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Abstract

Episodic memory describes the ability to recall events and situations we have
encountered in the past. These memories usually contain multiple elements with lots of
conceptual, gist information as well as perceptual details. During perception of visual objects,
perceptual and semantic features are represented at different parts along the ventral visual
stream hierarchy resulting in a faster accessibility of perceptual feature information
compared to semantic features. Previous research indicates that during object retrieval a
reversal of this hierarchy is observable with semantic features being accessible before
perceptual ones. The endeavour of the current thesis will be to evaluate this reverse stream
effect of memory for its generality and robustness, for underlying cognitive components and
spatio-temporal representational formats in the brain.

First, in a set of behavioral studies, feature-specific reaction times are evaluated as a
measure of mapping the temporal dependencies of features within an episodic long term
memory trace. Second, a detailed analysis of these feature-specific reaction time results with
the help of cognitive mathematical models of decision making is presented. Third, the spatio-
temporal dynamics of feature representations during the retrieval process are accessed by
combining MEG, fMRI and Deep Neural Network encodings of naturalistic images using a
Representational Similarity-based Fusion approach.

Results indicate that the reverse stream of feature accessibility during memory
retrieval is a robust effect that generalizes over different feature dimensions, cues and
attentional states. Reaction time modelling suggests that this effect is explained by
differences in evidence sampling speeds from memory for perceptual and semantic features.

In the fusion analysis of brain imaging data, successful retrievals showed prolonged



iii
activations of high-level areas along the visual stream compared to early visual areas and
semantic, gist-like feature compared to low-level feature representations.

Together, these results provide complementary and detailed evidence for reversed

hierarchical structure of an episodic long term memory trace. Further implications and future

directions are discussed.
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Chapter 1: General Introduction

The human mind encompasses a wide variety of intricate and astounding abilities
from focusing attention selectively to solving difficult tasks in a new and creative fashion.
But none of those capacities are as fascinating as the fact that our wake everyday experiences
are continuously and effortlessly saved on the fly to be later recalled and reexperienced in
detail. A key aspect of this ability is the associative structure of memory that binds together
multiple elements of one episode as well as multiple features of one element (Tulving, 1983,
2002). When you remember your breakfast yesterday, the episodic memory will bring back
a host of semantic, gist-like experiences (e.g. remembering a cup of coffee because one
always drinks coffee in the morning) but also finer perceptual details that are unique to this
certain episode (e.g. remembering drinking from a red cup instead of the favourite green cup

that was still in the dishwasher).

1.1 Memory systems in cognition and in the brain

Apart from the question how memory is actually stored and represented in the brain,
distinctions between different memory systems have been established in cognitive science.
A general distinction between memory systems is made based on the temporal extend of
memory storage: 1. Sensory memories, defined for the visual domain as iconic and the
auditory domain as echoic memories, which are very short-lived activations of sensory areas
that vanish quickly if not actively held in mind. 2. The short-term or working memory system,

a capacity-limited system that is able to sustain external or internal information over a longer



period of time (up to 30 seconds). 3. A long-term memory store of possibly unlimited
capacity. This memory system can be further divided into non-declarative memories
(Schacter, 1987; Squire, 1992) that are not consciously accessible like learned skills and
habits (e.g. playing an instrument, driving a car) and conditioned responses, and a declarative
part (Cohen & Squire, 1980) with its two major components semantic (facts, general
knowledge) and episodic memory (events of one’s own life). As Tulving (1983) described it
in his seminal work, episodic memory is distinguished from semantic memory by it’s
associative coupling of content to the place and time that it was encountered in by us which
he termed the “what”, “where” and “when” as defining attributes of this memory system. It
is also the only memory system that is focused on the past and enables a mental travel back
in time (i.e. into the situation we have once encountered).

The case for multiple memory systems in the brain was first convincingly made, when
Canadian psychologist Brenda Milner started to study a now famous patient called HM (B.
Milner et al., 1968; Scoville & Milner, 1957). He had suffered from severe epilepsy and opted
for an experimental treatment by neurosurgeon William Scoville who removed large extends
of HM’s hippocampal system. In the weeks after the surgery, HM recovered nearly without
any cognitive impairments (Kensinger et al., 2001; Schmolck et al., 2002) except for a
complete anterograde amnesia (i.e. he wasn’t able to make any new memories). He was still
able to remember life events and facts about the world he learned prior to the surgery. He
was also able to acquire new procedural memories over 3 days of practice in a mirror drawing
task even without being aware of his learning history (B. Milner, 1965). Further research of
animal models and patients with brain lesions has shown that both episodic and semantic

memory seem to heavily depend on the hippocampus (Squire et al., 2004).



Early computational modelling of long-term memory encoding and retrieval came to
the conclusion that at least two storage systems are needed. This was based on the training
of neural networks on list learning tasks that showed that while those mathematical networks
(a simplification of cerebral neural networks) were perfectly able to recall items from
learning a first list, this knowledge disappeared (or better, was overwritten) as soon as a
second list was learned afterwards (a process called catastrophic interference). Humans on
the other hand were well able to recall items from both list with only some interference.
Therefore, it was assumed that long-term memory relied on a fast-learning system (proposed
to be the hippocampal system), that learns new material quickly but also forgets old material
quickly, and slow-learning system (neo-cortex) where new material is added slowly and

effectively stored forever (McClelland et al., 1995).

1.2 How are memory traces represented in the brain?

The idea of a memory trace was first introduced as the term memory engram by
Richard Semon (1906) and describes a physical substrate in the brain that is a persistent
change, is able to be reactivated by internal and external cues (ecphory), holds content that
was encountered during encoding (formation) and is a physical entity independent of memory
related processes such as encoding or retrieval (Josselyn et al., 2015).

A possible explanation of how an episodic memory trace could be achieved is
Teyler&DiScenna’s Index model (Teyler & DiScenna, 1986; Teyler & Rudy, 2007). It posits
that during encoding all elements of an episode (sensory details, multimodal information etc.)
are represented as distributed patterns in the cortex. These patterns are then condensed along

the ventral visual stream entering the hippocampus where all information is bound into an



assembly of index cells. This index can be conceptualized as a librarian who knows where a
certain book (i.e. neocortical pattern) is located without having to know what is written in
the book (i.e. what this pattern represents). For a retrieval of the full original experience, a
fraction of the original pattern (retrieval cue) suffices to activate the hippocampal index
which then in turn activates the whole pattern in the cortex, a process termed pattern
completion (Marr, 1971). Recent evidence showed the existence of cell assemblies coding
for the conjunction of unrelated stimuli forming during paired associate learning (Kolibius et
al., 2023).

The idea that episodic and semantic memory first depend on and then over time
become independent of the hippocampus is called the systems consolidation theory (Squire,
1992; Squire & Alvarez, 1995; Squire & Zola-Morgan, 1991) and has been challenged by
evidence from lesion patient data that actual episodically detailed memory in opposition to
semantic memory never seems to become fully hippocampally independent (Winocur &
Moscovitch, 2011). Instead, it is proposed that memories that get independent of the
hippocampus achieve this by a transformation away from context and perceptual details to a
semantic and gist-like representation (Winocur & Moscovitch, 2011). This is achieved
through a process called semantization (Heinen et al., 2023) where perceptually detailed
memory representations are transformed by strengthening conceptual features instead of

perceptual features (Favila et al., 2020; Paller & Wagner, 2002; Xue, 2018).

1.3 How are visual features represented in the brain?

For initial visual perception, it has been well established, that processing of

information after the primary visual areas follows two different streams (Goodale & Milner,



1992a; Mishkin et al., 1983a). An occipito-parietal also called “where” stream, implicated in
spatio-visual and motor-related processing, and an occipito-temporal processing “what”
stream along the inferotemporal cortex, that is mostly concerned with object processing. The
transformation of visual information along this ventral visual stream (VVS) follows an
anatomical and functional hierarchy (Barlow, 1972; Martin & Barense, 2023; Yamins &
DiCarlo, 2016), from a highly detailed and neuronally dense representation in early visual
areas that is conjunctively transformed toward a sparse distribution of high-level feature
representation which enable object recognition in higher areas like the inferior temporal
cortex (Desimone et al., 1984; Gross et al., 1972; Quiroga et al., 2005).

Studies probing the capacity and fidelity of visual long-term memory have found that
humans are able to remember a huge amount images of scenes and objects over days with
great accuracy (Brady et al., 2008; Konkle et al., 2010b, 2010a). It seems that formed memory
traces are able to differentiate learned images from perceptually and semantically close lures.
In their review, Brady et al. (2011) argue for a dependence of this ability on stored knowledge,
that is a hierarchical organization of features where high-level, conceptual information can
be diagnostic for low-level perceptual information. This is supported by studies showing that
providing semantic labels to ambiguous shapes improved memory (Koutstaal et al., 2003),
object memory interference is based on conceptual overlap between exemplars of a category
than perceptual overlap (Konkle et al., 2010a) and improved memory for objects matching
pre-existing schema (Van Kesteren et al., 2012). This implies that categories are important to
retrieve the whole memory trace with semantic as well as perceptual information belonging

to it (Brady et al., 2011).



1.4 How can we track reactivation in reaction times?

If the features bound up by a memory trace are stored in hierarchical fashion, there
should be a way to test this in behavior. In a first study to use a feature-specific recall task
for object vision, Linde-Domingo et al. (2019) could show such a hierarchy that is
behaviorally distinguishable using objects that varied on a perceptual (line drawings or
photographs) and semantic dimension (animate or inanimate). Over three experiments they
invited participants and split them into two groups. The first group participated in a visual
task in which they were presented with objects and had to classify them according to their
perceptual (“Is the object a line drawing or a photograph?”’) and semantic (“Is the object
animate or inanimate?”’) dimensions. In a memory task participant first learned to associate
objects with words and were then in a recall phase presented with the words again as a
memory cue, had to retrieve the object from memory and classify it like in the visual task.
So, the main difference between both task was whether feature-based information came from
initial perception or memory recall. It was shown that while in the visual task classification
of perceptual features was faster than classification of semantic features, indicative of a
forward stream of object processing, in the memory task semantic was faster than perceptual
classification, giving first evidence to a reversal of the visual hierarchy of a LTM trace.

This finding has been replicated by Lifanov et al. (2021), where they tested how this
difference in feature availability behaved over multiple test intervals up to one day. They
showed that the effect actually gets larger and an additional dependency analysis showed that
unsuccessful recall of the semantic feature was predictive of unsuccessful recall of the
perceptual feature but not vice versa. There is also evidence for the same prioritization of

semantic over perceptual detail content in multi-item working memory (Kerrén et al., 2023).



All in all, there seems to be preliminary evidence that reaction time measures of
feature-specific classification from memory can track the hierarchical organization of the
memory trace. It is still a question how reliable this measure is under experimental boundary
conditions (e.g. could this reversal of information be result of attentional biases toward
semantic features during learning or of the type of cues that are used in the memory task?).
If feature-specific reaction times can be established as a stable and easy measure of feature
accessibility, it would be interesting to see whether mathematical cognitive models could

give an insight into and reveal which underlying factors are driving the classification process.

1.5 Reaction time modelling

For the modelling of perceptual decision-making reaction time distributions,
Sequential Sampling Models (Townsend & Ashby, 1984) have been established that
understand the information integration for a decision as an accumulation of evidence over
time towards a boundary. A choice for a response option is made the moment the process hits
a boundary (in a two-choice setting: choice A or choice B).

A well-established model for linking decision-based reaction time distributions to
underlying cognitive information integration has been the Drift Diffusion Model (Ratcliff,
1979; Ratcliff et al., 2016). In its original formulation, a decision process comprises a
decision-related evidence accumulation process and a nondecision time component. The
accumulation process is modelled as a diffusion process with a constant drift rate 6 that starts
after stimulus encoding and walks through the decision space towards an upper or lower
decision boundary o. The drift rate can be understood as how easy information is accessible

(i.e. stimulus quality) and the decision boundary describes a speed accuracy trade-off (i.e.



higher boundaries lead to longer reaction times and less errors and lower boundaries lead to
faster reaction times and more errors). The starting point of the decision can also vary and is
modelled as a parameter called bias . A bias toward one response is usually expected if
participants have prior knowledge over the likelihood of a certain response being correct.
After a boundary is reached by the accumulation process, a motor response is made. Both
stimulus encoding time and motor response are lumped together into the nondecision time .
To allow for differences in the reaction time distributions for correct and erroneous responses,
the original DDM includes a trial-to-trial variability parameter for the drift-rate, the starting
point bias and the nondecision time.

These additional parameters complicate model estimation and typically require huge
amounts of reaction time trials per participants and condition (Boehm et al., 2018). A
simplified version of the DDM without trial-to-trial variability parameters has been proposed
(Wagenmakers et al., 2007; van Ravenzwaaij et al., 2017; but see Ratclift, 2008) having the

additional property of an analytically tractable likelihood function (Navarro & Fuss, 2009).

1.6 What methods can be used to investigate patterns in the
cortex?

Measuring brain activity during an experiment with neuroimaging methods produces
high dimensional, multivariate datasets, for example for each participant there will be one
matrix with 3 spatial and 1 trial dimensions of voxel activations for fMRI studies or a matrix
of a trials, a sensor/electrodes and a time point dimension for M/EEG. Trials are hereby
defined as replications of experimental stimuli or conditions. Here we will only refer to both

as stimuli. Typical univariate analysis compares the brain’s average response to certain



stimuli directly. The drawback of this method when dealing with high-dimensional data is
the choice between running a search-light analysis at all voxels or time-points incurring
inflation of family-wise error rates or having to predefine and average regions- and time-
windows-of-interest.

Therefore, the advent of methods like Multivariate Pattern Analysis (MVPA) and
Representational Similarity Analysis (RSA) has been hugely influential in the field of
cognitive neuroscience (Cox & Savoy, 2003; Haxby et al., 2001, 2014). Instead of averaging
signal within a brain region or over electrodes, these methods compare pattern vectors of
brain activity. These pattern vectors can be for example a cluster of voxel activations from a
fMRI region or a collection of MEG sensor activation values at 200 ms after a stimulus onset.
As can be seen, the big advantage of pattern-based methods is taking information at a single

voxel/sensor level into account.

1.7 Multivariate Pattern Analysis (MVPA)

Generally, MVPA tries to quantify how patterns of brain activation in response to two
different stimuli differ from each other. For our example, one could take the voxel activations
in early visual cortex as a pattern vector and compare pattern vectors for trials in which a
house and trials in which a face is presented. To compare vector patterns, MVPA either uses
measure based on distance estimation or classifier decoding ability. As pattern vectors of size
N can be understood as points in a N-dimensional feature space, the distance between those
points can be quantified in different ways among them direct and angular distance measures.
Common measures of the direct distances between the points are the Euclidean distance or

its multivariate version the Mahalanobis distance. or they are based on the angular distances
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of the points compared to the origin like the cosine or correlation distance (Grootswagers et
al., 2017; Guggenmos et al., 2018; Walther et al., 2016). Decoding measures on the other
hand use statistical classifier techniques to find a decision threshold that best separates two
distributions of pattern vectors. The most popular among them in cognitive neuroscience are
Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Support Vector
Machines (SVM).

In machine learning, cross validation (CV) has become the gold standard in
establishing an unbiased classification performance. The idea of cross-validation is to
randomly split the data sample (trials) into a larger training set and a smaller test set, fit the
model parameters on the training set and test these parameters on the test set. This procedure
is repeated several times, each time with a new training-test split and the resulting
performance value is estimated as the average performance over all splits. While distance
measures are usually estimated directly from the data and unlike cross-validated measures
do not require multiple trials, there are reformulations of the Euclidean and Correlation

distance using cross-validation (Guggenmos et al., 2018).

1.8 Representational Similarity Analysis (RSA)

Similarly to the MVPA, an RSA compares pattern vectors of the brain response to
stimuli. In an RSA approach, each stimulus or condition is compared to each other thereby
building up a stimulus-by-stimulus comparison matrix called a representational dissimilarity
matrix (RDM). All measures described for MVPA can be used for to build a RDM of all

stimulus comparisons. A RDM transforms the original data modality from its own signal



11

space into a multivariate representational geometry (Diedrichsen & Kriegeskorte, 2017;
Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte & Kievit, 2013).

This geometry describes how a certain feature space represents a whole dataset of
stimuli. For fMRI studies, the feature space can be chosen in a region-based approach to
contain all voxels falling within predefined ROI resulting in one RDM per ROI, or, in a
searchlight-based approach, to contain a sphere of voxels that is shifted through the whole
brain volume (or over surface map) resulting in one RDM per center voxel of the searchlight.
For M/EEG studies, the feature space is usually chosen to be all sensors/electrodes and RDMs
are computed with a time window that is slid over the time dimension resulting in one RDM
per time point. For Deep Neural Networks (DNN), the feature space can be the hidden

activation of network layers in response to an input image or sentence (Kriegeskorte, 2009).

1.9 RSA-based fusion

As mentioned above, RSA transforms signal from a modality specific space (signal
change for fMRI, puV or {fT for M/EEG) into the same representational geometry space.
Because of this, it is possible to correlate RDMs from different data modalities a procedure
called second-order correlation or RSA fusion (Cichy & Oliva, 2020). The resulting measure
indicates when the representational formats of two data modalities are the most similar. A
fusion of fMRI and M/EEG RDMs for example combines the spatial resolution of the fMRI
with the temporal resolution of M/EEG and shows at which point in time which regions
represent the stimulus pool the more similar than others. This approach has been used to show
a hierarchical forward stream in information processing during object perception (Cichy,

Pantazis, et al., 2016; Kriegeskorte, Mur, Ruff, et al., 2008).
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Furthermore, a fusion approach does allow for correlation of neural RDMs with
model RDMs, that capture hierarchical feature representations similar to the sensory areas of
the brain (Kriegeskorte, 2009). Potential candidate models could be biologically inspired
convolutional Deep Neural Networks (DNN) that have been pretrained on a large amount of
visual data and have an astounding object recognition capability rivalling human
performance (Krizhevsky et al., 2017). For the visual system, DNN RDMs have been widely
used to explain feature-specific activations in fMRI and M/EEG signals (Bone et al., 2020;

Cichy, Khosla, et al., 2016; Heinen et al., 2023; Kaniuth & Hebart, 2022).

1.10 Overview over the following Chapters

In the Second Chapter, I will present a host of behavioral reaction time experiments
testing the robustness of the reverse stream effect first described in Linde-Domingo et al.
(2019) and how well feature-specific reaction times are able to map the hierarchical structure
of the memory trace. Three different variations of the original experiment will be reported,
exploring the questions in how far the reverse stream effect generalizes to different semantic
and perceptual feature dimensions, whether it is dependent on the cue material that is used to
associate the objects with, and whether this effect could be simply a result of attentional
biases during learning.

In the Third Chapter, a detailed cognitive modelling analysis of the whole reaction
time dataset acquired and detailed in the Second Chapter will be presented. Using a
Hierarchical Bayesian Prior Structure and state-of-the-art sampling algorithms, a DDM will

be fit to the reaction time distribution of over 400 participants in 9 memory and 6 visual tasks,
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yielding posterior parameter estimates that will be compared between perceptual and
semantic feature classification.

In the Fourth Chapter, the retrieval process for naturalistic images will be tracked by
using an RSA-based fusion approach. For this, 29 participants will be recorded in the MEG
while they first learn image word pairs and then are presented with the word in order to recall
the image and reconstruct it from memory. MEG data will be transformed into a
representational geometry format and will be correlated (fused) with the region-specific

RDMs from a fMRI dataset of different participants and feature-specifc RDMs from DNNs.
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Chapter 2: Feature-specific reaction times as a
generalizable approach to measuring the state of a
memory trace

2.1 Introduction

Our episodic memory system has the ability to effortlessly bind content elements that
appeared together at the same time and in the same place into a memory trace. For example,
we might remember in detail the last time we met some friends in a park. The elements
contained in a memory, however, are collections of features in themselves. For example, one
of the friends might have brought a dog along and we still remember semantic details about
it (it was a Golden Retriever) as well as perceptual details (its fur was brown).

Research on memory content has typically focused on the accuracy of the recalled
features or stimuli. We believe that the timing of content availability holds crucial
information that can be used to test the neural architecture of the memory retrieval process.
We show here that reaction times represent a reliable method to assess differences in content
accessibility that are robust to variations of features being tested, cues to initiate recall, and
attentional demands during learning.

Episodic long-term memory crucially relies on the medial temporal lobe and
especially the hippocampus as a system of rapid, one-shot learning (McClelland et al., 1995;
Scoville & Milner, 1957). According to the dominant view of episodic memory formation, a
memory trace is established with the help of a hippocampal neuron assembly (called an
index) that binds together cortical patterns that represent the content of an episode (Teyler &

DiScenna, 1986). As such, the episodic memory trace associatively binds together the
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constituting content’s perceptual and semantic features. The recall of a past episode is thought
to require a pattern completion process, where a reminder (e.g., one element) triggers the
reconstruction of the remaining elements (Horner et al., 2015; Marr, 1971). As such, it was
shown that feature activation across different levels of the visual hierarchy coincided with
episodic memory retrieval and were predictive of memory vividness and recall accuracy
(Bone et al., 2020). Furthermore, detailed episodic memory was dependent on a reactivation
of features in the posterior hippocampus and early visual cortex (Bone & Buchsbaum, 2021).

Regarding the spatial and temporal representation of features during initial
perception, visual information processing has been shown to follow a hierarchical structure.
Retinal input is transformed along the ventral visual stream from low-level details in early
visual areas to high-level semantic categories in later areas (Cichy, Pantazis, et al., 2016;
Desimone et al., 1984; Martin et al., 2018). Research on visual long-term memory shows the
importance of semantic information over perceptual details (Konkle et al., 2010a; Van
Kesteren et al., 2012) suggesting a reuse of the visual hierarchy but in the opposite direction
(Brady et al., 2011). If the features of a long-term memory trace are spatially organized in a
reversal of hierarchy, it would also suggest a temporal distinction in availability of semantic
compared to perceptual features during retrieval.

Linde-Domingo et al. (2019) tested this feature-specific hypothesis with in an
associative cued recall task where one group of participants first learned and later retrieved
visual objects from memory. To test object retrieval participants had to classify the object on
either a semantic or perceptual dimension. Here, classification of semantic features was
overall faster than of perceptual features indicating a temporal hierarchy of information
accessibility. This reverse stream effect was in another study shown to get larger over

multiple testing events especially after one day (Lifanov et al., 2021), revealing an interesting
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sensitivity of this feature-specific reaction time difference to track the ‘semanticization’ of
the memory trace (Heinen et al., 2023). Although, these results are encouraging, they rely on
a cued recall paradigm using action verbs as cues and only one perceptual and semantic
dimension. Accordingly, it is unclear whether feature-specific reaction times as a method are
a generalizable tool to probe the organization of a long-term memory trace.

Here, we show that reaction time measures of feature-specific decision processes are
a robust measure, which can be used to delineate differences in the temporal availability of
such stored information. We believe that reaction time measures are so far underutilized in
memory research and are capable of providing reliably readout about differences in feature
availability that could elucidate the state of a memory trace. For our hypothesis, by analyzing
feature-specific reaction times to map a memory trace via the observed reverse processing
stream during object retrieval, we would expect to find this effect independently of three
different variations of the original experiment:

First, this effect should be generalizable to different perceptual and semantic feature
dimensions that objects can vary upon. Therefore, we would predict to find the same forward
processing stream indicated by faster reaction times for perceptual features compared to
semantic in a visual task and the same reverse processing stream with faster reaction times
for semantic compared to perceptual feature classification in a memory task when different
feature dimensions are tested.

Second, since the memory task relies on a cue to identify the object and retrieve it
from memory, an advantage of semantic features could be explained by the semantic nature
of the cue (i.e. words in the original studies). To address this possible confound, we will
include two types of cues in our paradigm (i.e. words and scenes) and compare whether the

reverse stream effect is dependent on words or also translate to scene cues. Additionally in a
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second and third study, we will pair objects with arbitrary locations on the presentation screen
and use these locations as a cue. As these locations are semantically meaningless and should
not influence perceptual or semantic features of the object associated with them, the
emergence of a significant reverse stream would show that feature-specific reaction time are
able to robustly track a hierarchical nature of a visual memory trace independent of cue
confounds.

Third, memory is known to be influenced by attentional focus during learning
especially when shifting the encoding focus towards deeper semantically meaningful features
compared to shallow perceptual ones (Craik & Lockhart, 1972). In two additional
experiments we will shift the attention during learning of objects towards semantic of
perceptual features, to investigate whether the feature-specific reaction time difference is due

to attentional biases towards semantic features or not.

