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Abstract 

Cardiometabolic diseases, including type 2 diabetes mellitus (T2DM) and 

cardiovascular disease (CVD), pose a growing public health burden globally and 

in the UK. Effective policy responses require robust modeling tools to evaluate 

the long-term clinical and economic impacts, particularly for preventative 

interventions. This thesis presents the development of a cardiometabolic disease 

(CMD) policy model designed to simulate the natural history and progression of 

major cardiometabolic conditions. 

The model adopts a multi-state survival analysis model with semi-Markov 

structure,  by utilising real-world patient-level data from the Clinical Practice 

Research Datalink (CPRD) Aurum, linked with Hospital Episode Statistics 

(HES), mortality records, and the Index of Multiple Deprivation (IMD). It 

estimates transition probabilities across key health states: disease-free, T2DM, 

first and recurrent cardiovascular events, and death. 

Both parametric and flexible survival models are explored to estimate transition 

risks and enable long-term extrapolation. The model also incorporates time-

dependent covariates, allowing risks to evolve as patient characteristics change. 

Model performance is assessed through rigorous diagnostics and validation. 

A key feature of this model is its hybrid approach, which combines cohort-based 

transitions with microsimulation components. This structure captures both 

population-level trends and individual-level heterogeneity, enhancing the 

model’s flexibility and relevance for policy analysis. Model outputs include life-

years, quality-adjusted life years (QALYs), and healthcare costs, with also the 

extended ability to assess outcomes across different ethnic groups and 

explore health inequalities.  

This CMD policy model offers a flexible, real-world-informed decision-support 

tool for policymakers, health economists, and public health planners. Its hybrid 

structure provides a foundation for supporting the long-term clinical and 

economic impacts of interventions to reduce the burden of cardiometabolic 

diseases in the UK population. 
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Chapter 1 Introduction 

 

 

 

1.1 Overview 

Cardiometabolic diseases (CMD), encompassing conditions such as type 2 

diabetes mellitus (T2DM) and cardiovascular disease (CVD), represent a major 

and growing global health concern. Driven by demographic shifts, urbanisation, 

and changes in lifestyle behaviours, the prevalence of CMD has increased 

markedly in recent decades. This trend poses significant challenges not only to 

population health but also to the sustainability of healthcare systems and the 

broader socioeconomic landscape. 

 

The World Health Organization (WHO) has identified T2DM and CVD as leading 

contributors to global morbidity and mortality.1,2 These conditions are closely 

interrelated, sharing a cluster of modifiable risk factors, including obesity, poor 

diet, physical inactivity, tobacco use, and dyslipidaemia, therefore often 

conceptualised collectively under the term cardiometabolic disease. Together, 

they account for a substantial proportion of preventable illness and healthcare 

expenditure worldwide.3 

 

This chapter provides a structured overview of cardiometabolic diseases, 

including their clinical and epidemiological characteristics, associated disease 

burden, and economic implications. It also examines key risk factors, current 

strategies for prevention and management, and the role of policy and economic 

modelling in informing healthcare decision-making. Particular attention is given 

to the use of real-world evidence (RWE) in enhancing the applicability and 

impact of such models in policymaking. 

 



 

 

2 

1.2 Cardiometabolic disease: a definition 

Cardiometabolic disease (CMD) is an umbrella term used to describe a spectrum 

of interrelated conditions that affect metabolic processes, vascular function, 

and cardiovascular health. It encompasses disorders such as, hypertension, 

dyslipidaemia, and obesity, which collectively increase the risk of type 2 

diabetes (T2DM) disease and/or cardiovascular disease (CVD). Historically, the 

term cardiometabolic syndrome (CMS) was used to refer to a cluster of 

metabolic abnormalities, including insulin resistance, impaired glucose 

tolerance, dyslipidaemia, central adiposity, and elevated blood pressure.4–6 

Although CMS remains a recognised clinical construct, there has been a shift 

toward framing these conditions more broadly under the CMD umbrella due to 

their shared pathophysiological pathways and cumulative impact on 

cardiovascular outcomes. 

 

The World Health Organization (WHO), the National Cholesterol Education 

Program (NCEP), and the American Association of Clinical Endocrinologists 

(AACE) have contributed to the conceptual development of this framework and 

recognise the clinical significance of cardiometabolic risk clustering.7 

 

The pathophysiology of CMD is multifaceted, involving an intertwined collective 

mechanism between genetic predisposition, metabolic pathways, and 

environmental exposure, compounded by lifestyle factors and hormonal 

imbalances. Insulin resistance plays a central role in the development of these 

conditions, leading to impaired glucose and lipid metabolism and contributing to 

the accumulation of visceral fat.6–9 In turn, this inflammatory process further 

damages metabolic and cardiovascular function.  While each of these conditions 

can co-occur (Figure 1.1), this significantly raises the risk of developing type 2 

diabetes (T2DM) and cardiovascular diseases (CVDs).7,10,11 Identifying and 

understanding the risk factors are crucial for further prevention, early 

detection, and management.  
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Figure 1.1 Factors contributing to the cardiometabolic risk10 

 

 

The complex interplay of non-modifiable and modifiable risk factors influences 

cardiometabolic diseases.6 Non-modifiable risk factors are crucial for assessing 

overall risk and tailoring preventive measures. These include age, sex, genetic 

predispositions, and ethnicity. For example, the risk of developing CMD increases 

with age, and men generally have a higher risk of CVD, while women’s risk 

increases and may surpass men’s risk after menopause.12,13 Ethnicity is also 

associated with T2DM and CVD, people from South Asian, African, and Hispanic 

origin have a higher risk of developing the disease compared with individuals of 

White/European origin.14–16 

 

On the other hand, low physical activity, an unhealthy diet, smoking, and 

alcohol consumption are considered modifiable risk factors 16,17. These risks can 

be altered, reduced, or eliminated through behavioural changes and lie within 

an individual’s control. Targeting the modifiable risk factors can decrease the 

likelihood of developing CMD.  
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1.3 Burden of cardiometabolic disease 

1.3.1 Disease burden 

The global prevalence of diabetes has increased rapidly, with over 536 million 

people living with diabetes, and it is projected to increase to 643 million in 

2030.18 In 2021, diabetes was the direct cause of approximately 1.6 million 

deaths, with more than 90% having T2DM.2 Diabetes also doubles the risk of CVD 

mortality.19 Meanwhile, CVDs (including coronary heart disease, stroke, and 

peripheral artery disease) account for an estimated 17.9 million deaths 

annually.1 Based on these recent estimates, CVDs remain the leading cause of 

death, contributing 32% of all global deaths.1 

 

Regarding regional variation, T2DM is highly prevalent in high-income countries 

(HICs), but the rate of increase has somewhat stabilised due to the improved 

healthcare system and disease management strategies.20,21 The incidence of 

CVDs has generally declined as well.22,23 However, CVDs remain a leading cause 

of death and disability.23 In contrast, T2DM and CVDs are on the rise in LMICs, 

driven by lifestyle change, urbanisation, infrastructure development challenges, 

and the ageing population. This causes a double disease burden in these 

countries, both from communicable and non-communicable diseases.20,24,25 

 

In the UK, there are approximately 4.6 million people diagnosed with diabetes, 

of which 90% of adults are diagnosed with T2DM (Table 1.1). The prevalence of 

T2DM increases significantly with age, rising to 16% among adults aged 75 and 

over.26 In addition, an estimated 850,000 people are currently undiagnosed. The 

National Institute for Health and Care Excellence (NICE) estimates that more 

than 5 million people in the UK will be diagnosed with diabetes (both types) by 

2025.27  

 

Approximately 7.6 million people are living with CVD in the UK, including around 

4 million males and 3.6 million females (Table 1.1).28 When all diseases of the 

circulatory system are considered, including congenital heart disease, vascular 

dementia, and cardiovascular conditions originating in the perinatal period—CVD 

was recorded as the underlying cause of 163,888 deaths in 2019, accounting for 

27.1% of all deaths in the UK.  
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As expected, mortality was heavily concentrated in older age groups, with 73.6% 

of CVD deaths occurring among individuals aged 75 years and over. However, 

more than 43,000 deaths occurred before the age of 75, indicating a substantial 

burden of premature mortality.29 

 

Table 1.1 Number of people diagnosed with diabetes and cardiovascular disease 
by UK nation (2023)28  

Nation Diabetes CVD 

England 3.8 million 6.4 million 

Scotland 310,000 730,000  

Wales 220,000  340,000  

Northern 

Ireland 

110,000  225,000  

UK 4.6 million 7.6 million  

 

 

Diabetes (both type 1 and type 2) contributes to a substantial burden of 

mortality. With millions living with the condition, diabetes increases the risk of 

developing other serious health conditions that could lead to premature death. 

Figure 1.2 shows the mortality rate from diabetes in the UK between 2000 and 

2021, measured in deaths per 100,000 population. From 2014 to 2019, there was 

a slight increase in mortality, nearing 10 deaths per 100,000, before dropping 

slightly again. In 2021, the rate was recorded at 9 deaths per 100,000 

population.30 
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Figure 1.2 Mortality rates from diabetes in the UK 2000-2021 (per 100,000 

population)30 

 

 

Figure 1.3 Mortality rates from cardiovascular disease (CVD) in the UK 2000-2021 

(per 100,000 population)31 
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For CVD, the mortality burden is declining in the UK, particularly due to the 

reduction in coronary heart disease (CHD) and stroke. In 2021, there were 259 

deaths per 100,000 population from CVD, the lowest rate over the period (Figure 

1.3).31 Despite this improvement, the number of people living with CVD remains 

high. The British Heart Foundation (BHF) notes that heart and circulatory 

diseases cause more than a quarter of all deaths in the UK, or nearly 170,000 

deaths each year.28 

 

An increase in the aging population and population growth potentially contribute 

to a continuous rise in CVD events. Older adults are more susceptible to CVD, 

which means the overall burden of these diseases may not diminish even if 

mortality rates improve.32,33 Additionally, the disparities in different socio-

economic regions within the UK also contributed to CVD prevalence. For 

example, areas with higher levels of deprivation tend to have higher rates of 

CVD.34 

 

1.3.2 Economic burden  

Cardiometabolic disease (CMD) imposes a significant economic burden, affecting 

direct and indirect medical costs and productivity.35–37 People with T2DM or CVDs 

are likely to have more healthcare visits, and medication not only for treating 

the disease but also its complications, have a higher probability of being 

hospitalised, and require long-term/social/informal care compared to people 

with no disease.35–37 

 

Studies in the UK have estimated the current and future economic burden of 

T2DM and CVD and highlighted the consistently growing cost of CMD. The current 

annual total cost associated with diabetes is approximately £23.7 billion, 

projected to increase to £39.8 billion by 2035/6 (Figure 1.4).38 A current cost of 

illness study showed that direct medical costs of diabetes in 2021/22 are 

estimated at £10.7 billion with more than 80% of these costs being incurred by 

T2DM patients. Estimates for indirect costs associated with T2DM reached £3.3 

billion.39 

 

Currently, around 10% of the NHS budget is spent on treating diabetes and its 

complications. However, if current trends continue, this figure is forecasted to 
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rise to as much as 17% by 2035/3640 Beyond direct healthcare costs, diabetes 

also imposes a broader economic impact through lost productivity and wider 

societal costs associated with managing the condition and its long-term 

complications.38,39 

 

 

 
Figure 1.4 Estimated direct and indirect costs of diabetes in the UK 2035/3638 

 

 

Similar to type 2 diabetes, cardiovascular disease (CVD) places a substantial and 

growing economic burden on both the NHS and wider society. Annual NHS 

healthcare costs amount to about £10 billion, while the overall economic impact, 

including long-term care, disability, informal care, and premature mortality is 

approximately £24 billion each year.28  UK-wide data for 2021/22 further 

indicate a total societal cost of £29.0 billion, comprising £16.6 billion in direct 

healthcare spending and £12.4 billion in indirect costs.41  

 

Efforts to address the disease and economic burden of CMD in the UK require 

comprehensive strategies which include improving cost-effective disease 

preventative strategies, ensuring healthcare capacity, improving health 

promotion and self-management education, and improving lifestyle behaviour. 

Strengthening these strategies would not only mitigate the impact on the UK 

healthcare system but also improve quality of life and financial capability for 

those with or at risk of CMD.  
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1.4 Prevention and management of cardiometabolic disease 

1.4.1 Types of public health prevention 

Public health prevention encompasses a spectrum of interventions aimed at 

reducing the risk of developing the disease and promoting well-being within 

populations. These are categorised into five levels, each with a distinct focus 

and approach.42,43 

1. Primordial prevention: targeting the root causes of diseases by addressing 

social, economic, and environmental determinants of health. It aims to 

create conditions that prevent the development of risk factors. For 

example: the implementation of a sugar tax and the development of 

walking paths that promotes a healthier living environment. 

2. Primary prevention: involves interventions that aim to prevent the onset 

of diseases, focus on reducing risk factors, and promote protective 

factors. This is crucial in reducing the incidence of the disease at the 

population level. For example: health education, vaccination 

programmes. 

3. Secondary prevention: this focuses on early detection and intervention to 

halt the progression of diseases. Secondary prevention plays a vital role in 

reducing the impact of diseases on individual or population levels. For 

example: screening programmes. 

4. Tertiary prevention: the intervention aims to improve the quality of life 

and reduce the complications of established disease. For example: 

diabetic foot care. 

5. Quaternary prevention: focuses on avoiding unnecessary interventions and 

over-medicalisation. It includes ethical considerations, patient-centred 

care, and shared decision-making to prevent harm from 

excessive/unnecessary medical procedures. For example: the use of 

hormone replacement therapy that is susceptible to over-treatment. 
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The five levels of prevention provide a comprehensive framework for addressing 

diseases at different stages, from addressing the root cause to minimising harm 

from unnecessary interventions. This section, however, only focuses on 

preventative strategies as the thesis aims to develop a model that can 

accommodate the evaluation of early prevention (including prevention levels 1-

3). Hence, this thesis will not cover clinical management and medication 

strategies for CMD. 

1.4.2 Prevention guidance for cardiometabolic diseases  

In the UK, cardiometabolic disease prevention and treatment guidelines are still 

under development.44 However, there are prevention guidelines available for the 

prevention of T2DM and CVD.45,46 

 

Current NICE guidelines primarily focus on identifying individuals at high risk of 

developing type 2 diabetes mellitus (T2DM). Risk assessment can be conducted 

using blood tests that measure fasting plasma glucose or HbA1c levels (to 

indicate prediabetes), validated risk assessment tools, and consideration of 

ethnicity-related risk factors. Key interventions for high-risk individuals include 

promoting healthy eating (a balanced intake of fat, sugar, and other nutrients), 

increasing physical activity (at least 150 minutes of moderate-intensity exercise 

per week), and maintaining a healthy weight. Prioritisation is given to those at 

the highest risk of T2DM for referral to intensive lifestyle-change programmes, 

particularly individuals with HbA1c levels between 44–47 mmol/mol (6.2–6.4%) or 

fasting plasma glucose levels between 6.5–6.9 mmol/L.47,48 

 

For CVD prevention, current guidelines focus on modifiable risk factors, 

including a healthy balanced diet, physical activity, smoking cessation, and 

limited alcohol intake. NICE recommends using risk assessment tools to identify 

individuals at increased risk of CVD. The QRISK (Quantifying Risks in Individuals 

with Systolic Hypertension and Kindred) is a primary assessment tool for CVD 

risk, a widely used algorithm that calculates a patient's 10-year risk of 

experiencing a cardiovascular event (heart attack or stroke). Based on this 

assessment, personalised preventative strategies can be developed including 

blood pressure control (generally below 140/90 mmHg for people under 80 years 

old, lipid management (use of statin for lowering LDL cholesterol), and 
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management of other conditions such as addressing diabetes or obesity that 

contribute to CVD.49,50 

 

Additional considerations are socioeconomic factors and the impact of social 

deprivation on CVD risk, and addressing these factors in building public health 

strategies.34 Another important consideration is family history. Individuals with a 

family history of premature CVD are at significantly increased risk. In such cases, 

more proactive and aggressive risk management strategies may be needed. 

These may include earlier and more frequent cardiovascular screening, stricter 

control of blood pressure and lipid levels, lifestyle interventions targeting diet, 

physical activity, and smoking cessation, and, in some cases, earlier initiation of 

pharmacological treatments, even when traditional risk factors are only 

moderately elevated.50  

 

1.5 The importance of policy models  

1.5.1 Defining a Disease Policy Model 

Given the significant and growing burden of T2DM and CVD on both individuals 

and the healthcare system, there is a pressing need for informed decision-

making around prevention and management strategies. As healthcare resources 

are limited, policy-makers require robust tools to prioritise interventions that 

are not only clinically effective but also economically sustainable. This is where 

policy models become essential. They help synthesise clinical and economic 

evidence, enabling simulation of long-term outcomes and estimation of the 

value of interventions under varying scenarios. Understanding and applying such 

models is critical for guiding policies aimed at reducing the impact of these 

chronic conditions. 

 

In a broad sense, a “model” is a simplified representation of reality. It is 

designed to provide understanding, analysis, and prediction from complex 

systems, behaviour, and phenomena.51,52 A policy model in this context is “a 

model that can evaluate the effectiveness and cost-effectiveness of 

interventions and inform policy decisions.” In this thesis, the terms “policy 

model”, “decision model”, “health economic model” may be used 
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interchangeably. The distinction between them depends on the model’s purpose 

and the context in which it is applied. 

 

There are some examples of policy models developed. The Sheffield Type 1 

Diabetes Policy Model is a mathematical simulation model that was specifically 

developed to evaluate health outcomes and the cost-effectiveness of treatments 

and interventions for T1DM patients. This model integrates various health states 

and complications associated with T1DM, such as hypoglycaemia, kidney disease, 

and CVD. This model used data from clinical trials and other studies to simulate 

how new health technologies (glucose monitors, insulin therapies), might 

influence the progression of the disease, the quality of life, and the economic 

costs involved.53  

 

The Scottish Type 2 Diabetes Model is another example of a simulation model 

that is specifically developed for the T2DM population.54 Like the Sheffield 

model53, this model incorporates a range of clinical and economic inputs, 

including disease progression, complications, and the effectiveness and costs of 

treatments. This model simulates outcomes such as life expectancy, quality-

adjusted life years (QALYs), and the costs associated with diabetic complications 

like CVDs, renal failure, and diabetic retinopathy.54 

 

Furthermore, a model in the same Scotland context is The Scottish 

Cardiovascular Disease (CVD) Policy Model, a model that is designed to analyse 

and predict the impact of CVD, taking into account the unique demographic and 

healthcare system characteristics in Scotland’s population.55 The Scottish CVD 

model is a state transition model that simulates the progression of CVD within 

the population over time. Data was used from hospital records, national health 

surveys, and mortality statistics. The model can accommodate the estimation of 

economic costs as well.55,56  

 

Initiated by the University of California San Francisco (UCSF) team, The 

Cardiovascular Disease (CVD) Policy Model is a model which applies a cohort-

based approach that is designed to evaluate the health outcomes and economic 

impacts of various CVD events, including CHD and stroke, within specific 

populations. The model is intended to simulate the lifetime health outcomes, 
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healthcare costs, and cost-effectiveness of interventions aimed at preventing 

and managing CVDs. The model draws on various data sources, including 

epidemiological studies, clinical trials, health surveys, and national health 

statistics.57 

 

Most of these policy models have been used in several important studies and 

evaluations to inform and strengthen the justification regarding the decision-

making process. Models have not only been applied to evaluating various health 

technologies or interventions but have also been adopted in different settings 

and contexts.58–60  

1.5.2 Common challenges and limitations of disease policy models 

Despite the benefits of constructing a policy model, there are diverse 

methodological challenges and inherent limitations that can affect the model’s 

accuracy and applicability. These include poor generalisability, low model 

quality, lack of transparency, as well as inconsistency in conclusions.61–63 

 

One of the most significant challenges is the availability and quality of data. 

