

Ayegba, Peace (2025) Structure and complexity of the student-project
allocation problem. PhD thesis.

https://theses.gla.ac.uk/85664/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without
first obtaining permission from the author

The content must not be changed in any way or sold commercially in
any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/85664/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

STRUCTURE AND COMPLEXITY OF THE
STUDENT-PROJECT ALLOCATION PROBLEM

PEACE AYEGBA

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

OCTOBER 30, 2025

© PEACE AYEGBA

Abstract
Matching problems occur in many practical settings where agents from one set need to be as-
signed to agents or resources in another. This thesis presents new results for a class of matching
problems known as the Student-Project Allocation problem (spa). In this problem, we are given a
set of students, projects, and lecturers, where each project is offered by a single lecturer. Students
have preferences over the projects they find acceptable, while lecturers may have no preferences,
preferences over students, or preferences over projects. In the spa model where both students
and lecturers have preferences, the goal is to find a stable matching, which means an allocation of
students to projects such that no student and lecturer would prefer an alternative assignment in-
volving a different project. This thesis explores the complexity and structure of stable matchings
in two variants of spa.
In the Student-Project Allocation problem with lecturer preferences over Projects (spa-p), stable
matchingsmay vary in size, and the problem of finding amaximum-size stablematching (denoted
max-spa-p) is known to be NP-hard. Another variant is the Student-Project Allocation problem
with lecturer preferences over Students, referred to as spa-s. An extension of spa-s where ties
are allowed in the preference lists of both students and lecturers is known as spa-st. Similar
to the spa-p model, weakly stable matchings in spa-st may differ in size, and it is known that
finding a maximum weakly stable matching (denoted max-spa-st) is NP-hard. In both max-spa-p
and max-spa-st, we examine how natural restrictions on the preference structure of students and
lecturers affect the computational complexity of finding amaximum stable matching. We identify
cases that admit polynomial-time algorithms and others that remain NP-hard. In addition, we
study the parameterised complexity of max-spa-p, and prove that the problem is fixed-parameter
tractable with respect to a natural structural parameter.
Next, we consider the structural aspects of spa-s. It is well known that a single instancemay admit
multiple stable matchings, and that the number of such matchings may grow exponentially with
the input size. We present two new characterisations of the set of stable matchings for any given
spa-s instance. First, we prove that the set of stable matchings forms a distributive lattice under
a natural dominance relation, in which the student-optimal and lecturer-optimal matchings cor-
respond to the maximum and minimum elements, respectively. In the second characterisation,
we extend the notion of rotations, originally defined for the one-to-one Stable Marriage problem,
to the more complex spa-s model. We introduce meta-rotations in spa-s, and use this to develop
the meta-rotation poset. We prove that there is a one-to-one correspondence between the stable
matchings of a given spa-s instance and the closed subsets of the associated meta-rotation poset.

i

Acknowledgements
First, I would like to thank Dr Sofiat Olaosebikan for giving me the opportunity to undertake this
PhD under her supervision. I’m grateful for her guidance and for the care she takes in reading
every draft of my work. I’m also thankful to my second supervisor Prof Kitty Meeks for her endless
stream of brilliant ideas, for her encouragement and support during the more difficult times. A
special thanks to Prof. David Manlove, my unofficial third supervisor, for his expertise in matching
problems and his thoughtful feedback.

I am grateful to my examiners, Prof. Alice Miller and Dr. Christine Cheng, for their excellent
feedback during my viva. I would also like to thank Dr. Jess Enright and Dr. Ciaran McCreesh for
conducting my annual progression reviews and for their valuable writing suggestions. Thanks as
well to the anonymous reviewers for their helpful comments on earlier versions of this work.

I’ve met many wonderful people at the university during the PhD, some of whom have become
close friends: Nins, Laura, Kai, Newt, Doug, Ivaylo, Michael McKay, Fionnuala, Stephen, Alex,
KayCee, and Lydia. Thank you for the fun conversations in the office, the coffee breaks, and the
free therapy sessions. To my dearest friends: Debs, Ines, Lois, Tosan, Amy and Vic3 — thank you
for helping me stay sane. A special thanks to Dr Bayo for his constant encouragements and for
reading through parts my thesis draft. I can’t name everyone, but if you ever asked “How’s your
PhD going?” or “When are you finishing?”, you gave me the push I needed. Thank you!

To my Mum and Dad, thank you for the countless sacrifices that made this journey possible. To
my siblings: Grace and Destiny, for always calling me at random just to check in, and my only
brother Abraham, for especially for looking after me during the writing phase. To my best friend,
Chibuike, thank you for always supporting me. You let me cry, made me laugh, and distracted
me with football and movies. I’ll always be grateful for your patience.

Lastly, and most importantly, to Abba: you’ve reminded me constantly this month that the end
of a thing is better than its beginning. Thank you for guiding me throughout this journey and
making sense out of my life. I know that my future is secure in your hands.

This PhD was supported by a College of Science and Engineering Scholarship from the University
of Glasgow. Without that support, this would not have been possible.

ii

Declaration
This thesis is submitted in accordance with the regulations for the degree of Doctor of Philosophy
at the University of Glasgow. None of the material contained herein has been submitted for any
other degree.

Parts of the results in Section 3.2.2 are based on ideas due to Prof David Manlove. The results in
Section 3.4 are the product of collaboration with my second supervisor, Prof. Kitty Meeks. The
work in Chapter 4 builds on results that first appeared in the thesis of my supervisor, Dr. Sofiat
Olaosebikan, for a restricted version of the problem. All other results and contributions in this
thesis are original and solely my own.

Publications

The following paper contains results that are presented in this thesis:
Peace Ayegba, Sofiat Olaosebikan, and David Manlove. Structural aspects of the Student-Project
Allocation problem. Accepted for publication in Discrete Applied Mathematics. A preprint is avail-
able on arXiv at: arXiv:2501.18343.(This paper contains results presented in Chapter 4.)

iii

https://arxiv.org/abs/2501.18343

Table of Contents

Acronyms vii

1 Introduction 1
1.1 Preliminaries . 2

1.1.1 Complexity theory . 2
1.1.2 Coping with intractability . 4

1.1.2.1 Approximation algorithms . 4
1.1.2.2 Heuristic methods . 5
1.1.2.3 Fixed-Parameter Tractable algorithms 6
1.1.2.4 Integer and Linear Programming 7

1.2 Thesis Statement . 8
1.3 Contributions and Thesis Outline . 8

2 Literature Review 12
2.1 The Stable Marriage Problem . 14

2.1.1 Formal definition . 15
2.1.1.1 The Gale-Shapley algorithm . 16
2.1.1.2 Extended Gale Shapley algorithm 16
2.1.1.3 Multiple stable matchings . 17

2.1.2 Extensions of the Stable Marriage problem (sm) 18
2.1.2.1 Stable Marriage with Incomplete lists (smi) 18
2.1.2.2 Stable Marriage with Ties (smt) 19
2.1.2.3 Stable Marriage with Ties and Incomplete Lists (smti) 20

2.1.3 Structure of the set of stable matchings in sm and its extensions 22
2.1.3.1 Lattice structure in sm . 22
2.1.3.2 Rotations in sm . 23
2.1.3.3 Rotation poset . 26
2.1.3.4 Optimal stable matchings . 27
2.1.3.5 Polyhedral characterization of stable marriages 27
2.1.3.6 Structure of strongly and super-stable matchings 28

2.2 The Hospitals/Residents problem (hr) . 28

iv

Table of Contents v

2.2.1 Formal definition . 28
2.2.2 Extensions of the Hospitals/Residents problem (hr) 29
2.2.3 Structure of the set of stable matchings in hr 30

2.3 The Student-Project Allocation problem (spa) . 31
2.3.1 Student-Project Allocation with lecturer preferences over Students (spa-s) 32

2.3.1.1 Formal definition . 32
2.3.1.2 Example. 34
2.3.1.3 Structural and algorithmic results for spa-s 34

2.3.2 Lecturer preferences over students including ties (spa-st) 35
2.3.3 Lecturer preferences over projects (spa-p) 36

2.4 Related spa models . 36

3 Complexity Results for Restricted Variants of spa 38
3.1 Introduction . 38

3.1.1 Background and motivation . 39
3.1.2 Contributions and structure of the chapter 40

3.2 Complexity result for spa-st under weak stability 41
3.2.1 Formal definition of spa-st . 41
3.2.2 Complexity of max-spa-st with one lecturer 42

3.2.2.1 complete smti-2ml . 42
3.2.2.2 max-spa-st with one lecturer . 43

3.3 Complexity results for spa-p . 45
3.3.1 Formal definition of spa-p . 45
3.3.2 spa-p with master lists . 46
3.3.3 spa-p with projects offered by the same lecturer 47

3.3.3.1 Polynomial-time algorithm for max-spa-p-sl 47
3.3.4 Students with identical preferences . 48

3.4 Parameterised complexity of spa-p . 49
3.4.1 Parameterised stable matching problems 49
3.4.2 spa-p with uniform capacities . 51
3.4.3 Hardness of max-spa-puc . 53
3.4.4 FPT algorithm for spa-puc . 53

3.4.4.1 Reducing to one project per topic for each lecturer 55
3.4.4.2 Reducing to one lecturer per type 59

3.4.5 An ILP for spa-puc . 67
3.5 Conclusions and future work . 72

4 Structural Results for spa-s 74
4.1 Introduction . 74

4.1.1 Background and motivation . 74

Table of Contents vi

4.1.2 Contributions and structure of the chapter 74
4.2 Preliminary definitions . 75

4.2.1 Preferences over matchings . 76
4.2.1.1 Student Preferences over Matchings 76
4.2.1.2 Lecturer Preferences over Matchings 76

4.2.2 Dominance relation . 77
4.3 Structural properties of stable matchings . 79
4.4 Stable matchings in spa-s form a distributive lattice 89

4.4.1 Example . 101
4.5 Conclusions and future work . 103

5 Meta-Rotations in spa-s 104
5.1 Introduction . 104

5.1.1 Background and motivation . 104
5.1.2 Contributions and structure of the chapter 105

5.2 Preliminary definitions . 106
5.2.1 Justification for the meta-rotation definition 108

5.3 Structural results involving stable matchings . 109
5.4 Exposing and eliminating all meta-rotations . 111

5.4.1 Meta-rotations . 111
5.4.2 Identifying an exposed meta-rotation . 115
5.4.3 Meta-rotations and stable matchings . 121

5.4.3.1 Pruning step . 125
5.4.3.2 Finding a target stable matching 126
5.4.3.3 Example: Finding all exposed meta-rotations in a spa-s instance 127

5.5 Meta-rotation poset . 129
5.5.1 Example: constructing the meta-rotation poset 133

5.6 Conclusions and open problems . 135

6 Conclusions and future directions 136

Acronyms

(1,type)-spa-p A restricted version of spa-p where all students have identical preferences over
projects. 48

com-smti The problem of finding a complete weakly stable matching in a given smti instance.
21

complete smti-2ml The problem of finding a weakly stable matching of size at least n in an
smti-2ml instance, where n is the number of men and women. 42, 43

hr Hospitals/Residents problem. 9, 10, 13, 28–31, 34, 35, 37, 76

hrc The Hospitals/Residents problem with Couples. 30

hrt Hospitals/Residents problem with Ties. 29, 30, 39

lcsm The Laminar Classified Stable Matching. 37

max smti-2ml-d The problem of finding a weakly stable matching of size at least k in an instance
of smti-2ml. 42

max-hrt The problem of finding a maximum stable matching in hrt. 5, 7, 30, 39, 50, 73

max-smti The problem of finding a maximum stable matching in smti. 21, 35, 39, 50, 73

max-spa-p The problem of finding a maximum stable matching in spa-p. 9, 36, 39, 40, 45–48,
53, 72, 73

max-spa-p-l1 A restricted version of spa-p where there is only one lecturer. 47, 48, 72

max-spa-p-sl The problem of finding a maximum stable matching in spa-p-sl. 40, 47

max-spa-puc The problem of finding a maximum stable matching in spa-puc. 10, 53, 73

max-spa-st The problem of finding a maximum stable matching in spa-st. 9, 35, 39, 40, 42, 43,
72, 73

min mm The problem of finding a minimum maximal matching in a given bipartite graph. 46

vii

Acronyms viii

sf Stable Fixtures problem. 14

sm Stable Marriage problem. 9, 10, 13, 15, 16, 20, 22, 23, 27, 28, 30

sma Stable Multiple Activities problem. 14

smi Stable Marriage problem with Incomplete lists. 19, 20, 23, 28, 29

smt Stable Marriage problem with Ties. 20, 39

smti Stable Marriage problem with Ties and Incomplete lists. 20, 21, 28–30, 35, 39

smti-2ml smti where preferences are derived from a master list on both sides. 42

spa Student–Project Allocation problem. 2, 8, 9, 12, 36

spa-p Student–Project Allocation problem with lecturer preferences over Projects. 2, 6, 8–10,
36, 38–40, 45–48, 51–53, 72

spa-p-sl A restriction of spa-p where each student only finds projects from a single lecturer ac-
ceptable. 45, 47

spa-puc spa-p with uniform capacities. 40, 51–54, 72, 73

spa-s Student–Project Allocation problem with lecturer preferences over Students. 2, 8–11, 32,
34–37, 41, 45, 73, 74, 76

spa-st Student–Project Allocation problem with lecturer preferences over Students with Ties. 6,
9, 35, 36, 38–43, 72, 73

sr Stable Roommates problem. 13, 14

List of Figures

2.1 Classification of matching problems involving preferences. 14
2.2 An instance I1 of the Stable Marriage problem with 3 men and 3 women 16
2.3 Instance I2 of smti with two men and two women. 20
2.4 An instance I3 of sm, adapted from Gusfield and Irving [54, page 69] 24
2.5 Lattice of stable matchings and corresponding rotations in instance I3. 25
2.6 An instance I1 of spa-s . 34

3.1 An instance I2 of spa-st. 42
3.2 An instance I3 of spa-p. 46
3.3 Preference lists for constructed instance of spa-p due to [102] 46
3.4 An instance I1 of spa-puc . 52
3.5 An instance I3 of spa-puc . 53

4.1 An instance I1 of spa-s . 75
4.2 An illustration of the sequence of students generated in Lemma 4.3.1, with (sr, pr) ∈

M and (sr, pr−1) ∈M ′ for all r ≥ 2 . 81
4.3 A spa-s instance illustrating the infinite sequence of students generated in Lemma 4.3.3,

where (st, pt) ∈M ′ and (st, pt−1) ∈M . 87
4.4 An instance I3 of spa-s . 102
4.5 Lattice structure for I3 . 103

5.1 An instance I1 of spa-s . 107
5.2 Exposed meta-rotation in M . 115
5.3 An instance I2 of spa-s . 116
5.4 Graph H(M) for M . 116
5.5 Reduced preference list for I1 . 127
5.6 Lattice of stable matchings and meta-rotations in I1. 134
5.7 Meta-rotation poset Π(I1) for instance I1. 134

ix

List of Tables

1.1 Growth rates of logarithmic, polynomial, exponential, and factorial functions for
increasing n . 3

2.1 The eight stable matchings admitted by instance I3, where each entry shows the
woman assigned to each man. 25

4.1 Instance I3 admits seven stable matchings. 102

5.1 Instance I1 admits seven stable matchings. 107
5.2 sM1(si) and nextM1(si) for each student si in M1 128
5.3 sM2(si) and nextM2(si) for each student si in M2 128
5.4 sM3(si) and nextM3(si) for each student si in M3 128
5.5 sM5(si) and nextM5(si) for each student si in M5 128
5.6 Meta-rotation eliminations in instance I1. 133
5.7 Correspondence between stable matchings in I1 and closed subsets of the meta-

rotation poset. 134

x

Chapter 1

Introduction

Combinatorial optimisation is a central topic in theoretical computer science, focusing on prob-
lems where the goal is to select an optimal solution from a finite, but potentially very large,
set of feasible solutions. Matching problems form a quintessential class of such problems, with
wide-spread real-world applications. Matching problems arise in settings where agents or re-
sources must be assigned subject to capacity constraints and/or preferences. Examples include
assigning access points to users in wireless networks [50], passengers to taxis in transportation
systems [149], kidney donors to patients in hospitals [132], and students to projects in aca-
demic institutions [8]. In practical applications, the number of agents involved is often large,
making manual assignment infeasible. For instance, the National Resident Matching Program in
the United States [118] assigns more than 45,000 medical residents to hospitals each year. Since
the outcome of these applications can have a direct impact on individuals’ quality of life, it is
essential that the algorithms used produce solutions that are perceived as fair, acceptable, and
aligned with participants’ expectations. This motivates both the design of efficient algorithms
and the study of settings where such algorithms are unlikely to exist.

One important matching setting involves participants who express preferences over potential
partners. These are known as matching problems involving preferences. At a high level, such a
problem consists of a set of agents, each of whom specifies an ordering over a subset of the others
based on their preferences. These preferences are typically ordinal, for example, an agent might
list their first, second, third choice, and so on. In many settings, agents may also be subject to
capacity constraints, meaning they can be assigned to only a limited number of partners. Match-
ing problems involving preferences can be broadly classified into three categories: (i) bipartite
matching problems with one-sided preferences, such as the Housing Allocation problem [5],
where only one side expresses preferences over the other; (ii) bipartite matching problems with
two-sided preferences, such as the Stable Marriage problem [54,113], where both sides express
preferences; and (iii) non-bipartite matching problems, such as the Stable Roommates prob-
lem [53], where each participant belongs to a single set and submits a preference list over all
other participants. These categories and examples are discussed in detail in Chapter 2.

1

1.1. Preliminaries 2

A solution to a matching problem is called a matching, which is an assignment of agents to
acceptable partners that respects the given capacity constraints. In matching problems with
preferences on both sides, it is often important to consider how well a matching satisfies the
agents’ preferences. However, beyond individual satisfaction, we also require the matching to
be stable—that is, no subset of agents can form an alternative assignment among themselves in
which every member is strictly better off than in the current matching. Stability ensures that
once a matching is computed, no subset of participants has an incentive to deviate from it [129].
Its importance as a solution concept in matching problems where agents express preferences has
been well established in the literature [129,134].

In this thesis, we study the Student–Project Allocation problem (spa), a class of matching prob-
lems involving three sets of agents: students, projects, and lecturers. In the spa model with two-
sided preferences, students have preferences over projects, each of which is offered by a lecturer
who, depending on the variant considered, may have preferences over students, over projects,
or over student–project pairs. The goal is to find a stable matching of students to projects that
respects both project and lecturer capacity constraints. We examine both the algorithmic and
structural aspects of two variants of spa.

On the algorithmic side, we focus on the Student-Project Allocation problem with lecturer pref-
erences over Projects (spa-p), where both students and lecturers have preferences over projects.
We present new complexity results by introducing natural restrictions on the input instance, and
prove fixed-parameter tractability for selected NP-hard cases. On the structural side, we study the
Student-Project Allocation problem with lecturer preferences over Students (spa-s). We present two
characterisations of the set of stable matchings admitted by any given spa-s instance, highlight-
ing the rich underlying structure of the problem. First, we show that the set of stable matchings
forms a distributive lattice under a natural dominance relation. Second, we develop a partial
order known as the meta-rotation poset and establish a one-to-one correspondence between the
set of stable matchings in a given instance and the closed subsets of the poset.

1.1 Preliminaries

1.1.1 Complexity theory

Complexity theory is the study of how the amount of computational resource required to solve
a problem, such as time or memory, grows with the size of the input. The input size, usually
denoted by n, is a formal measure of the size of a problem instance, which in matching problems
may include the number of agents involved and the lengths of their preference lists. An algorithm
runs in polynomial time if its running time is bounded above by a polynomial function of the input
size n, such as n, n2, or n3. Problems that can be solved by such algorithms are referred to as
tractable. An algorithm runs in polynomial time if its running time is bounded above by nk for

1.1. Preliminaries 3

some constant k. Problems solvable by such algorithms are called tractable. In contrast, an
algorithm runs in exponential time if its running time is bounded below by a n for some constant
a > 1; that is, its running time grows at least exponentially in the input size. Some problems even
require super exponential time as those with running time n!. Problems that can only be solved
by exponential-time or factorial-time algorithms are generally considered intractable, because
the running time increases so rapidly that it becomes impractical to solve even moderately sized
instances. Table 1.1 illustrates how logarithmic, polynomial, factorial, and exponential functions
grow with input size n, highlighting the difference in their growth rates as n increases.

As the table illustrates, factorial and exponential functions grow far more rapidly than polyno-
mial functions. For example, when n = 50, an algorithm with running time n2 would require
only 2,500 operations, which a modern computer could execute in just a few microseconds. In
contrast, an algorithm with running time 2n would require approximately 1.1× 1015 operations,
which would take about 13 days to complete assuming a computer performs 1 billion opera-
tions per second. Meanwhile, an algorithm with running time n! would require approximately
3.0× 1064 operations, taking more than 1047 years to finish.

n log n n2 (Polynomial) 2n (Exponential) n! (Factorial)
5 2.32 25 32 120
10 3.32 100 1,024 3.6 million
20 4.32 400 ≈ 106 ≈ 2.4× 1018

50 5.64 2,500 ≈ 1.1× 1015 ≈ 3.0× 1064

Table 1.1: Growth rates of logarithmic, polynomial, exponential, and factorial functions for in-
creasing n

In practice, such growth rates may arise particularly for problems that involve evaluating a large
number of feasible solutions. For example, certain instances of the stable matching problem
admit exponentially many stable matchings [65, 94], making it infeasible to generate all stable
matchings. Moreover, in practical settings, the goal is often not just to find a stable matching, but
one that also satisfies an additional criterion, such as maximising the number of assigned agents.
In such cases, a brute-force algorithm that enumerates all stable matchings to find an optimal
one is impractical.

As a result, computational problems have been analysed and categorised formally, whereby these
problems are classified into complexity classes based on their computational difficulty. These
classifications typically consider decision problems, which are problems whose output for any
given input is either yes or no. The class P consists of all decision problems that can be solved
in polynomial time. The class NP is the class of decision problems where, for every input for
which the answer is yes, there exists a certificate (or proposed solution) that can be verified in

1.1. Preliminaries 4

polynomial time by an algorithm. It is clear that P ⊆ NP, since any problem that can be solved
in polynomial time can also be verified in polynomial time. However, it is widely believed that
the converse does not hold, that is, P ̸= NP. This suggests the existence of problems for which
a given solution can be verified in polynomial time, but no polynomial-time algorithm exists for
finding such a solution.

For example, given a graph G, we can verify in polynomial time whether the graph is connected,
and we can efficiently find such a solution using a breadth-first or depth-first search algorithm.1
Therefore, the graph connectivity problem is in the class P. On the other hand, consider the
problem of integer factorisation, which asks for the non-trivial prime factors of a given integer N .
If a factorisation of N is provided, it can be verified in polynomial time simply by multiplying
the factors and checking that the product equals N . Thus integer factorisation belongs to the
class NP. However, no polynomial-time algorithm is known for finding such a factorisation in
general. Integer factorisation is of particular practical importance, since the presumed hardness
of this task underlies widely used cryptographic algorithms [20,58,92].

To show that a problem is unlikely to be solvable in polynomial time, one typically proves that it
is NP-hard. A problem is NP-hard if every problem in NP can be reduced to it in polynomial time.
Thus, if a polynomial-time algorithm existed for any NP-hard problem, all problems in NP would
also be solvable in polynomial time. A problem is NP-complete if it is both NP-hard and belongs
to the class NP; such problems are considered the hardest problems in NP, in the sense that every
problem inNP can be reduced to them in polynomial time. Assuming P ̸= NP, no polynomial-time
algorithm exists for any NP-complete problem. For further background on complexity classes and
polynomial-time reductions, see [12,45].

1.1.2 Coping with intractability

For computational problems that are intractable, several techniques can be used to obtain solu-
tions that are useful in practice, even when no polynomial-time algorithms are known. In this
thesis, we explore some of these approaches, including restricting aspects of the input to iden-
tify polynomial-time solvable cases, and applying tools from parameterised complexity theory
and integer programming. These contributions are presented in Chapter 3. In this section, we
briefly discuss these approaches as well as other techniques for coping with intractability, such
as approximation algorithms and heuristic methods.

1.1.2.1 Approximation algorithms

An optimisation problem involves selecting the best solution from a set of feasible options, based
on a given objective function and a set of constraints. An optimal solution is one that satisfies all

1A graph is connected if there is a path between every pair of vertices.

1.1. Preliminaries 5

constraints and minimises or maximises the objective function. Since many interesting optimi-
sation problems are NP-hard, a natural alternative is to find solutions that are close to optimal.
Approximation algorithms run in polynomial time and produce solutions that are guaranteed to
be close to the best possible. Their performance is measured by an approximation ratio, which
compares the value t of the solution returned by the algorithm to the value opt of an optimal
solution, in the worst case. For minimization problems, the ratio is defined as t

opt , and for maxi-
mization problems as opt

t
.

An algorithm is said to be a c-approximation algorithm if, for every input instance, the objective
value of the solution it returns differs from the optimal objective value by at most a factor of c.
More precisely, for minimization problems the algorithm always returns a solution whose objec-
tive value is at most c times the optimal value, and for maximization problems it always returns
a solution whose objective value is at least 1

c
times the optimal value. By relaxing the require-

ment to compute an exact optimal solution, approximation algorithms are a practical direction
for solving problems that are unlikely to admit polynomial-time algorithms.

Approximation techniques have been applied to a range of NP-hard versions of matching prob-
lems. For example, in the Stable Marriage problem with Incomplete lists and Ties on one side
(discussed in Section 2.1.2), Király [81] presented a linear-time 3

2 -approximation algorithm that
returns a stable matching M with |M | ≥ 2

3 × |M
∗|, where M∗ is a stable matching of maximum

size. That is, the algorithm guarantees a stable matching whose size is at least two-thirds of
the largest possible. This result improves upon the previously best-known approximation factor
of 5

3 , due to Irving and Manlove [67]. For a detailed discussion see the definitive textbook on
approximation algorithms by Williamson and Shmoys, [146].

1.1.2.2 Heuristic methods

The aim of heuristic algorithms is to find feasible solutions quickly, often by following problem-
specific rules or search strategies, rather than exhaustively exploring the entire solution space of
a given problem. Although they do not guarantee optimal solutions or provide approximation
bounds, they are often effective on large instances where exact methods are computationally in-
feasible. For instance, several heuristic algorithms have been proposed for a well-known match-
ing problem, known as the Hospitals/Residents problem with Ties (see Section 2.2.2). In this
setting, the problem of finding a weakly stable matching of maximum size, known as max-hrt,
is NP-hard. Heuristic techniques for max-hrt have been proposed to either maximise the size of
a weakly stable matching or minimise the number of blocking pairs. These include approaches
based on greedy algorithms and local search strategies [21,22,115].

Similarly, Cao et al. [21] present a heuristic algorithm for max-hrt that constructs a stable
matching incrementally by assigning residents to hospitals based on a scoring function, which
removes the least-preferred resident whenever a hospital exceeds its capacity. In the context of

1.1. Preliminaries 6

the Student–Project Allocation problem, Nguyen et al. [143] propose a heuristic for computing a
maximum-sized weakly stable matching in the spa-st setting (see Section 2.3.2), where lecturers
have preferences over students and ties may be present in the preference lists of both students and
lecturers. A similar technique was subsequently developed for spa-p (see Section 2.3.3) to find
a stable matching of maximum size [145]. While heuristic methods lack worst-case guarantees,
they perform well in practice and often scale effectively on large instances.

1.1.2.3 Fixed-Parameter Tractable algorithms

Fixed-parameter tractability offers a way to address NP-hard problems by restricting the expo-
nential complexity of the problem to a selected parameter. Following the definition of Downey
and Fellows [35], a problem is said to be fixed-parameter tractable (FPT) with respect to a pa-
rameter k ∈ N if it can be solved in time O(f(k) ·nc), where n is the input size, c ∈ N is a constant
independent of k, and f : N → N is a computable function. This implies that while the running
time may grow rapidly with the parameter k, it depends polynomially on the input size n.

FPT algorithms are particularly useful when the parameter is small in practice, even when the
size of the input instance is large. However, not all NP-hard problems admit FPT algorithms with
respect to a chosen parameter. To classify parameterised problems according to their complexity,
Downey and Fellows [35] introduced the W-hierarchy, a sequence of complexity classes:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP.

Problems in W [1] through W [P] are widely believed not to admit fixed-parameter tractable algo-
rithms. The conjecture that FPT ̸= W[1] is the central open question in parameterised complexity
theory and is regarded as the analogue of the classical conjecture P ̸= NP. The class XP contains
problems that can be solved in time O(nf(k)) for some computable function f . Since the param-
eter k appears in the exponent of the input size, even small increases in k can cause the running
time to become extremely large, and problems of this form are not considered fixed-parameter
tractable.

The class FPT generalises the classical complexity class P. Specifically, every problem in P is
fixed-parameter tractable with respect to any choice of parameter; that is, it remains solvable in
polynomial time regardless of how the input is parameterised. However, the inclusion is strict:
the class FPT also contains parameterised versions of problems that are NP-complete in their
classical form. A popular example is the Vertex Cover problem, which asks whether a given graph
contains a vertex cover of size at most k. While this problem is NP-complete in general, it is fixed-
parameter tractable (FPT) when parameterised by k. In particular, it admits algorithms with
running time O(2k ·n) using bounded search trees or branching techniques [31,107]. Moreover,
more refined algorithms have achieved improved running times of O(1.2738k + kn) [25].

1.1. Preliminaries 7

Although parameterised complexity has been extensively developed in the context of graph prob-
lems, its application to stable matching problems is still in its early stages. One known result in
this direction is that max-hrt is FPT when parameterised by the size of the matching [9], or by
the total length of ties in the instance [106]. Further discussion of parameterised complexity in
the context of matching problems is provided in Section 3.4.1. Approximation techniques and
parameterised complexity are often studied as separate approaches for handling intractable prob-
lems. However, recent work has shown that combining these strategies can yield more powerful
algorithmic techniques.

Marx [105] pointed out that, for some problems, there are no known approximation algorithms
and no fixed-parameter tractable algorithm with respect to any known parameter. However, such
problems can sometimes be tackled using parameterised approximation algorithms, which provide
approximate solutions within a running time of the form f(k) ·nc, where k is a parameter and n is
the input size. This approach combines ideas from approximation and parameterised complexity
for problems where neither approximation nor fixed-parameter techniques are effective on their
own.

1.1.2.4 Integer and Linear Programming

Many combinatorial optimisation problems can be expressed as either linear or integer linear
programs. Linear programming (LP) involves optimising a linear objective function subject to
linear inequality constraints, where variables can take any real values. Linear programs can
be solved in polynomial time using algorithms like interior-point methods [77, 79, 142]. An
integer linear program (ILP) is a linear program in which all variables are constrained to take
integer values, making the model more expressive but also significantly harder to solve. The
decision version of ILP asks whether there exists an integer solution that satisfies all given linear
constraints and achieves at least a specified objective value. This problem is NP-complete and
was included in Karp’s list of 21 classical NP-complete problems [45, 78]. Mixed-integer linear
programs (MILPs), where only a subset of variables must be integers, are even more general and
typically harder to solve in the worst case.

Matching problems can also be modelled using ILPs. A common approach is to relax the integral-
ity constraints to obtain an LP, which is generally easier to solve. In some cases, this LP relaxation
remains integral, meaning that all optimal solutions are already integer-valued. When this oc-
curs, the problem can be solved efficiently using LP methods alone. Several stable matching
problems, including the Stable Marriage problem, exhibit this property [4,80,131]. For any sm
instance of size n, it has been shown that we can efficiently construct a set of linear inequalities of
polynomial size in n such that there is a one-to-one correspondence between the stable matchings
of the instance and the extreme points of the polytope2 defined by these inequalities [54, 144].

2In this context, the polytope is the set of all solutions (possibly fractional) that satisfy the matching and stability
constraints. Each stable matching corresponds to a vertex (or extreme point) of this set.

1.2. Thesis Statement 8

With this representation, other stable matching problems, such as finding an egalitarian or min-
imum regret matching, can be solved using general LP methods, since an optimal solution will
correspond to one of these extreme points.

Although ILPs are NP-complete, modern solvers such as CPLEX [1] and Gurobi [2] perform well
in practice. These solvers have been successfully applied to real-world stable matching problems.
For example, ILP formulations for NP-hard variants of the Stable Marriage and Hospital/Res-
idents problems have been used to solve instances involving up to 50,000 agents on each side
within seconds [34]. ILPs also play an important role in parameterised complexity. While solving
ILPs is NP-complete in general, the problem is fixed-parameter tractable when parameterised by
the number of variables [31]. This has led to the development of parameterised algorithms that
model problems as ILPs in which the number of variables is bounded by a function of the param-
eter [46, 83, 114]. This technique allows ILP solvers to efficiently handle otherwise intractable
problems [119].

1.2 Thesis Statement

The Student–Project Allocation problem (spa) arises in many practical applications, and exhibits
rich algorithmic and structural properties. In this thesis, we prove new complexity results for
variants of spa by imposing natural restrictions on the input instance. For some intractable cases,
we show that by identifying and exploiting suitable structural parameters, the problem becomes
fixed-parameter tractable with respect to those parameters. In addition, we develop new charac-
terisations of the set of stable matchings, which enable efficient algorithms for computing stable
matchings with desirable properties.

1.3 Contributions and Thesis Outline

In this thesis, we examine the algorithmic and structural aspects of well-known variants of the
Student–Project Allocation problem (spa). We begin by analysing the computational complexity
of the Student-Project Allocation problem with lecturer preferences over Projects (spa-p). We
present both polynomial-time algorithms and NP-hardness results for finding a maximum-size
stable matching in spa-p under natural restrictions. For intractable cases, we introduce a pa-
rameterised version of spa-p, where we introduce project topics. We prove that the problem is
fixed-parameter tractable when parameterised by the number of project topics. This means that,
although finding a maximum-size stable matching in spa-p is NP-hard in general, it can be solved
efficiently in practice when the number of project topics is small, since the running time grows
quickly with the number of topics but remains polynomial in the size of the input.

In the second part of the thesis, we shift our focus to the Student-Project Allocation problem with
lecturer preferences over Students(spa-s). We first prove that the set of stable matchings forms

1.3. Contributions and Thesis Outline 9

a distributive lattice, in which the student-optimal matching is the unique maximum element
and the lecturer-optimal matching is the unique minimum element. We then extend the classical
notion of rotations, originally developed for the Stable Marriage (sm) and Hospital Residents
(hr) problems [14,26,52,54], to the spa-s setting. Building on this generalisation, we develop
themeta-rotation poset, a compact structure that encodes the entire set of stable matchings in any
given instance. Additionally, we prove that the set of stable matchings in a given instance is in
one-to-one correspondence with the closed subsets of the poset. This structure supports efficient
algorithms for identifying all stable pairs, enumerating all stable matchings, and provides new
insights into the properties of the set of stable matchings in any given spa-s instance.

The thesis is organised as follows:

• Chapter 2: Literature Review. This chapter surveys relevant work on classical stable match-
ing problems such as the Stable Marriage problem (sm) and the Hospital/Residents problem
(hr). Thereafter, we focus on the Student-Project Allocation problem (spa) and its exten-
sions including the Student-Project Allocation problem with lecturer preferences over Projects
(spa-p), Student-Project Allocation problem with lecturer preferences over Students (spa-s),
and Student-Project Allocation problem with lecturer preferences over Students including Ties
(spa-st). We focus on known computational complexity results for these variants, struc-
tural characterisations, and algorithmic techniques that support the contributions made in
this thesis.

• Chapter 3: Complexity results for restricted spa variants. In this chapter, we examine how
imposing natural restrictions on the input instance influences the computational complexity
of two variants of spa, namely spa-p and spa-st. We begin with spa-p, where both students
and lecturers express preferences over projects. In this setting, stable matchings can vary in
size, and the problem of finding a maximum-size weakly stable matching, denoted max-spa-
p, is known to be NP-hard [102]. We show that the max-spa-p problem remains NP-hard
evenwhen the preferences of both students and lecturers are consistent with a single master
list over projects. On the positive side, we show that if every student ranks only projects
offered by a single lecturer, then a maximum-size stable matching can be computed in
polynomial time.

Then we consider the spa-st model, in which lecturers express preferences over students,
and ties are permitted in the preference lists of both students and lecturers. In this setting,
there are three notions of stability: weak, strong, and super-stability. Under weak stability,
stable matchings can differ in size, and the problem of computing a maximum-size weakly
stable matching (max-spa-st) is known to be NP-hard [73,100]. Moreover, the problem is
NP-hard even if the ties are present at the end of preference lists and on one side only, each
tie is of length 2, and there is at most one tie per list [100]. We strengthen this result by

1.3. Contributions and Thesis Outline 10

proving that the problem remains NP-hard even when the instance involves only a single
lecturer.

Finally, we consider the parameterised complexity of spa-p. We introduce a natural struc-
tural parameter, project topics, whereby each project is associated with a project topic and
students express strict preferences over topics rather than over individual projects. We fur-
ther assume that each lecturer has the same capacity as each of the projects that they offer,
so that project and lecturer capacities are uniform. We denote this problem as max-spa-
puc. We prove that max-spa-puc is fixed-parameter tractable when parameterised by the
number of project topics, despite being NP-hard in the general case.

• Chapter 4: Structural results for spa-s. In this chapter, we study the structure of the set
of stable matchings in spa-s, where students have preferences over projects and lecturers
have preferences over students. It is well-known that the set of stable matchings in the
Stable Marriage (sm) and Hospital/Residents (hr) problem forms a distributive lattice un-
der a natural partial order [54]. Moreover, previous work has shown that a similar result
holds for spa-s under the restriction that each student has preferences only over projects
offered by different lecturers [121]. We build substantially on this result by showing that
the set of stable matchings forms a distributive lattice in the general case (without this re-
striction), whereby, students may express preferences over multiple projects offered by the
same lecturer.

We define the meet and join operations on pairs of stable matchings in spa-s, where each
student is assigned to the more preferred (meet) or less preferred (join) of their projects
between two stable matchings. We show that applying either operation to any two stable
matchings always yields another stable matching. Thereafter, we prove that the set of all
stable matchings in a given spa-s instance forms a distributive lattice under the partial
order defined by student preferences. We also present additional structural results that
arise specifically in spa-s due to the possibility that students may find multiple projects
offered by the same lecturer acceptable. These properties do not occur in classical models
such as sm and hr, and they inform our definition of rotations and the meta-rotation poset
which we develop in Chapter 5.

• Chapter 5: Meta-rotation poset for spa-s. In this chapter, we introduce the notion of meta-
rotations, which generalises the classical concept of rotations from the sm and hr models
to the spa-s context. We show that the set of stable matchings in any given instance of
spa-s is in one-to-one correspondence with the closed subsets of a partial order known as
the meta-rotation poset. This meta-rotation poset provides a compact representation of the
set of stable matchings in any spa-s instance. We prove that the meta-rotation poset can be
constructed in polynomial time and used to efficiently traverse the lattice of stable match-
ings. This structure has several key algorithmic consequences: it allows us to enumerate

1.3. Contributions and Thesis Outline 11

all stable matchings, identify all stable pairs, and analyse the relationships between dif-
ferent stable matchings. In addition to these algorithmic applications, our results reveal
new structural properties of the set of stable matchings in spa-s, providing insight into the
computational complexity of related optimisation problems.

Chapter 2

Literature Review

As mentioned earlier, matching problems that include preferences can be broadly classified into
three main categories: bipartite matching with one-sided preferences, bipartite matching with
two-sided preferences, and non-bipartite matching problems. These categories are summarized
in Figure 2.1. In this chapter, we briefly review each of these categories and then focus on
problems within the class of bipartite matching with two-sided preferences, which is the most
relevant to the work presented in this thesis.

Specifically, in Section 2.1, we begin with the Stable Marriage problem (sm), presenting key
results and extensions that are directly relevant to our work. In Section 2.2, we examine the
Hospitals/Residents problem (hr) and its extensions, focusing on the key structural and algorith-
mic results established in the literature. In Section 2.3, we discuss the Student-Project Allocation
problem (spa) and provide a detailed overview of its main variants, highlighting significant al-
gorithmic and structural results. Finally, in Section 2.4, we discuss some models that are closely
related to spa, drawing attention to their similarities and differences.

Bipartite matching problems with one-sided preference: In this setting, we have a set of agents
and a set of indivisible resources (such as houses), where agents express preferences over re-
sources. A well-known example is the House Allocation problem (ha) [3,5,6], where each agent
is assigned at most one house based on their preferences. An extension of this model is the Ca-
pacitated House Allocation problem (cha) [104], where each house can accommodate multiple
agents. In both models, much of the literature focuses on finding matchings that are Pareto-
optimal [5, 104] or Popular [30] 1, and efficient algorithms have been developed to compute
them. More recently, Santhini et al. [136] introduced new notions of optimality for these mod-
els, including the concept of weak dominance, which addresses questions such as: “Does there
exist an assignment that matches at least 50% of applicants to their top choice, and at least 75%
to one of their first or second choices?” They also developed randomised algorithms to find such

1A matching is Pareto optimal if no other matching makes some agents strictly better off without making any
agent worse off. A matching is popular if no other matching is preferred by a majority of agents.

12

13

solutions, particularly in instances with fixed quotas.

Bipartite matching problems with two-sided preferences: In this setting, agents are divided
into two disjoint sets, and both sides rank members of the other. This category includes some of
the most studied problems in matching theory, such as the Stable Marriage problem (sm) [54],
the Hospitals/Residents problem (hr) [43], and the Student–Project Allocation problem (spa) [7].
We review these problems in detail in Sections 2.1 to 2.3. Informally, the sm problem models a
one-to-one matching problem in which each man expresses preferences over all women, and each
woman similarly expresses preferences over all men. The goal is to compute a stable matching, in
which every man is assigned to exactly one woman and vice versa, and there is no pair of a man
and a woman who are not assigned together but would both prefer each other to their assigned
partners.

The Hospitals/Residents problem (hr) generalises the Stable Marriage problem (sm) to a one-to-
many setting. In this model, residents have preferences over hospitals, each hospital has prefer-
ences over residents, and each hospital also has a capacity indicating the maximum number of
residents it can accept. The notion of stability is extended to this setting in a straightforward way.
Further generalisations allow both sides to have capacities, leading to many-to-many matching
models such as the Stable Allocation problem [15,18,33], where each agent may be matched to
multiple partners. Several structural and algorithmic results from the one-to-one sm setting have
been extended to these more general models [14,36,41,90].

Non-bipartite matching problems with preferences: In non-bipartite matching problems, all
participants belong to a single set and express preferences over one another. This differs from
bipartite settings, where agents are partitioned into two disjoint sets, and each agent ranks only
members of the opposite set. A well-known example of a matching problem in the non-bipartite
setting is the Stable Roommates problem (sr) [48, 53, 62], where agents are paired based on
mutual preferences. As in sm and hr, the goal is to compute a stable matching, defined as a
matching in which no pair of agents would both prefer to be matched with each other rather
than with their current partners. In this sense, sr can be viewed as a natural generalisation of
the stable marriage model to a non-bipartite setting.

Unlike sm, where a stable matching is guaranteed to exist for every instance, the Stable Room-
mates problem (sr) has the key limitation that some instances admit no stable matching [54].
Nevertheless, when a stable matching does exist, it can be found using the polynomial-time al-
gorithm of Irving [62]. Moreover, in such cases, all stable matchings include the same set of
assigned agents and are of equal size [54]. For instances that do not admit any stable matching,
Gusfield and Irving [54] raised the question of whether a succinct and verifiable certificate could
be provided to prove the absence of a stable matching. This question was answered affirmatively
by Tan [139,140], who introduced a combinatorial structure known as a stable partition. A stable

2.1. The Stable Marriage Problem 14

partition generalises a stable matching by dividing the set of agents into disjoint subsets, where
each subset is either a singleton (representing an unassigned agent) or a cycle of length at least
two. In each cycle, every agent prefers their assigned neighbours at least as much as any agent
outside the cycle.

Every instance of sr, regardless of whether it admits a stable matching, is guaranteed to admit at
least one stable partition [139]. Moreover, if a stable matching exists, it corresponds to a stable
partition in which all cycles are of length two. As a result, recent research has explored the use of
stable partitions to analyse the structural properties of sr instances [48, 49]. The non-bipartite
setting also includes more general models such as the Stable Fixtures problem (sf) [49, 72, 94]
and the Stable Multiple Activities problem (sma) [23, 24], which are many-to-many generalisa-
tions of sr. In sf, each agent may be assigned to several others, up to a specified capacity, and
has a strict preference list over a subset of the other agents. In the sma model, a pair of agents
may be assigned in many different ways, representing various forms of collaboration or joint ac-
tivity, and agents may express preferences over both their partners and the form of assignment.
Cechlárová and Fleiner [23] show that sma can be reduced to an instance of sr with incomplete
preference lists.

Matching Problems
Involving Preferences

Bipartite
One-Sided Preferences

Bipartite
Two-Sided Preferences Non-Bipartite

House Allocation
[3, 5, 6]

Stable Marriage [43,94]
Hospitals/Residents [99,129]
Workers/Firms [28,36]
Student–Project Allocation [7]
Stable Allocation [15,18]
Classified Stable Matching [60,117]

Stable Roommates [53,62]
Stable Fixtures [49,72]
Stable Multiple Activities
[23,24]
Kidney Exchange [103,132]

Figure 2.1: Classification of matching problems involving preferences.

2.1 The Stable Marriage Problem

The Stable Marriage problem (sm) involves two disjoint sets, typically referred to as men and
women, where each individual has preferences over all members of the opposite set. Each man
lists the women in order of preference, and each woman does the same for the men. The goal is

2.1. The Stable Marriage Problem 15

to find a matching M where every man is paired with exactly one woman, and every woman with
exactly one man, such that there are no blocking pairs. A blocking pair is a man and woman who
are not assigned to each other in M , but who both prefer each other to their current partners.
This problemwas first introduced by Gale and Shapley [43], and has been widely studied in areas
like mathematics, economics, game theory, computer science, and physics [10,17,38,84].

In the classical sm problem, each participant provides a strict ordering of all members of the
opposite set, resulting in complete and strictly ordered preference lists. Several extensions of
this model have been introduced to capture more general and realistic settings. In the Stable
Marriage problem with Incomplete lists (smi), participants find some members of the opposite set
unacceptable, and therefore submit a preference list over only a subset of potential partners. The
sets of men and women may also differ in size, so not all individuals are necessarily assigned.
In the Stable Marriage problem with Ties (smt), each person ranks all members of the opposite
set, but is allowed to express indifference between some participants, resulting in ties in their
preference lists. A more general extension, the Stable Marriage problem with Ties and Incomplete
lists (smti), allows both ties and incomplete preference lists. These models are discussed in more
detail in Section 2.1.2.

2.1.1 Formal definition

Formally, an instance of the Stable Marriage problem (sm) consists of two disjoint sets: a set
U = {m1, m2, . . . , mn} of men and a set W = {w1, w2, . . . , wn} of women. Each man has a
preference list ranking all women in W in order of preference, and each woman has a preference
list ranking all men in U . These preference lists are complete and strictly ordered, meaning that
each person ranks all members of the opposite set in a strict sequence with no ties. A man m is
said to prefer woman wx to woman wy if wx appears before wy on his preference list; similarly, a
woman w prefers man mx to man my if mx appears before my on her list.

A matching M is a set of n disjoint pairs, where each man is assigned to exactly one woman
and each woman is assigned to exactly one man. In a given matching M , we write M(m) to
denote the woman assigned to man m, and M(w) to denote the man assigned to woman w. A
pair (m, w) that does not belong to the matching M is called a blocking pair if both m prefers
w to M(m), and w prefers m to M(w). In this case, both individuals would strictly benefit from
being matched with each other rather than with their current partners. A matching is said to be
stable if it admits no blocking pair. If a blocking pair exists, then the matching is unstable.

Consider the example instance I1 of the stable marriage problem shown in Figure 2.2, which
consists of three men and three women. There are 3! = 6 possible complete matchings, although
not all of them are stable. It can be verified that the matchings M = {(m1, w1), (m2, w2), (m3, w3)}
and M ′ = {(m1, w3), (m2, w1), (m3, w2)} are stable: in each case, there is no pair of agents who
would prefer to be matched to each other over their assigned partners. In contrast, the matching

2.1. The Stable Marriage Problem 16

M∗ = {(m1, w1), (m2, w3), (m3, w2)} is unstable. This is because m3 prefers w1 to his assigned
partner w2, and w1 also prefers m3 to her assigned partner m1, forming the blocking pair (m3, w1)
in M∗.

Men’s preferences Women’s preferences
m1: w1 w2 w3 w1: m2 m3 m1

m2: w2 w3 w1 w2: m3 m1 m2

m3: w3 w1 w2 w3: m1 m2 m3

Figure 2.2: An instance I1 of the Stable Marriage problem with 3 men and 3 women

2.1.1.1 The Gale-Shapley algorithm

It is well known that every instance of the sm problem admits at least one stable matching, and
that such a matching can be found in time O(n2), where n in the number of participants involved,
using the classical Gale–Shapley algorithm [43]. The Gale–Shapley algorithm begins with all
men unassigned. At each step, every unassigned man proposes to the most-preferred woman
on his list to whom he has not yet proposed. Each woman who receives one or more proposals
compares them with her current partner (if any), tentatively accepts the most-preferred among
these, and rejects the rest. Any man who is rejected becomes unassigned and, in a subsequent
step, proposes to the next woman on his preference list to whom he has not yet proposed. The
algorithm proceeds in this manner until every individual is assigned. Since each man proposes
to women in order of his preference list and never proposes to the same woman more than once,
the process is guaranteed to terminate after each man has either been accepted or has proposed
to every woman on his list.

The Gale–Shapley algorithm contains an element of non-determinism, given that the order in
which men make their proposals is not specified. However, Gale and Shapley [43] showed that,
regardless of the order in which proposals are made, the algorithm always produces the same
matching. Moreover, this version of the algorithm, commonly referred to as the man-oriented
Gale–Shapley algorithm, yields the man-optimal stable matching M0, in the sense that each man
is assigned to the best partner he can obtain in any stable matching admitted by the instance. If
the roles of men and women are reversed, so that women propose instead, the resulting woman-
oriented Gale–Shapley algorithm produces the woman-optimal stable matching Mz, in which each
woman is assigned her best possible partner among all stable matchings.