2.2 Results

2.2.1 Feature Variation Results — The reversed stream effect generalizes
to different features

In the first set of experiments, we asked whether the reversal of the perceptual-to-
semantic gradient between perception and memory retrieval holds for different object
features, beyond the specific features used in previous work. For Exp. 1, we created a new
stimulus pool of 96 objects that belonged to either manmade or natural categories (semantic

features) and presented them in either big or small size on screen (perceptual feature). One
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group of participants performed a purely visual task where on each trial, they were presented
with a semantic (natural or manmade?) or perceptual (small or large?) question first, and then
had to classify the following object as fast and accurately as possible. Another group
performed a memory task, where they first learned to associate the objects with cue words,
and then later recalled the objects from memory when prompted with a cue word. Like in the
visual task, a memory trial started with a semantic or perceptual question but was then
followed by cue word prompting participants to retrieve the associated object from memory
and to classify it according to the question type. During visual classification, we expected
faster reaction times for perceptual than semantic questions if objects are processed along a
forward visual stream from lower-level perceptual to higher-level semantic analysis. Vice
versa, faster reaction times for semantic than perceptual classification in the memory task
would be indicative of a reverse processing stream during retrieval (Lifanov et al., 2021;
Linde-Domingo et al., 2019).

Participants who saw the objects visually rather than reconstructing them from
memory were, unsurprisingly, significantly faster overall (main effect of task, F(1,57) =
132.69, p < .001, n,° = .7), and the semantic classification was overall faster than the
perceptual one (main effect of feature type, F(1,57) = 7.42, p < .01, 5,° = .12). However, the
two main factors of feature type and task were interacting significantly, F(1,57) = 9.8, p <
.005, 5,° = .15, confirming our hypothesis of faster perceptual classification in the visual task,
#(32)=-3.02, p <.005 , d=-0.53, and faster semantic classification in the memory task, #(25)
=1.98,p<.05,d=0.39.

The accuracies partly mirrored the reaction time results, with more correct trials in
the visual compared to the memory task, F(1,57) = 50.3, p <.001, #,° = .47, and overall more

correct semantic classification than perceptual, F(1,57) = 23.85, p < .001, 5,° = .29. A
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significant interaction between both factors, F(1,57) = 7.32, p < .01, #,° = .11, indicated
higher accuracy for semantic than perceptual feature type in the memory task, #25) =-3.72,
p <.005, d =-0.73, and, unexpectedly, as well in the visual task, #32)=-2.17,p<.05,d =
-0.38. So far, the reaction time findings replicate the results of our previous studies and

generalise the perception-to-memory flip to new feature variations.
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Fig. 1: Paradigm and Results of the Feature Variation Experiments. A: Exemplary depiction of the
cued recall paradigm used in Exp. 1. B: Exemplary depicitions of the object images used in Exp. 1
with perceptual and semantic dimensions. C: Boxplots of the reaction time distribution of the task by
feature type interaction for Exp. 1. D: Exemplary depiction of the cued recall paradigm used in Exp.
2. E: Exemplary depicitions of the object images used in Exp. 2. F: Boxplots of the reaction time
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<.05) and stars indicate significant differences of within tasks (p <.05).
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In Exp. 2, we varied object shape as a perceptual feature. A stimulus pool of 128
objects was chosen, with manmade or natural objects again serving as the semantic
dichotomy, while along the perceptual dimension the objects could now be either elongated
or round in appearance. Again, there was a main effect of task such that the visual
classification group showed faster reaction times than the memory group, F(1,47) =271.31,
p <.001, #,° = .85. but this time there was no significant difference between feature types,
F(1,47) = 0.85, p > .05. There was a significant interaction between task and feature type,
F(1,47) = 26.08, p < .001, 5,° = .36, with post-hoc analyses revealing a significant forward
stream in the visual task, #23) = -9.97, p <.001, d = -2.035, but no significant difference
between semantic and perceptual classification in the memory group, #(24) = 0.73, p > .05.

For the accuracy measures no significant main effect of feature was observed, F(1,47)
=0.2, p > .05, but the significant main effect of task, F(1,47) =35.1, p <.001, 71p2 = 43, was
qualified by an interaction with feature, F(1,47) = 7.9, p < .01, 5,° = .14. Post-hoc t-tests
within tasks showed again that perceptual features were more often correctly classified than
semantic features in the visual task, #23) = 3.06, p < .01, d = 0.62, and no significant
difference occurred when features were classified from memory, #24) =-0.9, p > .05.

Taken together, the results of Exp. 1 and 2 show that reaction times reliably track the
direction in which object features are processed during visual perception and memory. Exp.
1 replicated our previous findings of forward (perceptual before semantic) processing stream
during perception, and a backward (semantic before perceptual) processing stream during
retrieval. Importantly, the reversal of feature processing during memory retrieval was absent
in Exp. 2, using shape as a perceptual feature. Amongst the feature variations used in this

series of studies and previous ones (Lifanov et al., 2021; Linde-Domingo et al., 2019; ter Wal
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et al., 2021), the shape feature was in fact the only one that did not produce a semantic-over-
perceptual advantage during memory recall. Albeit a post-hoc interpretation, we realised that
the shape of an object is bound to its semantics (e.g., knives are elongated while melons are
round-shaped), and therefore does not qualify as a purely perceptual feature that can be freely
varied across items, like size or colour. As a result, recalling the identity of a memorised
object (e.g., that it was a turtle) automatically provides the shape information, explaining
why perceptual reaction times matched semantic ones in this version of the task. As an
intermediate conclusion, it can thus be summarized that the perception-to-memory reversal
in the feature processing hierarchy generalizes to novel feature dimensions as long as those

dimensions are clearly separated.

2.2.2 Cue Variation Results — The reversed stream effect is independent of
the type of cue used to prompt an object memory

In Exp. 1 and previous work (Lifanov et al., 2021; Linde-Domingo et al., 2019), we
find a robust advantage of semantic over perceptual information when an object is recalled
from memory. While consistent with our hypothesised reversal in feature processing, an
alternative explanation could be that we used verbal retrieval cues in all these studies. Words
are inherently semantic in nature, and participants may thus naturally bind the cue words to
the objects on the level of their meaning. This may result in a semantic bias, leading to faster
retrieval of semantic information faster during memory recall. To test for such a possible
bias, in the next experiments we varied the types of cues that were paired with objects.

Instead of verb-object associations, participants in Exp. 3 learned triplets consisting

of a scene, a verb and an object, and each associated was later probed once with the scene
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cue and once with the verb cue. Feature-specific reaction times for semantic (animate vs
inanimate) and perceptual (photo vs drawing) features were measured using the same setup
as in Exp. 1 and 2. Having replicated the forward stream during perception several times, we

did not include a visual group in this Experiment.
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Fig. 2: Paradigm and Results of the Cue Variation Experiments. A: Exemplary depiction of the cued
recall paradigm used in Exp. 3. B: Exemplary depicitions of the object images used in Exp. 3 with
perceptual and semantic dimensions. C: Boxplots of the reaction time distribution of the cue type by
feature type interaction in Exp. 3. Dots indicate single participant‘s average reaction times. Bars
indicate significant differences of main effects of task or feature type (p < .05). D: Exemplary
depiction of the cued recall paradigm used in Exp. 4a and 4b. E: Exemplary depicitions of the object
images used in Exp. 4a and 4b with perceptual and semantic dimensions. F: Boxplots of the reaction
time distribution of the task by feature type interaction in Exp. 4a. G: Boxplots of the reaction time
distribution of the task by feature type interaction in Exp. 4b. F&G: Dots indicate single participant‘s
average reaction times. Bars indicate significant differences of main effects of task or feature type (p
<.05) and stars indicate significant differences of within tasks (p <.05).

Overall, we found a significant main effect of cue type, F(1,24) = 78.6, p < .001, #,°
= .77, where scenes were more efficient cues than words, leading to faster reaction times.
More importantly, we found a significant main effect of feature type on reaction times,
F(1,24)=11.55, p <.005, n,° = .32, indicating that independent of cue type, semantic object
features were accessed faster than perceptual ones F(1,24)=1.02, p >.05. Accuracies showed
a similar pattern of results, with scene cues eliciting more correct responses than word cues,
F(1,24) =278, p < .001, 5,° = .54, and semantic features showing more correct responses
than perceptual features, F(1,24) = 11.99, p <.005, ,° = .33. Again no significant interaction
between cue type and feature type was observed, F(1,24) =0.27, p > .05.

Although these results support the hypothesis that the reverse memory reconstruction
stream is cue invariant, even scenes carry some semantic information, and participants may
therefore tend to form associations on the level of meaning. To test whether the semantic-
over-perceptual advantage persists with meaningless cues, a slightly altered paradigm was
adopted in Exp. 4a. In this version of the memory task, participants associated objects from
different categories with one of eight locations along a white circle on the screen (see Fig. 2
D). The location cue served as a prompt to then retrieve and classify the associated object

according to one of multiple dimensions and levels (exemplar, category, perceptual and
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semantic; see Methods and Fig. 2 E). While all of these dimensions were tested in both the
visual and the memory groups, for the analysis presented here, we focus on the perceptual
dimension of color (coloured vs greyscale) and the semantic dimension of animacy (living
vs non-living), in line with previous studies. Since this experiment used a new setup and
stimulus pool, we also conducted a visual task in a separate group of participants, who simply
classified the objects directly as presented on the screen, without the location circle,
according to the feature prompted at the beginning of each trial (Fig. 2 D).

We observed the expected significant interaction between task and feature type,
F(1,46) = 30.78, p < .005, n,° = .4, due to a significant forward perceptual-semantic
difference in the visual task, #(23) = -6.04, p < .001 , d = -1.23, and a significant reverse
difference in the memory task, #23) =4.75, p <.001, d = 0.97. Task, F(1,46) =288.02, p <
.001, #,° = .86 and feature type, F(1,46)=44.27, p < .01, ,° = .49, showed significant main
effects. All accuracy effects were non-significant (F's < 0.177).

To corroborate this decision, we replicated this experiment again with a bigger sample
size (n = 40) and an adjusted design that included only color as perceptual and animacy as
semantic feature dimension.

This replication study (Exp. 4b) found the same significant interaction, F(1,234) =
96.8, p <.001, #,° = .29, and main effects task, F(1,234) = 472.55, p <.001, 5,° = .67, and
feature type, F(1,234)=69.71, p <.001, 7,° = .23, with the same perceptual-over-semantic
advantage in the visual group, #(199) =-12.91, p <.001 , d = -0.91, and the reverse pattern
in the memory group, #(35) = 3.51, p < .005, d = 0.59. These results were mirrored in the
accuracy measure, with a significant interaction, F(1,234) = 56.7, p < .001, iypz = .20, and
main effects task, F(1,234) =38.0, p <.001, npz = .14, and feature type, F(1,234) =58.2, p

<.001, 7,° = .20, and post-hoc tests showing higher accuracy for semantic than perceptual
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features in the memory task, #(35) = -3.75, p < .005, d = -0.63, and a tendency toward the
opposite pattern in the visual task, #(199) = 1.93, p =.055,d = 0.14.

Taken together, Exp. 3, 4a and 4b provide a clear indication that non-verbal cues, and
even semantically meaningless cues like a position on a screen, lead to the same advantage
of semantic over perceptual information retrieval. One could thus conclude that the feature
processing hierarchy when a visual object is reconstructed from memory is hard-wired and

highly robust to feature and cue variations.

2.2.3 Attention Variation Results — The reverse stream effect in memory is
independent of attentional demands during learning

Exp. 3 and 4 showed that the semantic feature advantage during memory retrieval
generalizes from verbal to visual scene cues, and even location cues. However, it could still
be argued that humans have a natural tendency to form new associations on the level of an
item’s (in our case, an object’s) meaning. In Exp. 5, we therefore investigated whether paying
attention to meaning vs surface features of the objects during encoding affects the size of the
feature processing gap during recall. Participants associated visual scenes with objects,
performing either a shallow or deep encoding task. In the shallow task, they were asked to
judge whether the object was a photograph of a line drawing. In the deep task, they were
asked to classify each object as flying or non-flying. The memory test was performed similar
to previous experiments, probing either perceptual (color vs greyscale) or semantic (natural
vs manmade) features. No visual group was collected, since reaction times for these features

were already available from previous experiments, demonstrating a clear forward stream.
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Fig. 3: Paradigm and Results of the Attention Variation Experiments. A: Exemplary depiction of the
cued recall paradigm used in Exp. 5. B: Exemplary depicitions of the object images used in Exp. 5
with perceptual and semantic dimensions. C: Boxplots of the reaction time distribution of the
encoding focus by feature type interaction in Exp. 5. D: Exemplary depiction of the cued recall
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Bars indicate significant differences of main effects of encoding focus or feature type (p <.05).
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We found a significant main effect of feature type, F(1,37) = 53.82, p < .001, #,°> =
.59, replicating the reverse stream effect. Neither the main effect for the encoding focus,
F(1,37) = 0.35, p > .05, nor the interaction, F(1,37) = 0.0002, p > .05, reached significance.
Accuracies pointed in the same direction with only the feature comparison being highly
significant, F(1,37) = 167.9, p < .001, ,° = .82, (other Fs(1,37) < 0.82).

While a non-significant interaction supports our hypothesis that attention during
encoding does not modulate the reverse stream effect, this first attention experiment failed to
demonstrate a main effect of attention itself, which would be expected based on the large
levels-of-processing literature (Craik & Lockhart, 1972). This absence might indicate that
the attention manipulation at encoding was not successful. We reasoned that the deep-shallow
manipulation may have affected processing of the object, but not the way in which the scene-
object association was formed, the latter presumably influencing the way in which the
association would later be retrieved.

In Exp. 6 we therefore manipulated the attentional focus with respect to the
association that was formed between the visual scene cue and the object during learning. In
the learning trials, participants were presented with pairs of scenes and objects, and were
instructed to form an association either by focusing on common, shallow perceptual details
(i.e. do you find the dominant color of the object in the scene) or on common, deep semantic
features (i.e. Is it plausible for the object to appear in this scene). In the recall phase, scenes
were then used as cues to recall the object, and we probed perceptual (color vs greyscale) and
semantic (natural vs manmade) features on each trial, similar to the previous experiments.

Reaction time results replicated the reverse stream effect with a significant main
effect of feature, F(1,43) = 19.27, p < .001, ,° = .31. In this experiment, we also found a

significant main effect of encoding focus, F(1,43) = 62.39, p <.001, ,° = .59, showing that
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as expected, deep associations during encoding led to overall faster object accessibility
during retrieval than shallow associations. The two main effects were not qualified by an
interaction effect, such that the semantic-perceptual gap during retrieval did not vary with
the attentional focus during encoding, F(1,43) = 0.89, p > .05.

A significant interaction between attention and feature type was observed for the
accuracies, however, F(1,43) = 6.26, p < .05, ,° = .13, and while the shallow encoding
condition showed a significant reverse stream effect, #(43) = -8.4, p < .001, d = -1.27, this
effect (i.e., the semantic-perceptual gap) was increased in the deep encoding condition, #(43)
=-11.09, p <.001 , d = -1.67. Both encoding focus and feature type showed a significant
main effect on accuracies (Encoding focus: F(1,43) = 49.38, p > .001, 5,° = .53; Features:

F(1,43) = 136.19, p < .001, 5,7 = .76).

2.2.4 A forward and a backward stream can be reliably shown over
multiple datasets

In an effort to quantify the overall forward processing stream during visual processing
and the reverse stream during memory recall, we combined all of the experiments that we
reported above and previously published data using the same paradigm (Orig. Exp. 1 and 2
from Linde-Domingo et al., 2019) and modelled the perceptual to semantic feature reaction
time difference with a Generalized Linear Mixed Model (GLMM). These models allow for
single trial modelling of hierarchical data (in our case, reaction times from subjects nested in
experiments) with non-gaussian error distributions and link functions that are more tailored
towards reaction time distributions (Lo & Andrews, 2015). Visual and memory task data was

modelled separately. Within experiment and participant, only objects that were correctly
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classified on perceptual and semantic features were included, so that we could estimate the
average difference between perceptual and semantic feature accessibility on an experiment
level. This modelling approach is akin to a meta-analysis with individual participant data

availability (Stewart et al., 2012).
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Fig. 4: GLMM Reaction Time Difference between Perceptual and Semantic Feature Type of all Visual and Memory Tasks.
A: Difference estimates between perceptual and semantic features for all visual tasks and an average estimate over all tasks.
B: Difference estimates between perceptual and semantic features for all memory tasks and an average estimate over all
tasks. [1] from Linde-Domingo et al. (2019)

As can be seen in Fig. 4, all visual tasks reliably show a negative difference smaller

than zero indicative of a forward processing stream (perceptual to semantic) with an average
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0f 60.81 (SE =3.20) ms. Almost all memory tasks show a positive difference larger than zero
indicating a reverse processing stream (semantic to perceptual) with an average of 180.68
(SE = 19.58) ms. As mentioned above, the only experiment that failed to show this positive
difference was the shape variation (Exp. 2). As discussed in the respective results section,
there is an obvious explanation for this absence, namely that shape is part of an object’s

semantics, which we did not consider when designing the experiment.

2.3 Discussion

The aim of this series of experiments was to establish feature-specific reaction times
as a tool to probe the time course of feature reinstatement during memory retrieval. In
multiple studies, we measured the accessibility of perceptual and semantic object features
via reaction times, comparing the speed of feature access during visual classification with
classification from memory. A meta-analysis-like GLMM model over the current and
previously published results confirms that feature-specific reaction times reliably show a
forward stream (perceptual before semantic) in visual classification of objects, and a reverse
stream (semantic before perceptual) when the object is recalled from memory. In the new
experiments presented here, we show that this reverse stream is present independent of the
exact perceptual and semantic features used, as it generalises to novel feature dimensions, as
long as the perceptual feature is not bound to the semantics of the item, as discussed further
below. We also showed that this reversal of feature accessibility during retrieval is invariant
to cues of varying levels of meaningfulness (i.e. words, scenes or even locations on screen)
and that feature-specific reaction times delineate perceptual and semantic feature

accessibility during retrieval even when attention during learning is shifted explicitly toward
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one of those features. The results thus suggest that associative cued recall of a visual image
progresses along a semantic-to-perceptual gradient. This gradient is robust to many
manipulations and appears almost like a structural characteristic of the human memory
system.

From a brain’s perspective, the hippocampus is most closely connected to late stages
of the visual processing hierarchy (Felleman & Van Essen, 1991; Suzuki & Amaral, 1994),
and it thus makes sense that it would associatively bind and later access visual memories on
the level of highly abstract, integrated representations. Interestingly, we failed to find the
reverse stream effect when we varied shape as a perceptual feature. Since the shape of an
object is inherent to its identity (e.g., a banana cannot be round, a turtle cannot be stick
shaped), shape is clearly not a purely perceptual feature. In line with this (posthoc)
interpretation, imaging work mapping the visual and conceptual features of objects revealed
that visual features that are part of an object’s semantic feature space are processed, and
integrated with conceptual features, late in the ventral visual processing hierarchy (Martin et
al., 2018; Martin & Barense, 2023).

Introducing screen size as a perceptual and naturalness as a semantic dimension in
our first experiment corroborates findings from previous studies (Lifanov et al., 2021; Linde-
Domingo et al., 2019). Object size is another feature that can or cannot be part of an object’s
semantics, depending on whether it is confounded with real-world size. In imaging work, the
real-world size of an object was shown to activate different areas along a lateral to medial
axis of the occipito-temporal cortex independent of their presentation size, while presentation
size activates both early visual and higher visual areas (Troiani et al., 2014). This suggests
that real-world size is an inherent part of an object’s identity and presentation size is a variable

perceptual feature. In our Exp. 1, objects were held constant with regards to their real-world
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size and varied only in presentation size on screen. Compared to the semantic-type
natural/manmade classification, this perceptual dimension produced a reliable forward
stream in reaction times during visual processing, and a backward flip during memory recall.
When confounded with real-world size, size would behave like a conceptual object feature,
and we in fact found evidence for this in previous unpublished work (Linde-Domingo, 2019).
Together with imaging work, the first two studies thus suggest that the type of information
that is most readily accessible (by the hippocampus) during cued recall is core semantics of
an episode’s elements. Surface perceptual information that can randomly vary in real life is
less readily accessible, possibly related to the fact that this information resides in brain areas
further removed from the hippocampus (Suzuki & Amaral, 1994).

This conceptual over perceptual advantage is robust to cue variations, as shown in
Exp. 3 and 4a/b. In all these experiments, the extent of the perceptual-conceptual gap did not
vary with the meaningfulness of the cue used. Similarly, directing attention during learning
towards perceptual or semantic features in Exp. 5 and 6 did not affect the reaction time
signatures of the reverse memory stream, even though these manipulations have been long
been known to influence what and how well we remember (Craik & Lockhart, 1972).
Typically, deeper compared to shallow encoding or attention towards meaning or semantic
features rather than to perceptual features lead to better memory performance (Baddeley,
1986; Loaiza et al., 2011). For example, in a recent study, comic images varying in artistic
style of drawing (perceptual feature) and thematic content (semantic feature) were
incidentally learned with a focus on either the perceptual or the semantic feature and then
later tested in a recognition paradigm (Vijayarajah et al., 2023). Attention to thematic content

over artist style improved memory performance and led to more detailed memories. It is all
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the more surprising that biasing attention towards encoding the perceptual features did not
decrease the semantic over perceptual feature advantage during retrieval.

Though not the focus of the present experiments, our experiment contrasting scene
cues to word cues showed faster reaction times and higher memory performance for scene
than word cues. There are a few possible explanations for this advantage. It has been argued
that scenes, and spatial information more generally, play an integral role for episodic memory
(Maguire & Mullally, 2013; Robin, 2018) by creating a scaffold that structures memory
retrieval. Autobiographical memory research showed that spatial cues compared to event
cues lead to faster and more episodically detailed memory retrieval (Sheldon & Chu, 2017).
Robin & Olsen (2019) showed that scenes as cues lead to higher memory performance than
objects or faces. In our studies, it is impossible to say whether the scene advantage during
recall is due to faster perceptual processing of the scene than word cues, or due to scenes
acting as more efficient retrieval cues. Peripheral vision from the retina is mostly relayed by
magnocellular neurons that are known to be faster than the more focally coding parvocellular
neurons (de Haan & Cowey, 2011; Livingstone & Hubel, 1987). It has been shown that scene
processing follows a stream among lateral areas between the ventral and parietal stream
(Kravitz et al., 2011) and intracranial studies in humans found that scenes information can
reach a high-level visual area like the parahippocampal place area within 100 ms after
presentation (Bastin et al., 2013) an area that has been implicated in scene recognition
(Henriksson et al., 2015). It would therefore be likely that scenic information reaches the
hippocampus and initiates a pattern completion process before language information like a
meaning of a word. Interestingly, scene words as cues do not yield higher accuracies in recall
compared to object words as cues (Horner & Burgess, 2013), which corroborates the notion

that the effects found here are not driven by higher-order semantic processing.
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In five out of the seven experiments presented here accuracies either showed no effect
or mirrored the forward and reverse stream results found in reaction times. In the visual task
of the size variation (Exp. 1), higher accuracies are consistently observed for semantic than
for perceptual classification while reaction times still show the opposite pattern. Although a
puzzling finding, it might be due to different speed-accuracy trade-offs where participants
are willing to make more errors in the perceptual classification to be faster than in the
semantic classification. Contrary to our reaction time results, accuracy shows a significant
interaction between encoding focus and feature type in Exp. 6. Even though higher recall
accuracy can be observed for semantic over perceptual features in both shallow and deep
association, deep association seems to bolster the difference between perceptual and semantic
features. So, while the attentional focus during encoding does not influence the temporal
availability of semantic and perceptual information in the memory trace, a deep association
strengthens the accuracy of semantic information more than detailed perceptual information.
Further studies are warranted to figure out whether this relationship is synergistic (deep
encoding enhancing both semantic and perceptual information accuracy) or competitive
(deep encoding benefits semantic information storage at the expense of perceptual details).

Reaction time measures are notoriously underused in memory experiments. As our
combined results using a meta-analytic approach show, reaction time measures of feature-
specific memory decisions can elucidate the time course of the retrieval process. The results
presented here show how reliably these tasks can map a forward stream of information
processing during visual classification and a reverse stream of information processing during
classification from memory. Memory research focused on the retrieval process mainly
measures the accuracy of recognition and recall (Wixted, 2009; Yonelinas, 2002). A notable

exception are results from recognition memory paradigms showing faster reaction times for
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recollection (remember) decisions than for familiarity (know) decision (Dewhurst et al.,
2006; Gimbel & Brewer, 2011; Rotello & Zeng, 2008). This pattern of results displayed the
opposite direction of what some theoretical accounts argued for and is therefore an example
of the fruitfulness reaction time measures hold for memory research.

From here, there are a few avenues for further enquiries. Since we have a whole host
of reaction time data from many participants, it would be interesting to fit established reaction
time models like Drift Diffusion Models (Ratcliff & Childers, 2015) or Linear Ballistic
Accumulator Models (Brown & Heathcote, 2008) to it and check which parameters are
mostly affected by the feature-specific differences. These models allow to independently
estimate putative cognitive decision processes like the speed of evidence accumulation,
speed-accuracy trade-offs, biases in response distributions and stimulus encoding times.
Especially the Drift Diffusion Model (DDM) has been applied to memory processes like
recognition and cued recall (Aschenbrenner et al., 2016; Ratcliff et al., 2011), showing that
evidence accumulation for example could be an indicator of accessibility of information from
memory. We would predict that our semantic-to-perceptual effect maps onto the evidence
accumulation parameter of DDMs with higher drift rates for semantic than perceptual
information accumulation.

