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Abstract

The first decade of gravitational wave (GW) detection using the global ground-based

GW detector network has facilitated a new era of neutron star observation. From

the GW signal produced when two neutron stars (NSs) inspiral and merge, one can

directly measure the masses of the two NSs and, importantly, their tidal deformability,

a direct measure of the behaviour of matter in the system. This parameter is unique

to GW astronomy and therefore offers an independent method to infer the neutron

star (NS) equation of state. Due to lack of precision in measurement of NS macroscopic

parameters, the equation of state – the relationship between the pressure and density

within the ultra-dense neutron-rich matter of a neutron star – is still widely unknown.

Though there are various inference schemes to infer the NS equation of state given

electromagnetic (EM) and GW observation, these are often computationally and

temporally expensive processes.

Recently, the introduction of machine learning (ML) tools in astronomical data

analysis have facilitated the handling of large amounts of data and the processing

of this data efficiently, to find broad trends or features. These tools will become

necessary when considering future GW detection, where we expect increased sensitivity

of detectors as well as orders of magnitude more detections, including those of binary

neutron star (BNS) mergers. In this thesis, we apply ML methods, notably a type of

generative ML model called a Normalising Flow, in developing tools through which we

can infer the NS equation of state in current and future observation of gravitational

waves (GWs) from BNS mergers.
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We firstly introduce a Normalising Flow trained to perform the mapping of equation

of state data conditioned on BNS event parameters. Once trained, the Flow can

be conditionally sampled to return an equation of state posterior given posterior

samples from a single GW event in less than 1 second. Simulation studies demonstrate

the validity of the Flow result, alongside the equation of state posterior for the GW

event GW170817, which is in agreement with the existing accepted result. The tool

facilitates rapid follow-up of GWs from BNS mergers for improved communication

with EM astronomers.

In setting the scene for hierarchical inference of the NS equation of state given

multiple observations of GWs from BNS mergers, we discuss the performance of Nor-

malising Flows in mapping complex high-dimensionality data sets. The introduction

of a new equation of state training data set makes use of an autoencoder for data

compression, which achieves root-mean-squared (RMS) error on the equation of state

reconstruction on the scale of 10−3 for normalised mean-subtracted equations of state.

We demonstrate abnormalities in the Normalising Flow’s performance in mapping

regions of the equation of state space, which manifests as severe spikes and troughs

of probability. We highlight the dangers of inconsiderate application of Normalising

Flows to mapping any high-dimensionality data set. We finally introduce the regen-

eration Flow, built to learn the mapping of the joint data and conditional spaces at

once, such that it can be sampled repeatedly during training for unlimited training

data generation. We demonstrate how this improves Normalising Flow training and

reduces the fluctuations in magnitude of probability over the surface of the learned

data space, promoting generic learning.

We apply the improved Normalising Flow to hierarchical analysis of the neutron

star equation of state, firstly in inferring the combined equation of state given the first

two BNS merger observations. We make use of a full ML parameter estimation (PE)

pipeline to perform a simulation study of inferring the true equation of state given

multiple simulated BNS events associated to three known equations of state. We

demonstrate that as we increase the number of events, the quality of sampling the

equation of state posterior decreases, suggesting a highly multi-modal space and/or
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inaccurate model. We introduce an alternative method for hierarchical inference

which is more robust by using the Normalising Flow instead to sample. With the new

method, the result of combining information from up to 16 BNS events associated

to two out of three simulated equations of state produce a constrained equation of

state posterior which agrees with the truth. We highlight the computational expense

of the workflow; inference of up to 16 events with the new method takes less than

1 hour. This validates the use of Normalising Flows for hierarchical inference of the

NS equation of state in future observing runs, when the number of events are expected

to be in the 10s. We suggest substantial future work to improve the sampling quality

and, beyond this, tests for the next generation of GW detection to validate the use of

Normalising Flows in understanding neutron star matter.
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Chapter 1

Introduction to gravitational waves

and neutron stars

We begin introducing NSs by deriving their equations of structure in section 1.1 within

the context of General Relativity before outlining our current best understanding of

NS structure in section 1.1.1. Primarily, we focus on what we can learn from GW

observations of NS mergers; to do so, we introduce GWs in section 1.2 alongside

detection methods (section 1.2.2) and data modelling (section 1.2.3). We focus on the

parameters of interest with respect to observations of GWs from binary NS mergers

in section 1.3 to set the scene for how we can use gravitational wave data to better

understand the NS equation of state. We introduce section 1.4 with discussion of the

first measurement of GWs from a BNS merger, GW170817 (section 1.4.1). We then

summarise observations of NSs made over the decades since their initial discovery

(section 1.4.2) and discuss how well we can currently determine NS parameters. Finally,

we briefly introduce Bayes inference in section 1.5 and discuss how this is applied to

GW PE (section 1.5.1), laying the groundwork for techniques and theory introduced

in later chapters.
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1.1 An introduction to neutron stars

Our scientific understanding of neutrons, let alone NSs, is relatively modern, with

the announcement of the discovery of neutrons being made by Chadwick less than

100 years ago in 1932 [5]. Soon after, Baade and Zwicky introduced the concept of

supernovae [6], a proposed end state of stellar evolution where a dying star collapses.

A supernova can result in the complete collapse of material into a singularity or a

partial collapse, leaving material behind. In an attempt to account for the energy

release in the process, Baade and Zwicky ‘tentatively’ suggested that a supernova can

represent the transition of an ordinary star into a NS. While their discussion of what

constitutes a NS is brief, Landau likewise anticipated the existence of dense stars

which look like giant nuclei [7] in a similar period. We now know that these stars do

indeed exist, and are ultra-dense stellar remnants, with masses on the order of 1 M⊙

and radii of ∼ 12 km [8]. NSs are born from the compressed iron core of a type-II

supernova, where the material from a massive star collapses and rebounds from the

core, leaving behind a (potentially) rapidly spinning, highly magnetised NS in the

expelled material. Much of the early discussion surrounding the proposed existence of

NSs sought to understand late stages of stellar evolution and how stars fuel themselves

[9] - early intuition proved to be correct in postulating what happens when they can

no longer do so.

Later in the decade, the discussion of stellar energy sources continued and gained

more clarity [10]. Meanwhile, Einstein’s Theory of General Relativity [11] was gaining

traction as an acceptable theory of the description of gravity. It has since proved to

be both locally in agreement with Newtonian dynamics and a valid descriptor of the

wider universe [12] through decades of experiment. We refer the reader to [13, 14] for

a deeper theoretical background into General Relativity (GR). NSs are interesting

laboratories in terms of tests of GR; the highly compacted nuclear matter within a

NS curves spacetime dramatically [15] and it is unclear how matter behaves under

strong forces like those of stellar collapse, which cannot be replicated on Earth (for

reference, the highest pressures that can be achieved terrestrially are those from a

diamond anvil cell [16] or shock wave experiments [17], at order 1012 dyn cm−2 and

2



at order 1015 dyn cm−2 respectively). In 1939, Oppenheimer and Volkoff [18], and

independently Tolman [19], applied Einstein’s theory to understanding the equations

of structure of the NS. These equations of structure are the Tolman-Oppenheimer-

Volkoff (TOV) equations of hydrostatic equilibrium, which aim to determine a NS’s

mass and radius given a description of the NS’s internal structure assuming GR holds.

We begin our derivation of the TOV equations by introducing Einstein’s field

equation which describes the generation of curvature in spacetime by mass-energy:

G = 8𝜋T, (1.1)

where G is the Einstein tensor, characterising gravity and is a descriptor of the

geometry of spacetime, and T is the stress-energy tensor, detailing how matter and

energy in spacetime affect its curvature [13]. In order to use equation 1.1 to understand

the structure of a NS in GR, we need a stress-energy tensor, T, which describes the

matter within the NS and how much mass-energy is contained within a unit volume

[13]. We first construct the stress-energy tensor and we make some assumptions to

simplify the problem: firstly, we assume the NS is static and is non-rotating, spherically

symmetric and in its entirety a perfect fluid. A perfect fluid is one which experiences

no shear stress or anisotropic pressure. We define its 4-velocity as 𝑢𝜇, where for a

static star 𝑢𝜇 = (1, 0, 0, 0), and with the density of mass-energy, 𝜌, and isotropic

pressure, 𝑃, we define the stress energy tensor

𝑇 𝜇𝜈 = (𝜌 + 𝑃)𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈, (1.2)

where similarly 𝑢𝜇𝑢𝜈𝑔𝜇𝜈 = 1 for the static fluid, given a metric 𝑔𝜇𝜈 (discussed later

in the derivation). The expression for the four velocity is symmetric and diagonal as

𝑇 𝜇𝜈 = 0 if 𝜇 ≠ 𝜈. Local conservation of momentum further requires 𝑇 𝜇𝜈;𝜈 = 0.

The field equations above also include the relationship of pressure and density with

the star’s baryon number density and temperature: 𝑃(𝑛, 𝑇) and 𝜌(𝑛, 𝑇) respectively.

While NSs have temperatures of millions of Kelvin during the majority of their life

span [20], they are cold with respect to nuclear standards. We demonstrate why by

treating NS matter as an ideal Fermi neutron gas (most baryons in a NS are neutrons,
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as opposed to ∼50% as in ordinary symmetric matter) and estimating the Fermi

temperature. This treatment applies the Pauli exclusion principle which requires that

a system of fermions provides an intrinsic pressure, without any thermal contribution.

We calculate the Fermi energy, 𝐸𝐹 for a NS at densities near nuclear saturation density

i.e. 𝜌sat = 2.7 × 1014 g cm−3, the density of the nucleus of an atom, via [8]

𝐸𝐹 =
ℏ2

2𝑚𝑛

(
3𝜋2𝑁

𝑉

)2/3
, (1.3)

where 𝑚𝑛 is the neutron mass and 𝑁/𝑉 is the number density of neutrons per unit

volume. We expect all stable NSs to reach nuclear saturation density within the

outermost 10% of their radius, and then exceed it. The Fermi temperature of pure

neutron matter at this density is found to be 𝑇Fermi ∼ 3 × 1011 K [13], a temperature

greater than the temperature NSs reach within the first few seconds after birth via

emission of neutrinos. Thousands of years into their existence, NSs continue to cool

further to temperatures of ∼ 108 K [20]. Since the temperature of a NS older than a

few seconds has 𝑇 ≪ 𝑇F, a NS can be treated as having 𝑇 = 0, or considered ‘cold’.

Returning to equation 1.2, we need relationships for the composition of the star,

𝑃(𝑛) and 𝜌(𝑛), and a metric tensor, 𝑔𝜇𝜈. The metric tensor, or solely ‘metric’, serves

to describe the local structure of spacetime around the star which we assume to be

flat. This is given by

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑Ω2, (1.4)

where 𝑑𝑠 is the distance interval in spacetime, 𝑡 is time, 𝑟 is the radial distance and

𝑑Ω2 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜙2, (1.5)

where 𝜃 is the polar angle and 𝜙 is the azimuthal angle [13]. This standard metric for

flat spacetime is modified to allow for curvature induced by the gravitational influence

of a (neutron) star. Therefore, the simple flat metric of equation 1.4 becomes

𝑑𝑠2 = −
(
1 − 2𝑀

𝑟

)
𝑑𝑡2 +

(
1 − 2𝑀

𝑟

)−1
𝑑𝑟2 + 𝑟2𝑑Ω2 (1.6)

where 𝑀 is the total mass of the star and we are in the regime where 𝑐 = 𝐺 = 1. This

applies for radial co-ordinates external to the star, i.e. 𝑟 > 𝑅 where 𝑅 is total stellar
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radius. This is the Schwarzschild metric for describing the gravitational field around

a spherical star.

The expressions for 𝑃(𝑛) and 𝜌(𝑛) in equation 1.2 can be described by the equation

of state of NS matter, a relationship between the pressure and density as a function

of the baryon number density (and temperature, but we apply 𝑇 = 0). One can

describe the equation of state given a full description of the microscopic matter within

the star or a phenomenological model, or anywhere in between. A full discussion of

possible equation of state models is given in chapter 2 section 2.1. By incorporating

all knowledge together as in [13], one arrives at the Tolman-Oppenheimer-Volkoff

equations of hydrostatic equilibrium:

𝑑𝑃

𝑑𝑟
=
−(𝜌 + 𝑃) (𝑚(𝑟) + 4𝜋𝑟3𝑃)

𝑟 (𝑟 − 2𝑚(𝑟)) , (1.7)

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌. (1.8)

In the above, 𝑚(𝑟) is the mass of the NS contained within radius 𝑟 where 𝑚(𝑟 = 0) = 0.

The only requirement in solving these equations is, besides an initial assumption of

abiding by GR, the equation of state. The energy density contained within the star is

a source of gravity and the pressure of the material prevents the collapse of the star

to a black hole (BH). Therefore, the TOV equations encode the structure of a NS in

GR.

The solutions to the TOV equations are found in the limit where 𝑃(𝑅) = 0, where

𝑅 is the total radius of the star as 𝑃 → 0. At total radius 𝑅, we can determine the

total enclosed mass 𝑀 = 𝑚(𝑅). Solutions over the range of pressure [𝑃(𝑅), 𝑃(𝑅 = 0)]

determine the 𝑀 (𝑅) relationship of the NS, a direct analogue to the equation of state

[21]. Therefore, through the TOV equations, one can relate an equation of state of

high density nuclear matter to observable macroscopic properties of NSs and vice

versa; from observation of NS properties one can place constraints on viable equations

of state of NS matter. The TOV equations are the route from observation to theory

in the case of NSs in GR.

Despite assumptions made to simplify the derivation and therefore calculation of
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the TOV equations, solving the TOV equations to obtain the macroscopic parameters

of total mass 𝑀 and radius 𝑅 of the NS is still difficult. In chapter 2, we discuss

methods which use the TOV equations to obtain the macroscopic parameters of a NS

and the inverse: inferring the underlying structure of an observed NS by integrating

equations 1.7 and 1.8 or otherwise.

By deriving equations 1.7 and 1.8, Oppenheimer and Volkoff stated that a NS could

not have a stable mass greater than 0.7 M⊙ and assumed that it was ‘unlikely that

static neutron cores can play any great part in stellar evolution’ [18]. We are now aware,

however, that these two statements do not hold. Firstly, Tolman, Oppenheimer and

Volkoff neglected to account for the effects of nuclear matter at such high densities [22];

this is the primary discrepancy between their stable mass limit and the observations

of NSs that have been made. The influence of nuclear theory and experiment on

understanding the composition of NS matter is discussed more in chapter 2. Secondly,

not only have observations of NSs with 𝑀 ≥ 2 M⊙ been made [23], but we also now

know that NSs are the remnant of a type-II supernova, a late stage of stellar evolution

[24], and have made multiple observations of NSs within a supernova remnant (see

[25] for a recent observation). We next summarise our current understanding of NS

structure but discuss modern EM and GW observations further in section 1.4.

1.1.1 The structure of a neutron star

Our current best understanding of a NS is presented in figure 1.1.1: we describe an

ultra-dense stellar body with thin outer layers composed of a stiff outer and inner

crust, where nuclear matter gradually increases in density as we move inwards into

the star before the high density supranuclear core, which has density greater than

nuclear saturation density 𝜌sat. We discuss the composition of the NS layer-wise.

The density of the outer crust of a NS spans the range of 104 g cm−3 to 1011 g cm−3

[26] and consists of a lattice of neutron-rich ions surrounded by an electron gas; this

enforces charge neutrality. Nucleons cluster to form lattice structures of 56Fe in the

outermost and lowest density regions, and as density increases moving deeper into

the crust, even heavier nuclei become the most prominent and favourable. As density
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Figure 1.1.1: Illustration of NS shell-like structure. From light to dark blue, in
layers of increasing density, are the outer crust, inner crust, outer core and inner core.
The two crust layers occupy around 10% of the total radius, R, of the NS. The outer
crust has densities less than nuclear saturation density, which is surpassed near the
crust-core transition density as density increases further still towards the inner core.

increases, the nuclei also become more neutron-rich [27].

The inner crust follows on as a distinct region beginning at the neutron-drip

density of around 1011 g cm−3, which signifies the point at which nuclei can no longer

retain neutrons and they ‘drip’ from heavy nuclei [28]. The inner crust therefore

consists of a Coulomb lattice but now surrounded by a fluid of degenerate neutrons and

electrons. At the most dense region of the inner crust, closest to the core of the NS,

the separation between individual nuclei becomes comparable to the radii of the nuclei

themselves [29]. Nuclei are thought to find it energetically favourable to rearrange

themselves from the stable spherical structure we are familiar with into ‘nuclear pasta’;

structures which emulate that of pasta shapes (e.g. cylindrical resembling spaghetti

or flat, broad sheets resembling lasagne sheets) [30, 31]. This pasta layer may have a

thickness of ∼ 100 m but due to its density may be responsible for up to half of the

total mass of the NS crust [29].

The entire crust (inner plus outer) constitutes around 10% of the total NS radius,
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but contributes to only around 1% of the total NS mass [32]. The large contribution of

the core of the NS to the overall mass and radius, observation and measurement of the

parameters of NSs gives us insight into the behaviour of matter at the extreme densities

within the core of a NS. The involvement of the crust in determining the macroscopic

properties of the NS is subdominant in comparison to the core [33]. Despite this, the

crust of a NS is interesting observationally with respect to phenomena which occur

on the surface of the star, for example thermal x-ray emission from the crust [34],

starquakes [35] and millimetre-high mountains on the surface which may be the source

of gravitational radiation [36]. The relative influence of the crust also demonstrates

just how dense the core of a NS can become.

The crust-core transition density is around nuclear saturation density, 𝜌sat =

2.7 × 1014 g cm−3 [34]. At this density, the uniform nature of matter is restored but

instead as a fluid of free neutrons, protons and electrons where the vast majority of

nucleons are of course neutrons. These densities cannot be replicated through terrestrial

experiment (see chapter 2 for discussion of terrestrial high density nuclear matter

experiments) and so astrophysical observation is the primary source of information.

Above approximately twice the nuclear saturation density, we reach the inner core

of the NS, where the composition is currently unknown. Particles beyond that of

baryonic matter, with more energetically favourable arrangements of quarks at such

high densities, for example hyperons or pion condensates - may appear, however the

nature of this matter is uncertain. The observation of NSs with mass > 2 M⊙ has

prompted further discussion into the composition of NS cores; to support such a high

mass NS, where the majority of the mass is contributed by the ultra-dense core of the

star, what composition of matter can support itself against the intense gravitational

force?

As previously introduced, the equation of state is the relationship that describes the

evolution of pressure with density inside the NS. Through observation of macroscopic

parameters of NSs, via methods which will be introduced in section 1.4, we can employ

the TOV equations to relate macroscopic observables like mass and radius to the
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equation of state (this method is introduced in chapter 2 section 2.2.1). Through

measurement of macroscopic parameters, we can then infer the equation of state of

NS matter, and inform our current understanding of high density nuclear matter,

and therefore our understanding of the structure of the NS. As such, observation is

essential to further our knowledge of NS structure and the equation of state, and our

primary method of observation discussed in this work are GWs.

1.2 Gravitational waves

The field of GW research has grown considerably since the first detection of GWs from

a binary black hole (BBH) merger in 2015 [37]. Since then hundreds of GWs from

binary BH mergers have been made, including both those presented in the third and

fourth LIGO Scientific, Virgo and KAGRA (LVK) Collaboration Gravitational-Wave

Transient Catalogs (GWTC-3 and GWTC-4) [38, 39]. The network of ground-based

detectors currently consists of two LIGO detectors in North America, Virgo in Italy

and KAGRA in Japan. More details of these detectors are discussed in 1.2.2. All

observations thus far have been that of a compact binary coalescence (CBC); an

observation of the merger of two compact objects that produces a GW signal which we

have a well-understood theoretical model to compare to. These include the observation

of GWs from a BBH mergers but also BNS mergers, with substantially lower masses

and matter in the system to now consider, as opposed to a singularity with no matter

present. The mass in a BNS system alters the inspiral of the two components in

comparison to a BBH system of the same mass, and so has to be treated differently.

GWTC-3 and GWTC-4 discuss the range of official GW observations made to-date,

only two of which have been confident BNS mergers. We discuss the specific details of

BNS mergers and the measurement of the parameters of the system in section 1.3. To

date, no detection has been made of GWs from a non-CBC origin; these would include

modelled and long duration signals (for example, continuous gravitational waves (CWs)

from spinning NSs with crust asymmetries), unmodelled transient signals (for example,

‘burst’ GWs from supernovae) or unmodelled and long duration signals (for example,

a background of GW radiation, akin to the cosmic microwave background radiation
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(CMBR)). It is hoped that as current detectors gradually improve in sensitivity

and the next-generation of observatories gain traction, a more diverse catalogue

of observations will be available. These observations would move towards further

confirming or presenting deviations from GR or, more prevalent to this thesis, offering

more observations of NSs, whether via CBCs, CWs or something else entirely.

1.2.1 General Relativity and gravitational waves

We have previously introduced Einstein’s GR and how it allows us to determine

equations of structure of ultra dense spherically symmetric stars. We now demonstrate

how GR predicts that the asymmetric acceleration of massive objects in spacetime

cause perturbations through the fabric of spacetime, propagating as GWs. We begin

again from Einstein’s field equation (equation 1.1) which, as previously introduced,

details how spacetime guides the movement of matter and how mass dictates the

curvature of spacetime. The LHS of equation 1.1 defines the Einstein tensor, G, given

equivalently by

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈, (1.9)

where 𝑅𝜇𝜈 is the Ricci tensor, describing the curvature of spacetime and where 𝑅

is the Ricci scalar, a further contracted version of 𝑅𝜇𝜈 via 𝑅 = 𝑔𝜇𝜈𝑅
𝜇𝜈. The Ricci

tensor is a function of the metric and it’s derivatives. We refer the reader to [13] for

details. The metric tensor 𝑔𝜇𝜈 can be expressed as a flat Minkowski spacetime metric

𝜂𝜇𝜈 = (−1, 1, 1, 1) with a small perturbation:

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 (1.10)

where ‘small’ implies that the perturbation |ℎ𝜇𝜈 | ≪ 1. By asserting the fact we are

in an empty spacetime with no mass or energy, we let 𝑇𝜇𝜈 = 0 and through solutions

following [13], we arrive at the simplified form of the linearised Einstein field equations,(
𝜕2

𝜕𝑡2
+ ∇2

)
ℎ̄𝜇𝜈 = 0, (1.11)

where ∇2 is the Laplace operator [40] and ℎ̄𝜇𝜈 = ℎ𝜇𝜈 − 1
2𝜂𝜇𝜈ℎ is the trace-reversed

metric perturbation with ℎ = 𝜂𝜇𝜈ℎ𝜇𝜈 being the trace. The solution to this equation

10



takes the form of a plane wave:

ℎ̄𝜇𝜈 = 𝐴𝜇𝜈 exp(𝑖𝑘𝛼𝑥𝛼). (1.12)

This result informs us that GWs are transverse waves which propagate through space

with polarisation 𝐴𝜇𝜈 and wave tensor 𝑘𝛼 at the speed of light. There exist two

fundamental polarisations of GWs; plus, ℎ+, and cross, ℎ× which are functions of

the two possible degrees of freedom of the polarisation tensor, 𝐴𝑥𝑥 or 𝐴𝑥𝑦, in the

transverse-traceless gauge where ℎ̄𝜇𝜈 = ℎ𝜇𝜈. Each of these polarisations, for GWs

propagating in the 𝑧−direction, alter the orientation of free particles in the 𝑥 − 𝑦

plane similarly, but at an angle to one another. A GW propagating in the 𝑧−direction

will generally deform free particles in the 𝑥 − 𝑦 plane as a linear combination of

both polarisations. The magnitude of disruption caused by a GW, ℎ, is the strain,

describing the relative change in proper distance between two points in spacetime as

a GW passes through.

We noted at the beginning of this section that GWs were the result of the

asymmetric acceleration of massive objects in spacetime. When we have a source at

large distance 𝑟, we find the quadrupole formula:

ℎ𝑖 𝑗 =
2

𝑟
¥𝑄𝑖 𝑗 (𝑡 − 𝑟) (1.13)

where 𝑡 = 𝑥0 and 𝑄𝑖 𝑗 =
∫
𝜌(𝑥𝑖𝑥 𝑗 − 1

3𝑟
2𝛿𝑖 𝑗 )𝑑3𝑥 is the reduced quadrupole moment

[41]. This tells us that GWs are produced by a ‘time-varying mass quadrupole

moment’ [42]; we require an asymmetry in the mass distribution to produce GWs.

GR prohibits both monopole and dipole gravitational radiation due to mass and

momentum conservation, respectively. Quadrupole radiation is the first detectable

moment. We therefore need non-spherical mass distributions and non-axisymmetric

motion to produce gravitational radiation. Astrophysically, this means we can produce

GWs through the inspiral and eventual merger of compact objects, such as black

holes (BHs) or NSs. We will cover methods of producing GWs from NSs in particular

in section 1.3.1.
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1.2.2 Ground-based gravitational wave detectors

All currently operational ground-based GW detectors are laser interferometers [43,

44, 45]. While the individual details of these detectors vary, their designs are all

based on that of the Michelson interferometer. A Michelson laser interferometer is

an instrument composed of two perpendicular arms, down which light travels and

reflects at the end to then return and be recombined. The interference pattern of the

recombined light informs the observer of the path the light has followed in each of

the arms. In a laser interferometer for GW detection, each of the perpendicular arms

are optical cavities [46]. A laser input is split in two by a beamsplitter [47] such that

laser light travels down each of the perpendicular arms and is circulated within the

cavities so to build power [48]. The mirrors which reflect the light at either end of the

cavity are highly reflective [49] and act as the gravitational test masses [47]. Upon the

output, the laser light is recombined, either constructively or destructively. When a

GW passes through the interferometer, the relative lengths of each of the arms changes

on a minute scale. It is the relative change in arm length which determines whether

the output signal constructively or destructively interferes and therefore whether a

GW has passed through or not.

If we suppose a GW signal with amplitude ℎ is arriving at Earth to change the

relative arm lengths, 𝐿𝑥 and 𝐿𝑦, of the ‘x’ and ‘y’ arms of an interferometer where

𝐿𝑥 = 𝐿𝑦 ≡ 𝐿 then by [50, 37], the change in arm length Δ𝐿 is approximated by

Δ𝐿 ≈ ℎ𝐿. (1.14)

Therefore, increasing the arm length increases the measurable difference in arm

length for a given strain signal. The magnitude of the strain signal for a BBH signal

of two 30 M⊙ BHs, one of our aforementioned CBC signals, merging at a distance

of 400 Mpc away is of the order of 10−21 m (comparable to the first BBH merger,

GW15091 [37]). It is this reason that typical arm lengths of operational GW detectors

are on the order of kilometres: if GW strain ℎ is on the scale of 10−21 m by the

time it reaches observers on Earth and the interferometer arm length is 4 km for the

Laser Interferometer Gravitational-wave Observatory (LIGO)-like detectors, then the

measurable difference in arm length given equation 1.2.2 is Δ𝐿 ≃ 10−18, the limit
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of sensitivity of the advanced detector network [51]. The arm length is also chosen

with respect to the frequency response of the detectors; the length of the detector

arm is a defined fraction of the wavelength of expected GWs arriving at the detector

for maximal distortion measure [52] of signals from CBC sources. This limits the

scope of current ground-based interferometric detectors to observation of a number of

astrophysical sources.

There are currently 4 ground-based interferometric GW detectors which have

been in active observing mode in the current (fourth) observing run. The two LIGO

detectors in North America (Livingston, Louisiana and Hanford, Washington [43])

both have 4 km arms [47] and made their first observation of a GW signal in 2015:

two merging BHs of masses 36+5−4 𝑀⊙ and 29+4−4 𝑀⊙ at a distance of approximately

400 Mpc away, named GW150914 [37]. During the second observing run, the Virgo

detector [44] near Cascina, Italy joined the network just over two weeks prior to

the first observation of GWs from the merger of two NSs [53], titled GW170817 [54].

More recently, the KAGRA detector, based at the Kamioka observatory in Japan [45],

joined the advanced interferometric detector network for the beginning of the fourth

observing run [55]. Like Virgo, KAGRA also has a smaller size than both Advanced

LIGO detectors with arms of 3 km but has been built into a mountain to reduce the

effect of seismic noise sources [45].

There are planned additions to the current advanced detector network [56, 57] in

the coming years, prior to the planned next generation of detectors [58, 59] (briefly

discussed in chapter 2 section 2.3). Expanding the network geographically increases

the fraction of the total sky which is observed by a GW interferometer at a given time,

but also increases confidence in and the SNR of a detection; a signal is more likely to

be accepted as real if it is present in the measured strain of more than one detector.
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1.2.3 Modelling gravitational wave data

We can express the output signal from a GW detector, 𝑑 (𝑡), in terms of the GW strain

signal ℎ(𝑡) plus detector noise, 𝑛(𝑡):

𝑑 (𝑡) = ℎ(𝑡) + 𝑛(𝑡). (1.15)

Once we have observed data 𝑑 (𝑡), we wish to determine the confidence of the presence

of a signal ℎ(𝑡) within noise 𝑛(𝑡), and infer the parameters of the source which

produced the signal. GW signal strain, ℎ𝑡 , can be expressed in either the time or

frequency domain and is a function of the parameters 𝜃 of the source, such that we

can express the strain instead as ℎ(𝑡, 𝜃). We split parameters 𝜃 into two categories:

intrinsic and extrinsic. Extrinsic parameters are those which change how the detector

perceives the signal and describe the positioning and orientation of the source relative

to the interferometer [60]. Examples of these parameters are sky location, distance

to the source and time of coalescence. Intrinsic parameters, however, are parameters

which are inherent to the source itself. These parameters influence how the waveform

evolves, e.g. masses and spins. We can use our theoretical knowledge of what a GW

signal should look like for a given set of parameters 𝜃 using a waveform approximant,

built using computationally intensive numerical relativity simulations [61, 62] or

instead using phenomenological methods which model the amplitude and the phase

of the signal independently in the frequency domain [63]. See [64] for a review of

current waveform building methods. Different waveform approximants express the

GW waveform produced by a given source using different levels of complexity and

including different features, for example precession of the orbital plane of the binary

(e.g. [65]). In terms of binary NS waveforms, we are interested in waveform models

which allow for a measurable tidal disruption of each of the components in the binary

close to merger. We discuss the specifics of parameters measured from GWs from a

BNS merger in section 1.3.1.

Given a bank of example waveforms spanning the parameter space of potentially

observable binary systems, one can perform matched filtering (see [66] and references

therein), the method of matching a waveform approximant to observed strain data to

find the best-fit waveform via search over waveform parameters. All published GW
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events to date have been identified via matched filtering as a search method [64] (with

the exception of complementary analyses to existing matched filter results), where

the data is constantly scanned for potential template-data matches. Other search

methods do exist (for example [67]), including those using machine learning methods

(see chapter 3 section 3.4 for discussion). With the bank of template signals of a

variety of CBC events, we measure the signal-to-noise ratio (SNR) of the template

waveforms given the signal within the noise in the detector as a function of frequency.

The template waveform which returns the largest matched-filter SNR beyond a given

threshold - defined so to mitigate the influence of noise artefacts - is the optimal

template. Given the threshold has been surpassed, one can claim a detection has been

made of a CBC event with parameters of that of the template waveform. Once we

can confidently claim a detection has been made, one can then begin to determine the

underlying parameters of the signal more precisely.

1.3 Gravitational waves from neutron stars

We made an assumption that a NS is static and spherically symmetric in section 1.1

in order to derive the TOV equations of NS structure. In this regime, the exterior

spacetime is given by the Schwarzschild metric, which describes the spacetime around

a spherically symmetric stellar body [68]. However, if the NS is in a perturbing tidal

field induced by a companion NS, the star will have its shape distorted. The deformed

star’s external spacetime and gravitational field is thus affected, leaving the star

in a now spatially inhomogeneous external field, with both stars tidally distorting

one another. The existing quadrupole moment due to binary motion is modified,

accelerating the production of gravitational radiation.

The tidal deformability of a NS, 𝜆, is a measure of the degree of deformation of

the star when it is in an external tidal field: an external perturbing gravitational field

which induces a tidal force within the NS [69]. The tidal deformability measures the

ratio of the induced quadrupole moment, 𝑄𝑖 𝑗 , to the perturbing tidal field, 𝜀𝑖 𝑗 :

𝜆 ≡ −
𝑄𝑖 𝑗

𝜀𝑖 𝑗
. (1.16)
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The perturbing tidal field 𝜀𝑖 𝑗 has units 1/length2 and 𝑄𝑖 𝑗 has units length3 [68] and

so 𝜆 can be considered as a ratio with units of length5. This suggests that 𝜆 is a

sensitive function of the NS radius, 𝑅, where 𝜆 ∝ 𝜅𝑅5. The constant 𝜅 relates 𝜆 and

𝑅 via the tidal Love number 𝑘2 for quadrupolar deformation [70, 71] through

𝜆 =
2

3𝐺
𝑘2𝑅

5. (1.17)

The tidal Love number is a dimensionless constant which depends on the equation

of state of the NS with values ranging between 0.2 − 0.3 [68]. Alternatively, we can

express the tidal deformability as a dimensionless quantity instead, where we introduce

the compactness, 𝐶 = 𝑀/𝑅, a measure of how much mass is contained within a unit

of radius:

Λ ≡ 𝜆

𝑀5
=
2

3
𝑘2𝐶

−5. (1.18)

We will primarily use and infer the dimensionless tidal deformability in future discus-

sion but will use the terms interchangeably.

Observation of GWs from NSs allows us to measure this tidal parameter as it

impacts the phase of the GW. Currently, the most prevalent (and only) source of

GWs from NSs are those from binary NS or neutron star-black hole (NSBH) mergers,

however there are other theorised sources of GWs from NSs. These include, but are

not limited to:

• Continuous gravitational waves: Emission of GWs from isolated NSs is predicted

to be produced from the rotation of stars with non-axisymmetric matter com-

position, which results in a time-varying mass-quadrupole [72], a requirement

for GW production (as introduced in section 1.2). The non-spherical matter

includes NSs which have features on the surface, known as ‘mountains’ which

are millimetres high [73]. While this variety of GWs are yet to be observed,

such a signal is expected to be a continuous sinusoid, slowly decaying over time

as the pulsar spins down. There are a few particular targets in the search for

CWs, for example the Crab and Vela pulsars [74, 75, 76]. Through observation

of their EM emission, one can estimate the frequency of GWs they would emit.
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Figure 1.3.1: The inspiral waveform of two 1.4 M⊙ NSs with Λ1 = Λ2 = 500 in
purple and Λ1 = Λ2 = 0 in grey are plotted in the time domain. The waveform was
made using the IMRPhenomD_NRTidalv2 waveform approximant. Four stages of the
evolving inspiral waveform are illustrated above, with two potential outcomes of the
post-merger phase included.

• GWs from supernovae: The creation of a NS via the collapse of a massive star

onto its core during a supernova, as introduced in section 1.1, releases significant

amounts of energy. While most of this energy is released in the form of neutrinos

[77], and our current understanding of supernovae stems from our observation

of EM radiation from NSs, we additionally expect to observe the emission of a

‘burst’ of GWs from such an event [78]. Observation of GWs would allow us to

explore the behaviour of ultra-dense matter at the core of the supernova, during

the course of the compression and release, before the ultimate production of a

NS.

1.3.1 Gravitational waves from binary neutron star mergers

In a NS binary system, each component of the merger is subject to the gravitational

field induced by its companion star. The induced quadrupole moment, a result of being

in the perturbing gravitational field and having its shape distorted, as introduced

above, affects the binding energy of the system. The life of a NS binary system is
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detailed in figure 1.3.1: we present the time-domain gravitational waveform of a binary

NS system of two 1.4 M⊙ NSs with a combined tidal deformability of Λ1 = Λ2 = 500.

Four stages of the merger are highlighted and illustrated: point-particle-like inspiral,

late-stage inspiral with tidal disruption, merger and ringdown. Initially, the two

stars are slowly inspiralling and emitting GWs; a result of the intrinsic quadrupole

moment from being in a binary system. At this stage, the measured tidal interaction

is negligible; the system could equivalently consist of two BHs (no matter present in

the binary system, therefore Λ = 0). As the inspiral progresses, binding energy is lost

from the system in order to instead deform the NSs and the stars fall closer together

[79], with a non-negligible and measurable tidal interaction in the GW phase. This is

evident in figure 1.3.1 by comparing the GW evolution of two NSs with Λ1 = Λ2 = 500

to the waveform of an equivalent system (i.e. same masses of components) instead

composed of BHs with Λ1 = Λ2 = 0. In the case of two BHs, there is no matter in the

system to be tidally perturbed and so there can be no tidal deformability parameter.

As a result, the waveform proceeds towards merger due to the emission of gravitational

radiation due to the quadrupole moment induced solely by being in a binary system.

The result of the eventual merger of the two NSs - whether a NS or BH - depends on

the masses of the two components but in the immediate aftermath, the remnant, if a

BH, emits gravitational radiation in the ringdown phase, until settling (noted as 4a in

figure 1.3.1). Alternatively, the two NSs may coalesce to form a hyper-massive NS,

which exists for ≪ 1 second (noted as 4b in figure 1.3.1) before collapsing to a BH,

and similarly ringing down (returning to 4a). The GWs emitted by the hyper-massive

NS depend on the mass and equation of state of the short-lived star.

The tidal effects directly impact the phase of the GW signal in the late stages

of inspiral. In the frequency domain, the GW phase is [68, 80, 81] expressed as a

post-Newtonian (PN) expansion of 𝑥 =
( 𝜋𝐺𝑀 𝑓

𝑐3

)2/3 via

Ψ( 𝑓 ) = 2𝜋 𝑓 𝑡𝑐 + 𝜙𝑐 −
𝜋

4
+ 3

128𝜂𝑥5

[
1 + 𝜓𝑃𝑃−𝑃𝑁 (𝑥, 𝜂) + 𝜓tidal(𝑥, 𝜂,Λ1,Λ2)

]
(1.19)

where 𝑓 is the frequency of the GW, 𝑡𝑐 is the time of coalescence and 𝜙𝑐 is the

phase of the coalescence. The symmetric mass ratio is given by 𝜂 =
𝑚1𝑚2

𝑀2 , where

𝑀 = 𝑚1 + 𝑚2 is the total mass of the binary and 𝑚1 and 𝑚2 are the masses of the
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two component NSs (where convention states that 𝑚1 > 𝑚2). The second term in

the square brackets 𝜓𝑃𝑃−𝑃𝑁 (𝑥, 𝜂) represents the terms that express the gravitational

phase of a point-particle waveform i.e. that used to express the waveform of a binary

BH merger. Waveforms of BNS systems are often expressed as that of a point-particle

with some correction to account for tidal effects. The tidal correction to the phase

𝜓tidal is given as [80]

𝜓tidal(𝑥, 𝜂,Λ1,Λ2) = −39
2
Λ̃𝑥5 +

(
− 3115

64
Λ̃ + 6595

364

√︁
1 − 4𝜂𝛿Λ̃

)
𝑥6. (1.20)

Terms with 𝑥𝑁 in this expansion are referred to as the Nth PN order; the first PN

order - the leading term proportional to 𝑥 which is contained within 𝜓𝑃𝑃−𝑃𝑁 (𝑥, 𝜂)

- is the most influential on the measured phase of the gravitational radiation. The

dimensionless combined tidal deformability, Λ̃ arrives at the 5th PN order, much less

prominent than the effect of the intrinsic time-varying quadrupole:

Λ̃ =
8

13

[
(1 + 7𝜂 − 31𝜂2) (Λ1 + Λ2) +

√︁
1 − 4𝜂 (1 + 9𝜂 − 11𝜂2) (Λ1 − Λ2)

]
, (1.21)

where Λ1 ≡ 𝜆1/𝑚5
1 and Λ2 ≡ 𝜆2/𝑚5

2 are the component dimensionless tidal deformabil-

ities. The 6th PN order includes 𝛿Λ̃, a parameter which quantifies the correction to

the combined tidal deformability, given as:

𝛿Λ̃ =
1

2

[√︁
1 − 4𝜂

(
1 − 13272

1319
𝜂 + 8944

1319
𝜂2
)
(Λ1 + Λ2) +(

1 − 15910

1319
𝜂 + 32850

1319
𝜂2 + 3380

1319
𝜂3
)
(Λ1 − Λ2)

]
. (1.22)

The correction to the dimensionless combined tidal deformability enters at too high a

PN order to affect the phase enough to be measured well [82] with the sensitivity of

current ground-based GW detectors. Therefore, with only a measurement of Λ̃ it is

not possible to detach the tidal deformability of the components Λ1,2 from a single

measurement. A measurement of 𝛿Λ̃ would break the degeneracy.

Figure 1.3.2 presents 4 different gravitational waveforms in the time domain and

how their phase accumulates differently when the magnitude of combined dimensionless

tidal deformability Λ̃ varies. In the early stages of inspiral (> 0.1 seconds before

merger), all waveforms appear nearly identical. In later stages (< 0.1 seconds before
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Figure 1.3.2: Four waveforms of a BNS system which consists of two 1.4 M⊙ NSs with
Λ̃ = 0, 50, 500, 5000 made using the IMRPhenomD_NRTidalv2 waveform approximant.
The grey waveform representing the system with Λ̃ = 0 is for comparison purposes:
this would be the equivalent waveform for a system of two 1.4 M⊙ BHs, which mergers
at the canonical 𝑡𝑐 = 0.

merger), the tidal effects begin to differentiate each of the waveforms causing them to

evolve differently. For larger Λ̃, the phase evolves more rapidly and as such the binary

inspirals more quickly and the two stars merge more quickly relative to a BNS system

with a smaller Λ̃. A larger Λ̃ is the result of larger Λ1,2; for a given mass of star, a

larger Λ suggests that the star is less compact as per equation 1.18 and so the matter

in the star is more extended. As such, the star is more easily disturbed by tidal forces,

a quality which accelerates the inspiral. The implications of small or large Λ on the

equation of state and composition of NS matter is discussed in chapter 2. In contrast,

a small Λ suggests the star is more compact, with more compressed mass per unit

radius. The star is less easily deformed and the matter requires more energy to be

disturbed. NSs with small Λ are able to get closer together during the inspiral stage,
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Figure 1.3.3: Relationship between mass and dimensionless tidal deformability for
a variety of NS equations of state. 100 piecewise polytropic equations of state are
presented in the 𝑚 − Λ plane within the range of known (observed) NS masses.

resulting in a longer waveform and a later merger of the two components.

For realistic NSs, i.e. 𝑚1,2 ∼ [1, 2] 𝑀⊙, with realistic internal structure (meaning

the equation of state), tidal deformabilities are large. Figure 1.3.3 presents the

relationship between mass and tidal deformability for a variety of piecewise polytropic

NS equations of state, the details of which are covered in chapter 2 section 2.1. This

particular model is widely accepted as a realistic phenomenological NS equation of

state model in the literature. NSs belonging to each of these polytropic equations

of state in 𝑃 − 𝜌 would live on the equivalent 𝑚 − Λ curve in figure 1.3.3. The plot

presents a variety of equations of state within the range of mass at which NSs have

been observed, mainly as radio pulsars. For a given NS mass, e.g. 1.6 M⊙, the range of

possible tidal deformabilities for a range of equations of state span more than an order

of magnitude. Our current best understanding of the NS equation of state means that
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for a given mass measurement, the tidal interaction is still broadly unknown and spans

a broad region of parameter space. It is key, therefore, to observe NSs and measure

their tidal deformability parameters to be able to constrain the equation of state.

1.4 Observations of neutron stars

1.4.1 GW170817

The first observed GW event originating from a binary NS merger, GW170817 [54],

provided a completely independent measurement of NS masses [83, 4] which comple-

mented the existing NS binary mass measurements [84] from binary radio pulsars.

The detection additionally allowed for the first ever measurement of the NS tidal

deformability.

The estimated masses of the components of GW170817 are in the range of

[0.86, 2.26] M⊙, in agreement with average masses of NSs [85] and below known

masses of BHs [86]. However, the masses of the components alone does not eradicate

the possibility that GW170817 is the merger of at least one black hole. We need

further evidence of matter in the system to prove that they are NSs and not solar

mass BHs. Proof of matter in the system is evident through either emission of EM

radiation from the merger or non-zero measurement of tidal effects.

The initial measurement of the tidal parameters of GW170817 in [54] allowed Λ1

and Λ2 to vary independently with no prior assumption or constraint. This assumption

equivalently allows for Λ1,2 = 0 if either of the components are instead BHs. This

analysis resulted in constraint on Λ̃ of < 800 at 90% confidence, a result which has

since been replicated [87, 83], corroborating the support for smaller Λ̃. The authors of

[54] present different relationships for a variety of equations of state of NSs, ranging

from very compact and high pressure NSs with small Λ to those more extended with

larger Λ, alongside the tidal measurement in the Λ1 − Λ2 plane. They find their

constraint in the Λ1 − Λ2 space prefers equations of state which prefer more compact

stars, a result in agreement with radius measurements from x-ray measurement (see
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section 1.4.2).

More complex inference of Λ1,2 in [4] makes the assumption that the two compo-

nents of GW170817 are indeed NSs which have the same equations of state. This

assumption places stricter constraints on the properties of each of the components, re-

stricting the prior to eliminate regions of parameter space which would be inconsistent

with properties of a BNS merger (as we currently understand it). The implications

of a more stringent analysis on the understanding of the nature of NS matter for

GW170817 is discussed in chapter 2 section 2.2.1.

The short gamma-ray burst, GRB 170817A, detected 1.7 seconds after the time

of coalescence of GW170817, further validated the source of gravitational radiation

being a BNS merger [88, 89]. Alongside the near-coherent timing of these two signals,

the improved localisation of GW170817 due to information from both LIGO detectors

and Virgo meant that the sky map associated to the event was small: the GW event

was localised to 28 deg2. Therefore both GRB 170817A and GW170817 were able to

be associated to the same host galaxy, NGC 4993, and the resultant kilonova of the

event was found in multiple wavebands of EM radiation [90]. Assuming GRB 170817A

was a product of a BNS merger, independent analysis was performed to investigate

the properties of the merger [91, 92, 93]. These analyses have their own assumptions

and model-dependencies which account for how the EM counterpart varies relative to

the mass and composition of the component NSs. Observation of the kilonova and

it’s light curve, which decays in the days and weeks following the merger, informs us

of the material ejected in the merger, the quantity of which is determined again by

the properties of the component NSs (i.e. compactness and tidal deformability) [94].

To date, there have been two observations of GWs from BNS mergers: GW170817

(as discussed) and GW190425 [95]. We focus our discussion on GW170817 due to the

greater confidence in its origin as a BNS merger, a title further assured by the EM

counterpart and non-negligible tidal measurement. Additionally, GW170817 remained

in the detector’s sensitive band for > 1 minute and had a matched-filter SNR of 32.4

[96]. Comparatively, GW190425 had an SNR of 12.9 in LIGO Livingston and 2.5 in
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Virgo (LIGO Hanford was not observing at the time), meaning it was only classified

as a confident detection in one detector. This is detrimental to the sky map associated

to the event, which extends over a large area of the sky. This makes EM follow up

investigations much more difficult. Inference of the source properties yields a higher

mass system than that of GW170817, but cannot rule out the possibility of the system

consisting of at least one black hole [95]. As can be inferred from figure 1.3.3, a higher

mass NS has a lower Λ and therefore, the parameter makes a smaller alteration to the

waveform. Combined with the smaller SNR of the event, inference of the parameters

of GW190425 is less informative than that of GW170817.

