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Abstract

Matching problems occur in many practical settings where agents from one set need to be as-
signed to agents or resources in another. This thesis presents new results for a class of matching
problems known as the Student-Project Allocation problem (spa). In this problem, we are given a
set of students, projects, and lecturers, where each project is offered by a single lecturer. Students
have preferences over the projects they find acceptable, while lecturers may have no preferences,
preferences over students, or preferences over projects. In the spa model where both students
and lecturers have preferences, the goal is to find a stable matching, which means an allocation of
students to projects such that no student and lecturer would prefer an alternative assignment in-
volving a different project. This thesis explores the complexity and structure of stable matchings

in two variants of SpA.

In the Student-Project Allocation problem with lecturer preferences over Projects (spa-p), stable
matchings may vary in size, and the problem of finding a maximum-size stable matching (denoted
MAX-SPA-P) is known to be NP-hard. Another variant is the Student-Project Allocation problem
with lecturer preferences over Students, referred to as spa-s. An extension of spa-s where ties
are allowed in the preference lists of both students and lecturers is known as spa-sT. Similar
to the spa-p model, weakly stable matchings in spa-sT may differ in size, and it is known that
finding a maximum weakly stable matching (denoted max-spa-sT) is NP-hard. In both MAX-sSPA-P
and MAX-SPA-ST, we examine how natural restrictions on the preference structure of students and
lecturers affect the computational complexity of finding a maximum stable matching. We identify
cases that admit polynomial-time algorithms and others that remain NP-hard. In addition, we
study the parameterised complexity of Max-spa-p, and prove that the problem is fixed-parameter
tractable with respect to a natural structural parameter.

Next, we consider the structural aspects of spa-s. It is well known that a single instance may admit
multiple stable matchings, and that the number of such matchings may grow exponentially with
the input size. We present two new characterisations of the set of stable matchings for any given
sPa-s instance. First, we prove that the set of stable matchings forms a distributive lattice under
a natural dominance relation, in which the student-optimal and lecturer-optimal matchings cor-
respond to the maximum and minimum elements, respectively. In the second characterisation,
we extend the notion of rotations, originally defined for the one-to-one Stable Marriage problem,
to the more complex spa-s model. We introduce meta-rotations in spa-s, and use this to develop
the meta-rotation poset. We prove that there is a one-to-one correspondence between the stable
matchings of a given spa-s instance and the closed subsets of the associated meta-rotation poset.
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Chapter 1
Introduction

Combinatorial optimisation is a central topic in theoretical computer science, focusing on prob-
lems where the goal is to select an optimal solution from a finite, but potentially very large,
set of feasible solutions. Matching problems form a quintessential class of such problems, with
wide-spread real-world applications. Matching problems arise in settings where agents or re-
sources must be assigned subject to capacity constraints and/or preferences. Examples include
assigning access points to users in wireless networks [50], passengers to taxis in transportation
systems [149], kidney donors to patients in hospitals [132], and students to projects in aca-
demic institutions [8]]. In practical applications, the number of agents involved is often large,
making manual assignment infeasible. For instance, the National Resident Matching Program in
the United States [[118] assigns more than 45,000 medical residents to hospitals each year. Since
the outcome of these applications can have a direct impact on individuals’ quality of life, it is
essential that the algorithms used produce solutions that are perceived as fair, acceptable, and
aligned with participants’ expectations. This motivates both the design of efficient algorithms
and the study of settings where such algorithms are unlikely to exist.

One important matching setting involves participants who express preferences over potential
partners. These are known as matching problems involving preferences. At a high level, such a
problem consists of a set of agents, each of whom specifies an ordering over a subset of the others
based on their preferences. These preferences are typically ordinal, for example, an agent might
list their first, second, third choice, and so on. In many settings, agents may also be subject to
capacity constraints, meaning they can be assigned to only a limited number of partners. Match-
ing problems involving preferences can be broadly classified into three categories: (i) bipartite
matching problems with one-sided preferences, such as the Housing Allocation problem [5],
where only one side expresses preferences over the other; (ii) bipartite matching problems with
two-sided preferences, such as the Stable Marriage problem [|54,(113], where both sides express
preferences; and (iii) non-bipartite matching problems, such as the Stable Roommates prob-
lem [)53], where each participant belongs to a single set and submits a preference list over all
other participants. These categories and examples are discussed in detail in Chapter
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A solution to a matching problem is called a matching, which is an assignment of agents to
acceptable partners that respects the given capacity constraints. In matching problems with
preferences on both sides, it is often important to consider how well a matching satisfies the
agents’ preferences. However, beyond individual satisfaction, we also require the matching to
be stable—that is, no subset of agents can form an alternative assignment among themselves in
which every member is strictly better off than in the current matching. Stability ensures that
once a matching is computed, no subset of participants has an incentive to deviate from it [[129].
Its importance as a solution concept in matching problems where agents express preferences has
been well established in the literature [129,(134].

In this thesis, we study the [Student—Project Allocation problem (spa), a class of matching prob-

lems involving three sets of agents: students, projects, and lecturers. In the model with two-
sided preferences, students have preferences over projects, each of which is offered by a lecturer
who, depending on the variant considered, may have preferences over students, over projects,
or over student—project pairs. The goal is to find a stable matching of students to projects that
respects both project and lecturer capacity constraints. We examine both the algorithmic and
structural aspects of two variants of

On the algorithmic side, we focus on the Student-Project Allocation problem with lecturer pref-
erences over Projects (SPa-P|), where both students and lecturers have preferences over projects.
We present new complexity results by introducing natural restrictions on the input instance, and
prove fixed-parameter tractability for selected NP-hard cases. On the structural side, we study the
Student-Project Allocation problem with lecturer preferences over Students (spa-s)). We present two
characterisations of the set of stable matchings admitted by any given instance, highlight-
ing the rich underlying structure of the problem. First, we show that the set of stable matchings
forms a distributive lattice under a natural dominance relation. Second, we develop a partial
order known as the meta-rotation poset and establish a one-to-one correspondence between the
set of stable matchings in a given instance and the closed subsets of the poset.

1.1 Preliminaries

1.1.1 Complexity theory

Complexity theory is the study of how the amount of computational resource required to solve
a problem, such as time or memory, grows with the size of the input. The input size, usually
denoted by n, is a formal measure of the size of a problem instance, which in matching problems
may include the number of agents involved and the lengths of their preference lists. An algorithm
runs in polynomial time if its running time is bounded above by a polynomial function of the input
size n, such as n, n?, or n3. Problems that can be solved by such algorithms are referred to as
tractable. An algorithm runs in polynomial time if its running time is bounded above by n* for
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some constant k. Problems solvable by such algorithms are called tractable. In contrast, an
algorithm runs in exponential time if its running time is bounded below by a™ for some constant
a > 1; that is, its running time grows at least exponentially in the input size. Some problems even
require super exponential time as those with running time n!. Problems that can only be solved
by exponential-time or factorial-time algorithms are generally considered intractable, because
the running time increases so rapidly that it becomes impractical to solve even moderately sized
instances. Table[I.1]illustrates how logarithmic, polynomial, factorial, and exponential functions
grow with input size n, highlighting the difference in their growth rates as n increases.

As the table illustrates, factorial and exponential functions grow far more rapidly than polyno-
mial functions. For example, when n = 50, an algorithm with running time n? would require
only 2,500 operations, which a modern computer could execute in just a few microseconds. In
contrast, an algorithm with running time 2" would require approximately 1.1 x 10> operations,
which would take about 13 days to complete assuming a computer performs 1 billion opera-
tions per second. Meanwhile, an algorithm with running time n! would require approximately
3.0 x 10% operations, taking more than 10%" years to finish.

logn | n? (Polynomial) | 2" (Exponential) | n! (Factorial)
51232 25 32 120
10 | 3.32 100 1,024 3.6 million
20 | 4.32 400 ~ 10° ~ 2.4 x 108
50 | 5.64 2,500 ~ 1.1 x 10" ~ 3.0 x 105

Table 1.1: Growth rates of logarithmic, polynomial, exponential, and factorial functions for in-
creasing n

In practice, such growth rates may arise particularly for problems that involve evaluating a large
number of feasible solutions. For example, certain instances of the stable matching problem
admit exponentially many stable matchings [65,94], making it infeasible to generate all stable
matchings. Moreover, in practical settings, the goal is often not just to find a stable matching, but
one that also satisfies an additional criterion, such as maximising the number of assigned agents.
In such cases, a brute-force algorithm that enumerates all stable matchings to find an optimal
one is impractical.

As a result, computational problems have been analysed and categorised formally, whereby these
problems are classified into complexity classes based on their computational difficulty. These
classifications typically consider decision problems, which are problems whose output for any
given input is either YEs or No. The class P consists of all decision problems that can be solved
in polynomial time. The class NP is the class of decision problems where, for every input for
which the answer is yes, there exists a certificate (or proposed solution) that can be verified in
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polynomial time by an algorithm. It is clear that P C NP, since any problem that can be solved
in polynomial time can also be verified in polynomial time. However, it is widely believed that
the converse does not hold, that is, P # NP. This suggests the existence of problems for which
a given solution can be verified in polynomial time, but no polynomial-time algorithm exists for
finding such a solution.

For example, given a graph GG, we can verify in polynomial time whether the graph is connected,
and we can efficiently find such a solution using a breadth-first or depth-first search algorithm[f]
Therefore, the graph connectivity problem is in the class P. On the other hand, consider the
problem of integer factorisation, which asks for the non-trivial prime factors of a given integer N .
If a factorisation of N is provided, it can be verified in polynomial time simply by multiplying
the factors and checking that the product equals N. Thus integer factorisation belongs to the
class NP. However, no polynomial-time algorithm is known for finding such a factorisation in
general. Integer factorisation is of particular practical importance, since the presumed hardness
of this task underlies widely used cryptographic algorithms [20,/58,(92].

To show that a problem is unlikely to be solvable in polynomial time, one typically proves that it
is NP-hard. A problem is NP-hard if every problem in NP can be reduced to it in polynomial time.
Thus, if a polynomial-time algorithm existed for any NP-hard problem, all problems in NP would
also be solvable in polynomial time. A problem is NP-complete if it is both NP-hard and belongs
to the class NP; such problems are considered the hardest problems in NP, in the sense that every
problem in NP can be reduced to them in polynomial time. Assuming P # NP, no polynomial-time
algorithm exists for any NP-complete problem. For further background on complexity classes and
polynomial-time reductions, see [|12,/45].

1.1.2 Coping with intractability

For computational problems that are intractable, several techniques can be used to obtain solu-
tions that are useful in practice, even when no polynomial-time algorithms are known. In this
thesis, we explore some of these approaches, including restricting aspects of the input to iden-
tify polynomial-time solvable cases, and applying tools from parameterised complexity theory
and integer programming. These contributions are presented in Chapter (3| In this section, we
briefly discuss these approaches as well as other techniques for coping with intractability, such
as approximation algorithms and heuristic methods.

1.1.2.1 Approximation algorithms

An optimisation problem involves selecting the best solution from a set of feasible options, based
on a given objective function and a set of constraints. An optimal solution is one that satisfies all

1A graph is connected if there is a path between every pair of vertices.
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constraints and minimises or maximises the objective function. Since many interesting optimi-
sation problems are NP-hard, a natural alternative is to find solutions that are close to optimal.
Approximation algorithms run in polynomial time and produce solutions that are guaranteed to
be close to the best possible. Their performance is measured by an approximation ratio, which
compares the value ¢ of the solution returned by the algorithm to the value opT of an optimal
solution, in the worst case. For minimization problems, the ratio is defined as ﬁ, and for maxi-

OPT

mization problems as 7.

An algorithm is said to be a c-approximation algorithm if, for every input instance, the objective
value of the solution it returns differs from the optimal objective value by at most a factor of c.
More precisely, for minimization problems the algorithm always returns a solution whose objec-
tive value is at most ¢ times the optimal value, and for maximization problems it always returns
a solution whose objective value is at least % times the optimal value. By relaxing the require-
ment to compute an exact optimal solution, approximation algorithms are a practical direction
for solving problems that are unlikely to admit polynomial-time algorithms.

Approximation techniques have been applied to a range of NP-hard versions of matching prob-
lems. For example, in the Stable Marriage problem with Incomplete lists and Ties on one side
(discussed in Section , Kiraly [81] presented a linear-time 2-approximation algorithm that
returns a stable matching M with [M| > 2 x |M*|, where M* is a stable matching of maximum
size. That is, the algorithm guarantees a stable matching whose size is at least two-thirds of
the largest possible. This result improves upon the previously best-known approximation factor
of g, due to Irving and Manlove [|67]. For a detailed discussion see the definitive textbook on
approximation algorithms by Williamson and Shmoys, [146].

1.1.2.2 Heuristic methods

The aim of heuristic algorithms is to find feasible solutions quickly, often by following problem-
specific rules or search strategies, rather than exhaustively exploring the entire solution space of
a given problem. Although they do not guarantee optimal solutions or provide approximation
bounds, they are often effective on large instances where exact methods are computationally in-
feasible. For instance, several heuristic algorithms have been proposed for a well-known match-
ing problem, known as the Hospitals/Residents problem with Ties (see Section [2.2.2). In this
setting, the problem of finding a weakly stable matching of maximum size, known as
is NP-hard. Heuristic techniques for [MAX-HRT| have been proposed to either maximise the size of
a weakly stable matching or minimise the number of blocking pairs. These include approaches
based on greedy algorithms and local search strategies [21,22,115].

Similarly, Cao et al. [21]] present a heuristic algorithm for that constructs a stable
matching incrementally by assigning residents to hospitals based on a scoring function, which
removes the least-preferred resident whenever a hospital exceeds its capacity. In the context of
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the Student—Project Allocation problem, Nguyen et al. [[143]] propose a heuristic for computing a
maximum-sized weakly stable matching in the setting (see Section [2.3.2), where lecturers
have preferences over students and ties may be present in the preference lists of both students and
lecturers. A similar technique was subsequently developed for (see Section to find
a stable matching of maximum size [145]]. While heuristic methods lack worst-case guarantees,
they perform well in practice and often scale effectively on large instances.

1.1.2.3 Fixed-Parameter Tractable algorithms

Fixed-parameter tractability offers a way to address NP-hard problems by restricting the expo-
nential complexity of the problem to a selected parameter. Following the definition of Downey
and Fellows [35], a problem is said to be fixed-parameter tractable (FPT) with respect to a pa-
rameter k£ € N if it can be solved in time O( f(k)-n¢), where n is the input size, ¢ € N is a constant
independent of k, and f: N — N is a computable function. This implies that while the running
time may grow rapidly with the parameter £, it depends polynomially on the input size n.

FPT algorithms are particularly useful when the parameter is small in practice, even when the
size of the input instance is large. However, not all NP-hard problems admit FPT algorithms with
respect to a chosen parameter. To classify parameterised problems according to their complexity,
Downey and Fellows [35]] introduced the W-hierarchy, a sequence of complexity classes:
FPT C W[1] CW[2] C --- C W[P] C XP.

Problems in W1] through W|P] are widely believed not to admit fixed-parameter tractable algo-
rithms. The conjecture that FPT # W(1] is the central open question in parameterised complexity
theory and is regarded as the analogue of the classical conjecture P # NP. The class XP contains
problems that can be solved in time O(n/®)) for some computable function f. Since the param-
eter k appears in the exponent of the input size, even small increases in k can cause the running
time to become extremely large, and problems of this form are not considered fixed-parameter
tractable.

The class FPT generalises the classical complexity class P. Specifically, every problem in P is
fixed-parameter tractable with respect to any choice of parameter; that is, it remains solvable in
polynomial time regardless of how the input is parameterised. However, the inclusion is strict:
the class FPT also contains parameterised versions of problems that are NP-complete in their
classical form. A popular example is the Vertex Cover problem, which asks whether a given graph
contains a vertex cover of size at most k. While this problem is NP-complete in general, it is fixed-
parameter tractable (FPT) when parameterised by k. In particular, it admits algorithms with
running time O(2* - n) using bounded search trees or branching techniques [31,107]]. Moreover,
more refined algorithms have achieved improved running times of O(1.2738% + kn) [25].
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Although parameterised complexity has been extensively developed in the context of graph prob-
lems, its application to stable matching problems is still in its early stages. One known result in
this direction is that is FPT when parameterised by the size of the matching [9]], or by
the total length of ties in the instance [[106]. Further discussion of parameterised complexity in
the context of matching problems is provided in Section Approximation techniques and
parameterised complexity are often studied as separate approaches for handling intractable prob-
lems. However, recent work has shown that combining these strategies can yield more powerful
algorithmic techniques.

Marx [[105] pointed out that, for some problems, there are no known approximation algorithms
and no fixed-parameter tractable algorithm with respect to any known parameter. However, such
problems can sometimes be tackled using parameterised approximation algorithms, which provide
approximate solutions within a running time of the form f(k)-n¢, where k is a parameter and n is
the input size. This approach combines ideas from approximation and parameterised complexity
for problems where neither approximation nor fixed-parameter techniques are effective on their
own.

1.1.2.4 Integer and Linear Programming

Many combinatorial optimisation problems can be expressed as either linear or integer linear
programs. Linear programming (LP) involves optimising a linear objective function subject to
linear inequality constraints, where variables can take any real values. Linear programs can
be solved in polynomial time using algorithms like interior-point methods [77,/79,/142]. An
integer linear program (ILP) is a linear program in which all variables are constrained to take
integer values, making the model more expressive but also significantly harder to solve. The
decision version of ILP asks whether there exists an integer solution that satisfies all given linear
constraints and achieves at least a specified objective value. This problem is NP-complete and
was included in Karp’s list of 21 classical NP-complete problems [45,78]]. Mixed-integer linear
programs (MILPs), where only a subset of variables must be integers, are even more general and
typically harder to solve in the worst case.

Matching problems can also be modelled using ILPs. A common approach is to relax the integral-
ity constraints to obtain an LP, which is generally easier to solve. In some cases, this LP relaxation
remains integral, meaning that all optimal solutions are already integer-valued. When this oc-
curs, the problem can be solved efficiently using LP methods alone. Several stable matching
problems, including the Stable Marriage problem, exhibit this property [4,80,131]. For any sm
instance of size n, it has been shown that we can efficiently construct a set of linear inequalities of
polynomial size in n such that there is a one-to-one correspondence between the stable matchings
of the instance and the extreme points of the polytope?| defined by these inequalities [[54,144].

2In this context, the polytope is the set of all solutions (possibly fractional) that satisfy the matching and stability
constraints. Each stable matching corresponds to a vertex (or extreme point) of this set.
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With this representation, other stable matching problems, such as finding an egalitarian or min-
imum regret matching, can be solved using general LP methods, since an optimal solution will
correspond to one of these extreme points.

Although ILPs are NP-complete, modern solvers such as CPLEX [1] and Gurobi [2] perform well
in practice. These solvers have been successfully applied to real-world stable matching problems.
For example, ILP formulations for NP-hard variants of the Stable Marriage and Hospital/Res-
idents problems have been used to solve instances involving up to 50,000 agents on each side
within seconds [|34]. ILPs also play an important role in parameterised complexity. While solving
ILPs is NP-complete in general, the problem is fixed-parameter tractable when parameterised by
the number of variables [31]]. This has led to the development of parameterised algorithms that
model problems as ILPs in which the number of variables is bounded by a function of the param-
eter [46,83,(114]. This technique allows ILP solvers to efficiently handle otherwise intractable
problems [[119].

1.2 Thesis Statement

The Student-Project Allocation problem arises in many practical applications, and exhibits
rich algorithmic and structural properties. In this thesis, we prove new complexity results for
variants of [spa| by imposing natural restrictions on the input instance. For some intractable cases,
we show that by identifying and exploiting suitable structural parameters, the problem becomes
fixed-parameter tractable with respect to those parameters. In addition, we develop new charac-
terisations of the set of stable matchings, which enable efficient algorithms for computing stable
matchings with desirable properties.

1.3 Contributions and Thesis Outline

In this thesis, we examine the algorithmic and structural aspects of well-known variants of the
Student-Project Allocation problem (spa). We begin by analysing the computational complexity
of the Student-Project Allocation problem with lecturer preferences over Projects (spa-p). We
present both polynomial-time algorithms and NP-hardness results for finding a maximum-size
stable matching in under natural restrictions. For intractable cases, we introduce a pa-
rameterised version of where we introduce project topics. We prove that the problem is
fixed-parameter tractable when parameterised by the number of project topics. This means that,
although finding a maximum-size stable matching in[spa-P|is NP-hard in general, it can be solved
efficiently in practice when the number of project topics is small, since the running time grows
quickly with the number of topics but remains polynomial in the size of the input.

In the second part of the thesis, we shift our focus to the Student-Project Allocation problem with
lecturer preferences over Students(spa-s)). We first prove that the set of stable matchings forms
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a distributive lattice, in which the student-optimal matching is the unique maximum element
and the lecturer-optimal matching is the unique minimum element. We then extend the classical
notion of rotations, originally developed for the Stable Marriage (sm) and Hospital Residents
problems [14,26,/52,54], to the setting. Building on this generalisation, we develop
the meta-rotation poset, a compact structure that encodes the entire set of stable matchings in any
given instance. Additionally, we prove that the set of stable matchings in a given instance is in
one-to-one correspondence with the closed subsets of the poset. This structure supports efficient
algorithms for identifying all stable pairs, enumerating all stable matchings, and provides new
insights into the properties of the set of stable matchings in any given spa-s instance.

The thesis is organised as follows:

* Chapter[2} Literature Review. This chapter surveys relevant work on classical stable match-
ing problems such as the Stable Marriage problem (sm)) and the Hospital/Residents problem
(HR). Thereafter, we focus on the Student-Project Allocation problem (spa) and its exten-
sions including the Student-Project Allocation problem with lecturer preferences over Projects
(spa-P), Student-Project Allocation problem with lecturer preferences over Students (SPA-S),
and Student-Project Allocation problem with lecturer preferences over Students including Ties
(spa-sT). We focus on known computational complexity results for these variants, struc-
tural characterisations, and algorithmic techniques that support the contributions made in
this thesis.

* Chapter [3; Complexity results for restricted spa variants. In this chapter, we examine how
imposing natural restrictions on the input instance influences the computational complexity
of two variants of namely[spa-p|and [spa-sT] We begin with [spa-p| where both students
and lecturers express preferences over projects. In this setting, stable matchings can vary in

size, and the problem of finding a maximum-size weakly stable matching, denoted max-spa-
p, is known to be NP-hard [[102]]. We show that the problem remains NP-hard
even when the preferences of both students and lecturers are consistent with a single master
list over projects. On the positive side, we show that if every student ranks only projects
offered by a single lecturer, then a maximum-size stable matching can be computed in
polynomial time.

Then we consider the model, in which lecturers express preferences over students,
and ties are permitted in the preference lists of both students and lecturers. In this setting,
there are three notions of stability: weak, strong, and super-stability. Under weak stability,
stable matchings can differ in size, and the problem of computing a maximum-size weakly
stable matching is known to be NP-hard [73,[100]. Moreover, the problem is
NP-hard even if the ties are present at the end of preference lists and on one side only, each
tie is of length 2, and there is at most one tie per list [100]. We strengthen this result by
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proving that the problem remains NP-hard even when the instance involves only a single
lecturer.

Finally, we consider the parameterised complexity of We introduce a natural struc-
tural parameter, project topics, whereby each project is associated with a project topic and
students express strict preferences over topics rather than over individual projects. We fur-
ther assume that each lecturer has the same capacity as each of the projects that they offer,
so that project and lecturer capacities are uniform. We denote this problem as

We prove that is fixed-parameter tractable when parameterised by the
number of project topics, despite being NP-hard in the general case.

 Chapter [4; Structural results for In this chapter, we study the structure of the set
of stable matchings in where students have preferences over projects and lecturers
have preferences over students. It is well-known that the set of stable matchings in the
Stable Marriage (sm) and Hospital/Residents (HR) problem forms a distributive lattice un-
der a natural partial order [54]. Moreover, previous work has shown that a similar result
holds for under the restriction that each student has preferences only over projects
offered by different lecturers [[121]. We build substantially on this result by showing that
the set of stable matchings forms a distributive lattice in the general case (without this re-
striction), whereby, students may express preferences over multiple projects offered by the
same lecturer.

We define the meet and join operations on pairs of stable matchings in where each
student is assigned to the more preferred (meet) or less preferred (join) of their projects
between two stable matchings. We show that applying either operation to any two stable
matchings always yields another stable matching. Thereafter, we prove that the set of all
stable matchings in a given instance forms a distributive lattice under the partial
order defined by student preferences. We also present additional structural results that
arise specifically in due to the possibility that students may find multiple projects
offered by the same lecturer acceptable. These properties do not occur in classical models
such as[sM]and [HR], and they inform our definition of rotations and the meta-rotation poset
which we develop in Chapter[5]

* Chapter [5} Meta-rotation poset for spa-s. In this chapter, we introduce the notion of meta-
rotations, which generalises the classical concept of rotations from the |[sm| and [HR| models
to the context. We show that the set of stable matchings in any given instance of
SPA-S|is in one-to-one correspondence with the closed subsets of a partial order known as
the meta-rotation poset. This meta-rotation poset provides a compact representation of the
set of stable matchings in any|[spa-s|instance. We prove that the meta-rotation poset can be
constructed in polynomial time and used to efficiently traverse the lattice of stable match-
ings. This structure has several key algorithmic consequences: it allows us to enumerate



1.3. Contributions and Thesis Outline 11

all stable matchings, identify all stable pairs, and analyse the relationships between dif-
ferent stable matchings. In addition to these algorithmic applications, our results reveal

new structural properties of the set of stable matchings in providing insight into the
computational complexity of related optimisation problems.



Chapter 2
Literature Review

As mentioned earlier, matching problems that include preferences can be broadly classified into
three main categories: bipartite matching with one-sided preferences, bipartite matching with
two-sided preferences, and non-bipartite matching problems. These categories are summarized
in Figure In this chapter, we briefly review each of these categories and then focus on
problems within the class of bipartite matching with two-sided preferences, which is the most
relevant to the work presented in this thesis.

Specifically, in Section [2.1, we begin with the Stable Marriage problem (sm), presenting key
results and extensions that are directly relevant to our work. In Section we examine the
Hospitals/Residents problem (HR) and its extensions, focusing on the key structural and algorith-
mic results established in the literature. In Section 2.3} we discuss the Student-Project Allocation
problem (spa) and provide a detailed overview of its main variants, highlighting significant al-
gorithmic and structural results. Finally, in Section |2.4}, we discuss some models that are closely
related to drawing attention to their similarities and differences.

Bipartite matching problems with one-sided preference: In this setting, we have a set of agents
and a set of indivisible resources (such as houses), where agents express preferences over re-
sources. A well-known example is the House Allocation problem (HA) [3,5,/6], where each agent
is assigned at most one house based on their preferences. An extension of this model is the Ca-
pacitated House Allocation problem (cHa) [|104], where each house can accommodate multiple
agents. In both models, much of the literature focuses on finding matchings that are Pareto-
optimal [5,/104] or Popular [30] E], and efficient algorithms have been developed to compute
them. More recently, Santhini et al. [136] introduced new notions of optimality for these mod-
els, including the concept of weak dominance, which addresses questions such as: “Does there
exist an assignment that matches at least 50% of applicants to their top choice, and at least 75%
to one of their first or second choices?” They also developed randomised algorithms to find such

!A matching is Pareto optimal if no other matching makes some agents strictly better off without making any
agent worse off. A matching is popular if no other matching is preferred by a majority of agents.

12
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solutions, particularly in instances with fixed quotas.

Bipartite matching problems with two-sided preferences: In this setting, agents are divided
into two disjoint sets, and both sides rank members of the other. This category includes some of
the most studied problems in matching theory, such as the Stable Marriage problem (sm) [|541],
the Hospitals/Residents problem (HR) [43], and the Student—Project Allocation problem (spa) [7]].
We review these problems in detail in Sections to Informally, the problem models a
one-to-one matching problem in which each man expresses preferences over all women, and each
woman similarly expresses preferences over all men. The goal is to compute a stable matching, in
which every man is assigned to exactly one woman and vice versa, and there is no pair of a man
and a woman who are not assigned together but would both prefer each other to their assigned
partners.

The Hospitals/Residents problem (HR) generalises the Stable Marriage problem (sm) to a one-to-
many setting. In this model, residents have preferences over hospitals, each hospital has prefer-
ences over residents, and each hospital also has a capacity indicating the maximum number of
residents it can accept. The notion of stability is extended to this setting in a straightforward way.
Further generalisations allow both sides to have capacities, leading to many-to-many matching
models such as the Stable Allocation problem [15,/18,33]], where each agent may be matched to
multiple partners. Several structural and algorithmic results from the one-to-one sm setting have
been extended to these more general models [14,(36,41,90].

Non-bipartite matching problems with preferences: In non-bipartite matching problems, all
participants belong to a single set and express preferences over one another. This differs from
bipartite settings, where agents are partitioned into two disjoint sets, and each agent ranks only
members of the opposite set. A well-known example of a matching problem in the non-bipartite
setting is the Stable Roommates problem (sr) [48,/53,|62]], where agents are paired based on
mutual preferences. As in and the goal is to compute a stable matching, defined as a
matching in which no pair of agents would both prefer to be matched with each other rather
than with their current partners. In this sense, [SR| can be viewed as a natural generalisation of
the stable marriage model to a non-bipartite setting.

Unlike where a stable matching is guaranteed to exist for every instance, the Stable Room-
mates problem (sr) has the key limitation that some instances admit no stable matching [54].
Nevertheless, when a stable matching does exist, it can be found using the polynomial-time al-
gorithm of Irving [62]. Moreover, in such cases, all stable matchings include the same set of
assigned agents and are of equal size [54]. For instances that do not admit any stable matching,
Gusfield and Irving [|54] raised the question of whether a succinct and verifiable certificate could
be provided to prove the absence of a stable matching. This question was answered affirmatively
by Tan [[139,140], who introduced a combinatorial structure known as a stable partition. A stable
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partition generalises a stable matching by dividing the set of agents into disjoint subsets, where
each subset is either a singleton (representing an unassigned agent) or a cycle of length at least
two. In each cycle, every agent prefers their assigned neighbours at least as much as any agent
outside the cycle.

Every instance of [sr], regardless of whether it admits a stable matching, is guaranteed to admit at
least one stable partition [[139]. Moreover, if a stable matching exists, it corresponds to a stable
partition in which all cycles are of length two. As a result, recent research has explored the use of
stable partitions to analyse the structural properties of [sr] instances [48},/49]]. The non-bipartite
setting also includes more general models such as the Stable Fixtures problem (sr) [49,(72}94]
and the Stable Multiple Activities problem (sma) [23,24], which are many-to-many generalisa-
tions of In each agent may be assigned to several others, up to a specified capacity, and
has a strict preference list over a subset of the other agents. In the model, a pair of agents
may be assigned in many different ways, representing various forms of collaboration or joint ac-
tivity, and agents may express preferences over both their partners and the form of assignment.
Cechlarova and Fleiner [|23]] show that can be reduced to an instance of |sr|with incomplete
preference lists.

Matching Problems

Involving Preferences

Bipartite Bipartite .
[One—Sided Preferences} [Two—Sided Preferences} E Non-Bipartite ]
House Allocation Stable Marriage [43,94] Stable Roommates [53}[62]
[3.5./6] Hospitals/Residents [99,(129] Stable Fixtures [49}[72]
Workers/Firms [28]36] Stable Multiple Activities
Student—Project Allocation [7] [23,24]
Stable Allocation [15}18] Kidney Exchange [103,(132]
Classified Stable Matching [60,/117]

Figure 2.1: Classification of matching problems involving preferences.

2.1 The Stable Marriage Problem

The Stable Marriage problem (sm) involves two disjoint sets, typically referred to as men and
women, where each individual has preferences over all members of the opposite set. Each man
lists the women in order of preference, and each woman does the same for the men. The goal is
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to find a matching M where every man is paired with exactly one woman, and every woman with
exactly one man, such that there are no blocking pairs. A blocking pair is a man and woman who
are not assigned to each other in M, but who both prefer each other to their current partners.
This problem was first introduced by Gale and Shapley [[43], and has been widely studied in areas
like mathematics, economics, game theory, computer science, and physics [10}/17,38,[84].

In the classical problem, each participant provides a strict ordering of all members of the
opposite set, resulting in complete and strictly ordered preference lists. Several extensions of
this model have been introduced to capture more general and realistic settings. In the Stable
Marriage problem with Incomplete lists (sm1), participants find some members of the opposite set
unacceptable, and therefore submit a preference list over only a subset of potential partners. The
sets of men and women may also differ in size, so not all individuals are necessarily assigned.
In the Stable Marriage problem with Ties (sMT), each person ranks all members of the opposite
set, but is allowed to express indifference between some participants, resulting in ties in their
preference lists. A more general extension, the Stable Marriage problem with Ties and Incomplete
lists (smT1), allows both ties and incomplete preference lists. These models are discussed in more
detail in Section 2.1.2]

2.1.1 Formal definition

Formally, an instance of the Stable Marriage problem (sm) consists of two disjoint sets: a set
U = {my,msg,...,m,} of men and a set W = {w;,ws,...,w,} of women. Each man has a
preference list ranking all women in W in order of preference, and each woman has a preference
list ranking all men in U. These preference lists are complete and strictly ordered, meaning that
each person ranks all members of the opposite set in a strict sequence with no ties. A man m is
said to prefer woman w, to woman w,, if w, appears before w, on his preference list; similarly, a
woman w prefers man m, to man m, if m, appears before m, on her list.

A matching M is a set of n disjoint pairs, where each man is assigned to exactly one woman
and each woman is assigned to exactly one man. In a given matching M, we write M (m) to
denote the woman assigned to man m, and M (w) to denote the man assigned to woman w. A
pair (m,w) that does not belong to the matching M is called a blocking pair if both m prefers
w to M(m), and w prefers m to M (w). In this case, both individuals would strictly benefit from
being matched with each other rather than with their current partners. A matching is said to be
stable if it admits no blocking pair. If a blocking pair exists, then the matching is unstable.

Consider the example instance [; of the stable marriage problem shown in Figure which
consists of three men and three women. There are 3! = 6 possible complete matchings, although
not all of them are stable. It can be verified that the matchings M = {(my, w;), (ma, ws), (M3, w3)}
and M' = {(my,ws), (ma,wy), (ms,wy)} are stable: in each case, there is no pair of agents who
would prefer to be matched to each other over their assigned partners. In contrast, the matching
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M* = {(my,wy), (ma, ws), (M3, wy)} is unstable. This is because mgy prefers w, to his assigned
partner w,, and w; also prefers mj to her assigned partner m;, forming the blocking pair (m3, w;)
in M*.

Men’s preferences Women'’s preferences
mi: W1 w2 W3 wi. Mo M3 mq
mo: W2 W3 Wi wo2. M3 Mip My
ms:. w3 wWi; W2 w3z: M1 Mo Mms

Figure 2.2: An instance [; of the Stable Marriage problem with 3 men and 3 women

2.1.1.1 The Gale-Shapley algorithm

It is well known that every instance of the |sm| problem admits at least one stable matching, and
that such a matching can be found in time O(n?), where n in the number of participants involved,
using the classical Gale-Shapley algorithm [43]]. The Gale-Shapley algorithm begins with all
men unassigned. At each step, every unassigned man proposes to the most-preferred woman
on his list to whom he has not yet proposed. Each woman who receives one or more proposals
compares them with her current partner (if any), tentatively accepts the most-preferred among
these, and rejects the rest. Any man who is rejected becomes unassigned and, in a subsequent
step, proposes to the next woman on his preference list to whom he has not yet proposed. The
algorithm proceeds in this manner until every individual is assigned. Since each man proposes
to women in order of his preference list and never proposes to the same woman more than once,
the process is guaranteed to terminate after each man has either been accepted or has proposed

to every woman on his list.

The Gale-Shapley algorithm contains an element of non-determinism, given that the order in
which men make their proposals is not specified. However, Gale and Shapley [43]] showed that,
regardless of the order in which proposals are made, the algorithm always produces the same
matching. Moreover, this version of the algorithm, commonly referred to as the man-oriented
Gale-Shapley algorithm, yields the man-optimal stable matching M, in the sense that each man
is assigned to the best partner he can obtain in any stable matching admitted by the instance. If
the roles of men and women are reversed, so that women propose instead, the resulting woman-
oriented Gale-Shapley algorithm produces the woman-optimal stable matching ), in which each
woman is assigned her best possible partner among all stable matchings.

2.1.1.2 Extended Gale Shapley algorithm

An extended version of the Gale-Shapley algorithm (EGS) was introduced in [|54] to compute
a stable matching while also deleting certain pairs that cannot appear in any stable matching.

As in the classical Gale-Shapley algorithm, each unassigned man proposes to the most-preferred
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woman remaining on his list. If the woman is already assigned to another man m/, she compares
the two and retains the more preferred partner; the other becomes unassigned.

When a woman w becomes assigned to a man m, all men who appear after m on her list (called her
successors) are deleted. In other words, for each such man m/, m’ is removed from w’s preference
list and w is removed from m/’s preference list. If w was previously assigned to any of these men,
those assignments are broken. It was shown that none of these successors can be matched with w
in any stable matching. In the EGS algorithm, every proposal that occurs is accepted at the time
it is made. Suppose a man m proposes to a woman w who is currently assigned to some man m/.
Then w must prefer m to m'; otherwise, m would have been removed from her list when she was
first assigned to m/. Since proposals are only made to acceptable partners who have not been
deleted, each proposal is accepted. The algorithm terminates when all agents are assigned.

The resulting preference lists after all deletions have been made are called the man-oriented
Gale-Shapley lists (MGS-lists). Running the algorithm with women proposing instead yields the
woman-oriented Gale-Shapley lists (WGS-lists). The intersection of the MGS-list and WGS-list is
the Gale-Shapley list (GS-list). This list contains all pairs that could possibly appear in a stable
matching, although not all of them necessarily do. The pairs that actually occur in at least one
stable matching of the instance are called stable pairs. In the man-optimal stable matching, each
man is assigned to the first woman on his GS-list, and each woman is assigned to the last man
on hers. The EGS algorithm runs in O(n?) time.

2.1.1.3 Multiple stable matchings

McVitie and Wilson [[112}113] observed that the man-optimal stable matching is also woman-
pessimal, meaning each woman is assigned her worst partner among all stable matchings. Con-
versely, the woman-optimal stable matching is man-pessimal, with each man receiving his worst
partner across all stable matchings in the instance. In addition to the man-optimal and woman-
optimal stable matchings, a single instance of the sm problem may admit several others. For
example, the instance /; shown in Figure [2.2|admits a third stable matching, {(my, ws), (ms, w3),
(ms,w;)}, in addition to the matchings M and M’ highlighted earlier.

More generally, Knuth [85] observed that the number of stable matchings in an sm instance can
grow exponentially with the size of the input n. This result was later strengthened by Irving and
Leather [|65], who showed that for each n > 0 that is a power of two, there exists an instance
of size n with at least 2"~! stable matchings. This means that any brute-force approach that
attempts to examine all stable matchings in order to identify one that satisfies a given optimality
criterion is impractical in the worst case. These observations motivated further investigation into
the structure of the entire set of stable matchings, as discussed in Section|2.1.3

Interestingly, McVitie and Wilson [[112,113]] also presented a recursive version of the Gale-
Shapley algorithm and proposed a method for enumerating all stable matchings in a given in-
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stance of the stable marriage problem. Their approach repeatedly applies the Gale-Shapley al-
gorithm and, for each stable matching found, generates new sub-instances by excluding certain
pairs that appear in the previously computed matching. In this way, each stable matching is gen-
erated exactly once, and no matching is repeated. A different approach, based on backtracking
search, was later developed by Wirth [147]. While Wirth’s method is conceptually simpler, it is
less efficient than the algorithm presented by McVitie and Wilson.

2.1.2 Extensions of the Stable Marriage problem (sm)

In this section, we consider three natural relaxations of the Stable Marriage problem. First,
the number of men and women may be unequal, meaning that some agents will necessarily
be unassigned. Second, agents may provide preferences over only a subset of the opposite set
acceptable, resulting in incomplete preference lists. Third, agents may be indifferent between two
or more potential partners, leading to ties in their preference lists.

These relaxations lead to the following extensions of the Stable Marriage problem. In the Stable
Marriage problem with Incomplete lists (sm1), agents are allowed to declare some agents in the
opposite set as unacceptable, and can be assigned only to those they consider acceptable. As a
result, some agents may remain unassigned. In the Stable Marriage problem with Ties (sMT), each
agent ranks all agents in the opposite set and may express indifference between some of them
by including ties in their preference list. The most general variant is the Stable Marriage problem
with Ties and Incomplete lists (smT1), which permits both incomplete lists and ties in preferences.

2.1.2.1 Stable Marriage with Incomplete lists (sm1)

In the Stable Marriage problem with Incomplete lists (sm1), the sets of men and women, denoted
U and W, need not be of equal size. Each man m € U provides a strictly ordered preference
list over a subset of women in W, and each woman w € W similarly ranks a subset of men in
U. Hence, agents may declare some members of the opposite set as unacceptable, indicating that
they would rather remain unassigned than be matched with those individuals. A woman w is
said to be acceptable to a man m if w appears on m’s preference list, and vice versa. If m and w
find each other acceptable, then (m, w) is called an acceptable pair.

A matching is a set of disjoint pairs (m,w), where each man m € U is assigned to at most one
woman w € W, and vice versa. Each pair in the matching must involve a man and a woman
who are acceptable to one another. It is straightforward to see that in an smi instance, not all
agents can be assigned, since the two sets may be of unequal size. Consequently, the notion of
a blocking pair in sm1 was redefined by Gusfield and Irving [54]. A pair (m,w) is a blocking
pair with respect to a matching M if (m,w) is an acceptable pair and both (a) and (b) holds as
follows:

(@) either m is unassigned in M, or prefers w to their assigned partner M (m); and
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(b) either w is unassigned in M, or prefers m to their assigned partner M (w).

Again, a matching is stable if it admits no blocking pair. A stable matching is guaranteed to
exist in any [smi instance, and can be found by a straightforward extension of the Gale-Shapley
algorithm [54]]. Moreover, the classical results concerning the man-optimal and woman-optimal
stable matchings carry over naturally to this setting.

Although an arbitrary[smi]instance may admit many stable matchings, Gale and Sotomayor [44]]
observed that all such matchings assign exactly the same subset of agents. Thus, if an agent is
assigned (or unassigned) in one stable matching, then they are assigned (or unassigned) in all of
them. We can think of the agents as being partitioned into two groups: those who are assigned in
every stable matching and those who are never assigned. Consequently, to analyse the structure
of stable matchings in it suffices to focus on the subset of agents who are assigned in every
stable matching. Removing the unassigned agents, along with their entries in the preference lists
of the assigned agents, does not affect the set of stable matchings admitted by the instance [54].