Similar to the vast knowledge that exists on the hierarchical structure of object
recognition that goes from low-level to mid-level features to high-level visual and finally
semantic information (Groen et al., 2017) it is still a question whether a typical retrieval
process follows a full reverse stream or a partial reverse processing stream that starts with a
semantic gist and then adds low- and mid-level features only when necessary. Our studies

were focused on a binary distinction between low-level perceptual and high-level semantic
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features, but the inclusion of mid-level feature decisions would be a possibility, maybe
enabling testing hierarchical processing models (Balaban et al., 2020).

Nonetheless, the studies presented here generalize our understanding of the temporal
accessibility of visual features during retrieval and thereby makes a case for the utility of

feature-specific reaction time measures to track the state of LTM traces.

2.4 Methods

2.4.1 General

Participants & Procedure: Experiments 2, 3 as well as the memory tasks of
experiment 4a and 4b were administered in person. Participants were recruited the University
of Birmingham. Participants were led into a room and seated in front of a computer. They
were then presented with instructions followed by a shortened version of the experiment as
practice and then completed the experiment. After a debriefing about the purpose of the
experiment, participants were dismissed. For experiments 2 and 3 the tasks were programmed
and administered with PsychToolbox (Brainard, 1997). For experiment 4a and 4b, tasks were
programmed and administered with PsychoPy (Peirce et al., 2019).

Experiments 5 and 6 as well as the memory task for Experiments 1 were administered
online. Participants were recruited from the School of Psychology & Neuroscience’s Subject
Pool at the University of Glasgow and received a personalized link that started the
experiment. They were then first presented with instructions, followed by a shortened version
of the experiment as practice and then completed the experiment. They were debriefed at the

end and contacted again by the experimenter for their compensation. All online experiments
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were programmed in PsychoPy/PsycholS (Peirce et al., 2019) and were hosted on Pavlovia
(Open Science Tools, Nottingham, UK).

The visual tasks of experiments 1, 4a and 4b were administered online to external

participant samples recruited over Prolific (www.prolific.co). The procedure remained the

same as for the other online studies mentioned above.

2.4.2 Experiment 1: Feature Variation (Size)

Participants: For the memory task a total of 32 participants (21 female, 11 male; Mage
=25.9, SDage = 5.2) were recruited and received course credit or a payment of £10. For the
visual task 40 participants (29 female, 11 male; Mage = 30.7, SDage = 5.9) were recruited and

received a payment of £4.

Material & Design: The stimulus pool for this task consisted of 128 colored images
depicting everyday objects cut-out in front of a white background. All objects were sampled
from 8 distinct categories with 16 objects per category. Half of those categories were
manmade (bathroom, kitchen, office, tools) and the other half were natural (fruits, land
animals, sea and air animals, vegetables). Since the real-world size can vary substantially and
has been shown to influence the visual processing of objects (Konkle & Oliva, 2012), all
objects were chosen to minimize variation in real-world size by a heuristic criterion (i.e.,
real-world size had to be between a human thumb and a medium-size dog). Half of the object
images were displayed as big and half as small on screen (.6 and .3 in height units,
respectively). For an example of the stimulus pool see Fig. 1 B.

Task: The memory task was repeated over 16 blocks, with each block consisting of a

learning phase, a short distractor task and a recall phase (see Fig 1 A). In the learning phase,
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each trial started with a jittered fixation cross (0.5 — 1.5 s), followed by an action verb as a
cue (1 s). Afterwards a second jittered fixation cross (0.5 — 1.5 s) appeared before the object
was presented. Participants were instructed to form an association between the action word
and the image, and to indicate when they had successfully formed the association with a
button press. Either the button press, or a maximum duration of 10 s ended the trial. Each
pair was presented and learned once, with a total 8 pairs of verb-object associations learned
per block. Following the learning phase, participants engaged in a short distractor task where
they categorized odd or even numbers using the left or right arrow button, respectively. This
task lasted for 30 seconds and participants were instructed to classify as many numbers as
accurately as possible. Feedback of performance (i.e., number of trials and percentage of
correct classification) was given after the task. In the recall phase, each trial started with a
jittered fixation cross (0.5 — 1.5 s) that was followed by two response options at the bottom
of the screen that lasted for 2 s. These response options were either asking for perceptual
features (i.e., ‘big’ vs ‘small’) or semantic features (i.e. ‘manmade’ vs ‘natural’). Which
option was presented on the left or the right was counterbalanced across subjects. Then
participants were cued with the verb (0.5 s) and asked to recall the object presented with this
verb and classify the object using the left or right arrow key. This classification period lasted
until button press or a maximum of 10 s. The ITI was 0.5 s. Each object was recalled once
with a perceptual and once with a semantic feature probe, with the order being
counterbalanced across objects, resulting in 16 recall trials per block. The presentation side
of the response options was counterbalanced across subjects.

In the visual task, each trial started with a jittered fixation cross (0.5 — 1.5 s) followed
by the two response options (asking for perceptual or semantic features) that appeared at the

bottom of the screen with one option on the left and one on the right. After 2 seconds, the
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object appeared, and participants had to categorize it according to the options as fast and
accurately as possible (see Fig 1 A). In a block, 32 objects were categorized twice, once with
a perceptual and once with a semantic feature probe (with the order being counterbalanced

across objects), resulting in 64 trials per block. The task was repeated over 8 blocks.

2.4.3 Experiment 2 — Feature Variation (Shape)

Participants: 25 participants (17 female, 8 male; Mage = 20.6, SDage = 2.4) were
recruited for a memory task and 24 participants (23 female, 1 male; Mage = 18.7, SDage =
0.6) were recruited for the visual task. All participants received either course credit or a
payment of £6/hour upon finishing their task.

Material & Design: A stimulus pool of 128 everyday objects was created taken from

the BOSS database (Brodeur et al., 2014) in such a way that half of the objects were natural,
and half were manmade objects. Within these distinct semantic groups objects were chosen
such that half of them had a round shape and half had a stick shape, thereby orthogonalizing
the semantic dimension of naturalness and the perceptual dimension of shape (see Fig 1 E).
Task: Both the memory and visual task were identical to “Size variation” except for
the following changes: the response options were displayed for 3 seconds before a cue
(memory task) or object (visual task) appeared; and the perceptual feature response options

were “rounded” and “elongated” instead of “small” and “big” (see Fig 1 D).

2.4.4 Experiment 3 — Cue Variation (Scenes)
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Participants: This experiment only had a memory group, for which 27 participants
(21 female, 6 male; Mage = 20.0, SDage = 2.2) were recruited and received course credit.

Material & Design: Materials consisted of 128 everyday objects with 64 being

animate (birds, insects, mammals, marine animals) and 64 inanimate (fruits, vegetables,
electronics, clothes). Each object existed once as a photograph and once as a line drawing,
resulting in a stimulus pool of 256 images (for more detailed information see Linde-Domingo
et al., 2019; see Fig. 2 B). For each participant, 128 images were selected by randomly
choosing 8 photographs and 8 line drawings from each category. As cue material a total of
128 scene images were collected from the SUN Database (Xiao et al., 2010) and 128 action
verbs were taken from Linde-Domingo et al. (2019). Out of the scene images, 64 were indoor
(depicting homes, shopping, gyms, workplaces) and 64 outdoor (depicting industry, fields,
mountains, urban settings). 128 Triplets were formed out of one object, one scene and one
action verb (see Fig. 2 A). While the scene and the verb were always presented on the top
(which of them presented on the left and the right was counterbalanced between triplets), the
object was always presented on the bottom of the screen in the middle. Triplets were balanced
such that each object category was paired with each scene category twice.

Task: Since the object pool and the perceptual/semantic dimensions were the exact
same ones used in Linde-Domingo et al. (2019), visual classification data was already
available, and we only conducted a memory group in this experiment. In the learning phase,
each trial started with a jittered fixation cross (0.5 — 1.5 s), followed by a triplet of an action
verb, a scene, and an object. Participants had to form a story or mental image including all
elements of the triplet and indicate with a button press when they had successfully formed
such an association. Maximal presentation duration of the triplet was 10 s. The distractor task

and the retrieval task were identical to “Size variation” with two exceptions. First, each object
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was cued once with the scene and once with the word (order of cue type was counterbalanced
across objects) and the object was classified both times either on the perceptual or on the
semantic dimension. Second, the response options were displayed for 3 seconds (see Fig. 2

A).

2.4.5 Experiment 4a — Cue Variation (Spatial)

Participants: 24 participants (20 female, 4 male; Mage = 18.9, SDage = 0.7) were
recruited for the memory task and 24 participants (all female; Mage = 19.6, SDage = 0.8) for
the visual task. They either received a course credit or a payment of £10.

Material & Design: The stimulus pool was considerably different from the previous

experiments and consisted of 16 object images with 4 exemplars from each of 4 different
categories (dogs, birds, vehicles and aircrafts), orthogonalizing the two semantic dimensions
of animacy (living or non-living) and aeromobility (flying or non-flying). Each image was
adapted 4 times to create the perceptual dimensions of visual detail (photo or drawing) and
color (colored or greyscale), resulting in the 4 possible feature combinations: images were
depicted either as photographs or as line drawings and these were either colored or greyscaled
(see Fig. 2 E). In addition to the two perceptual and two semantic dimensions, in this
experiment we also probed participants’ memory on an exemplar level. For the exemplar
dimension, the response options were the correct option (e.g. ‘chihuahua’) and a lure option
for the same category (e.g. ‘labrador’).

Task: For all tasks the background screen was grey with a white circle at the center

of the screen. The ITI varied randomly between 0.5 and 1.5 seconds for both the memory and



42

the visual tasks. Both tasks were repeated over 2 blocks. Participants were able to take self-
paced breaks after every 16 trials within a block and between blocks.

The memory task started with a familiarization phase to get participants acquainted
to the objects’ categorizations. At the start of each trial in this familiarisation phase, a fixation
cross appeared in the middle of the screen and two response options appeared at the bottom
of the screen. After 2 seconds, the object appeared in the middle of the circle until
participant’s response. After the response, the object was replaced by a fixation cross for 1
second. During this time the correct name was highlighted in green to give participants
feedback on their performance. Each object was tested once on each of the 5 dimension (40
trials per block). In the learning phase, participants had to associate each object with one of
eight points spaced equidistantly on the circumference of the white circle. Each location was
uniquely associated with one object. Each trial started with a fixation cross, and one of the
eight points being enlarged for 1 to 2 seconds followed by the object appearing in the middle
of the screen. The object disappeared, starting the next trial, when participants pressed a
button to indicate that they had formed an association. Learning trials were occasionally
interspersed with test trials, where the object appeared on screen and participants indicated
whether they could remember the location on the circle or not. After the button press, they
were presented with the eight dots and had to navigate an enlarged grey dot (appearing at a
random location) to the associated location with clockwise and/or counterclockwise
movements. If successful, the correct location was highlighted in green for 1 second to give
participants feedback (see Fig. 2 D). Each object-location association was learned 10 times
and tested 3 times (104 trials per block). In the retrieval phase, each trial started with a
fixation cross (2 s) and the response options from one dimension on the bottom of the screen

with an additional third ‘forgotten’ option underneath. Next, the eight dots appeared with one
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of them enlarged indicating which object participants had to remember and classify as fast
and as accurately as possible. They then pressed one of the two choice buttons or the
“forgotten” button, upon which the next trial started.

The visual task was identical to the familiarization phase of the memory task without
the feedback screen (see Fig. 2 D). Each object was classified 5 times on each of the 5

dimensions, resulting in a total of 200 trials per block.

2.4.6 Experiment 4b - Cue Variation (Spatial Replication)

Participants: For the memory task a total of 38 participants (27 female, 8 male, 3 no
information; Mage = 23.4, SDage = 8.6) were recruited and received course credit or a
payment of £10. For the visual task 200 participants (130 female, 70 male; Mage = 33.7,
SDage = 8.5) were recruited and received a payment of £3.49.

Material & Design: The same stimulus pool as in Experiment 4 was used with the

exception that all line drawings were omitted. Objects varied on 4 dimensions in this version
of the task: exemplar (e.g. “Chihuahua” vs “Labrador”), semantic sub-category (birds vs
dogs, vehicles vs aircrafts), perceptual (color vs greyscale) and semantic supra-category
(living vs non-living). For the exemplar level, lures were chosen with equal probability from
all four sub-categories, and for the sub-category dimension, lures were chosen with equal
probability from both supra-categorical semantic dimensions. Note that for the purpose of
the present study, to compare with the previous experiments, only the perceptual and supra-
categorical semantic probe trials were analysed.

Task: Both memory and visual tasks were identical to Exp. 4a with the following

exceptions.
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In the familiarization phase, each object was probed once on all 4 feature dimensions
(32 trials per block). In the learning phase, each association was learned 8 times and tested
twice (80 trials per block). In the retrieval phase, each association was tested twice on all 4
feature dimensions (64 trials per block).

In the visual task, each object was probed 4 times on all 4 dimensions (128 trials).

2.4.7 Experiment 5 — Attention Variation (Feature Focus)

Participants: 40 participants (30 female, 8 male, 2 no information; Mage =23.8, SDage
= 3.6) were recruited and received either course credit or a payment of £7.

Material & Design: We created a new database of 96 everyday objects from 8

different categories (12 exemplars per category) orthogonalizing the semantic dimensions of
mobility and naturalness (mobile-natural: mammals and birds; mobile-manmade: air and
ground vehicles; immobile-natural: fruits and vegetables; immobile-manmade: clothes and
electronics). Each image was adapted 4 times, creating the two perceptual dimensions of
visual detail and color (photograph-color: the original image; photograph-greyscale:
greyscale transformation of the image; line drawing-color: line drawing of the image with
added color patches matching the image’s original colors; line drawing-greyscale: line
drawing of the image with color). This two-by-two variation of stimulus features allowed us
to use one perceptual (photo vs drawing) and one semantic (mobile vs immobile) dimension
as an encoding manipulation, varying what features participants attend to during learning.
The other two dimensions were then used to measure feature-specific reaction times at
retrieval, probing the remaining perceptual (color vs greyscale) and semantic (natural vs

manmade) dimensions (see Fig. 3 A).
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Task: During the learning phase, each trial started with a jittered fixation cross (0.5 —
1.5 s), followed by response options for 1.5 seconds. Then the object appeared and had to be
classified according to the options. Objects were categorized either according to their
mobility (semantic focus) or according to their visual detail (perceptual focus). After the
button press or a maximum of 10 seconds, a second fixation cross appeared, followed by the
action verb. Participants had to associate the verb and the object presented beforehand and
indicate when they had formed an association with a button press that concluded the trial
(maximum duration 10 s). The distractor task and the retrieval task were identical to “Size
variation” except that the response options were displayed for 1.5 seconds. As mentioned
above, to keep the retrieval task similar to previous experiments and to not probe the same
features during encoding and retrieval, the perceptual dimension used for the retrieval task

was visual detail and the semantic dimension was naturalness.

2.4.8 Experiment 6 — Attention Variation (Association Focus)

Participants: Fifty-two participants (41 female, 9 male, 2 non-binary; Mage = 19.7,
SDage = 3.8) were recruited and received course credit.

Material & Design: For this study, object stimuli were taken from to Experiment 5

and scene stimuli were taken from Experiment 3. For the perceptual dimension only colored
photographs and drawings were used, removing the greyscale photographs and drawings.
Task: Like in Experiment 6, we intended to shift participants’ focus during learning
to either surface perceptual features or meaningful semantic features. This was done in a
blocked fashion, with each block containing a sequence of 8 scene-object pairs. Before the

start of a block, participants were instructed to compare the object and the scene according
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to a dominant color match (perceptual focus) or plausibility (semantic focus). During the
learning phase, the response options (‘yes’ and ‘no’) and the association instruction
(‘plausible’ or ‘dominant color’) stayed on the lower and upper part of the screen through the
whole phase, respectively. Each trial started with a jittered fixation cross (0.5 — 1.5 s),
followed by an object on the left and a scene on the right (see Fig. 3 D). Participants gave
their response with a button press (maximum duration 10 s). The distractor task and the
retrieval task were identical to “Size variation” except that the response options were
displayed for 1.5 seconds, before the verb was then presented as a cue to recall and classify
the object according to either the perceptual (photo vs drawing) or semantic (natural vs

manmade) dimension.

2.4.9 Reaction Times and Accuracies

Reaction times were trimmed with a lower cutoff at 150 ms for all visual and 500 ms
for all memory tasks. The upper cut-off was defined on a participant specific basis as each
participant’s overall mean plus three standard deviations. Reaction time analysis only include

correct responses. For the accuracy analysis, mean correct responses as a percentage are used.

2.4.10 ANOVA Analysis

For experiments 1, 2, 4a and 4b, reaction times and accuracies were analyzed using a
2 (Task: Visual vs Memory) by 2 (Feature Type: Perceptual vs Semantic) mixed ANOVA.
For experiment 3, reaction times and accuracies were analyzed using a 2 (Cue Type: Word

vs Scene) by 2 (Feature Type: Perceptual vs Semantic) repeated-measures ANOVA. For
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experiment 5 and 6, reaction times and accuracies were analyzed using a 2 (Association
Focus: Dominant Color vs Plausibility) by 2 (Feature: Perceptual vs Semantic) repeated-
measures ANOVA. Effect sizes for all significant main effects and interactions are reported

as partial eta squared.

24.11  GLMM Analysis

To quantify the forward and backstream effects over experiments, we combined the
data from the experiments described above as well as two experiments described in Linde-
Domingo et al. (2019) in a generalized linear mixed model approach that is akin to a meta-
analysis (Stewart et al., 2012). Reaction times from correct trials were modelled as a function
of Experiment and Feature as fixed effects, with treatment contrasts defined on both factors.
To model the hierarchical dependencies, participants were nested in experiment varied as
random intercepts (random slopes were not included for model stability). The error was

modelled as a gamma distribution with an inverse link function (Lo & Andrews, 2015).
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Chapter 3: Modelling the perceptual and cognitive
components of the forward and reverse stream

3.1 Introduction

In the previous chapter, it was shown that reaction time measures are sensitive to the
accessibility of feature information during retrieval and might thereby be an efficient
possibility to tap into the temporal dynamics of a memory trace reactivation. A whole host of
behavioral studies was presented that conclusively showed an information processing stream
in a forward direction (from perceptual details to semantic category) when participants
classified objects directly in a visual task and a reversal of information processing (semantic
category before perceptual details) when participants had to retrieve object information from
memory (memory task). Our reaction time measures in these experiments were analyzed
according to common techniques for the field with ANOVAs for condition comparisons
based on participant’s average reaction times or a Generalized Linear Mixed Model (GLMM)
based on single trial reaction times that allow for specific model error distributions. With an
abundance of data, it would be interesting to see, whether more elaborate cognitive models
of reaction time distributions can give insight into how the observed reaction time differences
between conditions arise.

A popular sequential sampling model for reaction times has been the Drift Diffusion
Model (DDM; Ratcliff, 1979; Ratcliff et al., 2016). Here, a decision is modeled as a random
walk with a constant drift rate through a decision space enclosed by two decision boundaries.
This process begins after an initial stimulus encoding time at a starting point between the two

boundaries and ends when it finally hits the upper or lower boundary indicating a decision
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has been made. Afterwards a motor output is generated. The initial stimulus encoding and
motor output times are combined into a nondecision time parameter. The drift rate indicates
how fast information is accumulated or integrated to reach a decision and varies with quality
of a presented stimulus and has been shown to correlate with domain-general performance
measures such as 1Q and working memory capacity (McKoon & Ratcliff, 2012; Schmiedek
et al., 2007). The width of the decision boundary on the other hand influences how fast a
decision is made independent of how well the person performs and can therefore be seen as
a speed accuracy trade off parameter (Lerche & Voss, 2017, 2019; Nunez et al., 2024; Voss
et al., 2004). The starting point parameter models prior knowledge about the decision options
(e.g. knowing that a red circle is twice as likely to appear on screen as a green triangle).

An example for the usefulness and explanatory power of the DDM can be taken from
von Krause et al. (2022) who analyzed the reaction time distributions from 1.2 million people
with an age range from 20 to 60 years. Typically, they observed age-related slowing in mean
response times which in the past has been taken as an indication for cognitive decline in older
participants. But when fitting a DDM parameters to different cohorts they found that while
mental processing speed (drift rate) did not vary significantly by age and the decision
boundary was wider for old compared to young people. As has been observed before the age-
related slowing is not due to cognitive decline but to a more cautious response criterion in
older compared to younger participants (i.e. younger participants are more willing to trade
accuracy for speed).

Although DDMs are usually fit to reaction time distributions from perceptual
decision-making tasks, the original studies for the DDM focused on recognition memory
(Ratcliff, 1979), this model has been also applied to recognition- and recall-related decision-

making (Arnold et al., 2015; Aschenbrenner et al., 2016; McKoon & Ratcliff, 2012; Ratcliff
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et al., 2004). As can be seen from the previous chapter, reaction times from memory tend to
be longer with the bulk of reaction times between 2 and 4 seconds. Although our reaction
time count per condition is above 100 trials, usually models are fit to reaction time data with
200 to 500 trials per condition. It has been shown though that even the full DDM models can
be reliably estimated for longer reaction times and lower trial count (Lerche et al., 2017;
Lerche & Voss, 2019). Comparisons between different estimation techniques showed that a
hierarchical Bayesian approach showed the best performance for data with lower trial count
(Lerche et al., 2017).

To investigate the feature-specific accessibility differences in reaction times that we
found in the previous chapter, hierarchical Bayesian Drift Diffusion Models are fit to both a
memory dataset (Memory Model) and a visual dataset (Visual Model). These experiments
included the two original behavioral experiments from Linde-Domingo et al. (2019) that first
showed a reverse stream of information flow during retrieval with faster reaction times for
semantic compared to perceptual feature classification. The other experiments included in
model investigate the effect of different perceptual and semantic object features (Shape and
Size experiments), different cues associated with the objects (Scene Cue, Spatial Cue and
Spatial Cue Replication experiments), and different attentional demands during the learning
phase (Attention Encoding and Attention LOP experiments). A detailed overview over the
different memory and visual experiments can be found in Tab. 1. Experiment- and condition-
specific effects of a 3-parameter model (i.e. decision boundary, drift rate and nondecision
time) will be estimated as hierarchical priors. In this way we can check whether a certain
parameter can reliably describe the differences between perceptual and semantic feature

classification that we find in the reaction time averages.
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Based on prior studies of memory recognition and cued recall (Arnold et al., 2015;
Aschenbrenner et al., 2016; Ratcliff & McKoon, 2008; Spaniol et al., 2006), we would expect
to find consistent drift rate differences between both conditions in all memory experiments
(except for the Shape experiment, since this experiment failed to find the reverse stream
effect, cf. Chapter 2) with higher drift rates for semantic than for perceptual feature
classification. We don’t expect to find consistent nondecision time and decision boundary
differences (again maybe with exception of the Shape study). For the visual model, we would
expect to find a consistent opposite effect in drift rates, with higher drift rates for perceptual
than for semantic feature classification. Consistent differences between decision boundaries

and nondecision times are not expected.

32 Results

3.2.1 Posterior Sampling and Parameter Estimation

Single trial reaction time and accuracy data were modelled using a wiener first
passage of time likelihood with a decision boundary alpha, a drift rate delta, a nondecision
component tau and a starting point bias beta on a single trial level. These single trial level
parameters were modelled by a hierarchical prior structure of participant-, experiment-, and
condition-specific effects (see Fig. 5 A&B). After a warm-up period, for each model we
obtained 7500 samples across 5 chains from the posterior distribution with STAN’s No-U-

Turn-Sampler.
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As can be seen in Fig. 5 C, when we compare reaction time quantiles between our
observed data (i.e. the memory and visual reaction times we used to fit our model) and
predicted data simulated from the posterior parameter estimates of our model, a general
overlap between both data distributions indicates that the hierarchical Bayesian DDM

Memory and Visual Models capture the data fairly well.
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Fig. 5: A: Graphical illustration of the hierarchical prior structure used in this study. Parameters,
priors and hyper-priors belonging to each of the three DDM parameters are color-coded. Solid line
circles represent random variables, dashed lined circles represent deterministic variables. B:
Overview over prior distributions with parameter values. Normal distributions are parametrized with
mean and standard deviation, half-normal distributions with just a standard deviation and a mean of
0. C: A comparisons between observed reaction time data and posterior predictive distributions of the
model. For both observed and predicted data, small dots are a participant ‘s average reaction time
within quantiles of the reaction time distribution indicated by the x axis. Big dots represent the mean
over all participant ‘s averages. Comparison plots are based on observed data and model data from
all memory tasks (left) or all visual tasks (right).
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3.2.2 Memory Model Condition Differences

When comparing the three DDM parameters between conditions from a model fit on
our memory data, a consistent distinction is only found for the drift rate. Over almost all
experiments a significantly higher drift rate for semantic than for perceptual classification
from memory is observed (prob(é < 0) = 0 for Exp.1, Exp.2, Size, Scene Cue, Spatial Cue
Replication, Attention Encoding, Attention LOP). The only two exceptions from this pattern
are the Shape and the Spatial Cue experiment with no significant differences in drift rate.
Interestingly, for the Spatial Cue experiment a significant difference in the decision boundary
is observed, prob(a > 0) = 0.005, indicating a higher decision threshold for perceptual than

for semantic feature classification. A significant difference in decision boundaries was also
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Fig. 6: DDM parameter results for all memory experiments. Parameters are displayed as differences between semantic and
perceptual conditions. Left: decision boundary. Middle: drift rate. Right: nondecision time. Points indicate the mean of a
parameter estimate distribution, lines indicate the 97.5 percent most likely parameter estimates. Lines are plotted as dark
red if the value 0 falls outside of 97.5 of the most likely parameter values. [1] Linde-Domingo et al. (2019)
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found for the second Attention Experiment, prob(a < 0) = 0, but in the opposite direction
with a higher decision boundary for semantic than perceptual classification. Over all
experiments, no significant differences between conditions found for the nondecision time
parameter (see Fig. 6). As predicted, consistent differences in parameters between conditions

were only observed for the drift rate but not for the other two parameters.