The two BNS merger events observed by the ground-based GW detector network

have indirectly inferred the rate of galactic NS mergers to be less than expected,

relative to pre-observing expected rates. By considering the binary pulsar population

as determined by radio observation [97] and supernovae rates from population synthesis

estimates [98], it was expected that BNS mergers would be the most prominent source

of GWs. As the observing runs commenced, this rate evolved and was reassessed

relative to the new observable volume of events in the universe due to change in

sensitivity of the detector, as well as including the prior on the merger rate to include

the observation of GW170817. The updated rate was therefore [110, 3840] Gpc−3y−1

[53]. The addition of GW190524 as an independent event restricts the expected rate of

BNS mergers further to 1090+1720−800 Gpc−3y−1 [95]. The current rate remains consistent

with estimated rates of the galactic NS population which are in known NS binaries,

observed via pulsar measurements [99].

1.4.2 Modern electromagnetic observations of neutron stars

NSs were first discovered by Bell Burnell while a PhD student. Their identification of

a regularly repeating radio signal was found to be a rapidly rotating NS [100] with jets

of radiation emanating from it’s magnetic poles, known as a pulsar. Since this first

detection, radio observations of pulsars have formed the majority of NS observations

to date [101]. After the first observations made of radio emission from NSs following

Hewish et al. [100] came the identification of the NS-pulsar binary system PSR
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B1913+16 by Hulse and Taylor [102]. The two bodies in this binary are indeed NSs,

but only one body is emitting radiation as an observable pulsar. Both bodies, however,

are orbiting one another and as a result, are emitting GWs continuously (the reasons

why are discussed in section 1.3). Energy is thus lost through the form of gravitational

radiation and as a result, the orbital period of the pulsar slowly decays [103]. Hulse

and Taylor indeed observed a delay in the orbital phase of PSR B1913+16 and in

1993, won the Nobel Prize in Physics for this discovery [104].

Since these two fundamental discoveries of NS systems, observations have been

made of thousands of NSs through a variety of media. These observations have

ultimately led to a greater understanding of their internal structure and extreme

surroundings. Growing numbers of observations of binary pulsar systems in the decade

following the discovery made by Hulse and Taylor found that the precise determination

of the pulsar spin frequency as well as understanding of relativistic orbital effects

allows for measurement of component masses [105]. Through measurement of the

Keplerian parameters of the binary system and accounting for relativistic effects of

the radio signal passing through the gravitational potential well induced by the binary

[106], the component masses can be uniquely determined via the Keplerian mass

function [107]. These masses were found to be broadly consistent with a theorised

universal mass of 1.4 M⊙ [105]. This mass was expected to be ‘canonical’ given the

nature of their supernova birth from the iron core of a massive star [84, 23], meaning

all NS were expected strictly to have a mass of around 1.4 M⊙.

However, in more recent years, more precise observational methods have allowed

for improved mass determination [108, 109].Employing the method of measuring

component masses given measurement of NS spin frequency and Keplerian orbital

dynamics with a correction for strong field gravity, Martínez et al. [109] find potentially

the smallest mass of NS to be measured: 1.174 ± 0.004 M⊙. Identification of very

small NS masses gives more information about the potential evolution of the NS

and its progenitor [110]. For such a small mass NS to exist, it is possible that its

progenitor was likewise smaller in mass due to being accreted by the companion NS,

which underwent the supernova explosion prior. Therefore, the supernova collapse
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involved less matter collapsing onto the iron core, and therefore less mass compressed

into the soon-to-be NS.

The mass range of NSs is now understood to be broad, from the aforementioned

lower limit set by Martínez et al. to an unknown but confidently > 2 M⊙ upper

limit, supported by recent observations of high-mass radio pulsars [23, 111, 112]. So

far, the maximum NS mass is found to be that of 2.35 ± 0.17 M⊙ [113], belonging to

a NS accreting material from a low-mass (< 1M⊙) companion. By measuring light

curves of different wavelengths and fitting for parameters of the system relative to

an underlying theoretical model following [114], the authors can then use the system

binary parameters to determine component masses using the method outlined above.

There are many factors which are at play in determining the upper limit of masses

for NSs, primarily whether the NS is in a system where it is accreting matter from

a companion. We will not discuss said systems, but rather acknowledge that these

systems can support a stable NS of high mass. High mass NSs are interesting targets

as it can allow us to place an upper limit on the maximum pressure supported before

collapsing to a BH [85], and therefore place constraints on viable equations of state

via the TOV equations.

Measurement of the radius of a NS is less straight-forward and is subject to

assumptions which accrue large uncertainties [115]. Most ideal are simultaneous mass

and radius measurements [116], first attempted via observation of x-rays from NSs in

binary systems. Özel [117] applied the method of Van Paradijs [118] to determine the

mass and radius of x-ray bursts from NSs in accreting binaries. The luminosity of

such bursts depend on the radius of the explosive photosphere of the NS and its mass.

However, the method used is prone to uncertainty which originates from the lack of

understanding of the NS atmosphere, and model uncertainties impact the quality of

the measurement [119].

Detection of NSs in a low-mass x-ray binary (LMXB) allow for observation of

thermal emission from the stellar surface when the system is accreting less material

from the companion compared to the systems described above [120], or not at all. The
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thermal emission, a remnant of heating from previous accretion, is faintly measurable

with x-ray observatories and measurement of their angular size along with knowledge

of their distance allows for measurement of the NS radius. For observations of

NSs where we have a good estimate of their distance (in a well-known globular

cluster, for example), radii measurements are estimated to be [8, 16] km [119]. Again,

uncertainties around the NS atmosphere contribute error towards the measurement,

along with uncertainties regarding the amount of x-ray absorbing matter in the

interstellar medium.

Radius measurements of NSs almost entirely consisted of those of x-rays from

NSs in LMXBs, until the NS Interior Composition Explorer (NICER) collaboration

made their first observations of the pulsar PSR J0030+0451 [121, 122, 123]. Aboard

the International Space Station, the x-ray instrument observes hotspots on the NS

surface whose emission, when not on the rotational pole of the rapidly spinning star,

is modulated. This is observed as an x-ray pulse which has propagated through the

curved gravitational potential of the NS, providing a measurement of both total mass

and equatorial radius [124]. Their first observation of PSR J0030+0451 returned

constraints of 𝑀 = 1.44+0.15−0.14 M⊙ and 𝑅 = 13.02+1.24−1.06 km [121]. This result agrees with

the independent companion analysis of Riley et al. [122] and together their results

provide direct constraint of the composition of cold, supranuclear NS matter via

combined inference of mass and radius and integration of equations 1.7 and 1.8.

1.5 Bayesian inference

We introduce Bayesian inference as a method to infer the probability of a system’s

parameters, given an observation of GWs emitted by that system. We wish to use

the observation of a given GW event to inform our knowledge of the parameters of

the source, while accounting for our current knowledge of those parameters and our

understanding of how likely we are to observe such a signal with those parameters.

This formulation allows us to assign probability on an event-by-event basis, but also

combine theoretical knowledge and our understanding of previous GW events into our

current understanding of new events.
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We begin with Bayes’ theorem:

𝑝( ®𝜃 |ℎ, 𝑀) = 𝑝(ℎ | ®𝜃, 𝑀)𝑝( ®𝜃 |𝑀)
𝑝(ℎ |𝑀) , (1.23)

where 𝑝( ®𝜃 |ℎ, 𝑀) is the posterior probability of parameters ®𝜃 given observed GW

strain ℎ and a chosen model, 𝑀. Representing our initial understanding of the source

parameters given our chosen model but regardless of the observed data is the prior,

𝑝(𝜃 |𝑀). The probability of observing the GW strain ℎ given our model 𝑀 and its

parameters ®𝜃 is the likelihood, 𝑝(ℎ | ®𝜃, 𝑀). The evidence is given as 𝑝(ℎ |𝑀), which acts

to normalise the posterior probability distribution, such that∫
𝑝(𝜃 |ℎ, 𝑀) 𝑑𝜃 = 1, (1.24)

however, we focus our discussion on the prior, likelihood and posterior. The posterior

probability density 𝑝( ®𝜃 |ℎ, 𝑀) of parameters ®𝜃 of a GW source is a joint probability

density distribution on all 𝑁 parameters of the source, both extrinsic and intrinsic.

For analysis of a BBH merger, the posterior density distribution consists of 𝑁 = 15

dimensions [125] describing the nature of the signal. In order to find the marginalised

posterior probability density for a single parameter, for example the mass of the

primary component in the merger 𝑚1, one can marginalise over all other parameters

to obtain the marginal 1-dimensional posterior probability density:

𝑝(𝜃𝑖 |ℎ, 𝑀) =
∫

𝑝(𝜃𝑖 |ℎ, 𝑀)
∏
𝑘≠𝑖

𝑑𝜃𝑘 . (1.25)

In practice, we express the posterior probability density of all N= 17 parameters of

a BNS system together in PE in order to construct credible intervals and regions

of confidence. The total number of parameters for a BNS system accounts for tidal

parameters (discussed in section 1.3) and neglects parameters which accounts for the

eccentricity of the system, assuming the orbits of the two NSs around one another

have been circularised by the time we come to observe GW emission from the inspiral.

By marginalising, we are finding our estimate of the posterior probability density

𝑝( ®𝜃 |ℎ, 𝑀) accounting for uncertainty in all other 𝑁 − 1 parameters defined by the

joint posterior probability density.
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1.5.1 Parameter estimation

GW PE applies the method of Bayesian inference to find the posterior probability

density of parameters of a GW source given detection of a noisy signal, 𝑑 (𝑡), introduced

in equation 1.15. This can equivalently be expressed in the frequency domain, such

that

𝑑∗( 𝑓 ) = ℎ∗( 𝑓 ) + 𝑛∗( 𝑓 ) (1.26)

given that the Fourier transform is a linear transformation. Once we have observed

data where we believe there to be a GW signal present, we find the joint posterior

probability density, 𝑝( ®𝜃 |𝑑 ( 𝑓 )), on a set of unknown parameters ®𝜃 given observation

of a signal over a range of frequency 𝑑 ( 𝑓 ). This requires some set up, primarily in

construction of the priors on each of the parameters 𝑝( ®𝜃) and the choice of likelihood

𝑝(𝑑 ( 𝑓 ) | ®𝜃). The likelihood is a description of the measurement made [126] and in

GW data analysis it is common to use a Gaussian likelihood. The noise in a GW

detector is characterised by the power spectral density (PSD), 𝑆𝑛 ( 𝑓 ), likewise a

function of frequency. We choose to perform the analysis in the frequency domain

as the prominence of a given source of noise changes as a function of frequency. The

likelihood is therefore modelled as the product of independent probabilities across

frequency bins. We give the likelihood as

L(𝑑∗( 𝑓 ) | ®𝜃) =
𝑁−1∑︁
𝑖=0

1

2𝜋𝑆𝑛 ( 𝑓𝑖)
exp

(
−|𝑑∗( 𝑓𝑖) − ℎ∗( ®𝜃, 𝑓𝑖) |2

2𝑆𝑛 ( 𝑓𝑖)2

)
, (1.27)

where ℎ∗( ®𝜃, 𝑓𝑖) is a theoretical model of the GW signal expected given parameters ®𝜃

i.e. a template waveform [127].

We must also choose our prior probability distributions to perform Bayesian

inference. The choice of prior for a given parameter 𝜃 expresses our knowledge of

this parameter prior to any measurement or observation being made. Once we have

made an observation and have inferred the properties of this parameter given some

method, we can then update our prior knowledge of the parameter via equation 1.23.

Often, we have no prior knowledge of the parameters we are measuring, and in such

a scenario we choose to have a minimally informative prior. A uniform prior gives

every region of the parameter space equal probability, but is not invariant under
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parameter transformation. The least informative prior, therefore, is the Jeffrey’s

prior [128]. Alternatively, we can have the prior distribution express our existing

knowledge of a given parameter. For example, in GW inference of NS parameters,

we can use mass priors which are informed by existing observations of NSs through

EM observation or nuclear experiment (see chapter 2 section 2.2.1). See [129, 130] for

related work on using physics-informed priors in inference of properties of NSs with

GWs. Given the choice of likelihood and priors, we wish to evaluate the posterior

probability of the parameters 𝜃. Due to the high dimensionality of the full posterior

probability distribution, we need efficient sampling methods to evaluate the function

of the space without resulting to stepping along a grid which is inefficient in such a

high dimensionality space.

1.5.1.1 Markov-chain Monte-Carlo

One example of a stochastic sampling method is MCMC which provides an efficient

method to sample from the posterior probability distribution, our target distribution

𝑝(𝑥), the most generic implementation being through evaluation of the Metropolis-

Hastings algorithm [131, 132]. We define the current state of the sampler, 𝑥𝑡 , as a

Markov chain, which is a sequence of random variables where the future state 𝑥𝑡+1

depends only on the current state, and is independent of any previous steps. To

determine the transition from step 𝑥𝑡 to 𝑥𝑡+1, we must propose a potential step to be

taken. To do so, we define a proposal distribution, which is based on the current state

𝑥𝑡 of the sampler. Often, this proposal is a Gaussian distribution centred around 𝑥𝑡 .

Our proposed step is a sample drawn from proposal distribution 𝑥′ ∼ 𝑞(𝑥′|𝑥𝑡) which

depends on the current step of the algorithm. We evaluate the relative probabilities

of the current state and the proposed state via [133]

𝛼 =
𝑝(𝑥′)𝑞(𝑥𝑡 |𝑥′)
𝑝(𝑥𝑡)𝑞(𝑥′|𝑥𝑡)

. (1.28)

If 𝛼 ≥ 1, the step is accepted and 𝑥𝑡+1 = 𝑥′. Otherwise, the state is assigned probability

𝛼 and is accepted or rejected relative to 𝑢 ∼ 𝑈 [0, 1], where we accept the proposed

sample 𝑥𝑡+1 = 𝑥′ if 𝛼 > 𝑢, otherwise it is rejected and 𝑥𝑡+1 = 𝑥𝑡 . This random walk

is performed indefinitely, unless the user defines a condition at which to stop or a
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finite run time, with the result being samples from the target distribution, 𝑝(𝑥), the

posterior probability distribution.

In order to make this process computationally efficient, there are many variants

of the standard MCMC set-up. Ensemble MCMC is the process of performing the

Metropolis-Hastings algorithm in parallel with multiple ‘walkers’, where each walker

explores the target probability distribution while in communication with the other

walkers. This is a computationally efficient extension for problems in high dimensions;

more walkers can explore the probability distribution more effectively. Additionally,

when problems are multi-modal, an ensemble of walkers prohibits getting stuck on

local maxima or minima. A very common example of ensemble MCMC is given by

the python package emcee [134], the use of which will be discussed in chapter 6.

By sampling the ‘chains’ at the end of the MCMC sampling routine, i.e. the path

of steps taken by each of the walkers in the ensemble, one can accrue posterior samples.

It’s standard to first allow the walkers time to settle in the parameter space, and then

sample late stages of each of the walker’s paths, leaving an initial ‘burn-in’ stage [126].

To determine sampling quality, one can measure the autocorrelation length, a measure

of the number of steps required to produce statistically independent samples of the

target distribution, or posterior probability density [134]. An alternative measure

is the number of unique steps taken by the walkers. This measures the acceptance

rate of proposed samples and can flag potential issues with the multi-modality of the

target distribution, or the choice of proposal distribution.

1.6 Conclusion

In this chapter, we have firstly introduced the concept and theory behind NS physics,

and how we can relate their equations of state to their macroscopic parameters

through General Relativity and the TOV equations. We covered our current best

understanding of the structure of a NS. More relevant to the current work, we

also introduced GWs through a common reference point in General Relativity, and

discussed how we can detect, model and infer source parameters of GWs. To do so,
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we additionally introduced Bayes’ theorem, which will become particularly relevant

for statistical and computational methods employed in this thesis.

Next, we covered the specifics of how GWs observed from the merger of BNSs

provides a unique method through which to understand the composition of NS matter.

The measurement of the tidal deformability of a NS is unique to GW observation

and is complementary to our current understanding from EM observations. The

observation of the GW event GW170817 in particular provided constraints on the

tidal deformability of a NS for the first time, and alongside the EM emission from the

event, confirmed its status as the merger of (at least one) NS.

Our current understanding of NS structure is by no means comprehensive. Since

being hypothesised and later observed for the first time as a radio pulsar, extensive

observations have been made using a variety of methods. Radio observations of NSs

continue to dominate our catalogue of understanding, but recent observations of binary

NS mergers with GWs have offered a new method through which we can observe and

measure NS parameters, but also to understand better the composition of NS matter.

As ground based GW detectors improve and as the next generation of detectors

begins, we hope to add to our current collection of GW observations of NS mergers,

and perhaps observe GWs from NSs from a different origin (for example, continuous

GWs or those from the post-merger phase). Our current understanding of NSs may

evolve, and particularly mysterious properties of NSs may no longer be so. In the

next chapter, we learn more about the NS composition and their equations of state,

and how we can infer the composition of a NS from observation of their macroscopic

parameters.
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Chapter 2

The dense matter equation of state

Our previous introduction of NSs - how they come to be, our current best understanding

of their composition and their local environment - classified them as some of the

most extreme bodies in our universe, with the most dense matter we know of. It is

uncovering the nature of this matter and its true composition which is the goal of

many of the studies listed in this chapter.

In chapter 1 we introduced how, through employing General Relativity and making

assumptions about the state of the matter in a NS, we can arrive at the TOV equations.

These equations encapsulate the structure of a NS and describe a relationship between

macroscopic observables of a NS and its internal structure. The internal structure is

given by the equation of state of neutron-rich matter, the only input required (apart

from boundary conditions) to solve the TOV equations [22]. We introduce the equation

of state as the foundational relationship between the pressure, 𝑃, temperature 𝑇 and

density 𝜌 (or alternatively energy density, 𝜖) of a fluid. The ideal gas law, 𝑃 = 𝑛𝑘𝐵𝑇 ,

for example, is an equation of state of an ideal gas. However, NSs are far from ideal;

the temperature of a NS, while high by stellar standards [20], is very low relative to

the Fermi temperature [22] and so can be approximated as having zero-temperature

(discussed in chapter 1). With this treatment, we therefore consider the equation of

state of a NS to be a relationship between 𝑃 and 𝜌 within the star.

The equation of state is bounded at the low density crust to have 𝑃 = 0 and
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increasing pressure as we approach the core. As such, an equation of state of NS

matter is a monotonically increasing function of pressure with density. This satisfies

thermodynamic stability ; the pressure only increases as density increases as we travel

further into the star. Another physical requirement for a valid equation of state is

causality : the speed of sound within a NS should never be greater than the speed of

light. The speed of sound in a NS describes the stiffness of the equation of state [135]

and is calculated as it’s gradient

𝑐2𝑠 ≡
𝑑𝑃

𝑑𝜖
. (2.1)

where 𝜖 is the energy density. For 𝑐 = 1, causality requires that 𝑐2𝑠 ≤ 1 as an absolute

limit and thermodynamic stability requires that 𝑐2𝑠 > 0 [136].

Stiff equations of state are those where the pressure increases rapidly with density

and therefore supports more repulsive force to combat the gravitational force pushing

down on the star. An illustration of a stiff and a soft equation of state is given in

figure 2.0.1. A stiff star can support a larger radius for a given mass, and is therefore

more extended. Therefore the tidal deformability 𝜆 (introduced in chapter 1 section

1.3), is also large. Conversely, soft equations of state are those where pressure does

not increase as steeply with density, with NSs of smaller mass and smaller volume

(radius), which are more difficult ton tidally deform with small 𝜆.

The true, universal equation of state of NS matter is currently unknown; the region

of uncertainty, particularly at the highest densities within the inner core - is wide and

so could exhibit some exotic phase of matter, or even phase transitions, the effect of

which are illustrated in figure 2.0.2. Here, the phase transition appears as a sharp

change in density at a given pressure, signifying a transition between two phases

of matter within the star. Figure 2.0.2 presents one example of a first order phase

transition, expected to occur within the core of a NS where the behaviour of matter

at such high densities is widely unknown, however similar behaviour may also occur

at the crust-core boundary. The presence of phase transitions may also be probed by

observation of macroscopic observables of the NSs through features in the relations

between those observables, for example NS mass, 𝑚, and radius, 𝑅 [137].
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Figure 2.0.1: Illustration of two example equations of state in pressure vs. density
demonstrating the difference between soft and stiff behaviour.

The equation of state of low density NS matter - the crust of the NS - describes

constituents of matter which we are familiar with terrestrially, i.e. protons, neutrons

and electrons [34] albeit in an extreme astrophysical environment [2]. The behaviour

of such matter, up to and around nuclear saturation density, can be probed by physical

experiment (discussed in section 2.2). Analyses often can comfortably make the choice

of using a fixed crust equation of state without this assumption having influence on

the overall result [138, 139]. Theoretical models attempt to model the NS equation

of state based on our best knowledge of high density nucleonic matter extrapolated

to densities beyond which we can reach with terrestrial experiments. However, to

truly constrain the equation of state, we use information gleaned from astrophysical

observations of NSs; by measuring the macroscopic parameters of NSs - mass 𝑚, radius

𝑅 and more recently tidal deformability 𝜆 - we can infer the composition of matter

required to support such a star with these properties.
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Figure 2.0.2: Illustration of an example equation of state in pressure vs. density
with a first order phase transition.

In this chapter, we discuss different equation of state modelling methods, before

discussing inference methods which constrain the NS equation of state at different den-

sities. We then focus on equation of state inference using data from GW observations,

briefly reviewing the literature on current inference methods. We finally introduce

equation of state inference for the next-generation of ground-based GW detectors and

discuss the upcoming challenges and requirements for future tools.

2.1 Modelling the neutron star equation of state

A variety of equation of state models exist which aim to describe the 𝑃− 𝜌 relationship

within the star with a given physically-informed composition of matter. These include

quark models [140], nucleonic models [141] and hybrid models [142], each of which

are built to describe the matter within a NS on a microscopic scale. An example of

such an equation of state is SLy4 [143], a member of a family of SLy equations of
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state [144] which describe high density pure neutron matter [145], and as such are

common in the analysis of NS composition. SLy4 is a hadronic unified equation of

state, meaning that from crust to core, the composition of the NS matter is described

by the same equation of state. Equations of state like SLy4 are built to describe the

behaviour of this matter under the extreme conditions present in a NS, and as such

obey the physical laws that define matter at this density, namely thermodynamic

stability and causality. There are many alternative models which are built to describe

the nature of matter within a NS with different underlying physical phenomena in

precise detail - those cited above are just a few. However physically informed models,

including SLy4, are complex and require many parameters to describe them. Also,

they each describe the NS interior using one physical description of the composition

of matter.

Alternatively, we can describe the NS equation of state with phenomenological

models; these are relations which instead aim to describe the behaviour of the equation

of state relationship in pressure and density, rather than being defined by nuclear

theory. These are common in inference methods, where we use observation to infer

the parameters of a given model in order to describe the overall equation of state.

This is less computationally expensive than solving a physically motivated equation

of state or integrating the TOV equations. One equation of state model whose use is

prevalent in the literature is the piecewise polytropic equation of state [146] of Read

et al., where the 𝑃 − 𝜌 relationship is represented as a series of adjoining polytropes

up to a maximum density. A polytropic equation of state is described by:

𝑃(𝜌) = 𝐾𝑖𝜌Γ𝑖 (2.2)

where the pressure 𝑃 of the i𝑡ℎ polytrope is a function of rest-mass density 𝜌 and

adiabatic index Γ𝑖 with coefficient 𝐾𝑖. Beyond a minimum density, 𝜌0, polytropes are

built for a series of density intervals, described by their own 𝐾𝑖 and Γ𝑖, each bounded

such that 𝜌𝑖−1 ≤ 𝜌 ≤ 𝜌𝑖. Read et al. demonstrate in [146] that 6 parameters, 𝜌0, Γ1,

𝜌1, Γ2, 𝜌2 and Γ3, are necessary to construct a 3-piece polytropic model, given that

𝐾1 =
𝑃(𝜌0)
𝜌
Γ1
0

. (2.3)

37



Figure 2.1.1: Plot of pressure vs. density of an example piecewise polytropic
equation of state with 3 pieces, parameterised by adiabatic indices Γ1,2,3 and with
joining densities 𝜌0,1,2.

However, if densities between adjoining polytropes are fixed, only 4 parameters are

therefore necessary: 𝜌0, Γ1, Γ2, Γ3. This allows the user to define the pressure at 𝜌0,

where 𝑃0 = 𝑃(𝜌0) and the rest of the pieces by their respective Γ𝑖 between the fixed

densities. Read et al find that using fixed adjoining densities of 𝜌1 = 1014.7 g cm−3

and 𝜌2 = 1015.0 g cm−3 reduces the residual when fitting a given set of theoretically

motivated equations of state to a minimum.

Carney, Wade and Irwin (not the author) [147] compare the piecewise polytropic

model to an alternative parameterisation: Lindblom’s spectral representation [148].

Lindblom states that this alternative parameterisation can reconstruct a set of realistic

equations of state with a smaller number of parameters than Read et al. within a

comparable margin of error. Additionally, they state that the parameterisation is

suitable for complex (with phase transitions) at a comparable accuracy to piecewise

polytropic equations of state, as well as simple (smooth) equations of state. Lindblom
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suggests that the spectral method can be improved further to tackle phase transitions

in the equation of state by using more spectral parameters, and modelling the equation

of state above and below the phase transition pressure with different fits, however this

increases the complexity of the fit. When tasked with reconstructing the simulated

parameters of a GW signal of a BNS merger associated to a known equation of state,

Carney, Wade and Irwin [147] find that both the polytropic and spectral models

recover near identical tidal information from the signal, demonstrating that each

equation of state model interprets the same information relative to the true underlying

equation of state, and any inconsistency in information learned is not due to the

equation of state model choice. However, in reconstructing the true simulated equation

of state, the polytropic model introduces additional statistical error at the joining

densities of each of the polytropic segments, an error which is entirely avoided by

using the spectral model which builds a smooth 𝑃 − 𝜌 relationship. Both models

are, however, flexible in the construction; for example, the polytropic model can be

represented by less parameters than is presented in [147], mitigating error induced at

connecting pieces.

A unified approach to modelling the high density equation of state is a solution

somewhere between full nuclear descriptions of the equation of state and phenomenolog-

ical models. Davis et al. [2] propose an efficient construction of NS equations of state

by extracting nuclear parameters from the high density equation of state described

phenomenologically (for example, piecewise polytropic) and using these parameters

to calculate the low density equation of state. As a result, the low density equation

of state is described by a meta-model [149], a ‘model of models’ which constructs

an equation of state given nuclear parameters which have existing constraints, for

example given nuclear laboratory experiments or observation. The crust equation of

state is stitched to the core equation of state at a matching density point, which occurs

somewhere near saturation density by detaching the nuclear parameters from the given

equation of state at this point and carrying these to create the low density equation of

state. This equation of state construction method is such that each equation of state

is consistently and uniquely described by nuclear parameters from high to low density,

with a minimal number of parameters. The benefits of this will be described in the
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section 2.3, where we consider equation of state constraints with future GW detectors.

2.2 Inferring the neutron star equation of state with

observations

While we intend to build models which match the observed physical phenomena or

describe the underlying physics, we also wish to use our observations to inform our

understanding of the equation of state. Different observations of physical phenomena

provide us with information on different density regions of the nuclear equation of state.

Figure 2.2.1 from [130] presents example equations of state over a broad pressure and

density range and the different methods by which we can constrain the equation of

state in different density regimes. Up to twice the nuclear saturation density, terrestrial

nuclear experiments can probe the equation of state of high density neutron-rich matter

through experiments which are discussed more in depth in the next paragraph. From

2𝜌sat to around 4𝜌sat, GW observations of BNS mergers, in particular the inspiral

phase where we measure the tidal interaction of the two components (as introduced

in chapter 1 section 1.3) provide observation of the behaviour of neutron-rich matter

at these densities. Beyond this, we require observation of EM emission from NSs and

also observation of GWs from the post-merger phase of two NSs, where we might

support high mass NSs, hosting ultra-dense matter for a very short period before

eventual collapse.

Understanding the equation of state of high density nuclear matter through

terrestrial experiments [150, 151, 152, 153] is a difficult task, given the densities that

are required to be replicated are around and above the nuclear saturation density,

𝜌sat = 2.7 × 1014 g cm−3. At this density inside a NS, we expect the composition of

matter to be highly asymmetric, where the number of neutrons is much greater than

the number of protons. To understand the behaviour of matter under these conditions,

terrestrial experiments aim to measure the nuclear symmetry energy, 𝐽, a parameter

which quantifies the difference between symmetric nuclear matter (equal quantities of

protons and neutrons) and pure neutron matter [154]. In the high density regime, this
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parameter describes the energy required to go from symmetric to pure neutron matter

[155] and is key to understanding the overall behaviour of the system. The slope of

the symmetry energy, 𝐿, evaluated at saturation density, determines the pressure

of symmetric nuclear matter (at 𝜌sat) [154]. By providing the dominant source of

pressure at this density, 𝐿 is therefore known to be positively correlated with the NS

radius [156]; a larger 𝐿 at saturation density infers a more rapid increase in energy

required to maintain the system with density and therefore a stiffer equation of state

and larger radius for a given mass [157, 154].

The parity radius experiment (P-REX) aims to measure the thickness of the

‘neutron skin’ in Pb208 [152], mimicking a NS crust. In neutron-rich nuclei, the radius

of the volume that neutrons occupy become larger than that of the protons due to

Figure 2.2.1: A plot of number density in units of nuclear saturation density (𝑛sat)
vs. pressure for example high density nuclear equations of state. Different regions are
shaded in different colours, representing the regions of density or pressure which are
informed by different experimental or observational constraints. From [130].
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differences in binding energy (a direct impact of the symmetry energy of asymmetric

matter) [158]. Assuming that the same physical phenomena are operating on the

neutrons within the lead isotope as are inside a NS, measurement of the thickness of

the neutron skin allows for direct inference of the saturation density and its slope,

and provides complementary information for inference of the NS radius [155].

In the higher density regime, above 2𝜌sat, we rely on astrophysical observations.

Given that NS densities can reach up to ∼ 10𝜌sat within the core [96], observation

of astrophysical phenomena provides a means of measurement of the properties of

high density neutron rich matter. Measurement of NS masses and radii through a

variety of electromagnetic means has thus far placed constraints on the NS equation

of state, and in particular constrains the equation of state through the direct mapping

from 𝑀 − 𝑅 to 𝑃 − 𝜌 relationships [21]. The details on observation of macroscopic

parameters of NSs through a variety of electromagnetic methods are discussed in

chapter 1 section 1.4.2.

Additionally, the maximum mass of the NS is defined by the pressure at the highest

densities within the star; Özel and Psaltis [160] found that varying the pressure at

densities of around ∼ 7𝜌sat varies the 𝑚 − 𝑅 mostly in the determination of the

maximum mass allowed by the equation of state. Inference of the maximum allowed

mass via observation is difficult, and is defined currently by a few select observations

of heavy NSs [161, 162]. From these observations, lower limits have been placed on

the maximum allowed mass, which enforces that all valid equations of state must

allow for such massive NSs to be stable.

The past few decades of NS observations and nuclear experiment have thus resulted

in various constraints being placed on our current knowledge of the NS equation of state.

The result of these constraints are expressed in figure 2.2.2 from an analysis performed

by Ng et al [159]. The figure presents the combined equation of state constraint from

multiple methods including radio observation of heavy pulsars and x-ray observation

of millisecond pulsars (primarily by the NICER experiment [123, 163, 122, 121]), both

introduced in chapter 1 section 1.4.2, alongside constraints from GW observations of
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Figure 2.2.2: Equation of state constraints from radio observation of massive pulsars
(blue), GW observations of BNS mergers (orange), and observation of x-ray emission
from millisecond pulsars (green and purple) from an analysis performed in [159] which
uses nuclear-informed priors (grey).

BNS mergers. Their analysis includes constraints from nuclear theory and experiment

through use of a nuclear-physics-informed prior developed by [2]. More details of this

data set will be discussed in 5 section 5.1 when we incorporate it into our analysis. It

is clear from figure 2.2.2 (and complementary analysis which is in broad agreement;

for example, [164, 165, 166]) that the current observations, theory and experiment

have constrained the equation of state space so to rule out particularly soft equations

of state from the nuclear-informed prior, and each of the electromagnetic constraints

broadly agree on a general trend. However, from all existing observations, including

those not discussed here (for example [167, 94]), which aim to observe the behaviour

of NS matter as it undergoes further compression, none are particularly strong to

provide a very stringent constraint on the equation of state currently.
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2.2.1 Inferring the neutron star equation of state with GWs

Observations of GWs from merging NSs allow us to measure the dimensionless

parameters Λ̃ and 𝛿Λ̃ from the gravitational waveform, which are the combined tidal

deformability of the system and the difference in tidal deformability of the components,

respectively. As discussed in chapter 1, these parameters appear in the gravitational

waveform of a BNS merger at the 5th post-Newtonian order [168]. As stated in chapter

1 equations 1.21 and 1.22, these are by definition reparameterisations of the individual

dimensionless tidal deformability of each component, Λ1 and Λ2, and the symmetric

mass ratio, 𝜂 [169]. It is not trivial to recover the tidal deformability of each of the

components; 𝛿Λ̃ is not as well recovered from the waveform as Λ̃ with current GW

detectors [168], as discussed fully in chapter 1 section 1.3.1.

2.2.1.1 Universal relations

In seeking a method to resolve the individual component tidal parameters, Yagi

and Yunes [82] discuss universal relations: relationships that have been found to

exist between macroscopic parameters of NSs that are approximately independent

of equation of state. The reason of the universality of these relations is currently

unknown, but it is thought to be at least in part due to the similarity of NSs in the

region which we probe with the parameters that we measure [170]. However, the

matter composition in these regions of interest is by no means well-defined and so

this alone cannot explain the universality. In practice, these relationships allow us to

automatically recover parameters of a BNS given measurements of others, assisting

the broader task of parameter estimation [82]. The primary universal relation which

is relevant to this work is the Binary Love relation. This is a quasi-universal relation

between the symmetric Λs ≡ (Λ1 + Λ2)/2 and anti-symmetric Λa ≡ (Λ2 − Λ1)/2 tidal

deformability of two NSs in a BNS merger. While the relationship between Λ1 and Λ2

for a given mass of NS depends heavily on the equation of state, it has been found that

the relationship between Λa and Λs does not. Therefore, by solving simultaneously,

one can resolve the component tides more easily. In PE of a GW signal from a

BNS merger, measurement of Λa and Λs therefore allows for accurate recovery of

both individual tidal deformability parameters of each star [82]. However, universal
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relations assume a simplified BNS system, where both stars are cold [171], slowly and

uniformly rotating in GR [172], and do not account for phase transitions within the

stars [173]. Continued independent measurement of these macroscopic parameters

can therefore (in)validate universal relations moving forward.

2.2.1.2 Brief literature review

Currently, we are limited by the number of joint observations of both mass and

radius/tidal deformability of the same source. Therefore, we rely on Bayesian inference

methods to use individual measurements to infer probabilities of given equations of

state. This allows us to incorporate prior knowledge, e.g. from nuclear theory, into

the analysis. We refer the reader to chapter 1 section 1.5 to recap the theory of

Bayesian inference if required. We discuss Bayesian inference within the context of

GW observations of NSs only.

Prior to any detection of GWs from NS mergers, or of GWs from any CBC for that

matter, Read et al. [174] used numerical relativity to simulate BNS merger waveforms

as deviations from that of BBH waveforms (often modelled as point particles) in

order to estimate the deviation induced by the presence of matter in the system. By

simulating the late stages of inspiral and merger of two 1.35 𝑀⊙ NSs, each associated

to a underlying realistic piecewise polytropic equation of state [146], they expected

that Advanced LIGO would be able to distinguish between a BNS waveform produced

and that of point particles at an effective distance of 100 Mpc with a single Advanced-

LIGO-configuration GW detector. Read et al. projected that one observation of a

BNS merger at a distance of 100 Mpc could constrain the NS radius to within ∼ 10%,

or approximately 1 km. This can be equivalently considered as an error in pressure in

the 𝑃 − 𝜌 plane; at a density of 5 × 1014 g cm−3 one can determine the pressure to

within ∼ 1033 dym cm−2.

Del Pozzo et al. [79] performed a similar but fully Bayesian investigation to

determine how many detections of BNS signals with second generation GW detectors

(Advanced LIGO era) would be required to achieve considerable constraints on the

NS equation of state, given the BNS waveform is discriminable from that of point
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particles. They suggest that O(10) observations of BNS mergers would be enough to

constrain the equation of state in the 𝑚−Λ plane, providing distinguishable preference

for either stiff or soft equations of state. However, their analysis considers only 3

distinct equations of state defined in the literature, rather than a continuous array

of parametric equations of state and a spectrum of stiffness vs. softness. Another

Bayesian analysis was completed by Chatziioannou et al. [175] in order to determine

whether GW observations of NS mergers could distinguish between different internal

compositions of NSs. They found that an observation of a GW signal with an SNR of

20 could provide indication of possible non-nucleonic equations of state (potentially

non-NS in nature), while an SNR of 30 could either confirm or deny entirely. To

differentiate between different flavours of non-nucleonic equations of state, higher SNR

observations are required, but the authors state that second generation GW detectors

(advanced LIGO) will not be able to differentiate between equations of state that

differ only at high central densities (i.e. NSs with exotic inner core content).

The announcement of the GW observation of the BNS merger GW170817 came in

October 2017 [54], the highest SNR GW event at the time [38]. This observation was

the first of it’s kind: direct observation of properties of ultra-dense matter undergoing

tidally induced stress and strain. The LIGO-Virgo collaboration soon published their

own equation of state inference from the event [4] in which they present constraints on

the NS parameters and composition with two methods, incorporating information from

the EM follow-up campaign post-announcement [176, 177, 90, 178]. Their method

samples uniformly in symmetric tidal deformability, Λs ∈ [0, 5000], among all other

parameters of interest in PE (method discussed in chapter 1 section 1.2). The authors

then apply the Binary Love universal relation [82] to return the asymmetric tidal

deformability, Λa and thus the component tides, Λ1 and Λ2. The second method

samples directly the parameters of Lindblom’s spectral model [148], 𝛾𝑖, where the rest-

mass density is a function of these parameters and pressure, 𝜌(𝑝; 𝛾𝑖),which is inverted

to give the equation of state in 𝑃(𝜌). Sampling the equation of state parameters

directly allows for physical constraints on the equation of state to be directly enforced

in the analysis, and for all physically viable equations of state to be valid within

the prior bounds set on the equation of state parameters. The TOV equations are
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integrated to recover Λ1 and Λ2, and as such both methods can be compared in

determining the tidal deformability of both components. The LHS of figure 2.2.3

presents the joint Λ1 −Λ2 posterior of the component NSs of GW170817 from [4]. The

shaded green region presents the posterior given from the method which employs the

binary love universal relation. The green, blue and orange solid lines present the 90%

credible intervals for posteriors found using the universal relations, the parameterised

spectral equation of state and a result from an alternative analysis performed by

the collaboration [83], where component tidal deformability parameters are sampled

independently and the TOV equations are solved to find the possible equations of

state, which is not assumed to be common between the two NSs. The shaded region

represents the region which violates convention (Λ1 < Λ2) and so is unphysical. The

solid black lines present the Λ1 − Λ2 relationship for given equation of state models

from the literature. Both of the analyses they perform prefer softer equations of

state where tidal deformability is smaller, inferring more compact stars. The RHS of

figure 2.2.3 also presents the equation of state posterior as declared in [4]. Relative to

their equation of state prior bounds, their result pushes to a softer equation of state

posterior to both 50% and 90% confidence. This is in agreement with the LHS figure;

a softer equation of state makes for a slower increase in pressure with density into the

core of the NS. This means there is less pressure support throughout the star against

the intense gravitational force, and a smaller radius of NS. A smaller, compacted NS

is less easily tidally disturbed as a result.

The collaboration’s method of returning the equation of state posterior – through

building equations of state given the posterior samples in equation of state parameters

𝛾, and integrating the TOV equations along with the mass samples to return tidal

deformability – adds significant computational time at each stage. Adding extra

dimensions to sample over in PE is non-trivial, alongwith the added constraint of

integrating the TOV equations for each of the 1000s of equations of state. In chapter

4, we discuss a method to return a non-parametric equation of state posterior without

need for any of these additional steps beyond standard PE after a BNS merger event.

After the observation and initial equation of state inference published by the
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Figure 2.2.3: LHS: joint Λ1 −Λ2 posterior from GW170817, where the shaded green
region is the posterior to 90% confidence, compared to example equations of state from
the literature in solid grey lines. Results from other analysis methods performed in [4]
are presented in blue and orange solid and dashed lines to 90% and 50% confidence,
respectively. The shaded lower grey corner represents the out-of-bounds Λ1 ≥ Λ2

region. RHS: plot of pressure vs. density for the equation of state posterior to 50% and
90% confidence in dark and light green bands, respectively, from [4]. Their training
prior bounds are presented in dashed pink lines. The upper and RHS plots present
1-dimensional cumulative probability densities for 𝜌1, 𝜌2, and 𝜌max as well as 𝑃1, 𝑃2,
and 𝑃max.

collaboration [4], more sophisticated analyses and discussion of how to improve

constraints by combining information from multiple BNS mergers were the next topic

of discussion. One example is that of Landry and Essick [179], who introduce a

non-parametric method of inferring the NS equation of state given observation of BNS

mergers using Gaussian process regression [180], also known as Gaussian processes.

As discussed above, parametrising the NS equation of state restricts the equation

of state to a small number of parameters which describe a pre-defined morphology.

This is an efficient alternative to describing existing equation of state models with

fewer parameters, however in inference, this can severely limit the extent to which

the equation of state can be described, especially if the true, universal equation of

state exhibits strong features characteristic of phase transitions which the chosen

parameterisation cannot emulate to high precision without an increase in number of

parameters [148, 147]. Alternatively, Gaussian processes allow for a ‘statistical map’

to exist between mass and tidal deformability parameters of an event, [𝑚1,2,Λ1,2],

and a diverse set of synthetic non-parametric, thermodynamically stable and causal

equations of state which align with current observational and experimental constraints.
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The Gaussian process models the underlying functional relationship between energy

density 𝜇 and pressure 𝑃 as a multivariate Gaussian. Each realisation from the function

that the Gaussian process describes is a selection of correlated random variables. The

Gaussian process is a construction of a conditional distribution for a set of arbitrary

points in the function space 𝑓𝑖, where 𝑓𝑖 = 𝑓 (𝑥𝑖), conditioned on known values 𝑓 ∗
𝑖
; in

this case, some known equations of state from nuclear theory:

𝑝( 𝑓𝑖 |𝑥𝑖, { 𝑓 ∗𝑗 , 𝑥∗𝑗 }) =
𝑝( 𝑓𝑖 | 𝑓 ∗𝑗 , {𝑥𝑖, 𝑥∗𝑗 })
𝑝( 𝑓 ∗

𝑗
, {𝑥∗

𝑗
}) . (2.4)

Once conditioned on candidate equations of state informed by nuclear theory, individual

samples from the Gaussian process yield physically motivated samples from the

equation of state prior. The corresponding 𝑚 − Λ relationship associated to each

synthetically generated equation of state by integrating the TOV equations and the

GW likelihood (modelled by a kernel density estimate (KDE)) can be calculated via

Monte Carlo integration.

The authors applied their method in [181] to inferring the NS equation of state with

data from GW170817 and find that soft equations of state are preferred, consistent

with other prominent analyses, even with their most diffuse prior. Landry, Essick and

Chatziioannou [182] demonstrate the extension of the workflow to combine information

from multiple astrophysical sources, notably from the seminal constraints placed on

the mass and radius of the first pulsar observed by NICER [163].

2.2.2 Combining information from multiple GW events

Since the observation of GW170817, many tools have been developed to infer the

equation of state of individual BNS merger events and constraints have been placed

on the composition of high density nuclear matter. These constraints, however, are

limited by the uncertainty on the measurement of macroscopic parameters, and the

limited number of detections made. Future ground-based detectors will have improved

sensitivity and bandwidth and thus will measure parameters of interest with greater

precision [58, 59]. Additionally, the number of BNS mergers is expected to increase

[183] with many more opportunities for observation and further constraint. However,
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we now need adapted tools to be able to combine the information from multiple

observations for improved constraint. We introduce hierarchical Bayesian inference

before introducing existing methods.

2.2.2.1 Hierarchical Bayesian inference

As covered in chapter 1 section 1.5, Bayes’ theorem expresses the posterior probability

density function (PDF) of parameters ®Ω given observed data ℎ as

𝑝( ®Ω|ℎ, 𝑀) = 𝑝( ®Ω, 𝑀)𝑝(ℎ | ®Ω, 𝑀)
𝑝(ℎ, 𝑀) , (2.5)

where 𝑝(Ω, 𝑀) is the prior probability of parameters ®Ω, 𝑝(ℎ | ®Ω, 𝑀) the probability of

observing data ℎ given parameters ®Ω, or the likelihood of parameters ®Ω, and 𝑝(ℎ, 𝑀)

the evidence supporting the observed data. In the case of GW observations of CBC

signals, if we have 𝑁 BNS merger events, we assume that each measurement of GW

strain, ℎ is statistically independent. We wish to determine the combined probability

of the parameters ®Ω, which each describe a property of the NSs, given all 𝑁 events.

For this we combine the individual likelihoods of observing each of the 𝑁 events given

the parameters ®Ω [184]:

𝑝( ®Ω|ℎ, 𝑀) ∝ 𝑝( ®Ω, 𝑀)
𝑁∏
𝑖=1

𝑝(ℎ𝑖 | ®Ω, 𝑀). (2.6)

This does not require the determination of the individual event posteriors, but rather

is a computationally effective way to determine an overall posterior from an arbitrary

number of observed events. Hierarchical Bayesian inference methods concern them-

selves with instead having an efficient likelihood calculation, 𝑝(ℎ𝑖 | ®Ω, 𝑀) which can be

combined. Information from each BNS merger event is given through the measured

parameters of the system, ®𝜃, which in particular includes 𝑚1, 𝑚2, Λ1 and Λ2, among

other observable parameters, for example the spins of the two NSs. Analyses which

investigate low and high spin scenarios have upper limits on the prior of 0.05 and 0.89

respectively. The overall equation of state posterior given 𝑁 BNS merger events is

given by:

𝑝( ®Ω|ℎ, 𝑀) ∝ 𝑝( ®Ω, 𝑀)
𝑁∏
𝑖=1

∫
𝑝(ℎ𝑖 | ®Ω, 𝜃𝑖, 𝑀) 𝑝(𝜃𝑖 | ®Ω, 𝑀) 𝑑𝜃𝑖 . (2.7)
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where we have marginalised over the GW observable parameters ®𝜃. Our overall goal is

to then infer the set of parameters Ω which is common to all events. The mathematical

explanation of hierarchical Bayesian inference in introduced again and in more depth

in chapters 5 and 6 when in use.

