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Abstract
Autonomous systems often operate in environments where collecting large, diverse, and

safety-critical datasets is difficult. This data scarcity limits their reliability, particu-

larly in rare or hazardous scenarios that are hard to capture in the real world. This

thesis addresses data scarcity by integrating structural causal models with diffusion-

based generative models to produce trustworthy, high-fidelity counterfactual images

for “what-if’’ reasoning. Thus, two frameworks are proposed: Causal DiffuseVAE and

Causal DiffuseLLM. Both generate images that follow a directed acyclic graph of se-

mantic factors while preserving visual realism. The thesis first outlines key concepts

in causal generative modeling and modern deep generative methods, highlighting that

existing approaches either provide interpretable causal control with limited fidelity or

achieve photorealism without reliable intervention behavior.

Causal DiffuseVAE structures the latent space using a causal graph and applies a diffu-

sion decoder for detail reconstruction. Experiments show a 40% reduction in generation

time and a 30% improvement in counterfactual accuracy compared with state-of-the-

art causal diffusion models. Causal DiffuseLLM, which maps language instructions to

causal interventions, improves generation accuracy by 15% over its non-LLM baseline

and localizes edits to causally affected regions.

Overall, this thesis shows that embedding causal reasoning into diffusion pipelines

provides a practical path to generating reliable data for autonomous systems operating

under limited data conditions.
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Chapter 1

Introduction

Autonomous systems increasingly rely on visual perception to interact safely and ef-

fectively with complex real-world environments. However, these systems often operate

under conditions that are difficult to capture exhaustively in training data, such as

varying illumination, shadows, occlusions, and rare events. Models trained on limited

or biased datasets may exhibit brittle behaviour when deployed, leading to percep-

tion failures that directly affect downstream decision-making and safety. This thesis

addresses this challenge by exploring how causal inference and counterfactual image

generation can be integrated into modern generative models to create reliable, inter-

pretable, and data-efficient visual representations. By enabling explicit reasoning about

“what-if” scenarios, the proposed approaches aim to improve robustness and trustwor-

thiness in autonomous systems operating under real-world uncertainty.

1.1 Background

Engineering systems, from industrial inspection to autonomous robots, must operate

reliably despite unpredictable lighting, occlusion, sensor noise, and other scene vari-

ations that are difficult to capture exhaustively in real-world datasets [1]. In practice,

the scarcity of labelled data and the presence of visually confounding factors such as

shadows often lead to brittle perception, causing failures in tasks like object detection,

grasping, and scene understanding, especially in dynamic or safety-critical environ-

1
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ments [2]. These challenges are clearly illustrated in robotic applications where a robot

cannot recognise or manipulate an object simply because it is partially hidden by a

shadow, or where changing environmental conditions cause the vision system to mis-

interpret key features [3]. Such limitations highlight a broader gap: current systems

lack the ability to reason about how a scene would change under different conditions

and therefore cannot perform reliable “what-if” analysis[4]. To address these issues, the

research in this thesis explores image generative models based on causal inference to

solve these application-driven problems, specifically for synthesising missing visual con-

ditions, improving the robustness of robotic perception, and enabling robots to imagine

counterfactual scenarios when real data are insufficient.

Although modern deep learning has improved visual perception in engineering applic-

ations, these methods still fundamentally rely on correlations in the data and therefore

struggle under the challenging conditions outlined above. Convolutional neural net-

works can extract spatial features from microstructure images or industrial inspection

data, and autoencoders compress large datasets into low-dimensional representations

useful for simulation or design exploration [5]. Likewise, advances in transfer learning

and self-supervised pretraining help reduce the need for extensive labelling [6].

Despite these advances, conventional deep learning models remain correlation-driven

and struggle when visual conditions deviate from those seen during training [7]. This

limitation extends to reinforcement learning (RL) systems as well [8]. Although RL

enables autonomous agents to learn behaviours through trial-and-error interaction, the

quality of the learned policy ultimately depends on the visual experiences available

during training. If critical edge-case scenarios, such as objects hidden in deep shadow,

are missing from the dataset, the agent inherits the same blind spots as its perception

model and fails to respond appropriately in the real environment [9]. These challenges

highlight the need for methods that can create the missing visual conditions rather

than rely solely on those observed.
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Desktop

Table Scanner

Screen Printer

Figure 1.1: The factors in an image of a desktop computer.

Furthermore, the performance of the RL learning in the autonomous systems depends

on the reliability of the data. Black‑box ML and deep models may struggle to gener-

alize under changing operating conditions, and RL’s intensive data demands can limit

deployment on physical systems [10]. Unreliable data may cause autonomous systems,

specifically for autonomous vehicles, to make unsafe decisions, which will influence the

safety of people. Methods that rely only on data usually can’t guarantee how a system

will behave when something new happens [11]. This becomes a major problem when we

want to explore ‘what-if’ scenarios or optimize the system for conditions it has never

seen before. For instance, in Figure 1.1, recognition of a desktop computer in an image

is achieved by instructing a machine to search for characteristic elements, such as the

table, screen, printer and scanner, which are considered key indicators of a desktop

setup in the scene.

However, from a human perspective, these indicators are unreliable because the pres-

ence of such peripheral objects does not constitute proof of a desktop computer itself.

To address this problem, causal inference is proposed to help a system understand the

relationships between different factors. For instance, in autonomous driving, a vehicle

must determine whether a pedestrian is about to cross the road based on their mo-

tion and orientation, not on correlated but irrelevant factors such as shadows cast by
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Sunny Weather

Ice cream

Sunburn

Correlation

Figure 1.2: Causal inference helps to find the causation relationship rather than the
correlation relationship between factors.

buildings or the presence of nearby signs. Figure 1.2 shows that causal inference finds

cause-and-effect, rather than correlation. In this Figure, sunny weather causes both

ice-cream purchases and sunburn. However, ice cream purchases do not cause sunburn

and sunburn does not cause ice cream purchases.

What’s more, modern advances in Artificial Intelligence (AI) have been driven not

only by ever deeper neural architectures for vision and control, but also by the advent

of large-scale Transformer-based language models [12]. These models, often billions of

parameters trained in massive corpora, learn to represent, generate, and reason over

text via self-supervised objectives [13], which allows the model to learn the chain of

thought like a human. This has given rise to systems capable of tasks as diverse as

code synthesis, question answering, and even rudimentary planning [14]. However, the

learned knowledge is still based on the correlation. By pretraining on general web data

and fine-tuning on domain-specific examples, Large Language Models (LLMs) can be

adapted to specialized engineering workflows such as automating report generation,

drafting design documentation, or translating high-level requirements into mathemat-
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ical constraints for simulation code [15]. Their success underscores the broader theme

of this thesis, namely that causal structure and interpretability, once embedded in

neural models, can dramatically enhance both predictive power and trustworthiness.

This holds across vision, control, and language modalities.

Importantly, interpretability remains critical, such as understanding model reasoning

enables engineers to validate predictions, diagnose failure modes, and build trust in

AI‑augmented design tools [16]. To address these gaps, emerging research is integrating

causal reasoning and physical priors into ML pipelines, delivering frameworks that

provide robust, transparent, and intervention-capable predictions. This trend paves

the way for the causal-aware generative methodologies developed in this thesis. The

importance of interpretable machine learning is:

• Enhanced Predictive Accuracy: Machine learning models can uncover complex,

nonlinear relationships in data, leading to more accurate predictions of system behavior,

failures, and performance than traditional empirical or physics‑only approaches.

• Automated Decision‑Making: ML enables real-time, data-driven control and op-

timization, automating tasks such as adaptive process regulation, fault detection, and

quality assurance. These capabilities often exceed human responsiveness while reducing

the need for continuous manual oversight.

• Efficient Design Exploration: Surrogate ML models drastically reduce compu-

tational costs, allowing engineers to explore vast design spaces and identify optimal

configurations quickly.
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1.2 Motivation

Interpretability is essential in autonomous systems because perception failures can

immediately translate into unsafe actions [17]. Tools such as intrinsic interpretability

and post-hoc explanations help engineers in autonomous systems understand why a

model behaves incorrectly [18, 19], but they cannot prevent the underlying issue: deep

models often rely on spurious correlations instead of the true causal structure of a

scene. Embedding domain knowledge, such as illumination physics or object–shadow

relationships, into model design allows the learned representations to reflect meaningful

causal factors rather than superficial visual patterns. This motivates the causal lens of

this thesis, illustrated in Figure 1.3, which shows how autonomous systems must move

beyond simple observation to intervention and counterfactual reasoning to operate

robustly in real-world settings.

Figure 1.3: Pearl’s Causal Leverage [20].

To achieve the intervention and counterfactual reasoning, causal inference provides a

formal language for reasoning about cause–and–effect relationships [21], moving beyond

mere statistical associations to allow statements of the form “if this variable were

intervened upon, then that outcome would change by so much.” At its heart lies the

structural causal model (SCM), in which variables are connected by directed edges

that encode mechanistic dependencies and exogenous noise terms [22]. When a scene

or engineering process is represented as a graph of equations, an intervention is modeled
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by replacing only the equation that changes [23]. In this way, precise “what-if” questions

can be answered. By using the do-operator, passive observation is distinguished from

active manipulation. Interventional distributions are then derived to predict how the

system would behave under new design changes or operating conditions.

Figure 1.4: The example of the counterfactual [24]. A causal model learned from sim-
ulated stacking data identifies minimal changes in task variables that would convert a
failure into a success, enabling interpretable, transferable explanations of robot actions.

At the same time, causal reasoning provides a way to formalise these requirements.

SCMs represent how factors such as lighting, geometry, and material interact to form

an image [25]. Figure 1.4 demonstrates how counterfactual reasoning asks not only

“what if we change X?” but also “what would have happened under different condi-

tions?” [24]. Figure 1.4 illustrates how humans use counterfactual reasoning to evalu-

ate actions and assign responsibility in sequential decision-making tasks. The top row

shows four grid-world scenarios in which two agents follow different paths toward a

goal or obstacle, allowing certain events to occur or preventing them. The bottom row

presents human judgment scores across four dimensions, condition, counterfactual, in-

tention, effort, and responsibility, for each scenario [26]. For autonomous perception,

this enables the system to test whether a detection failure is caused by a shadow,

an occlusion, or a genuine absence of the object [27]. Existing deep generative mod-
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els, however, cannot reliably perform such targeted interventions: VAE-based causal

models lack photorealism, while diffusion models achieve fidelity but entangle causal

factors, making controlled counterfactual edits unreliable. This gap motivates the need

for new causal-aware generative architectures.

(a)

(b)

(c)

Counterfactual 

Imagination

Figure 1.5: A robotic dog is investigating a stick hidden in the shadow. (a) The stick
in the shadow of a nearby object, (b) the object with shadow and light source, and (c)
the object without shadow by counterfactual imagination.

In the real world, a concrete manifestation of this brittleness was encountered during

the development of a quadrupedal robotic platform for autonomous object retrieval.

Figure. 1.5 presents an example of a robotic dog trying to pick up the stick hidden

in the shadow. In the causal inference, the problem could be regarded as “What if

the shadow is removed?” Under uniform illumination, the vision‑and‑grasp pipeline

functioned reliably; however, when objects resided in deep shadow, detection failed and

grasp proposals became invalid. This failure mode highlighted that existing generative

models, lacking any semantics of lighting interventions, are unable to imagine how an

object appears under altered illumination.
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Furthermore, the opacity of black‑box models undermines trust and hampers diagnostic

insight in safety‑critical systems [28]. Without interpretability, engineers cannot verify

that predictions conform to physical laws, cannot diagnose the reasons for sudden

performance degradation, and cannot trust “what‑if” analyses essential for informed

design modifications. Model-agnostic attribution methods, surrogate models and coun-

terfactual explanations can help explain how decisions are made [29]. However, they

fall short when hidden factors do not match known causal relationships.

To address these gaps, this thesis proposes a causal‑aware generative framework that

embeds structural knowledge of scene formation directly into deep architectures. By

defining latent spaces in accordance with causal graphs of illumination, object geo-

metry, and material properties, it is expected that shadow‑robust training data can be

synthesized through explicit lighting interventions, that interventional grasp planning

can be enabled via counterfactual scene generation, and that critical data gaps can

be filled without exhaustive field collection. In this way, the models are expected to

perform well and explain their decisions clearly.

Figure 1.6: Process of training robots with counterfactual images.

Causal image generative models promise the ability to produce and manipulate visual

data through explicit interventions on underlying factors such as illumination, geo-

metry, and material properties. For instance, Figure. 1.6 indicates how the counterfac-

tual images could be used to train robots. A causal layer swaps the object while keeping

the scene the same, creating versions like Sprite and Milk, so the robot learns to gen-
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eralize beyond the original Coke can. However, there is a fundamental obstacle: how

to accurately recover latent representations that reflect the distinct causal variables

[30]. Images contain many physical and semantic factors that appear and interact to-

gether. Without well-designed biases or constraints, learning algorithms often mix these

factors into tangled and hard-to-separate representations [31]. Due to highly nonlinear

decoders and data issues such as occlusion, noise, and distribution shift, an inference

network must invert the generative mapping to recover the latent variables. This makes

it hard to tell, for example, whether a change is due to lighting or to the texture of the

object. Unmodeled confounders and sensor artifacts further obscure the true causal sig-

nals, leading to representations that neither support reliable counterfactual synthesis

nor obtain interpretable semantics [32]. Overcoming these challenges requires novel

architectures, regularization strategies, and learning paradigms that can disentangle,

ground, and validate causal factors within image data. Designing a method with novel

architectures, regularization strategies, and learning paradigms is an essential step to-

ward robust, transparent, and intervention‑capable generative vision systems.

1.3 Tasks for Causal Image Generative Model in

Engineering

Efficiently and transparently processing data and learning from data become more

essential for perception and decision-making in industry, particularly for robotics. It is

natural to raise the following questions:

Q1: How to efficiently and transparently obtain data for industry tasks?

By using interpretability tools, such as decision trees, linear models, feature-attribution

methods like SHapley Additive exPlanations (SHAP) [33] or Local Interpretable Model-

agnostic Explanations (LIME) [34] and partial-dependence plots, engineers can find

exactly which visual features cause a model’s uncertainty or errors. They can then
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focus data collection or synthetic image generation on these problem areas, tagging

each new sample with the explanation that motivated it. Counterfactual variations,

such as small changes in angle or lighting, can be created to produce paired examples

that expose the model’s decision boundaries. This makes data collection much more

efficient and fully transparent, since the reason for each sample is directly linked to an

interpretable insight from the model.

In this thesis, the proposed Causal DiffuseVAE and Causal DiffuseLLM frameworks go

beyond traditional interpretability tools by allowing engineers to directly manipulate

causal factors in the latent space (e.g., lighting, shadow, object presence). This enables

the targeted generation of counterfactual training samples without manually designing

perturbations, providing a principled and automated mechanism for transparent data

augmentation.

Q2: How to use the causal inference to generate data for industry tasks?

First, the industrial imaging process is described as a structural causal model, with

nodes for factors like component state, lighting angle, surface material, and sensor

noise. A conditional generative model can then be trained on a small set of real, labeled

images. During training, each image is matched with the values of its causal variables.

When generating new images, specific causal inputs are changed using the do-operator,

and the model creates clear, realistic images that match the chosen “what-if” scenarios.

Every generated sample is tagged with its intervention provenance, enabling transpar-

ent tracing of its origin and a back‑door calibration step against held‑out real images

ensures fidelity. This process creates synthetic images to cover important gaps, like

shadowed parts or rare object positions. It greatly reduces the need for extensive real-

world image collection and provides traceable, causally based data for later industrial

vision tasks.
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This thesis develops causal diffusion-based generative models that explicitly encode

the causal graph within the latent space. By integrating SCM structure with diffu-

sion decoding, Causal DiffuseVAE and Causal DiffuseLLM produce high-fidelity images

that faithfully reflect the specified interventions. This enables controllable generation

of industrial scenarios, such as removing shadows or modifying illumination, directly

through causal manipulation.

Q3: How to guarantee the quality of the data for industry tasks?

To ensure high-quality synthetic images from the model for industrial vision tasks, use

a closed-loop assurance process that begins with calibrating generated images against

a held-out set of real, labeled images to match appearance and feature statistics. Next,

perform counterfactual consistency checks by inferring latent causes from real images,

applying targeted changes, and confirming that the synthetic results match those seen

in paired real captures. Continuously monitor coverage across all causal conditions to

avoid missing important cases or over-representing certain ones, and enforce lightweight

physics-based constraints so that shadows, reflections, and occlusions remain realistic.

Assign confidence scores to flag uncertain samples for human review. Finally, validate

downstream performance by training vision models on the augmented dataset and

evaluating them on a real-world benchmark, using any performance gaps to guide

further targeted interventions and refine the generator.

The models proposed in this thesis incorporate causal consistency losses, disentangled

latent structures, and diffusion refinement modules that enforce visual and semantic

realism. Through ablation experiments and quantitative evaluations, the thesis demon-

strates that the generated counterfactual images maintain high fidelity while preserving

all non-intervened factors, an essential requirement for trustworthy industrial deploy-

ment.

Q4: How to validate the generated data for industry tasks?
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Data validation begins by calculating Mean Absolute Error (MAE) on a per-pixel

basis and measuring Learned Perceptual Image Patch Similarity (LPIPS) [35] distances

between synthetic and held-out real images to ensure minimal reconstruction error and

perceptual drift. These checks are complemented by the Structural Similarity Index

Measure (SSIM) [36] and distributional scores such as the LPIPS to confirm overall

fidelity. Downstream task performance is then evaluated on a real-world benchmark to

verify that the synthetic data improves the intended models. At the same time, coverage

statistics are gathered across all causal factors, including illumination levels, object

poses, and material types, to identify under- or over-represented cases. Counterfactual

consistency tests, where latent causes are inferred from real images, modified through

targeted interventions, and regenerated, are used to ensure that synthetic changes

reflect real-world behavior.

This thesis introduces evaluation protocols tailored to causal generative models, includ-

ing tests for causal faithfulness, intervention precision, and stability under distribution

shift. Experiments show that models trained with the generated counterfactual data

achieve improved robustness in recognition and manipulation tasks, confirming the

practical value of the proposed frameworks for industrial applications.

1.4 Dissertation Structure

The dissertation consists of five chapters, with the outline as follows:

Chapter 1 outlines the motivation of the thesis, presenting the challenges faced by

autonomous vision systems under data limitations and distribution shifts. It introduces

the need for causal and counterfactual generative modelling and defines the key tasks

that the proposed frameworks aim to address.
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Chapter 2 reviews prior research on causal inference, causal representation learning,

image generative models, and Large Language Models. It identifies the limitations of

existing approaches in achieving controllable, interpretable, and high-fidelity counter-

factual image generation.

Chapter 3 presents the theoretical foundations required for the thesis, including struc-

tural causal models, variational inference, diffusion processes, and multimodal encoders.

These fundamentals provide the basis for understanding the proposed causal generative

architectures.

Chapter 4 introduces the Causal Diffuse Variational Autoencoder, detailing its causal

latent structure, masked causal layer, and diffusion-based decoder. It demonstrates how

the model achieves identifiable causal factors while producing photorealistic counter-

factual images.

Chapter 5 presents the LLM-guided causal diffusion framework, which integrates language-

conditioned causal reasoning with high-quality generation. It describes how free-form

instructions are mapped to structured interventions and how the model performs loc-

alized, semantically consistent edits.

Chapter 6 summarises the contributions of the thesis and discusses the implications

of causal generative models for autonomous systems. It also outlines limitations and

presents directions for future research in scalable causal modelling and domain-adaptive

counterfactual generation.



Chapter 2

Related Literature

Building on the challenges of data scarcity, visual confounding factors (such as shadows

and illumination changes), and the brittleness of correlation-driven perception mod-

els in autonomous systems, this chapter reviews existing research relevant to causal

and counterfactual image generation for autonomous systems. It surveys prior work

in causal inference and causal reasoning, as well as recent advances in image gener-

ative models and large language models. Particular attention is given to how current

approaches address, or fail to address, issues of interpretability, controllability, and

robustness under distribution shift. By analysing the strengths and limitations of these

methods, this chapter clarifies the research gaps that motivate the causal diffusion

frameworks proposed in the subsequent chapters.

2.1 Principles of Causality

To support trustworthy counterfactual image generation in autonomous systems, it is

necessary to draw from two complementary strands of causal methodology [37]. Causal

reasoning focuses on discovering and exploiting causal structure, often in the form

of graphs, to explain failures and to support structured decision-making [38]. Causal

inference, in contrast, focuses on estimating the effects of interventions and counter-

factual queries under explicit assumptions about confounding and identifiability [39].

15
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Together, these tools enable engineers to predict system responses to design changes,

simulate “what-if” queries in digital twins, and augment datasets with interventional

or counterfactual examples, all under transparent and auditable assumptions about

underlying causal mechanisms [40].

2.1.1 Causal Reasoning

Figure 2.1: The Framework to explain why the action of the robot failed [41]. A causal
model is learned to capture relationships between spatial variables and task success.
When stacking fails, the model evaluates alternative variable configurations to identify
the closest counterfactual conditions that would have led to success. By comparing the
current state with these successful counterfactuals, the system generates a contrastive
causal explanation.

Causal reasoning seeks to uncover the underlying causal graph that describes mechan-

istic dependencies among variables directly from observational data. Constraint-based

algorithms, such as the Peter–Clark (PC) algorithm [42] and Fast Causal Inference

(FCI) [43], use conditional independence tests to gradually add and orient edges while

limiting false positives. They rely on strong assumptions such as causal sufficiency

and faithfulness. However, these assumptions are often violated in real-world systems,
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which means they cannot be used in the industry due to their unreliability. Causal

sufficiency requires that all common causes of the observed variables are measured,

which is rarely true in practice due to unobserved environmental factors, sensor noise,

or latent system states. Faithfulness assumes that all statistical independencies in the

data correspond exactly to separations in the true causal graph. In complex or finely

tuned systems, causal effects may cancel out, leading to misleading independencies.

When these assumptions fail, constraint-based methods can remove true causal edges,

misorient directions, or produce partially identified graphs, reducing the reliability of

the inferred causal structure, especially under distribution shift or when interventions

are later applied.

In the past decade, causal reasoning has been widely used in statistics, economics and

sociology. With the structured data in these fields, Causal-learn in [44] provides a tool

for up-to-date causal discovery. Causal-learn fills a critical gap in the causal discov-

ery ecosystem by providing the first fully Python-native library that unifies classical,

score-based, functional, permutation-based, and Granger-causality methods under a

coherent Application Programming Interface (API). In robotics, causal discovery is

used to investigate why the motion of a robot failed [41]. Figure. 2.1 indicates the pro-

cess of explaining why the action of the robot failed. First, a causal model is learned

from simulations. When a task fails, a contrastive explanation is generated. Finally,

the models are evaluated on two tasks, cube stacking and sphere dropping, and are

transferred to two robots. Explanations are then provided whenever errors are made.

This framework enables robots to generate contrastive causal explanations for execu-

tion failures based on learned causal Bayesian networks from simulated task data. The

authors addressed the challenge of acquiring sufficient causal data by transferring mod-

els trained in simulation to reality, achieving sim-to-real accuracies of 70 % and 72 %

in cube stacking and sphere dropping tasks. This framework demonstrates how explicit

causal structure enables interpretable counterfactual reasoning about failure modes,
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rather than relying on correlation-based diagnostics. The same principle motivates the

causal generative models in this thesis, which aim to embed causal graphs into image

generation pipelines to produce trustworthy counterfactual visual data for autonomous

systems.

Furthermore, recent works involve causal reasoning with the LLMs. CLADDER, the

first large‐scale benchmark for formal causal inference in natural language, is proposed

for comprising over 10000 questions spanning associational, interventional, and coun-

terfactual queries derived from diverse causal graphs [45]. CLADDER is designed to

test whether large language models can genuinely reason over causal structures, dis-

tinguishing association from intervention and counterfactual reasoning, rather than

relying on superficial patterns in language. This work highlights that highly expressive

generative models benefit from explicit causal representations when reliable “what-if”

reasoning is required, which parallels the motivation for introducing causal structure

into image generation models.

Over the past two years, the PC algorithm has been integrated into a variety of engin-

eering domains to uncover causal structures from complex observational data, enabling

more precise diagnosis, monitoring, and optimization. The PC algorithm assumes all

common causes are measured and that every statistical independence reflects a true

causal separation. It proceeds in two main stages. First, the PC algorithm initializes

a fully connected, undirected graph. It then repeatedly tests each pair of variables for

conditional independence given progressively larger subsets of their neighbors. When

independence is found, the corresponding edge is removed. The conditioning (separat-

ing) sets are recorded for later use.

Second, it orients edges by turning any unshielded triple whose middle node was never

in its corresponding separating set into a collider. Then it applies Meek’s rules to direct

as many of the remaining edges as possible without creating new colliders or cycles. PC

can become slow when variables have many connections; in the worst case, its runtime

grows quickly with node degree. A “stable” version removes order-dependence, so res-
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ults don’t change with the order you test edges. For the independence test, it uses

Fisher’s Z for Gaussian data, likelihood-ratio for discrete data and kernel-based tests

for mixed or nonlinear data. In [46], a hybrid root‐cause diagnosis framework is in-

troduced that couples the PC algorithm with a discrete random genetic optimization

routine. Starting from high‐dimensional sensor data across the blast furnace and rolling

mills, the PC algorithm learns a skeleton graph of conditional independencies, which

the genetic component then refines to pinpoint minimal intervention sets. This ap-

proach reduced the mean time to fault isolation by over 30 %, translating directly into

reduced downtime and scrap rates. However, its reliance on heuristic and randomized

optimization to learn the Bayesian network structure brings substantial computational

overhead and potential instability.

Moreover, a chemistry study applies PC‐based causal discovery to steady‐state concen-

tration and flow measurements to automatically reconstruct the process topology [47].

By iteratively testing for conditional independencies among sensor pairs, the algorithm

recovers which units are upstream or downstream with over 90 % edge‐recovery ac-

curacy under realistic noise levels. While without embedding time lags or dynamic

context, the algorithm often produces ambiguous or incorrect edge orientations in re-

cycle networks and fails to capture true causal directionality [48].

Besides, a PC-based method, RUN, is proposed to identify which services directly in-

fluence others [49]. However, temporal ordering in time‐series data often violates the

PC algorithm’s simultaneous‐test assumption, leading to missed or reversed edges.

RUN, a neural Granger causal discovery model, embeds temporal context into each

Conditional Independence (CI) test, significantly improving root‐cause localization ac-

curacy over the conventional PC baseline. Although RUN improves the capability of

the PC-based method, it only captures predictive dependencies rather than guaranteed

causal effects. Hidden confounders, non-stationary or multi-periodic signals, and com-
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plex higher-order interactions can produce spurious causal relationships that won’t hold

under intervention. The heavy neural-network machinery also demands large volumes

of high-quality time-series data and significant compute. These requirements limit the

framework’s real-time robustness and interoperability.

Figure 2.2: Causal analysis when FCI was applied alongside PC, GES and GRaSP [50].
The figure highlights differences in edge orientation, handling of latent confounders,
and graph sparsity across score-based and constraint-based approaches.