3.2.3 Visual Model Condition Differences

Other than in the memory experiments and contrary to our hypotheses, in the visual
experiments a consistent significant condition difference was found for the nondecision time

parameter (prob(t < 0) < 0.02 for all experiments), indicating larger nondecision times for
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Fig. 7: DDM parameter results for all visual experiments. Parameters are displayed as differences between semantic and
perceptual conditions. Left: decision boundary. Middle: drift rate. Right: nondecision time. Points indicate the mean of a
parameter estimate distribution, lines indicate the 97.5 percent most likely parameter estimates. Lines are plotted as dark
red if the value O falls outside of 97.5 of the most likely parameter values. [1] Linde-Domingo et al. (2019).
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semantic than for perceptual feature classification. For the decision boundary significant
differences were observed for the Size, prob(a < 0) = 0, the Spatial Cue, prob(a < 0) =0.005,
and Spatial Cue Replication experiments, prob(a < 0) = 0, all showing higher decision
boundaries when semantic than when perceptual features were classified directly.
Additionally, the Shape experiment showed a significantly higher drift rate for perceptual
than semantic feature classification, prob(é > 0) = 0, while the Size experiment showed a

significant drift rate difference in the opposite direction, prob(s < 0) = 0 (see Fig. 7).

3.3 Discussion

In this study, we applied a well-established mathematical cognitive model to an
enormous data set of memory and visual classification studies. By estimating underlying
cognitive processes, we aimed to explain the reaction time differences between perceptual to
semantic feature classification that switch dependent on whether these classifications are
done visually or from memory.

As predicted, for our Memory Model significant differences between the drift rate
were found consistently over most experiments. These differences also had the predicted
direction with higher drift rates for semantic compared to perceptual feature classification.
These results corroborate the claim that semantic feature information is more easily
accessible than perceptual features information during the retrieval process, as the drift rate
is usually interpreted as a marker for availability of external or internal information (Ratcliff,
1979). Interestingly, a significant difference was not found in the Shape and the Spatial Cue
experiment. The former result was expected since in this experiment did not show a

significant difference between perceptual and semantic feature classification. As discussed
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before, this might be due to an confound between perceptual variation and the semantic object
identity (e.g. being displayed as a line drawing or a photograph is not inherent to the identity
of a turtle, but their round shape is). Instead of a significant difference in drift rates, we found
a significant difference in decision boundaries that explained our reaction time effect in the
Spatial Cue experiment. This unexpected result might be due to the nature of the paradigm
that was used in this particular experiment, as the task was so difficult (recalling objects from
spatial position cues) that participants were enabled to take very long recall reaction times
(up to 36 seconds). For our analysis we restricted range of reaction time values from 0.5 to
10 seconds (in line with all other experiments), but it is possible that the non-speeded nature
of the task changed participants response criterion to trade reaction speed for accuracy.

For the Visual Model, against our prediction a consistent difference was found on the
nondecision time parameter and not, as we assumed, on the drift rate, with every experiment
showing higher nondecision times semantic than perceptual feature classification. On a
second glance, this pattern might not be totally unexpected, as the nondecision time
parameter is partly made up of a stimulus encoding period that has to pass before the decision
begins. It could be that this parameter indexes the forward stream of information processing
that we hypothesize to map with our reaction time paradigm. If the motor response remains
equal for both semantic and perceptual classification, the stimulus encoding time should be
different, because early perceptual features should be processed earlier and be available more
quickly that high level semantic information. By this logic, these results would indicate a
“hard-wiredness” of the visual processing stream that can be mapped by reaction time
differences. This interpretation comes with the caveat that nondecision times as mentioned

above do not only include stimulus encoding times but also motor response times that could
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vary between conditions and a valid estimation of the nondecision time component might be
reduced in a simplified DDM (Ratcliff, 2008).

The decision boundary difference for our second Attention experiment curiously
showing lower decision boundaries for perceptual than for semantic feature classification
might indicate a dissociation between the reverse retrieval stream and a levels-of-processing
based attention effect.

In DDMs the full distribution of correct and error responses is taken into account
in one model where the estimated parameter values correspond to separable patterns of
condition difference in reaction times and accuracy. For example, while faster reaction
times and higher response accuracy in one condition compared to another should result in
different drift rates between those conditions, faster reaction times and lower accuracies
in one condition (indicating a speed-accuracy trade-off) should result in different decision
boundaries for those conditions. Since almost all memory task showed a pattern of faster
reaction times and higher accuracy for semantic features compared to perceptual features.
Generally, the DDM has the ability to uncover latent effects in the data that might not be
apparent in mean reaction time and accuracies alone (Lerche & Voss, 2020).

It is difficult to fully disentangle the influence that different accuracy distributions
between perceptual and semantic feature retrieval could have on the drift parameter
findings, although in most experiments average accuracy comparisons between conditions
mirror those of the average reaction time differences (i.e., higher accuracies for semantic
than for perceptual feature retrieval). Interestingly, in the experiments where this pattern
breaks, we observe either no condition difference in drift parameters like in the Spatial
Cue experiment or there are both a drift parameter as well as decision boundary

differences in the expected direction like in the Attention LOP experiment. It must be kept
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in mind though that high accuracies in a condition (few error trials) make it more difficult
to reliably estimate the parameters of a DDM including the drift rate (Liiken et al., 2025).
A necessary step for validating the parameter of mathematical cognitive models like
DDM and a potential avenue for further analysis could be to link our results to neuroimaging
signal (Nunez et al., 2024). This link can be established in different ways as several studies
have shown. These possibilities range from taking a neural signal of interest and see how
predictive it is for the variation of parameter values over conditions or participants (Bolam
et al., 2022; Cavanagh et al., 2011; Ratcliff et al., 2009) to multivariate methods like probing
electrophysiological signal for ramping (accumulation) behavior via Canonical Correlation
Analysis (van Vugt et al., 2016). In our case, it could be especially interesting to take feature-
specific classification output of M/EEG signal like the distance values of objects to a decision
hyperplane at certain points in time during perception or memory retrieval and link those
DDM parameter estimates (Bolam et al., 2022; Carlson et al., 2014; Philiastides et al., 2006;
Ratcliff et al., 2009).

An important question is how the parameters of the DDM might relate to areas and
processes in the brain. Multiple cortical and subcortical regions show correlations with
parameters such as the prefrontal cortex (Wittkuhn et al., 2018) and thalamus (Turner et
al., 2015) with the drift rate and the pre-supplementary motor area (Berkay et al., 2018)
and the subthalamic nucleus (Frank & O’Reilly, 2006) with the decision threshold. As a
key hub for episodic and long-term memory, the hippocampus has been implicated in
memory-based decision-making (Barron et al., 2013; Wimmer & Shohamy, 2012),
although linking DDM parameters to intracranial recordings of hippocampal activity
failed to show evidence accumulation behavior (van Vugt et al., 2016). When looking at

connectivity between brain areas, the hippocampus and the ventro-medial Prefrontal
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Cortex appear to be crucial for decision-making from memory (Gluth et al., 2015). Medial
frontal cortex neurons representing choices are phase-locked to medial temporal lobe
activity when decision must be informed by memory (Minxha et al., 2020).

Shadlen and Shohamy (2016) proposed a model of decision making where
information from either high-level visual areas for perceptual decisions or the medial
temporal system for memory-based decisions are funneled through the striatum via a
“thalamo-cortical” pipe towards parietal and prefrontal areas that represent a decision
variable being constantly updated. For the memory case, the potential role of the
hippocampus is acknowledged but a detailed interaction of hippocampal-cortical
interactions is missing, leaving room for different roles that a pattern completion process
of memory retrieval (Norman & O’Reilly, 2003) could have on the decision updating and
the different parameters of the DDM. It could be the case that the retrieval itself is
represented by the non-decision time as it delays reaction times overall and unspecifically
(Kraemer & Gluth, 2023). On the other hand, the retrieval process itself might influence
the decision related parameters (especially the drift rate) as it might need multiple updates
of the pattern completion in the case of specific sensory information compared to easily
targetable semantic or gist information.

By relating the outcome of this mechanistic model to brain data, other important
questions have to be addressed, for example where in brain and how a decision variable is
established. Converging evidence from monkey data proposes that competing perceptual
information is integrated over time in the lateral intraparietal area (LIP) neurons until a
decision boundary is hit and eye movement is initiated in a similar fashion as described by
sequential sampling models (Shadlen & Newsome, 2001). Generally, it is assumed that

association areas specific to any kind of effector work as a decision variable integration
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information from perception or memory (Shadlen & Shohamy, 2016). Based on these
mechanistic model, parietal activity during memory retrieval has been proposed to resemble
a Mnemonic accumulator of information (Wagner et al., 2005). While it is unlikely to be the
only role of the parietal cortex in memory, an EEG study (van Vugt et al., 2019) comparing
perceptual and memory related decisions in face discrimination task showed that a positive
parietal activity after 400 ms correlated significantly with a drift-rate parameter estimated

from reaction times and satisfied multiple criteria of an accumulator (O’Connell et al., 2012).

3.4 Methods

3.4.1 Reaction Time Data

Reaction time data were taken from the seven experiments presented in Postzich
(2024, PhD Thesis, Chapter 2) and two presented in Linde-Domingo et al. (2019). A detailed
description of the participants, paradigms and procedures can be found there. For the
convenience of the reader, the key information necessary for our analysis are laid out below.

While each of the nine experiments included a memory task, six experiments
additionally included a visual task. All memory and visual tasks used non overlapping
samples of participants. Reaction time data were analyzed separately for memory and visual
tasks. Out of the experiments from Postzich (2024, PhD Thesis, Chapter 2) in the first, fifth,
sixth, and seventh both memory and visual tasks were administered online.

A total of 288 participants (Mage = 21.5, SDage = 4.9) participated in nine different

memory tasks. For the six visual tasks, 335 participants (209 female, 113 male, 0 non-binary;
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Mage = 29.6, SDage = 9.4) were tested. Detailed information about the memory and visual
tasks can be found in Table 1.

All memory tasks included 3 phases and were repeated over blocks. In the learning
phase, cues (e.g. action verbs) and object images were presented together and had to be
associated. Object images depicted everyday objects from different categories (e.g. animals,
electronics, cars etc.) that varied on perceptual and semantic dimensions. After the learning
phase, a short distractor task was administered to clear visual short-term memory. While the
learning phase could vary between experiments, the cued recall phase always followed the
same schema. Participants were presented with a classification option (e.g. ‘animate’ vs
‘inanimate’) indicating on which dimension to classify the object. Then the cue appeared,
and participants had to retrieve the object and classified it as fast and accurately as possible
on a feature dimension (i.e. “Was the object animate or inanimate?”’). The reaction times of
interest were recorded between the cue onset and the classification decision. In the memory
task from Linde-Domingo et al. (2019) a third response option was given as forgotten. In our
current analysis those responses were coded as incorrect. To ensure that the model had
enough correct and incorrect reaction times to fit a distribution reliably, we excluded 44
participants who had either less than 55% correct responses or less than 3% incorrect
responses. Reaction times below 500 ms and above 10000 ms were excluded.

All visual tasks consisted of only a classification phase that was nearly identical to
the cued recall phase of the memory task. Instead of the cue, participants presented directly
with the object and had to classify it. Reaction times of interest were recorded between the
object onset and the classification decision. Again, for estimation stability, 99 participants
with less than 55% correct responses or less than 2% incorrect responses were excluded.

Reaction times below 150 ms were discarded.
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3.4.2 Hierarchical Bayesian Drift Diffusion Models

Both the visual containing seven experiments and memory dataset containing nine
experiments were modelled separately on a single trial level and included reaction times and
accuracy for each trial. Reaction times and accuracies were modelled by wiener-first-
passage-in-time (wiener-fpt) likelihood with a decision boundary o, a drift rate o, a
nondecision component T and a starting point bias 3 on a single trial level (Navarro & Fuss,
2009). The starting point bias B was always set to .5 which is a common choice for modelling
accuracy data since one would not expect there to be a systematic bias toward correct or
incorrect responses before target onset. All other parameter values varied deterministically
as a function of hyperparameters such that,

@ = exp (o + O * )
6; = pg + 04 * ds
Ty = P(pe + op * ts)

where a,, d,, t are varying at a subject-level. These single subject effects are shifted
by location parameters p,, g, Ue, T€SP., and scaled by scaling parameters g, 04, 0y, resp.
Both location and scale parameters vary between experiments and conditions and can be
interpreted as the experiment and condition-wise group mean and group standard deviation.
For a graphic illustration of the hierarchical model used here refer to Fig. 5 A and for an
overview over the prior distributions for all random variables see Fig. 5 B. Following the
suggestions of Ahn et al. (2017), we used an exponential link function for a; to ensure
positive values, and a standard normal cumulative distribution link function for t;

transforming input values into a range between 0 and 1. The output values of the link function
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were additionally scaled to be strictly between a minimum value of 0.1 (since a nondecision
time of 0 seconds would be impossible) and the participant’s minimum reaction time in
seconds. Modelling «;, §;, T; as a function of a subject-specific effect that is shifted and scaled
by hyperparameter values is called a noncentered parameterization and is often helpful in
drawing out high correlations between group-level parameters and thereby stabilizing model

convergence and estimation performance (Ahn et al., 2017).

3.4.3 MCMC sampling and condition difference of parameters

All models were implemented in the probabilistic modelling language STAN
(Carpenter et al., 2017) and sampled using the Python’s cmdstan interface with the
Hamiltonian Monte-Carlo Algorithm and No-U-Turn Sampler. For each model, custom
initialization values were passed to five independent sampling chains running in parallel on
a high-performance cluster. Each chain ran 1700 iterations with 200 warming up samples.
The maximum tree depth was kept at 10 and adaptation delta was set to 0.8. Additional
diagnostics from the chains showed no signs for problems in sampling: Divergences were
rare and only observed during the warm-up period and Bayesian fraction of missing
information (Betancourt, 2016) values were sufficiently high for the memory (range: 0.7 —
0.76) and the visual model (range: 0.65 — 0.79). Summary statistics indicated that most
parameters achieved R values below 1.01 (95.1% for the memory data, 93.7% for the visual

data) (Gelman & Rubin, 1992) and sufficient effective sample size.
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Experiments N (£, m,nb,NA) M Age (sp) Cue Perceptual Semantic
Exp. 1 1] 26 (19,7,0,0) 19.0 (0.8) Verbs Drawing / Photograph ~ Animate / Inanimate
Exp. 2 1] 24 (22,2,0,0) 19.5 (0.9) Verbs Drawing / Photograph ~ Animate / Inanimate

Size 32 (21, 11,0, 0) 25.9 (5.2) Verbs Big / Small Manmade / Natural

Shape 25 (17,8,0,0) 20.6 2.4) Verbs Round / Elongated Manmade / Natural
Scene Cue 27 (21,6,0,0) 20.0 2.2) S\c/e;r;zss/ Drawing / Photograph ~ Animate / Inanimate
Spatial Cue 24 (20, 4,0, 0) 18.9 0.7) Ps(i?ggil Color / Greyscale Living / Non-Living
nggliiitiﬂe 38 (27,8,0,3)  23.4(86) Ps(i?ggil Color / Greyscale Living / Non-Living
éﬁfﬂ:ﬁ; 40 (30,8, 0,2) 23.8 (3.6) Verbs Color / Greyscale Manmade / Natural
Attfgs on 52 (41,9,2,0) 19.7 3.8) Scenes Drawing / Photograph ~ Manmade / Natural

Memory Nrotal 288 (excl 44) 21.5 49)

Exp. 1[1] 23 (20, 3,0, 0) 19.3 1.p - Drawing / Photograph ~ Animate / Inanimate
Exp. 2 [1] 24 (20,4,0,0) 19.0 0.9) - Drawing / Photograph ~ Animate / Inanimate
Size 40 (29, 11, 0, 0) 30.7 5.9 - Big / Small Manmade / Natural
Shape 24 (23,1,0,0) 18.7 (0.6) - Round / Elongated Manmade / Natural
Spatial Cue 24 (0,24,0,0) 19.6 (0.8) - Color / Greyscale Living / Non-Living
Slrk)gsliiiitiﬁe 200 (130, 70, 0, 0) 33.7 8.5) - Color / Greyscale Living / Non-Living
Visual Nrotal 335 (excl 99) 29.6 (9.4)

Tab. I: Overview over the studies used for the Drift Diffusion Modelling. Abbreviations: LOP =
Levels of Processing, f = female; m = male; nb = non-binary; NA = not available; M = Mean;
SD = Standard Deviation; excl = excluded participants. The Cue column lists the material used
as cues in the recall task to remember the object. The last two columns list the perceptual and
semantic dimensions that the objects used each experiment varied on. [1] Experiments 1 and 2
taken from Linde-Domingo et al (2019).

Posterior parameter distributions were based on the 7500 samples excluding the

warm-up period. Our analysis focused on the posterior distributions of p, (decision

boundary), 4 (drift rate), and y, (nondecision time) that all varied between experiments and

conditions. Within each experiment, marginal parameter distributions of the perceptual

feature classification were subtracted from the semantic feature classification. A condition
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difference was deemed significant, if 97.5 percent of the difference distribution were either

larger or small than zero.

3.4.4 Determining model validity via Posterior Predictive Check

For the Posterior Predictive Check (Gelman et al., 2013), we constrained the wiener-
fpt likelihood function on the average parameter estimates from the posterior distribution and
simulated reaction time datasets with 1000 responses for each participant and each condition.
Only correct responses were included in the analysis. For both simulated (predicted) and
observed datasets, reaction times were binned into five cumulative quantiles (0-10 %, 11-30
%, 31-50 %, 51-70 %, 71-90 %), averaged within quantile and then plotted in comparison

between conditions for both the memory data model and the visual data model (see Fig. 5 C).
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Chapter 4: Tracking the reconstruction of naturalistic

images from memory using similarity-based fusion
of MEG and fMRI data

4.1 Introduction

The act of retrieving information from memory can sometimes be automatic and near
instantaneous, for example when a photograph or an odor reminds us of a nice vacation we
spent at the beach, and other times it can be effortful and hard like trying to remember a
colleague’s name while they are approaching at a conference. According to an influential
model, episodic recall starts with a part of the original pattern that was experienced serving
as a cue that activates a compressed index ensemble of neurons in the hippocampus which
will then in turn reactivate the whole pattern of information in the cortex — a process termed
pattern completion (McClelland et al., 1995; O’Reilly et al., 2014; Teyler & DiScenna, 1986).
The episode is represented as a distributed pattern of neural activity that can entail everything
from semantic, gist-like representations to specific perceptual details (Danker & Anderson,
2010; Rissman & Wagner, 2012). While a lot is known about the time course of the visual
processing pathways during initial perception (Goodale & Milner, 1992b; Kravitz et al.,
2011; Mishkin et al., 1983b) and how it transforms information from low-level perceptual to
high-level semantic representations (Groen et al., 2017), the time course of feature
reactivation during retrieval is less clear. In this chapter, we will use multivariate combination
of fMRI and MEG and Deep Neural Networks to track the feature-specific reactivation of

visual images during the time course of retrieval.
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General retrieval processes like recollection and familiarity have been well described
and delineated by a host of behavioral and event-related potential studies (Rugg & Curran,
2007; Yonelinas, 2002). Especially, the ERP studies point towards a positive parieto-temporal
component indexing recollection-based retrieval (Rugg et al., 1998) that starts after 500 ms.
Accordingly, memory studies in epileptic patients with intracranial electrodes show that
information about a cue reach the hippocampus at about 200 to 300 ms after which a pattern
completion process could be activated to retrieve content associated with the cue (Staresina
et al., 2016, 2019; Staresina & Wimber, 2019).

The advent of multivariate pattern classification methods made it possible to
investigate content or feature reactivation during the retrieval process in neural signal albeit
mostly in fMRI (Johnson et al., 2008, 2009; Polyn et al., 2005). The use of pretrained Deep
Neural Networks (DNN) as encoding models has further helped to capture specific fMRI
reactivation of low-level visual and high-level semantic features during retrieval all
throughout the ventral visual stream (Bone et al., 2020).

A recent study looked into the temporal dynamics of feature-based retrieval process.
Linde-Domingo et al. (2019) showed participants everyday objects that varied among a
perceptual (line drawing vs photographs) and a semantic (animate vs inanimate) dimension
while they measured EEG activity. A classifier analysis of the signal revealed that the
perceptual dimension could be successfully classified earlier than the semantic dimension
when participants saw the images on-screen, in accordance with a forward sweep of
information. But when participants had to retrieve the object from memory, classification
peaked earlier for semantic features than for perceptual features, indicating a reversal of the
hierarchy during retrieval. This effect has been replicated and generalized over multiple

control conditions in reaction time studies (cf. Chapter 1) and has also shown a consolidation-
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based enhancement over days of repeated retrieval tests (Lifanov et al., 2021). Compared
with perceptual processing, retrieval-based processing thus consistently prioritizes abstract-
semantic over detailed-perceptual information.

Here we want to take a closer look at the spatio-temporal dynamics of the feature-
based retrieval process by fusing different data modalities using a data-driven, multivariate
tool to investigate the processing of stimuli and their features called Representational
Similarity Analysis (RSA). The idea is to transform the neural signal acquired by M/EEG or
fMRI into a representational geometry by comparing neural activation patterns in response
to all stimulus combinations (Kriegeskorte et al., 2008). The resulting Representational
Dissimilarity Matrix (RDM) indicates how all stimuli relate to each other on a distance basis
and makes it possible to directly compare how different data modalities (MEG/EEG, fMRI,
DNNs) represent stimuli (Kriegeskorte & Kievit, 2013). Thereby RDM-based correlation
(fusion) analysis has the ability to combine the spatial resolution of fMRI with the temporal
precision of MEG and the feature-based focus of DNNs, which is why it has been extensively
applied to object processing along the visual stream (Arbuckle et al., 2019; Cichy et al., 2017,
Cichy, Pantazis, et al., 2016). Combing MEG and fMRI geometries was successfully used to
envision the spatiotemporal dynamics of the ventral visual processing path (Cichy, Pantazis,
et al., 2016). Another advantage of a fusion approach is the possibility to combine
measurements from different participant samples (Kriegeskorte, 2009), for example Cichy et
al. (2014) fused MEG data from humans to intracranial single unit recordings along the
ventral temporal cortex in monkeys.

For this research endeavor, we will use images from the Natural Scenes Database
(NSD), a special database where each image comes with multiple 7T fMRI whole brain

recordings from 8 different participants (Allen et al., 2022). In our present study, we let a
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new sample of participants learn NSD images together with words and then cue them later
in a retrieval phase with those words for participants to reconstruct the associated image from
memory, while MEG is measured. By using the same set of images, we are able to transform
both the NSD fMRI data, our MEG data, and Deep Neural Network activations in response
to those images into representational geometries allowing us to fuse (correlate) the
geometries arising in the different data modalities. Such a multimodal fusion can reveal when
in time and where in the brain (or in what layers of a network) the representational structure
shows the highest match.

Taken together, we expect to see a forward flow of activation during the initial
perception of the image, such that when correlating the representational geometries of
different brain regions (fMRI) with the time resolved representational geometries of the
MEG, early sensory areas (e.g. early visual cortex) should show significant correlation peaks
first, followed by significant peaks from late areas (e.g. higher visual cortex, temporal cortex)
later in time. Importantly, during the cued recall of the same images, we expect the opposite
pattern of results, with late fMRI areas peaking before early areas, indicating a reverse
information flow of image reconstruction from memory.

Similarly, when correlating the feature-specific representational geometries of
pretrained deep neural network layers, we expect to find that low visual layer correlations
with the MEG peak first during encoding followed by higher visual and semantic layer
correlation peaks. Corresponding to the MEG-fMRI fusion predictions, we expect to find a
reverse pattern of information flow during retrieval, with semantic and higher visual feature
layers showing an earlier correlational peak than low visual feature layers.