Data may be incomplete, lack detail, or be outdated, which can limit the 

generalisability of results to other settings.63–68 This not only includes the clinical 

or epidemiological data but also cost data for economic models. Uncertainties 

may arise due to these limitations.  

 

Another challenge is the simplification and assumptions that are often necessary 

to represent complex realities and make the model computationally feasible. 

These assumptions might include  disease progression, treatment adherence, or 

patient behaviours.64,65,69,70 While necessary, these simplifications can introduce 

bias and inaccuracies that may not fully capture the real-world view of an 

intervention. Additionally, the choice of time horizon in a model critically 

influences its outcomes.71,72 A model that only considers short-term effects may 

overlook long-term benefits, potentially misrepresenting the value of preventive 

or chronic disease interventions. Determining the appropriate time horizon can 

be challenging too, especially when long-term data is unavailable, or current 

data is less credible to incorporate into a model.  
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Capturing the non-health outcomes and societal costs, as well as considering the 

dynamic complexity of health interventions and incorporating human behaviour, 

might still be a common limitation of policy models.62,73 Moreover, since policy 

models often focus on epidemiological outcomes and cost-effectiveness, broader 

considerations such as equality, equity, and accessibility are often overlooked. 

74,75                    



1.6 The role of real-world evidence  

1.6.1 Real-world data (RWD) and Real-world evidence (RWE) 

Real-world data (RWD) refers to data collected from sources other than 

traditional randomised controlled trials (RCTs). RCTs have been widely viewed as 

a “gold standard” in health and medical research. However, there are several 

limitations in terms of the practicality of RCTs, such as intensive resources, 

restricted inclusion/exclusion criteria, controlled environment, and mostly 

conducted in a short study period resulting in limited generalisability.76,77 Hence, 

the use of RWD can complement evidence generated from RCTs by offering more 

insight from real-world clinical practice. 

 

RWD includes electronic health records (EHR), administrative databases, patient 

registries, claim data, and other sources that reflect real-life patient 

experiences and healthcare delivery. The evidence that is derived from real-

world data is often called real-world evidence (RWE).78  

 

RWE, which is generated from RWD provides valuable information, for instance: 

treatment patterns, medication effectiveness, comparative patient outcomes in 

authentic clinical settings, regulatory process, as well as broader clinical and 

health decision-making.76,79 Moreover, with proper use of RWE, a comprehensive 

understanding of existing constraints outside a controlled environment can be 

achieved. 77,80 

 

Several types of RWD have been used extensively to support clinical and health 

decision making such as NHS Digital Health81, Clinical Practice Research Datalink 

(CPRD)82, Hospital Episodes Statistics (HES)83, UK Biobank84, Scottish Health 

Research Register (SHARE)85, and more. These databases have been utilised for a 
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wide variety of research projects covering clinical, epidemiological, as well as 

cost-effectiveness studies.  

 

In recent years the use of RWE has gained attention in health and medical 

research, including cardiometabolic disease. Razieh et al. (2022) explored the 

association of sociodemographic, lifestyle, environmental, and clinical factors 

with the risk of CVD across different ethnic groups.86 A study by Buckland et al. 

(2023)87 and Eriksen et al. (2018)88 examined adherence to UK dietary guidelines 

and nutrient profiling with cardiometabolic risk markers, emphasising the 

importance of diet quality in managing cardiometabolic health. 

 

As highlighted by Dobson & Prendergast (2022)89, the UK's national registries, 

such as the UK TAVI registry for transcatheter aortic valve implantation (TAVI), 

have provided valuable real-world patient data to inform clinical practice. 

Furthermore, utilising CPRD data, Canoy et al. (2021)90 assess the association 

between myocardial infarction (MI), stroke and diabetes with excess mortality. It 

was confirmed that other comorbidities are also strongly related to this excess 

mortality risk. Additionally, the study by Gulliford et al. (2020)91 compares 

antibiotic prescribing records in two UK primary care EHR systems, highlighting 

the potential of combining CPRD GOLD and CPRD Aurum data for research 

purposes. 

1.6.2 Utilising RWD for disease policy models: an opportunity  

In health economics and policy models, RWD has become increasingly important 

due to its ability to provide a comprehensive understanding of real-world care 

settings, effectiveness, and value of healthcare interventions.92 National bodies 

such as NICE UK utilise RWD to guide clinical decision-making and health 

technology assessment (HTA).93 

 

As mentioned in the NICE strategy 2021-2026, RWD and RWE have potential to 

address the knowledge gap and engage further access to patient innovations. 

These gaps include the limited generalisability of RCTs, the underrepresentation 

of certain patient populations, and the lack of long-term outcome data. The 

NICE RWD framework has been developed to support these initiatives and offer 

guidance for identifying appropriate data sources to reduce uncertainties in 
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evidence generation and to strengthen clinical and economic recommendations. 

It also outlines best practice standards for conducting and reporting RWE 

studies, aiming to improve the quality, transparency, and policy relevance of the 

evidence produced.93 

 

In addition, the pharmaceutical industry, regulatory agencies, and payers also 

recognise the value of RWD as a complementary source or approach that can 

work hand in hand with RCTs for establishing more robust evidence in clinical 

practice.78,94 Current technological advancement and improved data governance 

have strengthened the potential use of real-world health data to benefit patient 

care and further health services, decision-making, and patient outcomes. 78 

 

In terms of practicality, RWD also offers the advantage of providing large sample 

sizes at a low cost, making it a practical and cost-effective resource for 

generating medical evidence.77,80,94 For instance, the secondary use of electronic 

health records (EHRs), patient registries, and insurance claims or billing data 

enables researchers to examine patient outcomes in routine clinical settings. 

This not only enhances the relevance and generalisability of findings but also 

holds significant value for healthcare economic modelling, where understanding 

the real-world impact and cost-effectiveness of interventions is crucial for 

informing policy and resource allocation.93,95 

 

While the use of RWD has great potential for improving understanding in routine 

settings, challenges and limitations remain to be addressed to generate robust 

results and improve evidence quality.80,96 

 

Although various policy models have been developed to inform prevention and 

management of chronic diseases, there remains a need for modelling approaches 

that address the complexity of cardiometabolic disease (CMD) as an 

interconnected condition. Given the long-term nature of CMD progression and its 

broad population impact, modelling plays a critical role in supporting evidence-

based decision-making, particularly for evaluating the health and economic 

implications of preventive strategies. When informed by real-world data (RWD), 

models can more accurately reflect routine care, diverse patient populations, 

and the cumulative burden of disease. This thesis seeks to contribute to ongoing 
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efforts by exploring how policy modelling, supported by current and locally 

relevant RWD, can enhance the relevance and utility of prevention-focused 

evaluations for CMD. 

 

1.7 Conclusions  

Cardiometabolic disease remains a public health concern in the UK, contributing 

to a significant burden on morbidity, mortality, and healthcare costs. Well-

targeted and cost-effective preventative strategies are needed to improve 

cardiometabolic health in the population. Therefore, to understand or compare the 

costs and benefits of CMDs preventative strategies, developing a model can be 

beneficial to generate evidence by simulating and predicting health and economic 

outcomes. Incorporating RWD offers opportunities to increase representativeness 

and generalisability of the policy model.  

 

By leveraging the use RWD, the model potentially provides a foundation for 

assessing the real-world impact of preventative strategies, optimising resource 

allocation, and informing evidence-based decision-making that could improve 

patient outcomes and healthcare efficiency.
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Chapter 2 Research aims and objectives 

 

 

 

2.1 Overview 

Building on the rationale presented in Chapter 1, this chapter sets out the 

research objectives that guide the development of a policy model for 

cardiometabolic disease (CMD) prevention. Given the complex and interrelated 

nature of CMD conditions, and the potential of real-world data (RWD) to improve 

the relevance of policy models, there is a need for modelling approaches that 

reflect real-life care settings and long-term disease trajectories. This chapter 

outlines the aims of the study, which seeks to develop a real-world-data-

informed model capable of evaluating preventative strategies across the CMD 

continuum. 

 

RWD-informed modelling is especially valuable for preventative strategies, which 

involve complex disease pathways and long-time horizon. By capturing routine 

care patterns, such models can better estimate the long-term health and 

economic impact of early interventions, supporting evidence-based decision-

making. 

 

The following sections outline the specific research aims (Section 2.2) and the 

overall structure and layout of the thesis (Section 2.3). 

 

2.2 Aims and objectives of the thesis 

This thesis aims to develop a Cardiometabolic Disease (CMD) Policy Model, a 

framework that contributes to future health and economic analyses. It explores 

the opportunities and challenges associated with utilising UK primary care data, 

acknowledging both its potentials and limitations.  
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The specific objectives of this thesis are: 

1. To critically review existing published cardiometabolic disease policy and 

health economic models. 

2. To propose and conceptualise a Cardiometabolic Disease Policy Model 

3. To construct and analyse a multi-state model using UK primary care data 

4. To demonstrate and simulate the cost-effectiveness of preventive 

strategies using the Cardiometabolic Disease Policy Model  

 

2.3 Thesis structure 

Chapter 3 presents a systematic review of cardiometabolic disease (CMD) policy 

models, specifically those addressing type 2 diabetes (T2DM) and/or 

cardiovascular disease (CVD) prevention at population level. The review 

examines and critically appraises a range of modelling approaches found in the 

existing literature, focusing on model structures, data sources, and validation 

methods. It highlights the strengths and limitations of current models and 

provides foundational insights to inform the development of the conceptual 

model in the following chapter. 

 

Chapter 4 introduces the conceptual model that forms the foundation for the 

development of the CMD policy model. This conceptual model represents the 

initial step in systematically capturing and communicating the contextual 

understanding of the problem, including disease progression, relevant evidence, 

and the rationale behind modelling choices and structure. The model is informed 

by findings from the systematic review (Chapter 3), current clinical guidelines, 

and expert input, ensuring that it reflects both the theoretical and practical 

dimensions of cardiometabolic disease prevention. 

 

Chapter 5 describes the data preparation process using Clinical Practice 

Research Datalink (CPRD) Aurum. It summarises how the raw data were cleaned, 

processed, and transformed to be suitable for statistical analysis and model 

implementation. This includes steps taken to ensure data structure, covariates 
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standardisation, and overall cohort identification in accordance with the 

requirements of the modelling framework developed in earlier chapters.  

 

Chapter 6 presents the detail of the cardiometabolic disease (CMD) Policy Model 

development, including the application of multi-state survival analysis. It 

simulates different model specifications (such as non-parametric, semi-

parametric, and parametric approaches) with a particular focus on implementing 

a semi-Markov framework for parametric modelling. The chapter also discusses 

model diagnostics and evaluates the adequacy and performance of each 

modelling approach. This chapter shows how the developed model can support 

the long-term analysis and projections, which are essential for assessing the 

impact of public health preventative strategies. 

 

Chapter 7 discusses the application of the CMD Policy Model to evaluate a set of 

hypothetical public health interventions, including dietary change initiatives and smoking 

cessation programmes. The purpose of these analyses is not to estimate the real-world 

effectiveness or cost-effectiveness of the interventions, but to demonstrate how the 

model can be used to simulate and compare outcomes across different policy scenarios. 

This chapter showcases the flexibility and practical utility of the CMD Policy Model in 

epidemiological and health economic evaluation. 

 

Finally, Chapter 8 concludes the thesis by summarising the key findings, 

methodological contributions, and policy implications of the research. It reflects 

on the research questions posed at the outset and evaluates how they were 

addressed through the development of the CMD Policy Model. The chapter also 

outlines areas for future research, including opportunities to enhance the model 

further and expand its application in supporting evidence-based decision-making 

for CMD prevention. 
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Chapter 3 Cardiometabolic diseases policy 

models: a systematic review 

 

 

 

3.1 Overview 

Chapter 3 covers the systematic review (SR) of the published cardiometabolic 

diseases policy model (T2DM and/or CVD). The SR is performed to identify 

current gaps in evidence and knowledge and shape the future direction of 

conceptualising a Cardiometabolic Disease Policy Model by consolidating and 

critically appraising multiple published articles.  

 

3.2 Rationale for systematic review 

As previously mentioned in Chapter 1, cardiometabolic disease (CMD), including 

T2DM and CVD are major contributors to morbidity and mortality, imposing 

substantial health and economic burden both for healthcare systems and 

society.5,6 As these conditions are relatively preventable, there is a need for 

effective public health strategies and policies that can address the risk factors 

and manage the disease burden across the population.  

 

Given the finite resources and competing needs, not all strategies or 

interventions can easily be offered or implemented. Resources are scarce, and 

consequently, the assessment and prioritisation of prevention initiatives should 

be carefully considered.73,97 In addition to considerations around an 

intervention’s effectiveness in health/clinical settings, ‘value for money’ needs 

to be assessed in order to decide how to  allocate resources optimally for 

producing maximum benefit to society.73 Thus, the assessment of a health 

intervention is required as a part of the decision-making process.  
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To facilitate this, modelling has become largely used to reflect and simulate the 

disease, intervention, and economic outcomes.62,69 A model in the context of 

medical research is defined as “analytic methodology that accounts for events 

over time and across populations, that is based on data drawn from primary 

and/or secondary sources, and whose purpose is to estimate the effects of an 

intervention on valued health consequences and costs”.52 Through these models, 

policymakers can gain predictive insights into the effectiveness and cost-

effectiveness of health interventions, making them indispensable in the planning 

and evaluation of health policies. 

 

Modelling also transcends the complexities in RCTs design which has limitations 

in terms of resources, time and generalisability.62 It can generate long-term and 

generalisable evidence, as well as overcome issues related to limited observable 

time.52 It is, therefore, useful to assess chronic conditions like CMD, which are 

characterised by their presence of competing risks, complications, and long-term 

morbidity.   

 

Several policy models have been developed, particularly for T2DM and CVD, 

including state transition models, discrete event simulations (DES), 

microsimulations, or other mathematical simulations.98–105 All these models can 

facilitate the evaluation of various public health strategies. However, current 

models are often tailored to medium to high-risk patients, primarily evaluating 

clinical interventions, mostly on medication strategies instead of population-

wide early preventative strategies, and predominantly focused on the summary 

of cost-effectiveness outcomes rather than providing a detailed modelling 

appraisal.100,104,106–108 

 

Hence, there is an opportunity to summarise policy models capable of capturing 

the full continuum of cardiometabolic disease progression across the entire 

population, beyond high-risk groups or individuals with established diagnoses, 

and of jointly evaluating the two main CMDs (T2DM and CVD) and their 

interrelationships. In addition, this review will place particular emphasis on the 

modelling approaches themselves, as the suitability of a given modelling 

framework depends on the decision problem, disease complexity, and type of 

intervention being evaluated. Different modelling approaches offer distinct 
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strengths and limitations in representing long-term disease progression, 

intervention effects, and population-level outcomes, all of which are critical 

considerations for policy-relevant decision-making. 

 

3.3 Methods 

The preferred reporting items for systematic reviews and meta-analyses 

(PRISMA) guidelines were followed.109 The review is registered in PROSPERO with 

registration number CRD42022354399.110 

3.3.1 Eligibility criteria 

A policy model in this SR is defined as any mathematical/simulation 

model/framework that can predict health outcomes, costs, and cost-

effectiveness. The model can explain and evaluate preventative strategies which 

guide decision-makers. Dietary policies were chosen as an example to illustrate 

the application of these models. These include sugar taxes, pack labelling, and 

food reformulation, which are designed to create healthier environments and 

reduce CMD risk before metabolic disturbance occur.  

 

This review included models that start with a general or low-risk population 

(i.e., those without clinically diagnosed CMD) to assess the impact of primordial 

preventative strategies before disease onset. Also, this review required models 

that are able to predict long-term or lifetime outcomes (≥10 years) since policy 

interventions often have delayed effects on population health. Furthermore, 

models focusing on specific subgroups (e.g., obese adults or hypertensive 

individuals) and those assessing primary prevention with medication, as our 

interest lies in regulatory and public health measures rather than clinical 

interventions are excluded. 
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Table 3.1 Eligibility criteria for included studies in the review 

  Inclusion Exclusion 

• Models starting with a general or 

low-risk population and without any 

CMDs (without clinical diagnoses of 

CVD/ T2DM—disease free)  

• The model predicts long-

term/lifetime outcomes (>10 years)  

• Adult population ( 18 years) 

• Mathematical models that can 

accommodate both health and 

economic outcomes (cost-

effectiveness evidence)  

• Only models which were assessing 

and evaluating primordial 

preventative strategies (restricted to 

regulations/policy for population 

dietary, limited to sugar/salt/sodium 

and fruit/vegetables public health 

policies) targeting the whole 

population or population-based 

prevention  

• Clinical studies, cell and animal 

studies 

• Models starting with CMD and only 

including specific subgroups 

(obese adults, people with 

hypertension) 

• Models focussing on accuracy or 

cost-effectiveness of diagnostic 

tools, primary prevention with 

medication (i.e.: statin use)  

• Models reporting effectiveness 

only 

• Models that were published as 

presentations, abstracts, 

commentaries, letters, and 

review articles 

 

 

 

 

3.3.2 Search strategy and study selection 

A systematic search strategy was developed and run on 6th December 2022 

(updated search on 31st May 2024) in MEDLINE (Ovid), EMBASE (Ovid), CINAHL, 

Google Scholar, and Open Grey with restricting the publication year from 1st 

January 2000 to May 2024, applying Medical Subject Heading (MesH). The search 

strategy is presented in the Appendix 1. To minimise the risk of excluding 

relevant articles, hand-searching the reference lists of previous 

systematic/literature reviews was performed using the snowball technique.111 

The search strategy has been developed with the support of a University of 

Glasgow subject librarian as well as thesis supervisors. Article management and 

duplicate removal were undertaken using Zotero®.
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3.3.3 Data extraction 

Data from fully eligible studies were extracted using a standardised matrix in a 

spreadsheet Microsoft Excel®. Items for data extraction include author/model 

name, year of publication, country, model type and structure, perspective, 

events, outcomes (clinical and economic), data sources, time horizon, validity, 

and sensitivity analysis. One reviewer (SP) performed data extraction, and 

double extraction112 was done independently for 20% of the total number of 

included papers by supervisors. Disagreements were resolved by team 

discussion.  

3.3.4 Quality Assessment  

Three independent reviewers (SP, HF, YD) assessed the quality of decision 

models and economic evaluation studies using the Phillips et al. checklist.69 If 

there were any disagreements, these were resolved by seeking advice from 

supervisors. Findings from this assessment are illustrated in the checklist 

tables and are also presented visually and in a narrative format.  