2.1.1.2 Extended Gale Shapley algorithm

An extended version of the Gale–Shapley algorithm (EGS) was introduced in [54] to compute
a stable matching while also deleting certain pairs that cannot appear in any stable matching.
As in the classical Gale–Shapley algorithm, each unassigned man proposes to the most-preferred

2.1. The Stable Marriage Problem 17

woman remaining on his list. If the woman is already assigned to another man m′, she compares
the two and retains the more preferred partner; the other becomes unassigned.

When awomanw becomes assigned to amanm, all menwho appear afterm on her list (called her
successors) are deleted. In other words, for each such man m′, m′ is removed from w’s preference
list and w is removed from m′’s preference list. If w was previously assigned to any of these men,
those assignments are broken. It was shown that none of these successors can be matched with w

in any stable matching. In the EGS algorithm, every proposal that occurs is accepted at the time
it is made. Suppose a man m proposes to a woman w who is currently assigned to some man m′.
Then w must prefer m to m′; otherwise, m would have been removed from her list when she was
first assigned to m′. Since proposals are only made to acceptable partners who have not been
deleted, each proposal is accepted. The algorithm terminates when all agents are assigned.

The resulting preference lists after all deletions have been made are called the man-oriented
Gale–Shapley lists (MGS-lists). Running the algorithm with women proposing instead yields the
woman-oriented Gale–Shapley lists (WGS-lists). The intersection of the MGS-list and WGS-list is
the Gale–Shapley list (GS-list). This list contains all pairs that could possibly appear in a stable
matching, although not all of them necessarily do. The pairs that actually occur in at least one
stable matching of the instance are called stable pairs. In the man-optimal stable matching, each
man is assigned to the first woman on his GS-list, and each woman is assigned to the last man
on hers. The EGS algorithm runs in O(n2) time.

2.1.1.3 Multiple stable matchings

McVitie and Wilson [112, 113] observed that the man-optimal stable matching is also woman-
pessimal, meaning each woman is assigned her worst partner among all stable matchings. Con-
versely, the woman-optimal stable matching is man-pessimal, with each man receiving his worst
partner across all stable matchings in the instance. In addition to the man-optimal and woman-
optimal stable matchings, a single instance of the sm problem may admit several others. For
example, the instance I1 shown in Figure 2.2 admits a third stable matching, {(m1, w2), (m2, w3),
(m3, w1)}, in addition to the matchings M and M ′ highlighted earlier.

More generally, Knuth [85] observed that the number of stable matchings in an sm instance can
grow exponentially with the size of the input n. This result was later strengthened by Irving and
Leather [65], who showed that for each n ≥ 0 that is a power of two, there exists an instance
of size n with at least 2n−1 stable matchings. This means that any brute-force approach that
attempts to examine all stable matchings in order to identify one that satisfies a given optimality
criterion is impractical in the worst case. These observations motivated further investigation into
the structure of the entire set of stable matchings, as discussed in Section 2.1.3.

Interestingly, McVitie and Wilson [112, 113] also presented a recursive version of the Gale–
Shapley algorithm and proposed a method for enumerating all stable matchings in a given in-

2.1. The Stable Marriage Problem 18

stance of the stable marriage problem. Their approach repeatedly applies the Gale–Shapley al-
gorithm and, for each stable matching found, generates new sub-instances by excluding certain
pairs that appear in the previously computed matching. In this way, each stable matching is gen-
erated exactly once, and no matching is repeated. A different approach, based on backtracking
search, was later developed by Wirth [147]. While Wirth’s method is conceptually simpler, it is
less efficient than the algorithm presented by McVitie and Wilson.

2.1.2 Extensions of the Stable Marriage problem (sm)

In this section, we consider three natural relaxations of the Stable Marriage problem. First,
the number of men and women may be unequal, meaning that some agents will necessarily
be unassigned. Second, agents may provide preferences over only a subset of the opposite set
acceptable, resulting in incomplete preference lists. Third, agents may be indifferent between two
or more potential partners, leading to ties in their preference lists.

These relaxations lead to the following extensions of the Stable Marriage problem. In the Stable
Marriage problem with Incomplete lists (smi), agents are allowed to declare some agents in the
opposite set as unacceptable, and can be assigned only to those they consider acceptable. As a
result, some agents may remain unassigned. In the Stable Marriage problem with Ties (smt), each
agent ranks all agents in the opposite set and may express indifference between some of them
by including ties in their preference list. The most general variant is the Stable Marriage problem
with Ties and Incomplete lists (smti), which permits both incomplete lists and ties in preferences.

2.1.2.1 Stable Marriage with Incomplete lists (smi)

In the Stable Marriage problem with Incomplete lists (smi), the sets of men and women, denoted
U and W , need not be of equal size. Each man m ∈ U provides a strictly ordered preference
list over a subset of women in W , and each woman w ∈ W similarly ranks a subset of men in
U . Hence, agents may declare some members of the opposite set as unacceptable, indicating that
they would rather remain unassigned than be matched with those individuals. A woman w is
said to be acceptable to a man m if w appears on m’s preference list, and vice versa. If m and w

find each other acceptable, then (m, w) is called an acceptable pair.

A matching is a set of disjoint pairs (m, w), where each man m ∈ U is assigned to at most one
woman w ∈ W , and vice versa. Each pair in the matching must involve a man and a woman
who are acceptable to one another. It is straightforward to see that in an smi instance, not all
agents can be assigned, since the two sets may be of unequal size. Consequently, the notion of
a blocking pair in smi was redefined by Gusfield and Irving [54]. A pair (m, w) is a blocking
pair with respect to a matching M if (m, w) is an acceptable pair and both (a) and (b) holds as
follows:

(a) either m is unassigned in M , or prefers w to their assigned partner M(m); and

2.1. The Stable Marriage Problem 19

(b) either w is unassigned in M , or prefers m to their assigned partner M(w).

Again, a matching is stable if it admits no blocking pair. A stable matching is guaranteed to
exist in any smi instance, and can be found by a straightforward extension of the Gale–Shapley
algorithm [54]. Moreover, the classical results concerning the man-optimal and woman-optimal
stable matchings carry over naturally to this setting.

Although an arbitrary smi instance may admit many stable matchings, Gale and Sotomayor [44]
observed that all such matchings assign exactly the same subset of agents. Thus, if an agent is
assigned (or unassigned) in one stable matching, then they are assigned (or unassigned) in all of
them. We can think of the agents as being partitioned into two groups: those who are assigned in
every stable matching and those who are never assigned. Consequently, to analyse the structure
of stable matchings in smi, it suffices to focus on the subset of agents who are assigned in every
stable matching. Removing the unassigned agents, along with their entries in the preference lists
of the assigned agents, does not affect the set of stable matchings admitted by the instance [54].

2.1.2.2 Stable Marriage with Ties (smt)

In the Stable Marriage problem with Ties (smt), agents are allowed to express indifference be-
tween some potential partners. This is done by introducing ties in the preference lists, where a
tie represents a group of agents that an agent considers equally acceptable. We say that an agent
strictly prefers one agent to another if the first appears earlier in the list and the two are not in the
same tie. An agent is said to be indifferent between two other agents if those two agents appear
together in the same tie.

When ties are allowed in preference lists, the standard definition of a blocking pair, where both
agents strictly prefer each other to their current partners, no longer applies directly. This is
because an agent may be indifferent between their assigned partner and another acceptable
person. In such cases, it is not straightforward to determine whether reassigning the agent would
actually improve their outcome. This leads to three notions of stability:

• Weak Stability: A matching M is weakly stable if there is no pair (m, w) such that both m

and w strictly prefer each other to their partners in M .

• Strong Stability: A matching M is strongly stable if there is no pair (m, w) /∈ M such that
either m strictly prefers w to M(m), and w prefers or is indifferent between m and M(w),
or w strictly prefers m to M(w), and m prefers or is indifferent between w and M(m).

• Super Stability: A matching M is super-stable if there is no pair (m, w) such that both
agents either strictly prefer each other to their assigned partners in M , or are indifferent
between them and their current partners.

2.1. The Stable Marriage Problem 20

It follows that every super-stablematching is also strongly stable, and every strongly stablematch-
ing is also weakly stable. By arbitrarily breaking the ties in an instance I of smt, one obtains
an instance I ′ of sm, for which any stable matching is also a weakly stable matching in I. Con-
sequently, a weakly stable matching in I can be found in O(n2) time using the Gale–Shapley
algorithm, for example. However, it has been shown that an instance of smt may admit neither
a strongly stable matching nor a super-stable matching. Nonetheless, Irving [63] presented an
O(n4) algorithm for determining whether a strongly stable matching exists and constructing one
if it does, as well as an O(n2) algorithm for deciding whether a super-stable matching exists and
returning such a matching when it does.

2.1.2.3 Stable Marriage with Ties and Incomplete Lists (smti)

The Stable Marriage problem with Ties and Incomplete lists (smti) generalises both smi and smt.
In this setting, agents may omit some members of the opposite set from their preference lists, as
in smi, and may express indifference between two or more acceptable partners by placing them
in a tie, as in smt. The three stability notions defined for smt, namely weak, strong, and super
stability, extend naturally to smti.

To illustrate these blocking pair notionsmore concretely, consider instance I2 shown in Figure 2.3,
which involves two men and two women, with a single tie appearing in the preference list of m2

(In figures involving smti instances, ties are indicated using brackets). The matching M =
{(m1, w1), (m2, w2)} is weakly stable, since no pair of agents prefers each other to their partners
in M . However, M is not strongly stable. The pair (m2, w1) blocks M because m2 is indifferent
between w1 and w2, while w1 prefers m2 to her partner in M , namely m1. In contrast, the
matching M ′ = {(m2, w1)} is weakly stable, strongly stable, and super-stable.

Men’s preferences Women’s preferences
m1: w1 w1: m2 m1

m2: (w1w2) w2: m2

Figure 2.3: Instance I2 of smti with two men and two women.

Similar to smi, we note that a weakly stable matching in a given smti instance always exists. This
can be obtained by arbitrarily breaking ties and then applying the Gale–Shapley algorithm to the
resulting smi instance. However, Manlove et al. [100] showed that the manner in which ties
are resolved can lead to weakly stable matchings of different sizes. For example, in Figure 2.3,
instance I2 admits two weakly stable matchings, M and M ′, of sizes 2 and 1, respectively. They
further proved that max-smti, the problem of computing a maximum-size weakly stable match-
ing, is NP-hard, even in cases where ties appear only at the ends of preference lists, occur on one
side only, and each list contains at most one tie of length two.

2.1. The Stable Marriage Problem 21

Subsequently, Irving et al. [68] showed that max-smti is solvable in polynomial time when each
man’s preference list contains at most two women, even if the women’s lists are of unbounded
length. However, they also showed that the problem remains NP-hard when each man’s prefer-
ence list has length at most 3, and remains so even if each woman’s list also has length at most 3.
Moreover, the problem is not approximable within any factor δ > 1, even when each woman’s list
is of length at most 4. Furthermore, Yanagisawa [148] proved that max-smti is not approximable
within a factor of 33

29 unless P = NP.

Panda and Sachin [127] strengthened these results by examining the structure of preference lists.
They showed that the decision variant of max-smti, denoted com-smti, which asks whether there
exists a complete weakly stable matching in a given smti instance, 2 remains NP-complete even
when each preference list consists of consecutive members with respect to some fixed ordering of
the set of men and the set of women. They also identified a restricted case, denoted smti-step,
in which there exist orderings of the men and women such that each man mi finds acceptable
exactly those women wj with j ≤ i. Under this condition, they showed that the com smti problem
can be solved in O(n2) time.

Given the negative complexity results, several heuristic strategies for max-smti have been pre-
sented, many of which are based on local search techniques [47,57,116]. Alongside these heuris-
tics, approximation algorithms have also been developed [55,67,81,110,126]. The best known
approximation algorithm for the case where ties are allowed on both sides has an approximation
factor of 3

2 [110]. For the case where ties occur only on one side, Iwama et al. [75] gave a 25
17 -

approximation algorithm, which was improved to 22
15 by Huang and Kavitha [61]. Subsequently,

Radnai [128] presented a 41
28 -approximation algorithm, which was later improved to 19

13 by Dean
et al. [32]. The current best approximation factor, 1 + 1

e
, was obtained by Lam and Plaxton [91].

Matsuyama and Miyazaki [108] noted that it is generally difficult to evaluate the quality of ap-
proximation algorithms experimentally, since computing an optimal solution for large instances
of max-smti is often infeasible. To address this, they considered the problem of generating max-
smti instances with known optimal solutions and explored whether an instance generation al-
gorithm could be designed to produce such examples. They showed that if an instance generator
could produce all such instances in polynomial-time, then NP= coNP 3, which is widely believed
to be unlikely. Moreover, they proposed three instance generators that construct restricted ver-
sions of smti instances, for which the optimal solution is known.

Similar to the smt setting, an instance of smti may admit no strongly stable or super-stable
matching [54]. Nonetheless, Manlove [97] showed that, for each of these stronger notions of
stability, the set of agents can be partitioned into those who are assigned in every such matching

2A complete weakly stable matching is a weakly stable matching in which every man and every woman is matched.
3coNP is the class of decision problems where, for every input for which the answer is no, there exists a certificate

that can be verified in polynomial time

2.1. The Stable Marriage Problem 22

and those who are unassigned in all. He also developed polynomial-time algorithms to determine
whether a strongly stable or super-stable matching exists in a given instance, and to construct
one if it does. These algorithms run in O(n4) and O(n2) time, respectively.

2.1.3 Structure of the set of stable matchings in sm and its extensions

In Section 2.1, we noted that an instance of sm admits both a man-optimal and a woman-optimal
stable matching, denoted M0 and Mz, respectively, depending on whether the man-oriented or
woman-oriented version of the Gale–Shapley algorithm is applied. When M0 = Mz, the instance
admits a unique stable matching, as this is the only case in which every man’s best partner is also
his worst. If M0 ̸= Mz, then the instance may admit additional stable matchings besides M0 and
Mz. These two matchings correspond to the extremal elements in the set of stable matchings,
with M0 being optimal for all men and Mz optimal for all women. We note that the set of all stable
matchings in sm, denotedM, exhibits a rich underlying structure. In this section, we explore
compact representations ofM and discuss the algorithmic implications of this structure.

2.1.3.1 Lattice structure in sm

Let I be an instance of sm, and letM denote the set of all stable matchings in I. We define a
partial order onM as follows. Let M and M ′ be two stable matchings inM. We say that M

dominates M ′, denoted M ⪰M ′, if for every man m, either M(m) = M ′(m) (that is, m is assigned
the same partner in both matchings), or m prefers M(m) to M ′(m). Intuitively, M dominates M ′

if every man prefers his partner in M at least as much as his partner in M ′. Under this dominance
relation, the structure (M,⪰) forms a partial order.

Knuth [85], attributing the observation to John Conway, noted that if each man is assigned the
more (or less) preferred of his two partners in two stable matchings M and M ′, the resulting
assignment is itself a stable matching. Consequently, the setM, ordered by⪰, forms a distributive
lattice (see Definition 4.2.3), where the meet (respectively, join) of two stable matchings yields
another stable matching in which each man is assigned the more (respectively, less) preferred of
his two partners. Moreover, the maximum and minimum elements of this lattice correspond to
the man-optimal and woman-optimal stable matchings, respectively. A formal proof of this result
can be found in [54, Section 1.3.1]. For completeness, we restate the key results below.

Lemma 2.1.1 ([54]). Let M and M ′ be two stable matchings in a given instance of sm. Define
their meet, M ∧M ′, as the matching obtained by assigning each man the better of his partners in
M and M ′. Then M ∧M ′ is a stable matching.

Lemma 2.1.2 ([54]). Let M and M ′ be two stable matchings in a given instance of sm. Define
their join, M ∨M ′, as the matching obtained by assigning each man the worse of his partners in M

and M ′. Then M ∨M ′ is a stable matching.

2.1. The Stable Marriage Problem 23

Lemmas 2.1.1 and 2.1.2 imply the following result:

Theorem 2.1.1 ([54]). LetM be the set of all stable matchings in a given instance of the
stable marriage problem. Define a partial order ⪰ onM such that M ⪰ M ′ if and only if
each man prefers his partner in M to his partner in M ′, or is assigned the same partner in
both matchings. Then, the poset (M,⪰) forms a distributive lattice. In this lattice, the meet
M ∧M ′ corresponds to the matching where each man gets his more preferred partner between
M and M ′, while the join M ∨M ′ corresponds to the matching where each man gets his less
preferred partner between M and M ′.

We note that all results concerning the lattice structure extend to the smi setting. The lattice
structure of the set of stable matchings provides a useful foundation for the design of algorithms
for related problems, such as enumerating all stable matchings of a given instance or identifying
one that satisfies additional properties.

However, this structure alone does not immediately lead to efficient algorithms. Since the setM
of stable matchings may be exponentially large, any algorithm that explicitly constructs the entire
lattice will, in the worst case, require exponential time. To address this, Irving and Leather [65]
introduced the rotation poset, a polynomial-sized structure that compactly encodes all stable
matchings of an instance of sm. This poset essentially captures all the different ways in which one
can navigate the lattice of stable matchings, allowing transitions from one matching to another
without generating the full lattice.

2.1.3.2 Rotations in sm

For a stable matching M in an instance I of sm, let sM(m) denote the next woman w on m’s pref-
erence list, that appears after M(m), such that w prefers m to her current partner M(w), if such a
woman exists. A rotation ρ is an ordered sequence ofman–woman pairs {(m0, w0), . . . , (mr−1, wr−1)}
such that, for each i (0 ≤ i ≤ r− 1), the pair (mi, wi) ∈M , and wi+1 = sM(mi), where all indices
are taken modulo r. We say that ρ is exposed in M if every pair in ρ is included in M . If ρ is
exposed in M , we may eliminate ρ. To eliminate a rotation is to reassign each man mi to wi+1,
and all agents not involved in the rotation are unaffected. The resulting matching is denoted by
M/ρ, and is guaranteed to be stable [54,65].

Note that eliminating a rotation ρ causes the men involved in ρ to be strictly worse off, and
the women to be strictly better off. Moreover, every stable matching except the woman-optimal
matching Mz admits at least one exposed rotation [54,65]. Let M be a stable matching in a given
sm instance I. If M ̸= Mz, then there is at least one rotation exposed in M . Let {ρ0, ρ1, . . . , ρk}
denote the set of rotations exposed in M . Eliminating one of these rotations, say ρ0, yields a new
stable matching M/ρ0. In this new matching, the remaining rotations ρ1, . . . , ρk remain exposed,

2.1. The Stable Marriage Problem 24

and additional rotations that were not exposed in M may now become exposed. By repeatedly
eliminating exposed rotations in this way, we move from one stable matching to another. At each
step, the set of exposed rotations will change.

To illustrate the concepts in Section 2.1.3.1 and 2.1.3.2, we present an example sm instance I3

showing the lattice of stable matchings and the corresponding rotations in I3.

Example: The Stable Marriage instance I3, shown in Figure 2.4, consists of 8 men and 8 women.
This instance admits 8 stable matchings, presented in Table 2.1, with M1 as the man-optimal
matching and M8 as the woman-optimal matching. The lattice structure for the set of all stable
matchings in I3 is shown in Figure 2.5, with M1 at the top and M8 at the bottom of the lattice. The
lattice structure forms a directed graph where each vertex represents a stable matching. There is
a directed edge from a vertex M to a vertex M ′ (with M ̸= M ′) if M ⪯M ′ and no intermediate
matching M̂ (distinct from both M and M ′) satisfies M ⪯ M̂ ⪯ M ′. For example, using the
definitions of meet and join from Lemmas 2.1.1 and 2.1.2, it can be verified that M2 = M3 ∧M4

and M5 = M3 ∨M4. Moreover, M2 dominates both M3 and M4, as well as several other stable
matchings.

Men’s preferences Women’s preferences
m1: w5 w7 w1 w2 w6 w8 w4 w3 w1: m5 m3 m7 m6 m1 m2 m8 m4

m2: w2 w3 w7 w5 w4 w1 w8 w6 w2: m8 m6 m3 m5 m7 m2 m1 m4

m3: w8 w5 w1 w4 w6 w2 w3 w7 w3: m1 m5 m6 m2 m4 m8 m7 m3

m4: w3 w2 w7 w4 w1 w6 w8 w5 w4: m8 m7 m3 m2 m4 m1 m5 m6

m5: w7 w2 w5 w1 w3 w6 w8 w4 w5: m6 m4 m7 m3 m8 m1 m2 m5

m6: w1 w6 w7 w5 w8 w4 w2 w3 w6: m2 m8 m5 m3 m4 m6 m7 m1

m7: w2 w5 w7 w6 w3 w4 w8 w1 w7: m7 m5 m2 m1 m8 m6 m4 m3

m8: w3 w8 w4 w5 w7 w2 w6 w1 w8: m7 m4 m1 m5 m2 m3 m6 m8

Figure 2.4: An instance I3 of sm, adapted from Gusfield and Irving [54, page 69]

2.1. The Stable Marriage Problem 25

Matching m1 m2 m3 m4 m5 m6 m7 m8

M1 w5 w3 w8 w6 w7 w1 w2 w4

M2 w8 w3 w5 w6 w7 w1 w2 w4

M3 w3 w6 w5 w8 w7 w1 w2 w4

M4 w8 w3 w1 w6 w7 w5 w2 w4

M5 w3 w6 w1 w8 w7 w5 w2 w4

M6 w8 w3 w1 w6 w2 w5 w7 w4

M7 w3 w6 w1 w8 w2 w5 w7 w4

M8 w3 w6 w2 w8 w1 w5 w7 w4

Table 2.1: The eight stable matchings admitted by instance I3, where each entry shows the
woman assigned to each man.

M1

M2

M3 M4

M5 M6

M7

M8

ρ0

ρ1 ρ2

ρ1ρ2 ρ3

ρ3 ρ1

ρ4

Figure 2.5: Lattice of stable matchings and corresponding rotations in instance I3.

We note that instance I3 admits a total of five rotations, given below:

ρ0 = {(m1, w5), (m3, w8)},

ρ1 = {(m1, w8), (m2, w3), (m4, w6)},

ρ2 = {(m3, w5), (m6, w1)},

ρ3 = {(m7, w2), (m5, w7)},

ρ4 = {(m3, w1), (m5, w2)}.

2.1. The Stable Marriage Problem 26

We now illustrate how eliminating a rotation leads to a new stable matching. Starting from the
man-optimal stable matching for instance I3,

M1 = {(m1, w5), (m2, w3), (m3, w8), (m4, w6), (m5, w7), (m6, w1), (m7, w2), (m8, w4)},

the only rotation exposed in M1, as shown in Figure 2.5, is ρ0 = {(m1, w5), (m3, w8)}. Eliminating
ρ0 involves moving m1 to woman w8 and m3 to woman w5. As a result, we obtain the new stable
matching

M2 = {(m1, w8), (m2, w3), (m3, w5), (m4, w6), (m5, w7), (m6, w1), (m7, w2), (m8, w4)}.

In M2, the rotations ρ1 and ρ2 are now exposed. Figure 2.5 shows the rotations exposed in each
matching, with the corresponding rotations labelled on the edges. By successively eliminating
an exposed rotation at each step, we obtain the next stable matching in the lattice.

2.1.3.3 Rotation poset

Let R denote the set of all rotations that are exposed in at least one stable matching of a given
instance I. Irving and Leather [65] showed that any two rotations in R are either identical or
disjoint; that is, no man–woman pair appears in more than one rotation. Furthermore, there is a
natural partial order on R. Specifically, if a rotation ρ must be eliminated before another rotation
ρ′ can be exposed, then we say that ρ precedes ρ′, denoted ρ ≺ ρ′. This partial order defines the
rotation poset Π = (R,≺). It is known that the number of rotations in Π is bounded by O(m),
where m is the total length of all preference lists in the instance.

A subset R′ ⊆ R is said to be closed if, for every rotation ρ ∈ R′, all rotations ρ′ with ρ′ ≺ ρ are
also contained in R′. Irving and Leather [65] (see also [54, Section 2.5.4]) showed that there is
a one-to-one correspondence between the set of stable matchings and the set of closed subsets
of Π. Starting from any stable matching M in I, we can eliminate the rotations in any closed
subset R′, in any order that respects the partial order, and obtain a different stable matching.
In fact, every stable matching of I can be obtained by eliminating a closed subset of rotations
starting from the man-optimal stable matching. Thus, the set Π encodes the entire set M of
stable matchings.

Gusfield and Irving [54] showed that by constructing the rotation digraphG(M), which is derived
from the rotation poset, it is possible to enumerate all stable matchings in time O(m + n|M|),
where n is the number of agents, m is the total length of all preference lists, and |M| is the
number of stable matchings in the instance. Moreover, each edge in the lattice of stable matchings
corresponds exactly to the elimination of a single rotation in the rotation digraph. The rotation
poset and its associated digraph have also been used to derive complexity bounds and design
efficient algorithms for several stable marriage variants, including the egalitarian and minimum

2.1. The Stable Marriage Problem 27

regret stable matching problems [52].

2.1.3.4 Optimal stable matchings

In certain applications, it is desirable to impose additional optimality criteria on stable matchings
in order to improve overall satisfaction or fairness. One such criterion is the egalitarian stable
matching, which aims to minimise the total dissatisfaction across all participants. For each pair
(mi, wj) in a stable matching M , we define the rank of mi in M to be the position of wj on mi’s
preference list, and the rank of wj in M to be the position of mi on wj ’s preference list; the sum of
all such ranks over all assigned pairs gives the total weight of M . An egalitarian stable matching
is a stable matching with minimum possible weight. In the sm setting, an efficient algorithm
for finding such a matching, which leverages the distributive lattice structure of stable match-
ings, was described by Irving et al. [64, 66]. Another optimality notion is the minimum regret
stable matching, which focuses on minimising the dissatisfaction of the worst-off participant. A
polynomial-time algorithm for finding a minimum regret stable matching was proposed in [52].

2.1.3.5 Polyhedral characterization of stable marriages

The structure of the set of stable matchings has been investigated using a polyhedral approach. In
particular, the set of stable marriages can be described as the set of extreme points of a polytope
known as the stable marriage polytope. This polytope is defined by a set of linear inequalities
that capture the matching constraints (ensuring that each participant is matched to at most one
partner) and the stability constraints (preventing blocking pairs). Vande Vate [144] was the
first to describe this polytope explicitly and to show that each stable matching corresponds to an
extreme point of the polytope. Later, Rothblum [135] provided a simplified proof of this result.
Building on these results, Gusfield and Irving [54] introduced an alternative characterization
using rotations, which also proves that the set of stable matchings corresponds exactly to the
extreme points of the stable marriage polytope.

This polyhedral approach makes it possible to derive results for the sm problem using linear
programming techniques. Furthermore, the formulation of the stable matching polytope enables
the construction of polynomial-time reductions between the stable marriage problem and other
combinatorial optimisation problems, which in turn helps identify and analyse problems that are
structurally equivalent to the stable marriage problem. Two problems A and B are said to be
structurally equivalent if there exists a structure-preserving reduction between them, whereby a
solution is feasible for an instance of A if and only if its corresponding solution is feasible for the
corresponding instance of B, and other essential structural properties are preserved; for more
details, see [13]. In the context of the stable marriage, Gusfield and Irving [54] showed, using
the rotation digraph, that the stable marriage problem is structurally equivalent to the minimum
s-t cut problem.

2.2. The Hospitals/Residents problem (hr) 28

2.1.3.6 Structure of strongly and super-stable matchings

The sets of strongly-stable and super-stable matchings in smti also possess well-defined structural
properties. Manlove [98] showed that the set of strongly stable matchings in smti forms a finite
distributive lattice. Later, Kunysz et al. [87] presented two characterisations of the set of strongly
stable matchings in smti. The first is based on the notion of irreducible matchings. For each
stable pair (a, b), meaning an acceptable pair that can appear in some strongly stable matching,
they define a unique strongly stable matching that is best for all men among those matchings
containing (a, b). This matching is called the irreducible matching corresponding to (a, b). All
such irreducible matchings can be computed in O(nm2) time, where n and m denote the numbers
of vertices and edges in the graph G representing the underlying smti instance. The second
characterisation uses rotations, which generalise the rotation concept from sm to instances with
ties and incomplete lists. They also describe how to compute the rotation poset in O(nm) time.

Similarly, Speiker [138] demonstrated that the set of super-stable matchings in smti also forms
a distributive lattice, with an alternative proof provided by Manlove [98]. Scott [137] intro-
duced the concept of meta-rotations for super-stable matchings, which can be constructed in
O(m2) time, and established a one-to-one correspondence between super-stable matchings and
the closed subsets of the associated poset. More recently, Hu and Garg [59] presented a sim-
pler characterisation of the set of super-stable matchings, based on rotations, which can be con-
structed in O(mn) time. In addition, Kunysz [86] provided a polyhedral characterization of the
set of all strongly stable matchings and proved that the strongly stable matching polytope is inte-
gral. On the other hand, Hu and Garg [59] presented a polyhedral characterization for the set of
all super-stable matchings and showed that the super-stable matching polytope is integral, using
Hall’s theorem.

2.2 The Hospitals/Residents problem (hr)
The Hospital/Residents problem (also known as the College Admissions problem) is a many-to-
one generalisation of the Stable Marriage problem with Incomplete lists (smi), first introduced
by Gale and Shapley [43]. The agents involved are residents and hospitals, with each hospital
having a fixed number of available positions (capacity). A matching is an assignment of residents
to hospitals such that each hospital does not exceed its capacity and each resident is assigned to
at most one hospital. Similar to smi, the goal is to find a stable matching.

2.2.1 Formal definition

Formally, an instance of hr consists of a set R of residents and a set H of hospitals. Each resident
ri ∈ R ranks a subset of hospitals they find acceptable in strict preference order; this defines their
preference list. If a hospital hj appears on ri’s preference list, we say that ri finds hj acceptable.

2.2. The Hospitals/Residents problem (hr) 29

Given two hospitals hj, hk ∈ H, if hj precedes hk on ri’s preference list, we say that ri prefers hj

to hk. Each hospital hj ∈ H also ranks a subset of residents it finds acceptable, which forms its
preference list. The same notion of preference applies to hospitals: given two residents ri, rl ∈ R,
if ri precedes rl on hj ’s preference list, then hj prefers ri to rl. A resident-hospital pair (ri, hj) is
called an acceptable pair if ri finds hj acceptable and hj finds ri acceptable. Each hospital hj has
a capacity cj ∈ Z+, representing the maximum number of residents it can accommodate.

A matching M is an assignment of acceptable resident–hospital pairs such that each resident is
assigned to at most one hospital, and no hospital is assigned more residents than its capacity. If
(ri, hj) ∈ M , we say that hj is assigned ri in M , and we denote by M(hj) the set of residents
assigned to hj. Similarly, M(ri) denotes the hospital assigned to ri. We write |M(hj)| to denote
the number of residents assigned to hj. A hospital hj is said to be undersubscribed if |M(hj)| < cj,
full if |M(hj)| = cj, and oversubscribed if |M(hj)| > cj.

A pair (ri, hj) not in M is called a blocking pair with respect to M if it is an acceptable pair and
both of the following conditions hold:

(a) either ri is unassigned in M or prefers hj to M(ri);

(b) either hj is undersubscribed, or is full in M and prefers ri to its worst-ranked resident in
M(hj).

A matching M is said to be stable if it admits no blocking pair.

Similar to smi, Gale and Shapley [43] showed that a stable matching always exists in any instance
of hr, and it can be found in polynomial time using either the resident-oriented or the hospital-
oriented Gale–Shapley algorithm. Moreover, the algorithm produces a stable matching that is
resident-optimal (and hospital-pessimal) or hospital-optimal (and resident-pessimal), and there
may be multiple stable matchings in a given instance of hr.

2.2.2 Extensions of the Hospitals/Residents problem (hr)
A natural generalisation of hr allows residents (respectively, hospitals) to express indifference
between two or more hospitals (respectively, residents) in their preference lists, in form of ties.
This extension is known as the Hospitals/Residents problem with Ties (hrt). The hrt model
extends smti, and the three stability definitions from smti, namely weak stability, strong stability,
and super-stability, were generalised to hrt by Irving et al. [69,70]. A weakly stable matching in
hrt is defined analogously to stability in hr. For formal definitions of strong and super stability in
hrt, we refer the reader to Manlove [94, Section 1.3.5]. A polynomial-time algorithm for finding
a strongly stable matching, or reporting that none exists, in an hrt instance was given in [69].
Likewise, an algorithm for finding a super stable matching was presented in [70]. Since hrt is
an extension of smti, it follows that every instance of hrt admits a weakly stable matching [69],

2.2. The Hospitals/Residents problem (hr) 30

and weakly stable matchings in hrt may differ in size. Moreover, finding a maximum weakly
stable matching in an instance of hrt (max-hrt) is NP-hard [73].

Many of the approximability results and approximation algorithms for smti can be generalised
to the hrt setting [94, 100]. Király [82] developed a 3

2 -approximation algorithm for max-hrt,
and Yanagisawa [148] showed that there is no approximation algorithm for max-hrt with an
approximation factor better than 33

29 , unless P = NP. Other approaches that have been explored to
solve max-hrt include integer programming techniques [89,109], heuristic algorithms [21,120],
and parameterised complexity [105].

The Hospitals/Residents problem with Couples (hrc) [101] extends hr by allowing certain res-
idents to apply jointly as couples (for example, couples may wish to be assigned to hospitals that
are close to each other). This is achieved by allowing each couple to submit a joint preference
list over pairs of hospitals. The definition of stability in hr can be extended to hrc [94]. In this
setting, a stable matching may not exist; however, it is possible to seek an almost-stablematching,
that is, a matching minimising the number of blocking pairs. Manlove et al. [101] showed that
finding such a matching is NP-hard. In a restricted variant of hrc where each single resident’s
preference list contains at most α hospitals, each couple’s list contains at most β pairs of hospi-
tals, and each hospital’s list contains at most γ residents (referred to as (α, β, γ)-hrc), Manlove
and McDermid [111] showed that deciding whether an instance of (3, 2, 4)-hrc admits a stable
matching is NP-complete. Further results on restrictions, tractability, and hardness for hrc can
be found in [29].

2.2.3 Structure of the set of stable matchings in hr
Similar to sm, an instance I of hr may admit many stable matchings in addition to the resident-
optimal and hospital-optimal stable matchings. Roth and Sotomayor [133] established the fol-
lowing structural properties, known as the Rural Hospitals Theorem 2.2.1, regarding the set of
stable matchings in I.

Theorem 2.2.1 (Rural Hospitals Theorem [44,129,130,133]). Let I be an instance of hr.
Then, the following properties hold in I:

• The same set of residents are assigned in all stable matchings;

• Each hospital is assigned the same number of residents in all stable matchings;

• Any hospital that is undersubscribed in one stable matching is assigned exactly the same
set of residents in every stable matching.

Roth and Sotomayor [133] proved that any two stable matchings can be directly compared based
on the hospitals’ preferences. Suppose M and M ′ are two stable matchings for an instance of

2.3. The Student-Project Allocation problem (spa) 31

hr, and hospital h is assigned different sets of residents in these matchings. If h prefers its worst
resident in M(h) \M ′(h) to its worst resident in M ′(h) \M(h), then h prefers all residents in
M(h) to all residents in M ′(h)\M(h). This result implies that, after excluding residents assigned
to h in both M and M ′, the hospital prefers all residents in one matching to all residents in the
other. It is therefore straightforward to define what it means for the hospitals as a group to prefer
one matching over another. This observation, together with a similar resident-oriented relation,
has been used to show that the set of stable matchings forms a finite distributive lattice [54].

Bansal [14] extended the notion of rotations to the many-to-many stable matching setting, in
which agents on both sides can be matched to multiple partners. In this setting, each agent has a
capacity specifying the maximum number of agents they can be assigned. By introducing meta-
rotations, the authors showed how all stable matchings in a given instance can be enumerated,
and developed a polynomial-time algorithm for finding a stable matching that is optimal in the
sense of minimising the total dissatisfaction score4. Cheng et al. [26] specialised meta-rotations
to the Hospitals/Residents problem (hr) and showed that the structural results developed for the
many-to-many setting also hold in hr. They usedmeta-rotations to identify feasible stablematch-
ings, that is, stable matchings that satisfy additional constraints with a so-called identification
property. Furthermore, they introduced generalised notions of egalitarian and minimum regret
stable matchings for hr, and developed polynomial-time algorithms for finding these matchings.

2.3 The Student-Project Allocation problem (spa)
The Student-Project Allocation problem (spa) is a generalisation of the Hospitals/Residents prob-
lem (hr) involving three sets of entities: students, projects, and lecturers. Each project is offered
by exactly one lecturer, and both lecturers and projects have capacity constraints indicating the
maximum number of students they can accommodate. A matching is an assignment of students
to projects based on preferences, such that each student is assigned to exactly one project, and
the capacity of both projects and lecturers are not exceeded. Applications of spa in academic set-
tings includematching schemes in the School of Computing at the University of Glasgow [88], the
Department of Civil and Environmental Engineering at the University of Southampton [11,56],
and the School of Electrical and Electronic Engineering at Nanyang Technological University,
Singapore [141].

In the spa model, students have preferences over projects, while the presence and nature of lec-
turers’ preferences give rise to three different variants of the model. In the first variant, known
as the Student-Project Allocation problem with lecturer preferences over Students (spa-s) [8], each
lecturer provides preferences over the students who find at least one of their offered projects

4The total dissatisfaction score is defined as the sum of the ranks of assigned partners in each individual’s pref-
erence list; a lower rank means higher preference.

2.3. The Student-Project Allocation problem (spa) 32

acceptable. In the second variant, called the Student-Project Allocation problem with lecturer pref-
erences over Projects (spa-p) [102], each lecturer specifies a strict order of preference over the
projects they offer. A third, more general variant allows lecturers to rank student-project pairs
in strict order of preference, giving rise to the Student-Project Allocation problem with lecturer
preferences over student-project pairs (spa-(s,p)) [37]. In spa-(s,p), each student-project pair on
a lecturer’s list involves a project offered by that lecturer and a student who finds that project
acceptable. Further details on spa-(s,p) can be found in [37,94].
In this thesis, we focus on spa-p and spa-s, which we review in the following sections.

2.3.1 Student-Project Allocation with lecturer preferences over Students
(spa-s)

In this section, we formally define the spa-s model introduced above, describe the notion of
stability in this model, and present known results related to it.

2.3.1.1 Formal definition

Formally, an instance I of spa-s consists of a set of students S = {s1, s2, . . . , sn1}, a set of projects
P = {p1, p2, . . . , pn2}, and a set of lecturers L = {l1, l2, . . . , ln3}. Each project pj ∈ P is offered by
exactly one lecturer. For each lecturer lk ∈ L, let Pk ⊆ P denote the set of projects offered by
lk. The sets P1,P2, . . . ,Pn3 form a partition of P; that is, each project is offered by exactly one
lecturer. Moreover, each project pj has a capacity cj ∈ Z+, representing the maximum number of
students that can be assigned to pj. Similarly, each lecturer lk has a capacity dk ∈ Z+, indicating
the maximum number of students they can supervise. Each student si ∈ S finds certain projects
acceptable; this set of acceptable projects is denotedAi ⊆ P. The student ranks the projects inAi

in strict order of preference, forming their preference list. Similarly, each lecturer lk ∈ L provides
a strict preference ordering over the students who find at least one project in Pk acceptable. We
denote this preference list by Lk.

A pair (si, pj) ∈ S × P, where project pj is offered by lecturer lk, is called an acceptable pair if
and only if si finds pj acceptable and lk finds si acceptable. Formally, this means pj ∈ Ai and
si ∈ Lk. For each lecturer lk, we assume that max{cj : pj ∈ Pk} ≤ dk ≤

∑
pj∈Pk

cj, where Pk is the
set of projects offered by lecturer lk. This means that the capacity dk of lk is at least the largest
capacity among the projects in Pk and at most the sum of the capacities of all projects in Pk. We
denote by Lk

j the projected preference list of lecturer lk for project pj. This list is obtained from
Lk by removing all students who do not find pj acceptable; the order of the remaining students
is inherited from Lk.

An assignment M for an instance I of spa-s is a set of acceptable pairs (si, pj) ∈ S × P such
that (si, pj) ∈ M only if pj ∈ Ai. If (si, pj) ∈ M and lk is the lecturer offering pj, we say that

2.3. The Student-Project Allocation problem (spa) 33

si is assigned to project pj and lecturer lk; equivalently, pj and lk are assigned to si. The size
of M , denoted |M |, is the number of student-project pairs it contains. We denote by M(si) the
project assigned to si (if any), by M(pj) the set of students assigned to pj, and by M(lk) the set
of students assigned to lecturer lk. A project pj is undersubscribed, full, or oversubscribed in M if
|M(pj)| is less than, equal to, or greater than its capacity cj, respectively. Similarly, a lecturer lk

is undersubscribed, full, or oversubscribed depending on whether |M(lk)| is less than, equal to, or
greater than its capacity dk, respectively. Furthermore, a project pj is non-empty if |M(pj)| > 0.

Finally, an assignment M is a matching if:

• each student is assigned to at most one project, i.e., |M(si)| ≤ 1 for each si ∈ S;

• no project exceeds its capacity, i.e., |M(pj)| ≤ cj for each pj ∈ P;

• no lecturer exceeds their capacity, i.e., |M(lk)| ≤ dk for each lk ∈ L.

Definition 2.3.1 (Stability in spa-s [7]). Let I be an instance of spa-s and M a matching
in I. An acceptable pair (si, pj) /∈M is a blocking pair if:
(S1) si is either unassigned in M , or prefers pj to their assigned project M(si),
and one of the following holds for project pj and lecturer lk (where lk offers pj):

(P1) Both pj and lk are undersubscribed in M .

(P2) pj is undersubscribed, lk is full, and si ∈M(lk).

(P3) pj is undersubscribed, lk is full, and lk prefers si to the worst student in M(lk).

(P4) pj is full, and lk prefers si to the worst student in M(pj).
A matching is stable if it admits no blocking pairs.

Intuitively, the blocking pair definition tries to capture all the different ways in which a student
si and a lecturer lk could both improve relative to a matching M if si were assigned to project
pj. For this to occur, si must either be unassigned in M , or must prefer pj to their current project
M(si) (Condition S1). On the lecturer side, several situations may allow lk to accept si. If both
pj and lk are undersubscribed, then lk can take on si (Condition P1). If lk is full but si is already
assigned in M to a project offered by lk, then lk will agree to this switch since the number of
students assigned to lk does not change and pj has space for si (Condition P2).

If, however, lk is full and si is not currently assigned in M to a project offered by lk, then lk cannot
accept si without first removing one of their assigned students. Lecturer lk would be willing to
do this only if they prefer si to their worst assigned student, and provided that pj also has space
for si (Condition P3). Finally, if pj itself is full, then lk cannot accept si onto pj without first

2.3. The Student-Project Allocation problem (spa) 34

removing a student currently assigned to pj. Again, lk would only agree to this if they prefer si

to the worst student currently assigned to pj (Condition P4).

2.3.1.2 Example.

An example spa-s instance is shown in Figure 4.1. Here, the set of students is S = {s1, s2, . . . , s5},
the set of projects is P = {p1, p2, . . . , p5}, and the set of lecturers is L = {l1, l2}. Each student
has a preference list over the projects they find acceptable. For example, s1’s preference list is
p1, p2, and s2’s preference list is p2, p3. Also, lecturer l1 offers p1, p2, p5, while lecturer l2 offers
p3, p4. Each lecturer ranks students in order of preference. In this example, l1’s preference list is
s4, s5, s3, s1, s2, and the projected preference list of l1 for p1 includes s3, s1, ranked in that order.

Students’ preferences Lecturers’ preferences Offers

s1: p1 p2 l1: s4 s5 s3 s1 s2 p1, p2, p5

s2: p2 p3 l2: s2 s3 s5 s4 p3, p4

s3: p3 p1

s4: p4 p5

s5: p5 p4

Project capacities: c1 = c2 = c3 = c4 = c5 = 1

Lecturer capacities: d1 = 3, d2 = 2

Figure 2.6: An instance I1 of spa-s

With respect to the spa-s instance I1 shown in Figure 4.1, the matching M1 = {(s1, p1), (s2, p2),
(s3, p3), (s4, p4), (s5, p5)} is a stable matching, as it does not admit any blocking pair. On the other
hand, the matching M2 = {(s1, p2), (s2, p3), (s3, p1), (s4, p4)} is not stable since s5 is unassigned,
and both p5 and l1 are undersubscribed.

2.3.1.3 Structural and algorithmic results for spa-s

We note that the Hospitals/Residents problem (hr), discussed in Section 2.2, is a special case of
spa-s where each lecturer offers exactly one project, and the capacity of each project matches that
of the lecturer offering it. In this setting, projects and lecturers are essentially indistinguishable.
Consequently, several structural properties known for hr can be naturally generalized to spa-s.

Similar to hr [43], Abraham et al. [8] proved that every spa-s instance admits at least one
stable matching, which can be found in polynomial-time, although many stable matchings may
exist. They developed two polynomial-time algorithms for spa-s: one student-oriented and one
lecturer-oriented. In the student-oriented algorithm, each unassigned student who has a non-
empty list applies to the first project pj on their list, and become provisionally assigned to that
project and lecturer. If pj is oversubscribed, then lk rejects the worst student sr assigned to pj.

2.3. The Student-Project Allocation problem (spa) 35

The pair (sr, pj) is subsequently deleted (in the sense that pj is deleted from sr ’s list and sr is
deleted from Lj

k). Similarly, if the lecturer lk is oversubscribed then lk rejects their worst assigned
student sr. Again, the pair (sr, pt) is deleted, where pt was the project most recently assigned to
sr. The student-oriented algorithm produces a student-optimal stable matching, in which each
student is assigned their best possible project among all stable matchings. The stable matching
produced by the lecturer-oriented algorithm is considered lecturer-optimal. However, the notion
of optimality for lecturers differs slightly: while it can be viewed as lecturer-optimal, this holds
in a precise but somewhat weaker sense. We discuss this further in Section 4.2.1.2.

Abraham et al. [8] also presented a set of structural properties exhibited by spa-s instances,
known as the Unpopular Projects Theorem [121]. This theorem, formally stated in Theorem 4.2.1,
is analogous to the Rural Hospitals Theorem (Theorem 2.2.1) for hr, and some of its properties
generalise naturally to spa-s. These structural results have provided the foundation for charac-
terising the set of stable matchings. In particular, Olaosebikan [121] showed that when each
student ranks only projects offered by different lecturers, the set of stable matchings forms a
distributive lattice. In Chapter 4, we extend this result by proving that the lattice structure holds
without this restriction, thus generalizing results from the hr model to the more complex spa-s
setting.

2.3.2 Lecturer preferences over students including ties (spa-st)
Abraham et al. [8] proposed an extension of spa-s, where students (respectively, lecturers) may
have ties in their preference lists indicating indifference between two or more projects (respec-
tively, students). This model is known as the Student-Project Allocation problem with lecturer
preferences over Students including Ties (spa-st). We note that smti is a special case of spa-st
in which there are an equal number of projects and lecturers, each lecturer offers exactly one
project, and the capacity of each project and lecturer is one. Similar to smti (discussed in Sec-
tion 2.1.2.3), three notions of stability arise in spa-st, namely weak stability, strong stability, and
super-stability.

Weak stability in spa-st is defined similarly to stability in spa-s, and as in the spa-s case, a weakly
stable matching is guaranteed to exist in every instance of spa-st. Such a matching can be found
by breaking ties arbitrarily in the spa-st instance to form a spa-s instance, and then using the
algorithm described in Section 2.3.1.3 to find either a student-optimal or lecturer-optimal stable
matching [8]. However, in contrast to spa-s, weakly stable matchings in spa-stmay have different
sizes. This leads to the problem of finding a weakly stable matching that assigns as many students
as possible to projects, denoted max-spa-st. We recall that max-smti, which is a special case of
max-spa-st, is NP-hard [100]; thus, it follows that max-spa-st is also NP-hard.

To cope with this, Cooper and Manlove [27] described a 3
2 -approximation algorithm for max-

spa-st that finds a weakly stable matching of size at least two-thirds that of a maximum weakly

2.4. Related spa models 36

stable matching. Under the other two stability criteria (strong stability and super-stability), an
instance of spa-st need not admit a stable matching. Olaosebikan and Manlove [122] presented
a polynomial-time algorithm to find a strongly stable matching or to report that none exists.
The same authors described a polynomial-time algorithm for finding a super-stable matching or
reporting that no such matching exists [123].

2.3.3 Lecturer preferences over projects (spa-p)
The variant of spa where lecturers provide preferences over the projects that they offer is known
as Student-Project Allocation problem with lecturer preferences over Projects (spa-p) [95,102,124].
Manlove and O’Malley [102] showed that, in a given instance of spa-p, stable matchings can
have different sizes. This has motivated the problem of finding a stable matching of maximum
size, known as max-spa-p, which is NP-hard even when every project and lecturer has capac-
ity one [102]. The authors provided a 2-approximation algorithm, and subsequently Iwama et
al. [74] presented an improved 3

2 approximation algorithm, and showed that max-spa-p is not
approximable within a factor of 21

19 .

Manlove et al. [95] later described an Integer Programming model for max-spa-p and showed
that the problem remains NP-hard even when there are only two lecturers, but becomes tractable
when there is a single lecturer [96]. Furthermore, (3, 3)-max-spa-p, where each preference list
has length at most three, is also NP-hard. A different notion of stability, known as strong stability,
was introduced by O’Malley [124], who also presented a polynomial-time algorithm for finding
a strongly stable matching in spa-p or reporting that none exists.

2.4 Related spa models

Fleiner [39, 40] recently introduced a matroid framework for analysing stable matchings in bi-
partite matching problems. In this formulation, stable matchings are characterised as matroid
kernels. The spa-s model can be embedded into this framework by viewing the set of students
as a partition matroid and representing lecturers using a truncation of a direct sum of uniform
matroids, as noted in [8]. In this representation, the bipartite graph is modelled as a multigraph,
with vertices on one side corresponding to students, vertices on the other side to lecturers, and
edges representing acceptable student–project pairs.

A structural property in Fleiner’s framework extends the well-known Rural Hospitals Theorem:
if the matroid kernel for a particular stable matching does not span the entire ground set, then
exactly the same subset is spanned in every stable matching. This generalises the property that
any agent who is undersubscribed in one stable matching will be assigned the same set of partners
across all stable matchings. However, this property does not hold in spa-s, where a project or
lecturer might be undersubscribed in one stable matching but receive different sets of students in

2.4. Related spa models 37

another. This observation suggests that although spa-s can be embedded into Fleiner’s matroid
framework, certain structural and optimality properties do not necessarily carry over.