As each image is retrieved multiple times, we will in a second step investigate how

potential coactivation effects during retrieval change over the course of multiple retrieval
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repetitions. While according to a recent theoretical account, multiple retrieval repetitions
could strengthen an invariant semantic core of a memory (Antony et al., 2017), this effect
might not occur within a session of retrieval repetitions but rather unfolds over longer time
periods (Lifanov et al., 2021). Generally, we expect that reaction times (i.e. when in time
participants indicate a reconstruction) will decrease over retrieval repetitions while accuracy

(i.e. participants indicating a successful reconstruction from memory) should increase.

4.2 Results

In the learning phase of the MEG study, participants were presented with action verbs
and naturalistic images from the Natural Scenes Database (Allen et al., 2022) and had to form
a mental image or short story associating each pair. This association was, in a subsequent
retrieval phase, re-elicited by cueing participants with the action verb and asking them to
reconstruct the image mentally onto the screen while we measured their brain activity.
Participants indicated the moment they had the image back in mind by pressing a
‘Remember’ button or a ‘Forgotten’ button if they couldn’t remember. Participants indicated
an overall high remembrance rate with an average of 88.1 % (SD = 32.4, see Fig. 8 B).
However, since this is a subjective measure, each verb-image association was also tested
once objectively during the retrieval phase. This was done by presenting either the correct
image or a lure (both were 80% masked to make identification more difficult) to see if
participants recognized the correct image. Like before, participants were able to distinguish
between correct images and lures very well with an average accuracy of 88.5 % (SD = 32.0,
see Fig. 8 B). When correlating both the subjective remembrance rate and image recognition

accuracy a highly significant relationship, » = .88, p < .001, indicated that participants who
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remembered the image more often were also better at recognizing the correct image,
generally validating their self-report to remember the correct image (see Fig. 8 C).

While participants saw each verb-image pair only once, they retrieved each
association six times during the cued recalled phase. This makes it possible to track changes
over trials in the accessibility of the memory trace. Behavioral measures of the subjective
remember button press showed that participant’s average reaction times got faster over
retrieval repetitions (one-way repeated-measures ANOVA: F(5, 140) = 51.44, p < .001, n,° =
.65, ecc = .33, see Fig. 8 A) and also more accurate (F(5, 140) = 24.44, p < .001, 5,° = .47,
ecc = .53, see Fig. 8 A). More detailed post-hoc comparisons additionally showed that while
the biggest decrease in retrieval time happens between the first and second repetition
(Reaction Times: #28) = 10.09, p <.001, d = 1.87; Accuracy: #(28) = -4.14, p < .01, d = -
0.77), there are still significant improvements between the second to fifth (Reaction Times:
#(28) = 3.46, p < .05, d = 0.64; Accuracy: #(28) = -4.41, p < .01, d = -0.82) second to sixth
(Reaction Times: #28) =3.89, p <.01, d=0.72; Accuracy: #(28) =-4.32, p <.01, d =-0.82).
As predicted, multiple retrievals strengthen the accessibility of memory content in associative

recall.
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4.2.1 MEG-fMRI ROI Fusion

To track the flow of information within the visual system during initial perception of
images and then later the recall from memory, we transformed the MEG signal into a
representational dissimilarity matrix (RDM) format creating a multivariate measure of how
the sensor activity geometrically represents all images at any point in time. The time windows
of interest are the initial perception of the image during the learning phase (i.e. when
participants are presented with the image during encoding), and the retrieval of the image

during the memory phase (i.e. when participants see the action verb as a cue and have to
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Fig. 8: A: Schematic of the paradigm used in our MEG sample. Participants associatively learned 96
images together with action verbs. Later they were cued with the word and had to try to reconstruct
the image 6 times. Memory for each association was tested once per image in a lure recognition test.
B: Performance of MEG participants in cued recall (left) and the memory test (right). Boxplots
represent the distribution of participant’s average accuracies and single dots indicate participants
average accuracy. C: Correlation between participants average cued recall accuracy and memory test
accuracy. The red line represents a least-squares fit to the data.

reconstruct the image). A separate sample comprised of eight different participants viewed
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the same 100 images we used in our MEG study while their brain volumes were scanned in
an 7T fMRI scanner (Allen et al., 2022). From this data, we captured the voxel activity of
certain predefined ROIs (early visual cortex, mid-lateral, lateral, see Fig. 9 A, for ROI
definition see Methods) and transformed these activations into the same RDM format as a
multivariate depiction of how each ROI groups the images. In the next step, the MEG RDMs
from each time point were fused (i.e., correlated) with the fMRI RDMs, resulting in a
coactivation time course that signifies when in time the MEG representations are more
similar to a certain ROI representation (see Fig. 9 A). To test the directionality of information
processing we used a procedure developed by Michelmann et al. (2016) that transforms each
correlation timeseries into a cumulative sum timeseries and then fits an ordinal regression
model of ROIs (e.g. early visual first, mid-lateral second, lateral third) at each timepoint in a
trial. The resulting timeseries of beta coefficients will show negative deflections if there is a
forward processing stream (i.e., forward accumulation of information along those regions),
and positive deflections during a reversal of the information flow (see Fig. 9 B).

During the encoding time window (i.e., image onset) cluster activations of the
different ROIs show a cascading onset pattern (see Fig. 10 B). Early visual cortex shows
significant coactivation with the MEG RDMs first (onset: 70 ms, peak: 120 ms) followed by
the mid-lateral ROI (onset: 80 ms, peak: 120 ms) and then later by the lateral ROI (onset:
230 ms, peak: 300 ms). This pattern indicates a clear forward stream of information flow

along the visual hierarchy from early sensory areas to high level visual areas represented by
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Fig. 9: A: Schematic of the RSA-based fusion approach. Upper row: Region-of-interest voxel
activation are used to build one fMRI RDM per ROI. Middel row: Sensor activations at a timepoint t
are used to build one MEG RDM per timepoint. Lower row: Hidden layer activations in response to
an image or an image description are used to one DNN RDM per layer. MEG and fMRI RDMs are
the correlated (fused) to get spatially informed representational time series. MEG and DNN RDMs
are correlated (fused) to get feature informed representational time series. B: Schematic of the ordinal
regression-based test of directionality. Correlation time series per ROI (or layer) are transformed into
a cumulative sum over time and at each timepoint the order of ROIs or (layers) is regressed onto the
cumulative sum values. Negative beta coefficients indicate a forward processing while positive beta
coefficients indicate reverse processing. C: Distance between the layer representations of the two
models (VGG16: block1-5, fc6-7; and Word2 Vec).
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the lateral ROI. The formal test of directionality showed a significant negative deflection
between 110 and 410 ms, indicating a mainly forward stream of information progression.
During the retrieval time window (see Fig. 10 C) cluster activations of all ROIs start
after about 500 ms, with the lateral ROI starting first (onset: 640 ms, peak: 1100 ms) followed
by the mid-lateral ROI (onset: 700 ms, peak: 810 ms) and then the early visual ROI (onset:
700 ms, peak: 840 ms). Additionally, the high visual area ROI shows prolonged activity (up

to 1300 ms) other than both the mid-lateral (up to 850 ms) and early visual ROIs (up to 870



75

ms). Although there seems to be a trend towards a reverse processing stream from high visual
areas being activated first followed by low-level areas during the initial reconstruction
process from memory, the directionality measure did not identify a significant deflection of

any kind.

4.2.2 MEG Neural Network Fusion

The MEG fMRI fusion approach has the advantage of obtaining region-specific
similarity with high temporal precision, showing information flow across the visual system
during encoding and retrieval. To get a more detailed view of what types of features are
processed at a given timepoint, we use an encoding model approach for our stimulus pool of
naturalistic images by using the layer activations from visual (VGG16) and semantic
(Word2vec) deep neural network models. As successor to the famous Alexnet (Krizhevsky et
al., 2017), VGG16 is also built upon a biologically inspired architecture (Simonyan &
Zisserman, 2015) which uses convolutional layers to extract image features and enable
classification of objects and scenic content. Images are fed into the model, and activations
from three hidden layers (block2 as low visual, block5 as mid visual and dense2 as high
visual, see Fig. 10 D) are recorded as new features vectors. Semantic feature representations
of the images are obtained by embedding short verbal image descriptions in a Word2vec
model (Mikolov et al., 2013). This neural network has been pretrained on a large corpus and
transforms input words into a lower dimensional semantic embedding space (e.g. it groups
words that are semantically related closer together than semantically unrelated words). For
each image or image description, hidden layer activations of VGG16 or Word2Vec,

respectively, are used as feature vectors. By comparing the feature vectors for all pairwise
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image combinations, layer-specific RDMs are computed and then fused with the MEG RDMs
in a very similar way to the MEG-to-fMRI fusion reported above (see Fig. 9 A).

To ensure that the visual and the semantic model capture different features of the
images used in this study, we compared the RDMs from the last layer of each block of the

VGG16 and the layer activations of the Word2Vec model (see Fig. 9 C)
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Fig. 10: A: Surface plot of masked areas used as fMRI ROlIs. A predefined lateral visual processing
stream was used from the NSD. B &C: Upper row: Average correlation timeseries between MEG
RDMs and fMRI ROI RDMs. Lower row: Beta coefficients from ROI ordinal regression. Shaded
area indicates SEM based on participants. D: Schematic of the visual (VGG16) and semantic DNN
model with color-coded layers that were used for RDMs. E&F: Upper row: Average correlation
timeseries between MEG RDMs and DNN layer RDMs. Lower row: Beta coefficients from layer
ordinal regression. Shaded area indicates SEM based on participants. For B,C,D,F: Horizontal bars
indicate significant clusters at p <.05 (corrected).
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The same cascading pattern as before is observed during the encoding time window,
with the low and mid-level features peaking first (onset: 90 ms, peak: 300 ms; onset: 80 ms,
peak: 310 ms respectively) followed by a high-level visual layer peak (onset: 180 ms, peak:
300 ms) and then the semantic layer peak (onset: 240 ms, peak: 750 ms). Again, on a feature-
specific level a clear forward flow of information from low level, early sensory to high-level,
semantic regions is observed. Like in the MEG-to-fMRI fusion, the formal directionality test
confirmed this forward processing stream with a significant negative deflection between 20
and 680 ms. This deflection seems to be even more pronounced than in the MEG-to-fMRI
fusion.

For the retrieval phase, the results mirror the MEG-to-fMRI fusion results. Except for
the semantic model, significant activation clusters (i.e., correlation peaks) are only observed
after 500 ms, with an early onset of high visual and semantic layer information that is
prolonged over the entire trial (550 to 1720 ms, peak: 700 ms; 530 to 1720 ms, peak: 1230
ms, respectively). Similarity with low and mid-level layers peaked right after 500 ms but
only for a short period (onset: 490 ms, peak: 560 ms; onset: 460 ms, peak: 630 ms,

respectively). Again, the test of directionality did not reveal any significant deflections.

4.2.3 Fusion analysis split over recall repetitions

To investigate whether the above-mentioned change in behavioral measures over
recall repetitions, coincided which changes in the representational geometries emerging
during retrieval, we focused our next fusion analysis on objects that were correctly classified

in the memory test and that were subjectively recalled correctly at least 4 times. The recall
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trials were then split into the first two recall trials and the second two to four recall trials. The
fusion analysis remained the same as above.
For the MEG-to-fMRI fusion, the first group of recall trials seems to be dominated

by a representational match with the lateral ROI (onset: 530 ms, peak: 610 ms) with no
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Fig. 11: A: Behavioral results for each of the six cued recall repetitions. Left: Boxplots of participant’s
average reaction time. Right: Boxplots of participant’s average accuracies. Single dots indicate single
participants. Lines on the top indicate significant differences between repetitions (p < .05, corrected).
B: Average correlation timeseries between MEG RDMs and fMRI ROI RDMs split for the first two
cued recalls (left) and the second two to four cued recalls (right). C: Average correlation timeseries
between MEG RDMs and DNN layer RDMs split for the first two cued recalls (left) and the second
two to four cued recalls (right).
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significant clusters for the mid-lateral and early visual ROI. The opposite pattern is then
found in the second group of recall trials where both mid-lateral (onset: 610 ms, peak: 650
ms) and early visual ROIs (onset: 630 ms, peak: 760 ms), but not the lateral ROI, show
significant clusters of correlation. The significant clusters found here overlap almost
completely with the clusters found in our fusion analysis including all recall trials.

The MEG-to-DNN fusion shows a similar but more intricate difference between the
early and late recall repetitions. For the first two recall trials, there is a dominant correlation
with the semantic layer expressed in a late big cluster (onset: 990 ms, peak: 1360 ms). While
the low and mid-visual layers show some early activations before 500 ms, for the high visual
layer only a small significant cluster is found (onset: 1180 ms, peak: 1300 ms). In the second
group of recall trials, the semantic layer shows a smaller activation than before with
significant clusters mostly between 390 and 990 ms (peak: 690 ms). Now the high visual
layer has a more pronounced pattern of activations with significant correlation clusters
between 720 and 1660 ms (peak: 750 ms). While a significant cluster is found for the mid-

visual layer (onset: 550 ms, peak: 640 ms), none is found for the low visual layer.

4.3 Discussion

The time course of visual perception has been studied intensively and a clear
hierarchical transformation from low-level perceptual to high-level semantic information has
been well established (Cichy et al., 2014, 2017; Goodale & Milner, 1992b; Groen et al., 2017;
Martin & Barense, 2023; A. D. Milner & Goodale, 2008; Mishkin et al., 1983b). In contrast,
evidence for the dynamics of information reactivation during the retrieval process is still

sparse (Linde-Domingo et al., 2019; Michelmann et al., 2019). Here we used a multivariate,
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data-driven approach of fusing temporally-, spatially- and feature-resolved data modalities
to investigate the time course of retrieval.

When testing our main prediction of a reversal of information flow between
perception and memory recall, we did encounter a pronounced activation of lateral areas
among the visual processing stream in a recollection-based timeframe of ~500 ms after cue
onset (Staresina & Wimber, 2019). During the initial perception of the images, we saw the
highest and most consistent representational overlap from this lateral ROI stream, in line with
previous findings that scene related processing follows a more lateral path situated between
the ventral object-oriented and parietal movement-oriented stream (Kravitz et al., 2011). This
lateral ROI also includes part of the angular gyrus that is implicated in episodic memory
retrieval (Berryhill, 2012; Thakral et al., 2017). Similarly, regarding the MEG-to-DNN
fusion, we found pronounced semantic and high-visual layer reactivation during retrieval.
Although a test for a reverse flow of information did not show significant positive deflections
after 500 ms, the results show that high-level visual and gist-like representations are most
reliably reactivated during the retrieval process (Robin & Moscovitch, 2017).

As expected, we observed a significant forward stream during initial perception that
was expressed in a forward cascading activation of fMRI ROIs as well as among a hierarchy
of DNN layers from low to high visual and semantic features. The results of the fMRI ROI
and the DNN layer fusion are well in line with previous fusion results, including studies
where participants view objects or more complex scenes (Cichy et al., 2014, 2017; Cichy,
Pantazis, et al., 2016).

Interestingly, when taking a closer look into the development of the retrieval time
course over multiple recall repetitions, we encountered unexpected results for both types of

fusion analyses. For the MEG-to-fMRI fusion, lateral activation was mostly found for early
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recall attempts and mid-lateral and early visual activation dominated later recall attempts,
indicative of the retrieval becoming increasingly detail-focused over time. A similar but more
nuanced switch in feature activation was found in the MEG-to-DNN fusion when comparing
recall repetitions, going from more semantic activation in early recall attempts and then
shifting towards more visual activation in later attempts. These results are surprising in light
of previous suggestions that retrieval can act as a fast route to memory consolidation (Antony
et al., 2017), stabilising and in this process also ‘semanticising’ memories through repeated
reactivations. Since this idea was first proposed, empirical findings have lent support to the
idea that repeated recall can stabilize memories, but not (as originally thought) in a fast
manner, with the ‘semanticizing’ effects of retrieval often only showing after a longer delay
of several days (Ferreira et al., 2019; Lifanov et al., 2021). Repetitions within one session, as
conducted in the present study, have even been shown to lead to a gradually faster
accessibility of perceptual details (Lifanov et al., 2021), consistent with the present fusion
results that suggest a progression, over trials, from reactivation from mainly high-level visuo-
semantic to lower-level visual features.

Curiously, descriptive differences in the correlation time series are observed between
splits in a time window between cue onset and 500 ms (Fig. 11B), a timeframe in which. In
this timeframe processing of the cue is still ongoing. During the first repetitions correlations
tend to be greater than during later repetitions, although not significantly so. Since this effect
is mainly driven by a change in the temporal representational geometry of the MEG, it might
depict a more effortful retrieval process during the first repetitions which would correspond
to the behavioral findings of reduction of reaction times and increase of accuracy over

repetitions.
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In our current analysis, predefined fMRI ROI masks were used from the NSD
database that were determined and created alongside the sampling of the database (Allen et
al., 2022) and were derived from regions defined in the Wang Atlas (Wang et al., 2015). An
early visual cortex ROI included V1-3, a smaller mid-lateral ROI included LO1 and LO2 and
a lateral ROI that sits more anterior to the mid-lateral ROI and is enframed by the edges of
the superior temporal sulcus and the angular gyrus. Importantly, this last ROI is several times
bigger than the mid-lateral ROL.

There is a possibility the differing size of the ROIs, especially the mid-lateral
compared to the lateral and early visual ROI have an impact on our results. While larger ROIs
more likely encompass heterogenous regions with diverse functional connectivity and
activation patterns (Wei et al., 2022), small ROIs might be functionally too specific to find
significant covariation with MEG signal (Geerligs et al., 2016). It might be that the distinction
between the early and the mid-lateral ROI is too small which could explain why the time
courses of both ROIs are very similar. Taking these caveats into account, further analysis
would profit from more equally sized ROIs or a searchlight approach allowing for a more
fine-grained and even-handed depiction of the representations shared between fMRI and
MEG.

A question that is currently strongly debated in the memory field is whether memory
retrieval relies on the reactivation of the original patterns established during encoding, or
rather a somewhat transformed version of the perceived experience (Favila et al., 2020).
Early fMRI studies, including those using multivariate methods, found evidence for an
overlap between areas activated during encoding and areas activated during retrieval (Danker
& Anderson, 2010), with the latter typically being smaller (Wheeler et al., 2000) and

restricted to later sensory processing stages (Danker & Anderson, 2010). Additionally,
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memory retrieval was shown to be supported by parietal activity in ERP studies (late positive
complex most pronounced in temporo-parietal regions) and in fMRI studies (Johnson et al.,
2009; Mecklinger et al., 2016). Early studies assumed that parietal activations reflect memory
operations on the retrieved content, rather than content representations in themselves. In
recent years, however, it became clear that retrieved content is decodable from parietal
activations, and in fact is relatively more decodable during retrieval than perception,
suggesting a transformation of information between encoding and retrieval (Favila et al.,
2020; Long & Kuhl, 2021). Importantly, the current study uses fMRI patterns from a
perceptual exposure condition where participants are viewing the images on screen, and these
patterns are used for comparison with the encoding/perception and retrieval MEG patterns.
The study might thus not be sensitive to pattern transformations occurring between encoding
and retrieval. A comparison with fMRI signal from participants doing the task presented here
with the same images could elucidate not only mere reactivation of visual processing
patterns, but also pattern transformation. Such an fMRI dataset has actually been collected
by our group, but analysis was beyond the time frame of my PhD. Furthermore, a comparison
between both MEG retrieval to fMRI encoding and MEG retrieval to fMRI retrieval patterns
could elucidate the temporal dynamics between both forms of memory representation, for
example by delineating at which time points are different regions of the brain more engaged
in pattern reactivation (higher fMRI encoding to MEG retrieval correlations) versus pattern
completion (higher fMRI retrieval to MEG retrieval correlations).

Our study used two different samples for the MEG and fMRI which is not uncommon
for a representational fusion approach (Cichy et al., 2014; Kriegeskorte, 2009). It has to be
kept in mind that this obscures idiosyncrasies in memory encoding and retrieval that could

be modelled if both MEG and fMRI samples would use the same participants and focused



84

only on coactivations that are consistent over participants. Retinotopic maps in early visual
areas are preserved across subjects (Benson et al., 2012). Studies comparing fMRI activations
between participants who recall the same memory show a high overlap in high-level areas
(Chen et al.,, 2017). However, there might still be a possibility that idiosyncrasies in
reactivation could affect perceptual details more strongly than a semantic gist.

In our current analysis, we are restricting representational geometries in the fMRI to
certain ROIs. In a next step, we will extend this analysis with a searchlight approach where
RDM matrices are computed from a shifting searchlight of voxels throughout the entire brain.
This renders a whole brain volume of RDMs enabling us to create a time-resolved movie of
coactivations between MEG and fMRI representational geometries. In the past, this approach
has been used in visual perception studies to show a forward stream of activation (Cichy,
Pantazis, et al., 2016). A more spatially resolved method like this could be fruitful to show
evidence of memory reactivation in a reverse or even more complicated fashion, without the
need to focus on predefined ROIs.

A potential avenue for further analysis could be the inclusion of eye tracking data that
is available for most participants. Eye movements have in the past been shown to covary with
memory retrieval (Hannula & Ranganath, 2009). Johansson et al. (2022) showed that gaze
patterns during encoding reoccurred during retrieval of the image. The degree to which gaze
patterns were reactivated directly or in a rule based transformed fashion could predict the
fidelity of memory retrieval. With these results in mind, it would be interesting to see whether
the degree of overlap of scan paths between encoding and cued recall could be harnessed as
an implicit measure of retrieval quality to sort our trials and sharpen further analysis steps,
or even as a covariate that explains the overlap in neural activations at distinct time points

(Linde-Domingo & Spitzer, 2023).
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4.4 Methods

4.4.1 MEG Participants & Procedure

Twenty-nine participants (16 female; MAge = 25.1, SDAge = 3.9) were recruited
from the University of Glasgow Subject Pool to participate in the MEG study. Eligibility
criteria included normal or close-to-normal vision, proficient English knowledge and absence
of psychological conditions (e.g. ADHD, epilepsy). Before the in-person appointment in the
MEGQG, participants completed an internet version of the training task to get familiar with the
task. Upon arrival at the MEG facilities participants signed a consent form and were then
prepared for MEG by attaching head position coils to the head. After being seated in the
MEG in a magnetically shielded, participants read the instructions for the main task and
finished the training task. Participants completed all 8 blocks of the experiment, with
typically a larger break between the first and second four blocks. After completion of the
task, participants were debriefed and received 30 Pounds in cash as a compensation for their
participation. This experiment followed all ethics guidelines and was approved by the CCNi

Research Board, Glasgow.

4.4.2 MEG Material & Design
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The stimulus pool for this study consisted of 100 naturalistic images taken from the
NSD (see “NSD Participants & Material”). 96 images were used for the main task, while 4
images (the same for all participants) were used for the training task.

The main task used here consisted of three phases: An associative learning phase, a
distractor number task and a cued recall phase. In the learning phase, each trial started with
a jittered fixation cross (0.5 — 1.5 s), followed by an action verb as a cue (1 s). Afterwards a
second jittered fixation cross (0.5 — 1.5 s) appeared before the image was presented.
Participants were instructed to form an association between the action word and the image
and indicate the association with a button press. The association learning was thereby semi
self-paced with either the button press or a maximum duration of 10 s ending the trial. Each
verb-image pair was presented and learned once, with a total 12 pairs of verb-image
associations were learned per block. Following the learning phase, participants engaged in a
short distractor number task where they categorized odd or even numbers using the left or
right index finger button, resp. This task lasted for 30 s and participants were instructed to
classify as many numbers as accurately as possible. Feedback of performance (i.e. number
of trials and percentage of correct classification) was given after the task. During the whole
recall phase, a square outline of the same size as the images was continuously displayed in
the background to aid memory reconstruction. Each retrieval trial started with a jittered
fixation cross (0.5 — 1.5 s) that was followed by an action verb. Participants were instructed
to retrieve the image that was paired with the action verb and reconstruct it mentally within
the square frame to the best of their ability. The action verb disappeared after 0.5 s and two
response options appeared outside of the square frame. An “R” for Remembered always
appeared on the right and an “(F)” for Forgotten always on the left side of the frame.

Participants were told to indicate whether they could reconstruct the image or not by pressing
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either their right index button for “R” or their left index button for “F”. After either button
press or a maximum duration of 10 s, response options disappeared leaving only the white
frame on screen for 3 s. Participants were told to keep their reconstructed image actively in
mind during this period. After 3 s the next retrieval trial started, unless there was a random
memory test. In case of a memory test, the white frame changed color to red and a fixation
cross appeared in the middle of the screen for 1 s. Then a masked image appeared within the
frame together with two response options (“C” for Correct and “IC” for Incorrect) on the left
and right outside of the frame. Presentation side of response options was counterbalanced
between participants. The masked image consisted of either the correct image (i.e. image that
was presented with the action verb) or a lure image from the same block. Images were
overlaid by a black square with randomly placed transparent tiles blocking of 80 % of the
image to challenge recognition performance. Participants were instructed to respond as
quickly and accurately as possible using the left and right index button. After either button
press or a maximum duration of 6 s the next retrieval trial started. Each of the 12 verb-image
associations was retrieved six times (72 trials) and tested one time (12 trials). The memory
test appeared randomly after one of the six retrieval trials. This task repeated over 8 blocks
testing overall 96 verb-image pairs. The training task was a shortened version of the main
task described above and consisted of 4 separate verb-image pairs in the learning phase and

2 retrieval trials and 1 memory test trial per pair.