2.1.2.2 Stable Marriage with Ties (smT)

In the Stable Marriage problem with Ties (sMT), agents are allowed to express indifference be-
tween some potential partners. This is done by introducing ties in the preference lists, where a
tie represents a group of agents that an agent considers equally acceptable. We say that an agent
strictly prefers one agent to another if the first appears earlier in the list and the two are not in the
same tie. An agent is said to be indifferent between two other agents if those two agents appear
together in the same tie.

When ties are allowed in preference lists, the standard definition of a blocking pair, where both
agents strictly prefer each other to their current partners, no longer applies directly. This is
because an agent may be indifferent between their assigned partner and another acceptable
person. In such cases, it is not straightforward to determine whether reassigning the agent would
actually improve their outcome. This leads to three notions of stability:

* Weak Stability: A matching M is weakly stable if there is no pair (m, w) such that both m
and w strictly prefer each other to their partners in M.

* Strong Stability: A matching M is strongly stable if there is no pair (m,w) ¢ M such that
either m strictly prefers w to M (m), and w prefers or is indifferent between m and M (w),
or w strictly prefers m to M (w), and m prefers or is indifferent between w and M (m).

* Super Stability: A matching M is super-stable if there is no pair (m,w) such that both
agents either strictly prefer each other to their assigned partners in M, or are indifferent
between them and their current partners.



2.1. The Stable Marriage Problem 20

It follows that every super-stable matching is also strongly stable, and every strongly stable match-
ing is also weakly stable. By arbitrarily breaking the ties in an instance I of one obtains
an instance I’ of for which any stable matching is also a weakly stable matching in /. Con-
sequently, a weakly stable matching in I can be found in O(n?) time using the Gale-Shapley
algorithm, for example. However, it has been shown that an instance of may admit neither
a strongly stable matching nor a super-stable matching. Nonetheless, Irving [63] presented an
O(n?) algorithm for determining whether a strongly stable matching exists and constructing one
if it does, as well as an O(n?) algorithm for deciding whether a super-stable matching exists and
returning such a matching when it does.

2.1.2.3 Stable Marriage with Ties and Incomplete Lists (sMT1)

The Stable Marriage problem with Ties and Incomplete lists (sMTI) generalises both [smi] and
In this setting, agents may omit some members of the opposite set from their preference lists, as
in and may express indifference between two or more acceptable partners by placing them
in a tie, as in The three stability notions defined for namely weak, strong, and super
stability, extend naturally to

To illustrate these blocking pair notions more concretely, consider instance /5 shown in Figure|2.3|
which involves two men and two women, with a single tie appearing in the preference list of m
(In figures involving instances, ties are indicated using brackets). The matching M =
{(my,wy), (Mg, ws)} is weakly stable, since no pair of agents prefers each other to their partners
in M. However, M is not strongly stable. The pair (my,w;) blocks M because m, is indifferent
between w; and w,, while w; prefers my to her partner in M, namely m;. In contrast, the
matching M’ = {(mq,w;)} is weakly stable, strongly stable, and super-stable.

Men’s preferences Women’s preferences
mi: Wi wi. Mo mq
mao: (wlwg) wa. M2

Figure 2.3: Instance [, of smT1 with two men and two women.

Similar to[sm1, we note that a weakly stable matching in a given[smTi instance always exists. This
can be obtained by arbitrarily breaking ties and then applying the Gale-Shapley algorithm to the
resulting instance. However, Manlove et al. [100] showed that the manner in which ties
are resolved can lead to weakly stable matchings of different sizes. For example, in Figure [2.3]
instance [, admits two weakly stable matchings, M and M’, of sizes 2 and 1, respectively. They
further proved that max-smTI, the problem of computing a maximum-size weakly stable match-
ing, is NP-hard, even in cases where ties appear only at the ends of preference lists, occur on one
side only, and each list contains at most one tie of length two.
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Subsequently, Irving et al. [68] showed that [MaX-smTI|is solvable in polynomial time when each
man’s preference list contains at most two women, even if the women’s lists are of unbounded
length. However, they also showed that the problem remains NP-hard when each man’s prefer-
ence list has length at most 3, and remains so even if each woman’s list also has length at most 3.
Moreover, the problem is not approximable within any factor § > 1, even when each woman’s list
is of length at most 4. Furthermore, Yanagisawa [[148]] proved that[Max-sMT]|is not approximable
within a factor of 33 unless P = NP.

Panda and Sachin [127] strengthened these results by examining the structure of preference lists.
They showed that the decision variant of denoted which asks whether there
exists a complete weakly stable matching in a given instance, | remains NP-complete even
when each preference list consists of consecutive members with respect to some fixed ordering of
the set of men and the set of women. They also identified a restricted case, denoted SMTI-STEP,
in which there exist orderings of the men and women such that each man m, finds acceptable
exactly those women w; with j < i. Under this condition, they showed that the com smT1 problem
can be solved in O(n?) time.

Given the negative complexity results, several heuristic strategies for have been pre-
sented, many of which are based on local search techniques [47,(57,116]]. Alongside these heuris-
tics, approximation algorithms have also been developed [55,/67,/81,/110,126]. The best known
approximation algorithm for the case where ties are allowed on both sides has an approximation
factor of % [[110]. For the case where ties occur only on one side, Iwama et al. [|75] gave a f—?
approximation algorithm, which was improved to 22 by Huang and Kavitha [61]. Subsequently,
Radnai [[128] presented a %—approximation algorithm, which was later improved to % by Dean
et al. [32]. The current best approximation factor, 1+ 1, was obtained by Lam and Plaxton [91]].

Matsuyama and Miyazaki [[108] noted that it is generally difficult to evaluate the quality of ap-
proximation algorithms experimentally, since computing an optimal solution for large instances
of Max-sMmT1 is often infeasible. To address this, they considered the problem of generating MAx-
sMTI instances with known optimal solutions and explored whether an instance generation al-
gorithm could be designed to produce such examples. They showed that if an instance generator
could produce all such instances in polynomial-time, then NP= coNP [ which is widely believed
to be unlikely. Moreover, they proposed three instance generators that construct restricted ver-
sions of sMTI instances, for which the optimal solution is known.

Similar to the sMT setting, an instance of sMTI may admit no strongly stable or super-stable
matching [54]]. Nonetheless, Manlove [97] showed that, for each of these stronger notions of
stability, the set of agents can be partitioned into those who are assigned in every such matching

2A complete weakly stable matching is a weakly stable matching in which every man and every woman is matched.
3coNP is the class of decision problems where, for every input for which the answer is No, there exists a certificate
that can be verified in polynomial time
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and those who are unassigned in all. He also developed polynomial-time algorithms to determine
whether a strongly stable or super-stable matching exists in a given instance, and to construct
one if it does. These algorithms run in O(n*) and O(n?) time, respectively.

2.1.3 Structure of the set of stable matchings in sm and its extensions

In Section [2.1], we noted that an instance of[smM|admits both a man-optimal and a woman-optimal
stable matching, denoted M, and M., respectively, depending on whether the man-oriented or
woman-oriented version of the Gale-Shapley algorithm is applied. When M, = M., the instance
admits a unique stable matching, as this is the only case in which every man’s best partner is also
his worst. If M, # M., then the instance may admit additional stable matchings besides M, and
M,. These two matchings correspond to the extremal elements in the set of stable matchings,
with M, being optimal for all men and M, optimal for all women. We note that the set of all stable
matchings in sm, denoted M, exhibits a rich underlying structure. In this section, we explore
compact representations of M and discuss the algorithmic implications of this structure.

2.1.3.1 Lattice structure in sm

Let I be an instance of sm, and let M denote the set of all stable matchings in /. We define a
partial order on M as follows. Let M and M’ be two stable matchings in M. We say that M
dominates M’, denoted M = M’, if for every man m, either M (m) = M’(m) (thatis, m is assigned
the same partner in both matchings), or m prefers M (m) to M’(m). Intuitively, M dominates M’
if every man prefers his partner in M at least as much as his partner in M’. Under this dominance
relation, the structure (M, ) forms a partial order.

Knuth [85]], attributing the observation to John Conway, noted that if each man is assigned the
more (or less) preferred of his two partners in two stable matchings M and M’, the resulting
assignment is itself a stable matching. Consequently, the set M, ordered by -, forms a distributive
lattice (see Definition 4.2.3), where the meet (respectively, join) of two stable matchings yields
another stable matching in which each man is assigned the more (respectively, less) preferred of
his two partners. Moreover, the maximum and minimum elements of this lattice correspond to
the man-optimal and woman-optimal stable matchings, respectively. A formal proof of this result
can be found in [54, Section 1.3.1]. For completeness, we restate the key results below.

Lemma 2.1.1 ( [54]). Let M and M’ be two stable matchings in a given instance of sM. Define
their meet, M N M’, as the matching obtained by assigning each man the better of his partners in
M and M'. Then M N M’ is a stable matching.

Lemma 2.1.2 ( [54]). Let M and M’ be two stable matchings in a given instance of sM. Define
their join, M Vv M’, as the matching obtained by assigning each man the worse of his partners in M
and M'. Then M v M’ is a stable matching.
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Lemmas|2.1.1|and [2.1.2|imply the following result:

Theorem 2.1.1 ( [54]). Let M be the set of all stable matchings in a given instance of the
stable marriage problem. Define a partial order = on M such that M = M’ if and only if
each man prefers his partner in M to his partner in M’, or is assigned the same partner in
both matchings. Then, the poset (M, =) forms a distributive lattice. In this lattice, the meet
M N M’ corresponds to the matching where each man gets his more preferred partner between
M and M'’, while the join M \ M’ corresponds to the matching where each man gets his less
preferred partner between M and M’.

We note that all results concerning the lattice structure extend to the setting. The lattice
structure of the set of stable matchings provides a useful foundation for the design of algorithms
for related problems, such as enumerating all stable matchings of a given instance or identifying
one that satisfies additional properties.

However, this structure alone does not immediately lead to efficient algorithms. Since the set M
of stable matchings may be exponentially large, any algorithm that explicitly constructs the entire
lattice will, in the worst case, require exponential time. To address this, Irving and Leather [|65]]
introduced the rotation poset, a polynomial-sized structure that compactly encodes all stable
matchings of an instance of This poset essentially captures all the different ways in which one
can navigate the lattice of stable matchings, allowing transitions from one matching to another
without generating the full lattice.

2.1.3.2 Rotations in sm

For a stable matching M in an instance I of sm, let s,,(m) denote the next woman w on m’s pref-
erence list, that appears after M (m), such that w prefers m to her current partner M (w), if such a
woman exists. A rotation p is an ordered sequence of man-woman pairs {(mg, wo), . . ., (My_1,wr_1)}
such that, for each : (0 <i <r—1), the pair (m;, w;) € M, and w;,1 = sy(m;), where all indices
are taken modulo r. We say that p is exposed in M if every pair in p is included in M. If p is
exposed in M, we may eliminate p. To eliminate a rotation is to reassign each man m; to w; 1,
and all agents not involved in the rotation are unaffected. The resulting matching is denoted by
M/p, and is guaranteed to be stable [54,65].

Note that eliminating a rotation p causes the men involved in p to be strictly worse off, and
the women to be strictly better off. Moreover, every stable matching except the woman-optimal
matching M, admits at least one exposed rotation [54,65]]. Let M be a stable matching in a given
instance /. If M # M., then there is at least one rotation exposed in M. Let {po, p1,- .-, pr}
denote the set of rotations exposed in M. Eliminating one of these rotations, say p,, yields a new
stable matching M/p,. In this new matching, the remaining rotations p, . . ., p; remain exposed,
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and additional rotations that were not exposed in A/ may now become exposed. By repeatedly
eliminating exposed rotations in this way, we move from one stable matching to another. At each
step, the set of exposed rotations will change.

To illustrate the concepts in Section [2.1.3.1]and [2.1.3.2] we present an example sMm instance I3

showing the lattice of stable matchings and the corresponding rotations in /5.

Example: The Stable Marriage instance /3, shown in Figure [2.4} consists of 8 men and 8 women.
This instance admits 8 stable matchings, presented in Table with M, as the man-optimal
matching and My as the woman-optimal matching. The lattice structure for the set of all stable
matchings in 73 is shown in Figure[2.5] with M/ at the top and Mjs at the bottom of the lattice. The
lattice structure forms a directed graph where each vertex represents a stable matching. There is
a directed edge from a vertex M to a vertex M’ (with M # M’) if M < M’ and no intermediate
matching M (distinct from both M and M’) satisfies M < M < M’. For example, using the
definitions of meet and join from Lemmas|2.1.1|and |2.1.2} it can be verified that M, = M35 A M,
and M5 = Ms Vv M,. Moreover, M, dominates both M; and M, as well as several other stable

matchings.

Men’s preferences Women’s preferences

mi. Wy Wy W1 Wy Wg Wy Wq W3 Wi: My M3 M7 Mg M Mo Mg My
Mo Wy W3 W7 Ws Wq W1 Wg Weg Wao: Mg Mg M3 My M7 Mo M1 My
ms. Wg Wy W1 Wa Wg W W3 Wy W3z M1 My Mg Mo My Mg M7 M3
my: W3 W W7 Wy W1 We Wg Ws Wyt Mg M7 M3 Mo MMy M My Mg
ms. W7y Wy Wy W1 W3 Wg Wg Wy Ws. Mg My M7 M3 Mg M Mo My
Meg. W1 Wg W7 Wy Wg Wy Wo W3 Weg. Mo Mg My 13 MMy Mg M7 MMy
mr: Wo Wy W7 W W3 Wy Wg W1 Wy My My Mo MM T8 Mg My M3
mg. W3 Wg W4 Wy W7 Wy Wg W1 Wg: M7 My M1 My Mo M3 Mg Y

Figure 2.4: An instance I3 of sm, adapted from Gusfield and Irving [54, page 69]
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Matching | m; ms m3 my ms mg m; mg
M, Ws W3 Wg W Wy Wp W2 Wy
M, ws w3 W5 W Wy wWp Wy Wy
M; w3 W Ws Ws Wy W Wy Wy
M4 Wwg W3 W1 W Wy Wy W2 W4
M5 W3 Wg W1 Wg Wy Wy We Wy
Mg wg W3 W; Wg Wy Ws Wy Wi
M7 W3 Wg W1 Wg W2 Wy Wy W4
Mg W3 Wg Wy Wg W1 Wy Wy Wy

Table 2.1: The eight stable matchings admitted by instance /3, where each entry shows the

woman assigned to each man.

Figure 2.5: Lattice of stable matchings and corresponding rotations in instance /3.

We note that instance /3 admits a total of five rotations, given below:
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We now illustrate how eliminating a rotation leads to a new stable matching. Starting from the
man-optimal stable matching for instance I3,

M, = {(ml, w5), (mz, w3), (mg, ws), (m4, w6), (m5, w7), (mﬁa w1), (m7, UJ2)7 (ms, w4)},

the only rotation exposed in M, as shown in Figure[2.5] is py = {(m1, ws), (m3, ws)}. Eliminating
po involves moving m, to woman wg and ms to woman ws. As a result, we obtain the new stable
matching

MQ = {(ml, wg), (mg, U)g), (m3, UJ5), (m4, wG), (m5, U)7), (’ITLG, wl), (m7, wg), (mg, UJ4)}

In M,, the rotations p; and p; are now exposed. Figure shows the rotations exposed in each
matching, with the corresponding rotations labelled on the edges. By successively eliminating
an exposed rotation at each step, we obtain the next stable matching in the lattice.

2.1.3.3 Rotation poset

Let R denote the set of all rotations that are exposed in at least one stable matching of a given
instance /. Irving and Leather [|65]] showed that any two rotations in R are either identical or
disjoint; that is, no man-woman pair appears in more than one rotation. Furthermore, there is a
natural partial order on R. Specifically, if a rotation p must be eliminated before another rotation
p' can be exposed, then we say that p precedes p/, denoted p < p'. This partial order defines the
rotation poset 11 = (R, <). It is known that the number of rotations in II is bounded by O(m),
where m is the total length of all preference lists in the instance.

A subset R’ C R is said to be closed if, for every rotation p € R’, all rotations p’ with p’ < p are
also contained in R'. Irving and Leather [65] (see also [54, Section 2.5.4]) showed that there is
a one-to-one correspondence between the set of stable matchings and the set of closed subsets
of II. Starting from any stable matching M in I, we can eliminate the rotations in any closed
subset R, in any order that respects the partial order, and obtain a different stable matching.
In fact, every stable matching of I can be obtained by eliminating a closed subset of rotations
starting from the man-optimal stable matching. Thus, the set Il encodes the entire set M of
stable matchings.

Gusfield and Irving [54] showed that by constructing the rotation digraph G(M ), which is derived
from the rotation poset, it is possible to enumerate all stable matchings in time O(m + n|M|),
where n is the number of agents, m is the total length of all preference lists, and | M| is the
number of stable matchings in the instance. Moreover, each edge in the lattice of stable matchings
corresponds exactly to the elimination of a single rotation in the rotation digraph. The rotation
poset and its associated digraph have also been used to derive complexity bounds and design

efficient algorithms for several stable marriage variants, including the egalitarian and minimum
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regret stable matching problems [52].

2.1.3.4 Optimal stable matchings

In certain applications, it is desirable to impose additional optimality criteria on stable matchings
in order to improve overall satisfaction or fairness. One such criterion is the egalitarian stable
matching, which aims to minimise the total dissatisfaction across all participants. For each pair
(m;, w;) in a stable matching M, we define the rank of m, in M to be the position of w; on m,’s
preference list, and the rank of w; in M to be the position of m; on w,’s preference list; the sum of
all such ranks over all assigned pairs gives the total weight of M. An egalitarian stable matching
is a stable matching with minimum possible weight. In the sm setting, an efficient algorithm
for finding such a matching, which leverages the distributive lattice structure of stable match-
ings, was described by Irving et al. [|64,66]]. Another optimality notion is the minimum regret
stable matching, which focuses on minimising the dissatisfaction of the worst-off participant. A
polynomial-time algorithm for finding a minimum regret stable matching was proposed in [52].

2.1.3.5 Polyhedral characterization of stable marriages

The structure of the set of stable matchings has been investigated using a polyhedral approach. In
particular, the set of stable marriages can be described as the set of extreme points of a polytope
known as the stable marriage polytope. This polytope is defined by a set of linear inequalities
that capture the matching constraints (ensuring that each participant is matched to at most one
partner) and the stability constraints (preventing blocking pairs). Vande Vate [144] was the
first to describe this polytope explicitly and to show that each stable matching corresponds to an
extreme point of the polytope. Later, Rothblum [[135] provided a simplified proof of this result.
Building on these results, Gusfield and Irving [54] introduced an alternative characterization
using rotations, which also proves that the set of stable matchings corresponds exactly to the
extreme points of the stable marriage polytope.

This polyhedral approach makes it possible to derive results for the problem using linear
programming techniques. Furthermore, the formulation of the stable matching polytope enables
the construction of polynomial-time reductions between the stable marriage problem and other
combinatorial optimisation problems, which in turn helps identify and analyse problems that are
structurally equivalent to the stable marriage problem. Two problems A and B are said to be
structurally equivalent if there exists a structure-preserving reduction between them, whereby a
solution is feasible for an instance of A if and only if its corresponding solution is feasible for the
corresponding instance of B, and other essential structural properties are preserved; for more
details, see [13]]. In the context of the stable marriage, Gusfield and Irving [|54] showed, using
the rotation digraph, that the stable marriage problem is structurally equivalent to the minimum
s-t cut problem.
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2.1.3.6 Structure of strongly and super-stable matchings

The sets of strongly-stable and super-stable matchings in[smT1also possess well-defined structural
properties. Manlove [98] showed that the set of strongly stable matchings in forms a finite
distributive lattice. Later, Kunysz et al. [87]] presented two characterisations of the set of strongly
stable matchings in The first is based on the notion of irreducible matchings. For each
stable pair (a,b), meaning an acceptable pair that can appear in some strongly stable matching,
they define a unique strongly stable matching that is best for all men among those matchings
containing (a, b). This matching is called the irreducible matching corresponding to (a,b). All
such irreducible matchings can be computed in O(nm?) time, where n and m denote the numbers
of vertices and edges in the graph G representing the underlying instance. The second
characterisation uses rotations, which generalise the rotation concept from [sm|to instances with
ties and incomplete lists. They also describe how to compute the rotation poset in O(nm) time.

Similarly, Speiker [138]] demonstrated that the set of super-stable matchings in smT1 also forms
a distributive lattice, with an alternative proof provided by Manlove [98]. Scott [137] intro-
duced the concept of meta-rotations for super-stable matchings, which can be constructed in
O(m?) time, and established a one-to-one correspondence between super-stable matchings and
the closed subsets of the associated poset. More recently, Hu and Garg [59]] presented a sim-
pler characterisation of the set of super-stable matchings, based on rotations, which can be con-
structed in O(mn) time. In addition, Kunysz [86] provided a polyhedral characterization of the
set of all strongly stable matchings and proved that the strongly stable matching polytope is inte-
gral. On the other hand, Hu and Garg [59] presented a polyhedral characterization for the set of
all super-stable matchings and showed that the super-stable matching polytope is integral, using
Hall’s theorem.

2.2 The Hospitals/Residents problem (HR)

The Hospital/Residents problem (also known as the College Admissions problem) is a many-to-
one generalisation of the Stable Marriage problem with Incomplete lists (smi), first introduced
by Gale and Shapley [[43]]. The agents involved are residents and hospitals, with each hospital
having a fixed number of available positions (capacity). A matching is an assignment of residents
to hospitals such that each hospital does not exceed its capacity and each resident is assigned to
at most one hospital. Similar to the goal is to find a stable matching.

2.2.1 Formal definition

Formally, an instance of [HR| consists of a set R of residents and a set H of hospitals. Each resident
r; € R ranks a subset of hospitals they find acceptable in strict preference order; this defines their
preference list. If a hospital »; appears on r;’s preference list, we say that r; finds h; acceptable.
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Given two hospitals h;, h, € H, if h; precedes h; on r;’s preference list, we say that r; prefers h;
to hy. Each hospital h; € H also ranks a subset of residents it finds acceptable, which forms its
preference list. The same notion of preference applies to hospitals: given two residents r;,r;, € R,
if r; precedes 7, on h,’s preference list, then h; prefers r; to r;. A resident-hospital pair (r;, h;) is
called an acceptable pair if r; finds h; acceptable and &, finds r; acceptable. Each hospital &; has
a capacity ¢; € Z*, representing the maximum number of residents it can accommodate.

A matching M is an assignment of acceptable resident—hospital pairs such that each resident is
assigned to at most one hospital, and no hospital is assigned more residents than its capacity. If
(ri,h;) € M, we say that h; is assigned r; in M, and we denote by A (h;) the set of residents
assigned to h;. Similarly, M (r;) denotes the hospital assigned to r;. We write |M (h;)| to denote
the number of residents assigned to h;. A hospital h; is said to be undersubscribed if | M (h;)| < ¢;,
fullif |M(h;)| = ¢;, and oversubscribed if |M (h;)| > ¢;.

A pair (r;, h;) not in M is called a blocking pair with respect to M if it is an acceptable pair and
both of the following conditions hold:

(@) either r; is unassigned in M or prefers h; to M(r;);

(b) either h; is undersubscribed, or is full in M and prefers r; to its worst-ranked resident in
M (hy).

A matching M is said to be stable if it admits no blocking pair.

Similar to Gale and Shapley [43]] showed that a stable matching always exists in any instance
of and it can be found in polynomial time using either the resident-oriented or the hospital-
oriented Gale-Shapley algorithm. Moreover, the algorithm produces a stable matching that is
resident-optimal (and hospital-pessimal) or hospital-optimal (and resident-pessimal), and there
may be multiple stable matchings in a given instance of

2.2.2 Extensions of the Hospitals/Residents problem (HR)

A natural generalisation of [HR| allows residents (respectively, hospitals) to express indifference
between two or more hospitals (respectively, residents) in their preference lists, in form of ties.
This extension is known as the Hospitals/Residents problem with Ties (HRT). The HRT model
extends[smTi, and the three stability definitions from smT1, namely weak stability, strong stability,
and super-stability, were generalised to[HRT| by Irving et al. [69}[70]. A weakly stable matching in
[HR1]is defined analogously to stability in[HR]. For formal definitions of strong and super stability in
we refer the reader to Manlove [94, Section 1.3.5]. A polynomial-time algorithm for finding
a strongly stable matching, or reporting that none exists, in an instance was given in [69].
Likewise, an algorithm for finding a super stable matching was presented in [70]. Since is
an extension of it follows that every instance of admits a weakly stable matching [69]],
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and weakly stable matchings in may differ in size. Moreover, finding a maximum weakly
stable matching in an instance of (Max-HRT) is NP-hard [|73].

Many of the approximability results and approximation algorithms for can be generalised

to the setting [94,(100]. Kirdly [82]] developed a 2-approximation algorithm for
and Yanagisawa [[148] showed that there is no approximation algorithm for with an

approximation factor better than 33, unless P = NP. Other approaches that have been explored to
solveMax-HRT]include integer programming techniques [89}/109], heuristic algorithms [21,[120],

and parameterised complexity [[105].

The Hospitals/Residents problem with Couples (HRc) [101] extends [HR| by allowing certain res-
idents to apply jointly as couples (for example, couples may wish to be assigned to hospitals that
are close to each other). This is achieved by allowing each couple to submit a joint preference
list over pairs of hospitals. The definition of stability in [HR| can be extended to [94]. In this
setting, a stable matching may not exist; however, it is possible to seek an almost-stable matching,
that is, a matching minimising the number of blocking pairs. Manlove et al. [[101] showed that
finding such a matching is NP-hard. In a restricted variant of where each single resident’s
preference list contains at most « hospitals, each couple’s list contains at most 3 pairs of hospi-
tals, and each hospital’s list contains at most ~ residents (referred to as («, /3, y)-HRC), Manlove
and McDermid [[111] showed that deciding whether an instance of (3,2, 4)-HRc admits a stable
matching is NP-complete. Further results on restrictions, tractability, and hardness for HRc can
be found in [29].

2.2.3 Structure of the set of stable matchings in HR

Similar to an instance [ of [HR|may admit many stable matchings in addition to the resident-
optimal and hospital-optimal stable matchings. Roth and Sotomayor [133]] established the fol-
lowing structural properties, known as the Rural Hospitals Theorem regarding the set of
stable matchings in /.

Theorem 2.2.1 (Rural Hospitals Theorem [44,(129,/130,/133]]). Let I be an instance of HR.
Then, the following properties hold in I:

* The same set of residents are assigned in all stable matchings;

* Each hospital is assigned the same number of residents in all stable matchings;

* Any hospital that is undersubscribed in one stable matching is assigned exactly the same

set of residents in every stable matching.

Roth and Sotomayor [133]] proved that any two stable matchings can be directly compared based
on the hospitals’ preferences. Suppose M and M’ are two stable matchings for an instance of
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HR, and hospital A is assigned different sets of residents in these matchings. If i prefers its worst
resident in M (h) \ M’'(h) to its worst resident in M'(h) \ M(h), then h prefers all residents in
M (h) to all residents in M’'(h)\ M (h). This result implies that, after excluding residents assigned
to h in both M and M’, the hospital prefers all residents in one matching to all residents in the
other. It is therefore straightforward to define what it means for the hospitals as a group to prefer
one matching over another. This observation, together with a similar resident-oriented relation,
has been used to show that the set of stable matchings forms a finite distributive lattice [54].

Bansal [14] extended the notion of rotations to the many-to-many stable matching setting, in
which agents on both sides can be matched to multiple partners. In this setting, each agent has a
capacity specifying the maximum number of agents they can be assigned. By introducing meta-
rotations, the authors showed how all stable matchings in a given instance can be enumerated,
and developed a polynomial-time algorithm for finding a stable matching that is optimal in the
sense of minimising the total dissatisfaction scorelﬂ Cheng et al. [|26] specialised meta-rotations
to the Hospitals/Residents problem (HR) and showed that the structural results developed for the
many-to-many setting also hold in[HRr] They used meta-rotations to identify feasible stable match-
ings, that is, stable matchings that satisfy additional constraints with a so-called identification
property. Furthermore, they introduced generalised notions of egalitarian and minimum regret
stable matchings for HR, and developed polynomial-time algorithms for finding these matchings.

2.3 The Student-Project Allocation problem (sra)

The Student-Project Allocation problem (spa) is a generalisation of the Hospitals/Residents prob-
lem (HR) involving three sets of entities: students, projects, and lecturers. Each project is offered
by exactly one lecturer, and both lecturers and projects have capacity constraints indicating the
maximum number of students they can accommodate. A matching is an assignment of students
to projects based on preferences, such that each student is assigned to exactly one project, and
the capacity of both projects and lecturers are not exceeded. Applications of spa in academic set-
tings include matching schemes in the School of Computing at the University of Glasgow [88]], the
Department of Civil and Environmental Engineering at the University of Southampton [11,56],
and the School of Electrical and Electronic Engineering at Nanyang Technological University,
Singapore [141].

In the spa model, students have preferences over projects, while the presence and nature of lec-
turers’ preferences give rise to three different variants of the model. In the first variant, known
as the Student-Project Allocation problem with lecturer preferences over Students (spa-s) [|8], each
lecturer provides preferences over the students who find at least one of their offered projects

“The total dissatisfaction score is defined as the sum of the ranks of assigned partners in each individual’s pref-
erence list; a lower rank means higher preference.
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acceptable. In the second variant, called the Student-Project Allocation problem with lecturer pref-
erences over Projects (spa-P) [102], each lecturer specifies a strict order of preference over the
projects they offer. A third, more general variant allows lecturers to rank student-project pairs
in strict order of preference, giving rise to the Student-Project Allocation problem with lecturer
preferences over student-project pairs (spa-(s,pP)) [37]. In spa-(s,P), each student-project pair on
a lecturer’s list involves a project offered by that lecturer and a student who finds that project
acceptable. Further details on spa-(s,P) can be found in [|37,/94].

In this thesis, we focus on spa-p and spa-s, which we review in the following sections.

2.3.1 Student-Project Allocation with lecturer preferences over Students
(spa-s)

In this section, we formally define the spa-s model introduced above, describe the notion of
stability in this model, and present known results related to it.

2.3.1.1 Formal definition

Formally, an instance I of spa-s consists of a set of students S = {sy, 9, ..., sp, }, a set of projects
P = {p1,p2,..-,Dn,}> and a set of lecturers £ = {l;,1s, ..., l,,}. Each project p; € P is offered by
exactly one lecturer. For each lecturer I, € £, let P, C P denote the set of projects offered by
l.. The sets Py, Py, ..., Pn, form a partition of P; that is, each project is offered by exactly one
lecturer. Moreover, each project p; has a capacity ¢; € Z*, representing the maximum number of
students that can be assigned to p;. Similarly, each lecturer [, has a capacity d;, € Z*, indicating
the maximum number of students they can supervise. Each student s, € S finds certain projects
acceptable; this set of acceptable projects is denoted .4; C P. The student ranks the projects in A;
in strict order of preference, forming their preference list. Similarly, each lecturer I, € £ provides
a strict preference ordering over the students who find at least one project in P, acceptable. We
denote this preference list by L.

A pair (s;,p;) € S x P, where project p; is offered by lecturer I, is called an acceptable pair if
and only if s; finds p; acceptable and [, finds s; acceptable. Formally, this means p; € A; and
s; € Ly. For each lecturer [, we assume that max{c; : p; € Pr} < dj < > p;ePy Ci» where P, is the
set of projects offered by lecturer [,. This means that the capacity d,, of I, is at least the largest
capacity among the projects in P, and at most the sum of the capacities of all projects in P,. We
denote by £¥ the projected preference list of lecturer [, for project p;. This list is obtained from
L, by removing all students who do not find p; acceptable; the order of the remaining students
is inherited from L.

An assignment )M for an instance [ of is a set of acceptable pairs (s;,p;) € S x P such
that (s;,p;) € M only if p; € A;. If (s;,p;) € M and [ is the lecturer offering p;, we say that
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s; is assigned to project p,; and lecturer [;; equivalently, p; and [, are assigned to s;. The size
of M, denoted |M|, is the number of student-project pairs it contains. We denote by M (s;) the
project assigned to s; (if any), by M (p;) the set of students assigned to p;, and by A (l;) the set
of students assigned to lecturer /;. A project p; is undersubscribed, full, or oversubscribed in M if
|M (p,)| is less than, equal to, or greater than its capacity c;, respectively. Similarly, a lecturer [,
is undersubscribed, full, or oversubscribed depending on whether |M (l;)| is less than, equal to, or
greater than its capacity dj, respectively. Furthermore, a project p; is non-empty if |M(p;)| > 0.

Finally, an assignment M is a matching if:
* each student is assigned to at most one project, i.e., |M(s;)| < 1 for each s; € S;
* no project exceeds its capacity, i.e., | M (p;)| < ¢, for each p; € P;

* no lecturer exceeds their capacity, i.e., |M(l)| < di for each [}, € L.

Definition 2.3.1 (Stability in spa-s [7]). Let I be an instance of spa-s and M a matching
in /. An acceptable pair (s;, p;) ¢ M is a blocking pair if:

(S1) s, is either unassigned in M, or prefers p; to their assigned project M (s;),

and one of the following holds for project p; and lecturer [/, (where [, offers p;):

(P1) Both p, and [;, are undersubscribed in M.
(P2) p, is undersubscribed, I, is full, and s; € M ().
(P3) p; is undersubscribed, I, is full, and /;, prefers s, to the worst student in M ().

(P4) p; is full, and [, prefers s; to the worst student in M (p;).

A matching is stable if it admits no blocking pairs.

Intuitively, the blocking pair definition tries to capture all the different ways in which a student
s; and a lecturer [, could both improve relative to a matching M if s; were assigned to project
p;. For this to occur, s; must either be unassigned in M, or must prefer p; to their current project
M (s;) (Condition S1). On the lecturer side, several situations may allow [ to accept s;. If both
p; and [;, are undersubscribed, then [, can take on s; (Condition P1). If [, is full but s; is already
assigned in M to a project offered by [, then [, will agree to this switch since the number of
students assigned to [, does not change and p; has space for s; (Condition P2).

If, however, ;. is full and s; is not currently assigned in M to a project offered by [, then [, cannot
accept s; without first removing one of their assigned students. Lecturer [, would be willing to
do this only if they prefer s; to their worst assigned student, and provided that p; also has space
for s; (Condition P3). Finally, if p; itself is full, then [, cannot accept s; onto p; without first
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removing a student currently assigned to p;. Again, [, would only agree to this if they prefer s,
to the worst student currently assigned to p; (Condition P4).

2.3.1.2 Example.

An example spa-s instance is shown in Figure[4.1] Here, the set of students is S = {s1, 5o, ..., 55},
the set of projects is P = {p1,ps,...,ps}, and the set of lecturers is £ = {ly,l5}. Each student
has a preference list over the projects they find acceptable. For example, s;’s preference list is
p1, P2, and sy’s preference list is po, p3. Also, lecturer [, offers py, po, ps, while lecturer I, offers
p3, p4. Each lecturer ranks students in order of preference. In this example, [;’s preference list is
S4, S5, S3, 81, S9, and the projected preference list of [, for p; includes ss, s1, ranked in that order.

Students’ preferences Lecturers’ preferences Offers
511 p1 P2 l1: 84 85 83 51 82 P1, P2, D5
S21 P2 P3 la: s2 83 85 54 P35 P4
§3: P3 P1

541 P4 Ps

851 Ps5 P4

Project capacities: cy =co =c3=cs=c5 =1

Lecturer capacities: d; = 3, do = 2

Figure 2.6: An instance /; of spPa-s

With respect to the spa-s instance /; shown in Figure the matching M; = {(s1,p1), (s2,p2),
(s3,p3), (S4,p4), (s5,p5)} is a stable matching, as it does not admit any blocking pair. On the other
hand, the matching M, = {(s1,p2), (S2,3), (S3,P1), (S4,p4)} is not stable since s5 is unassigned,
and both ps and [, are undersubscribed.

2.3.1.3 Structural and algorithmic results for spra-s

We note that the Hospitals/Residents problem (#R), discussed in Section [2.2] is a special case of
lspa-s|where each lecturer offers exactly one project, and the capacity of each project matches that
of the lecturer offering it. In this setting, projects and lecturers are essentially indistinguishable.
Consequently, several structural properties known for HR can be naturally generalized to spa-s.

Similar to [43], Abraham et al. [8]] proved that every instance admits at least one
stable matching, which can be found in polynomial-time, although many stable matchings may
exist. They developed two polynomial-time algorithms for [sPa-s| one student-oriented and one
lecturer-oriented. In the student-oriented algorithm, each unassigned student who has a non-
empty list applies to the first project p,; on their list, and become provisionally assigned to that
project and lecturer. If p; is oversubscribed, then [, rejects the worst student s, assigned to p;.
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The pair (s,,p;) is subsequently deleted (in the sense that p, is deleted from s,’s list and s, is
deleted from £}). Similarly; if the lecturer I, is oversubscribed then I;, rejects their worst assigned
student s,. Again, the pair (s,, p;) is deleted, where p, was the project most recently assigned to
s,. The student-oriented algorithm produces a student-optimal stable matching, in which each
student is assigned their best possible project among all stable matchings. The stable matching
produced by the lecturer-oriented algorithm is considered lecturer-optimal. However, the notion
of optimality for lecturers differs slightly: while it can be viewed as lecturer-optimal, this holds
in a precise but somewhat weaker sense. We discuss this further in Section |4.2.1.2

Abraham et al. [|8] also presented a set of structural properties exhibited by instances,
known as the Unpopular Projects Theorem [[121]]. This theorem, formally stated in Theorem[4.2.1],
is analogous to the Rural Hospitals Theorem (Theorem for[HR] and some of its properties
generalise naturally to These structural results have provided the foundation for charac-
terising the set of stable matchings. In particular, Olaosebikan [121]] showed that when each
student ranks only projects offered by different lecturers, the set of stable matchings forms a
distributive lattice. In Chapter [4, we extend this result by proving that the lattice structure holds
without this restriction, thus generalizing results from the [HR| model to the more complex
setting.

2.3.2 Lecturer preferences over students including ties (spA-sT)

Abraham et al. [|8] proposed an extension of where students (respectively, lecturers) may
have ties in their preference lists indicating indifference between two or more projects (respec-
tively, students). This model is known as the Student-Project Allocation problem with lecturer
preferences over Students including Ties (spa-sT). We note that is a special case of [sPA-sT]
in which there are an equal number of projects and lecturers, each lecturer offers exactly one
project, and the capacity of each project and lecturer is one. Similar to (discussed in Sec-
tion[2.1.2.3), three notions of stability arise in[spa-sT}, namely weak stability, strong stability, and
super-stability.

Weak stability in[spa-sT]is defined similarly to stability in and as in the case, a weakly
stable matching is guaranteed to exist in every instance of Such a matching can be found

by breaking ties arbitrarily in the instance to form a instance, and then using the
algorithm described in Section [2.3.1.3to find either a student-optimal or lecturer-optimal stable
matching [8]]. However, in contrast to[spa-s], weakly stable matchings in[spa-stjmay have different
sizes. This leads to the problem of finding a weakly stable matching that assigns as many students
as possible to projects, denoted Max-spa-sT. We recall that which is a special case of

is NP-hard [[100]; thus, it follows that [MAx-sPA-sT]is also NP-hard.

To cope with this, Cooper and Manlove [27] described a 2-approximation algorithm for
that finds a weakly stable matching of size at least two-thirds that of a maximum weakly
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stable matching. Under the other two stability criteria (strong stability and super-stability), an
instance of need not admit a stable matching. Olaosebikan and Manlove [122] presented
a polynomial-time algorithm to find a strongly stable matching or to report that none exists.
The same authors described a polynomial-time algorithm for finding a super-stable matching or
reporting that no such matching exists [123]].

2.3.3 Lecturer preferences over projects (SPaA-P)

The variant of |spA|where lecturers provide preferences over the projects that they offer is known
as Student-Project Allocation problem with lecturer preferences over Projects (spa-p) [95],102,/124].
Manlove and O’Malley [102] showed that, in a given instance of stable matchings can
have different sizes. This has motivated the problem of finding a stable matching of maximum
size, known as which is NP-hard even when every project and lecturer has capac-
ity one [[102]. The authors provided a 2-approximation algorithm, and subsequently Iwama et
al. [74] presented an improved £ approximation algorithm, and showed that is not
approximable within a factor of 2.

Manlove et al. [95] later described an Integer Programming model for and showed
that the problem remains NP-hard even when there are only two lecturers, but becomes tractable
when there is a single lecturer [96]. Furthermore, (3, 3)-MaX-spa-p, where each preference list
has length at most three, is also NP-hard. A different notion of stability, known as strong stability,
was introduced by O’Malley [124], who also presented a polynomial-time algorithm for finding
a strongly stable matching in or reporting that none exists.

2.4 Related spa models

Fleiner [39,40] recently introduced a matroid framework for analysing stable matchings in bi-
partite matching problems. In this formulation, stable matchings are characterised as matroid
kernels. The model can be embedded into this framework by viewing the set of students
as a partition matroid and representing lecturers using a truncation of a direct sum of uniform
matroids, as noted in [8]]. In this representation, the bipartite graph is modelled as a multigraph,
with vertices on one side corresponding to students, vertices on the other side to lecturers, and
edges representing acceptable student—project pairs.

A structural property in Fleiner’s framework extends the well-known Rural Hospitals Theorem:
if the matroid kernel for a particular stable matching does not span the entire ground set, then
exactly the same subset is spanned in every stable matching. This generalises the property that
any agent who is undersubscribed in one stable matching will be assigned the same set of partners
across all stable matchings. However, this property does not hold in where a project or
lecturer might be undersubscribed in one stable matching but receive different sets of students in
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another. This observation suggests that although can be embedded into Fleiner’s matroid
framework, certain structural and optimality properties do not necessarily carry over.

The Laminar Classified Stable Matching (1.csm) model introduced by Huang [60] is a gener-
alization of consisting of institutes and applicants who have preferences over one another.
Each institute classifies applicants into a laminar family of classes and specifies upper and lower
bounds on the number of applicants it can accept from each class. The authors noted that
reduces to a special case of when the classifications form simple partitions and no lower
bounds are imposed. We note that[Lcsm|does not capture the cases in[spa-s|where a student may
be assigned to different projects offered by the same lecturer across different stable matchings.