The Laminar Classified Stable Matching (lcsm) model introduced by Huang [60] is a gener-
alization of hr, consisting of institutes and applicants who have preferences over one another.
Each institute classifies applicants into a laminar family of classes and specifies upper and lower
bounds on the number of applicants it can accept from each class. The authors noted that lcsm
reduces to a special case of spa-s when the classifications form simple partitions and no lower
bounds are imposed. We note that lcsm does not capture the cases in spa-s where a student may
be assigned to different projects offered by the same lecturer across different stable matchings.

Chapter 3

Complexity Results for Restricted Variants
of spa

3.1 Introduction

A common approach to addressing the computational hardness of matching problems is to con-
sider restricted versions of the input instances under which the problem becomes tractable, or
to explore whether efficient algorithms can be developed by focusing on specific structural pa-
rameters. In this chapter, we explore this idea in the context of the Student–Project Allocation
problem, focusing on two variants: spa-p, where both students and lecturers have preferences
over the projects they offer, and spa-st, where students have preferences over projects, lecturers
have preferences over students who find their projects acceptable, and ties may occur in both
students’ and lecturers’ preference lists. Both variants were introduced in Sections 2.3.2 and
2.3.3.

We recall that an instance of spa-p may admit stable matchings of different sizes, while an in-
stance of spa-st may admit weakly stable matchings of different sizes. Moreover, the problem of
finding a stable matching of maximum size in both models is NP-hard [100, 102]. Our goal is
to understand how natural restrictions on the input, such as placing bounds on the ordering of
agents’ preference lists, or exploiting specific structural parameters, influence the complexity of
finding a maximum-size stable matching. In both problems, we consider restrictions on the num-
ber of lecturers involved and the use of a master list of projects. These restrictions are motivated
by real-world matching schemes, where practical considerations may limit the way preferences
are expressed.

For example, the use of master lists has featured in applications such as the Medical Training
Application Service (MTAS) for allocating junior doctors to medical posts in the UK [125]. In
this setting, applicants were assigned numerical scores based on their academic records and
application forms, and a master list containing ties was derived from these scores. There are

38

3.1. Introduction 39

also settings where the presence of a master list simplifies the problem. The variant of max-smti
in which all ties are on one side and occur at the ends of preference lists is known to be NP-
hard [100]. However, if there is a master list on one side, with a single tie at the tail of the list,
and all preferences on the other side are strict (with or without a master list), then a maximum-
size weakly stable matching can be found in polynomial time. This is an example where the
presence of a master list makes the problem easier.

We then consider spa-p from the perspective of parameterised complexity. Fixed-parameter
tractable algorithms have been developed for several NP-hard variants of matching problems,
including max-smti and max-hrt, but no such results are currently known for spa-p. Here, we
consider a new variant of spa-p, where we introduce a parameter, project topics, such that each
project belongs to a single topic. This parameter may arise naturally in university settings, where
multiple projects fall under a common topic, and students are indifferent between projects within
the same topic. As a result, students express strict preferences over topics rather than over indi-
vidual projects. In this context, the project’s topic serves as a particularly meaningful parameter,
as it reflects how projects are grouped in practice and how both students and lecturers may
structure their preferences over such projects in real academic settings.

3.1.1 Background and motivation

As noted in Section 2.1.2.3, computing a maximum-size weakly stable matching in smti is NP-
hard [100], with similar results holding for hrt [102] and spa-st [96]. These problems remain
intractable even under strong restrictions, such as bounded preference list length or when each
tie is of length at most two [68, 71, 100, 137]. In contrast, several stable matching problems in
the smt setting, such as generating weakly stable matchings, identifying all weakly stable pairs,
or computing an egalitarian matchings, are solvable in polynomial time. Moreover, when agents
follow a master list, these problems often admit faster or simpler algorithms than in the general
case.

We recall that max-spa-st is the problem of computing a weakly stable matching of maximum
size in a given instance of spa-st. Moreover, this problem is NP-hard. This follows from the fact
that max-smti is NP-hard, and since smti is a special case of spa-st, this implies the NP-hardness
of max-spa-st. Similarly, the problem of finding a maximum-size stable matching, known as max-
spa-p, is also NP-hard [102]. This result holds even under strong restrictions, such as when only
two lecturers are involved or when all preference lists have length at most three [96]. Further-
more, the best known approximation algorithm for max-spa-p achieves a performance guarantee
of 3

2 [74].

These complexity results motivate the study of restricted variants of the problem, with the aim
of identifying the boundary between tractable and intractable cases. For example, bounding
the lengths of preference lists has been shown to yield efficient algorithms for max-smti [68],

3.1. Introduction 40

illustrating that certain restrictions on the input can significantly influence the computational
complexity. In this chapter, we examine the complexity of max-spa-p and max-spa-st under sim-
ilar restrictions. As we will show, even seemingly simple constraints can determine whether a
problem is solvable in polynomial time or remains NP-hard.

3.1.2 Contributions and structure of the chapter

The results presented in this chapter are grouped into two parts. The first part focuses on classical
complexity results. In Section 3.2, we formally define spa-st and in Section 3.2.2, we prove that
computing a maximum size weakly stable matching, known as max-spa-st, remains NP-hard
even when the instance contains only a single lecturer. We then turn our attention to the spa-p
setting in Section 3.3. In Section 3.3.2, we observe that max-spa-p remains NP-hard even when
the preference lists of both students and lecturers are derived from a master list of projects. On
the positive side, in Section 3.3.3, we provide a polynomial-time algorithm for max-spa-p-sl. In
this setting, each student finds acceptable only the projects offered by a single lecturer. Finally, in
Section 3.3.4, we show that when all students have identical preferences over projects, max-spa-p
is also solvable in polynomial time.

The second part, which forms the main contribution of this chapter, focuses on the parameterised
complexity of max-spa-p. In Section 3.4.1, we provide a brief background on known FPT results
for stable matching problems. In Section 3.4.2, we present a new variant of spa-p in which
we introduce a natural parameter, project topics, such that both students and lecturers express
strict preferences over project topics but are indifferent between projects belonging to the same
topic. As a further restriction, we impose uniform capacities, meaning that each lecturer and
each project they offer have the same capacity. We refer to this variant as spa-p with uniform
capacities, abbreviated spa-puc.

We note that computing a maximum-size stable matching in spa-puc is NP-hard, even under
uniform capacities, since max-spa-p is NP-hard even when each lecturer and project capacity is
one. Also, given individual preference lists, we can first derive preferences over project topics and
then compute, based on these, a partition of students and lecturers into types that satisfies the
definition of a typed instance. In Sections 3.4.4 and 3.4.5, we prove that finding a maximum-size
stable matching in spa-puc is fixed-parameter tractable when parameterized by the number of
project topics. The result follows from an Integer Linear Programming (ILP) formulation whose
number of variables depends only on the number of topics. This provides a positive result for a
subclass of spa-p instances, particularly when the number of project topics is small.

3.2. Complexity result for spa-st under weak stability 41

3.2 Complexity result for spa-st under weak stability

In this section, we focus on the spa-st problem. We begin by formally defining spa-st in Sec-
tion 3.2.1, before presenting our results in Section 3.2.2. All notation and terminology introduced
for spa-s in Section 2.3.1 extend naturally to spa-st, with the key distinction that preference lists
of students and lecturers in spa-st may contain ties.

3.2.1 Formal definition of spa-st
Formally, an instance I of spa-st consists of three sets: a set of students S = {s1, s2, . . . , sn1}, a
set of projects P = {p1, p2, . . . , pn2}, and a set of lecturers L = {l1, l2, . . . , ln3}. A pair (si, pj) is
acceptable if project pj appears on student si’s preference list and si appears on the preference
list of the lecturer lk, who offers pj. As in smti, three notions of stability arise when preferences
include ties: weak stability, strong stability, and super-stability [54,94,122,123]. In this chapter,
we focus on weak stability. We note that weak stability in spa-st is defined in the same way as
stability in spa-s, which we restate as follows:

Definition 3.2.1 (Weak stability in spa-st). Let I be an instance of spa-st and M a match-
ing in I. An acceptable pair (si, pj) /∈M is a blocking pair for M if the following conditions
hold:

(S1) si is unassigned in M , or

(S2) si is assigned in M but prefers pj to their assigned project M(si),

and one of the following holds for project pj and lecturer lk offering pj:

(P1) Both pj and lk are undersubscribed in M .

(P2) pj is undersubscribed in M , lk is full in M , and si ∈M(lk)

(P3) pj is undersubscribed in M , lk is full in M , and lk prefers si to the worst student in
M(lk).

(P4) pj is full in M , and lk prefers si to the worst student in M(pj).

To illustrate that weakly stable matchings in spa-st may differ in size, consider the instance I2

shown in Figure 3.1, which involves three students, three projects, and two lecturers. Student
s1 is indifferent between projects p3 and p2 (indifference is indicated by round brackets in the
preference lists). This instance admits two weakly stable matchings of different sizes: M1 =
{(s1, p3), (s3, p2)} and M2 = {(s1, p2), (s2, p3), (s3, p1)}.

3.2. Complexity result for spa-st under weak stability 42

Students’ preference Lecturers’ preference offers
s1: (p3 p2) l1: s1 s3 p1, p2

s2: p3 l2: s1 s2 s3 p3

s3: p3 p2 p1

Project capacities: c1 = 2; c2 = c3 = 1
Lecturer capacities: d1 = 2, d2 = 1

Figure 3.1: An instance I2 of spa-st.

3.2.2 Complexity of max-spa-st with one lecturer

In this section, we consider the complexity of max-spa-st, under the restriction that there is only
one lecturer in the instance. Let I be an instance of spa-st with one lecturer, and let s+(I) denote
the size of a maximum size stable matching in I. We show that finding a maximum size stable
matching in spa-st even under this restriction is NP-complete by presenting a polynomial-time
reduction from a restricted variant of the Stable Marriage problem with Ties and Incomplete
Lists (smti) involving master lists on both sides. This variant, known as complete smti-2ml, is
defined next.

3.2.2.1 complete smti-2ml

In smti, each man and woman may omit certain partners off their preference lists (incomplete
lists) and may be indifferent between two or more acceptable partners (ties). A matching is said
to be weakly stable if it admits no blocking pair in which both agents prefer each other to their
current partners. The variant smti-2ml assumes that preference lists are derived from master
lists on both sides, i.e., a master list of men from which the women’s preferences are derived,
and a master list of women from which the men’s preferences are derived. A master list of men
is a single list containing all men, possibly with ties. Each woman’s preference list contains her
acceptable partners ranked precisely according to the master list. Thus, the preference list of
each woman w follow the master list exactly, except that each man m that w finds unacceptable
is deleted. A master list of women is defined analogously.

Let max smti-2ml be the problem of computing a maximum size weakly stable matching in
an instance of smti-2ml. The corresponding decision problem is max smti-2ml-d, which asks
whether there exists a weakly stable matching of size at least k, for a given integer k. Irving
et al. [71] showed that max smti-2ml-d is NP-complete, even under various restrictions on the
positions and lengths of ties in the master lists, as well as on the lengths of individual preference
lists. We focus on a special case, referred to as complete smti-2ml, in which the number of
men equals the number of women, and the target size of the matching is exactly n, where n is
the number of men (and women). Finding a weakly stable matching of size n, that is a complete
weakly stable matching, is NP-complete [71].

3.2. Complexity result for spa-st under weak stability 43

Theorem 3.2.1 ([71]). complete smti-2ml is NP-complete:

Name: complete smti-2ml
Instance: An instance of smti-2ml with n men and n women.
Question: Does the instance admit a weakly stable matching of size n?

3.2.2.2 max-spa-st with one lecturer

We prove that this problem is NP-complete by reducing from the known NP-complete problem
complete smti-2ml. To do so, we first define the following decision problem:

Name: max-spa-st with one lecturer
Instance: An instance I of spa-st with one lecturer, and an integer k ∈ Z+.
Question: Does there exist a stable matching M in I such that |M | ≥ k?

Theorem 3.2.2. max-spa-st is NP-complete even when there is only one lecturer involved.
The result holds even if each project has capacity 1.

We first note that max-spa-st with one lecturer is in NP, since given a matching M , we can verify
in polynomial time whether M is stable and whether it has size at least k. Let I ′ be an instance
of complete smti-2ml, consisting of n men and n women. We construct a corresponding spa-st
instance I as follows.

For each man mi in I ′, introduce a student si in I. For each woman wj, create a project pj with
capacity 1. All projects are offered by a single lecturer l, who has capacity n. The lecturer’s
preference list is derived from the master list of men in I ′: for each man mi, if mi appears
(possibly in a tie), the corresponding student si is added in the same position, preserving any
ties. Each student si’s preference list is identical to the preference list of the corresponding man
mi, replacing each woman wj with the corresponding project pj.

We set the target size k in the constructed instance I to be n, where n is the number of men
and women in the original complete smti-2ml instance I ′. That is, we ask whether I admits a
weakly stable matching of size at least k = n. We claim that I ′ admits a complete weakly stable
matching of size n if and only if I admits a weakly stable matching of size k.

Lemma 3.2.1. If I ′ admits a complete weakly stable matching M ′ of size n, then I admits a weakly
stable matching M of size at least k, where k = n.

Proof. Suppose I ′ admits a complete weakly stable matching M ′ of size n. We construct a match-
ing M in I by assigning si to pj whenever mi is assigned to wj in M ′. Since there are exactly n

3.2. Complexity result for spa-st under weak stability 44

men and women in I ′ and |M ′| = n, all students in I are assigned, and thus lecturer l, who offers
all projects, is assigned exactly n students. Clearly, M is a valid matching in I, since each student
is assigned to at most one project, each project has capacity one and is not oversubscribed, and
the lecturer, who offers all projects, is assigned no more than n students in total.

Now suppose, for contradiction, that M admits a blocking pair (si, pj) in I. Then either si is
unassigned in M or si prefers pj to M(si), and one of the following conditions holds:

(a) both pj and l are undersubscribed in M .

(b) pj is undersubscribed in M , l is full in M , and si ∈M(lk)

(c) pj is undersubscribed in M , l is full in M , and l prefers si to the worst student in M(l).

(d) pj is full in M , and l prefers si to the worst student in M(pj).

By construction of M , all n students in I are assigned to n different projects. Moreover, each
project has capacity one and is offered by the single lecturer l, whose total capacity is also n.
Therefore, both pj and l are full in M , ruling out cases (a), (b), and (c). Case (d) implies that
l prefers si to the worst student in M(pj), say st. Moreover, (si, pj) /∈ M . But by construction,
this would translate to a pair (mi, wj) /∈M ′ who would prefer to be assigned to each other than
their assigned partners in I ′. However, (mi, wj) would block M ′, a contradiction. Therefore, M

is stable. Finally, by construction, |M | = |M ′| = k = n, and so M is a weakly stable matching in
I of size n.

Lemma 3.2.2. If I admits a weakly stable matching M of size at least k, then I ′ admits a complete
weakly stable matching M ′ of size n.

Proof. Suppose that I admits a weakly stable matching M of size k. We construct a matching M ′

in I ′ by including the pair (mi, wj) in M ′ for each (si, pj) ∈M . This yields a valid matching in I ′:
since no student is multiply assigned in M , it follows that no man is assigned to more than one
woman in M ′.

We now show that M ′ is a complete weakly stable matching. Suppose for contradiction that there
exists a pair (mi, wj) that blocks M ′ in I ′. Then mi is either unassigned in M ′ or prefers wj to
M ′(mi), and wj is either unassigned or prefers mi to M ′(wj). If both mi and wj are unassigned
in M ′, this would mean that the corresponding student si is unassigned in M , and both pj and l

are undersubscribed in M . This yields a blocking pair in M , a contradiction.

Otherwise, suppose mi prefers wj to his assigned partner M ′(mi) and wj is assigned to some
man mr. Then the corresponding student si prefers pj to M(si), and pj is full with some student
sr. Since all projects have capacity one and are offered by the single lecturer l, and since all

3.3. Complexity results for spa-p 45

n students are assigned in M , l must be full. Hence, l prefers si to sr, and (si, pj) blocks M ,
a contradiction. Therefore, no such blocking pair exists and M ′ is a complete weakly stable
matching in I ′. Moreover, since M has size n and each assigned pair in M corresponds to a
unique pair in M ′, we have |M ′| = |M | = n, completing the proof.

By Lemmas 3.2.1 and 3.2.2, we have shown that I ′ admits a complete weakly stable matching of
size n if and only if I has a weakly stable matching M of size at least k. This completes the proof.

3.3 Complexity results for spa-p
In this section, we examine how restrictions on preference lists influence the complexity of max-
spa-p. We begin in Section 3.3.1 by formally defining the spa-p model. In Section 3.3.2, we
consider the variant of spa-p in which preference lists are derived from a master list of projects.
In Section 3.3.3, we study another case, denoted spa-p-sl, where each student ranks only projects
offered by the same lecturer, and present a polynomial-time algorithm for computing a maximum
stable matching in spa-p-sl.

3.3.1 Formal definition of spa-p
Formally, an instance I of spa-p consists of a set S = {s1, . . . , sn1} of students, a set P =
{p1, . . . , pn2} of projects, and a set L = {l1, . . . , ln3} of lecturers. Unlike spa-s, lecturers rank
their offered projects in strict order instead of ranking students. All notation and terminology
from spa-s apply, except for stability, which we define next.

Definition 3.3.1 (Stability in spa-p [102]). Let I be an instance of spa-p and M a matching
in I. An acceptable pair (si, pj) /∈ M is a blocking pair for M if pj is undersubscribed in M

and the following conditions hold for both student si and lecturer lk, who offers pj:

(S1) si is either unassigned in M , or

(S2) si prefers pj to their assigned project M(si).

and one of the following holds for lecturer lk:

(L1) si ∈M(lk) and lk prefers pj to M(si).

(L2) si /∈M(lk) and lk is undersubscribed in M .

(L3) si /∈M(lk) and lk prefers pj to their worst non-empty project in M .

A matching may also be undermined by a group of students acting together, forming a coalition.
Formally, given a matching M , a coalition is a sequence of students C = ⟨si0 , . . . , sir−1⟩ for some

3.3. Complexity results for spa-p 46

r ≥ 2, where each student sij
(for 0 ≤ j ≤ r − 1) is assigned in M and prefers the project

assigned to sij+1 over their own assignment M(sij
), with addition modulo r. If all students in the

coalition simultaneously swap to the project of the next student in the sequence, each becomes
strictly better off, while the overall size of the matching remains unchanged. Moreover, since all
lecturers are assumed to be indifferent between students assigned to their projects, no lecturer
is worse off. A matching is said to be coalition-free if it admits no such coalition. We define a
matching M to be stable if it admits no blocking pairs and it is coalition-free.

For example, in the spa-p instance I3 shown in Figure 3.2, the matching M1 = {(s1, p1), (s2, p2),
(s3, p3)} admits a coalition {s1, s2}, since both students prefer each other’s assigned project to
their own. By swapping their assigned projects, we obtain M2 = {(s1, p2), (s2, p1), (s3, p3)},
in which both s1 and s2 receive a more preferred project. For instance, the matchings M2 =
{(s1, p2), (s2, p1), (s3, p3)} and M3 = {(s1, p3), (s2, p1)} admit no blocking pairs and are coalition-
free. Hence, they are both stable in the instance shown in Figure 3.2.

Students’ preferences Lecturers’ preferences
s1: p3 p2 p1 l1: p2 p1

s2: p1 p2 l2: p3

s3: p3

Project capacities: c1 = c2 = c3 = 1
Lecturer capacities: d1 = 2, d2 = 1

Figure 3.2: An instance I3 of spa-p.

3.3.2 spa-p with master lists

Here, we consider the problem of finding a maximum stable matching in an instance of spa-p
where master preference lists are imposed. In this setting, a master list is a global ranking of
projects from which each student and lecturer derives their individual preference lists. Manlove
and O’Malley [102] proved the NP-hardness of max-spa-p via a reduction from the problem of
finding a minimum maximal matching (min mm), by constructing the instance I ′ of spa-p shown
in Figure 3.3, where each project and lecturer has capacity 1.

Students’ preferences Lecturers’ preferences
u1

i : ri pji
pki

ti (1 ≤ j ≤ n1) wj: pj qj (1 ≤ j ≤ n2)
u2

i : ri pki
pji

(1 ≤ j ≤ n1) xj: rj (1 ≤ j ≤ n1)
si: qi (1 ≤ j ≤ n2) yj: tj (1 ≤ j ≤ n1)

Figure 3.3: Preference lists for constructed instance of spa-p due to [102]

We note that max-spa-p with a master list of projects is NP-hard, since the reduction used to prove

3.3. Complexity results for spa-p 47

the hardness of max-spa-p still applies in this restricted setting, as illustrated in Figure 3.3. In
particular, the construction admits a natural master list of projects: (r1, r2, . . . , rn1 , p1, p2, . . . , pn1 ,

t1, t2, . . . , tn1 , q1, q2, . . . , qn2). Since the preferences of all agents can be derived from this list, the
reduction applies in the master list setting, and the NP-hardness result follows.

3.3.3 spa-p with projects offered by the same lecturer

We now consider a restricted version of spa-p, denoted spa-p-sl, in which each student ranks
only projects offered by the same lecturer. We define max-spa-p-sl as the problem of finding a
maximum size stable matching in an instance of spa-p-sl. To solve this problem, we exploit the
structure of the input by dividing it into independent sub-instances, one for each lecturer. Each
sub-instance consists of the set of students whose preference lists include only projects offered
by a particular lecturer, along with those projects and the lecturer who offers them. These sub-
instances fall into the special case max-spa-p-l1, where all projects in the instance are offered by a
single lecturer. Recall that a polynomial-time algorithm for max-spa-p-l1 is described in [96], and
so by solving each sub-instance independently using this algorithm and combining the resulting
stable matchings, we obtain an optimal solution for max-spa-p-sl.

3.3.3.1 Polynomial-time algorithm for max-spa-p-sl

Let I be an instance of max-spa-p-sl involving n1 students and n2 lecturers. We assume stan-
dard notation and terminology from the general spa-p setting. In this restricted variant, each
student ranks only projects that are offered by a single lecturer. To compute a maximum stable
matching in I, we construct a collection of sub-instances I1, I2, . . . , In2, where each sub-instance
Ik corresponds to a lecturer lk in the original instance.

For each lecturer lk, we identify the set Sk of students who find acceptable at least one project
offered by lk. The sub-instance Ik consists of these students Sk, the projects they find acceptable
that are offered by lk, and the lecturer lk, all with their original preference lists and capacities.
Since Ik is an instance of spa-p involving only one lecturer, we apply the polynomial-time algo-
rithm for max-spa-p-l1 given in [96] to compute a maximum stable matching Mk for each Ik. By
construction, each student appears in at most one sub-instance, so matchings M1, M2, . . . , Mn2

are disjoint and can be combined to yield a stable matching M in the original instance I. The
full procedure is described formally in Algorithm 1.

Theorem 3.3.1. Let I be an instance of spa-p-slwith k lecturers, n1 students, and total prefer-
ence list length l. Let R denote the maximum rank of any project on a student’s preference list.
Then Algorithmmax-spa-p-sl computes a stable matching of maximum size in time O(kn2

1Rl).

3.3. Complexity results for spa-p 48

Algorithm 1 max-spa-p-sl-S
1: Input: An instance I of spa-p-sl
2: Output: A maximum-size stable matching M in I
3: Initialize M ← ∅
4: Initialize an empty list of sub-instances I
5: for each lecturer lk in I do
6: Let Pk be the set of projects offered by lk
7: Let Sk be the set of students who find some project in Pk acceptable
8: Construct a sub-instance Ik involving Sk, Pk, and lk
9: Add Ik to I

10: end for
11: for each sub-instance Ik in I do
12: Run the max-spa-p-l1 algorithm on Ik to compute a stable matching Mk

13: Add all pairs in Mk to M
14: end for
15: return M

Proof. We first prove that M is stable. Suppose for contradiction that M admits a blocking pair
(si, pj). Now suppose the sub-instance si belongs to is Ik and the maximum-size stable matching
produced during an execution E of the algorithm is Mk. By construction of M , (si, pj) being
a blocking pair in M implies (si, pj) is also a blocking pair in the matching Mk. However, this
contradicts the fact that Mk is a stable matching in Ik. Hence, M is stable. Suppose M is not
the maximum. Then there exists another stable matching M∗ such that |M∗| > |M |. Suppose
that (si, pj) ∈ M∗ \M , and (si, pj) belongs to a sub-instance Ik whose stable matching output is
Mk. This implies that the size of the stable matching Mk can be increased by {Mk ∪ (si, pj)}, a
contradiction to the fact that Mk is a maximum stable matching. We can also verify that M is
coalition-free since we have a different set of students in each Ik, and the matching Mk obtained
in each Ik is coalition-free. Thus, M is a maximum-size stable matching.

The partitioning step of the algorithm requires O(kn1R) time, since for each of the k lecturers,
we examine all n1 students with preference lists of length at most R. Running the max-spa-p-l1
algorithm on each sub-instance has a time complexity of O(kn2

1Rl), where l is the total length of
all student preference lists. Hence, the overall time complexity of the algorithm is O(kn2

1Rl).

3.3.4 Students with identical preferences

Here, we consider a restriction of spa-pwhere all students have identical preferences over projects,
denoted (1,type)-spa-p. We prove that the problem of finding a maximum-size stable matching
in this setting is solvable in polynomial time. In particular, Lemma 3.3.1 shows that every stable
matching in a given instance I of (1,type)-spa-p assigns the same number of students. Hence, it
follows that any stable matching admitted by I is of maximum size. Consequently, any algorithm
for computing a stable matching in the general spa-p setting can be applied here. In particular,
the 2-approximation algorithm for max-spa-p proposed by Manlove and O’Malley [102] returns a

3.4. Parameterised complexity of spa-p 49

stable matching in O(λ) time, where λ is the length of a student’s preference list. This algorithm
yields an optimal solution in this setting.

Lemma 3.3.1. Given an instance I of (1,type)-spa-p, the same number of students are assigned in
every stable matching.

Proof. Let I be an instance of (1,type)-spa-p, and let M and M ′ be any two arbitrary stable
matchings in I. Suppose for a contradiction that |M ′| > |M |. Then there exists some student
s who is assigned in M ′ but not in M . Moreover, there is some lecturer lk such that |M ′(lk)| >

|M(lk)|. Furthermore, there must be some project pj ∈ Pk such that |M ′(pj)| > |M(pj)|. Hence
both lk and pj are undersubscribed in M . However, since each student in I have identical pref-
erences and some student is assigned to pj in M ′, then s also finds pj acceptable. Therefore
(s, pj) blocks M , a contradiction. Thus, |M ′| = |M | since M and M ′ are two arbitrary stable
matchings.

3.4 Parameterised complexity of spa-p
Parameterized complexity provides a way to cope with NP-hard problems by confining the expo-
nential part of the running time to one or more parameters of the input. The running time of a
parameterised algorithm is expressed as a function of both the parameter k and the overall input
size n, typically written as f(k) · nO(1), where f is a computable function depending only on k.
When k is small in practice, this approach can lead to efficient algorithms even for large input
instances.

In this section, we explore this idea in the context of the Student–Project Allocation problem
with lecturer preferences over Projects (spa-p). We introduce a natural parameter: project topics,
where each project offered by a lecturer belongs to a single topic. This parameter arises naturally
in university settings, where projects can be grouped by research themes or subject areas, and
students are usually interested in the broader topic rather than in specific individual projects.
In these situations, it is reasonable to assume that students express strict preferences over topics
and are indifferent between projects within the same topic.

3.4.1 Parameterised stable matching problems

The parameterized complexity of several NP-hard variants of stable matching problems has re-
cently been studied, with the aim of identifying parameters that enable efficient algorithms. We
recall the brief discussion on FPT in Section 1.1.2.3. In this section, we present results in the
bipartite matching setting, focusing in particular on problems that involve ties and incomplete
preference lists.

3.4. Parameterised complexity of spa-p 50

Adil et al. [9] showed that the problem of computing a maximum stable matching in smti is
FPT when parameterised by the size of the matching. Marx and Schlotter [106] later proved
that the problem is fixed parameter tractable when parameterised by the total length of ties
across all preference lists. However, they also showed that the problem becomes W[1]-hard when
parameterised by the number of ties in the instance, even if all the men have strictly ordered
preference lists. Gupta et al. [51] considered structural restrictions on the acceptability graph of
an instance, where agents are represented as vertices and an edge connects two agents if they find
each other acceptable. They proved that the problem remains W[1]-hard when parameterised
by the treewidth of this acceptability graph.

Boehmer et al. [19] studied the Incremental Stable Marriage problem, in which an instance of the
Stable Marriage problem is subject to modifications through changes in the agents’ preference
lists. Given a matching that was stable in the original instance, the goal is to compute a new
matching that is stable with respect to the modified preferences and remains as close as possible
to the original matching. They show that the problem is W[1]-hard when parameterized by
the number of ties introduced by the changes, but also identify tractable cases, including fixed-
parameter algorithms and polynomial-time results when the number of distinct preference lists
is small.

An alternative parameterisation, introduced by Meeks and Rastegari [114], considers instances
in which agents can be partitioned into a bounded number of types. Each agent’s preference list
is defined over types rather than over individuals, and agents of the same type have identical
preferences over types. Moreover, each agent is indifferent between all acceptable candidates of
a given type. Under this assumption, they showed that max-smti is in FPT when parameterised
by the number of types. A similar result holds for max-hrt. They also considered two generali-
sations. In the first, agents of the same type may have different preference lists, provided that all
candidates of the same type appear in a single contiguous block in each list. Under this condition,
typed max-smti and typed max-hrt are fixed-parameter tractable with respect to the number
of types. If, in addition, preferences over types are strict, the problem becomes polynomial-time
solvable.

In the second generalisation, each agent may include a small number of exceptional candidates,
meaning specific individuals who are ranked explicitly rather than according to their type. If
each agent includes at most one exceptional candidate at the top of their list, typed max-smti is
in FPT. However, if agents are allowed to include two or more exceptional candidates in arbitrary
positions on their preference list, the problem becomes NP-hard, even when the number of types
is bounded by a constant. In this case, the problem is not in XP unless P= NP.

3.4. Parameterised complexity of spa-p 51

3.4.2 spa-p with uniform capacities

In this section, we consider spa-puc, a restricted version of spa-p that incorporates project topics
and enforces uniform capacities. In this model, each lecturer offers a set of projects, and both
the lecturer and the projects they offer have the same capacity. Similar to the general case,
an instance of spa-puc may admit stable matchings of different sizes, and we are interested in
finding one of maximum size.

Project topics. In many real-world settings, students may care more about the general subject
area of a project than about the individual project itself. For example, a student might be in-
terested in Algorithmics and be willing to work on any project in that area, without having a
preference between the specific projects it includes. However, they may still prefer projects in
Algorithmics overall to those in another area, such as Robotics. This kind of scenario motivates
us to consider a version of spa-p in which projects are classified according to project topics.

In spa-puc, students express strict preferences over project topics rather than individual projects,
and are indifferent between any two projects that belong to the same topic. Specifically, if a
student finds one project in a given topic acceptable, then all projects in that topic are considered
equally acceptable. Moreover, students may be partitioned into types based on their preferences
over topics. A student is of type i if their list of topics is ordered in exactly the same way as that
of all other type-i students. We use t(pj) to denote the topic of project pj. A student si is said to
strictly prefer project pa to project pb if they prefer t(pa) to the topic of t(pb); a similar definition
holds for each lecturer. For any two topics t(a) and t(b), we write t(a) ⪰i t(b) to mean that topic
t(a) is preferred at least as much as topic t(b) by type-i students, and t(a) ≻i t(b) if topic t(a) is
strictly preferred to topic t(b) by type-i students.

Lecturers also express preferences over topics rather than individual projects, and are indifferent
between any two projects in the same topic. Two lecturers are of the same type if they have
identical preferences over topics. A lecturer may offer projects from multiple topics, and is not
required to offer all projects under any given topic. For any lecturer lk, we write t(a) ⪰k t(b) to
mean that topic t(a) is preferred at least as much as topic t(b) by lk, and t(a) ≻k t(b) if topic t(a)
is strictly preferred to topic t(b).

Uniform capacities. Each lecturer lk offers a set of projects Pk, and every project pj ∈ Pk has the
same capacity as the lecturer; that is, cj = dk.

Example: As an example, consider the instance shown in Figure 3.4. There are two project
topics: topic 1 includes p1, p2, p5, and topic 2 includes p3, p4, p6. Students s1 and s3 are of the
same type, as they both strictly prefer topic 1 over topic 2. In contrast, student s2 is of a different
type, as she is indifferent between the two topics. On the lecturer side, l1 and l3 are of the same
type, since they offer and strictly prefer projects in topic 1 to those in topic 2. Lecturer l2 is of

3.4. Parameterised complexity of spa-p 52

a different type, as they only offer (and prefer) a project in topic 2. Moreover, lecturer l1 offers
projects p1, p2, and p6, and both the lecturer and each of these projects have capacity 2. The same
applies to every lecturer and the projects they offer.

Students’ preferences Lecturers’ preferences
s1: (p1 p2 p5) (p3 p4 p6) l1: (p1 p2) p6

s2: (p1 p2 p3 p4 p5 p6) l2: p3

s3: (p1 p2 p5) (p3 p4 p6) l3: p5 p4

Project capacities: c1 = c2 = c6 = 2; c3 = c4 = c5 = 1
Lecturer capacities: d1 = 2; d2 = d3 = 1

Figure 3.4: An instance I1 of spa-puc

We now give a revised definition of a blocking pair in the spa-puc setting. This definition is
similar to that in the general spa-p model, except that preferences are expressed over project
topics rather than individual projects.

Definition 3.4.1 (Blocking Pair in spa-puc). Let I be an instance of spa-puc, and let M be
a matching in I. An acceptable pair (si, pj) ∈ (S × P) \M is a blocking pair for M if pj is
undersubscribed in M and the following conditions hold for both si and the lecturer lk who
offers pj:

(S1) either si is unassigned in M , or

(S2) si prefers pj ’s topic to the topic of their assigned project M(si),

and one of the following holds for lk:

(L1) si ∈M(lk) and lk prefers pj ’s topic to the topic of M(si);

(L2) si /∈M(lk) and lk is undersubscribed in M ;

(L3) si /∈ M(lk) and lk prefers pj ’s topic to the topic of their worst non-empty project in
M .

We say that M is stable if it admits no blocking pairs.

In the general spa-p setting, a matching is said to be stable if it admits no blocking pair and no
coalition. A coalition is a set of students {si0 , . . . , sir−1}, for some r ≥ 2, each of whom is assigned
in a matching M , such that for all j ∈ {0, . . . , r − 1}, student sij

strictly prefers M(sij+1) to
M(sij

), where addition is taken modulo r. In spa-puc, we define stability in terms of blocking

3.4. Parameterised complexity of spa-p 53

pairs only, as shown in Definition 3.4.1. We do not require that matchings are coalition-free. This
simplification is justified by the fact that any coalition present in a matching can be resolved in
polynomial time: once a coalition is identified, the students can cyclically swap their assigned
projects so that each one is strictly better off. Moreover, such a swap does not change the number
of students assigned to projects and lecturers, and does not affect the size of the matching.

3.4.3 Hardness of max-spa-puc
An instance of spa-puc may admit stable matchings of different sizes, and we are naturally inter-
ested in computing one of maximum size, denoted max-spa-puc. To illustrate that stable match-
ings in spa-puc can differ in size, consider the instance I3 shown in Figure 3.5. The matchings

M = {(s1, p1), (s3, p3)} and M ′ = {(s1, p3), (s2, p1), (s3, p3)}

are both stable, but M has size 2 while M ′ has size 3.

Students’ preferences Lecturers’ preferences
s1: (p1 p2) p3 l1: (p1 p2)
s2: (p1 p2) l2: p3

s3: p3 (p1 p2)
Project capacities: c1 = c2 = 1; c3 = 2
Lecturer capacities: d1 = 1; d2 = 2

Figure 3.5: An instance I3 of spa-puc

Although spa-puc includes restrictions on the capacities of projects and lecturers, we observe
that max-spa-puc is also NP-hard. We recall that max-spa-p is known to be NP-hard even when
every project and lecturer has capacity one [102]. This case can be viewed as an instance of
spa-puc in which each project belongs to a unique topic and all project and lecturer capacities
are set to one. In this encoding, preferences over topics effectively reduce to preferences over
individual projects, so the instance behaves identically to the original spa-p setting. As a result,
the NP-hardness of the general problem carries over directly to the spa-puc setting.

3.4.4 FPT algorithm for spa-puc
In this section, we show that max-spa-puc is fixed parameter tractable when parameterised by
the number of project topics. We begin by showing in Lemma 3.4.1 that in order to determine
whether or not a matching M is stable, it is enough to examine the number of students of each
type assigned to each project. In this lemma, we provide three sufficient conditions for checking
stability for some project pj offered by lk: (i) the number of students assigned to pj is less than
its capacity; (ii) the number of type-i students not assigned to a project at least as desirable as

3.4. Parameterised complexity of spa-p 54

t(pj) (from their own perspective) and not assigned to any project lk ranks at least as desirable
as pj is > 0; (iii) the number of students assigned to topics that lk ranks at least as desirable as
t(pj) is less than dk.
In Lemma 3.4.2, we show that any instance I of spa-puc can be transformed into an equivalent in-
stance I ′ in which each lecturer offers at most one project on each topic. Finally, in Lemma 3.4.5,
we prove that I can be further transformed into an equivalent instance that contains at most one
lecturer of each type.

Lemma 3.4.1. Let I be an instance of spa-puc, and let M be a matching in I. Suppose there are
r distinct student types in I. For each student type i and each project pj, let Ni denote the total
number of type-i students in I, and let Xij denote the number of type-i students assigned to pj in
M . A blocking pair exists in M if and only if there exists a type i of students and a project pj offered
by lk where conditions (1), (2) and (3) hold as follows:

(1) ∑
1≤q≤r

Xqj < cj

(2) Ni −

 ∑
t(pm)⪰it(pj)

Xim + ∑
t(pm)⪰kt(pj)

Xim −
∑

t(pm)⪰it(pj)
t(pm)⪰kt(pj)

Xim

 > 0

(3) ∑
t(pm)⪰kt(pj)

1≤q≤r

Xim < dk

Proof. (⇒) First suppose that conditions (1), (2) and (3) hold. Condition (1) implies that project
pj is undersubscribed in M , since the total number of students assigned to pj is less than its
capacity. Moreover, condition (2) implies that there exists a type-i student s who is not assigned
to any project whose topic is at least as desirable as t(pj) from their own perspective, and who
is also not assigned to any project that lk considers at least as desirable as pj. Therefore, s is
either unassigned or is assigned in M to a project p such that s prefers t(pj) to t(p). Moreover, if
s ∈M(lk) then lk finds p less desirable than pj.

Also, by condition (3), the total number of students assigned to project topics that lk considers
as desirable as t(pj) is less than dk. Therefore, if p is offered by lk, then lk prefers t(pj) to t(p).
Hence, s ∈ M(lk), lk prefers t(pj) to t(p), and (s, pj) is a blocking pair in M . Now suppose that
s /∈ M(lk). Again, condition (3) implies that either lk is undersubscribed in M , or there exists
at least one student assigned to a project t(pz) where lk prefers t(pj) to t(pz). If lk is undersub-
scribed, then (s, pj) is a blocking pair, since s /∈ M(lk). Otherwise, lk prefers t(pj) to their worst
non-empty project topic. In this case, (s, pj) still forms a blocking pair in M . Therefore, both
conditions guarantee the existence of a blocking pair in M .

3.4. Parameterised complexity of spa-p 55

(⇐) Conversely, suppose that there exists some blocking pair (s, pj) in M , where s is a type-i
student and pj is a project offered by lecturer lk. By definition of a blocking pair, the student s is
either unassigned in M or assigned to some project p in M but prefers t(pj) to t(p). Additionally,
project pj is undersubscribed in M , and at least one of the following conditions holds:

(a) s ∈M(lk) and lk prefers t(pj) to t(p).

(b) s /∈M(lk) and lk is undersubscribed in M .

(c) s /∈M(lk), but lk prefers t(pj) to the topic of their worst non-empty project in M .

Since pj is undersubscribed in M , the number of students assigned to pj is strictly less than its
capacity cj, i.e., ∑

1≤i≤r
Xij < cj. Therefore condition (1) holds. Furthermore, since s is either

unassigned or assigned to a project whose topic is less desirable than t(pj) from the perspective
of type-i students, it follows that s is not assigned to any project whose topic type-i students
consider at least as desirable as t(pj). If s /∈ M(lk), then s is not assigned to any project whose
topic lk considers at least as desirable as t(pj). Alternatively, if s ∈ M(lk) then lk prefers t(pj)
to t(p), then again s is not assigned to any project whose topic lk considers at least as desirable
as t(pj). Therefore, there exists at least one type-i student who is not assigned to any project
whose topic is considered at least as desirable as t(pj) by either type-i students or by lk. Hence,
condition (2) holds.

In case (a), since s is assigned to a project topic worse than t(pj) from lk’s perspective, the total
number of students assigned to project topics that lk considers at least as desirable as t(pj) must
be less than dk, given that the total number of students assigned to lk is at most dk. Therefore,∑
t(pm)⪰kt(pj)

1≤i≤r

Xim < dk, and condition (3) holds. Now consider case (b), where lk is undersubscribed

in M . This implies that the total number of students assigned to lk is less than dk. Therefore,
the total number of students assigned to projects whose topics lk considers as desirable as t(pj)
is also less than dk. Hence, ∑

t(pm)⪰kt(pj)
1≤i≤r

Xim < dk, and condition (3) holds. Finally, in case (c), since

lk prefers t(pj) to the topic of their worst non-empty project, there exists at least one student
assigned to a project whose topic is worse than t(pj) from lk’s perspective. Again, since the total
number of students assigned to lk cannot exceed dk, it follows that ∑

t(pm)⪰kt(pj)
1≤i≤r

Xim < dk. Thus, all

cases of a blocking pair lead to conditions (1), (2) and (3) of the lemma statement, completing
the proof.

3.4.4.1 Reducing to one project per topic for each lecturer

In this subsection, we show that given an instance I of spa-puc with k project topics, we can
construct, in polynomial time, a corresponding instance I ′ in which each lecturer’s preference

3.4. Parameterised complexity of spa-p 56

list contains exactly one project for each topic they offer. Moreover, the size of the largest stable
matching in I ′ is equal to that in I.

Lemma 3.4.2. Let I be an instance of spa-pucwith k project topics. We can construct in polynomial-
time an instance I ′ where each lecturer offers at most one project in every project topic and the size
of the largest stable matching in I ′ is the same as the size of the largest stable matching in I.

Construction of I ′: Let I be an instance of spa-p with k project topics. We construct a new
instance I ′ from I as follows: The sets of students and lecturers in I ′ are the same as those in
I. The set of projects P ′ in I ′ is defined as follows. For each lecturer lk ∈ L, let Tk be the set of
topics offered by lk. For each t ∈ Tk, we introduce a single project pt, and let P ′

k = {pt : t ∈ Tk}
be the set of projects offered by lk in I ′. Next, we define a mapping f such that for each project
pj ∈ Pk with topic t, we set f(pj) = pt. That is, all projects with topic t in I are mapped to the
same project pt in I ′.

In this way, the preference list of each lecturer in I ′ contains exactly one project per topic. Recall
that in the original instance I, each project pj offered by lecturer lk has capacity equal to that of
lk. To maintain uniform capacities, we assign each new project pt ∈ P ′

k the same capacity as the
lecturer lk who offers it. The capacity of each lecturer in I ′ remains the same as in I. In I, both
students and lecturers are indifferent between projects within the same topic, but have strict
preferences over different topics. Similarly in I ′, each student and lecturer inherits their strict
preferences over new projects of different topics. We now prove the result in two parts. First, we
show that the size of the largest stable matching in I ′ is at least that in I (Lemma 3.4.3). Then
we show the reverse direction in Lemma 3.4.4. Together, these imply that Lemma 3.4.2 holds.

Lemma 3.4.3 (Forward direction). Let I be an instance of spa-puc with k project topics. Then we
can construct, in polynomial time, an instance I ′ in which each lecturer offers at most one project per
project topic, such that the size of the largest stable matching in I ′ is at least the size of the largest
stable matching in I.

Proof. Let M be a largest stable matching in I. We construct a matching M ′ in I ′ by assigning
each student si to project f(pj) whenever (si, pj) ∈ M . Clearly, every student assigned in M

remains assigned in M ′. Consider any project pt ∈ I ′ offered by lk. By construction, each project
pt ∈ P ′

k corresponds to a subset of projects in I that belong to some topic t and are offered by
lecturer lk. Specifically, the set is defined as f−1(pt) = {pj ∈ Pk | f(pj) = pt}. In I, each project
pj ∈ f−1(pt) has capacity equal to the capacity of lecturer lk. Furthermore, in I ′, the project pt is
assigned the same capacity as lk, and the capacity of lk remains unchanged between I and I ′.

Since the total number of students assigned across all projects in Pk cannot exceed lk’s capacity,
it follows that the total number of students assigned across all projects in f−1(pt) in M cannot be
more than lk’s capacity. Hence, the total number of students assigned to pt in M ′ does not exceed

3.4. Parameterised complexity of spa-p 57

its capacity, and thus pt is not oversubscribed in M ′. Moreover, no lecturer is oversubscribed in
M ′, since each lecturer lk is assigned exactly the same set of students in M ′ as in M . Therefore,
M ′ is a valid matching. We now prove that M ′ is stable.

Stability of M ′: Suppose that M ′ is not stable. Then there exists a blocking pair (si, p) in M ′,
where p is offered by lecturer lk, such that si is either unassigned in M ′, or strictly prefers p to
M ′(si), p is undersubscribed in M ′, and one of the following conditions holds:

(a) si ∈M ′(lk), and lk strictly prefers p to M ′(si), or

(b) si /∈M ′(lk), and lk is undersubscribed in M ′, or

(c) si /∈M ′(lk), and lk prefers t(p) to their worst non-empty topic in M ′.

Clearly, p and M ′(si) belong to different topics. By construction, each project p in I ′ corresponds
to the set of projects in I that belong to topic t and are offered by lecturer lk. Moreover, all students
assigned to topic-t projects offered by lk in M are assigned to p in M ′. So if p is undersubscribed
in M ′, then some topic-t project pj in I must be undersubscribed in M . Now consider the student
si. If si is unassigned in M ′, then they must also be unassigned in M , since all assigned students
in M remain assigned in M ′. Similarly, if si strictly prefers p to M ′(si), then they strictly prefer
pj to M(si), since in M ′, no student is reassigned to a project on a different topic. We now show
that in each of the three cases above, (si, pj) blocks M , contradicting the stability of M .

Case (a): Since si ∈ M ′(lk), it follows that si ∈ M(lk). Since t(pj) ̸= t(M ′(si)), and students
remain assigned to projects of the same topic in both M and M ′, we also have t(pj) ̸= t(M(si)).
Moreover, since lk strictly prefers p to M ′(si), and M(si) belongs to the same topic as M ′(si),
it follows that lk also strictly prefers pj to M(si). Thus, si strictly prefers pj to M(si), pj is un-
dersubscribed in M , and lk strictly prefers pj to M(si), so (si, pj) forms a blocking pair in M , a
contradiction.

Case (b): Since lk is assigned the same set of students in M and M ′, it follows that lk is also
undersubscribed in M . Therefore, si strictly prefers pj to M(si), pj is undersubscribed in M , and
lk is undersubscribed in M ; thus, (si, pj) blocks M , a contradiction.

Case (c): Since lk strictly prefers t(p) to their worst non-empty topic tz in M ′, there exists a
project pz ∈ M(lk) belonging to topic tz such that lk strictly prefers pj to pz. Since si strictly
prefers pj to M(si), pj is undersubscribed in M , and lk prefers t(pj) to t(pz), it follows that (si, pj)
blocks M , a contradiction.

Therefore, M ′ admits no blocking pairs and is stable. Since the same set of students are assigned
in M ′ as in M , it follows that |M ′| = |M |.

3.4. Parameterised complexity of spa-p 58

Lemma 3.4.4 (Reverse direction). Let I ′ be the instance constructed from an instance I of spa-puc,
where each lecturer offers at most one project per project topic. Then the size of the largest stable
matching in I is at least the size of the largest stable matching in I ′.

Proof. Let M ′ be a largest stable matching in I ′. We construct a matching M in I by assigning
each student si to a single project pj ∈ P such that f(pj) = pt whenever (si, pt) ∈ M ′. This
assignment is possible since each project pj in P has capacity dk, and the corresponding project
pt in P ′ also has capacity dk. Clearly, each student is assigned to at most one project in M , since
they are assigned to at most one project in M ′. Since no more than dk students are assigned to
pt in M ′, and each project pj in f−1(pt) has capacity dk, it follows that we can assign all students
from pt in M ′ to a single project pj in I without exceeding its capacity. Consequently, no project
is oversubscribed in M . Finally, the set of students assigned to each lecturer in M is identical to
that in M ′, so lecturer capacities are also respected. Hence, M is a valid matching in I. We now
prove that M is stable.

Stability of M : Suppose that M is not stable. Then there exists a blocking pair (si, pj) in M ,
where pj is offered by lecturer lk, such that si is either unassigned in M , or strictly prefers pj to
M(si), pj is undersubscribed in M , and one of the following conditions holds:

(a) si ∈M(lk), and lk strictly prefers pj to M(si), or

(b) si /∈M(lk), and lk is undersubscribed in M , or

(c) si /∈M(lk), and lk prefers t(pj) to their worst non-empty topic in M .

Clearly, t(pj) ̸= t(M(si)). Suppose pj belongs to some topic t. By construction, the project pj ∈ I

corresponds to some project pt ∈ I ′ such that f(pj) = pt. Similarly, let pu denote the project
in I ′ such that f(M(si)) = pu. If si is unassigned in M , then si is also unassigned in M ′, since
all assigned students in M remain assigned in M ′ to projects on the same topic. Similarly, if si

strictly prefers pj to M(si), then si strictly prefers pt to pu, since in M ′, students are not reassigned
to projects on different topics. We now show that in each of the three cases above, the pair (si, pt)
blocks M ′, contradicting the stability of M ′.

Case (a): Since t(pj) ̸= t(M(si)), it follows that pt ̸= pu. Moreover, since si is assigned in M to a
project belonging to a different topic t(M(si)) offered by lk, it follows that no other project topic
offered by lk can have dk students assigned to it; otherwise, lk would be oversubscribed in M .
This implies that the total number of students assigned across the projects in t(pj) and offered
by lk is strictly less than dk. Since pt in I ′ has capacity dk, it follows that pt is undersubscribed in
M ′. Also, si ∈ M(lk) implies that si ∈ M ′(lk). Moreover, since lk strictly prefers pj to M(si), it
follows that lk prefers pt to pu. Thus, si strictly prefers pt to pu, pt is undersubscribed in M ′, and
lk strictly prefers pt to pu, so (si, pt) forms a blocking pair in M ′, a contradiction.

