume 

to gas-solid interface surface area. The porosity   of the regenerator is the ratio of gas 

volume to the total regenerator volume [74]. 

With respect to the mesh screens which have been used during the experimental work, 

the above equations are dedicated to calculating the x,   , and ∅ respectively. The wire 

diameter is 0.14 mm and the mesh number is 50, leading to the aperture width 0.368 

mm,   =1.267x10
-4

 m, and ∅=78.4%, respectively. 
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8.2.2 Electric and water supply 

8.2.2.1 Electric power supply 

To avoid potentially dangerous electrical contact between the HHX wire resistance and 

the metal surface of the engine house during the experimental processes, the normal 

voltage 250 V has been decreased to 50 V using a transformer (2 Output Toroidal 

Transformer, 1kVA, 50V, AC). This transformer provides the system with 500 Watt (50 

Vx10 Am) for each output. Electrical power is supplied to the heater at a maximum 

voltage of 50 V (which can be varied in the range of 0-50 V) and a maximum current of 

10 A from an AC power supply, by using a feed-through to maintain a good pressure 

seal. 

8.2.2.2 Water cooling system 

In order to remove the heat energy from the system, an ambient heat exchanger has 

been employed. Water with ambient temperature is used to cool the system which is fed 

to the ambient‎ heat exchanger using a water pump (40 l/min, 65Watt). The circulation 

water used the AHX is supplied from a 1000 Litre IBC Carboid Water Tank through 

PVC transparent tube (6mm ID, 12mm OD), as shown in Figure ‎8.6 below. 

 

 

Figure ‎8.6: Photograph of the ‎water cooling system for the AHX. 
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There are two additional components which have been used in the experimental 

testing. ‎Firstly, the RC-load, which is coupled to the thermoacoustic system in order to 

consume the acoustic power and provide a means to determine ‎the system efficiency 

accurately. Secondly, the side-branched volume, which is also connected to the 

thermoacoustic system in order to tune the phase angle between pressure and velocity 

towards zero, as demonstrated in detail in next two sections. 

As for the RC-load; it is well known that generated acoustic power in an acoustic 

system will be dissipated in the FBP if there is no acoustic load connected to this 

system. Quantitative experimental measurements require‎ the addition of an acoustic 

load to the system to consume any generated acoustic power, leading to the possibility 

of calculating the system performance accurately. The RC-load consists of a needle 

valve (mountiring hydraulic flow control valve 201012) and compliance which are 

connected in series, as shown in Figure ‎8.7-Figure  8.8. The volume of the compliance is 

1512.8 cm
3
. 

 

 

Figure ‎8.7: Schematic of the RC-load. 
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Figure ‎8.8: Photograph of the RC-load. 

 

Helmholtz‎ resonator; a side-branched Helmholtz resonator has been used to tune the 

phase angle between the acoustic velocity and pressure oscillations in a looped-tube 

travelling wave thermoacoustic engine. The Helmholtz resonator has been made of a 

clear plastic cylinder within which a piston works manually up and down. The outer 

diameter of this piston is equal to the inner diameter of the cylinder. It should be 

mentioned here that to maintain a good pressure seal between the working gas and the 

ambient, the contacting surface area between the cylinder surface and the piston need to 

be sealed. This has been done by employing an o-ring around the outer circumference of 

the piston. Obviously, the Helmholtz resonator was closed at one end and open to the 

system at the other, as shown in Figure ‎8.9. 
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Figure ‎8.9: Photograph of Helmholtz resonator. 

 

8.2.3 Data acquisition system 

The required data from the current thermoacoustic experimental system is temperature, 

pressure, and ‎phase angles between the pressure signals.  A thermocouple is employed 

to measure the ‎temperature, which is connected to the selected location, with the signal 

being passed through a data acquisition card (DAQ), and the data displayed and saved 

on the computer. As for the pressure, a pressure sensor is connected to the ‎selected 

location, then to the DAQ and thereafter to the computer, to show and save the ‎pressure 

signals. It should be mentioned here that the pressure signals unit is mV which 

is ‎converted into Pa using a scaling factor for each pressure sensor. Phase angles 

between the pressures signals can be measured using a lock-in amplifier. The 

measurements equipment ‎ is described briefly below.‎ 

 A data acquisition card (OMEGA OMB-Daq Temp 16-bit/200-kHz Data 

Acquisition Module) has been used to record the signals from the thermocouples 

and pressure sensors.  

 The phase angles between the pressure signals and the frequency for the system 

are measured by a SR830 DSP lock-in amplifier with an accuracy of 0.01°.  
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 The signal is also visualised and saved using the oscilloscope. Programming 

code is then used to calculate the wave frequency and analyse the wave into its 

different modes, to obtain the acoustic power.  

 

To measure the pressure amplitudes and the phase angle between them, ‎three pressure 

sensors (PCB PIEZOTRONICS model 113B27) are installed at three different positions. 

These pressure sensors ‎were calibrated by the manufacturer, as shown in appendix five.  

The voltage which is provided to the system is measured by multimeter (1705 TRUE 

RMS PROGRAMMABLE MULT TIMETER). Also, the voltage which is generated by 

alternator is measured by a small multimeter (ISO-TECH IDM 73). Type-K 

thermocouples are installed to measure the temperatures at both ends of the regenerator 

and within the heater. The thermocouples were certified by the manufacturer to conform 

to K-Type calibration, which gives an accuracy of ±2 degrees. It should be mentioned 

here that to reduce heat loss from the high temperature section of the thermoacoustic 

engine core to the ambient air, the TBT is wrapped with a Ceramic Fibre Insulation 

Blanket (Ceramic Fibre Blanket 25mm For Kiln Furnace Forge – VITCAS, 128 Kg/m³ 

density).  

8.2.4 Acoustic power measurements in TA systems 

To calculate the acoustic power, the pressure amplitude and volumetric velocity and the 

phase ‎angle between them are required. The pressure amplitude can be measured 

directly by using a ‎pressure sensor. However, it is much more challenging to measure 

the volumetric velocity compared to ‎measuring the pressure amplitude. To overcome 

this problem there are two methods to ‎measure the volumetric velocity, direct and 

indirect. ‎ 

In the indirect method, the volumetric velocity ‎is estimated by reading the signals from 

the ‎pressure sensors across for example the FBP, acoustic load, compliance [7].‎ 

In the direct method, the volumetric velocity ‎has to be measured by using a hot 

wire ‎anemometer or a laser-based velocimetry technique (Laser Doppler Velocimetry-
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LDV or ‎Particle Image Velocimetry-PIV). The laser method has some practical 

drawbacks; it is ‎expensive, complex, sensitive to gas density, leading to the inability to 

use it to measure the ‎acoustic power in complex thermoacoustic configurations and in 

high-pressure systems. While the hot ‎wire techniques are sensitive to gas density and 

provide the square of ‎the velocity amplitude, ‎this is problematic for phase 

measurements, and makes them less ‎suitable for high power ‎thermoacoustic 

measurements [86].‎ ‎ 

Because of the disadvantages and limitations of the direct method, the indirect 

methods ‎are ‎used. ‎There are two common ways for the indirect method to be used the 

two-‎microphone method and RC-load method, as described in detail in the next section.‎ 

8.2.4.1 Two-‎microphone method 

This technique is based on using two pressure sensors across a duct (with a short 

distance) in the thermoacoustic system, as schematically shown in Figure ‎8.10.  By 

measuring the pressure amplitude at A and B, along with the ‎phase angle between the 

two readings, this can be used to estimate acoustic power transferred through the mid-

point location between locations A and B [1]. 

 

Figure ‎8.10: Schematic diagram of two-microphone method. 

 

The following expression is used to calculate the output acoustic power 
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where: 

A is the area of the resonator (m
2
) 

  is the angular frequency (rad/sec) 

m  is the mean density (kg/m
3
) 

x  is the distance between A and B 

Ap  is the amplitude pressure at the location A (Pa) 

Bp  is the amplitude pressure at the location B (Pa) 

AB is the phase angle difference between two pressure signals (°). 

 

This method uses the complex signals of two pressure sensors to estimate the acoustic 

power. However, this method has some practical drawbacks. 

 a large distance between both sensors is required ‎( » 0.6 m) ‎ 

 needs a constant diameter section between both sensors 

 requires lock-in amplifiers with an accuracy of 0.01° to get sufficient accuracy 

for the phase measurements ‎ 

 a correction term is needed to compensate for loss between both sensors [86]. 

 

8.2.4.2 RC-acoustic load‎ method 

The schematic of this method is shown in Figure ‎8.7. This method utilises the presence 

of an acoustic load to consume acoustic power. Similar to the previous‎ method, there 

are two pressures sensors locations; however, in the current method, these locations 

have been selected before and after the acoustic load. It is worth noting here that 

the ‎RC-acoustic load‎ method is more accurate than the ‎‎‎two-‎microphone method, which 

is why it is used in this study to calculate the generated acoustic power.  
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where: 

  is the angular frequency (rad/sec) 

V is the volume of the compliance (m
3
) 

  is the ratio of specific heat capacity 

mp  is the mean pressure (Pa) 

Bp  is the amplitude pressure before the Needle valve (Pa) 

Cp  is the amplitude pressure after the Needle valve at the compliance (Pa) 

AB is the phase angle difference between two pressure signals (°). 

 

Equation (8.5) describes the acoustic power calculation corresponding to the Rc-load 

method, which depends dramatically on the values of pressure amplitude at the two 

locations PB and PC. 

 

In conclusion, the two-microphone method may cause an error in the measurement of 

the phase difference of the two sensors, ‎leading‎ to‎ an error in acoustic power 

measurement. Accordingly, the effect of phase angle measurement error should be 

minimised by separating the sensors by velocity antinode distance [74]. In addition 

there is a large distance (0.6 m) ‎between the sensors so the ‏measuring device should 

have sufficient ‎accuracy (better than 0.01°) ‎ for the phase measurement [87].‎ 

The RC-load method gives a straightforward and reasonably accurate result for 

evaluating the acoustic ‎power [74]. It has been broadly used in thermoacoustic devices 

[47, 88, 89 and 90]. 

For these reasons the RC-load method is more accurate than the two-microphone 

method, so it is used in this study to calculate the ‎generated acoustic power. ‎ 

8.2.5 Integrated system 

Figure  8.11 and Figure  8.12 show the integrated engine core when all the engine's 

components are put together. It should be mentioned here that the sound wave is passing 

firstly through the AHX and then to the REG, and finally to the HHX. 
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Figure ‎8.11: Thermocoustic engine unit as a whole by SolidWork. 

 

 

Figure ‎8.12: Photograph of the thermoacoustic engine unit. 
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The experimental thermoacoustic system as a whole and all the measurement equipment 

are shown in Figure ‎8.13 and Figure ‎8.14. 

 

Figure ‎8.13: Photograph of the experiment system as a whole and all the measurement equipment. 

 

8.2.6 Experimental procedures 

Figure ‎8.14 shows a flow chart of steps in the experimental system, and the 

measurement tools. The cycle starts with providing power to the system using a 

transformer, and a voltage divider to govern the supplied power. Electrical power is 

supplied to the heater at a maximum voltage of 50 V, which can be ‎varied in the range 

of 0-50 V, and a maximum current of 10 A from an AC power supply ‎by using a feed-

through to maintain a good pressure seal.‎ 
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The main objective of thermoacoustic research is to enable utilisation of low grade 

waste heat commonly released into the environment by many industrial processes. 