Chapter 3

Complexity Results for Restricted Variants
of spa

3.1 Introduction

A common approach to addressing the computational hardness of matching problems is to con-
sider restricted versions of the input instances under which the problem becomes tractable, or
to explore whether efficient algorithms can be developed by focusing on specific structural pa-
rameters. In this chapter, we explore this idea in the context of the Student—Project Allocation
problem, focusing on two variants: where both students and lecturers have preferences
over the projects they offer, and where students have preferences over projects, lecturers
have preferences over students who find their projects acceptable, and ties may occur in both
students’ and lecturers’ preference lists. Both variants were introduced in Sections and

2.3.3

We recall that an instance of may admit stable matchings of different sizes, while an in-
stance of may admit weakly stable matchings of different sizes. Moreover, the problem of
finding a stable matching of maximum size in both models is NP-hard [100,/102]. Our goal is
to understand how natural restrictions on the input, such as placing bounds on the ordering of
agents’ preference lists, or exploiting specific structural parameters, influence the complexity of
finding a maximum-size stable matching. In both problems, we consider restrictions on the num-
ber of lecturers involved and the use of a master list of projects. These restrictions are motivated
by real-world matching schemes, where practical considerations may limit the way preferences
are expressed.

For example, the use of master lists has featured in applications such as the Medical Training
Application Service (MTAS) for allocating junior doctors to medical posts in the UK [125]. In
this setting, applicants were assigned numerical scores based on their academic records and
application forms, and a master list containing ties was derived from these scores. There are

38
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also settings where the presence of a master list simplifies the problem. The variant of
in which all ties are on one side and occur at the ends of preference lists is known to be NP-
hard [[100]. However, if there is a master list on one side, with a single tie at the tail of the list,
and all preferences on the other side are strict (with or without a master list), then a maximum-
size weakly stable matching can be found in polynomial time. This is an example where the
presence of a master list makes the problem easier.

We then consider from the perspective of parameterised complexity. Fixed-parameter
tractable algorithms have been developed for several NP-hard variants of matching problems,

including [Max-smTI| and [MAX-HRT, but no such results are currently known for [spa-p, Here, we

consider a new variant of where we introduce a parameter, project topics, such that each
project belongs to a single topic. This parameter may arise naturally in university settings, where
multiple projects fall under a common topic, and students are indifferent between projects within
the same topic. As a result, students express strict preferences over topics rather than over indi-
vidual projects. In this context, the project’s topic serves as a particularly meaningful parameter,
as it reflects how projects are grouped in practice and how both students and lecturers may
structure their preferences over such projects in real academic settings.

3.1.1 Background and motivation

As noted in Section computing a maximum-size weakly stable matching in is NP-
hard [100], with similar results holding for [102] and spa-sT [96]. These problems remain
intractable even under strong restrictions, such as bounded preference list length or when each
tie is of length at most two [68,71,100,137]]. In contrast, several stable matching problems in
the setting, such as generating weakly stable matchings, identifying all weakly stable pairs,
or computing an egalitarian matchings, are solvable in polynomial time. Moreover, when agents
follow a master list, these problems often admit faster or simpler algorithms than in the general
case.

We recall that is the problem of computing a weakly stable matching of maximum
size in a given instance of Moreover, this problem is NP-hard. This follows from the fact
that[mMax-smi)is NP-hard, and since[smTI)is a special case of this implies the NP-hardness
of Similarly, the problem of finding a maximum-size stable matching, known as
is also NP-hard [102]. This result holds even under strong restrictions, such as when only
two lecturers are involved or when all preference lists have length at most three [[96]. Further-
more, the best known approximation algorithm for [Max-sPA-P|achieves a performance guarantee
of 3 [74].

These complexity results motivate the study of restricted variants of the problem, with the aim
of identifying the boundary between tractable and intractable cases. For example, bounding
the lengths of preference lists has been shown to yield efficient algorithms for [68I,
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illustrating that certain restrictions on the input can significantly influence the computational

complexity. In this chapter, we examine the complexity of [MAX-SPA-pP|and [MAX-SPA-sT| under sim-

ilar restrictions. As we will show, even seemingly simple constraints can determine whether a
problem is solvable in polynomial time or remains NP-hard.

3.1.2 Contributions and structure of the chapter

The results presented in this chapter are grouped into two parts. The first part focuses on classical
complexity results. In Section we formally define and in Section we prove that
computing a maximum size weakly stable matching, known as remains NP-hard
even when the instance contains only a single lecturer. We then turn our attention to the

setting in Section In Section [3.3.2] we observe that remains NP-hard even when

the preference lists of both students and lecturers are derived from a master list of projects. On
the positive side, in Section we provide a polynomial-time algorithm for In
this setting, each student finds acceptable only the projects offered by a single lecturer. Finally, in
Section we show that when all students have identical preferences over projects, MAX-SPA-P
is also solvable in polynomial time.

The second part, which forms the main contribution of this chapter, focuses on the parameterised
complexity of In Section [3.4.1] we provide a brief background on known FPT results
for stable matching problems. In Section we present a new variant of in which
we introduce a natural parameter, project topics, such that both students and lecturers express
strict preferences over project topics but are indifferent between projects belonging to the same
topic. As a further restriction, we impose uniform capacities, meaning that each lecturer and
each project they offer have the same capacity. We refer to this variant as with uniform

capacities, abbreviated [spA-PUC

We note that computing a maximum-size stable matching in is NP-hard, even under
uniform capacities, since is NP-hard even when each lecturer and project capacity is
one. Also, given individual preference lists, we can first derive preferences over project topics and
then compute, based on these, a partition of students and lecturers into types that satisfies the

definition of a typed instance. In Sections|3.4.4|and|3.4.5| we prove that finding a maximum-size
stable matching in is fixed-parameter tractable when parameterized by the number of
project topics. The result follows from an Integer Linear Programming (ILP) formulation whose

number of variables depends only on the number of topics. This provides a positive result for a
subclass of instances, particularly when the number of project topics is small.
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3.2 Complexity result for spa-sT under weak stability

In this section, we focus on the problem. We begin by formally defining in Sec-
tion[3.2.1], before presenting our results in Section[3.2.2] All notation and terminology introduced
for spa-s in Section[2.3.1]extend naturally to spa-sT, with the key distinction that preference lists
of students and lecturers in may contain ties.

3.2.1 Formal definition of spA-sT

Formally, an instance / of spa-sT consists of three sets: a set of students S = {s1,52,...,5,,}, @
set of projects P = {p1,p2,...,Pn, }, and a set of lecturers £ = {l;,ls,...,l,,}. A pair (s;,p;) is
acceptable if project p,; appears on student s;’s preference list and s, appears on the preference
list of the lecturer [, who offers p;. As in smTI, three notions of stability arise when preferences
include ties: weak stability, strong stability, and super-stability [|54,94,122,[123]. In this chapter,
we focus on weak stability. We note that weak stability in is defined in the same way as
stability in which we restate as follows:

Definition 3.2.1 (Weak stability in spa-sT). Let I be an instance of spa-sT and M a match-
ing in /. An acceptable pair (s;, p;) ¢ M is a blocking pair for M if the following conditions
hold:

(S1) s; is unassigned in M, or

(S2) s; is assigned in M but prefers p; to their assigned project M (s;),
and one of the following holds for project p; and lecturer [;, offering p;:
(P1) Both p, and [;, are undersubscribed in M.

(P2) p, is undersubscribed in M, [} is full in M, and s; € M (l})

(P3) p; is undersubscribed in M, [ is full in M, and [, prefers s; to the worst student in
M (ly,).

(P4) p,is full in M, and [}, prefers s; to the worst student in M (p,).

To illustrate that weakly stable matchings in may differ in size, consider the instance I,
shown in Figure which involves three students, three projects, and two lecturers. Student
s1 is indifferent between projects p3 and p, (indifference is indicated by round brackets in the
preference lists). This instance admits two weakly stable matchings of different sizes: M; =

{(s1,p3), (s3,p2)} and My = {(s1, p2), (s2,p3), (s3,01)}-
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Students’ preference  Lecturers’ preference offers

sit (ps p2) li: 5183 P1, D2
S2: Ps3 la: 81 83 s3 p3
83t P3 P2 D1

Project capacities: c1=2c0=c3=1

Lecturer capacities: di=2,dy=1

Figure 3.1: An instance [, of SPA-ST.

3.2.2 Complexity of Max-spa-sT with one lecturer

In this section, we consider the complexity of under the restriction that there is only
one lecturer in the instance. Let / be an instance of with one lecturer, and let s* (/) denote
the size of a maximum size stable matching in /. We show that finding a maximum size stable
matching in even under this restriction is NP-complete by presenting a polynomial-time
reduction from a restricted variant of the Stable Marriage problem with Ties and Incomplete

Lists (smTI) involving master lists on both sides. This variant, known as|COMPLETE SMTI-2ML)} is

defined next.

3.2.2.1 COMPLETE SMTI-2ML

In smT1, each man and woman may omit certain partners off their preference lists (incomplete
lists) and may be indifferent between two or more acceptable partners (ties). A matching is said
to be weakly stable if it admits no blocking pair in which both agents prefer each other to their
current partners. The variant assumes that preference lists are derived from master
lists on both sides, i.e., a master list of men from which the women’s preferences are derived,
and a master list of women from which the men’s preferences are derived. A master list of men
is a single list containing all men, possibly with ties. Each woman’s preference list contains her
acceptable partners ranked precisely according to the master list. Thus, the preference list of
each woman w follow the master list exactly, except that each man m that w finds unacceptable
is deleted. A master list of women is defined analogously.

Let MAX sMTI-2ML be the problem of computing a maximum size weakly stable matching in
an instance of The corresponding decision problem is [MaX sMTI-2ML-D|, which asks
whether there exists a weakly stable matching of size at least k, for a given integer k. Irving

et al. [[71]] showed that [Max smMTI-2ML-D|is NP-complete, even under various restrictions on the

positions and lengths of ties in the master lists, as well as on the lengths of individual preference

lists. We focus on a special case, referred to as [COMPLETE sMTI-2ML} in which the number of

men equals the number of women, and the target size of the matching is exactly n, where n is
the number of men (and women). Finding a weakly stable matching of size n, that is a complete
weakly stable matching, is NP-complete [71].



3.2. Complexity result for spa-sT under weak stability 43

Theorem 3.2.1 ( [71]). COMPLETE SMTI-2ML is NP-complete:

Name: COMPLETE SMTI-2ML
Instance: An instance of SMTI-2ML with n men and n women.
Question: Does the instance admit a weakly stable matching of size n?

3.2.2.2 wMAXx-spa-ST with one lecturer

We prove that this problem is NP-complete by reducing from the known NP-complete problem

lcoMPLETE sMTI-2M1] To do so, we first define the following decision problem:

Name: MaX-sPA-ST with one lecturer
Instance: An instance / of spa-sT with one lecturer, and an integer k € Z™.
Question: Does there exist a stable matching M in I such that |M| > k?

Theorem 3.2.2. Max-spA-ST is NP-complete even when there is only one lecturer involved.
The result holds even if each project has capacity 1.

We first note that[Max-spa-sT|with one lecturer is in NP, since given a matching M, we can verify
in polynomial time whether M is stable and whether it has size at least k. Let I’ be an instance

of [COMPLETE sMTI-2ML), consisting of n men and n women. We construct a corresponding|SPA-ST

instance I as follows.

For each man m; in I’, introduce a student s; in /. For each woman w;, create a project p; with
capacity 1. All projects are offered by a single lecturer /, who has capacity n. The lecturer’s
preference list is derived from the master list of men in [’: for each man m;, if m; appears
(possibly in a tie), the corresponding student s; is added in the same position, preserving any
ties. Each student s;’s preference list is identical to the preference list of the corresponding man

m;, replacing each woman w; with the corresponding project p;.

We set the target size & in the constructed instance I to be n, where n is the number of men

and women in the original |cOMPLETE smTI-2ML]instance I’. That is, we ask whether I admits a

weakly stable matching of size at least £ = n. We claim that /" admits a complete weakly stable
matching of size n if and only if / admits a weakly stable matching of size .

Lemma 3.2.1. If I’ admits a complete weakly stable matching M’ of size n, then I admits a weakly
stable matching M of size at least k, where k = n.

Proof. Suppose I’ admits a complete weakly stable matching M’ of size n. We construct a match-

ing M in I by assigning s; to p, whenever m; is assigned to w; in M’. Since there are exactly n
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men and women in [’ and |M’| = n, all students in [ are assigned, and thus lecturer /, who offers
all projects, is assigned exactly n students. Clearly, M is a valid matching in /, since each student
is assigned to at most one project, each project has capacity one and is not oversubscribed, and
the lecturer, who offers all projects, is assigned no more than n students in total.

Now suppose, for contradiction, that M admits a blocking pair (s;,p;) in I. Then either s; is
unassigned in M or s; prefers p; to M (s;), and one of the following conditions holds:

(@) both p; and [ are undersubscribed in M.
(b) p; is undersubscribed in M, [ is full in M, and s, € M(l),)
(¢) p; is undersubscribed in M, [ is full in M, and [ prefers s; to the worst student in M ({).

(d) p;isfullin M, and [ prefers s; to the worst student in M (p;).

By construction of M, all n students in I are assigned to n different projects. Moreover, each
project has capacity one and is offered by the single lecturer [, whose total capacity is also n.
Therefore, both p,; and [ are full in M, ruling out cases (a), (b), and (c). Case (d) implies that
| prefers s; to the worst student in M(p;), say s;. Moreover, (s;,p;) ¢ M. But by construction,
this would translate to a pair (m;, w;) ¢ M’ who would prefer to be assigned to each other than
their assigned partners in I’. However, (m;, w;) would block M’, a contradiction. Therefore, M
is stable. Finally, by construction, |M| = |M’| = k = n, and so M is a weakly stable matching in
I of size n. O

Lemma 3.2.2. If [ admits a weakly stable matching M of size at least k, then I’ admits a complete
weakly stable matching M’ of size n.

Proof. Suppose that I admits a weakly stable matching M of size k. We construct a matching M’
in I’ by including the pair (m;,w;) in M’ for each (s;, p;) € M. This yields a valid matching in I’
since no student is multiply assigned in M, it follows that no man is assigned to more than one
woman in M.

We now show that M’ is a complete weakly stable matching. Suppose for contradiction that there
exists a pair (m;,w;) that blocks M’ in I’. Then m; is either unassigned in M’ or prefers w; to
M'(m;), and w; is either unassigned or prefers m, to M'(w,). If both m,; and w, are unassigned
in M’, this would mean that the corresponding student s; is unassigned in M, and both p; and [
are undersubscribed in M. This yields a blocking pair in M, a contradiction.

Otherwise, suppose m; prefers w; to his assigned partner M’(m;) and w; is assigned to some
man m,. Then the corresponding student s; prefers p; to M (s;), and p; is full with some student
s-. Since all projects have capacity one and are offered by the single lecturer /, and since all
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n students are assigned in M, [ must be full. Hence, [ prefers s; to s,, and (s;,p;) blocks M,
a contradiction. Therefore, no such blocking pair exists and M’ is a complete weakly stable
matching in I’. Moreover, since M has size n and each assigned pair in M corresponds to a
unique pair in M’, we have |M’| = |M| = n, completing the proof. O

By Lemmas(3.2.1|and [3.2.2}, we have shown that I’ admits a complete weakly stable matching of

size n if and only if I has a weakly stable matching M of size at least k. This completes the proof.

3.3 Complexity results for spa-p

In this section, we examine how restrictions on preference lists influence the complexity of

We begin in Section by formally defining the model. In Section [3.3.2) we

consider the variant of in which preference lists are derived from a master list of projects.
In Section[3.3.3] we study another case, denoted|[spa-P-si], where each student ranks only projects
offered by the same lecturer, and present a polynomial-time algorithm for computing a maximum

stable matching in

3.3.1 Formal definition of spa-p

Formally, an instance / of spa-p consists of a set S = {sy,...,s,,} of students, a set P =
{p1,...,pn,} of projects, and a set L = {ly,...,l,,} of lecturers. Unlike lecturers rank
their offered projects in strict order instead of ranking students. All notation and terminology
from apply, except for stability, which we define next.

Definition 3.3.1 (Stability in spa-p [[102]). Let I be an instance of spa-p and M a matching
in /. An acceptable pair (s;,p;) ¢ M is a blocking pair for M if p; is undersubscribed in A/
and the following conditions hold for both student s, and lecturer [;, who offers p;:

(S1) s; is either unassigned in M, or

(S2) s, prefers p; to their assigned project M (s;).
and one of the following holds for lecturer [;:
(L1) s; € M(ly) and [, prefers p; to M(s;).

(L2) s; ¢ M(l;) and [y is undersubscribed in M.

(L3) s; ¢ M(ly) and I, prefers p;, to their worst non-empty project in M.

A matching may also be undermined by a group of students acting together, forming a coalition.
Formally, given a matching )/, a coalition is a sequence of students C' = (s;,, ..., s;. ,) for some
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r > 2, where each student s;; (for 0 < j < r — 1) is assigned in M and prefers the project
assigned to s;,,, over their own assignment M (s;;), with addition modulo 7. If all students in the
coalition simultaneously swap to the project of the next student in the sequence, each becomes
strictly better off, while the overall size of the matching remains unchanged. Moreover, since all
lecturers are assumed to be indifferent between students assigned to their projects, no lecturer
is worse off. A matching is said to be coalition-free if it admits no such coalition. We define a
matching M to be stable if it admits no blocking pairs and it is coalition-free.

For example, in the instance I3 shown in Figure the matching M; = {(s1, p1), (52, p2),
(s3,ps3)} admits a coalition {si, s2}, since both students prefer each other’s assigned project to
their own. By swapping their assigned projects, we obtain M, = {(s1,p2), (s2,p1), (S3,03)},
in which both s; and s, receive a more preferred project. For instance, the matchings M, =
{(s1,p2), ($2,p1), (s3,p3)} and M3 = {(s1,p3), (s2,p1)} admit no blocking pairs and are coalition-
free. Hence, they are both stable in the instance shown in Figure

Students’ preferences Lecturers’ preferences
S1: p3 P2 P1 h: p2 p

S20 p1 P2 lot p3

§3: P3

Project capacities: ¢c; = co =c3 =1
Lecturer capacities: dy = 2, do =1

Figure 3.2: An instance /3 of SpPa-p.

3.3.2 spa-p with master lists

Here, we consider the problem of finding a maximum stable matching in an instance of
where master preference lists are imposed. In this setting, a master list is a global ranking of
projects from which each student and lecturer derives their individual preference lists. Manlove
and O’Malley [102] proved the NP-hardness of via a reduction from the problem of
finding a minimum maximal matching (MIN MM]), by constructing the instance I’ of shown
in Figure where each project and lecturer has capacity 1.

Students’ preferences Lecturers’ preferences
witoriopyope ti (1<j<m) wit P g I<j<n )
uioTi Pr P (I<j<m Tjt Ty (I1<j<n

Sit G (1<;< (TH T 1<j<n

Figure 3.3: Preference lists for constructed instance of spa-p due to [102]

We note that[Max-spPA-P|with a master list of projects is NP-hard, since the reduction used to prove
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the hardness of still applies in this restricted setting, as illustrated in Figure In
particular, the construction admits a natural master list of projects: (71, 79,...,7n,,P1, P2, - - -  Dnys
ti,ta, .. tn,q1,G2, - - -, Qny)- Since the preferences of all agents can be derived from this list, the
reduction applies in the master list setting, and the NP-hardness result follows.

3.3.3 spa-p with projects offered by the same lecturer

We now consider a restricted version of denoted in which each student ranks
only projects offered by the same lecturer. We define as the problem of finding a
maximum size stable matching in an instance of To solve this problem, we exploit the
structure of the input by dividing it into independent sub-instances, one for each lecturer. Each
sub-instance consists of the set of students whose preference lists include only projects offered
by a particular lecturer, along with those projects and the lecturer who offers them. These sub-
instances fall into the special case[Max-spa-p-L1] where all projects in the instance are offered by a
single lecturer. Recall that a polynomial-time algorithm for[Max-spa-p-L1|is described in [96]], and
so by solving each sub-instance independently using this algorithm and combining the resulting
stable matchings, we obtain an optimal solution for [MAX-sPA-P-s1]

3.3.3.1 Polynomial-time algorithm for MAx-SPA-P-SL

Let / be an instance of MAX-SPA-P-SL involving n; students and n, lecturers. We assume stan-
dard notation and terminology from the general setting. In this restricted variant, each
student ranks only projects that are offered by a single lecturer. To compute a maximum stable
matching in /, we construct a collection of sub-instances Iy, I, . . ., I,,,, where each sub-instance
I, corresponds to a lecturer [, in the original instance.

For each lecturer [, we identify the set S, of students who find acceptable at least one project
offered by I,.. The sub-instance [, consists of these students Sy, the projects they find acceptable
that are offered by /;, and the lecturer /;, all with their original preference lists and capacities.
Since I, is an instance of involving only one lecturer, we apply the polynomial-time algo-
rithm for [MAX-sPA-P-L1| given in [96] to compute a maximum stable matching M, for each I;. By
construction, each student appears in at most one sub-instance, so matchings My, M, ..., M,,
are disjoint and can be combined to yield a stable matching M in the original instance /. The
full procedure is described formally in Algorithm

Theorem 3.3.1. Let [ be an instance of sSPA-P-SL with k lecturers, n, students, and total prefer-
ence list length I. Let R denote the maximum rank of any project on a student’s preference list.
Then Algorithm MAX-SPA-P-SL computes a stable matching of maximum size in time O(kn? RI).
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Algorithm 1 MAX-SPA-P-SL-S

Input: An instance / of SPA-P-SL

Output: A maximum-size stable matching M in [

Initialize M + ()

Initialize an empty list of sub-instances 7

for each lecturer [, in I do
Let P, be the set of projects offered by I,
Let S be the set of students who find some project in P, acceptable
Construct a sub-instance [, involving Sy, Py, and [
Add [k: toZ

end for

. for each sub-instance [, in Z do
Run the max-spa-p-L1 algorithm on [, to compute a stable matching M
Add all pairs in M to M

end for

: return M

VRN R Wb

T i (I
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Proof. We first prove that M is stable. Suppose for contradiction that M admits a blocking pair
(si,pj). Now suppose the sub-instance s; belongs to is /;, and the maximum-size stable matching
produced during an execution £ of the algorithm is A/,. By construction of M, (s;,p;) being
a blocking pair in M implies (s;,p;) is also a blocking pair in the matching ;.. However, this
contradicts the fact that M, is a stable matching in /. Hence, M is stable. Suppose M is not
the maximum. Then there exists another stable matching M* such that |M*| > |M|. Suppose
that (s;,p;) € M*\ M, and (s;, p;) belongs to a sub-instance I;, whose stable matching output is
M. This implies that the size of the stable matching A/, can be increased by {M;, U (s;,p;)}, a
contradiction to the fact that M, is a maximum stable matching. We can also verify that M is
coalition-free since we have a different set of students in each [, and the matching M, obtained
in each [, is coalition-free. Thus, M is a maximum-size stable matching.

The partitioning step of the algorithm requires O(kn; R) time, since for each of the k lecturers,
we examine all n; students with preference lists of length at most R. Running the
algorithm on each sub-instance has a time complexity of O(kn?Rl), where [ is the total length of
all student preference lists. Hence, the overall time complexity of the algorithm is O(kn?RI). [

3.3.4 Students with identical preferences

Here, we consider a restriction of|spa-P|where all students have identical preferences over projects,

denoted |(1,TYPE)-sPa-P, We prove that the problem of finding a maximum-size stable matching

in this setting is solvable in polynomial time. In particular, Lemma shows that every stable

matching in a given instance I of |(1,TYPE)-SPA-P|assigns the same number of students. Hence, it

follows that any stable matching admitted by [ is of maximum size. Consequently, any algorithm
for computing a stable matching in the general setting can be applied here. In particular,
the 2-approximation algorithm for [MAX-spa-p|proposed by Manlove and O’Malley [102] returns a
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stable matching in O(\) time, where )\ is the length of a student’s preference list. This algorithm
yields an optimal solution in this setting.

Lemma 3.3.1. Given an instance I of (1,TYPE)-SPA-P, the same number of students are assigned in

every stable matching.

Proof. Let I be an instance of (1,TYPE)-sPa-P, and let M and M’ be any two arbitrary stable
matchings in /. Suppose for a contradiction that |M’| > |M|. Then there exists some student
s who is assigned in M’ but not in M. Moreover, there is some lecturer [, such that |M’(l)| >
|M(lx)|. Furthermore, there must be some project p; € P, such that |[M'(p,)| > |M(p,)|. Hence
both [, and p; are undersubscribed in M. However, since each student in / have identical pref-
erences and some student is assigned to p; in A’, then s also finds p; acceptable. Therefore
(s,p;) blocks M, a contradiction. Thus, |M'| = |M| since M and M’ are two arbitrary stable
matchings. O

3.4 Parameterised complexity of spa-p

Parameterized complexity provides a way to cope with NP-hard problems by confining the expo-
nential part of the running time to one or more parameters of the input. The running time of a
parameterised algorithm is expressed as a function of both the parameter & and the overall input

O where f is a computable function depending only on k.

size n, typically written as f(k) - n
When £ is small in practice, this approach can lead to efficient algorithms even for large input

instances.

In this section, we explore this idea in the context of the Student—Project Allocation problem
with lecturer preferences over Projects (spa-P). We introduce a natural parameter: project topics,
where each project offered by a lecturer belongs to a single topic. This parameter arises naturally
in university settings, where projects can be grouped by research themes or subject areas, and
students are usually interested in the broader topic rather than in specific individual projects.
In these situations, it is reasonable to assume that students express strict preferences over topics
and are indifferent between projects within the same topic.

3.4.1 Parameterised stable matching problems

The parameterized complexity of several NP-hard variants of stable matching problems has re-
cently been studied, with the aim of identifying parameters that enable efficient algorithms. We
recall the brief discussion on FPT in Section In this section, we present results in the
bipartite matching setting, focusing in particular on problems that involve ties and incomplete
preference lists.



3.4. Parameterised complexity of spa-pP 50

Adil et al. [9] showed that the problem of computing a maximum stable matching in sMTI is
FPT when parameterised by the size of the matching. Marx and Schlotter [[106] later proved
that the problem is fixed parameter tractable when parameterised by the total length of ties
across all preference lists. However, they also showed that the problem becomes W[1]-hard when
parameterised by the number of ties in the instance, even if all the men have strictly ordered
preference lists. Gupta et al. [51] considered structural restrictions on the acceptability graph of
an instance, where agents are represented as vertices and an edge connects two agents if they find
each other acceptable. They proved that the problem remains W[1]-hard when parameterised
by the treewidth of this acceptability graph.

Boehmer et al. [[19] studied the Incremental Stable Marriage problem, in which an instance of the
Stable Marriage problem is subject to modifications through changes in the agents’ preference
lists. Given a matching that was stable in the original instance, the goal is to compute a new
matching that is stable with respect to the modified preferences and remains as close as possible
to the original matching. They show that the problem is W[1]-hard when parameterized by
the number of ties introduced by the changes, but also identify tractable cases, including fixed-
parameter algorithms and polynomial-time results when the number of distinct preference lists

is small.

An alternative parameterisation, introduced by Meeks and Rastegari [114]], considers instances
in which agents can be partitioned into a bounded number of types. Each agent’s preference list
is defined over types rather than over individuals, and agents of the same type have identical
preferences over types. Moreover, each agent is indifferent between all acceptable candidates of
a given type. Under this assumption, they showed that is in FPT when parameterised
by the number of types. A similar result holds for They also considered two generali-
sations. In the first, agents of the same type may have different preference lists, provided that all
candidates of the same type appear in a single contiguous block in each list. Under this condition,
TYPED MAX-SMTI and TYPED MAX-HRT are fixed-parameter tractable with respect to the number
of types. If, in addition, preferences over types are strict, the problem becomes polynomial-time
solvable.

In the second generalisation, each agent may include a small number of exceptional candidates,
meaning specific individuals who are ranked explicitly rather than according to their type. If
each agent includes at most one exceptional candidate at the top of their list, TYPED MAX-SMTTI is
in FPT. However, if agents are allowed to include two or more exceptional candidates in arbitrary
positions on their preference list, the problem becomes NP-hard, even when the number of types
is bounded by a constant. In this case, the problem is not in XP unless P= NP.
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3.4.2 spa-p with uniform capacities

In this section, we consider a restricted version of that incorporates project topics
and enforces uniform capacities. In this model, each lecturer offers a set of projects, and both
the lecturer and the projects they offer have the same capacity. Similar to the general case,
an instance of may admit stable matchings of different sizes, and we are interested in
finding one of maximum size.

Project topics. In many real-world settings, students may care more about the general subject
area of a project than about the individual project itself. For example, a student might be in-
terested in Algorithmics and be willing to work on any project in that area, without having a
preference between the specific projects it includes. However, they may still prefer projects in
Algorithmics overall to those in another area, such as Robotics. This kind of scenario motivates
us to consider a version of in which projects are classified according to project topics.

In[spa-Pud], students express strict preferences over project topics rather than individual projects,
and are indifferent between any two projects that belong to the same topic. Specifically, if a
student finds one project in a given topic acceptable, then all projects in that topic are considered
equally acceptable. Moreover, students may be partitioned into types based on their preferences
over topics. A student is of type i if their list of topics is ordered in exactly the same way as that
of all other type-i students. We use ¢(p;) to denote the topic of project p;. A student s; is said to
strictly prefer project p, to project p, if they prefer ¢(p,) to the topic of ¢(p;); a similar definition
holds for each lecturer. For any two topics ¢(a) and ¢(b), we write t(a) =, t(b) to mean that topic
t(a) is preferred at least as much as topic #(b) by type-i students, and ¢(a) >; ¢(b) if topic t(a) is
strictly preferred to topic ¢(b) by type-i students.

Lecturers also express preferences over topics rather than individual projects, and are indifferent
between any two projects in the same topic. Two lecturers are of the same type if they have
identical preferences over topics. A lecturer may offer projects from multiple topics, and is not
required to offer all projects under any given topic. For any lecturer [;, we write ¢(a) = t(b) to
mean that topic ¢(a) is preferred at least as much as topic #(b) by lx, and t(a) > t(b) if topic t(a)
is strictly preferred to topic ¢(b).

Uniform capacities. Each lecturer [, offers a set of projects P, and every project p; € P has the
same capacity as the lecturer; that is, ¢; = dy.

Example: As an example, consider the instance shown in Figure There are two project
topics: topic 1 includes py, po, p5, and topic 2 includes ps, ps, ps. Students s; and s3 are of the
same type, as they both strictly prefer topic 1 over topic 2. In contrast, student s, is of a different
type, as she is indifferent between the two topics. On the lecturer side, [; and I3 are of the same
type, since they offer and strictly prefer projects in topic 1 to those in topic 2. Lecturer I, is of
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a different type, as they only offer (and prefer) a project in topic 2. Moreover, lecturer /; offers
projects p1, po, and pg, and both the lecturer and each of these projects have capacity 2. The same
applies to every lecturer and the projects they offer.

Students’ preferences Lecturers’ preferences
sit (p1 p2 ps) (P3 pPa pe) li: (p1 p2) ps

s2t (p1 p2 p3 pa D5 De) la: ps3

s3t (p1 p2 ps) (3 pPa Pe) ls: ps pa

Project capacities: ¢ = co =cg=2;c3=c4=¢5 =1

Lecturer capacities: dy = 2; do =ds =1

Figure 3.4: An instance [; of spa-PUC

We now give a revised definition of a blocking pair in the setting. This definition is
similar to that in the general model, except that preferences are expressed over project
topics rather than individual projects.

Definition 3.4.1 (Blocking Pair in spa-puc). Let I be an instance of spa-puc, and let M be
a matching in /. An acceptable pair (s;,p;) € (S x P) \ M is a blocking pair for M if p; is
undersubscribed in M and the following conditions hold for both s; and the lecturer {,, who
offers p;:

(S1) either s; is unassigned in M, or

(S2) s; prefers p,’s topic to the topic of their assigned project M (s;),
and one of the following holds for [:

(L1) s; € M(ly) and I}, prefers p;’s topic to the topic of M (s;);

(L2) s; ¢ M(l;) and [, is undersubscribed in M;

(L3) s; ¢ M(l;) and [, prefers p;’s topic to the topic of their worst non-empty project in
M.

We say that M is stable if it admits no blocking pairs.

In the general setting, a matching is said to be stable if it admits no blocking pair and no
coalition. A coalition is a set of students {s;,, ..., s;._, }, for some r > 2, each of whom is assigned
in a matching M, such that for all j € {0,...,r — 1}, student s;, strictly prefers M(s; ) to
M (s;;), where addition is taken modulo r. In spa-puc, we define stability in terms of blocking
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pairs only, as shown in Definition [3.4.1] We do not require that matchings are coalition-free. This
simplification is justified by the fact that any coalition present in a matching can be resolved in
polynomial time: once a coalition is identified, the students can cyclically swap their assigned
projects so that each one is strictly better off. Moreover, such a swap does not change the number
of students assigned to projects and lecturers, and does not affect the size of the matching.

3.4.3 Hardness of MAX-SPA-PUC

An instance of may admit stable matchings of different sizes, and we are naturally inter-
ested in computing one of maximum size, denoted To illustrate that stable match-
ings in can differ in size, consider the instance I3 shown in Figure The matchings

M ={(s1,p1), (s3,p3)} and M’ = {(s1,ps3), (s2,p1), (83,p3)}

are both stable, but M has size 2 while M’ has size 3.

Students’ preferences Lecturers’ preferences
s1t (p1 p2) p3 L (p1 p2)
s2t (p1 p2) la: p3

s3: p3 (p1 p2)
Project capacities: ¢; = ca =1; ¢3 =2

Lecturer capacities: d; = 1; dy = 2

Figure 3.5: An instance I3 of spPA-PUC

Although includes restrictions on the capacities of projects and lecturers, we observe
that is also NP-hard. We recall that is known to be NP-hard even when
every project and lecturer has capacity one [102]. This case can be viewed as an instance of
in which each project belongs to a unique topic and all project and lecturer capacities
are set to one. In this encoding, preferences over topics effectively reduce to preferences over
individual projects, so the instance behaves identically to the original setting. As a result,
the NP-hardness of the general problem carries over directly to the setting.

3.4.4 FPT algorithm for spa-pPuc

In this section, we show that is fixed parameter tractable when parameterised by
the number of project topics. We begin by showing in Lemma that in order to determine
whether or not a matching M is stable, it is enough to examine the number of students of each
type assigned to each project. In this lemma, we provide three sufficient conditions for checking
stability for some project p; offered by /;: (i) the number of students assigned to p; is less than
its capacity; (ii) the number of type-i students not assigned to a project at least as desirable as
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t(p;) (from their own perspective) and not assigned to any project [, ranks at least as desirable
as p; is > 0; (iii) the number of students assigned to topics that /;, ranks at least as desirable as
t(p;) is less than dy.

In Lemma|3.4.2] we show that any instance / of[spa-puc|can be transformed into an equivalent in-
stance [’ in which each lecturer offers at most one project on each topic. Finally, in Lemma |3.4.5|,
we prove that I can be further transformed into an equivalent instance that contains at most one
lecturer of each type.

Lemma 3.4.1. Let I be an instance of spa-puc, and let M be a matching in I. Suppose there are
r distinct student types in I. For each student type i and each project p,;, let N; denote the total
number of type-i students in I, and let X;; denote the number of type-i students assigned to p; in
M. A blocking pair exists in M if and only if there exists a type ¢ of students and a project p; offered
by 1, where conditions (1), (2) and (3) hold as follows:

(1) Y X, <g

1<q<r

(2) N; — > Xim + > Xim — Y Xim | >0

t(pm)tit(pj) t(pm)tkt(pj) t(pm

(3 > Xim < dy,
t(pm)tkt(pj)
1<q<r

Proof. (=) First suppose that conditions (1), (2) and (3 ) hold. Condition (1) implies that project
p; is undersubscribed in M, since the total number of students assigned to p; is less than its
capacity. Moreover, condition (2) implies that there exists a type-i student s who is not assigned
to any project whose topic is at least as desirable as ¢(p;) from their own perspective, and who
is also not assigned to any project that [, considers at least as desirable as p;. Therefore, s is
either unassigned or is assigned in M to a project p such that s prefers ¢(p;) to t(p). Moreover, if
s € M(ly,) then [, finds p less desirable than p,.

Also, by condition (3), the total number of students assigned to project topics that [, considers
as desirable as #(p;) is less than dj. Therefore, if p is offered by [, then [, prefers ¢(p;) to t(p).
Hence, s € M(ly), I, prefers t(p;) to t(p), and (s, p;) is a blocking pair in M. Now suppose that
s ¢ M(l;). Again, condition (3) implies that either [, is undersubscribed in M, or there exists
at least one student assigned to a project ¢(p,) where [, prefers ¢(p,) to t(p,). If [, is undersub-
scribed, then (s, p,) is a blocking pair, since s ¢ M (l),). Otherwise, [}, prefers ¢(p;) to their worst
non-empty project topic. In this case, (s, p;) still forms a blocking pair in M. Therefore, both
conditions guarantee the existence of a blocking pair in M.
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(«=) Conversely, suppose that there exists some blocking pair (s,p;) in M, where s is a type-i
student and p; is a project offered by lecturer /;. By definition of a blocking pair, the student s is
either unassigned in M or assigned to some project p in M but prefers ¢(p;) to t(p). Additionally,
project p, is undersubscribed in M, and at least one of the following conditions holds:

(@ s e M(l,) and [, prefers t(p;) to t(p).
(b) s ¢ M(l) and I, is undersubscribed in M.
(©) s ¢ M(ly), but [;, prefers ¢(p;) to the topic of their worst non-empty project in M.

Since p; is undersubscribed in )/, the number of students assigned to p, is strictly less than its

capacity c;, i.e., > X;; < c¢;. Therefore condition (1) holds. Furthermore, since s is either
1<i<r

unassigned or assigned to a project whose topic is less desirable than ¢(p;) from the perspective
of type-i students, it follows that s is not assigned to any project whose topic type-i students
consider at least as desirable as t(p;). If s ¢ M(l}), then s is not assigned to any project whose
topic [, considers at least as desirable as ¢(p;). Alternatively, if s € M (l;) then [, prefers t(p;)
to t(p), then again s is not assigned to any project whose topic [, considers at least as desirable
as t(p;). Therefore, there exists at least one type-i student who is not assigned to any project
whose topic is considered at least as desirable as ¢(p,) by either type-i students or by /;,. Hence,
condition (2) holds.

In case (a), since s is assigned to a project topic worse than ¢(p;) from [,’s perspective, the total

number of students assigned to project topics that /;, considers at least as desirable as #(p;) must

be less than d,, given that the total number of students assigned to [, is at most d,. Therefore,
> Xim < di, and condition (3) holds. Now consider case (b), where [, is undersubscribed

t(Pwlz)Siig;(Pj)

in M. This implies that the total number of students assigned to [ is less than d,. Therefore,

the total number of students assigned to projects whose topics /), considers as desirable as t(p;)

is also less than d;. Hence, > Xim < dg, and condition (3) holds. Finally, in case (c), since

t(Pwll)Si%i(pj)

l;, prefers ¢(p,) to the topic of their worst non-empty project, there exists at least one student

assigned to a project whose topic is worse than ¢(p;) from [;’s perspective. Again, since the total

number of students assigned to [, cannot exceed d, it follows that > Xim < di. Thus, all

t(p"f )Stl ; tr(pj )
cases of a blocking pair lead to conditions (1), (2) and (3) of the lemma statement, completing

the proof. O

3.4.4.1 Reducing to one project per topic for each lecturer

In this subsection, we show that given an instance / of spa-puc with k project topics, we can

construct, in polynomial time, a corresponding instance [’ in which each lecturer’s preference
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list contains exactly one project for each topic they offer. Moreover, the size of the largest stable
matching in [’ is equal to that in /.

Lemma 3.4.2. Let I be an instance of SPA-pPUC with k project topics. We can construct in polynomial-
time an instance I’ where each lecturer offers at most one project in every project topic and the size
of the largest stable matching in I’ is the same as the size of the largest stable matching in I.

Construction of /’: Let I be an instance of spa-p with k project topics. We construct a new
instance [’ from I as follows: The sets of students and lecturers in I’ are the same as those in
I. The set of projects P’ in I’ is defined as follows. For each lecturer I, € L, let T}, be the set of
topics offered by I,. For each ¢t € T}, we introduce a single project p;, and let P, = {p; : t € T}
be the set of projects offered by [, in I’. Next, we define a mapping f such that for each project
p; € Py, with topic ¢, we set f(p;) = p;. That is, all projects with topic ¢ in / are mapped to the

same project p; in I’.

In this way, the preference list of each lecturer in I’ contains exactly one project per topic. Recall
that in the original instance /, each project p;, offered by lecturer [, has capacity equal to that of
lx. To maintain uniform capacities, we assign each new project p, € P] the same capacity as the
lecturer [, who offers it. The capacity of each lecturer in I’ remains the same as in /. In /, both
students and lecturers are indifferent between projects within the same topic, but have strict
preferences over different topics. Similarly in I’, each student and lecturer inherits their strict
preferences over new projects of different topics. We now prove the result in two parts. First, we
show that the size of the largest stable matching in I’ is at least that in / (Lemma [3.4.3). Then
we show the reverse direction in Lemma Together, these imply that Lemma holds.

Lemma 3.4.3 (Forward direction). Let I be an instance of sPA-pUC with k project topics. Then we
can construct, in polynomial time, an instance I’ in which each lecturer offers at most one project per
project topic, such that the size of the largest stable matching in I’ is at least the size of the largest

stable matching in 1.

Proof. Let M be a largest stable matching in /. We construct a matching M’ in I’ by assigning
each student s; to project f(p,;) whenever (s;,p;) € M. Clearly, every student assigned in M
remains assigned in M’. Consider any project p; € I’ offered by [;.. By construction, each project
pt € P} corresponds to a subset of projects in I that belong to some topic ¢ and are offered by
lecturer I;.. Specifically, the set is defined as f~'(p,) = {p; € P | f(p;) = p:}. In I, each project
p; € f~(p:) has capacity equal to the capacity of lecturer /.. Furthermore, in I’, the project p; is

assigned the same capacity as /;, and the capacity of /, remains unchanged between / and I’.

Since the total number of students assigned across all projects in P, cannot exceed [,’s capacity,
it follows that the total number of students assigned across all projects in f~!(p;) in M cannot be
more than /s capacity. Hence, the total number of students assigned to p; in M’ does not exceed
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its capacity, and thus p, is not oversubscribed in M’. Moreover, no lecturer is oversubscribed in
M, since each lecturer [ is assigned exactly the same set of students in M’ as in M. Therefore,
M’ is a valid matching. We now prove that )’ is stable.