 

3.4 Results 

3.4.1 Selection process 

The PRISMA flow diagram (Figure 3.1) visually depicts the article selection 

process. An initial search yielded 1109 records, which were reduced to 217 

following the removal of duplicates and screening of titles and abstracts. A 

thorough full-text assessment of these 217 articles resulted in 32 studies that 

met the established inclusion criteria. A characteristics summary of these 

included articles is provided in Table 3.2.
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Records identified from*: 
Databases MEDLINE, 
EMBASE, CINAHL 
(n = 1109) 
 

Records removed before 
screening: 

Duplicate records removed  
(n = 72) 
 

Records screened 
(n = 1037) 

Records excluded** 
(n =820) 

Reports sought for retrieval 
(n =217) 

Reports not retrieved 
(n = 0) 

Reports assessed for eligibility 
(n = 217) 

Reports excluded: 
Model started with confirmed diagnosis 
(n = 46) 
High risk population (n=25) 
Diagnostic, trial, lab based (n=17) 
Secondary/drugs prevention (n=58) 
Policy model accommodating only 
health outcome/effectiveness (n=15) 
Only assess cost (n=6) 
Children population (=4) 
Commentaries/abstracts (n = 4) 

Records identified from: 
Websites (n = 1) 
Citation searching (n = 1) 
etc. 

Reports assessed for eligibility 
(n = 2) 

Reports excluded: 
(n=0) 

Studies and reports included in 
review (n=32)* 
*after updated searching to 2024 
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Figure 3.1 PRISMA flow diagram 
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Table 3.2 Description of included studies 

No. Author 
(year) 

Country Model’s 
name 

Policy assessment/ 
scenarios/evaluation 

Perspective Model types Simulation 
level  

Time 
horizon, 

cycle 

Disease states/ 
measurement 

1.  Moran et 
al. 
(2008)113 

China  CHD Policy 
Model-China 

Estimation and 
assessment of the CHD 
events based on to 
demographic changes 

 
 

N/A Markov Cohort 30 years, 
annual 

Free CHD, CHD, CHD 
death, non-CHD 
death. 
 

2.  Moran et 
al. (2010 114 

China  CHD Policy 
Model-China 

Estimation of future risk 
factors on CHD and 
stroke 
 

N/A Markov 
 

Cohort 20 years, 
annual 

Free CHD, person 
with CHD, CHD 
death, non-CHD 
death. 
 

3.  Bibbins-
Domingo et 
al. 
(2010)115 

US  CHD Policy 
Model 

Estimation of benefits 
(rates, costs and cost-
effectiveness) of salt 
reduction intervention 
 

Healthcare Markov 
 

Cohort 10 years, 
annual 

Free CHD, person 
with CHD, CHD 
death, non-CHD 
death. 

4.  Wang et al. 
(2012)116 

US  CHD Policy 
Model 

Estimation of potential 
health impact and 
spending of a penny-
per-ounce excise 
nationwide tax policy 

 

Healthcare Markov 
 

Cohort 10 years, 
annual 

Free CHD, person 
with CHD, CHD 
death, non-CHD 
death. 
 

5.  Basu et al. 
(2013)117 

US  - Estimation of health 
effects and cost-
effectiveness SNAP 
programme 

 

Government Microsimulation 
 

Individual 10 years, 
annual 

CVD mortality  

6.  Konfino et 
al. (2013)60 

Argentina  CVD Policy 
Model-
Argentina 

Assessment of the 
impact of sodium 
reduction policies 

N/A Markov Cohort 10 years, 
annual 

Free CHD, person 
with CHD, CHD 
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No. Author 
(year) 

Country Model’s 
name 

Policy assessment/ 
scenarios/evaluation 

Perspective Model types Simulation 
level  

Time 
horizon, 

cycle 

Disease states/ 
measurement 

 death, non-CHD 
death.  
 

7.  Basu et al. 
(2014)118 

India -  Estimation of the health 
effect on SSB taxation 
policy  

 

Government Microsimulation 
 

Individual 10 years, 
annual 

T2DM incidence 

8.  Collins et 
al. 
(2014)119 

 

 

 

England  CHD IMPACT 
Model 

Cost-effectiveness 
analysis of four 
population health 
policies on salt intake  

Health 
sector  

Cell-based model Cohort N/R CHD death 

9.  Mason et 
al. 
(2014)120 

Tunisia, 
Syria, 
Palestine, 
Turkey  

CHD IMPACT 
Model 

Cost-effectiveness 
analysis of population-
based salt reduction 
policies in four Eastern 
Mediterranean countries  
 

Public/ 
private 
sector, 
healthcare 

Cell-based model Cohort N/R CHD death 

10.  Lewsey et 
al. (2015)55  

Scotland  Scottish CVD 
Policy Model 

The development of 
CVD policy model that 
predicts life expectancy 
and incorporating 
socioeconomic 
deprivation 
 

- Markov  Cohort Potentially 
lifetime, 
annual 

CVD event free, non-
fatal CHD, non-fatal 
CBVD, fatal CVD, 
fatal non-CVD, fatal 
all cause 
 

11.  Manyema 
et al. 
(2015)121 

South Africa - Estimation of the effect 
of 20% SSB tax on the 
diabetes burden 
 

Healthcare Markov-multi 
state life table  

Cohort 20 years, 
annual 

BMI changes, 
diabetes 
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No. Author 
(year) 

Country Model’s 
name 

Policy assessment/ 
scenarios/evaluation 

Perspective Model types Simulation 
level  

Time 
horizon, 

cycle 

Disease states/ 
measurement 

12.  Wilcox et 
al. 
(2015)122 

Syria  CHD IMPACT 
Model 

Cost-effectiveness 
analysis of salt 
reduction policies 
 

Public/ 
private 
sector, 
healthcare 
 
 

Cell-based model Cohort 10 years, 
annual 

CHD death 

13.  Collins et 
al. 
(2015)123 

England - Projection of 20 % of 
sugary drinks duty 
impact on disease 
events 
 

Healthcare  Microsimulation Individual 
 

20 years, 
annual 

Diabetes, stroke, 
CHD 

14.  Lawson et 
al. (2016)56 

Scotland  Scottish CVD 
Policy Model 

The development of 
model for conducting 
economic evaluation  

N/A Markov Cohort Potentially 
lifetime, 
annual 
 

CVD event free, non-
fatal CHD, non-fatal 
CBVD, fatal CVD, 
fatal non-CVD, fatal 
all cause 
 

15.  Sa´nchez-
Romero et 
al. (2016)58 

Mexico  CVD Policy 
Model-
Mexico 

Projection of SSB tax 
policies 

N/A Markov Cohort 10 years, 
annual 

No event, CVD event 
(MI, stroke, angina), 
death  
 

16.  Wang et 
al., 
(2016)124 

China  CVD Policy 
Model-China 

Estimation of the effect 
of population-wide salt 
restriction in China 

Healthcare 
system 
payer’s 

Markov Cohort Lifetime, 
annual 

CVD free, acute CVD 
events, chronic CVD 
states, fatal CHD or 
stroke, non-CVD 
death 
 

17.  Breeze et 
al. 
(2017)125 

UK  
 

SPHR 
Model 

Cost effectiveness 
analysis of different 
interventions for type 2 
diabetes prevention 

NHS/PSS  Microsimulation  Individual Lifetime, 
annual 

Metabolic profile, no 
diabetes, diabetes, 
complications, CVD, 
cancer, osteo, 
depression, 
mortality 
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No. Author 
(year) 

Country Model’s 
name 

Policy assessment/ 
scenarios/evaluation 

Perspective Model types Simulation 
level  

Time 
horizon, 

cycle 

Disease states/ 
measurement 

 

18.  Pandya et 
al. 
(2017)126 

US  CVD- 
PREDICT 

Description of the CVD 
model in detail; and 
performed model 
validation analyses 
 

N/A Microsimulation  Individual Potentially 
lifetime 

Disease free, CHD, 
stroke, death 

19.  Mozaffarian 
et al. 
(2018)127 

US  CVD-PREDICT Estimation of the health 
impact and cost-
effectiveness in SNAP 
program 

Societal and 
government 

Microsimulation Individual  5-20 years 
and 
lifetime, 
annual 

No CVD, acute CHD, 
chronic CHD, repeat 
MI or CVA, acute 
CVA, chronic CVA, 
CVD/non-CVD death 
 

20.  Riveros et 
al. 
(2018)128 

Brazil  Adaptation 
of Scottish 
CVD Policy 
Model 

Calibration of Brazilian 
CVD model  

N/A Markov  Cohort N/R CVD event free, non-
fatal CHD, non-fatal 
CBVD, fatal CVD, 
fatal non-CVD, fatal 
all cause 
 

21.  Schönbach 

et al. 
(2018)129 
 

Germany DYNAMO-HIA Estimation of health 

impact of tax on 
processed meat 

N/A Markov 

(extended to 
microsumulation) 
 

Individual 10 years, 

annual 

Prevalence in CHD, 

diabetes, cancer 

22.  Huang et 
al. 

(2019)130 

US  
 

CHD IMPACT 
model 

Estimation of the health 
impact and cost-

effectiveness added 
sugar labelling on all  
packaged food and 
beverages 
 

Healthcare 
and societal 

Cell-based model Cohort 20 years, 
annual 

CHD incidence, 
stroke incidence, 

T2DM incidence 
 

23.  Salgado et 
al. 
(2019)131  

Argentina  CVD Policy 
Model-
Argentina 

The update Argentina 
CVD Policy Model 

N/A Markov Cohort Lifetime, 
annual 

CVD free, acute and 
chronic CVD states, 
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No. Author 
(year) 

Country Model’s 
name 

Policy assessment/ 
scenarios/evaluation 

Perspective Model types Simulation 
level  

Time 
horizon, 

cycle 

Disease states/ 
measurement 

 fatal CHD/ stroke, 
non-CVD death 
 

24.  Wilde et al. 
(2019)132 

US  CVD-PREDICT Estimation of the health 
impact and cost-
effectiveness of a 
national penny per-
ounce SSBs tax  

 

Healthcare 
and societal 

Microsimulation Individual  Lifetime, 
annual 

Disease free, CHD, 
stroke, death 
 

25.  Broeks et 
al. 
(2020)133 

Netherlands 
 

DYNAMO-HIA Estimation of the 
effects of a tax on meat 
and a subsidy on fruit 
and vegetables (F&V) 
consumption  
 

Societal Markov  Cohort 30 years, 
annual 

Healthy, disease, 
death 

26.  Lee et al. 
(2020)134 

US  CVD-PREDICT Estimation of the health 
impact and cost-
effectiveness of three 
SSBs tax designs 
 

Healthcare, 
government, 
societal 

Microsimulation Individual Lifetime, 
annual 

Disease free, CHD, 
stroke, death 

27.  Liu et al. 
(2020) 135 

US  CVD-PREDICT Estimation of the health 
impact and cost-
effectiveness of menu 
calorie labelling policy 
 

Healthcare 
and societal 

Microsimulation  Individual  Lifetime, 
annual 

Disease free, CHD, 
stroke, death 

28.  Salgado et 
al. 
(2020)136  

Argentina  CVD Policy 
Model-
Argentina 
 

Estimation of the 
impact of reducing SSB 
consumption 

 

N/A Markov  Cohort 10 years, 
annual 

CVD free, acute CVD 
events, chronic CVD 
states, fatal CHD or 
stroke, non-CVD 
death 
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Notes: CHD: coronary heart disease, CVA: cerebral vascular accident, CVD: cardiovascular disease, DM: diabetes mellitus, F/V: food and vegetables, MI: myocardial infarction, NHS/PSS: 
national health services/personal social services, SSB: sugar-sweetened beverage, T2DM: type 2 diabetes

No. Author 
(year) 

Country Model’s 
name 

Policy assessment/ 
scenarios/evaluation 

Perspective Model types Simulation 
level  

Time 
horizon, 

cycle 

Disease states/ 
measurement 

29.  Dehmer et 
al. 
(2020)137 

US - Evaluate prospective 
CVD related sodium 
reduction targets 
 

Healthcare Microsimulation Individual 10 years, 
annual 

Disease free, 
hypertension, CVD, 
post-CVD, death 

30.  Shangguan 
et al. 
(2021)138  

US CVD-PREDICT Assessment of the 
effect of sugar 
reformulation policy 
 

Healthcare 
and societal 

Microsimulation Individual Lifetime, 
annual 

Sugar intake, acute 
CVD, diabetes, 
chronic CVD, CVD or 
non-CVD death 
 

31.  Thomas et 
al. 
(2022)139  

England SPHR model Estimation of health 
benefits, costs, and 
equity impact of food 
advertising across 
London transport 
network 
 

NHS/PSS Microsimulation  Cohort Lifetime Metabolic profile, no 
diabetes, diabetes, 
complications, CVD, 
cancer, osteo, 
depression, 
mortality 
 

32.  Lou et al. 
(2023)140 

US  CVD Policy 
Model 

Impact assessment of 
implementing SSB taxes 
and FV subsidies on 
long-term CVD 
outcomes and 
healthcare costs 
 

Societal  Microsimulation Individual 10 years, 
annual 

Healthy, CHD, 
stroke, both CHD 
and stroke, CVD-
related death, and 
non-CVD-related 
death 
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3.4.2 Description of included studies  

From 32 articles retrieved, there is a diverse range of geographical study 

locations, including the US (n=12)115–117,126,127,130,132,134,135,137,138,140, UK (n=6) 

55,56,119,123,125,139, Netherlands (n=1)133, Germany (n=1)129, Latin America (n=5) 

58,60,128,131,136, South Africa (n=1)121, India (n=1)118, China (n=3)113,114,124, Eastern 

Mediterranean (n=2)120,122. 

 

Policy models are primarily characterised as computational simulations that 

utilise mathematical frameworks, such as Markov models, cell-based models, 

and microsimulation techniques to project population-level outcomes, including 

mortality, morbidity, disease burden, and associated economic costs. These 

models frequently quantify the financial implications of health-related outcomes 

and evaluate the effects of policy interventions on both health and economic 

dimensions. While some studies explicitly articulate the concept of a "policy 

model," others implicitly adopt this framework by employing decision-analytic 

models for economic evaluations or health outcome projections, thereby 

assessing the impact of interventions at a population level. This approach 

underscores the integration of methodological rigour and policy relevance in 

addressing complex public health challenges.117–119,123 

 

Several studies emphasised the importance of rigorous model 

development, calibration, and validation. Studies by Lewsey et al. (2015)55, 

Lawson et al. (2016)56, Pandya et al. (2017)126, and Breeze et al. (2017)125 

described their policy models’ framework that allows evaluation of further 

primary preventions/interventions. 

 

All included policy models met the eligibility criteria by demonstrating the 

capacity to incorporate both epidemiological and economic parameters. 

However, the scope and depth of analysis varied significantly across studies. 

Some models focused exclusively on clinical or health outcomes, such as CVD 

mortality or T2DM incidence, while others emphasised cost and outcome 

estimations or conducted comprehensive economic evaluations, including cost-

effectiveness analyses using metrics such as the incremental cost-effectiveness 

ratio (ICER). The dietary policies examined encompassed a diverse range of 
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interventions, including sugar taxes, salt reduction initiatives, and food labelling 

strategies. Importantly, this systematic review prioritises the methodological 

aspects of model structure and application rather than the efficacy or 

effectiveness of specific public health interventions. 

 

There are a few reasons why this review mostly retrieved CVD models rather 

than T2DM models, despite both diseases being major concerns globally—

particularly under a cardiometabolic umbrella. This review includes only models 

that started with disease-free or healthy populations, many T2DM models may 

choose to start with pre-diabetic or high-risk states when the interventions 

might be more actionable.100,106,141 The strategies for managing CVD can often be 

implemented at various system levels (community, healthcare system, policy), 

while diabetes prevention and management often require more individualised 

approaches, also the complex presence of complications in diabetes patients 

makes the model more focused on treatment evaluation.19,70 The other possible 

reason is CVD is linked with many other health conditions, such as diabetes and 

obesity, or vice versa. Effective CVD intervention that is represented in the CVD 

model might also indirectly influence diabetes management policies, given the 

overlap in risk factors like diet and exercise.99,101 

3.4.3 Modelling types and structure 

Types of mathematical model 

Cohort models (Markov) have been the predominant approach in this review 

(47%) 55,58,60,113–116,121,124,129,131,133,136 and microsimulations have been extensively 

performed in recent years (40%).117,118,123,125–127,132,134,137–140 Additionally, a 

smaller proportion of studies (13%) employed simpler forms of microsimulation 

models, such as cell-based models.119,120,122,130 The models typically begin with a 

‘disease-free’ or ‘healthy’ state, progressing through disease states and 

culminating in death. They commonly employ an annual cycle and adopt a long-

term time horizon (>10 years or lifetime), enabling the quantification of health 

outcomes, benefits, and associated costs over extended periods. 

 

Mathematical model can be broadly distinguished according to whether they 

simulate populations at the cohort level or individuals at the patient level, as 

well as by the underlying model structure used to represent disease progression. 
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Cohort models are typically implemented as state-transition models, in which 

proportions of a population move between predefined health states over 

discrete time cycles. These state-transition cohort models may take the form of 

Markov, semi-Markov, or other related structures, and generally rely on 

aggregated data to estimate transition probabilities.62  

 

In contrast, individual patient simulation models, commonly referred to as 

microsimulation models, simulate disease trajectories at the level of individual 

patients rather than aggregated cohorts. Microsimulation models may also be 

implemented using state-transition frameworks, including Markov or semi-Markov 

formulations, but transitions occur at the individual level and can depend on 

patient-specific characteristics, prior events, and time-varying risk factors. This 

structure allows microsimulation models to represent individual heterogeneity, 

complex interactions, and dynamic disease pathways more flexibly than cohort-

based approaches.52,62,142 

 

The choice between cohort-based state-transition models and individual patient 

simulation (microsimulation) models should be guided by the decision problem, 

disease complexity, intervention characteristics, and data availability, rather 

than by methodological preference alone. Simpler cohort models are often 

sufficient when disease progression can be adequately represented by a limited 

number of mutually exclusive health states, transition risks are relatively stable, 

and outcomes of interest depend primarily on current health status rather than 

prior history.143,144 In such contexts, cohort models offer advantages in 

transparency, ease of validation, lower data requirements, and reduced 

computational burden, which are important considerations for policy-facing 

analyses.144,145 

 

Microsimulation models are more appropriate when the decision problem 

requires explicit representation of individual heterogeneity, history-dependent 

risks, competing events, or time-varying covariates. These features are 

particularly relevant for chronic and multifactorial conditions where disease 

progression and intervention effects depend on accumulated risk exposure, 

comorbidities, or prior events. Microsimulation also enables the evaluation of 

interventions that target specific subgroups or operate through multiple 
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interacting pathways. However, these benefits come at the cost of increased 

model complexity, higher computational demands, and a reliance on detailed 

individual-level data, which may not always be available or robust.144,145 

 

Importantly, increasing model complexity does not automatically lead to more 

accurate or policy-relevant results. Overly complex models may obscure key 

assumptions, hinder validation, and introduce additional uncertainty if data 

inputs are weak or poorly characterised. Methodological guidance therefore 

emphasises the principle of parsimony, whereby the simplest model capable of 

addressing the decision problem should be preferred.145–148 

 

In many applications, simpler and more complex models can produce similar 

cost-effectiveness conclusions when they are appropriately specified and 

parameterised. However, differences may arise when individual heterogeneity, 

non-linear risk accumulation, or history-dependent processes materially 

influence costs or outcomes. In such cases, it may alter incremental cost-

effectiveness estimates and, potentially, policy conclusions. Consequently, 

model choice should be justified based on whether additional complexity is 

expected to meaningfully affect decision-relevant outcomes, rather than on 

technical sophistication alone.144,147,148 

 

Overall, the selection of modelling approach should be driven by the alignment 

between the model structure and the underlying clinical and policy questions, 

balanced against considerations of transparency, data availability, uncertainty, 

and feasibility.  