However, to meet laboratory requirements and create a comfortable 

working ‎environment, the heat source‎ ‎has‎ been replaced by an electrical source. The 

power supply is fed to the hot heat exchangers, which in turn transfers it to the 

regenerator. The heat generated by the hot heat exchanger heats up the first side of the 

regenerator (the hot side of the regenerator). Part of this heat reaches the other side of 

the regenerator (the cold side of the regenerator) by conduction. 

  

Figure ‎8.14 : Schematic of the thermoacoustic engine system and measurement instrumentation. 

 

The temperature of both HHX and the hot side of REG increases dramatically, resulting 

in the system reaching the onset temperature (the temperature difference between the 

two ends of REG). Therefore the system starts to spontaneously acoustically oscillate. 

At this point, the working gas waves begin to transfer the heat energy from HHX to the 

hot side of REG faster, leading to a sharp ‎ decrease in the temperature of the HHX and a 
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dramatic increase in the temperature of the hot end of the REG. Thereafter, both the 

temperature of HHX and REG reach the steady state, with the continuation of the 

spontaneous acoustic oscillations, producing acoustic power accordingly.  

 

To measure and monitor the temperature along the system, three K-type thermocouples 

are located at three locations, the centre of the HHX, hot side of the REG, and cold side 

of the REG. These thermocouples are then connected to the data acquisition card 

(DAQ) which is in turn connected to the computer. 

The pressure sensors are connected to the data acquisition card (DAQ) to measure and 

log the pressure values, and to the PCB device display signals using the oscilloscope. It 

should be mentioned that the DAQ reads the pressure in volts, so to convert it to Pascals 

it is multiplied by a conversion factor supplied with the pressure sensors. 

After obtaining‎ the values of pressure, temperature, and the phase angle between 

pressure ‎signals, the thermoacoustic system can be analysed and evaluated. The DAQ 

data enables plotting of temperature distribution curves in real time, which in turn helps 

to monitor ‎the temperature level at the HHX, and the two sides of the REG. The curve 

clearly demonstrates ‎the onset temperature where the system starts spontaneously 

oscillating and produces ‎acoustic power. The DAQ also allows plotting of the pressure 

distribution curve over time, which ‎helps to visualise‎ the pressure distribution.‎ 

Finally, according to the values of pressure at two selected locations and the phase angle 

between ‎them, the acoustic power can be estimated. As mentioned before, either the 

two-microphone ‎method or RC-acoustic load can be used, based on the experiment 

system utilised.‎ 
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8.3 Analysis of the system without RC-load 

8.3.1 Simulations results and discussion 

‎As schematically shown in Figure ‎8.15, this engine consists of an ambient heat 

exchanger (AHX), regenerator (REG), hot heat exchanger (HHX), thermal buffer tube 

(TBT) and secondary ambient heat exchanger (SAHX). A side-branched Helmholtz 

resonator whose volume can be varied by changing the position of a piston connects to 

the looped-tube engine about 70 cm away from the secondary ambient heat exchanger. 

The Helmholtz resonator is connected to the loop through a connection pipe that is only 

3 cm in length. The design procedure consists of numerical modelling of the system 

using DeltaEC tools; ‎this is ‎followed by the construction of a practical engine system. 

The preliminary testing ‎results are ‎obtained and compared with the simulations in detail. 

The total length of the looped tube engine system is about 4.5 m. The operating 

frequency of the system is 60.5 Hz. The diameters of the engine core and acoustic 

resonator are 65 mm and 20 mm, respectively. As the main interest of this research is to 

demonstrate the function of the proposed phase tuning technique rather than the high 

efficiency or power output, atmospheric air is used as working fluid. PVC pipe rather 

than metal pipe is used as a FBP to minimise the cost.  

 

 
Figure ‎8.15: Schematic of the experimental system without RC-load. 
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Previous research showed that the acoustic velocity tends to be very high in the looped-

tube thermoacoustic engine, due to the sudden change of the cross-sectional area. Side-

branched stubs were introduced to correct the acoustic field within the looped tube 

engine [56]. The physical principle behind the function of the side-branched stub lies in 

the‎fact‎that‎ it‎can‎shunt‎part‎of‎volumetric‎velocity‎away‎ from‎the‎engine’s‎ FBP, and 

then reduce the acoustic losses, due to higher acoustic velocity along the loop. It is 

understood that the compliance of the side branched stub plays the main role in 

improving the performance of the engine, while the acoustic inertance and resistance of 

the stub do not contribute significantly to the phase tuning effect. For this reason, a side- 

branched acoustic compliance is introduced to the looped engine instead in this 

research. From the acoustical point of view, such a side-branched acoustic compliance 

is a Helmholtz resonator, as shown in Figure ‎8.15. Its acoustic compliance Cs which is 

defined as 

 

2
,s

M M

V V
C

a P 
                                                              (8.6) 

 

where V, a,
M ,

MP  and    are the volume of the Helmholtz resonator, sound speed, 

mean density, mean pressure and ratio of specific heat capacity, respectively [74]. The 

compliance is varied by changing the volume of the resonator in both experiments and 

simulation.  

 

DeltaEC code has been employed to model and simulate the present thermoacoustic 

system. The design process involves a series of comprehensive simulations. The 

experimental rig shown in Figure ‎8.15 was constructed based on an optimised model. 

Some typical simulation results are presented in this section to demonstrate the working 

principle of the rig, as well as the function and effectiveness of the new phase tuning 

device, i.e., the side-branched Helmholtz resonator.  
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The‎Helmholtz‎ resonator’s‎ volume‎ is‎ varied‎ to‎ achieve‎ the‎maximum‎acoustic‎ power‎

generated in the‎ engine.‎ To‎ allow‎ the‎ analysis‎ of‎ engine’s‎ performance,‎ engine‎

efficiency η is defined as 

,
in

E

Q
                                                              (8.7) 

 

where E  is the net production acoustic power generated by the thermoacoustic engine 

core, and inQ  is the heat power input to the system. The simulations results are 

summarised and presented in Figure ‎8.16-Figure ‎8.20.   

 

 

Figure ‎8.16: Distribution of acoustic power along the loop. 

 

The frequency of the engine is 60.5 Hz. The heating power is fixed as 150 W in the 

simulations. The distribution of the acoustic power flow along the engine is shown in 

Figure ‎8.16. About 8.7 W acoustic power is fed to the ambient end of the REG, and is 

then amplified to about 13.8 W within the REG. The HHX, TBT and the SAHX 

dissipate at about 0.7 W. As no acoustic load is installed to the engine at this stage, the 

FBP dissipated around 4.6 W acoustic power, and the remaining acoustic power is then 

fed back to the thermoacoustic engine core for the next cycle. 
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Figure ‎8.17 and Figure ‎8.18 show the effect of the side branched Helmholtz resonator 

on the efficiency of the engine and pressure amplitude, respectively. It can be seen that 

the acoustic compliance of the Helmholtz resonator has strong effects on the 

performance and pressure amplitude of the engine. Both the efficiency and pressure 

amplitude firstly increase, and then decrease with the increase of Cs. There is an optimal 

value about Cs=2.9x10
-9

 m
3
/Pa. 

 

 

Figure ‎8.17: Optimisation of acoustic compliance Cs for efficiency of the engine. 

 

 

Figure ‎8.18: The relationship between pressure amplitude of the engine Cs. 
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Figure ‎8.19: Phase angle at the two ends of the regenerator (ϴREGC&ϴREGH) versus Cs. 

 

Figure ‎8.19 shows the effects of the Helmholtz resonator on the phase angle between 

the velocity and pressure amplitude at two ends of the regenerator. It can be seen that 

the phase angles decrease significantly when the acoustic compliance of the Helmholtz 

resonator (Cs) increases. The side-branched Helmholtz resonator works as expected in 

terms of tuning the phase angle between the velocity and pressure amplitude in the 

looped-tube travelling wave thermoacoustic engine. 

 

 

Figure ‎8.20: Normalised acoustic impedance at the two ends of the regenerator (ZREGC and ZREGH) versus 

Cs. 
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Figure ‎8.20 shows‎ the‎ Helmholtz‎ resonator’s‎ effect‎ on‎ the‎ normalised acoustic 

impedance at two ends of the regenerator. It can be clearly seen that Cs of Helmholtz 

resonator has strong effects on the normalised acoustic impedance, and increases as Cs 

increases.  

 

These results numerically demonstrate that the acoustic field within the tested 

thermoacoustic engine can be controlled by adjusting the volume of the side-branched 

Helmholtz resonator. 

 

 

8.3.2 Experimental results and discussion 

The electrical power of the heater is supplied by the AC power supply, which is up to 

450 W (45 V and 10 Amp). Acoustic oscillations start spontaneously in the system 

when the temperature difference between the cold and hot end of the regenerator 

exceeds the onset temperature gradient. 

 

It should be mentioned here that there is a difference between the measured and 

calculated heat input to the system, and this difference is estimated as the heat losses to 

the ambient air. The operating frequency of this system is 60.5 Hz. The working gas is 

air at atmospheric pressure.  
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Figure ‎8.21: The measured temperature at the two ends of the regenerator, and within the hot heat 

exchanger. 

 

Figure ‎8.21 shows the temperature changes with time for three important locations: 

centre of hot heat exchanger (i.e. heater), the hot and cold side of the regenerator.  It can 

be clearly seen that the air temperatures at the centre of HHX and hot end of the REG 

increase rapidly after the electrical power is turned on to power the HHX. The working 

gas at the cold side of the REG remains at almost ambient temperature during this start 

up process. 

 

It takes about 466 seconds to start the oscillation when the temperatures reach 750°C 

within the hot heat exchanger and 367°C at the hot end of the regenerator. During this 

period, both temperatures increase sharply. The temperature within HHX decreases 

rapidly after the oscillations start, reaching a steady state value of 649°C when the 

oscillation reaches steady state. However, the temperature at the hot end of the REG 

increases sharply from 367 to 477°C, and then smoothly decreases to around 450°C 

during this period. The difference between the evolutions of these two temperatures is 

mainly due to the fact that the spontaneous acoustic oscillation changes the mechanism 

of heat transfer from natural convection to an acoustically forced convection within the 

heat and regenerator. The acoustic oscillation enhances the heat transfer from the HHX 

to the hot side of REG, therefore the temperature of HHX decreases, but the 
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temperature at the hot end of the regenerator increases. The experimental results for the 

pressure amplitude against time are shown in Figure ‎8.22. 

 

 

Figure ‎8.22: Pressure distribution along the loop. 

 

As mentioned earlier, the engine starts the oscillation with growth of pressure amplitude 

at around 466 sec. The pressure amplitude then gradually grows with time to the peak 

value, which is around 6.45 kPa at 478 sec. Thereafter, the pressure amplitude drops to 

about 4.65 kPa and reaches steady. 