3.4. Parameterised complexity of spa-p 59

Case (b): Since lk is assigned the same set of students in M and M ′, it follows that lk is also
undersubscribed in M ′. Since the total number of students assigned to lk in M is strictly less
than dk, it follows that the number of students assigned across the projects belonging to topic
t(pj) and offered by lk, is also strictly less than dk. As pt in I ′ contains these students and has
capacity dk, it follows that pt is undersubscribed in M ′. Therefore, si strictly prefers pt to pu, pt is
undersubscribed in M ′, and lk is undersubscribed in M ′; thus, (si, pt) blocks M ′, a contradiction.

Case (c): Here, lk prefers topic t(pj) to their worst non-empty topic tz in M . Let p ∈ I be a
project in tz assigned to some student in M . Then there exists some project pz ∈ P ′

k such that
f(p) = pz, and lk strictly prefers pt to pz. By a similar argument as in case (a), since there exists at
least one student assigned to tz, no other project topic offered by lk can have dk students assigned
to it; otherwise, lk would be oversubscribed in M . Consequently, the total number of students
assigned to the projects in t(pj) offered by lk is strictly less than dk. Since pt in I ′ has capacity dk

and contains these students, it follows that pt is undersubscribed in M ′. Moreover, since si strictly
prefers pt to pu, and pt is undersubscribed in M ′, it follows that (si, pt) blocks M ′, a contradiction.
Therefore, M admits no blocking pairs and is stable. Since the same set of students are assigned
in M ′ as in M , it follows that |M | = |M ′|.

3.4.4.2 Reducing to one lecturer per type

In this subsection, we show that given an instance I of spa-puc with t different lecturer types,
we can construct, in polynomial time, a corresponding instance I ′ in which there is exactly one
lecturer of each type. Furthermore, the size of the largest stable matching in I ′ is equal to that
in I.

Lemma 3.4.5. Given an instance I of spa-puc with k distinct lecturer types, we can construct, in
polynomial time, a corresponding instance I ′ in which there is exactly one lecturer of each type.
Furthermore, the size of the largest stable matching in I ′ is equal to that in I.

By Lemma 3.4.2, we may assume without loss of generality that in a given instance I of spa-
puc, each lecturer offers exactly one project for each topic. We adopt this assumption for the
remainder of this section.

Construction of I ′: Let I be an instance of spa-puc with k project topics. We construct a new
instance I ′ from I as follows. The set of students in I ′ is identical to that in I. For each type of
lecturer t in I, let Lt denote the set of all lecturers of type t. In I ′, we create a single combined
lecturer lt to represent all lecturers in Lt. The capacity of lt is set to dt = ∑

lk∈Lt

dk, where dk is the
capacity of each lecturer lk ∈ Lt. For each topic q offered by lecturers in Lt, we create a single
new project pq offered by lt. We define a mapping f such that for each project pj belonging to
topic q, we set f(pj) = pq. The capacity of pq in I ′ is set to the capacity of all projects in Pk that
belongs to topic q.

3.4. Parameterised complexity of spa-p 60

In I ′, lt offers only these new projects pq, one per topic, and both students and lt inherit their
strict preferences over project topics exactly as in I. Recall that each project pj in I has capacity
equal to the capacity of its lecturer lk. Moreover, each lecturer in I offers at most one project on
each topic. By construction of I ′, the capacity of each new project pq is set to the total capacity
of all original projects pj under topic q, and offered by lecturers in Lt; this is also equal to the
sum of the capacities of all lecturers in Lt. Since the combined lecturer lt has capacity equal to
the sum of the capacities of all lecturers in Lt, it follows that the capacity of each project pq is
exactly the same as capacity of lt.

Transformation from M to M ′: Let M be the largest stable matching in I. We construct a match-
ing M ′ in I ′ by assigning each student si to the project f(pj) whenever (si, pj) ∈ M . Suppose
pj belongs to topic q and is offered by a type-t lecturer lk. Let f(pj) = pt, where pt denotes the
project in I ′ that corresponds to the topic q projects offered by lk in I. Furthermore, pt is offered
by the combined lecturer lt in I ′. Clearly, each student in I ′ is assigned to exactly one project in
M ′. Since the capacity of pt is equal to the total capacity of all original projects under topic q,
and none of these projects were oversubscribed in M , it follows that pt is not oversubscribed in
M ′. Hence, no project is oversubscribed in M ′.

Finally, each lecturer lt in I ′ corresponds to the set of all type-t lecturers in I and is given a
capacity equal to the combined capacities of those lecturers. The number of students assigned to
lt in M ′ is exactly the total number assigned to all type-t lecturers in M . Since no lecturer in M

is oversubscribed, no lecturer is oversubscribed in M ′. Hence, M ′ is a valid matching.
In Lemma 3.4.6, we show that the size of a largest stable matching M in I is the same as that of
M ′, that is, |M | = |M ′|.

Lemma 3.4.6. Let M be a largest stable matching in I, and let M ′ be the matching in I ′ obtained
via the construction described above. Then M ′ is stable in I ′, and |M | = |M ′|.

Proof. We note that by the construction of M ′, the total number of assigned students in M is the
same in M ′, therefore |M | = |M ′|. Now, suppose for contradiction that there exists a blocking
pair (si, pj) in M ′. Let lk be the lecturer who offers pj. Then, si is either unassigned in M ′ or
strictly prefers pj to M ′(si), pj is undersubscribed in M ′, and one of the following conditions
hold:

(a) si ∈M ′(lk), and lk strictly prefers pj to M ′(si).

(b) si /∈M ′(lk), and lk is undersubscribed in M ′.

(c) si /∈M ′(lk), and lk prefers t(pj) to their worst non-empty project topic in M ′.

Suppose that lk corresponds to the set of type-t lecturers in I. By construction, the project pj in I ′

corresponds to the set of projects in I that belong to topic t(pj) and are offered by type-t lecturers.

3.4. Parameterised complexity of spa-p 61

Moreover, each student has the same preferences over project topics in I and I ′. Consequently, if
some student si is unassigned in M ′ or strictly prefers pj to M ′(si), then si is unassigned in M or
prefers all projects in t(pj) to M(si). Now, we consider each blocking pair condition as follows:

Case (a): Here, si ∈ M ′(lk) and lk strictly prefers pj to M ′(si). Let M ′(si) = pz. Since lk offers
both pj and pz in I ′, it follows that pz corresponds to some project p̂ in I, which is offered by a
type-t lecturer l, such that t(p̂) = t(pz) and si ∈ M(p̂). Since l has the same preferences over
topics as lk, there exists some other project p offered by l such that t(p) = t(pj), and l strictly
prefers p to p̂. Similarly, si strictly prefers p to p̂ since t(p) = t(pj). Since si ∈ M(l) but is
assigned to project p̂, such that l strictly prefers p to p̂, and each project offered by l has the same
capacity as l, it follows that p is undersubscribed in M . Therefore, si strictly prefers p to p̂, p is
undersubscribed in M , si ∈ M(l), and l strictly prefers p to p̂. Thus, the pair (si, p) blocks M , a
contradiction.

Case (b): Then si /∈ M ′(lk) and lk is undersubscribed in M ′. Since lk is undersubscribed in
M ′, the total number of students assigned to all type-t lecturers in M must be strictly less than
their combined capacity. It follows that at least one type-t lecturer l is undersubscribed in M .
Furthermore, since lk offers pj in I ′, there must exist some project p offered by l in I such that
t(pj) = t(p). This follows from the construction of lk, which ensures that lk inherits the same
preferences over topics as each type-t lecturer. Since l is undersubscribed in M , p must also be
undersubscribed in M , given that both p and l have the same capacities. Moreover, since si /∈
M ′(lk), it follows that si is not assigned to any type-t lecturer in M , because by the construction
of M ′, every student assigned to a lecturer of type t in M must be assigned to lk in M ′. Therefore,
si /∈M(l); moreover, both p and l are undersubscribed in M . Since si is assigned in M and prefers
all projects in t(pj) to M(si), it follows that si strictly prefers p to M(si), given that t(p) = t(pj).
In this case, the pair (si, p) is a blocking pair in M , a contradiction.

Case (c): Then si /∈M ′(lk) and lk prefers t(pj) to the worst non-empty project topic in M ′(lk). Let
pz be some non-empty project in M ′(lk) where t(pz) is the worst project topic for lk in M ′. Then,
lk prefers t(pj) to t(pz). Let p̂ be a corresponding non-empty project in I such that f(p̂) = pz and
t(p̂) = t(pz); let l be the lecturer in I who offers p̂. Clearly, l has the same preferences over topics
as lk does. Therefore, l offers some project p such that t(p) = t(pj) and l prefers t(p) to t(p̂). Since
si /∈M ′(lk), it follows that si is not assigned to any type-t lecturer in M , and therefore, si /∈M(l).
Moreover, since si prefers all projects in t(pj) to t(M ′(si)), it follows that si strictly prefers p to
M(si). Since p̂ is non-empty, then no other project offered by l in M can be full (Otherwise l is
oversubscribed in M). Hence, p is undersubscribed in M . In this case, si is either unassigned in
M or strictly prefers p to p̂, p is undersubscribed in M , si /∈M(l), and l prefers t(p) to t(p̂). Thus,
the pair (si, p) blocks M , a contradiction.

Hence, if M is the largest stable matching in I, then the corresponding matching M ′ is stable
and |M | = |M ′|. This concludes the proof.

3.4. Parameterised complexity of spa-p 62

We now prove the reverse direction: if M ′ is a largest stable matching in I ′, then the correspond-
ing matching M is stable and satisfies |M | = |M ′|. To establish this, we first define the notion of
unavailable topics in I ′, which plays a key role in the proofs of the subsequent lemmas. The proof
involves transforming M ′ into an intermediate matching M0 in I ′, and showing that |M ′| = |M0|.
In M0, each student is either assigned the same project as in M ′, or is assigned to a more pre-
ferred project in M0 offered by the same lecturer, provided the project belongs to an available
topic. We then construct a matching M in the original instance I from M0, prove that M is stable,
and show that |M | = |M0|.

Definition 3.4.2 (Unavailable Topics). For each lecturer l ∈ I ′, a topic t′ is said to be
unavailable for l if there exists a student s, who is either unassigned in M ′ or assigned to a
project offered by a different lecturer, and a topic t̂ offered by l, such that:

• s prefers topic t̂ to the topic of their assigned project in M ′, and

• l prefers topic t̂ to topic t′.

A topic is available for l if it is not unavailable.

Transformation from M ′ to M0: Let M ′ be a largest stable matching in I ′. We construct a
matching M0 in I ′ by initially assigning each student to the same project and lecturer as in M ′.
We define a swap as follows: for a student si, let p be a project on si’s preference list such that: (i)
si strictly prefers p to M0(si); (ii) p is undersubscribed in M0; (iii) both p and M0(si) are offered
by the same lecturer l; and (iv) the topic t(p) is an available topic for l. We say that a feasible swap
exists in M0 whenever these conditions are satisfied. If such a project p exists, we remove the
assignment between si and M0(si), and assign si to p. We greedily apply swaps until no feasible
swap remains in M0, at which point the construction terminates with the matching M0.
Observation 3.4.1. If a topic is available before a feasible swap in M ′, then it remains available in
M0.

Lemma 3.4.7. Let M ′ be a stable matching in I ′, and let M0 be the matching obtained from M ′ via
the construction described above. Then M0 is stable and |M0| = |M ′|.

Proof. It is straightforward to verify that M0 is a valid matching. We observe that each student
either remains assigned to the same project as in M ′ or is moved to a more preferred project,
hence no student is multiply assigned. Since swaps only occur between projects offered by the
same lecturer, each lecturer has the same set of students in M0 and M ′. Therefore, no lecturer
is oversubscribed in M0. Furthermore, a student is only moved to a project if that project is
undersubscribed, so no project is oversubscribed in M0. Suppose, for contradiction, that there
exists a blocking pair (si, pj) in M0. Then si is either unassigned in M0 or strictly prefers pj to
M0(si), pj is undersubscribed inM0 (where pj is offered by lk), and one of the following conditions
holds:

3.4. Parameterised complexity of spa-p 63

(a) si ∈M0(lk), and lk strictly prefers pj to M0(si),

(b) si /∈M0(lk), and lk is undersubscribed in M0,

(c) si /∈M0(lk), and lk prefers t(pj) to their worst non-empty project topic in M0.

Case (a): Since si ∈M0(lk) and students remain assigned to the same lecturer in the construction
of M0, it follows that si ∈ M ′(lk). If si strictly prefers pj to M0(si), then the same preference
holds with respect to M ′(si), since students are only moved to more preferred projects during
the construction of M0. Thus, si strictly prefers pj to M ′(si). Let pa = M0(si) and pb = M ′(si).
Clearly, t(pj) ̸= t(pa). We now claim that t(pj) is an available topic for lk in M ′. Suppose, for
contradiction, that it is not available. Then there exists a student s /∈M ′(lk) and a topic t̂ offered
by lk such that s prefers t̂ to their assigned topic in M ′, and lk prefers t̂ to t(pj). We consider two
subcases depending on whether or not si was involved in a swap.

Case (i): pa = pb. Then si was not involved in a swap. In this case, lk prefers t(pj) to t(pb). Since
si is assigned in M ′ to a different project pb offered by lk, no other project offered by lk is full in
M ′. Thus, each project in t̂ is undersubscribed in M ′. Consequently, s prefers some project p in
t̂, p is undersubscribed in M ′, and lk prefers t̂ to the non-empty project topic t(pb). Hence, (s, p)
blocks M ′, a contradiction.

Case (ii): pa ̸= pb. Then si was involved in a swap; moreover, si strictly prefers pj to pa, and
pa to pb. This holds because each student is assigned to a more preferred project in M0. Also,
since si is assigned to pa in M0, the topic t(pa) is available for lk in M ′. If lk prefers t(pj) to t(pb),
then, following the same argument as in case (i), we arrive at a contradiction involving the pair
(s, p). Now suppose lk prefers t(pj) to t(pa). Since lk prefers t̂ to t(pj), and prefers t(pj) to t(pa), it
follows that lk prefers t̂ to t(pa). By our assumption, there exists a student s /∈M ′(lk) who prefers
t̂ to their assigned topic in M ′. However, by definition, this implies that t(pa) is unavailable. This
contradicts the fact that t(pa) must have been available in M ′ for si to be assigned to pa in M0.

Thus, in both cases (i) and (ii), t(pj) is an available topic for lk in M ′, and consequently also in M0.
Furthermore, as pj is undersubscribed in M0, the pair (si, pj) satisfies the conditions for a feasible
swap. Thus, si should have been assigned to pj during the construction of M0, contradicting the
fact that M0 was obtained by terminating only when no such pair remains. Therefore, there are
no blocking pairs of case (a) in M0.

Case (b): Then si /∈ M0(lk) and lk is undersubscribed in M0. Since students are only moved
between projects offered by the same lecturer, it follows that si /∈ M ′(lk) as well. Moreover, if si

is unassigned in M0 or prefers t(pj) to t(M0(si)), then the same holds in M ′; that is, si is either
unassigned in M ′ or prefers t(pj) to t(M ′(si)). Since the set of students assigned to lk is the same
in M0 and M ′, it follows that if lk is undersubscribed in M0, then lk is also undersubscribed in
M ′. If pj is undersubscribed in M ′, then the pair (si, pj) blocks M ′, contradicting the stability of

3.4. Parameterised complexity of spa-p 64

M ′. Now suppose that pj is undersubscribed in M0 but full in M ′. Then, during the construction
of M0, some student s ∈M ′(lk) must have been moved from pj to another project p offered by lk.

By the construction of M0, s strictly prefers t(p) to t(pj), project p is undersubscribed in M0,
and t(p) is an available topic for lk. Since t(p) is available, by definition, there is no student
s′ /∈M ′(lk) who prefers some topic t̂ to their assignment in M ′ and lk prefers t̂ to t(p). However,
si /∈ M ′(lk), and since si prefers t(pj) to their assignment in M ′, it follows that lk does not
prefer t(pj) to t(p); otherwise, si would be a student violating the fact that t(p) is available, a
contradiction. Therefore, lk prefers t(p) to t(pj). But this means that s strictly prefers p to pj, p

is undersubscribed in M ′, and lk is also undersubscribed in M ′, so the pair (s, p) blocks M ′, a
contradiction. Therefore, there are no case (b) blocking pairs in M0.

Case (c): Suppose si /∈ M0(lk), and lk prefers t(pj) to their worst non-empty project topic in
M0. Since students are only moved between projects offered by the same lecturer, it follows that
si /∈ M ′(lk) as well. Moreover, if si is unassigned in M0 or prefers t(pj) to t(M0(si)), then the
same must hold in M ′; that is, si is either unassigned in M ′, or prefers t(pj) to t(M ′(si)). Let
pz be a non-empty project offered by lk such that t(pz) is the worst topic for lk in M0. Since lk’s
preferences over topics remain the same in M0 and M ′, it follows that lk also prefers t(pj) to t(pz)
in M ′. If pj is undersubscribed in M ′, then (si, pj) forms a blocking pair in M ′, since si /∈M ′(lk),
si strictly prefers pj to M ′(si), and lk prefers t(pj) to the non-empty t(pz). Thus, the only way
(si, pj) does not block M ′ is if either (i) pz is non-empty in M0 but empty in M ′, or (ii) pj is
undersubscribed in M0 but full in M ′. We consider each of these cases below.

Case (i): Suppose that pz is empty in M ′ but is non-empty in M0. Then there exists a student sz ∈
M ′(lk) whowas not assigned to pz in M ′ but assigned to it in M0; that is, sz ∈M0(pz)\M ′(pz). This
implies pz was undersubscribed in M ′, and t(pz) was an available topic for lk. By the definition
of available topics, this means there is no student s /∈ M ′(lk) who prefers some topic t̂ to their
assignment in M ′, and lk prefers t̂ to t(pz). However, since si /∈ M ′(lk), and si prefers t(pj) to
their assignment in M ′, and lk prefers t(pj) to t(pz), this would imply that t(pz) is not available,
a contradiction. Therefore, t(pz) must be non-empty in M ′.

Case (ii): Now suppose pj is full in M ′ but undersubscribed in M0. Then, during the construction
of M0, some student s ∈M ′(lk) must have moved from pj to another project p offered by lk, i.e.,
M ′(s) = pj. By the definition of feasible swaps, s strictly prefers p to pj, p is undersubscribed
in M0, and t(p) is an available topic for lk. Since t(p) is available, there cannot exist a student
s′ /∈ M ′(lk) who prefers some topic t̂ to their assignment in M ′ such that lk prefers t̂ to t(p). But
si /∈M ′(lk), and si prefers t(pj) to t(M ′(si)), so if lk preferred t(pj) to t(p), then t(p) would not be
available — a contradiction. Hence, lk prefers t(p) to t(pj). It follows that (s, p) blocks M ′, since
s ∈ M ′(lk), s strictly prefers p to pj, p is undersubscribed in M ′, and lk prefers t(p) to t(pj). This
contradicts the stability of M ′. We conclude that no blocking pair of type (c) exists in M0.

3.4. Parameterised complexity of spa-p 65

Hence, M0 is a stable matching. Moreover, since each student assigned in M ′ remains assigned
in M0, it follows that |M0| = |M ′|. This concludes the proof.

Transformation from M0 to M : We construct a matching M in the original instance I by using
the assignments in M0. Specifically, if a student s is assigned to a project p in M0, where p is
offered by the combined lecturer lt in I ′ (corresponding to type-t lecturers in I), we assign s to
some project pj in I such that f(pj) = p and pj is offered by a lecturer of type t. We distribute the
students assigned to p across each project pj in I where f(pj) = p, and pj is offered by a lecturer
of type t. This distribution is carried out so that the capacity of each individual project pj in I is
not exceeded.

Since the total capacity of the combined project p in I ′ is equal to the sum of the capacities
of all projects in f−1(p), there is enough space to distribute all students without any project
being oversubscribed. Furthermore, no lecturer is oversubscribed in M , since each lt in I ′ has a
capacity equal to the total capacity of the type-t lecturers in I, and each project in I has the same
capacity as the lecturer who offers it. Moreover, each student is assigned to exactly one project
in M . Therefore, M is a valid matching.

Lemma 3.4.8. Let M be a matching in I obtained via the construction described above. Then M

admits no blocking pair (si, pj) where pj and M(si) are offered by lecturers of different types.

Proof. Suppose, for contradiction, that M admits a blocking pair (si, pj) whereby si is either
unassigned in M or si strictly prefers pj to M(si), and projects pj and M(si) are offered by
lecturers of different types. By construction, each student s has the same preferences over projects
and project topics in M and M0. Therefore, si is either unassigned in M0 or si strictly prefers pj to
M0(si). Let lk denote the lecturer who offers pj in I. Clearly, si /∈M(lk) since both pj and M0(si)
are offered by different types of lecturers. Since (si, pj) blocks M , then pj is undersubscribed in
M , and one of the following holds:

(a) si /∈M(lk) and lk is undersubscribed in M , or

(b) si /∈M(lk) and lk prefers t(pj) to their worst non-empty project topic in M .

Suppose that lk is a type-t lecturer. By construction of M , all type-t lecturers in I correspond to
a single lecturer lt in I ′, and lt offers a combined project p such that f(pj) = p and t(pj) = t(p).
We recall that, by assumption, each lecturer in I offers at most one project on each topic. Since
pj is undersubscribed in M , the total number of students assigned across all projects in t(pj)
and offered by lecturers of type-t in I is less than their combined capacity. It follows that the
corresponding project p is also undersubscribed in M0. Moreover, since pj and M(si) are offered
by lecturers of different types, it follows that si /∈M0(lt). We consider the possible blocking pair
cases as follows:

3.4. Parameterised complexity of spa-p 66

Case (a): Suppose both pj and lk are undersubscribed in M . Since lk is undersubscribed in M ,
it follows that the total number of students assigned to type-t lecturers in M is strictly less than
their total capacity. Hence, lt is undersubscribed in M0. Moreover, p is undersubscribed in M0.
Therefore, si /∈ M0(lt), si is either unassigned in M0 or si strictly prefers p to M0(si), both p and
lt are undersubscribed in M0. Thus, (si, p) forms a blocking pair in M0, a contradiction.

Case (b): Suppose pj is undersubscribed in M , and lk prefers t(pj) to the topic of their worst
non-empty project in M0, say t(pz). By construction, t(pz) corresponds to some project p̂ offered
by lt, where t(pz) = t(p̂). Moreover, since t(p) = t(pj), lt also prefers t(p) to t(p̂). Also, p is
undersubscribed in M0. In this case, si /∈ M0(lt), either si is unassigned in M0 or si strictly
prefers p to M0(si), p undersubscribed in M0, and lt prefers t(p) to t(pz). Therefore, (si, p) forms
a blocking pair in M0, contradicting Lemma 3.4.7.

Since both cases (a) and (b) lead to a contradiction, we conclude that M admits no such blocking
pairs.

Lemma 3.4.9. Let M0 be a stable matching in I ′ with no feasible swaps, and let M be the matching
in I obtained from M0 via the construction described above. Then M is stable and |M | = |M0|.

Proof. Suppose for contradiction that M is not stable. Then there exists a blocking pair (si, pj) in
M . By Lemma 3.4.8, the blocking pair (si, pj) involves lecturers of the same type, that is, pj and
M(si) are offered by lecturers of the same type. Let lk be the lecturer who offers pj. It follows
that si is either unassigned in M or strictly prefers pj to M(si), pj is undersubscribed in M , and
one of the following holds:

(a) si ∈M(lk), and lk strictly prefers pj to M(si),

(b) si /∈M(lk), and lk is undersubscribed in M ,

(c) si /∈M(lk), and lk prefers t(pj) to their worst non-empty topic in M .

Suppose that lk is a type-t lecturer. Let lt be the lecturer in I ′ corresponding to the type-t lecturers
in I. Then lt offers a project p in I ′ such that f(pj) = p. Similarly, let f(M(si)) = p̂. We note that
if si is unassigned in M , then by construction, si is also unassigned in M0, since every student
assigned in M is also assigned in M0. Similarly, if si strictly prefers pj to M(si), then si also
strictly prefers p to p̂, since t(p) = t(pj) and t(p̂) = t(M(si)); also, each student’s preferences
over project topics are identical in M and M0. Since pj is undersubscribed in M , it follows that
the total number of students assigned across all projects with f(pj) = p and offered by type-t
lecturers in I is less than their combined capacity. Therefore, p is undersubscribed in M0. We
now consider each case separately:

Case (a): Since si ∈ M(lk), it follows by construction that si ∈ M0(lt). Furthermore, since
lk strictly prefers pj to M(si), it follows that lt strictly prefers p to p̂. Therefore, si is either

3.4. Parameterised complexity of spa-p 67

unassigned in M0, or si strictly prefers p to p̂, p is undersubscribed in M0, and lt strictly prefers
p to p̂. It follows that (si, p) blocks M0, contradicting the stability of M0.

Cases (b) and (c): Since si /∈M(lk), but both pj and M(si) are offered by lecturers of the same
type (type t), it follows by construction that si ∈ M0(lt). In case (b), if lk is undersubscribed
in M , then the total number of students assigned across all type-t lecturers is strictly less than
their combined capacity. This implies that lt is undersubscribed in M0. In case (c), let p′ be some
non-empty project in the worst topic in M(lk), and let f(p′) = p̂. Then lt prefers p to p̂.

We now show that t(p) is an available topic for lt in M0. Suppose not. Then, by the definition
of unavailable topics, there exists some student s /∈ M0(lt) and some topic t∗ offered by lt such
that: (i) s is either unassigned in M0 or prefers t∗ to the topic of their current project in M0; and
(ii) lt prefers t∗ to t(p). By construction, each project offered by lt has capacity equal to that of
lt. Since si ∈M0(lt), it follows that no project (other than M0(si)) offered by lt is full in M0, and
thus there exists a project p∗ in topic t∗ that is undersubscribed in M0. In case (b), it follows that
s /∈ M0(lt), s prefers t(p∗) to t(M0(s)), and both p∗ and lt are undersubscribed in M0; thus, the
pair (s, p∗) blocks M0. In case (c), it follows that p∗ is undersubscribed in M0, and lt prefers t(p∗)
to t(p̂). Therefore, the pair (s, p∗) blocks M0, contradicting its stability. Hence, t(p) is an available
topic for lt in M0.

Hence, si ∈ M0(lt), si strictly prefers p to M0(si), p is undersubscribed in M0, both p and p̂ are
offered by lt, and t(p) is an available topic for lt. Thus, all conditions for a feasible swap between
si and p are satisfied in M0, contradicting the assumption that M0 admits no feasible swaps.
Therefore, M is a stable matching. Since the same set of students assigned in M0 are assigned in
M by construction, it follows that |M | = |M0|, completing the proof.

Since |M ′| = |M0| and |M0| = |M |, it follows that |M ′| = |M |. Therefore, if M ′ is the largest
stable matching in I ′, then we can construct a stable matching M in I such that |M ′| = |M |.
Together, Lemmas 3.4.6 – 3.4.9 prove that the transformation from I to I ′ preserves the size of
the largest stable matching in both directions. Since this transformation can be carried out in
polynomial time, Lemma 3.4.5 holds.

3.4.5 An ILP for spa-puc
An instance of Integer Linear Programming model (ILP) consists of an integer matrix A ∈
Zm×k, a vector b ∈ Zm, and an objective vector c ∈ Zk. The goal is to find a vector x ∈ Zk that
minimises the objective c⊤x, subject to the constraint Ax ≤ b, or to determine that no feasible
solution exists. While solving an ILP is NP-hard in general, a celebrated result by Lenstra [31]
shows that the problem is fixed-parameter tractable (FPT) when parameterised by the number
of variables (See Theorem 3.4.1). Specifically, an ILP with k variables can be solved in time
f(k) · poly(W), where f(k) is an exponential function depending only on k, and W is the total

3.4. Parameterised complexity of spa-p 68

size of the input. We use this result to show that the problem of finding a largest stable matching
in spa-puc is FPT when parameterised by the number of project topics.

Theorem 3.4.1 ([31], based on [42, 76, 93]). An Integer Linear Programming instance of
size W with p variables can be solved using

O
(
p2.5p+o(p) · (W + log Mx) log(MxMc)

)
arithmetic operations and space polynomial in W + log Mx, where Mx is an upper bound on
the absolute value a variable can take in a solution, and Mc is the largest absolute value of a
coefficient in the vector c.

We construct an ILP that maximises the total number of students across all types who are as-
signed to each project. Let I be an instance of spa-puc involving a set S = {s1, s2, . . . , sn1} of
students, a set P = {p1, p2, . . . , pn2} of projects, and a set L = {l1, l2, . . . , ln3} of lecturers. Each
student belongs to a type in the set {1, . . . , r}, each lecturer belongs to a type in the set {1, . . . , t},
and each project pj belongs to a corresponding project topic. Suppose that pj is offered by lec-
turer lk, and let Pk be the set of projects offered by lk. For each student type i ∈ [r] and project
pj ∈ P , we introduce an integer variable xi,j ∈ Z≥0 representing the number of students of type
i assigned to project pj.

By Lemma 3.4.1, a type-i student and project pj can form a blocking pair only if all three of the
lemma conditions hold simultaneously. To ensure that there are no blocking pairs, it therefore
suffices to guarantee that for every such pair, at least one of these conditions fails. To model this
in the ILP, we introduce binary variables αi,j, βi,j, γi,j ∈ Z ∀i, j for each student type i and
project pj pair. Each variable is used to ensure that the corresponding condition in Lemma 3.4.1
does not hold. Recall that n1 =

r∑
i=1

Ni is the total number of students in the instance. We use
n3

1 as a sufficiently large value in the blocking pair constraints so that when a binary variable
(e.g., αi,j) is set to 1, the corresponding inequality becomes trivially satisfied. When the binary
variable is 0, the constraint forces the corresponding blocking pair condition to fail.

Using the ILP variables xi,j, we restate the three conditions from Lemma 3.4.1 under which a
type-i student and project pj form a blocking pair.

(a)
r∑

i=1
xi,j < cj,

(b) Ni −

 ∑
t(pm)⪰it(pj)

xi,m + ∑
t(pm)⪰kt(pj)

xi,m −
∑

t(pm)⪰it(pj)
t(pm)⪰kt(pj)

xi,m

 > 0,

3.4. Parameterised complexity of spa-p 69

(c) ∑
t(pm)⪰kt(pj)

1≤i≤r

xi,m < dk,

We now present the ILP formulation:
Objective:

Maximise
r∑

i=1

n2∑
j=1

xi,j

That is, we aim to maximise the total number of students across all types who are assigned to all
projects. Let Ai be the set of projects acceptable to each student type i.
Matching constraints:

∑
j∈Ai

xi,j ≤ Ni ∀i ∈ [r] (no type-i student is assigned to multiple projects) (1)
r∑

i=1
xi,j ≤ cj ∀j ∈ [n2] (no project is oversubscribed) (2)

∑
pj∈Pk

r∑
i=1

xi,j ≤ dk ∀k ∈ [n3] (no lecturer is oversubscribed) (3)

Blocking pair constraints (for all 1 ≤ i ≤ r and 1 ≤ j ≤ n2):
r∑

i=1

n2∑
j=1

xi,j − cj + n3
1αi,j > 0 (4)

Ni −

 ∑
t(pm)⪰it(pj)

xi,m +
∑

t(pm)⪰kt(pj)
xi,m −

∑
t(pm)⪰it(pj)
t(pm)⪰kt(pj)

xi,m

− n3
1βi,j < 0 (5)

∑
t(pm)⪰kt(pj)

1≤i≤r

xi,m − dk + n3
1γi,j > 0 (6)

αi,j + βi,j + γi,j ≤ 2 (7)

In constraints (4)–(6), we use the binary variables to determine whether the corresponding block-
ing pair condition in Lemma 3.4.1 is enforced. Setting a variable to 0 ensures the corresponding
condition fails; setting it to 1 causes the constraint to be trivially satisfied via the large value n3

1.
Explicitly:

• If αi,j = 0, then constraint (4) reduces to
r∑

i=1

n2∑
i=1

xi,j > cj, so condition (a) fails.

• If βi,j = 0, then constraint (5) becomes negative, so condition (b) fails.

• If γi,j = 0, then constraint (6) reduces to ∑xi,m > dk, so condition (c) fails.

3.4. Parameterised complexity of spa-p 70

Constraint (7) ensures that for each type-i student and project pj pair, at least one condition fails.
Hence, no pair satisfies all blocking pair conditions simultaneously.

Lemma 3.4.10. Let I be an instance of spa-puc. If the ILP described above admits a feasible solution
S, then S corresponds to a stable matching M in I, where obj(S) = |M |.

Proof. Suppose that the ILP above admits a feasible solution S. For each student type i ∈ [r] and
each project pj ∈ [n2], the variable xi,j gives us the number of type-i students assigned to project
pj. From this, we construct a matching M in the original instance I as follows. Let Ni denote the
number of students of type i. For each project pj, we assign exactly xi,j different students to pj,
ensuring that no student is assigned to more than one project. This construction is valid since
constraint (1) guarantees that the total number of assigned type-i students does not exceed Ni.
Let M be the matching defined by the solution S. The total number of students assigned in M is

|M | = obj(S) =
r∑

i=1

n2∑
j=1

xi,j.

Constraints (1)–(3) ensure that M is a valid matching: no student is assigned to more than
one project, and the capacity constraints for projects and lecturers are respected. Suppose for
contradiction that M contains a blocking pair involving some student s and project pj; suppose s

is a type-i student. Then, all three conditions in the statement of Lemma 3.4.1 must be satisfied
for this pair. In the ILP, these blocking pair conditions are captured by constraints (4)–(6), and
each is associated with a binary variable: αi,j, βi,j, and γi,j. These variables are designed so that
setting a variable to 0 ensures its corresponding blocking pair condition fails. Therefore, if all
three conditions hold for M , then any feasible assignment to αi,j, βi,j, and γi,j must set each
variable to 1. But this would violate constraint (7), which requires

αi,j + βi,j + γi,j ≤ 2.

Hence, such a blocking pair cannot exist in M , and we conclude that M is stable.

Lemma 3.4.11. Let I be an instance of spa-puc, and let M be a stable matching in I. Then there
exists a feasible solution to the ILP defined above with objective value |M |.

Proof. Let M be a stable matching in instance I. For each student type i ∈ [r] and project pj ∈ P ,
define xi,j to be the number of type-i students assigned to project pj in M . Since M is a valid
matching, it satisfies the following: No student is assigned to more than one project, so for each
i ∈ [r], we have ∑

j∈Ai

xi,j ≤ Ni, satisfying constraint (1). No project is oversubscribed, so for each
j ∈ [n2], we have ∑r

i=1 xi,j ≤ cj, satisfying constraint (2). No lecturer is oversubscribed, so for
each k ∈ [n3], we have ∑pj∈Pk

∑r
i=1 xi,j ≤ dk, satisfying constraint (3).

3.4. Parameterised complexity of spa-p 71

We now show that the blocking pair constraints (4)–(7) can be satisfied by assigning suitable
values to the binary variables αi,j, βi,j, γi,j ∈ {0, 1} based on the stable matching M . Since M

is stable, it follows that for every student type i ∈ [r] and every project pj ∈ P, at least one
of the blocking pair conditions in Lemma 3.4.1 does not hold. For each such combination of
student type and project, we identify a condition that fails in M , and set the corresponding
binary variable, either αi,j, βi,j, or γi,j, to 0. This ensures that the relevant constraint among (4),
(5), or (6) is satisfied.

In this way, we construct a valid setting of the binary variables that satisfies the blocking pair
constraints for that student type and project. Moreover, since at least one condition fails, we
assign the value 1 to at most two of the variables, ensuring that constraint (7), which requires
αi,j + βi,j + γi,j ≤ 2, is also satisfied. Thus, for every combination of student type i and project pj,
we can construct a valid assignment to the variables αi,j, βi,j, and γi,j such that constraints (4)–(7)
are satisfied.

Therefore, the assignment derived from the stablematchingM satisfies all constraints and defines
a feasible solution to the ILP. The corresponding value of the objective function is

obj(S) =
r∑

i=1

n2∑
j=1

xi,j = |M |,

as required.

Theorem 3.4.2. Let I be an instance of spa-puc with k project topics. Then finding a largest
stable matching in I is fixed-parameter tractable when parameterised by k.

Proof. We begin by applying the reduction of Lemma 3.4.2, which transforms the input instance
I into an instance I1 in which each lecturer offers at most one project per topic. We then ap-
ply Lemma 3.4.5 to obtain an instance I2 in which there is only one lecturer per type. These
reductions preserve the size of the largest stable matching and can be computed in polynomial
time.

We then formulate the transformed instance I2 as an ILP, as described in Section 3.4.5. This ILP
is expressed in terms of student types, project topics, and lecturer types. In the worst case, each
student type is characterised by a strict preference list over the k project topics, where students
are indifferent between all projects belonging to the same topic. There are at most k! < kk such
strict preference lists. Since students may only find a subset of topics acceptable, each list can
be truncated in at most k ways. Hence, the total number of distinct student types is bounded by
k · kk = kk+1. On the lecturer side, their total number is bounded by 2k − 1.

In I2, each lecturer offers at most one project per topic, so each lecturer offers at most k projects.
Since there are at most 2k−1 lecturer types, and each may offer up to k projects, the total number

3.5. Conclusions and future work 72

of projects is at most
k(2k − 1) = k2k − k.

Given that there are k k+1 student types, the total number of student-type/project pairs is at
most

k k+1
(
k2k − k

)
= k k+2(2k − 1).

The ILP includes:

• One variable xi,j for each student type i and project pj;

• Three binary variables αi,j, βi,j, γi,j per such pair;

• Three matching constraints: one per student type, one per project, and one per lecturer;

• Four blocking pair constraints for each student type and project pair.

Hence, the ILP has
O
(
k k+2(2k − 1)

)
variables and constraints. Each variable xi,j is bounded above by n1, the number of students, so
the input size is

O
(
k k+2(2k − 1) log n1

)
.

By Theorem 3.4.1, the ILP can be solved in time

O

((
k k+2(2k − 1)

) 2.5 k k+2(2k−1)+o(k k+2(2k−1)) · log3 n1

)
.

Hence, the problem of finding a largest stable matching in an instance of spa-puc is fixed param-
eter tractable when parameterised by the number of project topics k.

3.5 Conclusions and future work

In this chapter, we presented complexity results for finding a maximum-size stable matching
in restricted versions of spa-st and spa-p. First, we showed that max-spa-st remains NP-hard
even in the case where only one lecturer is involved. Then we showed that max-spa-p remains
NP-hard when both student and lecturer preferences are derived from a single master list of
projects. On the other hand, we showed that max-spa-p is polynomial-time solvable when each
student finds acceptable only projects offered by a single lecturer. This was achieved by dividing
the original instance into disjoint sub-instances of max-spa-p-l1, for which a known polynomial-
time algorithm can be applied. The final solution is then obtained by combining the solutions
from each sub-instance. Additionally, we observed that max-spa-p is solvable in polynomial time

3.5. Conclusions and future work 73

when all students have identical preference lists. This follows from the fact that, in this scenario,
all stable matchings are of the same size.

In addition to these results, we examined the parameterised complexity of max-spa-p in a setting
involving project topics and uniform capacities, denoted spa-puc. In this setting, students and
lecturers express preferences over project topics rather than individual projects, and each lecturer,
along with the projects they offer, has the same capacity. We showed that max-spa-puc is fixed-
parameter tractable when parameterised by the number k of project topics. This was established
by first applying two reductions to the original instance, resulting in an equivalent instance where
the numbers of lecturers and projects are bounded in terms of the number of project topics. Then
we formulated the problem as an ILP whose number of variables depends only on the number of
project topics, k.

A possible direction for future work in the context of max-spa-st is to investigate whether the
3
2 -approximation algorithm by Cooper and Manlove [27] yields a better approximation factor
in the case with a single lecturer. Another promising direction is to explore the parameterised
complexity of this problem, particularly in a typed setting. We note that FPT algorithms have
been developed for typed versions of max-smti and max-hrt [114]. Similar definitions of types
could be developed for spa-st and examined further. In the spa-p setting, the complexity of
(2,∞)-max-spa-p, where each student ranks at most two projects and each lecturer is allowed an
unbounded number of projects in their preference list, remains an open question. Future work in
max-spa-p could focus on tightening the parameterised bounds by exploring alternative structural
parameters that lead to efficient algorithms. It would also be interesting to extend these results
to other NP-hard variants of spa-s, especially those involving additional constraints such as ties
in preferences or lower quotas.

Chapter 4

Structural Results for spa-s

4.1 Introduction

In this chapter, we study the structural properties of the Student-Project Allocation problem with
lecturer preferences over Students (spa-s). We give a new characterisation of the set of stable
matchings for any instance of this problem. Our main result shows that these stable match-
ings form a distributive lattice, extending the well-known lattice structure from classical stable
matching problems to this more general setting.

4.1.1 Background and motivation

As discussed in Sections 2.1.3.1 and 2.2.3, the set of stable matchings in the classical Stable Mar-
riage problem (sm) and the Hospital Residents problem (hr) forms a distributive lattice. In these
settings, the man-optimal (or resident-optimal) and woman-optimal (or hospital-optimal) stable
matchings correspond to the minimum and maximum elements of the lattice, respectively. This
structure has been central to the development of efficient algorithms for enumerating all stable
matchings, identifying all stable pairs, and computing stable matchings that satisfy additional
criteria, such as finding an egalitarian stable matching or a stable matching with minimum re-
gret. Motivated by these applications, we investigate whether a similar structure exists in spa-s,
as this would enable the design of efficient algorithms for similar problems in the spa-s model.

4.1.2 Contributions and structure of the chapter

We show that, for a given instance of the spa-s problem, the set of all stable matchings forms a
distributive lattice, with the student-optimal and lecturer-optimal stable matchings correspond-
ing to the minimum and maximum elements of this lattice, respectively. A related result was
previously established in Chapter 3 of [121], but under the restriction that each student provides
preferences only over projects offered by different lecturers. In this chapter, we revisit some
key results from that work, specifically Proposition 4.2.1 and Theorem 4.4.1. Additionally, we

74

4.2. Preliminary definitions 75

develop new results and proofs to show that the distributive lattice structure also holds in the
general case, without any restrictions on student preference lists.

4.2 Preliminary definitions

We refer the reader to the formal definitions of spa-s presented in Section 2.3.1. To illustrate
these definitions more concretely, we provide the following example:

Consider the spa-s instance I1 shown in Figure 4.1. Here, the set of students is S = {s1, s2, . . . , s5},
the set of projects is P = {p1, p2, . . . , p5}, and the set of lecturers is L = {l1, l2}. Recall that each
student has a preference list over the projects they find acceptable, and each lecturer ranks stu-
dents in order of preference. In the example, s1’s preference list is p1, p2, and s2’s preference list
is p2, p3. Also, lecturer l1 offers p1, p2, p5, while lecturer l2 offers p3, p4. Moreover, l1’s preference
list is s4, s5, s3, s1, s2, and the projected preference list of l1 for p1 includes s3, s1, ranked in that
order.

Students’ preferences Lecturers’ preferences Offers

s1: p1 p2 l1: s4 s5 s3 s1 s2 p1, p2, p5

s2: p2 p3 l2: s2 s3 s5 s4 p3, p4

s3: p3 p1

s4: p4 p5

s5: p5 p4

Project capacities: c1 = c2 = c3 = c4 = c5 = 1

Lecturer capacities: d1 = 3, d2 = 2

Figure 4.1: An instance I1 of spa-s

With respect to the spa-s instance I1 shown in Figure 4.1, the matching M1 = {(s1, p1), (s2, p2),
(s3, p3), (s4, p4), (s5, p5)} is a stable matching, as it does not admit any blocking pair. Furthermore,
M1 is the student-optimal stable matching since every student is assigned to their best project in
M1. Similarly, the matching M2 = {(s1, p2), (s2, p3), (s3, p1), (s4, p5), (s5, p4)} is also stable in I1,
and M2 is the lecturer-optimal stable matching. Clearly, in M2, each lecturer whose assigned set
of students differs from that in M1, is assigned at least one student in M2 whom they prefer to
some student assigned to them in M1.

4.2. Preliminary definitions 76

4.2.1 Preferences over matchings

In this section, we extend the notion of preferences over individual projects (for students) and
over individual students (for lecturers) to preferences over matchings. We then present the Un-
popular Projects Theorem, originally introduced by [8] and presented in [121], which captures
key structural properties of the set of stable matchings in spa-s. Finally, we discuss how these
properties differ from those in the hr model.

Theorem 4.2.1 (Unpopular Projects Theorem [8, 121]). LetM denote the set of all stable
matchings in a given instance of spa-s. Then:

(i) Each lecturer is assigned the same number of students in all stable matchings inM.

(ii) Exactly the same students are unassigned in all stable matchings inM.

(iii) Any project offered by an undersubscribed lecturer is assigned the same number of
students in all stable matching inM.

In the Rural Hospitals Theorem for the hrmodel (stated in 2.2.1), an undersubscribed hospital is
assigned the same set of residents in every stable matching, and each hospital receives the same
number of residents across all stable matchings. However, these properties do not fully extend
to spa-s. In particular:

• An undersubscribed lecturer may be assigned different sets of students in different stable
matchings (see Figure 3 in [8]).

• A project offered by a full lecturer in one stable matching may be assigned a different
number of students in another stable matching (see Figure 4 in [8]).

4.2.1.1 Student Preferences over Matchings

Let I be an instance of spa-s, and letM denote the set of all stable matchings in I. Given two
matchings M, M ′ ∈ M, a student si ∈ S prefers M to M ′ if si is assigned in both matchings and
prefers M(si) to M ′(si). Similarly, si is indifferent between M and M ′ if either:
(i) si is unassigned in both M and M ′, or

(ii) si is assigned the same project in both matchings, i.e., M(si) = M ′(si).

4.2.1.2 Lecturer Preferences over Matchings

It is not immediately clear how to compare two stable matchings from the perspective of a lec-
turer. To formalise lecturer preferences over matchings, we adopt the definition proposed by

4.2. Preliminary definitions 77

Abraham et al. in [8]. Let M and M ′ be two stable matchings in M. By Theorem 4.2.1,
|M | = |M ′| and |M(lk)| = |M ′(lk)| for each lecturer lk. Suppose that lk is assigned different sets
of students in M and M ′. Define

M(lk) \M ′(lk) = {s1, . . . , sr}, M ′(lk) \M(lk) = {s′
1, . . . , s′

r},

where the students in each set are listed in the order they appear in lk’s preference list Lk. Then
lk prefers M to M ′ if lk prefers si to s′

i for all i ∈ {1, . . . , r}. On the other hand, lecturer lk is
indifferent between M and M ′ if lk is not assigned to any student or is assigned the same set of
students in M and M ′, i.e., M(lk) = M ′(lk).
Example. Consider the two stable matchings M1 and M2 for instance I1. Then:

M2(l1) \M1(l1) = {s4, s3}, M1(l1) \M2(l1) = {s5, s2}.

The reader can verify that neither l1 nor l2 is assigned their most preferred set of students in both
stable matchings. However, since l1 prefers s4 to s5 and s3 to s2, it follows that l1 prefers M2 to
M1.

4.2.2 Dominance relation

We now define the dominance relation that plays a central role in constructing the lattice struc-
ture of stable matchings. Let M denote the set of all stable matchings in spa-s. We show in
Proposition 4.2.1 thatM, under the dominance relation ⪯, forms a partial order. Unless stated
otherwise, whenever we write M ⪯ M ′, we refer to the student-oriented dominance relation.
References to the lecturer-oriented dominance relation will be made explicit.

Definition 4.2.1 (Student-oriented dominance relation). Let M, M ′ ∈ M. We say that
M dominates M ′, denoted M ⪯ M ′, if and only if each student prefers M to M ′, or is
indifferent between them.

Example. Consider instance I1 in Figure 4.1, which admits the following two stable matchings:
M1 = {(s1, p1), (s2, p2), (s3, p3), (s4, p4), (s5, p5)}, M2 = {(s1, p2), (s2, p3), (s3, p1), (s4, p5), (s5, p4)}.
Each student prefers their assignment in M1 to their assignment in M2, so M1 dominates M2.

Definition 4.2.2 (Lecturer-oriented dominance). Let M, M ′ ∈ M. We say that M dom-
inates M ′ from the lecturers’ perspective if each lecturer either prefers M to M ′, or is
indifferent between the two.

We note that in the hospital-resident setting, given any two stable matchings M and M ′, each
hospital either prefers all of its assigned residents in M to those assigned to it in M ′ \ M , or
prefers all its assigned residents in M ′ to those assigned to it in M \ M ′. This property does

4.2. Preliminary definitions 78

not hold in spa-s. In spa-s, if some lecturer l is assigned different sets of students in two stable
matchings M and M ′, they may not prefer all students in M(l) to those in M ′(l) \M(l), nor all
students in M ′(l) to those in M(l) \M ′(l). However, it is always the case that l prefers at least
one student in M(l) \M ′(l) to at least one student in M ′(l) \M(l), or vice versa.

In Figure 4.1, M1 is the student-optimal stable matching since every student is assigned to their
best project in M1. Similarly, the matching M2 = {(s1, p2), (s2, p3), (s3, p1), (s4, p5), (s5, p4)} is
also stable in I1, and M2 is the lecturer-optimal stable matching. Clearly, in M2, each lecturer
is assigned a student they prefer to at least one of the students assigned to them in M1. In
Lemma 4.3.1, we prove that for any two stable matchings M and M ′, if a student is assigned
to lecturer lk in both matchings, then there exists at least one student in M ′(lk) \ M(lk) and,
consequently, one in M(lk) \ M ′(lk). We then prove in in Lemma 4.3.2 that if some student
s ∈M(lk) \M ′(lk) prefers M to M ′, then lk prefers M ′ to M .

Proposition 4.2.1. LetM be the set of all stable matchings in I. The dominance relation ⪯ defines
a partial order onM, and we denote this partially ordered set as (M,⪯).

We remark that the proof given below follows a similar line of argument to that presented in
[121].

Proof. We show that the dominance relation ⪯ onM is: (i) reflexive, (ii) anti-symmetric, and
(iii) transitive.

(i) Reflexive: Let M ∈M. Clearly, M ⪯M , since every student is indifferent between M and
itself. Thus, ⪯ is reflexive.