4.4.3 MEG Data Acquisition

Continuous MEG signals were recorded from 306 channels (204 planar gradiometers,

102 magnetometers; Elekta Neuromag TRIUX, Elekta, Stockholm) at a sampling rate of
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1,000 Hz and filtered above 330 Hz. In 28 participants an additional two electrodes were
placed above and below the left eye and two electrodes were placed next to the left and right
eye to measure vertically and horizontal, resp, eye movement. In the MEG scanner eye
activity (gaze patterns, pupil dilation) was additionally monitored with an EyeLink Tracking
System (SR Research, Ottawa, Canada) in all participants but was only stable in 25 of 29
participants. Visual stimuli were projected onto a screen (~1.15 m from participant’s eyes) in
the magnetically shielded room using a PROPixx projector (VPixx Technologies, Saint-
Bruno, Canada) with a 1440 Hz refresh rate. All images were presented at the center of the
screen in their original size of 425 x 425 pixels (visual angle: ~ 4.48°). Participants were
given a left- and a right-hand button box for recording manual responses (fMRI optical
response pad; LUMItouch, Photon Response Inc., Burnaby, Canada). Due to a software
malfunction, in one block of one participant MEG was not recorded during the learning
phase.

Individual anatomical MRI scans (T1-weighted; 1 X 1 X 1 mm voxels; TR = 7.4 ms;
TE = 3.5 ms; flip angle = 7°, field of view = 256 x 256 x 176 mm) of participants were

acquired in the Glasgow CCNi facilities 3T Scanner (Siemens, Germany).

4.4.4 MEG Data Preprocessing

All data preprocessing was done using the MNE toolbox v1.2.2 (Gramfort et al.,
2014) and custom-tailored Python code. Spatiotemporal SSS was applied to the raw data via
MNE’s inbuilt maxfilter function with a duration window of 100 s (acting as an implicit low-
pass filter at 0.01 Hz), a correlation value of .9 and head motion correction from continuous

HPI recordings.
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To reduce the influence of artifactual noise in the signal, independent component
analysis (ICA) was applied to the maxfiltered data. To estimate the signal sources and
unmixing matrices, data from all MEG channels was concatenated over blocks, Butterworth
filtered between 1 and 40 Hz and then downsampled to 100 Hz. Since ICA can be influenced
by noisy data trials, the signal was split into fixed length epochs on which a global rejection
threshold was estimated using the autoreject package (Jas et al., 2017). Bad data epochs were
then dropped according to the package’s recommendations (see below). ICA was estimated
with MNE’s ICA class using the picard algorithm with as many components to capture 98 %
of the data’s variance. The estimated source time series and topographies of each participant
were visually inspected to detect ocular and cardiac components. For all participant ocular
and cardiac components were identified and rejected from the data with a median of 5
components per participant (range: 2 — 7 components).

The maxfiltered and ICA cleaned data was low passed filtered to 100 Hz and then
split into epochs. The two ERF windows of interest where the encoding (i.e. onset of the
image during the learning phase) and the retrieval cue (i.e. onset of the action verb during the
retrieval phase) window. Both windows were cut to 0.5 s before and 4 s after event onset and
downsampled to 500 Hz. To avoid slow drifts in the signal, a trial masked robust detrending
procedure was used instead of a high pass filter which can distort classifier performance (van
Driel et al., 2021). In this procedure trials are cut to long epochs including 15 s before and
after each event and a robust trend is iteratively estimated while blocking high amplitude
outliers. The ERF window of interest around the event marker is not included in the trend
estimation (i.e. masked) to not discard valid low frequency signal. We first removed an order

1 (linear) trend before removing an order 30 trend.
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Artifacts in the signal of each participant were automatically detected using the
“autoreject” package (Jas et al., 2017). This procedure identifies artifact trials by optimizing
the fit between the median signal of all trials and the mean signal of non-rejected trials.
Whether a trial is rejected or interpolated is controlled by two hyperparameters with optimal
parameter values being determined that were identified by a grid search with cross-validation.
For the encoding window a total of 71 trials (2.6 %) were rejected with an average of 2.45
rejections per participant (SD = 4.52) and for the retrieval cue window a total of 737 trials

(4.4 %) were rejected with an average of 25.41 rejections per participant (SD =31.1).

4.4.5 NSD Participants & Material

For our study we used image and fMRI data taken from the Natural Scene Database
(Allen et al., 2022). In the creation of the NSD eight participant were presented with over
70000 images during more than one year of weekly 7T fMRI scanning sessions. While most
images where only seen once by one participant, a certain subset of images called the “special
100” were presented three times to each of the eight fMRI participants. For this study, we
chose these 100 naturalistic images to, first, maximize the amount of available fMRI data (24
brain volumes per image) and, second, achieve a heterogenous sample of images maximizing
variance in general brain areas of interest (i.e. early visual cortex, inferior temporal cortex).
All images (425 x 425 pixels) from NSD originate from the Mircosoft COCO database (Lin
et al., 2014) and are depicting natural scenes with multiple objects from 80 different

categories (e.g. people, traffic, animals, food, furniture etc.).

NSD fMRI Data Acquisition, Preprocessing and ROIs
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MRI data was collected on a 7T Siemens Magnetom scanner, using a single-channel-
transmit, 32-channel-receive RF coil. For functional scans, Allen et al. (2022) used a
gradient-echo EPI sequence (TR = 1,600 ms, TE =22.0 ms, flip angle 62°, echo spacing 0.66
ms, bandwidth 1,736 Hz per pixel, partial Fourier 7/8, iPAT 2, multi-band slice acceleration
factor 3) that covered the whole brain (field-of-view 216 mm (FE) x 216 mm (PE), phase
encode direction anterior-to-posterior, matrix size 120 x 120). Each functional volume
consisted of overall 84 axial slices, each 1.8mm thick, with Omm gap, resulting in isotropic
1.8 mm sized voxels.

A general linear model (GLM) including a denoising approach (see Allen et al., 2022)
was used to estimate a single beta image per image presentation, approximating the BOLD
voxel pattern elicited by this image. For the given image set used in the present study, we
thus obtained 100 (images) x 3 (repetitions) x 8 (participants) = 2400 functional volumes.

Predefined region of interest masks were derived from NSD as a subset of “streams
ROIs”: 1. Early visual cortex ROI that includes V1-3 from Wang et al. (2015), 2. Intermediate
lateral ROI that includes LO1 and LO2 from Wang et al. (2015), and 3. High-level lateral
ROI that is enframed by the edges of the superior temporal sulcus and the angular gyrus

(https://cvnlab.slite.page/p/X 7BBMgghj/ROlIs).

4.4.6 Neural Network Data Acquisition, Preprocessing and Layer
Information

To capture low to high level visual features of the images, we used a pretrained
VGG16 (Simonyan & Zisserman, 2015) from Tensorflow. This convolutional deep neural

network (cDNN) follows a similar biologically inspired architecture of the visual cortex like
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the previous gold standard AlexNet (Krizhevsky et al., 2017) but improves upon its image
classification performance to 93% (top-5 out of 1000 categories). The original VGG16
consists of 13 convolutional and 3 fully connected layers and is trained on the ImageNet
database for image classification. Since our dataset is a more naturalistic and complex image
set with scenic information and multiple objects, we adapted the original model in the
following way: The original three fully connected layers were dropped and replaced by two
fully connected layers (2048 neurons) ending in 80 neuron output layer with a sigmoid
activation function to enable multi-label classification. Thereby it is possible to transfer-learn
the original model to detect multiple objects within an image. We fine-tuned this new model
on 20531 training images taken from NSD. These images did not contain the “special 100”
used in the MEG and fMRI data and were split into a training and a validation set (90%/10%,
resp). Image labels come from MS Coco’s 80 categories of objects with an 80x1 vector of 1s
and Os for each image indicating which objects are depicted. As loss function to train the new
model we used a sigmoid f1 score (Bénédict et al., 2021). The f1-score function (Powers,
2020) balances precision (“how many retrieved categories are actually relevant?”’) and recall
(“how many of all relevant categories were retrieved?”’) and is a preferred performance
measure in case of multilabel classification (Bénédict et al., 2021; Opitz & Burst, 2019).
Instead of freezing layer weights, all layers were trained with different learning rates for the
convolutional layers (Ir = 1e-6) and the new fully connected layers (Ir = 1e-4). The new model
was trained for 100 epochs and reached a validation set f1 score =~ .51. Then, each of the 100
images from our study was input into the model and its layer activations were taken from
layer 3 (blockl maxpool), layer 9 (blockS maxpool) and layer 15 (dense2) as a proxy for

early, mid- and high visual feature representations.
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For a semantic model of image features, we used a pretrained Word2vec model from
the nlu package (John Snow Labs). This model embeds input words in a 300-dimensional
space that maps out a semantic geometry. This means that words that describe semantically
similar concepts (e.g. “king” and “queen”) are grouped closer together and farther away from
dissimilar concepts (e.g. “king” and “chair”). For each of our 100 images, we retrieved five
short sentence descriptions (e.g. “A man walking a dog in the park™) from MS COCO and
input these descriptions into the Word2vec model to get a 300x1 vector as a semantic

representation per image.

4.4.7 Representational Similarity based Fusion of Data Modalities

For the MEG data, encoding trials were cropped to -0.5 s and 1.5 s around image
onset and retrieval cue trials were cropped to -0.5 s and 4 s around cue onset. Both signals
were baseline corrected with an average pretrial time window between 0.5 and 0.2 s. Each of
the 102 sensor triplet (2 gradiometers, 1 magnetometer, 306 sensors in total) was spatially
combined with the mne’s “as_type()” function into 1 virtual magnetometer. Each encoding
trial per participants equals one image. For the general fusion, all retrieval trials of one image
were averaged over repetitions resulting in one average trial per image. For the comparison
of fusion results over repetitions, only images that were successfully remembered at least 4
times were included in this analysis. Here, all retrieval trials of an image were split into the
first two and the remaining two to four recall repetitions resulting in two averaged trials per
image. Feature vectors per image were retrieved from the encoding and retrieval trial data in
the following manner: A gaussian window (full-width at half maximum ~ 40 ms) was slid

over the time dimension with a center at time point t in 10 ms steps. At each time point the
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window was gaussian averaged leaving a 102-element vector representing the sensor
activations at time point t. Within each time point each image was compared to each other
image by computing the correlation distance (1-r) between their sensor activations. The
resulting 96x96 array of all comparisons is called a representational dissimilarity matrix
(RDM) and describes the representational geometry of the MEG signal at this time point.
Accordingly, after looping over time there will be one RDM per time step for both encoding
and retrieval cue windows.

For the fMRI data, beta values for the whole brain were normalized and ROI masks
were used to extract the voxel activations for each ROI and image as feature vectors within
participants. For each participant and ROI, feature vectors of each image were compared to
each other image by computing the correlation distance (1-r) resulting in three ROI-specific
RDMs (early visual, mid-lateral, lateral).

For the neural networks, within each chosen layer hidden activations of each image
were compared to each other image with a correlation distance resulting in 4 layer-specific
RDMs (early, mid-, high visual and semantic).

Since all modality specific signals have been transformed into the same space, RDMs
can be correlated (so called second order correlation or Fusion) themselves. In the case of
MEG-fMRI fusion, each ROI-specific RDM was correlated with all encoding-specific RDMs
and retrieval-cue-specific RDMs yielding an ROI encoding and an ROI retrieval-cue time
course of second order correlation values. High values at a time point indicate that this ROI
represents the images in our study more similar to the sensor activations at this time point. In
the case of MEG-DNN fusion, the same procedure was used but instead of ROI-specific
RDMs the layer-specific RDMs were used. All RDMs were correlated using Pearson

correlation.
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4.4.8 Significance Testing

The correlation of participant average accuracies between cued recall and memory
test was tested for significance using a one-sample t-test. Reaction time and accuracy data
over recall repetitions were analyzed using a one-way repeated measures ANOVA with recall
repetitions as a six-level factor. Degrees of Freedom and p-values for the ANOVA were
Greenhouse-Geisser corrected if sphericity assumptions were violated. Here ANOVA results
are reported with Greenhouse-Geisser’s epsilon instead of corrected degrees of freedom.
Post-hoc t-tests between repetitions were corrected using a Tukey-HSD criterion.

Encoding and retrieval-cue time courses of second-order correlations were tested
using a cluster permutation test. A surrogate dataset of 1000 permutations was created in the
following manner: Within one permutation step, the order of each ROI-specific and layer-
specific RDM was randomly shuffled and each shuffled matrix was then fused with the
encoding and retrieval-cue RDMs (which were not shuffled). Note that the RDMs were only
shuffled once and held constant over time to not disturb the autocorrelation of the signal.
Each surrogate time series was z-transformed and significant values were defined to exceed
a threshold of value alpha (in this case avalue < .05). The thresholded time series were then
screened for clusters of significant values and z values within each cluster were added giving
each cluster a z-sum value. For each permutation and time series, the biggest z-sum value
was saved, resulting in a vector of the 1000 most extreme surrogate z-sum values. In the real
data, significant clusters of activation were determined in the same way as in the surrogate
data using the alpha-value and z-sum values for each cluster was computed. These values

were then compared against the distribution of most extreme surrogate z-sum values and
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were deemed significant if they exceeded a threshold of cluster alpha (in this case acluster <
.05). This means that real clusters had to be higher than 5 % of the most extreme clusters

from the surrogate (Null) distribution.
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Chapter 5: General Discussion

The aim of this thesis was to track the spatiotemporal dynamics of feature-specific
retrieval. For episodic memory, an engram or a memory trace is understood as a binding of
content that was experienced in a certain situation or event with features ranging from low-
level perceptual details (“seeing brown fur”) over gist-like information (“an animal in the
park”) up to schemas (“someone walking their dog”’) and general abstract knowledge (“a dog
is an animal”). Similar to the known hierarchical organization of the visual system, where
incoming percepts are transformed from low-level detailed to high-level conceptual
information over the brain regions of the ventral visual stream (Desimone et al., 1984;
Goodale & Milner, 1992; Gross et al., 1972; Martin & Barense, 2023; Mishkin et al., 1983),
converging evidence points towards a similar hierarchical organization of the memory trace
with a preference for high-level gist like information over perceptual details (Ahissar et al.,
2009; Ahissar & Hochstein, 2004; Brady et al., 2011; Kerrén et al., 2023; Konkle et al.,
2010b, 2010a; Lifanov et al., 2021; Linde-Domingo et al., 2019; Van Kesteren et al., 2012).

An episodic long term memory (LTM) trace is posited to bind together cortical
patterns representing the elements of an episode in such a manner that encountering a partial
pattern (cue) can bring back the whole pattern (other elements and their features of this
episode) via a process of pattern completion (Horner et al., 2015; Horner & Burgess, 2013;
McClelland et al., 1995; Teyler & DiScenna, 1986; Teyler & Rudy, 2007). While this theory
makes little to no assumptions about the spatio-temporal relations and dependencies of these
cortical patterns, if these cortical patterns of the elements and their features are represented
within the visual hierarchy in a spatially reverse manner as mentioned above, this would

imply a temporal difference in the accessibility of features during memory retrieval.



98

By combining behavioral reaction time studies with computational models, deep
neural networks and MEG as well as fMRI data, we were able to delineate in detail, the time-
resolved topography of information processing during memory encoding as well as retrieval,
expanding on our knowledge of the perceptual forward stream as well as the memory-based

reverse stream of information flow.

5.1 Specificity and robustness of the reverse stream effect

Previous studies found initial evidence that this hierarchical structure can be probed
with reaction time measures, showing faster accessibility of semantic features compared to
perceptual features during retrieval. However, so far this effect has only been shown under
very specific conditions, where the association between action verbs and objects were learned
(Lifanov et al., 2021; Linde-Domingo et al., 2019). After a break, the words were presented
as cues and participants had to recall whether the associated object was either animate versus
inanimate (semantic feature) or a line-drawing versus a photograph (perceptual feature).
Accordingly, showing the generalizability and robustness of this effect would be a necessary
to prove that feature-specific reaction times are able to probe the state of episodic LTM traces.

In a first sequence of studies, the type of semantic and perceptual features participants
had to recall were extended. Perceptual object features were presentation size on screen (big
vs small; Exp. 1) and the shape of an object (rounded vs elongated, Exp. 2), while semantic
object features were always naturalness (manmade vs natural). When objects were directly
classified from vision, perceptual classification was faster than semantic classification, in
accordance with previous studies (Lifanov et al., 2021; Linde-Domingo et al., 2019) and

indicating a forward stream of information processing during perception. As expected, the
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opposite reaction time difference was observed in the memory task but reached only
significance in Exp 1. Interestingly, we could not replicate this effect when instructing
participants to differentiate between different object shapes instead of object sizes, while
keeping all other aspects of the experiment identical. As object shape is an identifying feature
with semantic content, we could show that the underlying factor causing reaction time
differences truly is perceptual versus semantic content.

Previous studies all relied on the same kind of probe to induce recall, an action verb
which had been learned alongside the object (Lifanov et al., 2021; Linde-Domingo et al.,
2019). To rule out that written action-verbs facilitated semantic-feature recall over
perceptual-feature recall, we tested different types of probes. As such, we asked participants
to remember scenes alongside an object and an action verb. We then either probed the object
via the scene or the action verb. In both cases, semantic differentiation led to faster reaction
times than perceptual differentiation. Additionally, in another experiment, we used spatial
location of the presentation of an object as recall probe rendering it inherently ‘meaningless’
on a semantic level. Nonetheless, we again could show that spatial location as probed for
recall led to faster reaction times for semantic compared to perceptual features. Our results
underline that the reversed hierarchical reactivation of the whole pattern that the memory
trace binds together is not influenced by the nature of the partial pattern (cue).

Still, an alternative explanation would be that participants show a bias in learning, by
focusing more on semantic compared to perceptual features, which in turn would make them
accessible faster when recalling the object. To test this, we manipulated the attentional focus
of participants during the learning phase of the experiment by letting them attend either the
semantic or the perceptual category of an object in Exp. 6 or by letting participants form their

associations between scene cues and objects on a deep or a shallow basis in Exp.7 (Craik &
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Lockhart, 1972). In both experiments, an advantage of semantic over perceptual feature
accessibility in reaction times could be observed independent of attentional manipulation.
When modelling all tasks mentioned above plus the original tasks presented in Linde-
Domingo et al. (2019) in a meta-analytic GLMM, visual feature classification of objects
shows a reliable forward stream of information while feature classification from memory
shows a reliable reverse stream of information. These results indicate the ability of feature-
specific reaction times to access and map temporal differences in the accessibility of features

that comprise an episodic LTM trace.

5.2 Modelling the cognitive components of the forward and
reverse stream

As robustness of the reverse stream effect could be reliably demonstrated, a next step
would be to investigate the underlying cognitive components in both visual encoding
(forward stream) and retrieval (reverse stream). We therefore decided to apply the well-
established Hierarchical Drift Diffusion Model (HDDM; Ratcliff & McKoon, 2008; Wiecki
etal., 2013), which estimates decision-related parameters based on reaction time distributions
of each individual person. For example, it can be assumed that a fast integration of perceptual
information necessary to reach a conclusion, implied by a steep decision slope, would lead
to coherently fast responses. In contrast, a more difficult integration process, would be
illustrated by a flat slope indicated by longer reaction times with a higher temporal variance
between single responses (Arnold et al., 2015; Lerche et al., 2017; Lerche & Voss, 2017;

Nunez et al., 2024; Voss et al., 2004).
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The simplified version of the model divides reaction times into 4 different
subcomponents of the decision process (van Ravenzwaaij et al., 2017; Wiecki et al., 2013).
The starting point describes initial biases towards one of the categories. As our experiment
was balanced on a 50% chance level for the categorization task, meaning each category was
correct for the same number of trials, we fixed the starting point to have equal probabilities
for both categories. The decision-based accumulation rate describes the speed of the decision
process, illustrated by how fast decision-relevant information is integrated through the
steepness of the decision slope. The decision boundary describes the point at which the
decision is reached, illustrating the tradeoff between accuracy and speed of the decision.
Lastly, the nondecision time refers to purely perceptual and motor aspects, incorporating the
assumed length of the stimulus encoding time prior to the start of the decision process and
the motor response after a decision has been made.

To first estimate these components for the recall phase in the reverse stream, we
applied the model to all memory datasets presented in Chapter 2 of this thesis. As expected,
results showed a clear difference between perceptual and semantic features on the decision-
based accumulation rate, implying that semantic information is more readily accessible
during retrieval than perceptual information. At the same time, no differences could be found
in decision boundaries and nondecision time, which suggests that the reverse stream indeed
describes the neuronal basis of memory recall and is not a confound of perceptual processes
or individual decision bias.

Furthermore, we analyzed the forward stream by applying the HDDM model (Wiecki
et al., 2013) to all six perceptual categorization datasets we collected. However, we only
found a significant difference between perceptual and semantic features in the non-decision

component, which is difficult to interpret and has not received a lot of attention in previous
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literature. However, a possible explanation could pertain to the purely perceptual nature of
the early phase of visual recognition and encoding, which is faster for perceptual compared
to semantic features, leaving no apparent differences in the cognitive components of the
decision process itself. Nonetheless, this subcomponent is not yet well understood and should
therefore be interpreted with caution (Verdonck & Tuerlinckx, 2016).

In conclusion, these results provide first indications that differences in encoding
semantic and perceptual categories could be based mainly on early perceptual stimulus
processing instead of higher-level cognitive aspects, while for the reverse stream, differences
could be caused by divergence in the speed of the integration of relevant information, cued
by semantic features. Especially, the latter result provides additional evidence that feature-

specific reaction times reflect a memory search process.

53 Time-resolved brain activity and localization of feature-
specific processing differences

In the third chapter we tracked feature processing during retrieval by combining
magnetoencephalography (MEG), functional Magnetic Resonance Imaging (fMRI) and
Deep Neural Network (DNN) data. The image material originated from the Natural Scene
Database (NSD). Here each image has been presented multiple times to eight participants
during 7T fMRI scan, which is publicly available for further analysis (Allen et al., 2022).

Additionally, we recruited 29 healthy participants who took part in our MEG
experiment. In line with previous studies (Lifanov et al., 2021; Linde-Domingo et al., 2019),
they were instructed to learn associations between images (from the NSD) and words. After

a short break, they were cued with the word and asked to remember and imagine the
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associated image. Through lure recognition trials, we verified that memories were indeed
correct, by showing a strongly occluded image coupled to a word and asking participants
whether the association was correct or not. Participants had to recall each image six times.
During this we recorded MEG to track time-resolved brain activity. A more detailed feature
representation of NSD images was achieved by feeding images through biologically inspired
visual and semantic Deep Neural Networks (Krizhevsky et al., 2017; Lin et al., 2014;
Mikolov et al., 2013; Simonyan & Zisserman, 2015).

The comparison of each combination of image-specific pattern activations, allowed
the transformation of each data modality into a representational geometry, which delineates
how a brain region (fMRI), a point in time (MEG sensors) or a hidden layer (DNN) represents
image specific features.

By correlating MEG and fMRI representational dissimilarity matrixes (RDMs), it is
possible to extract information on the time at which, during encoding and retrieval, certain
ROIs become active (Cichy, Khosla, et al., 2016; Cichy, Pantazis, et al., 2016; Cichy & Oliva,
2020). MEG-fMRI results revealed a clear forward stream (early visual regions showing peak
correlations earlier in time than late lateral regions) during initial perception of images.
Accordingly, during retrieval, there was some indication for a primacy of high-level
reactivations during retrieval (mainly lateral regions correlations from 500 after cue onset).
Specifically, we found long-lasting high-level visual activations (lateral), which were active
prior to low-level visual areas (occipital) but continued on even after low-level activations
ceased. This is partly in line with previous findings delineating the reverse stream (Lifanov
et al., 2024; Linde-Domingo et al., 2019), where high-level features are accessible earlier in

time compared to low-level features.
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By correlating MEG and DNN RDMs, feature specific reactivations were modulated.
Results of this analysis matched well with our prior MEG and fMRI results, showing that
high-level semantic features were activated earlier than and outlasted low-level perceptual
features. Although the continued activation of high-level areas and features was unexpected,
it also reveals interesting details about the retrieval process, possibly indicating that low-level
information is tapped into only for a brief period of time, while transformed more abstract
high-level information is longer-lasting.

