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Abstract 

 

Episodic memory describes the ability to recall events and situations we have 

encountered in the past. These memories usually contain multiple elements with lots of 

conceptual, gist information as well as perceptual details. During perception of visual objects, 

perceptual and semantic features are represented at different parts along the ventral visual 

stream hierarchy resulting in a faster accessibility of perceptual feature information 

compared to semantic features. Previous research indicates that during object retrieval a 

reversal of this hierarchy is observable with semantic features being accessible before 

perceptual ones. The endeavour of the current thesis will be to evaluate this reverse stream 

effect of memory for its generality and robustness, for underlying cognitive components and 

spatio-temporal representational formats in the brain.  

First, in a set of behavioral studies, feature-specific reaction times are evaluated as a 

measure of mapping the temporal dependencies of features within an episodic long term 

memory trace. Second, a detailed analysis of these feature-specific reaction time results with 

the help of cognitive mathematical models of decision making is presented. Third, the spatio-

temporal dynamics of feature representations during the retrieval process are accessed by 

combining MEG, fMRI and Deep Neural Network encodings of naturalistic images using a 

Representational Similarity-based Fusion approach. 

Results indicate that the reverse stream of feature accessibility during memory 

retrieval is a robust effect that generalizes over different feature dimensions, cues and 

attentional states. Reaction time modelling suggests that this effect is explained by 

differences in evidence sampling speeds from memory for perceptual and semantic features. 

In the fusion analysis of brain imaging data, successful retrievals showed prolonged 
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activations of high-level areas along the visual stream compared to early visual areas and 

semantic, gist-like feature compared to low-level feature representations.  

Together, these results provide complementary and detailed evidence for reversed 

hierarchical structure of an episodic long term memory trace. Further implications and future 

directions are discussed. 
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Chapter 1: General Introduction 

 

The human mind encompasses a wide variety of intricate and astounding abilities 

from focusing attention selectively to solving difficult tasks in a new and creative fashion. 

But none of those capacities are as fascinating as the fact that our wake everyday experiences 

are continuously and effortlessly saved on the fly to be later recalled and reexperienced in 

detail. A key aspect of this ability is the associative structure of memory that binds together 

multiple elements of one episode as well as multiple features of one element (Tulving, 1983, 

2002). When you remember your breakfast yesterday, the episodic memory will bring back 

a host of semantic, gist-like experiences (e.g. remembering a cup of coffee because one 

always drinks coffee in the morning) but also finer perceptual details that are unique to this 

certain episode (e.g. remembering drinking from a red cup instead of the favourite green cup 

that was still in the dishwasher).   

 

1.1 Memory systems in cognition and in the brain 

 

Apart from the question how memory is actually stored and represented in the brain, 

distinctions between different memory systems have been established in cognitive science. 

A general distinction between memory systems is made based on the temporal extend of 

memory storage: 1. Sensory memories, defined for the visual domain as iconic and the 

auditory domain as echoic memories, which are very short-lived activations of sensory areas 

that vanish quickly if not actively held in mind. 2. The short-term or working memory system, 

a capacity-limited system that is able to sustain external or internal information over a longer 
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period of time (up to 30 seconds). 3. A long-term memory store of possibly unlimited 

capacity. This memory system can be further divided into non-declarative memories 

(Schacter, 1987; Squire, 1992) that are not consciously accessible like learned skills and 

habits (e.g. playing an instrument, driving a car) and conditioned responses, and a declarative 

part (Cohen & Squire, 1980) with its two major components semantic (facts, general 

knowledge) and episodic memory (events of one’s own life). As Tulving (1983) described it 

in his seminal work, episodic memory is distinguished from semantic memory by it’s 

associative coupling of content to the place and time that it was encountered in by us which 

he termed the “what”, “where” and “when” as defining attributes of this memory system. It 

is also the only memory system that is focused on the past and enables a mental travel back 

in time (i.e. into the situation we have once encountered). 

The case for multiple memory systems in the brain was first convincingly made, when 

Canadian psychologist Brenda Milner started to study a now famous patient called HM (B. 

Milner et al., 1968; Scoville & Milner, 1957). He had suffered from severe epilepsy and opted 

for an experimental treatment by neurosurgeon William Scoville who removed large extends 

of HM’s hippocampal system. In the weeks after the surgery, HM recovered nearly without 

any cognitive impairments (Kensinger et al., 2001; Schmolck et al., 2002) except for a 

complete anterograde amnesia (i.e. he wasn’t able to make any new memories). He was still 

able to remember life events and facts about the world he learned prior to the surgery. He 

was also able to acquire new procedural memories over 3 days of practice in a mirror drawing 

task even without being aware of his learning history (B. Milner, 1965). Further research of 

animal models and patients with brain lesions has shown that both episodic and semantic 

memory seem to heavily depend on the hippocampus (Squire et al., 2004). 
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Early computational modelling of long-term memory encoding and retrieval came to 

the conclusion that at least two storage systems are needed. This was based on the training 

of neural networks on list learning tasks that showed that while those mathematical networks 

(a simplification of cerebral neural networks) were perfectly able to recall items from 

learning a first list, this knowledge disappeared (or better, was overwritten) as soon as a 

second list was learned afterwards (a process called catastrophic interference).  Humans on 

the other hand were well able to recall items from both list with only some interference. 

Therefore, it was assumed that long-term memory relied on a fast-learning system (proposed 

to be the hippocampal system), that learns new material quickly but also forgets old material 

quickly, and slow-learning system (neo-cortex) where new material is added slowly and 

effectively stored forever (McClelland et al., 1995). 

 

1.2 How are memory traces represented in the brain? 

 

The idea of a memory trace was first introduced as the term memory engram by 

Richard Semon (1906) and describes a physical substrate in the brain that is a persistent 

change, is able to be reactivated by internal and external cues (ecphory), holds content that 

was encountered during encoding (formation) and is a physical entity independent of memory 

related processes such as encoding or retrieval (Josselyn et al., 2015).  

A possible explanation of how an episodic memory trace could be achieved is 

Teyler&DiScenna’s Index model (Teyler & DiScenna, 1986; Teyler & Rudy, 2007). It posits 

that during encoding all elements of an episode (sensory details, multimodal information etc.) 

are represented as distributed patterns in the cortex. These patterns are then condensed along 

the ventral visual stream entering the hippocampus where all information is bound into an 
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assembly of index cells. This index can be conceptualized as a librarian who knows where a 

certain book (i.e. neocortical pattern) is located without having to know what is written in 

the book (i.e. what this pattern represents). For a retrieval of the full original experience, a 

fraction of the original pattern (retrieval cue) suffices to activate the hippocampal index 

which then in turn activates the whole pattern in the cortex, a process termed pattern 

completion (Marr, 1971). Recent evidence showed the existence of cell assemblies coding 

for the conjunction of unrelated stimuli forming during paired associate learning (Kolibius et 

al., 2023). 

The idea that episodic and semantic memory first depend on and then over time 

become independent of the hippocampus is called the systems consolidation theory (Squire, 

1992; Squire & Alvarez, 1995; Squire & Zola-Morgan, 1991) and has been challenged by 

evidence from lesion patient data that actual episodically detailed memory in opposition to 

semantic memory never seems to become fully hippocampally independent (Winocur & 

Moscovitch, 2011). Instead, it is proposed that memories that get independent of the 

hippocampus achieve this by a transformation away from context and perceptual details to a 

semantic and gist-like representation (Winocur & Moscovitch, 2011). This is achieved 

through a process called semantization (Heinen et al., 2023) where perceptually detailed 

memory representations are transformed by strengthening conceptual features instead of 

perceptual features (Favila et al., 2020; Paller & Wagner, 2002; Xue, 2018).  

 

1.3 How are visual features represented in the brain? 

 

For initial visual perception, it has been well established, that processing of 

information after the primary visual areas follows two different streams (Goodale & Milner, 
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1992a; Mishkin et al., 1983a). An occipito-parietal also called “where” stream, implicated in 

spatio-visual and motor-related processing, and an occipito-temporal processing “what” 

stream along the inferotemporal cortex, that is mostly concerned with object processing. The 

transformation of visual information along this ventral visual stream (VVS) follows an 

anatomical and functional hierarchy (Barlow, 1972; Martin & Barense, 2023; Yamins & 

DiCarlo, 2016), from a highly detailed and neuronally dense representation in early visual 

areas that is conjunctively transformed toward a sparse distribution of high-level feature 

representation which enable object recognition in higher areas like the inferior temporal 

cortex (Desimone et al., 1984; Gross et al., 1972; Quiroga et al., 2005).  

Studies probing the capacity and fidelity of visual long-term memory have found that 

humans are able to remember a huge amount images of scenes and objects over days with 

great accuracy (Brady et al., 2008; Konkle et al., 2010b, 2010a). It seems that formed memory 

traces are able to differentiate learned images from perceptually and semantically close lures. 

In their review, Brady et al. (2011) argue for a dependence of this ability on stored knowledge, 

that is a hierarchical organization of features where high-level, conceptual information can 

be diagnostic for low-level perceptual information. This is supported by studies showing that 

providing semantic labels to ambiguous shapes improved memory (Koutstaal et al., 2003), 

object memory interference is based on conceptual overlap between exemplars of a category 

than perceptual overlap (Konkle et al., 2010a) and improved memory for objects matching 

pre-existing schema (Van Kesteren et al., 2012). This implies that categories are important to 

retrieve the whole memory trace with semantic as well as perceptual information belonging 

to it (Brady et al., 2011). 
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1.4 How can we track reactivation in reaction times? 

 

If the features bound up by a memory trace are stored in hierarchical fashion, there 

should be a way to test this in behavior. In a first study to use a feature-specific recall task 

for object vision, Linde-Domingo et al. (2019) could show such a hierarchy that is 

behaviorally distinguishable using objects that varied on a perceptual (line drawings or 

photographs) and semantic dimension (animate or inanimate). Over three experiments they 

invited participants and split them into two groups. The first group participated in a visual 

task in which they were presented with objects and had to classify them according to their 

perceptual (“Is the object a line drawing or a photograph?”) and semantic (“Is the object 

animate or inanimate?”) dimensions. In a memory task participant first learned to associate 

objects with words and were then in a recall phase presented with the words again as a 

memory cue, had to retrieve the object from memory and classify it like in the visual task. 

So, the main difference between both task was whether feature-based information came from 

initial perception or memory recall. It was shown that while in the visual task classification 

of perceptual features was faster than classification of semantic features, indicative of a 

forward stream of object processing, in the memory task semantic was faster than perceptual 

classification, giving first evidence to a reversal of the visual hierarchy of a LTM trace.  

This finding has been replicated by Lifanov et al. (2021), where they tested how this 

difference in feature availability behaved over multiple test intervals up to one day. They 

showed that the effect actually gets larger and an additional dependency analysis showed that 

unsuccessful recall of the semantic feature was predictive of unsuccessful recall of the 

perceptual feature but not vice versa.  There is also evidence for the same prioritization of 

semantic over perceptual detail content in multi-item working memory (Kerrén et al., 2023). 
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All in all, there seems to be preliminary evidence that reaction time measures of 

feature-specific classification from memory can track the hierarchical organization of the 

memory trace. It is still a question how reliable this measure is under experimental boundary 

conditions (e.g. could this reversal of information be result of attentional biases toward 

semantic features during learning or of the type of cues that are used in the memory task?). 

If feature-specific reaction times can be established as a stable and easy measure of feature 

accessibility, it would be interesting to see whether mathematical cognitive models could 

give an insight into and reveal which underlying factors are driving the classification process. 

 

1.5 Reaction time modelling 

 

For the modelling of perceptual decision-making reaction time distributions, 

Sequential Sampling Models (Townsend & Ashby, 1984) have been established that 

understand the information integration for a decision as an accumulation of evidence over 

time towards a boundary. A choice for a response option is made the moment the process hits 

a boundary (in a two-choice setting: choice A or choice B).  

A well-established model for linking decision-based reaction time distributions to 

underlying cognitive information integration has been the Drift Diffusion Model (Ratcliff, 

1979; Ratcliff et al., 2016). In its original formulation, a decision process comprises a 

decision-related evidence accumulation process and a nondecision time component. The 

accumulation process is modelled as a diffusion process with a constant drift rate δ that starts 

after stimulus encoding and walks through the decision space towards an upper or lower 

decision boundary α. The drift rate can be understood as how easy information is accessible 

(i.e. stimulus quality) and the decision boundary describes a speed accuracy trade-off (i.e. 
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higher boundaries lead to longer reaction times and less errors and lower boundaries lead to 

faster reaction times and more errors). The starting point of the decision can also vary and is 

modelled as a parameter called bias β. A bias toward one response is usually expected if 

participants have prior knowledge over the likelihood of a certain response being correct. 

After a boundary is reached by the accumulation process, a motor response is made. Both 

stimulus encoding time and motor response are lumped together into the nondecision time τ. 

To allow for differences in the reaction time distributions for correct and erroneous responses, 

the original DDM includes a trial-to-trial variability parameter for the drift-rate, the starting 

point bias and the nondecision time.  

These additional parameters complicate model estimation and typically require huge 

amounts of reaction time trials per participants and condition (Boehm et al., 2018). A 

simplified version of the DDM without trial-to-trial variability parameters has been proposed 

(Wagenmakers et al., 2007; van Ravenzwaaij et al., 2017; but see Ratcliff, 2008) having the 

additional property of an analytically tractable likelihood function (Navarro & Fuss, 2009).  

 

1.6 What methods can be used to investigate patterns in the 

cortex? 

 

Measuring brain activity during an experiment with neuroimaging methods produces 

high dimensional, multivariate datasets, for example for each participant there will be one 

matrix with 3 spatial and 1 trial dimensions of voxel activations for fMRI studies or a matrix 

of a trials, a sensor/electrodes and a time point dimension for M/EEG. Trials are hereby 

defined as replications of experimental stimuli or conditions. Here we will only refer to both 

as stimuli. Typical univariate analysis compares the brain’s average response to certain 
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stimuli directly. The drawback of this method when dealing with high-dimensional data is 

the choice between running a search-light analysis at all voxels or time-points incurring 

inflation of family-wise error rates or having to predefine and average regions- and time-

windows-of-interest.  

Therefore, the advent of methods like Multivariate Pattern Analysis (MVPA) and 

Representational Similarity Analysis (RSA) has been hugely influential in the field of 

cognitive neuroscience (Cox & Savoy, 2003; Haxby et al., 2001, 2014). Instead of averaging 

signal within a brain region or over electrodes, these methods compare pattern vectors of 

brain activity. These pattern vectors can be for example a cluster of voxel activations from a 

fMRI region or a collection of MEG sensor activation values at 200 ms after a stimulus onset. 

As can be seen, the big advantage of pattern-based methods is taking information at a single 

voxel/sensor level into account. 

 

1.7 Multivariate Pattern Analysis (MVPA) 

 

Generally, MVPA tries to quantify how patterns of brain activation in response to two 

different stimuli differ from each other. For our example, one could take the voxel activations 

in early visual cortex as a pattern vector and compare pattern vectors for trials in which a 

house and trials in which a face is presented. To compare vector patterns, MVPA either uses 

measure based on distance estimation or classifier decoding ability. As pattern vectors of size 

N can be understood as points in a N-dimensional feature space, the distance between those 

points can be quantified in different ways among them direct and angular distance measures. 

Common measures of the direct distances between the points are the Euclidean distance or 

its multivariate version the Mahalanobis distance. or they are based on the angular distances 
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of the points compared to the origin like the cosine or correlation distance (Grootswagers et 

al., 2017; Guggenmos et al., 2018; Walther et al., 2016). Decoding measures on the other 

hand use statistical classifier techniques to find a decision threshold that best separates two 

distributions of pattern vectors. The most popular among them in cognitive neuroscience are 

Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Support Vector 

Machines (SVM).  

In machine learning, cross validation (CV) has become the gold standard in 

establishing an unbiased classification performance. The idea of cross-validation is to 

randomly split the data sample (trials) into a larger training set and a smaller test set, fit the 

model parameters on the training set and test these parameters on the test set. This procedure 

is repeated several times, each time with a new training-test split and the resulting 

performance value is estimated as the average performance over all splits. While distance 

measures are usually estimated directly from the data and unlike cross-validated measures 

do not require multiple trials, there are reformulations of the Euclidean and Correlation 

distance using cross-validation (Guggenmos et al., 2018). 

 

1.8 Representational Similarity Analysis (RSA) 

 

Similarly to the MVPA, an RSA compares pattern vectors of the brain response to 

stimuli. In an RSA approach, each stimulus or condition is compared to each other thereby 

building up a stimulus-by-stimulus comparison matrix called a representational dissimilarity 

matrix (RDM). All measures described for MVPA can be used for to build a RDM of all 

stimulus comparisons. A RDM transforms the original data modality from its own signal 
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space into a multivariate representational geometry (Diedrichsen & Kriegeskorte, 2017; 

Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte & Kievit, 2013). 

This geometry describes how a certain feature space represents a whole dataset of 

stimuli. For fMRI studies, the feature space can be chosen in a region-based approach to 

contain all voxels falling within predefined ROI resulting in one RDM per ROI, or, in a 

searchlight-based approach, to contain a sphere of voxels that is shifted through the whole 

brain volume (or over surface map) resulting in one RDM per center voxel of the searchlight. 

For M/EEG studies, the feature space is usually chosen to be all sensors/electrodes and RDMs 

are computed with a time window that is slid over the time dimension resulting in one RDM 

per time point. For Deep Neural Networks (DNN), the feature space can be the hidden 

activation of network layers in response to an input image or sentence (Kriegeskorte, 2009).  

 

1.9 RSA-based fusion 

 

As mentioned above, RSA transforms signal from a modality specific space (signal 

change for fMRI, µV or fT for M/EEG) into the same representational geometry space. 

Because of this, it is possible to correlate RDMs from different data modalities a procedure 

called second-order correlation or RSA fusion (Cichy & Oliva, 2020). The resulting measure 

indicates when the representational formats of two data modalities are the most similar.  A 

fusion of fMRI and M/EEG RDMs for example combines the spatial resolution of the fMRI 

with the temporal resolution of M/EEG and shows at which point in time which regions 

represent the stimulus pool the more similar than others. This approach has been used to show 

a hierarchical forward stream in information processing during object perception (Cichy, 

Pantazis, et al., 2016; Kriegeskorte, Mur, Ruff, et al., 2008).  
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Furthermore, a fusion approach does allow for correlation of neural RDMs with 

model RDMs, that capture hierarchical feature representations similar to the sensory areas of 

the brain (Kriegeskorte, 2009). Potential candidate models could be biologically inspired 

convolutional Deep Neural Networks (DNN) that have been pretrained on a large amount of 

visual data and have an astounding object recognition capability rivalling human 

performance (Krizhevsky et al., 2017). For the visual system, DNN RDMs have been widely 

used to explain feature-specific activations in fMRI and M/EEG signals (Bone et al., 2020; 

Cichy, Khosla, et al., 2016; Heinen et al., 2023; Kaniuth & Hebart, 2022).  

 

1.10  Overview over the following Chapters 

 

In the Second Chapter, I will present a host of behavioral reaction time experiments 

testing the robustness of the reverse stream effect first described in Linde-Domingo et al. 

(2019) and how well feature-specific reaction times are able to map the hierarchical structure 

of the memory trace. Three different variations of the original experiment will be reported, 

exploring the questions in how far the reverse stream effect generalizes to different semantic 

and perceptual feature dimensions, whether it is dependent on the cue material that is used to 

associate the objects with, and whether this effect could be simply a result of attentional 

biases during learning.  

In the Third Chapter, a detailed cognitive modelling analysis of the whole reaction 

time dataset acquired and detailed in the Second Chapter will be presented. Using a 

Hierarchical Bayesian Prior Structure and state-of-the-art sampling algorithms, a DDM will 

be fit to the reaction time distribution of over 400 participants in 9 memory and 6 visual tasks, 



13 

 

 

 

yielding posterior parameter estimates that will be compared between perceptual and 

semantic feature classification.  

In the Fourth Chapter, the retrieval process for naturalistic images will be tracked by 

using an RSA-based fusion approach. For this, 29 participants will be recorded in the MEG 

while they first learn image word pairs and then are presented with the word in order to recall 

the image and reconstruct it from memory. MEG data will be transformed into a 

representational geometry format and will be correlated (fused) with the region-specific 

RDMs from a fMRI dataset of different participants and feature-specifc RDMs from DNNs. 
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Chapter 2: Feature-specific reaction times as a 

generalizable approach to measuring the state of a 

memory trace 

 

2.1 Introduction 

 

Our episodic memory system has the ability to effortlessly bind content elements that 

appeared together at the same time and in the same place into a memory trace. For example, 

we might remember in detail the last time we met some friends in a park. The elements 

contained in a memory, however, are collections of features in themselves. For example, one 

of the friends might have brought a dog along and we still remember semantic details about 

it (it was a Golden Retriever) as well as perceptual details (its fur was brown). 