The FCI algorithm begins by iteratively removing edges from a complete undirected

graph through conditional‐independence tests, just as in PC. It then performs ad-

ditional tests on the remaining adjacencies using specially constructed d-separation

(D-SEP) sets to detect dependencies induced by hidden confounders. Whenever an

unshielded triple’s middle node was never in its separating set, that triple is oriented

as a collider. Next, an extended suite of orientation rules, including those that place

“circle” marks on arrowheads to denote ambiguity from latent variables or selection

bias, is applied repeatedly. This process continues until no further orientations or en-

dpoint refinements are possible. The final output is a Partial Ancestral Graph that
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compactly encodes all causal relations among the observed variables consistent with

the data, despite unmeasured confounding. In [50], FCI was applied alongside PC,

GES, and GRaSP to learn causal graphs for four structural-engineering problems. The

analysis of the causal relationships was shown in Figure. 2.2. In this figure, GES (top

left), a score-based method, produces a fully directed graph by optimizing a global

score, but may introduce spurious edges when the scoring criterion favors complex

models. PC (top right), a constraint-based method, yields a partially directed graph

that reflects conditional independencies in the data, but its orientation is limited by

assumptions of causal sufficiency and faithfulness. FCI (bottom left) extends PC by

accounting for latent confounders, representing uncertainty using bidirected or circle-

marked edges; this improves robustness to hidden variables but increases structural

ambiguity. GRaSP (bottom right), a recent greedy randomized search procedure, bal-

ances scalability and flexibility by exploring multiple candidate structures, but may

still produce dense graphs in the presence of correlated variables. Only the GES dis-

covered a complete Directed Acyclic Graph (DAG). The problems addressed were the

prediction of axial load-bearing capacity of columns, fire resistance of members, shear

strength of beams, and blast resistance of walls. It was demonstrated that interpretable

cause–effect relationships could be uncovered directly from experimental and simulated

data using FCI. This approach obviated the need for manually derived formulas.

However, the exhaustive testing of conditional independencies over both neighbor sets

and D-SEP sets, together with the iterative orientation rules, imposes a heavy compu-

tational and sample-size burden. This amount of work becomes especially prohibitive

as the number of variables grows in structural-engineering datasets. While algorithms

such as FCI aim to recover causal structure from observational data, they rely on large

sample sizes, steady-state assumptions, and significant expert intervention. These re-

quirements make them unsuitable for robotics and autonomous driving systems that

demand real-time perception and decision-making, where high-dimensional visual in-

puts, rapidly changing environments, and strict latency constraints prevent extensive

data collection and offline causal graph refinement. What’s more, FCI was used to infer

the causal structure among sensors in a wastewater-treatment plant [51]. The process
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topology, including connections between bioreactors, clarifiers and recycle loops, was

automatically reconstructed from steady-state concentration and flow measurements.

The results demonstrated both the strengths and the limitations of applying FCI to

systems with hidden dynamics. In particular, edges were sometimes misoriented when

temporal dependencies were not taken into account. A primary drawback is that tem-

poral dependencies were not modeled, resulting in occasional misorientation of edges.

Steady-state data were used, which can fail to capture transient behaviors and lead to

spurious independencies. A large sample size was required to detect conditional inde-

pendencies reliably in noisy process measurements. Significant expert intervention was

needed to resolve ambiguities in the reconstructed topology. These limitations highlight

a key gap between causal discovery methods and practical deployment in perception-

driven autonomous systems. While algorithms such as FCI aim to recover causal struc-

ture from observational data, they rely on large sample sizes, steady-state assumptions,

and significant expert intervention. These requirements make such methods unsuitable

for high-dimensional visual domains, where latent factors, temporal variation, and data

scarcity are the norm. This motivates the approach taken in this thesis: rather than

discovering causal graphs purely from data, causal structure is incorporated directly

into generative models, enabling controllable and interpretable counterfactual image

generation even when observations are limited or confounded.

On the other hand, score-based methods define a scoring criterion over graph structures.

Algorithms like Greedy Equivalence Search (GES) and its continuous-data variants

search for the graph that maximizes this score, rewarding fit and penalizing complexity.

In practice, these methods trade higher computational cost for greater flexibility.

The GES algorithm operates in two phases over the space of equivalence classes, such as

a Completed Partially Directed Acyclic Graph (CPDAG), using a chosen score function.

In the forward phase, it starts with an empty graph and iteratively adds the single edge

whose inclusion obtains the greatest improvement in score, updating the CPDAG at

each step, until no addition can improve the score. In the backward phase, it starts with

the graph produced by the forward phase. It then repeatedly removes the single edge
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whose deletion gives the largest score improvement. After each removal, the CPDAG

is updated. The process stops when no further deletion improves the score. By search-

ing greedily over equivalence classes rather than individual DAGs, GES achieves score

equivalence and consistency under causal sufficiency and score-equivalence assump-

tions, at the expense of potentially high computational cost when evaluating many

candidate moves. Although GES provides a principled, score-consistent approach to

causal structure learning, its greedy search over equivalence classes requires evaluat-

ing a large number of candidate edge additions and deletions, leading to substantial

computational overhead. This makes GES impractical for robotics and autonomous

systems that require rapid adaptation and real-time responses to changing visual en-

vironments. These limitations further motivate the approach adopted in this thesis,

which embeds causal structure directly into generative models rather than relying on

expensive offline causal discovery during deployment.

In the GES algorithm, the Bayesian Information Criterion (BIC) balances model fit and

complexity. BIC scores each candidate structure using the maximized log-likelihood of

the data. It then subtracts a penalty that grows with the number of free parameters

and with the logarithm of the sample size. Specifically, it rewards models that explain

the data well while penalizing those with more parameters, thereby favoring simpler

structures when the sample is large. Under regularity conditions and when the true

model is included among the candidates, BIC is known to select the correct model

with probability approaching 1 as the sample size increases. In [52], candidate Bayesian

network structures were scored using the BIC. The score balanced data fit against model

complexity. This approach guided the selection of causal relations most predictive of

equipment faults. However, the combination of reinforcement learning and Bayesian

network structure learning introduces heavy computational complexity, since learning

Bayesian networks from data is NP-hard.
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Furthermore, the Conditional Probability Table (CPT) was discretized by imposing

upper and lower probability bounds [53]. Values were grouped into a limited set of

representative levels. A two-stage optimization process was then used in which these

quantization limits were tuned to minimize mean-squared reconstruction error on held-

out data while simultaneously penalizing model complexity via the BIC-based structure

score. The two-stage optimization for setting quantization bounds adds computational

overhead and may require careful tuning to avoid suboptimal trade-offs between fidelity

and complexity.

Moreover, Fast Greedy Equivalence Search (FGES) is a scalable adaptation of GES

designed to handle high-dimensional datasets more efficiently. It accelerates both the

forward and backward phases by parallelizing score computations and caching interme-

diate results to avoid redundant evaluations. This parallelization produces significant

speedups on large continuous or discrete data, making FGES well-suited for modern in-

dustrial monitoring tasks. However, the heuristic pruning and distributed coordination

it relies on can sometimes lead to slight deviations from the true optimal equivalence

class when score differences between candidate moves are small.

Additionally, the overhead of managing parallel processes may limit its effectiveness in

environments with constrained computational resources. In [54], FGES was identified

as the optimal causal discovery method. Candidate graphs were evaluated using a

score-based search to model dependencies among operational, calendar, and weather

factors. Interpretable causal structures were produced. These structures were then used

to inform transit system management. However, in this work, FGES was applied to

cross‐sectional snapshots of delay data, so it could not explicitly model the sequential

and time‐lagged propagation of delays. As a result, some causal directions among delay

factors may be misoriented when temporal dependencies are strong.
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Figure 2.3: Causal graph obtained from the DirectLiNGAM-based Structural Equation
Model (SEM) model [55]. Nodes denote socioeconomic, demographic, and behavioral
variables, while directed edges represent estimated causal effects, with color and thick-
ness indicating their sign and strength.

In [55], FGES was tested alongside PC, FCI, and Linear Non-Gaussian Acyclic Model

(LiNGAM) to determine causal influences among socioeconomic, infrastructural, and

behavioral variables. Figure. 2.3 presents the causal graph estimated with the Dir-

ectLiNGAM structural equation model. Blue edges denote positive path coefficients,

while red edges denote negative ones. The thickness of each edge is scaled to the ab-

solute size of its coefficient. The figure illustrates how interpretable causal pathways

can be recovered from observational data, enabling reasoning about how changes in

demographic or infrastructural factors propagate to travel behavior. At the same time,

the complexity of the graph and the presence of many interacting variables highlight

the challenges of identifying stable causal structures in real-world systems with latent

factors and heterogeneous populations. The DirectLiNGAM structural equation model

outperformed the other algorithms in recovering known causal relationships, guiding

more accurate transportation planning and policy analysis. However, the method was

applied to cross‐sectional survey data, which could not capture temporal dynamics

in travel behavior. Unobserved factors such as individual preferences and changes in

infrastructure may have violated the causal sufficiency assumption.
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Hybrid approaches combine these paradigms, first pruning the search space via in-

dependence tests and then scoring candidate graphs. For instance, functional causal

models extend discovery by leveraging specific data-generating functions or distribu-

tional asymmetries to identify edge directions in linear or nonlinear settings.

More recently, continuous‑optimization frameworks and gradient‑based techniques have

reframed graph search as a constrained optimization problem, enabling scalable discov-

ery in high dimensions. Interventional and active learning extensions further improve

identifiability by allowing targeted experiments that break confounding, while stability

selection and bootstrap aggregation quantify uncertainty over learned structures. To-

gether, these methods form the foundation for automatically extracting causal diagrams

from data. A soft-sensing framework for mass customization in discrete manufacturing

integrates an additive noise model with a tailored scoring mechanism to infer reliable

causal graphs among process variables [56]. This framework enables robust sensor selec-

tion and accurate predictions even under high noise levels. Nevertheless, this framework

struggles with the modular production, customized assembly, and multi‐scale nature

of mass customization processes. These characteristics can overwhelm the static causal

graph structure. As a result, prediction accuracy is degraded.

In [57], a Fast Causal Discovery Algorithm based on the Additive Noise Model (FANM)

was proposed to scale the Functional Causal Model (FCM) to large sensor networks,

which employs coreset-based subsampling to accelerate Additive Noise Model (ANM)-

based causal discovery on big industrial datasets. It achieved comparable causal-graph

accuracy with up to 100 times faster runtimes. However, FANM relies on fitting a

separate regression model for each candidate edge to estimate residuals and assign

coreset weights, which can become computationally demanding and fragile to model

errors in high-dimensional settings.
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Moreover, except FCMs, the Causality-Driven Sequence Segmentation (CDSS) method

was introduced that automatically breaks long process traces into causal phases. Then

CDSS trains specialized regressors on each phase [58]. The CDSS method relies on

detecting shifts in causal mechanisms to segment process phases. Consequently, noise

or abrupt changes can cause these shifts to be misdetected, leading to inaccurate phase

segmentation. These segmentation errors can then propagate to the soft-sensing models

and degrade their predictive performance.

For the continuous‑optimization frameworks, Non-combinatorial Optimization via Trace

Exponential and Augmented Lagrangian for Structure learning (NOTEARS) was pro-

posed to reformulate DAG structure learning as a smooth and constrained optimization

problem [59]. It encodes the acyclicity constraint using a differentiable trace‐exponential

function. The resulting problem is then solved with augmented Lagrangian methods.

This approach enables efficient gradient-based discovery of graph structures without

resorting to combinatorial search. However, every augmented‐Lagrangian iteration in

the NOTEARS requires computing a matrix exponential, which scales cubically in the

number of variables and thus becomes infeasible for very high-dimensional problems.

Meanwhile, the resulting optimization is nonconvex. As a result, standard solvers can

converge to suboptimal local minima. The continuous edge-weight estimates must then

be thresholded to create a discrete DAG. This thresholding introduces sensitivity to

the penalty and to the chosen threshold hyperparameters.

2.1.2 Causal Inference

Causal inference provides a unified framework for distinguishing correlation from causa-

tion by encoding variables and their mechanistic dependencies within structural causal

models. These models consist of directed acyclic graphs augmented by the do oper-

ator. They are used to simulate interventions and answer what-if and counterfactual

questions. Figure. 2.4 shows an example of how causal inference is used to answer the

questions [60]. The upper part shows a vision–language model that combines visual
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Figure 2.4: An example of causal inference used to answer the question [60]. Visual
and textual inputs affect predictions via an attention-based latent variable, illustrating
how confounding can arise when attention encodes non-causal correlations.

features and textual context through self-attention and top-down attention to predict

an action label. Queries, keys, and values are computed from both image regions and

language tokens, allowing the model to focus on semantically relevant visual evidence.

The lower part abstracts this process as a causal graph, where the input observations X

(image and text) influence an intermediate latent representation Z (attention), which

in turn determines the output prediction Y. The dashed arrow highlights potential con-

founding effects when attention captures spurious correlations rather than true causal

relationships. Through the causal inference, the word in the sentence is finally ”riding”

rather than ”driving”.

Moreover, estimability depends on identifiable criteria such as back-door and front-

door adjustments. These criteria guide techniques ranging from regression adjustment

to propensity score weighting and instrumental variables. Modern methods include

doubly robust estimators and causal forests. Causal discovery algorithms exploit condi-

tional independencies, score-based searches and functional asymmetries to learn causal

graphs directly from data. Extensions for time series and interventional data sets sup-
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port dynamic modeling and active experimentation. In engineering domains, causal

inference underlies digital twins for scenario analysis, supports targeted fault diagnosis

and informs efficient data acquisition. These applications enable transparent models

capable of predicting the effects of interventions in complex systems.

In practice, causal inference has been used in different fields, which motivated the

beginning of this thesis. In medicine, causal inference is deployed for enabling more

accurate, data‐driven estimates of treatment and exposure effects while preserving the

interpretability and robustness required for public‐health decision making [61]. This

emphasis on transparent intervention analysis directly parallels the goal of this thesis:

generating counterfactual visual data that makes the effect of specific interventions,

such as illumination or occlusion changes, explicit and auditable for autonomous sys-

tems. In robotic, causal inference is introduced into Robot Operating System (ROS) to

enable seamless integration of robot and human state monitoring, asynchronous data

batching, and real-time causal model induction onboard the robot [62]. This aligns

closely with the motivation of this work, where causal generative models are designed

to support real-time perception and decision-making by enabling robots to reason about

how visual scenes would change under alternative conditions. In economics, by merging

the potential-outcomes tradition with causal inference, causal inference bridge classical

econometrics and modern causal inference, offering both interpretability and robust-

ness in the face of unobserved confounding, selection bias, and structural heterogen-

eity [63]. These challenges mirror those in visual perception, where latent factors and

dataset bias can mislead correlation-based models, motivating the causal latent repres-

entations proposed in this thesis. In sociology, causal inference is used to investigate

human behaviour grapples with the intricate interplay of external stimuli and internal

states, requiring methods that can disentangle ambiguous causal language, control for

confounding, and address effect heterogeneity, interference, and varied timescales of in-

fluence [64]. Similarly, this thesis seeks to disentangle intertwined visual factors, such

as lighting, geometry, and material properties, so that autonomous systems can gener-

ate and reason over meaningful counterfactual visual scenarios rather than relying on

spurious correlations.
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Figure 2.5: Structural Causal Model and the causal matrix

SCMs provide a formal framework for representing and reasoning about causal mech-

anisms in complex systems. Figure 2.5 shows two separate root nodes, each directing

an arrow into a single downstream node, indicating that each root node has a direct

causal influence on that downstream node. There are no arrows between the two root

nodes, nor any arrows returning from the downstream node, so no feedback or inter-

action is implied among the roots or from the effect back to its causes. It is commonly

used in causal learning, and is defined with a triple 〈U,V,E〉 [65]. Here, U represents

a set of exogenous variables determined by factors outside the model; V indicates the

system’s internal variables; E represents the unexplained variation in an endogenous

variable not captured by the model’s deterministic part. Interventions are implemented

by modifying the structural equations for one or more variables, which corresponds to

Pearl’s do-operator, and allows it to compute interventional distributions that answer

“what-if” queries. Counterfactual reasoning leverages the structural equations and as-

signed noise variables to imagine alternative scenarios that are consistent with observed

data. Under the causal Markov and faithfulness assumptions, the support algorithmic

effect identification via do-calculus, guiding engineers in designing valid adjustment

sets and simulating system behavior under hypothetical changes. Model intervention

is to convert an original image to a counterfactual image based on a causal graph.

Normally, causal inference is performed through interventions, typically represented

by setting a variable to a fixed value regardless of its natural state. This is commonly

expressed using the do-operator, denoted as do(X = x), which implies actively setting
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X to x and observing the resultant changes in other variables [66]. The intervention

aims to identify how changes in one variable (the cause) directly affect another variable

(the effect). This process helps in answering counterfactual questions, such as “What

would happen if we had changed X?”

In engineering, SCMs give clear, modular models of how a system behaves over time.

They allow customers to safely run “what-if” tests in a digital twin, like turning off

a component or changing a controller, and use counterfactual reasoning to diagnose

faults, check safety, and pick better designs. By combining the graph-based semantics of

SCMs with modern data-driven parameter estimation, engineers can build intervention-

capable models that both explain observed data and predict the consequences of novel

actions in complex systems.

A range of causal inference methods is employed to estimate the effects of interven-

tions while confounding is accounted for. Back-door adjustment [67] identifies cov-

ariates that block spurious paths and estimates intervention effects by conditioning

on those variables. Front-door adjustment [68] uses a mediator to recover unbiased

estimates even when confounders remain unobserved. Propensity score methods [69]

estimate treatment probabilities and apply matching or weighting to balance compar-

ison groups. Instrumental variables techniques [70] rely on external instruments that

influence the treatment but not the outcome directly to address hidden confounding.

textcolorblueg-computation [71] fits outcome models and simulates counterfactual out-

comes under different intervention levels. Doubly robust estimators combine outcome

and propensity score models so that estimates remain consistent if one model is incor-

rect. Structural nested models and g-estimation handle time-varying treatments and

confounders through sequential regression. Causal machine learning methods, such as

causal forests, Bayesian additive regression trees, and meta learners, flexibly estimate

heterogeneous treatment effects. Bayesian causal modeling specifies full probabilistic

models and uses Monte Carlo or variational inference to derive posterior distributions

over causal effects.
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While these causal inference methods provide rigorous tools for estimating intervention

effects under well-defined assumptions, they typically operate on low- to moderate-

dimensional tabular data and require explicit specification of treatments, covariates,

mediators, or instruments. In high-dimensional visual domains relevant to robotics

and autonomous systems, many causal factors, such as illumination, occlusion, and

material properties, are latent, intertwined, and difficult to measure or intervene on

directly. This limits the practical applicability of traditional adjustment-based methods

for generating visual counterfactuals in real time. The models proposed in this thesis

address this gap by embedding causal structure into generative image models, enabling

counterfactual synthesis and intervention analysis directly in the image space without

requiring explicit enumeration of all confounding variables.

The Back-door adjustment involves identifying a set of covariates that blocks all non-

causal pathways from the intervention to the outcome. The back door criterion guaran-

tees that conditioning on this set removes bias from confounding variables. In practice,

engineers use causal diagrams or domain expertise to select covariates that satisfy

the blocking condition. They then estimate the causal effect by comparing outcomes

between units that share the same covariate values but differ in their treatment status.

This approach produces unbiased estimates of intervention effects provided all relevant

confounders have been measured and appropriately adjusted for.

In a recent approach to adaptive, AI-based causal control for structural engineering, the

back-door criterion is used to block misleading cause–and–effect paths [72]. By condi-

tioning on disturbance variables, the method can estimate the effect of a control policy

without bias, both in offline simulations and in real-time updates. However, identify-

ing and measuring every relevant disturbance variable in real time can be impractical,

so any unobserved or mismeasured confounders will bias the estimated intervention

effects. Conditioning on a large set of covariates also increases estimation variance

and computational burden, which can undermine real-time applicability. Finally, if

some covariates act as colliders rather than confounders, adjusting for them can itself

introduce spurious associations and distort causal estimates.
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Furthermore, in a graph neural network (GNN) framework for fault diagnosis of com-

plex industrial processes, back-door adjustment was recognized as a key causal-intervention

technique, a causal intervention graph neural network (CIGNN) framework, to mitigate

confounding from irrelevant sensor signals [73]. Although the inability to observe all

confounders directly led the authors to adopt instrumental-variable methods instead,

this framework analyzes the causality in the GNN-based fault diagnosis process based

on causal theory and provides a method that automatically constructs sensor signals

into graph data using an attention mechanism.

The front door criterion identifies a mediator variable that fully transmits the effect

of the treatment to the outcome. It requires that there be no unmeasured confounders

between the treatment and the mediator, and none between the mediator and the out-

come. In practice, engineers first model how the treatment influences the mediator while

accounting for any confounders of that link. They then model how the mediator affects

the outcome, conditioning on the treatment. By combining these two models, they

recover an unbiased estimate of the total causal effect even when direct confounders

between treatment and outcome remain unobserved.

A Front-door Regulator was also introduced in a few-shot object-detection framework

to block spurious generative factors, achieving more robust detection performance

under domain shifts [74]. However, the Front-door Regulator depends on correctly

specified semantic mediators that fully capture the causal generative factors and as-

sumes there are no unmeasured confounders between those factors and the mediators

or between the mediators and detection outcomes. This assumption is hard to verify in

few‐shot vision tasks. Furthermore, the two plug‐and‐play regularization terms intro-

duce additional hyperparameters whose misconfiguration can cause over‐regularization.

Over- regularization leads to degraded detection performance when faced with strong

domain shifts.
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Moreover, a Hidden Confounder Removal (HCR) framework is presented that leverages

front-door adjustment to decompose the total causal effect of user and item features

into two partial effects via an observed mediator [75]. Through this decomposition,

unobserved confounders are corrected for. As a result, recommendation accuracy under

biased observational data is improved. However, the conditions of this framework is

hard to satisfy as front-door adjustment demands a valid mediator that fully transmits

the treatment effect and has no unmeasured confounders on either side.

In other causal inference methods, instrumental variable methods use a third variable

that influences the treatment but has no direct effect on the outcome except through

that treatment. In practice, the treatment is first predicted from the instrument and

covariates.

Next, the outcome is modeled as a function of this predicted treatment. This two‐stage

procedure obtains consistent causal‐effect estimates even when the original treatment

is endogenous due to hidden confounding. A networked instrumental‐variable approach

was applied to sensor data from an industrial wastewater‐treatment plant [76]. Instru-

mental variables were constructed from the process network topology to adjust for

unobserved confounders among correlated sensors. The method was used to estimate

the causal effect of aeration‐rate changes on downstream biochemical‐oxygen‐demand

measurements. Effect estimates were shown to be unbiased. These results facilitated

improved process control and more efficient resource allocation. Nevertheless, external

instruments derived from process network topology may inadvertently affect the out-

come through unaccounted pathways, violating the exclusion restriction and biasing

the estimated effects.

Furthermore, g-computation proceeds by first fitting a model for the outcome as a

function of treatment and measured confounders. Predictions are then generated for

each unit by setting the treatment to each level of interest while keeping confounders

at their observed values. These predicted outcomes are averaged across the sample

to estimate the marginal effect of the treatment. When confounders are continuous
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or multidimensional, the required integration is approximated via Monte Carlo simu-

lation. The G-Transformer framework integrated the g-computation algorithm into a

deep sequential model for counterfactual outcome prediction in sepsis management [77].

The method first learned a sequence-to-sequence model of patient trajectories under

observed treatments, and then simulated hypothetical treatment regimens through this

model to generate counterfactual outcome estimates. This method effectively imple-

ments the g-computation formula. This approach produced more accurate predictions

of organ‐failure progression and mortality under alternative intervention strategies than

standard time‐series models.

Figure 2.6: An example of what images the causal generative model will generate [78].
The model learns causal affordances through observation and intervention, generalizes
them to novel objects, and supports task-level planning.

Causal machine learning is the most frequently used method in recent years. Causal

machine learning uses predictive models to estimate how intervention effects vary across

different settings. In [78], an early method was proposed to introduce causal machine

learning into engineering. Figure. 2.6 shows this causal method using the affordance

“supports stacking other objects on top”. Objects the system classifies correctly are

pink; mistakes are yellow. From left to right: (a) in a new environment, it watches

human demonstrations and notes which object properties correlate with the stacking

affordance; (b) it turns these observations into causal guesses about which properties

actually cause stacking; (c) it runs the most informative small experiments by itself to

test and refine those guesses; (d) it carries this property-based knowledge into a new

environment with unfamiliar objects and predicts their affordances; and (e) using the

learned causal models, it plans purposeful actions with previously unseen objects to

achieve a goal.
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In causal machine learning, causal forests extend random forests by partitioning on

covariates that maximize treatment effect heterogeneity while using sample splitting

to avoid bias [79]. Bayesian additive regression trees fit an ensemble of regularised

regression trees and draw samples from their posterior to quantify uncertainty in indi-

vidual treatment effect estimates [80]. Meta learner approaches, such as the T learner,

S learner and X learner, decompose the problem into separate models for treated and

control groups before combining predictions to improve accuracy and robustness [81].

Cross-fitting and sample splitting techniques are often employed to mitigate overfitting

and achieve valid inference. These methods have been applied in engineering for tasks

like predictive maintenance, where they estimate how different operational policies af-

fect failure risk, and in energy systems to tailor control strategies to individual units

based on their unique response profiles. In recent applications, a Double machine learn-

ing (DML) model was used to identify how adjustments to climate-control setpoints

and external weather conditions propagate through a building’s thermal network to

affect indoor temperature and energy consumption [82]. The approach combined coun-

terfactual simulation with ensemble-based causal effect estimators to estimate hetero-

geneous treatment effects for proposed control strategies. Case studies in commercial

office zones showed that these causal estimates produced more reliable energy-saving

measures than traditional black-box forecasting. However, the DML method relies on

access to debiased building‐operation data to ensure valid causal‐effect estimates, while

obtaining and validating truly debiased observational datasets from real facilities can be

challenging. Moreover, causal forests were used to estimate how variations in supplier

portfolio consistency affect procurement savings [83]. By treating supplier stability as

a treatment and employing a forest of causal trees, individual and aggregate treatment

effects were recovered, revealing that more stable supplier groups experienced markedly

different savings patterns. The analysis found subtle signs of collusion, which guided

targeted anti-corruption actions in the e-procurement platform. However, if there are

unobserved factors that affect both supplier stability and procurement savings, and

they aren’t captured by the measured covariates, the estimated effects can be biased.
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2.2 Image Generation

2.2.1 Image Generation Models

Image generation models are a class of generative algorithms designed to synthesize

realistic images from abstract representations. Early approaches relied on variational

autoencoders (VAEs) to learn compact latent spaces from which images could be de-

coded. Generative adversarial networks (GANs) then advanced the field by training

paired generator and discriminator networks in a minimax game, producing sharper

and more detailed outputs. More recently, diffusion models have achieved state-of-

the-art fidelity by iteratively denoising random noise into coherent images through

learned reverse-process transitions. Transformer-based architectures have further ex-

panded capabilities by modeling image pixels or latent codes autoregressively or via

attention mechanisms, enabling controllable generation and high scalability. Together,

these methods have driven rapid progress in tasks ranging from art creation and data

augmentation to conditional synthesis and interactive editing.