 

From this systematic review, there are feature details on the major policy model 

applied. Each model has its strengths, limitations and potential applicability. 

Table .3 presents a comparison between these policy models. 
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Table 3.3 Key differences between cohort and microsimulation models  

Model features Cohort model Microsimulation model 

Structure States and transitions Individual-level simulation 

Memory Memoryless (Markovian 

property) 

History-dependent 

Granularity Simplified representation Detailed representation 

Modelling Flexibility Fixed time intervals, limited 

interactions 

Flexible time intervals  

complex interactions 

Captures individual 

heterogeneity, complex 

disease modelling, dynamic 

risk factors 

Time Discrete time steps (e.g., 

annual), constant transition 

probability 

Continuous or discrete time 

steps, detailed event 

modelling 

Data Requirements Aggregated data Detailed individual-level 

data.  

Limitations Oversimplifies disease 

progression, less exploring 

patient heterogeneity, 

Markov assumption, lower 

computational demand 

Computationally intensive, 

complex model development.  

 

 

DYNAMO-HIA (Dynamic Modelling for Health Impact Assessment) is a model that 

quantifies policies' impact on health determinants. It employs a Markov-based 

modelling approach, allowing for the simulation of a real-life population by 

explicitly considering risk factor states.129,133 DYNAMO-HIA focuses on assessing 

the health impacts of policies on non-communicable diseases (NCDs), including 

CVD and diabetes. Its strengths lie in its comprehensive analysis, though its 

complexity and substantial data requirements can pose implementation 

challenges.129,133 
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Meanwhile, the CVD Policy Model58,60,136,140, CHD Policy Model113–116, and Scottish 

Policy Model55,56 evaluate cardiovascular disease interventions at the population 

level using a state-transition model. It is robust for evaluating population-level 

interventions but can be complex to adapt to new populations or interventions.  

 

The School of Public Health Research (SPHR) University of Sheffield model has 

applied a state-transition approach as well.125,139 The SPHR Diabetes Model is a 

predictive tool that calculates the risk of developing type 2 diabetes (T2DM). It 

utilises a range of demographic, clinical, and lifestyle factors to generate 

personalised risk assessments, aiding in the prevention and management of 

diabetes. The SPHR Diabetes Model models the impact of diabetes prevention 

and intervention strategies at the population level using a system dynamics 

approach, with strengths in assessing diabetes-specific interventions but 

limitations due to complexity and data requirements.125 

 

In addition, CVD-PREDICT (Cardiovascular Disease Policy Model for Risk, Events, 

Detection, Interventions, Costs, and Trends) also applied a microsimulation 

model to assess public health prevention programmes such as sugar-sweetened 

beverages (SSB) tax related diseases or other dietary policies.126,127,132,134,135,138 

IMPACT study employed a cell-based policy model, a subtype of compartmental, 

spreadsheet-based microsimulation, which produces aggregate estimates of 

population dynamics over time, in this case, focusing on life-years and mortality 

related to CHD. This modeling approach has since been adapted to other 

NCDs.119,120,122  

 

Those models included common risk factors and baseline parameters such as 

age, sex, body mass index (BMI), systolic blood pressure (SBP), low-density 

lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, 

glycated haemoglobin (HbA1c), smoking and alcohol status, and other related 

factors. The structure of the model depends on the policy model itself, and most 

of them focus on a single disease (CVD or T2DM) or assign a CVD/T2DM state as a 

risk factor or comorbid state. The risk factors included are illustrated below:  
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Figure 3.2 Summary of risk factors included in published policy models   
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Table 3.4 Comparison between cardiometabolic disease prevention policy models* 

 DYNAMO-HIA CVD Policy Model CHD Policy model IMPACT CHD CVD-PREDICT Scottish Policy 

model 

SPHR Diabetes 

Model 

Scope NCDs (non-

communicable 

diseases) 

including CVD, 

diabetes, and risk 

factors 

CVD and related 

risk factors, 

focusing on 

prevention and 

treatment 

strategies 

CVD and related 

risk factors, 

focusing on 

prevention and 

treatment 

strategies 

CHD and CVD 

interventions, 

evaluating 

their 

effectiveness 

CVD with a 

focus on 

prediction and 

risk 

stratification 

for better 

preventive 

measures 

Public health 

with a specific 

focus on CVD and 

associated risk 

factors in 

Scotland 

Diabetes and 

related risk 

factors, 

focusing on 

prevention, 

management, 

and health 

outcomes 

Applicability Primarily 

European 

countries, but 

adaptable 

globally 

 

Primarily used 

in the US 

 

Primarily used in 

the US 

Applicable 

globally with 

regional 

adaptations 

Applicable 

globally, with a 

focus on 

predictive 

analytics 

Primarily used in 

Scotland 

Primarily used 

in the UK 

Data sources European health 

surveys, 

epidemiological 

studies, and 

literature 

National health 

surveys, clinical 

trials, 

epidemiological 

studies 

National health 

surveys, clinical 

trials, 

epidemiological 

studies 

National health 

surveys, 

clinical trials, 

epidemiological 

studies 

National health 

surveys, 

clinical trials, 

epidemiological 

studies 

Scottish health 

surveys, hospital 

records, national 

statistics 

 
 

National health 

surveys, 

clinical trials, 

epidemiological 

studies 
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 DYNAMO-HIA CVD Policy Model CHD Policy model IMPACT CHD CVD-PREDICT Scottish Policy 

model 

SPHR Diabetes 

Model 

Outcome of 

interests 

Estimates 

incidence, 

prevalence, 

mortality, QALY 

health impact, 

under various 

policy scenarios 

 

Estimates 

incidence, 

prevalence, 

mortality, and 

healthcare 

costs, cost -

effectiveness 

Estimates 

incidence, 

prevalence, 

mortality, QALY, 

health disparities 

healthcare costs 

of CHD and stroke 

Estimates 

incidence, 

mortality, 

hospital 

admissions, 

cost-

effectiveness 

 

Estimates 

incidence, risk 

prediction, 

mortality, and 

health care 

costs, health 

outcomes, cost 

-effectiveness 

- Estimates 

incidence, 

mortality, 

hospital 

admissions, QALE, 

cost-

effectiveness 

- Estimates 

incidence, 

prevalence, 

mortality, 

QALY, cost-

effectiveness 

Key strengths Comprehensive 

modelling of 

individual and 

population-level 

effects; 

integration of 

multiple risk 

factors and 

interventions for 

a nuanced 

analysis across 

health outcomes 

Robust 

framework for 

evaluating 

interventions at 

a population 

level; flexible to 

include various 

types of 

interventions; 

extensive 

validation with 

US data 

Extensive 

validation with US 

data; 

comprehensive 

risk factor 

integration  

Comprehensive 

evaluation of 

interventions; 

focus on real-

world 

applicability; 

extensive data 

sources 

High 

granularity of 

individual risk 

prediction; 

ability to 

incorporate 

large datasets 

and update 

predictions 

with real-time 

data. 

Robust dataset 

specific to 

Scotland; focus 

on real-world 

applicability and 

policy impact; 

capable of 

addressing health 

inequalities and 

informing 

equitable policy 

decisions 

Focus on 

diabetes-

specific 

interventions 

and outcomes; 

ability to assess 

a wide range of 

potential 

interventions 

and their 

population-

level impacts. 

Key 

weaknesses 

Complexity in 

adapting to non-

European 

contexts - 

Can be complex 

to adapt to new 

populations or 

to integrate 

Requires 

extensive and 

high-quality data 

for accurate 

May not 

account for all 

complex 

interactions 

Requires access 

to high-quality, 

comprehensive 

health records; 

Limited to the 

Scottish 

population, which 

may limit 

Complexity and 

data 

requirements 

can limit 
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 DYNAMO-HIA CVD Policy Model CHD Policy model IMPACT CHD CVD-PREDICT Scottish Policy 

model 

SPHR Diabetes 

Model 

Requires 

extensive data 

input 

novel 

interventions 

without 

substantial 

effort and data 

projections; 

complexity of 

model may limit 

its accessibility 

for non-

specialists 

between risk 

factors and 

interventions; 

data 

limitations can 

affect accuracy 

model accuracy 

can be affected 

by missing or 

inaccurate data 

generalisability to 

other regions; 

data limitations 

outside of 

Scotland may 

affect model 

accuracy  

accessibility for 

some users; 

relies on 

accurate input 

data for 

precise 

predictions 

 

*Only models from the review that were used repeatedly for evaluating various strategies.  

DYNAMO HIA=Dynamic Modelling for Health Impact Assessment, CVD-PREDICT= Cardiovascular Disease Policy Model for Risk, Events, Detection, Interventions, Costs, 

and Trends, SPHR= School of Public Health Research  
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Overall, these models use various types such as microsimulation, state-

transition, compartmental, and system dynamics to support their specific 

purposes and applications. They require robust data sources like national health 

surveys and electronic health records for accurate predictions and assessments. 

While primarily used to inform policy decisions and guide public health 

strategies, these models vary in adaptability to different aims and health 

outcomes.  

Model structure: examples 

These are examples of model structures/frameworks from several studies 

included in this systematic review: 

1. DYNAMO-HIA129,133 

 

 

 

Figure 3.3 DYNAMO-HIA model structure 

 

The model aims to estimate the long-term health effects of interventions and 

policy changes by altering the risk factor status of individuals, which 

subsequently influences their probabilities of developing diseases or 

experiencing mortality. This model employs health states to represent the 

various conditions and stages of health that individuals may experience over 

time, effectively capturing the progression and dynamics of NCDs with a 

particular emphasis on CVD and associated risk factors. By modelling the 

transitions between health states, the model facilitates a nuanced 

understanding of how preventive measures can affect public health outcomes 

over time.  
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2. CVD-PREDICT126 

 

 

 

 

 
Figure 3.4 CVD-PREDICT model structure 

 

Transitions between health states in the CVD-PREDICT model are determined by 

a calibrated risk score that incorporates multiple demographic, clinical, and 

lifestyle variables. The model uses these risk scores to simulate an individual’s 

likelihood of progressing through different health states, capturing the dynamic 

nature of CVD over time, categorising individuals into health states such as 

"healthy," "at risk," "CVD event," "post-CVD event," and "death”.
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3. SPHR Diabetes Policy Model125 

The SPHR Diabetes Model is a simulation-based framework that categorises 

individuals into discrete health states to represent different stages of diabetes 

progression, beginning with a normoglycemic state and potentially advancing to 

pre-diabetes, diabetes, diabetes complications, and ultimately, mortality.  

 

For instance, individuals in a normal glycaemic state may progress to pre-

diabetes if exposed to risk factors like obesity and lack of physical activity. 

Similarly, those with pre-diabetes may transition to diabetes with worsening 

glucose control and continued exposure to detrimental lifestyle factors. Poor 

glycaemic management can further lead to complications, including neuropathy, 

nephropathy, retinopathy, and cardiovascular diseases, significantly impacting 

quality of life and increasing mortality risk.125 

 

In general, the types of modelling approaches mentioned in this chapter are 

suitable to represent chronic disease progression such as CMD, when the diseases 

are preventable, persist for a long duration but often require ongoing disease 

management. Brennan et al. (2006)142 also provide a comprehensive taxonomy of 

model structure for supporting justification of economic evaluation studies.  

 

Finally, the choice between modelling types largely depends on several factors, 

including research questions/objectives, disease characteristics, intervention 

being evaluated, data availability, and the desired level of model complexity. In 

some cases, combining or extending different modelling types can also provide a 

more comprehensive analysis. 
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Figure 3.5 SPHR Diabetes model structure 
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3.4.4 Costs and Outcomes  

Costs incorporated in the models were based on policy questions and 

perspectives defined. Direct medical costs include expenses incurred due to 

disease conditions, such as hospitalisation, healthcare provider services 

(consultations, treatments), medication use, and laboratory/diagnostic costs. 

Indirect costs are often associated with productivity loss due to disability or 

illness. Programme costs in several studies represent expenses related to the 

implementation of policy interventions.  

 

About 72% of studies included direct medical costs in the analysis.58,114–116,119–

125,127,129,132–140 Indirect costs were included in some studies (38%) 119,125,127,129,132–

138, depending on their analysis perspective. Most of these studies focused on the 

impact of dietary interventions, and 56% of studies reported their programme 

costs. 116–120,122–125,127,129,132–134,139,149–151 From studies retrieved in this review, 

monetary values were mostly reported in USD and international dollars.  

 

Regarding the outcome measures, the majority of studies (90%) estimated 

disease incidence or prevalence 113,114,116,117,119,55,122,123,56,58,124–126,129–131,133–140, 

while 47% reported generic health outcomes such as Quality-Adjusted Life Years 

(QALYs) or Disability-Adjusted Life Years (DALYs). 114,115,117,121,123–

125,127,130,132,134,135,139 (Table 3.5). While most studies estimated QALYs by 

assigning utility weights to different health states, the methodology for deriving 

these utility values is often poorly described. In many cases, utility values are 

sourced from previously published studies, but the papers do not provide 

detailed explanation of the methods used to derive these values-such as whether 

they were obtained through direct methods (e.g.: time trade-off, standard 

gamble) or indirect methods (e.g., EQ-5D, SF-6D). 

 

For studies in which the decision model is used to conduct or illustrate a full 

economic evaluation, incremental analysis, specifically the Incremental Cost-

Effectiveness Ratio (ICER) and Incremental Net Benefit (INB) were commonly 

applied (28%).122,125,127,132,135,138,139 A small number of studies analysed how costs 

and benefits were distributed across demographic groups.55,139 
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Regarding discounting, all studies incorporated a discount rate for both costs and 

outcomes or only one of them. Two studies applied undiscounted simulations in 

their main analysis but deterministically incorporated discount rates into their 

scenario and sensitivity analyses.121,152 (Table 3.5) The discount rates ranged 

between 0%-5% and the justifications for using those rates were mostly based on 

local guidelines.  

 

All models reported their main data sources incorporated in the model. These 

included data from the published literature, meta-analysis evidence, local 

statistical data, government data, survey data, or transferability of data from 

other countries.  

 

3.4.5 Model validation 

Model validity is the evaluation of whether the model demonstrates proper 

representation of the system and whether its results could serve as a solid basis 

for decision-making.153,154 Validating a model is essential in economic evaluation 

to ensure the reliability, accuracy, and credibility of the models used. It 

enhances transparency, supports evidence-based decision-making, and helps 

identify and address model limitations.  

 

In this review, five types of model validation were assessed: face validity 

(checking if the model's structure, inputs, and outputs logically reflect known 

behaviours and outcomes of certain diseases), internal validity (whether the 

algorithms and relationships within the model correctly simulate the 

progression), cross-validity (confirming that the model’s findings are consistent 

across different samples or populations within the same study), external validity  

(assesses the generalisability of the model to other settings, populations, or 

times), and predictive validity (model or evaluation accurately predicts real-

world outcomes). 
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Table 3.5 Cost and outcomes measured 
 
Authors name Costs Outcomes# Discounting* 

 Direct 

healthcare 

costs 

Indirect 

costs 

Programme/ 

implementation 

costs 

Disease cases/ 

event 

LY/LE QALY/ 

DALY 

ACER/ICER/ 

INB/NMB 

 

 

Moran et al. (2008)113  - -  -  -  

Moran et al. (2010)114 N/R N/R N/R  - - - N/R 

Bibbins-Domingo et al. 

(2010)115 

 - - - -  -  

Wang et al. (2012)116  -   - - -  

Basu et al. (2013)117 - -   -  -  

Konfino et al. (2013)60 N/R N/R N/R  - - - N/R 

Basu et al. (2014)118 - -   - - - N/R 

Collins et al. (2014)119      - -  

Mason et al. (2014)120  -    - -  

Lewsey et al. (2015)55  N/R N/R N/R   - - N/R 

Manyema et al. 

(2015)121 

 - -    -  

Wilcox et al. (2015)122  -    -   

Collins et al. (2015)123  -   -  - - 

Lawson et al. (2016)56 N/R N/R N/R   - -  

Sa´nchez-Romero et 

al. (2016)58 

 -   - - - N/R 

Wang et al., (2016)124  -   -  -  

Breeze et al. (2017)125         

Pandya et al. (2017)126 N/R N/R N/R  - - - N/R 

Mozaffarian et al. 

(2018)127 

   - -    
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Authors name Costs Outcomes# Discounting* 

 Direct 

healthcare 

costs 

Indirect 

costs 

Programme/ 

implementation 

costs 

Disease cases/ 

event 

LY/LE QALY/ 

DALY 

ACER/ICER/ 

INB/NMB 

 

 

Riveros et al. (2018)128 N/R N/R N/R   - - N/R 

Schönbach  et al. 

(2018)129 

    - - - N/R 

Huang et al. (2019)130   -  -    

Salgado et al. 

(2019)131  

N/R N/R N/R  - - - N/R 

Wilde et al. (2019)132    - -    

Broeks et al. (2020)133     - - -  

Lee et al. (2020)134     -  -  

Liu et al. (2020) 135     -    

Salgado et al. 

(2020)136  

  -  - - - N/R 

Dehmer et al. 

(2020)137 

  -  - - - - 

Shangguan et al. 

(2021)138 

  -  -    

Thomas et al. 

(2022)139  

 -   -    

Lou et al. (2023)140  -   -    

LY = life years, LE = life expectancy, QALY = quality-adjusted life years, DALY = disability-adjusted life years, ACER = Average cost-effectiveness ratio, ICER = incremental cost-effectiveness 
ratio, INB = incremental net benefit, NMB = net monetary benefit. # Studies might have more than outcomes measured, *Discounting can be only cost or outcome or both, or part of scenario 
analysis 



 

 

51 

 

All studies conducted assessments of face and internal validity. Cross-validity 

was mentioned in one study125; however, the methodologies employed for 

testing were often unclear. External validation was performed in 53% of studies, 

indicating some efforts to evaluate the generalisability of models. 

113,116,119,120,55,56,124,126,127,136,131,135,134,132 None of the included articles reported 

predictive validation. This omission is likely due to the fact that the studies 

relied on external validation procedures, which they considered sufficient for 

evaluating the predictive performance of the models. A summary of model 

validation performed is presented in Table 3.6. 

3.4.6 Model uncertainty  

Uncertainty is an important part of health economics and policy models. It arises 

from various sources and can significantly impact the results or conclusion of an 

analysis. Sensitivity analyses (SA) are commonly employed to explore these 

uncertainties, either deterministically or probabilistically.155 Deterministic 

sensitivity analyses (DSA), such as one-way or scenario analyses, systematically 

examine the impact of uncertainty by incorporating plausible alternative values 

or scenarios. In contrast, probabilistic sensitivity analyses (PSA) assign 

probability distributions to uncertain parameters and performs multiple model 

simulations to produce a distribution of outcomes. 