Stability of M/’: Suppose that M’ is not stable. Then there exists a blocking pair (s;,p) in M’,
where p is offered by lecturer [, such that s; is either unassigned in M’, or strictly prefers p to
M'(s;), p is undersubscribed in A/, and one of the following conditions holds:

@ s; € M'(l), and I, strictly prefers p to M’(s;), or
(b) s; ¢ M'(ly), and [} is undersubscribed in M’, or
(©) s; ¢ M'(ly), and [, prefers ¢(p) to their worst non-empty topic in M’.

Clearly, p and M’(s;) belong to different topics. By construction, each project p in I’ corresponds
to the set of projects in I that belong to topic ¢ and are offered by lecturer /.. Moreover, all students
assigned to topic-t projects offered by [, in M are assigned to p in M’. So if p is undersubscribed
in M’, then some topic-t project p; in I must be undersubscribed in /. Now consider the student
s;. If s; is unassigned in M’, then they must also be unassigned in M, since all assigned students
in M remain assigned in M’. Similarly, if s; strictly prefers p to M’(s;), then they strictly prefer
p; to M (s;), since in M’, no student is reassigned to a project on a different topic. We now show
that in each of the three cases above, (s;, p;) blocks M, contradicting the stability of M.

Case (a): Since s; € M'(ly), it follows that s; € M(l;). Since t(p;) # t(M'(s;)), and students
remain assigned to projects of the same topic in both M and M’, we also have #(p;) # t(M(s;)).
Moreover, since [, strictly prefers p to M’(s;), and M/(s;) belongs to the same topic as M'(s;),
it follows that [, also strictly prefers p, to M(s;). Thus, s; strictly prefers p; to M (s;), p; is un-
dersubscribed in M, and I, strictly prefers p; to M(s;), so (s;, p;) forms a blocking pair in M, a

contradiction.

Case (b): Since [, is assigned the same set of students in M and M’, it follows that [, is also
undersubscribed in M. Therefore, s; strictly prefers p; to M (s;), p; is undersubscribed in A/, and
I, is undersubscribed in M thus, (s;, p;) blocks M, a contradiction.

Case (c): Since [, strictly prefers ¢(p) to their worst non-empty topic ¢, in M’, there exists a
project p. € M(l;) belonging to topic ¢, such that [, strictly prefers p; to p,. Since s; strictly
prefers p; to M (s;), p; is undersubscribed in M, and [, prefers t(p;) to ¢(p.), it follows that (s;, p;)
blocks M, a contradiction.

Therefore, M’ admits no blocking pairs and is stable. Since the same set of students are assigned
in M’ as in M, it follows that |M'| = | M]|. O
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Lemma 3.4.4 (Reverse direction). Let I’ be the instance constructed from an instance I of SPA-PUC,
where each lecturer offers at most one project per project topic. Then the size of the largest stable
matching in [ is at least the size of the largest stable matching in I'.

Proof. Let M’ be a largest stable matching in I’. We construct a matching M in [ by assigning
each student s; to a single project p;, € P such that f(p;) = p, whenever (s;,p;) € M’. This
assignment is possible since each project p, in P has capacity dj, and the corresponding project
p in P’ also has capacity d. Clearly, each student is assigned to at most one project in M, since
they are assigned to at most one project in M’. Since no more than d, students are assigned to
py in M’, and each project p; in f~'(p;) has capacity dj, it follows that we can assign all students
from p, in M’ to a single project p; in I without exceeding its capacity. Consequently, no project
is oversubscribed in M. Finally, the set of students assigned to each lecturer in )M is identical to
that in M’, so lecturer capacities are also respected. Hence, M is a valid matching in /. We now
prove that M is stable.

Stability of M/: Suppose that ) is not stable. Then there exists a blocking pair (s;,p;) in M,
where p; is offered by lecturer /;, such that s; is either unassigned in M, or strictly prefers p; to
M(s;), p; is undersubscribed in ), and one of the following conditions holds:

(@ s; € M(ly), and [}, strictly prefers p,; to M(s;), or
(b) s; ¢ M(ly), and I, is undersubscribed in M, or
(©) s; ¢ M(l), and [;, prefers ¢(p;) to their worst non-empty topic in M.

Clearly, t(p;) # t(M(s;)). Suppose p; belongs to some topic ¢. By construction, the project p; € 1
corresponds to some project p, € I’ such that f(p;) = p,. Similarly, let p, denote the project
in I’ such that f(M(s;)) = pu.. If s; is unassigned in M, then s; is also unassigned in M’, since
all assigned students in M remain assigned in M’ to projects on the same topic. Similarly, if s;
strictly prefers p; to M(s;), then s; strictly prefers p, to p,, since in M/’, students are not reassigned
to projects on different topics. We now show that in each of the three cases above, the pair (s;, p;)
blocks M’, contradicting the stability of M’.

Case (a): Since t(p;) # t(M(s;)), it follows that p, # p,. Moreover, since s; is assigned in M to a
project belonging to a different topic ¢(M (s;)) offered by [, it follows that no other project topic
offered by [, can have d, students assigned to it; otherwise, [, would be oversubscribed in M.
This implies that the total number of students assigned across the projects in ¢(p;) and offered
by [} is strictly less than dj. Since p; in I’ has capacity dy, it follows that p, is undersubscribed in
M'. Also, s; € M(l;) implies that s; € M’(l;). Moreover, since [}, strictly prefers p; to M(s;), it
follows that [;, prefers p; to p,. Thus, s; strictly prefers p; to p,, p; is undersubscribed in M’, and
lj, strictly prefers p; to p,, so (s;, p;) forms a blocking pair in M’, a contradiction.
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Case (b): Since [, is assigned the same set of students in M and M’, it follows that [, is also
undersubscribed in M’. Since the total number of students assigned to [, in M is strictly less
than d,, it follows that the number of students assigned across the projects belonging to topic
t(p;) and offered by I, is also strictly less than dj. As p, in I’ contains these students and has
capacity d, it follows that p; is undersubscribed in M’. Therefore, s; strictly prefers p; to p., p; is
undersubscribed in A’, and [, is undersubscribed in A’; thus, (s;, p;) blocks M’, a contradiction.

Case (c): Here, [, prefers topic ¢(p;) to their worst non-empty topic ¢, in M. Let p € I be a
project in ¢, assigned to some student in M. Then there exists some project p, € P/ such that
f(p) = p., and [, strictly prefers p, to p,. By a similar argument as in case (a), since there exists at
least one student assigned to ¢., no other project topic offered by I, can have d, students assigned
to it; otherwise, [, would be oversubscribed in M. Consequently, the total number of students
assigned to the projects in ¢(p;) offered by I, is strictly less than d;,. Since p, in I’ has capacity dj,
and contains these students, it follows that p; is undersubscribed in M’. Moreover, since s; strictly
prefers p; to p,, and p, is undersubscribed in M’, it follows that (s;, p;) blocks M’, a contradiction.

Therefore, M admits no blocking pairs and is stable. Since the same set of students are assigned
in M’ as in M, it follows that | M| = |M’|. O

3.4.4.2 Reducing to one lecturer per type

In this subsection, we show that given an instance I of spa-puc with ¢ different lecturer types,
we can construct, in polynomial time, a corresponding instance [’ in which there is exactly one
lecturer of each type. Furthermore, the size of the largest stable matching in I’ is equal to that
in /.

Lemma 3.4.5. Given an instance I of spa-puc with k distinct lecturer types, we can construct, in
polynomial time, a corresponding instance I’ in which there is exactly one lecturer of each type.
Furthermore, the size of the largest stable matching in I’ is equal to that in 1.

By Lemma [3.4.2) we may assume without loss of generality that in a given instance / of spa-
puc, each lecturer offers exactly one project for each topic. We adopt this assumption for the
remainder of this section.

Construction of /’: Let [ be an instance of spa-puc with k project topics. We construct a new
instance [’ from I as follows. The set of students in [’ is identical to that in /. For each type of
lecturer ¢ in I, let L, denote the set of all lecturers of type ¢. In I’, we create a single combined

lecturer /; to represent all lecturers in ;. The capacity of [; is set to d; = . d, where d, is the
lpeLly

capacity of each lecturer [, € L,. For each topic ¢ offered by lecturers in L;, we create a single
new project p, offered by /,. We define a mapping f such that for each project p; belonging to
topic ¢, we set f(p;) = p,. The capacity of p, in I’ is set to the capacity of all projects in P, that
belongs to topic q.
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In I’, I; offers only these new projects p,, one per topic, and both students and /; inherit their
strict preferences over project topics exactly as in /. Recall that each project p, in I has capacity
equal to the capacity of its lecturer [,. Moreover, each lecturer in I offers at most one project on
each topic. By construction of /', the capacity of each new project p, is set to the total capacity
of all original projects p; under topic ¢, and offered by lecturers in L,; this is also equal to the
sum of the capacities of all lecturers in L,;. Since the combined lecturer /; has capacity equal to
the sum of the capacities of all lecturers in L,, it follows that the capacity of each project p, is
exactly the same as capacity of /;.

Transformation from A to M’: Let M be the largest stable matching in /. We construct a match-
ing M’ in I’ by assigning each student s; to the project f(p,;) whenever (s;,p;) € M. Suppose
p; belongs to topic ¢ and is offered by a type-t lecturer /;. Let f(p;) = p;, where p; denotes the
project in I’ that corresponds to the topic ¢ projects offered by [, in I. Furthermore, p; is offered
by the combined lecturer /, in I’. Clearly, each student in [’ is assigned to exactly one project in
M’. Since the capacity of p; is equal to the total capacity of all original projects under topic ¢,
and none of these projects were oversubscribed in M, it follows that p, is not oversubscribed in
M'. Hence, no project is oversubscribed in M.

Finally, each lecturer [, in I’ corresponds to the set of all type-¢ lecturers in / and is given a
capacity equal to the combined capacities of those lecturers. The number of students assigned to
l; in M’ is exactly the total number assigned to all type-t lecturers in M. Since no lecturer in M
is oversubscribed, no lecturer is oversubscribed in M’. Hence, M’ is a valid matching.

In Lemma [3.4.6, we show that the size of a largest stable matching M in I is the same as that of
M’, thatis, |M| = |M'|.

Lemma 3.4.6. Let M be a largest stable matching in I, and let M’ be the matching in I’ obtained
via the construction described above. Then M’ is stable in I’, and |M| = |M’|.

Proof. We note that by the construction of M’, the total number of assigned students in M is the
same in M’, therefore |M| = |M'|. Now, suppose for contradiction that there exists a blocking
pair (s;,p;) in M'. Let [, be the lecturer who offers p,;. Then, s; is either unassigned in M’ or
strictly prefers p; to M'(s;), p; is undersubscribed in A/’, and one of the following conditions
hold:

@@ s; € M'(ly), and [}, strictly prefers p; to M'(s;).
(b) s; ¢ M'(ly), and [, is undersubscribed in M’.

(©) s; ¢ M'(ly), and [, prefers t(p;) to their worst non-empty project topic in M’.

Suppose that [, corresponds to the set of type-¢ lecturers in /. By construction, the project p, in I’
corresponds to the set of projects in / that belong to topic ¢(p;) and are offered by type-t lecturers.
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Moreover, each student has the same preferences over project topics in I and I’. Consequently, if
some student s; is unassigned in M’ or strictly prefers p, to M’(s;), then s; is unassigned in M or
prefers all projects in ¢(p;) to M(s;). Now, we consider each blocking pair condition as follows:

Case (a): Here, s; € M'(l;) and [}, strictly prefers p; to M'(s;). Let M'(s;) = p,. Since [, offers
both p; and p, in /', it follows that p, corresponds to some project p in I, which is offered by a
type-t lecturer [, such that #(p) = t(p.) and s; € M(p). Since [ has the same preferences over
topics as [, there exists some other project p offered by [ such that ¢(p) = t(p;), and [ strictly
prefers p to p. Similarly, s; strictly prefers p to p since ¢(p) = t(p;). Since s; € M(l) but is
assigned to project p, such that [ strictly prefers p to p, and each project offered by [ has the same
capacity as [, it follows that p is undersubscribed in M. Therefore, s; strictly prefers p to p, p is
undersubscribed in M, s; € M(l), and [ strictly prefers p to p. Thus, the pair (s;,p) blocks M, a
contradiction.

Case (b): Then s; ¢ M’(l;) and [ is undersubscribed in M’. Since [, is undersubscribed in
M’, the total number of students assigned to all type-t lecturers in M must be strictly less than
their combined capacity. It follows that at least one type-t lecturer [ is undersubscribed in M.
Furthermore, since [, offers p; in I’, there must exist some project p offered by [ in / such that
t(p;) = t(p). This follows from the construction of /;, which ensures that [, inherits the same
preferences over topics as each type-t lecturer. Since [ is undersubscribed in M, p must also be
undersubscribed in M, given that both p and [ have the same capacities. Moreover, since s; ¢
M’ (ly), it follows that s; is not assigned to any type-t lecturer in M, because by the construction
of M’, every student assigned to a lecturer of type ¢ in M must be assigned to [, in M’. Therefore,
s; ¢ M(l); moreover, both p and [ are undersubscribed in M. Since s; is assigned in M and prefers
all projects in t(p;) to M(s;), it follows that s; strictly prefers p to M(s;), given that t(p) = t(p;).
In this case, the pair (s;, p) is a blocking pair in M, a contradiction.

Case (c): Then s; ¢ M’(l),) and [;, prefers ¢(p;) to the worst non-empty project topic in M’(l)). Let
p. be some non-empty project in M’(l;) where ¢(p,) is the worst project topic for I, in M’. Then,
I, prefers t(p;) to t(p.). Let p be a corresponding non-empty project in I such that f(p) = p, and
t(p) = t(p.); let | be the lecturer in I who offers p. Clearly, [ has the same preferences over topics
as [, does. Therefore, [ offers some project p such that t(p) = t(p;) and [ prefers ¢(p) to ¢(p). Since
s; ¢ M'(ly), it follows that s; is not assigned to any type-t lecturer in M, and therefore, s; ¢ M (l).
Moreover, since s; prefers all projects in ¢(p,) to t(M'(s;)), it follows that s; strictly prefers p to
M (s;). Since p is non-empty, then no other project offered by [ in M can be full (Otherwise [ is
oversubscribed in ). Hence, p is undersubscribed in M. In this case, s; is either unassigned in
M or strictly prefers p to p, p is undersubscribed in M, s; ¢ M (l), and [ prefers t(p) to t(p). Thus,
the pair (s;, p) blocks M, a contradiction.

Hence, if M is the largest stable matching in /, then the corresponding matching M’ is stable
and |M| = |M’|. This concludes the proof. O
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We now prove the reverse direction: if M’ is a largest stable matching in /’, then the correspond-
ing matching M is stable and satisfies |M/| = |M’|. To establish this, we first define the notion of
unavailable topics in I’, which plays a key role in the proofs of the subsequent lemmas. The proof
involves transforming M’ into an intermediate matching M, in I’, and showing that |M'| = | M.
In M, each student is either assigned the same project as in M’, or is assigned to a more pre-
ferred project in M, offered by the same lecturer, provided the project belongs to an available
topic. We then construct a matching M in the original instance I from M,, prove that M is stable,
and show that | M| = |M,|.

Definition 3.4.2 (Unavailable Topics). For each lecturer [ € I’, a topic ¢’ is said to be
unavailable for [ if there exists a student s, who is either unassigned in M’ or assigned to a
project offered by a different lecturer, and a topic ¢ offered by I, such that:

e s prefers topic { to the topic of their assigned project in M’, and
o [ prefers topic # to topic ¢'.

A topic is available for [ if it is not unavailable.

Transformation from )M’ to M,: Let M’ be a largest stable matching in I’. We construct a
matching M, in I’ by initially assigning each student to the same project and lecturer as in M’.
We define a swap as follows: for a student s;, let p be a project on s;’s preference list such that: (i)
s; strictly prefers p to My(s;); (ii) p is undersubscribed in M,; (iii) both p and M(s;) are offered
by the same lecturer /; and (iv) the topic ¢(p) is an available topic for [. We say that a feasible swap
exists in M, whenever these conditions are satisfied. If such a project p exists, we remove the
assignment between s; and My (s;), and assign s; to p. We greedily apply swaps until no feasible
swap remains in M,, at which point the construction terminates with the matching M.

Observation 3.4.1. If a topic is available before a feasible swap in M’, then it remains available in
M.

Lemma 3.4.7. Let M’ be a stable matching in I’, and let M, be the matching obtained from M’ via
the construction described above. Then M, is stable and |M,| = |M’|.

Proof. 1t is straightforward to verify that ), is a valid matching. We observe that each student
either remains assigned to the same project as in M’ or is moved to a more preferred project,
hence no student is multiply assigned. Since swaps only occur between projects offered by the
same lecturer, each lecturer has the same set of students in M, and M’. Therefore, no lecturer
is oversubscribed in M,. Furthermore, a student is only moved to a project if that project is
undersubscribed, so no project is oversubscribed in M,. Suppose, for contradiction, that there
exists a blocking pair (s;,p;) in M,. Then s; is either unassigned in M, or strictly prefers p; to
Moy(s;), p; is undersubscribed in M, (where p;, is offered by /;,), and one of the following conditions
holds:
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@ s; € My(lx), and I}, strictly prefers p; to My(s;),
(b) s; ¢ My(l), and [, is undersubscribed in M,

(©) s; ¢ My(lx), and [, prefers t(p,) to their worst non-empty project topic in M,.

Case (a): Since s; € M,(l;) and students remain assigned to the same lecturer in the construction
of M,, it follows that s; € M’(l;). If s; strictly prefers p; to My(s;), then the same preference
holds with respect to M’(s;), since students are only moved to more preferred projects during
the construction of M,. Thus, s; strictly prefers p; to M'(s;). Let p, = My(s;) and p, = M'(s;).
Clearly, t(p;) # t(p.). We now claim that ¢(p;) is an available topic for [, in M’. Suppose, for
contradiction, that it is not available. Then there exists a student s ¢ M’(l;) and a topic f offered
by I, such that s prefers 7 to their assigned topic in M’, and I, prefers ¢ to ¢(p;). We consider two

subcases depending on whether or not s; was involved in a swap.

Case (i): p, = pp. Then s; was not involved in a swap. In this case, [, prefers ¢(p;) to t(p;). Since
s; is assigned in M’ to a different project p, offered by /;, no other project offered by I, is full in
M'. Thus, each project in  is undersubscribed in M’. Consequently, s prefers some project p in
t, p is undersubscribed in M’, and [, prefers { to the non-empty project topic #(p,). Hence, (s, p)
blocks M’, a contradiction.

Case (ii): p, # p». Then s; was involved in a swap; moreover, s; strictly prefers p; to p,, and
Pa to pp. This holds because each student is assigned to a more preferred project in M. Also,
since s; is assigned to p, in M,, the topic ¢(p,) is available for I, in M'. If [, prefers ¢(p;) to t(ps),
then, following the same argument as in case (i), we arrive at a contradiction involving the pair
(s,p). Now suppose [, prefers t(p;) to t(p,). Since [, prefers  to t(p;), and prefers t(p;) to t(p,), it
follows that [;, prefers f to ¢(p,). By our assumption, there exists a student s ¢ M’(l;,) who prefers
t to their assigned topic in M’. However, by definition, this implies that ¢(p,) is unavailable. This
contradicts the fact that ¢#(p,) must have been available in M’ for s; to be assigned to p, in M,.

Thus, in both cases (i) and (ii), ¢(p,) is an available topic for [, in M’, and consequently also in M.
Furthermore, as p; is undersubscribed in M,, the pair (s;, p;) satisfies the conditions for a feasible
swap. Thus, s, should have been assigned to p,; during the construction of M, contradicting the
fact that M, was obtained by terminating only when no such pair remains. Therefore, there are
no blocking pairs of case (a) in M,.

Case (b): Then s; ¢ My(lx) and [; is undersubscribed in M,. Since students are only moved
between projects offered by the same lecturer, it follows that s, ¢ M'(l;) as well. Moreover, if s;
is unassigned in M or prefers ¢(p;) to t(My(s;)), then the same holds in M’; that is, s, is either
unassigned in M’ or prefers ¢(p,) to t(M’(s;)). Since the set of students assigned to [, is the same
in M, and M/, it follows that if /; is undersubscribed in M,, then [, is also undersubscribed in
M'. 1f p; is undersubscribed in M/’, then the pair (s;, p;) blocks M’, contradicting the stability of
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M'. Now suppose that p; is undersubscribed in M, but full in M’. Then, during the construction
of M,, some student s € M’(l;;) must have been moved from p; to another project p offered by [j.

By the construction of M), s strictly prefers ¢(p) to t(p;), project p is undersubscribed in M,
and ¢(p) is an available topic for [;. Since ¢(p) is available, by definition, there is no student
s' ¢ M'(l;,) who prefers some topic { to their assignment in M’ and I, prefers # to ¢(p). However,
s; ¢ M'(l;), and since s; prefers ¢(p;) to their assignment in A/’, it follows that [, does not
prefer ¢(p,) to t(p); otherwise, s; would be a student violating the fact that ¢(p) is available, a
contradiction. Therefore, [, prefers ¢(p) to ¢(p;). But this means that s strictly prefers p to p;, p
is undersubscribed in M’, and [, is also undersubscribed in M’, so the pair (s, p) blocks M’, a
contradiction. Therefore, there are no case (b) blocking pairs in M.

Case (c): Suppose s; ¢ My(l;), and [, prefers ¢(p;) to their worst non-empty project topic in
M. Since students are only moved between projects offered by the same lecturer, it follows that
s; ¢ M'(l;) as well. Moreover, if s; is unassigned in M, or prefers ¢(p,) to t(My(s;)), then the
same must hold in )M’; that is, s; is either unassigned in M’, or prefers ¢(p;) to t(M’(s;)). Let
p. be a non-empty project offered by [, such that ¢(p,) is the worst topic for [ in M,. Since I;’s
preferences over topics remain the same in M, and M, it follows that [;; also prefers ¢(p;) to ¢(p.)
in M’. If p; is undersubscribed in M’, then (s;, p;) forms a blocking pair in A’, since s; ¢ M'(l),
s; strictly prefers p,; to M’(s;), and [, prefers ¢(p,) to the non-empty ¢(p.). Thus, the only way
(si,pj) does not block M’ is if either (i) p, is non-empty in M, but empty in M’, or (ii) p, is
undersubscribed in M, but full in M’. We consider each of these cases below.

Case (i): Suppose that p, is empty in M’ but is non-empty in M,. Then there exists a student s, €
M’ (I;,) who was not assigned to p, in M’ but assigned to it in M,; thatis, s, € My(p.)\M'(p.). This
implies p, was undersubscribed in M’, and ¢(p,) was an available topic for /;. By the definition
of available topics, this means there is no student s ¢ M’(l;,) who prefers some topic # to their
assignment in M’, and [, prefers ¢ to t(p,). However, since s; ¢ M'(l},), and s; prefers t(p;) to
their assignment in M’, and [;, prefers ¢(p,) to t(p.), this would imply that ¢(p,) is not available,
a contradiction. Therefore, ¢(p,) must be non-empty in M’.

Case (ii): Now suppose p; is full in M’ but undersubscribed in M,. Then, during the construction
of My, some student s € M’(l;;) must have moved from p; to another project p offered by [, i.e.,
M'(s) = p;. By the definition of feasible swaps, s strictly prefers p to p;, p is undersubscribed
in My, and t(p) is an available topic for /. Since t(p) is available, there cannot exist a student
s' ¢ M'(I;,) who prefers some topic # to their assignment in M’ such that [, prefers { to ¢(p). But
s; ¢ M'(l,), and s, prefers t(p;) to t(M'(s;)), so if [;, preferred ¢(p;) to t(p), then ¢(p) would not be
available — a contradiction. Hence, [;, prefers ¢(p) to t(p;). It follows that (s, p) blocks A’, since
s € M'(ly,), s strictly prefers p to p;, p is undersubscribed in M’, and [, prefers ¢(p) to t(p,). This
contradicts the stability of M’. We conclude that no blocking pair of type (c) exists in M.
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Hence, M, is a stable matching. Moreover, since each student assigned in M’ remains assigned
in M,, it follows that | M| = |M’|. This concludes the proof. O

Transformation from )M/, to M: We construct a matching M in the original instance / by using
the assignments in M. Specifically, if a student s is assigned to a project p in M,, where p is
offered by the combined lecturer /, in I’ (corresponding to type-t lecturers in I), we assign s to
some project p; in I such that f(p;) = p and p; is offered by a lecturer of type t. We distribute the
students assigned to p across each project p, in I where f(p,;) = p, and p;, is offered by a lecturer
of type t. This distribution is carried out so that the capacity of each individual project p; in [ is
not exceeded.

Since the total capacity of the combined project p in I’ is equal to the sum of the capacities
of all projects in f~!(p), there is enough space to distribute all students without any project
being oversubscribed. Furthermore, no lecturer is oversubscribed in ), since each /; in I’ has a
capacity equal to the total capacity of the type-t lecturers in I, and each project in I has the same
capacity as the lecturer who offers it. Moreover, each student is assigned to exactly one project
in M. Therefore, M is a valid matching.

Lemma 3.4.8. Let M be a matching in I obtained via the construction described above. Then M
admits no blocking pair (s;, p;) where p; and M (s;) are offered by lecturers of different types.

Proof. Suppose, for contradiction, that A/ admits a blocking pair (s;,p;) whereby s, is either
unassigned in M or s; strictly prefers p; to M(s;), and projects p; and M (s;) are offered by
lecturers of different types. By construction, each student s has the same preferences over projects
and project topics in M and M,. Therefore, s, is either unassigned in M, or s; strictly prefers p; to
My(s;). Let [;, denote the lecturer who offers p; in I. Clearly, s; ¢ M (lx) since both p,; and M(s;)
are offered by different types of lecturers. Since (s;, p;) blocks M, then p; is undersubscribed in
M, and one of the following holds:

(@) s; ¢ M(lx) and [; is undersubscribed in M, or
(b) s; ¢ M(l) and I, prefers t(p,) to their worst non-empty project topic in M.

Suppose that [, is a type-t lecturer. By construction of M, all type-¢ lecturers in I correspond to
a single lecturer [, in I’, and [, offers a combined project p such that f(p,;) = p and ¢(p;) = t(p).
We recall that, by assumption, each lecturer in I offers at most one project on each topic. Since
p; is undersubscribed in M, the total number of students assigned across all projects in ¢(p;)
and offered by lecturers of type-t in I is less than their combined capacity. It follows that the
corresponding project p is also undersubscribed in M,. Moreover, since p; and M (s;) are offered
by lecturers of different types, it follows that s; ¢ M,(l;). We consider the possible blocking pair
cases as follows:
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Case (a): Suppose both p; and [, are undersubscribed in M. Since /) is undersubscribed in M,
it follows that the total number of students assigned to type-t¢ lecturers in M is strictly less than
their total capacity. Hence, [; is undersubscribed in M,. Moreover, p is undersubscribed in M.
Therefore, s; ¢ My(l;), s; is either unassigned in M, or s; strictly prefers p to My(s;), both p and
l; are undersubscribed in M,. Thus, (s;, p) forms a blocking pair in M, a contradiction.

Case (b): Suppose p; is undersubscribed in A/, and [, prefers (p;) to the topic of their worst
non-empty project in M, say ¢(p.). By construction, ¢(p,) corresponds to some project p offered
by l;, where t(p,) = t(p). Moreover, since t(p) = t(p;), l; also prefers t(p) to t(p). Also, p is
undersubscribed in M. In this case, s; ¢ My(l;), either s; is unassigned in M, or s; strictly
prefers p to My(s;), p undersubscribed in M, and [, prefers ¢(p) to ¢(p.). Therefore, (s;,p) forms
a blocking pair in M, contradicting Lemma [3.4.7

Since both cases (a) and (b) lead to a contradiction, we conclude that M admits no such blocking
pairs. []

Lemma 3.4.9. Let M, be a stable matching in I’ with no feasible swaps, and let M be the matching
in I obtained from M, via the construction described above. Then M is stable and |M| = | M.

Proof. Suppose for contradiction that M is not stable. Then there exists a blocking pair (s;, p;) in
M. By Lemma [3.4.8] the blocking pair (s;, p;) involves lecturers of the same type, that is, p; and
M (s;) are offered by lecturers of the same type. Let [, be the lecturer who offers p;. It follows
that s; is either unassigned in M or strictly prefers p; to M(s;), p; is undersubscribed in A, and
one of the following holds:

@ s; € M(lx), and [, strictly prefers p; to M(s;),
(b) s; ¢ M(ly), and I, is undersubscribed in M,
(© s; ¢ M(l), and [, prefers ¢(p;) to their worst non-empty topic in M.

Suppose that [, is a type-t lecturer. Let [, be the lecturer in I’ corresponding to the type-t lecturers
in 1. Then [, offers a project p in I’ such that f(p;) = p. Similarly, let f(M (s;)) = p. We note that
if s; is unassigned in M, then by construction, s; is also unassigned in M, since every student
assigned in M is also assigned in M,. Similarly, if s; strictly prefers p; to M(s;), then s; also
strictly prefers p to p, since t(p) = t(p;) and t(p) = t(M(s;)); also, each student’s preferences
over project topics are identical in M and M,. Since p; is undersubscribed in A/, it follows that
the total number of students assigned across all projects with f(p,;) = p and offered by type-t
lecturers in [ is less than their combined capacity. Therefore, p is undersubscribed in M,. We
now consider each case separately:

Case (a): Since s; € M(ly), it follows by construction that s; € My(l;). Furthermore, since
I, strictly prefers p; to M(s;), it follows that [, strictly prefers p to p. Therefore, s; is either
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unassigned in M, or s; strictly prefers p to p, p is undersubscribed in M, and I; strictly prefers
p to p. It follows that (s;, p) blocks M,, contradicting the stability of M.

Cases (b) and (c): Since s; ¢ M (l;), but both p; and M (s;) are offered by lecturers of the same
type (type t), it follows by construction that s; € M;(l;). In case (b), if [, is undersubscribed
in M, then the total number of students assigned across all type-t lecturers is strictly less than
their combined capacity. This implies that /; is undersubscribed in M,. In case (c), let p’ be some
non-empty project in the worst topic in M (l;), and let f(p’) = p. Then [; prefers p to p.

We now show that ¢(p) is an available topic for /, in M,. Suppose not. Then, by the definition
of unavailable topics, there exists some student s ¢ My(l;) and some topic ¢* offered by [, such
that: (i) s is either unassigned in M, or prefers ¢* to the topic of their current project in My; and
(ii) I, prefers t* to t(p). By construction, each project offered by [, has capacity equal to that of
l;. Since s; € My(l;), it follows that no project (other than M(s;)) offered by [, is full in M,, and
thus there exists a project p* in topic t* that is undersubscribed in M. In case (b), it follows that
s & My(ly), s prefers t(p*) to t(My(s)), and both p* and [; are undersubscribed in M,; thus, the
pair (s, p*) blocks M. In case (c), it follows that p* is undersubscribed in M, and I, prefers ¢(p*)
to t(p). Therefore, the pair (s, p*) blocks M,, contradicting its stability. Hence, ¢(p) is an available
topic for [, in M,.

Hence, s; € My(l;), s; strictly prefers p to My(s;), p is undersubscribed in M,, both p and p are
offered by /;, and ¢(p) is an available topic for /,. Thus, all conditions for a feasible swap between
s; and p are satisfied in M,, contradicting the assumption that M, admits no feasible swaps.
Therefore, M is a stable matching. Since the same set of students assigned in )/, are assigned in
M by construction, it follows that |M| = | M|, completing the proof. O

Since |M'| = |My| and |M,| = |M|, it follows that |M'| = |M|. Therefore, if M’ is the largest
stable matching in /’, then we can construct a stable matching M in [ such that |M’'| = |M]|.
Together, Lemmas - prove that the transformation from I to I’ preserves the size of
the largest stable matching in both directions. Since this transformation can be carried out in

polynomial time, Lemma holds.

3.4.5 An ILP for spa-pPUC

An instance of INTEGER LINEAR PROGRAMMING model (ILP) consists of an integer matrix A €
Z™** a vector b € Z™, and an objective vector ¢ € Z*. The goal is to find a vector x € Z* that
minimises the objective ¢z, subject to the constraint Az < b, or to determine that no feasible
solution exists. While solving an ILP is NP-hard in general, a celebrated result by Lenstra [|31]]
shows that the problem is fixed-parameter tractable (FPT) when parameterised by the number
of variables (See Theorem [3.4.1)). Specifically, an ILP with k variables can be solved in time
f(k) - poly(1W), where f(k) is an exponential function depending only on k, and W is the total
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size of the input. We use this result to show that the problem of finding a largest stable matching
in spa-puc is FPT when parameterised by the number of project topics.

Theorem 3.4.1 ( [31], based on [42,76,(93]]). An Integer Linear Programming instance of
size W with p variables can be solved using

0 <p2.5p+o(p) (W + log M,) 10g<MxMC))

arithmetic operations and space polynomial in W + log M,, where M, is an upper bound on
the absolute value a variable can take in a solution, and M., is the largest absolute value of a
coefficient in the vector c.

We construct an ILP that maximises the total number of students across all types who are as-
signed to each project. Let I be an instance of spa-puc involving a set S = {s1,s9,...,,, } of
students, a set P = {py, pa, ..., Pn, } Of projects, and a set L. = {l,1ls,...,1,,} of lecturers. Each
student belongs to a type in the set {1, ...,r}, each lecturer belongs to a type in the set {1, ..., ¢},
and each project p; belongs to a corresponding project topic. Suppose that p; is offered by lec-
turer [, and let P, be the set of projects offered by [,.. For each student type i € [r] and project
p; € P, we introduce an integer variable z; ; € Z>, representing the number of students of type
i assigned to project p;.

By Lemma a type-i student and project p,; can form a blocking pair only if all three of the
lemma conditions hold simultaneously. To ensure that there are no blocking pairs, it therefore
suffices to guarantee that for every such pair, at least one of these conditions fails. To model this
in the ILP, we introduce binary variables «; ;, 5, vi; € Z Vi, j for each student type ¢ and
project p; pair. Each variable is used to ensure that the corresponding condition in Lemma [3.4.1]
does not hold. Recall that n; = er N; is the total number of students in the instance. We use

=1
n3 as a sufficiently large value in the blocking pair constraints so that when a binary variable
(e.g., o ;) is set to 1, the corresponding inequality becomes trivially satisfied. When the binary
variable is 0, the constraint forces the corresponding blocking pair condition to fail.

Using the ILP variables z; ;, we restate the three conditions from Lemma under which a
type-i student and project p,; form a blocking pair.

(@) ;9[3” < ¢j,
(b) N; — > Tim + D Tim — Y Tim | >0,

t(pm)=it(p;)  tpm)=Zkt(p;)  t(pm)=it(p;)
t(pm)tkt(pj)
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(C) in,m < dk;
t(pm)=kt(pj)
1<ilr

We now present the ILP formulation:

Objective:

T n2

Maximise > >

i=1j=1
That is, we aim to maximise the total number of students across all types who are assigned to all
projects. Let A; be the set of projects acceptable to each student type i.

Matching constraints:

> iy <N, Vi € [r] (no type-i student is assigned to multiple projects) (D
JEA;

Z T < ¢ Vj € [ny] (no project is oversubscribed) @)
=1

S iy < dy Vk € [n3] (no lecturer is oversubscribed) 3)
pj GPk =1

Blocking pair constraints (forall 1 <: <rand 1 < j < ny):

T no
Z Z Ti 5 — Cj + H?Oéi,j >0 (4)
i=1j=1
N; — szm + Zl’zm - Zl’zm - ni’ﬁzg <0 (5)
tpm)zit(p;)  tpm)zkt(i)  t(pm)=it(p;)
t(pm) = kt(pj)
in,m — dk + n?%,j >0 (6)
t(pm)tkt(pj)
1<i<r
o+ B+ vy <2 (7

In constraints (4)—(6), we use the binary variables to determine whether the corresponding block-
ing pair condition in Lemma [3.4.1]is enforced. Setting a variable to 0 ensures the corresponding
condition fails; setting it to 1 causes the constraint to be trivially satisfied via the large value n3.

Explicitly:
r N2
 If a;; = 0, then constraint (4) reduces to > > z;; > ¢;, so condition (a) fails.
1=11=1

 If 5, ; = 0, then constraint (5) becomes negative, so condition (b) fails.

e If 7, ; = 0, then constraint (6) reduces to > x;,, > dj, so condition (c) fails.
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Constraint (7) ensures that for each type-i student and project p; pair, at least one condition fails.
Hence, no pair satisfies all blocking pair conditions simultaneously.

Lemma 3.4.10. Let I be an instance of spa-puc. If the ILP described above admits a feasible solution
S, then S corresponds to a stable matching M in I, where obj(S) = |M]|.

Proof. Suppose that the ILP above admits a feasible solution S. For each student type i € [r] and
each project p; € [no], the variable z; ; gives us the number of type-i students assigned to project
p,. From this, we construct a matching M in the original instance I as follows. Let NV; denote the
number of students of type i. For each project p;, we assign exactly z; ; different students to p;,
ensuring that no student is assigned to more than one project. This construction is valid since
constraint (1) guarantees that the total number of assigned type-i students does not exceed N;.

Let M be the matching defined by the solution S. The total number of students assigned in M is

r o n2

|M] = 0bj(S) =>_ > wij.

i=1j=1

Constraints (1)—(3) ensure that M is a valid matching: no student is assigned to more than
one project, and the capacity constraints for projects and lecturers are respected. Suppose for
contradiction that M contains a blocking pair involving some student s and project p,; suppose s
is a type-i student. Then, all three conditions in the statement of Lemma [3.4.1| must be satisfied
for this pair. In the ILP, these blocking pair conditions are captured by constraints (4)—(6), and
each is associated with a binary variable: «; j, §; ;, and 7, ;. These variables are designed so that
setting a variable to O ensures its corresponding blocking pair condition fails. Therefore, if all
three conditions hold for M, then any feasible assignment to «; ;, f;;, and 7;; must set each
variable to 1. But this would violate constraint (7), which requires

i+ Big+ i < 2.

Hence, such a blocking pair cannot exist in M, and we conclude that M is stable. O

Lemma 3.4.11. Let I be an instance of sPA-PUC, and let M be a stable matching in I. Then there
exists a feasible solution to the ILP defined above with objective value |M|.

Proof. Let M be a stable matching in instance /. For each student type i € [r] and project p; € P,
define z; ; to be the number of type-i students assigned to project p; in M. Since M is a valid
matching, it satisfies the following: No student is assigned to more than one project, so for each

i € [r], we have Y x;; < N,, satisfying constraint (1). No project is oversubscribed, so for each
JEA;
J € [no], we have Y7_, x;; < ¢;, satisfying constraint (2). No lecturer is oversubscribed, so for

each k € [n3], we have > ep, it Tiyg < di, satisfying constraint (3).
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We now show that the blocking pair constraints (4)—(7) can be satisfied by assigning suitable
values to the binary variables «; ;, 5, j,7v:; € {0,1} based on the stable matching M. Since M
is stable, it follows that for every student type ¢ € [r] and every project p; € P, at least one
of the blocking pair conditions in Lemma does not hold. For each such combination of
student type and project, we identify a condition that fails in M, and set the corresponding
binary variable, either ¢, ;, 3; ;, or ; j, to 0. This ensures that the relevant constraint among (4),
(5), or (6) is satisfied.

In this way, we construct a valid setting of the binary variables that satisfies the blocking pair
constraints for that student type and project. Moreover, since at least one condition fails, we
assign the value 1 to at most two of the variables, ensuring that constraint (7), which requires
a;;+ Bi;+vi; < 2,is also satisfied. Thus, for every combination of student type i and project p;,
we can construct a valid assignment to the variables «; j, 3; ;, and ; ; such that constraints (4)—(7)
are satisfied.

Therefore, the assignment derived from the stable matching M satisfies all constraints and defines
a feasible solution to the ILP. The corresponding value of the objective function is

T na

obj(S) =>"> a;; = M|,

i=1j=1

as required. O

Theorem 3.4.2. Let I be an instance of spa-puc with k project topics. Then finding a largest
stable matching in [ is fixed-parameter tractable when parameterised by k.

Proof. We begin by applying the reduction of Lemma which transforms the input instance
I into an instance /; in which each lecturer offers at most one project per topic. We then ap-
ply Lemma to obtain an instance I, in which there is only one lecturer per type. These
reductions preserve the size of the largest stable matching and can be computed in polynomial
time.

We then formulate the transformed instance I, as an ILP, as described in Section This ILP
is expressed in terms of student types, project topics, and lecturer types. In the worst case, each
student type is characterised by a strict preference list over the k project topics, where students
are indifferent between all projects belonging to the same topic. There are at most k! < k* such
strict preference lists. Since students may only find a subset of topics acceptable, each list can
be truncated in at most k£ ways. Hence, the total number of distinct student types is bounded by
k- k¥ = k**1. On the lecturer side, their total number is bounded by 2% — 1.

In I5, each lecturer offers at most one project per topic, so each lecturer offers at most k projects.
Since there are at most 2% —1 lecturer types, and each may offer up to k projects, the total number
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of projects is at most
k(28 —1) = k2 — k.

Given that there are k**! student types, the total number of student-type/project pairs is at

most
kkJrl(ka _ k) _ kk+2(2k —1).

The ILP includes:
* One variable z; ; for each student type i and project p;;
 Three binary variables «; ;, 5; ;,v;,; per such pair;

* Three matching constraints: one per student type, one per project, and one per lecturer;

Four blocking pair constraints for each student type and project pair.

Hence, the ILP has
O(kF2(2F - 1))

variables and constraints. Each variable z; ; is bounded above by n,, the number of students, so
the input size is
O(K*2(2% — 1) logmy) .

By Theorem [3.4.1] the ILP can be solved in time

2.5 kFH2(2k—1)+o( K FH2(2k-1))

0((/&*%2’“ - 1)) log? nl) .

Hence, the problem of finding a largest stable matching in an instance of is fixed param-
eter tractable when parameterised by the number of project topics k. O

3.5 Conclusions and future work

In this chapter, we presented complexity results for finding a maximum-size stable matching
in restricted versions of [spa-sT| and [sPa-P| First, we showed that remains NP-hard
even in the case where only one lecturer is involved. Then we showed that remains
NP-hard when both student and lecturer preferences are derived from a single master list of
projects. On the other hand, we showed that is polynomial-time solvable when each
student finds acceptable only projects offered by a single lecturer. This was achieved by dividing
the original instance into disjoint sub-instances of for which a known polynomial-
time algorithm can be applied. The final solution is then obtained by combining the solutions
from each sub-instance. Additionally, we observed that is solvable in polynomial time
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when all students have identical preference lists. This follows from the fact that, in this scenario,
all stable matchings are of the same size.