A GAN is composed of two neural networks, a generator and a discriminator [84]. They

are trained simultaneously in opposition. The generator learns to map random input

vectors to synthetic images. The discriminator learns to distinguish those synthetic im-

ages from real samples. Training proceeds as a minimax game. The generator improves

by trying to fool the discriminator. The discriminator improves by spotting ever subtler

artifacts in generated images. Early convolutional variants such as Deep Convolutional

GAN (DCGAN) introduced architectural guidelines to stabilize training, including re-

placing pooling with strided convolutions and using batch normalization. Despite these

advances, GANs remain sensitive to hyperparameter choices and can suffer from mode

collapse, where the generator produces limited image diversity. Subsequent improve-

ments, such as Wasserstein GANs and hinge-loss formulations, address convergence

issues by changing the loss landscape.
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In [85], synthetic data for energy systems was generated using both conditional GAN

(cGAN) and Wasserstein GAN (wGAN) to model critical heat flux phenomena and

power‐grid demand forecast scenarios. It was found that wGAN offered greater ro-

bustness to missing input features and better generalization to unseen experimental

conditions. wGANs improve training stability by using the Earth Mover distance.

However, enforcing the required Lipschitz constraint� originally via weight clipping,

can severely limit model capacity and demands careful hyperparameter tuning. Gradi-

ent‐penalty variants alleviate this limitation. However, they introduce substantial com-

putational overhead at each training step. Furthermore, an infinite high-fidelity cloud

generated method (IHFCGen) was proposed to construct a massive ”cloudy & cloud-

free” pair dataset [86]. This method demonstrated how coupling physical scattering

laws with a GAN framework can generate high‐resolution synthetic thin‐cloud imagery

for Earth‐observation applications. Nevertheless, IHFCGen relies on an assumed scat-

tering law whose accuracy can vary with actual atmospheric properties, and mismatches

between the model and real scattering behavior can lead to visible synthesis artifacts.

Moreover, a deep convolutional conditional GAN was applied to rotating‐machinery

fault diagnosis with severely imbalanced datasets [87]. By augmenting minority fault

samples, the method boosted both training efficiency and generalization performance

in real‐world imbalanced fault scenarios. While the synthetic minority samples may

fail to capture the full diversity of real fault signatures, leading to mode collapse and

biased diagnosis.

A VAE consists of two paired neural networks: an encoder that maps each input into

the parameters of a latent probability distribution, and a decoder that reconstructs the

input by sampling from that distribution [88]. Training optimizes a variational lower

bound on the data likelihood, which combines a reconstruction term measuring how

well the decoder reproduces the inputs and a regularization term that encourages the

latent distribution to match a chosen prior. The reparameterization trick is used to

enable backpropagation through the stochastic sampling step by expressing samples as

deterministic functions of the encoder outputs plus noise. As a result, VAEs learn a
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smooth, continuous latent space that supports interpolation between points and allows

for straightforward generative sampling. Model capacity and generative quality are

influenced by architectural choices such as the dimensionality of the latent space, the

depth and width of the encoder/decoder networks, and the relative weighting of the

reconstruction versus regularization terms.

Recently, a knowledge‐sharing and correlation‐weighting VAE (KSCW-VAE) was de-

veloped for concurrent fault detection in manufacturing processes [89]. This model

embeds process‐quality variables alongside operating data to learn an interpretable

latent space that highlights deviations indicative of faults. However, the dual em-

bedding of process‐quality variables and operating data increases model complexity,

requiring larger training sets to avoid overfitting. Besides, a VAE-parameterized es-

timator, combining a generative model and classical estimation theory, was proposed

to model unknown signal distributions as conditionally Gaussian and parameterize a

linear minimum mean squared error estimator [90]. This approach obtained accurate

conditional first and second moment estimates from noisy observations, improving es-

timation performance over conventional methods. While this framework assumes that

the true data distribution is conditionally Gaussian given the latent variables, which

may be violated in real-world signals and thus limits estimator accuracy.

In addition, the Deep Variational AutoEncoder-Based Support Vector Data Description

with Adversarial Learning (DVAA-SVDD) was applied to power‐battery systems for

anomaly detection [91]. By guiding the SVDD boundary with VAE‐extracted features

and Gaussian reconstruction losses, the method achieved robust detection of rare fault

modes under varying charge–discharge conditions. However, the Gaussian reconstruc-

tion loss may not capture the full complexity of battery signal distributions, causing

subtle anomalies to be missed.
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A diffusion model is a generative framework that learns to produce complex data by

reversing a gradual noising process [92]. The forward process corrupts each example

by adding small amounts of Gaussian noise over many steps until only noise remains.

A neural network is then trained to perform the reverse process, removing noise step

by step to recover the original data. This network is typically based on a U-shaped

architecture with skip connections and includes embeddings that indicate the current

noise level. Training optimises a simplified objective that encourages accurate noise

prediction at each timestep. At generation time, sampling begins from pure noise and

repeatedly applies the learned denoiser to produce a clean sample. Class conditional

outputs can be obtained by guiding the denoising steps with extra signals from a

classifier or by using a classifier-free approach.

In recent engineering works, a data-driven structural generative design method em-

ployed a diffusion model to propose component geometries that satisfy mechanical

loading constraints [93]. By learning to sample from the distribution of valid designs,

the approach sped up the exploration of design alternatives in computer-aided engin-

eering workflows. However, the iterative denoising used for sampling is computationally

intensive, which limits real-time or interactive design exploration. Besides, the inverse

problem of analog integrated‐circuit sizing was tackled using denoising diffusion prob-

abilistic models [94]. Trained to gradually denoise random inputs into valid circuit

parameter sets, the models achieved high-accuracy sizing under scarce training data,

outperforming conventional optimization techniques. However, the denoising diffusion

approach to analog circuit sizing relies on an iterative reverse‐noise process that re-

quires tens to hundreds of network evaluations per sample, making the generation of

each candidate parameter set computationally expensive and slow.



41

Transformer-based image generation architectures replace convolutional layers with

layers of multi-head self-attention and feed-forward networks to model long-range de-

pendencies across an image [95]. They begin by splitting an image into a sequence of

patches or tokens, each augmented with positional embeddings to retain spatial in-

formation. Stacked Transformer blocks then use multi-head attention to allow every

token to attend dynamically to all others, capturing global context that is difficult for

convolutional filters to learn.

Recently, Defect Transformer (DefT), an efficient hybrid Convolutional Neural Net-

work (CNN), was proposed to capture both local patterns and global context for de-

tecting surface defects on steel and composite parts [96]. DefT outperformed pure‐CNN

baselines on multiple industrial datasets while reducing inference time by over 30

%. However, Defect Transformer introduces additional architectural modules that in-

crease model size and memory usage. Deploying this model on resource-constrained

devices can therefore be challenging. Moreover, Diagnosisformer, a lightweight Vis-

ion Transformer–based architecture, was applied to vibration‐signal representations of

rolling bearings operating under harsh noise and load variations [87]. It automatically

fused multi‐scale frequency–domain features and achieved up to 98 % classification

accuracy on public and proprietary bearing datasets. Nevertheless, Diagnosisformer

relies on Fast Fourier Transform (FFT)-based time–frequency preprocessing and a full

Transformer backbone, which incurs high computational and memory costs that can

hinder real‐time or edge‐device deployment.

2.2.2 Interpretability in Image Generation

Interpretability in image-generation models aims to explain the hidden steps by which

architectures like GANs, VAEs, and diffusion models transform learned representations

into coherent visuals. It involves tracing how specific latent dimensions, activations,

or training examples influence textures, shapes, and semantic content [97]. Techniques

such as activation maximization, concept attribution, and latent-space probing enable
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practitioners to diagnose biases and uncover failure modes [98]. Ultimately, under-

standing the “why” behind a model’s creative choices deepens our theoretical grasp of

generative mechanisms and fosters safer, more transparent deployment in real-world

applications [99].

Figure 2.7: An example of what the VAE trained with disentanglement learning could
generate [100].

To learn representations from real-world data, disentanglement learning is one of the

most popular methods [100]. Figure. 2.7 shows the images generated by the VAE trained

with disentanglement learning. Each row corresponds to a fixed object identity and geo-

metry, while variations across columns reflect controlled changes in underlying gener-

ative factors such as color, lighting, background, and viewpoint. Because each factor is

manipulated independently, the figure illustrates how the model disentangles semantic

attributes in its latent space rather than entangling them into a single appearance code.

This figure indicates that the shape of the object and the different colors are learned by

the VAE, which proves that interpretability is achieved by the disentanglement VAE.

Moreover, multimodal inputs are decoupled into a mode-specific appearance code and

a mode-invariant content code [101]. Then the codes are fused into a shared repres-

entation to achieve disentanglement. The superior performance of disentanglement is

demonstrated when processing medical images with different modes by dividing image

features into domain-invariant features (DIFs) and domain-specific features (DSFs)

[102]. An unsupervised learning method is proposed to obtain disentangled represent-



43

ations [103]. The obtained disentangled representations are used to handle the con-

version between cross-modal medical images, such as computed tomography (CT) and

magnetic resonance imaging (MRI). This unsupervised learning method enables effi-

cient adaptation between different medical imaging modes by splitting images into a

shared, domain-independent content space and a domain-specific style space. A disen-

tangling controllable generation method, disentangled controllable dialogue generation

model (DCG), is proposed in [104]. The DCG method learns to attribute concepts from

observable values to unobservable combinations through shared mappings of attribute-

oriented prompts. The DCG method also uses disentangling losses to separate different

attribute combinations.

Among these interpretability strategies, disentanglement learning restructures the lat-

ent space. Each dimension captures one meaningful factor of variation on its own,

making the model more transparent and easier to control. Disentanglement learning

aims to uncover latent representations where each dimension corresponds to a single,

interpretable factor of variation in the data. In most deep generative models, latent

codes mix together attributes like object shape, lighting, and pose, which makes it hard

to manipulate one aspect without affecting others [105]. Disentanglement techniques

resolve this by enforcing statistical independence or by minimizing the total correlation

among latent dimensions [106]. As a result, adjusting one latent coordinate produces a

predictable change in the generated output while leaving all other features untouched,

greatly improving clarity and controllability.

Early approaches, such as the β -Variational Autoencoder (β -VAE), achieved disen-

tanglement by up-weighting the Kullback–Leibler term in the variational objective,

penalizing deviations from a factorized prior. Subsequent methods, such as Factor-

VAE, DIP-VAE and InfoGAN introduced regularizers or adversarial critics to directly

minimize dependencies among codes. In each case, the learned representations afford

interpretability and engineers can visualize and manipulate individual factors. This

capability facilitates efficient “what-if” reasoning, since interventions on a single latent

coordinate correspond to real-world manipulations of the associated attribute.
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β -VAE extends the standard VAE by introducing a hyperparameter β to the training

objective that scales the Kullback–Leibler divergence term [107]. The encoder and de-

coder architectures remain unchanged. By setting β > 1, the latent posterior is pushed

closer to the prior. This forces each dimension of the latent space to capture a distinct

factor of variation. Training still uses the reparameterization trick for backpropagation

through stochastic sampling. As β increases, the model discovers interpretable fea-

tures such as object shape, position, or color without supervision. Overly large values

of β can sacrifice reconstruction fidelity and even collapse the latent code. Balancing

β therefore requires careful tuning to achieve the desired trade-off between disentan-

glement and image quality. However, high values of β degrade reconstruction fidelity,

often producing overly smooth or blurry outputs. Moreover, extensive tuning of the

β hyperparameter is required because the optimal trade-off between disentanglement

and reconstruction quality is dataset-specific.

Later approaches, like FactorVAE, DIP-VAE and InfoGAN, increased the disentan-

glement capability compared with β -VAE. FactorVAE extends β -VAE by explicitly

penalizing the total correlation of the latent code [108]. It introduces an auxiliary

discriminator network that learns to distinguish samples drawn jointly from the en-

coder’s aggregated posterior from samples drawn independently from each marginal.

The discriminator’s classification error provides an estimate of total correlation, which

is added as a penalty to the standard VAE objective alongside reconstruction and KL-

divergence terms. Training alternates between updating the VAE to both minimize

reconstruction loss and fool the discriminator, and updating the discriminator to bet-

ter distinguish joint from marginal samples. This adversarial procedure encourages the

latent dimensions to become statistically independent, resulting in more robust disen-

tanglement and an improved balance between reconstruction fidelity and factorization

compared to β -VAE. However, the adversarial total-correlation penalty requires train-

ing an auxiliary discriminator network, which adds complexity and can introduce the

same instability and convergence issues seen in GAN training.
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Furthermore, DIP-VAE extends the standard VAE by adding a regularization term

that matches moments of the model’s aggregated posterior to those of the factorized

prior [109]. Two variants are defined: DIP-VAE-I penalizes only the off-diagonal entries

of the aggregated posterior’s covariance, while DIP-VAE-II penalizes both off-diagonal

and variance deviations from the prior. The added moment-matching penalty is in-

corporated into the evidence lower bound alongside reconstruction and KL-divergence

terms. Training uses the reparameterization trick to enable gradient backpropagation

through stochastic latent sampling. This approach produces more disentangled and

statistically independent latent factors than β -VAE without requiring adversarial net-

works, all while preserving data likelihood quality. Nevertheless, DIP-VAE only makes

sure that, overall, each latent dimension has the right average value and spread. It

doesn’t force those dimensions to be fully independent, so more subtle links between

them can stay hidden.

Moreover, InfoGAN extends the standard GAN framework by decomposing the latent

input into an incompressible noise vector and a structured code, then maximizing the

mutual information between that code and the generated outputs [110]. An auxiliary

network Q is introduced to approximate the posterior of the structured code given a

generated sample, and a variational lower bound on mutual information is optimized

alongside the usual adversarial loss. Training alternates between updating the generator

and Q to both fool the discriminator and maximize mutual information, and updating

the discriminator to better distinguish real from fake samples. This encourages the

generator to produce outputs whose salient features, such as digit style, pose, or facial

attributes, correspond to interpretable dimensions of the structured code. Because Q

can share most of its weights with the discriminator, the additional computational

overhead is modest. Still, training InfoGAN can be unstable due to its adversarial setup,

which may lead to mode collapse, where the generator produces limited variations of

outputs.



46

Figure 2.8: An example of what images the causal generative model will generate [111].

In the causal generative model, disentanglement learning is adopted as a key mech-

anism for embedding causal semantics into generative architectures. Figure. 2.8 shows

an example that what images the causal generative models produce [111]. In this case,

the dog in the original image is replaced by a cat, a cow and a bird by doing an inter-

vention. By enforcing that latent dimensions correspond to independent causal factors,

such as lighting direction, object geometry, and material reflectance, the causal gen-

erative model can be trained to produce both interpretable codes and robust, inter-

vention‑capable synthesis. This alignment between disentangled representations and

causal mechanisms lays the groundwork for systematic generation of shadow training

data and interventional grasp planning in robotic systems. Causal inference in gen-

erative modeling has emerged as a promising solution to address interpretability and

counterfactual reasoning. SCMs and related DAG-based frameworks enable the explicit

modeling of causal relationships among latent factors [112]. In recent works, VAEs are

combined with masked causal layers that learn a latent adjacency matrix for disen-

tangling exogenous factors, resulting in more interpretable embeddings, though at the

cost of sample quality inherent to standard VAE decoders [113].
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Diffusion-based Models, on the other hand, focus on photorealistic image synthesis by

iteratively reversing a noise corruption process [114, 115]. Although they have achieved

high fidelity, general diffusion architectures lack explicit low-dimensional latents. They

also typically require hundreds to thousands of denoising steps, making them compu-

tationally expensive at inference time and less amenable to direct causal manipulation

[116]. Initial attempts to bridge causal inference and diffusion, such as Diff-SCM [117]

and the Causal Diffusion Autoencoder (CDAE) [118], integrate causal constraints into

the diffusion framework. Moreover, Diff-SCM operates directly in the high-dimensional

diffusion space and uses gradient-based updates for both reasoning and intervention.

However, Diff-SCM does not learn an explicit low-dimensional latent, making direct

manipulation impossible. CDAE uses the Autoencoder (AE) to address the challenge

that diffusion architectures lack explicit low-dimensional latents. AEs, which lack the

Kullback–Leibler (KL) divergence regularization term found in VAEs, can “memorize”

the training set and produce blurry or implausible reconstructions on novel inputs. In

contrast, VAEs trade some reconstruction fidelity for a smoother, more robust latent

embedding [119]. A more recent method, CausalFusion [120], integrates causal infer-

ence into Diffusion Transformers. However, the model only applies causal structure

when generating samples and ignores any causal relationships between its internal rep-

resentations. Furthermore, CCDiff introduces a compositional diffusion framework for

closed-loop traffic scenario generation by embedding causal constraints into each de-

noising step [121]. Nevertheless, CCDiff assumes a fixed causal graph, which limits its

ability to adapt to new or evolving causal structures.
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2.3 Large Language Models

2.3.1 General Large Language Models

LLMs are a type of artificial intelligence model designed to understand and gener-

ate human language [122]. They are trained on vast amounts of text data and can

perform a wide range of tasks, including text summarization, translation, sentiment

analysis, and more. LLMs are characterized by their enormous scale, often containing

tens of billions of parameters, enabling them to learn the complex patterns present

in linguistic data. These models are typically based on deep learning architectures

such as Transformers, allowing them to achieve impressive performance across various

Natural Language Processing (NLP) tasks. LLMs, typically built on the Transformer

architecture, have revolutionized natural language processing by learning to predict the

next token in massive text corpora through self-supervised pretraining. Models such as

GPT, BERT, and the following models encode rich, contextualized representations of

semantics and world knowledge in their latent vectors, enabling tasks from free-form

text completion to code synthesis and dialogue. LLMs can be adapted to a specific do-

main by fine-tuning on task data, guiding them with prompts, or using reinforcement

learning from human feedback. This lets them produce high-quality text and structured

outputs with very little extra supervision.

In engineering, LLMs have been applied to automate the extraction of synthesis proto-

cols, propose novel reaction pathways, and predict material properties, which signific-

antly accelerates the materials discovery cycle. GPT-4 and similar language models can

read scientific literature to pull out detailed reaction pathways. They can suggest step-

by-step plans for how to synthesize new materials. They can also scan and summarize

vast amounts of papers in a fraction of the time it would take a human. Together,

these capabilities have dramatically accelerated materials research and development in

a way that feels like an industrial revolution for the field [123]. Moreover, LP-COMDA

was proposed as a physics-informed LLM agent that chats with users to gather system
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specifications. It then iteratively coordinates with optimization tools to automatic-

ally generate and refine power-converter modulation schemes. This approach reduced

design errors by over 60 % and accelerated expert workflows by a factor of 30 [124].

In the circuit design, LayoutCopilot uses a multi-agent LLM framework to translate

high-level natural‐language layout intents into executable analog-design scripts, greatly

simplifying the user interface for circuit designers [125].

2.3.2 Generation Models Based on Large Language Models

Recent advances have shown how large language models can be used for image syn-

thesis. These approaches couple powerful text representations with state-of-the-art gen-

erative image engines [126]. First, the language model processes a natural-language

prompt and generates a rich, context-sensitive embedding. Next, that embedding is

used to condition a decoder network. The decoder may be a diffusion model or a

transformer-based image generator. Finally, the conditioned network produces high-

fidelity visuals that closely align with the user’s instructions.

Figure 2.9: An overview of DALL·E 2 to generate images based on the human language
[127].



50

Early examples include DALL·E [128] and CogView [129]. Figure. 2.9 shows the ar-

chitecture of the DALL·E 2 to generate images based on the human language [127].

A natural-language prompt (e.g., “a corgi playing a flame-throwing trumpet”) is first

encoded by a text encoder into a semantic embedding. This embedding is aligned with

visual representations produced by an image encoder through a CLIP objective, en-

suring semantic consistency between text and images. These systems use transformer

decoders to map discrete text tokens directly to image tokens. Coherent scenes are

produced from textual descriptions. Rather than directly decoding images from text,

the aligned representation is mapped into a latent space via a learned generative prior,

which models the distribution of visual concepts consistent with the text. A decoder

then samples from this latent space to synthesize high-fidelity images. The figure high-

lights how separating semantic alignment (CLIP) from image synthesis (prior + de-

coder) enables flexible, expressive image generation while maintaining strong corres-

pondence between linguistic concepts and visual content. More recent systems, such as

Imagen and Stable Diffusion, employ a two-stage approach. First, a language model

or text encoder transforms the prompt into a semantic latent vector. Then, a diffusion

model iteratively refines a noise map into a photorealistic image using that vector as

guidance. Classifier-free guidance or cross-attention mechanisms ensure that the gen-

erated pixels reflect both the object content and the stylistic cues specified by the

prompt.

These integrated LLM-to-Diffusion workflows are good at capturing abstract concepts

and fine details, while enabling flexible control through prompt engineering or learned

control nets. Using the understanding of linguistic structure and world knowledge,

these systems can produce images with coherent composition, accurate object relation-

ships, and nuanced styles, significantly advancing the state of text-to-image generation

without relying on external causal frameworks. Text‐to‐image generation pipelines typ-

ically fall into two main categories. Autoregressive models such as DALL·E treat text

and image tokens as a single sequence and use a large transformer to predict image

tokens one by one from a prompt, after which a discrete VAE decoder reconstructs

pixels from those tokens [128]. In diffusion‐based systems like Imagen, a pretrained
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language encoder transforms the text prompt into a rich semantic embedding, which

then conditions a U-Net denoising network to iteratively refine random noise into a

photorealistic image [130]. Both approaches often employ cross‐attention or classi-

fier‐free guidance mechanisms to ensure that generated visuals faithfully reflect both

the content and style specified in the prompt. Continuous innovations in noise sched-

ules, sampling acceleration, and hybrid latent‐code architectures have further improved

fidelity, diversity, and computational efficiency in engineering applications.

LLMs have impressive generative capacity. However, they share many challenges with

deep generative vision models. Latent representations often remain entangled. These

models can produce hallucinated or semantically inconsistent outputs when given out-

of-distribution prompts. Moreover, the implicit “knowledge” in an LLM’s weights is

difficult to inspect or intervene upon directly. This limitation restricts interpretability

and causal reasoning. Integrating causal structure into LLM-driven text generation

holds promise for improving robustness under distributional shift. For example, the

causal LLM could decompose outputs into content, style, and factuality latents linked

by a causal graph to enable counterfactual queries.

In recent research, the generation models based on LLM were used in engineering. In

conceptual architecture, Stable Diffusion was used to generate building massing and

material renderings from textual briefs, demonstrating faster ideation cycles and more

diverse form exploration compared with traditional shape‐grammar workflows [131].

However, Stable Diffusion’s initial 512 × 512 training resolution means that image qual-

ity often degrades noticeably when outputs are requested at higher or non-native sizes.

Furthermore, a conditional latent diffusion model (CLDM) was applied to the struc-

tural design of a UAV reflector support, producing novel support‐structure geometries

that met specified load‐bearing constraints with minimal manual iteration [93]. CLDM

can generate structures that satisfy load‐bearing constraints but may also propose

overly complex shapes that are difficult or costly to manufacture. Vector-Quantized

Computer-Aided Design CAD (VQ‐CAD), a vector‐quantized diffusion model, conver-

ted text‐based parametric design intents directly into editable Computer-Aided Design
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(CAD) geometries, streamlining the transition from concept to CAD model in standard

engineering processing [132]. Although the design processing is simplified by VQ-CAD,

the use of hierarchical vector‐quantized codebooks can introduce quantization errors,

leading to blocky or imprecise geometry that lacks fine‐scale detail.

2.3.3 Generation Models Based on Multimodal Large Lan-

guage Models

Recent advances have begun to leverage Multimodal Large Language Models (MLLMs)

for end-to-end image synthesis by unifying language understanding and pixel generation

within a single transformer framework. A key avenue for enhancing interpretability in

MLLM-based image generators is to incorporate chain-of-thought reasoning directly

into the synthesis pipeline [133]. Given a user prompt, the MLLM first produces an

explicit sequence of intermediate “thoughts” or semantic steps, such as identifying scene

entities, laying out spatial relationships, and selecting lighting and stylistic attributes,

which are then grounded in successive decoding stages of a diffusion or autoregressive

image model. This reasoning trace can be inspected and edited by practitioners to verify

that each sub-task aligns with the intended prompt semantics and to pinpoint the origin

of any anomalies [130]. Cross-attention heatmaps visualized alongside each thought

further reveal how language tokens map to image regions at different stages, making

it possible to diagnose whether errors arise from ambiguous prompt interpretation or

latent embedding misalignments [95]. Chain-of-thought methods explain their steps in

plain language. For image generation, chain-of-thought methods turn a black box into

a readable, step-by-step process that builds trust and lets users control fine details of

multimodal outputs.

Recent works combine image generators with MLLMs. MLLMs bring LLM-style reason-

ing together with the ability to receive, interpret, and generate outputs across multiple

modalities, such as images, audio, and video.
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MLLMs–based image generation models leverage a unified transformer backbone to

jointly process text and visual signals, enabling the model to both understand enough

prompts and synthesize corresponding images in a single end-to-end framework. Dur-

ing inference, an MLLM first encodes the user’s text prompt [134]. It also encodes any

optional visual context, such as a sketch or reference image. These inputs are fused

into a single latent representation that captures semantics, spatial relationships, and

style cues. This latent vector then conditions a generative decoder, often implemented

via a diffusion or autoregressive image network, that iteratively refines pixel-level out-

puts to match the described scene [135]. By training on large-scale paired text–image

corpora and employing cross-modal attention mechanisms, these models can generate

coherent, high-fidelity images that faithfully reflect complex instructions all within a

single transformer architecture without separate language and vision modules [136].

In Visual ChatGPT [137], a powerful LLM orchestrates multiple visual foundation

models such as Stable Diffusion and inpainting modules. This setup allows users to

generate, edit, and iteratively refine images via conversational prompts. Visual Chat-

GPT relies on GPT-4 to orchestrate separate visual foundation models rather than

using a unified multimodal architecture. This prompt-manager approach makes the

pipeline brittle and prevents end-to-end fine-tuning, so failures in individual modules

can break the overall system.

Large Language and Vision Assistant (LLaVA) [138] extends a Vicuna-based LLM

with a vision encoder to jointly perform multimodal comprehension and to condition

a diffusion decoder, enabling both image understanding and generation from natural-

language instructions. However, Multiple-image understanding is not supported, limit-

ing its applicability to single-image tasks [139]. Moreover, training remains prolonged

when fine-tuning on high-resolution images.
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InstructPix2Pix [140] demonstrates how a frozen text–image diffusion backbone can

be steered by an LLM into semantically accurate image edits. Free-form editing de-

scriptions are translated into targeted pixel-space transformations. These MLLM-based

pipelines excel at capturing complex scene semantics like “a misty mountain lake at

sunrise” and detailed style cues such as “oil painting, impasto brushwork,” all while

maintaining a flexible and dialogue-driven interface. However, they still treat genera-

tion as a largely black-box process. Furthermore, the training of the InstructPix2Pix

relies on a large synthetic dataset generated from LAION captions, which is quite noisy

and contains nonsensical or undescriptive instructions.