 

All studies included in this review reported conducting sensitivity analyses as 

part of their modelling process (Table 3.6). Of these, 50% (16 studies) performed 

both DSA and PSA, while the remainder employed only one type of sensitivity 

analysis. 55,56,58,58,116,117,119,123,125,127,130,132–134,136,138,139 .
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Table 3.6 Validation test and uncertainty analysis 



 

 

53 

Authors Validation test  Uncertainty analysis 

 Face 

validity 

Internal 

validity 

Cross-validity External 

validity 

Predictive 

validity 

Deterministic SA (DSA) Probabilistic SA 

(PSA) 

Moran et al. (2008)113   -  -  - 

Moran et al. (2010)114   - - -  - 

Bibbins-Domingo et al. 

(2010)115 

  - Unclear -  - 

Wang et al. (2012)116   -  -   

Basu et al. (2013)117   Unclear -    

Konfino et al. (2013)60   - - -  - 

Basu et al. (2014)118   - - -  - 

Collins et al. (2014)119   -  -   

Mason et al. (2014)120   -  -  - 

Lewsey et al. (2015)55    -  -   

Manyema et al. (2015)    - Unclear -  - 

Wilcox et al. (2015)122                        - - -  - 

Collins et al. (2015)123   - - - -  

Lawson et al. (2016)56   -  -   

Sa´nchez-Romero et 

al. (2016)58 

  Unclear - -   

Wang et al., (2016)124   -  -  - 

Breeze et al. (2017)125    - -   

Pandya et al. 

(2017)126 

  -  - N/R N/R 

Mozaffarian et al. 

(2018)127 

  -  -   

Riveros et al. 

(2018)128 

  -  - - - 



 

 

54 

 

 

 

Authors Validation test  Uncertainty analysis 

 Face 

validity 

Internal 

validity 

Cross-validity External 

validity 

Predictive 

validity 

Deterministic SA (DSA) Probabilistic SA 

(PSA) 

Schönbach  et al. 

(2018)129 

  - - - -  

Huang et al. (2019)130   -  Unclear   

Salgado et al. 

(2019)131  

  -  - N/R N/R 

Wilde et al. (2019)132   -  -   

Broeks et al. (2020)133   - - -   

Lee et al. (2020)134   -  -   

Liu et al. (2020) 135   -  -   

Salgado et al. 

(2020)136  

  -  -   

Dehmer et al. 

(2020)137 

  -  -  - 

Shangguan et al. 

(2021)138 

  - - -   

Thomas et al. 

(2022)139  

  - - -   

Lou et al. (2023)140   - - -  - 
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3.4.7 Quality appraisal   
 

The quality of models was appraised using the Philips checklist69 (Appendix 2), 

categorised into three distinct domains including structure, data, and 

consistency. The ‘structure’ domain assessed how well the model’s framework 

was constructed, including the clarity and appropriateness of the model’s design 

about the decision problem aims to address. The ‘data’ domain evaluates the 

sources, quality, and appropriateness of the data used within the model. The 

‘consistency’ domain assesses the internal and external coherence of the model, 

ensuring that its outputs are logical and comparable with those of other models 

or data sources. 

 

In the Figure 3.6, the blue colour represents "Yes" (indicating the criterion was 

fulfilled), orange represents "No" (indicating the criterion was not fulfilled), 

green indicates "Unclear" (where insufficient information or ambiguity was 

present), and light blue denotes "N/R" (not related or not applicable). The graph 

is based on cumulative percentages derived from each article's responses. 

 

 

Figure 3.6 Quality appraisal of studies included in the review
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Most policy models (80%) met the criteria for the 'model structure' section. This 

category includes the appraisal of how the decision problem was constructed, 

encompassing the clarity of the decision problem, the study’s perspective, 

transparency, and consistency of model justification, input, and structural 

assumptions. Generally, model inputs and objectives were consistent with the 

stated perspectives and initial justifications. However, while the perspectives 

and settings were typically defined, not all models specified the decision-

makers, despite the study results being intended for decision-maker use. 

Furthermore, most articles lacked explicit justification for the chosen time 

horizon and cycle length, although these were appropriately applied—likely due 

to the standard practice in modelling chronic diseases like CVD and T2DM. 

Additionally, the reasons for excluding certain options or alternative 

interventions were not always reported. 

 

The cumulative quality of data and parameters used in the models was moderate 

(50%). This part of the appraisal focused on the data sources, the inclusion of 

parameters, and the methodological approaches reported in the articles. The 

models utilised a variety of data sources, including systematic reviews, meta-

analyses, local and national epidemiological data, cost data, registries, 

administrative data, expert opinions, and other published sources. However, the 

quality assessment of the data incorporated into the models was often not 

clearly explained 60,116,119,121,136,137 A significant limitation was the lack of local 

representative data, which may have impacted final estimates and introduced 

high uncertainty into the results. To address this, many studies relied on data 

from other sources and constructed multiple assumptions. 114,116–118,124 

 

Although face and internal validity seems subjectively well-reported, there was 

less clarity regarding the transparency of validation efforts, which may have 

been reported elsewhere or addressed implicitly without specifying the types of 

validation tests performed. Despite these gaps, most models did acknowledge 

aspects of consistency, particularly in model structure assumption and model 

parameter as well as defining outcomes of interests. All models provided clear 

evidence of internal assessment by conducting sensitivity analysis. The cross-

validity and external validation were conducted such as by calibrating against 
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independent data and reporting calibration results. The consistency of the 

articles was moderate to good (58%). 

 

Overall, the review highlighted a moderate to good quality across different 

aspects of the models, with notable strengths in model structure but areas for 

improvement in reporting data transparency and validation. 

 

 

 

3.5 Discussion 

This systematic review offers a comprehensive critical appraisal of the 

methodological quality of the existing published CMD models. By evaluating the 

quality of these models, the findings provide valuable insights to inform and 

enhance the development process of a de novo policy model that can address 

some of the limitations identified and should be informed by a detailed 

conceptual model.156  

 

The review enriches the evidence regarding policy models that can 

accommodate the analysis of preventative strategies for healthy or low-risk 

populations, while previous policy models are predominantly focused on general 

applications of summarising the evidence of particular health 

interventions/technologies or tailored to populations with moderate to high-risk 

populations. 37,70,99–101,104,106,108 

 

A ‘policy model’ in this review is broadly defined to encompass various 

modelling approaches, including epidemiology-economic models, 

microsimulation models, and decision models, all of which contribute to 

informing health policy decision 55,114,118,129,135 The distinction between policy 

models and decision models is often blurred, as decision models can be 

embedded within a broader policy modelling framework. For example, a policy 

model may incorporate decision-analytic components to answer specific 

questions—such as the cost effectiveness of an intervention—while 

simultaneously assessing its broader population-level and system-wide effects.
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Given this overlap, this review adopts a comprehensive perspective, defining a 

policy model as a framework designed to evaluate clinical/health outcomes, 

cost, cost-effectiveness, and broader societal implications of health 

interventions.  These models play a crucial role in guiding public health policies 

and programmes, aiming to reduce disease burden and improve population 

health by providing evidence-based projections of intervention impacts. 

 

One of the clear advantages of modelling is the capability to estimate and 

simulate long-term disease progression and the impact of an intervention, which 

complements evidence generated in RCTs.157,158  This SR established that models 

were either simulated Markov-type cohort or individual-level models 

(microsimulation), with different perspectives chosen, costs incurred, and 

sensitivity analyses performed. Cohort simulations are advantageous for their 

efficiency and generalisability but are limited by their inability to account for 

individual variability, lack of precision, potential for ecological fallacy, and 

challenges in modelling complex interactions. In contrast, individual-level 

simulations offer greater granularity and personalised insights, capturing 

heterogeneity and specific outcomes, but they require extensive data, are 

resource-intensive, may involve significant uncertainty, and can be less 

interpretable and generalisable. The choice between these approaches depends 

on the study objectives, policy questions, and data availability.  

 

Most policy models adopt a healthcare provider perspective; however, 

incorporating patient perspectives and accounting for potential productivity 

losses could provide a more comprehensive economic evaluation159 Given that 

the nature of CMD itself can significantly affect both patients' and caregivers' 

spending, a broader economic perspective may enhance policy relevance. 

However, existing studies reviewed do not provide further justification for not 

considering broader perspective, likely because the economic framework is 

typically established at the outset to align with specific policy questions.
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The quality of models, as established in current appraisal does heavily rely on 

the quality of the data used. Many studies have highlighted concerns regarding 

the limited availability of representative or local data for model analysis. The 

lack of local clinical epidemiology data often necessitates the use of assumptions 

or non-local data, introducing uncertainty and raising concerns about data 

quality. While the use of published data from other sources can be valuable, 

issues regarding data transferability standards and the processes for adopting 

such data remain an issue. Justifications for data transferability were not 

consistently addressed in the reviewed studies, leading to reliance on multiple 

assumptions about parameters, which may introduce further limitations. 

Additionally, many models relied on survey and observational data (e.g., survey, 

self-reported non-local data), which is prone to under-reporting, selection bias, 

and recall bias, potentially affecting the accuracy of estimations. 

 

The use of real-world data (RWD) and updated local data is potentially beneficial 

for enhancing model accuracy and representativeness. RWD reflects actual 

patient experiences and outcomes in routine clinical practice, providing a more 

accurate representation of the broader population. This improves the 

generalisability of findings and offers a deeper understanding of the real-world 

impact of healthcare interventions.92,93,95 However, despite its significant 

potential, the use of RWD requires careful consideration of potential 

confounding variables, missing data, lead-time bias, and the inherent 

complexities of the data itself. Addressing these challenges effectively is crucial 

to maximising the benefits of RWD in modelling analysis.80,96 

 

Uncertainty is inherent in every modelling exercise, underscoring the need for 

improved reporting and characterisation of uncertainty. Additionally, it is crucial 

to report clear validation tests conducted to enhance the transparency of model 

development.61,62 The model validation process was mostly not extensively 

discussed in published articles or overlapped terms in validation itself in 

publication-related health economic studies, thus limiting the reporting quality.
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Addressing equality and equity concerns in health economic analysis can enhance 

overall results. Policies that are designed solely on cost-effectiveness without 

considering equity can lead to interventions that are efficient in aggregate but 

may exacerbate existing inequalities. By integrating equity, policymakers can 

design more holistic interventions that balance efficiency with fairness, leading 

to more socially acceptable and sustainable health policies.161,162 

 

The overall quality of the models in this review is relatively good. Most of the 

important model features are well-reported. However, in line with several 

current systematic literature reviews151,163,164, not all policy models are fully 

comparable, due to the different model assumptions, modelling approaches, 

perspectives, and outcomes generated from the model.  

 

This review is subject to some limitations. First, this review only focused our 

search and review on articles that defined policy or decision models in a very 

specific dietary policy intervention. There are probably many primordial public 

health strategies besides dietary intervention, such as physical activities or 

smoking cessation policies. Second, the various applications of the policy model 

objectives and parameters inputted might influence conclusions in terms of 

generalisability from this review. Variations in data availability and quality 

across studies may have influenced the reported outcomes, potentially affecting 

the overall reliability of the evidence based. Hence, the general interpretation 

of this review should be accompanied with caution since it applies a wide range 

of aims, model details, and reporting. It is important to note that the suitability 

of a policy model depends on the specific research question and data 

availability.  

 

Based on this systematic review, the following recommendations are made to 

enhance the development of CMD policy models (Table 3.7) 
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Table 3.7 Evidence-based recommendations for CMD Policy Modelling 
 

Area Key recommendations 

Model selection State-transition models (e.g., Markov models) are commonly used 

for CMD progression, but analysts should align the model 

choice with the policy question, available data, and 

computational feasibility. 

Integration of 

CMDs 

Given the shared risk factors of T2DM and CVD, incorporating 

them into the same model can improve accuracy and capture 

event-related risks. 

Risk factors Models can integrate modifiable risk factors (e.g., BMI, 

cholesterol, lifestyle changes) to ensure more realistic 

projections. 

Data quality High-quality patient-level and representative epidemiological 

data should be prioritised. Incorporating clinical biomarkers and 

capturing heterogeneous effects can improve generalisability. 

Economic 

perspective 

If data permit, a societal perspective should be used when 

interventions generate substantial non-healthcare costs or 

benefits, particularly for public health and preventive 

interventions; otherwise, a healthcare payer perspective is 

generally sufficient, with societal impacts explored in sensitivity 

analyses where relevant. 

Uncertainty 

analysis 

Specifying uncertainty and conducting appropriate sensitivity 

analyses is essential for ensuring robust conclusions. 

Validation Reporting validation tests (internal, external, face validity) is 

recommended to improve model reliability and reproducibility. 

Transparency & 

reporting 

Clearly document model rationale, assumptions, and 

methodologies. Conceptual models should be well-documented to 

enhance credibility. 

Equity & 

distributional 

analysis 

Ensuring that models assess distributional impacts can support 

policies that reduce health inequalities. 

Reproducibility 

& open science 

Adhering to best research practices and making policy models 

open source can improve transparency, accessibility, and 

reproducibility 
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3.6 Conclusions 

In conclusion, the policy models reviewed herein show promising insights for 

informing policy decisions, particularly in the context of public health 

preventative strategies. Based on this systematic review, several 

recommendations are established to enhance the development of a CMD policy 

model. The findings of this review directly inform the development of the 

conceptual model (Chapter 4), which serves as the foundation for the modelling 

framework developed in the subsequent chapters.
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Chapter 4 The conceptualisation of a 

cardiometabolic disease policy model 

 

 

 

4.1 Introduction 

Developing a conceptual model is a critical aspect of mathematical/statistical 

works. This chapter describes how the CMD policy model is conceptualised, 

translating the complex ideas into a structured-concise format. Following good 

practice in modelling, the model development process is documented. It serves 

as a way to communicate problem understanding and model choice before doing 

further analysis. Establishing the conceptual model primarily aims to enhance 

model development's transparency.  

 

The previous systematic review chapter informs the development of a 

conceptual CMD model in this Chapter. In Chapter 3, the existing published 

literature on CMD models was assessed to gain insight regarding model quality. 

Several aspects of modelling were critically appraised in the systematic review. 

Information from the review is finally summarised to inform the current 

conceptual model development, identifying the modelling aspects that need to 

be improved or can be addressed in our current model.  

 

Chapter 4 consists of several sub-chapters, including the need for a conceptual 

model, the methods and guidelines used, and the process of model 

conceptualisation as described in section 4.2 to 4.3. The methods section 

explains the two-stage process model conceptualisation: conceptualising the 

problem and conceptualising the model structure. These included the 

combination of findings from the systematic review, clinical guidelines review, 

and expert consultation. Finally, details of the conceptual model that will be 

applied further for analysis are presented (sub-section 4.4.3). 
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4.2 The importance of a conceptual model  

Over two decades, modelling techniques have been increasingly applied to assist 

decision-makers in various settings.165,166 Results from modelling are utilised by 

stakeholders particularly when making or evaluating decisions about 

interventions or strategies that can improve health, both at individual and 

population level.  

 

Although the use of policy models has emerged, there remains a need to improve 

their credibility.167 The development process itself particularly influences the 

estimation of health and economic outcomes generated from these models. 

Appropriate development of policy models goes beyond mathematical 

operationalisation alone.168 It requires an understanding of the complexity of 

real systems as well as the ability to translate those into credible conceptual 

structures. This understanding and conceptualising can be structured using a 

conceptual model.167,168 

 

In the realm of health economic modelling, the process of conceptualisation is 

essential but often underreported, it might be due to the limited literature, 

agreed definition, and missing familiarity with the importance of this idea.169 

Nevertheless, providing a clear conceptualisation process for economic models 

will be helpful to ensure that decision problems are translated effectively into 

mathematical/quantitative models.  

 

Developing a conceptual model has many advantages, such as improving our 

understanding of the decision problem, addressing the decision/policy needs, 

exploring current clinical/public health practice in a particular setting, and 

increasing the knowledge of currently available strategies.167 A conceptual 

model not only allows us to visually represent the relationships between the 

model attributes, but also gives room for clarification of the decision problem 

being analysed and fosters better communications between researchers, 

policymakers, and stakeholders.169–171 It is also beneficial for engaging the 

stakeholders' roles to obtain an agreement and approval of the problem defined 

as well as model structure development, considerations on relevant 

assumptions, and parameters incorporated in the model.167,169–171 Hence, the 
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development of a conceptual model is recommended as an initial stage of the 

model development process.  

 

4.3 Methods 

A well-developed conceptual model serves as the foundation of robust and 

informative modelling. It ensures the overall clarity, validity, and credibility of 

the model. Tappenden (2012)168 published guidance for conceptual model 

development. It consists of two distinct stages: problem-oriented and design-

oriented. Problem-oriented represents the problem that exists within the 

system, diving into a deeper understanding of the disease and treatment 

pathways. Conversely, the design-oriented model articulates the envisioned 

framework of the model, and the proposed plan for the model structure, taking 

into account the available evidence.168 

 

Similarly, The International Society of Pharmacoeconomics and Outcomes 

Research-Society of Medical Decision Making (ISPOR-SMDM) Modelling Good 

Research Practices Task Force-2 published guidelines for conceptualising a 

model.167 Two main components of modelling processes are provided in this 

report (Figure 4.1). First, the conceptualisation of the problem, which covers 

the translation of the healthcare process knowledge into a representation of the 

problem (step 1 in Figure 4.1). Second, as a sequential process, model 

conceptualisation is used to determine which modelling types and their 

attributes best represent the defined problem (steps 2,3 and 4 in Figure 4.1) as 

well as data and parameters used (step 5 in Figure 4.1), followed by 

transparency and validation of the model (step 6 in Figure 4.1). The nature of 

the conceptual model described in these two reports is not too distinct, both set 

boundaries between two sequential stages in model development.167,168 

 

This ISPOR-SMDM report guides researchers by outlining good research practices 

for developing conceptual models in health economic evaluations. It does not 

prescribe a specific model but offers the framework for developing and choosing 

a suitable model that fits specific research questions, and the decision problem 

addressed. This thesis follows the ISPOR-SMDM guidelines for developing a CMD 

Policy Model.167 The general stages of the conceptual model process are 

illustrated in the following figure (Figure 4.2).  
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Figure 4.1 Development and construction of a model 167 

 

 

Figure 4.2 Schematic flow diagram of conceptual model development for CMD 
Policy Model 
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4.3.1 Part 1: Conceptualising the problem 

A conceptualisation of the problem requires an understanding of CMD 

progression and prevention based on clinical and public health guidelines 

available in the UK. This is guided by the findings from the systematic review 

that has been conducted in Chapter 3.  

 

The initial conceptual model was developed based on clinical guidelines and 

systematic review findings to reflect assumptions about disease progression and 

structure. This outlines key components of conceptual modelling framework by 

providing a foundation for expert input and iterative refinement (Appendix 3). 

4.3.2 Part 2: Conceptualising the model 

Expert opinion  

The objective of the model development is not to reproduce, but to represent a 

simplified reality. The model development process should reflect the reality that 

represents the decision problem.168 To accommodate this, the role of clinical 

experts is important to meet contextual relevance. This stage highlighted the 

significance of collaboration between clinical experts and experienced modellers 

to achieve consensus on the model structure.  