Research on memory content has typically focused on the accuracy of the recalled 

features or stimuli. We believe that the timing of content availability holds crucial 

information that can be used to test the neural architecture of the memory retrieval process. 

We show here that reaction times represent a reliable method to assess differences in content 

accessibility that are robust to variations of features being tested, cues to initiate recall, and 

attentional demands during learning.  

Episodic long-term memory crucially relies on the medial temporal lobe and 

especially the hippocampus as a system of rapid, one-shot learning (McClelland et al., 1995; 

Scoville & Milner, 1957). According to the dominant view of episodic memory formation, a 

memory trace is established with the help of a hippocampal neuron assembly (called an 

index) that binds together cortical patterns that represent the content of an episode (Teyler & 

DiScenna, 1986). As such, the episodic memory trace associatively binds together the 
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constituting content’s perceptual and semantic features. The recall of a past episode is thought 

to require a pattern completion process, where a reminder (e.g., one element) triggers the 

reconstruction of the remaining elements (Horner et al., 2015; Marr, 1971). As such, it was 

shown that feature activation across different levels of the visual hierarchy coincided with 

episodic memory retrieval and were predictive of memory vividness and recall accuracy 

(Bone et al., 2020). Furthermore, detailed episodic memory was dependent on a reactivation 

of features in the posterior hippocampus and early visual cortex (Bone & Buchsbaum, 2021). 

Regarding the spatial and temporal representation of features during initial 

perception, visual information processing has been shown to follow a hierarchical structure. 

Retinal input is transformed along the ventral visual stream from low-level details in early 

visual areas to high-level semantic categories in later areas (Cichy, Pantazis, et al., 2016; 

Desimone et al., 1984; Martin et al., 2018). Research on visual long-term memory shows the 

importance of semantic information over perceptual details (Konkle et al., 2010a; Van 

Kesteren et al., 2012) suggesting a reuse of the visual hierarchy but in the opposite direction 

(Brady et al., 2011). If the features of a long-term memory trace are spatially organized in a 

reversal of hierarchy, it would also suggest a temporal distinction in availability of semantic 

compared to perceptual features during retrieval. 

Linde-Domingo et al. (2019) tested this feature-specific hypothesis with in an 

associative cued recall task where one group of participants first learned and later retrieved 

visual objects from memory. To test object retrieval participants had to classify the object on 

either a semantic or perceptual dimension. Here, classification of semantic features was 

overall faster than of perceptual features indicating a temporal hierarchy of information 

accessibility. This reverse stream effect was in another study shown to get larger over 

multiple testing events especially after one day (Lifanov et al., 2021), revealing an interesting 
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sensitivity of this feature-specific reaction time difference to track the ‘semanticization’ of 

the memory trace (Heinen et al., 2023). Although, these results are encouraging, they rely on 

a cued recall paradigm using action verbs as cues and only one perceptual and semantic 

dimension. Accordingly, it is unclear whether feature-specific reaction times as a method are 

a generalizable tool to probe the organization of a long-term memory trace. 

Here, we show that reaction time measures of feature-specific decision processes are 

a robust measure, which can be used to delineate differences in the temporal availability of 

such stored information. We believe that reaction time measures are so far underutilized in 

memory research and are capable of providing reliably readout about differences in feature 

availability that could elucidate the state of a memory trace. For our hypothesis, by analyzing 

feature-specific reaction times to map a memory trace via the observed reverse processing 

stream during object retrieval, we would expect to find this effect independently of three 

different variations of the original experiment: 

First, this effect should be generalizable to different perceptual and semantic feature 

dimensions that objects can vary upon. Therefore, we would predict to find the same forward 

processing stream indicated by faster reaction times for perceptual features compared to 

semantic in a visual task and the same reverse processing stream with faster reaction times 

for semantic compared to perceptual feature classification in a memory task when different 

feature dimensions are tested. 

Second, since the memory task relies on a cue to identify the object and retrieve it 

from memory, an advantage of semantic features could be explained by the semantic nature 

of the cue (i.e. words in the original studies). To address this possible confound, we will 

include two types of cues in our paradigm (i.e. words and scenes) and compare whether the 

reverse stream effect is dependent on words or also translate to scene cues. Additionally in a 
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second and third study, we will pair objects with arbitrary locations on the presentation screen 

and use these locations as a cue. As these locations are semantically meaningless and should 

not influence perceptual or semantic features of the object associated with them, the 

emergence of a significant reverse stream would show that feature-specific reaction time are 

able to robustly track a hierarchical nature of a visual memory trace independent of cue 

confounds.  

Third, memory is known to be influenced by attentional focus during learning 

especially when shifting the encoding focus towards deeper semantically meaningful features 

compared to shallow perceptual ones (Craik & Lockhart, 1972). In two additional 

experiments we will shift the attention during learning of objects towards semantic of 

perceptual features, to investigate whether the feature-specific reaction time difference is due 

to attentional biases towards semantic features or not. 

 

 

2.2 Results 

 

2.2.1 Feature Variation Results – The reversed stream effect generalizes 

to different features 

 

In the first set of experiments, we asked whether the reversal of the perceptual-to-

semantic gradient between perception and memory retrieval holds for different object 

features, beyond the specific features used in previous work. For Exp. 1, we created a new 

stimulus pool of 96 objects that belonged to either manmade or natural categories (semantic 

features) and presented them in either big or small size on screen (perceptual feature). One 
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group of participants performed a purely visual task where on each trial, they were presented 

with a semantic (natural or manmade?) or perceptual (small or large?) question first, and then 

had to classify the following object as fast and accurately as possible. Another group 

performed a memory task, where they first learned to associate the objects with cue words, 

and then later recalled the objects from memory when prompted with a cue word. Like in the 

visual task, a memory trial started with a semantic or perceptual question but was then 

followed by cue word prompting participants to retrieve the associated object from memory 

and to classify it according to the question type. During visual classification, we expected 

faster reaction times for perceptual than semantic questions if objects are processed along a 

forward visual stream from lower-level perceptual to higher-level semantic analysis. Vice 

versa, faster reaction times for semantic than perceptual classification in the memory task 

would be indicative of a reverse processing stream during retrieval (Lifanov et al., 2021; 

Linde-Domingo et al., 2019). 

Participants who saw the objects visually rather than reconstructing them from 

memory were, unsurprisingly, significantly faster overall (main effect of task, F(1,57) = 

132.69, p < .001, ηp
2 = .7), and the semantic classification was overall faster than the 

perceptual one (main effect of feature type, F(1,57) = 7.42, p < .01, ηp
2 = .12). However, the 

two main factors of feature type and task were interacting significantly, F(1,57) = 9.8, p < 

.005, ηp
2 = .15, confirming our hypothesis of faster perceptual classification in the visual task, 

t(32) = -3.02, p < .005 , d = -0.53, and faster semantic classification in the memory task, t(25) 

= 1.98, p < .05, d = 0.39. 

The accuracies partly mirrored the reaction time results, with more correct trials in 

the visual compared to the memory task, F(1,57) = 50.3, p < .001, ηp
2 = .47, and overall more 

correct semantic classification than perceptual, F(1,57) = 23.85, p < .001, ηp
2 = .29. A 



19 

 

 

 

significant interaction between both factors, F(1,57) = 7.32, p < .01, ηp
2 = .11, indicated 

higher accuracy for semantic than perceptual feature type in the memory task, t(25) = -3.72, 

p < .005, d = -0.73, and, unexpectedly, as well in the visual task, t(32) = -2.17, p < .05 , d = 

-0.38.  So far, the reaction time findings replicate the results of our previous studies and 

generalise the perception-to-memory flip to new feature variations. 

 

    

    

    

    

    

    

    

 

    

    

    

    

    

    

    

            

 

  

 

              

 

                 

        
      

   

 
  
 
  
  
  
 

 
  

 
  
  
  
 

      
      

       

       

    

    

  
     

        

        

        

 

 

              

 

         

     

 
  
 
  
  
  
 

 
  

 
  
  
  
 

     

       

       

   

   

 
         

              

              

              

                               

          
       

            

 
  
  

 
 
  
 
  
  
 
  

 
    

 
 
   

     
  

                                

          
       

 

 
  
  
  

  
 
  
  
 
  

 
    

 
 
   

     
  

 

                 

Fig. 1: Paradigm and Results of the Feature Variation Experiments. A: Exemplary depiction of the 

cued recall paradigm used in Exp. 1. B: Exemplary depicitions of the object images used in Exp. 1 

with perceptual and semantic dimensions. C: Boxplots of the reaction time distribution of the task by 

feature type interaction for Exp. 1. D: Exemplary depiction of the cued recall paradigm used in Exp. 

2. E: Exemplary depicitions of the object images used in Exp. 2. F: Boxplots of the reaction time 

distribution of the task by feature type interaction for Exp. 2. C&F: Dots indicate single participant‘s 

average reaction times. Bars indicate significant differences of main effects of task or feature type (p 

< .05) and stars indicate significant differences of within tasks (p < .05). 
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In Exp. 2, we varied object shape as a perceptual feature. A stimulus pool of 128 

objects was chosen, with manmade or natural objects again serving as the semantic 

dichotomy, while along the perceptual dimension the objects could now be either elongated 

or round in appearance. Again, there was a main effect of task such that the visual 

classification group showed faster reaction times than the memory group, F(1,47) = 271.31, 

p < .001, ηp
2 = .85. but this time there was no significant difference between feature types, 

F(1,47) = 0.85, p > .05. There was a significant interaction between task and feature type, 

F(1,47) = 26.08, p < .001, ηp
2 = .36, with post-hoc analyses revealing a significant forward 

stream in the visual task, t(23) = -9.97, p < .001, d = -2.035, but no significant difference 

between semantic and perceptual classification in the memory group, t(24) = 0.73, p > .05.  

For the accuracy measures no significant main effect of feature was observed, F(1,47) 

= 0.2, p > .05, but the significant main effect of task, F(1,47) = 35.1, p < .001, ηp
2 = .43, was 

qualified by an interaction with feature, F(1,47) = 7.9, p < .01, ηp
2 = .14. Post-hoc t-tests 

within tasks showed again that perceptual features were more often correctly classified than 

semantic features in the visual task, t(23) = 3.06, p < .01, d = 0.62, and no significant 

difference occurred when features were classified from memory, t(24) = -0.9, p > .05. 

Taken together, the results of Exp. 1 and 2 show that reaction times reliably track the 

direction in which object features are processed during visual perception and memory. Exp. 

1 replicated our previous findings of forward (perceptual before semantic) processing stream 

during perception, and a backward (semantic before perceptual) processing stream during 

retrieval. Importantly, the reversal of feature processing during memory retrieval was absent 

in Exp. 2, using shape as a perceptual feature. Amongst the feature variations used in this 

series of studies and previous ones (Lifanov et al., 2021; Linde-Domingo et al., 2019; ter Wal 
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et al., 2021), the shape feature was in fact the only one that did not produce a semantic-over-

perceptual advantage during memory recall. Albeit a post-hoc interpretation, we realised that 

the shape of an object is bound to its semantics (e.g., knives are elongated while melons are 

round-shaped), and therefore does not qualify as a purely perceptual feature that can be freely 

varied across items, like size or colour. As a result, recalling the identity of a memorised 

object (e.g., that it was a turtle) automatically provides the shape information, explaining 

why perceptual reaction times matched semantic ones in this version of the task. As an 

intermediate conclusion, it can thus be summarized that the perception-to-memory reversal 

in the feature processing hierarchy generalizes to novel feature dimensions as long as those 

dimensions are clearly separated. 

 

2.2.2 Cue Variation Results – The reversed stream effect is independent of 

the type of cue used to prompt an object memory 

 

In Exp. 1 and previous work (Lifanov et al., 2021; Linde-Domingo et al., 2019), we 

find a robust advantage of semantic over perceptual information when an object is recalled 

from memory. While consistent with our hypothesised reversal in feature processing, an 

alternative explanation could be that we used verbal retrieval cues in all these studies. Words 

are inherently semantic in nature, and participants may thus naturally bind the cue words to 

the objects on the level of their meaning. This may result in a semantic bias, leading to faster 

retrieval of semantic information faster during memory recall. To test for such a possible 

bias, in the next experiments we varied the types of cues that were paired with objects. 

Instead of verb-object associations, participants in Exp. 3 learned triplets consisting 

of a scene, a verb and an object, and each associated was later probed once with the scene 
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cue and once with the verb cue. Feature-specific reaction times for semantic (animate vs 

inanimate) and perceptual (photo vs drawing) features were measured using the same setup 

as in Exp. 1 and 2. Having replicated the forward stream during perception several times, we 

did not include a visual group in this Experiment.  
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Overall, we found a significant main effect of cue type, F(1,24) = 78.6, p < .001, ηp
2 

= .77, where scenes were more efficient cues than words, leading to faster reaction times. 

More importantly, we found a significant main effect of feature type on reaction times, 

F(1,24) = 11.55, p < .005, ηp
2 = .32,  indicating that independent of cue type, semantic object 

features were accessed faster than perceptual ones F(1,24) = 1.02, p > .05. Accuracies showed 

a similar pattern of results, with scene cues eliciting more correct responses than word cues, 

F(1,24) = 27.8, p < .001, ηp
2 = .54, and semantic features showing more correct responses 

than perceptual features, F(1,24) = 11.99, p < .005, ηp
2 = .33. Again no significant interaction 

between cue type and feature type was observed, F(1,24) = 0.27, p > .05. 

Although these results support the hypothesis that the reverse memory reconstruction 

stream is cue invariant, even scenes carry some semantic information, and participants may 

therefore tend to form associations on the level of meaning. To test whether the semantic-

over-perceptual advantage persists with meaningless cues, a slightly altered paradigm was 

adopted in Exp. 4a. In this version of the memory task, participants associated objects from 

different categories with one of eight locations along a white circle on the screen (see Fig. 2 

D). The location cue served as a prompt to then retrieve and classify the associated object 

according to one of multiple dimensions and levels (exemplar, category, perceptual and 

Fig. 2: Paradigm and Results of the Cue Variation Experiments. A: Exemplary depiction of the cued 

recall paradigm used in Exp. 3. B: Exemplary depicitions of the object images used in Exp. 3 with 

perceptual and semantic dimensions. C: Boxplots of the reaction time distribution of the cue type by 

feature type interaction in Exp. 3. Dots indicate single participant‘s average reaction times. Bars 

indicate significant differences of main effects of task or feature type (p < .05). D: Exemplary 

depiction of the cued recall paradigm used in Exp. 4a and 4b. E: Exemplary depicitions of the object 

images used in Exp. 4a and 4b with perceptual and semantic dimensions. F: Boxplots of the reaction 

time distribution of the task by feature type interaction in Exp. 4a. G: Boxplots of the reaction time 

distribution of the task by feature type interaction in Exp. 4b. F&G: Dots indicate single participant‘s 

average reaction times. Bars indicate significant differences of main effects of task or feature type (p 

< .05) and stars indicate significant differences of within tasks (p < .05). 
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semantic; see Methods and Fig. 2 E). While all of these dimensions were tested in both the 

visual and the memory groups, for the analysis presented here, we focus on the perceptual 

dimension of color (coloured vs greyscale) and the semantic dimension of animacy (living 

vs non-living), in line with previous studies. Since this experiment used a new setup and 

stimulus pool, we also conducted a visual task in a separate group of participants, who simply 

classified the objects directly as presented on the screen, without the location circle, 

according to the feature prompted at the beginning of each trial (Fig. 2 D).  

We observed the expected significant interaction between task and feature type, 

F(1,46) = 30.78, p < .005, ηp
2 = .4, due to a significant forward perceptual-semantic 

difference in the visual task, t(23) = -6.04, p < .001 , d = -1.23, and a significant reverse 

difference in the memory task, t(23) = 4.75, p < .001, d = 0.97. Task, F(1,46) = 288.02, p < 

.001, ηp
2 = .86 and feature type,  F(1,46) = 44.27, p < .01, ηp

2 = .49, showed significant main 

effects. All accuracy effects were non-significant (Fs < 0.177). 

To corroborate this decision, we replicated this experiment again with a bigger sample 

size (n = 40) and an adjusted design that included only color as perceptual and animacy as 

semantic feature dimension. 

This replication study (Exp. 4b) found the same significant interaction, F(1,234) = 

96.8, p < .001,  ηp
2 = .29, and main effects task, F(1,234) = 472.55, p < .001,  ηp

2 = .67, and 

feature type,  F(1,234) = 69.71, p < .001,  ηp
2 = .23, with the same perceptual-over-semantic 

advantage in the visual group, t(199) = -12.91, p < .001 , d = -0.91, and the reverse pattern 

in the memory group, t(35) = 3.51, p < .005, d = 0.59. These results were mirrored in the 

accuracy measure, with a significant interaction, F(1,234) = 56.7, p < .001,  ηp
2 = .20, and 

main effects task, F(1,234) = 38.0, p < .001,  ηp
2 = .14, and feature type, F(1,234) = 58.2, p 

< .001,  ηp
2 = .20, and post-hoc tests showing higher accuracy for semantic than perceptual 
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features in the memory task, t(35) = -3.75, p < .005, d = -0.63, and a tendency toward the 

opposite pattern in the visual task, t(199) = 1.93, p = .055 , d = 0.14. 

Taken together, Exp. 3, 4a and 4b provide a clear indication that non-verbal cues, and 

even semantically meaningless cues like a position on a screen, lead to the same advantage 

of semantic over perceptual information retrieval. One could thus conclude that the feature 

processing hierarchy when a visual object is reconstructed from memory is hard-wired and 

highly robust to feature and cue variations.   

 

2.2.3 Attention Variation Results – The reverse stream effect in memory is 

independent of attentional demands during learning 

 

Exp. 3 and 4 showed that the semantic feature advantage during memory retrieval 

generalizes from verbal to visual scene cues, and even location cues. However, it could still 

be argued that humans have a natural tendency to form new associations on the level of an 

item’s (in our case, an object’s) meaning. In Exp. 5, we therefore investigated whether paying 

attention to meaning vs surface features of the objects during encoding affects the size of the 

feature processing gap during recall. Participants associated visual scenes with objects, 

performing either a shallow or deep encoding task. In the shallow task, they were asked to 

judge whether the object was a photograph of a line drawing. In the deep task, they were 

asked to classify each object as flying or non-flying. The memory test was performed similar 

to previous experiments, probing either perceptual (color vs greyscale) or semantic (natural 

vs manmade) features. No visual group was collected, since reaction times for these features 

were already available from previous experiments, demonstrating a clear forward stream. 
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Fig. 3: Paradigm and Results of the Attention Variation Experiments. A: Exemplary depiction of the 

cued recall paradigm used in Exp. 5. B: Exemplary depicitions of the object images used in Exp. 5 

with perceptual and semantic dimensions. C: Boxplots of the reaction time distribution of the 

encoding focus by feature type interaction in Exp. 5. D: Exemplary depiction of the cued recall 

paradigm used in Exp. 6. F: Exemplary depicitions of the object images used in Exp. 6 with perceptual 

and semantic dimensions. E: Boxplots of the reaction time distribution of the encoding focus by 

feature type interaction in Exp. 6. B&E: Dots indicate single participant‘s average reaction times. 

Bars indicate significant differences of main effects of encoding focus or feature type (p < .05). 
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We found a significant main effect of feature type, F(1,37) = 53.82, p < .001, ηp
2 = 

.59, replicating the reverse stream effect. Neither the main effect for the encoding focus, 

F(1,37) = 0.35, p > .05, nor the interaction, F(1,37) = 0.0002, p > .05, reached significance. 

Accuracies pointed in the same direction with only the feature comparison being highly 

significant, F(1,37) = 167.9, p < .001, ηp
2 = .82, (other Fs(1,37) < 0.82). 

While a non-significant interaction supports our hypothesis that attention during 

encoding does not modulate the reverse stream effect, this first attention experiment failed to 

demonstrate a main effect of attention itself, which would be expected based on the large 

levels-of-processing literature (Craik & Lockhart, 1972). This absence might indicate that 

the attention manipulation at encoding was not successful. We reasoned that the deep-shallow 

manipulation may have affected processing of the object, but not the way in which the scene-

object association was formed, the latter presumably influencing the way in which the 

association would later be retrieved.  