(ii) Anti-symmetric: Let M, M ′ ∈ M such that M ⪯ M ′ and M ′ ⪯ M . Then M = M ′.
Suppose, for contradiction, that M ̸= M ′. Then there exists some student si such that
si is assigned in both M and M ′, and M(si) ̸= M ′(si). Since M ⪯ M ′, si prefers M(si)
to M ′(si). Similarly, M ′ ⪯ M implies si prefers M ′(si) to M(si). This is a contradiction.
Hence, M = M ′, and ⪯ onM is anti-symmetric.

(iii) Transitive: Let M, M ′, M ′′ ∈ M such that M ⪯ M ′ and M ′ ⪯ M ′′. We claim that M ⪯
M ′′. By Theorem 4.2.1, we know that exactly the same students are unassigned in all
stable matchings. Thus, every student who is unassigned in M is unassigned in M ′′, and
every unassigned student is indifferent between M and M ′′. Clearly, every student who is
assigned to the same project in M and M ′′ is indifferent between M and M ′′.

Now, let si be some student who is assigned to different projects in both M and M ′′, say
M(si) and M ′′(si) respectively. First, suppose that M(si) ̸= M ′(si); since M ⪯ M ′, it
follows that si prefers M(si) to M ′(si). Further, (a) if M ′(si) = M ′′(si) then si prefers M(si)
to M ′′(si), and (b) if M ′(si) ̸= M ′′(si), M ′ ⪯ M ′′ implies that si prefers M ′(si) to M ′′(si),

4.3. Structural properties of stable matchings 79

and since the preference lists are strictly ordered, si prefers M(si) to M ′′(si). Now, suppose
that M ′(si) = M ′′(si). It follows that M ′(si) ̸= M ′′(si); thus M ′ ⪯M ′′ implies that si prefers
M ′(si) to M ′′(si). This implies that si prefers M(si) to M ′′(si). Hence our claim holds; and
therefore ⪯ onM is transitive.

Definition 4.2.3 (Distributive lattice [54]). LetA be a set and let⪯ be an ordering relation
defined on A. The partial order (A,⪯) is a distributive lattice if:

(i) each pair of element x, y ∈ A has a greatest lower bound, or meet, denoted x ∧ y,
such that x ∧ y ⪯ x, x ∧ y ⪯ y, and there is no element z ∈ A for which z ⪯ x, z ⪯ y

and x ∧ y ⪯ z;

(ii) each pair of element x, y ∈ A has a least upper bound, or join, denoted x ∨ y, such
that x ⪯ x ∨ y, y ⪯ x ∨ y, and there is no element z ∈ A for which x ⪯ z, y ⪯ z and
z ⪯ x ∨ y;

(iii) the join and meet distribute over each other, i.e., for x, y, z ∈ A, x ∨ (y ∧ z) = (x ∨
y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

4.3 Structural properties of stable matchings

In this section, we present new results that illustrate lecturers’ preferences over matchings when
a student prefers one stable matching to another. These results will be used in the next section
to prove that the set of stable matchings forms a distributive lattice. We first present Proposi-
tion 4.3.1, which is used in the proofs of Lemmas 4.3.1 and 4.3.2.
Let M and M ′ be two stable matchings in a spa-s instance I. In Lemma 4.3.1, we show that if
a student si is assigned to different projects offered by the same lecturer lk in M and M ′, and si

prefers M to M ′, then lk prefers some student in M ′(lk) \M(lk) to si. In Lemma 4.3.2, we show
that if there exists a student s ∈M(lk)\M ′(lk) who prefers M to M ′, then lk prefers M ′ to M . In
Lemma 4.3.3, we show that if si is assigned to pj offered by lk in M ′ and prefers M to M ′, then
lk prefers si to each student in M(pj) \M ′(pj), or, if pj is undersubscribed in M , to each student
in M(lk) \M ′(lk). Finally, in Lemma 4.3.4, we prove the symmetric case of Lemma 4.3.1: if si is
assigned to different projects offered by the same lecturer lk, then lk prefers si to some student
in M(lk) \M ′(lk).

Proposition 4.3.1. Let M and M ′ be two stable matchings in I, and let s be some student assigned
in M to a project pj offered by lecturer lk. If s prefers M to M ′ and either s ∈M ′(lk) or lk prefers s

to at least one student in M ′(lk), then pj is full in M ′.

4.3. Structural properties of stable matchings 80

Proof. Let s be some student assigned in M to pj offered by lk, where s prefers M to M ′. Suppose,
for contradiction, that pj is undersubscribed in M ′. Then, if s ∈ M ′(lk) or lk prefers s to some
student in M ′(lk), it follows that (s, pj) forms a blocking pair in M ′. This contradicts the stability
of M ′. Hence, pj is full in M ′ and our claim holds.

Lemma 4.3.1. Let M and M ′ be two stable matchings in I. If some student si is assigned in M

and M ′ to different projects offered by the same lecturer lk, and si prefers M to M ′, then there exists
some other student sr ∈M ′(lk) \M(lk) such that lk prefers sr to si. Thus, M(lk) ̸= M ′(lk).

Proof. Let M and M ′ be two stable matchings in I. Let si be some student assigned to different
projects in M and M ′, both offered by the same lecturer lk, and suppose si prefers M to M ′.
Suppose for contradiction that there exists no student sr ∈ M ′(lk) \M(lk) such that lk prefers
sr to si. Then by the Unpopular Projects Theorem 4.2.1, it follows that M(lk) = M ′(lk), i.e.,
M ′(lk) \ M(lk) = ∅. We construct sequences ⟨s1, s2, s3, . . .⟩ and ⟨p0, p1, p2, . . .⟩ of students and
projects such that for each t ≥ 2:

(1) st prefers pt to pt−1,

(2) (st, pt) ∈M \M ′ and (st, pt−1) ∈M ′ \M ,

(3) lk offers both pt and pt−1,

(4) lk prefers st to st−1.

We prove by induction that these properties hold for all t ≥ 2. Let s1 = si.
Base case (t = 2). Let p1 = M(s1), p0 = M ′(s1). Since s1 prefers M to M ′, it follows that s1

prefers p1 to p0. Moreover, (s1, p1) ∈M \M ′, (s1, p0) ∈M ′ \M , and both projects are offered by
lk. Since M ′ is stable, one of the following conditions hold:

(i) p1 is full in M ′, and lk prefers the worst student in M ′(p1) to s1; or

(ii) p1 is undersubscribed in M ′, lk is full in M ′, s1 /∈ M ′(lk), and lk prefers the worst student
in M ′(lk) to s1.

Since s1 ∈M ′(lk), it follows from Proposition 4.3.1 that p1 is full in M ′ and case (i) holds. In this
case, since (s1, p1) ∈M \M ′, there exists some student s2 ∈M ′(p1)\M(p1); otherwise, p1 would
be oversubscribed in M . Furthermore, lk prefers s2 to s1. Now, in M , s2 must be assigned to some
project p2 such that s2 prefers p2 to p1; otherwise, (s2, p1) would block M . Hence (s2, p2) ∈M \M ′.
Moreover, since s2 ∈ M ′(lk), and we assumed M(lk) = M ′(lk), it follows that lk also offers p2.
Thus, properties (1)–(4) hold for t = 2, completing the base case.
Inductive step. Assume that properties (1) - (4) above hold for some t = q − 1 ≥ 2. We now
show that the properties also hold for t = q. By the inductive hypothesis:

(1) sq−1 prefers pq−1 to pq−2,

4.3. Structural properties of stable matchings 81

(2) (sq−1, pq−1) ∈M \M ′, (sq−1, pq−2) ∈M ′ \M ,

(3) lk offers both pq−1 and pq−2.

(4) lk prefers sq−1 to sq−2,

Since M ′ is stable, one of the following conditions hold:

(i) pq−1 is full in M ′, and lk prefers the worst student in M ′(pq−1) to sq−1;

(ii) pq−1 is undersubscribed in M ′, lk is full, sq−1 /∈ M ′(lk), and lk prefers the worst student in
M ′(lk) to sq−1.

Since sq−1 ∈ M ′(lk), it follows from Proposition 4.3.1 that pq−1 is full in M ′and case (i) holds.
Since (sq−1, pq−1) ∈ M \M ′, there exists some student, say sq, such that (sq, pq−1) ∈ M ′ \M ;
otherwise, pq−1 would be oversubscribed in M . Furthermore, lk prefers sq to sq−1. Now, in M ,
sq must be assigned to some project pq such that sq prefers pq to pq−1; otherwise (sq, pq−1) would
block M . Hence, (sq, pq) ∈M \M ′. Also, since sq ∈M ′(lk) and M(lk) = M ′(lk), it follows that lk

also offers pq. Thus, properties (1) - (4) hold for t = q, completing the inductive step.
It is easy to see that for each new student that we identify, lk prefers st to st−1 and prefers st−1

to st−2, . . . , and prefers s2 to s1, just as in Figure 4.2. Hence, all identified students must be
distinct. Since the sequence of distinct students is infinite, we reach an immediate contradiction.
This contradiction implies that M(lk) ̸= M ′(lk), and the sequence must terminate with some
student sr ∈M ′(lk) \M(lk). Hence, M(lk) ̸= M ′(lk), as required.

M M ′

s1 : p1 p0 lk: . . . st st−1 . . . s3 s2 s1

s2 : p2 p1

s3 : p3 p2
...
st−1 : pt−1 pt−2

st : pt pt−1
...

Figure 4.2: An illustration of the sequence of students generated in Lemma 4.3.1, with (sr, pr) ∈
M and (sr, pr−1) ∈M ′ for all r ≥ 2

As an example, consider the instance I1 in Figure 4.1. Here, s1 is assigned to p1 inM1 and p2 inM2,
where both p1 and p2 are offered by l1. By Lemma 4.3.1, we can identify some s3 ∈M2(l1)\M1(l1)
such that l1 prefers s3 to s1.

4.3. Structural properties of stable matchings 82

Lemma 4.3.2. Let M and M ′ be two stable matchings in an instance I, and let lk be a lecturer such
that M(lk) ̸= M ′(lk). If there exists a student s ∈ M(lk) \M ′(lk) who prefers M to M ′, then lk

prefers M ′ to M .

Proof. Let M and M ′ be two stable matchings inM. Let lk be some lecturer such that M(lk) ̸=
M ′(lk), and let si ∈M(lk)\M ′(lk) be some student who prefers M to M ′. To prove that lk prefers
M ′ to M , we construct a one-to-one mapping

f : M(lk) \M ′(lk)→M ′(lk) \M(lk)

such that for each student s ∈ M(lk) \M ′(lk) who prefers M to M ′, lk prefers f(s) to s. That is,
for each such student in M(lk) \M ′(lk), we can find a corresponding student s′ ∈M ′(lk) \M(lk)
such that lk prefers s′ to s.
We say that a student sx ∈ M(lk) is a dominated student if lk prefers all students in M ′(lk) to sx.
There are two possible cases for the students in M(lk) who prefer M to M ′:
Case 1: All such students are dominated.
In this case, lk prefers all students in M ′(lk) to each such student in M(lk)\M ′(lk). Since |M ′(lk)\
M(lk)| = |M(lk) \M ′(lk)|, we can construct a one-to-one mapping for each student s ∈ M(lk) \
M ′(lk) who prefers M to M ′ to another student s′ ∈M ′(lk) \M(lk) such that lk prefers s′ to s. In
this way, the mapping is valid, and lk prefers M ′ to M .

Case 2: There exists at least one student in M(lk) \ M ′(lk) who prefers M to M ′ and is not
dominated.
Let s1 ∈ M(lk) \M ′(lk) be a non-dominated student who prefers M to M ′, and let p1 = M(s1).
It follows that lk prefers s1 to at least one student in M ′(lk). Since M ′ is a stable matching, then
either (i) or (ii) holds as follows:
(i) p1 is full in M ′, and lk prefers the worst student in M ′(p1) to s1; or

(ii) p1 is undersubscribed in M ′, lk is full in M ′, s1 /∈ M ′(lk), and lk prefers each student in
M ′(lk) to s1.

Since lk prefers s1 to at least one student in M ′(lk), it follows from Proposition 4.3.1 that p1 is full
in M ′. So case (i) holds, and there exists some student s2 ∈M ′(p1)\M(p1) such that lk prefers s2

to s1. First suppose that s2 prefers M ′ to M . If p1 is full in M , then lk prefers s2 to some student
in M(p1) (namely s1), so (s2, p1) blocks M . If p1 is undersubscribed in M , then lk prefers s2 to
some student in M(lk) (namely s1), and (s2, p1) again blocks M (this holds whether lk is full or
undersubscribed in M). Therefore, s2 prefers M to M ′.
Let Sk(M, M ′) denote the set of students assigned in M and M ′ to different projects offered by
lecturer lk. If s2 ∈ M ′(lk) \M(lk), we define f(s1) = s2 and stop. Otherwise, s2 ∈ Sk(M, M ′).
In this case, let p2 = M(s2). Then p2 is offered by lk and (s2, p2) ∈ M \M ′. Since M ′ is a stable
matching, then either (i) or (ii) holds as follows:

4.3. Structural properties of stable matchings 83

(i) p2 is full in M ′, and lk prefers the worst student in M ′(p2) to s2; or

(ii) p2 is undersubscribed in M ′, lk is full in M ′, s2 /∈ M ′(lk), and lk prefers each student in
M ′(lk) to s2.

Since lk prefers s2 to s1, and prefers s1 to at least one student in M ′(lk), then lk prefers s2 to
at least one student in M ′(lk). By Proposition 4.3.1, it follows that p2 is full in M ′. Since s2 ∈
M(p2)\M ′(p2) and p2 is full in M ′, there exists some student s3 ∈M ′(p2)\M(p2); for otherwise,
p2 is oversubscribed in M . Moreover, lk prefers s3 to s2. Suppose that s3 prefers M ′ to M . If p2

is full in M , then lk prefers s3 to some student in M(p2) (namely s2), so (s3, p2) blocks M . If p2

is undersubscribed in M , then lk prefers s3 to some student in M(lk) (namely s2), and (s3, p2)
again blocks M . Therefore, s3 prefers M to M ′. If s3 ∈ M ′(lk) \M(lk), we define f(s1) = s3 and
stop. Otherwise, we continue this process to obtain a sequence of students s4, s5, . . . , st, where
each student in the sequence prefers M to M ′ and is preferred by lk to their predecessor; that
is, lk prefers sr to sr−1 for 1 < r ≤ t. Since the number of students is finite, this sequence must
eventually terminate with a student st ∈M ′(lk) \M(lk), at which point we define f(s1) = st.
The sequence s1, s2, . . . , st is such that

• s1 ∈M(lk) \M ′(lk)

• sr ∈M(lk) ∩M ′(lk) for 1 < r < t

• st ∈M ′(lk) \M(lk)

• lk prefers sr to sr−1 for 1 < r ≤ t.

• sr prefers M to M ′ for 1 ≤ r ≤ t.

We repeat this construction for every non-dominated student in M(lk) \M ′(lk). We also ensure
that if the same project appears in the sequences starting frommultiple students in M(lk)\M ′(lk),
then we can assign a distinct student from M ′(lk) \M(lk) to that project in each case. Suppose
some project px ∈ Pk arises multiple times in M \M ′, each time assigned to a different student.
Then, as argued earlier, px must be full in M ′, and all students assigned to px in M ′ are preferred
by lk to the students it was assigned to in M . Since each occurrence of px corresponds to a
different student in M(lk) \ M ′(lk), and px is full in M ′, there are sufficiently many students
in M ′(lk) \M(lk) assigned to px from which we can choose. We select a distinct one for each
occurrence, preserving the one-to-one mapping.
Finally, for the dominated students, we assign the remaining unassigned students inM ′(lk)\M(lk)
arbitrarily. Since for each dominated student s ∈M(lk)\M ′(lk), lk prefers each student in M ′(lk)
to s, the condition that lk prefers f(s) to s still holds. Thus, in both cases, we construct a valid
one-to-one mapping from M(lk) \M ′(lk) to M ′(lk) \M(lk) such that lk prefers each student in
M ′(lk) \M(lk) to the corresponding student in M(lk) \M ′(lk). Therefore, lk prefers M ′ to M , as
required.

4.3. Structural properties of stable matchings 84

Lemma 4.3.3. Let M and M ′ be two stable matchings in a given instance I. Suppose some student
si is assigned to different projects in M and M ′, and that in M ′, si is assigned to a project pj offered
by lecturer lk. Suppose further that si prefers M to M ′. Then:

(a) If there exists a student in M(pj)\M ′(pj), then lk prefers si to each student in M(pj)\M ′(pj).

(b) If pj is undersubscribed in M , then lk prefers si to each student in M(lk) \M ′(lk).

Proof. Let M and M ′ be two stable matchings in I, and let si be a student assigned to different
projects in M and M ′, where si prefers M to M ′. Let pj = M ′(si), and let lk be the lecturer
offering pj. In Case (a), we show that if M(pj) \M ′(pj) is non-empty, then there exists a student
s′ ∈ M(pj) \M ′(pj) who prefers M ′ to M . In Case (b), we show that if pj is undersubscribed
in M , then there exists a student s′ ∈ M(lk) who is assigned to different projects in M and
M ′, and who prefers M ′ to M . In both cases, we use the student s′ identified to initiate an
inductive argument. This produces a sequence of distinct students, where each student prefers
M ′ to M , and is preferred, by the lecturer they are assigned to in M , to the previous student in
the sequence.
Case (a): Suppose there exists some student s′ ∈M(pj) \M ′(pj), and suppose for contradiction
that lk prefers s′ to si. Suppose pj is full in M ′. If s′ prefers M to M ′, then (s′, pj) blocks M ′,
since lk prefers s′ to some student in M ′(pj) (namely si), a contradiction. Now suppose that pj

is undersubscribed in M ′. Since lk prefers s′ to some student in M ′(lk) (again, si), then (s′, pj)
blocks M ′, another contradiction. Therefore, s′ prefers M ′ to M .
Case (b): Suppose pj is undersubscribed in M , and suppose for contradiction that lk prefers each
student in M(lk) \M ′(lk) to si. Recall that si ∈M ′(pj) \M(pj). Since pj is undersubscribed in M

and |M(lk)| = |M ′(lk)|, there exists some project p′ ∈ Pk and some student s′ ∈ M(p′) \M ′(p′),
where p′ is undersubscribed in M ′. First suppose that s′ prefers M to M ′. If s′ ∈ Sk(M, M ′), then
(s′, p′) blocks M ′, a contradiction. Thus, s′ ∈M(lk) \M ′(lk). Since, by our assumption, lk prefers
each student in M(lk) \M ′(lk) to si, it follows that lk prefers s′ to si. However, the pair (s′, p′)
again blocks M ′. Therefore, s′ prefers M ′ to M .
The remainder of the proof for Cases (a) and (b) proceeds in an identical manner. We there-
fore continue with the inductive step that satisfies the conditions of both cases in the following
paragraph.
Let s′ be the student, identified in either Case (a) or Case (b) above, who prefers M ′ to M . Let
s0 = si, l0 = lk. Let s1 = s′, p0 = M(s1), and p1 = M ′(s1), and let l1 be the lecturer who offers
p1. Note that it is possible that p0 = pj and l1 = l0. We have (s1, p1) ∈M ′ \M , (s1, p0) ∈M \M ′,
and l0 prefers s1 to s0. Moreover, s1 prefers M ′ to M , while s0 prefers M to M ′.
We now proceed by identifying students s2, s3, . . ., projects p2, p3, . . ., and lecturers l2, l3, . . ., such
that for each t ≥ 2, the following properties hold:

(1) st prefers M ′ to M ;

4.3. Structural properties of stable matchings 85

(2) (st, pt) ∈M ′ \M , where project pt is offered by lecturer lt;

(3) st is assigned in M to some project offered by lecturer lt−1, and:

• if pt−1 is full in M , then (st, pt−1) ∈M \M ′;
• otherwise, there exists a project p′

t−1 such that (st, p′
t−1) ∈ M \M ′ (where lt−1 offers

both pt−1 and p′
t−1).

(4) Lecturer lt−1 prefers st to st−1.

Base case (t = 2): Since s1 prefers M ′ to M , so s1 prefers p1 to p0. Moreover, since (s1, p1) ∈
M ′ \M and (s1, p0) ∈ M \M ′, it follows that p1 ̸= p0. Also, lecturer l0 prefers s1 to s0. By the
stability of M , one of the following two cases holds:

(i) p1 is full in M , and l1 prefers the worst student in M(p1) to s1;

(ii) p1 is undersubscribed in M , l1 is full in M , s1 /∈ M(l1), and l1 prefers the worst student in
M(l1) to s1.

Case (i): Since p1 is full in M and (s1, p1) /∈M , there exists another student s2 such that (s2, p1) ∈
M \M ′, otherwise p1 would be oversubscribed in M . Moreover, l1 prefers s2 to s1. Clearly, s2 is
assigned in M ′; let p2 = M ′(s2), and let l2 be the lecturer who offers p2. Then (s2, p2) ∈M ′ \M .
If s2 prefers p1 to p2, then the pair (s2, p1) blocks M ′, since p1 is full in M , and l1 prefers s2 to
s1 ∈M ′(p1). Thus, s2 must prefer p2 to p1, that is, s2 prefers M ′ to M . Note that s2 ̸= s1, since l1

prefers s2 to s1; and s2 ̸= s0, since s0 prefers M to M ′, while s2 prefers M ′ to M .
Case (ii): Since (s1, p1) ∈ M ′ \M and p1 is undersubscribed in M , there exists some project p′

1

offered by l1, such that p′
1 is undersubscribed in M ′; otherwise, l1 would be oversubscribed in M .

Thus, there exists some student s2 such that (s2, p′
1) ∈M \M ′ and l1 prefers s2 to s1. Moreover, s2

is assigned in M ′; let p2 = M ′(s2), and let l2 be the lecturer who offers p2. Then (s2, p2) ∈M ′ \M .
If s2 prefers p′

1 to p2, then the pair (s2, p′
1) would block M ′, since p′

1 is undersubscribed in M ′ and
l1 prefers s2 to s1. Hence, s2 prefers p2 to p′

1, i.e., s2 prefers M ′ to M . As before, s2 ̸= s1, since l1

prefers s2 to s1, and s2 ̸= s0, since s2 prefers M ′ to M , whereas s0 prefers M to M ′.
In both cases (i) and (ii), we have identified a student s2 who prefers M ′ to M , with (s2, p2) ∈
M ′ \M , where p2 is offered by lecturer l2. Moreover, s2 is assigned in M to some project offered
by l1. If p1 is full in M , then (s2, p1) ∈M \M ′; otherwise, (s2, p′

1) ∈M \M ′. Moreover, l1 prefers
s2 to s1. Thus, properties (1)–(4) hold for t = 2, completing the base case.

Inductive step: Suppose properties (1)-(4) hold for some t = q − 1 ≥ 2, that is:

(1) sq−1 prefers M ′ to M ;

(2) (sq−1, pq−1) ∈M ′ \M , where pq−1 is offered by lecturer lq−1;

4.3. Structural properties of stable matchings 86

(3) sq−1 is assigned in M to some project offered by lecturer lq−2, and:

• if pq−2 is full in M , then (sq−1, pq−2) ∈M \M ′;
• otherwise, there exists a project p′

q−2 such that (sq−1, p′
q−2) ∈M \M ′ (where lq−2 offers

both pq−2 and p′
q−2).

(4) Lecturer lq−2 prefers sq−1 to sq−2.

By the stability of M , one of the following two cases must hold:

(i) pq−1 is full in M , and lq−1 prefers the worst student in M(pq−1) to sq−1;

(ii) pq−1 is undersubscribed in M , lq−1 is full in M , sq−1 /∈ M(lq−1), and lq−1 prefers the worst
student in M(lq−1) to sq−1.

Case (i): Since pq−1 is full in M and (sq−1, pq−1) /∈ M , there exists a student sq such that
(sq, pq−1) ∈ M \ M ′, otherwise pq−1 would be oversubscribed in M . Moreover, lq−1 prefers sq

to sq−1. Clearly, sq is assigned in M ′; let pq = M ′(sq), and let lq be the lecturer who offers pq.
Then (sq, pq) ∈ M ′ \M . If sq prefers pq−1 to pq, then the pair (sq, pq−1) blocks M ′, since pq−1 is
full in M and lq−1 prefers sq to sq−1 ∈M ′(pq−1). Hence sq prefers pq to pq−1, that is, sq prefers M ′

to M .

Case (ii): Since (sq−1, pq−1) ∈ M ′ \M and pq−1 is undersubscribed in M , there must exist some
project p′

q−1 ∈ Pq−1 that is undersubscribed in M ′, for otherwise lq−1 would be oversubscribed
in M . Then there exists a student sq such that (sq, p′

q−1) ∈ M \M ′, and lq−1 prefers sq to sq−1.
Moreover, sq is assigned in M ′; let pq = M ′(sq) and let lq be the lecturer who offers pq. Then
(sq, pq) ∈ M ′ \M . If sq prefers p′

q−1 to pq, then the pair (sq, p′
q−1) blocks M ′, since p′

q−1 is under-
subscribed in M ′ and lq−1 prefers sq to sq−1 ∈ M ′(lq−1). Hence sq prefers pq to p′

q−1, that is, sq

prefers M ′ to M .

In both cases (i) and (ii), we have identified a student sq who prefers M ′ to M , with (sq, pq) ∈
M ′ \M , where pq is offered by lecturer lq. Moreover, sq is assigned in M to some project offered
by lq−1. If pq−1 is full in M , then (sq, pq−1) ∈ M \M ′; otherwise, (sq, p′

q−1) ∈ M \M ′. Moreover,
lq−1 prefers sq to sq−1. Thus, properties (1)–(4) hold for t = q, completing the base case.

It follows from the construction that each project pt differs from the previous project pt−1, since
each student st is assigned to different projects in M and M ′. We now show that all students in
the sequence s1, s2, . . . are distinct, by induction on t. Clearly, s2 ̸= s1, since the lecturer l1 prefers
s2 to s1, and s2 ̸= s0, since s2 prefers M ′ to M while s0 prefers M to M ′. Now suppose, as the
inductive hypothesis, that s1, . . . , st are all distinct for some t ≥ 2, and suppose for contradiction
that st+1 = sq for some 1 ≤ q ≤ t. In the construction, st+1 is selected by lecturer lt to prevent
the pair (st, pt) ∈ M ′ \M from blocking M . This means that either (st+1, pt) ∈ M \M ′, if pt is
full in M , or (st+1, p′

t) ∈M \M ′, if pt is undersubscribed in M . In both cases, lt prefers st+1 to st.

4.3. Structural properties of stable matchings 87

Since st+1 = sq, this student must have appeared earlier in the sequence and must have been
selected to resolve a different blocking pair involving some earlier student sq−1. In that case, lt is
using the same student sq to resolve two different blocking pairs: one involving (st, pt) and one
involving (sq−1, pt). But by the inductive hypothesis, st ̸= sq−1, and so lt should have selected
two different students. This contradicts the construction, which requires that each blocking pair
is resolved by a student who has not already appeared in the sequence. Therefore, st+1 ̸= sq

for all 1 ≤ q ≤ t, and so the sequence s1, s2, . . . consists of distinct students. Since the number
of students is finite, the construction must eventually terminate. This establishes our claim and
completes the proof.

To illustrate this proof, consider Figure 4.3. Suppose that a student s0 prefers M to M ′, where
in M ′, s0 is assigned to p0, a project offered by l0. Further, suppose there exists a student s1 ∈
M(p0) \M ′(p0), and suppose for a contradiction that l0 prefers s1 to s0. Clearly, if s1 also prefers
M to M ′, then (s1, p0) blocks M ′. This implies that s1 prefers M ′ to M . Let M ′(s1) be p1, where
l1 offers p1. To ensure the stability of M , we continue identifying a sequence of distinct students,
as illustrated in Figure 4.3. However, since this sequence is infinite, we arrive at a contradiction.

Students’ preferences Lecturers’ preferences Offers
s0: p′

0 p0 l0: s1 s0 p0

s1: p1 p0 l1: s2 s1 p1

s2: p2 p1 l2: s3 s2 p2

s3: p3 p2 l3: s4 s3 p3
...
st: pt pt−1 lt: st+1 st pt

...

Figure 4.3: A spa-s instance illustrating the infinite sequence of students generated in
Lemma 4.3.3, where (st, pt) ∈M ′ and (st, pt−1) ∈M .

Lemma 4.3.4. Let M and M ′ be two stable matchings in I. If some student si is assigned in M and
M ′ to different projects offered by the same lecturer lk, and si prefers M to M ′, then lk prefers si to
some student sz ∈M(lk) \M ′(lk).

Proof. Let M and M ′ be two stable matchings in I, and let s1 be a student assigned to different
projects in M and M ′, both offered by lecturer lk, where s1 prefers M to M ′. By Lemma 4.3.1,
there exists a student in M ′(lk) \M(lk) and, consequently, one in M(lk) \M ′(lk). Suppose, for a
contradiction, that no student s ∈M(lk)\M ′(lk) is worse than s1 according to lk. Let M(s1) = p0

and M ′(s1) = p1, where s1 prefers p0 to p1. If p1 is undersubscribed in M , then by the second part
of Lemma 4.3.3, lk prefers s1 to each student in M(lk) \M ′(lk), a contradiction. Hence p1 must
be full in M . Since (s1, p1) ∈M ′ \M and p1 is full in M , there exists some (s2, p1) ∈M \M ′, and
by the first part of Lemma 4.3.3, lk prefers s1 to s2.

4.3. Structural properties of stable matchings 88

If s2 ∈ M(lk) \M ′(lk), then lk prefers s1 to some student in M(lk) \M ′(lk), contradicting our
assumption. Hence s2 ∈ Sk(M, M ′). Let M ′(s2) = p2. First suppose that s2 prefers p2 to p1, i.e. s2

prefers M ′ to M . Since s1 ∈M ′(p1) \M(p1), part (a) of Lemma 4.3.3 implies that lk prefers s2 to
s1, a contradiction. Thus s2 prefers p1 to p2. If p2 is undersubscribed in M , then by Lemma 4.3.3,
lk prefers s2 to each student in M(lk) \M ′(lk). Since lk prefers s1 to s2, it follows that lk prefers
s1 to student s ∈M(lk) \M ′(lk), which again contradicts our assumption. Hence p2 is full in M .
Since (s2, p2) ∈M ′ \M and p2 is full in M , there exists (s3, p2) ∈M \M ′, and by the first part of
Lemma 4.3.3, lk prefers s2 to s3.
Again, if s3 ∈ M(lk) \M ′(lk), then lk prefers s1 to s2, and s2 to some student in M(lk) \M ′(lk),
contradicting our assumption. Thus s3 ∈ Sk(M, M ′), and let M ′(s3) = p3. Proceeding inductively
as before, we obtain a sequence s1, s2, s3, . . . such that, for each t ≥ 1, st prefers pt−1 to pt,
(st, pt−1) ∈ M \ M ′, (st, pt) ∈ M ′ \ M , and both pt−1 and pt are offered by lk, who prefers st

to st+1. Hence lk prefers s1 to s2, s2 to s3, and so on, implying that all identified students are
distinct. Since the number of students is finite, this sequence cannot continue indefinitely and
must terminate with some s ∈M(lk) \M ′(lk) such that lk prefers s1 to s.

The following corollary follows from Lemmas 4.3.2 - 4.3.4:

Corollary 4.3.1. Let M and M ′ be stable matchings in an instance I, and let ⪯S and ⪯L

denote the student-oriented and lecturer-oriented dominance relations, respectively. Then
M ⪯S M ′ if and only if M ′ ⪯L M .

Proof. (⇒) Suppose M ⪯S M ′. Then each student either prefers M to M ′ or is indifferent
between them. If M = M ′, the claim is immediate. Otherwise, consider any lecturer lk. If
M(lk) = M ′(lk), then lk is indifferent between M and M ′, so M ′ ⪯L M holds for lk. If M(lk) ̸=
M ′(lk), then there exist some student s ∈ M(lk) \M ′(lk). Since M ⪯S M ′, s prefers M to M ′.
By Lemma 4.3.2, it follows that lk prefers M ′ to M . Thus, for every lk, lk is either indifferent or
prefers M ′ to M , i.e., M ′ ⪯L M .

(⇐) Conversely, supposeM ′ ⪯L M . Then each lecturer either prefersM ′ toM or is indifferent
between them. Consider any student s. If M(s) = M ′(s), then s is indifferent between the two
matchings, so M ⪯S M ′ holds for s. Otherwise, let lk be the lecturer offering M ′(s), and suppose,
for a contradiction, that s prefers M ′ to M . If s ∈ Sk(M, M ′), then by Lemma 4.3.1, lk prefers
some sr ∈ M(lk) \M ′(lk) to s; and by Lemma 4.3.4, lk prefers s to some sz ∈ M ′(lk) \M(lk).
Consequently, lk prefers a student in M(lk)\M ′(lk) to one in M ′(lk)\M(lk), contradicting M ′ ⪯L

M . If instead s ∈M ′(lk)\M(lk), then by Lemma 4.3.3, lk prefers M to M ′, again a contradiction.
Hence no student prefers M ′ to M . Therefore each student is either indifferent between M and
M ′ or prefers M to M ′, i.e. M ⪯S M ′.

4.4. Stable matchings in spa-s form a distributive lattice 89

4.4 Stable matchings in spa-s form a distributive lattice

To show that (M,⪯) forms a distributive lattice, we define the meet and join of any two stable
matchings inM based on student preferences. Given two stable matchings M and M ′, the meet
matching assigns each student to the project they prefer more between their projects in M and
M ′, while the joinmatching assigns each student to the less preferred of the two. In Lemmas 4.4.4
and 4.4.8, we show that both the meet and join matchings are stable. These results show that the
meet and join operations are well-defined inM and respect the dominance relation ⪯. Finally,
in Theorem 4.4.1, we prove that the meet and join operations distribute, and that (M,⪯) is a
distributive lattice.

Definition 4.4.1. Let M and M ′ be two stable matchings in I, and define a matching M∧

as follows: for each student si,

• if si is unassigned in both M and M ′, then si is unassigned in M∧;

• if si is assigned to the same project in both M and M ′, then si is assigned to that
project in M∧.

• otherwise, si is assigned in M∧ to the better of their projects in M and M ′.

In Lemma 4.4.4, we prove that M∧ is a stable matching in I. To show this, we present Lemmas
4.4.1 – 4.4.3.

Lemma 4.4.1. If a lecturer lk is undersubscribed in M∧, then lk is undersubscribed in both M and
M ′.

Proof. Suppose, for contradiction, that lk is undersubscribed in M∧, but is full in both M and M ′.
Then, |M(lk)| > |M∧(lk)| and |M ′(lk)| > |M∧(lk)|. Thus, there exists projects pa, pb ∈ Pk such
that

|M(pa)| > |M∧(pa)| and |M ′(pb)| > |M∧(pb)|.

Suppose that sa ∈M(pa)\M∧(pa) and sb ∈M ′(pb)\M∧(pb). This implies that sa ∈M(pa)\M ′(pa)
and sb ∈M ′(pb)\M(pb). By the construction ofM∧, each student is assigned to themore preferred
of their two projects in M and M ′. Therefore, (a) sa prefers M ′(sa) to pa, and (b) sb prefers M(sb)
to pb. We claim that pa is undersubscribed in M ′ and pb is undersubscribed in M . We now consider
each of these cases in turn.

Case (a): sa ∈ M(pa) \ M ′(pa) and sa prefers M ′ to M . Suppose for contradiction that pa is
full in M ′. Since pa cannot be oversubscribed in M , we have |M ′(pa)| ≥ |M(pa)|. Given that
|M(pa)| > |M∧(pa)|, it follows that |M ′(pa)| > |M∧(pa)|. Hence there exists some student s ∈
M ′(pa) \ M∧(pa), which means s ∈ M ′(pa) \ M(pa). Moreover, by the construction of M∧, s

4.4. Stable matchings in spa-s form a distributive lattice 90

prefers M to M ′. Applying the first part of Lemma 4.3.3 to the matchings M and M ′, with sa as
a student who prefers M ′ to M and s ∈ M ′(pa) \M(pa), it follows that lk prefers sa to s (note
that here, M and M ′ are swapped compared to Lemma 4.3.3). On the other hand, applying the
same lemma to M and M ′, with s as a student who prefers M to M ′ and sa ∈ M(pa) \M ′(pa),
it follows that lk prefers s to sa. This yields a contradiction. Therefore, pa is undersubscribed in
M ′.

Case (b): Suppose sb ∈ M ′(pb) \M(pb) and sb prefers M to M ′. Following a similar argument
to case (a), if, on the contrary, pb were full in M , then |M(pb)| > |M∧(pb)|, and there would
exist some student s ∈ M(pb) \M∧(pb), and hence s ∈ M(pb) \M ′(pb). By the construction of
M∧, s prefers M ′ to M . In this case, we have sb ∈ M ′(pb) \M(pb) who prefers M to M ′, and
s ∈ M(pb) \M ′(pb) who prefers M ′ to M . Applying Lemma 4.3.3 to these two cases yields a
contradiction on lk’s preference list. Hence, pb is undersubscribed in M .

From cases (a) and (b), it follows that sa prefers M ′(sa) to pa, where pa is undersubscribed in
M ′, and that sb prefers M(sb) to pb, where pb is undersubscribed in M . By the second part of
Lemma 4.3.3, this implies that lk prefers sa to each student in M ′(lk) \M(lk), and also prefers
sb to each student in M(lk) \M ′(lk). If sb ∈ M ′(lk) \M(lk), then lk prefers sa to sb. If instead
sb ∈ Sk(M, M ′), then since sb prefers M to M ′, Lemma 4.3.1 implies that there exists some
s′ ∈M ′(lk) \M(lk) where lk prefers s′ to sb. Thus, lk prefers sa to s′, and hence lk prefers sa to sb.
On the other hand, since sb prefers M to M ′ and pb is undersubscribed in M , then Lemma 4.3.3
implies that lk prefers sb to each student in M(lk) \M ′(lk). If sa ∈M(lk) \M ′(lk), then lk prefers
sb to sa, a contradiction. If instead sa ∈ Sk(M, M ′), then, since sa prefers M ′ to M , there exists
some s ∈M(lk)\M ′(lk) such that lk prefers s to sa. Consequently, lk prefers sb to s, and therefore
to sa. This again yields a contradiction.
Therefore, our assumption is false, and lk is undersubscribed in both M and M ′.

Lemma 4.4.2. If a project pj is undersubscribed in M∧, then it is undersubscribed in at least one of
M or M ′.

Proof. Let lk be the lecturer who offers project pj. Suppose, for contradiction, that pj is full in
both M and M ′, but undersubscribed in M∧. Then |M(pj)| > |M∧(pj)| and |M ′(pj)| > |M∧(pj)|.
It follows that there exists a student sa ∈ M(pj) \M∧(pj). Since any student assigned to pj in
both M and M ′ must also be assigned to pj in M∧, we conclude that sa /∈ M ′(pj), and hence
sa ∈ M(pj) \M ′(pj). Similarly, there exists a student sb ∈ M ′(pj) \M∧(pj), which implies that
sb ∈M ′(pj) \M(pj). By the construction of M∧, sa prefers M ′ to M , and sb prefers M to M ′.
By applying the first part of Lemma 4.3.3 to the matchings M ′ and M , with sa as a student who
prefers M ′ to M , and with sb ∈M ′(pj) \M(pj), it follows that lk prefers sa to sb (note that here,
M and M ′ are swapped compared to Lemma 4.3.3). Conversely, applying the same lemma to M

and M ′, with sb as a student who prefers M to M ′ and sa ∈M(pj) \M ′(pj), we conclude that lk

4.4. Stable matchings in spa-s form a distributive lattice 91

prefers sb to sa. This is a contradiction, since lk cannot simultaneously prefer sa to sb and sb to
sa. Therefore, pj must be undersubscribed in at least one of M or M ′.

Lemma 4.4.3. M∧ is a matching.

Proof. By construction, no student is assigned to more than one project in M∧. It remains to
show that no project or lecturer is oversubscribed in M∧. Suppose, for contradiction, that some
project pj is oversubscribed in M∧. Let lk be the lecturer who offers pj. Then |M∧(pj)| > |M(pj)|
and |M∧(pj)| > |M ′(pj)|, since both M and M ′ are valid matchings. Thus, there exist students
sa ∈ M∧(pj) \M ′(pj) and sb ∈ M∧(pj) \M(pj). It follows that sa ∈ M(pj) \M ′(pj) and sb ∈
M ′(pj) \M(pj), where sa prefers M to M ′ and sb prefers M ′ to M .
By stability of M ′ and since sa prefers pj to M ′(sa), it follows that lk prefers the worst student in
M ′(pj) to sa (if pj is full in M ′) or the worst student in M ′(lk) to sa (if pj is undersubscribed in M ′).
This implies that lk prefers sb to sa, since sb ∈M ′(pj). On the other hand, sb prefers pj to M(sb).
If pj is full in M , then lk prefers sb to some student in M(pj) (namely sa), and (sb, pj) blocks M , a
contradiction. If pj is undersubscribed in M , then lk prefers sb to some student in M(lk) (namely
sa), and (sb, pj) blocks M , a contradiction (This holds whether lk is full or undersubscribed in
M). Therefore, our assumption is false and no project is oversubscribed in M∧.
Next, suppose for contradiction that some lecturer lk is oversubscribed in M∧. Then there exist
projects pa and pb offered by lk such that |M∧(pa)| > |M ′(pa)| and |M∧(pb)| > |M(pb)|. Since
both M and M ′ are valid matchings, this implies that pa is undersubscribed in M ′ and pb is
undersubscribed in M . Moreover, as established earlier, no project is oversubscribed in M∧. Let
sa ∈M∧(pa)\M ′(pa), so sa ∈M(pa)\M ′(pa), and let sb ∈M∧(pb)\M(pb), so sb ∈M ′(pb)\M(pb).
By the definition of M∧, each student is assigned to the more preferred of their two projects in
M and M ′; therefore, sa prefers M to M ′, and sb prefers M ′ to M .
Since pa is undersubscribed in M ′, we have sa /∈ M ′(lk); otherwise (sa, pa) would block M ′,
regardless of whether lk is full or undersubscribed in M ′. Similarly, since pb is undersubscribed
in M , we have sb /∈ M(lk), otherwise (sb, pb) would block M . Hence sa ∈ M(lk) \M ′(lk) and
sb ∈ M ′(lk) \M(lk). Now, by Lemma 4.3.2, since sa prefers M to M ′, it follows that lk prefers
M ′ to M . Conversely, since sb prefers M ′ to M , the same lemma implies that lk prefers M to M ′.
This yields a contradiction. Hence our assumption is false, and no lecturer is oversubscribed in
M∧. Therefore, M∧ is a valid matching.

Lemma 4.4.4. M∧ is a stable matching.

Proof. Suppose for contradiction that (s, p) is a blocking pair for M∧, where project p is offered
by lecturer l. Then either:

(S1) s is unassigned in M∧, or

(S2) s is assigned in M∧, but prefers p to M∧(s).

4.4. Stable matchings in spa-s form a distributive lattice 92

And one of the following four conditions holds for p and l:

(P1) both p and l are undersubscribed in M∧.

(P2) p is undersubscribed in M∧, l is full in M∧, and s ∈M∧(l).

(P3) p is undersubscribed in M∧, l is full in M∧, and l prefers s to the worst student in M∧(l).

(P4) p is full in M∧, and l prefers s to the worst student in M∧(p).

We consider each combination of conditions in turn. Note that the case (S1 & P2) cannot arise,
since s is unassigned in M∧ and therefore cannot belong to M∧(l).

(S1 & P1) and (S2 & P1): First, suppose s is unassigned in M∧. Then, by the construction of
M∧, s is unassigned in both M and M ′. Alternatively, if s is assigned in M∧ and prefers p to
M∧(s), then s prefers p to both M(s) and M ′(s), since s receives their preferred project in M∧.
Now consider condition (P1), where both p and its lecturer l are undersubscribed in M∧. By
Lemma 4.4.1, since l is undersubscribed in M∧, it is undersubscribed in both M and M ′. By
Lemma 4.4.2, since p is undersubscribed in M∧, it is undersubscribed in at least one of M or M ′.
Without loss of generality, suppose p is undersubscribed in M ′. Then, whether s is unassigned
in M ′, or assigned to a project they prefer less than p, the pair (s, p) blocks M ′, a contradiction.
We conclude that (S1 & P1) and (S2 & P1) cannot arise.

(S2 & P2), (S1 & P3) and (S2 & P3): First, consider (S1), where s is unassigned in M∧. By
construction of M∧, this means that s is unassigned in both M and M ′. Next, consider (S2),
where s is assigned in M∧ and prefers p to M∧(s). Since each student in M∧ receives the more
preferred of their two projects from M and M ′, it follows that s prefers p to both M(s) and
M ′(s). In conditions (P2) and (P3), p is undersubscribed in M∧. Hence, by Lemma 4.4.2, p must
be undersubscribed in at least one of M or M ′.
Suppose first that p is undersubscribed in both M and M ′. From (S2 & P2), we have that s ∈
M∧(l), which means that s ∈M(l) or s ∈M ′(l). If s ∈M ′(l), then (s, p) blocks M ′, since s prefers
p to M ′(s) and p is undersubscribed in M ′. This blocking pair arises whether l is undersubscribed
or full in M ′. A similar contradiction arises in M if s ∈ M(l). In conditions (S1 & P3) and (S2
& P3), let sz be the worst student in M∧(l), where l prefers s to sz. If sz ∈ M ′(l), then (s, p)
blocks M ′, since s is either unassigned in M ′ or prefers p to M ′(s), p is undersubscribed in M ′

and l prefers s to sz (again, this holds whether l is full or undersubscribed in M ′). A similar
contradiction arises in M if sz ∈M(l).
Next, suppose without loss of generality that p is full in M but undersubscribed in M∧ and M ′.
If l is undersubscribed in M ′, then the pair (s, p) blocks M ′, since s is either unassigned in M ′

or prefers p to M ′(s), and both p and l are undersubscribed in M ′. Hence l is full in M ′, and
therefore also full in M . From (S2 & P2), we have that s ∈ M(l) or s ∈ M ′(l). If s ∈ M ′(l),

4.4. Stable matchings in spa-s form a distributive lattice 93

then (s, p) blocks M ′, since s prefers p to M ′(s), p is undersubscribed in M ′ and l is full in M ′.
Therefore, s ∈ M(l) \M ′(l). In (S1 & P3) and (S2 & P3), we have that sz ∈ M(l) or sz ∈ M ′(l).
If sz ∈ M ′(l), then (s, p) blocks M ′, since s is either unassigned in M ′ or prefers p to M ′(s), p is
undersubscribed in M ′, l is full in M ′, and l prefers s to sz. Thus sz ∈M(l) \M ′(l).

Now since p is full in M but undersubscribed in M∧, it follows that |M(p)| > |M∧(p)|. Since l

is full in both M∧ and M , and |M(p)| > |M∧(p)|, there exists a project pa offered by l such that
|M∧(pa)| > |M(pa)|, implying that pa is undersubscribed in M . Thus, there exists a student sa ∈
M∧(pa) \M(pa), and hence sa ∈ M ′(pa) \M(pa). Since sa receives their more preferred project
in M∧, they prefer pa to M(sa). Moreover by the stability of M (and since pa is undersubscribed
in M), l prefers the worst student in M(l) to sa. In the (S2 & P2) case, it follows that l prefers s

to sa, since s ∈M(l) \M ′(l). However, since s prefers p to M ′(s), p is undersubcribed in M ′, l is
full in M ′, and l prefers s to sa, the pair (s, p) blocks M ′, a contradiction. In the (S1 & P3) and
(S2 & P3) case, it follows that l prefers sz to sa, since sz ∈ M(l) \M ′(l). Consequently, l prefers
s to sa, since l prefers s to sz. Again, we arrive at a similar contradiction as in (S2 & P2) case,
whereby (s, p) blocks M ′.
Therefore, no blocking pair of type (S2 & P2), (S1 & P3) and (S2 & P3) exists in M∧.

(S1 & P4) and (S2 & P4): Clearly, if s is unassigned in M∧, then by construction, s is unassigned
in both M and M ′. If instead s is assigned in M∧ and prefers p to M∧(s), then s prefers p to
both M(s) and M ′(s), since s receives the more preferred of their two projects in M∧. Consider
condition (P4), where p is full in M∧ and l prefers s to the worst student in M∧(p). Let sz be the
worst student in M∧(p). Clearly, either sz ∈M(p) or sz ∈M ′(p).
First suppose (sz, p) ∈M . If s is unassigned in M , or if s prefers p to M(s), then (s, p) blocks M ,
since p is full and l prefers s to sz ∈M(p). This contradicts the stability of M . A similar argument
applies if (sz, p) ∈M ′: whether s is unassigned in M ′, or prefers p to M ′(s), the pair (s, p) blocks
M ′, again a contradiction. Therefore, no blocking pair of type (S1 & P4) or (S2 & P4) can exist
in M∧.

In all possible cases, we arrive at a contradiction. Therefore, no blocking pair exists in M∧, and
M∧ is stable.

We denote by M ∧M ′ the set of (student, project) pairs in which each student is assigned the
better of her project in M and M ′; and it follows from Lemma 4.4.4 that M ∧ M ′ is a stable
matching. Hence, if each student is given the better of her project in any fixed set of stable
matchings, then the resulting assignment is a stable matching. For the case whereM is the set
of all stable matchings in I, we denote by∧M∈M M , or simply∧M, the resulting stable matching.
This matching is student-optimal and, by Corollary 4.3.1, lecturer-pessimal.

4.4. Stable matchings in spa-s form a distributive lattice 94

Definition 4.4.2. Let M and M ′ be two stable matchings in I, and define a matching M∨

as follows: for each student si,

• if si is unassigned in both M and M ′, then si is unassigned in M∨;

• if si is assigned to the same project in both M and M ′, then si is assigned to that
project in M∨;

• otherwise, si is assigned in M∨ to the worse of their two projects in M and M ′.

In Lemma 4.4.8, we prove that M∨ is a stable matching in I. To prove this, we first present
Lemmas 4.4.5 – 4.4.7.

Lemma 4.4.5. If a lecturer lk is undersubscribed in M∨, then lk is undersubscribed in both M and
M ′.