 

The effects of the side-branched Helmholtz resonator on the performance of the engine 

have been investigated experimentally. The pressure amplitudes at locations PA and PB 

have been measured when the volume of the side-branched Helmholtz resonator varies. 

The heating power is fixed at 450 W in the experiments, while only 150 W is required 

in the simulations. The difference is estimated as the heat loss, and future measures are 

needed to reduce such heat loss if efficiency becomes a main research concern.  
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Figure ‎8.23: Measured and calculated pressure at PB.  

Typically, the uncertainty in |p1| is ±1%. The error bars are smaller than the symbols. 

 

Figure ‎8.23 shows the measured and calculated pressures at location PB when the 

volume of the resonator varies. It can be seen that, there is a strong dependence of 

pressure amplitude and acoustic power on the Helmholtz resonator volume (acoustic 

compliance), when all the other conditions are kept unchanged. This trend agrees with 

the simulation, while a large discrepancy is observed at high value of Cs. This 

contradiction between the experimental and simulation results comes from the lack of 

isolation of the system, resulting in significant thermal loss between the system and the 

surroundings. Also the use of PVC pipes will likely cause acoustic losses because of the 

imperfect seal between them. In addition, the DeltaEC code assumes many assumptions 

in order to converge on an acceptable numerical solution of the thermoacoustic issue in 

contrast to the experimental process which deals with the thermoacoustic issue as it is 

without any assumptions. The error ‎percentage of the measured and calculated pressure 

values are listed in Table ‎8.1  
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Table ‎8.1: The data of measured and simulated pressure amplitudes  

Cs(x10
-9

m
3
/Pa) Measured pressure (kPa) Calculated pressure (kPa) Error (%) 

2.75 5.318 5.461 2.618 

2.83 5.868 5.971 1.816 

2.92 5.868 6.474 9.36 

3.37 5.868 5.407 8.525 

3.63 5.501 5.416 1.569 

                                                                                                           Average 4.777 

 

 

8.4  Analysis of the  system with RC-load  

8.4.1 Simulation results and discussion   

The thermoacoustic system in this section is the same as the previous section except the 

addition of an RC-load. Figure ‎8.24 shows the schematic of the experimental rig that is 

investigated in this research, and Figure ‎8.25 shows a photo of the obtained 

experimental rig.‎‎The aim of this study is to introduce a new phase tuning method (i.e., 

a side-branched acoustic volume) to tune the time-phasing within a looped-tube 

travelling wave thermoacoustic engine. The proposed concept has been investigated 

both numerically and experimentally in this research. An experimental rig was 

simulated and designed using DeltaEC software. It was then constructed according to 

the obtained theoretical model. The operating frequency of this system is 60.5 Hz. The 

working gas is air at atmospheric ‎pressure. ‎ 
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Figure ‎8.24: Schematic of the experimental system with RC-load. 

 

 

Figure ‎8.25: The photo of the experimental rig.‎ 

 

A block diagram of the segments in DeltaEC simulation is shown in Figure ‎8.26 below; 
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Figure ‎8.26: The block diagram of the segments in DeltaEC simulation. 

 

The design process involves a series of comprehensive simulations. The experimental 

rig shown in Figure ‎8.24 was constructed based on an optimised model. Some typical 

simulations results are presented in this section to demonstrate the working principle of 

the rig as well as the function and effectiveness of the new phase tuning device, i.e., the 

side-branched Helmholtz resonator. The Helmholtz resonator’s‎ volume‎ is‎ varied‎ to‎

achieve the maximum acoustic power generated by the engine.  

 

The simulation results are summarised and presented in this section. It should be 

mentioned here that, impedance acts as a resistance of the valve which can be utilised to 

get the optimiased turns of the valve. Numerically, RC-load should be put in a high 

pressure point in the system, this point is found at 2 m away from the Helmholtz 

resonator, as clearly shown in Figure ‎8.27-Figure ‎8.31. 
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Figure ‎8.27: Distribution of acoustic power along the engine. 

 

Figure ‎8.27 shows the distribution of the acoustic power flow along the engine. Around 

36 W of acoustic power flows into the ambient heat exchanger of the engine core and is 

amplified inside the regenerator to around 87 W. The HHX, TBT, and a section of FBP 

dissipate around 27 W of acoustic power. The acoustic power dissipated by the side-

branched Helmholtz resonator is unnoticeable as expected. There is a sharp drop of 

acoustic power at the location where the RC-acoustic load is connected. The RC-load 

extracts around 16 W of acoustic power. The section of FBP between the RC-load and 

the engine core further dissipates around 8 W of acoustic power, and the remaining 36 

W acoustic power is fed back to the engine core. The heating power is around 260 W, 

so the calculated energy efficiency is around 6.1%.     

 

 

Figure ‎8.28: Distribution of the amplitude of acoustic pressure along the engine. 
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Figure ‎8.28 shows the pressure amplitude distribution along the system. It can be clearly 

seen that there are two peaks and two troughs of pressure amplitude along the engine 

loop. One peak appears at the engine core section (i.e., the regenerator and the hot and 

cold heat exchangers), indicating a high acoustic impedance at this location. The RC- 

load is located close to the other pressure amplitude peak, and the resultant high 

acoustic impedance could minimise the RC-load’s‎effect‎on‎the‎acoustic‎field‎within‎the‎

engine. The maximum and minimum pressure amplitude are around 16.8 and 6.0 kPa 

respectively along the engine. The ratio between them is about 2.8. In an ideal travelling 

wave condition, this ratio should be close to 1. Therefore, it can be inferred that the 

acoustic field has some standing wave components due to acoustic reflection. 

 

 

Figure ‎8.29: Distribution of the amplitude of volumetric velocity along the engine. 

 

Figure ‎8.29 shows the distribution of volumetric velocity along the system. There are 

two peaks and two troughs along the engine loop. Low volumetric velocity within the 

engine core is achieved to avoid viscous dissipation within the regenerator and heat 

exchangers where the flow resistances are high. It can also be seen that the volumetric 

velocity increases significantly due to the sharp temperature gradient along the 

regenerator. It should be highlighted that the volumetric velocity decreases sharply at 

the locations where the side-branched volume (i.e., a Helmholtz resonator) and the RC- 

load are installed, which is mainly due to the shunt of volumetric flow rate to these two 

components. 
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Figure ‎8.30: Phase angle Ө between pressure and velocity oscillations along the engine. 

 

Figure ‎8.30 shows the phase difference between pressure and velocity oscillations along 

the engine loop. It clearly shows that the side branched volume significantly changes 

the phase angle between the pressure and velocity from -40° to about -8°, bringing it 

towards the ideal travelling wave condition, i.e., 0°.
 
The RC-load changes the phase 

angle slightly by around 4°, moving it away from the ideal travelling wave conditions. 

This figure clearly demonstrates that the side-branched volume can effectively adjust 

the phase angle in the engine.    

 

 

Figure ‎8.31: Distribution of the normalized specific acoustic impedance along the engine. 

 

Figure ‎8.31 presents the normalised acoustic impedance along the system. In this model, 

it can be seen that the normalised acoustic impedance in most parts of the system is 
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around 1 as expected, and around 15 at the engine core section.  Usually, the acoustic 

impedance within the engine core should be in the range 15-30 times that of ρma to 

reduce the acoustic losses [10]. Therefore, this model has met this requirement. 

 

Figure ‎8.32: Optimisation of acoustic compliance Cs for efficiency of the engine. 

 

Figure ‎8.32 shows the effect of the side-branched volume on the efficiency of the 

engine. It can be seen that the acoustic compliance of the side-branched volume has 

strong effects on the performance of the engine. The efficiency firstly increases, and 

then decreases with the increase of Cs. There is an optimal value about Cs=2.185x10
-9

 

m
3
/Pa. It should be noted that Cs=2.185x10

-9
 m

3
/Pa was chosen for the optimised 

model, of which the results are shown in Figure ‎8.27-Figure ‎8.31. 

 

 

Figure ‎8.33: Phase angle at the two ends of the regenerator (ϴcold end of REG&ϴhot end of REG) versus Cs. 
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Figure ‎8.33 shows the effects of the Helmholtz resonator on the phase angle between 

the velocity and pressure amplitude at two ends of the regenerator. It can be seen that 

the phase angle increases significantly when the acoustic compliance of the Helmholtz 

resonator (Cs) increases. The side-branched Helmholtz resonator works as expected in 

terms of tuning the phase angle between the velocity and pressure amplitude in a 

looped-tube travelling wave thermoacoustic engine. This indicates that the varying 

volume of the Helmholtz resonator has a largely‎ positive effect on the performance of 

the thermoacoustic system. The presence of the Helmholtz resonator improves the 

system under travelling wave thermoacoustic conditions by decreasing the phase angle, 

which in turn leads to a decrease in acoustic losses and increase in engine efficiency. 

 

 

Figure ‎8.34: Normalised acoustic impedance at the two ends of the regenerator (Zcold end of REG&Zhot end of 

REG) versus Cs. 

 

Figure ‎8.34 shows‎ the‎ Helmholtz‎ resonator’s‎ effect‎ on‎ the‎ normalised acoustic 

impedance at two ends of the regenerator. It can be clearly seen that the Cs of Helmholtz 

resonator has strong effects on the normalised acoustic impedance, and increases as Cs 

increases. These results above numerically demonstrate that the acoustic field within the 

tested thermoacoustic engine can be controlled by adjusting the volume of the side-

branched Helmholtz resonator. It can be seen that there is a maximum value of 

normalised acoustic impedance at the cold end equal to 20.735, which is located at Cs = 
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3.496x10
-9

 m
3
/Pa, and the normalised acoustic impedance at the hot end is equal to 

12.753 which is located at Cs = 2.791x10
-9

 m
3
/Pa.  

 

 

Figure ‎8.35: Pressure amplitudes before the valve of the RC-load versus Cs. 

 

 

Figure ‎8.36: Pressure amplitudes after the valve of the RC-load versus Cs. 

 

Figure ‎8.35 and Figure ‎8.36 present the pressure amplitude before and after the valve of 

the RC-load. In general, the pressure values before the valve are higher than the 

pressure values after the valve; this is mainly due to the presence of the needle valve. If 

the value is closed there is no pressure, but as the value is opened gradually, the 

pressure after the valve starts to rise. It should be mentioned here is that the maximum 
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values of the pressure before and after the needle valve are 13800 and 572 Pa 

respectively. Both are found at the Cs = 2.531x10
-9

 m
3
/Pa. 

 

 

Figure ‎8.37: Acoustic power consumed by the RC-load versus Cs. 

 

The acoustic power consumed by the RC-load is presented in Figure ‎8.37. It can be seen 

that the RC-load consumes around 16 Watt when the Cs = 2.361x10
-9

 m
3
/Pa. 

 

8.4.2 Experimental results and discussion 

As mentioned in the previous‎ section, the electrical power of the heater is supplied by 

the AC power supply, which is up to 450 W (45 V and 10 A). The acoustic oscillations 

start spontaneously in the system when the temperature difference between the cold and 

hot end of the regenerator exceeds the onset temperature gradient. The operating 

frequency of this system is 60.5 Hz. The working gas is air at atmospheric pressure.  