In Exp. 6 we therefore manipulated the attentional focus with respect to the 

association that was formed between the visual scene cue and the object during learning. In 

the learning trials, participants were presented with pairs of scenes and objects, and were 

instructed to form an association either by focusing on common, shallow perceptual details 

(i.e. do you find the dominant color of the object in the scene) or on common, deep semantic 

features (i.e. Is it plausible for the object to appear in this scene). In the recall phase, scenes 

were then used as cues to recall the object, and we probed perceptual (color vs greyscale) and 

semantic (natural vs manmade) features on each trial, similar to the previous experiments. 

Reaction time results replicated the reverse stream effect with a significant main 

effect of feature, F(1,43) = 19.27, p < .001, ηp
2 = .31. In this experiment, we also found a 

significant main effect of encoding focus, F(1,43) = 62.39, p < .001, ηp
2 = .59, showing that 
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as expected, deep associations during encoding led to overall faster object accessibility 

during retrieval than shallow associations. The two main effects were not qualified by an 

interaction effect, such that the semantic-perceptual gap during retrieval did not vary with 

the attentional focus during encoding, F(1,43) = 0.89, p > .05. 

A significant interaction between attention and feature type was observed for the 

accuracies, however, F(1,43) = 6.26, p < .05, ηp
2 = .13, and while the shallow encoding 

condition showed a significant reverse stream effect, t(43) = -8.4, p < .001, d = -1.27, this 

effect (i.e., the semantic-perceptual gap) was increased in the deep encoding condition, t(43) 

= -11.09, p < .001 , d = -1.67. Both encoding focus and feature type showed a significant 

main effect on accuracies (Encoding focus: F(1,43) = 49.38, p > .001, ηp
2 = .53; Features: 

F(1,43) = 136.19, p < .001, ηp
2 = .76). 

 

2.2.4 A forward and a backward stream can be reliably shown over 

multiple datasets 

 

In an effort to quantify the overall forward processing stream during visual processing 

and the reverse stream during memory recall, we combined all of the experiments that we 

reported above and previously published data using the same paradigm (Orig. Exp. 1 and 2 

from Linde-Domingo et al., 2019) and modelled the perceptual to semantic feature reaction 

time difference with a Generalized Linear Mixed Model (GLMM). These models allow for 

single trial modelling of hierarchical data (in our case, reaction times from subjects nested in 

experiments) with non-gaussian error distributions and link functions that are more tailored 

towards reaction time distributions (Lo & Andrews, 2015). Visual and memory task data was 

modelled separately. Within experiment and participant, only objects that were correctly 
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classified on perceptual and semantic features were included, so that we could estimate the 

average difference between perceptual and semantic feature accessibility on an experiment 

level. This modelling approach is akin to a meta-analysis with individual participant data 

availability (Stewart et al., 2012). 

 

As can be seen in Fig. 4, all visual tasks reliably show a negative difference smaller 

than zero indicative of a forward processing stream (perceptual to semantic) with an average 

                        

                        

    

                 
         

              
 

 

              

    

     

          
          

           

       

              

              

    

     

          
          

           

       

        

         
        

         
   

                                     

                              

Fig. 4: GLMM Reaction Time Difference between Perceptual and Semantic Feature Type of all Visual and Memory Tasks. 

A: Difference estimates between perceptual and semantic features for all visual tasks and an average estimate over all tasks. 

B: Difference estimates between perceptual and semantic features for all memory tasks and an average estimate over all 

tasks. [1] from Linde-Domingo et al. (2019) 
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of 60.81 (SE = 3.20) ms. Almost all memory tasks show a positive difference larger than zero 

indicating a reverse processing stream (semantic to perceptual) with an average of 180.68 

(SE = 19.58) ms. As mentioned above, the only experiment that failed to show this positive 

difference was the shape variation (Exp. 2). As discussed in the respective results section, 

there is an obvious explanation for this absence, namely that shape is part of an object’s 

semantics, which we did not consider when designing the experiment. 

 

2.3 Discussion 

 

The aim of this series of experiments was to establish feature-specific reaction times 

as a tool to probe the time course of feature reinstatement during memory retrieval. In 

multiple studies, we measured the accessibility of perceptual and semantic object features 

via reaction times, comparing the speed of feature access during visual classification with 

classification from memory. A meta-analysis-like GLMM model over the current and 

previously published results confirms that feature-specific reaction times reliably show a 

forward stream (perceptual before semantic) in visual classification of objects, and a reverse 

stream (semantic before perceptual) when the object is recalled from memory. In the new 

experiments presented here, we show that this reverse stream is present independent of the 

exact perceptual and semantic features used, as it generalises to novel feature dimensions, as 

long as the perceptual feature is not bound to the semantics of the item, as discussed further 

below. We also showed that this reversal of feature accessibility during retrieval is invariant 

to cues of varying levels of meaningfulness (i.e. words, scenes or even locations on screen) 

and that feature-specific reaction times delineate perceptual and semantic feature 

accessibility during retrieval even when attention during learning is shifted explicitly toward 
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one of those features. The results thus suggest that associative cued recall of a visual image 

progresses along a semantic-to-perceptual gradient. This gradient is robust to many 

manipulations and appears almost like a structural characteristic of the human memory 

system.  

From a brain’s perspective, the hippocampus is most closely connected to late stages 

of the visual processing hierarchy (Felleman & Van Essen, 1991; Suzuki & Amaral, 1994), 

and it thus makes sense that it would associatively bind and later access visual memories on 

the level of highly abstract, integrated representations. Interestingly, we failed to find the 

reverse stream effect when we varied shape as a perceptual feature. Since the shape of an 

object is inherent to its identity (e.g., a banana cannot be round, a turtle cannot be stick 

shaped), shape is clearly not a purely perceptual feature. In line with this (posthoc) 

interpretation, imaging work mapping the visual and conceptual features of objects revealed 

that visual features that are part of an object’s semantic feature space are processed, and 

integrated with conceptual features, late in the ventral visual processing hierarchy (Martin et 

al., 2018; Martin & Barense, 2023). 

Introducing screen size as a perceptual and naturalness as a semantic dimension in 

our first experiment corroborates findings from previous studies (Lifanov et al., 2021; Linde-

Domingo et al., 2019). Object size is another feature that can or cannot be part of an object’s 

semantics, depending on whether it is confounded with real-world size. In imaging work, the 

real-world size of an object was shown to activate different areas along a lateral to medial 

axis of the occipito-temporal cortex independent of their presentation size, while presentation 

size activates both early visual and higher visual areas (Troiani et al., 2014). This suggests 

that real-world size is an inherent part of an object’s identity and presentation size is a variable 

perceptual feature. In our Exp. 1, objects were held constant with regards to their real-world 
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size and varied only in presentation size on screen. Compared to the semantic-type 

natural/manmade classification, this perceptual dimension produced a reliable forward 

stream in reaction times during visual processing, and a backward flip during memory recall. 

When confounded with real-world size, size would behave like a conceptual object feature, 

and we in fact found evidence for this in previous unpublished work (Linde-Domingo, 2019). 

Together with imaging work, the first two studies thus suggest that the type of information 

that is most readily accessible (by the hippocampus) during cued recall is core semantics of 

an episode’s elements. Surface perceptual information that can randomly vary in real life is 

less readily accessible, possibly related to the fact that this information resides in brain areas 

further removed from the hippocampus (Suzuki & Amaral, 1994). 

This conceptual over perceptual advantage is robust to cue variations, as shown in 

Exp. 3 and 4a/b. In all these experiments, the extent of the perceptual-conceptual gap did not 

vary with the meaningfulness of the cue used. Similarly, directing attention during learning 

towards perceptual or semantic features in Exp. 5 and 6 did not affect the reaction time 

signatures of the reverse memory stream, even though these manipulations have been long 

been known to influence what and how well we remember (Craik & Lockhart, 1972). 

Typically, deeper compared to shallow encoding or attention towards meaning or semantic 

features rather than to perceptual features lead to better memory performance (Baddeley, 

1986; Loaiza et al., 2011). For example, in a recent study, comic images varying in artistic 

style of drawing (perceptual feature) and thematic content (semantic feature) were 

incidentally learned with a focus on either the perceptual or the semantic feature and then 

later tested in a recognition paradigm (Vijayarajah et al., 2023). Attention to thematic content 

over artist style improved memory performance and led to more detailed memories. It is all 
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the more surprising that biasing attention towards encoding the perceptual features did not 

decrease the semantic over perceptual feature advantage during retrieval. 

Though not the focus of the present experiments, our experiment contrasting scene 

cues to word cues showed faster reaction times and higher memory performance for scene 

than word cues. There are a few possible explanations for this advantage. It has been argued 

that scenes, and spatial information more generally, play an integral role for episodic memory 

(Maguire & Mullally, 2013; Robin, 2018) by creating a scaffold that structures memory 

retrieval. Autobiographical memory research showed that spatial cues compared to event 

cues lead to faster and more episodically detailed memory retrieval (Sheldon & Chu, 2017). 

Robin & Olsen (2019) showed that scenes as cues lead to higher memory performance than 

objects or faces. In our studies, it is impossible to say whether the scene advantage during 

recall is due to faster perceptual processing of the scene than word cues, or due to scenes 

acting as more efficient retrieval cues. Peripheral vision from the retina is mostly relayed by 

magnocellular neurons that are known to be faster than the more focally coding parvocellular 

neurons (de Haan & Cowey, 2011; Livingstone & Hubel, 1987). It has been shown that scene 

processing follows a stream among lateral areas between the ventral and parietal stream 

(Kravitz et al., 2011) and intracranial studies in humans found that scenes information can 

reach a high-level visual area like the parahippocampal place area within 100 ms after 

presentation (Bastin et al., 2013) an area that has been implicated in scene recognition 

(Henriksson et al., 2015). It would therefore be likely that scenic information reaches the 

hippocampus and initiates a pattern completion process before language information like a 

meaning of a word. Interestingly, scene words as cues do not yield higher accuracies in recall 

compared to object words as cues (Horner & Burgess, 2013), which corroborates the notion 

that the effects found here are not driven by higher-order semantic processing. 



34 

 

In five out of the seven experiments presented here accuracies either showed no effect 

or mirrored the forward and reverse stream results found in reaction times. In the visual task 

of the size variation (Exp. 1), higher accuracies are consistently observed for semantic than 

for perceptual classification while reaction times still show the opposite pattern. Although a 

puzzling finding, it might be due to different speed-accuracy trade-offs where participants 

are willing to make more errors in the perceptual classification to be faster than in the 

semantic classification. Contrary to our reaction time results, accuracy shows a significant 

interaction between encoding focus and feature type in Exp. 6. Even though higher recall 

accuracy can be observed for semantic over perceptual features in both shallow and deep 

association, deep association seems to bolster the difference between perceptual and semantic 

features. So, while the attentional focus during encoding does not influence the temporal 

availability of semantic and perceptual information in the memory trace, a deep association 

strengthens the accuracy of semantic information more than detailed perceptual information. 

Further studies are warranted to figure out whether this relationship is synergistic (deep 

encoding enhancing both semantic and perceptual information accuracy) or competitive 

(deep encoding benefits semantic information storage at the expense of perceptual details). 

Reaction time measures are notoriously underused in memory experiments. As our 

combined results using a meta-analytic approach show, reaction time measures of feature-

specific memory decisions can elucidate the time course of the retrieval process. The results 

presented here show how reliably these tasks can map a forward stream of information 

processing during visual classification and a reverse stream of information processing during 

classification from memory. Memory research focused on the retrieval process mainly 

measures the accuracy of recognition and recall (Wixted, 2009; Yonelinas, 2002). A notable 

exception are results from recognition memory paradigms showing faster reaction times for 
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recollection (remember) decisions than for familiarity (know) decision (Dewhurst et al., 

2006; Gimbel & Brewer, 2011; Rotello & Zeng, 2008). This pattern of results displayed the 

opposite direction of what some theoretical accounts argued for and is therefore an example 

of the fruitfulness reaction time measures hold for memory research. 

From here, there are a few avenues for further enquiries. Since we have a whole host 

of reaction time data from many participants, it would be interesting to fit established reaction 

time models like Drift Diffusion Models (Ratcliff & Childers, 2015) or Linear Ballistic 

Accumulator Models (Brown & Heathcote, 2008) to it and check which parameters are 

mostly affected by the feature-specific differences. These models allow to independently 

estimate putative cognitive decision processes like the speed of evidence accumulation, 

speed-accuracy trade-offs, biases in response distributions and stimulus encoding times. 

Especially the Drift Diffusion Model (DDM) has been applied to memory processes like 

recognition and cued recall (Aschenbrenner et al., 2016; Ratcliff et al., 2011), showing that 

evidence accumulation for example could be an indicator of accessibility of information from 

memory. We would predict that our semantic-to-perceptual effect maps onto the evidence 

accumulation parameter of DDMs with higher drift rates for semantic than perceptual 

information accumulation. 

Similar to the vast knowledge that exists on the hierarchical structure of object 

recognition that goes from low-level to mid-level features to high-level visual and finally 

semantic information (Groen et al., 2017) it is still a question whether a typical retrieval 

process follows a full reverse stream or a partial reverse processing stream that starts with a 

semantic gist and then adds low- and mid-level features only when necessary. Our studies 

were focused on a binary distinction between low-level perceptual and high-level semantic 
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features, but the inclusion of mid-level feature decisions would be a possibility, maybe 

enabling testing hierarchical processing models (Balaban et al., 2020).   

Nonetheless, the studies presented here generalize our understanding of the temporal 

accessibility of visual features during retrieval and thereby makes a case for the utility of 

feature-specific reaction time measures to track the state of LTM traces. 

 

2.4 Methods 

 

2.4.1 General 

 

Participants & Procedure: Experiments 2, 3 as well as the memory tasks of 

experiment 4a and 4b were administered in person. Participants were recruited the University 

of Birmingham. Participants were led into a room and seated in front of a computer. They 

were then presented with instructions followed by a shortened version of the experiment as 

practice and then completed the experiment. After a debriefing about the purpose of the 

experiment, participants were dismissed. For experiments 2 and 3 the tasks were programmed 

and administered with PsychToolbox (Brainard, 1997). For experiment 4a and 4b, tasks were 

programmed and administered with PsychoPy (Peirce et al., 2019). 

Experiments 5 and 6 as well as the memory task for Experiments 1 were administered 

online. Participants were recruited from the School of Psychology & Neuroscience’s Subject 

Pool at the University of Glasgow and received a personalized link that started the 

experiment. They were then first presented with instructions, followed by a shortened version 

of the experiment as practice and then completed the experiment. They were debriefed at the 

end and contacted again by the experimenter for their compensation. All online experiments 
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were programmed in PsychoPy/PsychoJS (Peirce et al., 2019) and were hosted on Pavlovia 

(Open Science Tools, Nottingham, UK). 

The visual tasks of experiments 1, 4a and 4b were administered online to external 

participant samples recruited over Prolific (www.prolific.co). The procedure remained the 

same as for the other online studies mentioned above. 

 

2.4.2 Experiment 1: Feature Variation (Size) 

 

Participants: For the memory task a total of 32 participants (21 female, 11 male; MAge 

= 25.9, SDAge = 5.2) were recruited and received course credit or a payment of £10. For the 

visual task 40 participants (29 female, 11 male; MAge = 30.7, SDAge = 5.9) were recruited and 

received a payment of £4.  

Material & Design: The stimulus pool for this task consisted of 128 colored images 

depicting everyday objects cut-out in front of a white background. All objects were sampled 

from 8 distinct categories with 16 objects per category. Half of those categories were 

manmade (bathroom, kitchen, office, tools) and the other half were natural (fruits, land 

animals, sea and air animals, vegetables). Since the real-world size can vary substantially and 

has been shown to influence the visual processing of objects (Konkle & Oliva, 2012), all 

objects were chosen to minimize variation in real-world size by a heuristic criterion (i.e., 

real-world size had to be between a human thumb and a medium-size dog). Half of the object 

images were displayed as big and half as small on screen (.6 and .3 in height units, 

respectively). For an example of the stimulus pool see Fig. 1 B.  

Task: The memory task was repeated over 16 blocks, with each block consisting of a 

learning phase, a short distractor task and a recall phase (see Fig 1 A). In the learning phase, 

http://www.prolific.co/
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each trial started with a jittered fixation cross (0.5 – 1.5 s), followed by an action verb as a 

cue (1 s). Afterwards a second jittered fixation cross (0.5 – 1.5 s) appeared before the object 

was presented. Participants were instructed to form an association between the action word 

and the image, and to indicate when they had successfully formed the association with a 

button press. Either the button press, or a maximum duration of 10 s ended the trial. Each 

pair was presented and learned once, with a total 8 pairs of verb-object associations learned 

per block. Following the learning phase, participants engaged in a short distractor task where 

they categorized odd or even numbers using the left or right arrow button, respectively. This 

task lasted for 30 seconds and participants were instructed to classify as many numbers as 

accurately as possible. Feedback of performance (i.e., number of trials and percentage of 

correct classification) was given after the task. In the recall phase, each trial started with a 

jittered fixation cross (0.5 – 1.5 s) that was followed by two response options at the bottom 

of the screen that lasted for 2 s. These response options were either asking for perceptual 

features (i.e., ‘big’ vs ‘small’) or semantic features (i.e. ‘manmade’ vs ‘natural’). Which 

option was presented on the left or the right was counterbalanced across subjects. Then 

participants were cued with the verb (0.5 s) and asked to recall the object presented with this 

verb and classify the object using the left or right arrow key. This classification period lasted 

until button press or a maximum of 10 s. The ITI was 0.5 s. Each object was recalled once 

with a perceptual and once with a semantic feature probe, with the order being 

counterbalanced across objects, resulting in 16 recall trials per block. The presentation side 

of the response options was counterbalanced across subjects. 

In the visual task, each trial started with a jittered fixation cross (0.5 – 1.5 s) followed 

by the two response options (asking for perceptual or semantic features) that appeared at the 

bottom of the screen with one option on the left and one on the right. After 2 seconds, the 
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object appeared, and participants had to categorize it according to the options as fast and 

accurately as possible (see Fig 1 A). In a block, 32 objects were categorized twice, once with 

a perceptual and once with a semantic feature probe (with the order being counterbalanced 

across objects), resulting in 64 trials per block. The task was repeated over 8 blocks. 

 

2.4.3 Experiment 2 – Feature Variation (Shape) 

 

Participants: 25 participants (17 female, 8 male; MAge = 20.6, SDAge = 2.4) were 

recruited for a memory task and 24 participants (23 female, 1 male; MAge = 18.7, SDAge = 

0.6) were recruited for the visual task. All participants received either course credit or a 

payment of £6/hour upon finishing their task. 

Material & Design: A stimulus pool of 128 everyday objects was created taken from 

the BOSS database (Brodeur et al., 2014) in such a way that half of the objects were natural, 

and half were manmade objects. Within these distinct semantic groups objects were chosen 

such that half of them had a round shape and half had a stick shape, thereby orthogonalizing 

the semantic dimension of naturalness and the perceptual dimension of shape (see Fig 1 E). 

Task: Both the memory and visual task were identical to “Size variation” except for 

the following changes: the response options were displayed for 3 seconds before a cue 

(memory task) or object (visual task) appeared; and the perceptual feature response options 

were “rounded” and “elongated” instead of “small” and “big” (see Fig 1 D). 

 

2.4.4 Experiment 3 – Cue Variation (Scenes) 
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Participants: This experiment only had a memory group, for which 27 participants 

(21 female, 6 male; MAge = 20.0, SDAge = 2.2) were recruited and received course credit.  

Material & Design: Materials consisted of 128 everyday objects with 64 being 

animate (birds, insects, mammals, marine animals) and 64 inanimate (fruits, vegetables, 

electronics, clothes). Each object existed once as a photograph and once as a line drawing, 

resulting in a stimulus pool of 256 images (for more detailed information see Linde-Domingo 

et al., 2019; see Fig. 2 B). For each participant, 128 images were selected by randomly 

choosing 8 photographs and 8 line drawings from each category. As cue material a total of 

128 scene images were collected from the SUN Database (Xiao et al., 2010) and 128 action 

verbs were taken from Linde-Domingo et al. (2019). Out of the scene images, 64 were indoor 

(depicting homes, shopping, gyms, workplaces) and 64 outdoor (depicting industry, fields, 

mountains, urban settings). 128 Triplets were formed out of one object, one scene and one 

action verb (see Fig. 2 A). While the scene and the verb were always presented on the top 

(which of them presented on the left and the right was counterbalanced between triplets), the 

object was always presented on the bottom of the screen in the middle. Triplets were balanced 

such that each object category was paired with each scene category twice. 