 

The expert group, consisting of a clinician, two health economists, and a 

medical statistician, provided diverse and valuable perspectives that contributed 

to the refinement of the model. The clinician's input was particularly crucial in 

ensuring that the model remained aligned with clinical practice and relevant to 

real-world applications. The conceptual model draft (Appendix 3) was presented 

to the group, and informal feedback was gathered during the presentation. After 

informal consultations with these experts (2-3 meetings), the conceptual model 

and model structure were revised to better reflect clinical realities and to 

enhance its overall validity.
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4.4 Results 

4.4.1 Understanding the disease progression 

Cardiometabolic disease (CMD) is inherently complex due to its multifactorial 

nature of interconnected risk factors and comorbidities. The interrelation of 

genetic, environmental, and lifestyle factors collectively contribute to the 

development and progression of cardiometabolic conditions that lead to wide 

pathophysiological mechanisms and clinical manifestations.6,7  

 

The progression of CMD typically begins with insulin resistance, which may lead 

to metabolic syndrome or ‘pre-diabetes’. As cardiometabolic syndrome (CMS) 

progresses, the body's ability to respond to insulin diminishes, compelling the 

pancreas to compensate by producing higher levels of insulin. However, over 

time, this compensatory mechanism becomes insufficient, leading to impaired 

glucose tolerance (IGT) and, ultimately, the onset of T2DM.  CMS also doubles 

the risk of CVD contributing to the rising incidence of heart attacks, strokes, and 

coronary artery disease. The interplay of insulin resistance, dyslipidaemia, 

hypertension, and chronic inflammation in CMS accelerates atherosclerosis by 

promoting endothelial dysfunction, oxidative stress, and plaque formation. This 

process narrows the arteries, increasing the likelihood of myocardial infarction 

(MI) and stroke.172–174 

 

Guidelines for identifying and diagnosing the risk of cardiometabolic syndrome 

are based on sources generated from the World Health Organization (WHO)175, 

the European Group for the Study of Insulin Resistance (EGIR)176, the 

International Diabetes Federation (IDF)177, National Cholesterol Education 

Project Adult Treatment Panel III (NCEP ATP III)178, the National Heart, Lung, and 

Blood Institute/American Heart Association (NHLBI/AHA)179. Several recent 

recommendations and guidelines for CMD staging have also been introduced 

(Table 4.1).180,181 
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Table 4.1 The Cardiometabolic Disease Staging System (CMDS) 

Stage Descriptor Criteria 

Stage 0 Metabolically 

Healthy 

No risk factors 

Stage 1 One or two risk 

factors 

Have one or two of the following risk factors: 

a. high waist circumference  

b. elevated blood pressure or on anti-hypertensive 

medication 

c. reduced serum HDL cholesterol or on medication 

d. elevated fasting serum triglycerides or on 

medication. 

 

Stage 2 Metabolic 

syndrome or 

prediabetes 

Have only one of the following three conditions in isolation 

a. Metabolic Syndrome based on three or more of four 

risk factors. 

b. Impaired Fasting Glucose (IFG) 

c. Impaired Glucose Tolerance (IGT) 

 

Stage 3 Metabolic 

syndrome + 

prediabetes 

Have any two of the following three conditions: 

a. Metabolic Syndrome 

b. IFG 

c. IGT 

 

Stage 4 T2DM and/or 

CVD 

Have Type 2 Diabetes Mellitus (T2DM) and/or cardiovascular 

disease (CVD): 

a. T2DM (fasting glucose ≥126 mg/dL or 2-hour glucose 

≥200 mg/dL or on anti-diabetic therapy) 

b. active CVD (angina pectoris, or status post a CVD 

event such as acute coronary artery syndrome, stent 

placement, coronary artery bypass, thrombotic 

stroke, non-traumatic amputation due to peripheral 

vascular disease) 

 

 

 

 

Cardiometabolic staging involves the classification and progression of CMD, 

including CVD, diabetes, and associated risk factors, to facilitate targeted 

interventions and management strategies. The identification of distinct disease 

patterns and subtypes within the spectrum of CMD highlights the heterogeneity 

and complexity of these conditions. The complexity of CMD is also evident in the 

need for comprehensive guidelines and interventions to address the nature of 

these conditions.  
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As mentioned in Chapter 1, the CMD prevention and treatment guidelines are 

still in the development stage in the UK. 43 A screening strategy has also recently 

been proposed.4 However, the diagnosis, prevention, and treatment guidelines 

for CVD and T2DM have been published by The National Institute of Care and 

Excellence (NICE)182,183 as well as the Scottish Intercollegiate Guidelines Network 

(SIGN).184 Physical activity, dietary recommendations, behavioural changes, and 

other primordial preventive policies are covered in the guidelines and 

recommendations as described. These guidelines are continuously evolving based 

on the latest evidence and are aimed at addressing the prevention and 

management of CMD in the population.  

4.4.2 Summary of published evidence  

The details of a systematic review of published literature have been described in 

Chapter 3. To prevent repetition, only result summaries are outlined here to 

integrate the justification of problem conceptualisation.  

 

Model types and structure 

State transition models (STMs), particularly those using a cohort-based Markov 

framework, are commonly employed in the analysis of chronic, long-term 

conditions such as CMD. In these models, health states are typically defined 

based on clinical guidelines and the natural progression of disease. While 

existing models often focus on later stages of CMD, future approaches could 

benefit from a more comprehensive structure that explicitly incorporates 

intermediate complications of type 2 diabetes mellitus (T2DM) and 

cardiovascular disease (CVD) events, such as myocardial infarction (MI) and 

stroke.185 

 

Markov models are well-suited to represent transitions between health states 

over time. They allow for the simulation of time-dependent risks, recurrent 

events, and disease trajectories that involve repeated or episodic outcomes 

(e.g., MI, stroke). 
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Risk Factors 

Risk factors and covariates can generally be classified into two categories: 

modifiable (e.g., lifestyle, biomarkers) and non-modifiable (e.g., age, family 

history). The systematic review in Chapter 3 identified published models that 

incorporate both types. Moreover, dynamically modelling changes in key 

biomarkers over time can enhance the realism and accuracy of estimated 

outcomes.156 

 

Other models’ features (costs, outcome, validation, sensitivity analyses) 

From the review, most policy models adopt a healthcare perspective. 

Incorporating productivity losses from patient and caregiver viewpoints could 

enhance decision-making relevance. While sensitivity analyses (SA) like 

deterministic, probabilistic, or both are routinely reported to address 

uncertainty, validation procedures (e.g., face/internal validation) require 

greater transparency in reporting methodologies and impacts. Few studies assess 

equity implications, though integrating these could foster more holistic, socially 

sustainable policies that balance efficiency and fairness.185 

Model reliability fundamentally depends on input data quality; a key challenge is 

the scarcity of representative local data for development. Heavy reliance on 

assumptions or external data introduces uncertainty and compromises validity. 

Though secondary data offer utility, inconsistent transferability standards and 

inadequate justification for their use limit effectiveness. Integrating fit-for-

purpose real-world data (RWD) may improve model accuracy and 

generalisability.185 

Expert opinion  

Inputs from a clinician and experts are mostly focused on the proposed model 

structure and key features of the model. Initially, the general risk factors were 

based on findings from the systematic review. However, following a review of 

clinical guidelines, metabolic conditions such as obesity, hypertension and 

hyperlipidemia/dyslipidaemia are also considered as covariates due to their 

strong correlation with metabolic syndrome.6,7,172  
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Experts proposed atrial fibrillation (AF) to be included as a health state in the 

conceptual model, as cardiometabolic risk factors can increase the risk of 

AF, while AF itself can contribute to the progression of cardiometabolic 

conditions.186 Another recommendation was to re-evaluate T2DM progression, in 

particular whether we should include states with/without diabetes complications 

before the final state. The onset of diabetes accelerates the development of 

atherosclerosis and other CVD risk factors, showing that people with diabetes 

also have a risk of having CVD.172 This progression was recommended to be 

added to the final conceptual model since the conceptual model draft did not 

consider this relationship. 

 

For CVD state (stroke and MI), defining post-CVD event must be ensured 56,126, 

since there may be differences in terms of utility assessment that could 

influence the cost-effectiveness results if we plan to conduct further cost-utility 

analysis (CUA). For instance, fatal MI/Stroke would have different utility values 

than non-fatal events.156  

 

Finally, in further discussions with the health economists, it was agreed that the 

model should remain representative but not overly complex, and that atrial 

fibrillation (AF) should be considered as a potential covariate in the model. In 

addition, the model structure was presented at an internal meeting attended by 

a broader research audience. Three main points were raised. First, the model 

was commended for its simplicity and representativeness; however, it was noted 

that these should be balanced against the feasibility and time required for the 

analysis and modelling exercise. Second, it was recommended to explore options 

for incorporating productivity loss parameters into the analysis or sensitivity 

analyses, to capture indirect costs from patient and caregiver perspectives in 

addition to direct costs. Third, the model should also address equality and 

equity considerations, consistent with the findings from the systematic review. 

 

4.4.3 Final conceptual model 

The final conceptual model is illustrated using an influence diagram form (Figure 

4.3). This proposed model will facilitate the improvement of clinical and 

economic representation of CMD, where metabolic dysfunction conditions could 

lead to various events including both CVD and T2DM.  
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To operationalise this conceptual model, a detailed model‐structuring stage is 

specified (Figure 4.4). The target population comprises all adults (≥ 18 years) 

without a confirmed CMD at model entry. Baseline characteristics with various 

risk factors determine individual risk profiles. Disease states include: disease-

free; type 2 diabetes mellitus (T2DM); CVD (myocardial infarction [MI], stroke); 

post-CVD (post-MI, post-stroke); and death. All individuals begin in the disease-

free state and may transition to T2DM, MI, stroke, or directly to death. Those 

who develop T2DM face elevated risks of MI, stroke, or death. Patients 

experiencing MI or stroke either die or survive and move into the corresponding 

post-CVD state, where they remain at risk for subsequent events or death. 

 

Diabetes remission was not explicitly modelled. Although recent diabetes 

remission programmes have shown promising results, evidence on the long-term 

durability of remission at the population level remains limited, with substantial 

relapse observed within 2–5 years.187,188 Modelling remission would require strong 

assumptions regarding remission duration, relapse rates, and long-term 

cardiovascular risk reduction, introducing considerable structural uncertainty. 

Diabetes was therefore modelled as a chronic condition influencing 

cardiovascular risk trajectories, consistent with established economic evaluation 

guidance and cardiometabolic policy models that discussed in systematic 

reviews.185 

 

The model is progressive: once a higher-severity state is reached, reversion to a 

less severe state is not permitted. Death functions as the sole absorbing state, 

accessible via multiple pathways. Key outputs include all-cause mortality, 

disease-specific mortality, life expectancy, quality-adjusted life expectancy 

(QALE)/quality-adjusted life years (QALYs), and lifetime health-care costs. This 

structure supports evaluation of disease progression, long-term health outcomes, 

and the cost-effectiveness of interventions, thereby informing survival analyses 

and health-policy decision-making. 

 

Semi-parametric (e.g., Cox) and fully parametric survival models were 

performed, feeding into a semi-Markov state-transition framework.189,190 While 

traditional cohort Markov models are commonly identified in the systematic 

review, the semi-Markov extension more closely aligns with the nature of CMD 
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and lets the model handle varying time spent in each state and time-dependent 

transitions, better reflecting CMD progression. 

 

The semi-Markov framework offers several technical advantages for the CMD 

model. 191–193 First, it permits non-exponential sojourn distributions, capturing 

clinically plausible phenomena such as escalating progression risk after 

prolonged residence in a pre-disease or intermediate state. Second, transition 

probabilities may depend on both fixed and time-varying covariates thereby 

yielding more personalised patient trajectories. Third, integration with 

longitudinal data methods enables joint modelling of state transitions alongside 

continuous outcomes, supporting comprehensive long-term health and economic 

assessments. 191–193 By contrast, standard (memoryless) Markov models often 

oversimplify these dynamics, risking underestimation or mischaracterisation of 

transition timings and probabilities. The semi-Markov approach thus furnishes a 

more realistic and policy-relevant foundation for modelling CMD progression and 

evaluating interventions.  

 

To parameterise this, Clinical Practice Research Datalink (CPRD) data was used. 

CPRD comprises records for 60 million patients of whom 18 million are currently 

registered across England, Scotland, Wales, and Northern Ireland.194 The 

remaining records represent patients who were previously registered but are no 

longer active in the database. 

 

The dataset captures routine clinical information on demographics, behavioural 

factors, signs and symptoms, diagnoses, prescriptions, immunisations, referrals, 

and lifestyle measures. Beyond its large, nationally representative sample, 

CPRD’s longitudinal design enables analysis of disease onset and progression over 

extended periods. Moreover, linkage to hospital and mortality registries 

facilitates reconstruction of complete patient pathways.195  
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Figure 4.3 Final conceptual model 
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Figure 4.4 State transition model structure
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4.5 Discussion  

It is well‐understood that models must be clearly defined and conceptualised 

prior to analysis.168,167 This chapter introduces a conceptual model serving as a 

foundational framework for developing policy models that is both appropriate 

and fit for purpose, by explicitly defining core components, relationships, and 

underlying assumptions. This framework ensures subsequent policy models 

possess robust theoretical grounding and practical utility. 

 

Given the adequate reporting quality established in the systematic review, the 

findings were deemed reliable and provided valuable insights for conceptual 

model development. Integration of clinical guidelines, systematic review 

evidence, and expert consultation significantly strengthened the modelling 

process. Particular emphasis was placed on model structuring196, yielding a 

technically precise and detailed conceptual framework. 

 

Areas which required further attention include rigorous selection and 

incorporation of parameters, especially leveraging high‐quality routine data to 

enhance conclusion generalisability.185 These considerations have been 

addressed in the final conceptual model. The proposed structure aligns with 

established CMD stages and existing economic evaluation frameworks, 

demonstrating methodological consistency with current practices. Based on 

this alignment, no major modifications appear necessary in this conceptual 

model. 

 

Following development, the CMD policy model could be applied to evaluate 

early preventative strategies, including dietary interventions, screening 

programmes, and preventive medications. Subsequent analyses will 

incorporate structural sensitivity testing and model performance evaluation in 

accordance with established modelling best practices.69 

 

To date, published conceptual models in this domain remain relatively 

limited.170,196–199 The conceptual model presented herein advances current 

research on CMD, particularly within health economic modelling. It extends 

existing frameworks through a comprehensive and systematic 
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conceptualisation process, prioritising modelling transparency and 

methodological rigor. 

 

Some limitations of this conceptual model are acknowledged. First, an 

experienced clinician and experts were asked to ensure the disease state 

relevance at a practice level. This is done by gathering input informally 

during the presentation of the modelling plan. Conducting a Delphi panel 

with a structured questionnaire would potentially improve the process and 

minimise subjectivity. Second, the structure is trying to cover both T2DM and 

CVD states that represent major CMD events. Unlike the second event such as 

the post-CVD event, the model did not consider T2DM complications as a 

subsequent state from T2DM state. The model assumed that patients would 

progress to death over time, no matter what diabetic event occurs after the 

initial T2DM event. Third, transitions between MI and stroke were not 

permitted in the model. MI and stroke were treated as competing first 

cardiovascular events arising from a shared atherosclerotic process. Explicitly 

modelling MI–stroke transitions would require robust, time-dependent 

estimates of conditional second-event risks, which are limited and highly 

uncertain. Instead, subsequent vascular risk was captured within post-MI and 

post-stroke states through increased mortality, costs, and utility decrements. 

This structure is consistent with established cardiovascular policy models but 

may underestimate the burden associated with multiple sequential 

cardiovascular events.200,201 Fourth, a healthcare perspective is planned to be 

used for the model in terms of facilitating further economic analysis. 

Considering a societal perspective in the model may optimise societal 

decisions. If sufficient data are available, this economic perspective may be 

incorporated in sensitivity analysis.  

 

Furthermore, the use of utility values to generate QALYs is considered, such 

as EQ-5D. However, the EQ-5D-5L valuation study remains ongoing for the UK 

general population.202 A solution here is to use published EQ-5D-3L for each 

state (if a hypothetical public health intervention is conducted), or use QALE 

as one of the outcomes.   
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4.6 Conclusions 

It is widely accepted that clearly defining and conceptualising the model is a 

crucial first step before analysis. The conceptual model developed in this 

Chapter serves as a first step in representing the systematic process for 

communicating the contextual understanding of the current problem and 

knowledge, disease progression, and modelling choice as well as its structure. 

Basically, the conceptual model describes how the decision problems are 

specified and how the model structure is established. It will be beneficial to 

provide insight to the broader audience for the modelling development 

process before further analysis. 

 



 

 

80 

Chapter 5 Data preparation  

 

 

 

5.1 Introduction 

Data preparation is a pivotal stage in the data analysis pipeline, especially when 

dealing with real-world data (RWD), as it transforms raw data into a structured 

and analysable format suitable for advanced statistical and computational 

analysis. Chapter 5 offers a detailed exploration of the data preparation process 

for (Clinical Practice Research Datalink) CPRD Aurum, outlining the pipeline and 

the sequence of operations such as cleaning, linking, integrating, and 

manipulating the data—while addressing key challenges inherent to this phase.  

 

The dataset utilised in this study has been granted ethical approval by the UK 

Health Research Authority (HRA) Research Ethics Committee (REC) as part of 

CPRD’s standard governance protocols. Specific ethical clearance for the 

cardiometabolic disease study was secured from the Independent Scientific 

Advisory Committee (ISAC) under project number 20_129.a Furthermore, a Data 

Management Plan (DMP) was submitted to the University of Glasgow in 2023, 

ensuring compliance with institutional standards for secure data handling and 

storage (Appendix 4). 

 

All data management and analysis processes are conducted in collaboration with 

the Medical, Veterinary and Life Sciences (MVLS) Advanced Research System 

(MARS) University of Glasgow, a high-performance computing (HPC) platform 

that facilitates complex, computationally intensive research.b To ensure 

transparency and reproducibility, the entire data preparation process, including 

all relevant code, is available publicly via a GitHub repository.  

 
a Cardiometabolic disease prediction using general practice consultation pattern: Use of machine 
learning (ML) https://www.cprd.com/approved-studies/cardiometabolic-disease-prediction-
using-general-practice-consultation-pattern-use 
b MVLS Advanced Research System. High Performance Computing. https://mars.ice.gla.ac.uk 
 

https://github.com/Septiara20/CPRD
https://mars.ice.gla.ac.uk/
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5.2 Secondary use of routine data 

Routine data, or routine health data is information collected as a part of regular 

healthcare delivery. The primary use of this is to directly inform the care of 

individuals/patients whose data was collected. This data is typically gathered by 

healthcare providers during visits, hospital admissions, and immunisation 

programmes (e.g.: electronic health records, disease registries, administrative 

data, claim data, epidemiologic surveillance, etc.). However, this data has a 

wealth of potential beyond informing individuals or clinicians. The secondary use 

of routine health data focuses on leveraging aggregated information to benefit a 

broader population.  

 

Over two decades, there has been substantial growth in the use of routine data 

for public health research. The secondary use of this data plays a pivotal role in 

providing a more comprehensive understanding of health and disease in 

individuals/populations, improving clinical decision-making, medical 

intervention, and personalised care, as well as enhancing the wider impact of 

the healthcare system.203–205 Furthermore, the use of routine data (i.e.: 

electronic health records) enables insights into population representativeness 

and the possibility of long-term follow-up analysis.206–209 

 

Routine data utilisation enables a reflection of the health and disease conditions 

in the general population, captures the reality of clinical practice, and allows 

for a more granular understanding of real-world clinical practice.  