 

In order to evaluate a‎thermoacoustic‎engine’s‎performance‎it‎ is‎necessary‎to‎calculate‎

the acoustic power which is generated. Some times for research reasons there is no 

acoustic load in the system, so acoustic power will be dissipated inside the FBP [54]. To 

estimate the acoustic power during any thermoacoustic system there are two methods; 

the two microphones method and RC-acoustic load method, as mentioned in the 

experimental setup section. The second is more accurate than the first, so it is used in 
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this study to calculate the generated acoustic power. Based on the RC-acoustic load 

technique above, acoustic power can be measured by using the equation (8.5). 

 

This method benefits from the pressure amplitude difference on both sides of the needle 

valve. This difference depends on the number of turns of the valve; if the number of 

turns is zero there is no pressure difference, and when the number of turns is increased 

the acoustic power dissipates, which in turn leads to a pressure difference. This method 

gives a clear indication of how acoustic power dissipates, rather than the two 

microphones method which is influenced greatly by the distance between the two 

pressure sensors. 

 

In the next section, two optimisation experiments are investigated. Firstly, the acoustic 

complaince Cs is fixed at 2.9 x10
-9

 m
3
/Pa (which was found from the last section), and 

the valve opening is adjusted by varying the turns of the valve. This leads to the 

optimised number of turns of the needle valve, which allows passing of the highest 

acoustic power. Secondly, having found the optimised number of turns of the valve, this 

value will be fixed and the volume of the Helmholtz resonator varied ‎ to determine how 

it affects the performance of the system as a whole. 

 

 ‎Varying valve opening in turns, Cs=2.9 x10
-9

 m
3
/Pa 

The goal of this section is to find an optimised number of turns of the valve which 

allows passing of the highest acoustic power through the RC-load. This is achieved by 

maintaining the optimised acoustic compliance of the Helmholtz resonator which has 

been found to be 2.9 x10
-9

 m
3
/Pa for the current configuration without RC-load [91].  

 

From the experimental work it can be mentioned here how the pressure amplitude at the 

three pressure sensor locations are affected by changing the number of turns of the 

needle valve; pressure amplitude at the locations PA and PB decrease, but increase at the 

location PC. It can be seen that the lowest value of the pressure amplitude is at location 
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PC because this location has the highest velocity amplitude, as shown in Figure ‎8.38-

Figure ‎8.40 below; 

 

 

Figure ‎8.38 : Pressure distribution at location PB versus valve opening in turns, Cs=2.9x10-9 m3/Pa.  

Typically, the uncertainty in |p1| is ±1%. The error bars are smaller than the symbols. 

 

Figure ‎8.39: Pressure distribution at location PC versus valve opening in turns, Cs=2.9x10-9 m3/Pa.  

Typically, the uncertainty in |p1| is ±1%. The error bars are smaller than the symbols. 
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Figure ‎8.38 and Figure ‎8.39 show pressure amplitude distribution as per changing of 

turns of valve. As aforementioned, the pressure at location PB decreases and at location 

PC increases. 

 

 

Figure ‎8.40 : Pressure distribution at locations PB and PC versus valve opening in turns, Cs =2.9x10-9 

m3/Pa.  

Typically, the uncertainty in |p1| is ±1%. The error bars are smaller than the symbols. 

Figure ‎8.40 shows a comparison between pressure distribution at locations PB and PC. It 

can be seen that the range of change in pressure at PB is between 8 and 5 kPa, but the 

range of change in pressure at PC is between 0.1 and 0.2 kPa. It can be noted that, there 

is a higher pressure at Pc at number of turns equal to 5 in Figure ‎8.39, however, there is 

a trade-off between pressure at PB and PC. This means that if the pressure at PC 

increases, the pressure at PB will decrease and vice versa, so an experimentally 

optimised value is required between these two values. Therefore 4 has been chosen as 

the number of valve turns.‎ 
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Figure ‎8.41 : Acoustic power versus valve opening in turns, Cs=2.9x10-9 m3/Pa. 

 

Figure ‎8.41 presents the highest output acoustic power (1.8 Watt) of the thermoacoustic 

system at turn 4 of the needle valve. 

 

 

Figure ‎8.42: Phase angle difference between PB & PC locations versus valve opening in turns, Cs=2.9x10-9 

m3/Pa.  

Lock-in amplifier with an accuracy of 0.01°. 

 

Figure ‎8.42 shows the phase angle difference between PB and PC locations, which 

increases significantly by increasing the valve opening.  
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 ‎Varying Cs at turn=4‎ 

In the last section,  the optimised valve opening was determined to be equivalent to four 

valve turns of the  needle valve. In this section the number of turns is fixed and the 

acoustic compliance of the Helmholtz resonator is varied to see how the Helmholtz 

resonator’s‎volume‎affects the performance of the system. As was seen earlier, the same 

distribution of the pressure amplitude occurs here, but in a different range. In general, 

the pressure amplitude at locations PA and PB decreases and at location PC increases for 

the same reason as mentioned abov, shown in Figure ‎8.43-Figure ‎8.45. 

 

 

Figure ‎8.43: Pressure amplitude at location PB changes as Cs varies when the heating power is constant.  

Typically, the uncertainty in |p1| is ±1%. The error bars are smaller than the symbols. 

 

Figure ‎8.43 and Figure ‎8.44 show the effect of the acoustic compliance of the side-

branched volume on the ‎pressure amplitude at location PB and PC. As Cs increases the 

pressure amplitude firstly increases, and ‎then decreases. The optimal value of Cs is 

measured as 2.62×10
-9

 m
3
/Pa, which is close to the ‎optimal value Cs=2.185×10

-9
 m

3
/Pa 

as predicted in the simulations. ‎ 
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Figure ‎8.44: Pressure amplitude at PC location versus Cs. 

Typically, the uncertainty in |p1| is ±1%. The error bars are smaller than the symbols. 

 

Figure ‎8.45: Pressure distribution at locations PB and PC locations versus Cs, turns=4. 

Typically, the uncertainty in |p1| is ±1%. The error bars are smaller than the symbols. 

 

Figure ‎8.45 shows how the volume of the Helmholtz resonator affects the pressure 

amplitude at two important locations, PB and PC. This presents a wide range of change 

of pressure amplitude at location PB compared to location PC. It can be seen from this 

figure that there is a highest pressure value (around 6.6 kPa) at the optimised Cs (2.62 

x10
-9

 m
3
/Pa). 
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Figure ‎8.46: Acoustic power changes as Cs varies when the heating power is kept as constant‎, turns=4 

 

The side-branched volume has been varied to find out the optimal value of Cs 

corresponding ‎to the highest acoustic power output and energy efficiency. Figure ‎8.46 

shows the relationship ‎between acoustic compliance Cs against acoustic power extracted 

by the RC-load. The ‎measured optimal compliance of the side-branched volume is 

Cs=2.62x10
-9

 m
3
/Pa, which ‎again is close to the predicted value as shown in 

Figure ‎8.32. ‎ 

 

The experimental results shown in Figure ‎8.43 and Figure ‎8.46 demonstrate that the 

side-branched volume ‎can strongly affect the performance of the engine. The measured 

optimal value of the acoustic ‎compliance of the side-branched volume is close to the 

predicted optimal value, as ‎shown in Figure ‎8.32.  ‎ 
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Figure ‎8.47: Engine’s‎energy‎efficiency‎changes‎as‎Cs varies when the heating power is kept as 

constant. ‎turns=4 

 

Figure ‎8.46 and Figure ‎8.47 show the relationship between acoustic compliance of the 

Helmholtz resonator (Cs) against acoustic power and engine efficiency respectively. 

Having fixed the number of turns to four 4, the Helmholtz resonator volume has been 

varied to find the optimised volume which gives highest output power and efficiency. 

Based on these parameters, the optimised acoustic compliance of the Helmholtz 

resonator (Cs) has been found to be 2.62x10
-9

 m
3
/Pa. 

 

As the heat input power was kept as 450 W in the experiments, the energy efficiency of 

the ‎experimental rig can then be deduced, as shown in Figure ‎8.47. The measured 

energy efficiency is ‎much lower than the predictions, as described in the numerical 

section. Nevertheless, the results in Figure ‎8.47 show a qualitative agreement with the 

simulations as shown in Figure ‎8.32. Such a qualitative ‎agreement demonstrates that the 

side-branched volume can effectively influence the ‎performance of the tested engine.   

 ‎ 
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Figure ‎8.48: Phase angle difference between PB & PC locations versus Cs, turns=4. 

Lock-in amplifier with an accuracy of 0.01°. 

 

From Figure ‎8.48 can be observed‎ a proportional relation between phase angle 

difference between PB & PC locations and Cs. 

 

Usually, strong acoustic reflection can be induced due to the inconsistent cross-sectional 

area ‎along looped-tube travelling wave thermoacoustic engines. This can result in 

relatively higher ‎standing ratio in the acoustic field, and consequently higher acoustic 

velocity at locations close ‎to the nodes of the acoustic field. High acoustic velocity 

normally causes high acoustic power ‎losses, due to friction between the working gas 

and the inner wall of the FBP. ‎Therefore, a logical approach is to reduce the local 

acoustic velocity without limiting the ‎acoustic pressure. ‎ 

The numerical simulations have clearly demonstrated the working principle of the 

proposed ‎phase-tuning method. As described in the numerical section, the side-

branched volume is essentially a ‎Helmholtz resonator. As shown in Figure ‎8.29, it is 

connected to the engine at the location ‎where the volumetric acoustic velocity is close to 

its maximum. It shunts away part of the ‎volumetric velocity from the FBP, and 

significantly reduces the local volumetric ‎velocity within the FBP (see Figure ‎8.29), but 

does not affect the local acoustic ‎pressure (see Figure ‎8.28). As a result, the local phase 
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angle between acoustic pressure and ‎velocity has been significantly improved towards 

the‎ ideal‎ travelling‎ wave‎ condition,‎ i.e.,‎ θ=0‎ ‎‎(see Figure ‎8.30). Since a Helmholtz 

resonator is essentially an acoustic energy storage device, it ‎does not consume acoustic 

energy (see Figure ‎8.27). The effectiveness of the proposed phase ‎tuning method has 

been further demonstrated in Figure ‎8.32. The acoustic compliance has a ‎strong effect 

on‎ the‎ engine’s‎ performance,‎ and‎ the‎ simulations‎ predict‎ an‎ optimal‎

acoustic ‎compliance Cs=2.185x10
-9

 m
3
/Pa, corresponding to the optimal energy 

efficiency of the ‎engine.   ‎ 

The measured efficiency (0.35%) of the actual engine is much lower than the prediction 

of ‎‎6.1% by the simulations, as shown in the numerical section. The onset temperature of 

this system is ‎about 247°C, which is also much higher than that of the systems tested 

(around 100°C) in the ‎Ref [56]. There are several possible reasons behind this poor 

performance. One is the ‎significant heat losses due to insufficient thermal insulation 

around the HHX ‎and TBT and acoustic streaming, and the other is the acoustic losses 

due to the ‎sudden change of the cross-sectional areas along the engine. The PVC pipe 

and the poor air ‎tightness could also reduce their efficiency, due to the leakage of sound 

waves. ‎ 

Nevertheless, the main objective of this research is to demonstrate the function of the 

side-‎branched volume rather than achieving high energy efficiency. The experimental 

results ‎shown in Figure ‎8.45-Figure ‎8.47 demonstrate that the side-branched volume has 

a strong effect on the ‎performance of the tested engine. It has also been proven that 

there exists an optimal acoustic ‎compliance Cs=2.62x10
-9

 m
3
/Pa leading to an optimal 

energy efficiency (see Figure ‎8.47), which is ‎close to the predicted value as shown in 

Figure ‎8.32. This qualitatively agrees with the numerical ‎simulations.  ‎ 
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8.5  Conclusions  

This chapter proposes a new method to control and tune the acoustic field within a 

looped-tube travelling wave thermoacoustic engine using a side-branched volume. From 

the acoustic point of view, such a side-branched volume is essentially a Helmholtz 

resonator, and thus does not consume acoustic power. By changing its volume 

(acoustically speaking, its compliance), the researcher can change the acoustic 

impedance at the opening of this Helmholtz resonator, and thus adjust the acoustic field 

within the loop-tubed engine as demonstrated in Figure ‎8.24. It can essentially shunt 

away part of the volumetric velocity at the low impedance region of the engine, so that 

the acoustic loss can be reduced within the engine.  