2.2.2.2 Current hierarchical inference methods

The analysis discussed previously of Del Pozzo et al. [79] use a Bayesian method to

combine information from multiple BNS sources. By assuming a universal equation of

state, they find the combined posterior on the tidal deformability by constructing the

likelihood, L(𝑑i | ®𝜃, 𝜆1,2) of observed data for the 𝑖th event, 𝑑𝑖, where 𝜆1,2 are coefficients

of a linear expression of the tidal deformability, 𝜆:

𝜆(𝑚) = 𝜆0 + 𝜆1(𝑚 − 1.4𝑀⊙)/𝑀⊙ (2.8)

and ®𝜃 are other observed parameters of the system. The parameter space is explored

by evaluation of the likelihood given the prior through nested sampling in the manner

of [185]. In simulated signals which are built with parameters that are associated

to a true underlying equation of state, they find, after a few tens of sources are

incorporated into the analysis, the true tidal deformability is recovered and is clearly

distinguishable from the others, each of which are respectively associated to a soft,

moderate and stiff equation of state. However, to re-cap the literature review in

section 2.2.1.2, the method employed by the authors uses only 3 strict equations of

state from the literature, rather than a continuous set of parameterised equations of

state that may be soft or stiff to different degrees, and so despite their clear result, the

analysis differs in comparison to those which employ purely parameterised equations

of state. The analysis of Del Pozzo et al. further investigates with how many BNS

events it would be apparent that macroscopic parameters of the BNS system (standard

data products of parameter estimation) prefer softer/stiffer equations of state. The

simplified parameterisation of 𝜆 here restricts the way in which we express the 𝜆(𝑚)

relationship for the three discrete equations of state used in the analysis. The authors

find the gradient of their model of 𝜆(𝑚) as a straight line difficult to measure but the

intercept, or measurement of 𝜆 at a mass of 1.4 M⊙, is easier to determine.
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Lackey and Wade [80] instead infer the parameters of an equation of state model

directly given a ‘realistic’ population of 𝑁 BNS events. Their realistic population

corresponds to a year of advanced LIGO observation with an expected event rate of 40

mergers of two 1.4 M⊙ NSs detected per year with SNR > 8 [186]. They wish to find

the posterior PDF 𝑝( ®Ω, ®𝜃 |ℎ) of equation of state parameters ®Ω and parameters of the

system ®𝜃 given observed GW data ℎ. The inferred equation of state parameters ®Ω are

that of the piecewise polytropic model of Read et al. [146] while the GW parameters

®𝜃 they consider are a reduced set of parameters which assume zero spins, meaning

their overall combined equation of state and GW parameter space is 11-dimensional.

By marginalising over the non-equation of state sensitive parameters (distance, right

ascension, declination, phase, inclination, time of coalescence, phase at coalescence,

and difference in dimensionless tidal deformability, 𝛿Λ̃, assuming this parameter is not

measurable at advanced LIGO sensitivity), they construct quasi-likelihoods for the

equation of state-sensitive parameters ®𝜃in = {𝑚1, 𝑚2, Λ̃, log(𝑝1), Γ1, Γ2, Γ3} along with

equation of state parameters ®Ω for each of the 𝑁 events. Marginalising over extrinsic

parameters reduces the dimensionality of the problem and retains only the equation of

state-sensitive information, given that the equation of state-insensitive parameters that

we have marginalised over and the piecewise polytropic parameters are independent.

Additional assumptions are made so that the problem simplifies to calculating the

quasi-likelihood of each of the 𝑁 events via additional marginalisation over masses

{𝑚1, 𝑚2} and taking the product via equation 2.6. The posterior PDF is sampled using

Markov Chain Monte Carlo (MCMC) and each posterior sample of Ω corresponds

to an equation of state in the 𝑃 − 𝜌 plane. Their result is consistent with the true

injected equation of state but with sharp features which are spikes in uncertainty

associated to the transition densities between polytropic pieces, an error which is a

direct consequence of their choice of equation of state parameterisation. With ≥ 5

events, they state that the analysis is dominated by the loudest 5 events, and more

than 5 events does not significantly improve the constraint of the equation of state or

measurability of intrinsic parameters. They discuss how more sophisticated equation

of state parameterisations are necessary to ensure that the chosen parameterisation

does not negatively impact the recovery of the equation of state, especially when
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considering more complex equations of state.

Golomb and Talbot [187] use a GMM, a linear combination of multi-dimensional

Gaussians, to model the multi-dimensional likelihood of each event in their analysis.

Constructing this GMM acts as an analytical model for the likelihood L(ℎ | ®𝜃) of

observed data ℎ modelled by parameters ®𝜃. They likewise use equation 2.6 to explore

the parameter space and evaluate the likelihood of given equations of state Ω and the

prior 𝑝(Ω), using nested sampling to do so. The computational time taken to perform

their analysis scales with the number of events. They quote that each likelihood

evaluation took ≤ 50 ms in a combined analysis of 37 events - this is repeatedly

calculated during nested sampling and so dictates the overall time taken, which

depends on the sampler settings and performance. They state that the time taken to

complete one likelihood evaluation is comparable to that of hierarchical analyses of

the mass distribution of a BBH population in the same detector set up [188], meaning

the increased complexity of NS parameter and equation of state inference does not

inhibit their analysis.

In comparison, the ‘rapid’ analysis of Ray et al. [189] instead uses a kernel

density estimate (KDE) to mitigate the cost accrued with increasing number of events

by re-using posterior samples in mass and tidal deformability [𝑚1, 𝑚2,Λ1,Λ2] from

single event PE analyses, standard data products of a GW detection. The likelihood

of a 4-parameter spectral equation of state represented by parameters ®𝛾 given a

reparameterised set of parameters of the NS component masses and tides (chirp mass,

M, mass ratio 𝑞, and tidal parameters Λ̃, assuming the posterior distribution of BNS

observable parameters is largely independent of 𝛿Λ̃) is given as:

L(ℎ | ®𝛾) ∼
∫

𝑝(𝑞, Λ̃(M, 𝑞, ®𝛾 |ℎ))𝑑𝑞 (2.9)

which is modelled by a KDE through

L(ℎ | ®𝛾) ∼
∫ 1

0
𝐾𝑖 (𝑞, Λ̃(M𝑖, 𝑞, ®𝛾 |ℎ))𝑑𝑞 (2.10)

By substituting the above into equation 2.6, they can evaluate the approximate

posterior of equation of state parameters, ®𝛾 which models the overall Ω, given the
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prior 𝑝(Ω) and sample the posterior distribution using MCMC. They quote that for

10 BNS events, their analyses takes on the order of ∼ 1 day to complete.

Current hierarchical analyses focus on simplifying and accelerating the likelihood

calculation of equation 2.6 so that the combinatorial process is not limited by costly

likelihood evaluations. Expressing the likelihood using either a KDE or a GMM is an

effective solution to quick individual likelihood evaluation but the analyses still scale

with number of events and/or posterior samples per event and are limited in their

flexibility while remaining computationally inexpensive. The analyses summarised

above operated primarily with regards to high density equation of state inference; the

methods broadly choose to parameterise the equation of state using phenomenological

models, which limit the ability to express complex equations of state. These assump-

tions are valid within the bounds of the advanced ground-based GW detector network,

where numbers of BNS mergers remain low and where measurement accuracy is not

expected to be particularly constraining. In next generation detectors like ET [58]

or Cosmic Explorer (CE) [59], BNS mergers are expected to be detected at a rate of

approximately 105 per year [58] and as such we require analysis which can combine

information from the 105 events within a sensible timescale which is also computa-

tionally inexpensive. Additionally it will be beneficial to have tools which tolerate

more precise parameter measurement and consistently map macroscopic parameters

to the equation of state without losing information due to modelling inaccuracies or

generality.

2.3 Future gravitational wave detectors as probes of

the neutron star equation of state

Next generation ground based GW detectors ET and CE have proposed sensitivities

at least an order of magnitude greater than that of the design sensitivity of the current

ground based detectors [58, 59]. The improvement in sensitivity refers to the noise

curve, a measure of the magnitude of disruption in spacetime that the detector is

sensitive to as a function of the frequency of the GW emission. As a result, it is
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expected that the NS equation of state will be constrained to such a level that the

NS radius can be determined, through integration of the TOV equations, to within

hundreds of metres of uncertainty (on the percent level of the total radius) [190]. Both

ET and CE are more sensitive relative to current ground-based detectors but also

across a wider band of frequency [59], however the ET/CE sensitivity improvement is

not uniform over their frequency bands [191]. In the case of detection of BNS mergers,

this also means that more of the inspiral signal is detectable as well as the post merger

signal [192]. Figure 2.3.1, from [58] but from analysis completed in [192], presents the

noise curves of previous, current and future ground-based GW observatories in strain

per
√

Hz (the square root of the power spectral density) as a function of frequency.

The grey lines associated to different ground-based GW detectors represent the limit

of sensitivity of each of these instruments, below which a signal with a given stain

per
√

Hz will not be observable. A mock-BNS signal at a distance of 100 Mpc is

plotted in blue, to demonstrate that, with the current advanced LIGO set-up, we can

in principle observe the NS inspiral from the early stages of inspiral (up to 500 Hz) to

just before the merger (∼ 2000 Hz). However, with ET, the merger itself and also the

post-merger signal will also be detectable.

In the next generation of ground-based GW detection, we expect on the order

of 105 observations of BNS mergers per year [58] and approximately 103 of these

mergers to have an EM counterpart [193]. Pipelines for fast and efficient detection

[194, 195, 196] and parameter estimation [3, 197, 198, 199] of these GW signals are

increasing in their numbers. Efficient identification and inference of the vast number

of signals facilitates rapid communication with observers, while also minimises the

amount of compute power spent on analysing the many, many signals [200].

Once PE of these observations is performed, rapid equation of state inference

would provide EM astronomers with complementary information which could further

inform whether an EM counterpart will be observable. Özel and Freire [120] state that

the fate of the merger remnant depends on the equation of state, therefore determining

whether we expect subsequent emission of EM or GW radiation as the remnant NS

settles or complete expulsion of material, leaving behind a remnant BH. The mass
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Figure 2.3.1: Plot of detector strain per
√

Hz as a function of frequency of GW signal.
Noise curves for different ground based observatories are plotted in grey alongside a
mock BNS waveform. The point-particle-like stage of the BNS waveform is highlighted
in green and the region at which the tidal effect become prominent is highlighted in
yellow. The post-merger signal is highlighted in red. The merger and post-merger
signal will be observable with ET. From [58].

of the material ejected from the kilonova resulting from a BNS merger also depends

on the equation of state [201]; conversely, Zhao et al. [202] explored how kilonova

lightcurves can be used to probe the NS equation of state. Qiumu et al. [203] find

that softer equations of state have more ejecta material as well as brighter kilonova

emission. Therefore, rapid knowledge of the equation of state post-BNS merger could

inform astronomers if EM emission will be visible, minimising wasted observation

time.

To better understand how next-generation detectors will compare when observ-

ing BNS mergers, Chatziioannou [191] found that a GW170817-like event observed

with next-generation detectors would have an SNR of 1000. Further, they found

that observing 100 sources each with an SNR of 200 would give an uncertainty on

(dimensionless) Λ̃ of 100, error of ∼ 10%, for a 1.6 M⊙ NS when considering the 𝑚 −Λ

equivalent representation of the equation of state (see chapter 1 figure 1.3.3 for an
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example and typical scales of Λ possible with current equation of state constraint).

As measurement precision improves with more sensitive detectors and the number of

observations increase drastically, we need to be careful in how we infer the equation

of state using measured parameters. With current detectors, quasi-universal relations

have been proven to be valid and be an effective method to infer one macroscopic

parameter after measurement of another (see section 2.2.1.1). However, in current GW

detectors, measurement precision of macroscopic parameters is still very broad, where

discrepancy can be hidden. Suleiman and Read [204] find that using quasi-universal

relations to extract parameters with next-generation detectors adds additional un-

certainty, broader than the uncertainty present with direct inference. As a result, it

will be necessary to infer the equation of state directly rather than use equation of

state-insensitive relations.

Finally, the uncertainties associated with uninformed crust-core matching for

non-unified equations of state become, in the future with next generation detectors,

comparable to measurement uncertainty [205]. The assumption of a unique crust

equation of state is no longer valid and the uncertainty associated to the choice of

crust model may now express itself as an incorrect determination of macroscopic

parameters [2]. Therefore unified equations of state, like those introduced in [2], are

the necessary choice for equation of state inference with next generation detectors.

2.4 Conclusions

This chapter has introduced the concept of the equation of state: a fundamental

relationship between the pressure and density of a NS. We have introduced current

methods to model the equation of state phenomenologically, including using the

piecewise polytropic parameterisation which will be particularly important when

introducing the equation of state data used in chapters 4 and 5. We also introduced

unified equations of state, which are particularly important when considering equation

of state inference with next generation GW detectors, where the assumption of a fixed

NS crust equation of state may no longer be valid.
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Not only can we model the 𝑃 − 𝜌 relationship with phenomenological and theory-

informed models, we can use both observation and experiment to inform our knowledge.

We have introduced how nuclear experiments may tell us about physical phenomena

in the NS crust, near nuclear saturation density, and the nature of the microphysics.

Astrophysical observation, including observation of GWs from BNS mergers, is cur-

rently our only method of observing the result of interactions of neutron-rich matter

at ultra-high densities, several times nuclear saturation densities. The underlying

physics of neutron-rich matter at such high densities as those present in a NS is still

very much unknown, and our measurement accuracy of NS macroscopic parameters

therefore remains limited.

We also briefly summarised some key pieces of work which aim to infer the NS

equation of state from GW observations of BNS mergers. Since the observation of

the first BNS merger event, GW170817, work has progressed from speculation of the

possible levels of equation of state constraint from BNS merger events to how we can

simplify the analysis to be non-parametric and unbiased as well as computationally

efficient. Equation of state inference with next-generation GW detectors is therefore

a challenge with many complex features to be considered, including the drastic

increase in number of observations expected. Although detector sensitivity will be

drastically improved when compared to current ground-based observatory sensitivity,

new problems come to the fore-front of analysis, especially with regards to scale and

precision of techniques. Primarily, methods to cope with equation of state inference

from multiple events both quickly and efficiently will be necessary. To help solve this

issue, we look to Machine Learning methods.
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Chapter 3

An introduction to Machine Learning

for scientific data analysis

We introduce ML, firstly with basic neural networks and the fundamentals of training

and learning, before introducing more complex networks. Primarily, we introduce

both Normalising Flows and autoencoders, two types of network which are pertinent

for later chapters. We conclude with a literature review of current applications of ML

in GW data analysis.

ML is the method of automating computational algorithms to identify patterns

and trends within or to emulate large data sets. Once ‘trained’, i.e. once the algorithm

has found its own optimal state in order to understand the data set to a certain

degree of confidence, the algorithm can then be used on new data to identify trends

and patterns quickly and effectively. The use of ML is now prevalent in a variety of

scientific disciplines, including GW data analysis. In this chapter, we give a broad

overview of the fundamentals of ML while focusing on its applicability to modern

scientific data analysis.

As scientific instruments become more sensitive with capacity for vast amount

of data to be stored, traditional methods to process this data become slow and

computationally expensive [206]. ML offers a solution in such a scenario; models can
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Figure 3.1.1: An example of a fully connected neural network architecture. Input
data of 𝑛 dimensions is passed to 𝑛 input neurons before passing through a series of
hidden layers of different numbers of neurons. Data is finally passed through to 𝑚
output neurons.

parse vast data sets and interpret not only broad trends but intricate detail within the

provided data. Additionally, most off-the-shelf ML tools are built to be compatible

with graphics processing units (GPUs) for further parallelisation and acceleration.

Given that tools to apply a Machine-Learning-based method to your given data

analysis problem are more abundant and accessible than ever, it is the task of the

user to develop a model which is best suited to the task at hand. Various types of

ML methods exist, the details of which we will cover in later sections before focussing

on two select methods. We begin by introducing the most simple neural network

architecture, the multi-layer perceptron, to discuss the fundamentals of building ML

models for data analysis.

3.1 An introduction to neural networks

An artificial neural network is an algorithm which is built to be analogous to the

human neural network, the series of connections which process information in the

human brain. In an artificial neural network, this structure is emulated as a network of
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interconnected neurons, which are operators on a given input, ®𝑥, to produce an output,

®𝑦. The simplest deep neural network architecture is that of a multi-layer perceptron

(MLP), or fully-connected neural network. In an MLP, neurons are arranged in layers,

where all neurons of a given layer are connected to those in the previous and subsequent

layers. An illustration of this network architecture is presented in figure 3.1.1. The

input layer of an MLP is the input data consisting of 𝑛 parameters. This input layer

then feeds to subsequent layers of different numbers of neurons, often called ‘hidden’

layers, before finally reaching 𝑚 output neurons. The structure of an MLP can be

designed relative to the problem at hand; more complex networks with more layers

and more neurons per layer can perform more complex tasks. Any function can be

approximated to any desired accuracy given that you have enough hidden layers within

the network [207]. However, as functions increase in complexity, one can imagine the

computational cost of building such networks increases significantly. Neural network

layers designed to perform more complex tasks, or to take more complex inputs e.g.

high dimensionality data sets, without dramatic increase in computational cost are

discussed in section 3.1.3.

The computation performed on the 𝑗 th element of the 𝑖th input layer 𝑥𝑖 𝑗 to find

the output layer ®𝑦𝑘 of the 𝑘th layer, where 𝑘 = 𝑖 + 1, can be expressed as [206]

®𝑦𝑘 = 𝜎
( 𝑛∑︁
𝑗=1

𝑤 𝑗 𝑘 𝑥𝑖 𝑗 + ®𝑏𝑘
)
. (3.1)

where we take the sum over all layer inputs, 𝑛, and multiply the input by the element

𝑤 𝑗 𝑘 of the weights matrix 𝑊𝑘 associated to the kth output layer, length 𝑚, given by

𝑊𝑘 =



𝑤11 𝑤12 ... 𝑤1𝑚

𝑤21 𝑤22 ... 𝑤2𝑚

... ... ... ...

𝑤𝑛1 𝑤𝑛2 ... 𝑤𝑛𝑚


. (3.2)

Each element of 𝑊𝑘 is a weight given to the input-output neuron pair, where a larger

weight associates more importance to the input neuron and where 𝑏𝑘 is a bias vector

[208]. We also introduce the activation function, 𝜎, which acts on the operation to

add complexity and non-linearity [208]. Without the activation function, 𝜎, the MLP
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would remain a series of linear computations, regardless of how many layers were in

the network.

A selection of activation functions are plotted in figure 3.1.2. Different activation

functions operate to serve different purposes; a common function used between

layers of neurons in a network being the Rectified Linear Unit (ReLU) [209, 210],

ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥), a non-linear function which rids the network of negative values

during training. This ensures stability and allows the neural network to perform more

complex tasks. Activation functions are also often used on the output of the network

to restrict the output to be within a given range. For example in a network built to

perform binary classification (i.e. true or false) , one might wish to use a sigmoid

activation function

sig(𝑥) = 1

1 + exp(−𝑥) (3.3)

on the output layer of the network. The result of applying the activation on input ®𝑥

is such that sig(®𝑥) = [0, 1] represents the probability of the classification given some

threshold, say 0.5, where sig(®𝑥) < 0.5 is false and sig(®𝑥) ≥ 0.5 is true.

3.1.1 Training and learning

Neural networks can be built to serve a variety of purposes relative to the given input

data and the desired function of the network. As such, neural networks can be trained

using different methods. Three broad categories are:

• Supervised learning: 𝑁 training data inputs 𝑥𝑖 where 𝑖 = 1, . . . , 𝑁 are associated

to a label or class, 𝜃𝑖, that the model is then trained to predict or learn the

association to. The performance of the model is determined as the ability of the

model to learn the correct class relative to the true class, 𝜃𝑖, in classification, or

learn the true value of a given labelled quantity in regression. Once trained, it

can classify previously unseen data.

• Unsupervised learning: the model is provided with training data inputs 𝑥𝑖 and

is trained to learn the general behaviour and features of the input data. The

model is trained based on its understanding of the input training data set, and
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Figure 3.1.2: Example of three common neural network activation functions. Blue:
ReLU, purple: sigmoid and pink: tanh.

once trained can be used to recognise patterns or associations among new data,

without any introduction of labelling or naming. Examples of unsupervised

learning include anomaly detection [211], data clustering [212] and dimensionality

reduction, which is discussed in section 3.3.

• Reinforcement learning: an neural network, called an agent, is trained to interact

with an environment and autonomously learns via trial and error. The agent can

freely act within its environment and receives rewards or penalties for actions

taken, where the goal of the agent is to accumulate the maximal number of

rewards.

In this work we primarily cover supervised learning, and so will lean most heavily on

this method in the next sections when discussing more concepts of neural network

training.
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Any neural network, the MLP included, is trained relative to a loss function

which represents the performance of the network during training given its current

input and status. The loss is a function of the network input and the neural network

trainable parameters (as well as the target ®𝑦 in supervised learning), L(®𝑥, (𝑊, ®𝑏)),

and is calculated at the final layer of the network. Like the activation function, it is

a chosen function relative to requirements of the network and the method used to

train the network. One example of a commonly used loss function is binary cross-

entropy (BCE). This is particularly useful for binary outputs from a network i.e. ‘true’

or ‘false’ like our previous example of a binary classification network. In this example

network, 𝜃𝑖 is the true label associated to the 𝑖th network input 𝑥𝑖, where 𝜃𝑖 ∈ (0, 1)

and 𝑦𝑖 is the predicted probability of the label of 𝑥𝑖 from the network where 𝑦𝑖 = [0, 1].

Therefore, the BCE loss is

BCE = − 1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖 log(𝑦𝑖) + (1 − 𝜃𝑖) log(1 − 𝑦𝑖) (3.4)

where we take the average BCE over 𝑁 instances of training data [213]. As the BCE

loss decreases, the closer the model’s prediction 𝑦𝑖 is to the true label 𝜃𝑖.

The goal of training the neural network is to minimise the loss; this means that,

in supervised learning, the output of the network is comparable to that of the given

label or class that we are comparing to. Therefore, training a neural network is an

optimisation problem of finding the parameters of the loss function (the optimal weights

and biases) which minimise the loss. This optimisation routine is back-propagation

[214]: we initialise the neural network with randomly selected weights 𝑤𝑖 𝑗 and then

update the weights throughout training with the goal of minimising the loss. As with

regular function minimisation, the minimum of the loss function corresponds to a

derivative of 0. We calculate the loss throughout training and its derivative with

respect to all of the weights, 𝑊 , in the network. The computational intensity of this

calculation (noting we likely have millions of weights 𝑤𝑖 𝑗 in our network) is lessened

by back-propagation’s chain rule calculation of the derivative of the loss with respect

to all weights before updating them [215]. We therefore update the weights in such a

way as to decrease the loss. This optimisation procedure is called gradient descent;

we calculate the gradient of the loss with respect to the neural network parameters
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continually throughout training, moving in the direction of the lower gradient, lowering

the loss, aiming for the global minimum.

Updating the weights to reflect the update of the network output down towards

lower losses is called a backward pass, whereas the preceding pass of the training

data through the network to calculate the loss is the forward pass. The magnitude

of step taken in the loss function is determined by the learning rate; large learning

rates correspond to large steps through the neural network hyperparameter space,

potentially avoiding fine features of the space. Alternatively, small learning rates may

get stuck in local minima, never fully finding the truly optimal network configuration.

As such, the learning rate is a hyperparameter which can be optimised for when

testing network architecture, much like the number or depth of layers.

One full pass of training data is generally classed as an epoch, but this is not

often done in one pass, as this becomes computationally expensive with lots of data,

or impossible relative to memory constraints. Instead, the training data is often

split into batches, and the gradient is calculated, back-propagated and the network

optimised to minimise loss relative to each batch. The final loss after one epoch is

the average loss over all batches; see equation 3.4, where we take the average over 𝑁

instances of training data. This is repeated for 𝑁𝑏 batches and the average loss over

𝑁𝑏 batches found, however the network has been updated multiple times during each

epoch relative to the decisions made after each batch. All together, this process is

titled stochastic gradient descent, ‘stochastic’ referring to a random selection of data

for each batch from the training data set [208]. Different optimisation procedures exist

[216, 217] but we will focus on stochastic gradient descent for all following related

discussion.

The network is trained over many epochs, so that the average loss per epoch

gradually decays over training through optimisation of the weights and biases before

plateauing, signifying that the network’s potential for learning is saturated. This is an

idealised scenario; the loss does not always decrease monotonically and fluctuations in

the gradient can make for a noisy average loss per epoch. Additionally, the average
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loss per epoch that is reached in saturation may not represent the global minimum,

but may be a restriction of the depth and complexity of the network hyperparameters.

To summarise, a simple neural network is trained as follows: a forward pass of the

training data through each of the layers within the network to the output is performed

to calculate a loss, L(®𝑥, (𝑊, ®𝑏)), at the output of the neural network, relative to

a known truth or target if supervised. The gradient of this loss is calculated via

back-propagation, and a backward pass updates the weights and biases in the network

so to minimise the loss function. This process is repeated for a number of epochs,

minimising the loss until training is completed.

3.1.2 Training data

The main ingredient for training a neural network, besides the network itself, is of

course the training data. The number of input neurons of the network is typically

associated to the number of parameters or attributes of our input data. In contrast, the

number of output neurons is then typically associated to the goal of the neural network.

For example, the previous network we proposed to perform binary classification may

have a single neuron at the output, which is trained to output the classification

probability which is a single number between [0, 1].

Standard practice with a data set for neural network training is to split the training

data set into three portions: training, validation and testing. The majority of the

data is used for training the network as described above, with two smaller fractions

retained for validation and testing. The entire training and validation sets are passed

to the network independently on each epoch, with similarly independent training

and validation losses calculated as a result. Unlike the training loss, the calculated

validation loss does not influence the back-propagation stage and so does not inform

the update of the trainable parameters of the network. This allows the validation

data to serve as an independent portion of the data which only tests the network’s

performance on data from the same distribution but previously-unseen. This ensures

the network is not overfitting, or memorising the specific details of the training data

set. The testing data set is then used once the network has been trained and optimised
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to test its performance on data that, again, is from the same overall distribution but

has not been used in training or validation. This ensures we are testing the network

on data that we know is in agreement with the overall distribution of training and

validation data, but is independent.

It is also necessary to have an appropriate quantity of training data so to present

the network with enough examples of what we would like it to learn. This quantity,

again, is a function of the complexity of the problem. High-dimensional and complex

problems demand lots of training data so to provide enough example data points

within the training data space to provide a broad picture of the information we would

like the network to learn. We also wish to present the network with enough data so

that the network generalises well; we wish for our network to learn the general trends

and patterns of the training data and associated classes. If too little data is used

for training, the network runs the risk of learning individual features (for example,

clusters of data points or local modes) or even memorising data points. Memorising

individual features or data points would present as overfitting in the calculation of

training and validation losses; training loss would continue to decrease as the network

finds parameters which are capable of building a network which emulates the training

data perfectly, while the validation data, an independent data set, is an outlier and so

the validation loss instead increases. The result is a network which then struggles to

generalise and which cannot perform well on new and previously unseen data.

3.1.3 Different types of neural network

An multi-layer perceptron (MLP) is one simple example of a neural network, how-

ever different network architectures can parse more complex input data with less

computational expense. Two examples are:

Convolutional neural network : Commonly used with 2- or 3-dimensional image

data sets, the input image is convolved through the use of a kernel, which is a filter

which is applied to the (for the case of our example here) 2-dimensional input of

shape 𝑑 × 𝑑. The kernel, a matrix of size 𝑙 × 𝑙 where 𝑙 < 𝑑, passes over the image,

where the elements of the matrix are multiplied by the pixel values in the image
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[218] (the kernel does not have to be square, but we choose this for the sake of our

example). The choice of the matrix elements within the kernel define the function of

the kernel, but in the case of image classification, the kernel often functions to identify

the key features of the image. Once features are identified, the resulting feature map

[219, 218] is a representation of the image with features which have been amplified by

the kernel highlighted. The goal is to abstracts the input image gradually through

multiple convolutional layers so that the network learns the key features through

which to classify or perhaps reconstruct the input image [220]. Convolutional networks

often include some convolutional and some fully connected layers, so to control the

dimensionality of the output of the network [221], alongside stages of max pooling,

which acts to downsample the image via scanning a similar kernel to that described

above across the image or feature map. Instead of highlighting features, the max

pooling stage selects the maximum pixel value and reduces the size of the original

image or feature map to a smaller output image, but one which still retains the main

features.

Recurrent neural network : Designed for use with sequential training data, where

the network is provided with the next piece of the sequence at a time [222]. The

recurrent network includes, alongside its inputs and outputs, a ‘memory’ allowing it to

retain information from previous stages of the series, identifying sequential behaviour

[223, 224]. As well as being intuitively suited to time series data, where recurrent

networks can be used to predict behaviour, they often also find use in language

processing [225], where the series of language input can either be interpreted such

that the network can predict the next steps or ‘respond’. One variant of a recurrent

network is a long short-term memory network [226], which adapts upon standard

recurrent neural networks but with an improved short-term memory, allowing the

network to identify patterns over longer sequences with better behaviour in training

[227].
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3.2 Normalising Flows

Our earlier example of a neural network designed to perform binary classification

is an example of a network designed to perform a discriminative task; in this case,

assigning the output 𝑦𝑖 of the network a probability between [0, 1]. However the next

network we introduce falls into the category of generative ML where a network instead

learns a its own mapping of the training data input, otherwise referred to as the latent

space Z, which can then be sampled from. These new samples are from the same

statistical distribution of the samples which were used to train the model but are

entirely independent samples from the distribution, hence ‘generative’. Examples of

generative models include generative adversarial networks (GAN)s [228] and diffusion

models [229].

A Normalising Flow is a type of generative ML model which is trained to perform

both sampling and density estimation of potentially complex distributions [230]. To do

so, the model is trained to perform the transform from latent space, Z, described by

a standard Gaussian probability distribution, 𝑝𝑍 (z), to a more complex distribution,

𝑝𝑋 (x) in the data space X. The transformations can be considered to be steps which

are taken to evolve the Gaussian latent space to the more complex data distribution.

The overall probability density of the spaces must be preserved in transforming

from data to latent, and the reverse. Therefore we require the transformations to

be invertible and differentiable [231]. The transformations are performed by neural

networks parameterised by hyperparameters 𝜙, where 𝑥 = 𝑓 −1(𝑧, 𝜙) is the forward

transform and 𝑧 = 𝑓 (𝑥, 𝜙) is the inverse transform for x = {𝑥1, ..., 𝑥𝑛} where 𝑥𝑖 ∈ R

and similarly z = {𝑧1, ..., 𝑧𝑛} where 𝑧𝑖 ∈ R.

In the case where we wish to perform a conditional transform from the data space

X to the latent space Z given some complementary information - for example, a label

or class, 𝜽 - we use conditional Normalising Flows. The probability density of x given

conditional information 𝜽 can be expressed as a change of variables of two probability

density functions [231]

𝑝X|Θ(x|𝜽) = 𝑝Z ( 𝑓 (x, 𝜙|𝜽) |𝜽)
����det

(
𝜕 𝑓 (x, 𝜙|𝜽)

𝜕x

)����, (3.5)
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where we are taking the absolute value of the determinant of the Jacobian, an 𝑛 × 𝑛

matrix given by

𝜕 𝑓 (x, 𝜙)
𝜕x

=



𝜕𝑧1
𝜕𝑥1

𝜕𝑧1
𝜕𝑥2

...
𝜕𝑧1
𝜕𝑥𝑛

𝜕𝑧2
𝜕𝑥1

𝜕𝑧2
𝜕𝑥2

...
𝜕𝑧2
𝜕𝑥𝑛

... ... ... ...

𝜕𝑧𝑛
𝜕𝑥1

𝜕𝑧𝑛
𝜕𝑥2

...
𝜕𝑧𝑛
𝜕𝑥𝑛


. (3.6)

The Jacobian measures the change in volume from data to latent space and ensures the

transformations are tractable. Therefore we can act in the simpler latent distribution,

which is easy to sample from and evaluate the probability of, and then perform

the inverse transform x = 𝑓 −1(z) to return samples from the target space X where

𝑥 ∼ 𝑝X (𝒙). Therefore the Jacobian determinant must be tractable and the neural

network transforms must be invertible, both features which make Normalising Flows

unique.

Given that the individual neural network transforms are invertible and differen-

tiable, a series of such transforms will also have these properties [231]. Therefore, we

can build more complex Flow models which overall perform more complex transforms

by constructing the network from a series of 𝑘 simpler transforms,

𝒛𝑘 = 𝑓𝑘 (𝑥𝑘 , 𝜙|𝜃) · 𝑓𝑘−1(𝑥𝑘−1, 𝜙|𝜃) · . . . · 𝑓1(𝑥1, 𝜙|𝜃), (3.7)

where 𝑥1 = 𝒙 and 𝑥𝑘 = 𝑓𝑘−1(𝑥𝑘−1, 𝜙|𝜃). The change of variables via the Jacobian

determinant are repeatedly applied and so the requirements of invertibility and differ-

entiability are upheld [232]. Repeated transforms and therefore repeated calculation of

the change of variables means that we require a Jacobian determinant which is easy to

compute [230]. We consider two main families of Normalising Flow (Flow) transforms

in this work which have easy to compute Jacobian determinants, real non-volume

preserving (RealNVP) and spline Flows.

3.2.0.1 Real non-volume preserving Flows

RealNVPs [233] are one type of affine transform, which transform the data space

location 𝑥𝑖 given scaling parameters 𝛽𝑖 and scale 𝛼𝑖

𝑓 (𝑥𝑖, 𝛼𝑖, 𝛽𝑖) = 𝛼𝑖𝑥𝑖 + 𝛽𝑖 (3.8)
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where 𝛼 ≠ 0 to preserve invertibility [231] in the 𝑖th transform. To enforce this, we set

𝛼𝑖 = exp𝛼∗
𝑖

where 𝛼∗
𝑖

is not constrained such that

𝑓 (𝑥𝑖, 𝛼𝑖, 𝛽𝑖) = exp(𝛼∗𝑖 )𝑥𝑖 + 𝛽𝑖 . (3.9)

This transform is invertible, in that we can rearrange for 𝑥𝑖 by performing the inverse

transform 𝑓 −1(𝑧𝑖, 𝛼𝑖, 𝛽𝑖). In both the forward and inverse transforms, the parameters

which control scale and translation, 𝛼∗
𝑖

and 𝛽𝑖, remain the same and therefore are

not inverted. These parameters can therefore be as complex as we like, and can

be modelled by neural networks described by parameters 𝜙. The Jacobian of the

transform of equation 3.9 as defined by 3.6 is triangular such that each diagonal

element is

log

���� det 𝜕 𝑓 (𝑥𝑖, 𝜙)𝜕x

���� = log |𝛼𝑖 | = 𝛼∗𝑖 . (3.10)

These transforms are, on their own, limited in there expressivity. Transforming a

simple Gaussian distribution 𝑝Z (𝑧𝑖) via a single transformation like that of equation 3.9

would return a scaled but ultimately similarly Gaussian distribution [231]. Therefore,

stacking multiple layers of affine transforms as in 3.8 as affine coupling layers [233]

introduces more complexity, while the individual calculations themselves remain very

simple: referring back to equations 3.7 and 3.10, this is simply

log

���� det ( 𝑓𝑘 (𝑥𝑘 , 𝜙|𝜃) · 𝑓𝑘−1(𝑥𝑘−1, 𝜙|𝜃)
)���� = log

���� det ( 𝑓𝑘 (𝑥𝑘 , 𝜙|𝜃)) · det ( 𝑓𝑘−1(𝑥𝑘−1, 𝜙|𝜃))����
= log

���� det ( 𝑓𝑘 (𝑥𝑘 , 𝜙|𝜃))+ det ( 𝑓𝑘−1(𝑥𝑘−1, 𝜙|𝜃))����
=
∑︁
𝑘

𝛼∗𝑘

(3.11)

where the log Jacobian determinant is just a sum of the 𝑘 diagonal terms, corresponding

to the 𝑘-dimensional data and latent spaces.

3.2.0.2 Spline flows

Another method is to represent transforms as a series of monotonic spline functions

[234, 235, 236]. This method leans on the possibility of having any function 𝑓 to

perform the transform in equation 3.5 given it is easily invertible and is differentiable.
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Examples of spline or piecewise functions used include cubic splines [236], piecewise

polynomials [235] and neural splines [234].

In the cubic spline case [236], each of the 𝐾 segments of the splines which describe

the transform 𝑓 are monotonically increasing cubic polynomials. By defining 𝐾 + 1

points in the data and latent spaces {(𝑥𝑘 , 𝑧𝑘 )}𝐾𝑘=0 as the joining pieces between the 𝐾

segments, one can construct a differentiable cubic spline which passes through these

points and is monotonic between points. The spline function is constructed of 𝐾

piecewise segments, where each segment is a simple function which meet at define

start 𝑥𝑘 and end 𝑥𝑘+1 points. A cubic spline transform can be expressed as

𝑓𝑘 = 𝛼𝑘0 + 𝛼𝑘1 (𝑥 − 𝑥𝑘 ) + 𝛼𝑘2 (𝑥 − 𝑥𝑘 )2 + ... + 𝛼𝑘𝐾 (𝑥 − 𝑥𝑘 )𝐾 (3.12)

such that the derivative is

𝑑𝑓𝑘 (𝑥 − 𝑥𝑘 )
𝑑𝑥

= 𝛼𝑘1 + 2𝛼𝑘2 (𝑥 − 𝑥𝑘 ) + ... + (𝐾 + 1)𝛼𝑘𝐾 (𝑥 − 𝑥𝑘 )𝐾−1. (3.13)

Via equation 3.6, the log of the absolute value of the Jacobian for a series of transforms

described by equation 3.13 is the sum of the logarithms of equation 3.13, akin to

equation 3.11. Evaluating the data space X at location 𝑥 involves finding the segment

in which 𝑥 lies and computing the Jacobian determinant of equation 3.13.

3.2.1 Training a normalising flow

We train a Normalising Flow to perform the forward mapping 𝑧 = 𝑓 (𝑥, 𝜙 |𝜃) from the

more complex data space X to Gaussian latent space Z. Likewise with the MLP,

we train the flow to minimise a loss which is the measure of the difference between

the Flow’s learned data distribution 𝑝flow
X (𝒙, 𝜙|𝜃) and the true target distribution

𝑝true
X (𝒙). The difference between two probability distributions is measured by the KL

divergence, such that

𝐷KL(𝑝true
X (𝒙) | |𝑝flow

X (𝒙, 𝜙|𝜃)) =
∫

𝑝true
X (𝒙) log

𝑝true
X (𝒙)

𝑝flow
X (𝒙, 𝜙|𝜃)

𝑑𝑥. (3.14)

In training, the Flow’s probability distribution 𝑝flow
X (𝒙, 𝜙|𝜃) is attempting to model

𝑝true
X (𝒙) as accurately as possible. The KL divergence quantifies the difference in
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information enclosed within each distribution and is measured in nats. If the two

distributions are identical, the amount of information enclosed is the same and 𝐷KL = 0.

We wish to minimise the KL divergence between 𝑝true
X (𝒙) and 𝑝flow

X (𝒙, 𝜙|𝜃) such that

𝐷KL(𝑝true
X (𝒙) | |𝑝flow

X (𝒙, 𝜙|𝜃)) =
〈
log 𝑝true

X (𝒙)
〉
𝑥∼𝑝true

X (x)
−

〈
log 𝑝flow

X (𝒙, 𝜙|𝜃)
〉
𝑥∼𝑝true

X (x)
(3.15)

where the angle brackets take the Monte Carlo sum for the average probability over

samples from the target distribution 𝑝true
X (𝒙) given the target and Flow distributions

respectively. The first term of equation 3.15 is constant, as the target probability

distribution is static and is the probability distribution which we are training the flow

relative to, and so can be neglected. As we train the Flow, the second angle bracket

term evolves and we incorporate this into our loss

L = 𝐷KL(𝑝true
X (x) | |𝑝flow

X (x, 𝜙|𝜃)). (3.16)

Given equation 3.15 and neglecting the first angle bracket term, we find

L ≈ − 1

𝑁

𝑁∑︁
𝑖=1

log 𝑝flow
X (x, 𝜙|𝜃). (3.17)

where the Monte Carlo sum is approximated by finding the average loss over 𝑁 discrete

training data points from the data distribution for 𝑥𝑖 ∈ {𝒙} where 𝑖 = (1, ..., 𝑛). By

taking the logs of both sides of equation 3.5 and then substituting in, we find

L ≈ −1
𝑛

𝑛∑︁
𝑖=1

log 𝑝Z ( 𝑓 (𝑥𝑖, 𝜙|𝜽) |𝜽) + log

����det
(
𝜕 𝑓 (𝑥𝑖, 𝜙|𝜽)

𝜕x

)����. (3.18)

We minimise the KL divergence via back-propagation, as introduced in section 3.1.1,

optimising the weights and biases of the network hyperparameters. The inclusion of the

conditional term, 𝜙, does not affect the optimisation of the network hyperparameters,

𝜙. Once trained, the Flow then allows us to perform two main operations:

• Sampling: Sampling points in the data space X involves sampling points from

the latent space Z where 𝑧 ∼ 𝑝Z (𝒛) and then performing the inverse transform

𝑥 = 𝑓 −1(𝑧, 𝜙) to return samples 𝑥 𝑝X (𝒙).
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Figure 3.3.1: Input data with 𝑛 attributes is passed into an encoder with initial layer
size of 𝑛 neurons. The number of neurons in subsequent layers decreases to a reduced-
dimensionality latent representation of the input. The decoder then reconstructs the
latent representation to an 𝑛 dimensional output.

• Evaluating the probability density of points: evaluating the probability density

of a point 𝑥 in the data space X requires evaluating 𝑝X (𝑥, 𝜙 |𝜃). This is found

via equation 3.5, where we compute the inverse transform ( 𝑓 (x, 𝜙|𝜽) |𝜽) and the

Jacobian determinant.

The two methods of sampling and evaluating with a Flow model are different operations

in the same space. Clarifying the differences between these operations is particularly

important for discussion in chapter 5.

3.3 Autoencoders

An autoencoder is a ML model which is a variant of the traditional fully connected

neural network. A standard autoencoder consists of two main parts, an encoder and

a decoder, where each are typically mirrored architectures of each other. This is

illustrated in figure 3.3.1: the encoder takes training data of 𝑛 parameters as 𝑛 input

neurons and condenses the data to a lower dimensionality latent space representation
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on the output. The decoder then accepts points from the latent space as input and

decodes the information to the same dimensionality as the input training data to the

encoder. The goal of a standard autoencoder is to reconstruct the training data given

as input as accurately as possible in a bottleneck-like workflow. The network, similar

to previous discussion, is trained to minimise the loss; in this case it is the error on

the output of reconstructing the input data. This is given as the mean-squared error

loss [237] of a batch of training data

MSE =
1

𝐷

𝐷∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖)2 (3.19)

where 𝑥𝑖 is the 𝑖th training data sample in a batch and 𝑦𝑖 is the output of the

autoencoder given the 𝑥𝑖, averaged over 𝐷 total instances in a batch of training data.

The loss of each data sample is averaged over all the dimensions of the input/output,

returning a singular loss. In passing a batch of data to the autoencoder, we further

average the loss. As discussed previously, the loss is back-propagated in order to

optimise the weights and biases of the network to allow the network to reconstruct

the input data as accurately as possible.

With linear fully-connected layers, an autoencoder essentially is an MLP with a

bottle-neck-like structure designed for data compression. However, it is simple to

incorporate layers of different architectures, for example convolutional or recurrent

layers. This then makes the autoencoder suited to image compression or anomaly

detection [211] of time series, for example.

Once trained, the latent space of a standard autoencoder can be used as a reduced

dimensionality representation of the input, which non-linearly encodes the key infor-

mation to be able to uniquely reconstruct any piece of data. Due to this, autoencoders

are effective tools for simple data compression, due to their flexibility and the presence

of non-linear activation functions. However, sampling any region of the autoencoder

latent space without knowledge of its boundaries, structure or general shape may

result in decoding regions of the space which returns an invalid or nonsense output.

For this reason, an simple autoencoder is not by-nature generative.
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A variational autoencoder, however, combines the generative mechanism with the

autoencoder architecture [238]. Instead of training the encoder to output a latent

space vector, a variational autoencoder is trained to output the mean 𝜇 and standard

deviation 𝜎 of a Gaussian distribution N(𝜇, 𝜎). During training, the Gaussian that

is defined by the latent outputs of the encoder is then sampled from 𝑧 ∼ N(𝜇, 𝜎)

and the sample 𝑧 is then passed to the decoder, as in a regular autoencoder, to be

decoded. The loss function of a variation autoencoder is composed of two parts: the

MSE quantifying the reconstruction error and the KL divergence between the learned

latent distribution and a unit Gaussian

LVAE =
1

𝐷

𝐷∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖)2 + 𝐷𝐾𝐿 (N (𝜇, 𝜎) | |N (0, 1)). (3.20)

The latent space of a trained autoencoder is therefore Gaussian (or very close to this)

such that when one encodes a series of data points to the autoencoder latent space,

the latent space appears Gaussian, where similar inputs are encoded to similar regions

of the autoencoder latent space. In a regular autoencoder, there is no restriction on

the construction of the latent space by design, and so similar inputs may likewise

cluster, but not in any defined way.

A conditional variational autoencoder is a further extension to this, where the

latent space is again trained to be Gaussian, but latent vectors are encoded given

a conditional label 𝑦 [239]. The latent distribution is then sampled relative to this

condition 𝑧 ∼ N(𝜇, 𝜎 |𝑦) and the sample 𝑧 is decoded. While this remains a conditional

generative model, a conditional variational autoencoder is not tractable [240] like a

Normalising Flow, and one is not mapping from input to learned latent representation

and back, but rather in one direction through two network structures (encoder and

decoder), introducing more sources of error. Additionally, the conditional variational

autoencoder latent space is limited to be a parameterised probability distribution with

mean 𝜇 and standard deviation 𝜎, or some other similarly parameterised distribution

[241] . This can be restrictive for problems which are better suited to more complex

or multi-modal latent representations.
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3.4 Current applications of Machine Learning in

gravitational wave science

We focus our review of the broader use of ML for data analysis particularly on GW

data analysis and instrument science. Over the past decade, many ML pipelines have

been introduced to either support and accelerate or offer a completely new method of

performing GW data analysis. We discuss some key challenges of GW detection and

analysis and introduce some ML techniques which aim to combat this.

GW detection is limited by fundamental sources of noise which are inherent to

the detector design and hardware (discussed in chapter 1 section 1.2). Also limiting

are the presence of detector glitches, bursts of noise in the detector which can appear

signal-like or which crop-up at regular intervals with no known source [242]. These

instances of noise have magnitudes comparable to that of the desired signal and appear

in the detector’s sensitivity band [243], impacting real signal detection. Gravity Spy

[244] is a pipeline which utilises a data set provided by ‘citizen scientists’ - volunteers

who label ‘images’ of detector glitches relative to some provided examples. The

result is a labelled training data set of GW detector glitches in the time-frequency

domain [245]. This data set is used to train a convolutional neural network which

classifies glitches present in the GW detector. Once trained, the tool can be used to

quickly sift through instances of excess power measured in the detector and to then

identify glitches and their periodicity. Recent glitch investigations using other ML

techniques including autoencoders have also investigated whether auxiliary channels

of the interferometer (channels which record the behaviour of sub-systems of the

interferometer, rather than the strain ℎ) can improve our understanding of glitch

sources and common theses amongst glitches [246].

Different GW signal types have their own challenges related to their detection.

CBC signals are the only signal type to be detected thus far. As discussed in chapter

1 section 1.2, the general signal types - CBC, burst, continuous and stochastic -

fall into two broad categories: modelled and unmodelled signals. Burst GWs are

short-duration and are unmodelled due to the unknown or complicated astrophysical
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processes associated to their source. The uncertainty associated to a signal of this

type makes it difficult to confidently identify such a signal relative to noise. The

burst low-latency pipeline MLy of [247] also uses a convolutional neural network to

perform real-time analysis of unmodelled burst GWs from, for example, core-collapse

supernovae and cosmic strings. Low latency analysis benefits from use of ML models

due to rapid processing of large amounts of data and identification of generic patterns

within said data. The convolutional network identifies generic signal morphology

of the unmodelled signal while an additional statistic quantifying cross-correlation

amongst ground-based detectors improves confidence in the result. The pipeline loosens

strict requirements of well-modelled identification of signal and instead focusses on

identification of excess noise, generic morphology and correlation amongst detectors.

Their tool has competitive sensitivity to standard burst pipelines [248] and can operate

on suitable timescales for low latency (around 1 second).

In contrast, CBC signals have been detected in vast numbers (at the time of

writing, the LIGO-Virgo-KAGRA collaboration had declared more than 200 confident

detections of GWs from CBCs [39]). Commonly, matched filtering techniques [249]

are used to identify CBC signal amongst noise, but this requires a very large bank of

template waveforms of all potential GW signals from sources with a variety of properties.