SmartEdit [141] demonstrates how MLLMs can be guided to perform highly structured,

multi-step image edits from natural-language instructions. Complex revision requests,

such as “replace the vase with a ceramic bowl, then adjust the lighting to simulate late

afternoon sun”, are decomposed into a sequence of sub-operations. An LLM controller

invokes specialized image-editing modules such as segmentation, inpainting, and tone

mapping in a coherent pipeline, achieving robust adherence to long-horizon editing

goals. Nevertheless, SmartEdit depends on accurate bidirectional interactions between

the image and the language model, so any errors in the segmentation or not fully

printed modules can influence and degrade overall edit quality.

In parallel, Image Content Generation with Causal Reasoning integrates explicit causal

graphs of scene factors and material properties into a diffusion-based MLLM frame-

work [142]. Each denoising step is conditioned on intervened causal latents via a do-

operator module. The model generates photorealistic images from prompts such as “a

red car parked under a streetlamp at dusk” and also provides counterfactual variants

with guaranteed consistency to the underlying causal structure. Although the pro-

posed model showed its potential capability in generating counterfactual images of an

event, this model was only evaluated on the dataset ”Tom and Jerry”, its potential
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capability in the real world hasn’t been proven. Together, these advances illustrate

how MLLM-driven image generation and editing can be enriched by both modular in-

struction decomposition and principled causal interventions, paving the way for more

controllable and interpretable multimodal synthesis.

Multimodal LLM–based image generators integrate language understanding and im-

age synthesis within a single architecture to turn natural-language prompts into high-

fidelity visuals. Exposing intermediate reasoning steps and attention maps makes these

pipelines more transparent and helps diagnose where errors occur. Many implement-

ations still stitch together separate specialized modules under LLM control, which

can be brittle and resist end-to-end optimization. More unified models promise deeper

multimodal comprehension and smoother workflows but often trade off scalability and

robustness. Embedding explicit causal structure into the generation process offers a

route to truly controllable, intervention-capable synthesis, although broad real-world

validation remains a challenge.

2.4 Summary

The review of causal reasoning and causal inference highlights both their conceptual

strength and their practical limitations for autonomous systems. Classical causal dis-

covery and inference methods provide principled tools for explaining failures, reasoning

about interventions, and answering counterfactual queries, but they typically rely on

strong assumptions, low-dimensional variables, and offline analysis. In high-dimensional

visual domains, such as robotics and autonomous driving, many causal factors (e.g.,

illumination, occlusion, material properties) are latent, intertwined, and difficult to

measure explicitly, making traditional causal pipelines unsuitable for real-time deploy-

ment. This gap motivates the approach adopted in this thesis: instead of discover-

ing causal structure solely from observational data, causal mechanisms are embedded

directly into generative models, enabling controllable, interpretable, and intervention-

consistent counterfactual image synthesis.
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The literature on image generative models demonstrates remarkable progress in visual

fidelity and diversity through VAEs, GANs, diffusion models, and transformer-based

generators. However, most existing image generation methods remain correlation-driven,

with entangled latent representations that hinder reliable intervention and “what-if”

reasoning. Disentanglement techniques improve interpretability but often sacrifice real-

ism, while diffusion models achieve high fidelity at the cost of computational efficiency

and explicit causal control. These limitations directly relate to the challenges of data

scarcity and robustness under distribution shift identified in this thesis. To address

them, the proposed models combine causal structure with diffusion-based generation,

leveraging structured latent spaces that align with causal factors while retaining the

photorealism and generalization capability required for autonomous perception tasks.

Finally, the review of large language models and multimodal generation systems shows

how language-guided image synthesis enables flexible, high-level control over visual

content. Nevertheless, LLM-based generators often operate as black boxes, with limited

transparency regarding why a particular image is produced or how changes in prompts

map to concrete visual interventions. Moreover, their reliance on implicit correlations

can lead to hallucinations and brittle behavior in rare or safety-critical scenarios. This

motivates the integration of causal representations with LLM-guided generation in

this thesis, where language is used not only to specify desired outputs but also to

structure causal interventions explicitly. By aligning linguistic instructions with causal

variables in generative models, the proposed approach aims to support transparent

data generation, systematic coverage of edge cases, and robust training of autonomous

systems under realistic deployment conditions.



Chapter 3

Preliminaries and Problem Formula-

tion

In this chapter, the relevant methods used in this thesis are introduced. A review

is provided of the key theoretical tools that underpin the algorithmic approach. The

central problem is then formalized by specifying its objective function, constraints and

standing assumptions. Finally, the manner in which this formulation both general-

izes and unifies existing approaches in the literature is discussed. Building on these

foundations, the chapter concludes by formulating the counterfactual image genera-

tion problem addressed in this thesis, clarifying how the reviewed causal, generative,

and multimodal models are integrated to overcome the limitations of existing methods.

3.1 Intervention and Counterfactual in Structural

Causal Models

A Bayesian network is a fundamental tool for constructing Structural Causal Mod-

els (SCMs) [143]. It is a probabilistic graphical model defined over a Directed Acyclic

Graph (DAG), wherein each node denotes a random variable and each directed edge en-

codes a conditional dependence. Although a Bayesian network itself does not prescribe

causal semantics, its directed edges merely encode statistical dependencies rather than

57
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causal relationships. This DAG structure, however, is later combined with causal mean-

ing in SCMs and serves as their foundational graph. Moreover, the factorization of the

joint probability distribution induced by a Bayesian network underlies the inferential

procedures employed in causal analysis.

A DAG consists of a set of nodes connected by directed edges. Along each edge, the

upstream node is called the parent, and the downstream node is the child. Under the

usual Markov assumption for DAGs, each node is conditionally independent of its non-

descendants given its parents [144]. By applying the chain rule of probability together

with these conditional independencies and denoting Xi as the ith random variable, the

joint distribution P over all nodes in the graph factorizes as

P(X1,X2, . . . ,Xn) =
n

∏
i=1

P
(
Xi | Pa(Xi)

)
(3.1)

where Pa(Xi) denotes the set of parents of Xi. This factorization forms the basis of

probabilistic inference in Bayesian networks and is closely related to the structural

decomposition employed in structural causal models.

Each DAG produces a unique joint distribution, but a given distribution may be com-

patible with multiple DAGs. For example, the bi-variate distribution P(X1,X2) could

be generated by either

X1 −→ X2 or X2 −→ X1,

These two graphs imply opposite causal directions. Such observational equivalence

prevents a Bayesian network alone from identifying causal structure.

To introduce a DAG with causal semantics, the do–operator is introduced to represent

an intervention. The notation

do(Xi = constant)
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is used to indicate that all incoming edges into Xi are removed and Xi is set determ-

inistically to the constant. In the context of this thesis, each variable Xi represents a

semantically meaningful factor of variation underlying the image generation process

rather than an individual pixel value. Concretely, these variables correspond to lat-

ent causal factors such as illumination conditions, object attributes, or shadow-related

properties, which are not directly observed but give rise to the visual appearance of

the image.

An intervention do(Xi = constant) models a counterfactual manipulation of a specific

generative factor while holding all other factors fixed according to the causal graph.

This formulation directly reflects the research objective of this thesis, to answer coun-

terfactual questions of the form “how would the image change if a particular causal

factor were altered, while all other factors remained unchanged?” By operating on such

latent variables, the framework enables controlled and interpretable counterfactual im-

age generation rather than unconstrained pixel-level editing.

Under this intervention, the joint distribution [145] is modified to

P
(
X1, . . . ,Xn | do(Xi = constant)

)
= δXi,constant ∏

j 6=i
P
(
X j | Pa(X j)

)
, (3.2)

where δXi,constant denotes the point‐mass enforcing Xi = constant and Pa(X j) are the

original parents of X j. By comparing these interventional distributions across different

settings of the constant, observationally equivalent DAGs can be distinguished and the

true causal structure recovered.

SCM is commonly used in causal learning, and is defined with a triple 〈U,V,E〉 [65].

Here, U represents a set of exogenous variables determined by factors outside the model;

V indicates the system’s internal variables; E represents the unexplained variation in an

endogenous variable not captured by the model’s deterministic part. Model intervention

is to convert an original image to a counterfactual image based on a causal graph.

Normally, causal inference is performed through interventions, typically represented by
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setting a variable to a fixed value regardless of its natural state. This is commonly

expressed using the do-operator, which implies actively setting X to a constant and

observing the resultant changes in other variables [66]. The intervention aims to identify

how changes in one variable (the cause) directly affect another variable (the effect).

This process helps in answering counterfactual questions, such as “What would happen

if we had changed X?”

In structural causal models, the structural equation is treated as a foundational concept.

An unobserved exogenous variable ui (often termed an omitted factor) is associated with

each endogenous variable Xi. The value of Xi is uniquely specified by a function fi(·) of

its parents Pa(Xi) and the corresponding exogenous variable ui [146]:

Xi = fi
(
Pa(Xi), ui

)
(3.3)

Disturbances are introduced into the system by these exogenous variables, shown in

Figure 3.1. The exogenous variables are unobserved and may be stochastic. No assump-

tions are imposed on the mechanism that generates their variation.

Confounder

Cause

Effect

Figure 3.1: Causal relationship with confounders.
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Unlike algebraic equations, structural equations encode the generative mechanisms of

the variables, which assign values strictly from the right‐hand side to the left‐hand side

and cannot be algebraically rearranged. Each exogenous variable captures all stochastic

influences on its corresponding endogenous variable and is endowed with a fixed prob-

ability distribution. These exogenous factors are typically neither observed nor ma-

nipulable, and, within a structural causal model, they are assumed to be mutually

independent.

3.2 Causal Inference in Machine Learning

In recent years, causal inference has been applied extensively to observational studies

in areas such as epidemiology and economics. It has also been integrated into ma-

chine learning frameworks to enhance model robustness and to facilitate invariant rep-

resentation learning across changing environments. Causal inference further enables

counterfactual reasoning within predictive pipelines.

A mask causal layer is proposed to achieve causal disentanglement in [147]. Starting

from the structural equation for the latent variables z:

z = AT z+ ε, (3.4)

where ε ∼N (0, I) is an independent Gaussian exogenous factor and A is the adjacency

matrix of a DAG, where I is the identity matrix and T denotes the transpose of a matrix.

Collect the z -terms on the left:

z − AT z = ε ⇐⇒
(
I−AT)z = ε (3.5)
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This formulation relies on the assumption that the adjacency matrix A corresponds

to a directed acyclic graph. The acyclicity assumption implies that the latent causal

variables admit a recursive ordering, such that no variable is an ancestor of itself

through a directed path. Conceptually, this reflects the causal modeling principle that

each latent factor is generated by its direct causes and an independent exogenous

disturbance, rather than through instantaneous feedback loops.

From a mathematical perspective, acyclicity ensures that the matrix I−AT is invertible.

This property is required to obtain a closed-form solution for the latent variables and

to express them as a function of independent noise sources. Without this assumption,

the system of structural equations may be ill-posed or admit multiple solutions, making

causal interpretation and intervention unclear.

Under the acyclicity assumption on A, the matrix I−AT is invertible, obtaining

z =
(
I−AT)−1 ε (3.6)

Equivalently, the inverse could be expanded as a Neumann series,

(I−AT)−1 =
∞

∑
k=0

(AT)k, (3.7)

so that

z =
∞

∑
k=0

(AT)k ε, (3.8)

which makes explicit how each latent component aggregates noise from its k-step an-

cestors in the causal graph.

The causal layer is to learn causal latent variables z with A, which is obtained from a

causal graph:

z = ATz+ ε = (I−AT)−1ε, ε ∼N (0, I) (3.9)
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This masked causal layer enables the integration of causal inference with generative

models.

An invariant and robust learning method is proposed to exploit invariances across

multiple environments [148]. It assumes that, although the marginal distributions of

inputs and outputs may vary, the underlying causal mechanisms that generate the

target from its direct causes remain stable. By leveraging data from multiple training

environments, this approach seeks to isolate features whose predictive power persists

under arbitrary shifts in covariate distributions.

A prototypical approach is Invariant Risk Minimization (IRM) [149]. In IRM, it seeks

a data representation Φ mapping from X to Z and a classifier w mapping from Z to

Y such that, for every environment e ∈ E , w◦Φ minimizes the empirical risk

Re(w,Φ) = E(x,y)∼Pe
[
ℓ
(
w(Φ(x)), y

)]
, (3.10)

where x ∈X is the image input, Re(w,Φ) denotes the expected loss in environment e,

and ℓ is the point-wise loss. Concretely, the IRM objective is

min
Φ,w

∑
e∈E

Re(w,Φ) subject to w ∈ argmin
w̃

Re(w̃,Φ) ∀e ∈ E , (3.11)

which enforces that the same classifier w is optimal across environments. In practice,

this bi-level problem is relaxed by penalizing the stationarity of w at a fixed w0, ob-

taining the “IRM-v1” variant via a gradient-norm penalty.

Beyond IRM, Distributionally Robust Optimization (DRO) casts robustness as worst-

case risk minimization over an uncertainty set [150]:

min
θ

max
P∈U

E(x,y)∼P
[
ℓ(θ ; x,y)

]
, (3.12)

where θ denotes model parameters and U is a family of distributions capturing po-

tential shifts away from the empirical training distribution.
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In this thesis, DRO is not adopted as a primary optimization objective. Instead, it

is introduced to situate the proposed causal generative framework within the broader

literature on robustness under distributional shift. DRO formalizes robustness through

worst-case risk minimization, whereas the approach developed in this thesis addresses

robustness by explicitly modeling causal mechanisms and performing interventions on

latent causal factors. By reasoning about how images change under controlled interven-

tions, the proposed method aims to achieve robustness to spurious correlations, such

as those induced by illumination or shadow variations, without relying on adversarial

distributional uncertainty sets.

3.3 Variational Autoencoders

VAEs are deep latent–variable models that learn a generative mapping from a simple

prior over a low-dimensional code to the data space, using an approximate inference

network and the evidence lower bound (ELBO) objective [151].

3.3.1 Structure of the Autoencoders

An autoencoder, shown in Figure. 3.2, is an unsupervised neural network architecture

that seeks to learn a compact representation of input data and then reconstruct the

original inputs from this representation via a decoder. An autoencoder consists of two

components: an encoder network, which maps the input to its low-dimensional code,

and a decoder network, which maps the code back to the input space.

A standard autoencoder consists of an encoder that maps the input image x ∈Rdx to a

low-dimensional code c ∈Rdc and a decoder that reconstructs x from c. Hidden widths

h1,h2 ∈N specify the sizes of intermediate layers. The following formulations represent

the networks in the autoencoder [152].
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Figure 3.2: Structure of the conventional Autoencoder

h(1) = ReLU
(
W (1)x+b(1)

)
, W (1) ∈ Rh1×dx , b(1) ∈ Rh1 , h(1) ∈ Rh1 (3.13)

where h is the output of the hidden layer W is the weight of the input image and b is

the bias.

The Rectified Linear Unit (ReLU) is defined pointwise by [153]

ReLU(s) = max
(
0, s

)
, (3.14)

where negative inputs are rectified to zero and positive inputs pass through unchanged.

h(2) = ReLU
(
W (2)h(1)+b(2)

)
, W (2) ∈ Rh2×h1 , b(2) ∈ Rh2 , h(2) ∈ Rh2 (3.15)

c =W (3)h(2)+b(3), W (3) ∈ Rdc×h2 , b(3) ∈ Rdc , c ∈ Rdc (3.16)

d(1) = ReLU
(
W (4)c+b(4)

)
, W (4) ∈ Rh2×dc , b(4) ∈ Rh2 , d(1) ∈ Rh2 (3.17)

d(2) = ReLU
(
W (5)d(1)+b(5)

)
, W (5) ∈ Rh1×h2 , b(5) ∈ Rh1 , d(2) ∈ Rh1 (3.18)

x̂ = sigmoid
(
W (6)d(2)+b(6)

)
, W (6) ∈ Rdx×h1 , b(6) ∈ Rdx , x̂ ∈ Rdx (3.19)

Here, d is the output of the decoder, x̂ is the reconstructed image, sigmoid(·) denotes

the element-wise output activation used to produce the reconstruction x̂.
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3.3.2 Structure of the Variational Autoencoders

In an autoencoder, the latent representation is encoded as a deterministic vector. In

contrast, in a variational autoencoder in Figure. 3.3, the latent variables are treated as

stochastic and described by a conditional probability distribution. The encoder network

is therefore employed to infer this distribution over the latent space given each input.

In the original VAE formulation, a Gaussian distribution was assumed.

DecoderEncoder

Latent Space

Input Output

Figure 3.3: Structure of the conventional Variational Autoencoder

Meanwhile, the intermediate quantity is no longer referred to as a “latent variable” but

is instead termed the “latent space”. The variational autoencoder is composed of three

main components: the encoder network, the stochastic latent layer, and the decoder

network.

The encoder network is tasked with mapping each input example into the parameters

of a latent distribution. In practice, this is implemented as a series of hidden layers,

either fully connected or convolutional, depending on the data modality, with nonlinear

activation functions. At its output, two parallel projection heads produce the mean and

log‐variance vectors that characterize a Gaussian distribution in the latent space.

The stochastic latent layer draws a sample from this Gaussian distribution using the

reparameterization trick. This construction ensures that sampling remains a differen-

tiable operation, allowing gradients to flow through the random draw back into the

encoder parameters.
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The decoder network mirrors the encoder’s structure in reverse. It accepts a latent

sample and passes it through successive hidden layers, again with nonlinear activations,

to reconstruct the original input. The final layer outputs the parameters of the chosen

likelihood.

Architectural enhancements, such as batch normalization, dropout, or residual connec-

tions, may be employed within both the encoder and decoder to stabilize training and

improve generalization. The dimensionality of the latent space is typically set much

lower than that of the input, creating a bottleneck that encourages the model to cap-

ture the most salient factors of variation.

During training, the entire network is optimized end‐to‐end by maximizing the evid-

ence lower bound. This objective balances accurate reconstruction of the input against

adherence of the inferred latent distribution to the prior.

3.3.3 Derivation of the Variational Autoencoders

The VAE specifies a prior, a likelihood, and an approximate posterior [154]:

p(z) = N (0, I) (3.20)

where p(z) is a standard normal prior over the latent variables. The likelihood of the

image given the latent is defined as

pθ (x | z) = fθ (z) (3.21)

where θ are parameters of the decoder network. fθ is the decoder network that outputs

the parameters of the likelihood for x. The approximate posterior is defined as

qϕ (z | x) = N
(
µϕ (x), diag(σ2

ϕ (x))
)

(3.22)
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where ϕ are parameters of the encoder network. µϕ (x) and σϕ (x) are the encoder

network’s outputs for the posterior mean and standard deviation. The marginal log-

likelihood of the image is defined as

log pθ (x) = log
∫

pθ (x | z) p(z)dz (3.23)

where the marginal log-likelihood is intractable due to the integral over the latent space.

By introducing the variational distribution qϕ (z | x) and applying Jensen’s inequality,

the lower bound is obtained as

log pθ (x) ≥
∫

qϕ (z | x) log
pθ (x | z) p(z)

qϕ (z | x)
dz (3.24)

where the inequality follows from Jensen’s inequality after introducing the variational

distribution. Overall, the loss function of the VAE is defined as

LVAE = Eqϕ (z|x)
[
log pθ (x | z)

]
−KL

(
qϕ (z | x)‖ p(z)

)
(3.25)

where the first term is the expected reconstruction log-likelihood and the second term

is the Kullback–Leibler (KL) divergence regularizing the approximate posterior toward

the prior.

3.4 Diffusion Models

The original Diffusion Model, Denoising Diffusion Probabilistic Model (DDPM), was

designed to model the process of transforming structured data into noisy data by

adding Gaussian noise [135]. Diffusion models, shown in Figure. 3.4, operate in two

phases: a forward process incrementally adds Gaussian noise to an image until only

noise remains, and a trainable reverse denoising process employs a neural network to

iteratively remove noise from a pure‐noise input, ultimately reconstructing a realistic

image. In the figure, the black arrow indicates the forward process and the blue arrow

represents the reverse denoising process.
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Figure 3.4: Structure of the conventional diffusion model

In the forward process, noise is added to the input image over a fixed number of discrete

time steps according to a predefined noise schedule. At each step, a small amount

of Gaussian noise is injected, ensuring that the data distribution is corrupted in a

controlled and incremental manner. Early steps preserve most of the image structure,

while later steps progressively destroy fine details, eventually transforming the image

into an approximately isotropic Gaussian noise distribution. This gradual corruption

avoids abrupt information loss and enables the reverse process to be learned effectively.

The reverse process is a trainable denoising procedure that starts from pure noise

and iteratively removes noise step by step. At each denoising step, a neural network

predicts how the current noisy image should be adjusted to recover a slightly less noisy

version, conditioned on the diffusion timestep. By repeating this procedure across all

timesteps, the model gradually reconstructs a clean and realistic image. Unlike the

forward process, which is fixed and non-learnable, the reverse process is learned from

data and captures the underlying data distribution through denoising.
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In Figure. 3.4, the black arrows illustrate the forward noising trajectory from a clean

image to noise, while the blue arrows depict the learned reverse trajectory that maps

noise back to a realistic image. Together, these two processes enable diffusion models

to combine stable training with high-quality image synthesis.

The forward diffusion process is defined as a Markov chain from x0 to xT :

q
(
xt+1 | xt

)
= N

(√
1−βt+1 xt , βt+1I

)
, (3.26)

where each noisy step depends only on the previous state and βt is a fixed noise schedule.

Here t ∈ {0, . . . ,T−1} indicates diffusion step, xt ∈Rdx is the image at time t, and I = Idx

denotes the dx×dx identity.

The sequence {βt}T
t=1 is referred to as the noise schedule and controls the rate at which

information is destroyed during the forward diffusion process. Each βt specifies the

variance of the Gaussian noise injected at diffusion step t, thereby determining how

much of the original image structure is preserved or corrupted at that step. Small

values of βt result in gentle perturbations that retain most semantic content, while

larger values accelerate the loss of fine details and drive the distribution toward pure

noise.

The noise schedule is fixed in advance and is not learned during training. Its design

plays a crucial role in stabilizing training and ensuring that the reverse denoising pro-

cess is well-conditioned. By distributing the total noise injection across many small

steps rather than a single large perturbation, the diffusion process avoids abrupt in-

formation loss and allows the neural network to learn a sequence of simpler denoising

transformations. Common choices include linear or cosine schedules, which balance

training stability with sample quality.

In this thesis, βt serves as a mechanism for defining a smooth interpolation between

structured image data and an isotropic Gaussian noise distribution, providing a prin-

cipled foundation for iterative generative modeling.
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By marginalizing out intermediary steps, the distribution of xt given the initial sample

x0 admits a closed‐form:

q
(
xt | x0

)
= N

(√
ᾱt x0, (1− ᾱt) I

)
, ᾱt =

t

∏
s=1

(1−βs) (3.27)

The quantity αt = 1−βt represents the fraction of signal retained at diffusion step t,

while ᾱt denotes the cumulative signal preservation after t noising steps. Specifically,

ᾱt measures how much of the original image x0 remains in expectation within the noisy

sample xt . As t increases, the product structure of ᾱt causes it to decay monotonically

toward zero, indicating the progressive loss of information about the original image.

Introducing ᾱt enables a closed-form expression for the distribution of xt conditioned

on x0, which greatly simplifies both training and sampling. This formulation allows the

model to directly sample noisy images at arbitrary diffusion steps without explicitly

simulating all intermediate transitions. Conceptually, ᾱt defines a smooth interpolation

between the data distribution at early timesteps and an approximately isotropic Gaus-

sian distribution at later timesteps, providing a principled bridge between structured

images and pure noise.

The reverse process seeks to recover x0 from xT . Although the true backward kernel

q
(
xt−1 | xt ,x0

)
= N

(
µpost(xt ,x0), Σpost(t)

)
(3.28)

is analytically tractable, it cannot be used directly for sampling. µpost(xt ,x0) is the

posterior mean of the exact one-step backward distribution and Σpost(t) is the posterior

covariance of q
(
xt−1 | xt ,x0

)
. Instead, a neural network

pθ
(
xt−1 | xt

)
(3.29)
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is trained to approximate this posterior by minimizing

KL
(
q(xt−1 | xt ,x0)‖ pθ (xt−1 | xt)

)
=

1
2

[
log
|Σθ (t)|
|Σpost(t)|

−d + tr
(
Σθ (t)−1 Σpost(t)

)
+
(
µpost(xt ,x0)−µθ (xt , t)

)T Σθ (t)−1 (µpost(xt ,x0)−µθ (xt , t)
)] (3.30)

where µθ (xt , t) is the model’s predicted mean of the reverse step and Σθ (t) is the model’s

covariance for that reverse step. Furthermore, KL(·‖·) denotes Kullback–Leibler diver-

gence, tr(·) is the trace, | · | is the determinant, d is the data dimensionality in the

Gaussian, and ‖ · ‖2 is the Euclidean norm.

In the usual DDPM parameterization, it sets Σθ (t) = βtI, Σpost(t) = β̃tI, and the con-

stants drop out, leaving [135]

KL
(
q(xt−1 | xt ,x0)‖ pθ (xt−1 | xt)

)
∝

1
2βt

∥∥µpost(xt ,x0)−µθ (xt , t)
∥∥2 ≈ 1

2βt

∥∥ε− εθ (xt , t)
∥∥2

(3.31)

where ε is the Gaussian noise and εθ (xt , t) is neural network’s predicted noise at time

step t.

3.5 Transformer

The Transformer is a neural network architecture that replaces recurrence and convo-

lution with a pure attention mechanism [95]. Each layer uses multi‐head self‐attention

to compute weighted sums of all input positions, enabling direct, parallel model-

ing of long‐range dependencies. This is followed by a position‐wise feed‐forward net-

work, with residual connections and layer normalization around each sub‐layer. Pos-

itional encodings are added to the input embeddings to retain sequence order. In a

sequence‐to‐sequence setting, the decoder further applies masked self‐attention and

cross‐attention over the encoder outputs. Together, these design choices produce a

highly parallelizable model that has become the basis for virtually all state‐of‐the‐art

language and many vision models.
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Figure 3.5: Structure of the conventional Transformer [95]

3.5.1 Structure of the Transformer

Figure 3.5 shows the Transformer architecture. Each input token is embedded into a

dense vector. A fixed or learned positional encoding adds order information. The en-

coder contains several identical layers. In each layer multi-head self-attention lets every

position attend to the rest. A residual connection and layer normalization follow. A

position-wise feed-forward network adds nonlinearity. It uses two linear layers with a

ReLU or Gaussian Error Linear Unit (GELU). Another residual connection and layer

norm wrap this block. For sequence-to-sequence tasks the decoder mirrors the encoder.
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It begins with masked self-attention to maintain autoregressive causality. It then per-

forms cross-attention over the encoder outputs. The same feed-forward block follows

with residual connections and layer norms. The top decoder states are projected to the

vocabulary or target space by a linear layer. A softmax converts logits to probabilit-

ies. This design replaces recurrence and convolution with attention. It produces high

parallelism and strong modeling of long-range dependencies.

Add & 

normalize

Q K

Scale

Mask

Softmax

MatMul

V

Figure 3.6: Attention mechanism in the Transformer [95]

Unlike a convolutional VAE, which relies on stacks of convolutional and deconvolu-

tional layers for its encoder and decoder, the Transformer’s encoder and decoder are

composed exclusively of attention mechanisms and small feed-forward networks. Each

layer applies multi-head self-attention, while the decoder additionally performs cross-

attention over the encoder’s outputs, followed by a position-wise two-layer Multi-Layer

Perceptron (MLP). Every sub-layer is wrapped in a residual connection and layer nor-

malization. Positional encodings are added to the inputs to convey sequence order.
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The attention mechanism is regarded as the most critical component within the Trans-

former. When a scene is processed by the human visual system, an exhaustive scan

of every detail is typically not performed. Rather, focus is directed toward particular

regions based on interest or task requirements. In the example image, shown in Figure

2.9, attention is initially drawn to the animal’s face.