 

Based on the simulations, a simple experimental rig using inexpensive components and 

atmospheric air as a working fluid was constructed and tested. Although the measured 

energy efficiency of the actual experimental rig is much lower than the predictions, due 

to significant heat and acoustic power losses in experiments, there is a qualitative 

agreement between the simulations and the measurements in terms of the effect of the 

acoustic compliance of the side-branched‎volume‎on‎the‎engine’s‎performance.‎Both‎the‎

simulations and the experimental results have demonstrated that the proposed side-

branched volume can effectively adjust the acoustic field within the looped-tube engine 

and affect its performance. There is an optimal acoustic compliance corresponding to 

the best performance in terms of acoustic power output and energy efficiency when the 

heating power input is fixed. 
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Chapter 9   Summary and future work 

The findings of the work undertaken in this thesis are summarised in section 9.1, and 

some suggestions for future research are considered‎ in section 9.2. 

9.1  Summary 

In chapter 4, a numerical analysis of a travelling wave thermoacoustic engine with a ‎by-

pass ‎configuration was carried out. The interest in ‎ such a by-pass configuration is that 

the by-pass ‎and ‎FBPs actually created a pure travelling wave resonator. The ‎engine unit 

extracts a ‎small amount of acoustic work from the resonator, ‎amplifies it and sends it 

back. As the ‎pure travelling wave resonator has ‎very low losses, it requires very little 

acoustic power to sustain ‎an acoustic ‎resonance. ‎This new configuration can 

achieve ‎comparable performance to other types of travelling wave ‎thermoacoustic 

engines which have ‎been intensively researched. ‎ Furthermore, from the fundamental 

acoustic research point of view, ‎the ‎travelling wave acoustic resonator can create a 

travelling wave ‎acoustic field on a relatively ‎large scale, which has not been reported 

before, ‎according to the‎ authors’‎ knowledge. Such a concept for a ‎ ‎travelling wave 

acoustic ‎field has wide applications for acoustic research, such as ‎testing ‎microphones.‎ 

In chapter 5, numerical analysis of a travelling wave thermoacoustic engine with a ‎by-

pass ‎configuration and its application to thermoacoustic engine driven ‎coolers was 

investigated. ‎ ‎Nitrogen at 10 bar was used as the working gas, and the engine had an 

operating ‎frequency around 76.5 ‎Hz. When the engine was loaded with 

a ‎thermoacoustic cooler, the simulation results show that ‎the whole system ‎could 

achieve a thermal efficiency of 14.5%, which is equivalent to 33.4% of ‎the ‎Carnot 

efficiency at the tested temperature range. The cooler consumes ‎‎159.5 W acoustic 

power ‎to remove 232.4 W heat at about -19°C and rejects ‎it at 28°C, which leads to a 

COP of about 1.46, which is equivalent to 27% of ‎Carnot COP under these operating 

conditions.‎ 
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In chapter 6,  numerical analysis of the travelling wave thermoacoustic engine with a 

by-‎pass ‎configuration and its application to develop thermoacoustic ‎engine driven 

electric generator was presented. ‎The validated model in chapter 4 and 5 was applied to 

design a thermally ‎driven ‎travelling wave thermoacoustic electric generator with such a 

by-‎pass configuration. The design ‎principle contained in the by-pass ‎configuration was 

implemented successfully in the design, ‎although the ‎design objectives were changed to 

achieve higher efficiency. It was found ‎that the ‎design strategy for high efficiency 

engines as suggested by Backhaus, ‎‎can also be incorporated in the ‎design. ‎When the 

engine was loaded with a linear alternator to generate electricity, ‎the whole ‎system 

achieved a thermal efficiency of 21.5% which is equivalent ‎to 32.4% of the Carnot 

efficiency ‎under the operating conditions. The ‎alternator extracted 237 W acoustic 

power from the engine ‎and generated ‎‎166 W electricity, which ultimately led to an 

alternator efficiency of about ‎‎70%. The ‎overall thermal-to-electric efficiency was about 

15%, which is ‎comparable to the experimental ‎results of other types of travelling 

wave ‎thermoacoustic generator‎.‎ 

In chapter 7, numerical analysis of two-stage engines by-pass configuration travelling-

‎wave ‎thermoacoustic engines was presented. This study has two parts; with and 

without ‎coolers. This research showed that this new configuration has the potential 

for ‎developing a low ‎cost thermally driven heat pump system. Nitrogen at 10 ‎bar is used 

as a working gas, and the engine ‎has an operating frequency of ‎around 50 Hz. When the 

engine is loaded with a thermoacoustic cooler, ‎the ‎simulation results show that the 

whole system can achieve a thermal ‎efficiency of 20.3%, which ‎is equivalent to 40% of 

the Carnot efficiency at ‎the tested temperature range. Cooler 1 ‎consumes 488 W 

acoustic power ‎to remove 708 W of heat energy at about -36°C, and rejects it at ‎‎64°C.  

Cooler 2 consumes 723W acoustic power to remove 1200.5 W of heat energy ‎at 

about ‎‎188°C, and rejects it at 372°C, which leads to a COP of about 1.55; ‎that is 

equivalent to 64% of ‎Carnot COP under these operating conditions. ‎The novelty of such 

a by-pass configuration is that ‎the by-pass and FBPs actually create a pure travelling 

wave resonator. The engine ‎unit ‎extracts small amounts of acoustic work from the 
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resonator, amplifies it ‎and sends it back to ‎it. As the pure travelling wave resonator has 

very low ‎losses, it requires very little acoustic power ‎to maintain an acoustic ‎resonance. ‎ 

In chapter 8, the experimental components which were used in this thesis have been 

designed using ‎SolidWorks software (as shown in appendix two) and then manufactured 

in the ‎workshop at the ‎University of Glasgow, for example the ambient heat exchanger, 

hot ‎heat exchanger, regenerator case, and others. ‎In addition, all the measurement tools 

are described here to reveal how the ‎different ‎parameters are measured.‎  

In addition, a new method to control and tune the acoustic field within a looped-

tube ‎travelling ‎wave thermoacoustic engine using a side-branched volume‎ was 

introduced in this chapter. It can ‎essentially shunt away part of the volumetric velocity 

at the low ‎impedance region of the engine, so ‎that the acoustic loss can be 

reduced ‎within the engine. Based on these simulations, a simple ‎experimental rig using 

inexpensive ‎components and atmospheric air as a working fluid was ‎constructed 

and ‎tested. Although the measured energy efficiency of the actual experimental ‎rig 

is ‎much lower than the predictions, due to significant heat and acoustic ‎power losses in 

actual‎ experiments, ‎there is a qualitative agreement between the ‎simulations and the 

measurements, in terms of the ‎effect of the acoustic ‎compliance of the side-branched 

volume‎ on‎ the‎ engine’s‎ performance.‎ There is an optimal acoustic compliance 

corresponding to the best ‎performance in terms of ‎acoustic power output and energy 

efficiency when ‎the heating power input is fixed.  ‎ 

The contribution of this thesis to new ‎knowledge can be summarised in the section 

below: 

Proves that the by-pass configuration operates on the same ‎thermodynamic principle as 

other travelling wave thermoacoustic engines‎.  

Utilise the by-pass configuration to design a thermally driven travelling wave 

thermoacoustic ‎cooler, allowing for evaluation of thermal ‎efficiency.‎ 
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The by-pass configuration was applied to design a thermally driven travelling wave 

thermoacoustic system coupled with an electric ‎generator. ‎This new idea was 

implemented successfully‎ in the ‎design, indicating that the design strategy for a high 

efficiency engine, as suggested by ‎Backhaus [10], can also be incorporated in the 

design. ‎ 

Successful addition of a second stage engine to utilising the by-pass configuration. ‎This 

idea was carried out with and without acoustic loads. Both of them contributed to 

increasing the system's performance. This research demonstrates‎ that this new 

configuration has the potential for developing a low ‎cost thermally driven heat pump 

system. ‎ 

Presented a new method to control and tune the acoustic field within a looped-tube 

travelling wave ‎thermoacoustic engine, using a side-branched volume. ‎Both the 

simulations and the experimental results have demonstrated that the proposed ‎side-

branched volume can effectively adjust the acoustic field within the looped-tube ‎engine 

and affect its performance. ‎ 

 

9.2  Future work 

The present study has investigated looped-tube ‎travelling-wave thermoacoustic 

engines ‎with a by-pass pipe and the effects of a side branched ‎Helmholtz resonator to 

tune the phase in looped-‎tube travelling wave ‎thermoacoustic engines.‎ Therefore, future 

work should explore‎ the following: 

 To further demonstrate and validate the by-pass configuration, future work 

should be focused on the experimental prototypes as designed in this study. 

 After successfully coupling the cooler to the by-pass configuration numerically, 

it would be very interesting to find out how this system works experimentally.  
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 Similarly, according to the simulation results from coupling the alternator to the 

by-pass system, future work should be focused on the experimental prototypes 

designed in this study. In addition, it can be expected that a better performance 

could be achieved if the ‎pressurised helium is used as working medium like 

other prototypes. 

 In Chapter 7, ‎ Numerical investigation of a two-stage travelling-wave 

thermoacoustic engine with a by-‎pass configuration has been numerically 

investigated. This study aims to reduce acoustic losses within the resonator. The 

simulation results ‎ in ‏this study ‎were reasonable, which makes it an attractive 

prospect to carry on with the ‎experimental work.‎‎ Such ‎an‎ experimental 

investigation will enable validation between the experimental and numerical 

results‎. 

 ‎  

 Regarding the phase tuning study, future work‎ should focus on building a high 

efficiency ‎experimental rig using ‎pressurised helium as a working fluid to 

further ‎understand the fundamental ‎mechanism of this type of phase tuning, 

method, and ‎demonstrate and improve ‎its effectiveness. 

 ‎
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Appendices 

Appendix One: DeltaEC Simulations 

In this appendix, some of the DeltaEC codes which are already used in this thesis are 

presented.  