Task: Since the object pool and the perceptual/semantic dimensions were the exact 

same ones used in Linde-Domingo et al. (2019), visual classification data was already 

available, and we only conducted a memory group in this experiment. In the learning phase, 

each trial started with a jittered fixation cross (0.5 – 1.5 s), followed by a triplet of an action 

verb, a scene, and an object. Participants had to form a story or mental image including all 

elements of the triplet and indicate with a button press when they had successfully formed 

such an association. Maximal presentation duration of the triplet was 10 s. The distractor task 

and the retrieval task were identical to “Size variation” with two exceptions. First, each object 
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was cued once with the scene and once with the word (order of cue type was counterbalanced 

across objects) and the object was classified both times either on the perceptual or on the 

semantic dimension. Second, the response options were displayed for 3 seconds (see Fig. 2 

A). 

 

2.4.5 Experiment 4a – Cue Variation (Spatial)  

 

Participants: 24 participants (20 female, 4 male; MAge = 18.9, SDAge = 0.7) were 

recruited for the memory task and 24 participants (all female; MAge = 19.6, SDAge = 0.8) for 

the visual task. They either received a course credit or a payment of £10. 

Material & Design: The stimulus pool was considerably different from the previous 

experiments and consisted of 16 object images with 4 exemplars from each of 4 different 

categories (dogs, birds, vehicles and aircrafts), orthogonalizing the two semantic dimensions 

of animacy (living or non-living) and aeromobility (flying or non-flying). Each image was 

adapted 4 times to create the perceptual dimensions of visual detail (photo or drawing) and 

color (colored or greyscale), resulting in the 4 possible feature combinations: images were 

depicted either as photographs or as line drawings and these were either colored or greyscaled 

(see Fig. 2 E). In addition to the two perceptual and two semantic dimensions, in this 

experiment we also probed participants’ memory on an exemplar level. For the exemplar 

dimension, the response options were the correct option (e.g. ‘chihuahua’) and a lure option 

for the same category (e.g. ‘labrador’). 

Task: For all tasks the background screen was grey with a white circle at the center 

of the screen. The ITI varied randomly between 0.5 and 1.5 seconds for both the memory and 
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the visual tasks. Both tasks were repeated over 2 blocks. Participants were able to take self-

paced breaks after every 16 trials within a block and between blocks.  

The memory task started with a familiarization phase to get participants acquainted 

to the objects’ categorizations. At the start of each trial in this familiarisation phase, a fixation 

cross appeared in the middle of the screen and two response options appeared at the bottom 

of the screen. After 2 seconds, the object appeared in the middle of the circle until 

participant’s response. After the response, the object was replaced by a fixation cross for 1 

second. During this time the correct name was highlighted in green to give participants 

feedback on their performance. Each object was tested once on each of the 5 dimension (40 

trials per block). In the learning phase, participants had to associate each object with one of 

eight points spaced equidistantly on the circumference of the white circle. Each location was 

uniquely associated with one object. Each trial started with a fixation cross, and one of the 

eight points being enlarged for 1 to 2 seconds followed by the object appearing in the middle 

of the screen. The object disappeared, starting the next trial, when participants pressed a 

button to indicate that they had formed an association. Learning trials were occasionally 

interspersed with test trials, where the object appeared on screen and participants indicated 

whether they could remember the location on the circle or not. After the button press, they 

were presented with the eight dots and had to navigate an enlarged grey dot (appearing at a 

random location) to the associated location with clockwise and/or counterclockwise 

movements. If successful, the correct location was highlighted in green for 1 second to give 

participants feedback (see Fig. 2 D). Each object-location association was learned 10 times 

and tested 3 times (104 trials per block). In the retrieval phase, each trial started with a 

fixation cross (2 s) and the response options from one dimension on the bottom of the screen 

with an additional third ‘forgotten’ option underneath. Next, the eight dots appeared with one 
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of them enlarged indicating which object participants had to remember and classify as fast 

and as accurately as possible. They then pressed one of the two choice buttons or the 

“forgotten” button, upon which the next trial started.  

The visual task was identical to the familiarization phase of the memory task without 

the feedback screen (see Fig. 2 D). Each object was classified 5 times on each of the 5 

dimensions, resulting in a total of 200 trials per block. 

 

2.4.6 Experiment 4b - Cue Variation (Spatial Replication) 

 

Participants: For the memory task a total of 38 participants (27 female, 8 male, 3 no 

information; MAge = 23.4, SDAge = 8.6) were recruited and received course credit or a 

payment of £10. For the visual task 200 participants (130 female, 70 male; MAge = 33.7, 

SDAge = 8.5) were recruited and received a payment of £3.49.  

Material & Design: The same stimulus pool as in Experiment 4 was used with the 

exception that all line drawings were omitted. Objects varied on 4 dimensions in this version 

of the task: exemplar (e.g. “Chihuahua” vs “Labrador”), semantic sub-category (birds vs 

dogs, vehicles vs aircrafts), perceptual (color vs greyscale) and semantic supra-category 

(living vs non-living). For the exemplar level, lures were chosen with equal probability from 

all four sub-categories, and for the sub-category dimension, lures were chosen with equal 

probability from both supra-categorical semantic dimensions. Note that for the purpose of 

the present study, to compare with the previous experiments, only the perceptual and supra-

categorical semantic probe trials were analysed.  

Task: Both memory and visual tasks were identical to Exp. 4a with the following 

exceptions. 
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In the familiarization phase, each object was probed once on all 4 feature dimensions 

(32 trials per block). In the learning phase, each association was learned 8 times and tested 

twice (80 trials per block). In the retrieval phase, each association was tested twice on all 4 

feature dimensions (64 trials per block). 

In the visual task, each object was probed 4 times on all 4 dimensions (128 trials). 

 

2.4.7  Experiment 5 – Attention Variation (Feature Focus) 

 

Participants: 40 participants (30 female, 8 male, 2 no information; MAge = 23.8, SDAge 

= 3.6) were recruited and received either course credit or a payment of £7.  

Material & Design: We created a new database of 96 everyday objects from 8 

different categories (12 exemplars per category) orthogonalizing the semantic dimensions of 

mobility and naturalness (mobile-natural: mammals and birds; mobile-manmade: air and 

ground vehicles; immobile-natural: fruits and vegetables; immobile-manmade: clothes and 

electronics). Each image was adapted 4 times, creating the two perceptual dimensions of 

visual detail and color (photograph-color: the original image; photograph-greyscale: 

greyscale transformation of the image; line drawing-color: line drawing of the image with 

added color patches matching the image’s original colors; line drawing-greyscale: line 

drawing of the image with color). This two-by-two variation of stimulus features allowed us 

to use one perceptual (photo vs drawing) and one semantic (mobile vs immobile) dimension 

as an encoding manipulation, varying what features participants attend to during learning. 

The other two dimensions were then used to measure feature-specific reaction times at 

retrieval, probing the remaining perceptual (color vs greyscale) and semantic (natural vs 

manmade) dimensions (see Fig. 3 A).  
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Task: During the learning phase, each trial started with a jittered fixation cross (0.5 – 

1.5 s), followed by response options for 1.5 seconds. Then the object appeared and had to be 

classified according to the options. Objects were categorized either according to their 

mobility (semantic focus) or according to their visual detail (perceptual focus). After the 

button press or a maximum of 10 seconds, a second fixation cross appeared, followed by the 

action verb. Participants had to associate the verb and the object presented beforehand and 

indicate when they had formed an association with a button press that concluded the trial 

(maximum duration 10 s). The distractor task and the retrieval task were identical to “Size 

variation” except that the response options were displayed for 1.5 seconds. As mentioned 

above, to keep the retrieval task similar to previous experiments and to not probe the same 

features during encoding and retrieval, the perceptual dimension used for the retrieval task 

was visual detail and the semantic dimension was naturalness. 

 

2.4.8 Experiment 6 – Attention Variation (Association Focus) 

 

Participants: Fifty-two participants (41 female, 9 male, 2 non-binary; MAge = 19.7, 

SDAge = 3.8) were recruited and received course credit.  

Material & Design: For this study, object stimuli were taken from to Experiment 5 

and scene stimuli were taken from Experiment 3. For the perceptual dimension only colored 

photographs and drawings were used, removing the greyscale photographs and drawings. 

Task: Like in Experiment 6, we intended to shift participants’ focus during learning 

to either surface perceptual features or meaningful semantic features. This was done in a 

blocked fashion, with each block containing a sequence of 8 scene-object pairs. Before the 

start of a block, participants were instructed to compare the object and the scene according 
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to a dominant color match (perceptual focus) or plausibility (semantic focus). During the 

learning phase, the response options (‘yes’ and ‘no’) and the association instruction 

(‘plausible’ or ‘dominant color’) stayed on the lower and upper part of the screen through the 

whole phase, respectively. Each trial started with a jittered fixation cross (0.5 – 1.5 s), 

followed by an object on the left and a scene on the right (see Fig. 3 D). Participants gave 

their response with a button press (maximum duration 10 s). The distractor task and the 

retrieval task were identical to “Size variation” except that the response options were 

displayed for 1.5 seconds, before the verb was then presented as a cue to recall and classify 

the object according to either the perceptual (photo vs drawing) or semantic (natural vs 

manmade) dimension. 

 

2.4.9 Reaction Times and Accuracies  

 

Reaction times were trimmed with a lower cutoff at 150 ms for all visual and 500 ms 

for all memory tasks. The upper cut-off was defined on a participant specific basis as each 

participant’s overall mean plus three standard deviations. Reaction time analysis only include 

correct responses. For the accuracy analysis, mean correct responses as a percentage are used. 

 

2.4.10 ANOVA Analysis 

 

For experiments 1, 2, 4a and 4b, reaction times and accuracies were analyzed using a 

2 (Task: Visual vs Memory) by 2 (Feature Type: Perceptual vs Semantic) mixed ANOVA. 

For experiment 3, reaction times and accuracies were analyzed using a 2 (Cue Type: Word 

vs Scene) by 2 (Feature Type: Perceptual vs Semantic) repeated-measures ANOVA. For 
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experiment 5 and 6, reaction times and accuracies were analyzed using a 2 (Association 

Focus: Dominant Color vs Plausibility) by 2 (Feature: Perceptual vs Semantic) repeated-

measures ANOVA. Effect sizes for all significant main effects and interactions are reported 

as partial eta squared. 

 

2.4.11 GLMM Analysis 

 

To quantify the forward and backstream effects over experiments, we combined the 

data from the experiments described above as well as two experiments described in Linde-

Domingo et al. (2019) in a generalized linear mixed model approach that is akin to a meta-

analysis (Stewart et al., 2012). Reaction times from correct trials were modelled as a function 

of Experiment and Feature as fixed effects, with treatment contrasts defined on both factors. 

To model the hierarchical dependencies, participants were nested in experiment varied as 

random intercepts (random slopes were not included for model stability). The error was 

modelled as a gamma distribution with an inverse link function (Lo & Andrews, 2015). 
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Chapter 3: Modelling the perceptual and cognitive 

components of the forward and reverse stream 

 

3.1 Introduction 

 

In the previous chapter, it was shown that reaction time measures are sensitive to the 

accessibility of feature information during retrieval and might thereby be an efficient 

possibility to tap into the temporal dynamics of a memory trace reactivation. A whole host of 

behavioral studies was presented that conclusively showed an information processing stream 

in a forward direction (from perceptual details to semantic category) when participants 

classified objects directly in a visual task and a reversal of information processing (semantic 

category before perceptual details) when participants had to retrieve object information from 

memory (memory task). Our reaction time measures in these experiments were analyzed 

according to common techniques for the field with ANOVAs for condition comparisons 

based on participant’s average reaction times or a Generalized Linear Mixed Model (GLMM) 

based on single trial reaction times that allow for specific model error distributions. With an 

abundance of data, it would be interesting to see, whether more elaborate cognitive models 

of reaction time distributions can give insight into how the observed reaction time differences 

between conditions arise. 

A popular sequential sampling model for reaction times has been the Drift Diffusion 

Model (DDM; Ratcliff, 1979; Ratcliff et al., 2016). Here, a decision is modeled as a random 

walk with a constant drift rate through a decision space enclosed by two decision boundaries. 

This process begins after an initial stimulus encoding time at a starting point between the two 

boundaries and ends when it finally hits the upper or lower boundary indicating a decision 
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has been made. Afterwards a motor output is generated. The initial stimulus encoding and 

motor output times are combined into a nondecision time parameter. The drift rate indicates 

how fast information is accumulated or integrated to reach a decision and varies with quality 

of a presented stimulus and has been shown to correlate with domain-general performance 

measures such as IQ and working memory capacity (McKoon & Ratcliff, 2012; Schmiedek 

et al., 2007). The width of the decision boundary on the other hand influences how fast a 

decision is made independent of how well the person performs and can therefore be seen as 

a speed accuracy trade off parameter (Lerche & Voss, 2017, 2019; Nunez et al., 2024; Voss 

et al., 2004). The starting point parameter models prior knowledge about the decision options 

(e.g. knowing that a red circle is twice as likely to appear on screen as a green triangle). 

An example for the usefulness and explanatory power of the DDM can be taken from 

von Krause et al. (2022) who analyzed the reaction time distributions from 1.2 million people 

with an age range from 20 to 60 years. Typically, they observed age-related slowing in mean 

response times which in the past has been taken as an indication for cognitive decline in older 

participants. But when fitting a DDM parameters to different cohorts they found that while 

mental processing speed (drift rate) did not vary significantly by age and the decision 

boundary was wider for old compared to young people. As has been observed before the age-

related slowing is not due to cognitive decline but to a more cautious response criterion in 

older compared to younger participants (i.e. younger participants are more willing to trade 

accuracy for speed).  

Although DDMs are usually fit to reaction time distributions from perceptual 

decision-making tasks, the original studies for the DDM focused on recognition memory 

(Ratcliff, 1979), this model has been also applied to recognition- and recall-related decision-

making (Arnold et al., 2015; Aschenbrenner et al., 2016; McKoon & Ratcliff, 2012; Ratcliff 
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et al., 2004).  As can be seen from the previous chapter, reaction times from memory tend to 

be longer with the bulk of reaction times between 2 and 4 seconds. Although our reaction 

time count per condition is above 100 trials, usually models are fit to reaction time data with 

200 to 500 trials per condition. It has been shown though that even the full DDM models can 

be reliably estimated for longer reaction times and lower trial count (Lerche et al., 2017; 

Lerche & Voss, 2019). Comparisons between different estimation techniques showed that a 

hierarchical Bayesian approach showed the best performance for data with lower trial count 

(Lerche et al., 2017). 

To investigate the feature-specific accessibility differences in reaction times that we 

found in the previous chapter, hierarchical Bayesian Drift Diffusion Models are fit to both a 

memory dataset (Memory Model) and a visual dataset (Visual Model). These experiments 

included the two original behavioral experiments from Linde-Domingo et al. (2019) that first 

showed a reverse stream of information flow during retrieval with faster reaction times for 

semantic compared to perceptual feature classification. The other experiments included in 

model investigate the effect of different perceptual and semantic object features (Shape and 

Size experiments), different cues associated with the objects (Scene Cue, Spatial Cue and 

Spatial Cue Replication experiments), and different attentional demands during the learning 

phase (Attention Encoding and Attention LOP experiments). A detailed overview over the 

different memory and visual experiments can be found in Tab. 1. Experiment- and condition-

specific effects of a 3-parameter model (i.e. decision boundary, drift rate and nondecision 

time) will be estimated as hierarchical priors. In this way we can check whether a certain 

parameter can reliably describe the differences between perceptual and semantic feature 

classification that we find in the reaction time averages.  
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Based on prior studies of memory recognition and cued recall (Arnold et al., 2015; 

Aschenbrenner et al., 2016; Ratcliff & McKoon, 2008; Spaniol et al., 2006), we would expect 

to find consistent drift rate differences between both conditions in all memory experiments 

(except for the Shape experiment, since this experiment failed to find the reverse stream 

effect, cf. Chapter 2) with higher drift rates for semantic than for perceptual feature 

classification. We don’t expect to find consistent nondecision time and decision boundary 

differences (again maybe with exception of the Shape study). For the visual model, we would 

expect to find a consistent opposite effect in drift rates, with higher drift rates for perceptual 

than for semantic feature classification. Consistent differences between decision boundaries 

and nondecision times are not expected. 

 

3.2 Results 

 

3.2.1 Posterior Sampling and Parameter Estimation 

 

Single trial reaction time and accuracy data were modelled using a wiener first 

passage of time likelihood with a decision boundary alpha, a drift rate delta, a nondecision 

component tau and a starting point bias beta on a single trial level. These single trial level 

parameters were modelled by a hierarchical prior structure of participant-, experiment-, and 

condition-specific effects (see Fig. 5 A&B). After a warm-up period, for each model we 

obtained 7500 samples across 5 chains from the posterior distribution with STAN’s No-U-

Turn-Sampler.  
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As can be seen in Fig. 5 C, when we compare reaction time quantiles between our 

observed data (i.e. the memory and visual reaction times we used to fit our model) and 

predicted data simulated from the posterior parameter estimates of our model, a general 

overlap between both data distributions indicates that the hierarchical Bayesian DDM 

Memory and Visual Models capture the data fairly well. 

 

                                      

  
  
   

 
   

  
  
 

  
  
   

 
   

  
  
 

                                    

                              

                 

      

     

                   

                                              

   

          
          

     

             
               
           

            
               
           

            
               
           

  

 

Fig. 5: A: Graphical illustration of the hierarchical prior structure used in this study. Parameters, 

priors and hyper-priors belonging to each of the three DDM parameters are color-coded. Solid line 

circles represent random variables, dashed lined circles represent deterministic variables. B: 

Overview over prior distributions with parameter values. Normal distributions are parametrized with 

mean and standard deviation, half-normal distributions with just a standard deviation and a mean of 

0. C: A comparisons between observed reaction time data and posterior predictive distributions of the 

model. For both observed and predicted data, small dots are a participant ‘s average reaction time 

within quantiles of the reaction time distribution indicated by the x axis. Big dots represent the mean 

over all participant ‘s averages. Comparison plots are based on   observed data and model data from 

all memory tasks (left) or all visual tasks (right). 
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3.2.2 Memory Model Condition Differences  

 

When comparing the three DDM parameters between conditions from a model fit on 

our memory data, a consistent distinction is only found for the drift rate. Over almost all 

experiments a significantly higher drift rate for semantic than for perceptual classification 

from memory is observed (prob(δ < 0) = 0 for Exp.1, Exp.2, Size, Scene Cue, Spatial Cue 

Replication, Attention Encoding, Attention LOP). The only two exceptions from this pattern 

are the Shape and the Spatial Cue experiment with no significant differences in drift rate. 

Interestingly, for the Spatial Cue experiment a significant difference in the decision boundary 

is observed, prob(α > 0) = 0.005, indicating a higher decision threshold for perceptual than 

for semantic feature classification. A significant difference in decision boundaries was also 

                 
                     

            
                     

                
                     

         

         

     

    

        

          

          
           

         
        

         
   

Fig. 6: DDM parameter results for all memory experiments. Parameters are displayed as differences between semantic and 

perceptual conditions. Left: decision boundary. Middle: drift rate. Right: nondecision time. Points indicate the mean of a 

parameter estimate distribution, lines indicate the 97.5 percent most likely parameter estimates. Lines are plotted as dark 

red if the value 0 falls outside of 97.5 of the most likely parameter values. [1] Linde-Domingo et al. (2019) 
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found for the second Attention Experiment, prob(α < 0) = 0, but in the opposite direction 

with a higher decision boundary for semantic than perceptual classification. Over all 

experiments, no significant differences between conditions found for the nondecision time 

parameter (see Fig. 6). As predicted, consistent differences in parameters between conditions 

were only observed for the drift rate but not for the other two parameters. 

 

3.2.3 Visual Model Condition Differences  

 

Other than in the memory experiments and contrary to our hypotheses, in the visual 

experiments a consistent significant condition difference was found for the nondecision time 

parameter (prob(τ < 0) < 0.02 for all experiments), indicating larger nondecision times for 

                 
                     

            
                     

                
                     

         

         

     

    

          

          
           

Fig. 7: DDM parameter results for all visual experiments. Parameters are displayed as differences between semantic and 

perceptual conditions. Left: decision boundary. Middle: drift rate. Right: nondecision time. Points indicate the mean of a 

parameter estimate distribution, lines indicate the 97.5 percent most likely parameter estimates. Lines are plotted as dark 

red if the value 0 falls outside of 97.5 of the most likely parameter values. [1] Linde-Domingo et al. (2019). 
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semantic than for perceptual feature classification. For the decision boundary significant 

differences were observed for the Size, prob(α < 0) = 0, the Spatial Cue, prob(α < 0) = 0.005, 

and Spatial Cue Replication experiments, prob(α < 0) = 0, all showing higher decision 

boundaries when semantic than when perceptual features were classified directly. 