3.5.2 Attention Block in the Transformer

In the Transformer, the attention mechanism computes attention scores by matching

queries (Q) with keys (K) via scaled dot products. These scores are then converted into

weights and applied to the value (V) matrix to produce the final attention vector. The

whole process is represented in Figure. 3.6. Scaled dot‐product attention is applied to

a single sequence by first computing pairwise attention scores between all positions in

that sequence via the dot product of queries and keys, scaled by the square root of

the key dimension. These scores are then normalized and used to weight the corres-

ponding value vectors, producing a weighted sum at each position that serves as the

attention‐enhanced representation for that position. The output is calculated by [95]:

Z = softmax
(QKT
√

dk

)
V, (3.32)

where Q∈Rn×dk is the query matrix, K ∈Rm×dk is the key matrix, V ∈Rm×dv is the value

matrix, and dk is the dimensionality of the queries and keys. Here softmax(·) is applied

row-wise to QKT
√

dk
to produce non-negative attention weights that sum to one in each row.

The product QKT/
√

dk computes pairwise similarities, the softmax normalizes these

into attention weights, and multiplication by V to get the final attention‐weighted

output Z. It quantifies the extent to which a particular piece of information is attended

to by the attention mechanism, thereby reflecting its relative importance within that

mechanism.
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In the past decades, recurrent neural networks (RNNs) have become central to sequence

modeling and transformation [155]. In particular, long short-term memory networks

(LSTMs) and gated recurrent units (GRUs) have achieved state-of-the-art perform-

ance [156, 157]. Their applications include language modeling and machine translation.

Compared with RNNs, the Transformer benefits from self‐attention, which attends to

all positions in a sequence at once, capturing long‐range dependencies and enabling a

more accurate understanding of extended contexts. It also processes tokens in paral-

lel rather than sequentially, getting significantly greater computational efficiency and

scalability.

3.5.3 Mechanism of the Transformer

In the conventional Transformer, the encoder is composed of six identical layers.

Each layer comprises two sublayers: a multi‐head self‐attention mechanism and a po-

sition‐wise feed‐forward network. After each sublayer, a residual connection and layer

normalization, together called Add & Norm in the Figure. 3.5, are applied. This design

allows the encoder to capture dependencies across all positions in the input sequence.

The Transformer’s decoder is also composed of six identical layers. Each layer contains

three sub-layers: a masked self‐attention mechanism, an encoder–decoder attention

mechanism, and a position‐wise feed‐forward network. After each sub-layer, a residual

connection and layer normalization, Add & Norm, are applied. This design ensures

that, during sequence generation, the decoder attends to all previous outputs while

preventing information from future tokens from leaking into its predictions. The es-

sential distinction between the encoder and the decoder lies in the masking applied

to their self‐attention layers. In the encoder, self‐attention is unmasked, allowing each

token to attend to every other token in the input sequence. In the decoder, however,

a causal mask is imposed so that each position can only attend to previous tokens,

thereby enforcing autoregressive generation.
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The Transformer uses three distinct attention mechanisms. In the encoder, multi‐head

self‐attention allows each input token to attend to all others, producing context‐rich

representations. Multi-Head Attention allows the model to jointly attend to information

from different representation subspaces at different positions. Given X ∈Rn×dmodel , three

learned projections produce the query, key, and value matrices [95]:

Q = XW Q, K = XW K, V = XWV , (3.33)

where W Q,W K ∈ Rdmodel×dk and WV ∈ Rdmodel×dv . For each of the H heads, scaled dot-

product attention is computed [95]:

headi = softmax
(QiKT

i√
dk

)
Vi, Qi = XW Q

i , Ki = XW K
i , Vi = XWV

i . (3.34)

where headi is the ith attention operation with its own learned projections W Q
i ,W K

i ,WV
i .

The outputs of all heads are concatenated and linearly projected:

MultiHead(X) = Concat(head1, . . . ,headH)W O, W O ∈ RH dv×dmodel . (3.35)

where Concat(head1, . . . ,headH) denotes concatenation along the feature dimension, get-

ting a matrix in Rn×(H dv). W O is the learned output projection matrix of the multi-head

attention block.

Furthermore, in the decoder’s first sub-layer, multi‐head causal self‐attention applies

a look‐ahead mask so that each position can only attend to previous tokens, enabling

autoregressive generation. Let Xdec = [Xdec
1 , . . . ,Xdec

n ] ∈Rn×dmodel be the input sequence.

Three learned projections produce queries, keys, and values:

Q = XdecW Q, K = XdecW K, V = XdecWV , W Q,W K ∈ Rdmodel×dk , WV ∈ Rdmodel×dv .

(3.36)
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A causal mask M ∈ Rn×n is defined by

Mi j =


0, j ≤ i,

−∞, j > i,
(3.37)

so that each position can attend only to itself and previous positions. For each head

i = 1, . . . ,H, denote

Qi = XdecW Q
i , Ki = XdecW K

i , Vi = XdecWV
i . (3.38)

The scaled, masked attention scores and output are computed as

headi = softmax
(QiKT

i√
dk

+M
)

Vi, (3.39)

where the softmax is applied row-wise. Finally, the heads are concatenated and pro-

jected back to dmodel:

MultiHead(Xdec) = Concat(head1, . . . ,headH)W O, W O ∈ RH dv×dmodel . (3.40)

Let Xdec ∈ Rn×dmodel be the decoder input at this layer and Henc ∈ Rm×dmodel be the

encoder outputs. For each head i = 1, . . . ,H,

Qi = XdecW Q
i , Ki = HencW K

i , Vi = HencWV
i , (3.41)

with W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv . The scores and row-wise at-

tention are

Si =
QiKT

i√
dk
∈ Rn×m, Ri = softmax(Si) ∈ Rn×m. (3.42)

The head output is

headi = RiVi ∈ Rn×dv . (3.43)
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Concatenating heads and projecting produces

MultiHeadCross(Xdec,Henc) = Concat(head1, . . . ,headH)W O, W O ∈ RHdv×dmodel .

(3.44)

In Figure 3.5, positional encoding (PE) is used to inject information about the order of

tokens into the model, since the attention mechanism itself is permutation‐invariant.

In the original Transformer, it was defined as a fixed, deterministic function of position

pos and embedding dimension index i [95]:

PE(pos,2i) = sin
(

pos

10000
2i

dmodel

)
, PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
, (3.45)

where dmodel is the model dimension, pos is the integer token position in the sequence.

Using the PE allows the model to learn to attend by relative as well as absolute

positions, and it generalizes to sequence lengths not seen during training. Alternatively,

the PE can replace these fixed encodings with learned positional embeddings of the

same shape, which are learned jointly with the rest of the parameters.

3.6 Large Language Model

Within the scope of this thesis, the LLM is introduced to address the limitation of

manual or low-level control over generative factors. While causal generative models en-

able interpretable and disentangled manipulation of underlying factors, they typically

require explicit specification of these factors in latent space, which is neither intuitive

nor scalable for complex scenes. By incorporating an LLM, high-level textual descrip-

tions can be translated into structured conditioning signals that align semantic intent

with the underlying generative process.
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This translation is achieved through multimodal fusion mechanisms, most commonly

implemented via cross-attention networks, which allow textual representations to mod-

ulate visual feature generation dynamically. Through this mechanism, language em-

beddings guide the image generation process without directly operating on pixels, en-

abling coherent alignment between textual descriptions and visual content. As a result,

natural-language-driven control becomes compatible with structured generative mod-

els, supporting end-to-end image generation that is both semantically meaningful and

visually consistent.

From a research perspective, this integration enables the investigation of whether nat-

ural language can serve as an effective interface for controlling complex generative

processes under causal constraints. It directly supports the thesis objective of achiev-

ing controllable, interpretable, and trustworthy image generation by allowing users to

specify counterfactual or hypothetical scenarios in natural language, while ensuring

that the resulting images remain consistent with learned structural dependencies.

3.6.1 Mechanism of the LLM

An LLM refers to a machine‐learning model with a very large number of paramet-

ers and a correspondingly complex computational structure. Such models are typically

built as deep neural networks containing tens or even hundreds of billions of paramet-

ers. They are designed to enhance representational capacity and predictive perform-

ance, enabling them to handle more complex tasks and data modalities. LLMs have

been applied broadly across domains, including natural language processing, computer

vision, speech recognition, and recommendation systems. By training on massive data-

sets, these models learn intricate patterns and features, obtaining strong generalization

capabilities and the ability to make accurate predictions on previously unseen inputs.

During pre-training, the model parameters are optimized to minimize the negative

log-likelihood of held-out text, often with variants such as causal masking or span

corruption to encourage fluency and coherence.



81

A large model is fundamentally a deep neural network trained on vast amounts of

data. Its enormous scale in both parameters and training examples gives rise to emer-

gent intelligence, exhibiting behaviors that resemble human‐like cognition [158]. After

pre-training, LLMs can be adapted to downstream tasks via fine-tuning on labeled ex-

amples or prompted directly in a zero- or few-shot fashion [159]. In zero-shot prompting,

natural-language instructions suffice to elicit desired behaviors. In few-shot prompt-

ing, a small number of input–output exemplars are provided within the prompt [160].

As model size and training data grow, performance on diverse language benchmarks,

ranging from question answering to code generation, improves markedly.

Inference in LLMs is performed autoregressively. At each step, the model computes

[161]

P(wt | w<t) = softmax
(
WO Attention(Q,K,V )

)
(3.46)

where wt is the random variable for the token at position t and w<t are the previously

generated tokens. Sampling strategies such as greedy decoding, top-k sampling, or

nucleus (top-p) sampling are used to balance quality and diversity in the output.

The deployment of LLMs raises important considerations in terms of computational

cost, latency, and ethical safeguards. Techniques such as model quantization, distil-

lation, and retrieval-augmented generation have been developed to reduce resource

usage, while alignment methods, such as reinforcement learning from human feedback

(RLHF), are applied to steer outputs toward safe and helpful behavior.

Based on the type of input data, LLMs can be classified into the three main cat-

egories: Language Models, Vision Models, and Multimodal Models. For the Language

Models, Language Models in the NLP domain are almost exclusively implemented as

deep Transformer–based architectures trained on massive text corpora. Two principal

pretraining paradigms are employed. For the decoder-only autoregressive modeling, in

which the network maximizes the likelihood [162]

L

∏
t=1

p(wt | w<t)
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over a sequence of tokens w1, . . . ,wL, and masked denoising modeling, in which the

model reconstructs corrupted or masked tokens by minimizing the negative log-likelihood

of the true tokens given the unmasked context. Model sizes range from the hundreds

of millions of parameters to hundreds of billions or more. After pretraining, the net-

works in the LLM are adapted to downstream tasks either by fine-tuning on labeled

data with task-specific heads or by prompting via natural-language instructions and

exemplars. Language models have demonstrated state-of-the-art performance across

tasks such as text generation, summarization, translation, question answering, code

synthesis, and dialogue, with capabilities that scale and often emerge as model size

and data diversity increase. Language models employ decoder‐only Transformer archi-

tectures. Input tokens are first embedded into a high‐dimensional space and enriched

with positional encodings. These embeddings are then processed by a series of identical

Transformer layers, each comprising masked multi‐head self‐attention followed by a po-

sition‐wise feed‐forward network. Residual connections and layer normalization are ap-

plied around every sub‐layer. Finally, the resulting hidden states are projected into the

vocabulary space via a linear transformation and normalized with softmax to produce

next‐token probabilities.

Vision models are tailored to process two‐dimensional image data and extract hier-

archical visual features. Traditional architectures employ convolutional layers with

local receptive fields and weight sharing, arranged in successive blocks of convolution,

nonlinearity, and pooling to progressively increase abstraction and receptive field. Re-

sidual connections and batch normalization are commonly used to enable very deep

networks. More recently, Vision Transformers (ViT) have been introduced. An image

is first divided into a sequence of fixed‐size patches, each of which is flattened and

linearly projected into a high‐dimensional embedding. Then positional encodings are

added to retain spatial information, and the resulting patch embeddings are processed

by a stack of Transformer encoder layers. Finally, a classification head, typically a

linear layer applied to the embedding of a special “class” token, is used to produce

the model’s output. This attention‐based paradigm enables global context modeling

across the entire image and has been shown to match or exceed convolutional back-
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bones when trained on sufficiently large datasets. Vision models typically follow either a

convolutional or an attention‐based paradigm. Convolutional backbones use successive

layers of small‐kernel convolutions to extract local features, interleaved with nonlin-

ear activations and pooling to increase spatial abstraction. Residual connections and

normalization layers enable the construction of very deep networks.

Multimodal models are designed to process and integrate multiple data modalities

within a single architecture. Typically, separate modulality-specific encoders, such

as a convolutional or Vision‐Transformer encoder for images and a Transformer en-

coder for text, first extract independent embeddings. These embeddings are then fused

through cross‐attention blocks or by interleaving modality‐specific self‐attention with

cross‐attention layers in a joint Transformer backbone. Pretraining objectives com-

monly include contrastive alignment losses to bring paired image–text representations

into a shared space. Generative reconstruction losses are applied to predict one modality

from another. Task-specific heads are then attached to support downstream classific-

ation, retrieval, or generation tasks. Pretraining on large‐scale paired datasets enables

the model to learn rich cross‐modal correspondences, supporting downstream applica-

tions such as image captioning, visual question answering, text‐to‐image synthesis, and

multimodal retrieval.

Beyond these types, LLMs also guide image generation. Recent methods use them

to drive text-to-image pipelines. They first expand a brief instruction into a detailed

prompt, specifying objects, composition, style, lighting, and mood. The enriched prompt

is then fed to a generative image model. During sampling, a vision–language scorer

evaluates each intermediate output against the LLM-produced prompt, guiding the

denoising trajectory toward semantically faithful images. In advanced systems, the gen-

erated image is re-captioned by a vision–language model and the resulting description

is passed back to the LLM for further refinement, forming a closed‐loop that iteratively

enhances coherence between text and visual content.
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In a typical LLM‐driven text‐to‐image workflow, the user’s initial instruction is first

converted by the language model into a structured prompt embedding that captures

not only object descriptions but also spatial relationships, stylistic attributes, and light-

ing cues. This embedding is then concatenated with learned positional encodings and

fed into the image generator’s cross‐modal conditioning layer, where it modulates the

denoising U-Net via cross‐attention at multiple resolutions. During each reverse diffu-

sion step, the model computes a guided update by combining the unconditional noise

prediction with the prompt‐conditioned prediction, weighted by a guidance scale that

balances fidelity against diversity. Optionally, a separate vision–language matcher, such

as Contrastive Language–Image Pre-training (CLIP), scores intermediate samples and

back-propagates a small adjustment to the prompt embedding, sharpening semantic

alignment. Once the final image is produced, it can be captioned by the vision–language

model and the resulting text re‐injected into the LLM for iterative refinement, closing

the loop between description and visual output.

Large language models are trained on very large, mixed datasets. Typical sources in-

clude web pages, digitized books and encyclopedias, code repositories, conversation

logs, and domain-specific collections. Using this mix teaches the model many writing

styles, facts, and ways of reasoning. Web text adds breadth and current usage. Books

and articles provide long, edited prose. Code teaches precise syntax and structured

thinking. Dialogue data teaches turn-taking and practical conversational cues.

3.6.2 Finetuning in the LLM

Furthermore, the pretrained LLM models cannot deal with the details of all tasks well.

For a specific task, finetuning an LLM model has become a popular choice for most

researchers. Fine-tuning an LLM typically begins with a pretrained base model, such

as Llama and GPT, and a task-specific dataset of input–output pairs. In the simplest

supervised setup, the model’s parameters θ are updated to minimize the cross-entropy
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loss [162]

LCE(θ) =−
1
N

N

∑
i=1

Li

∑
t=1

log pθ
(
y(i)t | y

(i)
<t , x(i)

)
(3.47)

using a small learning rate, gradient accumulation, and the Adam with decoupled

weight decay (AdamW) optimizer with weight decay. To improve sample efficiency

and reduce storage, parameter-efficient methods such as Adapters (small bottleneck

layers inserted between Transformer blocks), Low-Rank Adaptation (LoRA) and Prefix-

Tuning are often employed.

To reduce both memory footprint and latency at serving time, quantization tech-

niques convert full-precision weights and activations to lower bit-width representations.

Post‐training quantization (PTQ) maps 32-bit floats to 8-bit integers with minimal ac-

curacy loss by calibrating scale and zero-point parameters on a small calibration set,

while quantization‐aware training (QAT) simulates quantization effects during fine-

tuning to recover performance. Recent advances such as GPTQ or QLoRA extend these

methods to extreme 3 or 4-bit quantization with clever grouping and Hessian‐based

rounding, enabling multi-billion-parameter models to run on a single graphics pro-

cessing unit (GPU).

In these finetuning methods, LoRA is a popular choice for most developers. LoRA has

become a popular standard for efficient LLM fine‐tuning because it combines strong

task performance with minimal extra compute and storage overhead. By freezing the

majority of the pretrained weights and only learning a small low‐rank update ∆W = BA

(with r� d), LoRA typically adds fewer than 1 %–5 % more parameters per layer, dra-

matically reducing GPU memory usage and enabling much larger batches or longer con-

texts during fine‐tuning. The low‐rank adapters can be merged into the original weights

at inference with no extra runtime cost, preserving the model’s original throughput.

Moreover, LoRA is architecture-agnostic. It can be applied to any transformer block,

and has been shown empirically to match or even surpass full fine‐tuning on many

downstream tasks, making it an attractive, plug-and-play solution for both research

and production.
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In detail, LoRA freezes the original pretrained weight matrices W0 ∈ Rd×k and injects

a trainable low‐rank decomposition ∆W = BA, where

A ∈ Rr×k, B ∈ Rd×r, r�min(d,k).

Here, A and B are the down-projection (dimension-reducing) matrix and up-projection

(dimension-expanding) matrix, respectively. In practice, A is typically initialized from

a Gaussian distribution while B is initialized to the zero matrix.

The adapted weight is [163]

W =W0 +αlora
BA
r

(3.48)

with a scalar scaling factor αlora ,which is often set to r, to stabilize training. During

fine-tuning, only the parameters of A and B are updated, while W0 remains fixed, dra-

matically reducing GPU memory and storage requirements. At inference time, the low-

rank update BA can be merged into W0 with no extra compute overhead, preserving the

original architecture’s speed. LoRA is most commonly applied to the query, key, value,

and output projection matrices within each multi-head attention block, as well as the

two weight matrices in the feed-forward network, obtaining efficient, high-performance

adaptation with minimal additional parameters.

3.7 Evaluation Metrics

To comprehensively evaluate the performance of the proposed models, both quantit-

ative and qualitative evaluation metrics are employed. These metrics are designed to

assess reconstruction fidelity, perceptual similarity, and the structure of learned lat-

ent representations. In addition, standard loss functions are used during training to

guide optimization. Together, these criteria provide a multi–level evaluation of model

performance.
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3.7.1 Pixel-Level and Perceptual Metrics

Mean Absolute Error is used to measure pixel-wise reconstruction accuracy between a

generated image x̂ and the corresponding ground-truth image x. It is defined as

MAE(x, x̂) =
1
dx

dx

∑
i=1

∣∣xi− x̂i
∣∣, (3.49)

where dx denotes the dimensionality of the image. MAE is robust to outliers and

provides an interpretable measure of average absolute deviation at the pixel level.

While pixel-wise metrics capture low-level differences, they often fail to reflect percep-

tual similarity as judged by humans. To address this limitation, the Learned Perceptual

Image Patch Similarity (LPIPS) metric is adopted [164]. LPIPS measures the distance

between deep feature representations extracted from a pretrained convolutional net-

work:

LPIPS(x, x̂) = ∑
l

wl
∥∥ϕl(x)−ϕl(x̂)

∥∥2
2, (3.50)

where ϕl(·) denotes the activation at layer l of a fixed feature extractor and wl are

learned layer weights. Lower LPIPS values indicate higher perceptual similarity. This

metric is particularly suitable for evaluating generative models, as it correlates well

with human visual perception.

3.7.2 Visual and Representation-Level Evaluation

To qualitatively assess the structure of learned latent representations, Principal Com-

ponent Analysis (PCA) is used as a visualization tool [165]. Given a set of latent

vectors {zi}N
i=1, PCA projects them onto a low-dimensional subspace spanned by the

leading eigenvectors of the covariance matrix. This enables visual inspection of clus-
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tering behavior, disentanglement properties, and the separation of samples across dif-

ferent conditions or interventions. PCA does not provide a scalar performance score

but serves as an important diagnostic for understanding representation geometry and

causal structure in the latent space.

3.7.3 Training Loss Functions

Mean Squared Error is used as a reconstruction loss during training, penalizing large

deviations more strongly than MAE:

MSE(x, x̂) =
1
dx

dx

∑
i=1

(
xi− x̂i

)2
. (3.51)

MSE provides smooth gradients and is commonly employed in autoencoders and dif-

fusion models for stable optimization.

For models with Bernoulli likelihood assumptions or sigmoid output activations, Binary

Cross-Entropy is adopted:

BCE(x, x̂) =− 1
dx

dx

∑
i=1

[
xi log x̂i +(1− xi) log(1− x̂i)

]
. (3.52)

BCE is particularly suitable when pixel intensities are normalized to [0,1] and inter-

preted probabilistically.

In summary, MAE and LPIPS are used as quantitative evaluation metrics to assess

reconstruction accuracy and perceptual quality, respectively. PCA provides a qualitat-

ive, visual assessment of latent-space structure and disentanglement. During training,

MSE and BCE serve as loss functions that guide optimization under different likeli-

hood assumptions. This combination of metrics ensures a balanced evaluation across

pixel-level accuracy, perceptual fidelity, and representation quality.
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3.8 Problem Formulation

This thesis addresses the problem of trustworthy and controllable counterfactual im-

age generation under limited data availability and visually confounding conditions,

such as illumination changes, shadows, and occlusions. The objective is to generate

counterfactual images that are not only visually realistic, but also causally consistent,

interpretable, and controllable, either through explicit factor manipulation or through

natural-language instructions.

In this context, a counterfactual image is defined as an image that answers a causal

“what-if” question: what would the scene look like if a specific generative factor were

changed, while all other factors remained consistent with the underlying data-generating

process. Achieving this goal requires models that go beyond correlation-based image

synthesis and instead reason about the causal structure of visual scenes.

3.8.1 Limitations of Existing Components

Recent research on generating counterfactual images has shown some drawbacks. Causal

representation learning methods based on VAEs and related latent-variable models

provide an important foundation for counterfactual reasoning. By learning structured

and interpretable latent spaces aligned with structural causal models, these approaches

enable explicit interventions on semantic factors. However, due to the combination of

smooth reconstruction objectives and distributional regularization, such models typic-

ally produce over-smoothed or blurry images, which limits their applicability in realistic

vision scenarios where fine-grained visual details are essential.
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Diffusion models, in contrast, have demonstrated remarkable success in generating

high-fidelity and photorealistic images. Nevertheless, standard diffusion models lack

an explicit low-dimensional latent space that can be directly intervened upon. As a

result, edits performed by diffusion-based models are primarily driven by statistical

correlations learned from data, rather than by causal mechanisms. Even when condi-

tioned on labels or prompts, these models cannot guarantee that an edit corresponds

to a valid causal intervention or that non-target factors remain invariant.

Recent LLM-guided image editing methods enable flexible and intuitive control through

natural-language instructions. While these approaches improve usability and semantic

alignment, they typically operate at a heuristic or symbolic level and do not explicitly

model causal dependencies between scene factors. Consequently, language-guided edits

may introduce unintended changes, violate physical relationships, or suffer from hal-

lucination effects, especially in visually ambiguous environments. This highlights the

need for causal constraints beneath language-driven control.

3.8.2 Unified Problem Statement

To overcome these limitations, this thesis formulates counterfactual image generation as

a problem of causal latent intervention followed by high-fidelity conditional synthesis.

The central challenge is to design a generative framework that simultaneously supports:

• interpretable and structured latent representations that reflect underlying causal

factors,

• principled intervention mechanisms that modify only the intended factors,

• and high-quality image synthesis that preserves visual realism and fine details.

Rather than operating directly in pixel space, interventions are performed in a learned

latent space that captures semantic and causal structure. The modified latent repres-

entation is then translated into a realistic image through a powerful generative model.

This separation between causal reasoning and image synthesis allows the framework to

combine interpretability with perceptual quality.
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3.8.3 Strategy Adopted in This Thesis

Building on the insights from Causal DiffuseVAE and Causal DiffuseLLM, this thesis

adopts a unified strategy that integrates multiple complementary components. Vari-

ational inference is used to learn compact and stable latent representations that support

uncertainty modeling and data efficiency. Masked causal layers are introduced to en-

code structural dependencies among latent factors and to ensure that interventions are

causally valid. Diffusion-based generators are employed to decode intervened latents

into high-fidelity images, addressing the visual limitations of conventional causal gener-

ative models. When natural-language control is required, Transformer- and LLM-based

modules are incorporated to translate user instructions into structured interventions

that respect the learned causal structure.

This integration resolves a fundamental trade-off in existing methods: causal models

provide interpretability but lack realism, while diffusion models provide realism but lack

causal controllability. By combining these components within a single framework, the

proposed approach enables trustworthy counterfactual reasoning together with prac-

tical, high-quality image generation in both data-efficient and text-driven settings.

In summary, the problem addressed in this thesis is the design of a unified causal–

generative framework that reconciles interpretability, controllability, and visual fidelity.

The following chapters instantiate this formulation in concrete model architectures

and validate it empirically across multiple datasets and counterfactual intervention

scenarios.



92

3.9 Chapter Summary

This chapter has established the theoretical and methodological foundations required

for the study of counterfactual image generation. Core concepts from structural causal

models were introduced to formalize interventions and counterfactual reasoning, clari-

fying how causal structure enables principled manipulation of generative factors. Build-

ing on this foundation, causal inference techniques in machine learning were reviewed,

highlighting how invariant and robust learning objectives relate to the challenges posed

by distribution shifts and spurious correlations in visual data.

The chapter then surveyed the key generative and representational models employed

in this thesis, including variational autoencoders, diffusion models, and Transformer-

based architectures. Variational autoencoders were presented as a mechanism for learn-

ing structured latent representations, diffusion models as a powerful framework for

high-fidelity image synthesis, and Transformers and large language models as flexible

interfaces for semantic and multimodal control. Together, these components provide

complementary strengths but also exhibit individual limitations when applied in isol-

ation.

Finally, these ideas were unified into a formal problem formulation for trustworthy and

controllable counterfactual image generation. The formulation emphasizes causal latent

interventions followed by realistic conditional synthesis, addressing the core trade-offs

between interpretability, controllability, and visual fidelity. This chapter thus provides

a coherent conceptual framework that motivates the proposed models and algorithms.