A1.1: Simulation code of a looped-tube travelling-wave thermoacoustic 

engine with a by-pass configuration  

TITLE       

!---------------------------------  0  

BEGIN       

!Start to adjust the phase 

 9.8000E+04 a Mean P Pa                  

  117.00    b Freq   Hz                  

  311.34    c TBeg   K        G          

 3430.0     d |p|    Pa                  

-3.9632E-10 e Ph(p)  deg                 

 4.7837E-02 f |U|    m^3/s    G          

   14.176   g Ph(U)  deg      G          

air           Gas type                   

!---------------------------------  1 --------------------------

------- 

DUCT       Dummy Duct 

 5.4094E-03 a Area   m^2      G          3430.0     A |p|    Pa 

    0.18845 b Perim  m                  -1.1600E-03 B Ph(p)  deg 

 1.0000E-05 c Length m                   4.7837E-02 C |U|    

m^3/s 

 5.0000E-04 d Srough                       14.175   D Ph(U)  deg 

                                           79.542   E Htot   W 

 sameas  10   Solid type                   79.542   F Edot   W 

!---------------------------------  2 --------------------------

------- 

RPN        ChangeMe 

    1.0000  a G or T          =2A       1.0000                    

A ChngeMe 

p1 U1 / rho / a / 1a * mag 

!---------------------------------  3 --------------------------

------- 

TBRANCH    Change Me 

 1.1498E+05 a Re(Zb) Pa-s/m^3 G          3430.0     A |p|    Pa 

 3.6035E+04 b Im(Zb) Pa-s/m^3 G         -1.1600E-03 B Ph(p)  deg 

                                         2.8465E-02 C |U|    

m^3/s 

                                          -17.402   D Ph(U)  deg 
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                                           46.584   E HtotBr W 

                                           46.584   F EdotBr W 

                                           32.958   G EdotTr W 

!---------------------------------  4 --------------------------

------- 

RPN        Phase1 

     0.0000 a G or T                    17.401                    

A ChngeMe 

3B 3D - 

!---------------------------------  5 --------------------------

------- 

DUCT       by pass 

 3.7000E-03 a Area   m^2      Mstr       3476.4     A |p|    Pa 

    0.21561 b Perim  m        5a         -135.12    B Ph(p)  deg 

    1.0000  c Length m                   2.7328E-02 C |U|    

m^3/s 

 5.0000E-04 d Srough                     -118.77    D Ph(U)  deg 

                                           46.584   E Htot   W 

ideal           Solid type                 45.581   F Edot   W 

!---------------------------------  6 --------------------------

------- 

RPN        Phase2 

     0.0000 a G or T                    -16.35                    

A ChngeMe 

5B 5D - 

!---------------------------------  7 --------------------------

------- 

SOFTEND    Change Me 

     0.0000 a Re(z)                      3476.4     A |p|    Pa 

     0.0000 b Im(z)                      -135.12    B Ph(p)  deg 

     0.0000 c Htot   W                   2.7328E-02 C |U|    

m^3/s 

                                         -118.77    D Ph(U)  deg 

                                           46.584   E Htot   W 

                                           45.581   F Edot   W 

                                            1.1644  G Re(z) 

                                        -0.34161    H Im(z) 

                                          311.34    I T      K 

!---------------------------------  8 --------------------------

------- 

DUCT       compliance 

 8.0000E-03 a Area   m^2      Mstr       3574.8     A |p|    Pa 

    0.31705 b Perim  m        8a           -3.922   B Ph(p)  deg 

    0.1270  c Length m                   1.8535E-02 C |U|    

m^3/s 

 5.0000E-04 d Srough                        3.1982  D Ph(U)  deg 

                                           32.958   E Htot   W 

ideal           Solid type                 32.874   F Edot   W 

!---------------------------------  9 --------------------------

------- 

RPN        Phase3 
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     0.0000 a G or T                    -7.1202                   

A ChngeMe 

8B 8D - 

!--------------------------------- 10 --------------------------

------- 

DUCT       inertance1 

 1.5000E-03 a Area   m^2                 4789.7     A |p|    Pa 

    0.18845 b Perim  m                    -74.062   B Ph(p)  deg 

    0.6000  c Length m                   1.3412E-02 C |U|    

m^3/s 

 5.0000E-04 d Srough                      -69.242   D Ph(U)  deg 

                                           32.958   E Htot   W 

ideal           Solid type                 32.006   F Edot   W 

!--------------------------------- 11 --------------------------

------- 

DUCT       Interance2 

sameas  10a a Area   m^2      Mstr       3691.0     A |p|    Pa 

    0.13729 b Perim  m        11a        -135.91    B Ph(p)  deg 

    0.6000  c Length m                   1.7591E-02 C |U|    

m^3/s 

 5.0000E-04 d Srough                     -150.51    D Ph(U)  deg 

                                           32.958   E Htot   W 

ideal           Solid type                 31.415   F Edot   W 

!--------------------------------- 12 --------------------------

------- 

RPN        Phase4 

     0.0000 a G or T                    -4.8199                   

A ChngeMe 

10B 10D - 

!--------------------------------- 13 --------------------------

------- 

RPN        ChangeMe 

  302.31    a G or T                    302.31                    

A ChngeMe 

13a =Tm 

!--------------------------------- 14 --------------------------

------- 

INSULATE   Change Me 

!--------------------------------- 15 --------------------------

------- 

SX         AHX1 

sameas  19a a Area   m^2                 3599.0     A |p|    Pa 

    0.8000  b VolPor                     -135.53    B Ph(p)  deg 

 5.6000E-04 c Length m                   1.7626E-02 C |U|    

m^3/s 

 4.0000E-05 d rh     m                   -150.98    D Ph(U)  deg 

 -589.08    e HeatIn W        G          -556.12    E Htot   W 

  301.00    f SolidT K        =15H         30.573   F Edot   W 

                                          302.31    G GasT   K 

ideal           Solid type                301.00    H SolidT K 
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!--------------------------------- 16 --------------------------

------- 

RPN        Phase5 

     0.0000 a G or T                    15.446                    

A ChngeMe 

15B 15D - 

!--------------------------------- 17 --------------------------

------- 

RPN        Phase at cold end of Regenerator 

     0.0000 a G or T                    15.446                    

A ChngeMe 

p1 U1 / arg 

!--------------------------------- 18 --------------------------

------- 

RPN        ChangeMe 

   30.033   a G or T                    6.2248                    

A ChngeMe 

p1 U1 / rho / a / 19a * mag 

!--------------------------------- 19 --------------------------

------- 

STKSCREEN  REG1 

 1.2000E-02 a Area   m^2                 3576.9     A |p|    Pa 

    0.7400  b VolPor                     -135.47    B Ph(p)  deg 

 1.5800E-03 c Length m                   2.0409E-02 C |U|    

m^3/s 

 1.5000E-04 d rh     m                   -154.84    D Ph(U)  deg 

    0.1500  e ksFrac                     -556.12    E Htot   W 

                                           34.433   F Edot   W 

                                          302.31    G TBeg   K 

stainless           Solid type            360.46    H TEnd   K 

!--------------------------------- 20 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    1.9783                    

A ChngeMe 

dk 19d / 

!--------------------------------- 21 --------------------------

------- 

RPN        Phase6 

     0.0000 a G or T                    19.374                    

A ChngeMe 

19B 19D - 

!--------------------------------- 22 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    1.9783                    

A ChngeMe 

dk 19d / 

!--------------------------------- 23 --------------------------

------- 

RPN        ChangeMe 
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     0.0000 a G or T                    4.3174                    

A ChngeMe 

p1 U1 / mag 19a * 19b * rho / a / 

!--------------------------------- 24 --------------------------

------- 

RPN        Phase at Hot end of Regenerator 

     0.0000 a G or T                    19.374                    

A ChngeMe 

p1 U1 / arg 

!--------------------------------- 25 --------------------------

------- 

RPN        ChangeMe 

  414.76    a G or T                    414.76                    

A ChngeMe 

25a =Tm 

!--------------------------------- 26 --------------------------

------- 

SX         HHX1 

sameas  19a a Area   m^2                 3561.3     A |p|    Pa 

    0.8000  b VolPor                     -135.39    B Ph(p)  deg 

sameas  15c c Length m                   2.0446E-02 C |U|    

m^3/s 

 1.2000E-04 d rh     m                   -155.22    D Ph(U)  deg 

  600.10    e HeatIn W        G            43.979   E Htot   W 

  421.04    f SolidT K        =26H         34.248   F Edot   W 

                                          414.76    G GasT   K 

ideal           Solid type                421.04    H SolidT K 

!--------------------------------- 27 --------------------------

------- 

RPN        Phase7 

     0.0000 a G or T                    19.832                    

A ChngeMe 

26B 26D - 

!--------------------------------- 28 --------------------------

------- 

DUCT       Section 2 

sameas  19a a Area   m^2      Mstr       3545.5     A |p|    Pa 

    0.38833 b Perim  m        28a        -135.86    B Ph(p)  deg 

 3.0000E-02 c Length m                   2.3641E-02 C |U|    

m^3/s 

 5.0000E-04 d Srough                     -171.12    D Ph(U)  deg 

                                           43.979   E Htot   W 

ideal           Solid type                 34.219   F Edot   W 

!--------------------------------- 29 --------------------------

------- 

RPN        ChangeMe 

  306.49    a G or T                    306.49                    

A ChngeMe 

29a =Tm 

!--------------------------------- 30 --------------------------

------- 
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SX         AHX2 

sameas  19a a Area   m^2                 3531.2     A |p|    Pa 

sameas  15b b VolPor                     -135.72    B Ph(p)  deg 

sameas  15c c Length m                   2.3711E-02 C |U|    

m^3/s 

 1.2000E-04 d rh     m                   -171.41    D Ph(U)  deg 

 -589.39    e HeatIn W        G          -545.41    E Htot   W 

  301.00    f SolidT K        =30H         34.001   F Edot   W 

                                          306.49    G GasT   K 

ideal           Solid type                301.00    H SolidT K 

!--------------------------------- 31 --------------------------

------- 

STKSCREEN  REG2 

sameas  19a a Area   m^2                 3495.0     A |p|    Pa 

    0.7400  b VolPor                     -135.34    B Ph(p)  deg 

 1.5800E-03 c Length m                   2.7675E-02 C |U|    

m^3/s 

 1.3000E-04 d rh     m                   -174.05    D Ph(U)  deg 

    0.1000  e ksFrac                     -545.41    E Htot   W 

                                           37.742   F Edot   W 

                                          306.49    G TBeg   K 

stainless           Solid type            360.77    H TEnd   K 

!--------------------------------- 32 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    2.9698E-04                

A ChngeMe 

dk 

!--------------------------------- 33 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    2.2845                    