As our detection of CBC signals becomes more sensitive and extends to broader regions

of or makes for a higher dimensionality parameter space, especially in next generation

ground-based detectors, matched filtering becomes a more expensive method for

detection, as our template banks need to therefore increase in size and/or dimension.

An application of ML to improving matched filtering has already been attempted [250].

Alternatively, full ML pipelines have been developed to have lightweight and rapid

identification of CBC signal (once the network is trained) [251, 252, 253, 254, 195, 194].

The different pure ML methods developed vary in their details, but often suffer from

biases which inhibit generalisation and therefore detection quality over the broad prior

range of all potential GWs observed from CBCs [194].

Parameter estimation investigates the properties of the source which produced the

GW signal. Pipelines like Bilby [255] and LALInference [?] calculate the posterior
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probability of source parameters, for example masses and spins, through evaluation of a

Bayesian likelihood. ML techniques for parameter estimation aim to speed up existing

sampling methods (for example [256]) but also to complete a whole independent

analysis [257, 258, 259]. The authors of [199] use a Normalising Flow to return

a posterior distribution on parameters of a BBH merger in seconds, compared to

traditional analysis time scales of ∼hours. Their Flow is trained to map parameters of

a GW signal to a Gaussian latent space conditioned on an embedding of the simulated

waveform that is associated to those parameters with added detector noise. While

training is expensive (∼ 10 days on NVIDIA A100), PE can be repeatedly performed

for individual events after this, with very quick turn-around time of around 20 s per

GW event. This workflow has recently been extended to PE of BNS mergers in [258]

with similar work completed in [3] including extension to neutron star equation of

state (EOS) inference.

Astrophysical interpretation of cosmological parameters [260, 261] and GW popula-

tion properties [262, 263, 264] also make use of ML tools, which broadly speed up not

only individual analyses but also hierarchical methods [265]. Population analyses suffer

from large computational cost due to handling whole populations of (simulated) GW

observations - a cost which only increases as, again, detectors improve in sensitivity

and we observe more events over a broader parameter space. ML techniques are

particularly useful here, introducing flexibility in the ability to emulate a complex

distribution of population and cosmological parameters at a considerably reduced

computational cost. Once modelled, we can then which would be otherwise costly to

evaluate.

Next generation detection and analysis of GW signals will need to consider improved

detector sensitivity meaning longer signal duration [59] and a larger number of observed

signals [183], with the potential of not only identifying new signal types but also of

uncovering new physics. Investigations into how ML can help with such analyses are

already underway [266, 267, 268, 269, 270].
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3.5 Conclusion

We have introduced ML methods and how these may be applied to scientific data

analysis. ML methods in the era of modern scientific discovery, with vast quantities

of data and multi-messenger observation, offer efficient and rapid solutions. We

introduced the fundamental building blocks of neural networks and what it means

to train one - and how to train one well. This involves crafting a network which

has appropriate structure relative to your problem, having plenty of training data to

work with, and then optimising the network relative to figures of merit (primarily the

training loss).

We also introduce two important network types: Normalising Flows and autoen-

coders. Normalising Flows are a generative ML model used for density estimation of

complex data distributions. The neural network that underpins a Flow is trained to

perform the forward mapping from complex multi-dimensional data space to simple

Gaussian latent space of the same number of dimensions. By quickly and easily sam-

pling from a multi-dimensional Gaussian, one can perform the inverse mapping using

the Jacobian determinant to then return samples from the complex data distribution.

We highlighted conditional Normalising Flows in particular, as the association of label

to complex data samples will be particularly important in later chapters.

We introduce autoencoders next, a neural network with a bottle-neck like structure,

trained to pass input data through a smaller dimensional latent space and out again, so

to reconstruct the input data. These networks are adept at both anomaly detection and

dimensionality reduction, which we will cover in particular in later chapters. We finally

summarise the uses of ML in the field of GW data analysis. Not only has ML been

prominent in the development of new tools to solve otherwise computationally intensive

problems, it has additionally supplemented existing pipelines to accelerate analyses.

In the next chapter, we demonstrate how a Normalising Flow can allow us to infer

the neutron star equation of state very quickly using PE samples from observations

of binary neutron star mergers. This is a very quick and model-agnostic tool while

additionally allowing us to perform the inverse problem of inferring the equation
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of state from individual neutron star mass and tidal deformability measurements.

In later chapters, we demonstrate how an autoencoder can compress complex and

highly-detailed neutron star equation of state data before applying the Flow method

to hierarchical inference of the neutron star equation of state.
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Chapter 4

Rapid neutron star equation of state

inference with Normalising Flows

Observations of CBC signals containing at least one NS were, prior to the first

Advanced LIGO and Virgo observing runs, thought to be the most likely candidates

for detection [271], with the LIGO-Virgo collaboration predicting 0.0004 − 3 BNS

detections during the first observing run, assuming ‘optimistic astrophysical rates’

[272]. As discussed in chapter 2, prior to the detection of any GW signal, much effort

was devoted to anticipating just how well we could constrain the equation of state of

high density nuclear matter with incoming GW signals from BNS mergers, and how

many signals would be necessary to do this to a significant degree. Much of this work

was based on numerical simulations of BNS mergers and then subsequent Bayesian

analysis assuming steady rates of observation of BNS mergers in the observing run of

advanced LIGO discussed in chapter 2 section 2.2.1.

The first observing run [53] instead saw two BBH mergers, and the improvement

in sensitivity of the Advanced LIGO and Virgo detectors prior to the second observing

run [273] brought 3 more BBH signals, along with the first highly anticipated BNS

merger [54]. As introduced in chapter 1, GW170817 was identified through matched

filtering of the observed strain data with known template gravitational waveforms.

The signal remained in the sensitive frequency range of the detectors for more than a
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minute before eventual merger, with an SNR of 32.4 - the loudest GW event observed

at the time [83]. The operation of a three-detector network at the time of observation

(both Advanced LIGO detectors in North America as well as Advanced Virgo) allowed

for precise sky localisation of the event - an area of 28 deg2 - providing EM astronomers

with the opportunity to search for associated counterpart signals. GW170817 was

followed by a short gamma-ray burst (GRB) [88, 89] alongside emission in the x-ray,

ultraviolet, optical and radio bands [176] originating from the host galaxy NGC 4993

[274]. The breadth of observations of this single event across different wavebands

supported the existing evidence provided from the gravitational wave signal that

GW170817 was the merger of two NSs.

PE of the GW signal, discussed in chapter 1 section 1.4.1, uncovered individual

masses of the components to be 𝑚1 ∈ (1.36, 1.60) 𝑀⊙ and 𝑚2 ∈ (1.17, 1.36) 𝑀⊙

assuming spins of the component stars are low (𝜒 ≤ 0.05), with total mass of the

system 2.74+0.04−0.01 𝑀⊙, both measurements to 90% confidence [54]. These align with

current measurements of NS masses [120], mostly dominated by radio observations of

galactic NSs (discussed in chapter 1 section 1.4.2), and further suggest that the two

components of the binary are indeed NSs. However, in the announcement of GW170817

[54], the authors do not exclude the potential of GW170817 being composed of more

exotic compact objects [275], for example quark stars [276] or boson stars [277, 278].

For the entirety of this chapter, and indeed this thesis, we will assume GW170817 is

the result of two coalescing NSs.

Announcement of the first observation of a BNS merger facilitated many indepen-

dent investigations to infer the equation of state of nuclear matter ([279][280][181]

for example). This included the LIGO-Virgo collaboration’s complementary analysis

to that of the original announcement [4], discussed in chapter 1 section 1.4.1. By

assuming the astrophysical origin of the event and that the equation of state of NS

matter is universal, they can more-so constrain the inference of the dimensionless

tidal deformability and thus the equation of state through integration of the TOV

equations. They also discuss another method involving the parameterisation of the

equation of state; by direct estimation of equation of state parameters during PE,
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one can then reconstruct a parameterised equation of state posterior. Both of these

methods are discussed in detail in chapter 2 section 2.2.1.2. Both of their results, first

assuming universal relations and inferring tidal parameters and secondly inferring

equation of state parameters and enforcing physical constraints, prefer softer equations

of state and suggest that the combined dimensionless tidal deformability parameter,

Λ̃ (introduced in chapter 1 section 1.3.1) is small.

Inferring macroscopic parameters of the NSs in PE and integrating the TOV

equations to return an equation of state posterior adds an additional computationally

expensive and time-consuming stage to equation of state inference. PE of source

parameters of a BNS system is already by nature expensive, relative to PE for a

standard BBH signal, for example, due to the larger parameter space; typically, a BNS

PE run requires 107 likelihood evaluations [125]. Along with integration of the TOV

equations to return the equation of state posterior, which takes around ∼ 1 second per

equation of state [281], the entire method becomes temporally and computationally

expensive for large data sets posterior samples from GW events, typically 1000s

of samples. Alternatively, inferring the equation of state parameters during PE

returns a posterior on parameters of the spectral equation of state parameterisations

alongside macroscopic parameters of the system, increasing the dimensionality of

the likelihood space, and therefore increasing the computational complexity of the

sampling. This also strictly represents the equation of state posterior in this relatively

simple parameterisation, and does not incorporate more complex physics. Methods to

infer the NS equation of state from GW170817 that followed [4] and their efficiency

are reviewed in chapter 2 section 2.2.1.2.

In this work, we use ML methods to rapidly infer the NS equation of state once

PE samples of the macroscopic parameters of the system are available from a GW

observation of a BNS merger. We train a Flow to learn the mapping from equation

of state space to standard Gaussian latent space conditioned on event information

associated to each equation of state - namely the mass, 𝑚, and dimensionless tidal

deformability, Λ, of each component. Once the Flow is trained, we can sample from

the latent space conditioned on PE samples from a BNS event and return the equation
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of state posterior in less than 1 second, significantly lowering the computation cost

compared to non-ML based inference pipelines (see 2 section 2.2.1.2). In addition to

returning an equation of state posterior quickly, the method is inherently flexible; the

Flow can be trained on any equation of state parameterisation, or on a collection of

multiple equation of state models. We additionally use a data compression scheme

which decomposes the training equations of state into an independent set of parameters

which do not depend on the equation of state parameterisation but rather the common

morphology. Fast and model agnostic inference of the NS equation of state complements

the current growth in low-latency PE as a method for informing potential EM follow-up

of BNS merger events.

4.1 A recap of Normalising Flows

As introduced in chapter 3, a Normalising Flow is a generative ML model which learns

the invertible and tractable mapping from a given 𝑁-dimensional complex distribution

to a simpler latent distribution of the same dimensionality. This mapping is performed

by a series of transforms, which are described by neural network hyperparameters,

namely the number of neurons, transforms and residual blocks per transform. In

training, a conditional Normalising Flow learns to map samples 𝑥 from the data space

X to a standard Gaussian latent distribution Z, conditioned on label 𝑦, such that:

𝑝X|Y (𝑥 |𝑦) = 𝑝Z|Y ( 𝑓 (𝑥 |𝑦) |𝑦)
����det

(
𝜕 𝑓 (𝑥 |𝑦)
𝜕𝑥

)����, (4.1)

where 𝑓 is the function which describes the mapping from data to latent space,

𝑓 : X → Z. The Jacobian of the function evaluated at sample 𝑥 in the data space is

given by the partial derivative 𝜕 𝑓 (𝑥 |𝑦)
𝜕𝑥

; we require the Jacobian determinant to remain

tractable and easily computable for successful inverse sampling.

In this work, we train a conditional Normalising Flow to map a parameterisation

of the equation of state plus additional parameters, constituting the data space

Ω, conditioned on component masses and tidal deformabilities of a BNS system,

𝜃 = [𝑚1, 𝑚2,Λ1,Λ2], such that we train

𝑝Ω|Θ(Ω|𝜃) = 𝑝Z|Θ( 𝑓 (Ω|𝜃) |𝜃)
����det

(
𝜕 𝑓 (Ω|𝜃)
𝜕Ω

)����. (4.2)
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The Flow is trained to learn the forward mapping - the transformation of a 10−dimensional

reduced equation of state data space (which will be introduced in detail in section

4.2), Ω, to Gaussian latent space Z, conditioned on event information associated to a

given equation of state, 𝜃. Once trained, the Flow performs the inverse transform; a

latent space sample 𝑧 is drawn from the 10-dimensional Gaussian latent space which

is inversely mapped to an equation of state sample Ω conditioned on event sample 𝜃.

This process is repeated ∀𝜃 ∈ 𝑝(𝜃 |ℎ), where ℎ is GW strain, given that samples 𝜃 lie

within our training prior bounds (discussed in detail in section 4.3.1) to build up an

overall equation of state posterior, 𝑝(Ω|𝜃).

4.2 Data

The training data for the conditional Flow requires two data sets; one which represents

the data space, Ω, which the Flow maps to the Gaussian latent space, Z, and another

for the conditional labelling of each mapping, 𝜃. Our data space which we wish to map

is that of the equation of state, where the conditional labels are event information

associated to each equation of state. We will first discuss the details of the equation

of state data and its compression before discussing the processing of the conditional

labels.

The equation of state training data, presented in figure 4.2.1 consists of 105

equations of state varying in energy density on a fixed grid of pressure values. Each

equation of state is a piecewise polytropic parameterisation [146] constructed of 3

pieces with transition densities at 5 × 1014 g cm−3 and 1015 g cm−3. Each piecewise

polytrope is stitched to a common crust equation of state at 6.7× 1013 g cm−3, defined

by the SLy4 equation of state [143] (see chapter 2 section 2.1). The choice of piecewise

polytropic equation of state in this analysis reflects the wide use of this equation of

state parameterisation in the literature, however the analysis facilitates the use of any

equation of state, given that the user is aware the choice of equation of state prior in

this Bayesian analysis will ultimately influence the final equation of state posterior.

Each equation of state in our training data set has a maximum allowed density, 𝜌𝑚𝑎𝑥,
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Figure 4.2.1: Plot of pressure vs. density of all 105 equations of state in the training
data prior in blue, with highlighted examples in purple. The training prior bounds are
in light pink, representing the stiffest (upper) and softest (lower) equations of state in
our training data set. Each equation of state is stitched to the common low density
crust equation of state SLy4 [143] at 6.7 × 1013 g cm−3 and is constructed of a 3-piece
polytrope.

which defines the maximum density at which the equation of state is thermodynamically

stable and causal (concepts discussed in the introduction of chapter 2). This maximum

density is directly related to the maximum allowed mass, 𝑚𝑚𝑎𝑥, of the NS for this

equation of state (see chapter 2 section 2.2 for discussion of maximum mass of a

NS). To select an event associated to this equation of state, one uniformly samples

component masses 𝑚1 and 𝑚2 between 0.5 𝑀⊙ and 𝑚𝑚𝑎𝑥, where 𝑚1 ≥ 𝑚2. The choice

of 0.5 𝑀⊙ as a lower limit was chosen so to match that of [4]. Setting these prior

bounds define the region within which we can conditionally sample with the Flow: we

cannot trust the Flow to behave well when evaluating out-of-distribution (OOD) data.

This includes both evaluating the equation of state data space beyond the bounds of

the training data distribution or conditionally sampling in-distribution equation of
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state data given OOD conditional data.

Given a table of energy density for each equation of state in the training data

set, we interpolate the relationship between energy density and mass (relationships of

macroscopic parameters for each of the equations of state are found by solving the

TOV equations for each equation of state in the data set). The maximum allowed

density is defined via interpolation of the maximum allowed mass. Once found, the

component masses 𝑚1 and 𝑚2 are sampled uniformly between a lower limit of 1 𝑀⊙ up

to the allowed maximum mass for a given equation of state, and likewise interpolated

with respect to energy density to find the central energy densities of each of the

component NSs, 𝜌1 and 𝜌2. Similarly, the maximum allowed density 𝜌𝑚𝑎𝑥 is found via

interpolation of the maximum allowed mass and these three parameters are collected

to form a set of auxiliary parameters, which will contribute towards the Flow’s training

data space, Ω = [EOS, 𝜌1, 𝜌2, 𝜌max]. The energy density and tidal deformability are

likewise interpolated and the central energy densities for each NS are mapped to the

component tidal deformabilities, Λ1 and Λ2, where inversely to the mass convention,

Λ1 ≤ Λ2. The full set of conditional training data is presented in figure 4.2.2. We

present the 4-dimensional conditional data space as 𝜃 = [𝑚1, 𝑚2, logΛ1, logΛ2] to

reduce the dynamic range of the tidal deformability parameters. The conventions are

clear in the strict boundaries at 𝑚1 = 𝑚2 and Λ1 = Λ2, upheld by the mass convention

and interpolated to the tidal deformability parameter.

This scheme is such that each equation of state is associated to a single BNS event

[𝑚1, 𝑚2,Λ1,Λ2] for the purposes of training. Alternatively, one could generate single

NSs associated to each equation of state, or data related to an NSBH (which would

involve different mass priors for each component and a tidal deformability of 0 for

the BH). The scheme also allows for simple data augmentation; one does not have

to stop at 1 BNS event but can generate many, so to show the Flow many different

events associated to each equation of state. Figure 4.2.3 shows what many events

associated to 1 equation of state looks like in the 𝑚 − Λ plane; this is analogous to

the pressure-density plane and is indicative of the type of relationship we are training

the Flow to identify.
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Figure 4.2.2: Corner plot of 1- and 2-dimensional marginalised distributions of
[𝑚1, 𝑚2, 𝑙𝑜𝑔(Λ1), 𝑙𝑜𝑔(Λ2)] conditional training data. Extending outwards, each of the
contours represent 68%, 95%, and 99.7% probability.

4.2.1 Using principle component analysis to compress the

data

To reduce the complexity of the training data before passing to the Normalising

Flow to learn the mapping, we wish to compress the equation of state data without

losing unique information associated to each individual 𝑃 − 𝜌 relationship and over-

generalising. Reducing the dimensionality of the data space the Flow will be trained

to learn has a direct impact on the training time and simplifies the input data
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Figure 4.2.3: Plot of mass vs. tidal deformability of an example equation of state
in the 𝑚 − Λ plane. Each purple square and pink circle represent component 1 and
2 of a BNS event respectively, where 𝑚1 ≥ 𝑚2. There are 10 events presented, each
generated to be associated to the same equation of state from the training data set
via the interpolation scheme discussed in section 4.2, the relationship presented as a
black dashed line.

such that the model is required only to learn necessary features of each equation of

state. To reduce the equation of state training data to a size more conducive for the

training of the Normalising Flow, we use principal component analysis (see [282] for a

comprehensive introduction). This method allows us to decompose the multivariate

training data set of 𝑀 equations of state from 𝑁 points in density (along the pressure

grid) to 𝑑 orthogonal principal components, where 𝑑 ≪ 𝑁.

We can define our equation of state training data as a matrix, 𝛀, with dimensions

𝑀 ×𝑁 , where each row is an equation of state from our training data, and each column

represents one of the 300 points along each of our equations of state in 𝑃 − 𝜌. We

find the covariance matrix, 𝑪, of our training data 𝛀 which is a symmetric matrix
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with dimensions 𝑀 × 𝑀, which describes the covariance of the 𝑖th and 𝑗 th equations

of state, Ω𝑖 and Ω 𝑗 , from the training data, 𝑠𝑖 𝑗 , in upper and lower triangles. The

matrix diagonal elements, 𝑠2
𝑖
, describe the variance of the 𝑖th equation of state [283]

such that

𝑪 =



𝑠21 𝑠12 ... 𝑠1 𝑗

𝑠21 𝑠22 ... 𝑠2 𝑗

... ... ...

𝑠 𝑗1 𝑠 𝑗2 ... 𝑠2
𝑀


. (4.3)

We find the 𝑀 eigenvectors of the covariance matrix 𝑪, where the eigenvalue associated

to each eigenvector informs us how much variance is aligned with each eigenvector. The

more variation quantified by a given eigenvalue, the less informative the eigenvector

is. Therefore the eigenvalues associated to each eigenvector are inversely proportional

to the quantity of information encoded in the eigenvector. The eigenvector with

the largest eigenvalue is the first principal component; this component describes

the most variance of the equation of state parameter space. The second principle

component is the eigenvector with the second largest eigenvalue, and so on, until we

have 𝑑 principle components which describe the maximal variance of our training

data.

We use the scikit-learn [284] implementation of Principal Component Analysis

to compress the 105 points along each of the 105 equations of state in the highest

density region (105 points of piecewise polytropic equations of state) to a linear

combination of 7 orthogonal principal components, plotted in 4.2.4. These 7 principal

components are the 7 most prominent eigenvectors to describe the distribution of the

105 training data points. The figure presents the data space distribution which will

be modelled by the Flow, alongside three auxiliary parameters (not plotted here).

The number of principal components were selected relative to their respective

explained variances; each principal component explains a magnitude of variance of the

space. Figure 4.2.5 shows the cumulative explained variance ratio of the 7 principal

components used for our equation of state training set. We demonstrate how one

wishes to select a number of principal components which describe the parameter space
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Figure 4.2.4: Corner plot of 1- and 2-dimensional marginalised distributions of the
7-dimensional PCA-compressed equation of state training data. Each component has
been scaled to mean 0 and standard deviation 1. Extending outwards, the contours
contain 68%, 95%, and 99.7% of the samples.

as fully as possible, without selecting so many as to overwrite the goal of compressing

the high-dimensional space. The selection of 7 components in this case, was optimal

for the magnitude of information preserved but also with regards to the input to the

Normalising Flow. Together, the 7 principal components account for 99.975% of the

variation of the training data set. Reducing to 6 components accounts for 99.96%,

and increasing to 8 components accounts for 99.98%. We choose 7 as a middle-ground

number of parameters which account for greater than 99.9% of variation in the data

92



1 2 3 4 5 6 7 8 9 10

Principal component

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
C

u
m

u
la

ti
ve

ex
p

la
in

ed
va

ri
an

ce
ra

ti
o

5 6 7 8 9 10
0.9990

0.9995

1.0000

1.0005

1.0010

Figure 4.2.5: Number of principle components used to represent the equation of
state training data vs. cumulative explained variance ratio for 1 to 10 principle
components. The inset plot presents the cumulative explained variance ratio for
principle components in the range [5, 10] on a smaller y-scale. The 7 principal
components used in the analysis a cumulative explained variance of 99.975% of the
original training data.

.

set with a reasonable number of parameters. Chapter 5 discusses the quality of data

compression via PCA compared to other Machine-Learning-based methods.

Once compressed, the reduced-dimensionality representation of the equation of

state is collected alongside the auxiliary parameters. The auxiliary parameters are

logged before being incorporated into the larger data set to reduce their dynamic range;

by nature, 𝜌1, 𝜌2 and 𝜌max are on the scale of 1014−15, orders of magnitude different

from the scaled principal component (PC)s (see figure 4.2.4). The 10-dimensional

data set constitutes the data space, Ω = [PCA1−7, 𝜌1, 𝜌2, 𝜌max], which we wish to

map to the Gaussian latent space, Z, with the conditional Normalising Flow. Each

of the 10 dimensions of the data space are scaled to zero mean and unit standard
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deviation, respectively, to have all dimensions of the data be on a comparable scale.

This is standard good-practice and has been found to improve the Flow’s ability to

train. Similarly, each BNS event associated to each equation of state (a 4-dimensional

vector consisting of [𝑚1, 𝑚2, logΛ1, logΛ2]) likewise has each parameter independently

scaled to zero mean and unit standard deviation, where Λ1,2 are also logged firstly

before being scaled to reduce their dynamic range.

4.2.2 Hyperparameter selection and optimisation

A Flow model was initially trained with 11 transforms, 4 blocks per transform and 50

neurons. The model was trained for 5000 epochs at an initial learning rate of 0.005

which was decayed to 0 over the course of training with Cosine Annealing. A batch

size of 4096 was used. Over the course of training, the training and validation losses

were both found to decay appropriately but with large KL divergence between the

learned latent space and a standard Gaussian. Training and validation losses for this

model, named the ‘complex’ model, alongside that of the simple model (discussed

later), can be found in figure 4.2.6. In this figure, the purple training and validation

losses reach a lower loss than of an alternative model, given in blue. This appears

to suggest the Flow trained to produce the purple training and validation losses is

performing better, however, further tests proved this not to be the case and rather

that the complex Flow, was overfitting.

To find a new model whose performance improved upon that of the complex model

in minimising the KL divergence and in testing (discussed more in the following sec-

tions), hyperparameter sweeps were performed using the hyperparameter optimisation

software, Weights and Biases (or wandb) [285]. wandb runs training iterations of the

Flow many times over with a different model architecture each time. The hyperpa-

rameters for each model are initially selected uniformly from a range defined by the

user, and each subsequent model’s hyperparameters are selected depending on the

performance of a chosen figure of merit in the previous training iteration, for example

validation loss. The method through which Weights and Biases selects the next set of

hyperparameters relative to the user’s chosen figure of merit can also be defined by the
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Hyperparameter range
Number of neurons [128,256]
Number of transforms [2,6]
Number of residual blocks [2,4]

Table 4.2.1: Table of ranges of neurons, transforms and residual blocks sampled in
hyperparameter optimisation with Weights and Biases.

user; this can be entirely random or can be selected via Bayesian optimisation. For

this work, Bayesian optimisation was used with the goal of minimising the validation

loss. At the end of a hyperparameter sweep, the user has access to figures of merit

of interest for each model, so to compare overall performance and find an optimal

model architecture. Hyperparameter sweeps through different model architectures are

useful in helping the user to understand why a given model learns the data space, X

(or learns the mapping of your data space to a unit Gaussian) better than another.

Understanding, for example, why one data set may require more neurons in the

Flow architecture as opposed to more transforms can promote interpretability of the

model’s understanding of the underlying data distribution, and also improve the user’s

understanding of the data.

A hyperparameter sweep of different models aiming to learn the conditional

mapping from equation of state space to a standard Gaussian was performed with

hyperparameters sampled uniformly in the ranges given in table 4.2.1 . The sweep

was run with the aim of reducing the validation loss, so to avoid overfitting. Weights

and Biases allows users to toggle what figure of merit is of interest to discover what

hyperparameters are most important relative to this figure of merit. We investigated,

for this purposes of finding a suitable model for this Flow’s training, what models in

the hyperparameter sweep performed best relative to minimising the KL divergence.

It was found that the number of neurons and number of transforms were negatively

and positively correlated with the KL divergence, respectively.

As a result of a hyperparameter sweep, a smaller network architecture was found to

be optimal for our problem. As such, a Flow, hereon the ‘simple Flow’, with 2 blocks

of 3 transforms with 151 neurons was trained. The network was, likewise with the
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complex model, trained for 5000 epochs with an initial learning rate of 0.005, decayed

over training to 0 with cosine annealing. The network was also found to benefit from

the use of the nflows attribute LULinear = ‘lu’; this accounts for correlation in the

auxiliary parameters and avoids overfitting [286]. The use of this attribute in training

the Flow was found to improve the minimisation of the latent KL divergence, between

the learned Gaussian latent space and a true Gaussian distribution, as shown in figure

4.2.6 (b), which shows a smaller KL divergence of the simple model (blue) compared

to the complex model (purple). Figure 4.2.6 (a) shows a larger overall training and

validation loss for the simpler model (blue) but a smaller gap between training and

validation loss than that of the complex model (purple), demonstrating improved

generalisation (no gap between higher validation and lower training losses).

4.3 Inference

4.3.1 Convex hull around conditional data space

In using the Flow for inference and for conditionally sampling given some event

information, we want to be sure the event information we are using to conditionally

sample from the Flow are from within the training data prior bounds on the con-

ditional space. In section 4.2, we discussed the prior bounds which we generated

𝜃 = [𝑚1, 𝑚2, logΛ1, logΛ2] training data from; the subsequent conditional training

data is presented in figure 1.3.3. In inference, we can then conditionally sample the

Flow using any conditional label, Ω ∼ 𝑝(Ω|𝜃), provided 𝜃 belongs within these bounds.

These bounds represent a physical boundary, within which all possible BNS events lie.

Therefore, this is a boundary we wish to enforce through use of a convex hull.

A convex hull describes an 𝑁-dimensional convex set in which all points that

constitute the set and all lines that connect any two given points within the set all lie

within the bounds of the set (hull). As such, one can walk between any two vertices

(or points) within the hull without stepping outside of the hull. From [287], a convex

shape is defined as:

Theorem 1. A set P ⊆ R𝑑 is convex if 𝑝𝑞 ⊆ P, for any p,q ∈ 𝑃.
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By constructing a convex hull with the conditional training data set 𝜃, we create a set

which encloses all training data points and the space between them. We construct

a convex set, 𝐻: the smallest convex set that encloses out training data set Θ, and

is the convex hull of Θ. We use the scipy.special implementation to construct

a convex hull around the [𝑚1, 𝑚2, logΛ1, logΛ2] training prior. Once constructed,

[𝑚1, 𝑚2, logΛ1, logΛ2] event samples can be assessed as to whether they lie within

the bounds of the convex hull or not (a boolean result). This ensures that conditional

data we use in inference is physically motivated and so expect the Flow be able to

sample within the training prior bounds.

4.4 Training the Normalising Flow

Different Flow architectures were trained and tested on a variety of figures of merit

before settling on the optimal network architecture. As discussed in chapter 3 3.2,

network performance is assessed relative to training and validation loss performance,

the latent KL divergence between the learned latent representation and a true Gaussian,

as well as the performance on the task the model has been trained to complete - in

this case, conditionally sampling Ω ∼ 𝑝(Ω|𝜃).

Two Flow architectures were investigated for the purpose of this work. The first

architecture, the complex model, was found to struggle in sampling equations of

state when given conditional data from certain regions of the mass-tidal deformability

space. It became apparent that the complexity of the Flow meant that it overfit

to the conditional data 𝜃, such that sampling with conditional data which did not

belong to the training or validation data returned out-of-distribution equations of

state. A smaller network was built to tackle some of the sampling issues, which we

refer to as the ‘simple’ model. In developing this model, various techniques were

introduced to the inference scheme to reject unphysical results and ensure that we

were sampling with physically relevant event information. These will be discussed in

the coming subsections. The initial large model was likewise tested with these new

features and with the same learning rate and batch size as the simple model. The

different initialisations of these models and their development alongside testing on the
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required task will be discussed here with results presented.

Once we have a well-trained model, we use the Flow to perform the conditional

mapping: Ω ∼ 𝑝(Ω|𝜃). The samples, 𝜃, we wish to map from are PE samples from any

BNS merger event, but first and foremost to test our analysis, we wish to conditionally

samples from the BNS merger event GW170817. The PE samples used are those of

the first Gravitational Wave Transient Catalogue, GWTC-1 [53] [288]. In our analysis,

we use samples of 𝜃 = [𝑚1, 𝑚2, logΛ1, logΛ2] associated to the PE performed with

the frequency domain waveform model IMRPhenomPv2_NRTidal [289] with low-spin

priors. As the analysis was performed post-EM follow-up, the re-analysis of PE for

the catalogue was able to take advantage of the improved sky localisation using the

precise position of the kilonova [176] and redshift associated to the source galaxy to

obtain source-frame masses [290]. The GWTC-1 posteriors, however, do not assume

a common equation of state and as such the mass and tidal deformability of each

component can vary independently. This is accounted for in our pre-processing of

the samples before use in the Flow; our constraints therefore reject around 50% of

all posterior samples by enforcing the 𝑚1 ≥ 𝑚2 boundary. Posterior samples from

GWTC-1, before pre-processing is applied, are presented in figure 4.4.1. The posterior

samples 𝑝(𝜃 |ℎ) included in the catalogue uphold our existing mass convention 𝑚1 ≥ 𝑚2

but does not restrict each of the NSs to belong to the same equation of state, so that

Λ1,2 vary independently. This means that some of the posterior samples from the

event are outwith our training prior bounds. We can see that, due to the loud nature

of the event (discussed in chapter 1 section 1.4.1), the joint 𝑚1 − 𝑚2 joint posterior is

well-constrained, whereas the logΛ1 − logΛ2 joint posterior is much broader.

The first equation of state inference performed by the LIGO and Virgo collab-

orations following GW170817 [4] published PE samples of component masses and

tidal deformability [291]. There are three sets of posterior samples from this initial

analysis, two of which are associated to their parametric approach to inferring the

equation of state of GW170817 (one enforcing the maximum mass of each equation

of state must be ≥ 2𝑀⊙, and one not) and one associated to the approach which

applied universal relations, introduced in 2 section 2.2.1.1. We compare our final result
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Figure 4.4.1: Corner plot of 1- and 2-dimensional marginalised posterior distributions
of [𝑚1, 𝑚2, 𝑙𝑜𝑔(Λ1), 𝑙𝑜𝑔(Λ2)] from GWTC-1 for GW170817 in pink with samples
within the convex hull in purple, plotted on the training data prior (blue). The
contours contain 68%, 95%, and 99.7% of the samples.

to their parameterised approach with the maximum mass constraint so to compare

directly to [4]. However, we choose to use the PE samples from GWTC-1 for use in

our analysis as these are the least influenced by additional assumptions/constraints.

We keep only the PE samples from GW170817 which belong within the convex hull,

introduced in section 4.3.1, that describe the bounds of our training data prior in the

𝑚 − Λ space. Figure 4.4.1 also shows samples from the event posterior that lie within

the bounds of the convex hull. By cutting with respect to the convex hull we reject
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4703 (58.2%) posterior samples, 3144 of which are associated to Λ1 ≤ Λ2 violation

(a convention which we uphold in inference). The remaining points lie beyond the

bounds of which our Flow has been trained on. This could be due to being associated

to regions of the parameter space which our equation of state prior training data does

not support event information for, or may be beyond our lower mass bound.

4.4.1 Assessing inference quality

Table 4.4.1 presents the main differences between the complex and the simple model in

training performance. We compare training time using the same graphics processing

unit (GPU) hardware (NVIDIA GeForce RTX 3090), the difference in training times a

consequence of the size of model trained, alongside the final latent space KL divergence

and training and validation losses reached. We compare the relative model sizes, and

see that the complex model is, indeed, more complex in that it consists of more

transforms, neurons and residual blocks, and therefore takes longer to train. The

learning rate and batch size used in training both models are the same.

Although the initial large model was found to train well with no evidence of

overfitting, the latent space KL divergence was found to reach a minimum of 1.228

nats, where we expect this to be ≪ 1. Some posterior samples returned by the Flow

when conditionally sampling with data from GWTC-1 ΩGWTC-1 ∼ 𝑝(Ω|𝜃GWTC-1)

were found to have low outlier values of log-probability. Figure 4.4.2 (b) presents

the log-probability of equation of state posterior samples ΩGWTC-1 returned by the

Flow when conditionally sampling with PE samples from GWTC-1, 𝜃GWTC-1. There

are clear outliers from the main high probability population of posterior sampling.

Although the log-probability of samples returned by a Normalising Flow in inference

is relative, and a negative log-probability posterior sample is not by definition a bad

result, we set log-probability = 0 a threshold for rejection based on figure 4.4.2 (b),

where there are clear outliers from the general trend of high probability samples. We

use this metric as a complementary indicator of a badly-trained model alongside other

statistically sound indicators (from table 4.4.1, discussed above).

The consequence of retaining low probability samples from ΩGWTC-1 and projecting
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Complex model Simple model

Training time 2h 38m 1h 11m
Final latent KL div. (nats) 1.228 0.380

Final training loss -27.556 -23.209
Final validation loss -28.641 -22.789

# transforms 11 3
# blocks 4 2

# neurons 50 151
Learning rate 0.005 0.005

Batch size 4096 4096

Table 4.4.1: Table to compare the structures of and figures of merit related to the
complex and the simple models respectively.

from the 10-dimensional equation of state space to the 𝑃 − 𝜌 plane, is exhibited in

4.4.2 (a), which presents sampled equations of state ΩGWTC-1 projected to the 𝑃 − 𝜌

plane with behaviour that can be labelled as unphysical. Unphysical equations of

state are those which in the 𝑃 − 𝜌 plane violate thermodynamic stability and/or

causality or which extend beyond the prior training bounds (bounds in the 𝑃 − 𝜌).

The source of these unphysical equations of state are thus investigated and we test

whether an equivalent analysis performed with the simple Flow network can minimise

their quantity and influence on the overall posterior.

4.4.1.1 Testing edge-case conditional samples

We test the possibility that the aforementioned unphysical equations of state, pre-

sented in figure 4.4.2, are a result of mapping samples from the Flow latent space Z

conditioned on event samples 𝜃 which are on the edge of the convex hull constructed

around the conditional training data. We investigate the correlation between the

log-probability of the equation of state sample returned by the Flow and the dis-

tance of the 𝜃 = [𝑚1, 𝑚2, logΛ1, logΛ2] used to conditionally sample the equation

of state space to the edge of the convex hull. This is calculated as the distance of

the 𝑚1, 𝑚2, logΛ1, logΛ2 data point to the nearest line segment between two points

belonging to the conditional training data set Ω, which was used to make the convex

hull 𝐻. The convex hull is a hard boundary which essentially constructs a fence around

the edges of the 𝑚1, 𝑚2, logΛ1, logΛ2 training prior. This is in contrast to the Nor-
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malising Flow, which constructs an approximate distribution through transformations

of a standard Gaussian, whose bounds extend to [−∞,∞]. It’s not immediately clear

how well edge cases of the training data set are mapped by the Flow, even though the

convex hull would consider these to be completely viable.
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Figure 4.4.3: Histogram of distance to the nearest line segment for GW170817 event
samples which match to a low log-probability equation of state sample in red or a high
log-probability equation of state sample in green with the initial large Flow model.

Figure 4.4.3 presents two histograms of the distance of conditional samples 𝜃GWTC-1

from their nearest simplex. The green histogram corresponds to samples Ωgreen ∼

𝑝(Ω|𝜃GWTC-1) which have probability 𝑝(Ωgreen |𝜃GWTC-1) > 0 and the red corresponds

to Ωred ∼ 𝑝(Ω|𝜃GWTC-1) which have probability 𝑝(Ωred |𝜃GWTC-1) ≤ 0. We compare

the outlier log-probability Ωred samples and high log-probability Ωgreen samples

(presented in figure 4.4.2) to their corresponding conditional label’s distance from its

nearest line segment. The respective histograms overlap across the range of distances

that points lie from their nearest line segments, with negative log probability equation

of state samples Ωred being associated to conditional samples at further distances

from line segments. We find such preference to be very slight, but importantly we

do not find that the low log-probability equations of state samples are associated to

conditional samples which are very close to line segments, in particular closer than

their high log-probability counterparts.

Therefore, it was proposed that there were regions of the 𝜃 = [𝑚1, 𝑚2, logΛ1, logΛ2]

conditional space which were not learned well by the Flow. These could be regions

of the parameter space which are not well populated in training, and therefore not
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Figure 4.4.4: 4 plots of different parameterisations of mass 𝑚 and tidal deforma-
bility Λ for both components in the conditional training data set, in grey, alongside
GW170817 event samples which map to low (high) probability equation of state
posterior samples in red (green) with the complex model.

well understood by the Flow. Figure 4.4.4 presents different parameterisations of

the condition parameter space, with the prior training points in grey alongside high

and low log-probability points in green and red, returned from sampling the complex

Flow with samples from GW170817, respectively. Different parameterisations of the

space aim to present projections of the 4-dimensional space such that one can find the

appropriate representation which makes clear the region which is not learned well or

105



has an abundance of low probability samples relative to high probability. Figure 4.4.4

demonstrates that, firstly, mass and tidal deformability samples which are beyond the

space occupied by the prior 𝑝(𝜃), in grey, lead to low log-probability equation of state

samples. This is an accepted truth and one which we use the convex hull to enforce

and to mitigate the use of unphysical conditional samples beyond our training prior

bounds. However, subfigures a, b and c of figure 4.4.4 all present high (green) and low

(red) log-probability samples occupying overlapping regions of the training prior space.

Therefore, none of these parameterisations display the low log-probability samples of

𝜃GWTC-1 occupying a given region of the conditional parameter space within the prior

bounds that high log-probability 𝜃GWTC-1 does not. Subfigure d presents the low

log(probability) samples lying beyond the bounds of the training prior and therefore

in agreement with our existing knowledge. Therefore, particularly in plots (a) and (c)

of figure 4.4.4, it appears there are unidentifiable regions of the conditional parameter

space within the prior bounds which the Flow cannot sample confidently, indicating

overfitting; the network appears to be over-complicating the problem and has overfit

to the training data set, lacking the ability to interpolate over the space.

To simplify the problem, a smaller network was trained, the details of which are

given in table 4.4.1. This smaller network trains quickly (in just over 1 hour compared

to 2.5) and reaches a lower latent KL divergence than that of the complex model (see

figure 4.2.6). While the overall training and validation losses reached at the end of

training are greater than that of the more complex model, the training and validation

losses are more in agreement and show no issue in generalising. With the smaller Flow

model, the equations of state sampled with the GWTC-1 PE samples as conditions no

longer have low log-probability outlier posterior samples, as seen in figure 4.4.5 (b),

and can return almost entirely physically viable equations of state, see figure 4.4.5 (a),

with only a few outlier equations of state beyond the prior bounds in 𝑃 − 𝜌, which

can likely we attributed to the intrinsic uncertainty associated to the Flow.

106



1014 1015

ρ [g/cm3]

1033

1034

1035

1036

p
[d

y
n
/
cm

2
]

Training prior bounds

(a) Equation of state posterior (no post-processing)

10 15 20 25 30

Log-probability

0

20

40

60

80

100

120

(b) Log-probability of all samples
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dashed purple lines. (b) Histogram of probability of samples Ω.
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4.4.2 Removing unphysical results

Despite ensuring the conditional labels are within the bounds of our training data

prior, we may still produce equations of state which lie beyond the training prior

bounds of our equation of state data distribution (see figure 4.4.5 (a)). This is due

to an intrinsic property of the Normalising Flow; we train the Flow to learn the

mapping from 10-dimensional data distribution, Ω, which represents our equation of

state and auxiliary parameter information, to a 10-dimensional unit Gaussian latent

distribution, Z. The unit Gaussian is not bounded and so extends [−∞,∞], meaning

that when one conditionally samples from the Flow, there is a potential of sampling

the edges (low probability regions) of the latent Gaussian distribution 𝑧 ∼ 𝑝(𝑧) and

mapping to a low probability region of the data space (beyond the bounds of the

training distribution). The Flow is not trained with respect to hard boundaries in the

10-dimensional space, and so we should expect there to be some leakage.

Low probability posterior samples in the edges of the 10-dimensional equation of

state prior distribution are entirely reasonable outputs from the Flow but can produce

unphysical results when projected back to the 𝑃 − 𝜌 plane. To prevent this projection,

we wish to apply a boundary in the 10-dimensional reduced equation of state space

which will retain samples that lie within the bulk of the posterior and exclude outliers,

essentially enforcing a step function prior which does not invalidate the use of the

Flow in generating samples.

4.4.2.1 Gaussian Mixture Model

Gaussian mixture modelling is a probabilistic method used to represent a multimodal

data set as a superposition of unimodal Gaussians [292]. The result is a GMM, a

probability density function of a weighted sum of Gaussian component densities. This

method provides a non-parametric method to model the general shape of a distribution

and identify regions of high/low probability. It is classed as a supervised ML method.

Given dataset 𝒙, we may represent the data set with a GMM composed of 𝑀
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Gaussians, expressed as

𝑝(𝒙) =
𝑀∑︁
𝑖=1

𝑤𝑖N(𝒙 |𝝁𝒊, Σ𝑖) (4.4)

where 𝑤𝑖 are the individual weights of each Gaussian component, normalised such

that
∑𝑀
𝑖 𝑤𝑖 = 1. The Gaussian distribution representing the 𝑖th Gaussian N(𝒙 |𝜇𝑖, Σ 𝑗 )

has mean 𝜇𝑖 and covariance matrix Σ𝑖 [293]. Each Gaussian component is represented

by the function

𝑔(𝒙 |𝜇𝑖, Σ𝑖) =
1

(2𝜋)𝑑/2 |Σ𝑖 |1/2
exp

{
−1
2
(𝒙 − 𝝁𝒊)𝑇Σ−1

𝑖 (𝒙 − 𝜇𝑖)
}
. (4.5)

By iterating through sets of GMM parameters to find the optimal set of parameters

which maximise the probability of the GMM at the equation of state training data

points, 𝑝(Ωtraining) =
∑𝑀
𝑖=1 𝑤𝑖N(Ωtraining |𝝁𝒊, Σ𝑖), we find the optimal 10-dimensional

GMM to represent our 10-dimensional equation of state training data [294].

We used the scikit-learn implementation of GMM to model the 10-dimensional

reduced equation of state training prior distribution, Ω, with a superposition of

22 Gaussian distributions. In using GMM to model this distribution, we can set

a probability threshold defined by the least probable training prior point in the

10-dimensional space, min(𝑝(Ωtraining)), which has a given probability density as

determined by equation 4.4. This sets a threshold, beyond which samples are lower

probability than our most extraneous training samples, and therefore are outside

of our region of interest. We chose to use 22 Gaussian components to model the

training prior equation of state distribution so to ensure the modelling of the space

was detailed and all features were accounted for. An equivalent result could have likely

been achieved with a smaller number of Gaussian components, however the analysis

remains lightweight. Figure 4.4.6 shows the training prior for equation of state plus

auxiliary parameter data in blue alongside the GMM in purple. The 1−dimensional

histograms show that GMM emulates the equation of state training data accurately.

The GMM was evaluated via equation 4.4 at the equation of state posterior

samples ΩGW170817 returned by the Flow when conditionally sampling via ΩGW170817 ∼

𝑝(Ω|𝜃GW170817) using both the complex model and simple models. The probability
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Figure 4.4.6: Corner plot of 1- and 2-dimensional marginalised distributions of
the 10-dimensional equation of state training data distribution (blue) and the GMM
(purple), composed of the superposition of 22 Gaussians, constructed to emulate this.
The contours contain 68%, 95%, and 99.7% of the probability.

threshold with respect to which samples are evaluated are the same for both models,

as this is set relative to the underlying training data distribution. Table 4.4.2 presents

figures of merit which have been evaluated with respect to both the simple and

complex models. As can be found in table 4.4.2, 82.25% of equation of state plus

auxiliary parameter posterior samples Ω 𝑝(Ω|𝜃GWTC-1, in hull) were rejected relative

to the GMM probability threshold for the complex model. This demonstrates the

complex Flow is returning equation of state posterior samples of low probability,

110



beyond the bounds of our prior training data distribution. When projected back to

the 𝑃 − 𝜌 plane in which we normally present the equation of state, we see the result

of retaining low probability samples. Figure 4.4.2 (a) again highlights the result of

converting the output of the Flow from scaled PCs to equations of state in the 𝑃 − 𝜌

plane. It is clear that low probability samples are overwhelming the equation of state

posterior distribution and push beyond the training prior bounds; these present as

equations of state which disobey the physical requirements of an equation of state,

namely thermodynamic stability which is maintained by having an equation of state

which is continuous and where pressure increases monotonically with density.

In contrast, when using the simple model, the GMM threshold rejects 15.64% of

the equation of state posterior samples generated when conditionally sampling with

GWTC-1 [𝑚1, 𝑚2, logΛ1, logΛ2] samples, a significantly smaller quantity compared

to the complex model, suggesting the simpler model finds it easier to conditionally

sample from the Flow within the training prior bounds defined by the equation of

state training data which is modelled by the GMM.

Samples close to the GMM boundary may also have relatively low log-probability

relative to the general distribution of equation of state posterior samples. Again,

this is inherent to the nature of the Flow and the lack of hard threshold in the

10-dimensional equation of state data space, which is instead modelled loosely by

a GMM probability threshold. As a result, relatively low log-probability equation

of state posterior samples may produce equations of state in the 𝑃 − 𝜌 plane which

subtly extend beyond the training prior bounds. As discussed previously, these are

the bounds of what we believe to be physically valid equations of state, and so any

equation of state which extends beyond these bounds can also be rejected. Therefore,

we perform one final stage of sample rejection which consider any equation of state in

the 𝑃 − 𝜌 plane which extends beyond the most stiff and soft equations of state (the

pink bounds in figure 4.2.1). This accounts for the lack of explicit boundary in the

10-dimensional equation of state data representation. From the edges of the equation

of state prior training data distribution in the 𝑃 − 𝜌 plane, 15.69% of remaining

(post-GMM) samples from the complex model are rejected from beyond the edges of
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the training prior space, and 6.85% of samples from the simple model.