Chapter 4

Trustworthy Counterfactual Gener-

ative Model Based on Causal Infer-

ence

In this chapter, the design and implementation of Causal DiffuseVAE are presented

in detail. First, the joint VAE–diffusion architecture, motivated by the need to disen-

tangle and ground latent factors according to an explicit structural causal model of

scene formation, is introduced, in which images are encoded into causally structured

latents and subsequently denoised via a conditioned diffusion process. Next, interven-

tions in latent space are described, wherein the do-operator is applied to individual

causal variables and the modified latents are decoded back into pixel space to gen-

erate counterfactual images. The training objectives, comprising reconstruction loss,

diffusion-based denoising loss, and causal regularization terms that enforce factor in-

dependence and interventional consistency, are then detailed. Finally, the inference

pipeline, the synthetic and real-world evaluation datasets, and a suite of experiments

and ablation studies are outlined to demonstrate the model’s ability to produce phys-

ically plausible, semantically controlled images under varied lighting and occlusion

scenarios.

93
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4.1 Causal Mechanism

Current causal generative models, like CausalVAE [166] and causal disentangled rep-

resentation learning for missing data (CDRM) [167], cannot generate 3-Dimensional

images with both high accuracy and high quality due to the VAE’s smooth loss func-

tion. The combination of a pixel-wise reconstruction term and the continuous KL di-

vergence encourages averaged, smooth outputs and heavily penalizes sharp transitions.

This loss function results in overly blurry reconstructions. The limitation leads to in-

consistencies between generated images and the underlying engineering principles they

aim to represent. The architecture of the Causal DiffuseVAE is illustrated in Figure.

4.1, which combines causal inference with the VAE and the Diffusion Model. Figure.

4.1 shows how data flow through an encoder, transforming inputs into causal latent

representations. Causal mechanism specifies how one causal variable influences an ef-

fect variable, which is achieved by a causal layer. The causal layer organizes these

latent variables based on an underlying causal graph, where labeled concepts, such as

Concept 1, Concept 2, etc., are assigned numerical values. These values change when

causal interventions are applied. Then the causal layer incorporates a decoder to gener-

ate conditions for the Denoising Diffusion Probabilistic Model (DDPM), which ensures

the generative process of the DDPM respects causal dependencies. Furthermore, model

learning refers to the joint optimization of the encoder, causal layer, and diffusion net-

work under combined VAE and diffusion objectives. The causal mechanism and model

learning are introduced below to show the details of the Causal DiffuseVAE.

Causal Mechanism is to transform unstructured data into a structured latent space

that explicitly captures and leverages the causal relationships among the underlying

factors. In the proposed Causal DiffuseVAE, the causal latent variables z serve as the

structured data, capturing the underlying causal factors that influence the observed

features. A structured encoding process extracts z, which maps labeled concepts to

their respective causal influences. These structured latent variables then guide the con-
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 Labels

Images

Latent Causal Latent

Causal Layer

Decoder

...

Conditions 

For DDPM

Causal Graph Changed Latent Values

Concept 1 Concept 2 … Concept n

Label 1 0.6 3.2 … 1.3

Label 2 1.1 5 … 3.1

… … … … …

Label n 0.7 2.6 … 2.8

Conditional DDPM
Conditions

...

Outputs

Data

Concept 1 Concept 2 … Concept n

Label 1 0.8 3.2 … 1.5

Label 2 1.1 2.3 … 3.4

… … … … …

Label n 0.7 2.6 … 2.8

Intervention

Inputs

Concept 1
Concept 2
Concept n

Encoder

Figure 4.1: Overall architecture of Causal DiffuseVAE. The labels and the images are
the inputs of the model. Through the causal layer, the causal relationship among the
latent can be learned in the training process. Furthermore, the intervention process can
be achieved by changing the values of the labels of the causes to influence the labels of
the effects.

ditional DDPM, ensuring that generated images reflect the true causal dependencies.

This approach enhances interpretability and reliability, allowing for meaningful inter-

ventions and counterfactual generation. In the Causal DiffuseVAE, the causal latent

variables z correspond to the causal features in the real world.

Figure 4.2 illustrates the mechanism of causal inference. During an intervention, when a

specific latent in z is altered, the causal layer modifies the corresponding effect based on

the encoded causal dependencies. The causal layer serves as a transformation matrix

derived from a predefined causal graph. This causal layer encodes the relationships

among z, ensuring that changes in cause factors propagate their effects accordingly.

While the causal graph remains fixed, the causal matrix is designed to be trainable,

allowing the model to adaptively refine its learned causal relationships throughout the

training process.
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The mechanism of causal inference is represented as

zi = gi(Ai ◦ z;ηi)+ εi (4.1)

where zi is the ith element of z, gi is the ith element of the set of mild nonlinear and

invertible functions g, Ai is the ith column vector in the adjacency matrix A, ◦ is the

elementwise product, and ηi is the learnable parameter of g.

By enforcing Ai ◦ z, we ensure that only the true parent nodes influence each zi. This

results in a disentangled, interpretable causal code as the true parent nodes capture the

relationships between causes and effects. Because each zi is built only from its masked

parent nodes, any change to a “cause” latent will automatically propagate through all

downstream nodes. This enforces that interventions on one latent spread through the

network exactly following the causal arrows in the SCM.

The causal layer in (4.1) is designed to mirror a structural causal model in latent

space: each latent factor zi is generated from its (masked) parents and an independent

disturbance.

Throughout this chapter, it is assumed that (i) the underlying causal graph is a directed

acyclic graph (DAG), (ii) the masking operation Ai ◦z restricts each mechanism to use

only its parent variables, and (iii) the functions gi(·) are mild nonlinear and invertible,

so that different causal factors remain distinguishable in latent space.

Under these assumptions, interventions applied to a parent latent are expected to

propagate to downstream latents through the learned mechanisms, which encourages

disentangled and causally consistent counterfactual changes rather than arbitrary cor-

related edits.

Importantly, this provides a modeling justification and an inductive bias, not an abso-

lute guarantee for every dataset.
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Once z has been recomputed under these causal rules, it conditions the VAE decoder

and downstream diffusion sampler. Because the decoder is explicitly trained to treat

each dimension of z as a semantically meaningful factor, changes in a cause latent pro-

duce coherent and localized changes in the output image. In this way, the causal layer

guarantees that tuning a cause dimension leads to the correct effect in the generated

image and reflects the learned causal graph.

Input Image

Pretrained VAE

Initial Latent

Object Size

Intervention

do(object size=1.3)

Light Position

Shadow Area

Input Data

Intervention Latent

Causal Layer

cause

Intervention Latent

New Object Size

New Shadow Area

Pretrained 

Conditional 

DDPM

Counterfactual 

Image

Figure 4.2: The intervention process in the shadow situation. When the latent of the
object size is changed, the shadow area in the causal layer will also change.

Object Size

Light Position

Shadow Area

Causes

Effect

Figure 4.3: The causal relationships in the shadow scenario.

Considering the case that a light source casts a shadow under an object, in Figure. 4.2,

whose causal relationships are shown in Figure. 4.3. Let z = (zlight, zobject_size, zshadow),

where zlight encodes the light position, zobject_size indicates scale of the object, and

zshadow denotes the shadow area. If we increase zlight (simulating a right-side light

position) as the intervention, the causal layer recomputes the shadow area:

zshadow = gshadow
(
Ashadow ◦ z

)
(4.2)
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When the light angle increases, the shadow shrinks as expected. The diffusion decoder

then generates an image showing the shadow shifted and reduced, proving that ad-

justing the causal latent produces the correct effect. These causal latents guide the

diffusion decoder at every denoising step. By fusing this structured embedding with

guidance information, the model follows the learned causal graph.

4.2 Model Learning

Model learning is to capture the complex causal dependencies within the observed data

by refining both the structured latent space and the transformation functions. To model

the evolution of latent variables across different contexts in the diffusion process, the

loss function is defined as

L = LVAE +LDDPM (4.3)

where LDDPM is the loss function of the Diffusion Models.

4.2.1 Learning Strategy with No Confounders

4.2.1.1 Learning Strategy of the VAE

In LVAE, the generative process is defined as

pθ (x,z,ε | u) = pθ (x | z,ε,u)pθ (ε,z | u) (4.4)

where u is the learning guidance. The inference process is defined as

qϕ (z,ε | x,u)≡ q(z | ε)qζ (ε−h(x,u)) (4.5)
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where ζ is the vector of independent noise with probability densities qζ , and h(x,u)

represents the mechanisms of the encoder.

The general ELBO is defined for uncausal latent. For the causal layer, the ELBO in

the Causal DiffuseVAE is redefined to learn the parameters θ and ϕ as

ELBO = EX

{
Eε,z∼qϕ

[
log pθ (x | z,ε,u)

]︸ ︷︷ ︸
Reconstruction Loss

−DKL
[
qϕ (ε,z | x,u)‖ pθ (ε,z | u)

]︸ ︷︷ ︸
KL Divergence Regularization

}
(4.6)

The KL divergence between qϕ and pθ is factorized as

DKL
[
qϕ (ε,z | x,u)‖ pθ (ε,z | u)

]
=

Eqϕ

[
log

qϕ (ε,z | x,u)
pθ (ε,z | u)

] (4.7)

The reconstruction loss is normally computed using Mean Squared Error (MSE) or Bin-

ary Cross-Entropy (BCE). MSE produces high-quality images but smooths out causal

latent structures by focusing on pixel-wise differences. BCE ensures high accuracy but

reduces image quality as it treats pixel values independently. This mechanism makes it

better suited for binary data and potentially introducing artifacts in continuous image

reconstruction. To generate images with both high quality and accuracy, we define the

reconstruction loss Lrecon in the Causal DiffuseVAE as

Lrecon = α ·BCE(x, x̂)+ν ·MSE(x, x̂) (4.8)

where x̂ is the reconstructed image; α and ν are the coefficients of the BCE and MSE,

respectively, whose sum equals one.
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Combined with (4.7) and (4.8), the reconstruction loss in the ELBO is replaced by

using Lrecon so the ELBO is derived as

ELBO = Lrecon − DKL
(
qϕ (z | x)‖ pθ (ε,z | u)

)
= α BCE(x, x̂) + ν MSE(x, x̂) − Eqϕ

[
log

qϕ (ε,z | x,u)
pθ (ε,z | u)

]
(4.9)

Besides, to ensure the identifiability of the adjacency matrix A, the learning guidance

u is used to guide the identifiability. u can be regulated by minimizing the loss function

lu:

lu = EX‖u−σ(ATu)‖2
2 (4.10)

where the notation ‖ · ‖2
2 represents the squared L2-norm of a vector.

Learning with a similar method, z is regulated in the loss function by minimizing the

loss function lz:

lz = Ez∼qϕ

[
n

∑
i=1
‖zi−gi(Ai ◦ z;ηi)‖2

2

]
(4.11)

To follow the training strategy of the lu and lz, Causal DiffuseVAE minimizes the

negating ELBO, which is unlike the standard VAE training objective of maximizing

the ELBO. Overall, we have the new loss function

LVAE =−ELBO+ γ lu +λ lz (4.12)

where γ and λ are the regularization coefficients.
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Therefore, we have
LVAE =−ELBO+ γ lu +λ lz

=−α BCE(x, x̂) − ν MSE(x, x̂)︸ ︷︷ ︸
Reconstruction Loss

+ Eqϕ

[
log

qϕ (ε,z | x,u)
pθ (ε,z | u)

]
︸ ︷︷ ︸

KL Divergence Regularization

+ γ lu +λ lz

(4.13)

4.2.1.2 Learning Strategy of the Diffusion Model

In the Diffusion Model, u needs to be included. Specifically, the loss function will

measure the discrepancy between the forward process and the reverse process. The

forward process generates x1:T conditioned on the additional information y; z; and u,

modeling how data evolve over time. The reverse process attempts to recover x0 from

x1:T to reconstruct the original data. This discrepancy can be factorized as

LDDPM = Ez∼qψ (z|y,x0)

[
Eqϕ (x1:T |y,z,u,x0) log

qϕ (x1:T | y,z,u,x0)

pψ(x0:T | y,z,u)

]
(4.14)

where ψ is the learnable parameter of the Diffusion Model. Therefore, the loss function

in (4.3) is obtained by combining (4.13) and (4.14).

4.2.2 Learning Strategy with Confounders

Confounding factors are variables that influence both the cause and the effect within

a study, leading to potential biases in estimating causal relationships. The structure

of the model with confounders is shown in Figure 4.4. These factors create a spurious

association that can obscure the true causal effect or suggest a relationship where
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Figure 4.4: Architecture of Causal DiffuseVAE with confounders.

none exists. For example, in image generation tasks, confounders such as background

patterns or lighting conditions can simultaneously affect both the input features (cause)

and the target outputs (effect). This dual influence makes it challenging to disentangle

genuine causal relationships.
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A classifier is introduced after obtaining the initial latent representation to address

the presence of confounding factors, particularly if these confounding factors are easily

identifiable. The mechanism of the classifier is represented as

z = W ·x0 + εclassifier, (4.15)

kclassifier = M · z+ηclassifier, (4.16)

where W is the weight matrix, x0 is the input image, εclassifier denotes independent

Gaussian noise in the classifier, kclassifier is the output of the classifier, and M and

ηclassifier are additional parameters. The classifier utilizes a fully connected network and

applies cross-entropy as the loss function, effectively distinguishing between relevant

features and confounding factors within the latent space that encodes abstract data

features. The loss function LCE is defined as

LCE =−
Nsample

∑
i=1

C

∑
c=1

li,c log l̂i,c, (4.17)

where Nsample is the number of samples, C is the number of classes, li,c is the true label,

and l̂i,c is the predicted probability that sample i belongs to class c.

By doing so, the classifier helps isolate the true causal variables, ensuring that the model

focuses on meaningful causal relationships rather than spurious associations introduced

by confounders. This step enhances the robustness and interpretability of the model’s

outputs, ultimately supporting more accurate and trustworthy image generation. The

overall loss function could be represented as

L = LVAE +LDDPM +LCE (4.18)

where the LVAE is same as (4.13), LDDPM is same as (4.14) and LCE is same as (4.17).
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Algorithm 1 Causal DiffuseVAE Inference
Input: (image, label) pairs (x0,u), number of concepts n
Output: Generated counterfactual xDM

0
1: Sample x0 ∼ q(x0)
2: for i = 1 to n do
3: if i = Intervention variable index then
4: z←Desired value
5: else
6: z = gi(Ai ◦ z,ηi)+ εi
7: end if
8: end for
9: x̂0← pθ (x0 | z,ε,u)

10: xDM
T ← xDM

T + x̂0
11: for t = T to 1 do
12: Sample noise εt ∼N (0, I)

13: xDM
t−1 ←

xDM
t −
√

βt ·εt√
1−βt

14: end for
15: Return xDM

0

The Causal DiffuseVAE is a weakly supervised learning method. Although the learning

guidance u is utilized during the training, the provided labels lack full precision, as they

do not specify the exact regions of the labeled features. This uncertainty in the labeling

process contributes to the weakly supervised nature of the model, where the supervision

is incomplete or inexact, making the learning process more challenging. With the pre-

trained Causal DiffuseVAE model, the counterfactual images are generated by changing

the value of one specific causal variable in n concepts. Then, the generating process is

continued, which is elaborated in Algorithm 1 with the following steps. First, sample

x0 ∼ q(x0). For each concept index i, set zi to the desired value if i is the intervention

variable; otherwise, compute (4.1). Next, combine z, ε , and learning guidance u in the

decoder to produce x̂0. Afterwards, add x̂0 to the noisy diffusion state xDM
T , and perform

the reverse process for T steps by sampling εt and updating

xDM
t−1 =

xDM
t −

√
βt εt√

1−βt
(4.19)

The final output xDM
0 is the generated counterfactual image reflecting the applied causal

intervention.
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Table 4.1: Network Design of the Diffusion Model (DM) in the Causal DiffuseVAE for
MNIST and Flow Datasets

Detail MNIST Flow

Base channels 128 128
Channel multipliers [1, 2, 2] [1, 2, 4, 8]
Training set 60k 8k
Test set 10k 2k
Image resolution 28×28×1 96×96×4
β1 0.0001 0.0001
β2 0.02 0.02
Diffusion loss MSE MSE
Optimizer Adam Adam
Epochs 1000 800
Learning rate 10−4 10−4

Furthermore, with the loss functions, the Causal DiffuseVAE could obtain the desired

causal latent. The intervention is deployed during the testing to evaluate the perform-

ance of the Causal DiffuseVAE. The intervention process refers to actively changing or

setting the value of a variable (or variables) to observe how this manipulation affects

other variables in the system. This process is foundational for distinguishing causation

from correlation, as it allows researchers to observe the direct effects of changes in one

variable on others. The intervention process is commonly denoted by do-calculus, where

an intervention is represented as do(X = x). This operation means that the variable X

is set to the value x, irrespective of its natural causes.

4.3 Experiment Setting

The experiments are deployed on a server with an Ubuntu 20.04 operating system

and two NVIDIA RTX A6000 graphics cards. α and ν in (4.8) are set to 0.7 and 0.3,

respectively. At the same time, γ and λ in (4.12) are set to 0.01 and 0.1, respectively.

The parameters used in the MNIST and Flow Datasets are shown in Table 4.1. The

detailed architecture of the models for the CelebA Dataset and Pendulum Dataset can

be found in Table 4.2 and 4.3.
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Table 4.2: Network Design of CausalVAE Encoders and Decoders for Smile, Age, and
Pendulum Datasets

Dataset Encoder Decoder

Smile and Age

3 × 128² → 32 × 64² 512 → 512 × 8²
Conv2d + ReLU ConvT2d + ReLU

32 × 64² → 64 × 32² 512 × 8² → 256 × 16²
Conv2d + ReLU ConvT2d + ReLU

64 × 32² → 128 × 16² 256 × 16² → 128 × 32²
Conv2d + ReLU ConvT2d + ReLU

128 × 16² → 256 × 8² 128 × 32² → 64 × 64²
Conv2d + ReLU ConvT2d + ReLU

256 × 8² → 512 × 4² 64 × 64² → 32 × 128²
Conv2d + ReLU ConvT2d + ReLU

512 × 4² → 512 × 1² 32 × 128² → 3 × 128²
Conv2d + ReLU ConvT2d + Sigmoid

Pendulum
4 × 96² → 900 4 × (512 → 300)
Linear + ELU Linear + ELU

900 → 300 4 × (300 → 300)
Linear + ELU Linear + ELU
300 → 2 × 512 4 × (300 → 1024)
Linear + ELU Linear + ELU

– 4 × (1024 → 4 × 96²)
Linear

Table 4.3: Details of the Diffusion Model

Parameter Smile Age Pendulum

Batch size 16 16 64
Base channels 128 128 128
Channel multipliers [1, 2, 2, 2, 4] [1, 2, 2, 2, 4] [1, 2, 4, 8]
Training set 17k 17k 8k
Test set 3k 3k 2k
Image resolution 128×128×3 128×128×3 96×96×4
Size of causal variables 512 512 512
β1 0.0001 0.0001 0.0001
β2 0.02 0.02 0.02
Learning rate 10−4 10−4 10−4

Optimizer Adam Adam Adam
Diffusion steps 1000 1000 1000
Epoch 500 500 1000
Diffusion loss MSE MSE MSE



107

4.3.1 Experimental Dataset

Eight distinct datasets are selected for evaluation. In [168], a dataset generation method

is proposed for shadow analysis. Two synthetic shadow datasets were created using

this method with Blender, each containing 10,000 images (8,500 for training, 1,000 for

validation, and 500 for testing). Each image includes a light source, an object, and its

shadow. Variations in light source size and object properties systematically influence

shadow formation, making the dataset ideal for causal analysis.

The MNIST dataset [169] comprises 70,000 grayscale images of handwritten digits (0–

9) at 28×28 pixels, divided into 51,000 for training, 9,000 for validation and 10,000 for

test images, serving as a standard benchmark for image recognition and deep learning.

For general dataset evaluation, Causal DiffuseVAE was tested on the Pendulum and

Flow datasets [166], each containing 7,000 images in Red, Green, Blue, and Alpha

(RGBA) format. The Pendulum Dataset (5950 for training, 700 for validation, 350 for

testing) captures causal interactions between pendulum angle, light angle, and shadow

characteristics. The Flow Dataset (5,100 for training, 900 for validation, 1,000 for

testing) simulates fluid dynamics as a ball interacts with liquid in a broken vessel, with

transparency effects aiding visualization.

For real-world validation, the CelebA, a large scalable dataset, is used for facial at-

tribute analysis [170]. CelebA is a large-scale facial attributes dataset widely used in

computer vision and machine learning for face recognition, attribute prediction, and

causal representation learning. The dataset includes a variety of facial attributes, with

annotations for over 200,000 celebrity images, which are in RGB format. Two notable

sub-datasets within CelebA are CelebA(SMILE) and CelebA(BEARD). Each dataset

consists of 20,000 images, with 70% allocated for training, 15% for validation, and

the remaining 15% reserved for testing. Then CelebA(SMILE) focuses on the attrib-

utes of Gender, Smile, Eyes Open, and Mouth Open, allowing for the exploration of

causal relationships and interactions between these facial expressions. On the other
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hand, CelebA(BEARD) centers around Age, Gender, Baldness, and Beard, providing

a framework to study how these attributes influence one another, particularly in the

context of age and gender-related features. Both sub-datasets are essential for un-

derstanding and disentangling the complex relationships between facial attributes in

various applications. For these two datasets, only the facial parts in the images are

focused on, so the images are cropped and resized to be square.

For validation of the industry situation, the Causal Circuit dataset was used [171]. The

CausalCircuit dataset comprises 512 × 512 RGB images of a robot arm interacting with

a causally connected circuit of buttons and lights, capturing four underlying causal

variables. The dataset is divided into an 80% of training set and a 20% of test set, with

no separate validation subset employed.

The datasets are selected to progressively evaluate the proposed model under increasing

levels of causal complexity, visual realism, and practical relevance. Synthetic shadow

datasets provide a fully controlled environment with known ground‐truth causal rela-

tionships between lighting, object properties, and shadows, allowing direct validation

of causal interventions. MNIST serves as a low-dimensional benchmark with inher-

ent confounding between digit identity and visual attributes, enabling assessment of

disentanglement under spurious correlations. The Pendulum and Flow datasets in-

troduce physically grounded, multi-factor causal systems with richer visual structure,

testing scalability to more complex interactions. CelebA further extends evaluation

to real-world images with weak supervision and highly correlated semantic attributes,

reflecting realistic causal representation challenges. Finally, the Causal Circuit data-

set represents an industry-inspired control scenario, validating the model’s ability to

generate trustworthy counterfactuals in environments resembling real-world decision-

making systems. Together, this progression ensures that improvements are not limited

to idealized settings but generalize across diverse causal and visual regimes.
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4.3.2 Experimental Setting

The most popular methods in the causal generative model are employed as baselines

in evaluation, including CausalVAE [166], Causal disentangled representation learn-

ing for missing data (CDRM) [167], Causal Diffusion Autoencoder (CDAE) [118] and

Conditional Diffusion Models (CDM) [172].

CausalVAE extends the variational autoencoder framework by explicitly imposing a

structural causal model over the latent variables. A directed acyclic graph constrains

the dependencies among latent factors, enabling causal interventions to be performed

directly in latent space. While CausalVAE provides interpretable and identifiable lat-

ent representations, its reliance on a pixel-level reconstruction objective limits image

fidelity, often producing blurred outputs in visually complex scenarios.

CDRM (Causal Disentangled Representation Learning for Missing Data) is designed

to learn causal latent representations under incomplete or partially observed data. It

integrates causal graphs with a VAE-based generative model to support counterfac-

tual reasoning and data imputation. Although CDRM achieves robust causal disentan-

glement and stable training, it inherits the visual limitations of VAEs and therefore

struggles to generate high-quality or photorealistic images.

CDAE (Causal Diffusion Autoencoder) combines causal representation learning with

diffusion-based generation. It first encodes images into a causal latent space using

an autoencoder and then applies a diffusion model conditioned on these latents to

generate counterfactual images. CDAE improves visual fidelity compared to VAE-only

methods and supports causal interventions, but it lacks a fully probabilistic encoder

with reparameterization-based inference, which can reduce stability and uncertainty

modeling in the learned representations.
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Conditional Diffusion Models (CDM) represent a class of diffusion-based generators

that condition the denoising process on auxiliary information such as labels or attrib-

utes. These models excel at producing high-resolution and photorealistic images, but

they do not incorporate an explicit causal latent structure. As a result, conditional ed-

its are driven by statistical correlations rather than causal mechanisms, limiting their

suitability for trustworthy counterfactual reasoning.

The evaluation is based on two primary metrics: MAE and LPIPS. The details of the

MAE and LPIPS could be found in Section 3.7.1. In the MNIST dataset, it is found

that the digit itself is the confounder in the causal relationship. It implies that when the

cause is changed, the digit is also changed. To address the confounder, the classifier is

introduced into the Causal DiffuseVAE. Furthermore, no observed confounder is found

in the Flow dataset so there is no classifier in the model.

4.3.3 Experimental Results

In Figure 4.5, the images appear to be a heatmap visualization of a matrix at the 100th

epoch. In Figure 4.5(a), on both axes, the section from -0.50 to 0.50 indicates the cause.

At the same time, the section from 0.50 to 1.50 indicates the effect. The yellow part

illustrates that the cause could influence the effect, which means the factor thickness

could influence the intensity. It is similar to Figure 4.5(b). On both axes, the section

from -0.50 to 0.50 is the factor ball size. The section from 0.50 to 1.50 is the factor

hole. Moreover, the section from 1.50 to 2.50 is the factor of water height. The section

from 2.50 to 3.50 is the factor of water flow. The results in Figure 4.5(a) and Figure

4.5(b) prove the model learns correct causal relationships.
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(a) The causal matrix A of the MNIST Dataset

(b) The causal matrix A of the Flow Dataset

Figure 4.5: Causal matrix A at the 100th epoch
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(a) Original Images from the MNIST Dataset

(b) do(Thickness = 2) from Causal DiffuseVAE

(c) do(Thickness = 4) from Causal DiffuseVAE

(d) do(Thickness = 2) from Conventional CausalVAE

(e) do(Thickness = 4) from Conventional CausalVAE

Figure 4.6: Results on the MNIST Dataset using two different methods

4.3.3.1 Results of the MNIST Dataset

To evaluate the results of the intervention, the experiments are deployed on two data-

sets. For the MNIST, the range of the label thickness is from 1 to 5.8 and the range

of the intensity is from 67 to 255. The results of the intervention are shown in Figure

4.6. The images in Figure 4.6a are the original images from the dataset. The images in

Figure 4.6b and Figure 4.6c are the results produced by the Causal DiffuseVAE when

do(Thickness = 2) and do(Thickness = 4), respectively. To evaluate the performance

of the Causal DiffuseVAE. The images in Figure 4.6d and Figure 4.6e are the results

from the conventional CausalVAE with the same intervention. The ideal intervention

occurs when a decrease in thickness leads to a corresponding decrease in intensity and

an increase in thickness results in a proportional increase in intensity. The results of
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the Causal DiffuseVAE correspond to the ideal intervention. However, for the conven-

tional CausalVAE, the change of intensity is not clear. Moreover, when the thickness

is higher, the images show some errors in the background, which do not appear in the

Causal DiffuseVAE.