In addition to these results, we examined the parameterised complexity of in a setting
involving project topics and uniform capacities, denoted In this setting, students and
lecturers express preferences over project topics rather than individual projects, and each lecturer,
along with the projects they offer, has the same capacity. We showed that [Max-spa-pud]is fixed-
parameter tractable when parameterised by the number & of project topics. This was established
by first applying two reductions to the original instance, resulting in an equivalent instance where
the numbers of lecturers and projects are bounded in terms of the number of project topics. Then
we formulated the problem as an ILP whose number of variables depends only on the number of
project topics, k.

A possible direction for future work in the context of is to investigate whether the
3-approximation algorithm by Cooper and Manlove [27] yields a better approximation factor
in the case with a single lecturer. Another promising direction is to explore the parameterised
complexity of this problem, particularly in a typed setting. We note that FPT algorithms have

been developed for typed versions of [Max-smTI and (Max-HRT| [[114]]. Similar definitions of types
could be developed for and examined further. In the spa-p setting, the complexity of
(2, 00)-MAX-spA-P, where each student ranks at most two projects and each lecturer is allowed an

unbounded number of projects in their preference list, remains an open question. Future work in
MAX-SPA-P|could focus on tightening the parameterised bounds by exploring alternative structural
parameters that lead to efficient algorithms. It would also be interesting to extend these results
to other NP-hard variants of especially those involving additional constraints such as ties

in preferences or lower quotas.



Chapter 4

Structural Results for spra-s

4.1 Introduction

In this chapter, we study the structural properties of the Student-Project Allocation problem with
lecturer preferences over Students (spa-s). We give a new characterisation of the set of stable
matchings for any instance of this problem. Our main result shows that these stable match-
ings form a distributive lattice, extending the well-known lattice structure from classical stable
matching problems to this more general setting.

4.1.1 Background and motivation

As discussed in Sections|2.1.3.1|and |2.2.3] the set of stable matchings in the classical Stable Mar-
riage problem (sm) and the Hospital Residents problem (HR) forms a distributive lattice. In these

settings, the man-optimal (or resident-optimal) and woman-optimal (or hospital-optimal) stable
matchings correspond to the minimum and maximum elements of the lattice, respectively. This
structure has been central to the development of efficient algorithms for enumerating all stable
matchings, identifying all stable pairs, and computing stable matchings that satisfy additional
criteria, such as finding an egalitarian stable matching or a stable matching with minimum re-
gret. Motivated by these applications, we investigate whether a similar structure exists in
as this would enable the design of efficient algorithms for similar problems in the model.

4.1.2 Contributions and structure of the chapter

We show that, for a given instance of the problem, the set of all stable matchings forms a
distributive lattice, with the student-optimal and lecturer-optimal stable matchings correspond-
ing to the minimum and maximum elements of this lattice, respectively. A related result was
previously established in Chapter 3 of [[121]], but under the restriction that each student provides
preferences only over projects offered by different lecturers. In this chapter, we revisit some
key results from that work, specifically Proposition and Theorem Additionally, we

74
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develop new results and proofs to show that the distributive lattice structure also holds in the
general case, without any restrictions on student preference lists.

4.2 Preliminary definitions

We refer the reader to the formal definitions of spa-s presented in Section To illustrate
these definitions more concretely, we provide the following example:

Consider the spa-s instance /; shown in Figure[4.1] Here, the set of studentsis S = {s1, s2,. .., 55},
the set of projects is P = {p1,p2, ..., ps}, and the set of lecturers is £ = {l;,[>}. Recall that each
student has a preference list over the projects they find acceptable, and each lecturer ranks stu-
dents in order of preference. In the example, s;’s preference list is p;, ps, and s,’s preference list
is po, p3. Also, lecturer [, offers py, ps, p5, while lecturer I, offers ps3, p;. Moreover, [;’s preference
list is sy, s5, S3, S1, S2, and the projected preference list of /; for p; includes s3, s;, ranked in that
order.

Students’ preferences Lecturers’ preferences Offers
p p

$1: p1 P2 l1: 84 85 83 51 82 D1, P2, D5
S2 P2 P3 la: 82 83 85 54 D3, P4
$3: P3 P1

S4: P4 P5

S5: P5 P4

Project capacities: cy = co =c3=cs4=c5 =1

Lecturer capacities: d; = 3, do = 2

Figure 4.1: An instance [; of spa-s

With respect to the spa-s instance /; shown in Figure the matching M; = {(s1,p1), (S2,p2),
(s3,p3), (S4,p4), (s5,p5)} is a stable matching, as it does not admit any blocking pair. Furthermore,
M, is the student-optimal stable matching since every student is assigned to their best project in
M. Similarly, the matching My = {(s1,p2), (S2,p3), (83, 1), (S4,P5), (S5, p4)} is also stable in I,
and M, is the lecturer-optimal stable matching. Clearly, in M5, each lecturer whose assigned set
of students differs from that in M, is assigned at least one student in M, whom they prefer to
some student assigned to them in M;.



4.2. Preliminary definitions 76

4.2.1 Preferences over matchings

In this section, we extend the notion of preferences over individual projects (for students) and
over individual students (for lecturers) to preferences over matchings. We then present the Un-
popular Projects Theorem, originally introduced by [8] and presented in [[121], which captures
key structural properties of the set of stable matchings in Finally, we discuss how these
properties differ from those in the [HR| model.

Theorem 4.2.1 (Unpopular Projects Theorem [|8,121]]). Let M denote the set of all stable

matchings in a given instance of sPa-s. Then:
() Each lecturer is assigned the same number of students in all stable matchings in M.
(ii) Exactly the same students are unassigned in all stable matchings in M.

(iii) Any project offered by an undersubscribed lecturer is assigned the same number of
students in all stable matching in M.

In the Rural Hospitals Theorem for the HR model (stated in[2.2.1)), an undersubscribed hospital is
assigned the same set of residents in every stable matching, and each hospital receives the same
number of residents across all stable matchings. However, these properties do not fully extend
to spa-s. In particular:

* An undersubscribed lecturer may be assigned different sets of students in different stable
matchings (see Figure 3 in [8]]).

* A project offered by a full lecturer in one stable matching may be assigned a different
number of students in another stable matching (see Figure 4 in [8]).
4.2.1.1 Student Preferences over Matchings

Let I be an instance of spa-s, and let M denote the set of all stable matchings in /. Given two
matchings M, M’ € M, a student s; € S prefers M to M’ if s; is assigned in both matchings and
prefers M (s;) to M'(s;). Similarly, s, is indifferent between M and M’ if either:

(i) s; is unassigned in both M and M’, or

(ii) s; is assigned the same project in both matchings, i.e., M (s;) = M'(s;).

4.2.1.2 Lecturer Preferences over Matchings

It is not immediately clear how to compare two stable matchings from the perspective of a lec-
turer. To formalise lecturer preferences over matchings, we adopt the definition proposed by
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Abraham et al. in [8]. Let M and M’ be two stable matchings in M. By Theorem [4.2.1]
|M| = |M'| and |M ()| = |M'(l},)| for each lecturer I;. Suppose that [, is assigned different sets
of students in M and M’. Define

MI)\M (L) = {51, .8}, ML)\ M) ={s,,..., s},

where the students in each set are listed in the order they appear in /,’s preference list £;. Then
l;, prefers M to M’ if [, prefers s; to s; for all i € {1,...,r}. On the other hand, lecturer  is
indifferent between M and M’ if [, is not assigned to any student or is assigned the same set of
students in M and M’, i.e., M(l;) = M'(ly).

Example. Consider the two stable matchings A, and M, for instance ;. Then:

My(ly) \ My(ly) = {54,583}, Mi(l)\ Ma(l) = {s5, 82}

The reader can verify that neither /; nor [, is assigned their most preferred set of students in both
stable matchings. However, since [; prefers s, to s5 and s3 to s», it follows that [; prefers M, to
M;.

4.2.2 Dominance relation

We now define the dominance relation that plays a central role in constructing the lattice struc-
ture of stable matchings. Let M denote the set of all stable matchings in spa-s. We show in
Proposition that M, under the dominance relation <, forms a partial order. Unless stated
otherwise, whenever we write M < M’, we refer to the student-oriented dominance relation.
References to the lecturer-oriented dominance relation will be made explicit.

Definition 4.2.1 (Student-oriented dominance relation). Let M, M’ € M. We say that
M dominates M’', denoted M =< M’, if and only if each student prefers M to M’, or is
indifferent between them.

Example. Consider instance /; in Figure which admits the following two stable matchings:

M1 = {(317p1)7 (827p2)7 (337p3)7 (S4ap4)a (357p5)}7 M2 = {(Slap2)a (32,]93), (S3ap1)a (347p5)7 (S5ap4)}'
Each student prefers their assignment in )/; to their assignment in M, so M; dominates M.

Definition 4.2.2 (Lecturer-oriented dominance). Let M, M’ € M. We say that M dom-
inates M’ from the lecturers’ perspective if each lecturer either prefers M to M’, or is
indifferent between the two.

We note that in the hospital-resident setting, given any two stable matchings M and M’, each
hospital either prefers all of its assigned residents in A to those assigned to it in M’ \ M, or
prefers all its assigned residents in M’ to those assigned to it in M \ M’. This property does
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not hold in spa-s. In spa-s, if some lecturer [ is assigned different sets of students in two stable
matchings M and M’, they may not prefer all students in M ([) to those in M'(l) \ M(l), nor all
students in M’(() to those in M (l) \ M'(l). However, it is always the case that [ prefers at least
one student in M (I) \ M’(]) to at least one student in M’(l) \ M (l), or vice versa.

In Figure M, is the student-optimal stable matching since every student is assigned to their
best project in A/;. Similarly, the matching My = {(s1,p2), (S2,03), (S3,P1), (S4,D5), (S5,p4)} 1S
also stable in /;, and M, is the lecturer-optimal stable matching. Clearly, in M>, each lecturer
is assigned a student they prefer to at least one of the students assigned to them in M;. In
Lemma [4.3.1, we prove that for any two stable matchings M and M’, if a student is assigned
to lecturer /;, in both matchings, then there exists at least one student in M'(l;) \ M(l;) and,
consequently, one in M(l;) \ M'(l;). We then prove in in Lemma that if some student
s € M(lg) \ M'(ly) prefers M to M’, then I, prefers M’ to M.

Proposition 4.2.1. Let M be the set of all stable matchings in I. The dominance relation < defines
a partial order on M, and we denote this partially ordered set as (M, <).

We remark that the proof given below follows a similar line of argument to that presented in
[121].

Proof. We show that the dominance relation < on M is: (i) reflexive, (ii) anti-symmetric, and

(iii) transitive.

(i) Reflexive: Let M € M. Clearly, M < M, since every student is indifferent between M and
itself. Thus, < is reflexive.

(i) Anti-symmetric: Let M, M’ € M such that M < M’ and M’ < M. Then M = M'.
Suppose, for contradiction, that M =# M’. Then there exists some student s; such that
s; is assigned in both M and M’, and M (s;) # M’'(s;). Since M < M’, s; prefers M (s;)
to M'(s;). Similarly, M’ < M implies s; prefers M’(s;) to M(s;). This is a contradiction.
Hence, M = M’, and < on M is anti-symmetric.

(iii) Transitive: Let M, M', M" € M such that M < M’ and M’ < M”. We claim that M =<
M". By Theorem we know that exactly the same students are unassigned in all
stable matchings. Thus, every student who is unassigned in M is unassigned in M”, and
every unassigned student is indifferent between M and M”. Clearly, every student who is
assigned to the same project in M and M” is indifferent between M and M".

Now, let s; be some student who is assigned to different projects in both M and M”, say
M(s;) and M"(s;) respectively. First, suppose that M(s;) # M'(s;); since M =< M’, it
follows that s; prefers M (s;) to M'(s;). Further, (@) if M'(s;) = M"(s;) then s; prefers M (s;)
to M"(s;), and (b) if M'(s;) # M"(s;), M’ < M" implies that s; prefers M'(s;) to M"(s;),
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and since the preference lists are strictly ordered, s; prefers M (s;) to M"(s;). Now, suppose
that M'(s;) = M"(s;). It follows that M'(s;) # M"(s;); thus M" < M” implies that s; prefers
M’ (s;) to M"(s;). This implies that s; prefers M(s;) to M"(s;). Hence our claim holds; and
therefore < on M is transitive.

Definition 4.2.3 (Distributive lattice [54]). Let A be a set and let < be an ordering relation
defined on A. The partial order (A, <) is a distributive lattice if:

(i) each pair of element =,y € A has a greatest lower bound, or meet, denoted = A y,
such that z Ay <z, x Ay < y, and there is no element z € A for which 2 <z, 2 <y
and x Ay < z;

(ii) each pair of element =,y € A has a least upper bound, or join, denoted x V y, such
that x <2 Vy, y < 2V y, and there is no element z € A for which z < z, ¥y < 2z and
z=xVy;

(iii) the join and meet distribute over each other, i.e., for z,y,z € A,z V (y A z) = (x V
YAN(xVz)andzA(yVz)=(zxAy)V(zA=2).

4.3 Structural properties of stable matchings

In this section, we present new results that illustrate lecturers’ preferences over matchings when
a student prefers one stable matching to another. These results will be used in the next section
to prove that the set of stable matchings forms a distributive lattice. We first present Proposi-
tion [4.3.1] which is used in the proofs of Lemmas [4.3.1]and 4.3.2]

Let M and M’ be two stable matchings in a spa-s instance /. In Lemma |4.3.1] we show that if
a student s; is assigned to different projects offered by the same lecturer [, in M and M’, and s;
prefers M to M’, then [, prefers some student in M’(l},) \ M(l),) to s;. In Lemma4.3.2] we show
that if there exists a student s € M (I;) \ M'(l;) who prefers M to M’, then [ prefers M’ to M. In
Lemma we show that if s; is assigned to p; offered by /;, in M/’ and prefers M to M’, then
I, prefers s; to each student in M (p;) \ M'(p,), or, if p; is undersubscribed in M, to each student
in M(ly) \ M'(l},). Finally, in Lemma we prove the symmetric case of Lemma [4.3.1} if s; is
assigned to different projects offered by the same lecturer /;, then [, prefers s; to some student
in M (1) \ M'(lx).

Proposition 4.3.1. Let M and M’ be two stable matchings in I, and let s be some student assigned
in M to a project p; offered by lecturer l;. If s prefers M to M’ and either s € M'(ly,) or l, prefers s
to at least one student in M'(l,), then p; is full in M'.
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Proof. Let s be some student assigned in M to p; offered by [;,, where s prefers M to M’. Suppose,
for contradiction, that p; is undersubscribed in A’. Then, if s € M’(l) or [, prefers s to some
student in M’(ly), it follows that (s, p;) forms a blocking pair in A/’. This contradicts the stability
of M'. Hence, p; is full in M" and our claim holds. O

Lemma 4.3.1. Let M and M' be two stable matchings in I. If some student s; is assigned in M
and M’ to different projects offered by the same lecturer I, and s; prefers M to M’, then there exists
some other student s, € M'(l) \ M(ly) such that [} prefers s, to s;. Thus, M(ly) # M'(ly).

Proof. Let M and M’ be two stable matchings in /. Let s; be some student assigned to different
projects in M and M’, both offered by the same lecturer /;, and suppose s; prefers M to M.
Suppose for contradiction that there exists no student s, € M’(l;) \ M(lx) such that [, prefers
s, to s;. Then by the Unpopular Projects Theorem it follows that M(l) = M'(ly), i.e.,
M'(ly) \ M(ly) = (. We construct sequences (s, Sz, S3,...) and (pg, p1,pe, . ..) of students and
projects such that for each ¢ > 2:

(1) s; prefers p; to p;_1,

(2) (s¢,pr) € M\ M’ and (s¢, pr—1) € M\ M,
(3) 1, offers both p; and p;_1,

(4) [, prefers s; to s;_;.

We prove by induction that these properties hold for all ¢ > 2. Let s; = s;.

Base case (t = 2). Let p; = M(s1), po = M’(s1). Since s, prefers M to M’, it follows that s;
prefers p; to py. Moreover, (s1,p1) € M\ M’, (s1,p0) € M’ \ M, and both projects are offered by
l.. Since M’ is stable, one of the following conditions hold:

(i) py is full in M’, and I, prefers the worst student in M'(p;) to s;; or

(ii) p; is undersubscribed in M’, I} is full in M’, s; ¢ M'(lx), and [, prefers the worst student
in M'(ly,) to s;.

Since s, € M'(l), it follows from Propositionthat py is full in M’ and case (i) holds. In this
case, since (s1,p;) € M\ M’, there exists some student sy € M'(p;) \ M(p;); otherwise, p; would
be oversubscribed in M. Furthermore, [, prefers s, to s;. Now, in M, s, must be assigned to some
project py such that s, prefers p, to p;; otherwise, (so, p;) would block M. Hence (sq, ps) € M\ M.
Moreover, since s, € M'(l;), and we assumed M (l,) = M’(l;), it follows that [, also offers p,.
Thus, properties (1)-(4) hold for ¢t = 2, completing the base case.

Inductive step. Assume that properties (1) - (4) above hold for some t = ¢ — 1 > 2. We now
show that the properties also hold for ¢ = ¢. By the inductive hypothesis:

(1) s, prefers p,_; to p,_o,
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(2) (sq-1,Pg-1) € M\ M, ($q-1,pq—2) € M'\ M,
(3) [ offers both p,_; and p,_s.
(4) [y prefers s,_1 to s, o,

Since M’ is stable, one of the following conditions hold:

(i) py—1is fullin M’, and [, prefers the worst student in M'(p,—1) to s,_1;

(ii) p,—1 is undersubscribed in M’, I, is full, s, ¢ M’(l};), and [, prefers the worst student in
M’(lk) to Sq—1-

Since s, € M’(l}), it follows from Proposition that p,_, is full in M’and case (i) holds.
Since (s;—1,p,-1) € M \ M’, there exists some student, say s,, such that (s, p,—1) € M\ M;
otherwise, p,—; would be oversubscribed in M. Furthermore, [, prefers s, to s,_;. Now, in M,
s, must be assigned to some project p, such that s, prefers p, to p,_,; otherwise (s,, p,—1) would
block M. Hence, (s,,p,) € M \ M'. Also, since s, € M'(l;) and M(l;) = M'(ly,), it follows that [,
also offers p,. Thus, properties (1) - (4) hold for ¢ = ¢, completing the inductive step.

It is easy to see that for each new student that we identify, I, prefers s; to s;_; and prefers s;
to s; s, ..., and prefers s, to sy, just as in Figure Hence, all identified students must be
distinct. Since the sequence of distinct students is infinite, we reach an immediate contradiction.
This contradiction implies that M (l;) # M’(l;), and the sequence must terminate with some
student s, € M'(l) \ M(lx). Hence, M (l) # M'(l), as required.

M M’
S1 - 1 Po lkl oo St St—1 ... S3 S2 81
521 b2 b1

83 ¢ p3 p2

St—1: Pt—1 Pt-2

St - Dt Pt—1

Figure 4.2: An illustration of the sequence of students generated in Lemma [4.3.1}, with (s, p,) €
M and (s,,p,—1) € M' forall r > 2

]

As an example, consider the instance /; in Figure[4.1] Here, s, is assigned to p; in M; and ps in Mo,
where both p; and p, are offered by /;. By Lemmal4.3.1] we can identify some s3 € M(l1)\ M;(l;)
such that [, prefers s3 to s;.
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Lemma 4.3.2. Let M and M’ be two stable matchings in an instance I, and let l;, be a lecturer such
that M(lx) # M'(l). If there exists a student s € M(ly) \ M'(l;) who prefers M to M’, then I
prefers M’ to M.

Proof. Let M and M’ be two stable matchings in M. Let [, be some lecturer such that M(l;) #
M'(l), and let s; € M (l)\ M'(l;) be some student who prefers M to M’. To prove that I, prefers
M’ to M, we construct a one-to-one mapping

foMUe) \ M () — M'(1e) \ M ()

such that for each student s € M(l;) \ M’(lx) who prefers M to M’, I, prefers f(s) to s. That is,
for each such student in M (l;) \ M’(l;), we can find a corresponding student s’ € M’(l;) \ M (lx)
such that [, prefers s’ to s.

We say that a student s, € M(l;) is a dominated student if [, prefers all students in M’(l;.) to s,.
There are two possible cases for the students in M (l;) who prefer M to M’:

Case 1: All such students are dominated.

In this case, [;, prefers all students in M’(l;) to each such student in M (I;)\ M’ (lx). Since |M’(lx)\
M(l)| = |M(lx) \ M'(lx)|, we can construct a one-to-one mapping for each student s € M (l;) \
M'(ly) who prefers M to M’ to another student s’ € M'(lx) \ M(l)) such that [, prefers s’ to s. In
this way, the mapping is valid, and [, prefers M’ to M.

Case 2: There exists at least one student in M (l;) \ M'(lx) who prefers M to M’ and is not
dominated.

Let s; € M(l;) \ M'(l;) be a non-dominated student who prefers M to M’, and let p; = M(sy).
It follows that [, prefers s; to at least one student in M’(l;). Since M’ is a stable matching, then
either (i) or (ii) holds as follows:

(i) py is full in M’, and [, prefers the worst student in M'(p;) to s;; or

(ii) p; is undersubscribed in M’, I, is full in M’, s; ¢ M'(l;), and [ prefers each student in
M’(lk) to s;.

Since [, prefers s; to at least one student in M’(l;), it follows from Proposition [4.3.|that p, is full
in M'. So case (i) holds, and there exists some student sy € M’(p;)\ M (p1) such that [, prefers s,
to s,. First suppose that s, prefers M’ to M. If p, is full in M, then [, prefers s, to some student
in M(p;) (namely s), so (sq,p1) blocks M. If p; is undersubscribed in M, then [, prefers s, to
some student in M (l;) (namely s,), and (s», p;) again blocks M (this holds whether [, is full or
undersubscribed in M). Therefore, s, prefers M to M’.

Let S,(M, M') denote the set of students assigned in M and M’ to different projects offered by
lecturer ;. If s € M'(l;) \ M(lx), we define f(s;) = s, and stop. Otherwise, s, € Si(M, M’).
In this case, let py = M (s3). Then p, is offered by [, and (sq,ps) € M \ M’. Since M’ is a stable
matching, then either (i) or (i) holds as follows:
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(i) pois full in M’, and I, prefers the worst student in M'(p2) to sy; or

(ii) po is undersubscribed in M’, I; is full in M’, s, ¢ M’(l;), and [, prefers each student in
M’(lk) to ss.

Since [, prefers s, to s;, and prefers s; to at least one student in M’(l;), then [, prefers s, to
at least one student in M’(l;). By Proposition it follows that p, is full in M’. Since s, €
M (ps) \ M'(p2) and ps is full in M’, there exists some student s; € M'(ps) \ M (p2); for otherwise,
po is oversubscribed in M. Moreover, [, prefers s; to s,. Suppose that s3 prefers M’ to M. If p,
is full in M, then [, prefers s; to some student in M (p,) (namely s5), so (s3, p2) blocks M. If p,
is undersubscribed in M, then [, prefers s; to some student in M (l;) (namely s5), and (ss, ps)
again blocks M. Therefore, s; prefers M to M'. If s3 € M'(lx) \ M(l;), we define f(s;) = s3 and
stop. Otherwise, we continue this process to obtain a sequence of students sy, ss, ..., s;, where
each student in the sequence prefers M to M’ and is preferred by [, to their predecessor; that
is, 1, prefers s, to s,_; for 1 < r < t. Since the number of students is finite, this sequence must
eventually terminate with a student s; € M'(l;) \ M (lx), at which point we define f(s;) = s:.

The sequence sy, so, . . ., s is such that
* 516 M(lp)\ M'(Ix)
e s, e« M(ly)NM'(ly) for 1 <r <t
* s € M'(Ik) \ M(lx)
* [, prefers s, to s,y for 1 < r < t.
* s, prefers M to M’ for 1 <r <t.

We repeat this construction for every non-dominated student in M (I) \ M’(l;). We also ensure
that if the same project appears in the sequences starting from multiple students in M (1) \ M'(ly),
then we can assign a distinct student from M’(l;) \ M (lx) to that project in each case. Suppose
some project p, € Py arises multiple times in M \ M’, each time assigned to a different student.
Then, as argued earlier, p, must be full in M’, and all students assigned to p, in M’ are preferred
by [, to the students it was assigned to in M. Since each occurrence of p, corresponds to a
different student in M (l) \ M'(lx), and p, is full in M’, there are sufficiently many students
in M'(l;) \ M(lx) assigned to p, from which we can choose. We select a distinct one for each
occurrence, preserving the one-to-one mapping.

Finally, for the dominated students, we assign the remaining unassigned students in M’ (l;)\ M (Ix)
arbitrarily. Since for each dominated student s € M (l;)\ M'(l), I, prefers each student in M’(l})
to s, the condition that [, prefers f(s) to s still holds. Thus, in both cases, we construct a valid
one-to-one mapping from M (I;) \ M'(lx) to M'(l) \ M(lx) such that [, prefers each student in
M'(lx) \ M(lx) to the corresponding student in M (l;) \ M'(l). Therefore, I; prefers M’ to M, as
required. O
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Lemma 4.3.3. Let M and M’ be two stable matchings in a given instance I. Suppose some student
s; is assigned to different projects in M and M’, and that in M’, s; is assigned to a project p; offered
by lecturer ;. Suppose further that s; prefers M to M’'. Then:

@) If there exists a student in M (p;)\ M'(p,), then l; prefers s; to each student in M (p;) \ M'(p;).
(b) If p; is undersubscribed in M, then I, prefers s; to each student in M () \ M'(ly).

Proof. Let M and M’ be two stable matchings in 7, and let s; be a student assigned to different
projects in M and M’, where s; prefers M to M’'. Let p; = M’(s;), and let [ be the lecturer
offering p;. In Case (a), we show that if M (p;) \ M'(p,) is non-empty, then there exists a student
s" € M(p;) \ M'(p;) who prefers M’ to M. In Case (b), we show that if p, is undersubscribed
in M, then there exists a student ' € M(l;) who is assigned to different projects in M and
M’, and who prefers M’ to M. In both cases, we use the student s’ identified to initiate an
inductive argument. This produces a sequence of distinct students, where each student prefers
M’ to M, and is preferred, by the lecturer they are assigned to in )M, to the previous student in
the sequence.

Case (a): Suppose there exists some student s’ € M (p,) \ M'(p,), and suppose for contradiction
that [, prefers s’ to s;,. Suppose p; is full in M'. If s’ prefers M to M’, then (s',p;) blocks M’,
since [, prefers s’ to some student in M’'(p;) (namely s;), a contradiction. Now suppose that p,
is undersubscribed in M’. Since /) prefers s’ to some student in M’'(l;) (again, s;), then (s, p;)
blocks M’, another contradiction. Therefore, s’ prefers M’ to M.

Case (b): Suppose p, is undersubscribed in ), and suppose for contradiction that [, prefers each
student in M () \ M’(l) to s,. Recall that s; € M'(p,) \ M (p;). Since p; is undersubscribed in M
and |M(I)| = |M'(l)], there exists some project p’ € P, and some student s’ € M(p') \ M'(p'),
where p’ is undersubscribed in M'. First suppose that s’ prefers M to M'. If s’ € Sy (M, M’), then
(s',p’) blocks M’, a contradiction. Thus, s’ € M (lx) \ M'(l;). Since, by our assumption, [ prefers
each student in M (l;) \ M'(l;) to s;, it follows that [, prefers s’ to s;. However, the pair (¢, p')
again blocks M’. Therefore, s’ prefers M’ to M.

The remainder of the proof for Cases (a) and (b) proceeds in an identical manner. We there-
fore continue with the inductive step that satisfies the conditions of both cases in the following
paragraph.

Let s’ be the student, identified in either Case (a) or Case (b) above, who prefers M’ to M. Let
So = Si, lo = lg. Let sy = &', pop = M(s1), and py = M’(s1), and let [; be the lecturer who offers
p1. Note that it is possible that p, = p; and [; = ;. We have (sy,p1) € M’ \ M, (s1,p0) € M\ M,
and [, prefers s; to sg. Moreover, s, prefers M’ to M, while s, prefers M to M’.

We now proceed by identifying students ss, s3, .. ., projects ps, ps, . . ., and lecturers l», I3, . . ., such
that for each ¢ > 2, the following properties hold:

(1) s; prefers M’ to M;
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(2) (s¢,pr) € M'\ M, where project p, is offered by lecturer /;;
(3) s; is assigned in M to some project offered by lecturer /,_;, and:

e if p,_;is full in M, then (s;,p;_1) € M \ M’;

» otherwise, there exists a project p;_, such that (s;,p, ;) € M \ M’ (where [,_; offers
both p;_; and p}_,).

(4) Lecturer [;,_; prefers s; to s;_;.

Base case (t = 2): Since s; prefers M’ to M, so s; prefers p; to py. Moreover, since (s1,p1) €
M’ \ M and (s1,p0) € M \ M’, it follows that p; # po. Also, lecturer [, prefers s; to sy. By the
stability of M, one of the following two cases holds:

(i) pyis full in M, and [, prefers the worst student in M (p;) to si;

(ii) p; is undersubscribed in M, [; is full in M, s; ¢ M (l,), and [; prefers the worst student in
M(ll) to s;.

Case (i): Since p; is full in M and (s1,p1) ¢ M, there exists another student s, such that (sy,p;) €
M\ M’, otherwise p; would be oversubscribed in M. Moreover, [; prefers s to s;. Clearly, s, is
assigned in M’; let p, = M’(s3), and let I, be the lecturer who offers p,. Then (s,,p2) € M’ \ M.
If s, prefers p; to po, then the pair (s2,p;) blocks M’, since p; is full in M, and [; prefers s, to
sy € M'(p1). Thus, s, must prefer p, to py, that is, s, prefers M’ to M. Note that s, # s1, since [y
prefers s, to sq; and sy # s, since s, prefers M to M’, while s, prefers M’ to M.

Case (ii): Since (s1,p1) € M’ \ M and p, is undersubscribed in M, there exists some project p}
offered by [y, such that p) is undersubscribed in M’; otherwise, /; would be oversubscribed in M.
Thus, there exists some student s, such that (so, p}) € M\ M’ and [; prefers s, to s;. Moreover, s,
is assigned in M’; let po = M’(s3), and let I, be the lecturer who offers ps. Then (sq, ps) € M'\ M.
If s, prefers p) to p,, then the pair (s9, p}) would block M’, since p| is undersubscribed in M’ and
[, prefers s, to s;. Hence, s, prefers p, to p), i.e., s, prefers M’ to M. As before, s, # s1, since [;
prefers s, to s, and sy # sg, since s, prefers M’ to M, whereas s, prefers M to M’.

In both cases (i) and (ii), we have identified a student s, who prefers M’ to M, with (s2,p2) €
M’ \ M, where p, is offered by lecturer [,. Moreover, s, is assigned in M to some project offered
by [;. If py is full in M, then (s, p1) € M \ M’; otherwise, (s, p}) € M \ M'. Moreover, [, prefers
S to s1. Thus, properties (1)-(4) hold for ¢ = 2, completing the base case.

Inductive step: Suppose properties (1)-(4) hold for some ¢t = ¢ — 1 > 2, that is:
(1) s, prefers M’ to M;

(2) (sg-1,p4—1) € M'"\ M, where p,_, is offered by lecturer [,_;;
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(3) s,—1 is assigned in M to some project offered by lecturer /,_,, and:

e if p,_o is full in M, then (s,_1,p,—2) € M \ M’;

* otherwise, there exists a project p;_, such that (s, 1,p,_,) € M\ M’ (where [, , offers
both p, » and p_,).

(4) Lecturer [,_, prefers s,_; to s,_s.
By the stability of M, one of the following two cases must hold:
() py—1isfullin M, and [,_, prefers the worst student in M (p,—1) to s,_1;

(ii) p,—: is undersubscribed in M, [, is full in M, s, ¢ M(l,—1), and [, prefers the worst
student in M (l,—1) to s4_1.

Case (i): Since p,_; is full in M and (s,—1,p,—1) ¢ M, there exists a student s, such that
(SqsPg—1) € M\ M’, otherwise p,_; would be oversubscribed in M. Moreover, [,_; prefers s,
to s,_1. Clearly, s, is assigned in M’; let p, = M’(s,), and let [, be the lecturer who offers p,.
Then (sq,p,) € M’ \ M. If s, prefers p,_; to p,, then the pair (s4, p,—1) blocks M’, since p,_; is
full in M and [,_; prefers s, to s,_1 € M'(p,_1). Hence s, prefers p, to p,_1, that is, s, prefers M’
to M.

Case (ii): Since (s,—1,p,-1) € M’ \ M and p,_, is undersubscribed in )/, there must exist some
project p),_, € P, ; that is undersubscribed in M’, for otherwise I,_; would be oversubscribed
in M. Then there exists a student s, such that (s,,p, ;) € M \ M’, and I, prefers s, to s, ;.
Moreover, s, is assigned in M’; let p, = M'(s,) and let [, be the lecturer who offers p,. Then
(84:pq) € M"\ M. If s, prefers p;_, to p,, then the pair (s,, p; ) blocks M’, since p]_, is under-
subscribed in M’ and [, prefers s, to s, 1 € M'(l,_;). Hence s, prefers p, to p;, ,, that is, s,
prefers M’ to M.

In both cases (i) and (ii), we have identified a student s, who prefers M’ to M, with (s,,p,) €
M'\ M, where p, is offered by lecturer [,. Moreover, s, is assigned in A/ to some project offered
by l4—1. If py—1 is full in M, then (s, p,-1) € M \ M’; otherwise, (s,,p;, ;) € M \ M'. Moreover,
l,—1 prefers s, to s,_;. Thus, properties (1)-(4) hold for ¢ = ¢, completing the base case.

It follows from the construction that each project p; differs from the previous project p, 1, since
each student s, is assigned to different projects in M and M’. We now show that all students in
the sequence sy, s, . .. are distinct, by induction on ¢. Clearly, s, # s1, since the lecturer [, prefers
So to s1, and sy # s, since s, prefers M’ to M while s, prefers M to M'. Now suppose, as the
inductive hypothesis, that s, ..., s; are all distinct for some ¢ > 2, and suppose for contradiction
that s, = s, for some 1 < ¢ < ¢. In the construction, s;;, is selected by lecturer /, to prevent
the pair (s;,p;) € M’ \ M from blocking M. This means that either (s;,1,p;) € M \ M/, if p, is
full in M, or (sy41,p,) € M \ M, if p, is undersubscribed in M. In both cases, [; prefers s, to s;.
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Since s;11 = s,, this student must have appeared earlier in the sequence and must have been
selected to resolve a different blocking pair involving some earlier student s,_;. In that case, [, is
using the same student s, to resolve two different blocking pairs: one involving (s, p;) and one
involving (s,—1,p:). But by the inductive hypothesis, s, # s,_1, and so [; should have selected
two different students. This contradicts the construction, which requires that each blocking pair
is resolved by a student who has not already appeared in the sequence. Therefore, s;,11 # s,
for all 1 < ¢ < t, and so the sequence sy, s9, ... consists of distinct students. Since the number
of students is finite, the construction must eventually terminate. This establishes our claim and
completes the proof.

To illustrate this proof, consider Figure Suppose that a student s, prefers M to M’, where
in M’, s, is assigned to pg, a project offered by [,. Further, suppose there exists a student s; €
M (po) \ M'(po), and suppose for a contradiction that [, prefers s; to sq. Clearly, if s, also prefers
M to M’, then (s1,po) blocks M’. This implies that s; prefers M’ to M. Let M’(s;) be p;, where
[, offers p,. To ensure the stability of M, we continue identifying a sequence of distinct students,
as illustrated in Figure However, since this sequence is infinite, we arrive at a contradiction.

Students’ preferences Lecturers’ preferences Offers

S0t PH Po lo: s1 80 Do
$1: P1 Do li: s2 s1 j4
82t p2 P1 la: 83 82 D2
831 p3 D2 l3: s4 s3 D3
St: Pt DPi—1 l: sip1 s Dt

Figure 4.3: A spa-s instance illustrating the infinite sequence of students generated in
Lemma |4.3.3} where (s;,p;) € M" and (s;,p;—1) € M.

]

Lemma 4.3.4. Let M and M’ be two stable matchings in I. If some student s; is assigned in M and
M’ to different projects offered by the same lecturer I, and s; prefers M to M’, then [, prefers s; to
some student s, € M (l) \ M'(ly).

Proof. Let M and M’ be two stable matchings in /, and let s; be a student assigned to different
projects in M and M’, both offered by lecturer [, where s, prefers M to M’'. By Lemma 4.3.1],
there exists a student in M’(l;) \ M(l;) and, consequently, one in M (l;) \ M'(l). Suppose, for a
contradiction, that no student s € M (l)) \ M’(l;) is worse than s; according to l;. Let M (s1) = po
and M'(s1) = p1, where s; prefers pg to p;. If p; is undersubscribed in M, then by the second part
of Lemma l;, prefers s, to each student in M (I;) \ M’(lx), a contradiction. Hence p; must
be full in M. Since (s1,p1) € M’'\ M and p, is full in M, there exists some (sy,p1) € M \ M’, and
by the first part of Lemma I, prefers s; to ss.
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If s9 € M(lx) \ M'(l), then [, prefers s; to some student in M (l;) \ M’(lx), contradicting our
assumption. Hence sy € Sp(M, M’). Let M'(s2) = po. First suppose that s, prefers p, to py, i.e. sq
prefers M’ to M. Since s; € M'(p1) \ M (p:1), part (a) of Lemma [4.3.3]implies that [, prefers s, to
s1, a contradiction. Thus s, prefers p; to p,. If p, is undersubscribed in M, then by Lemma |4.3.3]
I prefers s, to each student in M (I;) \ M'(lx). Since I, prefers s; to s, it follows that [, prefers
sy to student s € M () \ M’(l), which again contradicts our assumption. Hence p is full in M.
Since (sg,p2) € M’ \ M and p, is full in M, there exists (s3,p2) € M \ M’, and by the first part of
Lemma [4.3.3] I, prefers s, to s3.

Again, if s3 € M (lx) \ M'(lx), then [, prefers s; to sy, and s, to some student in M (I,) \ M'(lx),
contradicting our assumption. Thus s; € Sx(M, M’), and let M’(s3) = ps. Proceeding inductively
as before, we obtain a sequence sy, ss, s3,... such that, for each ¢t > 1, s; prefers p;_; to p;,
(s, pr_1) € M\ M’, (sy,p;) € M'\ M, and both p, ; and p, are offered by [;, who prefers s,
to s;y1. Hence [, prefers s; to s, sy to s3, and so on, implying that all identified students are
distinct. Since the number of students is finite, this sequence cannot continue indefinitely and
must terminate with some s € M(l)) \ M'(lx) such that [, prefers s, to s. O

The following corollary follows from Lemmas -4.3.4

Corollary 4.3.1. Let M and M’ be stable matchings in an instance I, and let <g and =y,
denote the student-oriented and lecturer-oriented dominance relations, respectively. Then
M <g M'"if and only if M' < M.

Proof. (=) Suppose M =g M’'. Then each student either prefers M to M’ or is indifferent
between them. If M = M’, the claim is immediate. Otherwise, consider any lecturer /. If
M(l;) = M'(lx), then [ is indifferent between M and M’, so M’ <, M holds for l,. If M(l}) #
M'(ly), then there exist some student s € M(l;) \ M'(ly). Since M <g M’, s prefers M to M'.
By Lemma it follows that [, prefers M’ to M. Thus, for every [, ;. is either indifferent or
prefers M’ to M, i.e., M’ <; M.

(<) Conversely, suppose M’ <; M. Then each lecturer either prefers M’ to M or is indifferent
between them. Consider any student s. If M(s) = M’(s), then s is indifferent between the two
matchings, so M <g M’ holds for s. Otherwise, let [;, be the lecturer offering M’(s), and suppose,
for a contradiction, that s prefers M’ to M. If s € Sy(M, M’), then by Lemma I, prefers
some s, € M(l;) \ M'(ly) to s; and by Lemma [4.3.4] [, prefers s to some s, € M'(l);) \ M(ly).
Consequently, I, prefers a student in M (I;,) \ M'(l;) to one in M'(l;) \ M (l}.), contradicting M’ <,
M. If instead s € M’(l;)\ M(l;), then by Lemma[4.3.3] [}, prefers M to M’, again a contradiction.
Hence no student prefers M’ to M. Therefore each student is either indifferent between A and
M’ or prefers M to M’,i.e. M <g M. O
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4.4 Stable matchings in sra-s form a distributive lattice

To show that (M, <) forms a distributive lattice, we define the meet and join of any two stable
matchings in M based on student preferences. Given two stable matchings M and M’, the meet
matching assigns each student to the project they prefer more between their projects in M and
M’, while the join matching assigns each student to the less preferred of the two. In Lemmas|4.4.4
and we show that both the meet and join matchings are stable. These results show that the
meet and join operations are well-defined in M and respect the dominance relation <. Finally,
in Theorem we prove that the meet and join operations distribute, and that (M, <) is a
distributive lattice.

Definition 4.4.1. Let M and M’ be two stable matchings in 7, and define a matching M"
as follows: for each student s;,

* if s; is unassigned in both M and M’, then s; is unassigned in M";

* if s; is assigned to the same project in both M and M’, then s; is assigned to that
project in M".

* otherwise, s; is assigned in M" to the better of their projects in M and M.

In Lemma [4.4.4] we prove that M" is a stable matching in I. To show this, we present Lemmas

4.4.11-4.4.3

Lemma 4.4.1. If a lecturer l;, is undersubscribed in M", then 1, is undersubscribed in both M and
M.

Proof. Suppose, for contradiction, that [, is undersubscribed in A", but is full in both M and M’.
Then, |M(lx)| > |M"(lx)| and |M'(lx)| > |M”"(lx)|. Thus, there exists projects p,,p, € Py such
that

| M (pa)| > [M"(pa)| and  [M'(py)| > |M"(ps)|.

Suppose that s, € M(p,)\M"(p,) and s, € M'(py)\ M"(py). This implies that s, € M (p.)\ M’ (pa)
and s, € M'(py)\ M (py). By the construction of M", each student is assigned to the more preferred
of their two projects in M and M’. Therefore, (a) s, prefers M'(s,) to p,, and (b) s, prefers M (s;)
to p,. We claim that p, is undersubscribed in M’ and p, is undersubscribed in M. We now consider

each of these cases in turn.