Proof. Suppose, for contradiction, that lk is undersubscribed in M∨, but is full in both M and
M ′. Then |M(lk)| > |M∨(lk)| and |M ′(lk)| > |M∨(lk)|. It follows that there exists student-project
pairs (sa, pa) and (sb, pb) such that (sa, pa) ∈M \M ′ and (sb, pb) ∈M ′ \M (since M∨(lk) ̸= M(lk)
and M∨(lk) ̸= M ′(lk)). By construction of M∨, each student is assigned to the less preferred of
their two projects in M and M ′; therefore, sa prefers M to M ′, and sb prefers M ′ to M .
By Lemma 4.3.2, since sa prefers M to M ′, it follows that lk prefers M ′ to M . Conversely, since
sb prefers M ′ to M , the same lemma implies that lk prefers M to M ′. This yields a contradiction.
Therefore, our assumption is false, and lk must be undersubscribed in both M and M ′.

Lemma 4.4.6. If a project pj is undersubscribed in M∨, then it must be undersubscribed in at least
one of M or M ′.

Proof. Suppose, for contradiction, that pj is undersubscribed in M∨, but full in both M and M ′.
Then we have

|M(pj)| > |M∨(pj)| and |M ′(pj)| > |M∨(pj)|.

It follows that there exist students sa ∈ M(pj) \M∨(pj) and sb ∈ M ′(pj) \M∨(pj). In particular,
sa ∈ M(pj) \M ′(pj) and sb ∈ M ′(pj) \M(pj). Since each student is assigned in M∨ to the less
preferred of their projects in M and M ′, it follows that sa prefers M to M ′, and sb prefers M ′ to
M .
Let lk be the lecturer who offers pj. By stability of M ′, since sa prefers pj to M ′(sa) and pj is full
in M ′, it follows that lk prefers the worst student in M ′(pj) to sa. In particular, lk prefers student
sb ∈M ′(pj) to sa. However, since sb prefers pj to M(sb), pj is full in M , and lk prefers sb to some
student in M(pj) (namely sa), it follows that (sb, pj) blocks M , a contradiction. Therefore, pj

must be undersubscribed in at least one of M or M ′.

Lemma 4.4.7. M∨ is a matching.

4.4. Stable matchings in spa-s form a distributive lattice 95

Proof. By construction, no student is assigned to more than one project in M∨. It remains to
show that no project or lecturer is oversubscribed in M∨. Suppose, for contradiction, that some
project pj is oversubscribed in M∨. Then

|M∨(pj)| > |M(pj)| and |M∨(pj)| > |M ′(pj)|.

Thus, there exist students sa ∈ M∨(pj) \M ′(pj) and sb ∈ M∨(pj) \M(pj). Since any student
assigned to pj in both M and M ′ would also be assigned to pj in M∨, it follows that sa ∈M(pj) \
M ′(pj) and sb ∈ M ′(pj) \M(pj). Moreover, sa prefers M ′ to M , and sb prefers M to M ′, since
each student is assigned in M∨ to the less preferred of their two projects. Let lk be the lecturer
who offers pj. By the first part of Lemma 4.3.3, since sa prefers M ′ to M and sb ∈ M ′(pj) \
M(pj), it follows that lk prefers sa to sb. Similarly, since sb prefers M to M ′ and sa ∈ M(pj) \
M ′(pj), it follows that lk prefers sb to sa. Thus, lk simultaneously prefers sa to sb, and sb to sa, a
contradiction. Therefore, no project is oversubscribed in M∨.
Next, suppose that there exists some lecturer lk who is oversubscribed in M∨. Then there must
be some project pa ∈ Pk such that |M∨(pa)| > |M ′(pa)|, meaning that pa is undersubscribed in
M ′, since no project can be oversubscribed in M∨. Similarly, there exists some project pb ∈ Pk

such that |M∨(pb)| > |M(pb)|, meaning that pb is undersubscribed in M . Let sa be a student such
that (sa, pa) ∈ M∨ \M ′. Thus, sa ∈ M(pa) \M ′(pa) and sa prefers M ′ to M . Let sb be a student
such that (sb, pb) ∈M∨ \M ; thus sb ∈M ′(pb) \M(pb) and sb prefers M to M ′.
By Lemma 4.3.3, since sa prefers M ′ to M and pa is undersubscribed in M ′, lk prefers sa to each
student in M ′(lk) \M(lk) (Note that here, M and M ′ are swapped compared to the statement
of Lemma 4.3.3). If sb ∈ M ′(lk) \M(lk), then lk prefers sa to sb. If instead sb ∈ Sk(M, M ′), then
since sb prefers M to M ′, Lemma 4.3.1 implies that there exists some s′ ∈ M ′(lk) \M(lk) such
that lk prefers s′ to sb. It follows that lk prefers sa to s′, and consequently to sb.
On the other hand, by Lemma 4.3.3 again, since sb prefers M to M ′ and pb is undersubscribed
in M , it follows that lk prefers sb to each student in M(lk) \ M ′(lk). If sa ∈ M(lk) \ M ′(lk),
then lk prefers sb to sa, a contradiction. If instead sa ∈ Sk(M, M ′), then by Lemma 4.3.1, there
exists some s ∈ M(lk) \ M ′(lk) where lk prefers s to sa (Note that here sa prefers M ′ to M).
This implies that lk prefers sb to s, and consequently to sa. This yields a contradiction on lk’s
preferences. Hence, no lecturer is oversubscribed in M∨. Therefore, M∨ is a matching.

Lemma 4.4.8. M∨ is a stable matching.

Proof. Suppose for contradiction that (s, p) is a blocking pair for M∨, where project p is offered
by lecturer l. Then either:

(S1) s is unassigned in M∨, or

(S2) s is assigned in M∨, but prefers p to M∨(s).

4.4. Stable matchings in spa-s form a distributive lattice 96

And one of the following four conditions holds for the p and l:

(P1) both p and l are undersubscribed in M∨;

(P2) p is undersubscribed in M∨, l is full in M∨, and s ∈M∨(l);

(P3) p is undersubscribed in M∨, l is full in M∨, and l prefers s to the worst student in M∨(l);

(P4) p is full in M∨, and l prefers s to the worst student in M∨(p).

We consider each combination of conditions in turn. Note that the case (S1 & P2) cannot arise,
since s is unassigned in M∨ and therefore cannot belong to M∨(l).
(S1 & P1): Suppose s is unassigned in M∨, and both p and l are undersubscribed in M∨. By
construction, if s is unassigned in M∨, then s is unassigned in both M and M ′. By Lemma 4.4.5,
since l is undersubscribed in M∨, it is undersubscribed in both M and M ′. By Lemma 4.4.6,
since p is undersubscribed in M∨, it is undersubscribed in at least one of M or M ′. Without loss
of generality, suppose p is undersubscribed in M ′. Then s is unassigned in M ′, and both p and l

are undersubscribed in M ′, the pair (s, p) blocks M ′, a contradiction. A similar argument applies
if p is undersubscribed in M . We conclude that no blocking pair of type (S1 & P1) exists in M∨.

(S2 & P1): Suppose s is assigned in M∨, prefers p to M∨(s), and both p and l are undersubscribed
in M∨. Since l is undersubscribed in M∨, it follows from Lemma 4.4.5 that l is undersubscribed
in both M and M ′. In addition, Lemma 4.4.6 implies that p is undersubscribed in at least one of
M or M ′. Without loss of generality, assume that p is undersubscribed in M ′. Let p∗ = M∨(s).
Since s is assigned in M∨, they must be assigned in at least one of M or M ′, and p∗ is the less
preferred of the two. There are two possibilities for M(s) and M ′(s):

(i) M ′(s) = p∗. Then s prefers p to M ′(s). Since s prefers p to p∗, and both p and l are
undersubscribed in M ′, the pair (s, p) blocks M ′, a contradiction.

(ii) M(s) = p∗. Then s ∈ M(p∗) \M ′(p∗). Suppose first that p is undersubscribed in M . Then,
since s prefers p to p∗, and both p and l are undersubscribed in M , the pair (s, p) blocks M ,
a contradiction. Next suppose that p is full in M . Since p is undersubscribed in both M∨

and M ′, it follows that

|M(p)| > |M∨(p)| and |M(p)| > |M ′(p)|.

Hence, there exists some student s′ ∈ M(p) \M∨(p), and in particular s′ ∈ M(p) \M ′(p).
Since s′ is assigned in M∨ to the less preferred of their two projects from M and M ′, it
follows that s′ prefers M to M ′. Since both p and l are undersubscribed in M ′, the pair
(s′, p) blocks M ′, contradicting the stability of M ′.

4.4. Stable matchings in spa-s form a distributive lattice 97

In both cases (i) and (ii), a contradiction arises. Therefore, no blocking pair of type (S2 & P1)
exists in M∨.

(S2 & P2): Here, s is assigned in M∨, prefers p to M∨(s), p is undersubscribed in M∨, l is full in
M∨, and s ∈ M∨(l). By Lemma 4.4.6, p is undersubscribed in at least one of M or M ′; without
loss of generality, assume p is undersubscribed in M ′. Let p∗ = M∨(s), where p∗ is offered by l.
Since s is assigned in M∨, they must be assigned in either M or M ′ (or both). We consider the
possibilities for M(s) and M ′(s):

(i) M ′(s) = p∗. Then s prefers p to M ′(s). Moreover, it follows that s ∈ M ′(l), and since p is
undersubscribed in M ′, the pair (s, p) blocks M ′, a contradiction (This blocking pair occurs
whether l is undersubscribed or full in M ′).

(ii) M(s) = p∗ and M ′(s) ̸= p∗. Then s ∈ M(p∗) \ M ′(p∗) and prefers p to M(s). If p is
undersubscribed in M , then since s ∈ M(l), the pair (s, p) blocks M . Therefore, p must
be full in M . Following the case (ii) argument in (S2 & P1) (where p is full in M but
undersubscribed in both M∨ and M ′), there exists some s∗ ∈ M(p) \M ′(p) who prefers p

to M ′(s∗). We now consider the following subcases:

(iia): s ∈M ′(l). Recall that s prefers p to M(s) and p is full in M . By the stability of M , l prefers
the worst student in M(p) to s; that is, l prefers s∗ to s. Now since s∗ prefers p to M ′(s), p is
undersubscribed in M ′ and l prefers s∗ to some student in M ′(l) (namely s), the pair (s∗, p)
blocks M ′, a contradiction. (Again, this blocking pair occurs whether l is undersubscribed
or full in M ′)

(iib:) Suppose s /∈ M ′(l). Then s ∈ M(l) \M ′(l), so there exists some ŝ ∈ M ′(l) \M(l), since
|M(l)| = |M ′(l)|. Since s ∈ M∨(l) and s ∈ M(l), it follows that s prefers M ′ to M , i.e. s

prefers M ′(s) to p∗. Since p∗ is undersubscribed in M ′ and ŝ ∈ M ′(l) \M(l), Lemma 4.3.3
implies that l prefers s to ŝ. Now, recall that s prefers p to M(s) and p is full in M . By
the stability of M , l prefers the worst student in M(p) to s; that is, l prefers s∗ to s. Since,
l prefers s∗ to s, it follows that l prefers s∗ to ŝ. However, s∗ prefers p to M ′(s∗), p is
undersubscribed in M ′, and l prefers s∗ to some student in M ′(l) (namely ŝ). Thus (s∗, p)
blocks M ′, a contradiction.

Therefore, no blocking pair of type (S2 & P2) exists in M∨.

(S1 & P3): Suppose s is unassigned in M∨, p is undersubscribed in M∨, l is full in M∨, and l

prefers s to the worst student in M∨(l). By construction of M∨, any student unassigned in M∨

must also be unassigned in both M and M ′. Let sz denote the worst student in M∨(l), so that
l prefers s to sz. Since p is undersubscribed in M∨, by Lemma 4.4.6, p is undersubscribed in at
least one of M or M ′; without loss of generality, assume that p is undersubscribed in M ′ (it may

4.4. Stable matchings in spa-s form a distributive lattice 98

be full or undersubscribed in M). Suppose first that sz ∈ M ′(l). Then in M ′, s is unassigned, p

is undersubscribed, and l prefers s to sz. Therefore, the pair (s, p) blocks M ′, contradicting its
stability. It follows that sz /∈M ′(l), and hence sz ∈M(l) \M ′(l).
Since sz ∈M∨(l), they must be assigned in M∨ to the less preferred of their two projects. Hence
sz prefers M ′ to M . Let M(sz) = pz. If pz is full in M ′, then |M ′(pz)| ≥ |M(pz)|. Since sz ∈
M(pz) \M ′(pz), there exists some s∗ ∈ M ′(pz) \M(pz). Since sz prefers M ′ to M , Lemma 4.3.3
implies that l prefers sz to s∗. Similarly, given that sz ∈M(l)\M ′(l), there also exist some student
s∗ ∈M ′(l) \M(l). Now if pz is undersubscribed in M ′, then by the second part of Lemma 4.3.3, l

prefers sz to s∗. In both cases, l prefers sz to s∗. Since l also prefers s to sz, it follows that l prefers
s to s∗. But in M ′, s is unassigned, p is undersubscribed, and l prefers s to some s∗ ∈M ′(l). Hence
(s, p) blocks M ′, a contradiction. Note that the pair (s, p) blocks M ′ whether l is undersubscribed
or full in M ′.
It follows that no blocking pair of type (S1 & P3) exists in M∨.

(S2 & P3): Suppose s is assigned in M∨, prefers p to M∨(s), p is undersubscribed in M∨, l is
full in M∨, and l prefers s to the worst student in M∨(l). Let p∗ = M∨(s), and suppose that
p∗ = M ′(s), so s prefers p to p∗. Let sz be the worst student in M∨(l). By Lemma 4.4.6, p is
undersubscribed in at least one of M or M ′.
Suppose first that p is undersubscribed in M ′ (it may be full or undersubscribed in M). If sz ∈
M ′(l), then in M ′, s is assigned to p∗, prefers p to p∗, p is undersubscribed in M ′, and l prefers s

to sz. Thus, the pair (s, p) blocks M ′, a contradiction. It follows that sz ∈M(l)\M ′(l). Since sz ∈
M∨(l), they are assigned in both M and M ′, and assigned in M∨ to the less preferred of the two.
Therefore, sz prefers M ′ to M . Let M(sz) = pz, where pz is offered by l. Regardless of whether
pz is full or undersubscribed in M ′, by Lemma 4.3.3, there exists some student s∗ ∈ M ′(l) such
that l prefers sz to s∗. Since l prefers s to sz, it follows that l also prefers s to s∗. However, since
s prefers p to M ′(s), and p is undersubscribed in M ′, the pair (s, p) blocks M ′, a contradiction.
Now suppose instead that p is full in M ′ and undersubscribed in M . Then |M ′(p)| > |M∨(p)| and
|M ′(p)| > |M(p)|, so there exists a student s∗ ∈M ′(p)\M∨(p), and in particular s∗ ∈M ′(p)\M(p).
Moreover, s∗ prefers p to M(s). By the stability of M and since p is undersubscribed in M , it
follows that s∗ /∈ M(l), and l prefers each student in M(l) to s∗. Thus, s∗ ∈ M ′(l) \M(l). If
sz ∈ M(l), then l prefers sz to s∗, and since l also prefers s to sz, it follows that l prefers s to
s∗. Hence, the pair (s, p) blocks M ′, a contradiction. We conclude that sz ∈ M ′(l) \M(l). Since
sz ∈M∨(l), it follows that sz prefers M to M ′. Let M ′(sz) = pz, where pz is offered by l.
Suppose pz is full in M . Then there exists a student ŝ ∈ M(pz) \ M ′(pz). (This is because
sz ∈ M ′(pz) \M(pz) and clearly |M(pz)| ≥ |M ′(pz)|). Since sz prefers M to M ′, Lemma 4.3.3
implies that l prefers sz to ŝ. Moreover, since ŝ ∈ M(l), and l prefers each student in M(l) to
s∗, it follows that l prefers ŝ to s∗, and l prefers s to s∗ (since l prefers s to sz and l prefers sz to
ŝ). Suppose pz is undersubscribed in M . Then Lemma 4.3.3 implies that there exists a student

4.4. Stable matchings in spa-s form a distributive lattice 99

ŝ ∈M(l) \M ′(l) such that l prefers sz to ŝ. Since ŝ ∈M(l), and l prefers each student in M(l) to
s∗, it follows that l prefers ŝ to s∗, and consequently, prefers s to s∗(since l prefers s to sz and l

prefers sz to ŝ). In both cases, l prefers s to some student s∗ ∈M ′(p). Since s prefers p to M ′(s),
and p is full in M ′, the pair (s, p) blocks M ′, a contradiction.
A similar argument applies if p∗ = M(s). We therefore conclude that no blocking pair of type
(S2 & P3) exists in M∨.

(S1 & P4): Suppose s is unassigned in M∨, project p is full in M∨, and lecturer l prefers s to the
worst student in M∨(p). Then, by construction of M∨, student s is unassigned in both M and
M ′. Let sz denote the worst student in M∨(p), so that l prefers s to sz. Since sz ∈M∨(p), it must
be that either (sz, p) ∈M or (sz, p) ∈M ′.
Suppose first that (sz, p) ∈ M . If p is full in M , then s is unassigned, p is full, and l prefers s to
sz ∈ M(p), so the pair (s, p) blocks M , contradicting its stability. If instead p is undersubscribed
in M , then s is unassigned, p is undersubscribed, and l prefers s to sz ∈ M(l); thus, (s, p) again
blocks M , a contradiction. Now suppose that (sz, p) ∈M ′. The same reasoning applies: whether
p is full or undersubscribed in M ′, student s is unassigned in M ′, sz ∈M ′(p) and sz ∈M ′(l), and
l prefers s to sz. Hence, the pair (s, p) blocks M ′, again a contradiction.
We conclude that no blocking pair of type (S1 & P4) exists in M∨.

(S2 & P4): Suppose s is assigned in M∨, prefers p to M∨(s), p is full in M∨, and l prefers s to
the worst student in M∨(p). Let p∗ = M∨(s), and suppose p∗ = M ′(s), so that s prefers p to p∗.
Let sz be the worst student in M∨(p). If (sz, p) ∈ M ′, then s prefers p to M ′(s), p is full in M ′,
and l prefers s to sz ∈M ′(p). Moreover, if p is undersubscribed in M ′, then l prefers s to student
sz ∈M ′(l). Therefore, the pair (s, p) blocks M ′, a contradiction. It follows that sz ∈M(p)\M ′(p).
Since sz ∈M∨(p), they are assigned in both M and M ′, and assigned in M∨ to the less preferred
of the two. Hence, sz prefers M ′ to M .
Suppose first that p is full in M ′. Then there exists some student s∗ ∈ M ′(p) \M(p). Since sz

prefers M ′ to M , Lemma 4.3.3 implies that l prefers sz to s∗. If instead p is undersubscribed in
M ′, then by Lemma 4.3.3, l prefers sz to some student in s∗ ∈M ′(l) \M(l). Since l also prefers s

to sz, it follows that l prefers s to student s∗ ∈M ′(l), namely s∗. Therefore, regardless of whether
p is full or undersubscribed in M ′, the pair (s, p) blocks M ′, a contradiction. A similar argument
applies if p∗ = M(s). We therefore conclude that no blocking pair of type (S2 & P4) can exist in
M∨.
In all possible cases, we derive a contradiction. Therefore, no blocking pair exists in M∨, and M∨

is stable.

We denote by M ∨M ′ the set of (student, project) pairs in which each student is assigned to the
poorer of her projects in M and M ′; and it follows from Lemma 4.4.8 that if each student is given

4.4. Stable matchings in spa-s form a distributive lattice 100

the poorer of her projects in any fixed set of stable matchings, then the resulting assignment is
a stable matching. For the case whereM is the set of all stable matchings in I, we denote by∨

M∈M M , or simply ∨M, the resulting stable matching. This matching is student-pessimal and,
by Corollary 4.3.1, lecturer-optimal. We are now ready to present our main result.

Theorem 4.4.1 ([121]). Let I be an instance of spa-s, and letM be the set of stable matchings
in I. Let ⪯ be the dominance partial order onM and let M, M ′ ∈ M. Then (M,⪯) is a
distributive lattice, with M ∧M ′ representing the meet of M and M ′, and M ∨M ′ the join of
M and M ′.

Proof. Let M and M ′ be two stable matchings inM. By Lemma 4.4.4, we have that M ∧M ′ is a
stable matching; and by the definition of M ∧M ′, it follows that M ∧M ′ ⪯M and M ∧M ′ ⪯M ′.
Further, if M∗ is an arbitrary stable matching satisfying M∗ ⪯ M and M∗ ⪯ M ′, then each
student must be assigned in M∗ to a project that is at least as good as her assigned projects in
each of M and M ′, so that M∗ ⪯ M ∧M ′. Thus M ∧M ′ is the meet of M and M ′. Similarly,
by Lemma 4.4.8, we have that M ∨M ′ is a stable matching; and by the definition of M ∨M ′, it
follows that M ⪯M ∨M ′ and M ′ ⪯M ∨M ′. Following a similar argument as above, M ∨M ′ is
the join of M and M ′. Hence, (M,⪯) is a lattice.

Next, we show that the join and meet operation distribute over each other. Let M, M ′ and M ′′

be stable matchings inM. First, let X = M ∨ (M ′ ∧M ′′) and let Y = (M ∨M ′) ∧ (M ∨M ′′);
we need to show that X = Y . Let si be an arbitrary student. If si is unassigned in each of M ,
M ′ and M ′′, it is clear that si is unassigned in both X and Y . Now, suppose that si is assigned to
some project in each of M , M ′ and M ′′. We consider the following cases.

(i) Suppose that M(si) = M ′(si) = M ′′(si), clearly X(si) = Y (si).

(ii) Suppose that either (a) M(si) = M ′(si) and M(si) ̸= M ′′(si) or (b) M(si) ̸= M ′(si) and
M(si) = M ′′(si) holds. Irrespective of how we express si’s preference over M(si), M ′(si)
and M ′′(si) in cases (a) and (b), we have that si is assigned to M(si) in both X and Y .

(iii) Suppose that M ′(si) = M ′′(si) and M ′(si) ̸= M(si). If si prefers M ′(si) to M(si) then si

is assigned to M(si) in both X and Y . Otherwise, if si prefers M(si) to M ′(si) then si is
assigned to M ′(si) in both X and Y .

(iv) Suppose that M(si), M ′(si) and M ′′(si) are distinct projects. There are six different ways
to express si’s preference over M(si), M ′(si) and M ′′(si). If si prefers M(si) to M ′(si) to
M ′′(si), then si is assigned to M ′(si) in both X and Y . If si prefers M(si) to M ′′(si) to
M ′(si), then si is assigned to M ′′(si) in both X and Y . We leave it to the reader to verify
that in the remaining four cases, si is assigned to M(si) in both X and Y .

4.4. Stable matchings in spa-s form a distributive lattice 101

Since si is an arbitrary student, it follows that X = Y ; and thus the first distributive property
holds. Next, we show that the second distributive property holds. Let X = M ∧ (M ′ ∨M ′′) and
let Y = (M ∧M ′) ∨ (M ∧M ′′). Let si be an arbitrary student. Again, if si is unassigned in each
of M, M ′ and M ′′, it is clear that si is unassigned in both X and Y . Now, suppose si is assigned
to some project in each of M, M ′ and M ′′. Following the same case analysis as before, we arrive
at the same conclusion in cases (i) and (ii). We consider cases (iii) and (iv) in detail:

(iii) If M ′(si) = M ′′(si) and M ′(si) ̸= M(si). If si prefers M ′(si) to M(si) then si is assigned
to M ′(si) in both X and Y . Otherwise, if si prefers M(si) to M ′(si) then si is assigned to
M(si) in both X and Y .

(iv) Suppose that M(si), M ′(si) and M ′′(si) are distinct projects. Again, there are six different
ways to express si’s preference over M(si), M ′(si) and M ′′(si). If si prefers M ′(si) to M ′′(si)
to M(si), then si is assigned to M ′′(si) in both X and Y . If si prefers M ′′(si) to M ′(si) to
M(si), then si is assigned to M ′(si) in both X and Y . We leave it to the reader to verify
that in the remaining four cases, si is assigned to M(si) in both X and Y .

Since si is an arbitrary student, it follows that X = Y ; and thus the second distributive property
holds. Since each of M , M ′ and M ′′ is an arbitrary stable matching inM, it follows that (M,⪯)
is a distributive lattice.

4.4.1 Example

Finally, consider the spa-s instance I3 illustrated in Figure 4.4, which admits a total of seven stable
matchings, as shown in Table 4.1. The meet of matchings M3 and M4 is M2, i.e., M2 = M3 ∧M4.
For each student assigned to different projects in M3 and M4—namely, s2, s4, s5, s6, and s7—the
assignment in M2 corresponds to the better of their projects in M3 and M4. Conversely, the join
of matchings M3 and M4 is M5, i.e., M5 = M3∨M4. In M5, each student is assigned to the poorer
of their projects in M3 and M4.

4.4. Stable matchings in spa-s form a distributive lattice 102

Students’ preferences Lecturers’ preferences Offers

s1: p1 p2 p4 p3 l1: s7 s9 s3 s4 s5 s1 s2 s6 s8 p1, p2, p5, p6

s2: p1 p4 p3 p2 l2: s6 s1 s2 s5 s3 s4 s7 s8 s9 p3, p4, p7, p8

s3: p3 p1 p2 p4

s4: p3 p2 p1 p4

s5: p4 p3 p1

s6: p5 p2 p7

s7: p7 p3 p6

s8: p6 p8 Project capacities: c1 = c3 = 2; ∀j ∈ {2, 4, 5, 6, 7, 8}, cj = 1

s9: p8 p2 p3 Lecturer capacities: d1 = 4, d2 = 5

Figure 4.4: An instance I3 of spa-s

Matching s1 s2 s3 s4 s5 s6 s7 s8 s9

M1 p1 p1 p3 p3 p4 p5 p7 p6 p8

M2 p1 p1 p3 p3 p4 p5 p7 p8 p2

M3 p1 p1 p3 p3 p4 p7 p6 p8 p2

M4 p1 p4 p3 p1 p3 p5 p7 p8 p2

M5 p1 p4 p3 p1 p3 p7 p6 p8 p2

M6 p4 p3 p1 p1 p3 p5 p7 p8 p2

M7 p4 p3 p1 p1 p3 p7 p6 p8 p2

Table 4.1: Instance I3 admits seven stable matchings.

The Hasse diagram illustrated in Figure 5.6 is a directed graph with each vertex representing a
stable matching, and there is a directed edge from vertex M to M ′ if M ⪯ M ′ and there is no
such M∗ such that M ⪯ M∗ ⪯ M ′. We note that all the edges representing precedence implied
by transitivity are suppressed in the diagram.

4.5. Conclusions and future work 103

M1

M2

M3 M4

M5 M6

M7

Figure 4.5: Lattice structure for I3

4.5 Conclusions and future work

In this chapter, we examined the structure of the set of stable matchings in an instance I of spa-s.
We showed that, under a natural dominance relation, this set forms a finite distributive lattice.
This result extends known structural properties from the classical Stable Marriage problem to the
more complex spa-s model involving students, projects, and lecturers. In addition, we presented
additional properties unique to spa-s instances which, to the best of our knowledge, have not been
previously studied. By establishing the lattice result in spa-s, we reveal a connection between
spa-s and a broader class of combinatorial problems whose set of solutions form a distributive
lattice. This connection enables algorithmic techniques developed in those settings to be applied
to related optimisation problems in the spa-s model.

A natural direction for future work is to explore whether a similar distributive lattice structure
exists in the extension of spa-s that allows ties in preference lists, namely spa-st. In this setting,
three notions of stability arise: weak stability, strong stability, and super stability. It would be in-
teresting to determine whether a similar characterisation can be developed for the set of strongly
stable and super-stable matchings in spa-st. The results presented in this chapter provide a start-
ing point for addressing this question and for analysing the complexity of related problems in
spa-s and its extensions. Moreover, the lattice structure described here provides a foundation
for further investigation into other polynomial-time characterisations of the set of stable match-
ings in spa-s. In the next chapter, we build on the results from this chapter by presenting the
meta-rotation poset, which provides a compact representation of the set of all stable matchings
M and the lattice for any instance. Moreover, the meta-rotation poset can be constructed in time
polynomial in the size of the input.

Chapter 5

Meta-Rotations in spa-s

5.1 Introduction

In Chapter 4, we proved that the set of all stable matchingsM in a given spa-s instance forms
a distributive lattice, where the student-optimal and lecturer-optimal stable matchings are the
two extreme elements of the lattice. In this chapter, we build on that result by introducing
meta-rotations, which generalises the notion of rotations from the Stable Marriage problem (see
Section 2.1.3.2) to the spa-s setting. We show that each meta-rotation corresponds to a spe-
cific set of changes that transforms one stable matching into another within the lattice of stable
matchings. LetM denote the set of all stable matchings in a given spa-s instance I. We define the
meta-rotation poset Π(M) as the set of meta-rotations in I, together with a partial order defined
over them. This poset captures the dependencies between meta-rotations and succinctly encodes
the setM. Specifically, we prove that each stable matching inM corresponds to a unique closed
subset of Π(M).1

5.1.1 Background and motivation

A classical result in lattice theory, Birkhoff’s Theorem [16], states that every finite distributive
lattice is isomorphic to the collection of closed subsets of some finite partially ordered set (poset).
Under this representation, each element of the lattice corresponds to a unique closed subset of
the poset, and the meet and join operations in the lattice correspond to the intersection and
union of these subsets, respectively. In many combinatorial problems, however, we are typically
not given the lattice explicitly. Instead, we are presented with a problem input, for example, a
set of agents and their preferences, and the associated distributive lattice arises implicitly from
the structure of its set of solutions.

Gusfield and Irving [54] noted that while Birkhoff’s Theorem guarantees the existence of a partial
order that corresponds to a given lattice, it does not offer a method for constructing this partial

1A subset S of a partially ordered set is closed (or a lower set) if, whenever x ∈ S, all elements y with y ⪯ x also
belong to S.

104

5.1. Introduction 105

order directly from the problem input. Moreover, since the number of stable matchings in an
instance can be exponential in the input size, constructing the entire lattice solely to recover the
underlying partial order is often infeasible. As a result, Irving and Leather [65] introduced the
notions of rotations and the rotation poset, which provide a compact representation of the set of
stable matchings in a given Stable Marriage instance. Crucially, the partial order on rotations can
be derived directly from the problem input, without the need to enumerate all stable matchings.
They established a one-to-one correspondence between stable matchings and closed subsets of
the rotation poset, thereby resolving an open problem posed by Knuth [84]. Further details on
the structure of rotations and the construction of the rotation poset are provided in the book by
Gusfield and Irving [54], where they also provided an alternative proof using ring of sets.

The rotation poset in the Stable Marriage model laid the foundation for efficient algorithms to
enumerate all stable marriages, identify all stable pairs, and compute other stable matchings
with desirable properties such as the egalitarian or minimum regret stable matching. Since we
have already shown in Chapter 4 that the set of stable matchings in any spa-s instance forms
a distributive lattice, it follows from Birkhoff’s Theorem that there exists a poset whose closed
subsets correspond exactly to these matchings. The goal of this chapter is to show that such a
partial order can be explicitly constructed from a given spa-s instance, by introducing a gener-
alised notion of rotations tailored to spa-s. Consequently, this structure would enable the design
of efficient algorithms for similar problems in spa-s, such as enumerating all stable matchings
and computing other stable matchings that satisfy different optimality criteria.

5.1.2 Contributions and structure of the chapter

As we will demonstrate later, several structural properties that hold in the one-to-one and many-
to-many stable matching models do not extend to spa-s, due to the presence of projects, and
the fact that a student may be assigned to different projects offered by the same lecturer in two
different stable matchings. These differences motivate the need for a more nuanced definition of
rotations that accurately reflects the properties of the spa-s model.

The main contribution of this chapter is to provide an alternative characterisation of the set of
stable matchings in spa-s through the introduction of meta-rotations, which generalise the clas-
sical notion of rotations from sm and hr. We describe how meta-rotations can be identified
and eliminated, and show how they can be used to construct the meta-rotation poset, a partial
order whose closed subsets are in one-to-one correspondence with the stable matchings of the
instance. This poset provides a compact representation of the set of stable matchings, and en-
ables the efficient enumeration and analysis of the set of stable matchings admitted by any spa-s
instance.

In Section 5.2, we provide preliminary definitions and some intuition behind our approach. In
Section 5.3, we present results that describe the relationship between student and lecturer prefer-

5.2. Preliminary definitions 106

ences in stable matchings. In Section 5.4, we focus on identifying and eliminatingmeta-rotations,
and describe how they traverse the lattice of stable matchings. Finally, in Section 5.5, we present
our main result, which establishes a one-to-one correspondence between the set of stable match-
ings and the closed subsets of the meta-rotation poset.

5.2 Preliminary definitions

We begin by defining, in Definition 5.2.1, the notion of a valid next project for each student who
is assigned in some stable matching of a given instance I. This refers to a project in which the
student may be assigned to in some other stable matching of I. Then we formally define meta-
rotations and describe how to identify an exposed meta-rotation in an arbitrary stable matching
(in Definition 5.2.2).

Definition 5.2.1 (Next project). Let ML denote the lecturer-optimal stable matching in a
given spa-s instance I. For any stable matching M ̸= ML, suppose there exists a student
si such that M(si) ̸= ML(si). Let pj = M(si) and let lk be the lecturer offering pj. Define
wM(pj) as the worst student assigned to pj in M , and wM(lk) as the worst student assigned
to lk in M .

We define the next project for si, denoted sM(si), as the first project p on si’s preference list
that appears after pj and satisfies one of the following conditions, where l is the lecturer
offering p:

(i) p is full in M , and l prefers si to wM(p);

(ii) p is undersubscribed in M , l is full in M , and l prefers si to wM(l).

Let nextM(si) denote the next student for si. If p satisfies condition (i), we say wM(p) is nextM(si).
If p satisfies condition (ii), then we say that wM(l) is nextM(si). We note that such project p may
not always exist. For instance, if M is the lecturer-optimal stable matching, then p does not exist
for any student, since each student is assigned in ML to the worst possible project that they could
have in any stable matching.

To illustrate this definition further, consider instance I1 in Figure 5.1, which admits seven stable
matchings, one of which is M2 = {(s1, p1), (s2, p1), (s3, p3), (s4, p3), (s5, p4), (s6, p5), (s7, p7), (s8, p8)
, (s9, p2)}. It can be observed that the first project on s6’s preference list following p5 (her as-
signed project in M2) is p2, which is full in M2. However, l1 (the lecturer offering p2) prefers the
worst student in M2(p2), namely s9, to s6. Proceeding to the next project, p7, which is full in M2,
it is clear that l2 prefers s6 to the worst student in M2(p7), namely s7. Therefore, sM(s6) = p7

5.2. Preliminary definitions 107

and nextM2(s6) = s7. Similarly, p6 is the first project on s7’s preference list that is undersub-
scribed in M2, and l1 prefers s7 to the worst student in M2(l1), namely s6. Thus, sM(s7) = p6 and
nextM2(s7) = s6.

Students’ preferences Lecturers’ preferences Offers
s1: p1 p2 p4 p3 l1: s7 s9 s3 s4 s5 s1 s2 s6 s8 p1, p2, p5, p6

s2: p1 p4 p3 p2 l2: s6 s1 s2 s5 s3 s4 s7 s8 s9 p3, p4, p7, p8

s3: p3 p1 p2 p4

s4: p3 p2 p1 p4

s5: p4 p3 p1

s6: p5 p2 p7

s7: p7 p3 p6

s8: p6 p8 Project capacities: c1 = c3 = 2; ∀j ∈ {2, 4, 5, 6, 7, 8}, cj = 1
s9: p8 p2 p3 Lecturer capacities: d1 = 4, d2 = 5

Figure 5.1: An instance I1 of spa-s

Matching s1 s2 s3 s4 s5 s6 s7 s8 s9

M1 p1 p1 p3 p3 p4 p5 p7 p6 p8

M2 p1 p1 p3 p3 p4 p5 p7 p8 p2

M3 p1 p1 p3 p3 p4 p7 p6 p8 p2

M4 p1 p4 p3 p1 p3 p5 p7 p8 p2

M5 p1 p4 p3 p1 p3 p7 p6 p8 p2

M6 p4 p3 p1 p1 p3 p5 p7 p8 p2

M7 p4 p3 p1 p1 p3 p7 p6 p8 p2

Table 5.1: Instance I1 admits seven stable matchings.

Definition 5.2.2 (Exposed Meta-Rotation). Let M be a stable matching, and let ρ =
{(s0, p0), (s1, p1), . . . , (sr−1, pr−1)} be an ordered list of student–project pairs in M , where
r ≥ 2. For each t(0 ≤ t ≤ r − 1), suppose that st is the worst student assigned to project
pt in M , and st+1 = nextM(st) (with indices taken modulo r). Then ρ is called an exposed
meta-rotation in M . Moreover, if a pair (s, p) ∈ ρ, we say that s ∈ ρ (or equivalently, p ∈ ρ).

Note that in any exposed meta-rotation ρ of a stable matching M , each student and project that
appears in ρ is part of an assigned pair in M , and each appears exactly once in ρ. This is because,
in M , each project has a unique worst student among those assigned to it, and the definition of ρ

includes precisely one such student–project pair. Furthermore, the set of all meta-rotations in I

5.2. Preliminary definitions 108

consists precisely of those ordered sets of pairs that are exposed in at least one stable matching
M ∈M.

Definition 5.2.3 (Meta-rotation Elimination). Given a stable matching M and an exposed
meta-rotation ρ in M , we denote by M/ρ the matching obtained by assigning each student
s ∈ ρ to project sM(s), while keeping the assignments of all other students unchanged. This
transition from M to M/ρ is referred to as the elimination of ρ from M .

5.2.1 Justification for the meta-rotation definition

In both sm and hr, an exposed rotation ρ in a stable matching M is defined as a sequence of
pairs such that performing a cyclic shift yields a new stable matching M/ρ: in sm, each woman
is assigned to the next man in the sequence, and in hr, each hospital is assigned to the next
resident. Specifically, in hr, if some resident r, who is assigned in a stable matching M , has a
next hospital h on their preference list and is part of an exposed rotation ρ, then r swaps places
with the least preferred resident currently assigned to h in M , forming the new matching M/ρ.
Moreover, by the Rural Hospitals Theorem for hr (see Theorem 2.2.1), if some hospital h is
undersubscribed in one stable matching, then it is assigned the same set of residents across all
stable matchings.

However, as we noted in Chapter 4, these properties do not extend to spa-s for projects or lec-
turers that are undersubscribed. In spa-s, the number of students assigned to a project may vary
across stable matchings. Consequently, a project that is part of an exposed meta-rotation ρ in
a given stable matching M may not necessarily appear in the resulting stable matching M/ρ.
For example, in instance I3 from Figure 5.1, the pairs {(s6, p5), (s7, p7)} form an exposed meta-
rotation in M2. Here, project p5 is full in M2 but becomes undersubscribed in M3. Clearly, neither
p5 nor its lecturer l1 (who offers p5) have the same set of assigned students in M2 and M3. Nev-
ertheless, by the Unpopular Projects Theorem (see Theorem 4.2.1), the total number of students
assigned to each lecturer remains the same across all stable matchings.

To address these differences, our definition of meta-rotations explicitly accounts for whether
each project is full or undersubscribed in the stable matching of interest. Suppose a student si,
assigned to some project in a stable matching M , has pj as their next possible project. Whether
si can be assigned to pj in another stable matching depends on the status of pj in M as well as
the preference of the lecturer lk who offers it. If pj is full in M , then the assignment of si to pj

is possible only if lk prefers si to the worst student in M(pj); in this case, si takes the place of
that student. If pj is undersubscribed in M , then the assignment is possible only if lk prefers si

to the worst student in M(lk); here, si is assigned to pj and the least preferred student in M(lk)
is removed. These conditions ensure that each such assignment yields a new matching that is
stable.

5.3. Structural results involving stable matchings 109

5.3 Structural results involving stable matchings

In this section, we present new results on stable matchings in a spa-s instance, providing insight
into how the assignment of a student to different projects in two stable matchings affects the
preferences of the involved lecturers. Throughout, let lk denote the lecturer offering project pj.
In Lemma 5.3.1, we show that for any two stable matchings M and M ′ where M dominates M ′,
if (si, pj) ∈ M ′ \M and pj is full in M , then the worst student in M(pj) is not assigned to pj in
M ′. If instead pj is undersubscribed in M , then the worst student in M(lk), does not appear in
M ′(lk). In Lemma 5.3.2, we show that if si is assigned to different projects in M and M ′, and is
assigned to pj in M ′, then lk prefers si to the worst student in M(pj) when pj is full in M , and
lk prefers si to the worst student in M(lk) when pj is undersubscribed. Finally, in Lemma 5.3.3,
we show that if M dominates M ′, and some student si is assigned to pj in M ′ but to a different
project in M , then if pj is undersubscribed in M , then lk must be full in M .

Lemma 5.3.1. Let M and M ′ be two stable matchings where M dominates M ′. Suppose there exists
a student si who is assigned to different projects in M and M ′, with si assigned to project pj in M ′.
Then the following hold:

(i) If pj is full in M , the worst student in M(pj) is not in M ′(pj).

(ii) If pj is undersubscribed in M , the worst student in M(lk) is not in M ′(lk).

Proof. Let si be some student assigned to different projects in M and M ′, such that si ∈M ′(pj) \
M(pj), and lk offers pj. Let sz be the worst student in M(pj), and suppose for a contradiction
that sz ∈M(pj) ∩M ′(pj). Consider case (i) where pj is full in M . Since si ∈M ′(pj) \M(pj) and
|M(pj)| ≥ |M ′(pj)|, there exists some student st ∈M(pj)\M ′(pj). Moreover, since sz is the worst
student in M(pj), lk prefers st to sz. Since M dominates M ′, st prefers M to M ′. Regardless of
whether pj is full or undersubscribed in M ′, the pair (st, pj) blocks M ′, leading to a contradiction.
Therefore, case (i) holds.

Now consider case (ii) where pj is undersubscribed in M . Let sz be the worst student in M(lk),
and suppose for a contradiction that sz ∈M(lk)∩M ′(lk). First, suppose that |M(pj)| ≥ |M ′(pj)|.
Since pj is undersubscribed in M , it follows that pj is undersubscribed in M ′. Given that si ∈
M ′(pj) \M(pj), there exists some student sr ∈ M(pj) \M ′(pj). Furthermore, sr prefers M to
M ′, and either sr = sz or lk prefers sr to sz. If sr = sz, then sr ∈ M ′(lk) and, since pj is
undersubscribed in M ′, the pair (sr, pj) blocks M ′, leading to a contradiction. If instead sr ̸= sz,
then lk prefers sr to sz, since sz is the worst student in M(lk). However, given that sr prefers M to
M ′, pj is undersubscribed in M ′, and lk prefers sr to sz, the pair (sr, pj) blocks M ′, again leading
to a contradiction.

Now, suppose that |M ′(pj)| > |M(pj)|. Since |M(lk)| = |M ′(lk)|, there exists some project pt ∈ Pk

such that |M(pt)| > |M ′(pt)|, meaning pt is undersubscribed in M ′. Consequently, there exists a

5.3. Structural results involving stable matchings 110

student st ∈ M(pt) \M ′(pt) who prefers M to M ′. If st = sz, then st ∈ M ′(lk) and, since pt is
undersubscribed in M ′, the pair (st, pt) blocks M ′, leading to a contradiction. Otherwise, since
sz is the worst student in M(lk), it follows that lk prefers st to sz. Given that st prefers M to
M ′, pt is undersubscribed in M ′, and lk prefers st to sz, the pair (st, pt) blocks M ′, leading to a
contradiction. Hence, our claim holds.

Lemma 5.3.2. Let M and M ′ be two stable matchings in I such that M dominates M ′. Suppose
that a student si is assigned to different projects in M and M ′, such that si is assigned to project pj

in M ′, where lk offers pj. Then the following conditions hold:

(i) If pj is full in M , then lk prefers si to the worst student in M(pj).

(ii) If pj is undersubscribed in M , then lk prefers si to the worst student in M(lk).

Proof. Let M and M ′ be two stable matchings in I, where M dominates M ′. Suppose that some
student si is assigned to project pj in M ′, where lk offers pj (and possibly lk offers M(si)). Con-
sider case (i), where pj is full in M . Let sz be the worst student in M(pj), and suppose for a
contradiction that lk prefers sz to si. By Lemma 5.3.1, it follows that sz /∈ M ′(pj), meaning
sz ∈ M(pj) \M ′(pj). Since M dominates M ′, sz prefers pj to M ′(sz). If pj is full in M ′, then the
pair (sz, pj) blocks M ′, since lk prefers sz to some student in M ′(pj), namely si. Similarly, if pj

is undersubscribed in M ′, (sz, pj) also blocks M ′, since lk prefers sz to some student in M ′(lk),
namely si. This leads to a contradiction. Hence, lk prefers si to sz, and case (i) holds.

Consider case (ii), where pj is undersubscribed in M . Now, suppose for a contradiction that
lk prefers the worst student in M(lk) to si. This means that lk prefers every student in M(lk)
to si. First, suppose that |M(pj)| ≥ |M ′(pj)|. Then, pj is also undersubscribed in M ′. Since
M(pj) contains at least as many students as M ′(pj), there must be some student sr ∈ M(pj) \
M ′(pj) (Readers may recall that si ∈ M ′(pj) \M(pj)). Additionally, sr prefers M to M ′, since
M dominates M ′. Given that sr ∈ M(lk) and sr is either the worst student in M(lk) or better, it
follows that lk prefers sr to si. However, since pj is undersubscribed in M ′ and lk prefers sr to
some student in M ′(lk) (namely si), the pair (sr, pj) blocks M ′, leading to a contradiction.

Now, suppose instead that |M(pj)| < |M ′(pj)|. Since |M(lk)| = |M ′(lk)|, there exists some other
project pt ∈ Pk such that |M ′(pt)| < |M(pt)|. This means pt is undersubscribed in M ′ and there
exists some student st ∈ M(pt) \ M ′(pt), that is, st ∈ M(lk). Moreover, st prefers M to M ′.
Since pt is undersubscribed in M ′ and lk prefers st to some student in M ′(lk) (namely si), the
pair (st, pt) blocks M ′, contradicting the stability of M ′. Thus, we reach a contradiction in both
scenarios, completing the proof for case (ii). Therefore, the lemma holds.

5.4. Exposing and eliminating all meta-rotations 111

Lemma 5.3.3. Let M and M ′ be two stable matchings where M dominates M ′. Suppose that a
student si is assigned to different projects in M and M ′, with si assigned to project pj in M ′. If pj is
undersubscribed in M then lk is full in M .

Proof. Let M and M ′ be two stable matchings where M dominates M ′. Suppose si is some
student assigned to different projects in M and M ′, such that si is assigned to pj in M ′, and lk

offers pj (possibly lk also offers M(si)). Now, suppose for a contradiction that both pj and lk are
undersubscribed in M . Since pj is offered by an undersubscribed lecturer lk, it follows from the
Unpopular Projects Theorem (see Theorem 4.2.1) that the same number of students are assigned
to pj in M and M ′. Therefore, since si ∈ M ′(pj) \M(pj), there exists some student sz such that
sz ∈M(pj)\M ′(pj). Moreover, both pj and lk are undersubscribed in M ′, since |M(pj)| = |M ′(pj)|
and |M(lk)| = |M ′(lk)|. Since M dominates M ′, sz prefers pj to M ′(sz). However, since pj and
lk are both undersubscribed in M ′, the pair (sz, pj) blocks M ′, a contradiction. Hence, our claim
holds.

5.4 Exposing and eliminating all meta-rotations

In this section, we present key lemmas to show that by successively identifying and eliminating
exposed meta-rotations, we obtain another stable matching of a given instance. First, we recall
the following results from Chapter 4, which will be used in the proofs for this section:

Lemma 5.4.1. Let M and M ′ be two stable matchings in a given instance I. Suppose a student si

is assigned to different projects in M and M ′, and that in M ′, si is assigned to a project pj offered
by lecturer lk. Suppose further that si prefers M to M ′. Then:

(a) If there exists a student in M(pj)\M ′(pj), then lk prefers si to each student in M(pj)\M ′(pj).

(b) If pj is undersubscribed in M , then lk prefers si to each student in M(lk) \M ′(lk).

Lemma 5.4.2. Let M and M ′ be two stable matchings in I. If a student si is assigned in M and M ′

to different projects offered by the same lecturer lk, and si prefers M to M ′, then there exists some
student sr ∈M ′(lk) \M(lk) such that lk prefers sr to si. Thus, M(lk) ̸= M ′(lk).

5.4.1 Meta-rotations

Let ρ = {(s0, p0), (s1, p1), . . . , (sr−1, pr−1)} be an exposed meta-rotation in a stable matching M of
some spa-s instance I, and consider any pair (st, pt) ∈ ρ. Let the next project for st be sM(st), and
suppose that there exists some project pz that lies strictly between pt and sM(st) in st’s preference
list. Then, by Lemma 5.4.3, the pair (st, pz) does not appear in any stable matching of I, and
hence is not a stable pair.

5.4. Exposing and eliminating all meta-rotations 112

In Lemma 5.4.4, we show that in any spa-s instance, every stable matching other than the
lecturer-optimal matching ML contains at least one exposed meta-rotation. In Lemma 5.4.5,
we show that if, in the construction of M/ρ, a student becomes assigned to a lecturer lk, then
lk simultaneously loses a student from M(lk). Finally, in Lemma 5.4.6, we prove that if a meta-
rotation ρ is exposed in a stable matching M , then the matching M/ρ, obtained by eliminating
ρ from M , is also stable, and that M dominates M/ρ.

Lemma 5.4.3. Let ρ = {(s0, p0), (s1, p1), . . . , (sr−1, pr−1)} be an exposed meta-rotation in a stable
matching M for instance I. Suppose that for some student st (where 0 ≤ t ≤ r − 1), there exists a
project pz such that st prefers pt to pz, and prefers pz to sM(st). Then the pair (st, pz) is not a stable
pair — that is, it is not part of any stable matching of I.

Proof. Let M be a stable matching in which the meta-rotation ρ is exposed, and suppose that
(si, pj) ∈ ρ. Suppose there exists a project pz on si’s preference list such that si prefers pj to
pz, and prefers pz to sM(si). Let lz be the lecturer who offers pz, and possibly also offers sM(si).
Suppose for contradiction that there exists another stable matching M ′ in which si is assigned
to pz, that is, si ∈ M ′(pz) \M(pz). Then si prefers M to M ′. Since pz ̸= sM(si), by definition of
sM(si), one of the following conditions must hold in M :

(i) both pz and lz are undersubscribed,

(ii) pz is full and lz prefers the worst student in M(pz) to si, or

(iii) pz is undersubscribed, lz is full, and lz prefers the worst student in M(lz) to si.