Additionally, the Shape experiment showed a significantly higher drift rate for perceptual 

than semantic feature classification, prob(δ > 0) = 0, while the Size experiment showed a 

significant drift rate difference in the opposite direction, prob(δ < 0) = 0 (see Fig. 7).  

 

3.3 Discussion 

 

In this study, we applied a well-established mathematical cognitive model to an 

enormous data set of memory and visual classification studies. By estimating underlying 

cognitive processes, we aimed to explain the reaction time differences between perceptual to 

semantic feature classification that switch dependent on whether these classifications are 

done visually or from memory.  

As predicted, for our Memory Model significant differences between the drift rate 

were found consistently over most experiments. These differences also had the predicted 

direction with higher drift rates for semantic compared to perceptual feature classification. 

These results corroborate the claim that semantic feature information is more easily 

accessible than perceptual features information during the retrieval process, as the drift rate 

is usually interpreted as a marker for availability of external or internal information (Ratcliff, 

1979). Interestingly, a significant difference was not found in the Shape and the Spatial Cue 

experiment. The former result was expected since in this experiment did not show a 

significant difference between perceptual and semantic feature classification. As discussed 
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before, this might be due to an confound between perceptual variation and the semantic object 

identity (e.g. being displayed as a line drawing or a photograph is not inherent to the identity 

of a turtle, but their round shape is). Instead of a significant difference in drift rates, we found 

a significant difference in decision boundaries that explained our reaction time effect in the 

Spatial Cue experiment. This unexpected result might be due to the nature of the paradigm 

that was used in this particular experiment, as the task was so difficult (recalling objects from 

spatial position cues) that participants were enabled to take very long recall reaction times 

(up to 36 seconds). For our analysis we restricted range of reaction time values from 0.5 to 

10 seconds (in line with all other experiments), but it is possible that the non-speeded nature 

of the task changed participants response criterion to trade reaction speed for accuracy.  

For the Visual Model, against our prediction a consistent difference was found on the 

nondecision time parameter and not, as we assumed, on the drift rate, with every experiment 

showing higher nondecision times semantic than perceptual feature classification. On a 

second glance, this pattern might not be totally unexpected, as the nondecision time 

parameter is partly made up of a stimulus encoding period that has to pass before the decision 

begins. It could be that this parameter indexes the forward stream of information processing 

that we hypothesize to map with our reaction time paradigm. If the motor response remains 

equal for both semantic and perceptual classification, the stimulus encoding time should be 

different, because early perceptual features should be processed earlier and be available more 

quickly that high level semantic information. By this logic, these results would indicate a 

“hard-wiredness” of the visual processing stream that can be mapped by reaction time 

differences. This interpretation comes with the caveat that nondecision times as mentioned 

above do not only include stimulus encoding times but also motor response times that could 
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vary between conditions and a valid estimation of the nondecision time component might be 

reduced in a simplified DDM (Ratcliff, 2008). 

The decision boundary difference for our second Attention experiment curiously 

showing lower decision boundaries for perceptual than for semantic feature classification 

might indicate a dissociation between the reverse retrieval stream and a levels-of-processing 

based attention effect.  

In DDMs the full distribution of correct and error responses is taken into account 

in one model where the estimated parameter values correspond to separable patterns of 

condition difference in reaction times and accuracy. For example, while faster reaction 

times and higher response accuracy in one condition compared to another should result in 

different drift rates between those conditions, faster reaction times and lower accuracies 

in one condition (indicating a speed-accuracy trade-off) should result in different decision 

boundaries for those conditions. Since almost all memory task showed a pattern of faster 

reaction times and higher accuracy for semantic features compared to perceptual features. 

Generally, the DDM has the ability to uncover latent effects in the data that might not be 

apparent in mean reaction time and accuracies alone (Lerche & Voss, 2020).  

It is difficult to fully disentangle the influence that different accuracy distributions 

between perceptual and semantic feature retrieval could have on the drift parameter 

findings, although in most experiments average accuracy comparisons between conditions 

mirror those of the average reaction time differences (i.e., higher accuracies for semantic 

than for perceptual feature retrieval). Interestingly, in the experiments where this pattern 

breaks, we observe either no condition difference in drift parameters like in the Spatial 

Cue experiment or there are both a drift parameter as well as decision boundary 

differences in the expected direction like in the Attention LOP experiment. It must be kept 
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in mind though that high accuracies in a condition (few error trials) make it more difficult 

to reliably estimate the parameters of a DDM including the drift rate (Lüken et al., 2025). 

A necessary step for validating the parameter of mathematical cognitive models like 

DDM and a potential avenue for further analysis could be to link our results to neuroimaging 

signal (Nunez et al., 2024). This link can be established in different ways as several studies 

have shown. These possibilities range from taking a neural signal of interest and see how 

predictive it is for the variation of parameter values over conditions or participants (Bolam 

et al., 2022; Cavanagh et al., 2011; Ratcliff et al., 2009) to multivariate methods like probing 

electrophysiological signal for ramping (accumulation) behavior via Canonical Correlation 

Analysis (van Vugt et al., 2016). In our case, it could be especially interesting to take feature-

specific classification output of M/EEG signal like the distance values of objects to a decision 

hyperplane at certain points in time during perception or memory retrieval and link those 

DDM parameter estimates (Bolam et al., 2022; Carlson et al., 2014; Philiastides et al., 2006; 

Ratcliff et al., 2009). 

An important question is how the parameters of the DDM might relate to areas and 

processes in the brain. Multiple cortical and subcortical regions show correlations with 

parameters such as the prefrontal cortex (Wittkuhn et al., 2018) and thalamus (Turner et 

al., 2015) with the drift rate and the pre-supplementary motor area (Berkay et al., 2018) 

and the subthalamic nucleus (Frank & O’Reilly, 2006) with the decision threshold. As a 

key hub for episodic and long-term memory, the hippocampus has been implicated in 

memory-based decision-making (Barron et al., 2013; Wimmer & Shohamy, 2012), 

although linking DDM parameters to intracranial recordings of hippocampal activity 

failed to show evidence accumulation behavior (van Vugt et al., 2016). When looking at 

connectivity between brain areas, the hippocampus and the ventro-medial Prefrontal 
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Cortex appear to be crucial for decision-making from memory (Gluth et al., 2015). Medial 

frontal cortex neurons representing choices are phase-locked to medial temporal lobe 

activity when decision must be informed by memory (Minxha et al., 2020). 

Shadlen and Shohamy (2016) proposed a model of decision making where 

information from either high-level visual areas for perceptual decisions or the medial 

temporal system for memory-based decisions are funneled through the striatum via a 

“thalamo-cortical” pipe towards parietal and prefrontal areas that represent a decision 

variable being constantly updated. For the memory case, the potential role of the 

hippocampus is acknowledged but a detailed interaction of hippocampal-cortical 

interactions is missing, leaving room for different roles that a pattern completion process 

of memory retrieval (Norman & O’Reilly, 2003) could have on the decision updating and 

the different parameters of the DDM. It could be the case that the retrieval itself is 

represented by the non-decision time as it delays reaction times overall and unspecifically 

(Kraemer & Gluth, 2023). On the other hand, the retrieval process itself might influence 

the decision related parameters (especially the drift rate) as it might need multiple updates 

of the pattern completion in the case of specific sensory information compared to easily 

targetable semantic or gist information. 

By relating the outcome of this mechanistic model to brain data, other important 

questions have to be addressed, for example where in brain and how a decision variable is 

established. Converging evidence from monkey data proposes that competing perceptual 

information is integrated over time in the lateral intraparietal area (LIP) neurons until a 

decision boundary is hit and eye movement is initiated in a similar fashion as described by 

sequential sampling models (Shadlen & Newsome, 2001). Generally, it is assumed that 

association areas specific to any kind of effector work as a decision variable integration 



60 

 

information from perception or memory (Shadlen & Shohamy, 2016). Based on these 

mechanistic model, parietal activity during memory retrieval has been proposed to resemble 

a Mnemonic accumulator of information (Wagner et al., 2005). While it is unlikely to be the 

only role of the parietal cortex in memory, an EEG study (van Vugt et al., 2019) comparing 

perceptual and memory related decisions in face discrimination task showed that a positive 

parietal activity after 400 ms correlated significantly with a drift-rate parameter estimated 

from reaction times and satisfied multiple criteria of an accumulator (O’Connell et al., 2012). 

 

3.4 Methods 

 

3.4.1 Reaction Time Data 

 

Reaction time data were taken from the seven experiments presented in Postzich 

(2024, PhD Thesis, Chapter 2) and two presented in Linde-Domingo et al. (2019). A detailed 

description of the participants, paradigms and procedures can be found there. For the 

convenience of the reader, the key information necessary for our analysis are laid out below.  

While each of the nine experiments included a memory task, six experiments 

additionally included a visual task. All memory and visual tasks used non overlapping 

samples of participants. Reaction time data were analyzed separately for memory and visual 

tasks. Out of the experiments from Postzich (2024, PhD Thesis, Chapter 2) in the first, fifth, 

sixth, and seventh both memory and visual tasks were administered online. 

A total of 288 participants (MAge = 21.5, SDAge = 4.9) participated in nine different 

memory tasks. For the six visual tasks, 335 participants (209 female, 113 male, 0 non-binary; 
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MAge = 29.6, SDAge = 9.4) were tested. Detailed information about the memory and visual 

tasks can be found in Table 1. 

All memory tasks included 3 phases and were repeated over blocks. In the learning 

phase, cues (e.g. action verbs) and object images were presented together and had to be 

associated. Object images depicted everyday objects from different categories (e.g. animals, 

electronics, cars etc.) that varied on perceptual and semantic dimensions. After the learning 

phase, a short distractor task was administered to clear visual short-term memory. While the 

learning phase could vary between experiments, the cued recall phase always followed the 

same schema. Participants were presented with a classification option (e.g. ‘animate’ vs 

‘inanimate’) indicating on which dimension to classify the object. Then the cue appeared, 

and participants had to retrieve the object and classified it as fast and accurately as possible 

on a feature dimension (i.e. “Was the object animate or inanimate?”). The reaction times of 

interest were recorded between the cue onset and the classification decision. In the memory 

task from Linde-Domingo et al. (2019) a third response option was given as forgotten. In our 

current analysis those responses were coded as incorrect. To ensure that the model had 

enough correct and incorrect reaction times to fit a distribution reliably, we excluded 44 

participants who had either less than 55% correct responses or less than 3% incorrect 

responses. Reaction times below 500 ms and above 10000 ms were excluded. 

All visual tasks consisted of only a classification phase that was nearly identical to 

the cued recall phase of the memory task. Instead of the cue, participants presented directly 

with the object and had to classify it. Reaction times of interest were recorded between the 

object onset and the classification decision. Again, for estimation stability, 99 participants 

with less than 55% correct responses or less than 2% incorrect responses were excluded. 

Reaction times below 150 ms were discarded. 
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3.4.2 Hierarchical Bayesian Drift Diffusion Models 

 

Both the visual containing seven experiments and memory dataset containing nine 

experiments were modelled separately on a single trial level and included reaction times and 

accuracy for each trial. Reaction times and accuracies were modelled by wiener-first-

passage-in-time (wiener-fpt) likelihood with a decision boundary α, a drift rate δ, a 

nondecision component τ and a starting point bias β on a single trial level (Navarro & Fuss, 

2009). The starting point bias β was always set to .5 which is a common choice for modelling 

accuracy data since one would not expect there to be a systematic bias toward correct or 

incorrect responses before target onset. All other parameter values varied deterministically 

as a function of hyperparameters such that, 

𝛼𝑖 = exp  𝜇𝑎 + 𝜎𝑎 ∗ 𝑎𝑠  

𝛿𝑖 = 𝜇𝑑 + 𝜎𝑑 ∗ 𝑑𝑠 

𝜏𝑖 = Φ 𝜇𝑡 + 𝜎𝑡 ∗ 𝑡𝑠  

where 𝑎𝑠 𝑑𝑠 𝑡𝑠 are varying at a subject-level. These single subject effects are shifted 

by location parameters 𝜇𝑎 𝜇𝑑 𝜇𝑡, resp., and scaled by scaling parameters 𝜎𝑎  𝜎𝑑  𝜎𝑡, resp. 

Both location and scale parameters vary between experiments and conditions and can be 

interpreted as the experiment and condition-wise group mean and group standard deviation. 

For a graphic illustration of the hierarchical model used here refer to Fig. 5 A and for an 

overview over the prior distributions for all random variables see Fig. 5 B. Following the 

suggestions of Ahn et al. (2017), we used an exponential link function for 𝛼𝑖 to ensure 

positive values, and a standard normal cumulative distribution link function for 𝜏𝑖 

transforming input values into a range between 0 and 1. The output values of the link function 
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were additionally scaled to be strictly between a minimum value of 0.1 (since a nondecision 

time of 0 seconds would be impossible) and the participant’s minimum reaction time in 

seconds. Modelling 𝛼𝑖  𝛿𝑖 𝜏𝑖 as a function of a subject-specific effect that is shifted and scaled 

by hyperparameter values is called a noncentered parameterization and is often helpful in 

drawing out high correlations between group-level parameters and thereby stabilizing model 

convergence and estimation performance (Ahn et al., 2017). 

 

3.4.3 MCMC sampling and condition difference of parameters 

 

All models were implemented in the probabilistic modelling language STAN 

(Carpenter et al., 2017) and sampled using the Python’s cmdstan interface with the 

Hamiltonian Monte-Carlo Algorithm and No-U-Turn Sampler. For each model, custom 

initialization values were passed to five independent sampling chains running in parallel on 

a high-performance cluster. Each chain ran 1700 iterations with 200 warming up samples. 

The maximum tree depth was kept at 10 and adaptation delta was set to 0.8. Additional 

diagnostics from the chains showed no signs for problems in sampling: Divergences were 

rare and only observed during the warm-up period and Bayesian fraction of missing 

information (Betancourt, 2016) values were sufficiently high for the memory (range: 0.7 – 

0.76) and the visual model (range: 0.65 – 0.79). Summary statistics indicated that most 

parameters achieved 𝑅̂ values below 1.01 (95.1% for the memory data, 93.7% for the visual 

data) (Gelman & Rubin, 1992) and sufficient effective sample size. 
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Posterior parameter distributions were based on the 7500 samples excluding the 

warm-up period. Our analysis focused on the posterior distributions of 𝜇𝑎 (decision 

boundary), 𝜇𝑑 (drift rate), and 𝜇𝑡 (nondecision time) that all varied between experiments and 

conditions. Within each experiment, marginal parameter distributions of the perceptual 

feature classification were subtracted from the semantic feature classification. A condition 

Experiments N (f, m, nb, NA) M Age (SD) Cue Perceptual Semantic 
      

Exp. 1 [1] 26 (19, 7, 0, 0) 19.0 (0.8) Verbs Drawing / Photograph Animate / Inanimate 

Exp. 2 [1] 24 (22, 2, 0, 0) 19.5 (0.9) Verbs Drawing / Photograph Animate / Inanimate 

Size 32 (21, 11, 0, 0) 25.9 (5.2) Verbs Big / Small Manmade / Natural 

Shape 25 (17, 8, 0, 0) 20.6 (2.4) Verbs Round / Elongated Manmade / Natural 

Scene Cue 27 (21, 6, 0, 0) 20.0 (2.2) 
Scenes / 

Verbs 
Drawing / Photograph Animate / Inanimate 

Spatial Cue 24 (20, 4, 0, 0) 18.9 (0.7) 
Spatial 

Position 
Color / Greyscale Living / Non-Living 

Spatial Cue 
Replication 

38 (27, 8, 0, 3) 23.4 (8.6) 
Spatial 

Position 
Color / Greyscale Living / Non-Living 

Attention 
Encoding 

40 (30, 8, 0, 2) 23.8 (3.6) Verbs Color / Greyscale Manmade / Natural 

Attention 
LOP 

52 (41, 9, 2, 0) 19.7 (3.8) Scenes Drawing / Photograph Manmade / Natural 
       

Memory NTotal 288 (excl 44) 21.5 (4.9)    

       

Exp. 1 [1] 23 (20, 3, 0, 0) 19.3 (1.1) – Drawing / Photograph Animate / Inanimate 

Exp. 2 [1] 24 (20, 4, 0, 0) 19.0 (0.9) – Drawing / Photograph Animate / Inanimate 

Size 40 (29, 11, 0, 0) 30.7 (5.9) – Big / Small Manmade / Natural 

Shape 24 (23, 1, 0, 0) 18.7 (0.6) – Round / Elongated Manmade / Natural 

Spatial Cue 24 (0, 24, 0, 0) 19.6 (0.8) – Color / Greyscale Living / Non-Living 

Spatial Cue 
Replication 

200 (130, 70, 0, 0) 33.7 (8.5) – Color / Greyscale Living / Non-Living 
       

Visual NTotal 335 (excl 99) 29.6 (9.4)    

      

Tab. 1: Overview over the studies used for the Drift Diffusion Modelling. Abbreviations: LOP = 

Levels of Processing, f = female; m = male; nb = non-binary; NA = not available; M = Mean; 

SD = Standard Deviation; excl = excluded participants. The Cue column lists the material used 

as cues in the recall task to remember the object. The last two columns list the perceptual and 

semantic dimensions that the objects used each experiment varied on. [1] Experiments 1 and 2 

taken from Linde-Domingo et al (2019). 
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difference was deemed significant, if 97.5 percent of the difference distribution were either 

larger or small than zero.   

 

3.4.4 Determining model validity via Posterior Predictive Check 

 

For the Posterior Predictive Check (Gelman et al., 2013), we constrained the wiener-

fpt likelihood function on the average parameter estimates from the posterior distribution and 

simulated reaction time datasets with 1000 responses for each participant and each condition. 

Only correct responses were included in the analysis. For both simulated (predicted) and 

observed datasets, reaction times were binned into five cumulative quantiles (0-10 %, 11-30 

%, 31-50 %, 51-70 %, 71-90 %), averaged within quantile and then plotted in comparison 

between conditions for both the memory data model and the visual data model (see Fig. 5 C). 
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Chapter 4: Tracking the reconstruction of naturalistic 

images from memory using similarity-based fusion 

of MEG and fMRI data 

 

4.1 Introduction 

 

The act of retrieving information from memory can sometimes be automatic and near 

instantaneous, for example when a photograph or an odor reminds us of a nice vacation we 

spent at the beach, and other times it can be effortful and hard like trying to remember a 

colleague’s name while they are approaching at a conference. According to an influential 

model, episodic recall starts with a part of the original pattern that was experienced serving 

as a cue that activates a compressed index ensemble of neurons in the hippocampus which 

will then in turn reactivate the whole pattern of information in the cortex – a process termed 

pattern completion (McClelland et al., 1995; O’Reilly et al., 2014; Teyler & DiScenna, 1986). 

The episode is represented as a distributed pattern of neural activity that can entail everything 

from semantic, gist-like representations to specific perceptual details (Danker & Anderson, 

2010; Rissman & Wagner, 2012). While a lot is known about the time course of the visual 

processing pathways during initial perception (Goodale & Milner, 1992b; Kravitz et al., 

2011; Mishkin et al., 1983b) and how it transforms information from low-level perceptual to 

high-level semantic representations (Groen et al., 2017), the time course of feature 

reactivation during retrieval is less clear. In this chapter, we will use multivariate combination 

of fMRI and MEG and Deep Neural Networks to track the feature-specific reactivation of 

visual images during the time course of retrieval.     
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General retrieval processes like recollection and familiarity have been well described 

and delineated by a host of behavioral and event-related potential studies (Rugg & Curran, 

2007; Yonelinas, 2002). Especially, the ERP studies point towards a positive parieto-temporal 

component indexing recollection-based retrieval (Rugg et al., 1998) that starts after 500 ms. 

Accordingly, memory studies in epileptic patients with intracranial electrodes show that 

information about a cue reach the hippocampus at about 200 to 300 ms after which a pattern 

completion process could be activated to retrieve content associated with the cue (Staresina 

et al., 2016, 2019; Staresina & Wimber, 2019).  

The advent of multivariate pattern classification methods made it possible to 

investigate content or feature reactivation during the retrieval process in neural signal albeit 

mostly in fMRI (Johnson et al., 2008, 2009; Polyn et al., 2005). The use of pretrained Deep 

Neural Networks (DNN) as encoding models has further helped to capture specific fMRI 

reactivation of low-level visual and high-level semantic features during retrieval all 

throughout the ventral visual stream (Bone et al., 2020). 

A recent study looked into the temporal dynamics of feature-based retrieval process. 