 

In the UK, one of the routine EHR-based databases is the Clinical Practice 

Research Datalink (CPRD), which stands as the pre-eminent repository of primary 

care data, offering anonymised, comprehensively coded EHR data that are 

collected every month by a nationwide GP network. All patient data are securely 

stored in EHR software, and datasets generated from this can be utilised to 

support retrospective and prospective public health research.210 For more than 

30 years, CPRD data has supported the development of clinical guidance and 

best practices, including medicine use, drug safety investigations, disease risk 

factors, healthcare delivery, and the effectiveness of health policy.211,212 
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CPRD launched a new database called CPRD Aurum in 2017, and it became 

available to use in 2018. CPRD Aurum contains data that is predominantly 

sourced in England and Northern Ireland, capturing symptoms, diagnoses, tests, 

prescriptions, and referrals for over 20 million patients. CPRD Aurum has a 

different data platform system for electronic records compared to the well-

known CPRD GOLD. CPRD Aurum uses the EMIS® platform data system, while 

CPRD GOLD uses Vision® software that has reduced in use by GPs in recent 

years. Despite these differences, both databases remain to provide research 

potential to support public health research.210 This thesis will utilise the CPRD 

Aurum to build a CMD policy model, a mathematical framework, particularly a 

state transition model that can accommodate health and economic analysis. The 

details of this model conceptualisation have been presented in Chapter 4.  

 

In general, EHR-based data are mainly inputted by end-user healthcare providers 

as a part of routine patient care. The vast amount of information contained in 

EHR-based databases result in massive database size, complex data relations and 

structure, and comprehensive information on individual clinical history. Given 

the complexity and voluminous nature of the database, researchers are often 

confronted with formidable challenges during the data preparation stage.213,214  

 

Data preparation is the most critical phase in the analytical process, as a 

significant portion of coding effort is dedicated to ensuring data quality. This 

involves data transfer, ingestion, cleaning, handling missing values, 

manipulation, and structuring. These steps entail complex, iterative technical 

tasks, ultimately producing refined datasets that are ready and suitable for 

subsequent statistical analysis.
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5.3 Data source profile 

5.3.1 The Clinical Practice Research Datalink (CPRD)  

Clinical Practice Research Datalink (CPRD) is a UK government research data 

service that provides real-world routine collected data that support 

observational clinical and public health studies. It is jointly supported by the 

Medicines and Healthcare Products Regulatory Agency (MHRA) and the National 

Institute of Health Research (NIHR), as part of the UK Department of Health and 

Social Care. Established in 1987, the Value-Added Medical Products (VAMP) 

dataset expanded to become the General Practice Research Database (GPRD) in 

1993 and continuously became CPRD in 2012.211,212 

 

CPRD collects anonymised patient-level data from participating GP practices 

across the UK and extensively recorded data for millions of patients. With 

reliable research standard data, CPRD represents almost 25% of the UK 

population, and currently encompasses more than 60 million patients, including 

18 million currently registered patients.215 Data recorded in CPRD include 

primary diagnosis, clinical events, prescriptions, tests, demographics, referrals, 

admissions, and preventative care. Primary care data are collected 

electronically daily by the GPs and uploaded to CPRD secure servers on a 

monthly basis before being released further for public health research. 

Moreover, CPRD datasets were linked to Hospital Episodes Statistics (HES) for 

admitted patients and outpatients, the Office for National Statistics (ONS) as 

well as Index of Multiple Deprivation (IMD).210 

 

Before the data is fully released for research purposes, validation and quality 

checks are performed. First, the collection level validation ensures the data 

element is correctly captured and checks for duplication. Second, the 

transformation level ensures all events are linked to patients. Third, the 

research quality level includes a check of recording and internal consistency of 

key variables.216 It is possible to extend these checks to include specific checks 

and validation if required, or to fit the research purpose.
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5.3.2 CPRD GOLD versus CPRD Aurum 

Although CPRD GOLD and CPRD Aurum are UK EHR-based large databases that 

collect de-identified primary care patient-level data, there are several 

differences between these useful databases. The main difference is the patient 

management software system to record routine clinical data. CPRD GOLD uses 

the web-based Vision® software, the data source generated from this system has 

been used for more than 30 years for research.210 

 

Meanwhile, GP practices in the UK are gradually switching to a new system 

called EMIS® software. The clinical coding system for the medical dictionary is 

different. The medical dictionary for CPRD GOLD contains information on all 

medical history using read version v.2 codes referenced in the data file as 

‘medcode’, while CPRD Aurum uses a combination of SNOMED, Read, and local 

EMIS® Codes. For drugs and prescriptions, it is referenced as ‘prodcode’ 

(gemscript product code) and dictionary of medicines devices (DM+D), 

respectively.210  

 

There are similarities and differences between these two databases summarised 

by Jick et al. (2023)217 This distinction allows the researcher to strengthen the 

consideration and justification when planning research using CPRD data.
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Table 5.1 Data use consideration when using CPRD and linked data217 

CPRD GOLD and 

CPRD Aurum data 

coverage 

▪ CPRD Aurum contains more patients than Gold, especially 

within currently contributing practices (data form 1989 to 

present)1 

▪ CPRD Aurum primarily includes English practices (data form 

1989 to present)1 

▪ CPRD GOLD covers practices from all UK nations; however, 

currently contributing practices are predominantly located in 

Scotland and Wales (data form 1989 to present)2 

 

CPRD GOLD and 

CPRD Aurum data 

quality 

▪ Similar data quality in GP record for CPRD GOLD and Aurum, 

particularly post- 2004, though variability in completeness 

and quality exists over time. 

▪ Validation effort should be an ongoing component of research 

using database. 

 

HES and ONS 

Death registration 

▪ HES and ONS linkage are available for practices in England 

▪ Most CPRD Aurum practices have linkage to HES and ONS 

▪ Very few currently contributing CPRD GOLD practice have 

linkage to HES and ONS data (due to linkage availability for 

English practices only 

▪ HES APC started in 1997 and ONS death registration started in 

1998, the start of CPRD GOLD and Aurum data 

▪ HES APC and ONS are updated approximately yearly3. 

▪ HES OP has limited capture diagnosis information 

Notes: 1,2 at the time of the paper publication (2023). Abbreviations GP: general practitioner, 

HES: hospital episodes statistics, HES APC: HES admitted patient care, HES OP: HES outpatient 
data, ONS: Office of National Statistics  

 

 

In addition, CPRD GOLD have practices up to standard (UTS) date, while this is 

missing from Aurum. Both include derived death date and acceptable patient 

flag.210 Recent publications compared CPRD GOLD and Aurum for breast cancer218 

and rheumatoid arthritis (RA)219 in terms of the consistencies between the two 

databases. The information on clinical details was consistent, also the 

correctness and completeness of the diagnosis were similar.  

 

Based on the information above, the selection of CPRD Aurum over CPRD GOLD 

for this study is justified by several key factors related to data coverage, 

quality, and linkage availability, as outlined in the comparative profile of the 

two databases. Although both CPRD GOLD and CPRD Aurum are valuable UK-

based electronic health record (EHR) databases, CPRD Aurum offers distinct 
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advantages that align with the research objectives and requirements of this 

study. 

 

First, CPRD Aurum contains a larger patient population than CPRD GOLD, 

particularly within currently contributing practices (data from 1989 to present). 

This extensive coverage enhances the statistical power and generalisability of 

the study findings.210 Second, CPRD Aurum utilises the EMIS® software, which is 

increasingly adopted by GP practices across the UK, reflecting a more 

contemporary and widely used system for recording routine clinical data. This 

modern coding system enhances the accuracy and relevance of the data for 

current clinical research.210 Third, the superior linkage to secondary care and 

mortality data is critical for this study, as it enables a more holistic analysis of 

patient outcomes. It also provides data for longitudinal follow-up, including 

hospitalisations and mortality.217  

 

In summary, CPRD Aurum’s broader patient coverage, alignment with modern 

clinical coding systems, superior linkage to secondary care and mortality data, 

and relevance to current and future research make it the preferred choice for 

this study. These advantages outweigh the benefits of CPRD GOLD, particularly 

given the study’s focus on English primary care data and the need for 

comprehensive linked datasets to analyse patient outcomes effectively. 

5.3.3 Data structure of CPRD Aurum 

Primary care data in CPRD Aurum has a complex relational data structure and 

format. There are eight structured separate files, and data are formatted in long 

format, where a patient could have multiple rows of data. The patient file 

contains the basic information of patient’s demographics, registration details, 

and date of death. The practice file contains the practice region and date of 

data collection by practice. Meanwhile, the staff file records the job category 

for staff registered in CPRD Aurum.195  
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Furthermore, the observation files record the medical history of patients, 

including symptoms, clinical measurement, laboratory tests, and diagnosis as 

well as patient ethnicities. The consultation files contain the type of 

consultation performed by the GP (i.e: telephone, visits type), these files can be 

linked with observation and or the problem, referral, as drug files data relating 

to prescriptions (Figure 5.1)  

 

 
 
Linked via:         patient id          practice id           staff id            observation id               consultation id 
 
Note: Observation files contain symptoms, diagnoses, immunizations, tests, and lifestyle factors. Problem 
and referral files contain add-on information for certain types of observation. Some drug issues are linked 
to problem-type observation. 

 
Figure 5.1 CPRD Aurum dataset structure 

 

 

By May 2022, the CPRD Aurum database recorded over 41 million acceptable 

patients for research, with 38 million eligible for linkage. The total number of 

NHS GP practices is 1,491. In terms of coverage, this data covers approximately 

13 million patients in the UK population (Table 5.2).215 
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Table 5.2 Updated version of Aurum database, May 2022215 

Metrics Coverage 

Total number of acceptable patients1 (including transferred 

out and deceased patients): 

 

41,200,722 

Current acceptable patients (i.e: registered at currently 

contributing practices, excluding transferred out and 

deceased patients): 

 

13,300,067 

Percentage UK population coverage2 (current patients 

only): 

13,300,067 of 67,081,000 

(19.83%) 

 

Total patients eligible for linkage  38,377,503 

 
Available follow-up time in years since 1st January 19953 (all 
patients including transferred out and deceased): 
Mean (standard deviation) 
Median (25th and 75th percentile)  
 

 

 

                     7.93 (7.97) 

4.76 (1.80-11.77) 

Available follow-up time in years since 1st January 1995 (all 
patients including transferred out and deceased): 
Mean (standard deviation) 
Median (25th and 75th percentile)  

 

11.66 (9.49) 

8.74 (3.25-19.85) 

 

Total number of practices (current and historic) included in 

the database: 

 

1,491 

 

Currently contributing practices: 

 

1,345 

 

Percentage coverage of UK GPs (currently contributing 

practices only): 

 

         1,345 of 8,178 (16.45%) 

 

 

Regional distribution of currently contributing practices4 

England 

Northern Ireland 

Scotland  

Wales 

 

 

 

1,332 (99.03%) 

13 (0.97%) 

0 (0.00%) 

0 (0.00%) 
1 Permanent registration only; 2 Based on lates UK population estimates from ONS; 3 Follow-up time stated 
does not incorporated UTS data and the database includes records pre-dating the 1st January 1995.;  
4Expressed as a percentage of all practices currently contributing to CPRD Aurum 
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Apart from this, the missing data and the different GP IT systems and coding 

should be explored more when using CPRD Aurum data. Recently published 

studies reported the correctness and completeness of several diseases 

(pulmonary embolism, MI, T2DM, comorbidities)204,220,221 recorded in CPRD Aurum 

is suitable to be used for research. We therefore arguably focus on the data 

cleaning stage since the data checking, quality assurance, as well as data quality 

and accuracy has been performed by CPRD and these published studies.  

5.3.4 Variables in datasets 

Variables in CPRD Aurum datasets encompass a wide range of clinical, 

demographic, and administrative data. The details of overall data specification 

are presented in CPRD Aurum data specifications. For this thesis the key sub-

dataset and variables are presented in Table 5.3. These datasets are linked to 

each other to draw the sequence and comprehensive journey of patients 

recorded in CPRD. This serves as the specific information that will be utilised in 

the CMD model. 

 

Table 5.3 Details on dataset used for model development and statistical analysis  

Dataset Description Key variables 

Patient Patient and practice information, HES 
id and patient’s ethnicity 

patient id, age, gender, 
practice id, hes id, ethnicity, 
deprivation index 

Observation Covers any clinical data/measurement 
reported in certain observation time 

observation date, medcode 
id, measurement values 
(numutid), 

Diagnosis Divided into three datasets: primary 
diagnosis, episodes, hospitalisation. 

Consists of episodes and hospitalisation 
information. Unique identifiers for 
each clinical episode in database, also 
the time of clinical episodes/events. 

ICD, admission and discharge 
date, start and end date 
(episodes),  

Linkage List of patients who are eligible to be 
linked to HES and ONS death data 

linked date, HES, spno, 
death 

Death Details of patient death information 
including date of death and cause of 
death 

date of death, cause of 
death 

HES: hospital episode statistics; ICD: international classification of diseases; medcode: A unique identifier 
used to represent specific medical concepts, such as diagnoses/symptoms/clinical observations selected by 
GP; spno: spell number uniquely identifying a hospitalisation 
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5.4 Data pipeline 

The patient-level data was obtained directly from CPRD and securely stored 

within the University of Glasgow’s cloud services (NextCloud). Prior to sampling, 

a data pipeline was constructed to facilitate the ingestion, transformation, and 

manipulation of CPRD Aurum data, ensuring its readiness for analysis. This stage 

is critical for maintaining efficient data flow and preparing the dataset for 

downstream statistical work. 

 

Initially, the CPRD Aurum data was imported into a Structured Query Language 

(SQL) relational database management system. SQL was used primarily for data 

discovery, allowing the team to explore the general structure of the database 

and experiment with generating sample patient index values. However, due to 

performance limitations and inefficiencies in handling large volumes of data (N= 

14,464,503), SQL was used solely for initial inspection and exploratory purposes. 

 

With the full support of the University of Glasgow’s MVLS Advanced Research 

System (MARS), all subsequent queries and analyses were transitioned to R, a 

more efficient and flexible environment for processing large-scale datasets. This 

shift significantly improved operational efficiency, enabling streamlined data 

manipulation and analysis while maintaining the integrity and security of the 

data throughout the pipeline (Figure 5.2). 
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Figure 5.2 Data preparation workflow 

 
The initial data processing was primarily conducted using the Aurum pipeline 

package in R, developed by Jay Hughes (2022).222 The aurum_pipeline ( ) 

function was executed to process raw electronic health records (EHRs) and store 

the output in Parquet format. Parquet is a highly efficient columnar storage file 

format, specifically optimised for handling large-scale datasets. Unlike 

traditional row-based storage formats (e.g., CSV or JSON), Parquet enables 

efficient data compression and encoding, significantly reducing storage 

requirements. By organising data into columns rather than rows, Parquet 

facilitates vectorised processing, allowing analytical queries to retrieve only the 

required columns instead of scanning entire rows.223 This columnar structure 

enhances performance in big data analytics, making Parquet particularly well-

suited for large healthcare datasets like Aurum, where millions of patients 

generate vast longitudinal clinical records. 

 

Once the data was processed and stored in Parquet, it was loaded into an R data 

frame for further analysis. To efficiently query and manipulate these large 

datasets, the ‘Arrow’ package in R was applied. The Apache Arrow project 

provides a cross-language development platform for high-performance in-
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memory computing. It offers a unified interface that allows seamless interaction 

with multiple data storage formats, including Parquet and csv. The Arrow 

package enables zero-copy reads, minimising memory overhead when handling 

large datasets, which is crucial when working with highly granular longitudinal 

EHR data (e.g., Aurum observation records where a single patient can have 

thousands of time-stamped clinical encounters over several years). The Arrow R 

package integrates seamlessly with dplyr224, allowing analysts to write 

expressive and optimised data transformation pipelines without requiring 

explicit low-level memory management. This functionality is particularly 

beneficial for filtering, aggregating, and joining high-dimensional datasets 

efficiently. The full code implementation for this process is available in Github 

for reproducibility and transparency. 

 

Additionally, SQL was utilised for a limited subset of data processing tasks, 

primarily for initial data exploration, generating patient indices, and performing 

inner joins with linked datasets such as HES via the patient identifier. At an 

earlier stage of the pipeline, data transformation was partially executed on a 

high-performance computing (HPC) system before transitioning to an R-based 

processing workflow. However, depending on system requirements and 

computational efficiency, analysts may choose to perform all data management 

within R, Python, or a hybrid approach leveraging SQL servers.  

 

While SQL-based data warehousing solutions (e.g., cloud-based systems such as 

Google BigQuery, Microsoft SQL Server) provide robust scalability, they introduce 

additional costs and require ongoing maintenance. Furthermore, when working 

with sensitive patient-level data, analysts must ensure compliance with 

institutional governance frameworks and data protection regulations (e.g., GDPR 

in the UK). The decision to integrate SQL with R or Python should be based on 

computational efficiency, security, and data governance considerations. 
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5.5 Cohort identification 

5.5.1 Inclusion criteria 

As described in Chapter 4, the state transition model has seven states, including 

disease free, type 2 diabetes (T2DM), myocardial infarction (MI), post-MI, stroke 

and post-stroke, and death. The basic premise of this structure is to describe 

and analyse how individuals transition through multiple health states over time.  

 

Given these characteristics, the thesis adopts the term of ‘multi-state model’ to 

represent the analytical framework. Unlike traditional analysis, which typically 

considers a single transition (e.g. from alive to death), a multi-state model 

accommodates complex disease trajectories, capturing the progression through 

intermediate health conditions.167,225 This approach necessitates a structured 

data management process ensuring that transitions between states are 

accurately defined and modelled. The statistical method will be 

comprehensively presented in Chapter 6.  

 

From the total CMD patient population within the CPRD Aurum dataset 

(N=14,464,503), approximately 10% (n=1,344,338) were eligible for linkage with 

Hospital Episode Statistics (HES) and mortality data. In this context, eligibility 

refers to registration with GPs that had provided consent for data linkage to 

external sources. Patients registered with practices that had not opted into the 

linkage scheme contribute complete primary care records within CPRD Aurum 

but cannot be linked to hospital admissions or death records for governance and 

data-sharing reasons. 

 

Accordingly, linkage eligibility was determined at the practice level rather than 

the individual patient level, and does not reflect clinical characteristics, disease 

severity, or differential data completeness. The proportion of linkable patients 

therefore reflects the extent of practice participation in the CPRD linkage 

programme during the study period. 

 

For this study, the inclusion criteria encompassed adult patients (≥18 years old) 

who were registered with a GP between 2000 and 2020, ensuring consistency in 

clinical coding practices over time. Based on these criteria, the observation 



 

 

94 

period spans from 1990 to 2020 followed by filtering the plausible data, which is 

justified by the number of recorded observation years per patient (Figure 5.3).   

 

 

Figure 5.3 Number of patients by observation period 

 

 

The cardiometabolic “disease-free” state was defined as the absence of any 

recorded CMD prior to study entry. This classification encompassed individuals 

with no prior diagnoses of T2DM, MI, coronary heart disease (CHD), stroke, 

transient ischaemic attack (TIA), cerebrovascular disease (CBVD), or acute 

coronary events, as determined by ICD-10 codes. Fatal stroke and MI were 

defined as cases where death occurred within 30 days of the event; otherwise, 

these were categorised as post-stroke or post-MI events. 