Case (i): Suppose both pz and lz are undersubscribed in M . Then lz is undersubscribed in M ′

since |M(lz)| = |M ′(lz)|. Moreover, by the Unpopular Projects Theorem (see Theorem 4.2.1),
since pz is offered by an undersubscribed lecturer lz, then |M(pz)| = |M ′(pz)|, meaning pz is
undersubscribed in M ′. Since si ∈M ′(pz)\M(pz), there must exist a student sz ∈M(pz)\M ′(pz).
If sz prefers M to M ′, then (sz, pz) blocks M ′, as pz and lz are undersubscribed in M ′. Therefore,
sz prefers M ′ to M . Now, by the first part of Lemma 5.4.1, since sz prefers M ′ to M and si ∈
M ′(pz) \M(pz), then lz prefers sz to si. However, by the same lemma, since si prefers M to M ′

and sz ∈ M(pz) \M ′(pz), then lz prefers si to sz. This gives a direct contradiction, as lz cannot
simultaneously prefer si to sz and sz to si. Hence, case (i) cannot occur.

Case (ii): Suppose pz is full in M and lz prefers the worst student in M(pz) to si. Since si ∈
M ′(pz) \ M(pz) and pz is full in M , there exists some student sz ∈ M(pz) \ M ′(pz). Thus, lz

prefers sz to si. However, by Lemma 5.4.1, since si prefers M to M ′ and sz ∈ M(pz) \M ′(pz),
it follows that lz prefers si to sz. This gives a direct contradiction, as lz cannot simultaneously
prefer si to sz and sz to si. Therefore, case (ii) cannot occur.

Case (iii): Suppose pz is undersubscribed in M , lz is full in M , and lz prefers the worst student
in M(lz) to si. This implies that lz prefers each student in M(lz) to si. We claim that there exists

5.4. Exposing and eliminating all meta-rotations 113

some student sz ∈M(lz) \M ′(lz). If si ∈ Sz(M, M ′), meaning si is assigned to different projects
offered by lz in both M and M ′, then by Lemma 5.4.2, there exists some s ∈ M ′(lz) \ M(lz).
Consequently, there must exist some sz ∈ M(lz) \ M ′(lz), since |M(lk)| = |M ′(lk)|. The same
conclusion holds if si ∈ M ′(lz) \ M(lz). Thus, it follows that lz prefers sz to si. However, by
Lemma 5.4.1, since si prefers M to M ′ and pz is undersubscribed in M , we have that lz prefers
si to sz. This gives a direct contradiction, as lz cannot simultaneously prefer sz to si and si to sz.
Therefore, case (iii) cannot occur.

Since all possible cases lead to a contradiction, the pair (si, pz) cannot belong to any stable match-
ing of I, completing the proof.

The following corollary follows immediately from Lemma 5.4.3:

Corollary 5.4.1. Let M be a stable matching in I, and let si be a student for whom sM(si)
exists. Suppose that si prefers M(si) to some project pz offered by lecturer lz, and prefers pz to
sM(si). If both pz and lz are undersubscribed in M , then the pair (si, pz) does not appear in
any stable matching of I.

Lemma 5.4.4. Let M be a stable matching in an instance of spa-s, and suppose M ̸= ML, where ML

is the lecturer-optimal stable matching. Then there exists at least one meta-rotation that is exposed
in M .

Proof. Let M be a stable matching in an instance I of spa-s, and let ML be the lecturer-optimal
stable matching. Clearly, M dominates ML. Since M ̸= ML, there exists some student si0, who is
assigned to different projects in M and ML. Suppose that si0 is assigned to pj0 in M and assigned
to pt0 in ML, where lt offers pt0 (possibly lt offers both pj0 and pt0). Clearly, si0 prefers pj0 to pt0 .
Furthermore, pt0 is either (i) undersubscribed in M or (ii) full in M . In both cases, we will prove
that sM(si0) exists, which in turn proves the existence of nextM(si0).

First, suppose that pt0 is undersubscribed in M . By Lemma 5.3.2, lt prefers si0 to the worst
student in M(lt). Furthermore, by Lemma 5.3.3, if pt0 is undersubscribed in M , then lt must be
full in M . Given that si0 prefers pj0 to pt0, pt0 is undersubscribed in M , lt is full in M , and lt

prefers si0 to the worst student in M(lt), it follows that sM(si0) exists. Now, consider case (ii),
where pt0 is full in M . Since si0 is assigned to pt0 in ML and pt0 is full in M , by Lemma 5.3.2, we
have that lt prefers si0 to the worst student in M(pt0). Since these condition hold, sM(si0) exists,
and consequently, nextM(si0) exists.

Let nextM(si0) = si1. By definition, si1 is either the worst student assigned to pt0 in M (if pt0 is
full in M), or the worst student assigned to lt in M (if pt0 is undersubscribed in M). In either
case, lt prefers si0 to si1 . Furthermore, since si0 is assigned to pj0 in M and to pt0 in ML, it follows
from Lemma 5.3.1 that the worst student in M(pt0) is not in ML(pt0) (if pt0 is full in M), and the

5.4. Exposing and eliminating all meta-rotations 114

worst student in M(lt) is not in ML(lt) (if pt0 is undersubscribed in M). Therefore, si1 is assigned
to different projects in M and ML. Let pj1 = M(si1), where lt offers pj1 (possibly pt0 = pj1). Let
pt1 = ML(si1), and let lt1 be the lecturer who offers pt1 (possibly lt = lt1). Clearly, si1 prefers pj1

to pt1 . Again, it follows that pt1 is either (i) undersubscribed in M or (ii) full in M . Following a
similar argument as before, we will prove that both sM(si1) and nextM(si1) exist.

First, suppose that pt1 is undersubscribed in M . By Lemma 5.3.2, lt1 prefers si1 to the worst
student in M(lt1). Furthermore, by Lemma 5.3.3, if pt1 is undersubscribed in M , then lt1 must
be full in M . Given that si1 prefers pj1 to pt1, pt1 is undersubscribed in M , lt1 is full in M , and lt1

prefers si1 to the worst student in M(lt1), it follows that sM(si1) exists. Now, consider case (ii),
where pt1 is full in M . Since si1 is assigned to pt1 in ML and pt1 is full in M , by Lemma 5.3.2, we
have that lt1 prefers si1 to the worst student in M(pt1). Since this condition holds, sM(si1) exists,
and consequently, nextM(si1) exists.

Let nextM(si1) = si2. By definition, si2 is either the worst student assigned in M(pt1) if pt1 is full
in M , or the worst student in M(lt1) if pt1 is undersubscribed in M . In either case, lt1 prefers si1 to
si2. Furthermore, since si1 is assigned to pj1 in M and to pt1 in ML, it follows from Lemma 5.3.1
that the worst student in M(pt1) is not in ML(pt1) (if pt1 is full in M), and the worst student in
M(lt1) is not in ML(lt1) (if pt1 is undersubscribed in M). Therefore, si2 is assigned to different
projects inM andML. Let pj2 = M(si2), where lt1 offers pj2 (possibly pj2 = pt1). Let pt2 = ML(si2),
and let lt2 be the lecturer who offers pt2. Clearly, si2 prefers pj2 to pt2. Again, it follows that pt2 is
either (i) undersubscribed in M or (ii) full in M . Following a similar argument as in the previous
paragraphs, both sM(si2) and nextM(si2) exist.

By continuing this process, we observe that each identified student-project pair (si, pj) in M

leads to another pair in M , which in turn leads to another pair, and so forth, thereby forming
a sequence of pairs (si0 , pj0), (si1 , pj1), . . . within M such that si1 is nextM(si0), si2 is nextM(si1),
and so on. Moreover, each student that we identify is assigned to different projects in M and
ML, and prefers their assigned project in M to ML. Given that the number of students in M is
finite, this sequence cannot extend indefinitely and must eventually terminate with a pair in M

that we have previously identified.

Suppose that (sir−1 , pjr−1) is the final student-project pair identified in this sequence, let sir be
nextM(sir−1), and let M(sir) be pjr . It follows that sir must have appeared earlier in the sequence.
Otherwise, we would need to extend the sequence by including the pair, (sir , pjr), contradicting
the assumption that (sir−1 , pjr−1) is the last pair identified in the sequence. Therefore, at some
point, a student-project pair must reappear in the sequence, and when this occurs, the process
terminates. As an example, suppose that the sequence starts with (si0 , pj0), and that the last pair
(sir , pjr) satisfies sir = si1. Then, the subsequence {(si1 , pj1), (si2 , pj2), . . . , (sir−1 , pjr−1)} forms an
exposed meta-rotation in M , as illustrated in Figure 5.2.

5.4. Exposing and eliminating all meta-rotations 115

(si0 , pj0) (si1 , pj1) (si2 , pj2) · · · (sir−1 , pjr−1)

Figure 5.2: Exposed meta-rotation in M .

5.4.2 Identifying an exposed meta-rotation

The proof of Lemma 5.4.4 describes a method for identifying an exposed meta-rotation in any
given stable matching M for some spa-s instance I. Given a stable matching M , define a directed
graph H(M) with a vertex for each student si who is assigned different projects in M and ML.
For each such student si, add a directed edge from si to nextM(si), which, from the previous
proof, must also be a vertex in H(M). Clearly, every vertex in H(M) has exactly one outgoing
edge because each student si in H(M) has exactly one nextM(si). Since the number of vertices
(students) is finite, H(M) must contain at least one directed simple cycle. This cycle corresponds
to the set of students involved in an exposed meta-rotation in M ; for any student si in the cycle,
(si, M(si)) is a pair in the exposed meta-rotation.

To identify an exposed meta-rotation in M , start from any student si and traverse the directed
path in H(M) until some student is visited twice. Let sk be the first student that appears twice
in the traversal. Then, the students involved in the exposed meta-rotation are those encountered
from the first occurrence of sk up to and including the student immediately before its second
occurrence in the sequence.

Corollary 5.4.2. Let M be a stable matching that differs from the lecturer-optimal stable
matching ML. Consider the directed graph H(M), whose vertex set consists precisely of those
students si assigned to different projects in M and ML. The edge set of H(M) consists of all
directed edges (si, nextM(si)), one for each vertex si in the graph. It follows that

• Each vertex si ∈ H(M) has exactly one outgoing edge.

• Beginning from any vertex si ∈ H(M), there exists a unique directed path in H(M)
that terminates at a vertex corresponding to the last student appearing in an exposed
meta-rotation ρ in M .

• Every student in H(M) either belongs to exactly one exposed meta-rotation in M or lies
on the path leading to exactly one meta-rotation.

Example: Consider instance I2 in Figure 5.3, where the student-optimal stable matching is M =
{(s1, p1), (s2, p3), (s3, p2), (s4, p4)}, and the lecturer-optimal stablematching isML = {(s1, p2), (s2, p4),

5.4. Exposing and eliminating all meta-rotations 116

(s3, p1), (s4, p3)}. Each student is assigned to different projects in M and ML, and for each stu-
dent, we have: nextM(s1) = s3, nextM(s2) = s4, nextM(s3) = s1, nextM(s4) = s1. The directed
graph H(M) corresponding to M is shown in Figure 5.4. Starting at s2, the sequence of visited
students is: s2 → s4 → s1 → s3 → s1. Since s1 appears twice, the first cycle in this sequence is
determined by the students from the first occurrence of s1 up to (but not including) its second
occurrence. Thus, the students forming the meta-rotation are s1 and s3, and the corresponding
meta-rotation exposed in M is ρ = {(s1, p1), (s3, p2)}.

Students’ preferences Lecturers’ preferences offers
s1: p1 p2 l1: s1 s3 p2
s2: p3 p4 l2: s2 s4 p4
s3: p2 p1 l3: s3 s4 s1 p1
s4: p4 p1 p3 l4: s4 s2 s1 p3

Project capacities: ∀cj = 1
Lecturer capacities: ∀dk = 1

Figure 5.3: An instance I2 of spa-s

s2 s4

s1s3

Figure 5.4: Graph H(M) for M

We observe that a student si may be assigned different projects in M and ML without being part
of an exposed meta-rotation ρ in M . In such a case, if there exists a directed path from si to some
student involved in ρ, we say that si leads to ρ. For instance, s4 ∈ ML(l4) \M(l4) and s4 /∈ ρ, so
s4 leads to ρ.

Lemma 5.4.5. Let M be a stable matching in I different from the lecturer-optimal matching ML

and let ρ be an exposed meta-rotation in M . If some student si ∈ ρ such that sM(si) is offered by
lecturer lk, then there exists some other student sz ∈M(lk) such that lk prefers si to sz, sz ∈ ρ, and
sM(sz) is offered by a lecturer different from lk.

Proof. Let M be a stable matching with an exposed meta-rotation ρ. Suppose there exists some
student si0 ∈ ρ, such that sM(si0) is offered by lecturer lk. Without loss of generality, suppose
that (si0 , pj0) is the first pair in ρ. Now suppose for a contradiction that there exists no student
sz ∈ M(lk), such that sz ∈ ρ and sM(sz) is offered by a lecturer different from lk. The reader

5.4. Exposing and eliminating all meta-rotations 117

may recall that for every student si ∈ ρ, there is a corresponding sM(si) and a nextM(si), with
nextM(si) being a student in ρ.

Since si0 ∈ ρ, there exists a student si1 ∈ ρ where si1 = nextM(si0) and, by definition of
nextM(si0), lk prefers si0 to si1 . Hence, sM(si1) exists and by our assumption, sM(si1) is offered by
lk. Similarly, since si1 ∈ ρ, there exists a student si2 ∈ ρ with si2 = nextM(si1) and lk prefers si1 to
si2. Again, by our assumption, sM(si2) is also offered by lk. Continuing in this manner, we obtain
a sequence of student-project pairs (si0 , pj0), (si1 , pj1), (si2 , pj2), . . . , (sir−1 , pjr−1), (sir , pjr) in ρ such
that for each t with 0 ≤ t < r:

• sit+1 = nextM(sit),

• lk prefers sit to sit+1, and

• sM(sit+1) is offered by lk.

Since ρ is finite, this sequence cannot continue indefinitely and we would identify some student-
project pair that appeared earlier in the sequence. Without loss of generality, let (sir , pjr) be the
first pair to reappear in the sequence. By construction, sir is nextM(sir−1), lk prefers sir−1 to sir ,
and sM(sir) is offered by lk. Clearly, sir ̸= sir−1. Therefore, sir must have appeared earlier in the
sequence before sir−1. However, since sir appears earlier in the sequence, then sir must be some
student that lk prefers to sir−1, that is, lk prefers sir to sir−1. This yields a contradiction since we
assume that lk prefers sir−1 to sir . Therefore, our claim holds, and there must exist at least one
student sz ∈M(lk), such that sz ∈ ρ and sM(sz) is offered by a lecturer different from lk.

Lemma 5.4.6. If ρ is a meta-rotation exposed in a stable matching M , then the matching obtained
by eliminating ρ from M , denoted as M/ρ, is a stable matching. Furthermore, M dominates M/ρ.

Proof. Let M be a stable matching in which ρ is exposed, and let M ′ be the matching obtained
by eliminating ρ from M , that is, M ′ = M/ρ. First, note that any student assigned to different
projects in M and M ′ must be in ρ, since by definition, each student not in ρ remains assigned to
the same project in M and M ′. Also, by eliminating ρ from M , each student si ∈ ρ is no longer
assigned to M(si) but is assigned to sM(si) in M ′. Consequently, each student in M ′ is assigned
exactly one project, and no student is multiply assigned.

Next, consider any project pj where M ′(pj) ̸= M(pj). If pj is full in M , then the elimination
of ρ from M results in pj losing exactly one student—the worst student in M(pj)—and gaining
exactly one student in M ′(pj). Hence, pj remains full in M ′ and |M(pj)| = |M ′(pj)|. If pj is
undersubscribed in M , then the lecturer lk who offers pj loses the worst student in M(lk), while
pj gains exactly one student in M ′. Consequently, pj remains either undersubscribed in M ′ or
becomes full in M ′, that is, |M(pj)| ≤ |M ′(pj)|. Therefore, no project is oversubscribed in M ′.

Now we show that no lecturer is oversubscribed in M ′. Since ρ is exposed in M , there exists some
student si ∈ ρ. Let l be the lecturer who offers sM(si). By Lemma 5.4.5, there exists some other

5.4. Exposing and eliminating all meta-rotations 118

student sz ∈M(l) such that sz ∈ ρ, l prefers si to sz, and sM(sz) is offered by a lecturer different
from l. Now, in the construction of M ′, si is assigned to l (due to the elimination of ρ). At the same
time, since sz ∈ ρ, sz is no longer assigned to l in M ′. Thus, each time a new student is assigned
to some lecturer lk in M ′ as a result of eliminating ρ, then lk simultaneously loses a student in
M ′(lk). Therefore, |M(lk)| = |M ′(lk)|. Hence, no lecturer is oversubscribed in M ′. Since every
student is assigned to exactly one project, and no project or lecturer is oversubscribed, it follows
that M ′ is a valid matching.

Now, suppose that M ′ is not stable. Then there exists a blocking pair (si, pj) in M ′. By the
construction of M ′, if si is assigned in M ′, then si must also be assigned in M . Let M(si) be pa

and let M ′(si) be pb. Then, there are three possible conditions on student si:

(S1): si is unassigned in both M and M ′;

(S2): si is assigned in both M and M ′, and si prefers pj to both pa and pb;

(S3): si is assigned in both M and M ′, si prefers pa to pj, and prefers pj to pb.

Also, there are four possible conditions on the project pj and the lecturer lk that offers pj:

(P1): both pj and lk are undersubscribed in M ′;

(P2): pj is full in M ′ and lk prefers si to the worst student in M ′(pj);

(P3): pj is undersubscribed in M ′, lk is full in M ′, and si ∈M ′(lk);

(P4): pj is undersubscribed in M ′, lk is full in M ′, and lk prefers si to the worst student in M ′(lk).

Cases (S1 & P1) or (S2 & P1): We claim that, based on condition (P1), both pj and lk are
undersubscribed in M . By the construction of M ′, every lecturer is assigned at least as many
students in M ′ as in M , that is, |M(lk)| = |M ′(lk)|; thus, if lk is undersubscribed in M ′, then lk is
undersubscribed inM as well. Similarly, if pj is undersubscribed inM ′, then pj is undersubscribed
in M , since by construction, |M(pj)| ≤ |M ′(pj)|. If si is unassigned in M or prefers pj to M(si),
the pair (si, pj) blocks M , contradicting the stability of M . Hence these cases do not hold.

Case (S3 & P1): Following a similar argument as in Cases (S1 & P1) and (S2 & P1), it follows
that both pj and lk are undersubscribed in M . Since si ∈ ρ, si prefers pa to pj, and prefers pj to
pb, then by Corollary 5.4.1, (si, pj) is not a stable pair. Hence, this case is impossible.

Cases (S1 & P2) or (S2 & P2): We claim that, based on condition (P2), either lk prefers si to
the worst student in M(pj) if pj is full in M , or lk prefers si to the worst student in M(lk) if pj is
undersubscribed in M . To show this, either (a), (b), or (c) holds by the construction of M ′:

(a) M(pj) = M ′(pj), that is, pj has the same set of students in both M and M ′. Consequently,
pj is full in M and lk prefers si to the worst student in M(pj);

5.4. Exposing and eliminating all meta-rotations 119

(b) M(pj) ̸= M ′(pj), pj is full in M , and there exists some student s ∈ M ′(pj) who lk prefers
to the worst student in M(pj). This implies that lk prefers si to the worst student in M(pj),
since lk prefers si to the worst student in M ′(pj).

(c) M(pj) ̸= M ′(pj), pj is undersubscribed in M and there exists some student in s ∈ M ′(lk)
who lk prefers to the worst student in M(lk). This implies that lk prefers si to the worst
student in M(lk), since lk prefers si to the worst student in M ′(pj).

Hence, our claim holds. We now consider the possible status of si in M , that is, si is either
unassigned in both M and M ′ or prefers pj to both pa and pb. Given that lk prefers si to the worst
student in M(pj) when pj is full in M , and similarly prefers si to the worst student in M(lk) when
pj is undersubscribed in M , it follows that the pair (si, pj) blocks M , a contradiction.

Case (S3 & P2): In this case, si prefers pa to pj and prefers pj to pb. By applying a similar argument
as in Cases (S1 & P2) and (S2 & P2), we conclude that either lk prefers si to the worst student
in M(pj) if pj is full in M , or lk prefers si to the worst student in M(lk) if pj is undersubscribed
in M . First, if pj is full in M , and lk prefers si to the worst student in M(pj), it follows directly
from the definition of sM(si) that pj should be a valid nextM(si). Consequently, we should have
M ′(si) = pj, yielding a contradiction. Similarly, if pj is undersubscribed in M and lk prefers si to
the worst student in M(lk), then by the definition of sM(si), pj must be a valid nextM(si), which
implies M ′(si) = pj, another contradiction. Therefore, this blocking pair cannot occur in M ′.

Cases (S1 & P3) or (S2 & P3): We claim that, based on condition (P3), pj is undersubscribed in
M , lk is full in M , and either si ∈ M(lk) or lk prefers si to the worst student in M(lk). To show
this, either (a) or (b) holds by construction of M ′:

(a) M(lk) = M ′(lk), that is, lk has the same set of students in both M and M ′. This implies that
pj is undersubscribed in M , lk is full in M , and si ∈M(lk).

(b) M(lk) ̸= M ′(lk), and there exists some student s ∈ M ′(lk) such that lk prefers s to the
worst student in M(lk). First, since pj is undersubscribed in M ′, it follows that pj is also
undersubscribed in M since |M(pj)| ≤ |M ′(pj)|. Also, by the construction of M ′, |M(lk)| =
|M ′(lk)|. Therefore, lk is full in M . Now, since lk prefers si to the worst student in M ′(lk)
and prefers some student in s ∈ M ′(lk) to the worst student in M(lk), it follows that lk

prefers si to the worst student in M(lk).

Therefore, our claim holds: either s ∈ M(lk) or lk prefers si to the worst student in M(lk). We
now consider the possible status of si in M , that is, si is either unassigned in both M and M ′, or
prefers pj to both pa and pb. In this case, since pj is undersubscribed in M and either si ∈M(lk)
or lk prefers si to the worst student in M(lk), it follows that (si, pj) blocks M , a contradiction.

Case (S3 & P3): In this case, si is assigned in both M and M ′, si prefers pa to pj and prefers pj

to pb. Clearly, si is assigned to different projects in M and M ′. By applying a similar argument

5.4. Exposing and eliminating all meta-rotations 120

as in Cases (S1 & P3) and (S2 & P3), based on condition (P3), it follows that either (a) or (b)
holds by construction of M ′:

(a) M(lk) = M ′(lk). Consequently, pj is undersubscribed in M , lk is full in M , and si ∈ M(lk).
By condition P3, si ∈ M ′(lk), which means that lk offers pb. However, by construction of
M ′, if si becomes assigned to a different project offered by lk then lk simultaneously loses
a student in M(lk). Thus, M(lk) ̸= M ′(lk), a contradiction. Hence, case (a) cannot occur.

(b) M(lk) ̸= M ′(lk), and there exists some student s ∈ M ′(lk) such that lk prefers s to the
worst student in M(lk). First, since pj is undersubscribed in M ′, it follows that pj is also
undersubscribed in M since |M(pj)| ≤ |M ′(pj)|. Also, by the construction of M ′, |M(lk)| =
|M ′(lk)|. Therefore, lk is full in M . Now, since lk prefers si to the worst student in M ′(lk)
and prefers some student in s ∈ M ′(lk) to the worst student in M(lk), it follows that lk

prefers si to the worst student in M(lk).

Since pj is undersubscribed in M and lk prefers si to the worst student in M(lk), it follows from
the definition of sM(si) that pj must be a valid nextM(si), that is, M ′(si) should be pj. This leads
to a contradiction.

Cases (S1 & P4) or (S2 & P4): Based on condition (P4), it follows that pj is undersubscribed
in M , lk is full in M , and lk prefers si to the worst student assigned in M(lk). Specifically, if
M(lk) = M ′(lk), then we have that pj is undersubscribed in M , lk is full in M , and lk prefers si

to the worst student in M(lk). Alternatively, if M(lk) ̸= M ′(lk), then there exists some student
s ∈M ′(lk) such that lk prefers s to the worst student in M(lk), which implies that lk also prefers
si to the worst student in M(lk). Hence our claim holds.

We now consider the possible status of si in M , that is, si is either unassigned in both M and M ′,
or prefers pj to both pa and pb. In this case, since pj is undersubscribed in M and lk prefers si to
the worst student in M(lk), it follows that (si, pj) blocks M , a contradiction.

Case (S3 & P4): In this case, si prefers pa to pj and prefers pj to pb. By applying a similar
argument as in Cases (S1 & P4) and (S2 & P4), we conclude that pj is undersubscribed in M , lk

is full in M , and lk prefers si to the worst student in M(lk). Now since pj is undersubscribed in
M and lk prefers si to the worst student in M(lk), it follows from the definition of sM(si) that pj

must be a valid nextM(si), that is, M ′(si) should be pj. This leads to a contradiction.

We have now considered all possible conditions for the pair (si, pj) in M ′, each resulting in a
contradiction. Hence, M ′ is stable. Since every student in ρ receives a less preferred project in
M ′ compared to M , and all other students retain the same projects that they had in M , it follows
that M dominates M ′, that is, M dominates M/ρ. This completes the proof.

5.4. Exposing and eliminating all meta-rotations 121

5.4.3 Meta-rotations and stable matchings

In this section, we further highlight the relationship betweenmeta-rotations and stablematchings
of any given instance. We show that every stable matching in a given spa-s instance can be
obtained by eliminating a specific set of meta-rotations starting from the student-optimal stable
matching. This connection leads naturally to the definition of the meta-rotation poset in the next
section. In Lemma 5.4.7, we show that if ρ is exposed in some stable matching M , and a student
s ∈ ρ prefers M to M ′, then every student in ρ prefers M to M ′. This result is established using
Lemmas 5.4.8 to 5.4.10. Moreover, if M dominates M ′, then either M ′ is the stable matching
obtained by eliminating ρ from M , that is, M ′ = M/ρ, or M/ρ dominates M ′.

A key consequence of Lemmas 5.4.6 and 5.4.7 is that it provides a systematic way to construct all
stable matchings in a given instance, starting from the student-optimal matching. By successively
eliminating an exposed meta-rotation, each step produces a new stable matching in which the
students involved in the eliminated meta-rotation are assigned to projects they prefer less to their
project in the previous matching. In this way, every stable matching can be reached through a
sequence of such eliminations.

Lemma 5.4.7. Let M and M ′ be two stable matchings in a given spa-s instance, and let ρ be a
meta-rotation exposed in M . Suppose there exists a student si ∈ ρ who prefers M to M ′. Then every
student s ∈ ρ prefers M to M ′. Moreover, if M dominates M ′, then either M ′ is the stable matching
obtained by eliminating ρ from M , that is, M ′ = M/ρ, or M/ρ dominates M ′.

Let M and M ′ be two stable matchings in I, and let ρ be a meta-rotation exposed in M . Suppose
there exists a student si ∈ ρ who prefers M to M ′. Clearly, M(si) ̸= M ′(si), and sM(si) exists.
Moreover, si prefers M(si) to sM(si). By Lemma 5.4.3, there are no projects between M(si) and
sM(si) that form a stable pair with si. Therefore, either sM(si) = M ′(si), or si prefers sM(si) to
M ′(si). Let pj = sM(si) where lk offers pj. By Definition 5.2.2, there exists a student nextM(si)
in ρ, which we denote by sz. Since sz ∈ ρ, sM(sz) exists, and sz prefers M(sz) to sM(sz). By the
definition of nextM(si) (see Definition 5.2.1), there are two possible conditions on pj:

(i) pj is full in M , and sz is the worst student in M(pj), or

(ii) pj is undersubscribed in M , lk is full in M , and sz is the worst student in M(lk).

In both cases (i) and (ii), lk prefers si to sz.

To prove Lemma 5.4.7, it is enough to show that sz also prefers M to M ′. Once this is established,
the same argument can be extended to all other students in ρ. We prove Lemma 5.4.7 using Lem-
mas 5.4.8 to 5.4.10. Lemma 5.4.8 covers the case where sM(si) = M ′(si), while Lemmas 5.4.9
and 5.4.10 address the case where si prefers sM(si) to M ′(si). In both Lemmas 5.4.9 and 5.4.10,
we first show that sz is assigned to different projects in M and M ′, i.e., M(sz) ̸= M ′(sz), and
then prove, by contradiction, that sz prefers M to M ′.

5.4. Exposing and eliminating all meta-rotations 122

Lemma 5.4.8. Let ρ be an exposed meta-rotation in M , and suppose there exists a student si ∈ ρ

who prefers M to M ′ and sM(si) = M ′(si). If si prefers M to M ′, then sz prefers M to M ′.

Proof. Let si ∈ ρ be some student who prefers M to M ′, and suppose that sM(si) = M ′(si).
This implies that M ′ is the stable matching obtained by eliminating ρ from M . Moreover, by
Lemma 5.4.6, M dominates M ′. Recall that pj = sM(si); thus, si ∈ M ′(pj) \M(pj). Since si

is assigned to pj in M ′, it follows from Lemma 5.3.1 that, regardless of whether pj is full or
undersubscribed in M , the worst student in M(pj) or M(lk), denoted sz, must be assigned to a
different project in M and M ′. In particular, sz ∈M(pj) \M ′(pj). Moreover, since M dominates
M ′, it follows that sz prefers M to M ′. This completes the proof.

Lemma 5.4.9. Let ρ be an exposed meta-rotation in M , where (si, pj) ∈ ρ and si prefers pj to
M ′(si). If pj is full in M and sz is the worst student in M(pj), then sz prefers M to M ′.

Proof. Let M be a stable matching in which ρ is exposed, and suppose that some student si ∈ ρ

prefers M to M ′. Let sz ∈ ρ be the worst student in M(pj). We note that lk prefers si to sz.
First suppose for a contradiction that M(sz) = M ′(sz). Then, regardless of whether pj is full or
undersubscribed in M ′, the pair (si, pj) blocks M ′, since si prefers pj to M ′(si), and lk prefers si to
some student in M ′(pj) (namely sz). This contradicts the stability of M ′. Hence, M(sz) ̸= M ′(sz).
Now, suppose for a contradiction that sz prefers M ′ to M , that is, sz prefers M ′(sz) to pj. We
consider cases (A) and (B), depending on whether pj is full or undersubscribed in M ′.

(A): pj is full in M ′. Since pj is also full in M , there exists some student sa ∈ M ′(pj) \M(pj).
By Lemma 5.4.1, since sz prefers M ′(sz) to pj, lk prefers sz to each student in M ′(pj) \M(pj), so
lk prefers sz to sa. Additionally, since si prefers pj to M ′(si) and pj is full in M ′, lk prefers each
student in M ′(pj) to si, implying lk prefers sa to si. Since lk prefers sz to sa, and prefers sa to si,
it follows that lk prefers sz to si. However, by definition of sM(si), lk prefers si to sz, which yields
a contradiction. Therefore, our claim holds and sz prefers M to M ′.

(B): pj is undersubscribed in M ′. By Lemma 5.4.1, since sz prefers M ′(sz) to pj, lk prefers sz

to each student in M ′(lk) \ M(lk). Moreover, if sz ∈ Sk(M, M ′), then by Lemma 5.4.2, there
exists at least one student in M(lk) \M ′(lk) who lk prefers to sz, or we have sz ∈M(lk) \M ′(lk)
itself. Consequently, it follows that there also exists a student in M ′(lk)\M(lk). Let sb denote the
worst student in M ′(lk) \M(lk). Then lk prefers sz to sb. Since si prefers pj to M ′(si), and pj is
undersubscribed in M ′, lk prefers each student in M ′(lk) (including sb) to si. Since lk prefers sz

to sb, and prefers sb to si, it follows that lk prefers sz to si; This again contradicts the assumption
that lk prefers si to sz (by definition of nextM(si)). Hence, sz prefers M to M ′, and our claim
holds.

Lemma 5.4.10. Let ρ be an exposed meta-rotation in M , where (si, pj) ∈ ρ and si prefers pj to
M ′(si). If pj is undersubscribed in M and sz is the worst student in M(lk), then sz prefers M to M ′.

5.4. Exposing and eliminating all meta-rotations 123

Proof. Let M be a stable matching in which ρ is exposed, and suppose that some student si ∈ ρ

prefers M to M ′. Let sz ∈ ρ be the worst student in M(lk). Note that, by definition of sM(si), lk

prefers si to sz. We first show, in case (A), that sz is assigned to different lecturers in M and M ′.
We then show, in case (B), that sz prefers M to M ′.

(A): Suppose for a contradiction that sz ∈ M(lk) ∩M ′(lk). We consider subcases (A1) and (A2)
depending on whether pj is full or undersubscribed in M ′.
(A1): pj is full in M ′. Since pj is undersubscribed in M , there exists a student sa ∈M ′(pj)\M(pj).
Since si prefers pj to M ′(si) and pj is full in M ′, it follows that lk prefers each student in M ′(pj)
to si. Therefore, lk prefers sa to si. If sa prefers pj to M(sa), then since pj is undersubscribed
in M , lk prefers each student in M(lk) to sa. In particular, lk prefers sz to sa, since sz ∈ M(lk).
Furthermore, since lk prefers sz to sa, and prefers sa to si, it follows that lk prefers sz to si;
this contradicts the fact that lk prefers si to sz. Therefore, sa prefers M(sa) to pj. Moreover, by
Lemma 5.4.1, since pj is undersubscribed in M , lk prefers sa to each student in M(lk) \M ′(lk).

Now, since |M ′(pj)| > |M(pj)| and |M(lk)| = |M ′(lk)|, there exists some project pb ∈ Pk such
that |M(pb)| > |M ′(pb)|. This implies there exists a student sb ∈ M(pb) \ M ′(pb), and pb is
undersubscribed in M ′. Moreover, lk prefers sb to sz, since sb ∈M(lk) and sz is the worst student
in M(lk). If sb prefers pb to M ′(sb), then since pb is undersubscribed in M ′, lk prefers each student
in M ′(lk) to sb. In particular, lk prefers sz (who is also in M ′(lk)) to sb, contradicting the earlier
fact that lk prefers sb to sz. Therefore, sb prefers M ′(sb) to pb. By Lemma 5.4.1 (applied with M

andM ′ swapped), since pb is undersubscribed inM ′, lk prefers sb to each student inM ′(lk)\M(lk).

We now show that the combination of conditions where sa prefers M to M ′ and lk prefers sa to
each student in M(lk) \M ′(lk), together with the conditions where sb prefers M ′ to M and lk

prefers sb to each student in M ′(lk) \M(lk), leads to a contradiction.

Suppose sa ∈ M ′(lk) \ M(lk). Then lk prefers sb to sa, since lk prefers sb to each student in
M ′(lk) \M(lk). Next, suppose sa ∈ Sk(M, M ′). By Lemma 5.4.2, since sa prefers M to M ′, then
there exists some student sr ∈ M ′(lk) \M(lk) such that lk prefers sr to sa. Given that lk prefers
sb to each student in M ′(lk) \M(lk), it follows that lk prefers sb to sr, and thus lk prefers sb to sa.

A similar argument applies to sb. Suppose sb ∈ M(lk) \M ′(lk). Then lk prefers sa to sb, since lk

prefers sa to each student in M(lk) \M ′(lk). On the other hand, suppose sb ∈ Sk(M, M ′). By
Lemma 5.4.2 (applied with M and M ′ swapped), there exists a student sr ∈M(lk) \M ′(lk) such
that lk prefers sr to sb. Moreover, since lk prefers sa to each student in M(lk) \M ′(lk), it follows
that lk prefers sa to sr, and thus lk prefers sa to sb. This yields a contradiction since lk cannot
simultaneously prefer sb to sa and sa to sb. Therefore, the conditions under which sa prefers
M to M ′, while sb prefers M ′ to M , result in a contradiction on the preferences of lk. Hence,
sz ∈M(lk) \M ′(lk), and this completes the proof for (A1).

5.4. Exposing and eliminating all meta-rotations 124

(A2): pj is undersubscribed in M ′. Since si prefers pj to M ′(si), it follows that lk prefers each
student in M ′(lk) to si. If sz ∈ M ′(lk), then lk prefers sz to si, which directly contradicts the
assumption that lk prefers si to sz. Hence, sz ∈M(lk) \M ′(lk).

We now show in case (B) that sz prefers M to M ′, given that M(sz) ̸= M ′(sz).

(B): Suppose for a contradiction that sz prefers M ′ to M . Again, we consider subcases (B1) and
(B2) depending on whether pj is full or undersubscribed in M ′.

(B1): pj is full inM ′. Similar to case (A1), we show that we can identify a student inM ′(lk)\M(lk)
who prefers M to M ′, and a student in M(lk) \ M ′(lk) who prefers M ′ to M , which yields a
contradiction based on lk’s preferences.

Since |M ′(pj)| > |M(pj)|, there exists a student sa ∈ M ′(pj) \M(pj). Given that si prefers pj

to M ′(si) and pj is full in M ′, it follows that lk prefers sa to si. We also know that lk prefers
si to sz, with sz ∈ M(lk). Therefore, lk prefers sa to sz. Now, if sa prefers M ′ to M , then pj is
undersubscribed in M , and lk would the worst student in M(lk) (namely sz) to sa, which yields
a contradiction to the fact that lk prefers sa to sz. Thus, sa prefers M to M ′. In particular, this
implies that sa prefers M(sa) to pj, pj is undersubscribed in M , and by Lemma 5.4.2, lk prefers
sa to each student in M(lk) \M ′(lk).

Recall that sz ∈ M(lk) \M ′(lk) and prefers M ′ to M . Let M(sz) be pz, where pz ∈ Pk. Let sz′ be
the worst student in M ′(lk). Since sz prefers M ′(sz) to pz, whether pz is full or undersubscribed
in M ′, it follows that lk prefers sz to the worst student in M ′(lk). Therefore lk prefers sz to sz′.

Now since |M ′(pj)| > |M(pj)| and |M(lk)| = |M ′(lk)|, there exists a project pb ∈ Pk such that
|M(pb)| > |M ′(pb)|. This implies that there exists a student sb ∈ M(pb) \ M ′(pb), and pb is
undersubscribed in M ′. Moreover, lk prefers sb to sz, since sb ∈M(lk) and sz is the worst student
in M(lk). If sb prefers pb to M ′(sb), then, because pb is undersubscribed in M ′, it follows that
lk prefers each student in M ′(lk) to sb. In particular, lk prefers sz′, the worst student in M ′(lk),
to sb. Additionally, since lk prefers sz to sz′, it follows that lk prefers sz to sb. However, this
contradicts the fact that sz is the worst student in M(lk), since it implies that lk prefers sz to
another student sb who is also assigned to M(lk). Therefore, we conclude that sb prefers M ′(sb)
to pb. By Lemma 5.4.1 (applied with M and M ′ swapped), since pb is undersubscribed in M ′, it
follows that lk prefers sb to each student in M ′(lk) \M(lk).

We now show that combining the conditions where sa prefers M to M ′ and lk prefers sa to every
student in M(lk) \M ′(lk), together with the conditions where sb prefers M ′ to M and lk prefers
sb to every student in M ′(lk) \M(lk), leads to a contradiction.

First suppose sa ∈ M ′(lk) \M(lk). Then lk prefers sb to sa, since lk prefers sb to each student
in M ′(lk) \M(lk). Next, suppose sa ∈ Sk(M, M ′) where sa prefers M to M ′. By Lemma 5.4.2,

5.4. Exposing and eliminating all meta-rotations 125

there exists a student sr ∈M ′(lk) \M(lk) such that lk prefers sr to sa. Since lk prefers sb to each
student in M ′(lk) \M(lk), it follows that lk prefers sb to sr, and thus lk prefers sb to sa.

A similar argument applies to sb. Suppose sb ∈ M(lk) \M ′(lk). Then lk prefers sa to sb, since lk

prefers sa to each student in M(lk)\M ′(lk). On the other hand, suppose sb ∈ Sk(M, M ′) where sb

prefers M ′ to M . By Lemma 5.4.2, there exists a student sr ∈M(lk) \M ′(lk) such that lk prefers
sr to sb. Moreover, since lk prefers sa to each student in M(lk)\M ′(lk), it follows that lk prefers sa

to sr, and thus lk prefers sa to sb. In both cases, we reach a contradiction, since lk cannot simul-
taneously prefer sb to sa and sa to sb. Therefore, sz prefers M to M ′, and this completes the proof.

(B2): pj is undersubscribed in M ′. Since sz ∈ M(lk) \M ′(lk), there exists some student sz′ ∈
M ′(lk) \M(lk). Since si prefers pj to M ′(si) and pj is undersubscribed in M ′, it follows that lk

prefers each student in M ′(lk) to si. In particular, lk prefers sz′ to si. Recall that sz prefers M ′ to
M ; let pz = M(sz). Whether pz is full or undersubscribed in M ′, it follows from Lemma 5.4.1
that lk prefers sz to each student in M ′(lk) \M(lk). In particular, lk prefers sz to sz′. Combining
these observations, we have that lk prefers sz to sz′, and sz′ to si, which implies that lk prefers sz

to si. This contradicts the assumption that lk prefers si to sz. Hence, we conclude that sz prefers
M to M ′. Therefore, sz prefers M to M ′, and this completes the proof for case (B2).

Thus, in both cases (B1) and (B2), sz prefers M to M ′. This completes the proof.

The arguments in Lemmas 5.4.9 and 5.4.10 can be extended to every student in ρ, since by
Definitions 5.2.1 and 5.2.2, each student in ρ has a valid next student who is also in ρ. Therefore,
if si ∈ ρ prefers M to M ′, then every student s ∈ ρ also prefers M to M ′.

Now, suppose that M dominates M ′. By Lemma 5.4.3, for each student si ∈ ρ, there is no
stable pair that lies between their assigned projects in M and M/ρ. Hence, it follows that M/ρ

either dominates M ′ or is equal to M ′, since only the students in ρ have different projects in M

and M/ρ. Moreover, each of these students prefers M to M ′, with the possibility that M/ρ =
M ′. This completes the proof of Lemma 5.4.7. In addition, this lemma immediately implies
Corollary 5.4.3.

Corollary 5.4.3. Let ρ = {(s0, p0), (s1, p1), . . . , (sr−1, pr−1)} be a meta-rotation of I. If there
exists a stable matching M ′ such that, for some pair (sa, pa) ∈ ρ, student sa prefers pa to their
project in M ′, then for every t ∈ {0, . . . , r − 1}, student st prefers pt to M ′(st).

5.4.3.1 Pruning step

We describe a pruning procedure that constructs a reduced instance Î from a given spa-s instance
I. First, we apply the student-oriented algorithm to I, which computes the student-optimal stable

5.4. Exposing and eliminating all meta-rotations 126

matching MS and removes certain non-stable pairs2 that cannot be part of any stable matching.
We then run the lecturer-oriented algorithm on the resulting instance to compute the lecturer-
optimal stable matching ML, thereby eliminating additional non-stable pairs. The final reduced
instance Î is the instance obtained after running both algorithms.

5.4.3.2 Finding a target stable matching

We now show that any target stable matching MT in a given instance can be obtained from the
student-optimal stable matching by successively exposing and eliminating a sequence of meta-
rotations.

Consider a spa-s instance I and a target stable matching MT . We start by pruning the instance
to obtain Î. Let M denote the student-optimal stable matching in Î. If M = MT , then we are
done. Otherwise, if M ̸= MT , then there exists a student s such that M(s) ̸= MT (s). Moreover,
M dominates MT in the first step, since the student-optimal stable matching dominates all other
stable matchings in I. Therefore, s prefers M to MT . By Lemma 5.4.4, it follows that there
is at least one exposed meta-rotation in M . We identify the meta-rotation ρ that begins at s,
and eliminate it to obtain a new stable matching M/ρ, which is guaranteed to be stable by
Lemma 5.4.6. Moreover, by Lemma 5.4.7, we have that either M/ρ = MT or M/ρ dominates
MT (since M dominates MT). Let M∗ = M/ρ. If M∗ = MT , then we have reached the target
matching. Otherwise, since M∗ ̸= MT , there again exists a student s such that M∗(s) ̸= MT (s).
We repeat this process: identify the meta-rotation starting at s, eliminate it, and continue until
we reach MT .

Lemma 5.4.11. For every stable matching MT , there exists a set AT of meta-rotations such that
eliminating the meta-rotations in AT from the student-optimal stable matching yields MT .

Proof. Let M denote the student-optimal stable matching in I and let MT be a target stable
matching.
Case 1: M = MT . In this case no eliminations are required to obtain MT . Setting AT = ∅
satisfies the statement of the lemma. Hence the claim holds.
Case 2: M ̸= MT . Then there exists a student s such that M(s) ̸= MT (s). By Lemma 5.4.4, there
is at least one exposed meta-rotation in M . Let ρ1 be the exposed meta-rotation beginning at s.
Eliminating ρ1 yields the stable matching M/ρ1 (Lemma 5.4.6). Furthermore, by Lemma 5.4.7,
either M/ρ1 = MT or M/ρ1 differs from MT only on students who have not yet reached their
partners in MT . If M/ρ1 = MT , then let AT = {ρ1} and the proof is complete. Otherwise,
set M (1) = M/ρ1. Since M (1) ̸= MT , there again exists a student whose assigned project in
M (1) differs from that in MT . By Lemma 5.4.4, an exposed meta-rotation ρ2 exists in M (1), and
eliminating ρ2 yields the stable matching M (1)/ρ2, which again either equals MT or differs from
it only on students who have a different project in MT .

2A stable pair is one that appears in some stable matching admitted by the instance.

5.4. Exposing and eliminating all meta-rotations 127

We continue this process. At step k, we obtain the stable matching

M (k) = M/ρ1/ρ2/ . . . /ρk.

If M (k) = MT , the process stops. Otherwise, by Lemma 5.4.4 there exists an exposed meta-
rotation ρk+1 in M (k), and we eliminate it and continue. Thus, as long as the current matching
differs from MT , an exposed meta-rotation exists, so wemay continue eliminating meta-rotations
until we arrive at MT . Let

AT = {ρ1, ρ2, . . . , ρk}

denote the set of meta-rotations eliminated in this sequence. By construction,

MT = M/ρ1/ρ2/ · · · /ρk,

so eliminating the meta-rotations in AT from the student-optimal stable matching produces MT .
This completes the proof.

5.4.3.3 Example: Finding all exposed meta-rotations in a spa-s instance

In this section, we illustrate how to identify all exposed meta-rotations and describe the tran-
sitions between stable matchings using the spa-s instance I1, shown in Figure 5.1. We begin
by constructing the reduced instance corresponding to I1, following the steps outlined in Sec-
tion 5.4.3.1.

Now consider instance I1. From Table 5.1, we observe that M7 is the lecturer-optimal stable
matching for I1. In M7, student s1 is assigned to project p4, which is the worst project they are
assigned to in any stable matching. Consequently, we remove all projects that are less preferred
than p4 from s1’s preference list. Here, project p3 is deleted from s1’s list. Continuing this prun-
ing process for all students yields the reduced instance for instance I1, which is presented in
Figure 5.5.
s1: p1 p2 p4 l1: s7 s9 s3 s4 s1 s2 s6 s8 p1, p2, p5, p6
s2: p1 p4 p3 l2: s6 s1 s2 s5 s3 s4 s7 s8 s9 p3, p4, p7, p8
s3: p3 p1 p2
s4: p3 p2 p1
s5: p4 p3
s6: p5 p2 p7
s7: p7 p3 p6
s8: p6 p8 Project capacities: c1 = c3 = 2; ∀j ∈ {2, 4, 5, 6, 7, 8}, cj = 1
s9: p8 p2 Lecturer capacities: d1 = 4, d2 = 5

Figure 5.5: Reduced preference list for I1

Table 5.2 shows, for each student si in M1, the next project p (denoted sM1(si)) and the student
nextM1(si), defined as either the worst student in M1(p) if p is full in M , or the worst student in

5.4. Exposing and eliminating all meta-rotations 128

M1(lk) if p is undersubscribed in M . As an illustration, consider s1: p2 is the first project after
p1 such that p2 is undersubscribed in M1 and l1 (who offers p1) prefers s1 to the worst student
in M1(l1), namely s8. Consequently, nextM1(s1) = s8. The remaining entries can be verified in
a similar manner. We observe that the meta-rotation ρ1 = {(s8, p6), (s9, p8)} is the only exposed
meta-rotation in M1. Moreover, s8 is the worst student in p6 and nextM1(s8) = s9. Likewise,
s9 is the worst student in p8, and nextM1(s9) = s8. Eliminating ρ1 from M1 gives M2, that is,
M1/ρ1 = M2.

(si, pj) (s1, p1) (s2, p1) (s3, p3) (s4, p3) (s5, p4) (s6, p5) (s7, p7) (s8, p6) (s9, p8)
sM1(si) p2 p4 p1 p2 p3 p2 p6 p8 p2

nextM1(si) s8 s5 s2 s8 s4 s8 s8 s9 s8

Table 5.2: sM1(si) and nextM1(si) for each student si in M1

Similarly, Table 5.3 shows sM2(si) and nextM2(si) for each student si in M2. In M2, there are
two exposed meta-rotations namely ρ2 = {(s6, p5), (s7, p7)} and ρ3 = {(s2, p1), (s5, p4), (s4, p3)}.
M2/ρ2 = M3 and M2/ρ3 = M4.

(si, pj) (s1, p1) (s2, p1) (s3, p3) (s4, p3) (s5, p4) (s6, p5) (s7, p7) (s8, p8) (s9, p2)
sM2(si) p4 p4 p1 p1 p3 p7 p6 − −

nextM2(si) s5 s5 s2 s2 s4 s7 s6 − −

Table 5.3: sM2(si) and nextM2(si) for each student si in M2

Let M3 be the next stable matching obtained by eliminating ρ2 from M2. Table 5.4 shows sM3(si)
and nextM3(si) for each student si in M3. In M3, there is one exposed meta-rotation namely
ρ3 = {(s2, p1), (s5, p4), (s4, p3)}. Also, M3/ρ3 = M5.

(si, pj) (s1, p1) (s2, p1) (s3, p3) (s4, p3) (s5, p4) (s6, p7) (s7, p6) (s8, p8) (s9, p2)
sM3(si) p4 p4 p1 p1 p3 − − − −

nextM3(si) s5 s5 s2 s2 s4 − − − −

Table 5.4: sM3(si) and nextM3(si) for each student si in M3

Table 5.5 shows sM5(si) and nextM5(si) for each student si in M5. Clearly, the meta-rotation
ρ4 = {(s1, p1), (s2, p4), (s3, p3)} is exposed in M5, and M5/ρ4 = M7.