Linde-Domingo et al. (2019) showed participants everyday objects that varied among a 

perceptual (line drawing vs photographs) and a semantic (animate vs inanimate) dimension 

while they measured EEG activity. A classifier analysis of the signal revealed that the 

perceptual dimension could be successfully classified earlier than the semantic dimension 

when participants saw the images on-screen, in accordance with a forward sweep of 

information. But when participants had to retrieve the object from memory, classification 

peaked earlier for semantic features than for perceptual features, indicating a reversal of the 

hierarchy during retrieval. This effect has been replicated and generalized over multiple 

control conditions in reaction time studies (cf. Chapter 1) and has also shown a consolidation-
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based enhancement over days of repeated retrieval tests (Lifanov et al., 2021). Compared 

with perceptual processing, retrieval-based processing thus consistently prioritizes abstract-

semantic over detailed-perceptual information.  

Here we want to take a closer look at the spatio-temporal dynamics of the feature-

based retrieval process by fusing different data modalities using a data-driven, multivariate 

tool to investigate the processing of stimuli and their features called Representational 

Similarity Analysis (RSA). The idea is to transform the neural signal acquired by M/EEG or 

fMRI into a representational geometry by comparing neural activation patterns in response 

to all stimulus combinations (Kriegeskorte et al., 2008). The resulting Representational 

Dissimilarity Matrix (RDM) indicates how all stimuli relate to each other on a distance basis 

and makes it possible to directly compare how different data modalities (MEG/EEG, fMRI, 

DNNs) represent stimuli (Kriegeskorte & Kievit, 2013). Thereby RDM-based correlation 

(fusion) analysis has the ability to combine the spatial resolution of fMRI with the temporal 

precision of MEG and the feature-based focus of DNNs, which is why it has been extensively 

applied to object processing along the visual stream (Arbuckle et al., 2019; Cichy et al., 2017; 

Cichy, Pantazis, et al., 2016). Combing MEG and fMRI geometries was successfully used to 

envision the spatiotemporal dynamics of the ventral visual processing path (Cichy, Pantazis, 

et al., 2016). Another advantage of a fusion approach is the possibility to combine 

measurements from different participant samples (Kriegeskorte, 2009), for example Cichy et 

al. (2014) fused MEG data from humans to intracranial single unit recordings along the 

ventral temporal cortex in monkeys.  

For this research endeavor, we will use images from the Natural Scenes Database 

(NSD), a special database where each image comes with multiple 7T fMRI whole brain 

recordings from 8 different participants (Allen et al., 2022). In our present study, we let a 
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new sample of participants learn NSD images together with words and then cue them later 

in a retrieval phase with those words for participants to reconstruct the associated image from 

memory, while MEG is measured. By using the same set of images, we are able to transform 

both the NSD fMRI data, our MEG data, and Deep Neural Network activations in response 

to those images into representational geometries allowing us to fuse (correlate) the 

geometries arising in the different data modalities. Such a multimodal fusion can reveal when 

in time and where in the brain (or in what layers of a network) the representational structure 

shows the highest match.  

Taken together, we expect to see a forward flow of activation during the initial 

perception of the image, such that when correlating the representational geometries of 

different brain regions (fMRI) with the time resolved representational geometries of the 

MEG, early sensory areas (e.g. early visual cortex) should show significant correlation peaks 

first, followed by significant peaks from late areas (e.g. higher visual cortex, temporal cortex) 

later in time. Importantly, during the cued recall of the same images, we expect the opposite 

pattern of results, with late fMRI areas peaking before early areas, indicating a reverse 

information flow of image reconstruction from memory. 

Similarly, when correlating the feature-specific representational geometries of 

pretrained deep neural network layers, we expect to find that low visual layer correlations 

with the MEG peak first during encoding followed by higher visual and semantic layer 

correlation peaks. Corresponding to the MEG-fMRI fusion predictions, we expect to find a 

reverse pattern of information flow during retrieval, with semantic and higher visual feature 

layers showing an earlier correlational peak than low visual feature layers. 

As each image is retrieved multiple times, we will in a second step investigate how 

potential coactivation effects during retrieval change over the course of multiple retrieval 
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repetitions. While according to a recent theoretical account, multiple retrieval repetitions 

could strengthen an invariant semantic core of a memory (Antony et al., 2017), this effect 

might not occur within a session of retrieval repetitions but rather unfolds over longer time 

periods (Lifanov et al., 2021). Generally, we expect that reaction times (i.e. when in time 

participants indicate a reconstruction) will decrease over retrieval repetitions while accuracy 

(i.e. participants indicating a successful reconstruction from memory) should increase. 

 

4.2 Results 

 

In the learning phase of the MEG study, participants were presented with action verbs 

and naturalistic images from the Natural Scenes Database (Allen et al., 2022) and had to form 

a mental image or short story associating each pair. This association was, in a subsequent 

retrieval phase, re-elicited by cueing participants with the action verb and asking them to 

reconstruct the image mentally onto the screen while we measured their brain activity. 

Participants indicated the moment they had the image back in mind by pressing a 

‘Remember’ button or a ‘Forgotten’ button if they couldn’t remember. Participants indicated 

an overall high remembrance rate with an average of 88.1 % (SD = 32.4, see Fig. 8 B). 

However, since this is a subjective measure, each verb-image association was also tested 

once objectively during the retrieval phase. This was done by presenting either the correct 

image or a lure (both were 80% masked to make identification more difficult) to see if 

participants recognized the correct image. Like before, participants were able to distinguish 

between correct images and lures very well with an average accuracy of 88.5 % (SD = 32.0, 

see Fig. 8 B). When correlating both the subjective remembrance rate and image recognition 

accuracy a highly significant relationship, r = .88, p < .001, indicated that participants who 
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remembered the image more often were also better at recognizing the correct image, 

generally validating their self-report to remember the correct image (see Fig. 8 C).  

While participants saw each verb-image pair only once, they retrieved each 

association six times during the cued recalled phase. This makes it possible to track changes 

over trials in the accessibility of the memory trace. Behavioral measures of the subjective 

remember button press showed that participant’s average reaction times got faster over 

retrieval repetitions (one-way repeated-measures ANOVA: F(5, 140) = 51.44, p < .001, ηp
2 = 

.65, εGG = .33, see Fig. 8 A) and also more accurate (F(5, 140) = 24.44, p < .001, ηp
2 = .47, 

εGG = .53, see Fig. 8 A). More detailed post-hoc comparisons additionally showed that while 

the biggest decrease in retrieval time happens between the first and second repetition 

(Reaction Times: t(28) = 10.09, p < .001, d = 1.87; Accuracy: t(28) = -4.14, p < .01, d = -

0.77), there are still significant improvements between the second to fifth  (Reaction Times: 

t(28) = 3.46, p < .05, d = 0.64; Accuracy: t(28) = -4.41, p < .01, d = -0.82) second to sixth 

(Reaction Times: t(28) = 3.89, p < .01, d = 0.72; Accuracy: t(28) = -4.32, p < .01, d = -0.82). 

As predicted, multiple retrievals strengthen the accessibility of memory content in associative 

recall. 
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4.2.1 MEG-fMRI ROI Fusion 

 

To track the flow of information within the visual system during initial perception of 

images and then later the recall from memory, we transformed the MEG signal into a 

representational dissimilarity matrix (RDM) format creating a multivariate measure of how 

the sensor activity geometrically represents all images at any point in time. The time windows 

of interest are the initial perception of the image during the learning phase (i.e. when 

participants are presented with the image during encoding), and the retrieval of the image 

during the memory phase (i.e. when participants see the action verb as a cue and have to 

reconstruct the image). A separate sample comprised of eight different participants viewed 

   

   

   

   

   

   

                  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 
  
 
  
  

  
  

  
  

  
  
   

  
  

  
 
  
  

                 

                     

  

 

Fig. 8: A: Schematic of the paradigm used in our MEG sample. Participants associatively learned 96 

images together with action verbs. Later they were cued with the word and had to try to reconstruct 

the image 6 times. Memory for each association was tested once per image in a lure recognition test. 

B: Performance of MEG participants in cued recall (left) and the memory test (right). Boxplots 

represent the distribution of participant’s average accuracies and single dots indicate participants 

average accuracy. C: Correlation between participants average cued recall accuracy and memory test 

accuracy. The red line represents a least-squares fit to the data. 
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the same 100 images we used in our MEG study while their brain volumes were scanned in 

an 7T fMRI scanner (Allen et al., 2022). From this data, we captured the voxel activity of 

certain predefined ROIs (early visual cortex, mid-lateral, lateral, see Fig. 9 A, for ROI 

definition see Methods) and transformed these activations into the same RDM format as a 

multivariate depiction of how each ROI groups the images. In the next step, the MEG RDMs 

from each time point were fused (i.e., correlated) with the fMRI RDMs, resulting in a 

coactivation time course that signifies when in time the MEG representations are more 

similar to a certain ROI representation (see Fig. 9 A). To test the directionality of information 

processing we used a procedure developed by Michelmann et al. (2016) that transforms each 

correlation timeseries into a cumulative sum timeseries and then fits an ordinal regression 

model of ROIs (e.g. early visual first, mid-lateral second, lateral third) at each timepoint in a 

trial. The resulting timeseries of beta coefficients will show negative deflections if there is a 

forward processing stream (i.e., forward accumulation of information along those regions), 

and positive deflections during a reversal of the information flow (see Fig. 9 B).  

During the encoding time window (i.e., image onset) cluster activations of the 

different ROIs show a cascading onset pattern (see Fig. 10 B). Early visual cortex shows 

significant coactivation with the MEG RDMs first (onset: 70 ms, peak: 120 ms) followed by 

the mid-lateral ROI (onset: 80 ms, peak: 120 ms) and then later by the lateral ROI (onset: 

230 ms, peak: 300 ms). This pattern indicates a clear forward stream of information flow 

along the visual hierarchy from early sensory areas to high level visual areas represented by 
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the lateral ROI. The formal test of directionality showed a significant negative deflection 

between 110 and 410 ms, indicating a mainly forward stream of information progression. 

During the retrieval time window (see Fig. 10 C) cluster activations of all ROIs start 

after about 500 ms, with the lateral ROI starting first (onset: 640 ms, peak: 1100 ms) followed 

by the mid-lateral ROI (onset: 700 ms, peak: 810 ms) and then the early visual ROI (onset: 

700 ms, peak: 840 ms). Additionally, the high visual area ROI shows prolonged activity (up 

to 1300 ms) other than both the mid-lateral (up to 850 ms) and early visual ROIs (up to 870 

  

 

      

      

      

      

      

   

   

     

         
 
       

Fig. 9: A: Schematic of the RSA-based fusion approach. Upper row: Region-of-interest voxel 

activation are used to build one fMRI RDM per ROI. Middel row: Sensor activations at a timepoint t 

are used to build one MEG RDM per timepoint. Lower row: Hidden layer activations in response to 

an image or an image description are used to one DNN RDM per layer. MEG and fMRI RDMs are 

the correlated (fused) to get spatially informed representational time series. MEG and DNN RDMs 

are correlated (fused) to get feature informed representational time series. B: Schematic of the ordinal 

regression-based test of directionality. Correlation time series per ROI (or layer) are transformed into 

a cumulative sum over time and at each timepoint the order of ROIs or (layers) is regressed onto the 

cumulative sum values. Negative beta coefficients indicate a forward processing while positive beta 

coefficients indicate reverse processing. C: Distance between the layer representations of the two 

models (VGG16: block1-5, fc6-7; and Word2Vec). 
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ms). Although there seems to be a trend towards a reverse processing stream from high visual 

areas being activated first followed by low-level areas during the initial reconstruction 

process from memory, the directionality measure did not identify a significant deflection of 

any kind. 

 

4.2.2 MEG Neural Network Fusion 

 

The MEG fMRI fusion approach has the advantage of obtaining region-specific 

similarity with high temporal precision, showing information flow across the visual system 

during encoding and retrieval. To get a more detailed view of what types of features are 

processed at a given timepoint, we use an encoding model approach for our stimulus pool of 

naturalistic images by using the layer activations from visual (VGG16) and semantic 

(Word2vec) deep neural network models. As successor to the famous Alexnet (Krizhevsky et 

al., 2017), VGG16 is also built upon a biologically inspired architecture (Simonyan & 

Zisserman, 2015) which uses convolutional layers to extract image features and enable 

classification of objects and scenic content. Images are fed into the model, and activations 

from three hidden layers (block2 as low visual, block5 as mid visual and dense2 as high 

visual, see Fig. 10 D) are recorded as new features vectors. Semantic feature representations 

of the images are obtained by embedding short verbal image descriptions in a Word2vec 

model (Mikolov et al., 2013). This neural network has been pretrained on a large corpus and 

transforms input words into a lower dimensional semantic embedding space (e.g. it groups 

words that are semantically related closer together than semantically unrelated words). For 

each image or image description, hidden layer activations of VGG16 or Word2Vec, 

respectively, are used as feature vectors. By comparing the feature vectors for all pairwise 
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image combinations, layer-specific RDMs are computed and then fused with the MEG RDMs 

in a very similar way to the MEG-to-fMRI fusion reported above (see Fig. 9 A).  

To ensure that the visual and the semantic model capture different features of the 

images used in this study, we compared the RDMs from the last layer of each block of the 

VGG16 and the layer activations of the Word2Vec model (see Fig. 9 C) 

                 

                

                

 
  
  
  
   

 
  
 

                 

 
  
  

  
   
  

  
 
  
  
  
   

 
  
 

 
  
  

  
   
  

  

 
  
  
  
   

 
  
 

 
  
  

  
   
  

  
 
  
  
  
   

 
  
 

 
  
  

  
   
  

  

            

           
       

          

          
           
        

   

   

   
     
   
 

Fig. 10: A: Surface plot of masked areas used as fMRI ROIs. A predefined lateral visual processing 

stream was used from the NSD. B &C: Upper row: Average correlation timeseries between MEG 

RDMs and fMRI ROI RDMs. Lower row: Beta coefficients from ROI ordinal regression. Shaded 

area indicates SEM based on participants. D: Schematic of the visual (VGG16) and semantic DNN 

model with color-coded layers that were used for RDMs. E&F: Upper row: Average correlation 

timeseries between MEG RDMs and DNN layer RDMs. Lower row: Beta coefficients from layer 

ordinal regression. Shaded area indicates SEM based on participants. For B,C,D,F: Horizontal bars 

indicate significant clusters at p < .05 (corrected). 
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The same cascading pattern as before is observed during the encoding time window, 

with the low and mid-level features peaking first (onset: 90 ms, peak: 300 ms; onset: 80 ms, 

peak: 310 ms respectively) followed by a high-level visual layer peak (onset: 180 ms, peak: 

300 ms) and then the semantic layer peak (onset: 240 ms, peak: 750 ms). Again, on a feature-

specific level a clear forward flow of information from low level, early sensory to high-level, 

semantic regions is observed. Like in the MEG-to-fMRI fusion, the formal directionality test 

confirmed this forward processing stream with a significant negative deflection between 20 

and 680 ms. This deflection seems to be even more pronounced than in the MEG-to-fMRI 

fusion.  

For the retrieval phase, the results mirror the MEG-to-fMRI fusion results. Except for 

the semantic model, significant activation clusters (i.e., correlation peaks) are only observed 

after 500 ms, with an early onset of high visual and semantic layer information that is 

prolonged over the entire trial (550 to 1720 ms, peak: 700 ms; 530 to 1720 ms, peak: 1230 

ms, respectively). Similarity with low and mid-level layers peaked right after 500 ms but 

only for a short period (onset: 490 ms, peak: 560 ms; onset: 460 ms, peak: 630 ms, 

respectively). Again, the test of directionality did not reveal any significant deflections. 

 

4.2.3 Fusion analysis split over recall repetitions 

 

To investigate whether the above-mentioned change in behavioral measures over 

recall repetitions, coincided which changes in the representational geometries emerging 

during retrieval, we focused our next fusion analysis on objects that were correctly classified 

in the memory test and that were subjectively recalled correctly at least 4 times. The recall 
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trials were then split into the first two recall trials and the second two to four recall trials. The 

fusion analysis remained the same as above. 

For the MEG-to-fMRI fusion, the first group of recall trials seems to be dominated 

by a representational match with the lateral ROI (onset: 530 ms, peak: 610 ms) with no 

 

    

    

    

    

    

    

      

   

   

   

   

   

   

      

 
 
 
 

 
  
  
  
   

 
  
 

 
  
  
  
   

 
  
 

 
  
  
  
   

 
  
 

 
  
  
  
   

 
  
 

                

                

   
  
  

  

 
  
 
  
 
 

 

 

 

                                          

Fig. 11: A: Behavioral results for each of the six cued recall repetitions. Left: Boxplots of participant’s 

average reaction time. Right: Boxplots of participant’s average accuracies. Single dots indicate single 

participants. Lines on the top indicate significant differences between repetitions (p < .05, corrected). 

B: Average correlation timeseries between MEG RDMs and fMRI ROI RDMs split for the first two 

cued recalls (left) and the second two to four cued recalls (right). C: Average correlation timeseries 

between MEG RDMs and DNN layer RDMs split for the first two cued recalls (left) and the second 

two to four cued recalls (right). 
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significant clusters for the mid-lateral and early visual ROI. The opposite pattern is then 

found in the second group of recall trials where both mid-lateral (onset: 610 ms, peak: 650 

ms) and early visual ROIs (onset: 630 ms, peak: 760 ms), but not the lateral ROI, show 

significant clusters of correlation. The significant clusters found here overlap almost 

completely with the clusters found in our fusion analysis including all recall trials. 

The MEG-to-DNN fusion shows a similar but more intricate difference between the 

early and late recall repetitions. For the first two recall trials, there is a dominant correlation 

with the semantic layer expressed in a late big cluster (onset: 990 ms, peak: 1360 ms). While 

the low and mid-visual layers show some early activations before 500 ms, for the high visual 

layer only a small significant cluster is found (onset: 1180 ms, peak: 1300 ms). In the second 

group of recall trials, the semantic layer shows a smaller activation than before with 

significant clusters mostly between 390 and 990 ms (peak: 690 ms). Now the high visual 

layer has a more pronounced pattern of activations with significant correlation clusters 

between 720 and 1660 ms (peak: 750 ms). While a significant cluster is found for the mid-

visual layer (onset: 550 ms, peak: 640 ms), none is found for the low visual layer. 

 

4.3 Discussion 

 

The time course of visual perception has been studied intensively and a clear 

hierarchical transformation from low-level perceptual to high-level semantic information has 

been well established (Cichy et al., 2014, 2017; Goodale & Milner, 1992b; Groen et al., 2017; 

Martin & Barense, 2023; A. D. Milner & Goodale, 2008; Mishkin et al., 1983b). In contrast, 

evidence for the dynamics of information reactivation during the retrieval process is still 

sparse (Linde-Domingo et al., 2019; Michelmann et al., 2019). Here we used a multivariate, 
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data-driven approach of fusing temporally-, spatially- and feature-resolved data modalities 

to investigate the time course of retrieval. 

When testing our main prediction of a reversal of information flow between 

perception and memory recall, we did encounter a pronounced activation of lateral areas 

among the visual processing stream in a recollection-based timeframe of ~500 ms after cue 

onset (Staresina & Wimber, 2019). During the initial perception of the images, we saw the 

highest and most consistent representational overlap from this lateral ROI stream, in line with 

previous findings that scene related processing follows a more lateral path situated between 

the ventral object-oriented and parietal movement-oriented stream (Kravitz et al., 2011). This 

lateral ROI also includes part of the angular gyrus that is implicated in episodic memory 

retrieval (Berryhill, 2012; Thakral et al., 2017). Similarly, regarding the MEG-to-DNN 

fusion, we found pronounced semantic and high-visual layer reactivation during retrieval. 

Although a test for a reverse flow of information did not show significant positive deflections 

after 500 ms, the results show that high-level visual and gist-like representations are most 

reliably reactivated during the retrieval process (Robin & Moscovitch, 2017).  

As expected, we observed a significant forward stream during initial perception that 

was expressed in a forward cascading activation of fMRI ROIs as well as among a hierarchy 

of DNN layers from low to high visual and semantic features. The results of the fMRI ROI 

and the DNN layer fusion are well in line with previous fusion results, including studies 

where participants view objects or more complex scenes (Cichy et al., 2014, 2017; Cichy, 

Pantazis, et al., 2016). 