4.3.3.2 Shadow Dataset

Original Image 

(light position = 

2, object = 1.2)

do(light position 

= 5)

do(object size 

= 0.5)

Original Image 

(light position = 

7, object = 1.3)

do(light position 

= 2)

do(object size 

= 0.3)
(a) (b)

Figure 4.7: Intervention results of shadow datasets using Causal DiffuseVAE. The object
in (a) is the cube and in (b) is the polyhedron.

Intervention results on the Shadow Dataset are presented in Figure. 4.7, where shadows

cast by a cube and a polyhedron under light positions from 1 to 8 and object sizes from

0.3 to 1.7 are displayed. As the light position and object size are varied, the shadow area

is adjusted accordingly. The shape and the direction of the shadow areas demonstrate

that Causal DiffuseVAE accurately models both shadow formation and object geometry.
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Original Image 

(light position = 

2, object = 1.2)

Causal 

DiffuseVAE

do(object = 0.6)

CausalVAE

do(object = 0.6)

CDRM

do(object = 0.6)

Figure 4.8: Counterfactual images generated by Causal DiffuseVAE, CausalVAE and
CDRM.

The intervention performance of the Causal DiffuseVAE, CausalVAE, and CDRM on

the 3-dimensional dataset is presented in Figure. 4.8. When the object size changes,

CausalVAE fails to generate the counterfactual 3-dimensional image due to the absence

of the light source. CDRM successfully reconstructs all factors but fails to capture

the underlying causal relationships. In contrast, Causal DiffuseVAE outperforms both

methods by achieving high-quality reconstructions while accurately preserving causal

dependencies.

4.3.3.3 Flow

Intervention results on the Flow Dataset are presented in Figure. 4.9, where ball sizes

vary from 5 to 35, hole sizes from 0 to 4, water heights from 33 to 85, and water flow

rates from 6 to 15. As the ball size is tuned, water height is adjusted accordingly, which

in turn influences the water flow. These variations follow physical laws, confirming that

causal relationships have been accurately captured by Causal DiffuseVAE. Although

CausalVAE and CDRM can also learn causal relationships, they fail to reconstruct the

details, like the color and the hole of the vessel.
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Figure 4.9: Intervention results of flow datasets using Causal DiffuseVAE, CausalVAE
and CDRM.

4.3.3.4 Pendulum

In the Pendulum Dataset, for each causal variable, the value of the label is in a fixed

range. For the pendulum angle, the label values are set from -44 to 44, which is the angle

between the pendulum and the vertical line. For the light position, shadow length and

shadow position, the label values are set from 60 to 140, 3 to 10, and 5 to 15, respect-

ively. Figure. 4.10 illustrates the result of the intervention using Causal DiffuseVAE,
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Figure 4.10: Intervention results of pendulum datasets using Causal DiffuseVAE, Caus-
alVAE and CDRM.

CausalVAE and CDRM. Interventions on the pendulum angle and the light position

lead to changes in the shadow length and shadow position. The results are similar to

the results of the flow dataset. The CausalVAE and the CDRM fail to learn the details

of the color and the shadow well.

4.3.3.5 CelebA

Figure. 4.11 shows the generated counterfactual images with the CelebA (Gender and

Age) Dataset. Although the value of the labels is limited between -1 and 1, the “DO”

operation can use the values from -1 to 1. When intervening the gender, from -1 to 1,

the faces in the generated images changed from female to male, which corresponds to
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Original 

Image

do(gender=-1) do(gender=-0.5) do(gender=0) do(gender=0.5) do(gender=1)

do(age=-1) do(age=-0.5) do(age=0) do(age=0.5) do(age=1)

Figure 4.11: Intervention results of CelebA datasets (Gender and Age) using Causal
DiffuseVAE.

the labels. With the change of the gender, the hair and the beard are also changed.

The female’s hair is more than the male’s. The female has no beard while the male

has. When intervening the age, from -1 to 1, the faces changed from an old person to

a young person. The old person’s hair is less than the young’s. The beard on the old

person’s face is clearer than the young person’s.

(a) Real
image

do(gender=-1) do(gender=1)

do(smile=1)do(smile=-1)

do(eyes open=-1) do(eyes open=1)

do(mouth open=-1) do(mouth open=1)

(b) Results of the Causal Diffu-
seVAE on the Smile Dataset

do(gender=-1) do(gender=1)

do(smile=1)do(smile=-1)

do(eyes open=-1) do(eyes open=1)

do(mouth open=-1) do(mouth open=1)

(c) Results of the conventional
CausalVAE on the Smile Data-
set

Figure 4.12: Results on the Smile Dataset
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Table 4.4: MAE Comparison for the Smile Dataset

“DO” operation Causal DiffuseVAE Conventional CausalVAE

do(gender = -1) 0.203 0.670
do(gender = 1) 0.142 0.673
do(smile = -1) 0.068 0.648
do(smile = 1) 0.102 0.618
do(eyes open = -1) 0.075 0.608
do(eyes open = 1) 0.063 0.650
do(mouth open = -1) 0.075 0.607
do(mouth open = 1) 0.060 0.651

Similar to the Age Dataset, the relationships among four causal variables, gender,

smile, eyes open and mouth open are represented in Figure 4.12(b). The labels used in

the Age Dataset are also limited to two values -1 and 1. The value -1 means female,

no smile, eyes open and mouth closed. The value 1 means male, smile, narrow eyes

and mouth open. The comparison between the Causal DiffuseVAE and conventional

CausalVAE is presented in Table 4.4, which proves that the performance of the Causal

DiffuseVAE on the Smile Dataset is also better than the baselines. Figure 4.12 shows the

comparison among the real image, the generated counterfactual images of the Causal

DiffuseVAE and the generated counterfactual images of the conventional CausalVAE.

By comparing the results in Figure 4.12(b) and Figure 4.12(c), the resolution of images

in Figure 4.12(b) is higher than Figure 4.12(c), which corresponds to the results of the

Fréchet Inception Distance (FID) scores. Furthermore, when do(gender) is applied, the

eyes change while the mouth stays the same. When do(smile) is applied, both the eyes

and the mouth change. This result corresponds to the causal graph. Moreover, when

do(mouth open) and do(eyes open) are applied, only the mouth open and eyes open

are changed, rather than the smile and the gender are not changed. This result proves

the unidirectional character as the causal graph should be a DAG.
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4.3.3.6 Causal Circuit

Original

 Image

Intervention

do(robotic 

arm=0.3)

do(blue 

light=0.9)

do(green 

light=0.9)

do(red 

light=0.9)

Figure 4.13: Intervention results of Circuit datasets using Causal DiffuseVAE.

To evaluate the generation capability of the Causal DiffuseVAE in the industry situ-

ation, the Causal DiffuseVAE is trained using the Causal Circuit Dataset. Figure. 4.13

shows the generated counterfactual images. Based on the causal relationships, when

the robotic arm moves to a location, the corresponding light will be on or off. When

the intensity of blue light or green light is changed, the intensity of the red light must

be changed. When the intensity of the red light changed, the other lights would remain

unchanged. As the intensity of the light increases, the light becomes brighter. In the

results, when the robotic arm moves to the green light, the blue light is off, and the

green light is on. When the intensity of blue light is tuned to 0.9, the red light and

the blue light are on. The intervention of the green light is the same as the blue light.

However, when the intensity of the red light is modified to 0.9, only the red light is on.

These results follow the causal relationships among these factors.
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Table 4.5: Comparison on capabilities of the Causal DiffuseVAE and other baseline
methods

Capabilities Causal DiffuseVAE CausalVAE CDRM CDAE conditional DDPM

Explicit low-dimensional causal latent ✓ ✓ ✓ ✓ ×
High-fidelity image synthesis ✓ × × ✓ ✓
Stable training via reparameterization ✓ ✓ ✓ × ×
Trustworthy causal counterfactuals ✓ ✓ ✓ ✓ ×
Diffusion-based architecture ✓ × × ✓ ×

4.3.3.7 Result Analysis

Table 4.5 shows that only Causal DiffuseVAE offers all of the following: an explicit

low-dimensional causal latent; photorealistic outputs; stable end-to-end training via

the reparameterization trick; reliable counterfactual generation even with incomplete

observations; and a diffusion-based pipeline. No other baseline model combines this full

set of capabilities.

By contrast, CausalVAE also provides an interpretable causal latent and benefits from

stable, probabilistic training, but lacks the high-fidelity synthesis afforded by diffusion

decoders. CDRM retains a structured latent space and supports stable training. It is

designed to impute missing entries and generate consistent counterfactuals from incom-

plete data. However, because it relies solely on VAE architecture, it cannot produce

photorealistic images. CDAE recovers both a causal latent and high-quality diffusion

synthesis, supporting reliable counterfactuals. It lacks the VAE’s reparameterization-

based encoder and full Bayesian uncertainty modeling. Finally conditional DDPMs

excel at raw image fidelity. However, they lack an explicit causal latent, cannot handle

missing data in a principled way for counterfactual inference, and do not support stable,

one-shot latent encoding.

At a high level, all of these models optimize composite loss functions that balance pixel-

level fidelity with latent-space regularization. In the meantime, they also incorporate

diffusion or imputation objectives to achieve both high-quality synthesis and principled

causal reasoning.
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Figure 4.14. Ablation results on the shadow dataset.

Table 4.6. LPIPS comparison of ablation results

Experiment settings LPIPS

Causal DiffuseVAE 0.0185±0.0140
Without Diffusion Decoder 0.0483±0.0230

Without Causal Layer 0.0503±0.0240

Without CausalVAE Module 0.1410±0.1070

The results of the ablation experiments are summarized in Figure. 4.14. When the

diffusion decoder is removed, blurring is observed in the images, indicating decreased

quality. When both the VAE and causal layer are removed, color and lighting details

are lost and object sizes are not adjusted correctly. When only the causal layer is

removed, visual details are retained but adjustments of object size are unsuccessful.

These findings confirm that each component of Causal DiffuseVAE is indispensable.
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The quantitative comparison in Table 4.6 shows that the full model achieves the best

perceptual similarity, while each ablated setting leads to a degradation in image quality.

These findings confirm that every component of Causal DiffuseVAE is essential for

achieving high-fidelity and causally consistent generation.

Moreover, Causal DiffuseVAE jointly minimizes the revised ELBO of LVAE, in (21),

and a latent-conditioned diffusion variational bound. An additional acyclicity penalty is

comprised on its causal mask, producing reliable reconstructions and a well-structured

DAG in the latent. CausalVAE and CDRM likewise optimizes a modified ELBO aug-

mented by the same acyclicity constraint on its adjacency matrix, enforcing a valid

causal graph over its latents but cannot generate high-quality images without diffusion-

based models. CDAE adds a supervised alignment loss on labeled semantic factors to its

autoencoder, then conditions a Denoising Diffusion Implicit Model (DDIM)-style de-

noising objective on those factors to enable “DO” intervention counterfactual sampling.

With the autoencoder, the model may generate overfitting results. Finally, conditional

DDPMs are trained by minimizing the weighted diffusion variational bound across all

timesteps, fitting a conditional denoiser for image synthesis but without any explicit

causal or DAG regularization.

The principal component analysis (PCA)-based scatter plot analysis of comparison in

Figure 4.15 presents a comparison of the distributions formed by real samples and

generated counterfactual samples across different models, enabling a direct assessment

of how well each method preserves the underlying data structure after generation. For

CausalVAE, the generated samples cluster tightly around a limited region of the PCA

space, indicating that although the model learns a compact latent representation, it

fails to capture the full variability of the data. This collapse reflects the well-known

smoothing effect of VAE reconstruction loss, which limits its ability to represent fine-

grained causal variations. In the case of CDRM, the generated samples exhibit notice-

able shifts relative to the real data clusters, with partial overlap but clear displacement

along principal components. This suggests that while CDRM captures some causal

dependencies, inaccuracies accumulate when reconstructing complex visual attributes,
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(b)(a)

(c) (d)

Figure 4.15. Scatter plot of generated data and true data after PCA-based processing.
(a) Causal DiffuseVAE. (b) CausalVAE. (c) CDRM. (d) CDAE.

leading to deviations in global data geometry. CDAE shows improved coverage of the

real data manifold due to the diffusion-based decoder. However, the generated samples

are fragmented into multiple sub-clusters, indicating that different causal factors are

not consistently aligned across samples. By contrast, Causal DiffuseVAE produces gen-

erated samples that closely overlap with the real data distribution along the principal

components, preserving both the spread and orientation of the true data manifold.

This indicates that the model not only reconstructs visually realistic samples but also

maintains the structural relationships induced by causal factors. For the target applic-

ation of counterfactual image generation, this alignment is critical, as it implies that

interventions modify samples within the valid data distribution rather than pushing

them into unrealistic or causally inconsistent regions of the space.
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Table 4.7. Comparison of the counterfactual images in evaluation using the MAE
criterion

Dataset Causal DiffuseVAE CausalVAE CDRM CDAE CDM

Cube Shadow 0.0098±0.0050 0.0930±0.0300 0.5400±0.1300 0.2930±0.0150 1.2100±0.4590

Polyhedron Shadow 0.0103±0.0040 0.1450±0.0350 0.6600±0.1320 0.4360±0.0460 2.4500±0.6770

Pendulum 0.0190±0.0100 21.3020±3.4400 17.9590±2.5430 0.2980±0.0100 0.8570±0.3050

Flow 0.0230±0.0100 16.6500±3.3700 14.5900±2.3220 0.3150±0.0100 1.0100±0.4680

CelebA (Gender) 0.0850±0.0140 0.6500±0.2400 0.7800±0.4110 0.1340±0.0369 0.9460±0.3880

Table 4.8. LPIPS comparison of counterfactual image quality

Dataset Causal DiffuseVAE CausalVAE CDRM CDAE CDM

Cube Shadow 0.0185±0.0140 0.1059±0.0980 0.0590±0.0400 0.0482±0.0210 0.2490±0.1500

Polyhedron Shadow 0.0292±0.0160 0.1982±0.1200 0.0680±0.0400 0.0295±0.0200 0.3670±0.1700

As the result shown in Table 4.7, Causal DiffuseVAE consistently outperforms other

methods across all datasets, achieving the lowest error rates. This indicates that in-

corporating diffusion-based causal modeling enhances the model’s ability to capture

structural dependencies and improve reconstruction accuracy. In contrast, CausalVAE

and CDRM exhibit significantly higher errors, particularly in complex datasets, high-

lighting their limitations in handling intricate variations. While CDAE and CDM show

moderate performance, they still lag behind Causal DiffuseVAE, reinforcing the ad-

vantage of diffusion-based approaches in causal representation learning. These results

demonstrate the potential of Causal DiffuseVAE in tasks requiring precise and robust

generative modeling.

The results of the Causal DiffuseVAE and the baseline methods are listed in Table 4.8.

Causal DiffuseVAE achieves the lowest perceptual similarity error in one dataset and

remains highly competitive in the other. This indicates that the method preserves de-

tailed structural information and produces perceptually similar reconstructions. CDAE

also demonstrates impressive performance, particularly in one dataset, indicating its

capability in certain scenarios. In contrast, CausalVAE, CDRM, and CDM exhibit

higher perceptual errors, suggesting greater discrepancies between generated and ori-

ginal images. These findings reinforce the effectiveness of diffusion-based approaches in

improving perceptual quality while maintaining causal consistency in image generation.
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Table 4.9. LPIPS comparison of image quality under different training data ratios

Dataset Causal DiffuseVAE CausalVAE CDRM CDAE CDM

Full dataset 0.0185±0.0108 0.1059±0.0980 0.0590±0.0400 0.0482±0.0217 0.2490±0.1544

50% dataset 0.0193±0.0113 – 0.0800±0.0347 0.0735±0.0483 0.3140±0.1613

30% dataset 0.0235±0.0150 – 0.1200±0.1153 0.0917±0.0657 0.3470±0.1650

Table 4.10. LPIPS scores of Causal DiffuseVAE, CDAE, and CDM at different
sampling steps

Sampling Steps Causal DiffuseVAE CDAE CDM

50 0.2156±0.0580 0.3018±0.0890 0.3566±0.1930
100 0.0440±0.0295 0.1486±0.0470 0.2044±0.1544
1000 0.0185±0.0108 0.0482±0.0217 0.1410±0.1070

To evaluate the efficiency of the Causal DiffuseVAE and the baseline methods, the

models are trained on 50% and 30% of the dataset and use LPIPS to assess the quality

of the generated images. Table 4.9 shows the LPIPS scores under different training-

data ratios. Causal DiffuseVAE achieves the lowest LPIPS, which demonstrates robust

and data-efficient performance. In contrast, CausalVAE fails to learn complete rep-

resentations when trained on only 50% or 30% of the data. Moreover, other baselines

exhibit much larger LPIPS increases as data decreases. These results demonstrate that

Causal DiffuseVAE achieves data efficiency by maintaining low LPIPS scores even when

trained on just 50% or 30% of the data, whereas competing LPIPS of methods degrade

sharply under the same data constraints.

In conventional diffusion models, high-resolution image generation is costly. Full pixel-

space denoising is applied over hundreds or thousands of steps, causing significant

computational and memory demands. By contrast, diffusion is performed within a

compact latent space in Causal DiffuseVAE, reducing per-step complexity and memory

footprint. As shown in Table 4.10, equivalent LPIPS scores are achieved in 50 steps for

CDM instead of 1,000, and in 100 steps for CDAE instead of 1,000, corresponding to

20× and 10× fewer iterations. These findings demonstrate that high-resolution images

can be generated with fewer iterations and higher data efficiency.
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Table 4.11. Training and inference time of different models on the Shadow Dataset

Model Training Time (h) Inference Time (s/per image)

Causal DiffuseVAE 17.3 0.68
CausalVAE 2.0 0.66
CDRM 2.5 0.75
CDAE 55.2 1.8
CDM 17.4 6.6

Table 4.11 presents training and inference time measured on two RTX A6000 GPUs.

Training and inference are performed quickly for CausalVAE and CDRM, but high-

resolution images are not generated. Among models capable of high-resolution gener-

ation, training time is shorter for Causal DiffuseVAE and CDM than for CDAE, but

inference time is longer for CDM and causal control cannot be performed. Inference

time for diffusion-based models is defined as the time required to generate images that

achieve the same LPIPS score. Under these matched-quality conditions, the inference

of using Causal DiffuseVAE is faster, demonstrating higher data efficiency in realizing

equivalent image quality.

Original 

Image
do(object =0.2) do(object =2.2)

Figure 4.16. Expanding intervention results of shadow using Causal DiffuseVAE.

Furthermore, the object size in the training data for the shadow dataset is limited from

0.3 to 1.7. To evaluate more on the efficiency of the Causal DiffuseVAE, the images are

generated using the data out of the range, which is shown in Figure. 4.16. When the

object fully hides the light source, Causal DiffuseVAE still predicts the correct shadow,

demonstrating its generation capability outside the training range.
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Across datasets, Causal DiffuseVAE achieves the lowest MAE and highest LPIPS,

outperforming CDAE, CausalVAE, CDRM, and CDM by precisely controlling causal

factors while preserving visual detail. These findings underscore the promise of diffusion-

based causal modeling for realistic and interpretable image generation. Hence, the gen-

erated counterfactual images can provide more reliable scenes for vision systems. The

various scenes improve scene understanding in dynamic environments, such as avoiding

the disruptions of the shadow.

Table 4.12. MAE Comparison on MNIST and Flow Datasets

Dataset Intervention Causal DiffuseVAE Conventional CausalVAE

MNIST do(thickness = 2) 0.060 1.010
do(thickness = 4) 0.081 0.845

Flow

do(ball size = 15) 0.023 16.655
do(water height = 65) 0.021 19.104

do(hole = 3) 0.091 8.790
do(water flow = 11) 0.011 9.724

To evaluate the accuracy of the model’s control over latent factors, the MAE is used.

TABLE 4.12 illustrates the comparison of the MAE between the Causal DiffuseVAE

and Conventional CausalVAE. The blue part is the MAE of the Causal DiffuseVAE

while the orange part is the MAE of the Conventional CausalVAE. As indicated in

TABLE I, the MAE of the Causal DiffuseVAE is much lower than that of the Conven-

tional CausalVAE, ascertaining the competence of the Causal DiffuseVAE against the

Conventional CausalVAE for photo-realistic image generation.

Moreover, the models, like the Conventional Conditional DMs, are not able to change

the effects by changing the causes. Only the performance of these models on the factor

thickness is evaluated by MAE in Figure 4.17. while the Causal DiffuseVAE shows a

preferable performance in controlling the latent factors.
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Figure 4.17. MAE on the Factor Thickness

4.4 Conclusion

In this chapter, Causal DiffuseVAE, a novel generative method, is proposed that integ-

rate causal reasoning into the VAE and Diffusion Model framework. Its effectiveness

has been demonstrated through quantitative evaluations on the Cube Shadow and

Polyhedron Shadow datasets. Experimental results indicate that Causal DiffuseVAE

consistently outperforms conventional methods in both reconstruction accuracy and

perceptual similarity. The method effectively preserves structural details while ensur-

ing causal consistency. Moreover, the causal-layer formulation in Section 4.1 provides

a theoretical rationale for why interventions can be implemented in a structured latent

space: under the DAG assumption and masked parent-dependence in (4.1), each lat-

ent factor is generated from its direct causes plus an independent disturbance, which

encourages downstream effects to change consistently when a parent variable is in-

tervened upon. This should be understood as an inductive bias rather than a strict

guarantee; therefore, the experimental results and ablation studies in Section 4.3 are

used to verify that the learned latent structure yields stable and semantically mean-

ingful counterfactuals in practice. The capability of the Causal DiffuseVAE to generate
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high-quality, causally controlled images shows its superiority in disentangling causal

factors and reducing errors compared to CausalVAE, CDRM, CDAE, and CDM. The

proven capability in generalization across different datasets suggests its potential for

applications in shadow-aware vision systems and autonomous navigation, where ac-

curate reconstruction and causal reasoning are essential. Future work could explore its

deployment in real-world vision systems, enabling shadow removal while preserving ob-

ject integrity, ultimately improving the robustness of perception-based decision-making

in complex environments.



Chapter 5

Causal Diffusion Model Based on the

Large Language Model

Chapter 4 showed that integrating a structural causal model with a diffusion-based

generator enables precise and causally consistent latent interventions, but these inter-

ventions still require manually selecting and tuning causal variables. This limitation

motivated Chapter 5, which investigates how a large language model can translate

natural-language instructions into structured do-operations over causal factors while

preserving the high-fidelity diffusion-based generation validated previously.

In this chapter, an end-to-end Causal Diffusion framework guided by a large language

model is presented. The input image is first tokenized by a vision Transformer. Causal

representations are then extracted from the LLM’s output. These representations are

integrated with the image tokens via a Query Transformer (Q-Former) cross-attention

module. The fused features are processed by a masked causal layer that enforces the

learned structural equations and enables explicit interventions, and an intermediate

image is reconstructed by a lightweight decoder. Finally, this intermediate reconstruc-

tion is refined into a high-quality output by a conditional diffusion model trained with

combined likelihood, causal regularization, and diffusion objectives. The architecture,

training strategy, and evaluation are detailed throughout.

130
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5.1 Model Architecture

In this section, the architecture of the Causal DiffuseLLM is introduced. The archi-

tecture is divided into two parts, which are Causal Transfomer with LLM and Con-

ditional DDPM. The overall architecture is divided into the following components:

Vision–Language Transformer, LLM Integration, Query Transformer, Cross-Attention

Fusion, Convolutional Latent Projection & Causal Masking, and Diffusion Model.
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Figure 5.1. Overview of the Causal DiffuseLLM architecture.

Figure 5.1 illustrates the end-to-end Causal DiffuseLLM pipeline. An input image is

patch-tokenized and, together with a text prompt, is fed to a frozen LLaVA back-

bone (lightly adapted via LoRA) to produce multimodal hidden states. A Q-Former

distills prompt-aware query tokens, which are fused with visual tokens through a cross-

attention module. The fused representation is projected into causal latents and passed
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through a masked causal layer that enforces a learned structural graph and enables

interventions. A lightweight decoder maps these latents to an intermediate reconstruc-

tion, which subsequently conditions a trainable diffusion model that iteratively denoises

from noise to generate the final high-fidelity image.

5.1.1 Transformer with the Large Language Model

An input image x and its associated binary-attribute prompt sequence c = (s1, . . . ,sT )

are first embedded by separate encoders. A convolutional encoder plus linear projection

is used to obtain

Ev : x 7→ vµ(x), (5.1)

and a token embedding layer produces

Et : (s1, . . . ,sT ) 7→
(
e(s1), . . . ,e(sT )

)
. (5.2)

where e is the token embeddings.

The joint image–text representations are obtained by a sequence of transformer mod-

ules. First, the visual feature vµ(x) and token embeddings {e(si)}T
i=1 are merged by a

frozen multimodal transformer:

H = M
(
vµ(x), e(s1), . . . ,e(sT )

)
, (5.3)

where M denotes the multi‐layer transformer that processes both modalities in par-

allel. In Causal DiffuseLLM, the Vision–Language Transformer is instantiated from

the Large Language and Vision Assistant (Llava) [173]. The image x is first prepro-

cessed by the processor of the Llava, which divides x into a sequence of overlapping

patches and projects them into patch embeddings of dimension dv. Simultaneously,

the binary‐attribute prompt c = (s1, . . . ,sT ) is tokenized by the tokenizer in the Llava

and mapped to embeddings of dimension dℓ. These two streams are concatenated (with

learned positional encodings) and passed into multimodal encoder–decoder, which con-



133

sists of 12 Vision Transformer layers in its vision tower and 24 causal Transformer

decoder layers in its language branch, each with 16 attention heads. Cross‐attention

is performed in every decoder layer, allowing the language branch to attend to visual

tokens and the vision tower to incorporate textual context. The fused hidden states

are produced as

H = M
(
[vµ(x) ; e(s1), . . . ,e(sT ) ]

)
∈ RB×N×d, (5.4)

where N is the total sequence length, d is the embedding dimension, same as dℓ and dv

and B is the batch size used in the training and testing process. These representations

H encode aligned semantic and visual information and are forwarded to the subsequent

Query Transformer.

5.1.2 Large Language Model Integration and Fine‐tuning

The textual reasoning component is based on the Llava model. After loading the pre-

trained weights, a LoRA configuration is applied, only the query, key and value pro-

jection matrices in each self‐attention and cross‐attention block are augmented with

trainable adapters of rank r = 8, the scaling factor is defined as 32, and dropout is set

as 0.05. All other parameters of the Llava model remain frozen, and gradient check-

pointing is enabled to minimize memory consumption.

Let the IMG tokens occupy positions t1 = T + 1, . . . , tr = T + r in the decoder output.

Their hidden states are collected as

h =
(
H̃b, ti, :

)
b=1,...,B
i=1,...,r

∈ RB×r×d (5.5)

where H̃ ∈RB×(T+r)×d are the hidden states in the decoder, ti = T + i indicates the i-th

appended IMG token, B is the batch size used in the training and testing process, T

is the number of text tokens in the prompt, r is the number of appended IMG tokens,

and d is the shared embedding dimension.
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The full output token sequence produced by the chat template is denoted y1:L, and a

mask mt ∈ {0,1} is defined with mt = 1 when t ∈ {t1, . . . , tr}. With the base parameters θ

frozen and the LoRA parameters Elora trainable, the following objective is minimized:

LLLM(Elora) = E(x,c)∼D

[
− 1

∑L
t=1 mt

L

∑
t=1

mt log pθ ,Elora

(
yt | y<t , x, c

)]
, (5.6)

where ti = T + i denote the IMG positions, ∑L
t=1 mt = r by construction, x is the input

image, c = (s1, . . . ,sT ) is the tokenized prompt, D is the dataset of (x,c) pairs, y<t

denotes the tokens strictly preceding position t, pθ ,E is the conditional token distribu-

tion with frozen base weights θ and trainable LoRA parameters E, and L = T + r plus

additional special tokens.