Case (@): s, € M(p,) \ M'(p,) and s, prefers M’ to M. Suppose for contradiction that p, is
full in M’. Since p, cannot be oversubscribed in M, we have |M'(p,)| > |M(p,)|. Given that
|M(pa)| > |M"(pa)|, it follows that |M'(p,)| > |M"(p.)|. Hence there exists some student s €
M'(p.) \ M"(p.), which means s € M'(p,) \ M(p,). Moreover, by the construction of M", s
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prefers M to M'. Applying the first part of Lemma to the matchings M and M’, with s, as
a student who prefers M’ to M and s € M'(p,) \ M(p.), it follows that [, prefers s, to s (note
that here, M and M’ are swapped compared to Lemma [4.3.3). On the other hand, applying the
same lemma to M and M’, with s as a student who prefers M to M’ and s, € M(p,) \ M'(p.),
it follows that [, prefers s to s,. This yields a contradiction. Therefore, p, is undersubscribed in
M.

Case (b): Suppose s, € M'(py) \ M(py) and s, prefers M to M’. Following a similar argument
to case (a), if, on the contrary, p, were full in M, then |M(py)| > |M"(ps)|, and there would
exist some student s € M(p,) \ M"(ps), and hence s € M(p,) \ M'(py). By the construction of
M", s prefers M’ to M. In this case, we have s, € M'(p,) \ M(p,) who prefers M to M’, and
s € M(py) \ M'(py) who prefers M’ to M. Applying Lemma to these two cases yields a
contradiction on /s preference list. Hence, p, is undersubscribed in M.

From cases (a) and (b), it follows that s, prefers M’(s,) to p,, where p, is undersubscribed in
M’, and that s, prefers M (s;) to p,, where p, is undersubscribed in M. By the second part of
Lemma this implies that [, prefers s, to each student in M’(l;) \ M (lx), and also prefers
sp to each student in M () \ M'(ly). If s, € M'(lx) \ M(lx), then [; prefers s, to s,. If instead
sy € Sp(M,M’), then since s, prefers M to M’, Lemma implies that there exists some
s € M'(ly) \ M(l) where [;, prefers s’ to s;. Thus, [, prefers s, to s/, and hence [, prefers s, to sj.
On the other hand, since s, prefers M to M’ and p, is undersubscribed in M, then Lemma 4.3.3
implies that [, prefers s, to each student in M (I;) \ M'(ly). If s, € M(lx) \ M'(l;), then [, prefers
sy to s,, a contradiction. If instead s, € S,(M, M’), then, since s, prefers M’ to M, there exists
some s € M(ly)\ M'(l) such that [, prefers s to s,. Consequently, [, prefers s, to s, and therefore
to s,. This again yields a contradiction.

Therefore, our assumption is false, and [ is undersubscribed in both M and M'. O

Lemma 4.4.2. If a project p; is undersubscribed in M", then it is undersubscribed in at least one of
M or M’

Proof. Let [}, be the lecturer who offers project p;. Suppose, for contradiction, that p; is full in
both M and M’, but undersubscribed in A/". Then |M (p,)| > |M"(p;)| and |M'(p;)| > |M"(p;,)|-
It follows that there exists a student s, € M(p;) \ M"(p;). Since any student assigned to p; in
both M and M’ must also be assigned to p,; in M”", we conclude that s, ¢ M’(p;), and hence
Sa € M(p;) \ M'(p;). Similarly, there exists a student s, € M'(p;) \ M"(p;), which implies that
sy € M'(p;) \ M(p;). By the construction of M", s, prefers M’ to M, and s, prefers M to M'.

By applying the first part of Lemma to the matchings M’ and M, with s, as a student who
prefers M’ to M, and with s, € M'(p;) \ M (p;), it follows that [, prefers s, to s, (note that here,
M and M’ are swapped compared to Lemma [4.3.3)). Conversely, applying the same lemma to A
and M’, with s, as a student who prefers M to M’ and s, € M(p;) \ M'(p;), we conclude that [,
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prefers s, to s,. This is a contradiction, since [, cannot simultaneously prefer s, to s, and s, to
s,. Therefore, p; must be undersubscribed in at least one of M or M. O

Lemma 4.4.3. M" is a matching.

Proof. By construction, no student is assigned to more than one project in M”. It remains to
show that no project or lecturer is oversubscribed in M". Suppose, for contradiction, that some
project p; is oversubscribed in M". Let I, be the lecturer who offers p;. Then |M"(p;)| > |M(p;)|
and |M"(p;)| > |M'(p,)|, since both M and M’ are valid matchings. Thus, there exist students
s € M"(p;) \ M'(p;) and s, € M"(p;) \ M(p,). It follows that s, € M(p,;) \ M'(p;) and s, €
M'(p;) \ M(p;), where s, prefers M to M’ and s, prefers M’ to M.

By stability of M’ and since s, prefers p; to M’(s,), it follows that [, prefers the worst student in
M'(p,) to s, (if p; is full in M") or the worst student in M’(l}) to s, (if p; is undersubscribed in A").
This implies that [, prefers s, to s,, since s, € M’(p;). On the other hand, s, prefers p; to M(s;).
If p; is full in M, then [, prefers s, to some student in A/ (p;) (namely s,), and (s,, p;) blocks M, a
contradiction. If p; is undersubscribed in M, then [, prefers s, to some student in M (I;) (namely
Sq.), and (s, p;) blocks M, a contradiction (This holds whether [, is full or undersubscribed in
M). Therefore, our assumption is false and no project is oversubscribed in M".

Next, suppose for contradiction that some lecturer [, is oversubscribed in M”. Then there exist
projects p, and p, offered by [, such that |[M"(p,)| > |M'(p.)| and |M"(py)| > |M(ps)|. Since
both M and M’ are valid matchings, this implies that p, is undersubscribed in M’ and p, is
undersubscribed in M. Moreover, as established earlier, no project is oversubscribed in M”. Let
Sq € M™(pa)\ M'(pa), 80 Sa € M (pa)\ M'(p,), and let s, € M (py) \ M (pp), 50 s, € M'(py) \ M (pp)-
By the definition of M", each student is assigned to the more preferred of their two projects in
M and M’; therefore, s, prefers M to M’, and s, prefers M’ to M.

Since p, is undersubscribed in M’, we have s, ¢ M’(l;); otherwise (s,,p,) would block M’,
regardless of whether [, is full or undersubscribed in M’. Similarly, since p, is undersubscribed
in M, we have s, ¢ M(l;), otherwise (s, p,) would block M. Hence s, € M(ly) \ M'(l;) and
sp € M'(ly) \ M(lx). Now, by Lemma since s, prefers M to M’, it follows that [, prefers
M’ to M. Conversely, since s, prefers M’ to M, the same lemma implies that [, prefers M to M’.
This yields a contradiction. Hence our assumption is false, and no lecturer is oversubscribed in
M™". Therefore, M" is a valid matching. O

Lemma 4.4.4. M" is a stable matching.

Proof. Suppose for contradiction that (s, p) is a blocking pair for M", where project p is offered
by lecturer /. Then either:

(S1) sis unassigned in M", or

(S2) sis assigned in M", but prefers p to M"(s).
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And one of the following four conditions holds for p and i:

(P1) both p and [ are undersubscribed in M".
(P2) pis undersubscribed in M*, [ is full in M", and s € M"(I).
(P3) pis undersubscribed in M*, [ is full in A", and [ prefers s to the worst student in M"({).

(P4) pisfullin M", and [ prefers s to the worst student in M"(p).

We consider each combination of conditions in turn. Note that the case (S1 & P2) cannot arise,
since s is unassigned in M" and therefore cannot belong to M"(1).

(S1 & P1) and (S2 & P1): First, suppose s is unassigned in M”". Then, by the construction of
M™", s is unassigned in both M and M’. Alternatively, if s is assigned in M” and prefers p to
M"(s), then s prefers p to both M(s) and M’(s), since s receives their preferred project in M".
Now consider condition (P1), where both p and its lecturer [ are undersubscribed in M". By
Lemma [4.4.1], since [ is undersubscribed in M", it is undersubscribed in both M and M’. By
Lemma 4.4.2] since p is undersubscribed in M", it is undersubscribed in at least one of M or M’.
Without loss of generality, suppose p is undersubscribed in M’. Then, whether s is unassigned
in M’, or assigned to a project they prefer less than p, the pair (s, p) blocks ', a contradiction.
We conclude that (S1 & P1) and (S2 & P1) cannot arise.

(S2 & P2), (S1 & P3) and (S2 & P3): First, consider (S1), where s is unassigned in M". By
construction of M”, this means that s is unassigned in both M and M’. Next, consider (S2),
where s is assigned in M" and prefers p to M"(s). Since each student in M" receives the more
preferred of their two projects from M and M’, it follows that s prefers p to both M(s) and
M'(s). In conditions (P2) and (P3), p is undersubscribed in AM/". Hence, by Lemma p must
be undersubscribed in at least one of M or M’.

Suppose first that p is undersubscribed in both M and M’. From (S2 & P2), we have that s €
M"(l), which means that s € M (l) or s € M'(l). If s € M'(l), then (s, p) blocks M’, since s prefers
pto M'(s) and p is undersubscribed in AM’. This blocking pair arises whether [ is undersubscribed
or full in M’. A similar contradiction arises in M if s € M(l). In conditions (S1 & P3) and (S2
& P3), let s, be the worst student in M"(l), where [ prefers s to s,. If s, € M’'(l), then (s,p)
blocks M’, since s is either unassigned in M’ or prefers p to M'(s), p is undersubscribed in M’
and [ prefers s to s. (again, this holds whether [ is full or undersubscribed in AM’). A similar
contradiction arises in M if s, € M ().

Next, suppose without loss of generality that p is full in M but undersubscribed in M” and M’.
If [ is undersubscribed in M’, then the pair (s, p) blocks M’, since s is either unassigned in A/’
or prefers p to M’(s), and both p and [ are undersubscribed in M’. Hence [ is full in M’, and
therefore also full in M. From (S2 & P2), we have that s € M(l) or s € M'(l). If s € M'(l),
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then (s, p) blocks M’, since s prefers p to M'(s), p is undersubscribed in M’ and [ is full in M".
Therefore, s € M(l) \ M’'(l). In (S1 & P3) and (S2 & P3), we have that s, € M(l) or s, € M'(l).
If s, € M'(l), then (s,p) blocks M’, since s is either unassigned in M’ or prefers p to M’(s), p is
undersubscribed in M’, [ is full in M’, and [ prefers s to s,. Thus s, € M (1) \ M'(]).

Now since p is full in M but undersubscribed in A", it follows that |M(p)| > |M”(p)|. Since I
is full in both M and M, and |M (p)| > |M"(p)|, there exists a project p, offered by [ such that
|M"(pa)| > |M(pa)|, implying that p, is undersubscribed in M. Thus, there exists a student s, €
M"(p.) \ M(pa), and hence s, € M'(p,) \ M(p.). Since s, receives their more preferred project
in M", they prefer p, to M (s,). Moreover by the stability of M (and since p, is undersubscribed
in M), [ prefers the worst student in M (/) to s,. In the (S2 & P2) case, it follows that [ prefers s
to s,, since s € M(l) \ M’(l). However, since s prefers p to M’(s), p is undersubcribed in M’, [ is
full in M’, and [ prefers s to s,, the pair (s, p) blocks AM’, a contradiction. In the (S1 & P3) and
(S2 & P3) case, it follows that [ prefers s, to s,, since s, € M(l) \ M’(l). Consequently, [ prefers
s to s,, since [ prefers s to s.. Again, we arrive at a similar contradiction as in (S2 & P2) case,
whereby (s, p) blocks M’.

Therefore, no blocking pair of type (S2 & P2), (S1 & P3) and (S2 & P3) exists in M".

(S1 & P4) and (S2 & P4): Clearly, if s is unassigned in M", then by construction, s is unassigned
in both M and M’. If instead s is assigned in M”" and prefers p to M"(s), then s prefers p to
both M (s) and M’(s), since s receives the more preferred of their two projects in AM/". Consider
condition (P4), where p is full in M" and [ prefers s to the worst student in M"(p). Let s, be the
worst student in M"(p). Clearly, either s, € M(p) or s, € M'(p).

First suppose (s.,p) € M. If s is unassigned in M, or if s prefers p to M(s), then (s, p) blocks M,
since p is full and [ prefers s to s, € M (p). This contradicts the stability of M. A similar argument
applies if (s.,p) € M': whether s is unassigned in M’, or prefers p to M’(s), the pair (s, p) blocks
M’, again a contradiction. Therefore, no blocking pair of type (S1 & P4) or (S2 & P4) can exist
in M".

In all possible cases, we arrive at a contradiction. Therefore, no blocking pair exists in M", and
M™" is stable. O

We denote by M A M’ the set of (student, project) pairs in which each student is assigned the
better of her project in M and M’; and it follows from Lemma that M A M’ is a stable
matching. Hence, if each student is given the better of her project in any fixed set of stable
matchings, then the resulting assignment is a stable matching. For the case where M is the set
of all stable matchings in /, we denote by A;c ¢ M, or simply A M, the resulting stable matching.
This matching is student-optimal and, by Corollary [4.3.1] lecturer-pessimal.
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Definition 4.4.2. Let M and M’ be two stable matchings in 7, and define a matching M"
as follows: for each student s;,

* if s; is unassigned in both M and M’, then s; is unassigned in MY

* if s; is assigned to the same project in both M and M’, then s; is assigned to that
project in MV,

* otherwise, s; is assigned in M" to the worse of their two projects in M and M’.

In Lemma [4.4.8, we prove that MV is a stable matching in /. To prove this, we first present
Lemmas 4.4.5]-4.4.7

Lemma 4.4.5. If a lecturer I}, is undersubscribed in MV, then [, is undersubscribed in both M and
M.

Proof. Suppose, for contradiction, that [, is undersubscribed in MV, but is full in both M and
M'. Then |M(lx)| > |MY(Ix)| and | M'(I;)| > | M"Y (I;)|. It follows that there exists student-project
pairs (s,, p.) and (s, pp) such that (s,, p,) € M\ M’ and (s, py) € M'\ M (since M"Y (ly) # M (l)
and MV(l) # M'(l)). By construction of MV, each student is assigned to the less preferred of
their two projects in M and M’; therefore, s, prefers M to M’, and s, prefers M’ to M.

By Lemma |4.3.2} since s, prefers M to M’, it follows that [, prefers M’ to M. Conversely, since
sy prefers M’ to M, the same lemma implies that [, prefers M to M’. This yields a contradiction.
Therefore, our assumption is false, and /, must be undersubscribed in both M and M’. O

Lemma 4.4.6. If a project p; is undersubscribed in M, then it must be undersubscribed in at least
one of M or M.

Proof. Suppose, for contradiction, that p; is undersubscribed in M/, but full in both M and A/'.
Then we have
[M(p;)| > MY (p;)| and [M'(p;)| > [MY(p;)].

It follows that there exist students s, € M(p;) \ M"(p;) and s, € M’'(p;) \ MY (p;). In particular,
Sa € M(p;)\ M'(p;) and s, € M'(p;) \ M(p;). Since each student is assigned in M " to the less
preferred of their projects in M and M’, it follows that s, prefers M to M’, and s, prefers M’ to
M.

Let [;, be the lecturer who offers p;. By stability of A/’, since s, prefers p; to M'(s,) and p, is full
in M, it follows that [, prefers the worst student in M'(p,) to s,. In particular, [, prefers student
sy € M'(p;) to s,. However, since s, prefers p, to M (sy), p; is full in M, and [;, prefers s, to some
student in M (p;) (namely s,), it follows that (s, p;) blocks M, a contradiction. Therefore, p,
must be undersubscribed in at least one of M or M’. H

Lemma 4.4.7. MV is a matching.
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Proof. By construction, no student is assigned to more than one project in M". It remains to
show that no project or lecturer is oversubscribed in M". Suppose, for contradiction, that some
project p; is oversubscribed in M. Then

[MY(pj)| > [M(p;)] and  [M*(p;)| > [M'(p;)].

Thus, there exist students s, € M"(p;) \ M'(p;) and s, € M"(p;) \ M(p,). Since any student
assigned to p; in both A/ and M’ would also be assigned to p; in MV, it follows that s, € M(p;) \
M'(p,) and s, € M'(p;) \ M(p;). Moreover, s, prefers M’ to M, and s, prefers M to M’, since
each student is assigned in MV to the less preferred of their two projects. Let [, be the lecturer
who offers p;. By the first part of Lemma since s, prefers M’ to M and s, € M'(p;) \
M (p;), it follows that [, prefers s, to s,. Similarly, since s, prefers M to M’ and s, € M(p;) \
M'(p;), it follows that [, prefers s, to s,. Thus, [, simultaneously prefers s, to s;, and s, to s,, a
contradiction. Therefore, no project is oversubscribed in M".

Next, suppose that there exists some lecturer [, who is oversubscribed in MV. Then there must
be some project p, € Py such that MV (p,)| > |M'(p.)|, meaning that p, is undersubscribed in
M’, since no project can be oversubscribed in MV. Similarly, there exists some project p, € P;
such that | M"Y (py)| > |M(py)|, meaning that p, is undersubscribed in M. Let s, be a student such
that (s,,p,) € MY \ M'. Thus, s, € M(p,) \ M'(p,) and s, prefers M’ to M. Let s, be a student
such that (sp, pp) € MY \ M; thus s, € M'(py) \ M(ps) and s, prefers M to M'.

By Lemma [4.3.3] since s, prefers M’ to M and p, is undersubscribed in M’, I, prefers s, to each
student in M'(l;) \ M(l;) (Note that here, M and M’ are swapped compared to the statement
of Lemma[4.3.3). If s, € M'(l)) \ M(l),), then [, prefers s, to s,. If instead s, € Sx(M, M’), then
since s, prefers M to M’, Lemma implies that there exists some s’ € M'(l;) \ M(l) such
that [, prefers s’ to s,. It follows that [, prefers s, to s’, and consequently to s;.

On the other hand, by Lemma |4.3.3| again, since s, prefers M to M’ and p, is undersubscribed
in M, it follows that [, prefers s, to each student in M (l) \ M'(lx). If s, € M(lx) \ M'(Ix),
then [, prefers s, to s,, a contradiction. If instead s, € Sp(M, M’), then by Lemma there
exists some s € M(lx) \ M'(ly) where [, prefers s to s, (Note that here s, prefers M’ to M).
This implies that [, prefers s, to s, and consequently to s,. This yields a contradiction on [;’s
preferences. Hence, no lecturer is oversubscribed in MV. Therefore, MV is a matching. O

Lemma 4.4.8. MV is a stable matching.

Proof. Suppose for contradiction that (s, p) is a blocking pair for MY, where project p is offered
by lecturer [. Then either:

(S1) sis unassigned in M"Y, or

(S2) sis assigned in M"Y, but prefers p to MY (s).
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And one of the following four conditions holds for the p and [:

(P1) both p and [ are undersubscribed in M"V;
(P2) pis undersubscribed in MV, [ is full in M"Y, and s € M"Y (l);
(P3) pis undersubscribed in MV, [ is full in MV, and [ prefers s to the worst student in M"Y (();

(P4) pisfullin MV, and [ prefers s to the worst student in M"Y (p).

We consider each combination of conditions in turn. Note that the case (S1 & P2) cannot arise,
since s is unassigned in M and therefore cannot belong to MY (1).

(S1 & P1): Suppose s is unassigned in MV, and both p and [ are undersubscribed in M". By
construction, if s is unassigned in A", then s is unassigned in both M and M’. By Lemma[4.4.5]
since [ is undersubscribed in MV, it is undersubscribed in both M and M’. By Lemma
since p is undersubscribed in M, it is undersubscribed in at least one of M or M’. Without loss
of generality, suppose p is undersubscribed in AM’. Then s is unassigned in M’, and both p and !
are undersubscribed in M’, the pair (s, p) blocks M’, a contradiction. A similar argument applies
if p is undersubscribed in M. We conclude that no blocking pair of type (S1 & P1) exists in M Y.

(S2 & P1): Suppose s is assigned in MY, prefers p to MY (s), and both p and [ are undersubscribed
in MV. Since [ is undersubscribed in A", it follows from Lemma that [ is undersubscribed
in both M and M’. In addition, Lemma |4.4.6|implies that p is undersubscribed in at least one of
M or M'. Without loss of generality, assume that p is undersubscribed in M’. Let p* = MY(s).
Since s is assigned in MV, they must be assigned in at least one of M or M’, and p* is the less
preferred of the two. There are two possibilities for M (s) and M’(s):

(i) M'(s) = p*. Then s prefers p to M’(s). Since s prefers p to p*, and both p and [ are
undersubscribed in M’, the pair (s, p) blocks M’, a contradiction.

(i) M(s) =p*. Then s € M(p*) \ M'(p*). Suppose first that p is undersubscribed in M. Then,
since s prefers p to p*, and both p and [ are undersubscribed in M, the pair (s, p) blocks M,
a contradiction. Next suppose that p is full in M. Since p is undersubscribed in both MY
and M, it follows that

|M(p)| > |M"(p)] and [M(p)| > [M'(p)].

Hence, there exists some student s’ € M(p) \ M"(p), and in particular s’ € M (p) \ M'(p).
Since s’ is assigned in MV to the less preferred of their two projects from M and M’, it
follows that s’ prefers M to M’. Since both p and [ are undersubscribed in M’, the pair
(s, p) blocks M’, contradicting the stability of M.
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In both cases (i) and (ii), a contradiction arises. Therefore, no blocking pair of type (S2 & P1)
exists in M.

(S2 & P2): Here, s is assigned in MV, prefers p to MY (s), p is undersubscribed in MV, [ is full in
MY, and s € MY(l). By Lemma p is undersubscribed in at least one of M or M’; without
loss of generality, assume p is undersubscribed in M’. Let p* = MV(s), where p* is offered by .
Since s is assigned in MV, they must be assigned in either M or M’ (or both). We consider the
possibilities for M(s) and M'(s):

(i) M'(s) = p*. Then s prefers p to M'(s). Moreover, it follows that s € M’(l), and since p is
undersubscribed in M, the pair (s, p) blocks M’, a contradiction (This blocking pair occurs
whether [ is undersubscribed or full in A").

(i) M(s) = p* and M'(s) # p*. Then s € M(p*) \ M'(p*) and prefers p to M(s). If p is
undersubscribed in M, then since s € M(l), the pair (s,p) blocks M. Therefore, p must
be full in M. Following the case (ii) argument in (S2 & P1) (where p is full in M but
undersubscribed in both MY and M’), there exists some s* € M (p) \ M'(p) who prefers p
to M'(s*). We now consider the following subcases:

(iila): s € M'(l). Recall that s prefers p to M(s) and p is full in M. By the stability of M, [ prefers
the worst student in M (p) to s; that is, [ prefers s* to s. Now since s* prefers p to M'(s), p is
undersubscribed in M’ and [ prefers s* to some student in M’(l) (namely s), the pair (s*, p)
blocks M’, a contradiction. (Again, this blocking pair occurs whether / is undersubscribed
or full in M")

(iib:) Suppose s ¢ M'(l). Then s € M(Il) \ M'(l), so there exists some § € M’(l) \ M(l), since
|M(l)] = |M'(l)|. Since s € MY(l) and s € M(l), it follows that s prefers M’ to M, i.e. s
prefers M’(s) to p*. Since p* is undersubscribed in M’ and § € M’(l) \ M(l), Lemma [4.3.3]
implies that [ prefers s to 5. Now, recall that s prefers p to M(s) and p is full in M. By
the stability of M, [ prefers the worst student in M (p) to s; that is, [ prefers s* to s. Since,
| prefers s* to s, it follows that [ prefers s* to 5. However, s* prefers p to M’(s*), p is
undersubscribed in M’, and [ prefers s* to some student in M’(l) (namely §). Thus (s*, p)
blocks M’, a contradiction.

Therefore, no blocking pair of type (S2 & P2) exists in M.

(S1 & P3): Suppose s is unassigned in M"Y, p is undersubscribed in MV, [ is full in MY, and [
prefers s to the worst student in AV ([). By construction of M"Y, any student unassigned in M"Y
must also be unassigned in both M and M’. Let s, denote the worst student in M"(l), so that
[ prefers s to s,. Since p is undersubscribed in A/¥, by Lemma p is undersubscribed in at
least one of M or M’; without loss of generality, assume that p is undersubscribed in M’ (it may
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be full or undersubscribed in A). Suppose first that s, € M’'(l). Then in M’, s is unassigned, p
is undersubscribed, and [ prefers s to s,. Therefore, the pair (s, p) blocks M’, contradicting its
stability. It follows that s, ¢ M’(l), and hence s, € M (l) \ M'(l).

Since s, € MY(l), they must be assigned in M" to the less preferred of their two projects. Hence
s, prefers M’ to M. Let M(s,) = p,. If p, is full in M’, then |M'(p.)| > |M(p.)|. Since s, €
M (p.) \ M'(p.), there exists some s* € M'(p.) \ M(p.). Since s, prefers M’ to M, Lemma [4.3.3]
implies that [ prefers s, to s*. Similarly, given that s, € M(l)\ M'(l), there also exist some student
s* € M'(1)\ M(l). Now if p, is undersubscribed in /', then by the second part of Lemma[4.3.3] /
prefers s, to s*. In both cases, [ prefers s, to s*. Since [ also prefers s to s, it follows that [ prefers
sto s*. Butin M’, s is unassigned, p is undersubscribed, and [ prefers s to some s* € M’(l). Hence
(s,p) blocks M’, a contradiction. Note that the pair (s, p) blocks M’ whether [ is undersubscribed
or full in M.

It follows that no blocking pair of type (S1 & P3) exists in M".

(S2 & P3): Suppose s is assigned in MV, prefers p to M"(s), p is undersubscribed in MV, [ is
full in MY, and [ prefers s to the worst student in M"(l). Let p* = M"(s), and suppose that
p* = M'(s), so s prefers p to p*. Let s, be the worst student in M"(l). By Lemma (4.4.6|, p is
undersubscribed in at least one of M or M’.

Suppose first that p is undersubscribed in A’ (it may be full or undersubscribed in M). If s, €
M'(l), then in M’, s is assigned to p*, prefers p to p*, p is undersubscribed in M’, and [ prefers s
to s,. Thus, the pair (s, p) blocks M’, a contradiction. It follows that s, € M (l)\ M’'(l). Since s, €
MY(1), they are assigned in both M and M’, and assigned in M" to the less preferred of the two.
Therefore, s, prefers M’ to M. Let M(s,) = p., where p, is offered by /. Regardless of whether
p. is full or undersubscribed in M’, by Lemma there exists some student s* € M’(l) such
that [ prefers s, to s*. Since [ prefers s to s, it follows that [ also prefers s to s*. However, since
s prefers p to M'(s), and p is undersubscribed in M’, the pair (s, p) blocks M’, a contradiction.

Now suppose instead that p is full in M/’ and undersubscribed in M. Then |M’(p)| > |M"(p)| and
|M'(p)| > | M (p)|, so there exists a student s* € M’(p)\M"(p), and in particular s* € M'(p)\ M (p).
Moreover, s* prefers p to M(s). By the stability of M and since p is undersubscribed in M, it
follows that s* ¢ M(l), and [ prefers each student in M(l) to s*. Thus, s* € M'(l) \ M(l). If
s, € M(l), then [ prefers s, to s*, and since [ also prefers s to s,, it follows that [ prefers s to
s*. Hence, the pair (s,p) blocks M’, a contradiction. We conclude that s, € M'(l) \ M(l). Since
s, € MY(l), it follows that s, prefers M to M’. Let M'(s,) = p., where p, is offered by I.

Suppose p, is full in M. Then there exists a student § € M(p,) \ M'(p.). (This is because
s. € M'(p.) \ M(p.) and clearly |M(p.)| > |M'(p.)]). Since s, prefers M to M’, Lemma [4.3.3]
implies that [ prefers s, to 5. Moreover, since § € M(l), and [ prefers each student in M (l) to
s*, it follows that [ prefers § to s*, and [ prefers s to s* (since [ prefers s to s, and [ prefers s, to
8). Suppose p, is undersubscribed in M. Then Lemma implies that there exists a student
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§ e M(I)\ M'(l) such that [ prefers s, to §. Since § € M(l), and [ prefers each student in M (l) to
s*, it follows that [ prefers § to s*, and consequently, prefers s to s*(since [ prefers s to s, and [
prefers s, to §). In both cases, [ prefers s to some student s* € M’(p). Since s prefers p to M'(s),
and p is full in A/’, the pair (s, p) blocks M’, a contradiction.

A similar argument applies if p* = M(s). We therefore conclude that no blocking pair of type
(S2 & P3) exists in M.

(S1 & P4): Suppose s is unassigned in MV, project p is full in MV, and lecturer [ prefers s to the
worst student in MY (p). Then, by construction of MV, student s is unassigned in both M and
M'’. Let s, denote the worst student in M"(p), so that [ prefers s to s,. Since s, € M"(p), it must
be that either (s,,p) € M or (s,,p) € M'.

Suppose first that (s,,p) € M. If pis full in M, then s is unassigned, p is full, and [ prefers s to
s, € M(p), so the pair (s, p) blocks M, contradicting its stability. If instead p is undersubscribed
in M, then s is unassigned, p is undersubscribed, and [ prefers s to s, € M (l); thus, (s, p) again
blocks M, a contradiction. Now suppose that (s.,p) € M’. The same reasoning applies: whether
p is full or undersubscribed in A’, student s is unassigned in M’, s, € M'(p) and s, € M'(l), and
[ prefers s to s,. Hence, the pair (s, p) blocks M’, again a contradiction.

We conclude that no blocking pair of type (S1 & P4) exists in M".

(S2 & P4): Suppose s is assigned in MY, prefers p to MV (s), p is full in MV, and [ prefers s to
the worst student in MV (p). Let p* = MY(s), and suppose p* = M’(s), so that s prefers p to p*.
Let s, be the worst student in M"(p). If (s,,p) € M’, then s prefers p to M'(s), p is full in M’,
and [ prefers s to s, € M'(p). Moreover, if p is undersubscribed in M’, then [ prefers s to student
s, € M'(l). Therefore, the pair (s, p) blocks M’, a contradiction. It follows that s, € M (p)\ M'(p).
Since s, € M"(p), they are assigned in both M and M’, and assigned in M"Y to the less preferred
of the two. Hence, s, prefers M’ to M.

Suppose first that p is full in M’. Then there exists some student s* € M'(p) \ M(p). Since s,
prefers M’ to M, Lemma 4.3.3|implies that [ prefers s, to s*. If instead p is undersubscribed in
M’, then by Lemma4.3.3] [ prefers s, to some student in s* € M’(l) \ M(l). Since [ also prefers s
to s,, it follows that [ prefers s to student s* € M'(l), namely s*. Therefore, regardless of whether
p is full or undersubscribed in M’, the pair (s, p) blocks M’, a contradiction. A similar argument
applies if p* = M (s). We therefore conclude that no blocking pair of type (S2 & P4) can exist in
MY,

In all possible cases, we derive a contradiction. Therefore, no blocking pair exists in MV, and M"

is stable. O

We denote by M Vv M’ the set of (student, project) pairs in which each student is assigned to the
poorer of her projects in M and M’; and it follows from Lemma that if each student is given
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the poorer of her projects in any fixed set of stable matchings, then the resulting assignment is
a stable matching. For the case where M is the set of all stable matchings in /, we denote by
Vrem M, or simply \/ M, the resulting stable matching. This matching is student-pessimal and,
by Corollary [4.3.1], lecturer-optimal. We are now ready to present our main result.

Theorem 4.4.1 ([[121]). Let I be an instance of spa-s, and let M be the set of stable matchings
in I. Let < be the dominance partial order on M and let M, M’ € M. Then (M, =) is a
distributive lattice, with M A M’ representing the meet of M and M’, and M Vv M’ the join of
M and M.

Proof. Let M and M’ be two stable matchings in M. By Lemma |4.4.4, we have that M A M’ is a
stable matching; and by the definition of M A M’, it follows that M A M’ < M and M AM' < M'.
Further, if M* is an arbitrary stable matching satisfying M* < M and M* < M’, then each
student must be assigned in M* to a project that is at least as good as her assigned projects in
each of M and M’, so that M* < M A M’'. Thus M A M’ is the meet of M and M’. Similarly,
by Lemma |4.4.8, we have that M Vv M’ is a stable matching; and by the definition of M Vv M’, it
follows that M < M v M’ and M’ < M v M'. Following a similar argument as above, M V M’ is
the join of M and M’. Hence, (M, <) is a lattice.

Next, we show that the join and meet operation distribute over each other. Let M, M' and M"”
be stable matchings in M. First,let X = M v (M'AM")and letY = (M VvV M)A (M Vv M");
we need to show that X = Y. Let s; be an arbitrary student. If s; is unassigned in each of M,
M’ and M", it is clear that s; is unassigned in both X and Y. Now, suppose that s; is assigned to
some project in each of M, M’ and M". We consider the following cases.

() Suppose that M(s;) = M'(s;) = M"(s;), clearly X (s;) = Y (s,).

(ii) Suppose that either (@) M(s;) = M'(s;) and M(s;) # M"(s;) or (b) M(s;) # M’(s;) and
M(s;) = M"(s;) holds. Irrespective of how we express s;’s preference over M(s;), M'(s;)
and M"(s;) in cases (a) and (b), we have that s; is assigned to M (s;) in both X and Y.

(iii) Suppose that M'(s;) = M"(s;) and M'(s;) # M(s;). If s; prefers M'(s;) to M(s;) then s;
is assigned to M(s;) in both X and Y. Otherwise, if s; prefers M(s;) to M'(s;) then s; is
assigned to M'(s;) in both X and Y.

(iv) Suppose that M(s;), M'(s;) and M"(s;) are distinct projects. There are six different ways
to express s;’s preference over M (s;), M'(s;) and M"(s;). If s; prefers M(s;) to M'(s;) to
M"(s;), then s; is assigned to M’(s;) in both X and Y. If s; prefers M(s;) to M"(s;) to
M'(s;), then s; is assigned to M"(s;) in both X and Y. We leave it to the reader to verify
that in the remaining four cases, s; is assigned to M (s;) in both X and Y.
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Since s; is an arbitrary student, it follows that X = Y’; and thus the first distributive property
holds. Next, we show that the second distributive property holds. Let X = M A (M’ Vv M") and
letY = (M AM')V (M ANM"). Let s; be an arbitrary student. Again, if s; is unassigned in each
of M, M’' and M”, it is clear that s; is unassigned in both X and Y. Now, suppose s; is assigned
to some project in each of M, M" and M". Following the same case analysis as before, we arrive
at the same conclusion in cases (i) and (ii). We consider cases (iii) and (iv) in detail:

(iii) If M'(s;) = M"(s;) and M'(s;) # M(s;). If s; prefers M’(s;) to M(s;) then s; is assigned
to M'(s;) in both X and Y. Otherwise, if s; prefers M (s;) to M'(s;) then s; is assigned to
M (s;) in both X and Y.

(iv) Suppose that M(s;), M'(s;) and M"(s;) are distinct projects. Again, there are six different
ways to express s;’s preference over M (s;), M'(s;) and M"(s;). If s; prefers M'(s;) to M"(s;)
to M(s;), then s; is assigned to M"(s;) in both X and Y. If s; prefers M"(s;) to M'(s;) to
M (s;), then s; is assigned to M’(s;) in both X and Y. We leave it to the reader to verify
that in the remaining four cases, s; is assigned to M(s;) in both X and Y.

Since s; is an arbitrary student, it follows that X = Y’; and thus the second distributive property
holds. Since each of M, M’ and M” is an arbitrary stable matching in M, it follows that (M, <)
is a distributive lattice. O

4.4.1 Example

Finally, consider the spa-s instance I; illustrated in Figure[4.4}, which admits a total of seven stable
matchings, as shown in Table The meet of matchings M3 and M, is M,, i.e., My = M3 A\ M.
For each student assigned to different projects in M3 and M,—namely, s, s4, S5, S, and s;,—the
assignment in )M, corresponds to the better of their projects in M3 and M,. Conversely, the join
of matchings M3 and M, is M5, i.e., M5 = M3V M,. In Mjs, each student is assigned to the poorer
of their projects in M3 and M,.
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Students’ preferences Lecturers’ preferences Offers
S1: P1 P2 P4 P3 l1: 87 .89 53 84 55 51 S2 S6 S3 P1, P25 Ps> De
S21 P1 Pa P3 P2 la: s¢ 51 S2 S5 53 S4 S7 S8 So P35> P4, P75 P8

S3: P3 P1 P2 P4
S4: D3 P2 P1 Pa

S5: P4 P3 P1

S¢: D5 P2 D7

87 D7 P3 Ds

58 D6 D8 Project capacities: ¢; = c3 = 2; Vj € {2,4,5,6,7,8}, ¢; =1
S9t Pg P2 P3 Lecturer capacities: d; =4, dy =5

Figure 4.4: An instance /3 of spA-s

Matching | s; s S3 S84 S5 S¢ S7 Sg So

M, P1 P11 Ps D3 P+ Ps Pr De Ds
M; Pr D1 P3 P3 Pa D5 Pr Ps P2
M; P1 P1 P3s D3 Pa Dt Pe Ds P2
M, Pr Pa P3 P1 D3 D5 Pr Ps P2
M3 P1 Pa P3 P1 Ps Dt Pe Ds D2
Mg Pa P3 P1 D1 D3 Ps Pr Ps D2

M- P+ P3 P1 P1 P3 Pt Ps P38 P2

Table 4.1: Instance /3 admits seven stable matchings.

The Hasse diagram illustrated in Figure is a directed graph with each vertex representing a
stable matching, and there is a directed edge from vertex M to M’ if M < M’ and there is no
such M* such that M < M* < M’. We note that all the edges representing precedence implied
by transitivity are suppressed in the diagram.
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Figure 4.5: Lattice structure for /3

4.5 Conclusions and future work

In this chapter, we examined the structure of the set of stable matchings in an instance I of spa-s.
We showed that, under a natural dominance relation, this set forms a finite distributive lattice.
This result extends known structural properties from the classical Stable Marriage problem to the
more complex spa-s model involving students, projects, and lecturers. In addition, we presented
additional properties unique to spa-s instances which, to the best of our knowledge, have not been
previously studied. By establishing the lattice result in spa-s, we reveal a connection between
spa-s and a broader class of combinatorial problems whose set of solutions form a distributive
lattice. This connection enables algorithmic techniques developed in those settings to be applied
to related optimisation problems in the spa-s model.

A natural direction for future work is to explore whether a similar distributive lattice structure
exists in the extension of spa-s that allows ties in preference lists, namely spa-sT. In this setting,
three notions of stability arise: weak stability, strong stability, and super stability. It would be in-
teresting to determine whether a similar characterisation can be developed for the set of strongly
stable and super-stable matchings in spa-sT. The results presented in this chapter provide a start-
ing point for addressing this question and for analysing the complexity of related problems in
spPa-s and its extensions. Moreover, the lattice structure described here provides a foundation
for further investigation into other polynomial-time characterisations of the set of stable match-
ings in spa-s. In the next chapter, we build on the results from this chapter by presenting the
meta-rotation poset, which provides a compact representation of the set of all stable matchings
M and the lattice for any instance. Moreover, the meta-rotation poset can be constructed in time
polynomial in the size of the input.



Chapter 5

Meta-Rotations in SPA-S

5.1 Introduction

In Chapter 4, we proved that the set of all stable matchings M in a given spa-s instance forms
a distributive lattice, where the student-optimal and lecturer-optimal stable matchings are the
two extreme elements of the lattice. In this chapter, we build on that result by introducing
meta-rotations, which generalises the notion of rotations from the Stable Marriage problem (see
Section to the spa-s setting. We show that each meta-rotation corresponds to a spe-
cific set of changes that transforms one stable matching into another within the lattice of stable
matchings. Let M denote the set of all stable matchings in a given spa-s instance /. We define the
meta-rotation poset I1(M) as the set of meta-rotations in /, together with a partial order defined
over them. This poset captures the dependencies between meta-rotations and succinctly encodes
the set M. Specifically, we prove that each stable matching in M corresponds to a unique closed
subset of IT(M)[]

5.1.1 Background and motivation

A classical result in lattice theory, Birkhoff’s Theorem [16]], states that every finite distributive
lattice is isomorphic to the collection of closed subsets of some finite partially ordered set (poset).
Under this representation, each element of the lattice corresponds to a unique closed subset of
the poset, and the meet and join operations in the lattice correspond to the intersection and
union of these subsets, respectively. In many combinatorial problems, however, we are typically
not given the lattice explicitly. Instead, we are presented with a problem input, for example, a
set of agents and their preferences, and the associated distributive lattice arises implicitly from
the structure of its set of solutions.

Gusfield and Irving [54] noted that while Birkhoff’s Theorem guarantees the existence of a partial
order that corresponds to a given lattice, it does not offer a method for constructing this partial

LA subset S of a partially ordered set is closed (or a lower set) if, whenever = € S, all elements y with y < x also
belong to S.

104
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order directly from the problem input. Moreover, since the number of stable matchings in an
instance can be exponential in the input size, constructing the entire lattice solely to recover the
underlying partial order is often infeasible. As a result, Irving and Leather [65] introduced the
notions of rotations and the rotation poset, which provide a compact representation of the set of
stable matchings in a given Stable Marriage instance. Crucially, the partial order on rotations can
be derived directly from the problem input, without the need to enumerate all stable matchings.
They established a one-to-one correspondence between stable matchings and closed subsets of
the rotation poset, thereby resolving an open problem posed by Knuth [84]. Further details on
the structure of rotations and the construction of the rotation poset are provided in the book by
Gusfield and Irving [|54]], where they also provided an alternative proof using ring of sets.

The rotation poset in the Stable Marriage model laid the foundation for efficient algorithms to
enumerate all stable marriages, identify all stable pairs, and compute other stable matchings
with desirable properties such as the egalitarian or minimum regret stable matching. Since we
have already shown in Chapter [4] that the set of stable matchings in any spa-s instance forms
a distributive lattice, it follows from Birkhoff’s Theorem that there exists a poset whose closed
subsets correspond exactly to these matchings. The goal of this chapter is to show that such a
partial order can be explicitly constructed from a given spa-s instance, by introducing a gener-
alised notion of rotations tailored to spa-s. Consequently, this structure would enable the design
of efficient algorithms for similar problems in spa-s, such as enumerating all stable matchings
and computing other stable matchings that satisfy different optimality criteria.

5.1.2 Contributions and structure of the chapter

As we will demonstrate later, several structural properties that hold in the one-to-one and many-
to-many stable matching models do not extend to spa-s, due to the presence of projects, and
the fact that a student may be assigned to different projects offered by the same lecturer in two
different stable matchings. These differences motivate the need for a more nuanced definition of
rotations that accurately reflects the properties of the spa-s model.