A split of the recall repetitions into the first 2 versus the last 2-4 recalls revealed in
both MEG-to-fMRI and MEG-to-DNN fusion that early recalls mainly showed semantic
feature and lateral ROI correlations while later recall repetitions showed mid-lateral and early
visual ROI correlations and more high-visual features in a time window of 500 ms after cue
onset. This is interesting as it shows that multiple recall attempts in short succession seem to
strengthen perceptual details instead of a semantization effect that is usually seen after
consolidation of memory (Heinen et al., 2023; Lifanov et al., 2021). These results could speak
to frequency of recall dependent plastic adaptations, which strengthen the representations of
perceptual features within the memory trace. A similar trend could also be observed in
feature-specific reaction times, where the difference between perceptual and semantic feature

accessibility diminishes over retrieval attempts within one day (Lifanov et al., 2021).

54 Implications and future directions

A general question in the field is in how far perceptual details of a memory trace are
faithfully stored and reactivated alongside the gist information during the retrieval process

or whether only the gist information is saved and perceptual details are reconstructed based
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on gist information (Ahissar et al., 2009; Long & Kuhl, 2021; Moscovitch et al., 2016;
Schacter et al., 1998). While our data cannot definitively answer this question, it challenges
the notion that these are exclusive concepts. The strong semantic recall in initial recalls, could
indicate that only gist information is stored and perceptual features are reconstructed along
with recall repetitions. Alternatively, it is conceivable that (at least some) perceptual
information is faithfully stored, while their retrieval depends on the strength of network
weights, dependent on the importance of the episodic memory, e.g. the number of activations
or recalls.

Regarding the organization of the long-term memory store, it is still a contested topic
whether features are saved and accessible by themselves or whether the storage is object
based through which an access of features is possible (Balaban et al., 2020; Brady et al.,
2011). Research on forgetting of memories, shows a dependency of perceptual details on gist
information, i.e. if the gist or the object identity is lost, low level information also becomes
inaccessible (Balaban et al., 2020; Lifanov et al., 2021). In line with a reversal of the visual
hierarchy during memory retrieval, object identity (e.g. dog) should be accessible even before
an abstract semantic feature (e.g. animate) is available, which should be detectable with
feature-specific reaction times and decoding of retrieval-related M/EEG signal.

In this line of research, the focus lied on vision, but it is possible that the reverse
stream generalizes to other sensory domain as well. In the auditory domain, a hierarchical
processing stream during perception exist similar to the visual domain (Rauschecker & Scott,
2009; Rauschecker & Tian, 2000). A general problem with testing the reverse stream effect
in other modalities might be that participants use visual strategies to represent perceptual

features during learning. To remedy this, special populations could be tested that are known
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for an impoverished or missing visual imagery abilities like in aphantasia (Zeman et al.,
2015).

In the future, the method of feature-specific reactions times might be useful for
clinical or pedagogical settings where retrieval related components are important as is
prevalent, for example, in dyslexia or other learning disorders (Martinez-Briones et al., 2023;
Schulz et al., 2008). In fact, in children with developmental learning disorder, it could be
shown that while the lexical information store was intact, semantic retrieval from this store
was slowed down (Mengisidou et al., 2020). But while children with dyslexia show slowed
down semantic retrieval, they display increased accuracy in recognizing incidentally learned
objects (i.e. participants were unaware of the subsequent memory task) in a semantic
categorization task (Hedenius et al., 2013). Pinpointing the part of the encoding and retrieval
process which is affected might be aided by feature-specific reaction time analysis, which
could greatly enhance our understanding of these diseases and potentially pave the way for
new treatment options. Accordingly, it would be crucial to analyze the detailed state of
memory traces from encoding to retrieval in children with developmental learning disorders
and dyslexia. Understanding the underlying deficits in detail, could open possibilities for

targeted interventions aimed at training perceptual-semantic associations.

5.5 Conclusion

In this thesis, forward stream encoding as well as reverse stream retrieval of episodic
memories were analyzed thoroughly regarding their feature representations (low-level
perceptual versus high-level semantic) robustness, generalizability, timing, and brain

topography. To achieve this, we conducted behavioral reaction time experiments, established
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computational models, analyzed combinations of MEG and fMRI data as well as Deep
Neural Networks.

We could show that the reverse stream is well generalizable and robust, varying
several perceptual and semantic features and cueing modalities. In general, the semantic
content of a memory trace is more rapidly available for recall compared to the perceptual
content.

Moreover, while the faster accessibility of perceptual compared to semantic
information during perception might be due to the necessities of the hierarchical stimulus
encoding of the forward stream, our data suggests that the speed of retrieval through the
reverse stream relies on the speed at which relevant information can be sampled and
integrated from memory.

Lastly, we were able to corroborate our findings with fMRI and deep neural networks,
which show that low-level areas and features are active prior to high-level areas and features
during encoding. During retrieval, high-level features and areas are active prior to and outlast
a brief activation of low-level perceptual areas and features.

We provide strong evidence for a reversed hierarchical processing during memory
retrieval in the visual domain, linking the architecture of the brain to the ever-elusive nature
of the (young) LTM engram or trace. This could increase the insight into memory encoding
and retrieval, but it might be of great value in the research of pathological conditions in the
future. As such, while it is known that there are deficits in encoding or retrieval in conditions
such as dyslexia, dementia and Schizophrenia, the underlying circuit deficits are unclear. Our
framework could therefore provide valuable insight, which might pave the way for the

development of new treatment options in the future.



108

References

Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual
learning. Trends in Cognitive Sciences, 8(10), 457-464.
https://doi.org/10.1016/j.tics.2004.08.011

Ahissar, M., Nahum, M., Nelken, 1., & Hochstein, S. (2009). Reverse hierarchies and
sensory learning. In Philosophical Transactions of the Royal Society B: Biological
Sciences (Vol. 364, Issue 1515, pp. 285-299). Royal Society.
https://doi.org/10.1098/rstb.2008.0253

Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing Neurocomputational Mechanisms
of Reinforcement Learning and Decision-Making With the hBayesDM Package.
Computational Psychiatry, 1(0), 24. https://doi.org/10.1162/cpsy a 00002

Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Prince, J. S., Dowdle, L. T., Nau, M.,
Caron, B., Pestilli, F., Charest, 1., Hutchinson, J. B., Naselaris, T., & Kay, K. (2022). A
massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence.
Nature Neuroscience, 25(1), 116—-126. https://doi1.org/10.1038/s41593-021-00962-x

Antony, J. W., Ferreira, C. S., Norman, K. A., & Wimber, M. (2017). Retrieval as a Fast
Route to Memory Consolidation. Trends in Cognitive Sciences, 21(8), 573-576.
https://doi.org/10.1016/;.tics.2017.05.001

Arbuckle, S. A., Yokoi, A., Pruszynski, J. A., & Diedrichsen, J. (2019). Stability of
representational geometry across a wide range of fMRI activity levels. Neurolmage,

186(November 2018), 155—-163. https://doi.org/10.1016/j.neuroimage.2018.11.002



109

Arnold, N. R., Broder, A., & Bayen, U. J. (2015). Empirical validation of the diffusion
model for recognition memory and a comparison of parameter-estimation methods.
Psychological Research, 79(5), 882—898. https://doi.org/10.1007/s00426-014-0608-y

Aschenbrenner, A. J., Balota, D. A., Gordon, B. A., Ratcliff, R., & Morris, J. C. (2016). A
diffusion model analysis of episodic recognition in preclinical individuals with a
family history for Alzheimer’s disease: The adult children study. Neuropsychology,
30(2), 225-238. https://doi.org/10.1037/neu0000222

Baddeley, A. D. (1986). Working Memory. Clarendon Press.
https://books.google.de/books?id=ZKWbdv_vRMC

Balaban, H., Assaf, D., Arad Meir, M., & Luria, R. (2020). Different features of real-world
objects are represented in a dependent manner in long-term memory. Journal of
Experimental Psychology: General, 149(7), 1275-1293.
https://doi.org/10.1037/xge0000716

Barlow, H. B. (1972). Single units and sensation: A neuron doctrine for perceptual

psychology? Perception, 1(4), 371-394. https://doi.org/10.1068/P010371

Barron, H. C., Dolan, R. J., & Behrens, T. E. J. (2013). Online evaluation of novel choices
by simultaneous representation of multiple memories. Nature Neuroscience, 16(10),
1492-1498. https://doi.org/10.1038/nn.3515

Bastin, J., Committeri, G., Kahane, P., Galati, G., Minotti, L., Lachaux, J. P., & Berthoz, A.
(2013). Timing of posterior parahippocampal gyrus activity reveals multiple scene
processing stages. Human Brain Mapping, 34(6), 1357-1370.
https://doi.org/10.1002/hbm.21515

Benson, N. C., Butt, O. H., Datta, R., Radoeva, P. D., Brainard, D. H., & Aguirre, G. K.

(2012). The retinotopic organization of striate cortex is well predicted by surface


https://doi.org/10.1068/P010371

110

topology. Current Biology, 22(21), 2081-2085.

https://doi.org/10.1016/i.cub.2012.09.014

Berkay, D., Eser, H. Y., Sack, A. T., Cakmak, Y. O., & Balci, F. (2018). The modulatory role
of pre-SMA in speed-accuracy tradeoff: A bi-directional TMS study.
Neuropsychologia, 109, 255-261.
https://doi.org/10.1016/j.neuropsychologia.2017.12.031

Berryhill, M. E. (2012). Insights from neuropsychology: Pinpointing the role of the
posterior parietal cortex in episodic and working memory. In Frontiers in Integrative
Neuroscience (Issue JUNE 2012). https://doi.org/10.3389/fnint.2012.0003 1

Betancourt, M. (2016). Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian
Monte Carlo. http://arxiv.org/abs/1604.00695

Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Krypotos, A.
M., Lerche, V., Logan, G. D., Palmeri, T. J., van Ravenzwaaij, D., Servant, M.,
Singmann, H., Starns, J. J., Voss, A., Wiecki, T. V., Matzke, D., & Wagenmakers, E. J.
(2018). Estimating across-trial variability parameters of the Diffusion Decision Model:
Expert advice and recommendations. Journal of Mathematical Psychology, 87, 46-75.
https://doi.org/10.1016/j.jmp.2018.09.004

Bolam, J., Boyle, S. C., Ince, R. A. A., & Delis, 1. (2022). Neurocomputational mechanisms
underlying cross-modal associations and their influence on perceptual decisions.
Neurolmage, 247(December 2021), 118841.
https://doi.org/10.1016/j.neuroimage.2021.118841

Bone, M. B., Ahmad, F., & Buchsbaum, B. R. (2020). Feature-specific neural reactivation
during episodic memory. Nature Communications, 11(1), 1-13.

https://doi.org/10.1038/s41467-020-15763-2


https://doi.org/10.1016/j.cub.2012.09.014

111

Bone, M. B., & Buchsbaum, B. R. (2021). Detailed Episodic Memory Depends on
Concurrent Reactivation of Basic Visual Features within the Posterior Hippocampus
and Early Visual Cortex. Cerebral Cortex Communications, 2(3).
https://doi.org/10.1093/texcom/tgab045

Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity:
Beyond individual items and toward structured representations. Journal of Vision,
11(5), 44. https://doi.org/10.1167/11.5.4

Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a
massive storage capacity for object details. Proceedings of the National Academy of
Sciences of the United States of America, 105(38), 14325-14329.
https://doi.org/10.1073/PNAS.0803390105

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433—436.
http://www.ncbi.nlm.nih.gov/pubmed/9176952

Brodeur, M. B., Guérard, K., & Bouras, M. (2014). Bank of Standardized Stimuli (BOSS)
phase ii: 930 new normative photos. PLoS ONE, 9(9).
https://doi.org/10.1371/journal.pone.0106953

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response
time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153—-178.
https://doi.org/10.1016/j.cogpsych.2007.12.002

Carlson, T. A., Ritchie, J. B., Kriegeskorte, N., Durvasula, S., & Ma, J. (2014). Reaction
Time for Object Categorization Is Predicted by Representational Distance. Journal of
Cognitive Neuroscience, 26(1), 132—142. https://doi.org/10.1162/jocn_a_ 00476

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,

Brubaker, M. A., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic



112

programming language. Journal of Statistical Software, 76(1).
https://doi.org/10.18637/jss.v076.101

Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J.,
& Frank, M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal
influence over decision threshold. Nature Neuroscience, 14(11), 1462—-1467.
https://doi.org/10.1038/nn.2925

Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017).
Shared memories reveal shared structure in neural activity across individuals. Nature
Neuroscience, 20(1), 115—-125. https://doi.org/10.1038/nn.4450

Cichy, R. M., Khosla, A., Pantazis, D., & Oliva, A. (2017). Dynamics of scene
representations in the human brain revealed by magnetoencephalography and deep
neural networks. Neurolmage, 153(November 2015), 346-358.
https://doi.org/10.1016/j.neuroimage.2016.03.063

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Comparison of
deep neural networks to spatio-temporal cortical dynamics of human visual object
recognition reveals hierarchical correspondence. Scientific Reports, 6(January), 1-13.
https://doi.org/10.1038/srep27755

Cichy, R. M., & Oliva, A. (2020). A M/EEG-fMRI Fusion Primer: Resolving Human Brain
Responses in Space and Time. Neuron, 107(5), 772-781.
https://doi.org/10.1016/j.neuron.2020.07.001

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in
space and time. Nature Neuroscience, 17(3), 455-462. https://doi.org/10.1038/nn.3635

Cichy, R. M., Pantazis, D., & Oliva, A. (2016). Similarity-Based Fusion of MEG and fMRI

Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object



113

Recognition. Cerebral Cortex, 26(8), 3563-3579.

https://doi.org/10.1093/cercor/bhw135

Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern-analyzing
skill in amnesia: Dissociation of knowing how and knowing that. Science, 210(4466),
207-210. https://doi.org/10.1126/SCIENCE.7414331

Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain
reading”: Detecting and classifying distributed patterns of fMRI activity in human
visual cortex. Neurolmage, 19(2), 261-270. https://doi.org/10.1016/S1053-
8119(03)00049-1

Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory

research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671-684.

https://doi.org/10.1016/S0022-5371(72)80001-X

Danker, J. F., & Anderson, J. R. (2010). The Ghosts of Brain States Past: Remembering

Reactivates the Brain Regions Engaged During Encoding. Psychological Bulletin,

136(1), 87-102. https://doi.org/10.1037/a0017937
de Haan, E. H. F., & Cowey, A. (2011). On the usefulness of “what” and “where” pathways

in vision. Trends in Cognitive Sciences, 15(10), 460—466.

https://doi.org/10.1016/j.tics.2011.08.005

Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective
properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4(8),
2051-2062. https://doi.org/10.1523/jneurosci.04-08-02051.1984

Dewhurst, S. A., Holmes, S. J., Brandt, K. R., & Dean, G. M. (2006). Measuring the speed

of the conscious components of recognition memory: Remembering is faster than



114

knowing. Consciousness and Cognition, 15(1), 147-162.
https://doi.org/10.1016/j.concog.2005.05.002

Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: A common
framework for understanding encoding,. In PLoS Computational Biology (Vol. 13,
Issue 4).
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi. 1005508 &t
ype=printable

Favila, S. E., Lee, H., & Kuhl, B. A. (2020). Transforming the Concept of Memory
Reactivation. Trends in Neurosciences, 43(12).
https://doi.org/10.1016/j.tins.2020.09.006

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the
primate cerebral cortex. Cerebral Cortex, 1(1), 1-47.
http://www.ncbi.nlm.nih.gov/pubmed/1822724

Ferreira, C. S., Charest, I., & Wimber, M. (2019). Retrieval aids the creation of a
generalised memory trace and strengthens episode-unique information. Neurolmage,

201(June), 115996. https://doi.org/10.1016/j.neuroimage.2019.07.009

Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function
in human cognition: Psychopharmacological studies with cabergoline and haloperidol.

Behavioral Neuroscience, 120(3), 497-517. https://doi.org/10.1037/0735-

7044.120.3.497

Geerligs, L., Cam-CAN, & Henson, R. N. (2016). Functional connectivity and structural
covariance between regions of interest can be measured more accurately using

multivariate distance correlation. Neurolmage, 135, 16-31.

https://doi.org/10.1016/j.neuroimage.2016.04.047


https://doi.org/10.1016/j.neuroimage.2019.07.009
https://doi.org/10.1037/0735-7044.120.3.497
https://doi.org/10.1037/0735-7044.120.3.497

115

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).
Bayesian Data Analysis. Chapman and Hall/CRC. https://doi.org/10.1201/b16018

Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple
Sequences. Statistical Science, 7(4), 409—435. https://doi.org/10.1214/ss/1177011136

Gimbel, S. I., & Brewer, J. B. (2011). Reaction time, memory strength, and fMRI activity
during memory retrieval: Hippocampus and default network are differentially
responsive during recollection and familiarity judgments. Cognitive Neuroscience,

2(1), 19-26. https://doi.org/10.1080/17588928.2010.513770

Gluth, S., Sommer, T., Rieskamp, J., & Biichel, C. (2015). Effective Connectivity between
Hippocampus and Ventromedial Prefrontal Cortex Controls Preferential Choices from
Memory. Neuron, 86(4), 1078—1090. https://doi.org/10.1016/j.neuron.2015.04.023

Goodale, M. A., & Milner, A. D. (1992a). Separate visual pathways for perception and
action. Trends in Neurosciences, 15(1), 20-25. https://doi.org/10.1016/0166-
2236(92)90344-8

Goodale, M. A., & Milner, A. D. (1992b). Separate visual pathways for perception and
action. Trends in Neurosciences, 15(1), 20-25. https://doi.org/10.1016/0166-
2236(92)90344-8

Groen, I. I. A., Silson, E. H., & Baker, C. I. (2017). Contributions of low- and high-level
properties to neural processing of visual scenes in the human brain. Philosophical
Transactions of the Royal Society B: Biological Sciences, 372(1714).
https://doi.org/10.1098/rstb.2016.0102

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding Dynamic Brain

Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied


https://doi.org/10.1080/17588928.2010.513770

116

to Time Series Neuroimaging Data. Journal of Cognitive Neuroscience, 29(4), 677—
697. https://doi.org/10.1162/jocn_a 01068

Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons
in inferotemporal cortex of the Macaque. Journal of Neurophysiology, 35(1), 96—111.
https://doi.org/10.1152/JN.1972.35.1.96

Guggenmos, M., Sterzer, P., & Cichy, R. M. (2018). Multivariate pattern analysis for MEG:
A comparison of dissimilarity measures. Neurolmage, 173(February), 434—447.
https://doi.org/10.1016/j.neuroimage.2018.02.044

Hannula, D. E., & Ranganath, C. (2009). The Eyes Have It: Hippocampal Activity Predicts
Expression of Memory in Eye Movements. Neuron, 63(5), 592—-599.
https://doi.org/10.1016/j.neuron.2009.08.025

Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding Neural Representational
Spaces Using Multivariate Pattern Analysis. Annual Review of Neuroscience, 37(1),
435-456. https://doi.org/10.1146/annurev-neuro-062012-170325

Haxby, J. V., Gobbini, M. 1., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001).
Distributed and overlapping representations of faces and objects in ventral temporal
cortex. Science (New York, N.Y.), 293(5539), 2425-2430.
https://doi.org/10.1126/SCIENCE.1063736

Hedenius, M., Ullman, M. T., Alm, P., Jennische, M., & Persson, J. (2013). Enhanced
Recognition Memory after Incidental Encoding in Children with Developmental
Dyslexia. PLoS ONE, 8(5). https://doi.org/10.1371/JOURNAL.PONE.0063998

Heinen, R., Bierbrauer, A., Wolf, O. T., & Axmacher, N. (2023). Representational formats
of human memory traces. Brain Structure and Function, 0123456789.

https://doi.org/10.1007/s00429-023-02636-9



117

Henriksson, L., Khaligh-Razavi, S. M., Kay, K., & Kriegeskorte, N. (2015). Visual
representations are dominated by intrinsic fluctuations correlated between areas.
Neurolmage, 114, 275-286. https://doi.org/10.1016/j.neuroimage.2015.04.026

Horner, A. J., Bisby, J. A., Bush, D., Lin, W. J., & Burgess, N. (2015). Evidence for holistic
episodic recollection via hippocampal pattern completion. Nature Communications,
6(May). https://doi.org/10.1038/ncomms8462

Horner, A. J., & Burgess, N. (2013). The associative structure of memory for multi-element
events. Journal of Experimental Psychology: General, 142(4), 1370-1383.
https://doi.org/10.1037/a0033626

Johansson, R., Nystrom, M., Dewhurst, R., & Johansson, M. (2022). Eye-movement replay
supports episodic remembering. Proceedings of the Royal Society B: Biological
Sciences, 289(1977), 1-29. https://doi.org/10.1098/rspb.2022.0964

Johnson, J. D., McDuff, S. G. R., Rugg, M. D., & Norman, K. A. (2009). Recollection,
Familiarity, and Cortical Reinstatement: A Multivoxel Pattern Analysis. Neuron, 63(5),
697-708. https://doi.org/10.1016/j.neuron.2009.08.011

Johnson, J. D., Minton, B. R., & Rugg, M. D. (2008). Content dependence of the
electrophysiological correlates of recollection. Neurolmage, 39(1), 406—416.
https://doi.org/10.1016/j.neuroimage.2007.08.050

Josselyn, S. A., Kohler, S., & Frankland, P. W. (2015). Finding the engram. Nature Reviews
Neuroscience, 16(9), 521-534. https://doi.org/10.1038/nrn4000

Kaniuth, P., & Hebart, M. N. (2022). Feature-reweighted representational similarity
analysis: A method for improving the fit between computational models, brains, and
behavior. Neurolmage, 257(November 2021), 119294.

https://doi.org/10.1016/j.neuroimage.2022.119294



118

Kensinger, E. A., Ullman, M. T., & Corkin, S. (2001). Bilateral medial temporal lobe
damage does not affect lexical or grammatical processing: Evidence from amnesic
patient H.M. Hippocampus, 11(4), 347-360. https://doi.org/10.1002/HIPO.1049

Kerrén, C., Linde-Domingo, J., & Spitzer, B. (2023). Prioritization of semantic over visuo-
perceptual aspects in multi-item working memory. BioRxiv.
https://doi.org/10.1101/2022.06.29.498168

Kolibius, L. D., Roux, F., Parish, G., Ter Wal, M., Van Der Plas, M., Chelvarajah, R.,
Sawlani, V., Rollings, D. T., Lang, J. D., Gollwitzer, S., Walther, K., Hopfengértner,
R., Kreiselmeyer, G., Hamer, H., Staresina, B. P., Wimber, M., Bowman, H., &
Hanslmayr, S. (2023). Hippocampal neurons code individual episodic memories in
humans. Nature Human Behaviour, 7(11), 1968—1979. https://doi.org/10.1038/s41562-
023-01706-6

Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010a). Conceptual distinctiveness
supports detailed visual long-term memory for real-world objects. Journal of
Experimental Psychology. General, 139(3), 558-578.
https://doi.org/10.1037/A0019165

Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010b). Scene Memory Is More
Detailed Than You Think: The Role of Categories in Visual Long-Term Memory.
Psychological Science, 21(11), 1551. https://doi.org/10.1177/0956797610385359

Konkle, T., & Oliva, A. (2012). A Real-World Size Organization of Object Responses in
Occipitotemporal Cortex. Neuron, 74(6), 1114—-1124.
https://doi.org/10.1016/j.neuron.2012.04.036

Koutstaal, W., Reddy, C., Jackson, E. M., Prince, S., Cendan, D. L., & Schacter, D. L.

(2003). False recognition of abstract versus common objects in older and younger



119

adults: testing the semantic categorization account. Journal of Experimental
Psychology. Learning, Memory, and Cognition, 29(4), 499-510.

https://doi.org/10.1037/0278-7393.29.4.499

Kraemer, P. M., & Gluth, S. (2023). Episodic Memory Retrieval Affects the Onset and
Dynamics of Evidence Accumulation during Value-based Decisions. Journal of
Cognitive Neuroscience, 35(4), 692—714. https://doi.org/10.1162/jocn_a 01968

Kravitz, D. J., Saleem, K. S., Baker, C. 1., & Mishkin, M. (2011). A new neural framework
for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217-230.
https://doi.org/10.1038/nrn3008

Kriegeskorte, N. (2009). Relating population-code representations between man, monkey,
and computational models. Frontiers in Neuroscience, 3(DEC), 363-373.
https://doi.org/10.3389/neuro.01.035.2009

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating cognition,
computation, and the brain. Trends in Cognitive Sciences, 17(8), 401-412.
https://doi.org/10.1016/j.tics.2013.06.007

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis -
connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,
2(NOV), 1-28. https://doi.org/10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., &
Bandettini, P. A. (2008). Matching Categorical Object Representations in Inferior
Temporal Cortex of Man and Monkey. Neuron, 60(6), 1126.

https://doi.org/10.1016/J.NEURON.2008.10.043


https://doi.org/10.1037/0278-7393.29.4.499

120

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2017). ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84-90.
https://doi.org/10.1145/3065386

Lerche, V., & Voss, A. (2017). Retest reliability of the parameters of the Ratcliff diffusion
model. Psychological Research, 81(3), 629-652. https://doi.org/10.1007/s00426-016-
0770-5

Lerche, V., & Voss, A. (2019). Experimental validation of the diffusion model based on a
slow response time paradigm. Psychological Research, 83(6), 1194—1209.
https://doi.org/10.1007/s00426-017-0945-8

Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter
estimation in diffusion modeling? A comparison of different optimization criteria.