Each model returns less equation of state posterior samples than [𝑚1, 𝑚2,Λ1,Λ2]

event samples that were used in the analysis, however the initial large model returns

equations of state from only 26% of the original 𝜃GWTC-1 set and the current model

returns 75%. It is evident that, without the post-processing steps, the initial large

model would have returned an almost entirely invalid equation of state posterior

distribution, with respect to known physical constraints. This was curtailed by

training of a simpler model, which better understood the general features of the

equation of state space and whose equation of state posterior samples survive post-

processing steps. However, an additional merit of the Flow method is that, even if

one is limited by the number of conditional samples from a given event, the Flow can

return any number of equation of state posterior samples. Each conditional sampling

of the latent space is unique, and so one can sample the latent space distribution 𝑁

times with the same conditional sample 𝜃, and return 𝑁 independent equation of state

posterior samples from the given distribution, as you can sample as many times as

you wish from the learned distribution (sampling the same number of times for each

condition).

Complex model Simple model

# rejections via GMM 2776 (82.25%) 528 (15.64%)
# rejections via prior bounds 94 (15.69%) 195 (6.85%)

Table 4.4.2: Table to compare complex and simple models on the number of samples
retained after pre- and post-processing stages.

4.5 Results

Results below are presented using the simple model. We present the equation of state

posterior when conditioning on GWTC-1 posterior samples from GW170817 (these

are samples which lie within the bounds of the convex hull only), along with injection

studies to test the Flow’s ability to recover the true equation of state.
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4.5.1 GW170817

The GWTC-1 samples from GW event GW170817 make no prior assumptions with

regards to a common equation of state or enforce the constraint that 𝑚1 ≥ 𝑚2.

Similarly, no universal relations are incorporated in the PE, so we assume no inherent

correlation between the tidal parameters. We collect the mass and tidal parameters

for use in the Flow; for this one event, we have ≈ 8000 samples in total which are then

passed through the convex hull, such that we keep all samples which belong within

the prior bounds over which our Flow was trained. We also enforce the convection

that 𝑚1 ≥ 𝑚2 and therefore that Λ1 ≤ Λ2.

Equation of state posterior samples are returned by conditionally sampling with

the Flow ΩGW170817 ∼ 𝑝(Ω|𝜃GWTC-1, in hull). Equation of state samples ΩGW170817

are then evaluated with respect to the probability threshold set by the GMM and

some are rejected. Finally, equations of state are then projected into the 𝑃 − 𝜌 plane

and assessed with respect to the training prior bounds in the 𝑃 − 𝜌 plane. The result

is 2500 valid equations of state which have been collectively sampled by the Flow in

O(0.1) s. Once sampled in the reduced equation of state representation, it takes < 1 s

to convert the posterior samples to equation of state curves in the 𝑃 − 𝜌 plane.

The final equation of state posterior is presented in figure 4.5.1, presented alongside

the result published by the LIGO-Virgo collaborations in [4]. We present results

as 50% and 90% confidence intervals of density as a function of pressure, alongside

cumulative probability densities 𝜌1, 𝜌2 and 𝜌𝑚𝑎𝑥 and by interpolation 𝑃1, 𝑃2 and 𝑃𝑚𝑎𝑥.

The confidence intervals derived from our equation of state posterior presented here

agrees well with the result presented in [4], with only slightly tighter constraints in

the mid-density region. The deviation of our result from that presented in [4] appears

to be most constraining at the region of density where the central densities of the NS

components are most likely to lie, in the range [8 × 1014, 1 × 1015] g cm−3.

The slight discrepancy between the results could possibly be due to the difference

in the training prior distribution; the lower boundary on component mass prior is

identical in both analyses, but differs in the maximum mass upper boundary [83]. The
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Figure 4.5.1: Plot of density 𝜌 vs. pressure 𝑃 of the equation of state posterior
returned by the Flow, compared to the result of the LIGO-Virgo collaboration. The
plot shows 50% and 90% confidence intervals in dark and light blue for the equation
of state posterior returned by the current Flow model when conditionally sampling
with 𝑚 − Λ posterior samples in mass and tidal deformability from GW170817 that
lie within the bounds of our convex hull. The spectral equation of state result from
[4] is given in black solid and dotted lines for the 50% and 90% confidence bounds.
The cumulative probability densities in component central and maximum density and
pressure from the Flow analysis are plotted above and to the right, respectively. The
equivalent information is not available from the LIGO-Virgo analysis. The training
prior bounds, representing the stiffest and softest equations of state in our training
prior are given in light pink.

bounds on the uniform mass prior used by the LIGO-Virgo collaboration in recovering

the mass and tidal deformability posterior samples are 0.5 𝑀⊙ ≤ 𝑚1 and 𝑚2 ≤ 7.7 𝑀⊙.

The result we compare to in 4.5.1 is that which involves sampling the parameters of a

spectral parameterisation of the equation of state directly in PE alongside the masses,

tidal deformability, and other parameters 𝜃ext. (which we consider extrinsic for this
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analysis), for the joint posterior probability 𝑝(𝜃ext., 𝑚1, 𝑚2, 𝛾0, 𝛾1, 𝛾2, 𝛾3). The upper

mass boundary in this analysis is defined by the maximum allowed mass for each

equation of state in the training data set. The maximum of these maxima therefore

define our maximum mass boundary as 3.07 𝑀⊙. Therefore, the mass priors for both

analyses are different. For this analysis, we keep only the GW170817 samples that

belong within the bounds of the training prior distribution, whereas the analysis

performed by the LIGO-Virgo collaboration do not make explicit cuts; their physical

requirements placed upon the equations of state are inbuilt into the equation of

state parameterisation they sample the posterior of, so does not need to be explicitly

enforced [4], and so this introduces further variability between the the analyses.

We note the speed and computational efficiency of the analysis: once posterior

samples associated to an event are available, the Flow analysis can return an equation

of state posterior in the 𝑃 − 𝜌 plane in < 1 second. This does not add additional

complexity or computational demand to the existing sampling process of macroscopic

parameters that are standard data products of a GW observation. The training

process of the Flow is the main temporal and computational demand of the workflow,

however only needs to be completed once for use in all subsequent BNS merger events.

4.5.2 Testing on perfect measurements

When we have a distribution of event samples 𝑝(𝜃 |ℎ) from PE from a BNS merger,

we carry the error of the measurement through the Flow and present the equation

of state posterior with an error which is due to the Flow’s uncertainty but also

that of the PE itself. By using an infinitely precise measurement, we present only

the uncertainty due to the Flow. Therefore, to assess the quality of the Flow’s

inference, we present the result of conditionally sampling the Flow given a single

previously-unseen [𝑚1, 𝑚2,Λ1,Λ2] posterior sample. By sampling with one condition

only (but repeatedly), we mimic the scenario of an infinitely precise measurement of

the parameters of a BNS merger.

We generate an event associated to a true underlying equation of state from our

validation data set; the Flow has not been trained on this data and as such we can
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Figure 4.5.2: Plot of density 𝜌 vs. pressure 𝑃 of the equation of state posterior
returned from repeatedly conditionally sampling with a single [𝑚1, 𝑚2,Λ1,Λ2] sample.
50% and 90% confidence intervals are presented in dark and light blue for the equation
of state posterior. The known equation of state, given in dark blue. The cumulative
probability densities in component central and maximum density and pressure are
plotted above and to the right, respectively. The training prior bounds, representing
the stiffest and softest equations of state in our training prior are given in light pink.

use it for validating performance. Figure 4.5.2 presents the result of evaluating the

Flow with a ‘perfect’ measurement of a BNS merger. The true underlying equation of

state that the event is associated to is presented in dark blue, and this remains in the

90% credible intervals for the extent of the pressure grid of the equation of state. The

equation of state posterior, presented in credible intervals, is found to constrain much

more at a mid-range density region (around 4 − 5 × 1014 g cm−3) as opposed to at

high density; upwards of 1 × 1015 g cm−3. This demonstrates the Flow’s uncertainty

here, and at which densities current measurements are most constraining. It is not
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currently expected that single event analyses will be able to constrain the high density

equation of state particularly strongly, and as such the combination of multiple events

is necessary to constrain more precisely. It is therefore evident that the Flow can

recover the true equation of state with no GW measurement uncertainty present in

the measurement.

4.5.2.1 Probability-probability plot

To validate the statistical consistency of the analysis, we present a p-p plot in

figure 4.5.3. The figure presents 10 curves, each representing a dimension of the

reduced equation of state space which the Flow returns a posterior in (7 principle

components and 3 auxiliary parameters). The plot presents the fraction of true

parameter values that lie within a given confidence interval as a function of confidence

interval. Lines which trace the diagonal within the bounds of expected confidence

intervals demonstrate statistical consistency of the analysis.

The plot is constructed by running the Flow with conditional data, [𝑚1, 𝑚2,Λ1,Λ2],

which is associated to a known true equation of state. As a result, all tests involved in

constructing the p-p plot are independent of noise on measurement of the parameters of

the BNS system from the GW signal and allow us to verify the quality and constraining

power of the Flow independently. Each sample 𝑦 of event information is passed to the

Flow in order to return 2000 draws from the equation of state posterior, which are

then compared to the known truth. This process is repeated 100 times and constructs

the results which are presented in figure 4.5.3, giving a combined p-value of 0.7301.

The p-p plot presented in figure 4.5.3 indicates no biases as all parameters trace the

diagonal (with some small level of noise) and all individual p-values are statistically

consistent.

4.5.3 Injection study with simulated event

To further validate the ability of the Flow in returning an accurate and, in particular,

statistically consistent equation of state posterior distributions, we simulate a BNS

merger event associated to a true underlying equation of state. We wish to mimic
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Figure 4.5.3: A p-p plot of the 10 parameters inferred by the Flow, which are the 7
principle components representing the equation of state and the 3 auxiliary parameters.
The p-value for each individual parameter is given, alongside the overall p-value for
the result of 0.7301. This result was found by running 100 different instances of the
Flow with ‘true’ conditional data from the validation data set. The grey regions show
the 1, 2 and 3𝜎 confidence intervals for the curves.

the PE of a true GW event, where we know the true equation of state associated

to the event, so to assess whether the Flow can identify the underlying equation of

state, particularly when we have noise associated to the GW event. We process the

simulated merger event using standard PE tools to provide conditional data such that

the Flow can recover the true equation of state. Using the validation data set, we

select an equation of state and set of auxiliary parameters and sample an associated

118



Waveform parameter True value
Component spins, 𝜒1,2 0
Inclination angle, 𝜃 𝑗𝑛 0.4
Orbital phase at coalescence, 𝜙𝑐 1.3
Polarisation angle, 𝜓𝑐 2.659
Time of coalescence, 𝑡𝑐 1126259642.413
Luminosity distance, 𝐷𝐿 (Mpc) 70 Mpc
Right ascension, 𝛼 1.375
Declination, 𝛿 -1.2108

Table 4.5.1: Table of true parameters used to simulate a GW signal in order to
perform PE in component masses and tides.

set of event information [𝑚1, 𝑚2,Λ1,Λ2]. We use the event information as an injection

in GW PE with the Bayesian PE software bilby [295]. We provide bilby with the

macroscopic parameters associated to our true equation of state [𝑚1, 𝑚2,Λ1,Λ2]

alongside additional parameters which are required for the injection but which are

equation of state-insensitive so are selected for the convenience of the sampling. These

are presented in table 4.5.1 and are chosen to match that of a standard BNS example

injection provided by bilby software [295, 296]. We initialise bilby to analyse a

4 second signal centred on the merger time at a frequency of 4096 Hz. The choice

of a 4 second signal lies in the assumption that the majority of our information

from the GW merger of the two NSs comes from the late stages of BNS inspiral,

where the tidal parameters are influential the gravitational waveform (see chapter

1 section 1.3.1). The injection parameters, presented in table 4.5.1, are used to

generate a waveform model in the IMRPhenomD_NRTidal [297] waveform family which

is injected into simulated detector noise. Assuming a 3 detector network, bilby then

performs PE using, in this case, the nested sampling algorithm nessai [298, 256] to

return posteriors on the parameters of the system (presented in figure 4.5.2). This

simulated signal is of particularly high mass, especially in 𝑚1, and has been processed

to be within the bounds of the convex hull, defined by the training prior bounds in

[𝑚1, 𝑚2, 𝑙𝑜𝑔(Λ1), 𝑙𝑜𝑔(Λ2)], represented by the purple distribution in figure 4.5.4. As

such, the posterior samples from the simulated event remain within the bounds of the

conditional training data prior, as can be seen in the reduction of volume between the

pink and purple distributions.

119



1.
0

1.
5

2.
0

2.
5

m
2

−4

0

4

8

lo
g

(Λ
1
)

0.
6

1.
2

1.
8

2.
4

3.
0

m1

−4

0

4

8

12

lo
g

(Λ
2
)

1.
0

1.
5

2.
0

2.
5

m2

−4 0 4 8

log(Λ1)

−4 0 4 8 12

log(Λ2)

Training prior

Full simulated event

Simulated event in convex hull
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From bilby, we obtain 9230 posterior samples 𝜃, where mass and tidal parameters

are expressed as chirp mass M, mass ratio 𝑞, combined dimensionless tidal deforma-

bility Λ̃ and a parameter which describes the difference in the individual dimensionless

tidal deformabilities 𝛿Λ̃. This is a common choice in PE for more efficient sampling.

We undo this parameterisation and retain only the component masses and tidal

parameters [𝑚1, 𝑚2,Λ1,Λ2]. These posterior samples from the simulated event are

passed through the convex hull, so to retain only those which lie within the training
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prior bounds of our Flow in the [𝑚1, 𝑚2, 𝑙𝑜𝑔(Λ1), 𝑙𝑜𝑔(Λ2)] space. The latent space,

Z, is sampled conditionally given posterior samples 𝜃 from the simulated GW event

to return equation of state posterior samples in the data space, Ω ∼ 𝑝(Ω|𝜃). Posterior

samples outwith the training prior bounds in the equation of state space (relative

to the GMM and the training prior bounds in the 𝑃 − 𝜌 space) are rejected and we

present the final equation of state posterior in figure 4.5.5. Similar to figure 4.5.1,

the equation of state posterior is presented in confidence intervals of 50% and 90%

alongside the true equation of state in dark blue. The true equation of state remains

within the 90% confidence intervals for the entirety of the density range that all

equations of state span, and the level of constraint remains comparable to that of the

GW170817 posterior in figure 4.5.1. Likewise, the 1-dimensional cumulative posterior

densities for 𝜌1, 𝜌2 and 𝜌max agree with the true values, given by vertical lines.

This test demonstrates that the Flow understands the mapping from macroscopic

parameters to equation of state, and can recover the true underlying equation of state,

which gives confidence in the validity of the equation of state posterior presented for

true events.

4.6 Conclusions

This work demonstrates the success of using Normalising Flows to rapidly infer the NS

equation of state using observations of BNS mergers. Observations of BNS mergers

provide us with the opportunity to measure the tidal deformability of each component

of the system, which is a direct measure of the presence of matter in the system,

which can be used to complement existing electromagnetic analyses to infer the ultra-

high density nuclear equation of state. To complement collaborative discovery, rapid

analyses are necessary so to communicate findings quickly and make electromagnetic

astronomers aware of potential follow-up opportunities. This analysis makes possible

the rapid inference of the equation of state of single BNS merger events through

Machine Learning methods.

The Flow is trained to learn the distribution of plausible equations of state

121



1014 1015

ρ [g/cm3]

1032

1033

1034

1035

1036

P
[d

y
n
/c

m
2
]

Training priors

Injected EOS

Flow 50% CI

Flow 90% CI

0

1

P
(ρ
c
>
ρ
)

True ρc1
True ρc2
True ρmax
ρc1
ρc2
ρmax

0 1

ρ(Pc > P )

True Pc1
True Pc2
True Pmax
Pc1
Pc2
Pmax

Figure 4.5.5: Plot of density 𝜌 vs. pressure 𝑃 of the equation of state posterior
returned from conditionally sampling with simulated PE samples in [𝑚1, 𝑚2,Λ1,Λ2]
associated to a true equation of state. 50% and 90% confidence intervals are plotted
in dark and light blue for the equation of state posterior returned by the current Flow
model and the true equation of state is given in blue. The cumulative probability
densities in component central and maximum density and pressure are plotted above
and to the right, respectively. The training prior bounds, representing the stiffest and
softest equations of state in our training prior are given in light pink.

conditioned on event information associated to each equation of state, and as such can

be used in inference to return O(2500) physically feasible equation of state posterior

samples in ≈ 0.1 seconds. Pre- and post-processing steps are applied to ensure that

both the conditional inputs to the Flow and the subsequent output are within the

bounds of what is believed to be physically reasonable.

The method is explicitly model-agnostic: although the Flow is trained on piecewise

polytropic equation of state data, the Flow is not trained to learn the parameters
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of this chosen parameterisation and as such the output is model independent. The

Flow equivalently could be trained on a different parameterisation or a mixture of

many, and it is this choice of equation of state training data which defines the prior

and as such can be as broad or as constraining as the user wishes. Additionally, the

use of PCA to reduce the equation of state before passing to the Flow allows for

model-independent compression and only compresses relative to the morphology of

the equation of state and does not require equation of state-specific parameterisation

of the data.

The Flow model was applied to the first gravitational wave observation of the

merger of two NSs, GW170817. Future work could consider the comparison of the

Flow result to that of standard stochastic sampling, so to truly assess the quality of

the Flow in conditions consistent with the rest of the analysis pipeline. While the

equation of state constraint in the 𝑃 − 𝜌 plane using information from this event is

small relative to the breadth of the prior, the constraints of this analysis broadly

agrees with existing analysis published by the LIGO-Virgo collaborations [4] and is

produced very rapidly. This also constitutes the result from a single BNS merger

event: it is expected that future observing runs of current ground based observatories

will bring observations of more BNS events [299] and with this we expect tighter

constraints on the ultra-high density nuclear equation of state through the combination

of information from these events. Normalising Flows are an ideal potential tool for

the development of hierarchical inference methods, as will be demonstrated in the

following chapters.
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Chapter 5

Equation of state data: modelling and

compression for inference

In chapter 2 section 2.1, we introduced different methods of modelling the NS equation

of state and in section 2.2 we discussed how the quality of NS equation of state

inference is influenced by the choice of model employed in the analysis. We now

consider appropriate equation of state modelling and data compression methods with

regards to NS equation of state inference given many observations of GWs from BNS

mergers in the third generation of GW observation. In chapter 2 section 2.2.2, we

introduced the likely increase of number of BNS mergers in third-generation detectors

due to increased sensitivity; there are expected to be ∼ 105 BNS mergers per year

observed by ET alone [300]. The increase in number of observations would allow for

unprecedented accuracy of inference of the NS equation of state, and calls for effective

hierarchical analysis to combine information from all events into one overall equation

of state inference from GW observations.

In third-generation GW observation with ET or CE, we expect to be able to

improve our sensitivity to individual GW events such that we can resolve not only

the combined dimensionless tidal deformability, Λ̃, well but also the difference in

dimensionless tidal deformability, 𝛿Λ̃, in parameter estimation of the gravitational

wave signal, which is not possible with current GW detectors [300]. See chapter 1
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section 1.3.1 for the introduction of these parameters. Improved measurement of these

parameters means that we can then resolve the individual tidal deformabilities of each

of the component neutron stars more effectively, allowing for substantially improved

inference of the NS equation of state with single events, which only improves as we

accumulate many. In advance of this next generation of detection, it is pertinent to

ensure that our inference schemes incorporate well-considered modelling methods of

the NS equation of state, leaving room for the widely unknown high density region

and allowing for flexibility in the extremities without making sweeping assumptions.

In current equation of state inference, phenomenological high density equation of

state models are an acceptable choice in inference schemes due to its simplicity and

therefore minimal number of parameters [146, 148]. These generic models account

for our current lack of understanding of the high density equation of state and do

not assume any physically motivated model. Phenomenological equations of state are

usually stitched to a single unique crust equation of state, modelled by a physically

motivated equation of state. However, for future equation of state inference with

third generation gravitational wave detection the assumption of a fixed crust equation

of state is no longer valid; in future gravitational wave detection, the sensitivity of

detection has been suggested to be comparable to the error accrued with inconsistent

crust-core equation of state matching [2]. Therefore, we need an equation of state

model which allows for broad and generic treatment of the high density equation of

state and makes no assumptions about the crust equation of state. In this chapter

we employ the unified equation of states of Davis et al [2] which employ piecewise

polytropic equations of state at high density to their own maxima and a nuclear

metamodel at low density, down to the crust-core boundary at 4 × 1011 g cm−3,

described in section 5.1.

In order to employ this equation of state parameterisation, we wish to compress

the equation of state data for use in inference methods. For use in a Normalising Flow

framework similar to that of chapter 4 for example, we compress the equation of state

data to reduce the number of parameters (or dimensions) we are performing inference

over to make our computational methods more efficient. In this chapter, we introduce
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using an autoencoder to compress the unified equation of state data. Previous work

employed PCA to compress piecewise-polytropic-only equation of state data, but we

find with the increased complexity of the unified equation of state data, we require

more complex compression methods which will be discussed in section 5.2.

The goal of this chapter is as follows: we wish to employ our new equation of

state data set and compress this using an autoencoder with convolutional layers. We

then train a conditional Normalising Flow to learn the mapping from the complex

multi-dimensional compressed equation of state data space to a multi-dimensional

unit Gaussian, conditioned on BNS merger event parameters, 𝑚1, 𝑚2,Λ1 and Λ2. The

Flow training follows that of chapter 4 but instead is used to conditionally evaluate

the learned Flow data space instead of sampling, a distinction which will be discussed

in section 5.4.

We find that Normalising Flows struggle to generalise in learning the compressed

equation of state data space and appears to learn unforeseen artificial underlying

structure. The following analysis focusses on the structure found in the compressed

unified equation of state data, however we note that the structure was also present

when using a different compression of this data and also when using the purely

piecewise polytropic equations of state of chapter 4. We present only the results

relevant to the newly introduced data, but note this is not a unique feature of this

data and assert caution generally. We present the results of tests which aim to identify

the artificial structure the Flow has learned and outline the attempts to mitigate

artificial structure learning. In an effort to improve the generalisability of the Flow

and mitigate the artificial structure learning, we introduce a simple augmentation

method which uses an additional Normalising Flow during training to improve training

quality. In summary, we present the need for caution when training a Normalising

Flow on an expensive and potentially sparse training data set and demonstrate the

flexibility of Normalising Flows for supporting hierarchical inference of the neutron

star equation of state, performed in chapter 6.
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5.1 Unified equation of state data

In this work, we choose to use unified equations of state of [2]. These equations

of state are described by a meta model at low density and a piecewise polytrope

at high density and are constructed with Crust Unified Tool for Equation-of-state

Reconstruction (CUTER). The authors account for the current uncertainty in the

high density equation of state by employing a standard approach of the widely

accepted piecewise polytropic parameterisation of Read et al. [146]. In this work,

we use piecewise polytropes with 3 pieces which are represented by 3 polytropic

parameters, Γ0, Γ1 and Γ2 and 2 joining densities 𝜌1 and 𝜌2, plotted in figure 5.1.2,

where 𝜌2 > 𝜌1. In order to have a ‘complete description’ of the NS EOS while allowing

for uncertainty in the high density equation of state - that is, each equation of state is

individually unique over its full density range and is described by the same nuclear

model throughout - the authors extract nuclear parameters from the high density

equation of state near the crust-core transition density to be used in constructing

consistent low density equations of state with a meta model [301, 149], matched at a

baryon number density of 𝑛match. A set of ∼ 105 3-piece polytropic equations of state

(introduced in chapter 2 section 2.1) are generated with transition densities randomly

to be between 𝑛match and 10𝑛sat, 10 times nuclear saturation density expressed in

terms of the baryon number density, 𝑛𝐵. The polytropic indices are chosen randomly

in the range [0, 8].

The nuclear parameters (likewise introduced in chapter 2 section 2.1) associated

to the piecewise polytropic equations of state are extracted below but near 𝑛sat. At

these low densities, we can make safe assumptions about the nucleonic content of the

matter and therefore define the energy per baryon 𝑒nuc of nucleonic matter at zero 𝑇

as an expansion of the asymmetry parameter 𝛿

𝑒nuc(𝑛𝐵, 𝛿) = 𝑒is(𝑛𝐵) + 𝑒iv(𝑛𝐵)𝛿2 + 𝑡∗FG(𝑛𝐵, 𝛿) (5.1)

where

𝑒is(𝑛𝐵) = (𝑛𝐵, 𝑛sat, 𝐸sat, 𝐾sat, 𝑄sat, 𝑍sat, 𝑚
∗
sat,Δ𝑚

∗
sat, 𝑏) (5.2)

𝑒iv(𝑛𝐵) = (𝑛𝐵, 𝑛sat, 𝐽sym, 𝐾sym, 𝐿sym, 𝑄sym, 𝑍sym, 𝑚
∗
sat,Δ𝑚

∗
sat, 𝑏) (5.3)
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Figure 5.1.1: Corner plot of 1- and 2-dimensional marginalised distributions of
the nuclear parameters used to construct the low density region of the neutron star
equation of state training data as described in [2].
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Figure 5.1.2: Corner plot of 1- and 2-dimensional marginalised distributions of the
polytropic parameters used to construct the high density region of the neutron star
equation of state training data using the method outlined in [2].
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are the isoscalar and isovector energies respectively, and 𝑡∗FG is a kinetic energy term

[2]. The terms in equation 5.1 are functions themselves of the baryon number density

𝑛𝐵 and nuclear parameters presented in figure 5.1.1: 𝑚sat and Δ𝑚∗
sat being the effective

mass in symmetric matter and the isosplit in neutron matter, respectively, 𝐸sat the

energy of symmetric matter, 𝐾sat the isoscalar compressibility, 𝑄sat the isoscalar

skewness, 𝑍sat the isoscalar kurtosis, 𝐽 or 𝐽sym the symmetry energy, 𝐿sym the slope

of the symmetry energy, 𝐾sym the isovector incompressibility, 𝑄sym the isovector

skewness, 𝑍sym the isovector kurtosis and 𝑏 which ensures the zero density limit

[159]. These parameters include those which can be inferred from nuclear experiment

(introduced in chapter 2 section 2.2.1) and are used to construct detailed nuclear-

physics-informed equations of state. For details on these parameters and how they

are used for equation of state construction we refer the reader to [2, 149, 301]. We

wish to know the energy per baryon 𝑒nuc at different levels of asymmetry, 𝛿, where

𝛿 =
𝑛𝑛 − 𝑛𝑝
𝑛𝐵

. (5.4)

for 𝑛𝑛 and 𝑛𝑝, the number density of neutrons and protons respectively. After

extraction of these parameters from the high density piecewise polytropic equations

of state at 𝑛 < 𝑛match in the ranges provided in table 5.1.1, one can construct the set

of low density equations of state using the meta-model of [149] up to 𝑛match. At the

stitching point, the monotonicity of pressure is ensured [2]. The density of 𝑛match is

chosen to be above 𝑛sat, or around the crust-core transition density so not to allow

for phase transitions (not restricted from the polytropic equations of state) at high

density.

The result is a training data set of 97 000 ‘consistent and unified crust-core’

[2] equations of state, presented in figure 5.1.3. The production of this data takes

O(1) day and we are limited by off-site production of said data. Each equation of state

in the figure consists of 300 points in pressure on a fixed density grid beginning at

4 × 1011 g cm−3, signifying the boundary between the inner and outer crust, given the

outer crust of the neutron star is currently well understood and able to be investigated

experimentally (see chapter 2 section 2.2). Each equation of state has its own minimum

pressure 𝑃min, maximum allowed pressure 𝑃max, and maximum allowed density 𝜌max.
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Parameter Range
𝑛sat [0.15,0.17]
𝐸sat [-17.0-15.0]
𝐾sat [190.0,270.0]
𝑄sat [-1000.0,1000.0]
𝑍sat [-3000.0,3000.0]
𝐽sym [26.0,38.0]
𝐿sym [10.0,80.0]
𝐾sym [-400.0,200.0]
𝑄sym [-2000.0,2000.0]
𝑍sym [-5000.0,5000.0]
𝑚∗/𝑚 [0.6,0.8]
Δ𝑚∗/𝑚 [0.0,0.2]
𝑏 [1,10]

Table 5.1.1: Table of ranges sampled for nuclear parameters used to construct the
low density meta-model equation of state.
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Figure 5.1.3: Training data set of 97 000 unified equations of state in pressure on a
fixed grid of density in blue, beginning at 4 × 1011 g cm−3 extending to each equation
of state’s maximum allowed density and pressure. Three example equations of state
are presented in purple. The softest and stiffest equations of state in the training data
set are given by the lower and upper training prior bounds, respectively, in pink.
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5.2 Compression of equation of state data

In chapter 4, when working with piecewise polytropic equations of state in high

density only, we used PCA to compress the equations of state to a vector of 7 principle

components and then performed the inference on the principle components (and

auxiliary parameters) with the Normalising Flow (see section 4.2). The current unified

training data equations of state are extended over a larger density range with more

expressive behaviour - particularly at the transition from inner crust to outer core -

and unique maximum allowed pressures and densities. We find compression via PCA

smoothed out features of the equations of state, and did not retain the desired level

of detail. Figure 5.2.1 shows the reconstruction of a given equation of state from the

training data set after compression of the equation of state via PCA with numbers of

PCs in the range [7, 19]. Despite the number of PCs used, the reconstruction fails to

match the true equation of state at densities around 1014 g cm−3. Figure 5.2.2 presents

the residuals of the true equation of state and the same reconstructions for the range

of numbers of PCs used. The left hand plot is presented at a different scale to the right

hand so to show the quality of recovery at different density ranges of the equation

of state. All reconstructions have a difference in pressure of 1032 dyn cm−2 from the

true equation of state at a density of ∼ 1014 g cm−3, a difference which manifests as a

clear deviation from the truth. The right hand plot shows errors in pressure on the

scale of 1034 dyn cm−2 at densities of ∼ 7 × 1014 g cm−3, with the largest error given

by the smallest number of PCs, as expected. The maximum number of components

tested (19), demonstrates the same error at low densities as the minimal number of

components used and still has ∼ 10% error at the highest density and pressure region.

The reduction in error mostly appears to be due to the PCs not being able to express

sharp changes in the equations of state, like phase transitions or boundaries, with

small numbers of PCs, as would be desirable in this analysis. In principle, one could

express infinite detail with infinite PCs, however to use PCA as a data compression

method, we require 𝑛PCA ≪ 𝑛data points.

To have high quality data compression with a lightweight and flexible method we

instead use an autoencoder. Introduced in chapter 3 section 3.3, an autoencoder is
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Figure 5.2.1: Plot of pressure as a function of density for an example equation of
state from the training data set in the dashed black line and the reconstruction of the
same EOS after PCA compression with different numbers of principle components in
different colours.

a neural network architecture built in a bottleneck-like structure, with two discrete

parts: an encoder and a decoder. Training data is passed to the encoder and is

compressed through a series of hidden layers to a latent space of a user-defined size,

usually smaller than the input data size. From the latent space, the data is passed to

the decoder where the network then again expands back out in size, commonly in a

path mirrored to the encoder, with the aim of reconstructing the network input. The

network is trained to minimise the MSE loss between the input and the reconstructed

output. In dimensionality reduction, we are interested in training the autoencoder

to be able to encode our training data to a reduced-dimensionality representation of

the input in the latent space. We can use the reduced representation for analysis and

then use the decoder to express our result in the original data format.

We use an autoencoder with 2 initial convolutional layers in the encoder and com-

press the 300 points of each equation of state through the convolutional layers followed
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Figure 5.2.2: Plot of pressure as a function of density for the residuals of recon-
structed equations of state after PCA compression with different numbers of principle
components relative to the true equations of state, presented at different density
regions and pressure scales. The LHS presents the residuals at the low density equa-
tion of state below 1.5 × 1014 g cm−3 and the RHS plot presents the residuals above
1.5 × 1014 g cm−3. The pressure scales are different in each of the plots to reflect the
different density ranges covered.

by a series of linear layers, gradually decreasing in size, to a final autoencoder latent

space of 12 dimensions. We use ReLU activation functions between the convolutional

and linear layers of the network network up to the final layer of neurons before the

latent space, or bottleneck. Once trained, we can pass the original set of training

data to the autoencoder and return the output of the encoder, presenting the training

data in its reduced form. In order to compress the training data consistently, we first

take the log of each equation of state in pressure along the log density grid to reduce

the dynamic range. We then scale all equations of state to [0,1] along a [0,1] mock

density grid by scaling each equation of state by its 𝑃min, 𝑃max, 𝜌max and the global

𝜌min. These parameters are retained in the analysis so to recover the same initial level

of detail. We discuss incorporating these parameters into the analysis later in this

section. Finally, we subtract the mean equation of state from the [0,1] scaled set to
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remove generic behaviour and allow the autoencoder access to reconstruct fine detail

of each equation of state. This reduced training data set is then autoencoded to a

latent representation of 12 dimensions.

The autoencoder was trained to minimise the MSE loss, discussed in chapter 3

section 3.3, between the input scaled training equation of state and the reconstructed

output. We trained for 2000 epochs and achieved a final MSE loss of 10−6, representing

the error between the true and reconstructed equation of state averaged over the

whole density range and the training data batch. A more intuitive error is that of the

RMSE, where RMSE =
√

MSE = 10−3, inferring we have an average error of 10−3 on

each equation of state in the [0,1] scale. The training and validation losses are plotted

in figure 5.2.3 where there is no evidence of over-fitting. We have very slight evidence

of underfitting, which may be due to an over-simplified model or a lack of training

data to fully describe the 12-dimensional space. This discrepancy is small, however, in

relation to the losses achieved so we do not investigate further. Figure 5.2.4 presents

the reconstruction of an example equation of state from the validation data set using

the trained 12−dimensional autoencoder. In comparison to the reconstruction from

the PCA-compressed equations of state, the autoencoder manages to reconstruct the

equation of state to a higher scale of accuracy which is quantified by the MSE loss.

The true equation of state is uniquely matched across the entire density range of

the equation of state, including at the areas around 1014 which were problematic

in the PCA cases. The extremities are also matched to the truth, including at it’s

unique maximum pressure and density, parameters which are carried alongside the 12

autoencoder latent space points.

The main advantage to the autoencoder approach is, like the PCA approach, its

non-parametric and model-agnostic nature, which is consistent with later stages of

the analysis. Autoencoding a training data set of a different parameterisation of the

neutron star equation of state (not the unified training data set we have introduced

above) would follow the exact same method, the only requirement being optimising

the network training relative to the new data. We choose to train with a training

data set of 105 different unified equations of state. However, alternatively, one could
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Figure 5.2.3: Training (blue) and validation (purple) MSE loss for the 12-dimensional
autoencoder.

autoencode a training data set of a mix of neutron star equations of state from a

variety of parameterisations (for example, piecewise polytropic and spectral at the

high density) so to allow for a latent space which may reconstruct EOSs belonging to

different or made up of a mix of parameterisations.

By performing inference in the 12D autoencoder latent space, one can then

sample regions of the autoencoder latent space that do not belong explicitly to the

training data set but are within the bounds of the training data, potentially with a

unique morphology. As stated above, we carry 𝑃min, 𝑃max, and 𝜌max as 3 additional

parameters in inference. This means our inferred equations of state can be projected

entirely from the autoencoder latent space to the original 𝑃−𝜌 representation presented

in figure 5.1.3 and we can infer the extremities of each equation of state as well as the

morphology and behaviour over the density range. Therefore, our overall equation

of state data space that we perform inference in consists of 15 dimensions and is

136



1012 1013 1014

 [g/cm3]

1030

1031

1032

1033

1034

1035

P 
[d

yn
/c

m
2 ]

Reconstruction
True

Figure 5.2.4: Plot of 𝑃 vs. 𝜌 of an example reconstruction of an equation of state
from the validation data set using the 12−dimensional autoencoder.

presented in figure 5.2.5. Each dimension has been scaled relative to its own mean and

standard deviation to have mean 0 and standard deviation 1. The first 12 dimensions

from the left are the autoencoded latent space dimensions and the final 3 on the right

are the 3 additional maxima and minima for 𝑃 and 𝜌.

5.3 Hierarchical Bayesian inference

Given we expect the number of observed BNS events in the next generation of

gravitational wave detection to increase dramatically, our goal is to develop an

inference scheme which can combine the information of all 𝑁 events together into one

combined inference of the NS equation of state. Therefore, we develop a hierarchical

Bayesian framework where we can adapt the Flow method from chapter 4 to instead

allow us to calculate and combine the likelihood through Bayesian methods. We build

on the introduction from chapter 2 section 2.2.2.1.
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Figure 5.2.5: 15-dimensional compressed equation of state training data space
consisting of 12 autoencoded latent dimensions and 3 additional scaling parameters.
The contours represent 68%, 95%, and 99.7% of the samples respectively.
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If Ω represents our 15D compressed equation of state data space, we wish to

express equation 2.6 in terms of the observed parameters 𝜃, which includes 𝑚1, 𝑚2,

Λ1 and Λ2 (or alternative parameterisations of) among others. By marginalising over

𝜃, we express equation 2.6 in terms of the parameters measured given event 𝑖:

𝑝(Ω|ℎ) ∝ 𝑝(Ω)
𝑁∏
𝑖=1

∫
𝑝(ℎ𝑖 |Ω, 𝜃𝑖) 𝑝(𝜃𝑖 |Ω) 𝑑𝜃𝑖 . (5.5)

which simplifies to

𝑝(Ω|ℎ) ∝ 𝑝(Ω)
𝑁∏
𝑖=1

∫
𝑝(ℎ𝑖 |𝜃𝑖) 𝑝(𝜃𝑖 |Ω) 𝑑𝜃𝑖 . (5.6)

where 𝑝(Ω) is the equation of state prior probability density. The strain data of event

𝑖 does not depend on the EOS, only the measured parameters of event 𝑖, 𝜃𝑖. We apply

Bayes’ theorem again such that

𝑝(Ω|ℎ) ∝ 𝑝(Ω)
𝑁∏
𝑖=1

∫
𝑝(𝜃𝑖 |ℎ𝑖)𝑝(ℎ𝑖)

𝑝(𝜃𝑖)
𝑝(Ω|𝜃𝑖)𝑝(𝜃𝑖)

𝑝(Ω) 𝑑𝜃𝑖 . (5.7)

The prior used to compute the posterior samples, 𝑝(𝜃𝑖), is exactly the same prior used

to train the Flow, and therefore the above expression simplifies to

𝑝(Ω|ℎ) ∝ 𝑝(Ω)
𝑝(Ω)𝑁

𝑁∏
𝑖=1

∫
𝑝(𝜃𝑖 |ℎ𝑖) 𝑝(Ω|𝜃𝑖) 𝑑𝜃𝑖 . (5.8)

By taking the Monte-Carlo sum over the posterior samples of event 𝑖, we find that

𝑝(Ω|ℎ) ∝ 𝑝(Ω) (1−𝑁)
𝑁∏
𝑖=1

〈
𝑝(Ω|𝜃𝑖)

〉
𝑝(𝜃𝑖∼𝑝(𝜃𝑖 |ℎ𝑖))

. (5.9)

Therefore, our overall posterior probability density on the equation of state space given

information from 𝑁 gravitational wave events can be found by taking the Monte-Carlo

average over posterior samples for each of the 𝑁 events and then taking the product

over 𝑁 events and including the equation of state prior (1 − 𝑁) times. By applying

Bayes’ theorem to the likelihood 𝑝(ℎ𝑖 |𝜃𝑖) of equation 5.6 to return the posterior

𝑝(𝜃𝑖 |ℎ𝑖), we can then use samples 𝜃𝑖 from the posterior of event 𝑖.

The goal is to adapt the method of chapter 4 to train a Flow to map the 15D

equation of state data space, Ω conditioned on event parameters 𝜃 = [𝑚1, 𝑚2,Λ1,Λ2]

via equation 3.5 for a conditional Flow given in chapter 3 section 3.2:

𝑝(Ω|𝜃) = 𝑝( 𝑓 (Ω|𝜃) |𝜃)
����det

(
𝜕 𝑓 (Ω|𝜃)
𝜕Ω𝑇

)����. (5.10)
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Once trained, we wish to use the Flow to return the probability density of Ω given

information from the 𝑖th event’s parameters, 𝜃𝑖, 𝑝(Ω|𝜃𝑖). This requires us to be able to

propose equations of state, Ω, in the Flow’s data distribution, evaluate the likelihood

given 𝜃𝑖 and repeat. This process is usually automated by sampling algorithms like

MCMC (introduced in chapter 1 section 1.5.1.1) that, when given access to a likelihood

and a prior function, can efficiently traverse the multi-dimensional data distribution

and return a posterior probability given some information. The simpler the likelihood

surface is, the easier these algorithms find the process and the more computationally

efficient they are. We next discuss the complexity of the 15-dimensional data space

for this problem, and in which way the presence potential artificial structure apparent

through extensive testing.

5.3.1 Training the Normalising Flow

Following the method employed in chapter 4 section 4.4, the Normalising Flow was

trained to perform the forward mapping from compressed equation of state data

space Ω to latent space Z, conditioned on properties of mergers of neutron stars

associated to each of the equations of state, 𝜃. Training data sets for both the data

space Ω and conditional space 𝜃 were generated following the methods employed

in chapter 4 section 4.2. To recap, this involves selecting an equation of state Ω𝑖

from the training data set and selecting its relevant TOV information - both the

equation of state in pressure 𝑃𝑖 on the fixed grid of density 𝜌 and the associated

relationships between macroscopic parameters (mass, 𝑚, and tidal deformability, Λ,

amongst others) are standard products of the CUTER [2] analysis. By finding the

maximum allowed mass for the selected equation of state, 𝑚max,𝑖, two component

masses are uniformly sampled 𝑚𝑖,1, 𝑚𝑖,2 ∼ 𝑈 [1, 𝑚max,𝑖] M⊙. These two masses, 𝑚𝑖,1

and 𝑚𝑖,2, represent two neutron stars which belong to the 𝑖th equation of state and are

part of a binary merger system. Through interpolation of the component masses, one

can obtain allowed central densities 𝜌𝑐1, 𝜌𝑐2 of the neutron stars and, subsequently,

tidal deformabilities, Λ1,Λ2. The allowed component masses and dimensionless tidal

deformability parameters for two neutron stars are collected into 𝜃i = [𝑚1, 𝑚2,Λ1,Λ2]

and used as conditional information in training the Normalising Flow.
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Hyperparameter range
Number of neurons 32
Number of transforms 2
Number of residual blocks 1
Number of epochs 1000
Learning rate 0.005
Batch size 4096

Table 5.3.1: Table of hyperparameters and settings for training the conditional Flow.

A single binary neutron star merger system with parameters 𝜃i is generated for

each of the 105 equations of state Ωi and collectively this constitutes the training

data used to train the Normalising Flow. The Flow is a Coupling Neural Spline Flow

[234] trained with hyperparameters and settings given in table 5.3.1. Training takes

∼ 30 minutes on an NVIDIA GeForce RTX 3090 GPU. We choose to keep the Flow

lightweight with small numbers of transforms and neurons per transform so to reduce

the computational cost of training the model and to have a more lightweight model

when it comes to repeatedly calling the trained model in inference. A lightweight

model with small numbers of hyperparameters also aims to achieve a more generic

understanding of the mapping from data space Ω to latent space Z. Further discussion

in this chapter will make the reasons behind this decision more apparent.

5.4 Evidence of learned artificial structure

In chapter 4, we used the trained Normalising Flow to conditionally sample the Flow

latent space given posterior samples from single BNS merger events. This returns a

posterior probability distribution in the equation of state data space, Ω. We performed

this analysis using PE samples from the real gravitational wave event GW170817 to

produce our main result (see chapter 4 figure 4.5.1). We use the same GW event

posterior samples for testing how the Flow evaluates the probability of proposed

equations of state for consistency and to directly compare the quality of sampling vs.

proposing equations of state. As introduced in chapter 3 section 3.2, a trained Flow

can be used for two main functions:
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• Sampling the data distribution: this involves conditionally sampling the data

space to produce samples Ω ∼ 𝑝(Ω|𝜃event) through randomly sampling the

Gaussian latent space Z and performing the conditional inverse mapping to

return samples from the Flow posterior 𝑝(Ω|𝜃).

• Evaluating the probability of defined points in the data distribution: points

Ωprop in the data distribution are proposed and their conditional probability

𝑝(Ωprop |𝜃event) evaluated by performing the forward mapping to the latent space

Z and evaluating the relative probability in the simple Gaussian latent space.

As stated above, our method in chapter 4, circulated around using the Flow to sample

the learned posterior Ω ∼ 𝑝(Ω|𝜃event). Now that we wish to evaluate the probability

of equations of state given information from multiple events via the methods discussed

in 5.3, we want to propose regions of the equation of state space, Ωprop and then

evaluate the probability of the proposed points, 𝑝(Ωprop |𝜃event). This is what sampling

methods like MCMC or Nested Sampling will do; survey the space via their own

respective algorithm and evaluate the probability of selected regions and then make

decisions on where to survey next based on what they find. We test the Flow’s ability

to evaluate the probability of proposed equations of state. We summarise each stage

of testing at the end of their respective sections to make the conclusions clear.

5.4.1 Proposing equations of state

We test the trained Normalising Flow in evaluating the probability of points Ωprop

in the equation of state data space 𝑝(Ωprop |𝜃), given the same conditions used

in sampling Ωsamp ∼ 𝑝(Ω|𝜃). We propose equations of state in the 15-dimensional

compressed space from a Gaussian distribution, ΩGauss, centred at 𝜇 = 0 with standard

deviation 𝜎 = 0.5. This distribution is proposed here such that it aligns with the

scaled 15-dimensional data distribution that the Flow has been trained to map. The

proposed points ΩGauss are presented in figure 5.4.1 in pink alongside the sampled

distribution of points, Ωsamp ∼ 𝑝(Ω|𝜃170817) given when sampling with PE samples

from GW170817, 𝜃170817, in purple. The training data prior distribution is given in blue.

The distribution of proposed points ΩGauss overlaps with the sampled distribution
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Figure 5.4.1: Corner plot of 1- and 2-dimensional marginalised distributions of
training equations of state (blue), sampled points from the conditional Normalising
Flow (purple) and proposed equations of state (pink) from a Gaussian distribution
with 𝜎 = 0.5. We present 5 out of the total 15 dimensions. The full figure can be
found in the appendix section 7.1 figure A1.

Ωsamp. in the vast majority, with some extension of ΩGauss beyond the prior bounds

in some dimensions due to highly correlated 2-dimensional projections. However, we

expect the probability of 𝑝(ΩGauss |𝜃170817) to be for the most part comparable to the

probability of 𝑝(Ωsamp. |𝜃170817), allowing for some outliers.

However, we find that the proposed distribution 𝑝(ΩGauss |𝜃170817) has very low

log(probability) compared to the points which are sampled. Figure 5.4.2 presents the
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log(probability) distribution of the sampled equations of state from the trained

Flow given conditions from GW170817, 𝑝(Ωsamp. |𝜃170817), on the right and the

log(probability) distribution of proposed Gaussian equations of state given the same

condition, 𝑝(ΩGauss |𝜃170817) on the left. Sampling from the Flow given conditional

information produces points that lie within the prior bounds of the 15D space, but

when log 𝑝(ΩGauss |𝜃170817) is evaluated with the Flow given the same condition, the

log(probability) of these points are significantly different. We compute the difference

Δlog prob. =
��max(log 𝑝(Ωsamp. |𝜃170817)) − max(log 𝑝(Ωprop |𝜃170817))

�� (5.11)

which, for Ωprop = ΩGauss with 𝜎 = 0.5 gives Δlog prob. ≃ 1052. The most probable

equation of state from the Gaussian distribution has log(probability) 1052.13 smaller

than that of the maximum probability sampled point, or the most probable samples

from ΩGauss is exp(1052) less likely than the most probable sample from Ωsamp..