The main contribution of this chapter is to provide an alternative characterisation of the set of
stable matchings in spa-s through the introduction of meta-rotations, which generalise the clas-
sical notion of rotations from sm and HR. We describe how meta-rotations can be identified
and eliminated, and show how they can be used to construct the meta-rotation poset, a partial
order whose closed subsets are in one-to-one correspondence with the stable matchings of the
instance. This poset provides a compact representation of the set of stable matchings, and en-
ables the efficient enumeration and analysis of the set of stable matchings admitted by any spa-s
instance.

In Section we provide preliminary definitions and some intuition behind our approach. In
Section[5.3], we present results that describe the relationship between student and lecturer prefer-
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ences in stable matchings. In Section|5.4} we focus on identifying and eliminating meta-rotations,
and describe how they traverse the lattice of stable matchings. Finally, in Section (5.5} we present
our main result, which establishes a one-to-one correspondence between the set of stable match-
ings and the closed subsets of the meta-rotation poset.

5.2 Preliminary definitions

We begin by defining, in Definition the notion of a valid next project for each student who
is assigned in some stable matching of a given instance /. This refers to a project in which the
student may be assigned to in some other stable matching of /. Then we formally define meta-
rotations and describe how to identify an exposed meta-rotation in an arbitrary stable matching
(in Definition [5.2.2).

Definition 5.2.1 (Next project). Let M, denote the lecturer-optimal stable matching in a
given spA-s instance /. For any stable matching M # M, suppose there exists a student
s; such that M (s;) # My(s;). Let p; = M(s;) and let [, be the lecturer offering p;. Define
wyr(p;) as the worst student assigned to p, in M, and w,,(l;) as the worst student assigned
to l, in M.

We define the next project for s;, denoted s,,(s;), as the first project p on s;’s preference list
that appears after p, and satisfies one of the following conditions, where [ is the lecturer
offering p:

(i) pis full in M, and [ prefers s; to wys(p);

(ii) pis undersubscribed in M, [ is full in M, and [ prefers s; to wy(().

Let nexty;(s;) denote the next student for s;. If p satisfies condition (i), we say wy,(p) is next s (s;).
If p satisfies condition (ii), then we say that w,(1) is next,(s;). We note that such project p may
not always exist. For instance, if M is the lecturer-optimal stable matching, then p does not exist
for any student, since each student is assigned in M}, to the worst possible project that they could
have in any stable matching.

To illustrate this definition further, consider instance /; in Figure which admits seven stable
matchings, one of which is M, = {(s1, p1), (s2, 1), (83,03), (84, P3), (S5, D4), (S6,D5), (S7, D7), (S8, Ps)
, (s9,p2)}. It can be observed that the first project on sg’s preference list following p; (her as-
signed project in M) is py, which is full in M,. However, I; (the lecturer offering p,) prefers the
worst student in Ms(ps), namely sg, to sg. Proceeding to the next project, p;, which is full in My,
it is clear that [, prefers ss to the worst student in M(p;), namely s;. Therefore, s;/(s¢) = pr
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and nexty,(ss) = sy. Similarly, ps is the first project on s;’s preference list that is undersub-
scribed in M,, and [, prefers s; to the worst student in M,(l;), namely s¢. Thus, sy/(s7) = pg and

nextyr, (s7) = Se.

Students’ preferences Lecturers’ preferences Offers
81t P1 P2 P4 P3 l1: 87 59 53 54 S5 51 S2 S Sg P15 P25 Ps,> Pe
S2: P1 P4 P3 P2 la: 56 51 82 S5 S3 S4 S7 Sg So P35 P4, P75 P8

S3: P3 P1 P2 Pa
S4. P3 P2 P1 P4

S5: P4 P3 P1

S¢: D5 P2 P1

S7t D7 P3 De

S8 Pe Ps Project capacities: ¢; = c3 =2; Vj € {2,4,5,6,7,8}, ¢; =1
S9% Pg P2 P3 Lecturer capacities: d; =4, d, =5

Figure 5.1: An instance I; of spA-s

Matching | s; s S3 Sy S5 Sg S7 Sg So

M, Pr D1 D3 D3 Pa D5 D7 Pe P8
My Pr D1 D3 D3 Pa D5 D7 Ps P2
M; Pr D1 D3 D3 Pa Pr Pe Ps P2
M,y Pr Pa D3 P1 D3 D5 D7 Ps P2
M Pr DPa D3 D1 D3 Pt D6 Ps P2
Mg Pa+ D3 D1 D1 D3 Ps Pr Ps P2
My Ps pP3 P1 P1 P3 Pr DPe Pg D2

Table 5.1: Instance /; admits seven stable matchings.

Definition 5.2.2 (Exposed Meta-Rotation). Let M be a stable matching, and let p =
{(s0,p0), ($1,P1),---,(Sr—1,pr—1)} be an ordered list of student—project pairs in M, where
r > 2. For each t(0 <t < r — 1), suppose that s, is the worst student assigned to project
pein M, and s;.; = nexty(s;) (with indices taken modulo 7). Then p is called an exposed
meta-rotation in M. Moreover, if a pair (s, p) € p, we say that s € p (or equivalently, p € p).

Note that in any exposed meta-rotation p of a stable matching M, each student and project that
appears in p is part of an assigned pair in M, and each appears exactly once in p. This is because,
in M, each project has a unique worst student among those assigned to it, and the definition of p
includes precisely one such student—project pair. Furthermore, the set of all meta-rotations in /
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consists precisely of those ordered sets of pairs that are exposed in at least one stable matching
M e M.

Definition 5.2.3 (Meta-rotation Elimination). Given a stable matching M and an exposed
meta-rotation p in M, we denote by M /p the matching obtained by assigning each student
s € pto project sy (s), while keeping the assignments of all other students unchanged. This
transition from M to M/p is referred to as the elimination of p from M.

5.2.1 Justification for the meta-rotation definition

In both sm and HR, an exposed rotation p in a stable matching M is defined as a sequence of
pairs such that performing a cyclic shift yields a new stable matching M /p: in sm, each woman
is assigned to the next man in the sequence, and in HR, each hospital is assigned to the next
resident. Specifically, in HR, if some resident r, who is assigned in a stable matching M, has a
next hospital i on their preference list and is part of an exposed rotation p, then r swaps places
with the least preferred resident currently assigned to h in M, forming the new matching M/p.
Moreover, by the Rural Hospitals Theorem for HR (see Theorem [2.2.1)), if some hospital % is
undersubscribed in one stable matching, then it is assigned the same set of residents across all
stable matchings.

However, as we noted in Chapter 4}, these properties do not extend to spa-s for projects or lec-
turers that are undersubscribed. In spa-s, the number of students assigned to a project may vary
across stable matchings. Consequently, a project that is part of an exposed meta-rotation p in
a given stable matching M may not necessarily appear in the resulting stable matching A/p.
For example, in instance /5 from Figure the pairs {(s¢, ps), (s7,p7)} form an exposed meta-
rotation in M. Here, project ps is full in M, but becomes undersubscribed in Mj. Clearly, neither
ps nor its lecturer [; (who offers ps) have the same set of assigned students in M5, and M3. Nev-
ertheless, by the Unpopular Projects Theorem (see Theorem[4.2.1)), the total number of students
assigned to each lecturer remains the same across all stable matchings.

To address these differences, our definition of meta-rotations explicitly accounts for whether
each project is full or undersubscribed in the stable matching of interest. Suppose a student s;,
assigned to some project in a stable matching M, has p; as their next possible project. Whether
s; can be assigned to p; in another stable matching depends on the status of p; in M as well as
the preference of the lecturer [, who offers it. If p; is full in M, then the assignment of s; to p;
is possible only if [, prefers s; to the worst student in M (p,); in this case, s; takes the place of
that student. If p; is undersubscribed in A/, then the assignment is possible only if /;; prefers s;
to the worst student in M (I,); here, s; is assigned to p,; and the least preferred student in M ([})
is removed. These conditions ensure that each such assignment yields a new matching that is
stable.
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5.3 Structural results involving stable matchings

In this section, we present new results on stable matchings in a spa-s instance, providing insight
into how the assignment of a student to different projects in two stable matchings affects the

preferences of the involved lecturers. Throughout, let /;, denote the lecturer offering project p;.

In Lemma|5.3.1}, we show that for any two stable matchings M and M’ where M dominates M’,
if (s;,p;) € M'\ M and p; is full in M, then the worst student in M (p;) is not assigned to p; in
M'. 1f instead p, is undersubscribed in M, then the worst student in M (I;), does not appear in
M'(lx). In Lemma we show that if s; is assigned to different projects in M and M’, and is
assigned to p,; in M’, then [}, prefers s; to the worst student in M (p;) when p; is full in M, and
I, prefers s; to the worst student in M (I;) when p; is undersubscribed. Finally, in Lemma
we show that if M/ dominates M’, and some student s; is assigned to p, in M’ but to a different
project in M, then if p; is undersubscribed in M, then [, must be full in M.

Lemma 5.3.1. Let M and M’ be two stable matchings where M dominates M'. Suppose there exists
a student s; who is assigned to different projects in M and M’, with s; assigned to project p; in M'.
Then the following hold:

(D) If p; is full in M, the worst student in M (p;) is not in M'(p;).
(ii) If p; is undersubscribed in M, the worst student in M (l) is not in M’ (1)

Proof. Let s; be some student assigned to different projects in M and M’, such that s; € M'(p;) \
M(p;), and [}, offers p;. Let s, be the worst student in M(p;), and suppose for a contradiction
that s, € M(p;) N M'(p;). Consider case (i) where p; is full in M. Since s; € M'(p;) \ M(p;) and
|M(p;)| > |M'(p;)|, there exists some student s, € M (p;)\ M'(p;). Moreover, since s, is the worst
student in M (p,), l; prefers s, to s,. Since M dominates M’, s, prefers M to M’. Regardless of
whether p; is full or undersubscribed in M’, the pair (s, p;) blocks M’, leading to a contradiction.
Therefore, case (i) holds.

Now consider case (ii) where p; is undersubscribed in M. Let s, be the worst student in M (I;),
and suppose for a contradiction that s, € M(l;) N M'(ly). First, suppose that M (p,)| > |M'(p;)|.
Since p; is undersubscribed in M, it follows that p; is undersubscribed in M’. Given that s; €
M'(p;) \ M(p;), there exists some student s, € M(p,) \ M'(p;). Furthermore, s, prefers M to
M', and either s, = s, or [, prefers s, to s,. If s, = s,, then s, € M’(l;) and, since p, is
undersubscribed in M’, the pair (s,, p;) blocks M’, leading to a contradiction. If instead s, # s,
then [, prefers s, to s, since s, is the worst student in M (I;,). However, given that s, prefers M to
M', p; is undersubscribed in M’, and [, prefers s, to s., the pair (s,, p;) blocks M’, again leading
to a contradiction.

Now, suppose that |M'(p;)| > |M(p;)|. Since |M(Ii)| = |M'(lx)|, there exists some project p; € Py,
such that |M (p;)| > |M'(p:)|, meaning p; is undersubscribed in M’. Consequently, there exists a
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student s, € M(p¢) \ M'(p:) who prefers M to M'. If s, = s,, then s, € M’(l;) and, since p; is
undersubscribed in M’, the pair (s;, p;) blocks M’, leading to a contradiction. Otherwise, since
s, is the worst student in M (l), it follows that [, prefers s, to s,. Given that s, prefers M to
M’, p, is undersubscribed in M’, and [, prefers s, to s,, the pair (s;, p;) blocks M’, leading to a
contradiction. Hence, our claim holds. O

Lemma 5.3.2. Let M and M’ be two stable matchings in I such that M dominates M’'. Suppose
that a student s; is assigned to different projects in M and M’, such that s; is assigned to project p,
in M’, where [}, offers p;. Then the following conditions hold:

() If p; is full in M, then I} prefers s; to the worst student in M (p;).

(ii) If p; is undersubscribed in M, then l, prefers s; to the worst student in M (I,).

Proof. Let M and M’ be two stable matchings in /, where M dominates M’. Suppose that some
student s; is assigned to project p; in M’, where [, offers p,; (and possibly [}, offers M (s;)). Con-
sider case (i), where p; is full in M. Let s, be the worst student in A (p;), and suppose for a
contradiction that [, prefers s, to s;. By Lemma it follows that s, ¢ M’(p;), meaning
s, € M(p;) \ M'(p;). Since M dominates M’, s, prefers p; to M'(s,). If p; is full in M’, then the
pair (s,,p;) blocks M’, since I;, prefers s, to some student in M'(p;), namely s;. Similarly, if p;
is undersubscribed in M’, (s,,p;) also blocks A’, since [}, prefers s, to some student in M’ (1),
namely s;. This leads to a contradiction. Hence, [, prefers s; to s., and case (i) holds.

Consider case (ii), where p, is undersubscribed in /. Now, suppose for a contradiction that
l;, prefers the worst student in M (l;) to s;. This means that [, prefers every student in M (ly)
to s;. First, suppose that |M(p;)| > |M'(p;)|. Then, p; is also undersubscribed in M’. Since
M (p;) contains at least as many students as M’(p;), there must be some student s, € M(p;) \
M'(p;) (Readers may recall that s; € M’'(p;) \ M(p;)). Additionally, s, prefers M to M’, since
M dominates M’. Given that s, € M (l;) and s, is either the worst student in M (l) or better, it
follows that [, prefers s, to s;. However, since p, is undersubscribed in M’ and [, prefers s, to
some student in M'(l;) (namely s,), the pair (s,, p;) blocks M’, leading to a contradiction.

Now, suppose instead that |M (p;)| < |M'(p,)|. Since |M(lx)| = |M’(l;)|, there exists some other
project p; € P, such that |M'(p;)| < |M(p:)|. This means p; is undersubscribed in M’ and there
exists some student s, € M(p;) \ M'(p:), that is, s, € M(lx). Moreover, s; prefers M to M’
Since p; is undersubscribed in M’ and [, prefers s, to some student in M’(l;) (namely s;), the
pair (s, p¢) blocks M’, contradicting the stability of M’. Thus, we reach a contradiction in both
scenarios, completing the proof for case (ii). Therefore, the lemma holds. Il
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Lemma 5.3.3. Let M and M’ be two stable matchings where M dominates M’'. Suppose that a
student s; is assigned to different projects in M and M’, with s; assigned to project p; in M'. If p; is
undersubscribed in M then I, is full in M.

Proof. Let M and M’ be two stable matchings where M dominates M’. Suppose s; is some
student assigned to different projects in M and M’, such that s; is assigned to p; in M’, and [,
offers p; (possibly [, also offers M(s;)). Now, suppose for a contradiction that both p; and [ are
undersubscribed in M. Since p; is offered by an undersubscribed lecturer [, it follows from the
Unpopular Projects Theorem (see Theorem[4.2.1)) that the same number of students are assigned
to p; in M and M’. Therefore, since s; € M'(p;) \ M(p;), there exists some student s, such that
s, € M(p;)\M'(p;). Moreover, both p; and [, are undersubscribed in M’, since |M (p;)| = |M'(p;)|
and |M(lx)| = |M'(lx)|. Since M dominates M’, s, prefers p; to M’(s,). However, since p; and
l;, are both undersubscribed in )’, the pair (s, p;) blocks M’, a contradiction. Hence, our claim
holds. O

5.4 Exposing and eliminating all meta-rotations

In this section, we present key lemmas to show that by successively identifying and eliminating
exposed meta-rotations, we obtain another stable matching of a given instance. First, we recall
the following results from Chapter |4, which will be used in the proofs for this section:

Lemma 5.4.1. Let M and M’ be two stable matchings in a given instance I. Suppose a student s;
is assigned to different projects in M and M’, and that in M’, s; is assigned to a project p; offered
by lecturer ;. Suppose further that s; prefers M to M'. Then:

@) If there exists a student in M (p;)\ M'(p;), then [}, prefers s; to each student in M (p;) \ M'(p;).

(b) If p; is undersubscribed in M, then l, prefers s; to each student in M (l;;) \ M'(ly).

Lemma 5.4.2. Let M and M’ be two stable matchings in I. If a student s; is assigned in M and M’
to different projects offered by the same lecturer Iy, and s; prefers M to M’, then there exists some
student s, € M'(l) \ M (ly) such that l;, prefers s, to s;. Thus, M(ly) # M'(l).

5.4.1 Meta-rotations

Let p = {(s0,p0), (S1,P1),- -, (S-—1,p-—1)} be an exposed meta-rotation in a stable matching M of
some SPA-s instance /, and consider any pair (s, p;) € p. Let the next project for s, be s,,(s;), and
suppose that there exists some project p, that lies strictly between p, and sy,(s;) in s;’s preference
list. Then, by Lemma the pair (s;,p.) does not appear in any stable matching of /, and
hence is not a stable pair.
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In Lemma [5.4.4, we show that in any spa-s instance, every stable matching other than the
lecturer-optimal matching M, contains at least one exposed meta-rotation. In Lemma [5.4.5]
we show that if, in the construction of M/p, a student becomes assigned to a lecturer [, then
[, simultaneously loses a student from M(l;,). Finally, in Lemma we prove that if a meta-
rotation p is exposed in a stable matching M, then the matching M/p, obtained by eliminating
p from M, is also stable, and that M dominates M/p.

Lemma 5.4.3. Let p = {(so,p0), (51,P1),-- -, (Sr—1,Pr—1)} be an exposed meta-rotation in a stable
matching M for instance 1. Suppose that for some student s, (Where 0 < t < r — 1), there exists a
project p, such that s, prefers p, to p., and prefers p, to sy;(s;). Then the pair (s, p.) is not a stable
pair — that is, it is not part of any stable matching of I.

Proof. Let M be a stable matching in which the meta-rotation p is exposed, and suppose that
(si,p;j) € p. Suppose there exists a project p, on s;’s preference list such that s; prefers p; to
p., and prefers p, to sy/(s;). Let [, be the lecturer who offers p,, and possibly also offers s,;(s;).
Suppose for contradiction that there exists another stable matching M’ in which s; is assigned
to p,, thatis, s, € M'(p,) \ M(p.). Then s; prefers M to M’. Since p, # sy (s;), by definition of
sn(s;), one of the following conditions must hold in M:

(i) both p, and [, are undersubscribed,
(ii) p. is full and [, prefers the worst student in M (p,) to s;, or
(iii) p. is undersubscribed, [, is full, and [, prefers the worst student in M (l,) to s;.

Case (i): Suppose both p. and [, are undersubscribed in M. Then [, is undersubscribed in M’
since |M(L,)| = |M'(l,)|. Moreover, by the Unpopular Projects Theorem (see Theorem [4.2.1)),
since p, is offered by an undersubscribed lecturer [, then |M(p,)| = |M'(p.)|, meaning p, is
undersubscribed in M’. Since s; € M'(p,)\ M (p.), there must exist a student s, € M (p.)\ M'(p.).
If s, prefers M to M’, then (s,,p.) blocks M’, as p, and [, are undersubscribed in M’. Therefore,
s, prefers M’ to M. Now, by the first part of Lemma [5.4.1} since s, prefers M’ to M and s; €
M'(p.) \ M(p.), then [, prefers s, to s;. However, by the same lemma, since s; prefers M to M’
and s, € M(p,) \ M'(p.), then [, prefers s; to s,. This gives a direct contradiction, as [, cannot
simultaneously prefer s; to s, and s, to s;. Hence, case (i) cannot occur.

Case (ii): Suppose p, is full in M and [, prefers the worst student in M (p,) to s;. Since s; €
M'(p,) \ M(p,) and p, is full in M, there exists some student s, € M(p,) \ M'(p.). Thus, [,
prefers s, to s;. However, by Lemma [5.4.1] since s; prefers M to M’ and s, € M(p,) \ M'(p.),
it follows that [, prefers s; to s.. This gives a direct contradiction, as [, cannot simultaneously
prefer s; to s, and s, to s;. Therefore, case (ii) cannot occur.

Case (iii): Suppose p. is undersubscribed in M, [, is full in M, and [, prefers the worst student
in M(l,) to s;. This implies that [, prefers each student in M (l,) to s;. We claim that there exists
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some student s, € M(I,) \ M'(l,). If s, € S.(M, M'), meaning s, is assigned to different projects
offered by [, in both M and M’, then by Lemma there exists some s € M'(l,) \ M(l,).
Consequently, there must exist some s, € M(l,) \ M'(l.), since |M(lx)| = |M'(l)|. The same
conclusion holds if s; € M’'(l,) \ M(l.). Thus, it follows that [, prefers s, to s;. However, by
Lemma since s; prefers M to M’ and p, is undersubscribed in M, we have that [, prefers
s; to s,. This gives a direct contradiction, as [, cannot simultaneously prefer s, to s; and s; to s..
Therefore, case (iii) cannot occur.

Since all possible cases lead to a contradiction, the pair (s;, p.) cannot belong to any stable match-
ing of I, completing the proof. O

The following corollary follows immediately from Lemma [5.4.3}

Corollary 5.4.1. Let M be a stable matching in I, and let s; be a student for whom sy;(s;)
exists. Suppose that s; prefers M (s;) to some project p, offered by lecturer [, and prefers p, to
sy(s;). If both p, and [, are undersubscribed in M, then the pair (s;, p.) does not appear in
any stable matching of I.

Lemma 5.4.4. Let M be a stable matching in an instance of sPa-s, and suppose M # M, where M,
is the lecturer-optimal stable matching. Then there exists at least one meta-rotation that is exposed
in M.

Proof. Let M be a stable matching in an instance I of spa-s, and let M, be the lecturer-optimal
stable matching. Clearly, M/ dominates M. Since M # M|, there exists some student s;,, who is
assigned to different projects in M and M,,. Suppose that s,, is assigned to p,, in M and assigned
to py, in M, where [, offers p,, (possibly [, offers both p;, and p,,). Clearly, s;, prefers pj, to p,.
Furthermore, p,, is either (i) undersubscribed in M or (ii) full in M. In both cases, we will prove

that sj,(s;,) exists, which in turn proves the existence of next (s, ).

First, suppose that p;, is undersubscribed in M. By Lemma l; prefers s;, to the worst
student in M (l;). Furthermore, by Lemma [5.3.3] if p;, is undersubscribed in M, then I, must be
full in M. Given that s;, prefers p;, to p;,, pi, is undersubscribed in M, [, is full in M, and [,
prefers s;, to the worst student in M (l;), it follows that s,,(s;,) exists. Now, consider case (ii),
where p,, is full in M. Since s;, is assigned to p;, in M}, and p,, is full in M, by Lemma|5.3.2} we
have that [, prefers s;, to the worst student in M (p;,). Since these condition hold, s,,(s;,) exists,
and consequently, nexty,(s;,) exists.

Let nexty(s;,) = S, By definition, s;, is either the worst student assigned to p,, in M (if p,, is
full in M), or the worst student assigned to [, in M (if py, is undersubscribed in M). In either
case, [, prefers s;, to s;,. Furthermore, since s,, is assigned to p,, in M and to p;, in M, it follows
from Lemma that the worst student in M (p,,) is not in M, (py,) Gf py, is full in M), and the
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worst student in M (l;) is not in M, (I;) (if p;, is undersubscribed in AM). Therefore, s;, is assigned
to different projects in M and M;,. Let p;, = M(s;, ), where [, offers p;, (possibly p;, = p;,). Let
Py, = M (si,), and let [;, be the lecturer who offers p,, (possibly /, = I;,). Clearly, s;, prefers p;,
to p;,. Again, it follows that p,, is either (i) undersubscribed in M or (ii) full in M. Following a
similar argument as before, we will prove that both s),(s;,) and nexty(s;, ) exist.

First, suppose that p;, is undersubscribed in M. By Lemma l;, prefers s;, to the worst
student in M (l;,). Furthermore, by Lemma if p;, is undersubscribed in M, then [/;, must
be full in M. Given that s;, prefers p,, to p;,, p;, is undersubscribed in M, I, is full in M, and [;,
prefers s;, to the worst student in M (l;,), it follows that s,(s;,) exists. Now, consider case (ii),
where p;, is full in M. Since s;, is assigned to p;, in M}, and p,, is full in M, by Lemma|5.3.2} we
have that [;, prefers s;, to the worst student in M (p, ). Since this condition holds, s,(s;,) exists,
and consequently, nexty;(s;,) exists.

Let nexty(s;,) = si,. By definition, s, is either the worst student assigned in M (p;,) if p;, is full
in M, or the worst student in M (I, ) if p;, is undersubscribed in M. In either case, [;, prefers s;, to
si,- Furthermore, since s;, is assigned to p;, in M and to p,, in M, it follows from Lemma [5.3.]]
that the worst student in M(p;,) is not in My, (ps,) Gf py, is full in M), and the worst student in
M(l;,) is not in M (l;,) (if ps, is undersubscribed in M). Therefore, s;, is assigned to different
projectsin M and M. Letp;, = M(s,,), where l;, offers p,, (possibly p;, = p:,). Let p, = My (si,),
and let /,, be the lecturer who offers p,,. Clearly, s,, prefers p;, to p,,. Again, it follows that p,, is
either (i) undersubscribed in M or (ii) full in M. Following a similar argument as in the previous
paragraphs, both s,,(s;,) and next,,(s;,) exist.

By continuing this process, we observe that each identified student-project pair (s;,p;) in M
leads to another pair in M, which in turn leads to another pair, and so forth, thereby forming
a sequence of pairs (s;,, pj,); (Siys Pjr)s - - - within M such that s;, is nexta(s;,), si, is nexty(sq,),
and so on. Moreover, each student that we identify is assigned to different projects in M and
M, and prefers their assigned project in M to M. Given that the number of students in M is
finite, this sequence cannot extend indefinitely and must eventually terminate with a pair in M
that we have previously identified.

Suppose that (s;. ,,p;, ,) is the final student-project pair identified in this sequence, let s;, be
nexty(s;, ,), and let M(s; ) be p; . It follows that s; must have appeared earlier in the sequence.
Otherwise, we would need to extend the sequence by including the pair, (s;,,p;,), contradicting
the assumption that (s;._,,p;,_,) is the last pair identified in the sequence. Therefore, at some
point, a student-project pair must reappear in the sequence, and when this occurs, the process
terminates. As an example, suppose that the sequence starts with (s;,, pj,), and that the last pair
(si,,p;.) satisfies s; = s;,. Then, the subsequence {(s;,,p;,), (5i,,Pj»)s-- -, (Si,_1,Pj_,)} forms an
exposed meta-rotation in M, as illustrated in Figure

[
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(Siijo) - (Silvpji) - (Si27pj2) (Sir717pjr71>

\_/

Figure 5.2: Exposed meta-rotation in M.

5.4.2 Identifying an exposed meta-rotation

The proof of Lemma describes a method for identifying an exposed meta-rotation in any
given stable matching M for some spa-s instance /. Given a stable matching ), define a directed
graph H (M) with a vertex for each student s; who is assigned different projects in A and M.
For each such student s;, add a directed edge from s; to nexty(s;), which, from the previous
proof, must also be a vertex in H(M). Clearly, every vertex in H (M) has exactly one outgoing
edge because each student s; in H(M) has exactly one nexty(s;). Since the number of vertices
(students) is finite, H (M) must contain at least one directed simple cycle. This cycle corresponds
to the set of students involved in an exposed meta-rotation in M ; for any student s; in the cycle,
(s;, M(s;)) is a pair in the exposed meta-rotation.

To identify an exposed meta-rotation in M, start from any student s; and traverse the directed
path in H (M) until some student is visited twice. Let s, be the first student that appears twice
in the traversal. Then, the students involved in the exposed meta-rotation are those encountered
from the first occurrence of s, up to and including the student immediately before its second

occurrence in the sequence.

Corollary 5.4.2. Let M be a stable matching that differs from the lecturer-optimal stable
matching M. Consider the directed graph H (M), whose vertex set consists precisely of those
students s; assigned to different projects in M and M. The edge set of H(M) consists of all
directed edges (s;, nexty(s;)), one for each vertex s; in the graph. It follows that

* Each vertex s; € H(M) has exactly one outgoing edge.

* Beginning from any vertex s; € H(M), there exists a unique directed path in H (M)
that terminates at a vertex corresponding to the last student appearing in an exposed

meta-rotation p in M.

* Every student in H(M) either belongs to exactly one exposed meta-rotation in M or lies
on the path leading to exactly one meta-rotation.

Example: Consider instance I, in Figure[5.3] where the student-optimal stable matching is M =
{(s1,p1), (S2,p3), (S3,D2), (84, p4) }, and the lecturer-optimal stable matching is M, = {(s1, p2), (s2, p4),
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(ss,p1), (s4,p3)}. Each student is assigned to different projects in M and M, and for each stu-
dent, we have: nexty(s1) = s3, nexty(s2) = s4, nexty(ss3) = sy, nexty(sy) = s1. The directed
graph H(M) corresponding to M is shown in Figure Starting at s,, the sequence of visited
students is: sy — s4 — s; — S3 — s1. Since s; appears twice, the first cycle in this sequence is
determined by the students from the first occurrence of s; up to (but not including) its second
occurrence. Thus, the students forming the meta-rotation are s; and s3, and the corresponding
meta-rotation exposed in M is p = {(s1,p1), (s3,2)}-

Students’ preferences Lecturers’ preferences offers
511 p1 P2 lir s1 83 D2
520 P3 D4 lar s s4 D4
s31 P2 P1 l3: s3 84 1 D1
S41 P4 D1 D3 ly: 54 8251 D3

Project capacities: Vc; = 1
Lecturer capacities: Vd, =1

Figure 5.3: An instance [, of spa-s

()
()

Figure 5.4: Graph H (M) for M

We observe that a student s; may be assigned different projects in M and M, without being part
of an exposed meta-rotation p in M. In such a case, if there exists a directed path from s; to some
student involved in p, we say that s; leads to p. For instance, s, € M (ly) \ M(l4) and s4 ¢ p, so
s4 leads to p.

Lemma 5.4.5. Let M be a stable matching in I different from the lecturer-optimal matching M,
and let p be an exposed meta-rotation in M. If some student s; € p such that sy, (s;) is offered by
lecturer Iy, then there exists some other student s, € M (l) such that Iy prefers s; to s,, s, € p, and
sy (s,) is offered by a lecturer different from .

Proof. Let M be a stable matching with an exposed meta-rotation p. Suppose there exists some
student s;, € p, such that sy (s;,) is offered by lecturer /. Without loss of generality, suppose
that (s,,, p;,) is the first pair in p. Now suppose for a contradiction that there exists no student
s, € M(ly), such that s, € p and sy,(s,) is offered by a lecturer different from ;. The reader
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may recall that for every student s; € p, there is a corresponding s (s;) and a next(s;), with
nexty(s;) being a student in p.

Since s;, € p, there exists a student s;, € p where s;, = nexty(s;,) and, by definition of
nexty(si,), Ui prefers s;, to s;,. Hence, sy(s;,) exists and by our assumption, s,(s;, ) is offered by
l. Similarly, since s;, € p, there exists a student s;, € p with s;, = nexty,(s;,) and [;, prefers s;, to
si,- Again, by our assumption, sy,(s;,) is also offered by /. Continuing in this manner, we obtain
a sequence of student-project pairs (si,, Pj, ), (Sirs i1 )s (Sins Pin)s - - (Siy_15Djr 1) (i pj.) in p such
that for each t with 0 <t < r:

* i, = nexty(s;,),
* [, prefers s;, to s;,,,, and
* sm(si,,,) is offered by lj.

Since p is finite, this sequence cannot continue indefinitely and we would identify some student-
project pair that appeared earlier in the sequence. Without loss of generality, let (s;,, p; ) be the
first pair to reappear in the sequence. By construction, s;, is nexty(s;. _,), lr prefers s, | tos;,
and sy, (s;,) is offered by l;. Clearly, s; # s;._,. Therefore, s; must have appeared earlier in the
sequence before s; _,. However, since s; appears earlier in the sequence, then s; must be some
student that [, prefers to s; _,, thatis, [, prefers s; tos; _,. This yields a contradiction since we
assume that [, prefers s; , to s; . Therefore, our claim holds, and there must exist at least one
student s, € M (ly), such that s, € p and sy,(s.) is offered by a lecturer different from . O

Lemma 5.4.6. If p is a meta-rotation exposed in a stable matching M, then the matching obtained
by eliminating p from M, denoted as M /p, is a stable matching. Furthermore, M dominates M /p.

Proof. Let M be a stable matching in which p is exposed, and let M’ be the matching obtained
by eliminating p from M, that is, M’ = M/p. First, note that any student assigned to different
projects in M and M’ must be in p, since by definition, each student not in p remains assigned to
the same project in M and M’. Also, by eliminating p from M, each student s; € p is no longer
assigned to M (s;) but is assigned to sj,(s;) in M’. Consequently, each student in M’ is assigned
exactly one project, and no student is multiply assigned.

Next, consider any project p; where M'(p;) # M(p;). If p; is full in M, then the elimination
of p from M results in p; losing exactly one student—the worst student in M (p;)—and gaining
exactly one student in M'(p,). Hence, p, remains full in M’ and |M(p,)| = |M'(p;)|. If p; is
undersubscribed in M, then the lecturer I, who offers p; loses the worst student in M (l), while
p; gains exactly one student in M’. Consequently, p; remains either undersubscribed in A’ or
becomes full in M’, that is, |M (p,)| < |M'(p;)|. Therefore, no project is oversubscribed in M/’

Now we show that no lecturer is oversubscribed in M’. Since p is exposed in M, there exists some
student s; € p. Let [ be the lecturer who offers s,,(s;). By Lemma|5.4.5, there exists some other
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student s, € M (l) such that s, € p, [ prefers s; to s,, and sy,(s,) is offered by a lecturer different
from /. Now, in the construction of M’, s; is assigned to [ (due to the elimination of p). At the same
time, since s, € p, s, is no longer assigned to [ in M’. Thus, each time a new student is assigned
to some lecturer [, in M’ as a result of eliminating p, then [, simultaneously loses a student in
M'(l). Therefore, |M(l;)| = |M'(lx)|. Hence, no lecturer is oversubscribed in M’. Since every
student is assigned to exactly one project, and no project or lecturer is oversubscribed, it follows
that M’ is a valid matching.

Now, suppose that M’ is not stable. Then there exists a blocking pair (s;,p;) in M’. By the
construction of M’, if s; is assigned in M’, then s; must also be assigned in M. Let M(s;) be p,
and let M’(s;) be py. Then, there are three possible conditions on student s;:

(S1): s; is unassigned in both M and M’;

(S2): s, is assigned in both M and M’, and s; prefers p; to both p, and p;;

(S3): s; is assigned in both M and M’, s; prefers p, to p;, and prefers p; to p,.

Also, there are four possible conditions on the project p; and the lecturer [, that offers p;:
(P1): both p; and [ are undersubscribed in M’;

(P2): p; is full in M’ and I, prefers s; to the worst student in M’(p,);

(P3): p; is undersubscribed in M’, [} is full in M’, and s; € M'(l});

(P4): p; is undersubscribed in M, I, is full in M’, and [, prefers s, to the worst student in M’ (l).

Cases (S1 & P1) or (S2 & P1): We claim that, based on condition (P1), both p; and [; are
undersubscribed in M. By the construction of M’, every lecturer is assigned at least as many
students in M’ as in M, that is, | M (I)| = |M'(lx)|; thus, if [}, is undersubscribed in M’, then [ is
undersubscribed in M as well. Similarly, if p; is undersubscribed in M’, then p, is undersubscribed
in M, since by construction, |M (p;)| < |M'(p;)|. If s; is unassigned in M or prefers p; to M(s;),
the pair (s;, p;) blocks M, contradicting the stability of A/. Hence these cases do not hold.

Case (S3 & P1): Following a similar argument as in Cases (S1 & P1) and (S2 & P1), it follows
that both p; and [, are undersubscribed in M. Since s; € p, s; prefers p, to p;, and prefers p; to
P, then by Corollary|[5.4.1] (s;,p,) is not a stable pair. Hence, this case is impossible.

Cases (S1 & P2) or (S2 & P2): We claim that, based on condition (P2), either [, prefers s; to
the worst student in M (p;) if p; is full in M, or [}, prefers s; to the worst student in M ({}) if p; is
undersubscribed in M. To show this, either (a), (b), or (c) holds by the construction of M’:

(@ M(p;) = M'(p,), that is, p; has the same set of students in both A/ and A/’. Consequently,
p; is full in M and [, prefers s; to the worst student in M (p,);
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(b) M(pj) # M'(p;), p; is full in M, and there exists some student s € M’'(p;) who [, prefers
to the worst student in M (p,). This implies that [, prefers s, to the worst student in M (p;),
since [;, prefers s; to the worst student in M’ (p;).

() M(p;) # M'(p;), p; is undersubscribed in M and there exists some student in s € M'(l})
who [, prefers to the worst student in M (l;). This implies that [ prefers s; to the worst
student in M (l}), since [;, prefers s; to the worst student in M’(p;).

Hence, our claim holds. We now consider the possible status of s; in M, that is, s; is either
unassigned in both A and M’ or prefers p; to both p, and p,. Given that [, prefers s; to the worst
student in M (p,) when p; is full in M, and similarly prefers s; to the worst student in M (I;,) when
p; is undersubscribed in M, it follows that the pair (s;, p;) blocks M, a contradiction.

Case (S3 & P2): In this case, s; prefers p, to p,; and prefers p; to p,. By applying a similar argument
as in Cases (S1 & P2) and (S2 & P2), we conclude that either [, prefers s; to the worst student
in M(p;) if p; is full in M, or [;, prefers s; to the worst student in M (l;) if p; is undersubscribed
in M. First, if p; is full in M, and [, prefers s; to the worst student in M (p,), it follows directly
from the definition of s, (s;) that p,; should be a valid next)(s;). Consequently, we should have
M'(s;) = p;, yielding a contradiction. Similarly, if p; is undersubscribed in M and [, prefers s; to
the worst student in M (l;,), then by the definition of sy,(s;), p; must be a valid next(s;), which
implies M'(s;) = p;, another contradiction. Therefore, this blocking pair cannot occur in A/’.

Cases (S1 & P3) or (S2 & P3): We claim that, based on condition (P3), p, is undersubscribed in
M, I, is full in M, and either s; € M(l;) or [, prefers s; to the worst student in M (I;). To show
this, either (a) or (b) holds by construction of M’:

@) M(ly) = M'(l.), that is, [, has the same set of students in both M and A/’. This implies that
p; is undersubscribed in M, [, is full in M, and s; € M (l},).

(b) M(lx) # M'(lx), and there exists some student s € M’(l;) such that [, prefers s to the
worst student in M (l). First, since p; is undersubscribed in M’, it follows that p; is also
undersubscribed in M since |M(p;)| < |M'(p;)|. Also, by the construction of M’, |M(l;)| =
|M’(l))|. Therefore, I is full in M. Now, since [, prefers s; to the worst student in M’ (1)
and prefers some student in s € M’(l;) to the worst student in M (l), it follows that I
prefers s; to the worst student in M (I;,).

Therefore, our claim holds: either s € M(l;) or [, prefers s; to the worst student in M (l;). We
now consider the possible status of s; in M, that is, s; is either unassigned in both A and M’, or
prefers p, to both p, and p,. In this case, since p; is undersubscribed in M and either s; € M (l})
or [, prefers s; to the worst student in M ([;), it follows that (s;, p;) blocks M, a contradiction.

Case (S3 & P3): In this case, s; is assigned in both M and A, s; prefers p, to p; and prefers p,
to py. Clearly, s; is assigned to different projects in M and M’. By applying a similar argument
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as in Cases (S1 & P3) and (S2 & P3), based on condition (P3), it follows that either (a) or (b)
holds by construction of M':

(@ M(ly) = M'(l,). Consequently, p; is undersubscribed in M, I} is full in M, and s; € M(l}).
By condition P3, s; € M’(l;), which means that [, offers p,. However, by construction of
M, if s; becomes assigned to a different project offered by [, then [, simultaneously loses
a student in M (ly). Thus, M(l;) # M'(l), a contradiction. Hence, case (a) cannot occur.

(b) M(ly) # M'(lx), and there exists some student s € M’'(l;) such that [, prefers s to the
worst student in M (l;). First, since p; is undersubscribed in A/’, it follows that p; is also
undersubscribed in M since |M (p;)| < |M’(p;)|. Also, by the construction of M’, |M ()| =
|M'(ly.)|. Therefore, [ is full in M. Now, since [, prefers s; to the worst student in M’(ly)
and prefers some student in s € M'(l;) to the worst student in M (Ix), it follows that I,
prefers s; to the worst student in M (I).

Since p; is undersubscribed in M and [, prefers s; to the worst student in M (), it follows from
the definition of s),(s;) that p; must be a valid nexty(s;), that is, M’(s;) should be p;. This leads

to a contradiction.

Cases (S1 & P4) or (S2 & P4): Based on condition (P4), it follows that p; is undersubscribed
in M, [ is full in M, and [, prefers s; to the worst student assigned in M (l;). Specifically, if
M(l;) = M'(l,), then we have that p, is undersubscribed in M, [ is full in M, and [, prefers s,
to the worst student in M (l;). Alternatively, if M (I) # M’(lx), then there exists some student
s € M'(ly,) such that [, prefers s to the worst student in A (l;), which implies that /; also prefers
s; to the worst student in M (l;). Hence our claim holds.

We now consider the possible status of s; in M, that is, s; is either unassigned in both M and M’,
or prefers p, to both p, and p,. In this case, since p; is undersubscribed in M and [, prefers s; to
the worst student in M (ly), it follows that (s;, p;) blocks M, a contradiction.

Case (S3 & P4): In this case, s; prefers p, to p;, and prefers p; to p,. By applying a similar
argument as in Cases (S1 & P4) and (S2 & P4), we conclude that p; is undersubscribed in M, [,
is full in M, and [, prefers s; to the worst student in M (/). Now since p; is undersubscribed in
M and [, prefers s; to the worst student in M (1), it follows from the definition of s,,(s;) that p,
must be a valid next)(s;), that is, M’(s;) should be p;. This leads to a contradiction.

We have now considered all possible conditions for the pair (s;,p;) in M’, each resulting in a
contradiction. Hence, M’ is stable. Since every student in p receives a less preferred project in
M’ compared to M, and all other students retain the same projects that they had in M, it follows
that M dominates M’, that is, M dominates M /p. This completes the proof.

0



5.4. Exposing and eliminating all meta-rotations 121

5.4.3 Meta-rotations and stable matchings

In this section, we further highlight the relationship between meta-rotations and stable matchings
of any given instance. We show that every stable matching in a given spa-s instance can be
obtained by eliminating a specific set of meta-rotations starting from the student-optimal stable
matching. This connection leads naturally to the definition of the meta-rotation poset in the next
section. In Lemma (5.4.7}, we show that if p is exposed in some stable matching )/, and a student
s € p prefers M to M’, then every student in p prefers M to M’. This result is established using
Lemmas [5.4.8|/to |5.4.10, Moreover, if M dominates )M’, then either M’ is the stable matching
obtained by eliminating p from M, thatis, M = M/p, or M /p dominates M’.