A ChngeMe 

dk 31d / 

!--------------------------------- 34 --------------------------

------- 

RPN        ChangeMe 

  415.71    a G or T                    415.71                    

A ChngeMe 

34a =Tm 

!--------------------------------- 35 --------------------------

------- 

SX         HHX2 

sameas  19a a Area   m^2                 3476.4     A |p|    Pa 

sameas  15b b VolPor                     -135.12    B Ph(p)  deg 

sameas  15c c Length m                   2.7755E-02 C |U|    

m^3/s 

 1.2000E-04 d rh     m                   -174.28    D Ph(U)  deg 

  600.13    e HeatIn W        G            54.723   E Htot   W 

  421.01    f SolidT K        =35H         37.410   F Edot   W 

                                          415.71    G GasT   K 



Appendix One: DeltaEC simulation‏ codes  

 
205 

 

ideal           Solid type                421.01    H SolidT K 

!--------------------------------- 36 --------------------------

------- 

UNION      Change Me 

  7         a SegNum                     3476.4     A |p|    Pa 

sameas   7A b |p|Sft Pa       =36A       -135.12    B Ph(p)  deg 

sameas   7B c Ph(p)S deg      =36B       4.8747E-02 C |U|    

m^3/s 

sameas   7I d TSoft  K                   -146.76    D Ph(U)  deg 

                                          101.31    E Htot   W 

                                           82.990   F Edot   W 

                                          415.71    G T      K 

!--------------------------------- 37 --------------------------

------- 

RPN        Phase8 

     0.0000 a G or T                    11.638                    

A ChngeMe 

36B 36D - 

!--------------------------------- 38 --------------------------

------- 

RPN        ChangeMe 

sameas   0c a G or T                    311.34                    

A ChngeMe 

38a =Tm 

!--------------------------------- 39 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    11.638                    

A ChngeMe 

p1 U1 / arg 

!--------------------------------- 40 --------------------------

------- 

DUCT       Change Me 

 3.7000E-03 a Area   m^2                 3430.0     A |p|    Pa 

    0.23554 b Perim  m                  -3.9606E-10 B Ph(p)  deg 

    1.7508  c Length m        G          4.7837E-02 C |U|    

m^3/s 

 5.0000E-04 d Srough                       14.176   D Ph(U)  deg 

                                          101.31    E Htot   W 

ideal           Solid type                 79.542   F Edot   W 

!--------------------------------- 41 --------------------------

------- 

RPN        Phase9 

     0.0000 a G or T                    -14.176                   

A ChngeMe 

40B 40D - 

!--------------------------------- 42 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    0.71106                   

A ChngeMe 
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p1 U1 / mag 0.0038465 * rho / a / 

!--------------------------------- 43 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    -14.176                   

A ChngeMe 

p1 U1 / arg 

!--------------------------------- 44 --------------------------

------- 

RPN        P1 

sameas   0d a G or T          =44A      3430.0                    

A ChngeMe 

p1 mag 

!--------------------------------- 45 --------------------------

------- 

RPN        U1 

sameas   0f a G or T          =45A      4.7837E-02                

A ChngeMe 

U1 mag 

!--------------------------------- 46 --------------------------

------- 

RPN        Ph(p1) 

     0.0000 a G or T          =46A      2.6343E-13                

A ChngeMe 

p1 arg 0e - 

!--------------------------------- 47 --------------------------

------- 

RPN        Ph(U1) 

     0.0000 a G or T          =47A      -3.5527E-15               

A ChngeMe 

U1 arg 0g - 

!--------------------------------- 48 --------------------------

------- 

RPN        Dr 

     0.0000 a G or T                    3.5000                    

A % 

0d 0a / 100 * 

!--------------------------------- 49 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    32.006                    

A E inter 

                                        79.542                    

B E reson 

40F 10F 

!--------------------------------- 50 --------------------------

------- 

RPN        Phase checking 

     0.0000 a G or T                    17.401                    

A ChngeMe 
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                                        -16.35                    

B ChngeMe 

                                        -7.1202                   

C ChngeMe 

                                        -4.8199                   

D ChngeMe 

                                        15.446                    

E ChngeMe 

                                        19.374                    

F ChngeMe 

                                        19.832                    

G ChngeMe 

                                        11.638                    

H ChngeMe 

                                        -14.176                   

I ChngeMe 

41A 37A 27A 21A 16A 12A 9A 6A 4A 

!--------------------------------- 51 --------------------------

------- 

RPN        Net acoustic power production (Einertance2-EHHX2) 

     0.0000 a G or T                    5.9946                    

A Watt 

35F 11F - 

!--------------------------------- 52 --------------------------

------- 

RPN        Overall Efficincy 

     0.0000 a G or T                    0.49945                   

A % 

51A 26e 35e + / 100 * 

!--------------------------------- 53 --------------------------

------- 

RPN        Carnt Efficiency 

     0.0000 a G or T                    28.505                    

A % 

35H 30H - 35H / 100 * 

!--------------------------------- 54 --------------------------

------- 

RPN        Relative Efficiency 

     0.0000 a G or T                    1.7521                    

A % 

52A 53A / 100 * 

!--------------------------------- 55 --------------------------

------- 

RPN        Thot & Tcold 

     0.0000 a G or T                    301.00                    

A Tc1 

                                        421.04                    

B Th1 

                                        301.00                    

C Tc2 
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                                        421.01                    

D Th2 

35H 30H 26H 15H 

!--------------------------------- 56 --------------------------

------- 

RPN        Th1-Tc1 

     0.0000 a G or T                    120.04                    

A ChngeMe 

26H 15H - 

!--------------------------------- 57 --------------------------

------- 

RPN        Th2-Tc2 

     0.0000 a G or T                    120.01                    

A ChngeMe 

35H 30H - 

! The restart information below was generated by a previous run 

! and will be used by DeltaEC the next time it opens this file. 

guessz   0c   0f   0g   1a   3a   3b  15e  26e  30e  35e  40c 

xprecn -2.0352E-03 -2.4186E-07  4.2227E-04  4.8487E-08     

4.6918      0.21097 -1.1773E-03  2.7597E-03 -1.2069E-04  

3.6168E-03  3.3285E-05 

targs    2a  15f  26f  30f  35f  36b  36c  44a  45a  46a  47a 

hilite 0c 5a 5c 8a 8c 10a 10c 11F 17A 19F 19c 24A 28c 40B 40D 

40F 40a 47A 49A 49B 50G 51A 

mstr-slave 4 5 -2 8 -2 11 -2 28 -2 

! Plot start, end, and step values.  May be edited if you wish. 

! Outer Loop:                       | Inner Loop . 

 

 

A1.2: Simulation code of a side-branched Helmholtz resonator to tune 

phase in looped-tube travelling wave thermoacoustic engine 

(without RC-load)  

TITLE       

!---------------------------------  0  

BEGIN      Change Me 

 1.0133E+05 a Mean P Pa                  

   60.500   b Freq   Hz                  

  310.00    c TBeg   K                   

 6763.3     d |p|    Pa       G          

     0.0000 e Ph(p)  deg                 

 5.1979E-03 f |U|    m^3/s    G          

   60.137   g Ph(U)  deg      G          

   68.227   h Htot   W        G          

air           Gas type                   

!---------------------------------  1 --------------------------

------- 

RPN        ChangeMe 
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 6785.7     a G or T          =1A       6785.7                    

A ChngeMe 

2A 

!---------------------------------  2 --------------------------

------- 

CONE       Change Me 

sameas  19a a AreaI  m^2      Mstr       6785.7     A |p|    Pa 

 6.4027E-02 b PerimI m        2a           -0.1149  B Ph(p)  deg 

 1.2000E-02 c Length m                   4.9023E-03 C |U|    

m^3/s 

sameas   6a d AreaF  m^2      Mstr         58.169   D Ph(U)  deg 

    0.2042  e PerimF m        2d           68.227   E Htot   W 

 5.0000E-04 f Srough                        8.7440  F Edot   W 

ideal           Solid type               

!---------------------------------  3 --------------------------

------- 

DUCT       stage 1 

sameas   6a a Area   m^2      Mstr       6785.7     A |p|    Pa 

    0.2042  b Perim  m        3a           -0.1149  B Ph(p)  deg 

 1.0000E-13 c Length m                   4.9023E-03 C |U|    

m^3/s 

 5.0000E-04 d Srough                       58.169   D Ph(U)  deg 

                                           68.227   E Htot   W 

ideal           Solid type                  8.7440  F Edot   W 

!---------------------------------  4 --------------------------

------- 

RPN        Dia of Engine 

     0.0000 a G or T                    65.000                    

A mm 

3a pi / 0.5 ^ 1000 * 2 * 

!---------------------------------  5 --------------------------

------- 

RPN        Dia of Resonator 

     0.0000 a G or T                    20.380                    

A mm 

19a pi / 0.5 ^ 1000 * 2 * 

!---------------------------------  6 --------------------------

------- 

TX         AHX1 

 3.3183E-03 a Area   m^2                 6836.0     A |p|    Pa 

    0.2800  b GasA/A                    -0.54391    B Ph(p)  deg 

 2.7000E-02 c Length m                   4.4612E-03 C |U|    

m^3/s 

 1.5000E-03 d radius m                     55.220   D Ph(U)  deg 

 -100.0     e HeatIn W                    -31.773   E Htot   W 

  293.98    f SolidT K                      8.5790  F Edot   W 

                                          310.00    G GasT   K 

ideal           Solid type                270.27    H SolidT K 

!---------------------------------  7 --------------------------

------- 

STKSCREEN  Regenetaor 
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sameas   6a a Area   m^2                 6552.1     A |p|    Pa 

    0.7840  b VolPor                       -3.6867  B Ph(p)  deg 

 2.0000E-02 c Length m                   6.1726E-03 C |U|    

m^3/s 

 1.2677E-04 d rh     m                     43.652   D Ph(U)  deg 

    0.1500  e ksFrac                      -31.773   E Htot   W 

                                           13.703   F Edot   W 

                                          310.00    G TBeg   K 

stainless           Solid type            529.55    H TEnd   K 

!---------------------------------  8 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    5.7630E-04                

A ChngeMe 

dk 

!---------------------------------  9 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    4.5460                    

A ChngeMe 

dk 7d / 

!--------------------------------- 10 --------------------------

------- 

RPN        phase checking 

     0.0000 a G or T                    -47.339                   

A ChngeMe 

7B 7D - 

!--------------------------------- 11 --------------------------

------- 

TX         HHX1 

sameas   6a a Area   m^2                 6566.5     A |p|    Pa 

    0.5000  b GasA/A                       -3.9748  B Ph(p)  deg 

 3.0000E-02 c Length m                   5.3867E-03 C |U|    

m^3/s 

 1.5000E-03 d radius m                     37.225   D Ph(U)  deg 

  150.00    e HeatIn W                    118.23    E Htot   W 

 1168.5     f SolidT K                     13.307   F Edot   W 

                                          529.55    G GasT   K 

ideal           Solid type                579.98    H SolidT K 

!--------------------------------- 12 --------------------------

------- 

DUCT       Change Me 

sameas   6a a Area   m^2      Mstr       6564.8     A |p|    Pa 

    0.2042  b Perim  m        12a          -4.3143  B Ph(p)  deg 

    0.1250  c Length m                   5.5074E-03 C |U|    

m^3/s 

 5.0000E-04 d Srough                      -47.711   D Ph(U)  deg 

                                          118.23    E Htot   W 

ideal           Solid type                 13.135   F Edot   W 

!--------------------------------- 13 --------------------------

------- 
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RPN        ChangeMe 