Behavior Research Methods, 49(2), 513—537. https://doi.org/10.3758/s13428-016-

0740-2

Lerche, V., & Voss, A. (2020). When accuracy rates and mean response times lead to false
conclusions: A simulation study based on the diffusion model. The Quantitative
Methods for Psychology, 16(2), 107—119. https://doi.org/10.20982/tqmp.16.2.p107

Lifanov, J., Griffiths, B. J., Linde-Domingo, J., Ferreira, C. S., Wilson, M., Mayhew, S. D.,
Charest, 1., & Wimber, M. (2024). Reconstructing Spatio-Temporal Trajectories of
Visual Object Memories in the Human Brain. BioRxiv, 2022.12.15.520591.
https://doi.org/10.1101/2022.12.15.520591

Lifanov, J., Linde-Domingo, J., & Wimber, M. (2021). Feature-specific reaction times
reveal a semanticisation of memories over time and with repeated remembering.

Nature Communications, 12(1), 1-10. https://doi.org/10.1038/s41467-021-23288-5


https://doi.org/10.3758/s13428-016-0740-2
https://doi.org/10.3758/s13428-016-0740-2

121

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., & Zitnick,
C. L. (2014). Microsoft COCO: Common Objects in Context. In Computer Vision—
ECCYV 2014: 13th European Conference, Zurich, Switzerland (pp. 740-755).
https://doi.org/10.1007/978-3-319-10602-1 48

Linde-Domingo, J. (2019). Retrieval dynamics in episodic memory — from computations to
representations [Thesis (Doctorates > Ph.D.), University of Birmingham, UK].
http://etheses.bham.ac.uk/id/eprint/9325

Linde-Domingo, J., & Spitzer, B. (2023). Geometry of visuospatial working memory
information in miniature gaze patterns. Nature Human Behaviour, 8(February).
https://doi.org/10.1038/s41562-023-01737-z

Linde-Domingo, J., Treder, M. S., Kerrén, C., & Wimber, M. (2019). Evidence that neural
information flow is reversed between object perception and object reconstruction from
memory. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-08080-2

Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels
for the perception of form, color, movement, and depth. Journal of Neuroscience,
7(11), 3416-3468. https://doi.org/10.1523/jneurosc1.07-11-03416.1987

Lo, S., & Andrews, S. (2015). To transform or not to transform: using generalized linear
mixed models to analyse reaction time data. Frontiers in Psychology, 6(August), 1-16.
https://doi.org/10.3389/fpsyg.2015.01171

Loaiza, V. M., McCabe, D. P., Youngblood, J. L., Rose, N. S., & Myerson, J. (2011). The
Influence of Levels of Processing on Recall From Working Memory and Delayed
Recall Tasks. Journal of Experimental Psychology: Learning Memory and Cognition,

37(5), 1258-1263. https://doi.org/10.1037/a0023923



122

Long, N. M., & Kuhl, B. A. (2021). Cortical Representations of Visual Stimuli Shift
Locations with Changes in Memory States. Current Biology, 31(5), 1119-1126.e5.

https://doi.org/10.1016/i.cub.2021.01.004

Liiken, M., Heathcote, A., Haaf, J. M., & Matzke, D. (2025). Parameter identifiability in
evidence-accumulation models: The effect of error rates on the diffusion decision
model and the linear ballistic accumulator. Psychonomic Bulletin & Review, 32(3),
1411-1424. https://doi.org/10.3758/s13423-024-02621-1

Maguire, E. A., & Mullally, S. L. (2013). The hippocampus: A manifesto for change.
Journal of Experimental Psychology: General, 142(4), 1180-1189.
https://doi.org/10.1037/a0033650

Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of
the Royal Society of London. B, Biological Sciences, 262(841), 23-81.
https://doi.org/10.1098/RSTB.1971.0078

Martin, C. B., & Barense, M. D. (2023). Perception and Memory in the Ventral Visual
Stream and Medial Temporal Lobe. Annual Review of Vision Science, 9(1), 409—434.
https://doi.org/10.1146/annurev-vision-120222-014200

Martin, C. B., Douglas, D., Newsome, R. N., Man, L. L. Y., & Barense, M. D. (2018).
Integrative and distinctive coding of visual and conceptual object features in the
ventral visual stream. ELife, 7, 1-29. https://doi.org/10.7554/eLife.31873

Martinez-Briones, B. J., Fernandez, T., & Silva-Pereyra, J. (2023). Semantic Priming and
Its Link to Verbal Comprehension and Working Memory in Children with Learning
Disorders. Brain Sciences 2023, Vol. 13, Page 1022, 13(7), 1022.

https://doi.org/10.3390/BRAINSCI13071022


https://doi.org/10.1016/j.cub.2021.01.004

123

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are
complementary learning systems in the hippocampus and neocortex: Insights from the
successes and failures of connectionist models of learning and memory. Psychological
Review, 102(3), 419-457. https://doi.org/10.1037/0033-295X.102.3.419

McKoon, G., & Ratcliff, R. (2012). Aging and 1Q effects on associative recognition and
priming in item recognition. Journal of Memory and Language, 66(3), 416—437.
https://doi.org/10.1016/j.jm1.2011.12.001

Mecklinger, A., Rosburg, T., & Johansson, M. (2016). Reconstructing the past: The late
posterior negativity (LPN) in episodic memory studies. Neuroscience and
Biobehavioral Reviews, 68, 621-638. https://doi.org/10.1016/j.neubiorev.2016.06.024

Mengisidou, M., Marshall, C. R., & Stavrakaki, S. (2020). Semantic fluency difficulties in
developmental dyslexia and developmental language disorder (DLD): poor semantic
structure of the lexicon or slower retrieval processes? International Journal of
Language & Communication Disorders, 55(2), 200-215. https://doi.org/10.1111/1460-
6984.12512

Michelmann, S., Bowman, H., & Hanslmayr, S. (2016). The Temporal Signature of
Memories: Identification of a General Mechanism for Dynamic Memory Replay in
Humans. PLoS Biology, 14(8). https://doi.org/10.1371/journal.pbio.1002528

Michelmann, S., Staresina, B. P., Bowman, H., & Hanslmayr, S. (2019). Speed of time-
compressed forward replay flexibly changes in human episodic memory. In Nature
Human Behaviour (Vol. 3, Issue 2, pp. 143—154). Nature Publishing Group.

https://doi.org/10.1038/s41562-018-0491-4



124

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. 1st International Conference on Learning
Representations, ICLR 2013 - Workshop Track Proceedings, 1-12.

Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia,
46(3), 774-785. https://doi.org/10.1016/j.neuropsychologia.2007.10.005

Milner, B. (1965). Physiologie de I’Hippocampe: Colloque International, No. 107, Editions
du Centre National de la Recherche Scientifique, Paris, 1962. 512 pp. S8NF.
Neuropsychologia, 3, 273-277. https://api.semanticscholar.org/CorpusID:141235351

Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal
amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6(3), 215—

234. https://doi.org/10.1016/0028-3932(68)90021-3

Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N., & Rutishauser, U. (2020). Flexible
recruitment of memory-based choice representations by the human medial frontal
cortex. Science, 368(6498), eaba3313. https://doi.org/10.1126/science.aba3313

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983a). Object vision and spatial vision:
two cortical pathways. Trends in Neurosciences, 6(C), 414—417.
https://doi.org/10.1016/0166-2236(83)90190-X

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983b). Object vision and spatial vision:
two cortical pathways. Trends in Neurosciences, 6, 414—417.
https://doi.org/10.1016/0166-2236(83)90190-X

Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and
beyond: The hippocampus and neocortex in transformation. Annual Review of

Psychology, 67, 105—134. https://doi.org/10.1146/annurev-psych-113011-143733


https://doi.org/10.1016/0028-3932(68)90021-3

125

Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times
in Wiener diffusion models. In Journal of Mathematical Psychology (Vol. 53, Issue 4,
pp. 222-230). Academic Press Inc. https://doi.org/10.1016/j.jmp.2009.02.003

Nunez, M. D., Fernandez, K., Srinivasan, R., & Vandekerckhove, J. (2024). A tutorial on
fitting joint models of M/EEG and behavior to understand cognition. Behavior

Research Methods. https://doi.org/10.3758/s13428-023-02331-x

Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical
contributions to recognition memory: A complementary-learning-systems approach.
Psychological Review, 110(4), 611-646. https://doi.org/10.1037/0033-295X.110.4.611

O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-
bound signal that determines perceptual decisions in humans. Nature Neuroscience,
15(12), 1729-1735. https://doi.org/10.1038/nn.3248

O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2014). Complementary
learning systems. Cognitive Science, 38(6), 1229—-1248.
https://doi.org/10.1111/j.1551-6709.2011.01214.x

Paller, K. A., & Wagner, A. D. (2002). Observing the transformation of experience into
memory. Trends in Cognitive Sciences, 6(2), 93—102. https://doi.org/10.1016/S1364-
6613(00)01845-3

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Hochenberger, R., Sogo, H., Kastman,
E., & Lindelav, J. K. (2019). PsychoPy2: Experiments in behavior made easy.
Behavior Research Methods, 51(1), 195-203. https://doi.org/10.3758/s13428-018-

01193-y


https://doi.org/10.3758/s13428-023-02331-x

126

Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006). Neural representation of task difficulty
and decision making during perceptual categorization: A timing diagram. Journal of
Neuroscience, 26(35), 8965-8975. https://doi.org/10.1523/JNEUROSCI.1655-06.2006

Polyn, S. M., Natu, V. S., Cohen, J. D., & Norman, K. A. (2005). Category-Specific
Cortical Activity Precedes Retrieval During Memory Search. Science, 310(5756),
1963-1966. https://doi.org/10.1126/SCIENCE. 1117645

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, 1. (2005). Invariant visual
representation by single neurons in the human brain. Nature 2005 435:7045,
435(7045), 1102—1107. https://doi.org/10.1038/nature03687

Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution
statistics. Psychological Bulletin, 86(3), 446—461. https://doi.org/10.1037/0033-
2909.86.3.446

Ratcliff, R. (2008). The EZ diffusion method: Too EZ? Psychonomic Bulletin and Review,
15(6), 1218-1228. https://doi.org/10.3758/PBR.15.6.1218

Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the two-
choice diffusion model of decision making. Decision, 2(4), 237-279.
https://doi.org/10.1037/dec0000030

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-
choice decision tasks. Neural Computation, 20(4), 873-922.
https://doi.org/10.1162/neco.2008.12-06-420

Ratcliff, R., Philiastides, M. G., & Sajda, P. (2009). Quality of evidence for perceptual
decision making is indexed by trial-to-trial variability of the EEG. Proceedings of the
National Academy of Sciences of the United States of America, 106(16), 6539-6544.

https://doi.org/10.1073/pnas.0812589106



127

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model:
Current Issues and History. Trends in Cognitive Sciences, 20(4), 260—281.
https://doi.org/10.1016/j.tics.2016.01.007

Ratcliff, R., Thapar, A., College, B. M., & Mckoon, G. (2011). Effects of Aging and IQ on
Item and Associative Memory. Journal of Experimental Psychology: General, 140(3),
464—487. https://doi.org/10.1037/aii023810

Ratcliff, R., Thapar, A., & McKoon, G. (2004). A diffusion model analysis of the effects of
aging on recognition memory. Journal of Memory and Language, 50(4), 408—424.
https://doi.org/10.1016/j.jm1.2003.11.002

Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex:
Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6),
718-724. https://doi.org/10.1038/nn.2331

Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what”
and “where” in auditory cortex. Proceedings of the National Academy of Sciences of
the United States of America, 97(22), 11800-11806.
https://doi.org/10.1073/pnas.97.22.11800

Rissman, J., & Wagner, A. D. (2012). Distributed representations in memory: Insights from
functional brain imaging. Annual Review of Psychology, 63, 101-128.
https://doi.org/10.1146/annurev-psych-120710-100344

Robin, J. (2018). Spatial scaffold effects in event memory and imagination. Wiley
Interdisciplinary Reviews: Cognitive Science, 9(4), 1-15.
https://doi.org/10.1002/wcs.1462

Robin, J., & Moscovitch, M. (2017). Details, gist and schema: hippocampal-neocortical

interactions underlying recent and remote episodic and spatial memory. Current



128

Opinion in Behavioral Sciences, 17, 114—123.
https://doi.org/10.1016/j.cobeha.2017.07.016

Robin, J., & Olsen, R. K. (2019). Scenes facilitate associative memory and integration.
Learning and Memory, 26(7), 252-261. https://doi.org/10.1101/lm.049486.119

Rotello, C. M., & Zeng, M. (2008). Analysis of RT distributions in the remember—know
paradigm. Psychonomic Bulletin & Review, 15(4), 825-832.
https://doi.org/10.3758/PBR.15.4.825

Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends
in Cognitive Sciences, 11(6), 251-257. https://doi.org/10.1016/j.tics.2007.04.004

Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K.
(1998). Dissociation of the neural correlates of implicit and explicit memory. Nature,
392(6676), 595-598. https://doi.org/10.1038/33396

Schacter, D. L. (1987). Implicit expressions of memory in organic amnesia: learning of new
facts and associations. Human Neurobiology, 6(2), 107-118.
http://www.ncbi.nlm.nih.gov/pubmed/3624022

Schacter, D. L., Norman, K. A., & Koutstaal, W. (1998). The Cognitive Neuroscience of
Constructive Memory. Annual Review of Psychology, 49(1), 289-318.
https://doi.org/10.1146/annurev.psych.49.1.289

Schmiedek, F., Oberauer, K., Wilhelm, O., Sti3, H. M., & Wittmann, W. W. (2007).
Individual Differences in Components of Reaction Time Distributions and Their
Relations to Working Memory and Intelligence. Journal of Experimental Psychology:

General, 136(3), 414-429. https://doi.org/10.1037/0096-3445.136.3.414



129

Schmolck, H., Kensinger, E. A., Corkin, S., & Squire, L. R. (2002). Semantic knowledge in
patient H.M. and other patients with bilateral medial and lateral temporal lobe lesions.
Hippocampus, 12(4), 520-533. https://doi.org/10.1002/HIPO.10039

Schulz, E., Maurer, U., van der Mark, S., Bucher, K., Brem, S., Martin, E., & Brandeis, D.
(2008). Impaired semantic processing during sentence reading in children with
dyslexia: Combined fMRI and ERP evidence. Neurolmage, 41(1), 153—168.
https://doi.org/10.1016/J.NEUROIMAGE.2008.02.012

Scoville, W. B., & Milner, B. (1957). Loss Of Recent Memory After Bilateral Hipoocampal
Lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 11-21.
https://doi.org/10.1136/jnnp.20.1.11

Semon, R. W. (1906). Die Mneme als erhaltendes Prinzip im Wechsel des organischen
Geschehens. Nature, 73(1893), 338-338. https://doi.org/10.1038/073338a0

Shadlen, M. N. N., & Shohamy, D. (2016). Decision Making and Sequential Sampling from
Memory. Neuron, 90(5), 927-939. https://doi.org/10.1016/j.neuron.2016.04.036

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the
parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4),
1916-1936. https://doi.org/10.1152/jn.2001.86.4.1916

Sheldon, S., & Chu, S. (2017). What versus where: Investigating how autobiographical
memory retrieval differs when accessed with thematic versus spatial information.
Quarterly Journal of Experimental Psychology, 70(9), 1909-1921.
https://doi.org/10.1080/17470218.2016.1215478

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. 3rd International Conference on Learning Representations, ICLR

2015 - Conference Track Proceedings, 1-14.



130

Spaniol, J., Madden, D. J., & Voss, A. (2006). A diffusion model analysis of adult age
differences in episodic and semantic long-term memory retrieval. Journal of
Experimental Psychology: Learning Memory and Cognition, 32(1), 101-117.
https://doi.org/10.1037/0278-7393.32.1.101

Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats,
monkeys, and humans. Psychological Review, 99(2), 195-231.
https://doi.org/10.1037/0033-295X.99.2.195

Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a
neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169-177.
https://doi.org/10.1016/0959-4388(95)80023-9

Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. In Annual
Review of Neuroscience (Vol. 27, pp. 279-306).
https://doi.org/10.1146/annurev.neuro.27.070203.144130

Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system.
Science (New York, N.Y.), 253(5026), 1380—-1386.
https://doi.org/10.1126/SCIENCE.1896849

Staresina, B. P., Michelmann, S., Bonnefond, M., Jensen, O., Axmacher, N., & Fell, J.
(2016). Hippocampal pattern completion is linked to gamma power increases and
alpha power decreases during recollection. ELife, S(AUGUST).
https://doi.org/10.7554/eLife.17397.001

Staresina, B. P., Reber, T. P., Niediek, J., Bostrom, J., Elger, C. E., & Mormann, F. (2019).
Recollection in the human hippocampal-entorhinal cell circuitry. Nature

Communications, 10(1). https://doi.org/10.1038/s41467-019-09558-3



131

Staresina, B. P., & Wimber, M. (2019). A Neural Chronometry of Memory Recall. Trends in
Cognitive Sciences, 23(12), 1071-1085. https://doi.org/10.1016/j.tics.2019.09.011

Stewart, G. B., Altman, D. G., Askie, L. M., Duley, L., Simmonds, M. C., & Stewart, L. A.
(2012). Statistical Analysis of Individual Participant Data Meta-Analyses: A
Comparison of Methods and Recommendations for Practice. PLoS ONE, 7(10), 1-8.
https://doi.org/10.1371/journal.pone.0046042

Suzuki, W. A., & Amaral, D. G. (1994). Topographic organization of the reciprocal
connections between the monkey entorhinal cortex and the perirhinal and
parahippocampal cortices. Journal of Neuroscience, 14(3 II), 1856—-1877.
https://doi.org/10.1523/jneurosci.14-03-01856.1994

ter Wal, M., Linde-Domingo, J., Lifanov, J., Roux, F., Kolibius, L. D., Gollwitzer, S., Lang,
J., Hamer, H., Rollings, D., Sawlani, V., Chelvarajah, R., Staresina, B., Hanslmayr, S.,
& Wimber, M. (2021). Theta rhythmicity governs human behavior and hippocampal
signals during memory-dependent tasks. Nature Communications, 12(1), 1-15.
https://doi.org/10.1038/s41467-021-27323-3

Teyler, T. J., & DiScenna, P. (1986). The Hippocampal Memory Indexing Theory.
Behavioral Neuroscience, 100(2), 147-154. https://doi.org/10.1037/0735-
7044.100.2.147

Teyler, T. J., & Rudy, J. W. (2007). The hippocampal indexing theory and episodic memory:
Updating the index. Hippocampus, 17(12), 1158—-1169.
https://doi.org/10.1002/hipo.20350

Thakral, P. P., Madore, K. P., & Schacter, D. L. (2017). A role for the left angular gyrus in
episodic simulation and memory. Journal of Neuroscience, 37(34), 8142—-8149.

https://doi.org/10.1523/jneurosci.1319-17.2017



132

Townsend, J. T., & Ashby, F. G. (1984). Stochastic Modeling of Elementary Psychological
Processes. Cambridge University Press.
https://books.google.de/books?id=k8uMswEACAAJ

Troiani, V., Stigliani, A., Smith, M. E., & Epstein, R. A. (2014). Multiple object properties
drive scene-selective regions. Cerebral Cortex, 24(4), 883—-897.
https://doi.org/10.1093/cercor/bhs364

Tulving, E. (1983). Elements of Episodic Memory. Oxford University Press.

Tulving, E. (2002). Episodic Memory: From Mind to Brain. Annual Review of Psychology,

53(1), 1-25. https://doi.org/10.1146/annurev.psych.53.100901.135114

Turner, B. M., van Maanen, L., & Forstmann, B. U. (2015). Informing cognitive
abstractions through neuroimaging: The neural drift diffusion model. Psychological
Review, 122(2), 312-336. https://doi.org/10.1037/a0038894

Van Kesteren, M. T. R., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema
and novelty augment memory formation. Trends in Neurosciences, 35(4), 211-219.
https://do1.org/10.1016/5.tins.2012.02.001

van Ravenzwaaij, D., Donkin, C., & Vandekerckhove, J. (2017). The EZ diffusion model
provides a powerful test of simple empirical effects. Psychonomic Bulletin and
Review, 24(2), 547-556. https://doi.org/10.3758/s13423-016-1081-y

van Vugt, M. K., Beulen, M. A., & Taatgen, N. A. (2016). Is there neural evidence for an
evidence accumulation process in memory decisions? Frontiers in Human
Neuroscience, 10(MAR2016), 1-13. https://doi.org/10.3389/fnhum.2016.00093

van Vugt, M. K., Beulen, M. A., & Taatgen, N. A. (2019). Relation between centro-parietal

positivity and diffusion model parameters in both perceptual and memory-based


https://doi.org/10.1146/annurev.psych.53.100901.135114

133

decision making. Brain Research, 1715(March), 1-12.
https://doi.org/10.1016/j.brainres.2019.03.008

Verdonck, S., & Tuerlinckx, F. (2016). Factoring out nondecision time in choice reaction
time data: Theory and implications. Psychological Review, 123(2), 208-218.
https://doi.org/10.1037/rev0000019

Vijayarajah, S., McAlister, E., & Schlichting, M. L. (2023). Encoding-phase orientation
toward thematic content over perceptual style benefits picture memory. Memory,
31(2), 259-269. https://doi.org/10.1080/09658211.2022.2147954

von Krause, M., Radev, S. T., & Voss, A. (2022). Mental speed is high until age 60 as
revealed by analysis of over a million participants. Nature Human Behaviour 2022
6:5, 6(5), 700—708. https://doi.org/10.1038/s41562-021-01282-7

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion
model: An empirical validation. Memory & Cognition, 32(7), 1206—1220.

Wagenmakers, E. J., Van Der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-
diffusion model for response time and accuracy. Psychonomic Bulletin and Review,
14(1), 3-22. https://doi.org/10.3758/BF03194023

Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe
contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445—
453. https://doi.org/10.1016/j.tics.2005.07.001

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016).
Reliability of dissimilarity measures for multi-voxel pattern analysis. Neurolmage,

137, 188-200. https://doi.org/10.1016/j.neuroimage.2015.12.012



https://doi.org/10.1016/j.neuroimage.2015.12.012

134

Wang, L., Mruczek, R. E. B., Arcaro, M. J., & Kastner, S. (2015). Probabilistic maps of
visual topography in human cortex. Cerebral Cortex, 25(10), 3911-3931.

https://doi.org/10.1093/cercor/bhu277

Wei, P., Bao, R., & Fan, Y. (2022). Independence of functional connectivity analysis in
fMRI research does not rely on whether seeds are exogenous or endogenous. Medicine
in Novel Technology and Devices, 15, 100126.
https://doi.org/10.1016/j.medntd.2022.100126

Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid
remembering reactivates sensory-specific cortex. Proceedings of the National
Academy of Sciences of the United States of America, 97(20), 11125-11129.
https://doi.org/10.1073/pnas.97.20.11125

Wiecki, T. V., Sofer, 1., & Frank, M. J. (2013). HDDM: Hierarchical bayesian estimation of
the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7(JULY 2013), 1-

10. https://doi.ore/10.3389/thinf.2013.00014

Wimmer, G. E., & Shohamy, D. (2012). Preference by Association: How Memory
Mechanisms in the Hippocampus Bias Decisions. Science, 338(6104), 270-273.
https://doi.org/10.1126/science.1223252

Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation.
In Journal of the International Neuropsychological Society (Vol. 17, Issue 5, pp. 766—

780). Cambridge University Press. https://doi.org/10.1017/S1355617711000683

Wittkuhn, L., Eppinger, B., Bartsch, L. M., Thurm, F., Korb, F. M., & Li, S.-C. (2018).
Repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex
modulates value-based learning during sequential decision-making. Neurolmage, 167,

384-395. https://doi.org/10.1016/j.neuroimage.2017.11.057


https://doi.org/10.1093/cercor/bhu277
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.1017/S1355617711000683

135

Wixted, J. T. (2009). Remember/Know judgments in cognitive neuroscience: An illustration
of the underrepresented point of view. In Learning and Memory (Vol. 16, Issue 7, pp.
406—412). https://doi.org/10.1101/Im.1312809

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). SUN database: Large-
scale scene recognition from abbey to zoo. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 3485-3492.
https://doi.org/10.1109/CVPR.2010.5539970

Xue, G. (2018). The Neural Representations Underlying Human Episodic Memory. In
Trends in Cognitive Sciences (Vol. 22, Issue 6, pp. 544-561). Elsevier Ltd.
https://doi.org/10.1016/j.tics.2018.03.004

Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to
understand sensory cortex. Nature Neuroscience, 19(3), 356-365.
https://doi.org/10.1038/nn.4244

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of
research. Journal of Memory and Language, 46(3), 441-517.
https://doi.org/10.1006/jmla.2002.2864

Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery — Congenital

aphantasia. Cortex, 73, 378-380. https://doi.org/10.1016/J.CORTEX.2015.05.019



	Thesis cover sheet
	2025PostzichPhD