These log(probabilities) suggest that ΩGauss are all situated outwith the training prior

distribution, while it does not appear to be entirely beyond the bounds of either the

training prior or the sampled distributions Ωsamp. in figure 5.4.1. Points proposed

from such a distribution as this Gaussian mimics points that would likely be proposed

in early stages of a sampling algorithm, suggesting that an algorithm would struggle

to explore this space, as many, if not all, of the proposed regions early on in sampling

would be disfavoured.

To ensure that points belong within the bounds of the prior training distribution,

we instead propose equations of state around the maximum probability point from the

sampled equation of state distribution, Ωmax sample, where 𝑝(Ωmax sample |𝜃170817) =

max(𝑝(Ωsamp. |𝜃170817)). Figure 5.4.3 presents again the prior training distribution

and Ωsamp ∼ 𝑝(Ω|𝜃170817), but now alongside a new proposed Gaussian distribution

ΩGauss at max centred at mean 𝜇 = Ωmax sample and with standard deviation 𝜎 = 0.1.

This proposed distribution is much smaller in volume and is centred on a region of the

parameter space which the Flow has deemed to be very probable given the information

from the event GW170817. We evaluate the probability 𝑝(ΩGauss at max |𝜃170817).

Figure 5.4.4 presents a histogram of log 𝑝(ΩGauss at max |𝜃170817) alongside the prob-
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Figure 5.4.2: Histograms in log(probability) of sampled equations of state given
GW170817 (purple) and Gaussian proposed equations of state given the same condition
(pink).

abilities 𝑝(Ωsamp. |𝜃170817). Again, we find the log(probabilities) of proposed equations

of state evaluated relative to the same conditional information are significantly lower

and less probable than log 𝑝(Ωsamp. |𝜃170817). The proposed equations of state around

a maximum probability region in a small volume are around 4 orders of magni-

tude smaller in log(probability) than that of the local sampled point. For the small

Gaussian proposed around ΩGauss at max, we find Δlog prob. to be ∼ 440, such that

max(log 𝑝(ΩGauss at max |𝜃170817)) is exp(440) less likely than log 𝑝(Ωmax samp. |𝜃170817).

This would normally indicate that ΩGauss at max is proposing samples in a very unlikely

region of parameter space, which it is not relative to how the Flow has sampled the Ω

space. In a 15-dimensional parameter space, which is intuitively difficult to visualise,

the distribution of points within each dimension is often not as one would imagine, but

for a small volume of proposed samples around a high-probability region, we would

expect some points to be of comparable probability, and definitely within the bounds

of the training prior distribution.
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Figure 5.4.3: Corner plot of 1- and 2-dimensional marginalised distributions of
training equations of state (blue), sampled points from the conditional Normalising
Flow (purple) and proposed equations of state (pink) from a Gaussian distribution
with 𝜎 = 0.1. We present the first 5 out of the total 15 dimensions. The full figure
can be found in the appendix section 7.1 figure A2.
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Figure 5.4.4: Histograms in log(probability) of sampled equations of state given
GW170817 (purple) and Gaussian proposed equations of state around Ωmax sample
given the same condition (pink).

Summary of section: proposed equations of state from both a Gaussian distribution

which spans the prior volume and one centred around the maximum likelihood sample

spanning a fraction of the prior volume have log(probabilities) orders of magnitude

less than that of the equations of state which are sampled by the Normalising Flow.

The Normalising Flow appears to evaluate points within the prior space as having

very different probabilities depending on if they are proposed to or sampled by the

Flow.

5.4.2 Assessing training and validation data performance

We further test the Flow’s ability to generalise to non-sampled points by assessing

performance of evaluating the conditional probability of both training and validation

data points, 𝑝(Ωtrain |𝜃) and 𝑝(Ωval. |𝜃). We plot the training and validation losses
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Figure 5.4.5: Training (blue) and validation (purple) loss for the conditional Flow
trained as per equation 5.10 with unified equation of state data.

from the training of the conditional Flow in figure 5.4.5; the training and validation

data sets are selected from the same data distribution of the entire 97 000 equation of

state data set, where 25% are set aside for validation. The training and validation

data sets are independent of one another, with no duplicated samples, but stem from

the same underlying distribution. Their respective data sets are plotted alongside one

another in the appendix section 7.1 figure A3. Throughout training the validation

loss steadily decreases alongside the training loss showing no evidence of traditional

over-fitting. Therefore, it appears the Flow evaluates well both the training and

validation data sets throughout training.

Evidence of over-fitting would normally appear as an increase in validation loss

over the course of training as training loss continues to decrease. This signifies that the

Flow is over-specifying to the training data points themselves and cannot generalise

well enough to perform well on the validation data also, given the current scenario

148



we have in which they stem from the same distribution. This can happen with too

little training data where there is so little that the Flow can instead memorise the

individual data points or trends of the training data and therefore performs badly

when testing on validation data, unseen during training. We plot the training and

validation data together in figure 5.4.6, where both data sets clearly occupy the same

distribution in all 15 dimensions, which is in agreement with the loss plot of figure

5.4.5, as the training and validation performance throughout the training routine is

consistent with one another.

We likewise plot the training and validation data in the conditional space, 𝜃train

and 𝜃val consisting of parameters [𝑚1, 𝑚2,Λ1,Λ2], in figure 4.4.1. The gravitational

wave event PE samples for GW170817, 𝜃170817, are also plotted in pink contours

and have been passed through the convex hull so to be within the bounds of the

training data prior (see chapter 4 section 4.4.1.1 for details). In section 5.4.1, we

found vastly different log(probabilities) between equations of state that had been

proposed and sampled, but each relative to the same conditional term, 𝑝(Ωprop |𝜃170817)

and 𝑝(Ωsamp. |𝜃170817) respectively. Therefore, we wish to assess Ωprop from other

distributions of data, namely training and validation equations of state, given 𝜃train,

𝜃val., and 𝜃170817.

We use the Flow to evaluate the probability of training equations of state given

training 𝑝(Ωtrain |𝜃train), validation 𝑝(Ωtrain |𝜃val) and event 𝑝(Ωtrain |𝜃170817) condi-

tions and present the results in figure 5.4.7. We vary the conditional term to test

the potential of over-fitting conditionally, i.e. if the Flow can evaluate Ωtrain with

training data conditions 𝜃train but struggles with conditions outside of the training

data set, including 𝜃170817. We find the distributions of 𝑝(Ωtrain |𝜃train), 𝑝(Ωtrain |𝜃val)

and 𝑝(Ωtrain |𝜃170817) are comparable suggesting all are similarly valid given a set of

conditions. This demonstrates we are not over-fitting with respect to the conditional

term.

If over-fitting is instead occurring in the equation of state data space, then evalu-

ating the probability of proposed validation data should achieve low log(probabilities)
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Figure 5.4.7: Histograms of log(probabilities) of proposed validation equations of
state evaluated relative to conditions from training, validation and event data sets.

by the Flow, even though it appears the loss plot in figure 5.4.5 that this is not

the case. Figure 5.4.8 presents the result of evaluating validation equations of state

relative to training 𝑝(Ωval |𝜃train), validation 𝑝(Ωval |𝜃val) and event 𝑝(Ωval |𝜃170817)

conditional samples. We find no evidence of outlier log(probabilities) when evaluating

non-training data equations of state with a variety of conditions, which aligns with

the loss plot presented in figure 5.4.5. We therefore conclude that the training and

validation data belong to the same data distribution which the Flow has learned well

and instead the lack of generalisability is in moving away from this distribution.

To test the ability of the Flow to generalise to data beyond that of the training

and validation data distributions, we add noise on a small scale to the validation data

and perform the same test of evaluating the probability of these proposed equations

of state given a variety of conditions. Gaussian noise is added to the validation data
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Figure 5.4.8: Histograms of log(probabilities) of proposed validation equations of
state evaluated relative to conditions from training, validation and event data sets.

on a scale of 1% of the standard deviation of the data set (scaled to have standard

deviation 𝜎 = 1). The original validation data Ωval is plotted alongside the noise-

added validation data Ωnoisy val in the appendix, section 7.1 figure A4. It is clear that

Ωnoisy val differs on a very small scale to Ωval, so much so that when plotted alongside

each other they are almost irresolvable.

Figure 5.4.9 presents the results of evaluating the probability of noisy validation

equations of state given training 𝑝(Ωnoisy val |𝜃train), validation 𝑝(Ωnoisy val |𝜃val) and

event 𝑝(Ωnoisy val |𝜃170817) conditions. The noise-added validation equations of state

are far less probable than that of the original validation data set, even though the data

sets differ from one another by a very small percentage of added noise. Regardless

of the conditional term, a significant fraction of the noise-added equations of state

are around exp(100) less probable than the original validation equations of state. It
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Figure 5.4.9: Histograms of log(probabilities) of proposed noise-added validation
equations of state evaluated relative to conditions from training, validation and event
data sets.

therefore appears that the validation data belongs to the same structure or overall

distribution as the training data that the Flow finds easy to learn. Adding a small

magnitude of noise to the distribution moves the data beyond the structure which the

Flow has learned and the Flow struggles as a result.

To further demonstrate the alignment of validation data on the grid that the

training data belongs to, we add the same 1% Gaussian noise to the validation data

during training. Figure 5.4.10 presents the first 100 epochs of training a Flow with

added Gaussian noise on the scale of 1% noise of the standard deviation of the

validation data space. This Flow is identical to the original Flow trained for this

analysis, the only difference in the training regime being the addition of noise to

the validation data. We see clear and extreme over-fitting, where the validation loss

increases as the training loss continues to decrease. This suggests the validation
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Figure 5.4.10: Training (blue) and validation (purple) loss plotted as a function of
training epoch for training the conditional Normalising Flow with noise on validation
data.

data with such small scale noise is starkly different to the training data distribution,

and strongly suggests that the training and validation data sets belong to a shared

underlying distribution which the Flow can learn. When conditionally sampling

Ωsamp ∼ 𝑝(Ω|𝜃), the Flow can then sample from the structure it has learned which

is associated to high log(probabilities). Evaluating the probability of regions of the

15-dimensional data space with randomly proposed equations of state Ωprop given the

same sets of conditions is difficult, as we are not likely to propose equations of state

from the underlying structure, which we are as of yet blind to.

Summary of findings: The trained conditional Normalising Flow evaluates the

log(probability) of training and validation data points as comparably probable (re-

gardless of the conditional term) even though the validation data is not seen by the

Flow during training. By adding a small magnitude of noise to the validation data,
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we find the Flow determines the noise-added validation points to be far less probable,

even though they are visually irresolvable. By training with noise-added validation

data, we find severe overfitting. We propose the potential of artificial structure which

the Flow has learned in the equation of state training data which the validation data

likewise belongs to.

5.4.3 Training an unconditional Normalising Flow

We have thus far demonstrated the ability of a conditional Flow to over-fit to an

underlying data structure, regardless of the conditional term. We suggested that

changing the conditional term, 𝜃, did not affect the overall magnitude of log(probability)

in section 5.4.2, but to fully test this, we remove the conditional term entirely to

remove any dependency of it from the Flow. We train an unconditional Normalising

Flow with the same architecture as the original conditional Flow (hyperparameters

given in table 5.3.1) to map the 15-dimensional equation of state prior prior training

data space, Ω, to a 15-dimensional unit Gaussian via

𝑝(Ω) = 𝑝( 𝑓 (Ω))
����det

(
𝜕 𝑓 (Ω)
𝜕Ω

)����, (5.12)

noting the absence of the conditional term, 𝜃. Once trained, we can sample from the

Normalising Flow Ωsamp ∼ 𝑝(Ω) to return samples from the learned prior distribution.

Likewise with the trained conditional Flow, we can also evaluate the prior probability

of proposed equations of state 𝑝(Ωprop).

Figure 5.4.11 presents the 15-dimensional training data distribution Ωtrain alongside

1000 randomly sampled points, Ωsamp. from the learned unconditional Flow. We

propose a Gaussian distribution of equations of state Ωprop centred at 𝜇 = 0 and with

a standard deviation of 𝜎 = 0.5. We see the unconditional Flow has learned the data

distribution well and that the sampled points Ωsamp. align well with the training data

Ωtrain.

Figure 5.4.12 plots the relative log probabilities of the training data equations of

state Ωtrain, those randomly sampled from the trained Flow Ωsamp. and the Gaussian

proposed equations of state Ωprop. Both the training equations of state and those
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Figure 5.4.11: Corner plot of 1- and 2-dimensional marginalised distributions of
training equations of state (blue), sampled points from the unconditional Normalising
Flow (purple) and proposed equations of state (pink) from a Gaussian distribution.
We present the first 5 out of the total 15 dimensions. The full figure can be found in
the appendix section 7.1 figure A5.
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Figure 5.4.12: Histograms of log(probabilities) of proposed equations of state from
a Gaussian distribution (pink), training equations of state (purple) and equations of
state sampled by the unconditional Flow (blue).

sampled from the Flow have comparable and reasonable log(probabilities), however, the

Gaussian proposed equations of state are significantly less probable, with Δlog prob. =

286 from equation 5.11. Again, this means the most probable proposed equation

of state is around exp(286) less probable than that of the most probable sampled

equations of state Ωsamp., with the distribution of the log(probabilities) of Ωprop

extending beyond −106, suggesting these are severely improbable equations of state

which are on a scale of exp(106) less probable than that of any Ωsamp..

As discussed previously, our Gaussian proposal Ωprop is not perfect and we expect

some equations of state from this distribution to be beyond the reaches of the

edge of the training data prior, especially in a high dimensionality space. However,

log(probabilities) of this magnitude are not expected. This further suggests that a
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Flow, whether conditional or not, can learn the training data distribution well, even

in 15 dimensions, and the underlying structure it belongs to. The Flow then struggles

to generalise beyond this and operate in regions of unknown parameter space, which

may be between training and validation data points.

Summary of findings: an unconditional Normalising Flow trained to map the

equation of state prior data space experiences the same behaviour; the Flow assigns

proposed and sampled equations of state with vastly different log(probabilities). This

suggests the structure is inherent to the compressed equation of state data distribution

and how the Flow maps it.

5.4.4 Identifying artificial data structure

We now focus on trying to identify the structure which it appears the training and

validation data belong to, which the Flow has been able to identify. Previously,

we investigated whether issues arose due to handling data which lay outwith the

training data distribution i.e. beyond the edges or physically outside the distribution

which was learned. We learned this was not the case, but rather that there are

specific points within the bounds on the training data distribution which have vastly

different log(probability) to other points within the bounds. We therefore propose

the presence of some structure within the learned distribution which the Flow has

identified. Therefore, when we use the Flow to sample from this space Ω ∼ 𝑝(Ω|𝜃),

the Flow produces high probability samples Ωsamp. which belong to the structure but

evaluating randomly placed samples Ωprop which do not belong to the underlying ‘grid’

are of low probability. We note that by ‘grid’ we mean some underlying structure in

15 dimensions, not necessarily a uniform spacing of points in each dimension (which

does not appear to be visible in 1− and 2−dimensional projections of the autoencoded

training data).

These features of the data space make sampling methods very difficult. Evaluating

the 15-dimensional space is already difficult for sampling methods, and this is only

exacerbated by having a space which has inherent but unknown structure. Sampling

methods will find it difficult to find the high probability regions of the space when the
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Figure 5.4.13: Corner plot of 1- and 2-dimensional marginalised distributions of
points from the equation of state training data prior (grey), sampled points from the
Normalising Flow (blue) and two proposed equations of state (pink and purple) which
we traverse between. We present the first 5 out of the total 15 dimensions. The full
figure can be found in the appendix section 7.1 figure A6.

surface is not (for the most part) smooth but are instead on sharp peaks surrounded

by multi-dimensional troughs, or voids, of low probability space. We demonstrate

the spike-like features by passing through the 15-dimensional space from one sampled

location, Ωsamp., to another. To do, we randomly select two sampled equation of state

points, Ωsamp, 1 and Ωsamp, 2 and plot a 15−dimensional straight line path between

these points. We take 100 total steps between Ωsamp, 1 and Ωsamp, 2 in 15−dimensions,

evaluating the probability of points Ωsteps along our path.
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Figure 5.4.13 presents a corner plot of a small region of the first 5 out of the total

15 of the equation of state data space. The region plotted is populated by support

from both the prior and points sampled by the Flow Ωsamp and so there is no evidence

we are near the edges of the space. We focus in around the most probable sampled

point Ωmax sample when sampling with 𝜃170817 such that 𝑝(Ωmax sample |𝜃170817) =

max(𝑝(Ωsamp. |𝜃170817)), as introduced previously. We wish to walk through regions of

the equation of state data space which return high and low log(probability). To do so,

we propose equations of state around the maximum probability sample Ωmax sample

from the Flow given conditions 𝜃170817. In this example, we propose equations of state

in a 15-dimensional diagonal line through the maximum probability sample, Ωsteps,

beginning and ending ±0.01 in all 15 dimensions around the maximum log(probability)

sample Ωmax sample. For each proposed equation of state from the diagonal line of

Ωsteps, we find the average log(probability) given all samples from the event 𝜃170817,

given the Monte Carlo sum over posterior samples 𝜃 in equation 5.9.

In figure 5.4.14, we show the average log(probability) given 𝜃170817 of 100 steps taken

through the most probable location Ωmax sample in the 15-dimensional space. Over the

course of a very small distance of ±0.01 in 15 dimensions away from Ωmax sample, the

log(probability) drops by almost 2 orders of magnitude in both directions, suggesting

the region directly surrounding the most probable sample is highly improbable, or

exp(100) less probable. However, in the surrounding regions of the most probable

sample, there are other sampled points beyond a distance of ±0.01 which we are aware

are of comparable probability to the maximum probability sample, as demonstrated

by figure 5.4.2. With no explicitly visible structure to the sampled points Ωsamp. in

this small region of space, this suggests artificial structure on a scale that is not visible

in our current projections.

We plot samples 𝑧steps from the Flow latent space, Z, for this journey through the

maximum probability sample Ωmax sample in the Flow data space Ω in figure 5.4.15.

The figure presents four different 2−dimensional projections of 2 out of the 15 total

dimensions of the Flow latent space. We plot a unit Gaussian for comparison, and

demonstrate that sampled points in the data space ΩGW170817 ∼ 𝑝(Ω|𝜃GW170817)
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Figure 5.4.14: Average log(probability) over samples of path taken through ±0.01
in 15 dimensions walking through the maximum probability sample as given by the
Flow.

which have undergone the forward transform to the Flow latent space, are Gaussian,

as expected. The blue points which represent the latent samples 𝑧GW170817 generally

overlap with the samples from the unit Gaussian in grey. The figure additionally

presents the samples from the data space Ωsteps which are associated to the steps

taken along the path between two sampled points. Their equivalent samples in the

Flow latent space, 𝑧steps, present a snake-like path which extends beyond the breadth

of the unit Gaussian and learned latent space. For a walk along a 15−dimensional

straight line through the Flow data space forward-transformed into the Flow latent

space, a path of points in the latent space would still be expected, but we would expect

this path to remain within the bounds of the unit Gaussian, somewhere near the

centre. In some extreme cases, for example dimensions 12 and 14, the path extends

up to 20 latent units beyond where would be expected. This further justifies that
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Figure 5.4.15: 2−dimensional scatter plots of the Normalising Flow latent space
given the forward mapping of ΩGW170817 (blue), Ωsteps (purple) and an example unit
Gaussian (grey).

the proposed regions of the equation of state data space Ωprop lie beyond the Flow’s

understanding of the training data such that the mapping from data space to latent

space cannot be performed as expected.

We additionally walk between 4 sampled points – Ωsamp. 1, Ωsamp. 2, Ωsamp. 3 and

Ωsamp. 4 – in the 15-dimensional equation of state data space, Ω, to demonstrate the

spike-like features of sampled points and low log(probability) space elsewhere. Figure

5.4.16 shows the first 5 out of the total 15 dimensions of the equation of state data

space Ω alongside the training data prior and points sampled by the Flow Ωsamp.

conditioned on 𝜃GW170817. The four different colours of crosshairs represent the 4

randomly selected points: Ωsamp. 1, Ωsamp. 2, Ωsamp. 3 and Ωsamp. 4. We walk from

point 1 in order until we reach point 4.

Figure 5.4.17 presents the log(probability) evolution as we follow the path of
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Figure 5.4.16: Corner plot of 1- and 2-dimensional marginalised distributions of
points from the equation of state training data prior (grey), sampled points from the
Normalising Flow (blue) and four proposed equations of state (pink, purple, green
and yellow) which we traverse between. We present the first 5 out of the total 15
dimensions. The full figure can be found in the appendix section 7.1 figure A7.
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Figure 5.4.17: Evolution of log(probability) of proposed equations of state between
points conditionally sampled by the Flow. Sampled points occur at steps 0, 100, 200,
300.

Ωsamp. 1, Ωsamp. 2, Ωsamp. 3 to Ωsamp. 4. We take 100 steps in the 15-dimensional

space between each of these sampled points, and so steps 0, 100, 200, and 300 in

figure 5.4.17 land on the sampled points. It is between these sampled points that the

log(probability) drops dramatically, potentially by more than an order of magnitude,

meaning a difference in probability of exp(10), which is especially present between

points 2 and 3. We note that this difference in magnitude of log(probability) is less

than that shown in figure 5.4.14, where steps are taken over a smaller distance through

the 15−dimensional space. This suggests the presence of fine features with very low

log(probability) around high log(probability) spikes, relative to broader steps across

the space. Referring to figure 5.4.17, we see that these points have support from

the prior (as expected and as previously clarified in figure 5.4.1) and their path, too,

remains within the bounds of the training prior, as far as we can tell from 1-D and
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2-D projections. Figure 5.4.17 demonstrates the spike- vs. trough-like behaviour

that we anticipated. Sampling algorithms traversing the space looking for regions of

high probability will struggle to find the spike-like features of the space and likewise

struggle to leave the vast swathes of low log(probability) samples.

In attempting to identify the artificial structure learned by the Flow, we consider

potential sources of the structure. While there is no clear grid-like structure of the

points Ωsamp. which are sampled by the Flow, we must consider that we view the

sampled points as 1− and 2−dimensional projections of a 15−dimensional space, where

12− of the dimensions are an autoencoded latent representation. In the original

training data (which is scaled and then autoencoded), there is no evidence of structure

in the 𝑃 − 𝜌 plane presented in figure 5.1.3, such as branching, clustering, or repeated

equations of state on a grid. However, we consider that perhaps the 12−dimensional

autoencoder is not optimal for representing our 𝑃 − 𝜌 training data. Therefore, we

explore different number of dimensions for compression via the autoencoder.

Summary of findings: By following a straight line in 15 dimensions through a small

region around the maximum log(probability) sample, we find a spike of log(probability).

We repeat this process but walking between 4 sampled points, where we see repeated

drops in log(probability) of O(10) between sampled points. When performing the

forward transform of a walk through high and low log(probability) regions of the

equation of state space, we find the walk extends beyonds the bounds of the unit

Gaussian we expect all points in the data distribution to map to. This suggests the

Flow has not learned a generic representation of the training data distribution as it

cannot map any region to the latent Gaussian.

5.4.5 Low-dimensionality representation

It was expected that we were perhaps over-representing the EOS data by encoding the

equation of state data to a higher number of latent dimensions than were necessary. If

over-representing the data with too many latent dimensions, this may result in a lower-

dimensional manifold existing in a higher dimensional space, e.g. a 2−dimensional

plane in a 3−dimensional box. When we then evaluate the probability of a given
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point in the high dimensional space, we then are likely to sample beyond the plane of

information present. If the Flow has learned the presence of the low-dimensionality

manifold, then points beyond this (in a higher-dimensional cloud around the plane)

are very likely to be considered improbable, as we have previously found. We consider

the possibility that perhaps encoding the 300 points in 𝑃− 𝜌 to an autoencoded latent

space of 12−dimensions is too many. Perhaps the autoencoder struggles to stretch

the information from the equations of state training data to 12−dimensions, or the

Flow identifies a lower-dimensionality representation better suited to the data. We

investigate the possibility that a smaller number of latent space dimensions would

eradicate this problem, by training an autoencoder as outlined in section 5.2 to encode

the same training data set to latent spaces of dimensions 𝑑 where 𝑑 ∈ [2, 11]. It is

thought that there potentially exists a lower dimensional representation which is more

suited to the problem and that using additional dimensions to describe the equation

of state data becomes redundant.

Figure 5.4.18 presents training and validation loss as a function of training epoch for

each of the trained autoencoders with latent spaces of dimension 𝑑 where 𝑑 ∈ [2, 11].

Each autoencoder was trained with identical training data (described in sections 5.1 and

5.2) for 1000 epochs with learning rate 0.005 and batch size 1024. The autoencoders

trained also have architecture identical to the initial autoencoder, introduced in section

5.2; this ensures that our test of the different autoencoders in performing the tasks

we will outline below only considers the change in size of latent space. Of course,

testing different autoencoder architectures to find the most optimal for the task at

hand using its given latent space dimensionality is desirable, but for the current tests

we choose simplicity and neglect optimising the hyperparameters of the autoencoder

and instead test changing the latent space size only. We find with figure 5.4.18 that

autoencoders with latent spaces of dimensions 4, 8, 9, 10, and 11 have comparable

losses to that of the 12-dimensional autoencoder (loss presented in figure 5.2.3). We

choose to investigate these models further. Autoencoders with latent spaces of size

3 and 5 both struggle to train effectively and have losses which do not decay over

time but rather remain stagnant at a significantly higher loss than the other models.

We therefore neglect testing autoencoders of this size further, as they would require
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further investigation and optimisation. We additionally find that autoencoders with

latent spaces of size 2 and 6 also train with no evidence of overfitting but with final

losses which are approximately an order of magnitude greater than those listed earlier.

We compare the quality of equation of state reconstruction with each of the

autoencoders with latent spaces of 𝑑 dimensions where 𝑑 = 2, 4, 6, 7, 8, 9, 10, 11 in

figure 5.4.19. To do so, we select an equation of state from the training data set and

use each of the trained autoencoders to encode and decode this equation of state

(one full pass of the trained autoencoder), comparing the decoded equation of state

to that of the true input. We additionally present the residual of the reconstruction

in the lower figure. We find that autoencoders with latent spaces of size 𝑑 = 2 and

𝑑 = 6 give equations of state which differ from the true equation of state (black dotted

line) most, which is in agreement with the increased MSE loss presented in figure

5.4.18. The reconstruction differs from the true equation of state most at its kinks and

extremities i.e. where the true equation of state deviates from the generic diagonal

line trend. We find in particular than an autoencoder with 4 latent dimensions has

comparable (and in some regions, better) reconstruction quality to autoencoders with

𝑑 = 7 dimensions or more. It appears beneficial to use an autoencoder of reduced

latent space dimensionality for future analysis as it can reconstruct equations of state

at a comparable accuracy to autoencoders with many more dimensions. Additionally,

a smaller latent space size is beneficial for later stages of analysis, where we can train

Flow to learn the mapping of a smaller data space and, in performing hierarchical

analysis, have sampling methods operate in a smaller number of dimensions, which

allows for more efficient sampling.

Further, we train a conditional Normalising Flow as outlined in section 5.3.1

to learn the forward mapping from 𝑑 + 3 dimensional equation of state plus scaler

data space to 𝑑 + 3 dimensional Gaussian conditioned on event information, as per

equation 5.10. Once trained, we perform the tests we have previously used to assess

the performance of the 12−dimensional autoencoder in section 5.4 to assess the

performance of the conditional Flows trained to map 𝑑 + 3 dimensional autoencoded

latent spaces. The primary test we perform is assessing the log(probability) distribution
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Figure 5.4.18: MSE training (solid) and validation (dashed) loss plotted as a function
of training epoch for autoencoders with variety of latent space dimensions 𝑑 where
𝑑 ∈ [2, 11].

of 𝑝(ΩGauss at max |𝜃170817) for each of the 𝑑 + 3 dimensional Flows, the result of

which is presented in figure 5.4.20. For autoencoders with 𝑑 = 9, 10, 11, we find the

log(probabilities) are very large and negative and are on a comparable magnitude

to that of the original 12-dimensional autoencoder (see figure 5.4.4). The results

demonstrate that there is support for 𝑝(ΩGauss at max |𝜃170817) with log(probability)

at a magnitude comparable to that of 𝑝(Ωsamp. |𝜃170817) when using the Flows trained

on the autoencoded spaces with 𝑑 = 6, 8 but with significant outliers. The Flow

trained using the autoencoded latent space with 𝑑 = 4, however, shows a entire

log(probability) distribution which is very comparable to that of the log(probabilities)

of 𝑝(Ωsamp. |𝜃170817) with a 𝑑 + 3 dimensional conditional Normalising Flow. With

a higher dimensionality data space, one would expect a larger and more negative

log(probability) distribution when assessing the probabilities of randomly selected

points within the space. However, it is clear that for spaces with 𝑑 = 9 and above,

there are much more significant outliers to the distribution, compared to spaces of

much smaller dimensionality.

Finally, we use each of the conditional Flows to ‘walk’ around the maximum likeli-
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Figure 5.4.19: Plot of scaled pressure vs. scaled density of an equation of state from
the training data set (black dashed line) and the reconstruction of this equation of
state using autoencoders with different numbers of latent space dimensions (various
colours, upper) and the residual of the reconstruction (lower).
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hood sample Ωmax samp. given by conditionally sampling each of the 𝑑 + 3 dimensional

Flows given 𝜃170817. Figure 5.4.21 presents the log(probability) range spanned for

all Flows trained on autoencoded latent spaces of 𝑑 = 2, 4, 6, 7, 8, 9, 10, 11. Flows

trained to perform the conditional mapping from autoencoded spaces with 𝑑 = 11

and 𝑑 = 10 experience a change in log(probability) when travelling through the small

volume of space of upwards of 3 orders of magnitude, a difference in probability on

a scale of exp(1000). In the inset of figure 5.4.21, we visualise this figure again in

region of log(probability) around 0. Flows trained with autoencoded latent spaces of

sizes 𝑑 = 4, 6 and 7 (plus scaling parameters) have a change in log(probability) which

is more comparable with what one would expect in such a small volume of space.

In particular, the latent space of 𝑑 = 4 dimensions shows almost no change in log

probability across the walk which is more realistic for such a test, and is indicative of

a lack of peaks and troughs of probability in this small volume of 𝑑 + 3-dimensional

space.

It is for the reasons outlined above that we choose to move forward in using the

𝑑 = 4 dimensional autoencoded latent space as our equation of state data space for

future work. We therefore use the conditional Normalising Flow trained to map a 𝑑 +3

(7−dimensional once we include 𝜌max, 𝑃min, 𝑃max) space equation of state conditioned

on 𝜃 as this Flow has provided evidence that it is the least afflicted by learned artificial

structure, but is not necessarily entirely absent. Therefore we must act to mitigate

other potential sources of learned artificial structure.

Summary of findings: We reduce the number of autoencoder latent space dimen-

sions which we then use to represent the equation of state data space to 𝑑 = 4. We

find an improvement in the variation in magnitude of log(probability) over the space,

and less evidence of the features of peaks and troughs, or learned structure.

5.5 Data augmentation with Normalising Flows

We consider that the performance of the Flow may also be limited by our quantity

of data. The Flow has been trained with 97 000 equations of state in the Flow data
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Figure 5.4.20: Histograms in log(probability) of proposed equations of state given
GW170817 for Flows trained using 𝑑 + 3 dimensional autoencoded data, where
𝑑 = 4, 6, 7, 8, 9, 10, 11, 12. Each of the four figures shows histograms which have
a similar log(probability) range.

space with one [𝑚1, 𝑚2,Λ1,Λ2] label per equation of state as a conditional term 𝜃. It

has been considered that in high numbers of dimensions, this quantity of data was

not enough for the Flow to generalise to, especially if it contains or emulates some

unknown artificial structure which the Flow can learn easily. However, equation of

state data is expensive to generate; the process of randomly generating a high density

phenomenological equation of state, detaching the nuclear parameters to construct

the meta-model and then solving the TOV equations for the macroscopic parameters

takes ∼ 1 second per equation of state [281]. Although this is ∼ 1 day of computation,

we require external bodies to produce the data required for the analysis. Additionally,

increasing the bulk quantity of training data that is processed per epoch makes the

training process lengthier and more expensive.
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Figure 5.4.21: Log(probability) evolution walking through maximum probability
sample using Flows trained using 𝑑 + 3 dimensional autoencoded latent spaces where
𝑑 = 4, 6, 7, 8, 9, 10, 11, 12. The inset plot shows the same paths but at a focussed range
of log(probability) around 0.

We introduce a Normalising Flows method which allows us to achieve our goal

of presenting the Flow with more training data examples over the course of training

while keeping the training costs down. The method allows for cheap and effective

data production that can be done locally and rapidly with little impact to the

current training routine. Firstly, we construct a combined data set of 11 dimensions

consisting of the 7 equation of state data dimensions (𝑑 = 4 latent dimensions

from the autoencoder and 3 scaling parameters) and the 4 conditional dimensions,

[𝑚1, 𝑚2,Λ1,Λ2], presented in figure 5.5.2. We then train an unconditional Normalising

Flow to model this combined data space

𝑝(Ω, 𝑚,Λ) = 𝑝𝑍 (z)
���� det 𝜕 𝑓 (Ω, 𝑚,Λ)𝜕Ω, 𝑚,Λ

����, (5.13)

such that we can then randomly sample from the Flow and return samples from this

combined data space. Sampling from the Flow is very efficient; we can produce 105
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random samples in around 1 second, which consist of 105 equations of state in the

7-dimensional data space and one event associated to each equation of state in the

[𝑚1, 𝑚2,Λ1,Λ2] space.

During training we can then continuously sample from this Flow, henceforth the

‘regeneration Flow’ to generate training data. Once sampled, the 11 dimensions are

separated into the 7 data dimensions Ω and the 4 conditional dimensions 𝜃, and

training of the conditional Flow resumes normally as described in section 5.3.1. We

sample from the regeneration Flow 105 times on every training epoch, of which

there are 1000 in total. By the end of training, the Flow has now seen 108 discrete

training data samples in both the data Ω and conditional 𝜃 spaces. Sampling from

the regeneration Flow during training adds ∼ 1000 seconds on to Flow training time

(sampling from the regeneration Flow once per epoch), but at a significant gain;

by sampling from the regeneration on each epoch, we expose the Flow to orders of

magnitude more samples from the training data distribution, so the increased time is

outweighed by the gain in total number of pieces of training data. We validate on a

random selection of 25 000 equations of state from the real training data set, to ensure

the regeneration Flow remains to produce samples that are consistent with the true

data set.

The results of training the regeneration Flow are presented in figures 5.5.1 and

5.5.2. Firstly, figure 5.5.1 presents the training and validation losses for training

the regeneration Flow with an architecture of 1 residual block, 2 transforms and 32

neurons per transform. The entire training routine of 500 epochs took less than 10

minutes with a batch size of 4096 and at a learning rate of 0.001 which decays during

training with cosine annealing. Figure 5.5.2 presents a set of 104 samples from the

regeneration Flow in blue on top of the 11-dimensional combined equation of state Ω

and event data 𝜃 training set in purple. We see the samples from the regeneration

Flow agree well with the training distribution, further clarifying the Flow has learned

the 11-dimensional data distribution well.

We employ the regeneration Flow in training the conditional Normalising Flow
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Figure 5.5.1: Training (blue) and validation (dashed purple) loss for the 11-
dimensional regeneration Flow trained as per equation 5.13.

by sampling from the regeneration Flow on each training epoch in order to provide

the training data. We train the conditional Flow with the same architecture as

the regeneration Flow to maintain simplicity and remove sources of potential over-

complication. The plot of training loss over time for the conditional Flow trained using

the regeneration Flow is presented in figure 5.5.3. We see the Flow learns consistently

throughout and the training loss evolves well relative to the validation loss, which is

the loss evaluated given a data set of size 104 which is sampled from the regeneration

Flow once at the beginning of training and which is then used throughout training as

validation data and is never replaced.

However, our initial tests of training and sampling performance of the original

conditional Flow (section 5.4.2) did not show any concerning results, especially in loss

performance. Therefore we complete the same tests of evaluating the probability of

proposed samples and traversing the space through regions of known high probability
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Figure 5.5.3: Training (blue) and validation (purple) loss for the conditional Flow
trained using the 11-dimensional regeneration Flow.

to fully test the result of data augmentation.

5.5.1 Testing the augmented conditional Flow

We complete the same test introduced in section 5.4.1 of evaluating the log(probability)

of 𝑝(ΩGauss at max |𝜃170817), equations of state Ω proposed from a small Gaussian

distribution centred around the maximum likelihood sampled point, conditioned on

event samples 𝜃 from GW170817. We plot the corner plot of these proposed samples

ΩGauss at max alongside those sampled by the Flow given event information Ω ∼

𝑝(Ω|𝜃GW170817), which we discovered the Flow attributed vastly different magnitudes

of log(probability) to, along with the prior training data in section 5.4.1 figure 5.5.4.

Again, we do not find that the proposed samples ΩGauss at max are on the extremities of

the space and find the point selected which the Gaussian has been constructed around

(the most probable sample returned by the conditional Flow given event samples
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Figure 5.5.4: Corner plot of 1- and 2-dimensional marginalised distributions of
training equations of state (blue), sampled points from the regeneration-Flow-trained
conditional Normalising Flow (purple) and proposed equations of state (pink) from a
Gaussian distribution.

Ωmax prob = max(𝑝(Ω|𝜃GW170817))) to be surrounded by other Ωsamp. sampled by the

Flow which we know to be of comparable probability.

The histogram of log(probabilities) of proposed equations of state around the

maximum likelihood point are presented in figure 5.5.5. We find the log(probabilities)

of the proposed equations of state ΩGauss at max are of comparable magnitude to those

sampled Ω ∼ 𝑝(Ω|𝜃GW170817) with significant overlap in both of the distributions. Ad-

ditionally, we find that the log(probability) distribution of 𝑝(ΩGauss at max |𝜃GW170817)
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Figure 5.5.5: Histograms in log(probability) of sampled equations of state given
GW170817 for the regeneration-Flow-trained conditional Flow (purple) and Gaussian
proposed equations of state around Ωmax sample given the same condition (pink).

extends beyond the maximum of log(probability) of points Ω ∼ 𝑝(Ω|𝜃GW170817). This

suggests the Flow has found the region of maximum probability in the 7-dimensional

space, and find that our chosen Ωmax prob is not necessarily the true maximum, and

that points nearby have higher log(probability). In sampling Ω ∼ 𝑝(Ω|𝜃GW170817),

we are sampling a finite and relatively small number (∼ 2000) of points in the 7-

dimensional space, and therefore do not necessarily sample the true maximum. This

suggests the 7-dimensional space does not have the same level of learned structure as

perviously found and instead finds a smooth and comparably probable surface.

We next evaluate the probability of regions of the space in a path through the

maximum likelihood point as previously performed in section 5.4.4 . Similar to

previous tests, we evaluate the probability of points ±0.01 in 7 dimensions around

Ωmax prob. Figure 5.5.6 presents the log(probability) evolution over this path, aver-
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Figure 5.5.6: Log(probability) evolution walking through the maximum probability
sample using a conditional Flow trained using the 11-dimensional regeneration Flow.

aged over all event samples 𝜃170817. We see the log(probability) evolve on a scale

of 0.3 log(probability) which is starkly different to our previous change of 100 in

log(probability). We also see a result which is in agreement with the findings from

figure 5.5.5, where the log(probability) of Ωmax prob given 𝜃170817 is not the true

maximum, and that points at a distance of 0.01 from Ωmax prob in 7-dimensions are

actually more probable. This is expected from a smooth 7-dimensional volume of

points which we sample finitely from.

This method of data augmentation has improved the Flow’s understanding of the

space and has constructed a mapping which appears to be free of evidence of learned

artificial structure. The augmentation process is a cheap and effective solution for

problems which are limited by the quantity of data available. It allows the user to

generate more samples from an existing data distribution. Note, these additional
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samples are not ‘new’ samples from a posterior, but are additional synthetic samples

from the posterior we currently have. Providing the conditional Normalising Flow

with additional samples for training inhibit the Flow’s ability to learn any structure

or memorise as there is a larger quantity of training samples and also introduces

the regeneration Flow’s own intrinsic noise on learning the true training data. A

Normalising Flow will not learn the data perfectly, and so even if the regeneration Flow

learns 11-dimensional artificial structure, when sampling the Flow’s learned mapping

of the 11-dimensional space, we sample given the Flow’s own intrinsic uncertainty

which obscures the learned structure. This has proven, alongwith the reduction in

dimensionality of the autoencoded latent space from 12 to 4 dimensions, to be helpful

in allowing the Flow to learn a generic understanding of the mapping.

Summary of findings: We introduce a ‘regeneration’ Flow, an unconditional

Normalising Flow trained to learn to map the joint Ω and 𝜃 space. Once trained,

the Flow can be sampled from during training of the conditional of equation of state

prior Flows to augment the training data and provide more training data examples,

obscuring the structure present with the Flow’s intrinsic noise. As a result, the Flow

learns the generic behaviour of the equation of state data space.

5.6 Conclusion

This chapter discusses the equation of state data we wish to use for future hierarchical

inference of the neutron star equation of state, before introducing the compression

methods used. Subsequently, we discussed evidence of learned artificial structure that

arose when using the Normalising Flow in a new capacity of evaluating the probability

of regions of the equation of state data space rather than conditionally sampling the

space directly, with the ultimate goal of hierarchical inference of the neutron star

equation of state.

The new data introduced is a set of unified equations of state which are solved via

the TOV equations to obtain their respective mass and tidal deformability parameters.

These consist of piecewise polytropic equations of state at high density, each of which
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is adjoined continuously to a low density equation of state described by a nuclear meta

model. Each equation of state has a unique minimum pressure, maximum pressure and

maximum density and is more expressive than a simple polytrope and spans a broader

density range. This ensures the analysis is next-generation-proof, where we can no

longer assume a fixed crust equation of state in equation of state inference. However,

the more complex equations of state require a more involved compression method,

which retains the unique features of each of the individual equations of state to allow

for high quality inference. It is for this reason we choose to employ an autoencoder

with convolutional layers. We compress the equations of state to a latent space of 12

dimensions, retaining an additional 3 scaling parameters such that we can reconstruct

the equations of state fully after compression. This also allows us to maintain as many

unique features of individual equations of state as possible.

Hierarchical analysis aims to infer the underlying true equation of state given

multiple observations of neutron star observables. In this case, we wish to combine

information from multiple GW observations of BNS mergers for an overal inference of

the neutron star equation of state.

However we find that in using the conditional Normalising to evaluate the proba-

bility of proposed equations of state instead of sampling like was done in the previous

chapter, that the conditional Normalising Flow severely struggles. This is potentially

detrimental for hierarchical inference because we want to use sampling algorithms to

survey the parameters space and evaluate the likelihood at given points. We find the

Flow shows no signs of traditional overfitting but struggles to generalise to equations

of state not from the data set we use to train the Flow. We test proposal equations of

state from a variety of distributions and also try to walk through the space to visualise

the proposed ‘structure’ that the Flow has managed to over-specify to.

We find that reducing the dimensionality of the compressed equation of state space

from 12− dimensions to 4 helps significantly. We do so by retraining the autoencoder

to instead compress the 300 points along each equation of state to only 4 dimensions.

Doing so allows the conditional Normalising Flow which is trained using this data to
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perform much better on tests such as evaluating the probability of regions of space

around sampled equations of state and also in the lack of variation in log(probability)

found when walking through regions of parameter space.

Additionally, we introduce a Normalising Flow method to augment our training

data set. We train a conditional Normalising Flow to model the data and conditional

spaces together. During training, we can then sample from this unconditional Flow.

We find this helps the conditional Flow to learn a smooth surface with no evident

structure using our tests. This is helpful for high-dimensionality problems where

the amount of training data can be critical in the quality of your tool but may be

expensive to generate.

We find that the main evidence of structure most likely was due to training a Flow

model with too many dimensions than were necessary for the problem at hand. This

means we may have had dimensions involved in the problem which did not contain any

valuable information. In asking the Flow to then evaluate randomly proposed regions

of the space which were beyond the valid region of information for this dimension

(for example, a plane within a higher-dimensional volume of space), the Flow cannot

perform well. Higher dimensionality problems are difficult to visualise and also to

present in 2 or 3 dimensions which is what we are limited to in trying to find and

present the cause of the problem. Our regeneration Flow method also allows us

to generate more training data examples to improve training, and have supported

evidence that the artificial structure in the space is no longer present.

To conclude, we wish to express the need for caution when applying Flow models to

new sets of training data, especially in high numbers of dimensions or where training

data is limited. By exploring issues that arose early during our application of hierar-

chical analysis, we were able to work around some issues in dimensionality reduction

and employ a new but simple method Normalising Flows for data augmentation. We

can now perform hierarchical analysis of the neutron star equation of state.
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Chapter 6

Hierarchical inference of the NS EOS

With the framework developed in chapter 5, we now wish to perform hierarchical

inference of the NS equation of state. In chapter 5 section 5.3.1, a Normalising Flow

was trained to map a compressed representation of our equation of state training

data conditioned on BNS merger properties. Our NS equation of state training

data, introduced in section 5.1, consists of unified equations of state with nuclear

meta-model low density and piecewise polytropic high density. The equations of

state each span an region covering the NS inner crust to the inner core of the NS,

where each equation of state has its own unique crust. These specifications of the

equation of state training data are particularly pertinent when considering hierarchical

analysis of the NS equation of state in next generation GW detection. As previously

mentioned in chapter 2 section 2.3, both improved tidal deformability measurement

and the expected increase in number of BNS merger observations with next generation

detectors are expected to improve the quality of equation of state inference, so much

so that we can no longer assume a fixed crust equation of state.

In the previous chapter, we laid the groundwork for hierarchical inference of the NS

equation of state, but identified some problematic behaviour in how the conditional

Flow learned the mapping to the equation of state training data, Ω. Through several

stages of testing in section 5.4, artificial features were identified in the learned Ω space

and manifested as peaks and troughs of probability, making any future sampling of the
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space very difficult. By reducing the dimensionality of the autoencoded latent space

which constitutes Ω in section 5.4.5, we removed problematic probability evaluations

of regions of Ω by the Flow. We additionally introduced the ‘regeneration Flow’ in

section 5.5, an unconditional Normalising Flow which is trained to learn the combined

data and conditional training data spaces such that we can sample from this and

augment the training data sets.

By building on the the findings of chapter 5, we wish to perform hierarchical

inference of the NS equation of state. We firstly reintroduce hierarchical Bayesian

inference in section 6.1 and set up the Flow-based probability function for combining

information from multiple GW events via MCMC in section 6.1.1. We demonstrate

the performance of the pipeline in section 6.2 in combining information from the two

currently known real BNS merger events before introducing the simulated GW event

data. We discuss previous use of this event data in repeating methods introduced

in chapter 4 to infer the NS equation of state from a single simulated events, and

then discuss expanding this to multiple events. We present the results of combining

information from multiple events with the previously affirmed methods in section

6.3.2 and discuss a different method in section 6.3.3. We present results for multiple

simulated equations of state next, before discussing computational requirements and

time taken to perform the analysis in section 6.4.