  350.00    a G or T                    350.00                    

A ChngeMe 

13a =Tm 

!--------------------------------- 14 --------------------------

------- 

TX         SAHX 

sameas   6a a Area   m^2                 6497.4     A |p|    Pa 

    0.2800  b GasA/A                       -4.6674  B Ph(p)  deg 

 2.7000E-02 c Length m                   5.8233E-03 C |U|    

m^3/s 

 1.5000E-03 d radius m                    -51.464   D Ph(U)  deg 

  -41.612   e HeatIn W        G            76.615   E Htot   W 

  991.49    f SolidT K                     12.951   F Edot   W 

                                          350.00    G GasT   K 

ideal           Solid type                333.64    H SolidT K 

!--------------------------------- 15 --------------------------

------- 

RPN        EB 

     0.0000 a G or T          =15A      -3.5527E-15               

A ChngeMe 

14e 11e 6e + + 14F 11F 3F - - - 

!--------------------------------- 16 --------------------------

------- 

RPN        ChangeMe 

  300.00    a G or T                    300.00                    

A ChngeMe 

16a =Tm 

!--------------------------------- 17 --------------------------

------- 

ANCHOR     Change Me 

!--------------------------------- 18 --------------------------

------- 

CONE       Change Me 

sameas  19a a AreaI  m^2      Mstr       6474.4     A |p|    Pa 

 6.4027E-02 b PerimI m        18a          -4.8489  B Ph(p)  deg 

 1.2000E-02 c Length m                   6.0641E-03 C |U|    

m^3/s 

sameas   6a d AreaF  m^2      Mstr        -53.60    D Ph(U)  deg 

    0.2042  e PerimF m        18d          12.943   E Htot   W 

 5.0000E-04 f Srough                       12.943   F Edot   W 

ideal           Solid type               

!--------------------------------- 19 --------------------------

------- 

DUCT       resonator 

 3.2622E-04 a Area   m^2      Mstr       3400.5     A |p|    Pa 

 6.4027E-02 b Perim  m        19a         -87.092   B Ph(p)  deg 

    0.7000  c Length m                   7.3831E-03 C |U|    

m^3/s 

 5.0000E-04 d Srough                      -72.069   D Ph(U)  deg 

                                           12.124   E Htot   W 
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ideal           Solid type                 12.124   F Edot   W 

!--------------------------------- 20 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    -15.023                   

A ChngeMe 

19B 19D - 

!--------------------------------- 21 --------------------------

------- 

TBRANCH    Change Me 

 2305.9     a Re(Zb) Pa-s/m^3 G          3400.5     A |p|    Pa 

-8.9473E+05 b Im(Zb) Pa-s/m^3 G           -87.092   B Ph(p)  deg 

                                         3.8005E-03 C |U|    

m^3/s 

                                            2.7603  D Ph(U)  deg 

                                         1.6653E-02 E HtotBr W 

                                         1.6653E-02 F EdotBr W 

                                           12.107   G EdotTr W 

!--------------------------------- 22 --------------------------

------- 

DUCT       stub 

sameas  19a a Area   m^2      Mstr       3437.8     A |p|    Pa 

 6.4027E-02 b Perim  m        22a         -87.112   B Ph(p)  deg 

 6.9849E-03 c Length m                   3.7794E-03 C |U|    

m^3/s 

 5.0000E-04 d Srough                        2.7637  D Ph(U)  deg 

                                         1.4123E-02 E Htot   W 

ideal           Solid type               1.4123E-02 F Edot   W 

!--------------------------------- 23 --------------------------

------- 

DUCT       Volume 

 1.2400E-02 a Area   m^2      Mstr       3440.0     A |p|    Pa 

    0.39474 b Perim  m        23a         -87.112   B Ph(p)  deg 

 3.3000E-02 c Length m                   1.0332E-18 C |U|    

m^3/s 

 5.0000E-04 d Srough                      175.49    D Ph(U)  deg 

                                        -2.2895E-16 E Htot   W 

ideal           Solid type              -2.2895E-16 F Edot   W 

!--------------------------------- 24 --------------------------

------- 

RPN        ChangeMe 

     0.0000 a G or T                    -262.6                    

A ChngeMe 

23B 23D - 

!--------------------------------- 25 --------------------------

------- 

HARDEND    Change Me 

     0.0000 a R(1/z)          =25G       3440.0     A |p|    Pa 

     0.0000 b I(1/z)          =25H        -87.112   B Ph(p)  deg 

                                         1.0332E-18 C |U|    

m^3/s 
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                                          175.49    D Ph(U)  deg 

                                        -2.2895E-16 E Htot   W 

                                        -2.2895E-16 F Edot   W 

                                        -1.2749E-18 G R(1/z) 

                                        -9.8134E-18 H I(1/z) 

!--------------------------------- 26 --------------------------

------- 

DUCT       Change Me 

sameas  19a a Area   m^2      Mstr       6763.3     A |p|    Pa 

 6.4027E-02 b Perim  m        26a        7.7048E-15 B Ph(p)  deg 

    3.6312  c Length m        G          5.1979E-03 C |U|    

m^3/s 

 5.0000E-04 d Srough                       60.137   D Ph(U)  deg 

                                            8.7523  E Htot   W 

ideal           Solid type                  8.7523  F Edot   W 

!--------------------------------- 27 --------------------------

------- 

RPN        set p1 mag 

sameas   0d a G or T          =27A      6763.3                    

A ChngeMe 

p1 mag 

!--------------------------------- 28 --------------------------

------- 

RPN        set p1 phase 

     0.0000 a G or T          =28A      7.7048E-15                

A ChngeMe 

p1 arg 0e - 

!--------------------------------- 29 --------------------------

------- 

RPN        set mag u1 

sameas   0f a G or T          =29A      5.1979E-03                

A ChngeMe 

U1 mag 

!--------------------------------- 30 --------------------------

------- 

RPN        set u1 phase 

     0.0000 a G or T          =30A      -2.1316E-14               

A ChngeMe 

U1 arg 0g - 

!--------------------------------- 31 --------------------------

------- 

RPN        Dr 

     0.0000 a G or T                    6.6745                    

A ChngeMe 

0d 0a / 100 * 

!--------------------------------- 32 --------------------------

------- 

RPN        Carnot Eff 

     0.0000 a G or T                    53.400                    

A % 

11H 6H - 11H / 100 * 
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!--------------------------------- 33 --------------------------

------- 

RPN        acoustic production 

     0.0000 a G or T                    4.7281                    

A ChngeMe 

11F 6F - 

!--------------------------------- 34 --------------------------

------- 

RPN        overall efficiency 

     0.0000 a G or T                    3.1521                    

A ChngeMe 

33A 11e / 100 * 

! The restart information below was generated by a previous run 

! and will be used by DeltaEC the next time it opens this file. 

guessz   0d   0f   0g   0h  14e  21a  21b  26c 

xprecn  1.5443E-02 -3.8147E-08 -1.2862E-04 -2.0375E-04  6.7438E-

05 -2.5253E-02    -4.7206  -2.9233E-05 

targs    1a  15a  25a  25b  27a  28a  29a  30a 

hilite 0b 0c 19c 34A 

mstr-slave 8 2 -9 3 -2 12 -2 18 -9 19 -2 22 -2 23 -2 26 -2 

! Plot start, end, and step values.  May be edited if you wish. 

! Outer Loop:                       | Inner Loop.
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Appendix Tow: Additional details of the  experimental 

rigs 

A2.1: Hot heat exchanger case 
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A2.2: Cold heat exchanger case  
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A2.3: Copper of cold heat exchanger   
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A2.4: Case of regenerator 
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A2.5: Flange  
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A2.6: Flange hole  
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A2.7: Flange cone  
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A2.8: Pressure sensor adapter  
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Appendix Three: Publications 

A3.1: Journal publications: 

1. Al-Kayiem, A., Yu, Z., Using a side-branched volume to tune the acoustic field 

in a looped-tube travelling wave thermoacoustic engine with a RC load. Energy 

Conversion and Management 2017; 150: 814-821. 

2. Al-Kayiem, A., Yu, Z., Numerical investigation of a looped-tube travelling-

wave thermoacoustic engine with a by-pass pipe. Energy 2016; 112: 111-120. 

3. Yu, Z. and Al-Kayiem, A., Numerical Analysis of a Thermally Driven 

Thermoacoustic Heat Pump for Low-Grade Heat Recovery. Computational 

Thermal Sciences 2014; 6(4): 317-327.  

A3.2: Conference contributions: 

1. Al-Kayiem A., Yu, Z., Design of a traveling wave thermoacoustic engine driven 

cooler with hybrid configuration, proceeding of the World congress on 

engineering 2014 Vol II,WCE 2014, 2
nd

 – 4
th
 July ‎, 2014, London, U.K  

2. Al-Kayiem A., Yu Z., Using side-branched Helmholtz resonator to tune phase 

in looped-tube travelling wave thermoacoustic engine, The ASME-ATI-UIT 

2015 Conference on Thermal Energy Systems: Production, Storage, Utilization 

and the Environment". 17
th
 -20

th
 May, 2015, Napoli, Italy. 

3. Al-Kayiem A., Numercial investigation of a two-stage travelling-wave 

thermoacoustic engine driven heat pump with a hybrid configuration, UK Heat 

Transfer Conference 2015, 7
th
 -8

th
 September, Edinburgh, UK. 

4. ‎Al-Kayiem A., Yu Z., Numerical investigation of the effects of a side-branched 

Helmholtz resonator on a looped-tube travelling wave thermoacoustic engine, 



Appendix Three: Publications  

 
224 

 

The 4
th
 Sustainable Thermal Energy Management International Conference 

(SusTEM 2017), 28
th
 – 30

th
 June, Netherlands. 

5. Al-Kayiem A., Yu Z.,Numerical investigation of a looped-tube traveling-wave 

thermoacoustic generator with a by-pass pipe, Cardiff to Host 9th International 

Conference on Applied Energy (ICAE-2017), 21
st
 - 24

th
 August, Cardiff, UK.
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Appendix Four: Awards and achievements 

1. I won ‎ the James Watt PG award for an outstanding 2nd year Engineering Research 

student 2015 in Glasgow University (£5000). This award is for a PGR Engineering 

student. There are 205 students registered for this award, and I have been selected to 

win among these number of PhD students across the world. 

2. I won an award - "Certificate of Merit (Student) for The 2014 International 

Conference of Mechanical Engineering". 

http://www.iaeng.org/WCE2014/congress_awards.html.by presenting a paper (Al-

Kayiem A., Yu, Z., Design of a traveling wave thermoacoustic engine driven cooler 

with hybrid configuration, proceeding of the World congress on engineering 2014, Vol 

II,WCE 2014, July 2-4, 2014, London, U.K) at "International Conference of Mechanical 

Engineering 2014 in London" 

http://www.iaeng.org/WCE2014/congress_awards.html.by
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Appendix Five: Calibration of pressure sensors 

A5.1: Calibration of pressure sensors 1: 
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A5.2: Calibration of pressure sensors 2: 

 

 

 

 

 



Appendix Five: Calibration of pressure sensors 

 
228 

 

A5.3: Calibration of pressure sensors 3: 
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