A key consequence of Lemmas|5.4.6/and |5.4.7|is that it provides a systematic way to construct all

stable matchings in a given instance, starting from the student-optimal matching. By successively
eliminating an exposed meta-rotation, each step produces a new stable matching in which the
students involved in the eliminated meta-rotation are assigned to projects they prefer less to their
project in the previous matching. In this way, every stable matching can be reached through a
sequence of such eliminations.

Lemma 5.4.7. Let M and M’ be two stable matchings in a given spa-s instance, and let p be a
meta-rotation exposed in M. Suppose there exists a student s; € p who prefers M to M'. Then every
student s € p prefers M to M'. Moreover, if M dominates M’, then either M’ is the stable matching
obtained by eliminating p from M, that is, M’ = M/p, or M /p dominates M’.

Let M and M’ be two stable matchings in /, and let p be a meta-rotation exposed in M. Suppose
there exists a student s; € p who prefers M to M’'. Clearly, M (s;) # M'(s;), and sy(s;) exists.
Moreover, s; prefers M(s;) to sy(s;). By Lemma(5.4.3] there are no projects between M (s;) and
sn(s;) that form a stable pair with s;. Therefore, either s;,(s;) = M'(s;), or s; prefers sy(s;) to
M'(s;). Let p; = sp(s;) where [, offers p;. By Definition [5.2.2] there exists a student nexty(s;)
in p, which we denote by s.. Since s, € p, sy/(s,) exists, and s, prefers M(s,) to sy(s.). By the
definition of nexty(s;) (see Definition [5.2.1]), there are two possible conditions on p;:

() p;isfullin M, and s, is the worst student in M (p;), or
(ii) p; is undersubscribed in M, I, is full in M, and s, is the worst student in M (Ix).

In both cases (i) and (ii), /, prefers s; to s..

To prove Lemmal5.4.7] it is enough to show that s, also prefers M to M’. Once this is established,
the same argument can be extended to all other students in p. We prove Lemma(5.4.7|using Lem-
mas [5.4.8|to[5.4.10] Lemma [5.4.8| covers the case where s)(s;) = M’(s;), while Lemmas
and address the case where s; prefers s,(s;) to M’(s;). In both Lemmas|5.4.9|and |5.4.10,
we first show that s, is assigned to different projects in M and M/, i.e., M(s,) # M'(s.), and

then prove, by contradiction, that s, prefers M to M’.
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Lemma 5.4.8. Let p be an exposed meta-rotation in M, and suppose there exists a student s; € p
who prefers M to M’ and sy (s;) = M'(s;). If s; prefers M to M’, then s, prefers M to M'.

Proof. Let s; € p be some student who prefers M to M’, and suppose that sy, (s;) = M'(s;).
This implies that M’ is the stable matching obtained by eliminating p from M. Moreover, by
Lemma M dominates M’. Recall that p; = sp(s;); thus, s; € M'(p;) \ M(p;). Since s;
is assigned to p; in M’, it follows from Lemma that, regardless of whether p; is full or
undersubscribed in M, the worst student in M (p;) or M (l;), denoted s,, must be assigned to a
different project in M and A/’. In particular, s, € M (p;) \ M'(p,;). Moreover, since M/ dominates
M, it follows that s, prefers M to M’. This completes the proof. O

Lemma 5.4.9. Let p be an exposed meta-rotation in M, where (s;,p;) € p and s; prefers p; to
M'(s;). If pj is full in M and s, is the worst student in M (p;), then s, prefers M to M'.

Proof. Let M be a stable matching in which p is exposed, and suppose that some student s; € p
prefers M to M'. Let s, € p be the worst student in M(p;). We note that [, prefers s; to s,.
First suppose for a contradiction that M(s,) = M’(s,). Then, regardless of whether p; is full or
undersubscribed in M’, the pair (s;, p;) blocks M’, since s, prefers p, to M’(s;), and [, prefers s; to
some student in M’(p;) (namely s,). This contradicts the stability of M’. Hence, M(s,) # M'(s.).
Now, suppose for a contradiction that s, prefers M’ to M, that is, s, prefers M'(s,) to p;. We
consider cases (A) and (B), depending on whether p; is full or undersubscribed in 1/’

(A): p; is full in M’. Since p; is also full in M, there exists some student s, € M’'(p;) \ M(p,).
By Lemma [5.4.1] since s, prefers M’(s.) to p;, I, prefers s, to each student in M'(p;) \ M (p;), so
l;, prefers s, to s,. Additionally, since s; prefers p; to M’(s;) and p, is full in M, [, prefers each
student in M’(p;) to s;, implying [, prefers s, to s;. Since [, prefers s, to s,, and prefers s, to s;,
it follows that [, prefers s, to s;. However, by definition of s,(s;), [ prefers s; to s,, which yields
a contradiction. Therefore, our claim holds and s, prefers M to M’.

(B): p, is undersubscribed in M’. By Lemma since s, prefers M'(s,) to p;, l; prefers s,
to each student in M’(l;) \ M(I). Moreover, if s, € S,(M, M’), then by Lemma there
exists at least one student in M (l;) \ M'(l;) who [, prefers to s, or we have s, € M(l)) \ M'(Ix)
itself. Consequently, it follows that there also exists a student in M’(l;) \ M (l;). Let s, denote the
worst student in M’(l),) \ M(l). Then [, prefers s, to s,. Since s; prefers p; to M’(s;), and p; is
undersubscribed in M’, [, prefers each student in M’(l;) (including s;) to s;. Since [, prefers s,
to sp, and prefers s, to s;, it follows that [, prefers s, to s;; This again contradicts the assumption
that [, prefers s; to s, (by definition of next,,(s;)). Hence, s, prefers M to M’, and our claim
holds. Il

Lemma 5.4.10. Let p be an exposed meta-rotation in M, where (s;,p;) € p and s; prefers p; to
M'(s;). If pj is undersubscribed in M and s, is the worst student in M (1), then s, prefers M to M'.
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Proof. Let M be a stable matching in which p is exposed, and suppose that some student s; € p
prefers M to M’. Let s, € p be the worst student in M ({;). Note that, by definition of sy,(s;), Ik
prefers s; to s,. We first show, in case (A), that s, is assigned to different lecturers in M and M’.
We then show, in case (B), that s, prefers M to M'.

(A): Suppose for a contradiction that s, € M(l;) N M’(l;). We consider subcases (A1) and (A2)
depending on whether p; is full or undersubscribed in M’

(A1): p, isfull in M. Since p, is undersubscribed in M, there exists a student s, € M'(p,;)\ M (p;).
Since s; prefers p; to M’(s;) and p; is full in M’, it follows that [, prefers each student in M’(p,)
to s;. Therefore, [, prefers s, to s;. If s, prefers p; to M(s,), then since p; is undersubscribed
in M, ; prefers each student in M(l;) to s,. In particular, [, prefers s, to s,, since s, € M(l;).
Furthermore, since [, prefers s, to s,, and prefers s, to s;, it follows that [, prefers s, to s;;
this contradicts the fact that [, prefers s; to s,. Therefore, s, prefers M (s,) to p;. Moreover, by
Lemma since p; is undersubscribed in M, [, prefers s, to each student in M (I);) \ M'(lx).

Now, since |M'(p;)| > |M(p;)| and |M(li)| = |M'(l))|, there exists some project p, € P; such
that |M(py)| > |M'(py)|- This implies there exists a student s, € M(py) \ M'(py), and p, is
undersubscribed in M’. Moreover, [, prefers s, to s., since s, € M (l;) and s, is the worst student
in M(ly). If s, prefers p, to M’(s,), then since p, is undersubscribed in M, I, prefers each student
in M’(l) to s,. In particular, [, prefers s, (who is also in M’(l;)) to s, contradicting the earlier
fact that [, prefers s, to s.. Therefore, s, prefers M’(s;) to p,. By Lemma (applied with M
and M’ swapped), since pj, is undersubscribed in M’, [} prefers s, to each student in M’ (1;)\ M (I;).

We now show that the combination of conditions where s, prefers M to M’ and I, prefers s, to
each student in M (l;) \ M'(l;), together with the conditions where s, prefers M’ to M and [
prefers s, to each student in M’(l) \ M (l1.), leads to a contradiction.

Suppose s, € M'(ly) \ M(lx). Then [, prefers s, to s,, since [, prefers s, to each student in
M'(l;) \ M(l),). Next, suppose s, € Si(M, M’). By Lemma|5.4.2] since s, prefers M to M’, then
there exists some student s, € M’(l;) \ M(lx) such that [, prefers s, to s,. Given that [, prefers
sp to each student in M'(ly) \ M(ly), it follows that [, prefers s, to s,., and thus [, prefers s, to s,.

A similar argument applies to s;,. Suppose s, € M(lx) \ M'(l;). Then I, prefers s, to s, since [y
prefers s, to each student in M(l;) \ M’(lx). On the other hand, suppose s, € Si(M, M’). By
Lemma (applied with M and M’ swapped), there exists a student s, € M(I},) \ M’(l;,) such
that [, prefers s, to s,. Moreover, since [, prefers s, to each student in M (lx) \ M'(lx), it follows
that [, prefers s, to s,, and thus [, prefers s, to s,. This yields a contradiction since [, cannot
simultaneously prefer s, to s, and s, to s,. Therefore, the conditions under which s, prefers
M to M’, while s, prefers M’ to M, result in a contradiction on the preferences of /. Hence,
s, € M(lg) \ M'(ly), and this completes the proof for (Al).
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(A2): p; is undersubscribed in M’. Since s; prefers p; to M’(s;), it follows that [, prefers each
student in M'(l) to s;. If s, € M'(ly), then [, prefers s, to s;, which directly contradicts the
assumption that [, prefers s; to s,. Hence, s, € M (ly) \ M'(lx).

We now show in case (B) that s, prefers M to M’, given that M (s,) # M'(s.).

(B): Suppose for a contradiction that s, prefers M’ to M. Again, we consider subcases (B1) and
(B2) depending on whether p; is full or undersubscribed in A/’

(B1): p;isfullin A/’. Similar to case (A1), we show that we can identify a student in M’ (I;)\ M (Ix)
who prefers M to M’, and a student in M(l;) \ M'(lx) who prefers M’ to M, which yields a

contradiction based on [/,’s preferences.

Since |M’(p;)| > |M(p,)|, there exists a student s, € M'(p;) \ M(p,). Given that s; prefers p,
to M’(s;) and p; is full in M’, it follows that [, prefers s, to s;. We also know that [, prefers
s; to s,, with s, € M(l;). Therefore, [, prefers s, to s,. Now, if s, prefers M’ to M, then p; is
undersubscribed in M, and [, would the worst student in M (l;) (namely s,) to s,, which yields
a contradiction to the fact that [, prefers s, to s.. Thus, s, prefers M to M’. In particular, this
implies that s, prefers M (s,) to p;, p; is undersubscribed in M, and by Lemma Iy, prefers
s, to each student in M (l;) \ M'(l).

Recall that s, € M(l;) \ M'(lx) and prefers M’ to M. Let M(s,) be p,, where p, € P;. Let s, be
the worst student in M’(l;.). Since s, prefers M'(s,) to p,, whether p, is full or undersubscribed
in M’, it follows that [ prefers s, to the worst student in M’(l;,). Therefore [, prefers s, to s,..

Now since |M'(p;)| > |M(p;)| and |M(l;)| = |M'(ly)|, there exists a project p, € P such that
|M(py)| > |M'(py)|. This implies that there exists a student s, € M(p,) \ M'(py), and py is
undersubscribed in M’. Moreover, [, prefers s, to s,, since s, € M (l;) and s, is the worst student
in M(ly). If s, prefers p, to M’(s,), then, because p, is undersubscribed in ', it follows that
l;, prefers each student in M’(l;) to s,. In particular, [, prefers s,/, the worst student in M’(l}.),
to s,. Additionally, since [, prefers s, to s., it follows that [, prefers s, to s,. However, this
contradicts the fact that s, is the worst student in M (ly), since it implies that [, prefers s, to
another student s, who is also assigned to M (l;). Therefore, we conclude that s, prefers M'(s;)
to p,. By Lemma (applied with M and M’ swapped), since p, is undersubscribed in M’, it
follows that [, prefers s, to each student in M’(l;) \ M (Iy).

We now show that combining the conditions where s, prefers M to M’ and I, prefers s, to every
student in M (l) \ M'(lx), together with the conditions where s, prefers M’ to M and [ prefers
sp to every student in M’(l;) \ M (lx), leads to a contradiction.

First suppose s, € M'(ly) \ M(lx). Then [, prefers s, to s,, since [, prefers s, to each student
in M'(l) \ M(lx). Next, suppose s, € Sg(M, M') where s, prefers M to M'. By Lemma |5.4.2]
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there exists a student s, € M’(l;) \ M (l) such that [, prefers s, to s,. Since [, prefers s, to each
student in M’(l;) \ M(l), it follows that [, prefers s, to s,, and thus [, prefers s, to s,.

A similar argument applies to s,. Suppose s, € M(l;) \ M'(l;). Then [, prefers s, to s, since I
prefers s, to each student in M (l;)\ M’(l;). On the other hand, suppose s, € S(M, M) where s,
prefers M’ to M. By Lemma/5.4.2] there exists a student s, € M (l;) \ M'(l;) such that [, prefers
s, to s,. Moreover, since [, prefers s, to each student in M (l;) \ M’(l), it follows that [ prefers s,
to s,, and thus [ prefers s, to s,. In both cases, we reach a contradiction, since /;, cannot simul-
taneously prefer s, to s, and s, to s,. Therefore, s, prefers M to M’, and this completes the proof.

(B2): p, is undersubscribed in M’. Since s, € M(l;) \ M'(lx), there exists some student s, €
M'(li,) \ M(ly). Since s; prefers p; to M'(s;) and p; is undersubscribed in M’, it follows that [,
prefers each student in M’(l;) to s;. In particular, [, prefers s,/ to s;. Recall that s, prefers M’ to
M; let p, = M(s,). Whether p, is full or undersubscribed in M’, it follows from Lemma m
that [, prefers s, to each student in M’(l;) \ M(l;). In particular, [, prefers s, to s... Combining
these observations, we have that [ prefers s, to s.,, and s, to s;, which implies that [, prefers s,
to s;. This contradicts the assumption that [, prefers s; to s.. Hence, we conclude that s, prefers
M to M'. Therefore, s, prefers M to M’, and this completes the proof for case (B2).

Thus, in both cases (B1) and (B2), s, prefers M to M’. This completes the proof. Il

The arguments in Lemmas |5.4.9| and |5.4.10| can be extended to every student in p, since by

Definitions|5.2.1|and|5.2.2] each student in p has a valid next student who is also in p. Therefore,

if s; € p prefers M to M’, then every student s € p also prefers M to M’.

Now, suppose that M dominates M'. By Lemma for each student s; € p, there is no
stable pair that lies between their assigned projects in M and M /p. Hence, it follows that M/p
either dominates M’ or is equal to M’, since only the students in p have different projects in M
and M/p. Moreover, each of these students prefers M to M’, with the possibility that M /p =
M’. This completes the proof of Lemma In addition, this lemma immediately implies

Corollary

Corollary 5.4.3. Let p = {(so,p0), ($1,P1),- -, (Sr—1,pr—1)} be a meta-rotation of I. If there
exists a stable matching M’ such that, for some pair (s.,p.) € p, student s, prefers p, to their

project in M', then for every t € {0,...,r — 1}, student s, prefers p, to M'(s;).

5.4.3.1 Pruning step

We describe a pruning procedure that constructs a reduced instance I from a given spa-s instance
1. First, we apply the student-oriented algorithm to /, which computes the student-optimal stable
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matching Ms and removes certain non-stable pairg?| that cannot be part of any stable matching.
We then run the lecturer-oriented algorithm on the resulting instance to compute the lecturer-
optimal stable matching M;, thereby eliminating additional non-stable pairs. The final reduced
instance I is the instance obtained after running both algorithms.

5.4.3.2 Finding a target stable matching

We now show that any target stable matching M in a given instance can be obtained from the
student-optimal stable matching by successively exposing and eliminating a sequence of meta-
rotations.

Consider a spa-s instance [/ and a target stable matching My. We start by pruning the instance
to obtain /. Let M denote the student-optimal stable matching in /. If M = My, then we are
done. Otherwise, if M # My, then there exists a student s such that M(s) # Mr(s). Moreover,
M dominates M7y in the first step, since the student-optimal stable matching dominates all other
stable matchings in /. Therefore, s prefers M to My. By Lemma it follows that there
is at least one exposed meta-rotation in M. We identify the meta-rotation p that begins at s,
and eliminate it to obtain a new stable matching A /p, which is guaranteed to be stable by
Lemma Moreover, by Lemma [5.4.7, we have that either M/p = My or M/p dominates
My (since M dominates Myp). Let M* = M/p. If M* = My, then we have reached the target
matching. Otherwise, since M* # My, there again exists a student s such that M*(s) # Mr(s).
We repeat this process: identify the meta-rotation starting at s, eliminate it, and continue until
we reach M.

Lemma 5.4.11. For every stable matching Mr, there exists a set Ar of meta-rotations such that
eliminating the meta-rotations in Ar from the student-optimal stable matching yields Mr.

Proof. Let M denote the student-optimal stable matching in / and let M, be a target stable
matching.

Case 1: M = Mzy. In this case no eliminations are required to obtain M. Setting Ap = &
satisfies the statement of the lemma. Hence the claim holds.

Case 2: M # Mry. Then there exists a student s such that M (s) # Mr(s). By Lemma(5.4.4] there
is at least one exposed meta-rotation in M. Let p; be the exposed meta-rotation beginning at s.
Eliminating p; yields the stable matching M/p, (Lemma5.4.6). Furthermore, by Lemma
either M/p; = My or M/p, differs from My only on students who have not yet reached their
partners in My. If M/py = My, then let A7 = {p;} and the proof is complete. Otherwise,
set M) = M/p,. Since M) # My, there again exists a student whose assigned project in
MW differs from that in M. By Lemma an exposed meta-rotation p, exists in M), and
eliminating p, yields the stable matching M () /p,, which again either equals My or differs from
it only on students who have a different project in M.

2A stable pair is one that appears in some stable matching admitted by the instance.



5.4. Exposing and eliminating all meta-rotations 127

We continue this process. At step k, we obtain the stable matching

M® = M/pi/pa/ .- ] pr.

If M*) = My, the process stops. Otherwise, by Lemma m there exists an exposed meta-
rotation p; in M*), and we eliminate it and continue. Thus, as long as the current matching
differs from M7, an exposed meta-rotation exists, so we may continue eliminating meta-rotations

until we arrive at M. Let

AT — {plap?v"'7pk}

denote the set of meta-rotations eliminated in this sequence. By construction,

My = M/pi/pa/ - /pr,

so eliminating the meta-rotations in Ay from the student-optimal stable matching produces Mr.

This completes the proof. O

5.4.3.3 Example: Finding all exposed meta-rotations in a spa-s instance

In this section, we illustrate how to identify all exposed meta-rotations and describe the tran-
sitions between stable matchings using the spa-s instance I;, shown in Figure We begin
by constructing the reduced instance corresponding to [, following the steps outlined in Sec-
tion[5.4.3.1]

Now consider instance /;. From Table we observe that M7 is the lecturer-optimal stable
matching for I;. In M, student s; is assigned to project p,, which is the worst project they are
assigned to in any stable matching. Consequently, we remove all projects that are less preferred
than p, from s;’s preference list. Here, project ps is deleted from s;’s list. Continuing this prun-
ing process for all students yields the reduced instance for instance I;, which is presented in
Figure|5.5

511 P1 P2 P4 [1: 87 89 83 84 51 82 S¢ S8 D1, P25 D55 Dé

S2% P1 P4 P3 ly: s6 81 52 S5 53 54 87 58 Sg D35 P4 P75 D8

§3: P3 P1 P2

S4: P3 P2 P1

S5: P4 P3

Se: Ps5 P2 D7

S7: P7 P3 Pe

S8: D6 Ps Project capacities: ¢; = c3 =2;Vj € {2,4,5,6,7,8},¢; =1
S9: Pg D2 Lecturer capacities: d; =4, dy =5

Figure 5.5: Reduced preference list for I,

Table shows, for each student s; in M;, the next project p (denoted sy, (s;)) and the student
next,y, (s;), defined as either the worst student in M;(p) if p is full in M, or the worst student in
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M (Iy) if p is undersubscribed in M. As an illustration, consider s;: ps is the first project after
p1 such that p, is undersubscribed in M; and [; (who offers p,) prefers s; to the worst student
in M;(l;), namely ss. Consequently, next,/, (s;) = ss. The remaining entries can be verified in
a similar manner. We observe that the meta-rotation p; = {(ss,ps), (S, ps)} is the only exposed
meta-rotation in M;. Moreover, sg is the worst student in ps and nexty, (ss) = so. Likewise,
sg is the worst student in ps, and nexty, (s9) = ss. Eliminating p; from M; gives M, that is,
My /p1 = Ms.

(Sz’apj) (817]01) (52,p1) (337173) (34,293) (357]04) (567275) (377177) (88>p6) (597108)
s, (i) P2 P4 P1 P2 P3 P2 D6 D8 P2
nextyy, (8;) S8 S5 S9 S8 S4 S8 Sg Sg S8

Table 5.2: sy, (s;) and nextyy, (s;) for each student s; in M,

Similarly, Table shows sy, (s;) and nextyy, (s;) for each student s; in M,. In M, there are

two exposed meta-rotations namely ps = {(s¢,p5), (s7,p7)} and ps = {(s2,p1), (S5, P4), (S4,D3) }-
MQ/pQ = M3 and Mg/pg = M4.

(Siapj) (817]91) (827201) (83,]?3) (547173) (857174) (867195) (87,]?7) (587p8) (397]92)
S0, (Sz) yZ P4 y41 D1 p3 pr De - -
nextyr, (s;) S5 S5 S9 S9 S4 Sz S6 — —

Table 5.3: sy, (s;) and nextyy,(s;) for each student s; in My

Let M3 be the next stable matching obtained by eliminating p, from M,. Table shows sy, (s;)
and nextyy,(s;) for each student s; in M. In Ms, there is one exposed meta-rotation namely

ps = {(s2,p1), (5,D4), (54, p3) }. Also, Ms/ps = M;.

(sip5) | (s1,p1) | (s2,01) | (83,P3) | (54,3) | (85,p4) | (86,07) | (57,D6) | (S8,P8) | (S9,P2)
SMs (Sz> D4 y2 J4! y4 D3 - - - -
next,(S;) S5 S5 S9 S9 S4 — — — —

Table 5.4: sy, (s;) and nexty,(s;) for each student s; in M3

Table shows sy, (s;) and nexty (s;) for each student s; in M. Clearly, the meta-rotation
P4 = {(817]?1)7 (Sg,p4), (83,]?3)} is eXpOSEd in M, and M5/p4 = M.

(Si,pj) (51>p1) (32,p4) (Sa,ps) (847291) (55>p3) (367]97) (87,]?6) (587178) (59>p2)
Sn (i) P4 D3 p1 - - — — - —
nextys(si) S9 S3 s1 — — — - — _

Table 5.5: sy, (s;) and nexty, (s;) for each student s; in Mj
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We have identified a total of four meta-rotations in instance I;: p;, p2, p3, and p4, each of which
is exposed in at least one stable matching of /;. We also observe that a meta-rotation can be
exposed in multiple stable matchings, and that a single stable matching may contain more than
one exposed meta-rotation. For example, the meta-rotation ps = {(ss,p5), ($7,p7)} is exposed
in M,, M,, and Mg. Furthermore, the stable matching M, contains both p; and p3 as exposed
meta-rotations.

5.5 Meta-rotation poset

In this section, we show that for any spa-s instance I, we can define a partial order on its set
of meta-rotations, forming a partially ordered set (poset), such that each stable matching corre-
sponds to a unique closed subset of this poset.

Given a spa-s instance /, let M denote the set of stable matchings in /, and let R be the set
of meta-rotations that are exposed in some stable matching in M. For any two meta-rotations
p1,p2 € R, we define a relation < such that p; < p, if every stable matching in which p, is
exposed can be obtained only after p; has been eliminated, and there is no other meta-rotation
p' € R\ {p1,p2} such that p; < p’ < p,. In this case, we say that p; is an immediate predecessor
of p,.

Definition 5.5.1 (Meta-rotation poset). Let R be the set of meta-rotations in a spa-s in-
stance I, and let < be the immediate predecessor relation on k. We define a relation <
on R such that p; < p, if and only if either p; = po, or there exists a finite sequence of
meta-rotations p; < p, < -+ < p, < po. The pair (R, <) is called the meta-rotation poset
for instance /.

Proposition 5.5.1. Let R be the set of meta-rotations in a given SpPA-s instance I, and let < be the
relation on R defined as above. Then (R, <) is a partially ordered set.

Proof. We will show that the relation < on R is (i) reflexive, (ii) antisymmetric, and (iii) transitive.

(i) Reflexivity: Let p € R. By definition, every element is related to itself. Hence, p < p, and
< is reflexive.

(i) Antisymmetry: Suppose there exist pi, po € R such that p; < py and py < p;. We claim
that p; = py. Suppose, for contradiction, that p; # py. By the definition of <, there
exists a sequence of meta-rotation eliminations p; < p, < --+ < po, and another sequence
p2 < py < -+ < p1. Now, consider any stable matching in which p; is exposed. From the
second sequence, we conclude that p, must have been eliminated before p; can be exposed.
But from the first sequence, p; must be eliminated before p, can be exposed. Together,
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this implies that neither p; nor p, can be exposed without the other having already been
eliminated — a contradiction. Therefore, our assumption must be false, and we conclude
that p; = p,. Hence, < is antisymmetric.

(iii) Transitivity: Let p1, po, p3 € R such that p; < p, and ps < p3. We show that p; < p3. By the
definition of <, either p; = p, or there exists a finite sequence of meta-rotations p; < p, <
-+ < po, and similarly, either p, = p3 or there exists a finite sequence p; < p, < -+ < p3.
If p1 = po, then p; < p3 follows directly from py < ps3. If p = p3, then p; < ps follows from
p1 < P2

Otherwise, we can combine the two sequences of < relations to obtain:

PL=<pu= = P2 =< py <= ps,

which is itself a finite sequence of meta-rotation eliminations from p; to p3. Therefore,
p1 < p3 by definition of <, and so the relation is transitive.

]

It follows that (R, <) is a partially ordered set. We refer to (R, <) as the meta-rotation poset of
1. For brevity, we will simply write II(/) to refer to this poset throughout the rest of the chapter.
Next, we define the closed subset of TI(]).

Definition 5.5.2 (Closed subset). A subset of I1(7) is said to be closed if, for every p in the
subset, all o’ € R such that p’ < p are also contained in the subset.

Finally, to prove our result, we present Lemma (5.5.1} which states that no pair (s;, p;) belongs to
more than one meta-rotation in /.

Lemma 5.5.1. Let I be a given spa-s instance. No pair (s;, p;) can belong to two different meta-
rotations in 1.

Proof. Let I be a given spa-s instance. Suppose for a contradiction that a pair (s;, p;) belongs to
two different meta-rotations p; and po, i.e. (s;,p;) € p1 N p2 and p; # p,. First suppose, without
loss of generality, that p; < po. By definition, p; must be eliminated before p, can become
exposed. Suppose that p; is exposed in M. Since (s;,p;) € p1, eliminating p; removes the pair
(si,pj) from M/p,. Hence (s;,p,) is deleted before p, is exposed. It follows that (s;,p;) cannot
subsequently appear in p, (or in any matching dominated by M), giving a contradiction. The
same argument applies if ps < p;.

Now suppose that the meta-rotations p; and p, are distinct, then there exists at least one pair
(s',p') such that (s',p") € p1 \ po. We consider cases (A) and (B), depending on whether p; and
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p2 are exposed in the same stable matching or in different ones.

Case (A): p; and p, are both exposed in the same stable matching M. Then, (s;,p;) € M.
Eliminating p, from M yields a new stable matching M* = M/p,, where each student in p, is
assigned to a less preferred project. So, s; prefers p; to M*(s;). Let M}, be the lecturer-optimal
stable matching. Then either M* = M, or M* dominates M;. In either case, it follows that s;
is assigned to different projects in M and M. By Corollary[5.4.2] any student who is assigned
to different projects in M and M/, is involved in at most one exposed meta-rotation of M. Since
s; € pa, and p, is exposed in M, it follows that s; cannot also be in p;, contradicting the assumption

that (Si;pj) € p1 N pa.

Case (B): Suppose p; and p, are exposed in different stable matchings. Let M; be a stable
matching in which p, is exposed, and let M; be a stable matching in which p, is exposed. Recall
that (s;, p;) € p1 N ps, and (s',p’) € p1 \ p2. Since p, is exposed in My, it follows that Ms(s;) = p;.
Moreover, s’ is assigned in M,. Suppose that s’ prefers p’ to M(s'). Then by Corollary [5.4.3]
since both (s;, p;) and (s',p’) are in p;, then s; also prefers p; to M,(s;); however, this contradicts
the fact that M,(s;) = p;. Hence, s’ either prefers M,(s') to p’, or My(s') = p'. Let Ms(s') = pa,
and let M* be the stable matching obtained by eliminating p, from M,. We consider subcases
(B1) and (B2) depending on whether (s',p,) € ps.

Case (B1): (s',p.) € p2. Since (¢,p') ¢ po, we have that p, # p’ and s prefers p, to p'. After
eliminating po, s; is worse off in M* than in My, i.e., s; prefers p, to M*(s;). Meanwhile, s’ either
becomes assigned to p’ (that is, M*(s') = p'), or ¢ prefers p, to M*(s'), and prefers M*(s') to
p’. We note that s’ does not prefer p’ to M*(s’), since by Lemma if p’ lies between p, and
M*(s') on the preference list of &, then (s, p’) is not a stable pair. This means that (', p’) cannot
be in p;. Thus, s’ does not prefer p’ to M*(s'), while s; prefers p; to M*(s;). Thus, one student
(namely s;) in p; prefers their project in p; to their assignment in M*, while another student
(namely ') does not, contradicting Corollary[5.4.3]

Case (B2): (s/,p.) ¢ p2- Then s’ remains assigned to p, in M*, that is, M*(s') = p,. Recall that
either s’ prefers p, to p’ or p, = p’. By Corollary |5.4.3] since (s;,p;) € p1 and s; prefers p; to
M*(s;) then s’ should prefer p’ to M*(s'), a contradiction.

Therefore, the assumption that (s;, p;) € p1 N p2 leads to a contradiction in both cases. Hence, no
pair belongs to two different meta-rotations in /. O

By Lemma [5.5.1}, each student—project pair occurs in at most one meta-rotation. Since there
are n; students and n, projects, there are at most n;n, such pairs, and therefore at most O(nns)
meta-rotations. We now present a nice structural relationship between the closed subsets of I1(7)
and the stable matchings of /.
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Theorem 5.5.1. Let I be a spa-s instance. There is a one-to-one correspondence between the
set of stable matchings in I and the closed subsets of the meta-rotation poset I1(1) of 1.

Proof. Let I be a given spa-s instance, and let R denote the set of all meta-rotations in /. First,
we show that each closed subset of meta-rotations in II(/) corresponds to exactly one stable
matching of /. Let A C R be a closed subset of II(7). By definition, if a meta-rotation p € A, then
all predecessors of p in I1(7) also belong to A. Hence, it is possible to eliminate all meta-rotations
in A in some order consistent with the partial order <, starting from the student-optimal stable
matching. By Lemma [5.4.6} each such elimination step results in another stable matching of 7,
and the final matching obtained after eliminating all meta-rotations in A is stable.

Suppose A; and A, are two distinct closed subsets of I1(7). Since A; # A,, there exists at least
one meta-rotation p that belongs to one of the subsets and not the other. Furthermore, since
no two meta-rotation contains the same set of student-project pairs by Lemma |5.5.1, we would
obtain two different stable matchings of I when we eliminate the meta-rotations in A; and A,.
Therefore, eliminating each closed subset results in a unique stable matching.

We now prove the converse: that each stable matching M € M corresponds to a unique closed
subset of I1(/). By Lemmal5.4.11] there exists a set of meta-rotations whose elimination produces
M. Let A C II(I) be the set of meta-rotations eliminated from the student-optimal stable match-
ing M, to obtain M. This set must be closed; that is, if some meta-rotation p, € A and p; < ps
in I1(7), then p; must have been eliminated before p, could be exposed, and hence p; € A. It
follows that A contains all predecessors of its elements and is therefore a closed subset.

Now, consider two different stable matchings M, M/’ € M. Then there exists a pair (s;,p;) €
M \ M'. We prove that the sets of eliminated meta-rotations that yield M and M’ differ. First,
suppose M is the student-optimal matching M,. In this case, no meta-rotation is eliminated to
obtain M, but (s;, p;) must have been removed during the construction of M’ by eliminating some
meta-rotation p. Thus, p is eliminated in the construction of M’, but not M. Hence, the sets of
eliminated meta-rotations for A/ and M’ are different.

Now suppose M # M;. If (s;, p;) does not belong to M, then (s;, p;) must have been introduced
to M by eliminating some meta-rotation p. By Lemma [5.5.1} each pair appears in at most one
meta-rotation. Therefore, s; becomes assigned to p; in M through the elimination of exactly one
meta-rotation, namely p. On the other hand, there are two possibilities for M’. Either p was
also eliminated in constructing M’; in that case, since (s;,p;) ¢ M’ but (s;,p;) € M, at least
one additional meta-rotation must have been eliminated when forming M’ in order to remove
(si,p;) again. Or p was eliminated in constructing A/ but not in constructing }/’, in which case
(si,pj) never appears in M. If (s;, p;) belongs to M, then no meta-rotation involving (s;, p;) was
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eliminated in the construction of M, but (s;, p;,) must have been removed in the construction of
M’ by eliminating some meta-rotation p. Hence, the sets of eliminated meta-rotations for M and
M’ differ.

In all cases, the sets of eliminated meta-rotations for M/ and M’ are different. Thus, each stable
matching corresponds to a unique closed subset of TI(7). O

5.5.1 Example: constructing the meta-rotation poset

Consider instance /; shown in Figure Although I, admits seven stable matchings (see Ta-
ble [5.1)), it contains only four meta-rotations, denoted R = {p1, p2, p3, p1}. We begin with the
student-optimal stable matching M;, in which only p; = {(ss,ps), (S, ps)} is exposed. Eliminat-
ing p; from M, yields the matching M,, where both py = {(sg, pr), (s7,p6)} and p3 = {(s2,p1),
(s4,p3), (85, p4)} become exposed. Thus, p; is an immediate predecessor of both p, and p3. From
M, we can eliminate either p; (leading to M3) or p3 (leading to M,). From M,, eliminating p,
leads to M5, and subsequently, eliminating ps = {(s1,p1), (S2,p4), (s3,p3)} from M; gives M. Al-
ternatively, p; may be exposed earlier in M, by eliminating only p; and p3. Therefore, p, depends
on p; and p3, but not on p,. In this case, p; is a predecessor of p,.

Table summarises the meta-rotation eliminations observed between the stable matchings in
I, and the dependencies required for each meta-rotation to become exposed.

From To Eliminated meta-rotation Depends on

M, M, P1 -
My M; P2 P1
M, M, P3 p1
M3 M; p3 p1
M, M; P2 P1
M, Mg P4 P15 P3
M3 Mz P4 P15 P3
Mg M P2 P1

Table 5.6: Meta-rotation eliminations in instance ;.

Figure shows the lattice of stable matchings in /;, where each directed edge corresponds to
a single meta-rotation which when eliminated leads to another stable matching.
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Figure 5.6: Lattice of stable matchings and meta-rotations in ;.

We now present the meta-rotation poset of [;. In Figure a directed edge from p, to p,
indicates that p, can only be exposed once p, has been eliminated. Moreover, each closed sub-
set of II(/) corresponds to a unique stable matching and vice-versa. For example, {p;, p3} is
closed, while {p3} is not, since p; must be eliminated before p; becomes exposed. Moreover,
{p1, p2, p3, p4} is a valid closed subset, as it contains each meta-rotation along with all of its nec-
essary predecessors in the poset. Table presents the one-to-one correspondence between the
stable matchings in /; and the closed subsets of the meta-rotation poset.

P1

N
P2 P3

/
P4

Figure 5.7: Meta-rotation poset I1(/;) for instance I;.

Stable Matchings of /;  Closed Subset of I1(/;)

M, 0

M {o1}

Ms {p1,p2}
My {p1,ps}
Ms {p1, p2; p3}
Ms {01, p3, pa}
My {p1, P2, p3, pa}

Table 5.7: Correspondence between stable matchings in /; and closed subsets of the meta-
rotation poset.
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5.6 Conclusions and open problems

In this chapter, we introduced the concept of meta-rotations in spa-s, by generalising the notion
of rotations and meta-rotations from the classical one-to-one and many-to-many settings. Specif-
ically, we proved that there is a one-to-one correspondence between the set of stable matchings
in a given instance and the set of closed subsets of the meta-rotation poset II(M). This result
provides a compact and structured way to describe and explore the lattice of stable matchings.

The meta-rotation poset also has several algorithmic implications. One immediate consequence
is that it provides a method for identifying all stable and non-stable pairs in a given instance
and for enumerating the set of stable matchings. However, designing an explicit and efficient
algorithm that leverages this structure for spa-s, similar to the approach of Eirinakis et al. [36]]
for the many-to-many setting, remains an open question. Their algorithm identifies all stable
and non-stable pairs in O(n?) time and enumerates all stable matchings in O(n? + n|R|) time,
where n is the number of agents and |R| is the number of stable matchings. Developing a similar
algorithm for spa-s, based on the meta-rotation poset, is a natural and promising direction for
future research.

Another direction is to develop a polyhedral characterisation of the set of stable matchings in spa-
s. This would involve defining a set of inequalities whose feasible solutions correspond exactly to
the stable matchings in the instance, and proving that the resulting polytope is integral (i.e., each
extreme point of the polytope correspond to stable matchings). Establishing such a result could
enable new linear programming techniques for solving optimisation problems involving stable
matchings in spa-s. It could also serve as a foundation for showing that the polytopes describing
strongly stable and super-stable matchings in spa-sT are integral, thereby generalising results
known for models such as smT1 and HRT. Such a characterisation would also mean that existing
results and techniques for linear programming polytopes in simpler matching models can then
be generalised in a natural way to spa-s.



Chapter 6
Conclusions and future directions

In this thesis, we studied the structural and algorithmic aspects of a well-known stable match-
ing problem, the Student-Project Allocation problem (spa). We focused on two major variants:
the Student-Project Allocation problem with lecturer preferences over Projects (spa-p), and the
Student-Project Allocation problem with lecturer preferences over Students (spa-s). In spa-p,
we presented complexity results for restricted versions of the problem and developed a tractable
algorithm for a parameterised variant. In spa-s, we examined the structural properties of the
problem and provided two new characterisations of the set of stable matchings.

In Chapter 3] we focused on determining the boundary between polynomial-time solvability and
NP-completeness for the problem of finding a maximum-sized stable matching in various spa
variants. We first examined the extension of spa-s in which ties are allowed in the preference
lists of both students and lecturers. In Section we proved that finding a maximum stable
matching in spa-sT, denoted Max-spa-sT, remains NP-hard even when the instance involves a
single lecturer. We then considered spa-p with restrictions on the preference lists. In Section[3.3]
we showed that finding a maximum stable matching in spa-p is NP-hard even when student
preference lists are derived from a master list of projects, but becomes polynomial-time solvable
when each student ranks only projects offered by the same lecturer or when all students have
identical preferences. Thereafter, we proved that finding a maximum-size stable matching in a
variant called spa-puc is fixed-parameter tractable when parameterised by the number of project
topics.

Based on these results, a possible direction for future work in the spa-sT setting is to investi-
gate whether the existing approximation algorithm for Max-spaA-sT in [27], yields an improved
approximation guarantee in the special case where there is only one lecturer. Moreover, given
that there are typically more students than lecturers in practical applications, it is reasonable to
assume that only lecturers may be permitted to express ties over the students they find accept-
able, while each student have strict preferences over a relatively small set of acceptable projects.
It would be interesting to investigate how the position and length of ties in lecturer preferences
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affect the complexity of Max-spa-sT-L1, in a manner similar to the known restrictions on ties
presented for MAx-sMTI. A possible direction for future work in the spa-p setting is to identify a
suitable parameter for the general case without assuming uniform capacities, and to determine
whether the problem is fixed-parameter tractable with respect to the number of project topics or
another appropriate structural parameter, or whether an XP algorithm can be obtained.

In Chapter |4, we proved that the set of stable matchings in spa-s forms a distributive lattice, with
the student-optimal and lecturer-optimal matchings at the top and bottom of the lattice, respec-
tively. A natural future direction is to investigate whether a similar lattice structure holds for the
set of strongly stable and super-stable matchings in spa-sT, as has already been established for
sMmTI. In terms of designing efficient algorithms, there is an extension of spa-s in which projects
may have both upper and lower quotas, known as spa-sL. In this setting, one seeks a feasible
stable matching, meaning a stable matching that also satisfies the upper and lower capacity of
each project. However, a feasible solution may not always exist. It remains an open problem to
determine whether a polynomial-time algorithm can be devised that either finds a feasible stable
matching or correctly reports that none exists. The lattice and structural results presented in this
chapter would be instrumental in gaining useful insights to this problem.

In Chapter |5, we characterised the set of stable matchings in spa-s using meta-rotations, which
generalise the notion of rotations from the stable marriage problem. We further developed the
meta-rotation poset which compactly encodes the set of all stable matchings in a given spa-s
instance. Specifically, we showed that each stable matching in spa-s corresponds to a closed
subset of a meta-rotation poset. Moreover, the partial order on these subsets captures the domi-
nance relations among stable matchings. This structural characterisation provides a compact and
systematic way to represent the set of all stable matchings in a spa-s instance.

A promising direction for future work is to explore a polyhedral formulation of stable matchings
in spa-s, which, to the best of our knowledge, has not been studied before. A useful starting
point is the work of Huang [|60], who introduced a system of linear inequalities to describe the
stable matching polytope in the Laminar Classified Stable Matching problem (rLcsm), and proved
that the polytope is integral. We note that .csM can be viewed as a special case of spa-s if each
classification (representing projects) forms a disjoint partition of the applicants, and there are no
lower bounds. In this setting, the applicants correspond to students, and the lecturers correspond
to institutes. In particular, if the polytope associated with a spa-s instance is shown to be integral,
then suitable objective functions could be defined to compute target stable matchings that meet
different optimality criteria, such as the median stable matching.
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