6.1 A recap of hierarchical Bayesian inference

In chapter 5 section 5.3, we introduced a Bayesian framework for combining information

from multiple observations of GWs from BNS merger events into one overall inference

of the NS equation of state. Here, we briefly recap the key points. The equation of

state data space Ω - discussed at length throughout chapter 5 - is represented by a

compressed 7−dimensional data space, consisting of an autoencoded representation

of the equations of state and their respective scaling parameters. Each equation

of state is associated to a BNS merger event, which is represented by parameters

𝜃 = [𝑚1, 𝑚2,Λ1,Λ2]. We combine information from multiple observed BNS merger

events to infer the true equation of state through hierarchical Bayesian inference.
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Through manipulation of Bayes theorem, covered fully in chapter 5 section 5.3, we

arrive at the posterior probability density of Ω given observed GW strain data ℎ

𝑝(Ω|ℎ) ∝ 𝑝𝜋 (Ω)1−𝑁
𝑁∏
𝑖=1

〈
𝑝cond(Ω|𝜃𝑖)

〉
𝑝(𝜃𝑖∼𝑝(𝜃 |ℎ𝑖))

. (6.1)

where 𝑝𝜋 (Ω) is the equation of state prior probability density. It is through this

framework that we can use our trained Normalising Flow to calculate the posterior

probability density 𝑝cond(Ω|𝜃𝑖) of a given equation of state for a given set of posterior

samples from the 𝑖th event, and then combine the information from multiple events.

Equation 5.10 in chapter 5 section 5.3 describes the Normalising Flow which is trained

to do so, mapping the equation of state data space Ω to Gaussian latent space Z

conditioned on BNS merger event parameters 𝜃 for rapid probability estimation. A

Normalising Flow can evaluate O(105) probabilities in < 1 second and so we can

evaluate many iterations of 𝑝(Ω|𝜃𝑖) at once very quickly and therefore explore the

posterior probability density efficiently.

6.1.1 Summary of method

To perform the analysis as outlined above, and as discussed in chapter 5 section

5.3, we wish to propose possible equations of state Ω to the Normalising Flow and

evaluate the probability density given conditions; posterior samples in [𝑚1, 𝑚2, Λ1,

Λ2] as measured with GWs from BNS merger events. The proposal of equations of

state to the Normalising Flow for probability evaluation is performed using MCMC

which, given access to a probability function can propose equations of state from a

user-defined proposal distribution – in this case the prior 𝑝(Ω) – and can then traverse

and survey this space with the provided probability function and propose new points

in this space.

In chapter 1 section 1.5.1.1, we introduced MCMC as a stochastic method of

sampling a probability distribution. We use emcee [134], a particular python imple-

mentation of MCMC, which performs ensemble sampling of the equation of state

posterior probability density. A series of walkers evaluate the probability of multiple

locations of the equation of state in parallel relative to a probability function. In this
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case, the probability function is finding the posterior probability density 𝑝cond(Ω|𝜃).

We run MCMC for a defined number of steps through the equation of state data space,

after an initial burn-in stage. By evaluating the probability of equations of state Ω

conditioned on 𝜃 (posterior samples from multiple individual events) – as defined in

equation 6.1 – using the Normalising Flow on a GPU, individual posterior probability

evaluations are quick. While each Markov Chain is inherently sequential, we evaluate

the probability of Ω given a whole set of posterior samples 𝜃 from a given event and

find the average, before repeating for multiple events. We can use the GPU effectively

so to perform as many of these evaluations and calculations in parallel, before then

moving to the next stage of the Markov Chain. The ensemble sampling of emcee

allows for parallelisation of all walkers’ probability evaluations. As such the overall

sampling routine is cost-efficient.

The workflow we follow for this work is presented in figure 6.1.1. The conditional

Normalising Flow 𝑝cond(Ω|𝜃) is trained as is described in chapter 5 section 5.5.

To recap, we train the conditional Normalising Flow using the ‘regeneration Flow’

𝑝RG(Ω, 𝜃), an 11−dimensional unconditional Flow trained to learn the joint equation

of state Ω and event 𝜃 parameter space. Once trained, the regeneration Flow can be

sampled from via Ω, 𝜃 ∼ 𝑝RG(Ω, 𝜃) where 𝜃 = 𝑚1, 𝑚2,Λ1,Λ2 and the equation of state

data Ω detached from the event data so to train the conditional Normalising Flow

𝑝cond(Ω|𝑚1, 𝑚2,Λ1,Λ2). In chapter 5 section 5.5, we introduced how the introduction

of the regeneration Flow reduced the effect of artificial structure in the Flow’s learned

data space. This allows us to propose new equations of state and evaluate their

probability 𝑝(Ω|𝜃) without falling into gaps within the learned structure. This

phenomenon is discussed extensively in chapter 5.

Our evaluation of the posterior probability 𝑝(Ω|ℎ) requires consideration of the

equation of state prior probability, 𝑝(Ω), which we similarly model using a Normalising

Flow, 𝑝𝜋 (Ω) as introduced in chapter 5 section 5.4.3 equation 5.12. Once trained,

samples can be drawn from the Flow Ω ∼ 𝑝𝜋 (Ω) accompanied by their prior probability

densities. This unconditional Flow is likewise trained using the regeneration Flow

𝑝RG(Ω, 𝜃) in order for the training data prior for both the unconditional prior Flow
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𝑝π(Ω)
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Figure 6.1.1: Block diagram of workflow of the original Flow-based method for
hierarchical analysis. This includes the use of regeneration, conditional, prior and
PE Flows. Samples 𝜃i are generated from the PE Flow for use in MCMC while the
conditional and prior Flows are used in MCMC to evaluate probability of proposed Ω

given 𝜃i.

and the conditional Flow to remain consistent. With regards to the prior Flow 𝑝𝜋 (Ω),

training with the (first 7 dimensions of the) regeneration Flow incorporates a small

amount of noise into 𝑝𝜋 (Ω) without fundamentally changing the behaviour of the

data space which is it learning the mapping of, while additionally providing more

training examples of Ω to learn from. Chapter 5 found that the use of the regeneration

Flow 𝑝RG(Ω, 𝜃) in training both 𝑝𝜋 (Ω) and 𝑝cond(Ω|𝜃) also solved issues surrounding

artificial structure so we use the regeneration Flow to more safely model the prior,

as well as to train 𝑝cond(Ω|𝜃). Using a Normalising Flow to represent our prior

probability density allows for very quick sampling of the prior itself but also for very

fast evaluation of the prior probability of randomly proposed points, in this case

equations of state 𝑝𝜋 (Ω), which we have no alternative analytic way to evaluate. We
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perform the analysis by taking data from observations of GW events from 𝑁 BNS

mergers in [𝑚1, 𝑚2,Λ1,Λ2], evaluating the probability of equations of state given

data from these 𝑁 events in a MCMC to return posterior samples from the posterior

probability density in the 7−dimensional compressed equation of state space.

6.2 Applications to real events

We firstly apply this analysis to combine information from the real BNS merger events

GW170817 [54] and GW190425 [95]. As discussed in chapter 1 section 1.3, these two

events are currently the only two observations of GWs from BNS mergers. These

events had vastly different SNRs from one another and therefore different precision

in the measurement of mass and tidal deformability of each of the component NSs.

We introduce GW190425 to this analysis to demonstrate hierarchical inference using

Normalising Flows, and compare to the previous single event study of GW170817

made in chapter 4 presented in figure 4.5.1.

6.2.1 Data

We randomly select 256 samples from the full set of posterior samples from Third

Gravitational-Wave Transient Catalog (GWTC-3) and Gravitational-Wave Transient

Catalog from the First Half of the Third Observing Run (GWTC-2.1) for the GW

events GW170817 and GW190425, respectively. We choose to use 256 posterior

samples per event as this is the minimal number of samples we need so as to represent

the posterior without biasing the result with too little samples but also not too many

as to become a computational burden. Appendix B presents the plots in justification

of using 256 samples. The posterior samples for both events that are within the convex

hull – defined by the boundary of the conditional training data 𝜃 – are presented in

figure 6.2.1 alongside training data 𝜃. In chapter 1 section 1.4.1 we discussed how

GW190425 had a much smaller SNR of 12.4 compared to that of GW170817 with

32.4, the loudest observed event by the global ground-based detector network for a

long time before being surpassed in the fourth observing run [39]. This is apparent

in figure 6.2.1 which shows GW190425 with a broader event posterior probability
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Figure 6.2.1: 1- and 2-dimensional marginalised distributions of posterior samples of
[𝑚1, 𝑚2, logΛ1, logΛ2] from GW events GW170817 (purple) and GW190425 (pink)
on the training data prior (blue). The contours represent 68%, 95%, and 99.7% of the
samples respectively.
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distribution than that of GW170817, especially in the spread of the outermost contour

of the joint distribution of logΛ1 and logΛ2, which defines for 99.97% of all posterior

samples. Therefore, we expect a reduced level of constraint in the equation of state

space from single event analysis with GW190425 than we do for that of GW170817.

We pass 256 posterior samples from each event in [𝑚1, 𝑚2, logΛ1, logΛ2] from both

GW170817 and GW190425 to the hierarchical analysis. We run MCMC for 5 × 103

steps with 200 walkers with a 103 step burn-in stage. This analysis took just over 2

hours to combine the information from the two events into a combined 7−dimensional

equation of state posterior using the batching method described in section 6.1.1 which

efficiently packs data onto the GPU for processing.

6.2.2 Results

We plot the result of the combined analysis in figure 6.2.2 alongside the individual

event posteriors for both GW170817 and GW190425. These were found following

the method applied in chapter 4 of using a trained conditional Normalising Flow to

sample the individual events’ equation of state posterior given posterior samples from

a single BNS merger event. The purple and pink distributions therefore represent

Ω170817 ∼ 𝑝(Ω|𝜃GW170817) and Ω190425 ∼ 𝑝(Ω|𝜃GW190425) respectively. As expected,

given the wider spread of posterior samples 𝜃 due to the much smaller SNR of the

event, the single event equation of state posterior associated to GW190425 is much

broader than that of GW170817, and in some cases leaks beyond the edges of the

prior. The single event posteriors presented in figure 6.2.2 have not gone through any

post-processing stages and so some samples lie beyond the training data prior. This

is a manifestation of the intrinsic uncertainty of the Flow, which has, as previously

mentioned, been training using the regeneration Flow. These multiple stages that

construct the Flow introduces uncertainty which do not fundamentally change what

the Flow is learning but does introduce some noise.

In contrast, the result of the MCMC analysis in blue represents posterior samples

from 𝑝(Ω|ℎ GW170817, ℎ GW190425). The combination of information from both GW

events returns a smaller, shared volume of the purple and pink distributions as appears
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from GW170817 is presented in the black dashed boundary. The training data prior
for the combined analysis is given by the pink prior bounds. The inset displays the
zoomed-in posterior in the region of [1, 5] × 1014 g cm−3.

in the 1− and 2−dimensional projections in figure 6.2.2. This demonstrates that the

walkers are finding regions of the 7−dimensional space which is commonly favoured by

both GW170817 and GW190425 given evaluation of the probability of these regions

using the conditional Normalising Flow.

We also express the result of combining information from these two events in

figure 6.2.3 in the 𝑃 − 𝜌 plane. We compare the combined GW170817 and GW190425

result to that of chapter 4 figure 4.5.1 and, likewise in the chapter 4 result, the

equation of state inference performed by the LVK collaboration in [4]. Each of these

previously declared results express their posterior in the 𝑃 − 𝜌 plane in intervals of
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50% and 90% confidence, however their respective choices of presentation differs from

the current result. Both the LVK and chapter 4 results determine the regions of

confidence in the 𝑃 − 𝜌 plane, with the LVK result slicing in pressure and chapter 4

slicing in density. Only the 90% boundary for both of the aforementioned results are

presented in figure 6.2.3. For the result of this Flow-based combined analysis, the

90% confidence equations of state in blue are determined from their 7−dimensional Ω

representation. To do so, a KDE is constructed around the 7−dimensional equation

of state posterior, from which the samples within the 90% confidence interval are

determined. These samples in the 7−dimensional equation of state space are then

decoded and the results are presented in figure 6.2.3 in blue. The workflow discussed

in this chapter for the combined analysis (and introduced in chapter 5 section 5.2)

allows for each equation of state to be presented to its own maximum density and

pressure. Therefore, the upper density region of the equation of state posterior differs

from the LVK and chapter 4 results, which restrict each equation of state in reaching

a common maximum density or pressure, respectively. The workflow discussed here

allows for a more flexible equation of state posterior, and does not restrict the equation

of state within a common band.

We find that the hierarchical inference result given both GW170817 and GW190425

constrains more in 𝑃 − 𝜌 when compared to the single event results from chapter 4

and that of the LVK collaboration in [4]. We find the addition of GW190425 in the

analysis is particularly powerful in the density range of [1, 4] × 1014 g cm−3. The

component masses of GW190425 are both more massive than that of GW170817 (see

figure 6.2.1) with comparable tidal deformabilities. For a given tidal deformability,

a higher mass suggests a stiffer equation of state, which is reflected in figure 6.2.3

where the equations of state from the combine result appear to have a steeper gradient

than the bounds on the chapter 4 result suggest. Additionally, there is less support

at high densities and pressures compared to the GW170817 result from chapter 4

and that of the LVK. We also find the constraint extends below the lower density

limit of both the chapter 4 and LVK results, with equation of state constraints within

the prior bounds from 2 × 1013 g cm−3 onwards. We note the change in prior on

both the conditional training data 𝜃 between the three different analyses and the
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equation of state Ω. This accounts for the difference in upper density/pressure limit,

and the shape that the equations of state take in this region. For the LVK result

presented in figure 6.2.3 from [4], the prior on equation of state is defined by their

choice of equation of state parameterisation. As introduced in chapter 1 section 1.4.1

and chapter 2 section 2.2.1, [4] use the spectral parameterisation (introduced in 2

section 2.1) to represent their equations of state, and choose a prior range over the

spectral parameters so to represent a broad range of physically valid equations of

state [4]. The analysis here differs from that of chapter 4 purely in the training data

used, as both analyses are non-parametric and model-agnostic. But we note both

analyses also use different compression methods so the compressed data spaces which

inference is performed in is also different. This limit was a particular choice made

by each of the analyses, and is not simple to account for so to make the analyses

compatible for comparison purposes. The prior on the analysis performed here in the

combination of both events, however, is broader and extends a larger density range

than the aforementioned analyses. While the shape of the upper pressure limit varies

and is softened slightly above 1015 g cm−3, we believe the change in training data is

beneficial to improving the result for third-generation analyses.

6.3 Simulation studies

In addition to the combination of information from the two current BNS merger

events, we discuss the performance of the analysis in the combination of many more

simulated events. We wish to perform simulation studies of hierarchical inference of

three different equations of state of varying softness/stiffness. We do so by simulating a

multitude of GW events associated to this underlying equation of state and performing

the hierarchical analysis with PE samples associated to the simulated events. We wish

to test the analysis on inferring three different equations of state from the validation

data set, presented in figure 6.3.1.

The chosen equations of state are presented in the 𝑃 − 𝜌 plane in figure 6.3.1.

We demonstrate three randomly selected equations of state which feature 3 distinct

examples of possible behaviour. The stiffest equation of state in the density range
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Figure 6.3.1: Plot of pressure vs. density for three simulated equations of state from
the validation data set alongside the prior training data in grey and the bounds on
the prior training data in pink.

2 × 1014 g cm−3 to 4 × 1014 g cm−3 is given by the pink-red line, with the steepest

gradient and therefore the larger increase in pressure across this density. In contrast,

at the lower end of this density range, the soft equation of state, in blue, has the the

smallest change in pressure for a given change in density out of the three equations

of state highlighted. The behaviour of each equation of state evolves beyond these

definitions out of this density region; the training data chosen for this analysis allows

for the equations of state to be expressive over a broad density range and to have

unique maximum pressures and densities. The ‘medium’ equation of state merely

gives a third example, which is neither extremely soft or stiff. The equations of state

given in figure 6.3.1 are equivalently plotted in the 𝑚 −Λ plane in figure 6.3.2. In this

figure, we instead plot the individual events which are simulated so to be associated to

each of the stiff, soft or ‘medium’ equations of state. As discussed in chapter 1, each

equation of state in 𝑃 − 𝜌 has an equivalent relationship in 𝑚 − Λ, where Λ evolves
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Figure 6.3.2: Mass vs. tidal deformability for three example equations of state from
the validation data set. Dots along each equation of state represent a single NS with
the darker shade of a given colour of dot associated to the first component star of the
merger and the lighter shade being the second component star of the merger.

with 𝑚 as Λ ∼ 𝐶−5, where 𝐶 = 𝑀/𝑅 is the compactness, a measure of the amount of

mass 𝑀 per unit radius 𝑅. It is clear from this figure that the stiff equation of state

has more support for high mass NSs and supports higher tidal deformability at a given

mass. This is because for stiffer equations of state, there is more pressure support

against the gravitational force, and so NSs have a larger radius. As radius 𝑅 increases,

the tidal deformability therefore increases dramatically, due to the fifth power on

radius. A larger tidal deformability means the star is easier to distort via tidal forces.

Alternatively, the softer the equation of state, the smaller the tidal deformability. Soft

equations of state are associated to less massive NSs which are more compacted and

therefore have a smaller radius. Thus, given our previous argument for stiff stars, soft

equations of state support smaller tidal deformability for a given mass indicating they

are less easily deformed.
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6.3.1 Parameter estimation data

For the simulation studies introduced in section 6.1.1, we require a method to simulate

PE for multiple observations of GWs from BNS merger events. In order to test the

success of our pipeline, we wish for each of these events to be associated to a true

underlying equation of state that we can infer through combining information from

multiple BNS merger events. Methods to simulate PE of mock GW merger events

already exist for the current era of GW observation. We previously introduced the PE

software bilby [295] which, for simulation purposes, allows the user to specify true

mass and tidal deformability parameters for a given BNS merger event which may be

associated to any equation of state. Once these parameters are defined, a waveform

is produced relative to the defined parameters, and has noise added associated to a

given PSD (introduced in chapter 1 section 1.2.3). With the noise-added waveform,

one can then perform PE as normal, via stochastic sampling methods, as is discussed

in chapter 1 section 1.5.1.

However, simulation studies for the third generation of GW detectors must take

into consideration the change in how long a BNS signal will be observable for in

the detectors sensitive frequency range; for ET at design sensitivity, a BNS merger

signal may be in-band and observable for multiple hours [302]. PE of this signal

with current stochastic sampling methods would potentially take thousands of central

processing unit (CPU) hours [200]; computational cost increases alongside increasing

SNR and signal length. This is a computational burden which will become prohibitive

as numbers of observations increase. Alongside the increased cost of PE comes the

subsequent equation of state inference, which adds additional expense and time

requirement (see chapter 2 section 2.2.1.2 for discussion), all of which takes place

before the information from multiple events is combined together in hierarchical

inference.

Hu et al. [3] present a ML-based workflow of performing PE for 3G-era BNS

signals and subsequent inference of the equation of state together within O(1 second).

With a method similar to that of [258] but applied to long-duration BNS mergers in
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particular, Hu et al. use a conditional Normalising Flow, 𝑝PE(𝜃 |ℎ) to perform full

PE on long-duration precessing BNS merger signals detected by 3G detectors and

subsequently infer the equation of state following the work of chapter 4.

Hu et al. train a conditional Normalising Flow, 𝑝PE(𝜃 |ℎ) following the notation of

chapter 3 section 3.2, on a selected region of BNS parameter space, 𝜃 which will be

observable with 3G detectors. They find it difficult to train a Flow which covers the

entire BNS signal parameter space, so instead divide the parameter space into the

low SNR regime which covers the range [20, 50] and the high SNR regime with SNRs

in the range [200, 500] and train a different Flow model for each. We consider only

the low SNR model for our work here as this covers the majority of observable BNS

mergers with 3G detectors [3]. To train the conditional Normalising Flow 𝑝PE(𝜃 |ℎ),

the authors first generate training data by sampling chirp mass, M uniformly in the

range [2, 2.1] which corresponds to GW signals which are in the low SNR regime.

Additionally Λ̃ is sampled uniformly in the range [0, 1600] and 𝛿Λ̃ is determined by

component masses and Λ̃. The authors note the relatively tight range of Λ̃ used for

training; the upper limit is chosen to reflect the findings from GW170817 [54] but

note that a wider prior in Λ̃ would benefit for application of the model to lower mass

systems. They note this as a potential avenue of improvement for the model but use

the current upper limit as a proof-of-concept. Other parameters required to construct

the waveform are sampled relative to common choices [3].

The prior on parameters of interest 𝜃 is consistent with the training data prior on

𝜃 for the equation of state conditional Flow, 𝑝cond(Ω|𝜃). The specifics of the prior

on the conditional term 𝜃 for this Flow are pertinent to the training process only.

Beyond this, we only look to ensure that any conditional terms lie within this prior

when sampling or evaluating using the equation of state Flow, which is the case for

the 𝜃 samples generated using the PE Flow. We enforce this by applying the convex

hull defined by the training data prior boundary on 𝜃 to ensure event samples belong

within the bounds of the 𝜃 training prior (introduced in chapter 4 4.3.1). Figure

6.3.3 presents an example set of posterior samples in 𝜃 generated using the PE Flow

𝑝PE(𝜃 |ℎ). We demonstrate that the example event posterior samples, while broad
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Figure 6.3.3: 1- and 2-dimensional marginalised distributions of posterior samples
in (𝑚1, 𝑚2, logΛ1, logΛ2) from an example simulated ET-observed GW event on the
training data prior (blue) with the true parameters of the event highlighted in pink.
The contours represent 68%, 95%, and 99.7% of the samples respectively.

over the prior range in the 2−dimensional projections, are within the bounds of the

training data prior and obey the harsh bounds on the space, particularly in upholding

conventions of 𝑚1 ≥ 𝑚2 and Λ1 ≤ Λ2.

Once parameters are sampled, a gravitational waveform can be generated. However,

long-duration BNS waveforms, observable from frequencies as low as 5 Hz until merger,

sampled at standard sampling rates used in current PE analyses may have up to

10s of millions of data points. Therefore, compression techniques are necessary to
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compress the waveform to something more suitable for the Flow analysis. The authors

employ a multi-banding (the process of adapting the sampling rate depending on

the frequency interval of the waveform you are sampling [303, 304]), singular value

decomposition (SVD) (analogous to PCA, a compression of the waveform onto linear

bases) and finally two neural network architectures to compress the long-duration

GW signal observed in multiple channels of an arrangement with both CE and ET

into a single vector of length 128. The authors note that plenty of training data is

required to avoid overfitting, likely due to the high dimensionality of the problem

(17−dimensional data space and 128−dimensional conditional space). Training takes

O(weeks) on a NVIDIA A100 GPU.

In inference of real events in the third generation of GW detection, one can

then pass the observed long-duration BNS waveform to the Flow as a condition

and return posterior samples from the Flow’s data space. The authors additionally

employ importance sampling [305] to improve confidence in the result by resampling

the network output to cover for potential network inaccuracy [306]. The samples

from the Flow output are the proposal samples for importance sampling, which are

then reweighted based on the ratio of the ‘true’ analytical and Flow-determined

probabilities. An example set of posterior samples are presented in figure 6.3.3. The

posterior samples 𝜃 for a third-generation simulated event are comparable in volume

to the posterior of the event GW170817 (see figure 6.2.1), which was an exceptionally

high SNR event. Relative to current-generation posterior samples (again, relative to

figure 6.2.1), we find the posterior deviates from the prior in Λ1 and Λ2, indicating

more information being present in the tidal measurements.

6.3.1.1 Validating with single event equation of state inference

We firstly demonstrate the equation of state inference quality and discuss the com-

putational cost of a single event simulation study performed in [3]. For this work,

we firstly simulate BNS mergers associated to a true equation of state using the

method outlined in chapter 4 section 4.5.3. With a given event’s parameters, we use

the pipeline described here to generate mock PE associated to the event, by firstly

200



generating the BNS merger waveform, adding noise, and then performing PE using

the conditional Flow for PE 𝑝PE(𝜃 |ℎ). All other parameters required to build the

gravitational waveform are not defined by the equation of state. Instead, these are

sampled uniformly from bounds discussed in [3] so to be within the bounds of what

the PE Flow 𝑝PE(𝜃 |ℎ) has been trained on. The process of generating O(1000) PE

samples for a simulated event takes O(1 second).

In order to infer the equation of state of the simulated event, PE samples are passed

to another conditional Normalising Flow 𝑝cond.(Ω|𝜃) trained as is outlined in chapter

4. To recap, a conditional Normalising Flow is trained to perform the mapping from

compressed equation of state data space conditioned on parameters 𝜃 = 𝑚1, 𝑚2,Λ1,Λ2

of a BNS event associated to each equation of state. In inference, one can then

conditionally sample the 𝑝cond.(Ω|𝜃) with PE samples 𝜃 from a given BNS merger

event and return samples from the equation of state posterior Ω ∼ 𝑝cond.(Ω|𝜃). In Hu

et al. [3], the conditional Normalising Flow for equation of state inference 𝑝cond.(Ω|𝜃)

is trained as is outlined in chapter 5 section 5.3.1 with equation of state training data

which was introduced in section 5.1.

Two BNS events were simulated associated to a single equation of state from the

validation data set and GW signals were simulated for these events with SNRs of 39

and 390, and using the low and high SNR PE Flow models 𝑝PE(𝜃 |ℎ) respectively,

PE samples are produced. The PE samples for each event are then passed to the

equation of state Flow 𝑝cond.(Ω|𝜃) for equation of state inference, and the results are

presented in 6.3.4. The equation of state posterior for both a low and high SNR event

are presented in light and dark blue bands, respectively. While both event equation

of state posteriors agree with the true equation of state, the high SNR event is more

constraining, as one would expect. Both posteriors additionally agree on the general

trend of the equation of state, with the constraint in increasing SNR tightening in

both low and high density, remaining consistent with the true equation of state. While

increasing the SNR of a single BNS merger event, does improve the level of constraint

in 𝑃−𝜌, the result does highlight that hierarchical analyses which combine information

from multiple BNS merger events are necessary to truly constrain the NS equation of
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Figure 6.3.4: Plot of 𝑃 vs 𝜌 for the equation of state posterior associated to two
simulated BNS merger events to 90% confidence. The confidence intervals are defined
in the 7−dimensional compressed equation of state data and projected to 𝑃 − 𝜌.
The light blue band corresponds to the SNR 39 measurement, while the dark blue
corresponds to the SNR 390 measurement. The true equation of state is given by the
bold blue line and the prior boundaries are presented in grey.

state.

6.3.2 Results of hierarchical inference

We test the validity of the analysis firstly on the ‘medium’ simulated equation of

state so to introduce the stages of the analysis and demonstrate it’s effectiveness

in section 6.3.2.1. We discuss the results of the hierarchical analysis through the

‘original’ method, introduced in section 6.1.1, and discuss a new avenue through which

to perform the analysis in section 6.3.3, before demonstrating the agreement of the

two methods in section 6.3.3.1. We additionally discuss the performance of the new

method on inference of ‘stiff’ and ‘soft’ equations of state in sections 6.3.3.2 and 6.3.3.3

respectively.
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6.3.2.1 Medium equation of state result

We first perform hierarchical inference using PE samples from up to 128 events, using

our ‘original’ method, which have been generated using the method outlined in section

6.3.1 and are associated to the ‘medium’ equation of state presented in figure 6.3.1.

This equation of state was selected randomly from the validation data set for training

the 11−dimensional regeneration Flow. We assign ‘medium’ as a label as, out of the

three equations of state randomly selected, it is neither the softest or the stiffest.

Figure 6.3.2 reflects this labelling, as it allows for NSs with tidal deformability up to

∼ 3000 and an upper limit on mass of around ∼ 2.12 𝑀⊙. These limits on the allowed

parameters defined by this equation of state are relatively standard (see chapter

1 section 1.4 for discussion of our current knowledge of limits on NS macroscopic

parameters).

Data is collected from all 128 events and 256 PE samples – which belong within

the bounds of the convex hull defined by the training data prior on 𝜃 – are randomly

selected from each event. The reason for using 256 samples per event is justified

in section 6.2.1 with further discussion in appendix B. We perform MCMC using

information from 4, 32 and 128 events. Walkers are initially proposed as samples from

the prior Flow Ωprop ∼ 𝑝prior(Ω). The algorithm is run for a total of 5 × 103 steps

after an initial 103 burn-in steps. The conditional Flow evaluates the probability of

a proposed location Ωprop. given posterior samples 𝜃𝑖 from the 𝑖th GW event where

𝜃𝑖 ∼ 𝑝PE(𝜃 |ℎ𝑖). The trained prior flow 𝑝𝜋 (Ω) (introduced in equation 5.12 of chapter

5 section 5.4.3) evaluates the prior probability of the proposed sample 𝑝𝜋 (Ωprop) and,

the posterior probability 𝑝(Ωprop |ℎ) is found via equation 6.1.

After running for a total of 5 × 103 steps with 200 walkers, there are 106 total

samples from the posterior. Standard MCMC algorithms expect between 20% and

50% unique total probabilities [134], however we find that in evaluating the posterior

probability 𝑝(Ω|ℎ) with information from 4 BNS merger events given equation 6.1 and

performing MCMC, that we return 9.96% unique samples. As we increase the number

of events that we combine information from, the fraction of unique samples decreases
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Figure 6.3.5: 1- and 2-dimensional marginalised distributions of posterior samples
in the compressed equation of state space given information from 4 (red), 32 (yellow)
and 128 (green) GW events associated to a true ‘medium’ equation of state on the
training data prior (grey). The contour represents 90% of the samples.

further and the results from 4, 8, 16, 32, 64 and 128 events using this (which we refer to

as ‘original’) method are presented in figure 6.3.13. In attempting to combine results

from 64 events or more, the algorithm accepts less than 3% of the proposed steps,

suggesting the walkers, once proposed from the prior at the beginning, are static for

97% of the total 5 × 103 steps.

We present posterior samples from these MCMC runs in figure 6.3.5. From the

total 106 posterior samples from all steps of all 200 chains, we select 10 uniformly
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spaced samples from the chain of each walker, resulting in 2000 total posterior samples.

After a 103 step burn-in, we expect the chains to have had the opportunity to search

for the bulk of the posterior and now to be uniquely moving around the Ω space on a

scale consistent with the uncertainty on the posterior. The statistical properties of

the walkers should not be changing as we continue to sample the rest of the chain.

Therefore, selecting uniformly spaced samples from each of the chains should return

independent posterior samples from the posterior probability density. However, with

less than 10% unique steps, it suggests the chains are finding it difficult to move to

new regions of the parameter space and are preferring to remain static. This suggest

there are significant regions of the parameter space which are highly improbable.

Figure 6.3.5 presents the 2000 samples that have been selected from the chains for

results from the combination of 4, 32 and 128 events. We find the 2−dimensional 90%

contour for the 32 and 128 event results agree on the same region of parameter space

in most projections but are more constrained than that of the 4−dimensional result.

However, in increasing from 4 events, the posterior for 4 and 32 events tends further

from the truth and becomes much more multimodal. Given we also found that the

number of unique steps taken by the walkers in the 32 and 128 event cases are 4.60%

and 2.73% comparatively, it suggests the posteriors are similar because statistically

the runs are performing similarly and not evolving as desired. It’s also clear that

as we increase the number of events, the equation of state posterior becomes more

multimodal, suggests the walkers become associated to peaks of probability in the

parameter space and struggle to explore elsewhere, which would be in agreement with

the low sample acceptance rate.

Individual event likelihood evaluations with the conditional equation of state Flow

𝑝cond(Ω|𝜃) with equation 6.1 are weakly informative, as we know that the information

provided from an individual or select set of BNS merger events provides support for

much of the equation of state parameter space and so we expect to need many events

to begin to truly infer the equation of state posterior. This may be suggestive of

multiple things, first and foremost being a badly trained conditional Flow 𝑝cond(Ω|𝜃)

which produces noisy posteriors. However, the results of chapter 5 suggest this has

205



been mitigated. Alternatively, more samples 𝜃 per event could improve the calculation

of the average in equation 5.9; this was tested by increasing the number of samples

beyond 256 up to the maximum number of samples per event, however, there was

no change in the statistical behaviour of the walkers. Running MCMC, however,

without the removal of any prior information via equation 6.1 improves the statistical

behaviour of the run significantly, but is mathematically incorrect given what we

wish to achieve. We briefly state these findings so not to labour the issue, but in

summary we find that the division of 𝑁 evaluations of the equation of state prior

𝑝𝜋 (Ω) in equation 6.1 significantly affects the movement options of the walkers. In

order to tackle both sampling a potentially multimodal equation of state posterior and

accounting for an influential prior given equation 6.1, which may also have features

which alter the sampling quality upon division many times over, we look towards a

new approach which makes use of previous ways we have used the Flow which are less

at-risk of potential structure.

6.3.3 Gaussian Mixture Model method

The issues discussed above in using a Normalising Flow to evaluate the seemingly

multimodal posterior probability density of proposed regions of the equation of

state space given conditional information complement the findings of chapter 5. With

multiple sources which now suggest that using the Flow for evaluation of defined regions

of what appears to be a very complex space, we wish to now combine information

from multiple events in a way that does not require us to evaluate regions of the

equation of state space 𝑝(Ωprop. |𝜃) but rather via sampling Ω ∼ 𝑝(Ω|𝜃).

We therefore wish to follow the method of chapter 4 and use the conditional Normal-

ising Flow 𝑝cond(Ω|𝜃) to sample individual event posteriors Ωevent ∼ 𝑝cond(Ω|𝜃event).

In MCMC, proposed equations of state, or the steps of the individual walkers, are

instead evaluated relative to each of the individual event posterior probability dis-

tributions, and the information from multiple events is then combined together. In

order to remove any potential for learned artificial structure, or small artificially

enhanced modes of information that may be modelled by the Normalising Flow, we
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wrap each event’s equation of state posterior with a GMM (see chapter 4 section

4.4.2.1 for background). This ensures that each event’s equation of state posterior

is defined purely by a superposition of Gaussians, as is defined in chapter 4 section

4.4.2.1. Therefore, the posterior probability density of a proposed equation of state Ω

as determined by the information from multiple BNS mergers is

𝑝(Ω|ℎ) ∝ 𝑝𝜋 (Ω)1−𝑁
𝑁∏
𝑖=1

𝑔i(Ω), (6.2)

where

𝑔i(Ω) =
𝑀∑︁
𝑗=1

𝑤𝑖 𝑗N(Ω|𝝁𝒊 𝒋 , Σ𝑖 𝑗 ). (6.3)

Relative to equation 6.1, we replace the Normalising Flow used to evaluate 𝑝cond(Ω|𝜃)

with the GMM 𝑔i(Ω) given in equation 6.3, which models the equation of state

posterior for the 𝑖th event. However, we retain the Normalising Flow 𝑝cond(Ω|𝜃) to

generate the samples Ω to which we fit the GMM. This workflow is illustrated in figure

6.3.6. We additionally model the equation of state prior 𝑝(Ω) with a GMM. This is

to remove additional subtraction of features which may be learned by the equation of

state prior Flow and enforces that the prior is consistent with the method through

which we have chosen to collate information from multiple events, now performed by

GMMs.

6.3.3.1 Inferring the medium equation of state with a Gaussian Mixture

Model method

We repeat the method applied in section 6.3.2.1 combining information from multiple

GW events, but instead evaluating the posterior probability given in equation 6.2

through combining information from individual equation of state event posteriors,

each modelled by a GMM as in equation 6.3. We likewise take 103 burn-in steps

followed by 5 × 103 steps by 200 walkers. We again select 2000 total posterior samples

by selecting 10 evenly spaced samples from each walker’s chain, assuming the walkers

are statistically independent.

Figure 6.3.7 presents the equation of state posterior after combining information

from 4 GW events associated to the ‘medium’ equation of state, marked as crosshairs
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Ω, θ +  log(prob)

𝑝cond(Ω|θ)

Ω, θ

𝑝RG(Ω, θ)

Ω

𝑝π(Ω)

𝑔𝜋 Ω

Ω ∼ 𝑝𝜋 Ω

𝑔i(Ω)

Ω ∼ 𝑝cond Ω|θi

𝑝PE(θ, h)

𝜃i

ℎi

MCMC

Figure 6.3.6: Block diagram of the workflow of the GMM method for hierarchical
analysis. This includes the use of regeneration, conditional, prior and PE Flows.
Samples 𝜃i are generated from the PE Flow and are used to sample Ωi ∼ 𝑝cond(Ω|𝜃i) to
construct event-wise GMMs. The prior Flow is likewise sampled such that Ω ∼ 𝑝𝜋 (Ω)
to construct a GMM to model the equation of state prior. GMMs which represent
each event’s equation of state posterior and the prior are then used in MCMC for the
multi-event analysis.
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Figure 6.3.7: 1- and 2-dimensional marginalised distributions of posterior samples in
the compressed equation of state space given information from 4 GW events associated
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90% of the samples.
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Figure 6.3.8: Plot of pressure 𝑃 against density 𝜌 of the equation of state posterior
to 90% confidence given the combination of 4 GW events from an ‘medium’ equation
of state using the original method (dark blue) and the GMM method (light blue).
True equation of state plotted in bold blue line. Training prior bounds in 𝑃 − 𝜌 are
plotted in pink.

in the figure. The figure presents both the result using the original conditional

Flow-based method and the result when the GMM method was applied instead. In

both the 2−dimensional and 1−dimensional projections, the results for both methods

broadly agree. This gives confidence to our new approach. In most dimensions, the

true equation of state belongs within the 90% contour. In the maximum 𝜌 and AE2

dimensions, the truth appears to lie between two modes which are present in both

dimensions posteriors.

Figure 6.3.8 presents the 90% confidence interval (CI) result for 4 events from

both the original and GMM methods in 𝑃 − 𝜌 alongside the true equation of state

which we are aiming to infer (see previous KDE method discussion). It appears

that the result from both methods find similar regions of the equation of state space
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desirable. Both results span a broad range of the prior, where the result for the original

method is slightly more constrained than that of the GMM method, which has more

outlier equations of state. The GMM method additionally returns equations of state

which violate the requirement of a monotonically increasing function of pressure with

density. This is not an enforced requirement in the analysis, but is not allowed in the

training data. The bounds in the 𝑃 − 𝜌 plane are defined purely in the 2-dimensional

projection, and this boundary is not defined in the 7−dimensional space. To account

for the training prior boundary in the 7−dimensional space, we follow the method

used in chapter 4 which applies a GMM which models the training data prior in the

compressed equation of state space. The least probable sample from the training data

set as evaluated by the GMM then defines a probability threshold. If equations of

state are sampled with probability less than this threshold, they are rejected. This

prohibits severe outliers from the 7−dimensional space being projected into 𝑃 − 𝜌. All

equations of state for both methods in figure 6.3.8 have been passed through such a

threshold. Therefore, equations of state which are beyond the training prior bounds

in 𝑃 − 𝜌 are from probable regions of the equation of state data space relative to

the prior training data. This reminds us that in using either a Normalising Flow

or GMM to model the autoencoder latent space, the autoencoder does not enforce

that the latent space has any physical meaning on requirement on its shape, unlike

a variational autoencoder. Regions of the autoencoder latent space which are not

training data points themselves can’t be guaranteed to produce anything valid. We

take this into consideration for future inference results.

Additionally, the equations of state at 50% confidence appear to split into two

branches, a result which may be a manifestation of the multimodality of the 7−dimensional

space. By this, we mean that independent modes in the 7−dimensional space are

decoded from clusters in 7 dimensions to clustered 2−dimensional 𝑃 − 𝜌 equations of

state. We assume therefore that the branching is artificial and does not make any

claim about a potential invalid gap between valid regions of the equation of state

posterior. Given this assumption, we calculate the pressure range at nuclear saturation

density, 𝜌sat to be 5.99 × 1033 dyn cm−2 to 90% confidence and 2.41 × 1033 dyn cm−2

to 50% confidence, which demonstrates the increased contraction around the truth as
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we increase the number of GW events we combine information over.

We compare the number of unique steps for both methods in combining information

from 4 GW events. Figure 6.3.13 presents the number of unique steps taken by the

walkers in MCMC using both the original method of evaluating the probability of a

given equation of state (using the conditional Flow) and the GMM method associated

to the ‘medium’ equation of state. The evolution of number of unique steps for both

the GMM and original methods are very similar for the same simulated equation of

state. This suggests both methods are finding the equation of state space difficult to

sample and are finding very improbable regions of the equation of state space. In the

GMM analysis, we model the equation of state posterior associated to each event with

a GMM, and likewise model the equation of state prior probability distribution with

a GMM. In doing so, we generalise these spaces with a superposition of Gaussians; 4

Gaussians were used to make both the event-specific and the prior GMMs. This aims

to remove any fine features or intricate modelling of either the event equation of state

posteriors or the equation of state prior. For sampling statistics like those presented

for the GMM method in figure 6.3.13, this suggests the posterior is inherently difficult

to sample, and the division of the equation of state prior 𝑁 times is a strong effect.

This is in agreement with the result discussed in section 6.3.2.1, where we stated that

in using the original equation of state pure-Flow based method but not dividing any

prior via 6.1 resulted in more statistically valid sampling. We find the same result in

removing the division of the prior in equation 6.2; we find that the walkers accept

far more proposed steps and the MCMC runs are much more statistically valid. We

compare the combination of information from more GW events to compare the quality

of the GMM results further.

Figures 6.3.10 and 6.3.12 present the result of inferring the same true ‘medium’

equation of state with information from 8 and 16 GW events, respectively, using both

the original and GMM methods. With more events, the results from the two methods

begin to differ, with the original method providing more support broadly across the

entire prior training space. In the 1−dimensional marginalised distributions, the

original method appears more multimodal. The GMM result appears more consistent
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Figure 6.3.9: 1- and 2-dimensional marginalised distributions of posterior samples in
the compressed equation of state space given information from 8 GW events associated
to a true ‘medium’ equation of state using the original method (brown) and the GMM
method (orange). The contour represents 90% of the samples.
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Figure 6.3.10: 1- and 2-dimensional marginalised distributions of posterior samples in
the compressed equation of state space given information from 8 GW events associated
to a true ‘medium’ equation of state using the original method (brown) and the GMM
method (orange). The contour represents 90% of the samples.
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Figure 6.3.11: 1- and 2-dimensional marginalised distributions of posterior samples
in the compressed equation of state space given information from 4 (red), 8 (orange)
and 16 (yellow) GW events associated to a true ‘medium’ equation of state using the
GMM method on the training data prior (grey). The contour represents 90% of the
samples.

with the truth than the original method result in the 2−dimensional distributions; in

most projections, the truth lies within or on the 90% probability contour. For the

original method result, there are multiple small regions bounded by the 90% contour,

especially on the edges of the training prior. Due to the unstable nature of the original

method result, we choose to move forward with the GMM approach and test how

many events we can combine over and remain stable.
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We present the results of combining information from 4, 8 and 16 events associated

to the same ‘medium’ equation of state using the GMM method in figure 6.3.11.

While the result of combining 4 events differs from the others with a broader posterior

which fills more of the prior, the result of combining 8 and 16 events are very similar

in their 2−dimensional contours. In the 1−dimensional marginalised histograms, it

is clear that in increasing from 8 to 16 events, more weight is placed in secondary

modes and the posterior becomes more multimodal. In figure 6.3.13, we find that

the increase from 8 to 16 events also means a reduction in number of unique steps

from 6% to 4%. While this number aligns with the increase in number of modes in

the posterior, both of these quantities are very low, and are much lower than would

be desirable for an MCMC run. For these reasons, we produce the results in 𝑃 − 𝜌

for combinations of up to 16 events for the following simulation studies. It appears

that inference of the equation of state using more than 16 events is uninformative

due to the properties of our method which presents itself as low quality sampling

statistics. We leave inference of more events to future work, once the multimodality of

the equation of state posterior is better understood and/or the sampling performance

is improved. For the next and fifth observing run of the current ground based detector

network, the number of observed BNS events is expected to be 28+44−21 [299], and so we

demonstrate the performance of our pipeline for these purposes; while 16 is less than

the expected median value of BNS observations, it does lie within the expected range

of [7, 72].

The equation of state posterior after the combination of information 16 GW

events is projected into 𝑃 − 𝜌 and presented in figure 6.3.12 (see previous KDE

method discussion). The 90% confidence equations of state span the prior range and

interestingly, the increase from 4 to 16 events has removed the non-thermodynamically-

stable equations of state from the higher pressure and density regions. This suggests

these equations of state in the 4 event result, presented in figure 6.3.8 were on the

edges of the parameter space which still had support in the 4 event case, whose

support is no longer present in the 16 event result. Given 16 GW events, we find the

compression of the equation of state posterior at nuclear saturation density 𝜌sat to 90%

and 50% confidence to be 5.29× 1033 dyn cm−2 and 3.35× 1033 dyn cm−2 respectively.
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Figure 6.3.12: Plot of pressure 𝑃 against density 𝜌 of the equation of state posterior
to 50% (dark blue) and 90% (light blue) confidence given the combination of 16 GW
events from an ‘medium’ equation of state using the GMM method. True equation of
state plotted in bold blue line. Training prior bounds in 𝑃 − 𝜌 are plotted in pink.

Compared to the pressure contraction to 50% and 90% confidence given 4 GW events,

we find the increase from 4 to 16 events has marginally decreased the error on the

inference of the equation of state at saturation density at the 90% confidence level,

while the 50% confidence result is more significantly constrained in the 16 event result

compared to 4.

6.3.3.2 Inferring the stiff equation of state with Gaussian Mixture Model

method

We also present results of combining information from multiple events associated to a

true ‘stiff’ equation of state, presented in dark pink in figure 6.3.1. Out of the three

equations of state presented, this equation of state presents the steepest gradient in

the 1014 − 1015 g cm−3 density range. Figure 6.3.2 presents the 𝑚 − Λ relationship for
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Figure 6.3.13: Plot of fraction of unique steps vs. number of events for different
MCMC runs for various simulation studies associated to the ‘medium’, ‘soft’ and
‘stiff’ simulated equations of state using the GMM method. We additionally include
the inference of the ‘medium’ equation of state using the original purely Flow-based
method.

this equation of state, where we see support for larger Λ for a given mass, implying a

more extended star with larger radius and therefore is more tidally deformable. The

equation of state also supports higher mass NSs, compared to the other equations

of state discussed, and supports very high tidal deformability for NSs of mass 1 𝑀⊙.

Additionally, the 𝑚 − Λ relationship shows some kink-like behaviour which is thought

to represent compactification of stiff equations of state [137], where an equation of

state has a phase transition (introduced in chapter 2 section 2.1) where the pressure

drops suddenly at a given density, or at the edge of a region of NS material. A NS

with such an equation of state becomes more compacted as a result, relative to a NS

associated to an equation of state without a pressure drop. These pressure drops are

not necessarily perceptible in the 𝑃 − 𝜌 relationship in figure 6.3.1.
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Figure 6.3.14: 1- and 2-dimensional marginalised distributions of posterior samples
in the compressed equation of state space given information from 4 (red), 8 (orange)
and 16 (yellow) GW events associated to a true ‘stiff’ equation of state using the
GMM method. on the training data prior (grey). The contour represents 90% of the
samples.
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The equation of state posterior from the combination of information from 4, 8 and

16 events is presented in figure 6.3.14. Relative to the result for the ‘medium’ equation

of state, we find that the 4 event result does not differ as much from either of the 8 or

16 event results. In the 1−dimensional marginalised histograms, the result for 4 events

appears more multimodal than that of the ‘medium’ equation of state in figure 6.3.11,

and the results for higher numbers of events remain multimodal with different levels

of support for different modes. In most dimensions, the truth remains on the edge of

or outside the 90% contour of the posterior, regardless of the number of events we

are combining information from. The posteriors from the combination of 4, 8 and 16

events being similar is in agreement with the number of unique steps taken by walkers

in each of the analyses, presented in figure 6.3.13. For the stiff equation of state, the

number of unique walkers is consistent, regardless of the number of events we are

combining information from. This suggests that for this particular simulated equation

of state, the approximation to the posterior determined by MCMC is multimodal from

early combination of events and does not become any more significantly multimodal,

at least up to ∼ 100 events. This is in contrast to the previous simulation of the

medium equation of state in section 6.3.3.1, where the multimodality appeared to get

worse with increasing number of events.