Interestingly, when taking a closer look into the development of the retrieval time 

course over multiple recall repetitions, we encountered unexpected results for both types of 

fusion analyses. For the MEG-to-fMRI fusion, lateral activation was mostly found for early 
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recall attempts and mid-lateral and early visual activation dominated later recall attempts, 

indicative of the retrieval becoming increasingly detail-focused over time. A similar but more 

nuanced switch in feature activation was found in the MEG-to-DNN fusion when comparing 

recall repetitions, going from more semantic activation in early recall attempts and then 

shifting towards more visual activation in later attempts. These results are surprising in light 

of previous suggestions that retrieval can act as a fast route to memory consolidation (Antony 

et al., 2017), stabilising and in this process also ‘semanticising’ memories through repeated 

reactivations. Since this idea was first proposed, empirical findings have lent support to the 

idea that repeated recall can stabilize memories, but not (as originally thought) in a fast 

manner, with the ‘semanticizing’ effects of retrieval often only showing after a longer delay 

of several days (Ferreira et al., 2019; Lifanov et al., 2021). Repetitions within one session, as 

conducted in the present study, have even been shown to lead to a gradually faster 

accessibility of perceptual details (Lifanov et al., 2021), consistent with the present fusion 

results that suggest a progression, over trials, from reactivation from mainly high-level visuo-

semantic to lower-level visual features. 

Curiously, descriptive differences in the correlation time series are observed between 

splits in a time window between cue onset and 500 ms (Fig. 11B), a timeframe in which. In 

this timeframe processing of the cue is still ongoing. During the first repetitions correlations 

tend to be greater than during later repetitions, although not significantly so. Since this effect 

is mainly driven by a change in the temporal representational geometry of the MEG, it might 

depict a more effortful retrieval process during the first repetitions which would correspond 

to the behavioral findings of reduction of reaction times and increase of accuracy over 

repetitions. 
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In our current analysis, predefined fMRI ROI masks were used from the NSD 

database that were determined and created alongside the sampling of the database (Allen et 

al., 2022) and were derived from regions defined in the Wang Atlas (Wang et al., 2015). An 

early visual cortex ROI included V1-3, a smaller mid-lateral ROI included LO1 and LO2 and 

a lateral ROI that sits more anterior to the mid-lateral ROI and is enframed by the edges of 

the superior temporal sulcus and the angular gyrus. Importantly, this last ROI is several times 

bigger than the mid-lateral ROI. 

There is a possibility the differing size of the ROIs, especially the mid-lateral 

compared to the lateral and early visual ROI have an impact on our results. While larger ROIs 

more likely encompass heterogenous regions with diverse functional connectivity and 

activation patterns (Wei et al., 2022), small ROIs might be functionally too specific to find 

significant covariation with MEG signal (Geerligs et al., 2016). It might be that the distinction 

between the early and the mid-lateral ROI is too small which could explain why the time 

courses of both ROIs are very similar. Taking these caveats into account, further analysis 

would profit from more equally sized ROIs or a searchlight approach allowing for a more 

fine-grained and even-handed depiction of the representations shared between fMRI and 

MEG. 

A question that is currently strongly debated in the memory field is whether memory 

retrieval relies on the reactivation of the original patterns established during encoding, or 

rather a somewhat transformed version of the perceived experience (Favila et al., 2020). 

Early fMRI studies, including those using multivariate methods, found evidence for an 

overlap between areas activated during encoding and areas activated during retrieval (Danker 

& Anderson, 2010), with the latter typically being smaller (Wheeler et al., 2000) and 

restricted to later sensory processing stages (Danker & Anderson, 2010). Additionally, 
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memory retrieval was shown to be supported by parietal activity in ERP studies (late positive 

complex most pronounced in temporo-parietal regions) and in fMRI studies (Johnson et al., 

2009; Mecklinger et al., 2016). Early studies assumed that parietal activations reflect memory 

operations on the retrieved content, rather than content representations in themselves. In 

recent years, however, it became clear that retrieved content is decodable from parietal 

activations, and in fact is relatively more decodable during retrieval than perception, 

suggesting a transformation of information between encoding and retrieval (Favila et al., 

2020; Long & Kuhl, 2021). Importantly, the current study uses fMRI patterns from a 

perceptual exposure condition where participants are viewing the images on screen, and these 

patterns are used for comparison with the encoding/perception and retrieval MEG patterns. 

The study might thus not be sensitive to pattern transformations occurring between encoding 

and retrieval. A comparison with fMRI signal from participants doing the task presented here 

with the same images could elucidate not only mere reactivation of visual processing 

patterns, but also pattern transformation. Such an fMRI dataset has actually been collected 

by our group, but analysis was beyond the time frame of my PhD. Furthermore, a comparison 

between both MEG retrieval to fMRI encoding and MEG retrieval to fMRI retrieval patterns 

could elucidate the temporal dynamics between both forms of memory representation, for 

example by delineating at which time points are different regions of the brain more engaged 

in pattern reactivation (higher fMRI encoding to MEG retrieval correlations) versus pattern 

completion (higher fMRI retrieval to MEG retrieval correlations).  

Our study used two different samples for the MEG and fMRI which is not uncommon 

for a representational fusion approach (Cichy et al., 2014; Kriegeskorte, 2009). It has to be 

kept in mind that this obscures idiosyncrasies in memory encoding and retrieval that could 

be modelled if both MEG and fMRI samples would use the same participants and focused 
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only on coactivations that are consistent over participants. Retinotopic maps in early visual 

areas are preserved across subjects (Benson et al., 2012). Studies comparing fMRI activations 

between participants who recall the same memory show a high overlap in high-level areas 

(Chen et al., 2017). However, there might still be a possibility that idiosyncrasies in 

reactivation could affect perceptual details more strongly than a semantic gist. 

In our current analysis, we are restricting representational geometries in the fMRI to 

certain ROIs. In a next step, we will extend this analysis with a searchlight approach where 

RDM matrices are computed from a shifting searchlight of voxels throughout the entire brain. 

This renders a whole brain volume of RDMs enabling us to create a time-resolved movie of 

coactivations between MEG and fMRI representational geometries. In the past, this approach 

has been used in visual perception studies to show a forward stream of activation (Cichy, 

Pantazis, et al., 2016). A more spatially resolved method like this could be fruitful to show 

evidence of memory reactivation in a reverse or even more complicated fashion, without the 

need to focus on predefined ROIs. 

A potential avenue for further analysis could be the inclusion of eye tracking data that 

is available for most participants. Eye movements have in the past been shown to covary with 

memory retrieval (Hannula & Ranganath, 2009). Johansson et al. (2022) showed that gaze 

patterns during encoding reoccurred during retrieval of the image. The degree to which gaze 

patterns were reactivated directly or in a rule based transformed fashion could predict the 

fidelity of memory retrieval. With these results in mind, it would be interesting to see whether 

the degree of overlap of scan paths between encoding and cued recall could be harnessed as 

an implicit measure of retrieval quality to sort our trials and sharpen further analysis steps, 

or even as a covariate that explains the overlap in neural activations at distinct time points 

(Linde-Domingo & Spitzer, 2023).  
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4.4 Methods 

 

4.4.1 MEG Participants & Procedure 

 

Twenty-nine participants (16 female; MAge = 25.1, SDAge = 3.9) were recruited 

from the University of Glasgow Subject Pool to participate in the MEG study. Eligibility 

criteria included normal or close-to-normal vision, proficient English knowledge and absence 

of psychological conditions (e.g. ADHD, epilepsy). Before the in-person appointment in the 

MEG, participants completed an internet version of the training task to get familiar with the 

task. Upon arrival at the MEG facilities participants signed a consent form and were then 

prepared for MEG by attaching head position coils to the head. After being seated in the 

MEG in a magnetically shielded, participants read the instructions for the main task and 

finished the training task. Participants completed all 8 blocks of the experiment, with 

typically a larger break between the first and second four blocks. After completion of the 

task, participants were debriefed and received 30 Pounds in cash as a compensation for their 

participation. This experiment followed all ethics guidelines and was approved by the CCNi 

Research Board, Glasgow. 

 

4.4.2 MEG Material & Design 
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The stimulus pool for this study consisted of 100 naturalistic images taken from the 

NSD (see “NSD Participants & Material”). 96 images were used for the main task, while 4 

images (the same for all participants) were used for the training task. 

The main task used here consisted of three phases: An associative learning phase, a 

distractor number task and a cued recall phase. In the learning phase, each trial started with 

a jittered fixation cross (0.5 – 1.5 s), followed by an action verb as a cue (1 s). Afterwards a 

second jittered fixation cross (0.5 – 1.5 s) appeared before the image was presented. 

Participants were instructed to form an association between the action word and the image 

and indicate the association with a button press. The association learning was thereby semi 

self-paced with either the button press or a maximum duration of 10 s ending the trial. Each 

verb-image pair was presented and learned once, with a total 12 pairs of verb-image 

associations were learned per block. Following the learning phase, participants engaged in a 

short distractor number task where they categorized odd or even numbers using the left or 

right index finger button, resp. This task lasted for 30 s and participants were instructed to 

classify as many numbers as accurately as possible. Feedback of performance (i.e. number 

of trials and percentage of correct classification) was given after the task. During the whole 

recall phase, a square outline of the same size as the images was continuously displayed in 

the background to aid memory reconstruction. Each retrieval trial started with a jittered 

fixation cross (0.5 – 1.5 s) that was followed by an action verb. Participants were instructed 

to retrieve the image that was paired with the action verb and reconstruct it mentally within 

the square frame to the best of their ability.  The action verb disappeared after 0.5 s and two 

response options appeared outside of the square frame. An “R” for Remembered always 

appeared on the right and an “(F)” for Forgotten always on the left side of the frame. 

Participants were told to indicate whether they could reconstruct the image or not by pressing 
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either their right index button for “R” or their left index button for “F”. After either button 

press or a maximum duration of 10 s, response options disappeared leaving only the white 

frame on screen for 3 s. Participants were told to keep their reconstructed image actively in 

mind during this period. After 3 s the next retrieval trial started, unless there was a random 

memory test. In case of a memory test, the white frame changed color to red and a fixation 

cross appeared in the middle of the screen for 1 s. Then a masked image appeared within the 

frame together with two response options (“C” for Correct and “IC” for Incorrect) on the left 

and right outside of the frame. Presentation side of response options was counterbalanced 

between participants. The masked image consisted of either the correct image (i.e. image that 

was presented with the action verb) or a lure image from the same block. Images were 

overlaid by a black square with randomly placed transparent tiles blocking of 80 % of the 

image to challenge recognition performance. Participants were instructed to respond as 

quickly and accurately as possible using the left and right index button. After either button 

press or a maximum duration of 6 s the next retrieval trial started. Each of the 12 verb-image 

associations was retrieved six times (72 trials) and tested one time (12 trials). The memory 

test appeared randomly after one of the six retrieval trials. This task repeated over 8 blocks 

testing overall 96 verb-image pairs. The training task was a shortened version of the main 

task described above and consisted of 4 separate verb-image pairs in the learning phase and 

2 retrieval trials and 1 memory test trial per pair.  

 

4.4.3 MEG Data Acquisition 

 

Continuous MEG signals were recorded from 306 channels (204 planar gradiometers, 

102 magnetometers; Elekta Neuromag TRIUX, Elekta, Stockholm) at a sampling rate of 
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1,000 Hz and filtered above 330 Hz. In 28 participants an additional two electrodes were 

placed above and below the left eye and two electrodes were placed next to the left and right 

eye to measure vertically and horizontal, resp, eye movement. In the MEG scanner eye 

activity (gaze patterns, pupil dilation) was additionally monitored with an EyeLink Tracking 

System (SR Research, Ottawa, Canada) in all participants but was only stable in 25 of 29 

participants. Visual stimuli were projected onto a screen (~1.15 m from participant’s eyes) in 

the magnetically shielded room using a PROPixx projector (VPixx Technologies, Saint-

Bruno, Canada) with a 1440 Hz refresh rate. All images were presented at the center of the 

screen in their original size of 425 x 425 pixels (visual angle: ~ 4.48°). Participants were 

given a left- and a right-hand button box for recording manual responses (fMRI optical 

response pad; LUMItouch, Photon Response Inc., Burnaby, Canada). Due to a software 

malfunction, in one block of one participant MEG was not recorded during the learning 

phase. 

Individual anatomical MRI scans (T1-weighted; 1 × 1 × 1 mm voxels; TR = 7.4 ms; 

TE = 3.5 ms; flip angle = 7°, field of view = 256 × 256 × 176 mm) of participants were 

acquired in the Glasgow CCNi facilities 3T Scanner (Siemens, Germany). 

 

4.4.4 MEG Data Preprocessing 

 

All data preprocessing was done using the MNE toolbox v1.2.2 (Gramfort et al., 

2014) and custom-tailored Python code. Spatiotemporal SSS was applied to the raw data via 

MNE’s inbuilt maxfilter function with a duration window of 100 s (acting as an implicit low-

pass filter at 0.01 Hz), a correlation value of .9 and head motion correction from continuous 

HPI recordings.  
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To reduce the influence of artifactual noise in the signal, independent component 

analysis (ICA) was applied to the maxfiltered data. To estimate the signal sources and 

unmixing matrices, data from all MEG channels was concatenated over blocks, Butterworth 

filtered between 1 and 40 Hz and then downsampled to 100 Hz. Since ICA can be influenced 

by noisy data trials, the signal was split into fixed length epochs on which a global rejection 

threshold was estimated using the autoreject package (Jas et al., 2017). Bad data epochs were 

then dropped according to the package’s recommendations (see below). ICA was estimated 

with MNE’s ICA class using the picard algorithm with as many components to capture 98 % 

of the data’s variance. The estimated source time series and topographies of each participant 

were visually inspected to detect ocular and cardiac components. For all participant ocular 

and cardiac components were identified and rejected from the data with a median of 5 

components per participant (range: 2 – 7 components).  

The maxfiltered and ICA cleaned data was low passed filtered to 100 Hz and then 

split into epochs. The two ERF windows of interest where the encoding (i.e. onset of the 

image during the learning phase) and the retrieval cue (i.e. onset of the action verb during the 

retrieval phase) window. Both windows were cut to 0.5 s before and 4 s after event onset and 

downsampled to 500 Hz. To avoid slow drifts in the signal, a trial masked robust detrending 

procedure was used instead of a high pass filter which can distort classifier performance (van 

Driel et al., 2021). In this procedure trials are cut to long epochs including 15 s before and 

after each event and a robust trend is iteratively estimated while blocking high amplitude 

outliers. The ERF window of interest around the event marker is not included in the trend 

estimation (i.e. masked) to not discard valid low frequency signal. We first removed an order 

1 (linear) trend before removing an order 30 trend.  
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Artifacts in the signal of each participant were automatically detected using the 

“autoreject” package (Jas et al., 2017). This procedure identifies artifact trials by optimizing 

the fit between the median signal of all trials and the mean signal of non-rejected trials. 

Whether a trial is rejected or interpolated is controlled by two hyperparameters with optimal 

parameter values being determined that were identified by a grid search with cross-validation. 

For the encoding window a total of 71 trials (2.6 %) were rejected with an average of 2.45 

rejections per participant (SD = 4.52) and for the retrieval cue window a total of 737 trials 

(4.4 %) were rejected with an average of 25.41 rejections per participant (SD = 31.1). 

 

4.4.5 NSD Participants & Material 

 

For our study we used image and fMRI data taken from the Natural Scene Database 

(Allen et al., 2022). In the creation of the NSD eight participant were presented with over 

70000 images during more than one year of weekly 7T fMRI scanning sessions. While most 

images where only seen once by one participant, a certain subset of images called the “special 

100” were presented three times to each of the eight fMRI participants. For this study, we 

chose these 100 naturalistic images to, first, maximize the amount of available fMRI data (24 

brain volumes per image) and, second, achieve a heterogenous sample of images maximizing 

variance in general brain areas of interest (i.e. early visual cortex, inferior temporal cortex). 

All images (425 x 425 pixels) from NSD originate from the Mircosoft COCO database (Lin 

et al., 2014) and are depicting natural scenes with multiple objects from 80 different 

categories (e.g. people, traffic, animals, food, furniture etc.). 

 

NSD fMRI Data Acquisition, Preprocessing and ROIs 
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MRI data was collected on a 7T Siemens Magnetom scanner, using a single-channel-

transmit, 32-channel-receive RF coil. For functional scans, Allen et al. (2022) used a 

gradient-echo EPI sequence (TR = 1,600 ms, TE = 22.0 ms, flip angle 62°, echo spacing 0.66 

ms, bandwidth 1,736 Hz per pixel, partial Fourier 7/8, iPAT 2, multi-band slice acceleration 

factor 3) that covered the whole brain (field-of-view 216 mm (FE) × 216 mm (PE), phase 

encode direction anterior-to-posterior, matrix size 120 × 120). Each functional volume 

consisted of overall 84 axial slices, each 1.8mm thick, with 0mm gap, resulting in isotropic 

1.8 mm sized voxels.   

A general linear model (GLM) including a denoising approach (see Allen et al., 2022) 

was used to estimate a single beta image per image presentation, approximating the BOLD 

voxel pattern elicited by this image. For the given image set used in the present study, we 

thus obtained 100 (images) x 3 (repetitions) x 8 (participants) = 2400 functional volumes.   

Predefined region of interest masks were derived from NSD as a subset of “streams 

ROIs”: 1. Early visual cortex ROI that includes V1-3 from Wang et al. (2015), 2. Intermediate 

lateral ROI that includes LO1 and LO2 from Wang et al. (2015), and 3. High-level lateral 

ROI that is enframed by the edges of the superior temporal sulcus and the angular gyrus 

(https://cvnlab.slite.page/p/X_7BBMgghj/ROIs). 

 

4.4.6 Neural Network Data Acquisition, Preprocessing and Layer 

Information 

 

To capture low to high level visual features of the images, we used a pretrained 

VGG16 (Simonyan & Zisserman, 2015) from Tensorflow. This convolutional deep neural 

network (cDNN) follows a similar biologically inspired architecture of the visual cortex like 
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the previous gold standard AlexNet (Krizhevsky et al., 2017) but improves upon its image 

classification performance to 93% (top-5 out of 1000 categories). The original VGG16 

consists of 13 convolutional and 3 fully connected layers and is trained on the ImageNet 

database for image classification. Since our dataset is a more naturalistic and complex image 

set with scenic information and multiple objects, we adapted the original model in the 

following way: The original three fully connected layers were dropped and replaced by two 

fully connected layers (2048 neurons) ending in 80 neuron output layer with a sigmoid 

activation function to enable multi-label classification. Thereby it is possible to transfer-learn 

the original model to detect multiple objects within an image. We fine-tuned this new model 

on 20531 training images taken from NSD. These images did not contain the “special 100” 

used in the MEG and fMRI data and were split into a training and a validation set (90%/10%, 

resp). Image labels come from MS Coco’s 80 categories of objects with an 80x1 vector of 1s 

and 0s for each image indicating which objects are depicted. As loss function to train the new 

model we used a sigmoid f1 score (Bénédict et al., 2021). The f1-score function (Powers, 

2020) balances precision (“how many retrieved categories are actually relevant?”) and recall 

(“how many of all relevant categories were retrieved?”) and is a preferred performance 

measure in case of multilabel classification (Bénédict et al., 2021; Opitz & Burst, 2019). 

Instead of freezing layer weights, all layers were trained with different learning rates for the 

convolutional layers (lr = 1e-6) and the new fully connected layers (lr = 1e-4). The new model 

was trained for 100 epochs and reached a validation set f1 score ≈ .51. Then, each of the 100 

images from our study was input into the model and its layer activations were taken from 

layer 3 (block1_maxpool), layer 9 (block5_maxpool) and layer 15 (dense2) as a proxy for 

early, mid- and high visual feature representations.  
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For a semantic model of image features, we used a pretrained Word2vec model from 

the nlu package (John Snow Labs). This model embeds input words in a 300-dimensional 

space that maps out a semantic geometry. This means that words that describe semantically 

similar concepts (e.g. “king” and “queen”) are grouped closer together and farther away from 

dissimilar concepts (e.g. “king” and “chair”). For each of our 100 images, we retrieved five 

short sentence descriptions (e.g. “A man walking a dog in the park”) from MS COCO and 

input these descriptions into the Word2vec model to get a 300x1 vector as a semantic 

representation per image. 

 

4.4.7 Representational Similarity based Fusion of Data Modalities 

 

For the MEG data, encoding trials were cropped to -0.5 s and 1.5 s around image 

onset and retrieval cue trials were cropped to -0.5 s and 4 s around cue onset. Both signals 

were baseline corrected with an average pretrial time window between 0.5 and 0.2 s. Each of 

the 102 sensor triplet (2 gradiometers, 1 magnetometer, 306 sensors in total) was spatially 

combined with the mne’s “as_type()” function into 1 virtual magnetometer. Each encoding 

trial per participants equals one image. For the general fusion, all retrieval trials of one image 

were averaged over repetitions resulting in one average trial per image. For the comparison 

of fusion results over repetitions, only images that were successfully remembered at least 4 

times were included in this analysis. Here, all retrieval trials of an image were split into the 

first two and the remaining two to four recall repetitions resulting in two averaged trials per 

image. Feature vectors per image were retrieved from the encoding and retrieval trial data in 

the following manner: A gaussian window (full-width at half maximum ~ 40 ms) was slid 

over the time dimension with a center at time point t in 10 ms steps. At each time point the 
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window was gaussian averaged leaving a 102-element vector representing the sensor 

activations at time point t. Within each time point each image was compared to each other 

image by computing the correlation distance (1-r) between their sensor activations. The 

resulting 96x96 array of all comparisons is called a representational dissimilarity matrix 

(RDM) and describes the representational geometry of the MEG signal at this time point. 