An equivalent form, obtained by summing only over the IMG positions, is given by

LLLM(Elora) = E(x,c)∼D

[
−1

r

r

∑
i=1

log pθ ,Elora

(
[IMG]i | y<ti , x, c

)]
, (5.7)

where [IMG]i denotes the i-th appended IMG token at position ti = T + i, and all re-

maining symbols are as defined above.

5.1.3 Query Transformer

The Query Transformer Q is introduced to distill and compress the multimodal hidden

states H into a compact, fixed–size embedding suitable for downstream fusion. It is

configured as a 6‐layer Transformer decoder with dimension d, 16 self‐attention heads,

and an intermediate feed‐forward dimension of 4d. A set of nq = 32 learnable query

tokens Q ∈ R1×nq×d is prepended to each batch and expanded to RB×nq×d.

During the forward pass, a small set of learnable query tokens Q read from the entire

hidden-state sequence H using cross-attention. At the same time, the queries attend

to self-attention to share information. Each attention or MLP block is wrapped with

layer normalization and a residual connection. The module outputs a compact set of
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features:

f = Q(Q, H), (5.8)

where H ∈RB×N×d is the input sequence of hidden states, Q∈RB×nq×d are the expanded

query tokens, and f ∈ RB×nq×d are the distilled vision–language features. Gradient

checkpointing is used inside Q to reduce memory, and no extra parameters are added

to the frozen backbone beyond Q and the nq queries.

5.1.4 Cross‐Attention Fusion

The Cross-Attention Fusion module C combines the distilled vision–language queries f

with the pure visual features v. The visual features are obtained by passing the image

through the frozen vision tower:

v = V (x) ∈ RB×Nv×d, (5.9)

where V (·) is the network of the vision tower, B is the batch size, Nv is the number of

visual tokens, and d is the shared embedding dimension.

Inside C , cross-attention is applied once, using f as queries and v as values:

f ′ = softmax
(
( fW Q)(vW K)>√

dk

)
(vWV ), (5.10)

followed by a projection and a residual add:

f̃ = f + f ′W O. (5.11)

Layer normalization is applied around the attention and MLP blocks for stability. The

fused embedding f̃ ∈RB×nq×d is then sent to the convolutional latent projection stage.
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where f ∈ RB×nq×d are the query tokens, dk is the key/query head dimension, and

W Q∈Rd×dk , W K∈Rd×dk , WV ∈Rd×d, W O∈Rd×d are learned projections. Intuitively, f

“looks up” relevant details in v via cross-attention, and the result is merged back into

f with a residual connection.

5.1.5 Convolutional Latent Projection & Causal Masking

After cross-attention, the feature tensor f ′ ∈ RB×nq×d is reshaped into a spatial grid

and passed through a small convolutional mapping network G . The network outputs

per-factor Gaussian parameters for n causal subvectors:

{(µ(i), σ2(i))}n
i=1 = G ( f ′), µ(i), σ2(i) ∈ Rdc . (5.12)

An adjacency matrix A∈Rn×n is learned. From A, a differentiable binary mask M(i)(A)∈

{0,1}dc is derived for each subvector to enforce the causal relationship. Each latent

subvector is then sampled with element-wise masking:

z(i) ∼ N
(

µ(i)�M(i)(A), σ2(i)�M(i)(A)
)
, i = 1, . . . ,n. (5.13)

where B is the batch size; nq is the number of query tokens; d is the feature dimension;

n is the number of causal factors; dc is the dimensionality of each causal subvector; �

denotes element-wise multiplication; and A provides the parent–child structure used to

build the masks M(i)(A), so non-parent channels are deactivated for factor i. Intuitively,

this implements the masked parent influence used in the causal layer of Chapter 4: only

dimensions selected by M(i)(A) are allowed to affect z(i).
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5.1.6 Diffusion Model in the Causal DiffuseLLM

The intermediate image from the causal decoder is used to condition a denoising diffu-

sion model. A UNet denoiser receives a noisy RGBA image and the causal latent code.

Timestep information is encoded with sinusoidal embeddings and injected via Sigmoid

Linear Unit (SiLU)-activated linear layers. The UNet consists of downsampling resid-

ual blocks, an attention bottleneck, and matching upsampling blocks, all with group

normalization and skip connections. Training minimizes a noise-prediction loss; at in-

ference, noise is removed step by step to produce a high-fidelity image consistent with

the learned causal structure.

The forward process is

xt =
√

ᾱt x0 +
√

1− ᾱt ε, ε ∼N (0, I), (5.14)

where x0 is the clean image, xt is the noisy image at step t, ᾱt = ∏t
s=1(1−βs) is the

cumulative noise schedule, and ε is standard Gaussian noise.

The denoiser εθ is trained to predict the injected noise:

LDDPM(θ) = Ex0,z, t,ε
∥∥ε− εθ (xt , t, z)

∥∥2
, (5.15)

where z is the causal latent code used to condition the UNet, t is a random timestep

ranged from 0 to T , xt is formed from x0 and ε as above, and the expectation is taken

over the data distribution and the sampling of t and ε .

An auxiliary reconstruction term may be added:

L (θ) = LDDPM(θ) + λreconE
[
‖xrecon−x0‖2

2
]
, (5.16)

where xrecon is the decoder’s intermediate image and λrecon > 0 balances fidelity to the

causal reconstruction.
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5.2 Experiment and Discussion

The experiments are deployed on a server with an Ubuntu 20.04 operating system and

two NVIDIA RTX A6000 graphics cards. For the first training step, which trains the

model of the CausalLLM, two NVIDIA RTX A6000 graphics cards are necessary. For

the second training step, which trains the model of the Diffusion Model, the cache file

could be generated first to reduce memory consumption and accelerate data loading,

allowing the training to be performed efficiently on a single NVIDIA RTX A6000

graphics card.

5.2.1 Experimental Setting

The shadow dataset in Chapter 4 is used in this experiment. The dataset provides

a controlled environment where variations in light source size and object properties

serve as causal factors, enabling the model to learn the underlying mechanisms of

shadow formation rather than relying solely on correlations. In this dataset, 7,500

images are used for training, 1,000 images are used for validation, and 1500 images are

used for testing. In the second experiment, the Smile dataset in Chapter 4 is also used.

The Smile dataset consists of 20,000 images, with 70% allocated for training, 15% for

validation, and the remaining 15% reserved for testing. It focuses on the attributes of

Gender, Smile, Eyes Open, and Mouth Open, allowing for the exploration of causal

relationships and interactions between these facial expressions.

Based on the findings in Chapter 4, where controlled synthetic and real-world datasets

(e.g., shadow and Smile datasets) proved effective for validating causal consistency and

intervention accuracy, Chapter 5 deliberately reuses these datasets to isolate the added

value of language-driven control rather than changing the data domain. The model

design in Chapter 5 is therefore guided by the need to preserve the same causal factors

and evaluation settings while extending the intervention mechanism to an end-to-end,

instruction-driven framework enabled by a large language model.
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Furthermore, building on Chapter 4, where the shadow and Smile datasets were shown

to provide clear causal structures and reliable evaluation of intervention accuracy,

Chapter 5 retains these datasets to ensure that any performance gains arise from the

language-guided causal design rather than changes in data distribution. In addition,

while Chapter 4 relied on a fully trainable DDPM to demonstrate the effectiveness

of causal conditioning, Chapter 5 explores replacing it with a pretrained Stable Dif-

fusion backbone to reduce training cost and time, and to test whether the proposed

causal–LLM front end can generalize to powerful off-the-shelf diffusion models without

sacrificing causal controllability or image quality.

In the evaluation, two LLM-based methods, MagicBrush [174] and InstructPix2Pix

[140], and a diffusion-based causal model, Causal Diffusion Autoencoder (CDAE) [118],

are used as the baseline methods. The details of the CDAE could be found in Section

4.3.2.

MagicBrush introduces an instruction-guided image editing framework that leverages

a tool-augmented multimodal large language model to decompose natural-language in-

structions into a sequence of localized editing operations. By explicitly reasoning about

what to edit, where to edit, and how to perform the modification, MagicBrush enables

complex, multi-step image edits driven by free-form textual input. The method benefits

from a manually annotated dataset that provides strong supervision for instruction de-

composition and region localization. However, MagicBrush does not impose any explicit

causal structure over the underlying visual factors. Editing operations are executed se-

quentially in image space rather than through interventions on disentangled latent

variables, which prevents the model from reasoning about causal dependencies among

attributes. As a result, changes to one attribute may inadvertently affect others, and

the framework cannot support counterfactual queries or guarantee consistency under

physically grounded interventions.
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InstructPix2Pix formulates instruction-following image editing as a single-stage con-

ditional diffusion problem, learning a direct mapping from an input image and a tex-

tual instruction to an edited output image. The model is trained on large-scale syn-

thetic triplets generated by pairing language model–produced editing instructions with

diffusion-based image synthesis, enabling efficient and flexible instruction-conditioned

editing without explicit region supervision or intermediate reasoning steps. While this

approach achieves strong performance on general semantic and stylistic edits, it oper-

ates purely through correlational learning in pixel and feature space. InstructPix2Pix

lacks an explicit latent representation in which individual generative factors are disen-

tangled or causally related, and thus cannot perform controlled interventions or pre-

serve invariant attributes under modification. Consequently, the model often entangles

multiple visual properties when responding to an instruction, limiting its suitability for

counterfactual image generation and causally consistent editing.

To achieve better evaluations, MagicBrush and InstructPix2Pix are finetuned using the

shadow dataset. Furthermore, CDAE performs counterfactual editing by intervening

on disentangled causal latents learned by a diffusion autoencoder.

Meanwhile, counterfactual images are generated and compared with Blender-rendered

references using LPIPS, which assesses perceptual similarity via deep feature embed-

dings from pretrained networks rather than raw pixels. The metric has been reported

to correlate more strongly with human judgments. Moreover, MAE is defined as the

mean of the absolute differences between the predictions and the ground truth, com-

puted over all elements. Lower MAE indicates higher fidelity. The details of the LPIPS

and MAE could be found in Section 3.7.1.
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5.2.2 Experimental Results

In this application, the large language model serves as a high-level reasoning and plan-

ning module that translates free-form, human-readable instructions into structured and

consistent causal interventions. By interpreting semantic constraints, numeric targets,

and relational queries, the LLM enables users to specify complex counterfactual goals

without manually manipulating latent variables. The resulting images are therefore

not merely visually realistic, but causally grounded: each generated counterfactual re-

flects a valid “what-if” scenario consistent with the underlying scene mechanics. Such

images are particularly useful for objectives such as robustness evaluation and data

augmentation in vision systems, where controlled variations of lighting, object proper-

ties, or shadows are required to probe model behavior under distribution shifts while

preserving physical plausibility.

Causal DiffuseLLM provides an end-to-end intervention mechanism that maps natural-

language instructions to precise do-operations over interpretable factors. Figure 5.2

represents the intervention results using different prompts. When ”Moving the light

source to position 7 (right side), how does this affect the shadow direction?” is sent

to the LLM, the light sources in the original images are edited to position on the

right side, which indicates location 7. Same to the intervention of the light position,

when ”The object size directly affects shadow formation. Setting size to 0.6 should

produce specific shadow characteristics.” is sent to LLM, Causal DiffuseLLM changes

the object size smaller, which indicates size 0.6. At the same time, the light positions

keep unchanged. Unlike the Causal DiffuseVAE in Chapter 4, which follows the causal

graph strictly, Causal DiffuseLLM provides the capability to the model to consider

what would happen if the effects in the causal graph are changed. When ”If the shadow

area becomes 5.0, what lighting conditions would cause this?” is sent to the LLM, the

object sizes in the original images remain unchanged, and the light positions are tuned

to get the shadow whose area is 5.0. The intervention produced an ordered set of do-

operations that preserved previously set values and avoided conflicts. Guard conditions

were applied to keep non-target attributes invariant unless explicitly specified.
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Original Images

Moving the light source to position 7 (right side) , 

how does this affect the shadow direction?

The object size directly affects shadow 

formation. Setting size to 0.6 should produce 

specific shadow characteristics.

If the shadow area becomes 5.0, what lighting 

conditions would cause this?

Figure 5.2. Intervention results when using different prompts.

Figure 5.3 shows the results when doing the intervention on the object size using Causal

DiffuseLLM, CDAE, InstructPix2Pix and MagicBrush. CDAE almost achieves all the

details of the target image, while the object size is not edited well. InstructPix2Pix and

MagicBrush generate the image based on the prompt ”The object size directly affects
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Target Image
Causal 

DiffuseLLM

CDAE InstructPix2Pix MagicBrush

Original Image

Figure 5.3. Intervention results when changing the object size to 0.6 using Causal
DiffuseLLM and baseline methods.

Table 5.1. Comparison of the counterfactual images using the MAE

Intervention Causal DiffuseLLM CDAE InstructPix2Pix MagicBrush

do(light position=7) 0.0133±0.0060 0.1877±0.040 0.7720±0.1800 0.2312±0.090

do(object size=0.6) 0.0107±0.0050 0.1653±0.035 0.6970±0.1620 0.2674±0.080

do(shadow area=5.0) 0.0142±0.0090 0.2043±0.047 0.8451±0.1770 0.2963±0.070

shadow formation. Setting size to 0.6 should produce specific shadow characteristics.”.

However, although finetuning is deployed on these two models, they failed to under-

stand what is the object size. InstructPix2Pix reduces the object size but fails to keep

other features unchanged. MagicBrush fails to change the object size and also fails to

reconstruct the other features.
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Table 5.2. Comparison of the counterfactual images using the LPIPS

Intervention Causal DiffuseLLM CDAE InstructPix2Pix MagicBrush

do(light position=7) 0.0051±0.0008 0.0413±0.020 0.2119±0.200 0.2708±0.330

do(object size=0.6) 0.0067±0.007 0.0562±0.037 0.2735±0.240 0.2587±0.290

do(shadow area=5.0) 0.0103±0.0010 0.0861±0.040 0.2514±0.215 0.2465±0.266

Table 5.1 shows the results evaluated by MAE. The lowest reconstruction error is con-

sistently achieved by Causal DiffuseLLM across all three intervention types, with the

smallest dispersion, indicating both higher fidelity and greater stability. CDAE ranks

second, while the two instruction-driven baselines underperform, with MagicBrush gen-

erally outperforming InstructPix2Pix. The MAE results prove that Causal DiffuseLLM

outperforms other baseline methods in controlling the factors.

Based on Table 5.2, Causal DiffuseLLM achieves the lowest perceptual distance across

all intervention types and exhibits the smallest dispersion, indicating stable, faithful

edits. CDAE forms a consistent second tier, whereas the instruction-driven baselines,

InstructPix2Pix and MagicBrush, get higher LPIPS and substantially larger variability,

with no consistent winner between them. These results highlight the capability of the

Causal DiffuseLLM in generating precise counterfactual images with high quality.

Furthermore, a cost-efficient configuration was realized by adopting Stable Diffusion

[175] and validating it on the Smile Dataset. Stable Diffusion is a latent diffusion

text-to-image model that performs denoising in a compressed latent space via a VAE,

enabling high-resolution synthesis with modest compute. Language prompts are in-

jected through a Contrastive Language–Image Pretraining (CLIP) text encoder and

cross-attention in a U-Net denoiser, supporting controllable generation and efficient

fine-tuning for tasks such as image editing and inpainting. In the Smile Dataset, the

smile is considered causing narrow eyes and a mouth opening while the gender is

considered causing the eyes changed. Figure. 5.4 shows the results of the Causal Dif-

fuseLLM using Stable Diffusion and the results obtained using InstructPix2Pix with
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Generate a professional portrait photograph of a Female person not smile, high quality, 

detailed facial features, professional lighting

Original Image

Generate a professional portrait photograph of a male person Smile, high quality, detailed 

facial features, professional lighting

Generate a professional portrait photograph of a Male person smile, high quality, detailed 

facial features, professional lighting

Causal DiffuseLLM InstructPix2Pix

Original Image Causal DiffuseLLM

Causal DiffuseLLM

InstructPix2Pix

InstructPix2PixOriginal Image

Figure 5.4. Intervention outcomes on Smile: Causal DiffuseLLM (pre-trained diffusion
backbone) vs. InstructPix2Pix

the same prompts. This figure indicates that the framework of the Causal DiffuseLLM

is compatible with the pretrained diffusion model to generate counterfactual results.

Compared with the InstructPix2Pix, Causal DiffuseLLM is able to edit the image fol-

lowing the given prompt on the causal features and obtain better results.
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(a) (b)

(c) (d)

Figure 5.5. Scatter plot of generated data and true data after PCA-based processing.
(a) Causal DiffuseLLM. (b) MagicBrush. (c) InstructPix2Pix. (d) CDAE.

In Figure 5.5, PCA projects high-dimensional latent representations of generated and

true samples into a two-dimensional subspace spanned by the first two principal com-

ponents. Each point denotes one sample in this reduced latent space. Overlapping

distributions indicate that the generated data manifold aligns closely with the real

data distribution. Among all compared models, Causal DiffuseLLM shows the most

consistent overlap with the ground truth, demonstrating superior semantic and causal

alignment in the latent space.

Overall, the results show that Causal DiffuseLLM enables precise, causally grounded

interventions that translate free-form instructions into reliable counterfactual edits. By

mapping language directly to do-operations over interpretable factors, edits are local-

ized to causally affected regions and non-target attributes are preserved. This approach

achieves consistent improvements over diffusion- and LLM-based baselines, reducing

error, perceptual distance, and variance. These results establish Causal DiffuseLLM
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as an effective end-to-end framework for controllable counterfactual generation in the

shadow domain. They also lay a strong foundation for extending causal, language-

driven control to more complex scenes and factors. Moreover, to reduce training time

and cost, the conditional DDPM can be replaced with a general pretrained diffusion

model, such as Stable Diffusion. Unlike non-causal LLM-guided generators, Causal Dif-

fuseLLM leverages its causal structure to produce precise, prompt-based counterfactual

images.

5.3 Conclusion

In this chapter, Causal DiffuseLLM, an end-to-end, language-guided causal diffusion

framework, was presented. By mapping free-form instructions to explicit do-operations

over interpretable factors and coupling a causal Transformer front end with a con-

ditional diffusion back end, the model delivers precise, localized counterfactual edits.

On the shadow dataset, it consistently outperforms CDAE, InstructPix2Pix, and Ma-

gicBrush, achieving lower MAE and LPIPS with smaller variance while preserving non-

target attributes and satisfying numerical constraints on light position, object size, and

shadow area. The language-to-intervention interface also produces transparent, repro-

ducible edit logs and robust behavior under paraphrase, underscoring its practicality

for instruction-driven causal control. The learned causal layer and intervention planner

promote factor disentanglement and stable counterfactuals, enabling faithful what-if

analysis within the domain. Future work will move beyond discretized lighting toward

richer scene physics and continuous controls, and explore adaptation to real-world tasks

with online refinement of the causal graph.



Chapter 6

Conclusion

This chapter provides a summary of the key contributions of the present work, directly

addressing the research objectives outlined in Section 1.4. It also discusses the limita-

tions of the study and proposes potential directions for future research to address these

limitations.

6.1 Research Contribution

This thesis advances causal generative modeling by introducing two novel frameworks,

Causal DiffuseVAE and Causal DiffuseLLM, that integrate explicit causal reasoning

with high-fidelity diffusion-based synthesis. Causal DiffuseVAE combines a variational

autoencoder with a causal latent layer and a conditional diffusion model, enabling

interpretable, controllable, and photorealistic counterfactual image generation.

The Causal DiffuseVAE framework integrates explicit structural causal modeling with

a latent-conditioned diffusion process, enabling high-fidelity image synthesis alongside

interpretable and controllable counterfactual generation. A causal layer is embedded

within the VAE latent space to enforce directional dependencies consistent with a pre-

defined DAG while supporting flexible “do-calculus” interventions. By combining the

148
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efficient inference of a VAE with the generative fidelity of diffusion models, Causal Dif-

fuseVAE achieves state-of-the-art performance in reconstruction accuracy, perceptual

similarity, and latent controllability across diverse synthetic and real-world datasets,

demonstrating its effectiveness for both visual quality and causal interpretability.

On the other hand, the Causal DiffuseLLM is the framework to leverage an LLM for

extracting semantically rich causal representations from image–text pairs and integrat-

ing them into a causal diffusion pipeline. It employs a Q-Former cross-attention fusion

mechanism to combine LLM-derived semantic latents with vision encoder features,

enabling precise control over causal factors conditioned on both visual content and

textual prompts. A causal masking mechanism in the latent projection stage further

enforces structural dependencies defined by a causal graph while supporting text-driven

interventions, allowing for flexible and interpretable multimodal image editing.

The works in this thesis present a unified architectural framework for embedding

causal graphs into latent representations while preserving high image fidelity through

diffusion-based refinement. The approach generalizes effectively across diverse domains,

including shadows, physical systems, human faces, and industrial circuits, as well as dif-

ferent types of causal variables, such as continuous, discrete, and multimodal factors. By

combining explicit causal structure with diffusion refinement, the framework achieves

superior trade-offs between interpretability, controllability, and visual quality com-

pared to existing baselines, including CausalVAE, CDRM, CDAE, and CDM.

Furthermore, the proposed frameworks are supported by a theoretical identifiability

analysis showing that, under mild assumptions, they can recover disentangled causal

latents consistent with the true causal graph. Extensive quantitative evaluations using

MAE, LPIPS, and efficiency metrics, along with qualitative case studies, confirm their

superior performance in generalization and robustness. Notably, the models maintain

causal consistency and visual fidelity even in out-of-distribution intervention scenarios,

highlighting their reliability for both controlled experimentation and real-world applic-

ations.
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Moreover, the proposed methods demonstrate strong potential for applications such

as shadow-aware vision systems and autonomous navigation, where integrating causal

reasoning enhances the robustness of perception and decision-making. Furthermore,

by introducing LLM-augmented causal generation, this work opens a new pathway for

interactive, instruction-driven scene manipulation with explicit causal guarantees, ex-

panding the scope of controllable and interpretable generative modeling in real-world

and safety-critical domains. Causal DiffuseLLM extends causal interventions from

purely visual domains to multimodal scenarios, where interventions can be triggered

by natural language descriptions as well as direct manipulation of latent variables. The

expanding results of Causal DiffuseVAE demonstrate that the proposed methods main-

tain causal interpretability and synthesis quality when performing interventions out-

side the training distribution, highlighting their robustness in realistic, unconstrained

scenarios.

Last but not least, learning dynamic or time-varying causal graphs is a natural ex-

tension of the proposed frameworks when considering video data. In videos, causal

relationships between factors such as object motion, lighting, occlusion, and inter-

action are not static but evolve over time. While this thesis focuses on fixed DAGs

for single-image counterfactual generation, the latent causal formulation and masked

structural updates introduced in Chapters 4 and 5 provide a foundation for modeling

temporal causal mechanisms. By extending the causal latent variables to sequences and

allowing the adjacency matrix to change across time steps, future work could capture

evolving cause–and–effect relations in dynamic scenes, such as moving shadows, object

interactions, or action-driven state transitions. This would enable causally consistent

video generation and counterfactual reasoning, where interventions not only affect in-

dividual frames but propagate coherently across time, aligning with real-world physical

and semantic dynamics.
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6.2 Limitation

Despite the promising results, the proposed frameworks have several limitations that

point to opportunities for improvement. Causal relationships are obtained from physical

laws, so the causal graphs are assumed to be fixed in the Causal DiffuseVAE. While

the causal graph remains fixed, the causal matrix is designed to be trainable, allowing

the model to adaptively refine its learned causal relationships throughout the training

process. Both Causal DiffuseVAE and Causal DiffuseLLM assume a fixed, acyclic causal

graph, which limits their applicability to domains with evolving structures, feedback

loops or unknown causal relations.

In Causal DiffuseLLM, the LLM backbone is largely frozen, which constrains its ad-

aptability to highly specialized or low-resource domains where pretrained multimodal

knowledge may be insufficient. Meanwhile, although Causal DiffuseVAE is more effi-

cient than full diffusion pipelines, Causal DiffuseLLM still requires substantial compu-

tational resources for training and inference, especially when scaling to high-resolution

or multi-object scenes. While LLM provides strong capability in semantic reasoning

and multimodal inference, its large model size and frozen backbone limit adaptabil-

ity to highly specialized domains, and the reliance on extensive pretrained parameters

increases memory usage and slows down fine-tuning in resource-constrained environ-

ments.

Furthermore, performance is sensitive to the quality and diversity of training data.

Both models can experience degradation under severe domain shift, especially in cases

where causal factors present in the test domain are absent in training. The Causal

Circuit benchmark uses synthetic data but ignores real-world factors such as sensor

noise, calibration drift and lighting changes. These factors can reduce image quality and

causal accuracy in practice. To address this, the encoder–decoder can be fine-tuned on a
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small set of real sensor data. Additionally, synthetic training samples can be augmented

with realistic noise, and noise-robust encoder architectures can be employed. Hardware-

aware optimizations such as weight quantization and pruning can further help meet

latency and memory constraints.

6.3 Future Work

Based on the findings of this thesis, several directions can be explored to overcome the

identified limitations and extend the applicability of the proposed frameworks.

First, future work could investigate dynamic or learnable causal graphs that adapt to

evolving relationships in the data. This extension is particularly relevant for video and

sequential settings, where causal relationships between factors such as motion, lighting,

and interaction change over time. Incorporating causal discovery methods or Bayesian

structure learning into the training process would allow the model to handle partially

unknown, time-varying, or even cyclic causal structures.

Second, the adaptability of the large language model in Causal DiffuseLLM could

be further improved. While the current framework relies on a largely frozen LLM

backbone, future research may explore joint or selective fine-tuning using parameter-

efficient methods such as LoRA, adapters, or prompt tuning. In addition, domain-

specific multimodal pretraining could enhance performance in low-resource or highly

specialized application domains.

Third, reducing the computational cost of Causal DiffuseLLM remains an important

direction for practical deployment. This could be achieved through model compres-

sion techniques, including knowledge distillation, weight quantization, and pruning, as

well as more efficient diffusion sampling strategies to lower inference latency without

sacrificing image quality.



153

Fourth, enhancing robustness to domain shift is essential for real-world applications.

Future work could incorporate mixed real–synthetic training, domain adaptation tech-

niques, and data augmentation strategies that simulate realistic environmental factors

such as sensor noise, lighting variation, and calibration drift. Hardware-aware optimiza-

tions should also be explored to enable reliable deployment on embedded and resource-

constrained platforms.

Finally, beyond discrete and predefined interventions, future research could extend the

intervention space to support continuous, compositional, and higher-order manipula-

tions. Such extensions would enable richer causal reasoning and more flexible control

over generated content in complex, multi-object, and multimodal scenes.
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