Figure 6.3.15 presents the 𝑃 − 𝜌 projection of the equation of state posterior

after combination of 4 and 16 events to 90% confidence (see previous KDE method

discussion). The figure presents a decrease in spread of pressure at a given density

when combining 16 instead of 4 events. The result for 16 events additionally appears

to separate into two main modes, one of which is in agreement with the true equation

of state up to around 2 × 1014 g cm−3 and then disagrees. Notably, the stiffest region

of the equation of state posterior is in the region of [2, 4] × 1014 g cm−3, at the top

end of which the two modes appear to recombine.

We believe the feature of the two modes or branches in figure 6.3.15 to be an

artifact, rather than something physically relevant. The branching of the equations

of state in 𝑃 − 𝜌 appear to be a direct result of multimodality in the 7−dimensional

equation of state space. Modes or clusters of samples in a given region of 𝑃 − 𝜌
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Figure 6.3.15: Plot of pressure 𝑃 against density 𝜌 of the equation of state posterior
to 90% confidence given the combination of 4 (dark blue) and 16 (light blue) GW
events from a ‘stiff’ equation of state. True equation of state plotted in bold blue line.
Training prior bounds in 𝑃 − 𝜌 are plotted in pink.

space appear to decode to clusters or branches of very similar equations of state.

We consider two independent branches of equations of state to suggest that there

is support which spans that given region of density, so we choose to ignore the gap

and therefore calculate the uncertainty at given density values as if the gap was not

present. The span of pressure at 𝜌sat is 1.02 × 1034 dyn cm−2 at 90% confidence for 4

events compared to 3.37×1033 dyn cm−2 for 16 events. The breadth of the equation of

state posterior in 𝑃 − 𝜌 at 90% confidence for the 4 event result for the stiff equation

of state is broader compared to the medium equation of state result, which has width

of around half of the width quoted for the stiff result. However at 16 events, the

compression is more comparable to that of the medium result, suggesting there is

more significant contraction of the posterior for the stiffer equation of state compared

to the medium. In moving from 4 to 16 events the equation of state posterior in
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𝑃− 𝜌 does compress beyond the training prior bounds at the 90% confidence level and

does compress in a way that is broadly consistent with the truth. We note that our

choice of events we combine information over is randomly selected from the GW event

prior, so some events may be more influential than others. In future work, we suggest

combining information over multiple iterations of randomly selected events from the

GW prior to test the true scale of compression possible. Additionally, with a more

stable analysis tool, one could calculate to what level we would expect constraint on

the equation of state at saturation density given the expected number of events in the

fifth observing run or in next generation detection. We leave this for future work.

6.3.3.3 Inferring the soft equation of state with Gaussian Mixture Model

method

Finally, we discuss a ‘softer’ equation of state. The chosen simulated equation of state

is soft in the sense that it is an equation of state with the least steep gradient we are

considering, but with a larger allowed max pressure. We perform the same analysis,

except now with 4, 8 and 16 events associated to this equation of state. We can see

from figure 6.3.2 that this equation of state supports smaller tidal deformability for

a given mass of NS. Therefore, this equation of state is less easily deformed under

tidal forces and has a smaller radius, suggesting a NS which is small in volume and is

well compacted. This equation of state has the lowest maximum allowed mass out

of all equations of state discussed here due to the smaller volume and therefore less

material contained within the star, owing to less total mass.

Figure 6.3.16 presents the equation of state posterior after the combination of

information from 4, 8 and 16 GW events. Similar to previous results, the 4 event

result is broader in the 2−dimensional contours than that of the 8 and 16 event results,

however the truth lies on the edges of the 90% contour after the combination of 4

events in most dimensions, and beyond the posterior when combining information from

more events. In combining information from 4 compared to 8 events, the posterior

contracts in volume and removes support from the edges of the equation of state prior

and instead focusses on the primary mode. In doing so, this removes support from
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Figure 6.3.16: 1- and 2-dimensional marginalised distributions of posterior samples
in the compressed equation of state space given information from 4 (red), 8 (orange)
and 16 (yellow) GW events associated to a true ‘soft’ equation of state using the
GMM method on the training data prior (grey). The contour represents 90% of the
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regions of the posterior which is actually consistent with the truth. This is particularly

clear in the 2−dimensional maximum pressure and maximum density plane; the result

which combines information from 4 events shows a clear second mode which agrees

with the true equation of state. However, as the number of events increase, support

for the second mode decreases and eventually shifts away from the truth.

Figure 6.3.13 presents the number of unique steps associated to the MCMC runs

for this simulation study for the ‘soft’ equation of state. When combining information

over 4 events, the number of unique steps is 4 − 8% higher than the same metric

for the runs which aim to infer the other equations of state we have introduced. As

the number of events increase, this number does not decrease steadily but remains

relatively consistent (apart from the significant dip at 64 events which we attribute to

issues with computational resources, see section 6.4). This suggests that the equation

of state posterior surface which is being explored in this run as opposed to the others

has more features of comparable probability, which the walkers find it easier to move

around amongst or between. We see the support for the second mode around the true

equation of state wanes as we increase the number of events. If the posterior we are

looking for in this case is on a sharp peak which the MCMC algorithm finds difficult to

identify, as the walkers explore during the run they may instead find broader regions

of the equation of state posterior space which is ‘probable enough’, instead of the true

peak, leading to inconsistency with the truth. Alternatively, the likelihood model,

modelled by the Flow or GMM, may not be accurate enough and accumulation of

error over 8 or 16 events is enough to return an incorrect probability function.

We plot the projection of the equation of state posterior from the 7−dimensional

result into the 𝑃 − 𝜌 plane and present the projected posteriors after combination

of information from 4 and 16 events to 90% confidence in figure 6.3.17 (see previous

KDE method discussion). Likewise with figure 6.3.15, the posterior for 16 events is

a more compressed result than that of 4 events, but with some similar branching

features. The posterior in figure 6.3.16 for 16 events is multimodal – especially visible

in dimensions 1 and 2 – and therefore the most logical reason for the branching is a

direct reflection of the multimodality of the 7−dimensional posterior. Given that the
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Figure 6.3.17: Plot of pressure 𝑃 against density 𝜌 of the equation of state posterior
to 90% confidence given the combination of 4 (dark blue) and 16 (light blue) GW
events from a ‘soft’ equation of state. True equation of state plotted in bold blue line.
Training prior bounds in 𝑃 − 𝜌 are plotted in pink.

posterior for 16 events in figure 6.3.16 does not find the true maximum pressure and

density, it is therefore clear why the 16 event result in figure 6.3.17 does not extend

the full breadth of the true equation of state. Given that we follow the previously

described logic of assuming the branching features are artificial, we therefore place

errors on the equation of state at 𝜌sat of 3.69×1033 dyn cm−2 and 3.28×1033 dyn cm−2

at 90% and 50% confidence respectively. We assert that the 16 event result includes

the true equation of state to 90% confidence up to a density of around 6× 1014 g cm−3,

beyond which it no longer agrees and tends to a stiffer result. Both the 4 and 16

event results project to similar regions of the 𝑃 − 𝜌 space to 90% confidence. Relative

to figure 6.3.16, both posteriors in 7 dimensions are very similar and find a common

(if incorrect) mode in the 7−dimensional space. This mode projects to a branch in

figure 6.3.17 which is disfavoured in moving from 4 to 16 events, which agrees with
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the result of increasing the number of events in the 7−dimensional result. Otherwise,

the posteriors are only slightly different between the two results, and therefore the

very little change in the error on pressure agrees with what we find in both figures.

6.3.4 Discussion of potential structure

Akin to the results from chapter 5, the above results of sections 6.3.2 and 6.3.3 present

multimodality in the 1− and 2−dimensional projections of the 7−dimensional equation

of state posteriors. We consider in the discussion of the above results if the spike-like

modes are physical. The spikes are evident not only in the projected figures (for

example, figure 6.3.11) but also in the statistical qualities of the MCMC sampling

itself. The sampling struggles to accept steps that are proposed, suggesting that much

of the parameter space is of very low log(probability) relative to some ‘spikes’ in

log(probability). This emulates the findings of chapter 5, suggesting that the cause

of this may then be a feature of Normalising Flows which is not so easily avoided.

Alternatively, the spikes in the parameter space are physically motivated and are

manifestations of the true equation of state posterior; however it is unlikely that the

true equation of state posterior after the combination of 4 GW events is a multimodal

distribution with such sharp features. We know that individual GW events with

current GW detector sensitivity are relatively uninformative relative to the equation

of state (see chapter 4 section 4.5 for an example of a single event result) and so we

expect much of the equation of state posterior to be comparably probable. This is in

contrast to the small select regions of high probability and vast swathes of severely

improbable equations of state found in sections 6.3.2 and 6.3.3.

In order to test whether the features found in the combined equations of state

posterior are real or are features of the Normalising Flow, we suggest tests which

constitute future work. One example, would be to test such an analysis on an over-

simplified equation of state training data set. Chapter 5 introduced a new training

data set, and while the findings of this chapter were not unique to this data set (the

artificial structure discussed in chapter 5 was also found when using an equation of

state training data set of a different, and much more simplified, parameterisation), one
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could over-simplify the equation of state data so to test if it is the Flow’s modelling

of the training data which introduces complication. One could introduce a simple

𝑛−dimensional Gaussian distribution as the equation of state data and perform

hierarchical analysis or, use straight line equations of state with minimal number of

parameters. This would simplify the equation of state data so that one can then

learn where the complication is introduced to the hierarchical analysis and where

the Flow begins to struggle. Alternatively, one could perform hierarchical analysis

with standard stochastic sampling techniques absent of the Flow and investigate

whether the multimodality is still present. While this would be computationally more

expensive and take more time, this analysis would be a definitive comparison of the

same conditions with and without the Flow.

6.4 Computational expense

We calculate the computational expense of such an analysis, including both the

original method discussed in section 6.3.2.1 and the later GMM results. Figure 6.4.1

presents the time taken in minutes to perform the MCMC run for inference of different

injected equations of state given information from different numbers of GW events. We

compare the performance of the original and GMM methods using the same simulated

equation of state and associated events and the performance of the GMM method on

different simulations. The figure shows an upwards trend in the time required for all

GMM analyses as the number of events increases. The time required for the original

method for small numbers of events (4, 8, 16 events) is substantially more than that

of the GMM method, highlighting the intrinsic computational burden for the initial

method in using a given number of samples per event and using the Flow and a GPU

for probability evaluation.

Figure 6.4.1 presents only the time taken to run the user-defined number of steps

of the MCMC algorithm. Therefore, the results for different simulations applying the

same GMM method should, in theory, be very similar given the MCMC has access

to the same probability function and is making the same evaluations of probability

albeit with different data. However the grey dots and the purple dots compare the
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Figure 6.4.1: Plot of time taken vs. number of events for different MCMC runs
for various simulation studies associated to the ‘medium’, ‘soft’ and ‘stiff’ simulated
equations of state. We additionally include the inference of the ‘medium’ equation of
state using the original method.

time taken for both the original and GMM methods given the same information,

respectively. The time taken to combine information from 4 events for the original and

GMM methods are starkly different with around 100 minutes of difference between

the different analyses. This trend continues up to 16 events, the results of which have

been presented here. For the original analysis, the time taken to combine information

from 32 and 64 events is less than that of combining information from 8 events, a

discrepancy which can be afforded to using a different and faster GPU for this analysis.

Combining 128 events again used the same GPU as the combination of 32 events, and

so we note the clear difference in performance depending on the GPU used.

The computational time required to perform the GMM-based analysis follows a

consistent upwards trend with number of events. This analysis does not require the
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Flow training
Normalising Flow model Time taken (minutes)

𝑝RG(Ω, 𝜃) 15.78
𝑝cond(Ω|𝜃) 25.95
𝑝prior(Ω) 15.22

Table 6.4.1: Table of time taken in minutes to train regeneration (RG), conditional
(cond) and prior Normalising Flows for equation of state inference. We do not include
the training time of the PE Flow 𝑝(𝜃 |ℎ) as this is an independent analysis.

GMM construction
No. of events Time taken (minutes)

4 0.12
8 0.16
16 0.29
32 0.46
64 0.94
128 1.80

Table 6.4.2: Time taken in minutes to construct all GMMs for each equation of state
event posterior for different numbers of events.

Full pipeline inc. MCMC
Time taken (minutes)

No. of events Flow (original) method GMM method
4 125.73 4.55
8 224.79 25.55
16 252.10 34.40
32 158.05 107.72
64 191.20 193.23
128 424.85 175.97

Table 6.4.3: Table of time taken for all required parts of the pipeline for both the
original and GMM methods for different numbers of events. For the Flow (original)
method, this includes the time taken to train all the Flow models required (table 6.4.1)
and to run the MCMC for the given number of events. For the GMM method this
includes the time taken to train the equation of state conditional Normalising Flow,
construct GMMs for the required number of single event equation of state posteriors
6.4.2 run MCMC.

use of a GPU, and therefore as the number of events we are combining information

from increases, the number of GMMs we use the evaluate the probability of a given

Ωprop. increases and the number of items we take the sum over likewise increases.

Therefore the increase in time is the increased computational load, which is overall

lightweight, and does not make use of a Flow.
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In the original method, a discrete quantity of posterior sample data from each

of the GW events is provided to the probability function, and therefore the GPU at

once. The GPU processes this data simultaneously, and can do so for any quantity

of data up to the memory limit of the GPU. Therefore we would expect a relatively

constant time taken for all runs with different numbers of events, especially in the

regime of relatively low numbers of events (and samples). Inference over 128 GW

events would mean ∼ 2.3 × 105 numbers are passed to the GPU at once to then have

their probability evaluated relative to the Flow. The 128 event analysis was performed

on an Tesla V100 GPU, which has a memory limit of 32 GB. Therefore, processing

of ∼ 2.3 × 105 numbers (assuming we used float16 numbers which are 2 bytes each)

would require 0.00046 GB, which is a fraction of the capability of the GPU. We do,

however, consider that analyses were performed on different GPUs, which is difficult

to be avoided in shared pools of computing resources. We discuss this next relative to

the time taken for different runs.

Discussion of computational cost until now has been based purely on the MCMC

algorithm. We present the computational costs of different required parts of the

pipeline in tables 6.4.1 and 6.4.2. Both methods use the regeneration and conditional

Flows, the training times given in table 6.4.1. Only the original Flow-based method

requires the prior Flow, likewise given in 6.4.1. Since all trained models for this

analysis are relatively lightweight, the training time is not a significant expense. All

models were trained using an NVIDIA GeForce RTX 3090 GPU. The time taken to

make a GMM which encompasses a single event posterior, given in table 6.4.2, is very

small, as each GMM was designed to be constructed of only 4 Gaussians, likewise for

the GMM which models the equation of state prior (this is not included in the table

but takes 0.01 seconds). While no Normalising Flow is used in the GMM method to

evaluate probabilities, mathematical operations in equation 6.2 were performed on

the GPU through default PyTorch operations. The full times required to train the

required Flows or GMMs for each analysis and then perform MCMC are given in table

??. The times taken for the MCMC stage only for different workflows are presented in

6.4.1. In the original method, there is an upward trend in the time taken for 4 events

to 16 with then a dramatic drop off. We attribute this to a change in GPU, as the
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original method MCMC runs for combination of 32 and 64 events were completed on

an NVIDIA GeForce RTX 3090 GPU while all other runs were completed on either

NVIDIA GeForce RTX 2080 GPU (16 events) or Tesla V100 (128 and 8 events). Due

to computational constraints, it was not possible to complete all runs on the same

GPU with no competition for resources to truly compare the time taken, so we suggest

this as potential future work.

We compare the computational requirements of our result to that of similar

analyses. In [189] the authors build a pipeline for hierarchical inference of the NS

equation of state using a KDE method. They reuse PE samples from single event

analysis (a by-product of a GW observation), and then performs repeated equation of

state inference for each new BNS event observed, regularly updating the prior after

each observation. This details of this workflow is discussed in chapter 2 section 2.2.1.2.

The primary comparison here is to the time required for the analysis. The authors

quote that for inference of ∼ 10 BNS merger events, their pipeline takes around 20

hours to 1 day to infer the overal equation of state. Alternatively [187] applies a

similar method of using a GPU to model single event posterior samples in 𝜃 and

then compute the likelihood, which they combine given multiple sets of PE samples

from multiple BNS observations. By combining this information in the 𝜃 space, they

wish to find relationships between macroscopic observables and then constrain the

equation of state in the 𝑚 − Λ space. They demonstrate their results by combining

the information from 37 BNS merger events and, assuming their analysis completes

around 106 likelihood evaluations in nested sampling, their pipeline is estimated to

take around 13 hours. Our analysis is therefore highly competitive with other pipelines

in the time required to perform NS equation of state inference given observation of

O(10) BNS merger events, with our pipeline able to perform in a fraction of the time.

Given we have presented valid results for the combination of up to 8 and 16 events

for different simulations, we place this analysis to be valid for use in the upgraded

current generation of GW observatories. The current expectation of the number

of BNS events which will be observed during the fifth observing run of the current

ground based detector network is 28+44−21 [299]. Our pipeline is therefore suited to
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operating during this observing run to combine information from the 10s of events

expected. We quote above the computational time and resources required to complete

the combination of information from 4 up to 128 GW events, such that, in future

work tackling the multimodality and difficult in sampling of the algorithm, one can

be aware of the computational requirements and expectations in advance.

6.5 Conclusion

Building on the results of chapter 5, we have demonstrated the use of a pipeline for

hierarchical inference of the NS equation of state given multiple observations of GWs

from BNS mergers. We demonstrate the performance of the pipeline in combining

information from the first two real BNS merger events, GW170817 and GW190425,

before applying to simulated events associated to known equations of state. We

also discuss the computational requirements of such an analysis relative to future

ground-based detector observing runs and compare to existing pipelines.

Chapter 5 demonstrated how we overcame issues with apparent artificial structure

in the learned mapping of the equation of state data by the Normalising Flow. What

appeared as peaks and troughs of probability in the equation of state data space were

tempered by, firstly, reducing the dimensionality of the autoencoded equation of state

data space and then subsequently by augmenting the training data through use of

an additional Normalising Flow. This was titled the ‘regeneration Flow’ and serves

as a cheap and effective way to generate more training data samples from a learned

distribution quickly using a Flow. The results of this chapter suggested that the

artificial features in the learned equation of state space has been eradicated through

these additions to the workflow and as such we had a Normalising Flow model which

could evaluate the probability of valid regions of the equation of state data space with

rational results.

In this chapter, we firstly demonstrate the results of the workflow in combining

information from the two real BNS merger events GW170817 and GW190425. While

GW170817 is the much louder event with the more constrained event posterior in 𝜃,
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and therefore has the most potential for significant equation of state constraints, we

present results of the combined constraint given information from both events. We

present results in the 7−dimensional equation of state space, where we can see the

common volume of space both events’ posteriors occupy and the subsequent combined

posterior in agreement. We also project results into the 𝑃− 𝜌 plane and find the result

occupies a smaller region of the plane than that of GW170817 results only, but assert

caution due to the difference in priors between comparative analyses.

We next introduce our method for inferring the equation of state of simulated

GW events associated to know equations of state. Firstly, we introduce data from

the work of Hu et al [3] who introduce a method to perform PE of long-duration

BNS signals, suited to the next generation of GW observation. Their work employs

another conditional Normalising Flow pipeline such that, once hours-long signals

from GWs of a BNS merger are observed, one can conditionally sample for posterior

samples of macroscopic observables 𝜃. Their work also applies the method of chapter

4 in performing single event equation of state inference; through the rapid PE and

subsequent equation of state inference, both using Normalising Flows, the full analysis

from observation to equation of state inference can be performed in O(1) second. We

present the result of performing single event equation of state inference using the full

pipeline given two simulated signals of very different SNRs associated to the same

known equation of state. We demonstrate the results are in agreement with each

other and with the true equation of state, and find we achieve improved equation

of state constraint for the higher SNR signal. However, due to the similarity in the

results regardless of the significant difference in SNR of each of the measurements,

we highlight the need for hierarchical inference for any significant equation of state

constraint.

We therefore perform hierarchical inference using the Flows-based method given up

to 128 simulated BNS merger events associated to a known equation of state. We find

the sampling efficiency of MCMC is low in the combination of 4 events and decreases

further as the number of events increases. The sampling efficiency beyond 16 events

is 5% or less, suggesting the equation of state posteriors for the combination of any
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more than 16 events have not evolved beyond their initial proposition of walkers from

the equation of state prior.

Given the complications detailed in chapter 5 and the apparent complexity and

multimodality of the equation of state posterior given multiple events, we introduce

a new method which applies the findings from chapter 4 in sampling single event

equation of state posteriors as opposed to using the flow to evaluate proposed equations

of state. We therefore use a GMM to wrap single event equation of state posteriors as

well as the equation of state prior. Therefore, in hierarchical analysis, we can evaluate

the probability of a given proposed equation of state relative to each event’s posterior

and the simplified equation of state prior. Each event’s posterior and the prior is

represented by a superposition of only 4 Gaussians, so to be as generic as possible and

offer no opportunity for feature learning. The choice of using 4 Gaussians was made

to rapidly construct the GMM and remain generic. Using more Gaussians, perhaps to

model the single event posteriors more accurately, is suggested for future work. This

removes some ambiguity and complexity which is introduced by the nature of the

Normalising Flows; even though our Flow models were purposely built to be simple

and lightweight without the capacity for feature learning, is is clear that Flows are

still flexible in the case of complex problems. However, we find the GMM results are

somewhat comparable to that of the Flow result, but with improved stability. It is

therefore apparent that the equation of state posterior given combination of multiple

BNS merger events is naturally multimodal, and the equation of state prior removal

from single event results is a prominent effect, regardless how accurately it is modelled.

Given the improved stability and transparency of the GMM analysis compared to

that of the Flow, we choose to move forward with this tool.

We present results up to the combination of up to 16 events from 3 different true

equations of state (medium, stiff and soft), presenting the results in the 7−dimensional

equation of state result and projected into 𝑃 − 𝜌. We find for the medium equation of

state, the equation of state posterior after the combination of 16 events occupies a

smaller volume of the 7−dimensional equation of state space than that of the 4 event

result, both of which are in agreement with the truth. In the 𝑃 − 𝜌 representation,
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the 16 event result appears to project the multimodal 7−dimensional posterior into

multiple equation of state ‘branches’ which we deem not to be physically relevant but

a consequence of the multimodality of our estimate of the equation of state posterior.

While the branches are projections of real modes in our 7−dimensional equation of

state posterior, these are an artefact of our approach. The inferred posterior for the

stiff equation of state from the combination of 4 and 16 events are more comparable

in their 7−dimensional projection, but their projected equations of state to 90%

confidence in the 𝑃 − 𝜌 plane show more significant contraction in the posterior when

increasing to 16 events. Finally, the application to a ‘soft’ equation of state shows

disagreement with the true equation of state when increasing the number of events

beyond 4 events. The disagreement is present in both the 7−dimensional and 𝑃 − 𝜌

representations, and appears to be a discrepancy due to the multimodality of the

problem.

We finally discuss the computational requirements of the workflow. While the

original method and GMM method are very similar in their components, the lack

of requirement of a Normalising Flow in the GMM method makes the analysis

significantly more efficient, where information from 4 events can be combined in less

than 10 minutes. The time required increases linearly with the number of events we

combine information over, owing to the number of simple computations required (equal

to the number of events). We use a GPU in the analysis to be able to accelerate these

operations. The original method requires the use of the trained Flow which we likewise

access via the GPU. This allows us to parallelise evaluation of probabilities, which

scales as number of events × number of posterior samples per events × dimensions of

the equation of state space. Therefore, the number of probability evaluations required

with minimal number of events is already significantly higher than the GMM method.

However, in the increase in number of events to order 100s, we expect the original

method to be competitive if not more efficient than that of the GMM method. As the

number of events increases, the number of operations performed in the GMM method

will increase linearly while the batch of operations performed on the GPU will get

larger, but the time taken to perform these operations on the GPU will not change,

due to the large memory and parallelisation.
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We finally compare the computational requirements of the GMM method to

existing analyses. Both the analyses that we compare to quote results from the

combination of O(10) events, a similar scale of investigation to the results presented

here. Our workflow is substantially quicker than the other pipelines we compare to,

but its validity is restricted currently to 16 events. Other examples need from 10

hours to 1 day to combine information from order 10 events, whereas the pipeline here

needs only ∼ 1 hour to do so. Therefore, we project that, once sampling difficulties

and Flow complications are set aside, that the use of Normalising Flows as a tool for

hierarchical inference of the NS equation of state has much potential.

236



Chapter 7

Conclusions

Observations of NSs with GWs, while a relatively recent discovery, have offered us a

new method through which to learn about NS matter. Our prior understanding of

high density supranuclear matter relied on the observation of EM emission from NSs,

most of which to date have been radio observations. Stemming from supernovae, NSs

are the most dense matter in the universe that we know of; we believe there to be a

solid external crust of nuclei arranged in a lattice structure, below which are layers

of neutron-rich matter, with ever-increasing density. GWs emitted from the merger

of a BNS system allows us to observe two NSs as they inspiral towards each other,

gradually pulling each other apart. In the late stages of merger, we can determine to

what degree the material in each of the neutron stars has been perturbed by measuring

the tidal deformability of the neutron star. By measuring this parameter, alongside

the masses of the two neutron stars, we can directly measure the effect of matter being

present in the system. To date, there have been two observations of such an event;

while the field of GW astronomy as a whole is fairly young, there have been almost

300 observations of GWs in total from the global ground based detector network, the

overwhelming majority of which being the mergers of two black holes. In chapter

1, we discussed the methods of GW signal modelling and how we employ Bayesian

analysis for GW PE.

In chapter 2, we introduced the concept of the NS equation of state, the universal
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relationship between pressure and density inside a NS. Through the equation of state,

we can communicate our understanding of the physics of neutron star matter, and

relate it to the macroscopic observables of a neutron star through the TOV equations.

Through an application of GR, we can solve equations of state to return relationships

between 𝑀 and 𝑅 of a NS and can solve for the tidal deformability, Λ, and can

integrate to do the reverse. We can model the NS equation of state through physical

theories of ultra dense nuclear matter or otherwise phenomenologically model the

equation of state, instead modelling the general shape and trend of the equation of

state. In using seeking to understand the equation of state, we have different means

through which we can explore it: nuclear experiment informs us about low density

physics, up to the maximal densities we can support in terrestrial experiments, and

we rely on astrophysical observation at higher densities. EM and GW observations

are our only method of directly observing ultra dense nuclear matter, however the

quality of our measurement of macroscopic observables is currently limited, and so our

resultant understanding of the NS equation of state is likewise limited. To conclude

chapter 2, we reviewed literature which applies GW observations of BNS mergers to

inferring the NS equation of state, and discussed expectations pre-GW170817 and

what has been possible post-detection.

To set the scene for the analysis performed in this thesis, we introduced ML

method for scientific data analysis in chapter 3. In modern astrophysical data analysis,

ML methods offer efficient solutions to handling large data sets and inferring broad

trends amongst the vast amounts of information. We introduced the building blocks of

neural network architectures and the best practices to follow in training and validation

network performance. We introduce conditional Normalising Flows, our main type of

neural network we discuss in this work. Flows are a type of generative ML model for

density estimation of complex data sets. By learning an invertible mapping between a

complex data space and an easy-to-sample-from distribution (like a standard Gaussian)

one can then sample from the simple distribution and conditionally map this to a

sample from the complex distribution. We also introduce autoencoders, which we

primarily use in this work for dimensionality reduction. An autoencoder is a neural

network with a bottleneck-like structure, which learns to encode training data to a
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reduced-dimensionality representation and then decode it back to its original form.

Once trained, one can operate in the latent representation at a reduced computational

cost, and then decode an inferred result back to the original data format. Machine

Learning has been used widely in GW data analysis in many areas of the field. It

has been used to supplement existing analyses in detection of GW signals themselves

and afterwards, inferring their parameters through PE. More recently, full Machine

Learning pipelines have been developed for detection and subsequent PE which

accelerate what is otherwise a time consuming and computationally heavy task. These

pipelines set the scene for next-generation GW detection, where the increased number

of signals observed will become a big constraint with current analysis methods.

Chapter 4 presented the first results of using a Normalising Flow for rapid inference

of the neutron star equation of state. From GW observations of BNS mergers, we can

measure the masses and tidal deformabilities of the two components of the merger, a

standard by-product of any PE performed on a BNS observation. As previously noted,

these parameters are direct measures of matter in the BNS system, and therefore are

parameters through which we can infer the equation of state. We trained a Normalising

Flow to map a compressed representation of phenomenologically modelled equation

of state data to a unit Gaussian, conditioned on neutron star observables, mass and

tidal deformability. Once trained, one can conditionally sample the Normalising Flow

using PE samples from GW observations of BNS mergers and return the equation of

state posterior associated to the observation. It takes ∼ 0.1 second to conditionally

sample the Flow with one event’s worth of PE samples (on the order of 1000) to

return the relevant equation of state posterior. Alongside pre- and post-processing

steps, one can then return full equations of state in 𝑃 − 𝜌 associate to a single BNS

event in O(1) second. We applied the tool to inferring the equation of state given

observation of the first observation of GWs from a BNS merger, GW170817 and

found that the result broadly agrees with that of the LVK. We also demonstrated

the performance of the Flow via two simulation studies; one using a perfect BNS

measurement and another with simulated PE samples; results agree with the truth in

both cases. Our method is explicitly model agnostic; we choose to train on a given

equation of state morphology but could equivalently train on another, or on a mix of
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multiple models. The Normalising Flow does not learn parameters of the model itself

but rather a general behaviour of the equation of state, and the conditional mapping.

While single event equation of state inference is relatively uninformative with regards

to the equation of state, we have demonstrated a method which can facilitate rapid

communication with EM astronomers after GW observation. For improved equation

of state inference we require hierarchical inference.

To prepare for hierarchical analysis of the NS equation of state in next generation

observation of GWs in chapter 5, we firstly introduced new training data more suited

to the analysis. We introduced a set of unified equations of state with piecewise

polytropic high density and metamodel low density, with no assumption of a fixed

crust equation of state, to allow for the potential of inference of the crust equation

of state, as the literature states may be possible with next-generation detectors like

ET. Each equation of state in the training set also extends to its own maximum

pressure and density, allowing for full flexibility. These complex equations of state,

however, require a more sophisticated compression technique, and for this we employed

autoencoders. We train an autoencoder with two convolutional layers to map our

equation of state training data to a latent representation of 12 dimensions, allowing

us to maintain as many unique features of each equation of state as possible. We wish

to demonstrate that we can use a Normalising Flow also to hierarchically infer the NS

equation of state and introduce how we do so with hierarchical Bayesian inference.

For this, we require the Flow to be able to return the likelihood of a given equation of

state; given data from multiple GW events, we want to determine the probability of a

given equation of state. We used sampling algorithms to survey our 12−dimensional

equation of state space and evaluate the probability of regions of the space given our

data from multiple observations.

However, we found a significant discrepancy in using the Flow to evaluate the

probability of proposed equations of state, compared to the previous chapter where

we asked the Flow only to sample. We demonstrated the discrepancy on different test

cases, and demonstrated that it is not an issue of simple over-fitting of the network

or out-of-distribution data. Rather we determined that the Flow can identify some
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structure within the training and validation data, or the compressed representation

of it, the source of which is not clear. The structure appeared as peaks and troughs

of probability in the 12−dimensional space, and is a feature of both the conditional

Flow which maps equation of state data conditioned on macroscopic parameters

and the prior Flow, which maps the equation of state space only. By reducing the

dimensionality of the autoencoded latent space to 4 dimensions instead of 12, we

reduced the apparent effect of these features and found a significant drop in the

difference in probability between sampled points and proposed equations of state.

In addition to a possible over representation of the training data with too many

dimensions, we believe that perhaps we were limited in the amount of training data.

Therefore, we employed a regeneration Flow, an unconditional Flow trained to learn

the joint data and conditional spaces. Once trained, we can sample from this Flow

repeatedly during training and generate new training data samples. This allowed for

a theoretically infinite quantity of training data examples, but also data which has

some noise added which is intrinsic to the Flow. This further supports the reduction

in probability variation over the equation of state surface which the Flow has learned,

meaning the artificial structure is gone. By exploring some unexpected features which

made themselves known early in our investigations into hierarchical inference, we

could identify a serious behavioural problem in applying Flows to this problem which,

once solved, allowed for the use of Flows in hierarchical inference.

We reintroduced our hierarchical inference method and how we planned to apply

the Normalising Flow in providing the likelihood evaluation in hierarchical Bayesian

inference in chapter 6. We also used MCMC as a sampling method, such that we can

survey the now 7−dimensional equation of state space and used the Flow to find the

posterior probability at proposed regions of the space. We firstly presented results

on applying this method to the two BNS events GW170817 and GW190425. We

compared the result to the single event posterior of GW170817 returned by sampling

using methods from chapter 4. We found the combined posterior returns a smaller

volume of the equation of state posterior as expected, a result which is dominated

by GW170817 due to the higher SNR of the signal. For our simulation study, we

introduced data from the work of Hu et al. [3], who use a conditional Normalising
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Flow for rapid PE of BNS signals from next-generation detectors. For simulation

studies, we generated BNS events associated to known equations of state. Through the

pipeline of Hu et al., we can then generate PE associated to each of these equations

of state within ∼ 1 second per event. We demonstrated the validity of the samples

and the simulation study by first following the method of chapter 4 and using the

conditional Flow sample the equation of state posterior given one event’s PE samples.

We found the equation of state posterior is in agreement with the truth, in both the

low and high SNR simulations.

We then performed hierarchical inference as previously outlined for three simulated

equations of state of varying softness/stiffness. For the mid-range injection, we found

the sampling statistics of MCMC are low in combining 4 events and decreases as the

number of events increases. The walkers in the algorithm appeared to find it difficult

to move across the space, and the low statistical quality of the sampling alongside

the 1− and 2−dimensional projections of the equation of state posterior suggest it is

severely multimodal. Given individual likelihoods are uninformative (as previously

shown, individual events do not strongly infer the equation of state), this suggests

the correct application of the equation of state prior for each event is a strong effect,

given that it gets worse with increased number of events.

Given the statistical figures of merit and the findings of chapter 5, we therefore

introduced a new method which goes back to the method of chapter 4 in using the

Flow to sample instead of evaluate the probability at points in the equation of state

space. By wrapping each event’s equation of state posterior from single event sampling

with a GMM, we made the event posteriors as generic as possible by representing

them by a superposition of Gaussians. We also represent the equation of state prior

with a GMM so to remain generic, and therefore evaluate the hierarchical posterior

via multi-event GMMs. The results of this method were comparable to that of the

Flow method results and appear to be more stable. Given this method cannot have

any hidden features or learning of structure as it is constructed purely of a small

number of Gaussians, we moved forward with this method. We found the combined

result for the average equation of state when combining information from 16 events
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shows a contracted posterior compared to that of the 4 event result, both of which

are in agreement with the truth. In projecting to 𝑃 − 𝜌 we found some structure in

the equations of state present which is a reflection of the multimodality of the result.

Assuming this is an artificial feature, we found the error in pressure at saturation

density decreases with increasing number of events. The stiff equation of state showed

different statistical behaviour but a result mostly in agreement with the truth, whereas

the soft equation of state was a more extreme example case, whose result does not

agree with the truth, especially as the number of events are increased. We owed

the disagreement with the truth to the difficulty of the sampling in the multimodal

approximation to the equation of state posterior. At its root, the problems are likely

to be due to the inaccuracy of the the Flow and GMM models.

However, the time required to complete such an analysis is competitive to similar

analyses in the literature. With the GMM method, the time required to combine

information over 4 events is around 45 minutes, for the full pipeline, and 50 minutes for

16 events. While these results make use of a GPU to accelerate simple computation,

the result for the full pipeline – including the training of different Normalising Flows

– the time required is significantly less for similar analyses which combine the same

order of magnitude of events. However given the nature of the analysis we believe

there is ample room for future work and development.

7.1 Future work

The future of GW astronomy has much to offer in improving our understanding of

the NS equation of state. As numbers of observations of GWs from BNS mergers

increase – additionally at improved levels of sensitivity – the work presented here may

be applied and improved to support this cause. The work of chapter 4 successfully

applies Normalising Flows to inferring the NS equation of state giving observation of

GWs from single BNS merger events. The rapid output of equation of state posteriors

in 𝑃− 𝜌 once PE samples from the event have been released facilitates communication

with EM astronomers for follow-up studies. For improved rapid inference, one can

adapt on the work of chapter 6 section 6.3.1.1 in combining the pipeline of chapter
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4 with a ML-based PE pipeline, which can return both PE samples and subsequent

equation of state inference in O(1) second. Rapid equation of state inference after

a BNS merger event may inform astronomers of the type of EM emission expected

post-merger. By inferring the equation of state pre-merger, one can then make

EM astronomers aware of potential kilonovae or emission in a particular frequency

band. This allows for efficient follow-up and appropriate allocation of resources. The

pipeline can additionally be altered to account for equation of state inference of

NSBH systems, such that equation of state information from these types of events

is not overlooked, given the current limited number of BNS events. Finally, the

training of the pipeline can be improved to account for a larger range of equation of

state parameterisations. This would ensure the Flow model learns a broad variety of

equation of state morphologies and ensures the inference is flexible.

Chapter 5 presents new findings of applying Flows to high dimensional data of

limited quantity with potential artificial structure. If time had permitted, the initial

goal of further work would have been in applying different Flow architectures to the

problem. For example, Flows which learn to map lower-dimensional manifolds in

high dimensional spaces or continuous Normalising Flows are interesting alternatives

to consider when dealing with a complicated data set. Alternatively, it would be

interesting to run the workflow on a test case of mock equations of state, such as

straight lines with defined gradient and 𝑦−intercept, to investigate which feature the

Flow finds it easy to specify to. In the same vein, one could investigate different data

compression methods, which includes changing the architecture of the autoencoder.

While section 5.4.5 investigates different dimensionalities for data compression via the

autoencoder, more time to investigate this would have allowed for proper optimisation

of each of the lower dimensionality autoencoders. Chapter 5 also introduces the

regeneration Flow in section 5.5. Significant future work could be devoted to applying

this method to other astrophysical data analysis problems which are limited by data

quantity. Additionally, this tool could be beneficial to problems which have a potential

ML model in mind but whose training is limited by shortage of data, or whose training

does not seem optimal. The regeneration Flow offers a low-cost alternative to data

generation for virtually any problem.
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With regards to chapter 6, the primary goal of future work will be to improve the

efficiency and quality of the sampling methods. One option is to investigate alternative

sampling methods, perhaps those which are more sophisticated in nature and are

suited to high dimensional spaces. One example sampling method to test would be

MCMC with parallel tempering, which is suited to sampling in highly multi-modal

spaces. This would reduce the discrepancy in probability between the most and least

probable regions at the start of sampling, and gradually re-introduce the variability

after the walkers have had the opportunity to explore the space. Alternatively, due to

the flexibility of Normalising Flows as both a density estimation and a sampling tool,

one could investigate a method which does not require sampling algorithms at all,

but rather makes use of the efficiency of the Flow. This is extensive additional work.

Alternatively, in relation to chapter 5, one could investigate how best to represent the

equation of state and if the way the space is currently represented is optimal for our

sampling method.

Once the sampling efficiency is improved, there are a number of avenues for future

work with the tool introduced in chapter 6. These are highly important with regards

to the prospects of equation of state inference during the next observing run and

subsequently generation of GW detection. Once sampling methods or the accuracy

of the Flow/GMM models are improved, one can combine information from ∼ 100

up to 1000 events quickly and easily. In chapter 6 section 6.4 we discussed the logic

for the computational requirements of the tool (if functional beyond ∼ 16 events)

making use available computational resources (GPUs). We found that the extension

of the Flow-based method to higher orders of magnitude of events would be possible

within comparable timescales. Tests can be done to estimate the computational time

required for such an analysis, and what resources are best applied. Once completed,

we can therefore make a claim as to the quality of equation of state inference with

orders of magnitude more events than have been combined before. This allows us

to test the quality of different stages of the analysis; how well does the quality of

our data compression method matter in projecting a highly constrained equation of

state in 𝑃 − 𝜌? Is it necessary to include the crust equation of state in inference? Are

we limited by the PE samples we have and the restrictions of our chosen pipeline?
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How many events do we need to make a statement of whether the equation of state is

either soft or stiff?

Throughout this work we have demonstrated the power of ML tools in allowing us

to infer the NS equation of state quickly and efficiently. As we look to the future of

GW observation, it is crucial that we consider the efficiency and flexibility that these

tools may offer us in allowing us to learn from our potentially vast numbers of future

GW events, and communicate with our peers for further discovery.
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Appendix A

We present the full 15−dimensional figures of those presented in chapter 5.
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Figure A1: Corner plot of 1- and 2-dimensional marginalised distributions of training
equations of state (blue), sampled points from the conditional Normalising Flow
(purple) and proposed equations of state (pink) from a Gaussian distribution with
𝜎 = 0.5.

248



0.
0

1.
5

3.
0

4.
5

L
at

en
t

2

−4
.5

−3
.0

−1
.5

0.
0

1.
5

L
at

en
t

3

−2

0

2

4

L
at

en
t

4

−1
.5

0.
0

1.
5

3.
0

4.
5

L
at

en
t

5

−2

0

2

4

L
at

en
t

6

−2

0

2

4

L
at

en
t

7

−4
.5

−3
.0

−1
.5

0.
0

1.
5

L
at

en
t

8

−1
.5

0.
0

1.
5

3.
0

4.
5

L
at

en
t

9

0

2

4

6

L
at

en
t

10

−6

−4

−2

0

L
at

en
t

11

−2

0

2

4

L
at

en
t

12

−6

−4

−2

0

2

M
in

P

−1
.5

0.
0

1.
5

3.
0

M
ax

P

−5
.0

−2
.5 0.

0
2.
5

5.
0

Latent 1

0.
0

1.
5

3.
0

4.
5

M
ax
ρ

0.
0

1.
5

3.
0

4.
5

Latent 2

−4
.5

−3
.0

−1
.5 0.

0
1.
5

Latent 3

−2 0 2 4

Latent 4

−1
.5 0.

0
1.
5

3.
0

4.
5

Latent 5

−2 0 2 4

Latent 6

−2 0 2 4

Latent 7

−4
.5

−3
.0

−1
.5 0.

0
1.
5

Latent 8

−1
.5 0.

0
1.
5

3.
0

4.
5

Latent 9

0 2 4 6

Latent 10

−6 −4 −2 0

Latent 11

−2 0 2 4

Latent 12

−6 −4 −2 0 2

Min P

−1
.5 0.

0
1.
5

3.
0

Max P

0.
0

1.
5

3.
0

4.
5

Max ρ

EOS sampled given 170817

EOS prior

Proposed Gaussian

Figure A2: Corner plot of 1- and 2-dimensional marginalised distributions of training
equations of state (blue), sampled points from the conditional Normalising Flow
(purple) and proposed equations of state (pink) from a Gaussian distribution with
𝜎 = 0.1. We present the first 5 out of the total 15 dimensions.
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Figure A3: Corner plot of 1- and 2-dimensional marginalised distributions of the
15-dimensional training (purple) and validation (blue) data distributions used to train
the Normalising Flow. The contours represent 68%, 95%, and 99.7% of the samples
respectively.
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Figure A4: Corner plot of 1- and 2-dimensional marginalised distributions of valida-
tion equation of state data and noise-added validation equation of state data.
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Figure A5: Corner plot of 1- and 2-dimensional marginalised distributions of valida-
tion equation of state data and noise-added validation equation of state data.
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Figure A6: Corner plot of 1- and 2-dimensional marginalised distributions of a small
region of equation of state data space including region of maximum likelihood sample.
The grey contours are the training data prior, the blue points are points conditionally
sampled by the Flow. The light pink crosshair is the maximum likelihood sample
returned the Flow. The space is travelled from ±0.01 around this point from the dark
pink to the purple crosshairs.
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Figure A7: Corner plot of 1- and 2-dimensional marginalised distributions of points
from the equation of state training data prior (grey), sampled points from the Nor-
malising Flow (blue) and four proposed equations of state (pink, purple, green and
yellow) which we traverse between.
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Appendix B

In chapter 6 section 6.3, we describe the method for combining information from

multiple GW events using the conditional Normalising Flow for equation of state

inference. MCMC is used to traverse the equation of state parameter space, and at

each proposed location, the probability 𝑝(Ω|𝜃) is evaluated for multiple values of 𝜃

relative to multiple GW merger events. Given equation 6.1, we find the Monte-Carlo

average over the number of samples per GW event, as well as taking the product over

the number of events. Therefore, we must use enough samples per GW merger event

as to appropriately represent the true single event equation of state posterior, but not

too many so to become a computational burden.

Figure B1 shows how average log(probability) differs as we increase the number of

PE samples used per GW event. The orange line shows the average log(probability)

found when using all samples in the GW event. For almost all tests of different

numbers of samples, the range of average log(probability) values returned is consistent

with the average log(probability) if using all samples. We include the result of using as

little as 32 samples per GW event so to demonstrate the potential spread in error from

various different iterations of 32 samples from the full posterior set, which contains

10528 samples in total. Using less than 128 samples likely leads to an incomplete GW

posterior in the 4 dimensions that are of interest to this analysis. As expected, the

error in average log(probability) decreases in line with the truth as we increase the

number of samples used per event. We find the error in using 256 samples is reduced

from that of using 128 but is comparable to that of 512. The smallest amount of

error occurs beyond 2048 samples. However, as stated previously, we also have to be

cautious about the computational burden of using more sample per event.
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Figure B1: Plot of average log(probability) of Ωsamp vs. number of samples when
sampling Ωsamp ∼ 𝑝cond(Ω|𝜃) given different random iterations of numbers of PE
samples 𝜃 associated to a simulated equation of state of medium stiffness. The average
log(probability) found when using all (∼ 104) PE samples for the event is given by
the solid horizontal line.

Figure B2 presents the time taken to perform MCMC in combining information

from 4 GW merger events using a variety of numbers of PE samples per event. It is

clear the time required to combine information from more than 103 events become

prohibitive, as the analysis would take 3 times as long for a given number of events.

To parallelise the analysis and make it as efficient as possible, we batch the GPU

with all possible combinations of proposed equation of states and samples per event

possible. This allows us to parallelise all probability evaluations that the Flow must

perform on the GPU so the speed up the analysis. This process is discussed in chapter

6 section 6.1.1. However, this scales as number of events × number of samples ×

number of dimensions. Therefore, if we increase the number of samples per event

drastically, we therefore sacrifice efficiency, and limit the number of events we can
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Figure B2: Plot of time taken vs. number of samples for various MCMC runs
associated to the inference of a simulated equation of state of medium stiffness given
information from 4 GW merger events with different numbers of samples per event.

combine information from quickly. This is of particular importance when we reach

orders of magnitude of events upwards of 103. Therefore, we choose to use 256 samples

per event so to remain as efficient as possible without inducing significant error. We

find 512 samples per event may have also been acceptable for the analysis, but choose

256 so to maximise efficiency, without any significant loss in error induced in the

Flow’s probability evaluation.
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Appendix C

Figure C1 illustrates the block diagrams of inputs and outputs to each of the 4 Flows

used in chapter 6. These are: regeneration (RG), conditional (cond), prior (𝜋) and

PE. This is supplementary to the workflow diagrams in figures 6.1.1 and 6.3.6.
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Figure C1: Block diagrams of inputs and outputs of the 4 Normalising Flows used in
chapter 6. For conditional Normalising Flows, dotted lines represent evaluation of a
data space location given a condition, while solid lines represent conditional sampling.
For unconditional Flows, the bold line represents randomly sampling the Flow, and
dotted lines represent evaluation of a given data space location.
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