(si, pj) (s1, p1) (s2, p4) (s3, p3) (s4, p1) (s5, p3) (s6, p7) (s7, p6) (s8, p8) (s9, p2)
sM5(si) p4 p3 p1 − − − − − −

nextM5(si) s2 s3 s1 − − − − − −

Table 5.5: sM5(si) and nextM5(si) for each student si in M5

5.5. Meta-rotation poset 129

We have identified a total of four meta-rotations in instance I1: ρ1, ρ2, ρ3, and ρ4, each of which
is exposed in at least one stable matching of I1. We also observe that a meta-rotation can be
exposed in multiple stable matchings, and that a single stable matching may contain more than
one exposed meta-rotation. For example, the meta-rotation ρ2 = {(s6, p5), (s7, p7)} is exposed
in M2, M4, and M6. Furthermore, the stable matching M2 contains both ρ2 and ρ3 as exposed
meta-rotations.

5.5 Meta-rotation poset

In this section, we show that for any spa-s instance I, we can define a partial order on its set
of meta-rotations, forming a partially ordered set (poset), such that each stable matching corre-
sponds to a unique closed subset of this poset.

Given a spa-s instance I, let M denote the set of stable matchings in I, and let R be the set
of meta-rotations that are exposed in some stable matching inM. For any two meta-rotations
ρ1, ρ2 ∈ R, we define a relation ≺ such that ρ1 ≺ ρ2 if every stable matching in which ρ2 is
exposed can be obtained only after ρ1 has been eliminated, and there is no other meta-rotation
ρ′ ∈ R \ {ρ1, ρ2} such that ρ1 ≺ ρ′ ≺ ρ2. In this case, we say that ρ1 is an immediate predecessor
of ρ2.

Definition 5.5.1 (Meta-rotation poset). Let R be the set of meta-rotations in a spa-s in-
stance I, and let ≺ be the immediate predecessor relation on R. We define a relation ≤
on R such that ρ1 ≤ ρ2 if and only if either ρ1 = ρ2, or there exists a finite sequence of
meta-rotations ρ1 ≺ ρu ≺ · · · ≺ ρv ≺ ρ2. The pair (R,≤) is called the meta-rotation poset
for instance I.

Proposition 5.5.1. Let R be the set of meta-rotations in a given spa-s instance I, and let ≤ be the
relation on R defined as above. Then (R,≤) is a partially ordered set.

Proof. Wewill show that the relation≤ onR is (i) reflexive, (ii) antisymmetric, and (iii) transitive.

(i) Reflexivity: Let ρ ∈ R. By definition, every element is related to itself. Hence, ρ ≤ ρ, and
≤ is reflexive.

(ii) Antisymmetry: Suppose there exist ρ1, ρ2 ∈ R such that ρ1 ≤ ρ2 and ρ2 ≤ ρ1. We claim
that ρ1 = ρ2. Suppose, for contradiction, that ρ1 ̸= ρ2. By the definition of ≤, there
exists a sequence of meta-rotation eliminations ρ1 ≺ ρu ≺ · · · ≺ ρ2, and another sequence
ρ2 ≺ ρv ≺ · · · ≺ ρ1. Now, consider any stable matching in which ρ1 is exposed. From the
second sequence, we conclude that ρ2 must have been eliminated before ρ1 can be exposed.
But from the first sequence, ρ1 must be eliminated before ρ2 can be exposed. Together,

5.5. Meta-rotation poset 130

this implies that neither ρ1 nor ρ2 can be exposed without the other having already been
eliminated — a contradiction. Therefore, our assumption must be false, and we conclude
that ρ1 = ρ2. Hence, ≤ is antisymmetric.

(iii) Transitivity: Let ρ1, ρ2, ρ3 ∈ R such that ρ1 ≤ ρ2 and ρ2 ≤ ρ3. We show that ρ1 ≤ ρ3. By the
definition of ≤, either ρ1 = ρ2 or there exists a finite sequence of meta-rotations ρ1 ≺ ρu ≺
· · · ≺ ρ2, and similarly, either ρ2 = ρ3 or there exists a finite sequence ρ2 ≺ ρv ≺ · · · ≺ ρ3.
If ρ1 = ρ2, then ρ1 ≤ ρ3 follows directly from ρ2 ≤ ρ3. If ρ2 = ρ3, then ρ1 ≤ ρ3 follows from
ρ1 ≤ ρ2.
Otherwise, we can combine the two sequences of ≺ relations to obtain:

ρ1 ≺ ρu ≺ · · · ≺ ρ2 ≺ ρv ≺ · · · ≺ ρ3,

which is itself a finite sequence of meta-rotation eliminations from ρ1 to ρ3. Therefore,
ρ1 ≤ ρ3 by definition of ≤, and so the relation is transitive.

It follows that (R,≤) is a partially ordered set. We refer to (R,≤) as the meta-rotation poset of
I. For brevity, we will simply write Π(I) to refer to this poset throughout the rest of the chapter.
Next, we define the closed subset of Π(I).

Definition 5.5.2 (Closed subset). A subset of Π(I) is said to be closed if, for every ρ in the
subset, all ρ′ ∈ R such that ρ′ ≤ ρ are also contained in the subset.

Finally, to prove our result, we present Lemma 5.5.1, which states that no pair (si, pj) belongs to
more than one meta-rotation in I.

Lemma 5.5.1. Let I be a given spa-s instance. No pair (si, pj) can belong to two different meta-
rotations in I.

Proof. Let I be a given spa-s instance. Suppose for a contradiction that a pair (si, pj) belongs to
two different meta-rotations ρ1 and ρ2, i.e. (si, pj) ∈ ρ1 ∩ ρ2 and ρ1 ̸= ρ2. First suppose, without
loss of generality, that ρ1 ≺ ρ2. By definition, ρ1 must be eliminated before ρ2 can become
exposed. Suppose that ρ1 is exposed in M . Since (si, pj) ∈ ρ1, eliminating ρ1 removes the pair
(si, pj) from M/ρ1. Hence (si, pj) is deleted before ρ2 is exposed. It follows that (si, pj) cannot
subsequently appear in ρ2 (or in any matching dominated by M), giving a contradiction. The
same argument applies if ρ2 ≺ ρ1.
Now suppose that the meta-rotations ρ1 and ρ2 are distinct, then there exists at least one pair
(s′, p′) such that (s′, p′) ∈ ρ1 \ ρ2. We consider cases (A) and (B), depending on whether ρ1 and

5.5. Meta-rotation poset 131

ρ2 are exposed in the same stable matching or in different ones.

Case (A): ρ1 and ρ2 are both exposed in the same stable matching M . Then, (si, pj) ∈ M .
Eliminating ρ2 from M yields a new stable matching M∗ = M/ρ2, where each student in ρ2 is
assigned to a less preferred project. So, si prefers pj to M∗(si). Let ML be the lecturer-optimal
stable matching. Then either M∗ = ML, or M∗ dominates ML. In either case, it follows that si

is assigned to different projects in M and ML. By Corollary 5.4.2, any student who is assigned
to different projects in M and ML is involved in at most one exposed meta-rotation of M . Since
si ∈ ρ2, and ρ2 is exposed inM , it follows that si cannot also be in ρ1, contradicting the assumption
that (si, pj) ∈ ρ1 ∩ ρ2.

Case (B): Suppose ρ1 and ρ2 are exposed in different stable matchings. Let M1 be a stable
matching in which ρ1 is exposed, and let M2 be a stable matching in which ρ2 is exposed. Recall
that (si, pj) ∈ ρ1 ∩ ρ2, and (s′, p′) ∈ ρ1 \ ρ2. Since ρ2 is exposed in M2, it follows that M2(si) = pj.
Moreover, s′ is assigned in M2. Suppose that s′ prefers p′ to M2(s′). Then by Corollary 5.4.3,
since both (si, pj) and (s′, p′) are in ρ1, then si also prefers pj to M2(si); however, this contradicts
the fact that M2(si) = pj. Hence, s′ either prefers M2(s′) to p′, or M2(s′) = p′. Let M2(s′) = px,
and let M∗ be the stable matching obtained by eliminating ρ2 from M2. We consider subcases
(B1) and (B2) depending on whether (s′, px) ∈ ρ2.

Case (B1): (s′, px) ∈ ρ2. Since (s′, p′) /∈ ρ2, we have that px ̸= p′ and s′ prefers px to p′. After
eliminating ρ2, si is worse off in M∗ than in M2, i.e., si prefers pj to M∗(si). Meanwhile, s′ either
becomes assigned to p′ (that is, M∗(s′) = p′), or s′ prefers px to M∗(s′), and prefers M∗(s′) to
p′. We note that s′ does not prefer p′ to M∗(s′), since by Lemma 5.4.3, if p′ lies between px and
M∗(s′) on the preference list of s′, then (s′, p′) is not a stable pair. This means that (s′, p′) cannot
be in ρ1. Thus, s′ does not prefer p′ to M∗(s′), while si prefers pj to M∗(si). Thus, one student
(namely si) in ρ1 prefers their project in ρ1 to their assignment in M∗, while another student
(namely s′) does not, contradicting Corollary 5.4.3.

Case (B2): (s′, px) /∈ ρ2. Then s′ remains assigned to px in M∗, that is, M∗(s′) = px. Recall that
either s′ prefers px to p′ or px = p′. By Corollary 5.4.3, since (si, pj) ∈ ρ1 and si prefers pj to
M∗(si) then s′ should prefer p′ to M∗(s′), a contradiction.

Therefore, the assumption that (si, pj) ∈ ρ1 ∩ ρ2 leads to a contradiction in both cases. Hence, no
pair belongs to two different meta-rotations in I.

By Lemma 5.5.1, each student–project pair occurs in at most one meta-rotation. Since there
are n1 students and n2 projects, there are at most n1n2 such pairs, and therefore at most O(n1n2)
meta-rotations. We now present a nice structural relationship between the closed subsets of Π(I)
and the stable matchings of I.

5.5. Meta-rotation poset 132

Theorem 5.5.1. Let I be a spa-s instance. There is a one-to-one correspondence between the
set of stable matchings in I and the closed subsets of the meta-rotation poset Π(I) of I.

Proof. Let I be a given spa-s instance, and let R denote the set of all meta-rotations in I. First,
we show that each closed subset of meta-rotations in Π(I) corresponds to exactly one stable
matching of I. Let A ⊆ R be a closed subset of Π(I). By definition, if a meta-rotation ρ ∈ A, then
all predecessors of ρ in Π(I) also belong to A. Hence, it is possible to eliminate all meta-rotations
in A in some order consistent with the partial order ≤, starting from the student-optimal stable
matching. By Lemma 5.4.6, each such elimination step results in another stable matching of I,
and the final matching obtained after eliminating all meta-rotations in A is stable.

Suppose A1 and A2 are two distinct closed subsets of Π(I). Since A1 ̸= A2, there exists at least
one meta-rotation ρ that belongs to one of the subsets and not the other. Furthermore, since
no two meta-rotation contains the same set of student-project pairs by Lemma 5.5.1, we would
obtain two different stable matchings of I when we eliminate the meta-rotations in A1 and A2.
Therefore, eliminating each closed subset results in a unique stable matching.

We now prove the converse: that each stable matching M ∈ M corresponds to a unique closed
subset of Π(I). By Lemma 5.4.11, there exists a set of meta-rotations whose elimination produces
M . Let A ⊆ Π(I) be the set of meta-rotations eliminated from the student-optimal stable match-
ing Ms to obtain M . This set must be closed; that is, if some meta-rotation ρ2 ∈ A and ρ1 ≤ ρ2

in Π(I), then ρ1 must have been eliminated before ρ2 could be exposed, and hence ρ1 ∈ A. It
follows that A contains all predecessors of its elements and is therefore a closed subset.

Now, consider two different stable matchings M, M ′ ∈ M. Then there exists a pair (si, pj) ∈
M \M ′. We prove that the sets of eliminated meta-rotations that yield M and M ′ differ. First,
suppose M is the student-optimal matching Ms. In this case, no meta-rotation is eliminated to
obtain M , but (si, pj) must have been removed during the construction of M ′ by eliminating some
meta-rotation ρ. Thus, ρ is eliminated in the construction of M ′, but not M . Hence, the sets of
eliminated meta-rotations for M and M ′ are different.

Now suppose M ̸= Ms. If (si, pj) does not belong to Ms, then (si, pj) must have been introduced
to M by eliminating some meta-rotation ρ. By Lemma 5.5.1, each pair appears in at most one
meta-rotation. Therefore, si becomes assigned to pj in M through the elimination of exactly one
meta-rotation, namely ρ. On the other hand, there are two possibilities for M ′. Either ρ was
also eliminated in constructing M ′; in that case, since (si, pj) /∈ M ′ but (si, pj) ∈ M , at least
one additional meta-rotation must have been eliminated when forming M ′ in order to remove
(si, pj) again. Or ρ was eliminated in constructing M but not in constructing M ′, in which case
(si, pj) never appears in M ′. If (si, pj) belongs to Ms, then no meta-rotation involving (si, pj) was

5.5. Meta-rotation poset 133

eliminated in the construction of M , but (si, pj) must have been removed in the construction of
M ′ by eliminating some meta-rotation ρ. Hence, the sets of eliminated meta-rotations for M and
M ′ differ.

In all cases, the sets of eliminated meta-rotations for M and M ′ are different. Thus, each stable
matching corresponds to a unique closed subset of Π(I).

5.5.1 Example: constructing the meta-rotation poset

Consider instance I1 shown in Figure 5.1. Although I1 admits seven stable matchings (see Ta-
ble 5.1), it contains only four meta-rotations, denoted R = {ρ1, ρ2, ρ3, ρ4}. We begin with the
student-optimal stable matching M1, in which only ρ1 = {(s8, p6), (s9, p8)} is exposed. Eliminat-
ing ρ1 from M1 yields the matching M2, where both ρ2 = {(s6, p7), (s7, p6)} and ρ3 = {(s2, p1),
(s4, p3), (s5, p4)} become exposed. Thus, ρ1 is an immediate predecessor of both ρ2 and ρ3. From
M2, we can eliminate either ρ2 (leading to M3) or ρ3 (leading to M4). From M4, eliminating ρ2

leads to M5, and subsequently, eliminating ρ4 = {(s1, p1), (s2, p4), (s3, p3)} from M5 gives M7. Al-
ternatively, ρ4 may be exposed earlier in M4 by eliminating only ρ1 and ρ3. Therefore, ρ4 depends
on ρ1 and ρ3, but not on ρ2. In this case, ρ1 is a predecessor of ρ4.

Table 5.6 summarises the meta-rotation eliminations observed between the stable matchings in
I1 and the dependencies required for each meta-rotation to become exposed.

From To Eliminated meta-rotation Depends on

M1 M2 ρ1 —
M2 M3 ρ2 ρ1

M2 M4 ρ3 ρ1

M3 M5 ρ3 ρ1

M4 M5 ρ2 ρ1

M4 M6 ρ4 ρ1, ρ3

M5 M7 ρ4 ρ1, ρ3

M6 M7 ρ2 ρ1

Table 5.6: Meta-rotation eliminations in instance I1.

Figure 5.6 shows the lattice of stable matchings in I1, where each directed edge corresponds to
a single meta-rotation which when eliminated leads to another stable matching.

5.5. Meta-rotation poset 134

M1

M2

M3 M4

M5 M6

M7

ρ1

ρ2 ρ3

ρ3
ρ2 ρ4

ρ4 ρ2

Figure 5.6: Lattice of stable matchings and meta-rotations in I1.

We now present the meta-rotation poset of I1. In Figure 5.7, a directed edge from ρu to ρv

indicates that ρv can only be exposed once ρu has been eliminated. Moreover, each closed sub-
set of Π(I) corresponds to a unique stable matching and vice-versa. For example, {ρ1, ρ3} is
closed, while {ρ3} is not, since ρ1 must be eliminated before ρ3 becomes exposed. Moreover,
{ρ1, ρ2, ρ3, ρ4} is a valid closed subset, as it contains each meta-rotation along with all of its nec-
essary predecessors in the poset. Table 5.7 presents the one-to-one correspondence between the
stable matchings in I1 and the closed subsets of the meta-rotation poset.

ρ1

ρ2 ρ3

ρ4

Figure 5.7: Meta-rotation poset Π(I1) for instance I1.

Stable Matchings of I1 Closed Subset of Π(I1)

M1 ∅
M2 {ρ1}
M3 {ρ1, ρ2}
M4 {ρ1, ρ3}
M5 {ρ1, ρ2, ρ3}
M6 {ρ1, ρ3, ρ4}
M7 {ρ1, ρ2, ρ3, ρ4}

Table 5.7: Correspondence between stable matchings in I1 and closed subsets of the meta-
rotation poset.

5.6. Conclusions and open problems 135

5.6 Conclusions and open problems

In this chapter, we introduced the concept of meta-rotations in spa-s, by generalising the notion
of rotations and meta-rotations from the classical one-to-one and many-to-many settings. Specif-
ically, we proved that there is a one-to-one correspondence between the set of stable matchings
in a given instance and the set of closed subsets of the meta-rotation poset Π(M). This result
provides a compact and structured way to describe and explore the lattice of stable matchings.

The meta-rotation poset also has several algorithmic implications. One immediate consequence
is that it provides a method for identifying all stable and non-stable pairs in a given instance
and for enumerating the set of stable matchings. However, designing an explicit and efficient
algorithm that leverages this structure for spa-s, similar to the approach of Eirinakis et al. [36]
for the many-to-many setting, remains an open question. Their algorithm identifies all stable
and non-stable pairs in O(n2) time and enumerates all stable matchings in O(n2 + n|R|) time,
where n is the number of agents and |R| is the number of stable matchings. Developing a similar
algorithm for spa-s, based on the meta-rotation poset, is a natural and promising direction for
future research.

Another direction is to develop a polyhedral characterisation of the set of stable matchings in spa-
s. This would involve defining a set of inequalities whose feasible solutions correspond exactly to
the stable matchings in the instance, and proving that the resulting polytope is integral (i.e., each
extreme point of the polytope correspond to stable matchings). Establishing such a result could
enable new linear programming techniques for solving optimisation problems involving stable
matchings in spa-s. It could also serve as a foundation for showing that the polytopes describing
strongly stable and super-stable matchings in spa-st are integral, thereby generalising results
known for models such as smti and hrt. Such a characterisation would also mean that existing
results and techniques for linear programming polytopes in simpler matching models can then
be generalised in a natural way to spa-s.

Chapter 6

Conclusions and future directions

In this thesis, we studied the structural and algorithmic aspects of a well-known stable match-
ing problem, the Student-Project Allocation problem (spa). We focused on two major variants:
the Student-Project Allocation problem with lecturer preferences over Projects (spa-p), and the
Student-Project Allocation problem with lecturer preferences over Students (spa-s). In spa-p,
we presented complexity results for restricted versions of the problem and developed a tractable
algorithm for a parameterised variant. In spa-s, we examined the structural properties of the
problem and provided two new characterisations of the set of stable matchings.

In Chapter 3, we focused on determining the boundary between polynomial-time solvability and
NP-completeness for the problem of finding a maximum-sized stable matching in various spa
variants. We first examined the extension of spa-s in which ties are allowed in the preference
lists of both students and lecturers. In Section 3.2, we proved that finding a maximum stable
matching in spa-st, denoted max-spa-st, remains NP-hard even when the instance involves a
single lecturer. We then considered spa-p with restrictions on the preference lists. In Section 3.3,
we showed that finding a maximum stable matching in spa-p is NP-hard even when student
preference lists are derived from a master list of projects, but becomes polynomial-time solvable
when each student ranks only projects offered by the same lecturer or when all students have
identical preferences. Thereafter, we proved that finding a maximum-size stable matching in a
variant called spa-puc is fixed-parameter tractable when parameterised by the number of project
topics.

Based on these results, a possible direction for future work in the spa-st setting is to investi-
gate whether the existing approximation algorithm for max-spa-st in [27], yields an improved
approximation guarantee in the special case where there is only one lecturer. Moreover, given
that there are typically more students than lecturers in practical applications, it is reasonable to
assume that only lecturers may be permitted to express ties over the students they find accept-
able, while each student have strict preferences over a relatively small set of acceptable projects.
It would be interesting to investigate how the position and length of ties in lecturer preferences

136

137

affect the complexity of max-spa-st-l1, in a manner similar to the known restrictions on ties
presented for max-smti. A possible direction for future work in the spa-p setting is to identify a
suitable parameter for the general case without assuming uniform capacities, and to determine
whether the problem is fixed-parameter tractable with respect to the number of project topics or
another appropriate structural parameter, or whether an XP algorithm can be obtained.

In Chapter 4, we proved that the set of stable matchings in spa-s forms a distributive lattice, with
the student-optimal and lecturer-optimal matchings at the top and bottom of the lattice, respec-
tively. A natural future direction is to investigate whether a similar lattice structure holds for the
set of strongly stable and super-stable matchings in spa-st, as has already been established for
smti. In terms of designing efficient algorithms, there is an extension of spa-s in which projects
may have both upper and lower quotas, known as spa-slQ. In this setting, one seeks a feasible
stable matching, meaning a stable matching that also satisfies the upper and lower capacity of
each project. However, a feasible solution may not always exist. It remains an open problem to
determine whether a polynomial-time algorithm can be devised that either finds a feasible stable
matching or correctly reports that none exists. The lattice and structural results presented in this
chapter would be instrumental in gaining useful insights to this problem.

In Chapter 5, we characterised the set of stable matchings in spa-s using meta-rotations, which
generalise the notion of rotations from the stable marriage problem. We further developed the
meta-rotation poset which compactly encodes the set of all stable matchings in a given spa-s
instance. Specifically, we showed that each stable matching in spa-s corresponds to a closed
subset of a meta-rotation poset. Moreover, the partial order on these subsets captures the domi-
nance relations among stable matchings. This structural characterisation provides a compact and
systematic way to represent the set of all stable matchings in a spa-s instance.

A promising direction for future work is to explore a polyhedral formulation of stable matchings
in spa-s, which, to the best of our knowledge, has not been studied before. A useful starting
point is the work of Huang [60], who introduced a system of linear inequalities to describe the
stable matching polytope in the Laminar Classified Stable Matching problem (lcsm), and proved
that the polytope is integral. We note that lcsm can be viewed as a special case of spa-s if each
classification (representing projects) forms a disjoint partition of the applicants, and there are no
lower bounds. In this setting, the applicants correspond to students, and the lecturers correspond
to institutes. In particular, if the polytope associated with a spa-s instance is shown to be integral,
then suitable objective functions could be defined to compute target stable matchings that meet
different optimality criteria, such as the median stable matching.

Bibliography

[1] Cplex optimization studio. https://www.ibm.com/products/
ilog-cplex-optimization-studio. Accessed: 2025-05-16.

[2] Gurobi optimization website. https://www.gurobi.com/. Accessed: 2025-05-30.

[3] Atila Abdulkadiroğlu and Tayfun Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701, 1998.

[4] Hernán Abeledo and Yosef Blum. Stable matchings and linear programming. Linear alge-
bra and its applications, 245:321–333, 1996.

[5] David J Abraham, Katarína Cechlárová, David F Manlove, and Kurt Mehlhorn. Pareto
optimality in house allocation problems. In International symposium on algorithms and
computation, pages 3–15. Springer, 2004.

[6] David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn. Popular
matchings. SIAM Journal on Computing, 37(4):1030–1045, 2007.

[7] David J Abraham, Robert W Irving, and David F Manlove. The student-project allocation
problem. In Algorithms and Computation: 14th International Symposium, ISAAC 2003,
Kyoto, Japan, December 15-17, 2003. Proceedings 14, pages 474–484. Springer, 2003.

[8] David J Abraham, Robert W Irving, and David F Manlove. Two algorithms for the student-
project allocation problem. Journal of discrete algorithms, 5(1):73–90, 2007.

[9] Deeksha Adil, Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Parame-
terized algorithms for stable matching with ties and incomplete lists. Theoretical Computer
Science, 723:1–10, 2018.

[10] José Alcalde. Implementation of stable solutions to marriage problems. Journal of Eco-
nomic Theory, 69(1):240–254, 1996.

[11] Arif A Anwar and AS Bahaj. Student project allocation using integer programming. IEEE
Transactions on Education, 46(3):359–367, 2003.

138

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com/

Bibliography 139

[12] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[13] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. On the structure of combinatorial
problems and structure preserving reductions. In International Colloquium on Automata,
Languages, and Programming, pages 45–60. Springer, 1977.

[14] Vipul Bansal, Aseem Agrawal, and Varun SMalhotra. Polynomial time algorithm for an op-
timal stable assignment withmultiple partners. Theoretical Computer Science, 379(3):317–
328, 2007.

[15] Mourad Baïou and Michel Balinski. The stable allocation (or ordinal transportation) prob-
lem. Mathematics of Operations Research, 27(3):485–503, 2002.

[16] Garrett Birkhoff. Rings of sets. Duke Math. Journal, 3(1):443–454, 1937.

[17] Péter Biró. The stable matching problem and its generalizations: an algorithmic and game
theoretical approach. Unpublished PhD thesis, BME, Mathematics and Computer Science
Doctoral School, Budapest, 2007.

[18] Péter Biró and Tamás Fleiner. The integral stable allocation problem on graphs. Discrete
Optimization, 7(1-2):64–73, 2010.

[19] Niclas Boehmer, Klaus Heeger, and Rolf Niedermeier. Deepening the (parameterized)
complexity analysis of incremental stable matching problems. In 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2022), pages 21–1.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022.

[20] Richard P Brent. Recent progress and prospects for integer factorisation algorithms. In
International Computing and Combinatorics Conference, pages 3–22. Springer, 2000.

[21] Son Thanh Cao, Le Quoc Anh, and Hoang Huu Viet. A heuristic repair algorithm for the
hospitals/residents problem with ties. In International Conference on Artificial Intelligence
and Soft Computing, pages 340–352. Springer, 2022.

[22] Son Thanh Cao, Le Van Thanh, and Hoang Huu Viet. Finding maximum weakly stable
matchings for hospitals/residents with ties problem via heuristic search. In Australasian
Joint Conference on Artificial Intelligence, pages 442–454. Springer, 2023.

[23] Katarína Cechlárová and Tamás Fleiner. On a generalization of the stable roommates
problem. ACM Transactions on Algorithms (TALG), 1(1):143–156, 2005.

[24] Katarína Cechlárová and Veronika Val’ová. The stable multiple activities problem. Tech-
nical Report 1, Mathematical Institute, Slovak Academy of Sciences, 2005.

Bibliography 140

[25] Jianer Chen, Iyad A Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010.

[26] Christine Cheng, Eric McDermid, and Ichiro Suzuki. A unified approach to finding good
stable matchings in the hospitals/residents setting. Theoretical Computer Science, 400(1-
3):84–99, 2008.

[27] Frances Cooper and David Manlove. A 3/2-approximation algorithm for the student-
project allocation problem. arXiv preprint arXiv:1804.02731, 2018.

[28] Vincent P. Crawford and Edward M. Knoer. Job matching with heterogeneous firms and
workers. Econometrica: Journal of the Econometric Society, 49(2):437–450, 1981.

[29] Gergely Csáji, David Manlove, Iain McBride, and James Trimble. Couples can be tractable:
New algorithms and hardness results for the hospitals/residents problem with couples.
arXiv preprint arXiv:2311.00405, 2023.

[30] Ágnes Cseh, Tobias Friedrich, and Jannik Peters. Pareto optimal and popular house allo-
cation with lower and upper quotas. arXiv preprint arXiv:2107.03801, 2021.

[31] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[32] Brian Dean and Rommel Jalasutram. Factor revealing LPs and stable matching with ties
and incomplete lists. In Proceedings of the 3rd International Workshop on Matching Under
Preferences, pages 42–53, 2015.

[33] Brian C. Dean and Sudarshan Munshi. Faster algorithms for stable allocation problems.
Algorithmica, 58:59–81, 2010.

[34] Maxence Delorme, Sergio García, Jacek Gondzio, Jörg Kalcsics, David Manlove, and
William Pettersson. Mathematical models for stable matching problems with ties and
incomplete lists. European Journal of Operational Research, 277(2):426–441, 2019.

[35] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.

[36] Pavlos Eirinakis, Dimitrios Magos, Ioannis Mourtos, and Panayiotis Miliotis. Finding all
stable pairs and solutions to the many-to-many stable matching problem. INFORMS Jour-
nal on Computing, 24(2):245–259, 2012.

[37] Ahmed H Abu El-Atta and Mahmoud Ibrahim Moussa. Student project allocation with
preference lists over (student, project) pairs. In 2009 Second International Conference on
Computer and Electrical Engineering, volume 1, pages 375–379. IEEE, 2009.

Bibliography 141

[38] Enrico Maria Fenoaltea, Izat B Baybusinov, Jianyang Zhao, Lei Zhou, and Yi-Cheng Zhang.
The stable marriage problem: An interdisciplinary review from the physicist’s perspective.
Physics Reports, 917:1–79, 2021.

[39] Tamás Fleiner. A matroid generalization of the stable matching polytope. In Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pages 105–
114. Springer, 2001.

[40] Tamás Fleiner. A fixed-point approach to stable matchings and some applications. Math-
ematics of Operations research, 28(1):103–126, 2003.

[41] Tamás Fleiner, András Frank, and Tamás Király. A new approach to bipartite stable match-
ing optimization. arXiv preprint arXiv:2409.04885, 2024.

[42] András Frank and Éva Tardos. An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica, 7:49–65, 1987.

[43] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[44] David Gale and Marilda Sotomayor. Some remarks on the stable matching problem. Dis-
crete Applied Mathematics, 11(3):223–232, 1985.

[45] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

[46] Tomáš Gavenčiak, Dušan Knop, and Martin Kouteckỳ. Integer programming in parame-
terized complexity: Three miniatures. arXiv preprint arXiv:1711.02032, 2017.

[47] Mirco Gelain, Maria Silvia Pini, Francesca Rossi, K Brent Venable, and Toby Walsh. Local
search approaches in stable matching problems. Algorithms, 6(4):591–617, 2013.

[48] Frederik Glitzner and David Manlove. Structural and algorithmic results for stable cycles
and partitions in the roommates problem. In International Symposium on Algorithmic
Game Theory, pages 3–20. Springer, 2024.

[49] Frederik Glitzner and David Manlove. Unsolvability and beyond in many-to-many non-
bipartite stable matching. arXiv preprint arXiv:2505.11456, 2025.

[50] Yunan Gu, Walid Saad, Mehdi Bennis, Merouane Debbah, and Zhu Han. Matching the-
ory for future wireless networks: Fundamentals and applications. IEEE Communications
Magazine, 53(5):52–59, 2015.

[51] Sushmita Gupta, Saket Saurabh, and Meirav Zehavi. On treewidth and stable marriage.
arXiv preprint arXiv:1707.05404, 2017.

Bibliography 142

[52] Dan Gusfield. Three fast algorithms for four problems in stable marriage. SIAM Journal
on Computing, 16(1):111–128, 1987.

[53] Dan Gusfield. The structure of the stable roommate problem: efficient representation
and enumeration of all stable assignments. SIAM Journal on Computing, 17(4):742–769,
1988.

[54] Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms.
MIT press, 1989.

[55] Magnús M Halldórsson, Robert W Irving, Kazuo Iwama, David F Manlove, Shuichi
Miyazaki, Yasufumi Morita, and Sandy Scott. Approximability results for stable marriage
problems with ties. Theoretical Computer Science, 306(1-3):431–447, 2003.

[56] Paul R Harper, Valter de Senna, Israel T Vieira, and Arjan K Shahani. A genetic algorithm
for the project assignment problem. Computers & Operations Research, 32(5):1255–1265,
2005.

[57] Nguyen Thuy Hoa, Tran Van Hoai, Hoang Huu Viet, et al. Finding max-smti for stable
marriage with ties and bounded preference lists. In 2019 International Conference on
Advanced Computing and Applications (ACOMP), pages 107–111. IEEE, 2019.

[58] Jeffrey Hoffstein. Integer factorization and rsa. In An introduction to mathematical cryp-
tography, pages 1–75. Springer, 2008.

[59] Changyong Hu and Vijay K Garg. Characterization of super-stable matchings. In Algo-
rithms and Data Structures: 17th International Symposium, WADS 2021, Virtual Event,
August 9–11, 2021, Proceedings 17, pages 485–498. Springer, 2021.

[60] Chien-Chung Huang. Classified stable matching. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 1235–1253. SIAM, 2010.

[61] Chien-Chung Huang and Telikepalli Kavitha. An improved approximation algorithm for
the stable marriage problem with one-sided ties. In Integer Programming and Combinato-
rial Optimization: 17th International Conference, IPCO 2014, Bonn, Germany, June 23-25,
2014. Proceedings 17, pages 297–308. Springer, 2014.

[62] Robert W Irving. An efficient algorithm for the “stable roommates” problem. Journal of
Algorithms, 6(4):577–595, 1985.

[63] Robert W Irving. Stable marriage and indifference. Discrete Applied Mathematics,
48(3):261–272, 1994.

[64] Robert W Irving. Optimal stable marriage. In Encyclopedia of Algorithms, pages 606–609.
Springer, 2008.

Bibliography 143

[65] Robert W Irving and Paul Leather. The complexity of counting stable marriages. SIAM
Journal on Computing, 15(3):655–667, 1986.

[66] Robert W Irving, Paul Leather, and Dan Gusfield. An efficient algorithm for the “optimal”
stable marriage. Journal of the ACM (JACM), 34(3):532–543, 1987.

[67] Robert W Irving and David F Manlove. Approximation algorithms for hard variants of the
stable marriage and hospitals/residents problems. Journal of Combinatorial Optimization,
16(3):279–292, 2008.

[68] Robert W Irving, David F Manlove, and Gregg O’Malley. Stable marriage with ties and
bounded length preference lists. Journal of Discrete Algorithms, 7(2):213–219, 2009.

[69] Robert W Irving, David FManlove, and Sandy Scott. The hospitals/residents problemwith
ties. In Scandinavian Workshop on Algorithm Theory, pages 259–271. Springer, 2000.

[70] Robert W Irving, David F Manlove, and Sandy Scott. Strong stability in the hospitals/res-
idents problem. In Annual Symposium on Theoretical Aspects of Computer Science, pages
439–450. Springer, 2003.

[71] Robert W Irving, David F Manlove, and Sandy Scott. The stable marriage problem with
master preference lists. Discrete Applied Mathematics, 156(15):2959–2977, 2008.

[72] Robert W Irving and Sandy Scott. The stable fixtures problem—amany-to-many extension
of stable roommates. Discrete Applied Mathematics, 155(16):2118–2129, 2007.

[73] Kazuo Iwama, David Manlove, Shuichi Miyazaki, and Yasufumi Morita. Stable marriage
with incomplete lists and ties. In Harald Ganzinger, editor, Automata, Languages and Pro-
gramming: 26th International Colloquium, ICALP’99, Prague, Czech Republic, July 11–15,
1999, Proceedings, volume 1644 of Lecture Notes in Computer Science, pages 443–452,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[74] Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanagisawa. Improved approximation bounds
for the student-project allocation problem with preferences over projects. In Theory and
Applications of Models of Computation: 8th Annual Conference, TAMC 2011, Tokyo, Japan,
May 23-25, 2011. Proceedings 8, pages 440–451. Springer, 2011.

[75] Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanagisawa. A 25/17-approximation algo-
rithm for the stable marriage problem with one-sided ties. Algorithmica, 68(3):758–775,
2014.

[76] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of operations research, 12(3):415–440, 1987.

Bibliography 144

[77] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311,
1984.

[78] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,
New York, 1972.

[79] Jonathan A Kelner and Daniel A Spielman. A randomized polynomial-time simplex algo-
rithm for linear programming. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 51–60, 2006.

[80] Tamás Király and Júlia Pap. Total dual integrality of rothblum’s description of the stable-
marriage polyhedron. Mathematics of Operations Research, 33(2):283–290, 2008.

[81] Zoltán Király. Better and simpler approximation algorithms for the stable marriage prob-
lem. Algorithmica, 60(1):3–20, 2011.

[82] Zoltán Király. Linear time local approximation algorithm for maximum stable marriage.
Algorithms, 6(3):471–484, 2013.

[83] Dušan Knop, Martin Kouteckỳ, and Matthias Mnich. Voting and bribing in single-
exponential time. ACM Transactions on Economics and Computation (TEAC), 8(3):1–28,
2020.

[84] Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An
introduction to the mathematical analysis of algorithms, volume 10. American Mathemati-
cal Soc., 1997.

[85] Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An
introduction to the mathematical analysis of algorithms, volume 10. American Mathemati-
cal Soc., 1997.

[86] Adam Kunysz. An algorithm for the maximum weight strongly stable matching problem.
In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2018.

[87] Adam Kunysz, Katarzyna Paluch, and Pratik Ghosal. Characterisation of strongly stable
matchings. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 107–119. SIAM, 2016.

[88] Augustine Kwanashie, Robert W Irving, David F Manlove, and Colin TS Sng. Profile-
based optimal matchings in the student/project allocation problem. In Combinatorial
Algorithms: 25th International Workshop, IWOCA 2014, Duluth, MN, USA, October 15-17,
2014, Revised Selected Papers 25, pages 213–225. Springer, 2015.

Bibliography 145

[89] Augustine Kwanashie and David F Manlove. An integer programming approach to the
hospitals/residents problem with ties. In Operations Research Proceedings 2013: Selected
Papers of the International Conference on Operations Research, OR2013, organized by the
German Operations Research Society (GOR), the Dutch Society of Operations Research (NGB)
and Erasmus University Rotterdam, September 3-6, 2013, pages 263–269. Springer, 2014.

[90] Somdeb Lahiri. Stable matchings for a generalised marriage problem. Technical report,
Nota di Lavoro, 2003.

[91] Chi-Kit Lam and C Gregory Plaxton. A (1+ 1/e)-approximation algorithm for maximum
stable matching with one-sided ties and incomplete lists. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2823–2840. SIAM, 2019.

[92] Arjen K Lenstra. Integer factoring. In Encyclopedia of Cryptography and Security, pages
290–297. Springer, 2005.

[93] HendrikW Lenstra Jr. Integer programming with a fixed number of variables.Mathematics
of operations research, 8(4):538–548, 1983.

[94] David Manlove. Algorithmics of matching under preferences, volume 2. World Scientific,
2013.

[95] David Manlove, Duncan Milne, and Sofiat Olaosebikan. An integer programming ap-
proach to the student-project allocation problem with preferences over projects. In Com-
binatorial Optimization: 5th International Symposium, ISCO 2018, Marrakesh, Morocco,
April 11–13, 2018, Revised Selected Papers, pages 313–325. Springer, 2018.

[96] David Manlove, Duncan Milne, and Sofiat Olaosebikan. Student-project allocation with
preferences over projects: Algorithmic and experimental results. Discrete applied mathe-
matics, 308:220–234, 2022.

[97] David F Manlove. Stable marriage with ties and unacceptable partners. Technical report,
Technical Report TR-1999-29, University of Glasgow, Department of Computing Science,
1999.

[98] David F Manlove. The structure of stable marriage with indifference. Discrete Applied
Mathematics, 122(1-3):167–181, 2002.

[99] David F Manlove. Hospitals/residents problem. In Encyclopedia of Algorithms, pages 390–
394. Springer, 2008.

[100] David F Manlove, Robert W Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasufumi Morita.
Hard variants of stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.

Bibliography 146

[101] David F Manlove, Iain McBride, and James Trimble. “almost-stable” matchings in the
hospitals/residents problem with couples. Constraints, 22:50–72, 2017.

[102] David F Manlove and Gregg O’Malley. Student-project allocation with preferences over
projects. Journal of Discrete Algorithms, 6(4):553–560, 2008.

[103] David F Manlove and Gregg O’malley. Paired and altruistic kidney donation in the uk:
Algorithms and experimentation. Journal of Experimental Algorithmics (JEA), 19:1–21,
2015.

[104] David F Manlove and Colin TS Sng. Popular matchings in the capacitated house allocation
problem. In European Symposium on Algorithms, pages 492–503. Springer, 2006.

[105] Dániel Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

[106] Dániel Marx and Ildikó Schlotter. Parameterized complexity and local search approaches
for the stable marriage problem with ties. Algorithmica, 58(1):170–187, 2010.

[107] Dániel Marx. The multivariate algorithmics revolution (invited talk, tel aviv 2017), 2017.
https://www.cs.bme.hu/~dmarx/papers/marx-telaviv2017-hardness.pdf.

[108] Yuki Matsuyama and Shuichi Miyazaki. Hardness of instance generation with optimal
solutions for the stable marriage problem. Journal of Information Processing, 29:166–173,
2021.

[109] Iain McBride. Complexity results and integer programming models for hospitals/residents
problem variants. PhD thesis, University of Glasgow, 2015.

[110] Eric McDermid. A 3/2-approximation algorithm for general stable marriage. In Interna-
tional Colloquium on Automata, Languages, and Programming, pages 689–700. Springer,
2009.

[111] Eric J McDermid and David F Manlove. Keeping partners together: algorithmic results
for the hospitals/residents problem with couples. Journal of Combinatorial Optimization,
19:279–303, 2010.

[112] D. G. McVitie and L. B. Wilson. Algorithm 411: Three procedures for the stable marriage
problem. Communications of the ACM, 14(7):491–492, 1971.

[113] D. G. McVitie and L. B. Wilson. The stable marriage problem. Communications of the ACM,
14(7):486–490, 1971.

[114] Kitty Meeks and Baharak Rastegari. Solving hard stable matching problems involving
groups of similar agents. Theoretical Computer Science, 844:171–194, 2020.

https://www.cs.bme.hu/~dmarx/papers/marx-telaviv2017-hardness.pdf

Bibliography 147

[115] Danny Munera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay Saraswat, and
Philippe Codognet. A local search algorithm for smti and its extension to hrt problems. In
3rd International Workshop on Matching Under Preferences, 2015.

[116] Danny Munera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay Saraswat, and
Philippe Codognet. A local search algorithm for smti and its extension to hrt problems. In
3rd International Workshop on Matching Under Preferences, 2015.

[117] Milind Nasre and Ankit Rawat. Popularity in the generalized hospital residents setting.
In Anil Nerode, Igor Kotenko, Pavel Skobelev, and Andrei Yakovlev, editors, International
Computer Science Symposium in Russia, volume 10304 of Lecture Notes in Computer Science,
pages 245–259, Cham, 2017. Springer International Publishing.

[118] National Resident Matching Program. Main residency match data and re-
ports. Web document available at https://www.nrmp.org/match-data-analytics/
residency-data-reports/ (Accessed 08 May 2025).

[119] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, New York, 1988.

[120] Uyen T Nguyen and Sang X Tran. Advanced heuristic solution for the hospital-resident
matching with ties problem. In International Conference on Computational Data and Social
Networks, pages 383–394. Springer, 2024.

[121] Sofiat Olaosebikan. The Student-Project Allocation problem: structure and algorithms. PhD
thesis, University of Glasgow, 2020.

[122] Sofiat Olaosebikan and David Manlove. An algorithm for strong stability in the student-
project allocation problem with ties. In Conference on Algorithms and Discrete Applied
Mathematics, pages 384–399. Springer, 2020.

[123] Sofiat Olaosebikan and David Manlove. Super-stability in the student-project allocation
problem with ties. Journal of Combinatorial Optimization, 43(5):1203–1239, 2022.

[124] Gregg O’Malley. Algorithmic aspects of stable matching problems. PhD thesis, University of
Glasgow, 2007.

[125] JP Owen. An evaluation of the medical training application service as experienced by
defence medical service medical officers. BMJ Military Health, 153(3):175–180, 2007.

[126] Katarzyna Paluch. Faster and simpler approximation of stable matchings. Algorithms,
7(2):189–202, 2014.

https://www.nrmp.org/match-data-analytics/residency-data-reports/
https://www.nrmp.org/match-data-analytics/residency-data-reports/

Bibliography 148

[127] BS Panda and Sachin. Hardness and approximation results for some variants of stable
marriage problem. In Conference on Algorithms and Discrete Applied Mathematics, pages
252–264. Springer, 2022.

[128] András Radnai. Approximation algorithms for the stable matching problem. Eötvös Lorand
University, 2014.

[129] Alvin E Roth. The evolution of the labor market for medical interns and residents: a case
study in game theory. Journal of political Economy, 92(6):991–1016, 1984.

[130] Alvin E Roth. On the allocation of residents to rural hospitals: a general property of two-
sided matching markets. Econometrica: Journal of the Econometric Society, pages 425–427,
1986.

[131] Alvin E Roth, Uriel G Rothblum, and John H Vande Vate. Stable matchings, optimal as-
signments, and linear programming. Mathematics of operations research, 18(4):803–828,
1993.

[132] Alvin E Roth, Tayfun Sönmez, and M Utku Ünver. Efficient kidney exchange: Coincidence
of wants in markets with compatibility-based preferences. American Economic Review,
97(3):828–851, 2007.

[133] Alvin E Roth and Marilda Sotomayor. The college admissions problem revisited. Econo-
metrica: Journal of the Econometric Society, pages 559–570, 1989.

[134] Alvin E. Roth and Xiaolin Xing. Jumping the gun: Imperfections and institutions related
to the timing of market transactions. The American Economic Review, 84(4):992–1044,
1994.

[135] Uriel G Rothblum. Characterization of stable matchings as extreme points of a polytope.
Mathematical Programming, 54:57–67, 1992.

[136] KA Santhini, Govind S Sankar, and Meghana Nasre. Optimal matchings with one-sided
preferences: fixed and cost-based quotas. Autonomous Agents and Multi-Agent Systems,
39(1):1–36, 2025.

[137] Sandy Scott. A Study Of Stable Marriage Problems With Ties. PhD thesis, University of
Glasgow, 2005.

[138] Boris Spieker. The set of super-stable marriages forms a distributive lattice. Discrete applied
mathematics, 58(1):79–84, 1995.

[139] Jimmy JM Tan. A necessary and sufficient condition for the existence of a complete stable
matching. Journal of Algorithms, 12(1):154–178, 1991.

Bibliography 149

[140] Jimmy JM Tan. Stable matchings and stable partitions. International Journal of Computer
Mathematics, 39(1-2):11–20, 1991.

[141] Y Teo and Duan Juat Ho. A systematic approach to the implementation of final year
project in an electrical engineering undergraduate course. IEEE transactions on education,
41(1):25–30, 1998.

[142] Paul Tseng. A simple complexity proof for a polynomial-time linear programming algo-
rithm. Operations Research Letters, 8(3):155–159, 1989.

[143] Nguyen Thi Uyen, Giang L Nguyen, Canh V Pham, Tran Xuan Sang, and Hoang Huu Viet.
A heuristic algorithm for student-project allocation problem. In International Conference
on Computational Data and Social Networks, pages 280–291. Springer, 2022.

[144] John H Vande Vate. Linear programming brings marital bliss. Operations Research Letters,
8(3):147–153, 1989.

[145] Hoang Huu Viet, Nguyen Thi Uyen, Son Thanh Cao, and Long Giang Nguyen. An efficient
two-heuristic algorithm for the student-project allocation with preferences over projects.
Journal of Intelligent & Fuzzy Systems, pages JIFS–236300, 2024.

[146] David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-
bridge university press, 2011.

[147] Niklaus Wirth. Algorithms + Data Structures = Programs, volume 158. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

[148] Hiroki Yanagisawa. Approximation Algorithms for Stable Marriage Problems. PhD thesis,
Kyoto University, Japan, 2003.

[149] Hongmou Zhang and Jinhua Zhao. Mobility sharing as a preference matching problem.
IEEE Transactions on Intelligent Transportation Systems, 20(7):2584–2592, 2018.

	Thesis cover sheet
	2025AyegbaPhD
	Acronyms
	Introduction
	Preliminaries
	Complexity theory
	Coping with intractability
	Approximation algorithms
	Heuristic methods
	Fixed-Parameter Tractable algorithms
	Integer and Linear Programming

	Thesis Statement
	Contributions and Thesis Outline

	Literature Review
	The Stable Marriage Problem
	Formal definition
	The Gale-Shapley algorithm
	Extended Gale Shapley algorithm
	Multiple stable matchings

	Extensions of the Stable Marriage problem (sm)
	Stable Marriage with Incomplete lists (smi)
	Stable Marriage with Ties (smt)
	 Stable Marriage with Ties and Incomplete Lists (smti)

	Structure of the set of stable matchings in sm and its extensions
	Lattice structure in sm
	Rotations in sm
	Rotation poset
	Optimal stable matchings
	Polyhedral characterization of stable marriages
	Structure of strongly and super-stable matchings

	The Hospitals/Residents problem (hr)
	Formal definition
	Extensions of the Hospitals/Residents problem (hr)
	Structure of the set of stable matchings in hr

	The Student-Project Allocation problem (spa)
	Student-Project Allocation with lecturer preferences over Students (spa-s)
	Formal definition
	Example.
	Structural and algorithmic results for spa-s

	Lecturer preferences over students including ties (spa-st)
	Lecturer preferences over projects (spa-p)

	Related spa models

	Complexity Results for Restricted Variants of spa
	Introduction
	Background and motivation
	Contributions and structure of the chapter

	Complexity result for spa-st under weak stability
	Formal definition of spa-st
	Complexity of max-spa-st with one lecturer
	complete smti-2ml
	max-spa-st with one lecturer

	Complexity results for spa-p
	Formal definition of spa-p
	spa-p with master lists
	spa-p with projects offered by the same lecturer
	Polynomial-time algorithm for max-spa-p-sl

	Students with identical preferences

	Parameterised complexity of spa-p
	Parameterised stable matching problems
	spa-p with uniform capacities
	Hardness of max-spa-puc
	FPT algorithm for spa-puc
	Reducing to one project per topic for each lecturer
	Reducing to one lecturer per type

	An ILP for spa-puc

	Conclusions and future work

	Structural Results for spa-s
	Introduction
	Background and motivation
	Contributions and structure of the chapter

	Preliminary definitions
	Preferences over matchings
	Student Preferences over Matchings
	Lecturer Preferences over Matchings

	Dominance relation

	Structural properties of stable matchings
	Stable matchings in spa-s form a distributive lattice
	Example

	Conclusions and future work

	Meta-Rotations in spa-s
	Introduction
	Background and motivation
	Contributions and structure of the chapter

	Preliminary definitions
	Justification for the meta-rotation definition

	Structural results involving stable matchings
	Exposing and eliminating all meta-rotations
	Meta-rotations
	Identifying an exposed meta-rotation
	Meta-rotations and stable matchings
	Pruning step
	Finding a target stable matching
	Example: Finding all exposed meta-rotations in a spa-s instance

	Meta-rotation poset
	Example: constructing the meta-rotation poset

	Conclusions and open problems

	Conclusions and future directions