Accordingly, after looping over time there will be one RDM per time step for both encoding 

and retrieval cue windows.   

For the fMRI data, beta values for the whole brain were normalized and ROI masks 

were used to extract the voxel activations for each ROI and image as feature vectors within 

participants. For each participant and ROI, feature vectors of each image were compared to 

each other image by computing the correlation distance (1-r) resulting in three ROI-specific 

RDMs (early visual, mid-lateral, lateral). 

For the neural networks, within each chosen layer hidden activations of each image 

were compared to each other image with a correlation distance resulting in 4 layer-specific 

RDMs (early, mid-, high visual and semantic). 

Since all modality specific signals have been transformed into the same space, RDMs 

can be correlated (so called second order correlation or Fusion) themselves. In the case of 

MEG-fMRI fusion, each ROI-specific RDM was correlated with all encoding-specific RDMs 

and retrieval-cue-specific RDMs yielding an ROI encoding and an ROI retrieval-cue time 

course of second order correlation values. High values at a time point indicate that this ROI 

represents the images in our study more similar to the sensor activations at this time point. In 

the case of MEG-DNN fusion, the same procedure was used but instead of ROI-specific 

RDMs the layer-specific RDMs were used. All RDMs were correlated using Pearson 

correlation. 
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4.4.8 Significance Testing 

 

The correlation of participant average accuracies between cued recall and memory 

test was tested for significance using a one-sample t-test. Reaction time and accuracy data 

over recall repetitions were analyzed using a one-way repeated measures ANOVA with recall 

repetitions as a six-level factor. Degrees of Freedom and p-values for the ANOVA were 

Greenhouse-Geisser corrected if sphericity assumptions were violated. Here ANOVA results 

are reported with Greenhouse-Geisser’s epsilon instead of corrected degrees of freedom. 

Post-hoc t-tests between repetitions were corrected using a Tukey-HSD criterion.  

Encoding and retrieval-cue time courses of second-order correlations were tested 

using a cluster permutation test. A surrogate dataset of 1000 permutations was created in the 

following manner: Within one permutation step, the order of each ROI-specific and layer-

specific RDM was randomly shuffled and each shuffled matrix was then fused with the 

encoding and retrieval-cue RDMs (which were not shuffled). Note that the RDMs were only 

shuffled once and held constant over time to not disturb the autocorrelation of the signal. 

Each surrogate time series was z-transformed and significant values were defined to exceed 

a threshold of value alpha (in this case αvalue < .05). The thresholded time series were then 

screened for clusters of significant values and z values within each cluster were added giving 

each cluster a z-sum value. For each permutation and time series, the biggest z-sum value 

was saved, resulting in a vector of the 1000 most extreme surrogate z-sum values. In the real 

data, significant clusters of activation were determined in the same way as in the surrogate 

data using the alpha-value and z-sum values for each cluster was computed. These values 

were then compared against the distribution of most extreme surrogate z-sum values and 
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were deemed significant if they exceeded a threshold of cluster alpha (in this case αcluster < 

.05). This means that real clusters had to be higher than 5 % of the most extreme clusters 

from the surrogate (Null) distribution. 

 



97 

 

 

 

Chapter 5: General Discussion 

 

The aim of this thesis was to track the spatiotemporal dynamics of feature-specific 

retrieval. For episodic memory, an engram or a memory trace is understood as a binding of 

content that was experienced in a certain situation or event with features ranging from low-

level perceptual details (“seeing brown fur”) over gist-like information (“an animal in the 

park”) up to schemas (“someone walking their dog”) and general abstract knowledge (“a dog 

is an animal”). Similar to the known hierarchical organization of the visual system, where 

incoming percepts are transformed from low-level detailed to high-level conceptual 

information over the brain regions of the ventral visual stream (Desimone et al., 1984; 

Goodale & Milner, 1992; Gross et al., 1972; Martin & Barense, 2023; Mishkin et al., 1983), 

converging evidence points towards a similar hierarchical organization of the memory trace 

with a preference for high-level gist like information over perceptual details (Ahissar et al., 

2009; Ahissar & Hochstein, 2004; Brady et al., 2011; Kerrén et al., 2023; Konkle et al., 

2010b, 2010a; Lifanov et al., 2021; Linde-Domingo et al., 2019; Van Kesteren et al., 2012).  

An episodic long term memory (LTM) trace is posited to bind together cortical 

patterns representing the elements of an episode in such a manner that encountering a partial 

pattern (cue) can bring back the whole pattern (other elements and their features of this 

episode) via a process of pattern completion (Horner et al., 2015; Horner & Burgess, 2013; 

McClelland et al., 1995; Teyler & DiScenna, 1986; Teyler & Rudy, 2007). While this theory 

makes little to no assumptions about the spatio-temporal relations and dependencies of these 

cortical patterns, if these cortical patterns of the elements and their features are represented 

within the visual hierarchy in a spatially reverse manner as mentioned above, this would 

imply a temporal difference in the accessibility of features during memory retrieval. 
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By combining behavioral reaction time studies with computational models, deep 

neural networks and MEG as well as fMRI data, we were able to delineate in detail, the time-

resolved topography of information processing during memory encoding as well as retrieval, 

expanding on our knowledge of the perceptual forward stream as well as the memory-based 

reverse stream of information flow. 

 

5.1 Specificity and robustness of the reverse stream effect 

 

Previous studies found initial evidence that this hierarchical structure can be probed 

with reaction time measures, showing faster accessibility of semantic features compared to 

perceptual features during retrieval. However, so far this effect has only been shown under 

very specific conditions, where the association between action verbs and objects were learned 

(Lifanov et al., 2021; Linde-Domingo et al., 2019). After a break, the words were presented 

as cues and participants had to recall whether the associated object was either animate versus 

inanimate (semantic feature) or a line-drawing versus a photograph (perceptual feature). 

Accordingly, showing the generalizability and robustness of this effect would be a necessary 

to prove that feature-specific reaction times are able to probe the state of episodic LTM traces. 

In a first sequence of studies, the type of semantic and perceptual features participants 

had to recall were extended. Perceptual object features were presentation size on screen (big 

vs small; Exp. 1) and the shape of an object (rounded vs elongated, Exp. 2), while semantic 

object features were always naturalness (manmade vs natural). When objects were directly 

classified from vision, perceptual classification was faster than semantic classification, in 

accordance with previous studies (Lifanov et al., 2021; Linde-Domingo et al., 2019) and 

indicating a forward stream of information processing during perception. As expected, the 
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opposite reaction time difference was observed in the memory task but reached only 

significance in Exp 1. Interestingly, we could not replicate this effect when instructing 

participants to differentiate between different object shapes instead of object sizes, while 

keeping all other aspects of the experiment identical. As object shape is an identifying feature 

with semantic content, we could show that the underlying factor causing reaction time 

differences truly is perceptual versus semantic content.  

Previous studies all relied on the same kind of probe to induce recall, an action verb 

which had been learned alongside the object (Lifanov et al., 2021; Linde-Domingo et al., 

2019). To rule out that written action-verbs facilitated semantic-feature recall over 

perceptual-feature recall, we tested different types of probes. As such, we asked participants 

to remember scenes alongside an object and an action verb. We then either probed the object 

via the scene or the action verb. In both cases, semantic differentiation led to faster reaction 

times than perceptual differentiation. Additionally, in another experiment, we used spatial 

location of the presentation of an object as recall probe rendering it inherently ‘meaningless’ 

on a semantic level. Nonetheless, we again could show that spatial location as probed for 

recall led to faster reaction times for semantic compared to perceptual features.  Our results 

underline that the reversed hierarchical reactivation of the whole pattern that the memory 

trace binds together is not influenced by the nature of the partial pattern (cue). 

Still, an alternative explanation would be that participants show a bias in learning, by 

focusing more on semantic compared to perceptual features, which in turn would make them 

accessible faster when recalling the object. To test this, we manipulated the attentional focus 

of participants during the learning phase of the experiment by letting them attend either the 

semantic or the perceptual category of an object in Exp. 6 or by letting participants form their 

associations between scene cues and objects on a deep or a shallow basis in Exp.7 (Craik & 
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Lockhart, 1972). In both experiments, an advantage of semantic over perceptual feature 

accessibility in reaction times could be observed independent of attentional manipulation. 

When modelling all tasks mentioned above plus the original tasks presented in Linde-

Domingo et al. (2019) in a meta-analytic GLMM, visual feature classification of objects 

shows a reliable forward stream of information while feature classification from memory 

shows a reliable reverse stream of information. These results indicate the ability of feature-

specific reaction times to access and map temporal differences in the accessibility of features 

that comprise an episodic LTM trace.  

 

5.2 Modelling the cognitive components of the forward and 

reverse stream 

 

As robustness of the reverse stream effect could be reliably demonstrated, a next step 

would be to investigate the underlying cognitive components in both visual encoding 

(forward stream) and retrieval (reverse stream). We therefore decided to apply the well-

established Hierarchical Drift Diffusion Model (HDDM; Ratcliff & McKoon, 2008; Wiecki 

et al., 2013), which estimates decision-related parameters based on reaction time distributions 

of each individual person. For example, it can be assumed that a fast integration of perceptual 

information necessary to reach a conclusion, implied by a steep decision slope, would lead 

to coherently fast responses. In contrast, a more difficult integration process, would be 

illustrated by a flat slope indicated by longer reaction times with a higher temporal variance 

between single responses (Arnold et al., 2015; Lerche et al., 2017; Lerche & Voss, 2017; 

Nunez et al., 2024; Voss et al., 2004).  
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The simplified version of the model divides reaction times into 4 different 

subcomponents of the decision process (van Ravenzwaaij et al., 2017; Wiecki et al., 2013). 

The starting point describes initial biases towards one of the categories. As our experiment 

was balanced on a 50% chance level for the categorization task, meaning each category was 

correct for the same number of trials, we fixed the starting point to have equal probabilities 

for both categories. The decision-based accumulation rate describes the speed of the decision 

process, illustrated by how fast decision-relevant information is integrated through the 

steepness of the decision slope. The decision boundary describes the point at which the 

decision is reached, illustrating the tradeoff between accuracy and speed of the decision. 

Lastly, the nondecision time refers to purely perceptual and motor aspects, incorporating the 

assumed length of the stimulus encoding time prior to the start of the decision process and 

the motor response after a decision has been made. 

To first estimate these components for the recall phase in the reverse stream, we 

applied the model to all memory datasets presented in Chapter 2 of this thesis. As expected, 

results showed a clear difference between perceptual and semantic features on the decision-

based accumulation rate, implying that semantic information is more readily accessible 

during retrieval than perceptual information. At the same time, no differences could be found 

in decision boundaries and nondecision time, which suggests that the reverse stream indeed 

describes the neuronal basis of memory recall and is not a confound of perceptual processes 

or individual decision bias. 

Furthermore, we analyzed the forward stream by applying the HDDM model (Wiecki 

et al., 2013) to all six perceptual categorization datasets we collected.  However, we only 

found a significant difference between perceptual and semantic features in the non-decision 

component, which is difficult to interpret and has not received a lot of attention in previous 
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literature. However, a possible explanation could pertain to the purely perceptual nature of 

the early phase of visual recognition and encoding, which is faster for perceptual compared 

to semantic features, leaving no apparent differences in the cognitive components of the 

decision process itself. Nonetheless, this subcomponent is not yet well understood and should 

therefore be interpreted with caution (Verdonck & Tuerlinckx, 2016). 

In conclusion, these results provide first indications that differences in encoding 

semantic and perceptual categories could be based mainly on early perceptual stimulus 

processing instead of higher-level cognitive aspects, while for the reverse stream, differences 

could be caused by divergence in the speed of the integration of relevant information, cued 

by semantic features. Especially, the latter result provides additional evidence that feature-

specific reaction times reflect a memory search process. 

 

5.3 Time-resolved brain activity and localization of feature-

specific processing differences 

 

In the third chapter we tracked feature processing during retrieval by combining 

magnetoencephalography (MEG), functional Magnetic Resonance Imaging (fMRI) and 

Deep Neural Network (DNN) data. The image material originated from the Natural Scene 

Database (NSD). Here each image has been presented multiple times to eight participants 

during 7T fMRI scan, which is publicly available for further analysis (Allen et al., 2022). 

Additionally, we recruited 29 healthy participants who took part in our MEG 

experiment. In line with previous studies (Lifanov et al., 2021; Linde-Domingo et al., 2019), 

they were instructed to learn associations between images (from the NSD) and words. After 

a short break, they were cued with the word and asked to remember and imagine the 
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associated image. Through lure recognition trials, we verified that memories were indeed 

correct, by showing a strongly occluded image coupled to a word and asking participants 

whether the association was correct or not. Participants had to recall each image six times. 

During this we recorded MEG to track time-resolved brain activity. A more detailed feature 

representation of NSD images was achieved by feeding images through biologically inspired 

visual and semantic Deep Neural Networks (Krizhevsky et al., 2017; Lin et al., 2014; 

Mikolov et al., 2013; Simonyan & Zisserman, 2015). 

The comparison of each combination of image-specific pattern activations, allowed 

the transformation of each data modality into a representational geometry, which delineates 

how a brain region (fMRI), a point in time (MEG sensors) or a hidden layer (DNN) represents 

image specific features. 

By correlating MEG and fMRI representational dissimilarity matrixes (RDMs), it is 

possible to extract information on the time at which, during encoding and retrieval, certain 

ROIs become active (Cichy, Khosla, et al., 2016; Cichy, Pantazis, et al., 2016; Cichy & Oliva, 

2020). MEG-fMRI results revealed a clear forward stream (early visual regions showing peak 

correlations earlier in time than late lateral regions) during initial perception of images. 

Accordingly, during retrieval, there was some indication for a primacy of high-level 

reactivations during retrieval (mainly lateral regions correlations from 500 after cue onset). 

Specifically, we found long-lasting high-level visual activations (lateral), which were active 

prior to low-level visual areas (occipital) but continued on even after low-level activations 

ceased. This is partly in line with previous findings delineating the reverse stream (Lifanov 

et al., 2024; Linde-Domingo et al., 2019), where high-level features are accessible earlier in 

time compared to low-level features.  



104 

 

By correlating MEG and DNN RDMs, feature specific reactivations were modulated. 

Results of this analysis matched well with our prior MEG and fMRI results, showing that 

high-level semantic features were activated earlier than and outlasted low-level perceptual 

features. Although the continued activation of high-level areas and features was unexpected, 

it also reveals interesting details about the retrieval process, possibly indicating that low-level 

information is tapped into only for a brief period of time, while transformed more abstract 

high-level information is longer-lasting. 

A split of the recall repetitions into the first 2 versus the last 2-4 recalls revealed in 

both MEG-to-fMRI and MEG-to-DNN fusion that early recalls mainly showed semantic 

feature and lateral ROI correlations while later recall repetitions showed mid-lateral and early 

visual ROI correlations and more high-visual features in a time window of 500 ms after cue 

onset. This is interesting as it shows that multiple recall attempts in short succession seem to 

strengthen perceptual details instead of a semantization effect that is usually seen after 

consolidation of memory (Heinen et al., 2023; Lifanov et al., 2021). These results could speak 

to frequency of recall dependent plastic adaptations, which strengthen the representations of 

perceptual features within the memory trace. A similar trend could also be observed in 

feature-specific reaction times, where the difference between perceptual and semantic feature 

accessibility diminishes over retrieval attempts within one day (Lifanov et al., 2021).  

 

5.4 Implications and future directions 

 

A general question in the field is in how far perceptual details of a memory trace are 

faithfully stored and reactivated alongside the gist information during the retrieval process 

or whether only the gist information is saved and perceptual details are reconstructed based 
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on gist information (Ahissar et al., 2009; Long & Kuhl, 2021; Moscovitch et al., 2016; 

Schacter et al., 1998). While our data cannot definitively answer this question, it challenges 

the notion that these are exclusive concepts. The strong semantic recall in initial recalls, could 

indicate that only gist information is stored and perceptual features are reconstructed along 

with recall repetitions. Alternatively, it is conceivable that (at least some) perceptual 

information is faithfully stored, while their retrieval depends on the strength of network 

weights, dependent on the importance of the episodic memory, e.g. the number of activations 

or recalls. 

Regarding the organization of the long-term memory store, it is still a contested topic 

whether features are saved and accessible by themselves or whether the storage is object 

based through which an access of features is possible (Balaban et al., 2020; Brady et al., 

2011). Research on forgetting of memories, shows a dependency of perceptual details on gist 

information, i.e. if the gist or the object identity is lost, low level information also becomes 

inaccessible (Balaban et al., 2020; Lifanov et al., 2021).  In line with a reversal of the visual 

hierarchy during memory retrieval, object identity (e.g. dog) should be accessible even before 

an abstract semantic feature (e.g. animate) is available, which should be detectable with 

feature-specific reaction times and decoding of retrieval-related M/EEG signal.  

In this line of research, the focus lied on vision, but it is possible that the reverse 

stream generalizes to other sensory domain as well. In the auditory domain, a hierarchical 

processing stream during perception exist similar to the visual domain (Rauschecker & Scott, 

2009; Rauschecker & Tian, 2000). A general problem with testing the reverse stream effect 

in other modalities might be that participants use visual strategies to represent perceptual 

features during learning. To remedy this, special populations could be tested that are known 
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for an impoverished or missing visual imagery abilities like in aphantasia (Zeman et al., 

2015). 

In the future, the method of feature-specific reactions times might be useful for 

clinical or pedagogical settings where retrieval related components are important as is 

prevalent, for example, in dyslexia or other learning disorders (Martínez-Briones et al., 2023; 

Schulz et al., 2008). In fact, in children with developmental learning disorder, it could be 

shown that while the lexical information store was intact, semantic retrieval from this store 

was slowed down (Mengisidou et al., 2020). But while children with dyslexia show slowed 

down semantic retrieval, they display increased accuracy in recognizing incidentally learned 

objects (i.e. participants were unaware of the subsequent memory task) in a semantic 

categorization task (Hedenius et al., 2013). Pinpointing the part of the encoding and retrieval 

process which is affected might be aided by feature-specific reaction time analysis, which 

could greatly enhance our understanding of these diseases and potentially pave the way for 

new treatment options. Accordingly, it would be crucial to analyze the detailed state of 

memory traces from encoding to retrieval in children with developmental learning disorders 

and dyslexia. Understanding the underlying deficits in detail, could open possibilities for 

targeted interventions aimed at training perceptual-semantic associations. 

 

5.5 Conclusion 

 

In this thesis, forward stream encoding as well as reverse stream retrieval of episodic 

memories were analyzed thoroughly regarding their feature representations (low-level 

perceptual versus high-level semantic) robustness, generalizability, timing, and brain 

topography. To achieve this, we conducted behavioral reaction time experiments, established 
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computational models, analyzed combinations of MEG and fMRI data as well as Deep 

Neural Networks. 

We could show that the reverse stream is well generalizable and robust, varying 

several perceptual and semantic features and cueing modalities. In general, the semantic 

content of a memory trace is more rapidly available for recall compared to the perceptual 

content. 

Moreover, while the faster accessibility of perceptual compared to semantic 

information during perception might be due to the necessities of the hierarchical stimulus 

encoding of the forward stream, our data suggests that the speed of retrieval through the 

reverse stream relies on the speed at which relevant information can be sampled and 

integrated from memory. 

Lastly, we were able to corroborate our findings with fMRI and deep neural networks, 

which show that low-level areas and features are active prior to high-level areas and features 

during encoding. During retrieval, high-level features and areas are active prior to and outlast 

a brief activation of low-level perceptual areas and features. 

We provide strong evidence for a reversed hierarchical processing during memory 

retrieval in the visual domain, linking the architecture of the brain to the ever-elusive nature 

of the (young) LTM engram or trace. This could increase the insight into memory encoding 

and retrieval, but it might be of great value in the research of pathological conditions in the 

future. As such, while it is known that there are deficits in encoding or retrieval in conditions 

such as dyslexia, dementia and Schizophrenia, the underlying circuit deficits are unclear. Our 

framework could therefore provide valuable insight, which might pave the way for the 

development of new treatment options in the future. 
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