 

The first cardiometabolic event was identified as the earliest recorded diagnosis 

of T2DM, stroke, or MI, irrespective of whether it was documented as a primary 

or secondary diagnosis, recorded within a hospital episode, associated with a 

single hospital admission, or listed as a comorbidity. To ensure a comprehensive 

assessment of patient trajectories, primary care records were linked with 

hospital episode data, enabling the identification of transitions between primary 

and secondary care settings and the determination of first consultations or 

hospital visits. Events that were not associated with cardiometabolic disease 

(CMD) were classified as non-CMD events, referring to diagnoses not included 

within the ICD-10 classifications for CMD-related conditions. 
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5.5.2 Covariates and clinical events of interest 

The covariates (and clinical biomarkers) and clinical events of interest included 

in this CMD model development are presented in Table 5.4. The medical code 

(medcode) list and its description were retrieved from various published 

literature. Furthermore, the medcodeid was re-checked, compared between 

studies, and summarised as new medcode files that represent current events of 

interest. For the hospital data (HES), ICD-10 is used to define the clinical event 

of interests. 

 

Table 5.4 Code source for variables included in the model 

Variables Description Code Sources 

Covariates • age, gender, deprivation 

index, ethnicity 

• smoking status, alcohol 

status, 

• family history (T2DM and 

CVD), presence of diagnosis 

(atrial fibrillation, 

hyperlipidaemia, 

hypertension 

medcodeid Exeter 

Diabetes 

Research Team 

codelists226, 

LSHTM Data 

Compass227–229, 

DaRe2THINK230 

 

 

 

• BMI (kg/m2), blood glucose 

(mmol/l), blood pressure 

(mmHg), HbA1C (mmol/l), 

HDL (mmol/l), LDL 

(mmol/l), triglycerides 

(mmol/l), total cholesterol 

(mmol/l) 

 

 

 

 

 

Clinical 

event  

(primary 

care) 

T2DM, MI, Stroke medcodeid Exeter 

Diabetes 

Research Team 

codelists226, 

LSHTM Data 

Compass227–229, 

DaRe2THINK230 

 

    

Clinical 

event  

(secondary 

care) 

T2DM E11, O24.1 ICD-10 

dictionary231 

 MI I21, I22, I23, 

124.1, 125.2 

ICD-10 

dictionary231 

 Stroke I60, I61, I62, I63, 

I64 

ICD-10 

dictionary231 
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After filtering by observation period and data filtering, 1,191,377 patients 

remained, the data underwent filtering to address potential issues related to 

invalid coding, duplication, and inconsistencies within clinical code lists. At this 

stage, all invalid and inconsistent data were removed before constructing the 

final standardized dataset. 

 

Invalid coding in this context refers to patients with discrepant or implausible 

data entries, particularly inconsistencies between primary care records and 

hospital data. Examples include erroneous diagnosis entry dates (e.g., a 

recorded year of 1895), observation dates that match a patient's birth date, 

making it impossible to determine the precise timing of a diagnosis or 

procedure, or cases where patients were recorded as deceased but continued to 

have observations documented after their date of death. 

 

A five-year lookback period was employed to ensure accurate classification of 

baseline health status by examining clinical event histories prior to cohort entry. 

This period serves to identify and exclude patients with CMD events. By doing so, 

the analysis minimises left-censoring bias and ensures that only individuals 

without CMD enter the model. 

 

Technically (see Github), to get eligible baseline individuals, 

the getQualifyingPatients() function identified eligible individuals aged 

18 or older by 1990 and without prior records of CMD events, using general 

practice and hospital-coded data. The generateStateTransitionTable() 

function then constructed a chronologically ordered dataset of CMD events after 

1st January 1990, harmonising formats, integrating death records, and 

calculating time variables to support longitudinal analyses.  

 

To ensure clinical validity, the filtering functions were also established by 

removing overlapping MI and stroke events within a single hospital episode and 

generate only the first diabetes diagnosis per patient. For CVD events, it begins 

by linking each event in the main event table to the corresponding hospital 

discharge date, based on a shared ‘spno’ number. It then iterates through each 

patient’s records, applying logic to retain only the first occurrence of MI or 



 

 

97 

stroke, and exclude subsequent events of the same type if they fall within the 

previously recorded hospital discharge window.  

 

The relabelFirstSecondCVD() function enhances the model by 

distinguishing initial from subsequent MI or stroke events, labelling the latter as 

post-MI or post-stroke to capture disease progression. 

The removeCompetingCVDEvents() function enforces a hierarchy between MI 

and stroke. This approach assumes that recurrent events within the same 

hospital episode likely represent continued care for the same incident, rather 

than new, independent events. By systematically updating the most recent 

discharge date and comparing it to the timing of subsequent events, the function 

ensures that only clinically meaningful, non-overlapping MI and stroke events are 

preserved. The dataset is then re-ordered chronologically by patient and event 

date, with recalculated inter-event durations. 

 

5.6 Data cleaning and pre-processing  

5.6.1 Complete case and missing data  

For the development of the CMD model, a complete case analysis (CCA) 

approach was employed. The dataset was filtered to include only those 

observations with complete data for the primary covariates of interest, namely 

age, sex, cholesterol levels, glucose levels, and blood pressure. CCA, also 

referred to as listwise deletion, is a widely used statistical method in scenarios 

where the focus is on analysing observations with no missing values, excluding 

incomplete cases from the dataset. 

 

As part of this process, the biomarkers data quality was checked and cleaned by 

applying EHRBiomarkr packages in R developed by Exeter Diabetes Research 

Team (2023).226 This package has two main functions, 

clean_biomarker_values, which removes implausible biomarker values, or 

extreme value ranges, and the clean_biomarker_units function retains only 

biomarker values with appropriate unit codes (numunitid) or those with a 

missing unit code in CPRD Aurum. Prior to applying this, the relevant biomarker 

units were checked to make sure all biomarkers are already converted to 

standard units. 
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After applying the filtering criteria, a total of 184,845 patients were included as 

the baseline for model development and cohort construction. All covariates in 

the dataset were complete; however, one biomarker, HbA1c, exhibited a high 

proportion of missing data (70%) observed across both male and female 

populations. HbA1c is a critical indicator of glycaemic control in patients with 

diabetes and is often associated with a range of health outcomes, making its 

inclusion potentially valuable for the analysis. Furthermore, when examining 

HbA1c specifically in the context of T2DM status, the missingness remained 

notably high, reinforcing the decision to address this issue carefully. 

 

Missing data can indeed be addressed through imputation techniques, and there 

is no universally defined threshold for the percentage of missingness that 

necessitates imputation. However, guidance from the literature suggests that 

missing data exceeding 10-15% generally warrants consideration of imputation 

methods.232 In cases where missingness approaches 20-30%, more advanced 

techniques, such as multiple imputation, are particularly valuable due to their 

ability to account for the uncertainty associated with missing data. Multiple 

imputation creates several plausible datasets by replacing missing values with 

estimates based on observed data, thereby preserving the variability and 

relationships within the dataset.232,233 

 

Given the exceptionally high missingness rate of 70% for HbA1c, the decision was 

made not to perform multiple imputation due to several technical and 

methodological concerns. First, imputing more than 70% of the data for a 

variable means that many of the values would be estimated rather than 

observed, leading to over-reliance on the imputation model and potentially 

distorting the true relationships within the data.234,235 Second, with such a high 

proportion of missing data, there may not be sufficient observed information to 

generate accurate imputations, even when using advanced techniques, 

increasing the risk of implausible or unreliable values.232,233,236 Third, imputed 

values may artificially reduce the natural variability in the data, leading to an 

underestimation of uncertainty and overconfidence in the results. Finally, 

multiple imputation assumes that the data are Missing at Random (MAR), but 

with >70% missingness, this assumption is often violated, as the missingness 
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pattern is more likely to be Missing Not at Random (MNAR).234,237 In such cases, 

the missingness may depend on unobserved factors or the true values of HbA1c 

itself, rendering standard imputation methods inappropriate and potentially 

biased. 

 

In addition, the model was designed to begin with a disease-free population, 

rather than being exclusively focused on diabetes patients. Given this scope, the 

other biomarkers included in the analysis were already deemed sufficient and 

important for predicting the metabolic profiles, progression, and outcomes of 

the model.  

 

 

 

 
 

Figure 5.4 Data filtering process 

 

All patients with cardiometabolic diseases registered in CPRD 
Aurum 

(N=14,464,503)

Eligible to be linked with HES, IMD
(n=1,344,338)

Registered between 2000-2020, adult patients ≥18 years old, 
observation time between 1990-2020, duplication and 

inconsistent data removed
(n=1,191,377)

Complete dataset used
(n=184,845)
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5.6.2 Structuring data for multi-state model analysis 

The next step in data preparation is to structure the dataset to be analysis-ready 

within a multi-state modelling framework. This requires ensuring the dataset 

captures event times and disease states, which are essential for modelling 

transitions between health states over time. The method of how the data will be 

analysed is presented in detail in Chapter 6.  

 

The function createTransitionMatrix() constructs a transition matrix that 

defines the permissible state transitions within the multi-state model. Utilising 

the transMat function from the mstate package in R, it encodes the possible 

clinical pathways a patient may follow through various CMD events. The ‘long 

format’ table is compatible with the mstate package means that in the long 

format there are multiple rows for the same ‘patid’.  

 

Conversion from long to wide (patid occupies one row, with separate columns for 

each event and censoring indicator) will depend on the need of further analysis. 

For instance, wide format will be more straightforward for summary statistic or 

further single event survival model. Hence, using either long or wide format 

would be dependent on the analysis undertaken.  

 

Table 5.5 Long format transition table 

patid from to Tstart 

(days) 

Tstop 

(days) 

Status Covariates 

(1,2…) 

001 Disease-free Diabetes 0 1200 1 xxxxx 

001 T2DM Death 1200 1800 1 xxxxx 

*Tstart is the time of entry in the state, and Tstop the event or censoring time, depending on the 

value of status 

 

 

Based on this established table (Table 5.5), the matrix can be computed, 

summarising disease trajectories and number of individuals in each state, this 

mapping is essential for estimating future transition-specific hazards in survival 

analysis.  
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The transition matrix (Table 5.6) defines the allowed transitions between health 

states in the multi-state model, with each numbered transition corresponding to 

a specific pathway (e.g., from disease-free to T2DM is transition 1). These 

transitions reflect the natural progression of CMD and mortality.  

 

 

Table 5.6 Transition matrix 

print(transitionMatrix) 

events(msdataContinous)  

 

 to       

from Disease-

free 

T2DM MI Post-

MI 

Stroke Post-

Stroke 

Death 

Disease-

free 

NA 1 2 NA 3 NA 4 

T2DM NA NA 5 NA 6 NA 7 

MI NA NA NA 8 NA NA 9 

Post-MI NA NA NA NA NA NA 10 

Stroke NA NA NA NA NA 11 12 

Post-

Stroke 

NA NA NA NA NA NA 13 

Death NA NA NA NA NA NA NA 

Labelled as: 1= "Disease-free to T2DM", 2 = "Disease-free to MI", 3 = "Disease-free to Stroke", 4 = "Disease-free 

to Death",5 = "T2DM to MI",  6 = "T2DM to Stroke",7 = "T2DM to Death",8 = "MI to Post-MI", 9 = "MI to Death",10 

= "Post-MI to Death", 11 = "Stroke to Post-Stroke", 12 = "Stroke to Death",13 = "Post-stroke to Death". 

 

 

The accompanying event frequency table summarises (Table 5.7) the observed 

number of individuals who experienced each transition, along with the total 

number entering each state. For instance, among those initially disease-free, 

59,226 developed T2DM, 11,806 experienced an MI, 12,505 had a stroke, and 

21,355 died without developing any of those conditions. This structure supports 

a multi-state framework by clearly identifying the sequence of disease 

progression and allows for the estimation of transition-specific survival models 

using real-world patient data. 
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Table 5.7 Summary of events in each states 

$Frequencies 

 to         

from Disease-

free 

T2DM MI Post-

MI 

Stroke Post-

Stroke 

Death Total 

n 

event 

Total 

entering 

Disease-

free 

0 59226 11806 0 12505 0 21355 79953 184845 

T2DM 0 0 2692 0 2560 0 9676 44298 59226 

MI 0 0 0 2217 0 0 4245 8036 14498 

Post-MI 0 0 0 0 0 0 912 1305 2217 

Stroke 0 0 0 0 0 2988 5970 6107 15065 

Post-

Stroke 

0 0 0 0 0 0 1483 1505 2988 

Death  0 0 0 0 0 0 0 43641 43641 

 

 

 

5.6.3 Assigning time-dependent covariates 

The hazard (risk) of an event often depends not only on baseline values but on 

the most recent or cumulative values of covariates at the time the event is being 

assessed.238 This dynamic relationship underscores the necessity of incorporating 

time-dependent covariates especially in survival and multi-state models.  

 

There are several reasons for assigning time dependencies before conducting 

analysis. First, the model is intended to reflect the real-world clinical 

progression, many risk factors (e.g., biomarkers) evolve over time, and their 

current values—rather than just baseline measurements—directly influence event 

risks. This aligns with the previously discussed systematic review 

recommendation in Chapter 3, where dynamic covariates are integral to 

accurately modelling disease progression.Second, as an attempt to prevent 

survivorship bias and misclassification, for instance: if patients must survive 6 

months to receive a medication, treating them as "treated" from baseline may 

underestimate their early risk. It would artificially inflate their apparent survival 

advantage by ignoring early untreated follow-up time. Third, adjustment for 

intermediate events is important, particularly in models with transitions 

between states. In such models, covariates can be updated after each transition, 

ensuring that the hazard function reflects the patient’s most recent clinical 
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status. Also, when static models may underestimate variability in risk, time-

dependent models adapt to new information.  

 

All covariates in this model are treated as time-dependent, age was computed 

from full date of birth and updated each interval, meaning the most recent 

recorded value before the start of each interval (Tstart) was used. This 

ensures that covariate values reflect the patient's most up-to-date state just 

before entering the event risk window, allowing the model to more accurately 

capture real-world disease progression. 

 

This approach ensures the model captures the patient’s state immediately 

preceding each event-risk window. The resulting data structure is compatible 

with standard survival analysis tools (e.g., the survival package in R) and means 

that it can be seamlessly integrated into Cox models while properly accounting 

for time-varying effects. 

 
 

5.7 Cohort characteristics 

In a cohort of 184,845 individuals (Table 5.8), comprising 89,645 males and 

95,200 females, the median age was 42 years (IQR: 32–52) for both sexes. This 

exploratory analysis serves as a foundation for identifying transitions where sex 

differences may influence disease progression.  

 

A family history of diabetes was common in both sexes, reported by 46.4% of 

males and 42.6% of females, while approximately one-fifth reported a family 

history of cardiovascular disease (CVD). Around one-third of participants had no 

reported family history of diabetes or CVD. The cohort was predominantly of 

White ethnicity (approximately 73% in both sexes), followed by Asian and Black 

ethnic groups. The ethnic distribution was broadly comparable between males 

and females, with a slightly higher proportion of females classified as “Other” 

ethnicity. 

 

In terms of health-related behaviours, most participants reported low-risk 

alcohol consumption, although abstention was more common among males 
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(14.2%) than females (7.2%). Females had a higher prevalence of current and 

former smoking, whereas males were more likely to be never smokers. 

Socioeconomic status, measured using the Index of Multiple Deprivation (IMD), 

showed a relatively even distribution across quintiles for both sexes, with a 

modest concentration in the most deprived quintile (IMD 5). 

Regarding baseline clinical conditions, hypertension was highly prevalent, 

affecting 45.0% of males and 49.3% of females. Hyperlipidaemia was present in 

around 17% of both sexes, while atrial fibrillation was more common in males 

than females (6.3% vs 4.6%). 

 

Anthropometric and biochemical risk factors differed by sex. Overweight and 

obesity (BMI ≥25 kg/m²) were highly prevalent in both groups, particularly 

among females. Females also had a higher proportion classified as obese (BMI 

≥30 kg/m²). Males were more likely to have low HDL cholesterol, while females 

more frequently exhibited higher HDL levels.  

 

Blood pressure measurements indicated a high prevalence of elevated systolic 

blood pressure (≥140 mmHg) in both sexes, particularly among females. Raised 

diastolic blood pressure (≥90 mmHg) was more common in females than males. 

Finally, glycaemic measures showed that the majority of participants had blood 

glucose levels in the prediabetes range (5.5–7.0 mmol/L), with a higher 

proportion of females meeting criteria for diabetes (≥7.0 mmol/L). Triglyceride 

levels were generally lower among females, whereas males were more likely to 

have elevated triglycerides. 

 

The categorisation of baseline characteristics in Table 5.8 was based on 

established clinical thresholds and common epidemiological conventions to 

support interpretability and comparability. Age, blood pressure, body mass 

index, lipid fractions, and glycaemic measures were grouped using clinically 

recognised cut-points rather than data-driven thresholds.239,240 A single set of 

HDL cholesterol categories was applied across sexes to ensure consistency and 

facilitate direct comparison, with sex-specific differences reflected through 

stratified reporting. All categorical distributions are presented as column 

percentages within sex, in line with conventional practice.
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Table 5.8 Baseline characteristics of study population by sex 

 Male (n= 89,645) Female (n= 95,200) 

   
 Median  

(Q1-Q3) 
n (%) Median  

(Q1-Q3) 
n (%) 

 
Age (years), all 

 
42 (32-52) 

   

18‐25  8,146 (9.08)  9,761 (10.25) 
25‐34  16,235 (18.11)  20,701 (21.75) 
35‐44  20,053 (22.37)  24,520 (25.76) 

45‐54  21,347 (23.81)  22,586 (23.72) 
55‐64  16,721 (18.65)  13,775 (14.47) 
>65  7,143 (7.98)  3,857 (4.05) 
     
Family history     
Diabetes  41,562 (46.36)  40.583 (42.63) 
CVD  18,030 (20.11)  19,470 (20.45) 

No family history  30,053 (33.53)  35,147 (36.92) 
     
Ethnicity     
White  65,229 (72.76)  69,405 (72.91) 
Asian  6,550 (7.31)  6,836 (7.18) 
Black   4,456 (4.97)  3,536 (3.71) 

Mixed  582 (0.65)  527 (0.55) 
Other  12,828 (14.31)  14,896 (15.65) 
     
Alcohol consumption     
Level 0  12,703 (14.17)  6,815 (7.16) 
Level 1  73,809 (82.34)  81,172 (85.26) 
Level 2  1,140 (1.27)  3,339 (3.50) 

Not reported  1,018 (1.14)  837 (0.88) 
Missing  975 (1.08)  3,037 (3.20) 
     
Smoking status     
Active smoker  20,423 (22.78)  26,277 (27.60) 
Ex smoker  19,114 (21.32)  30,477 (32.03) 

Non‐smoker  50,108 (55.90)  38,446 (40.38) 
     
Deprivation index     
IMD 1  15,007 (16.74)  17,715 (18.61) 
IMD 2  16,749 (18.68)  18,553 (19.48) 
IMD 3  17,133 (19.11)  18,344 (19.27) 

IMD 4  19,118 (21.33)  19,253 (20.23) 
IMD 5  21,638 (24.14)  21,235 (22.31) 

     
Presence diagnosis     
Atrial fibrillation  5,612 (6.26)  4,374 (4.59) 
Hyperlipidaemia  15,811 (17.64)  15,944 (16.75) 
Hypertension  40,343 (45) 

 

 46,885 (49.25) 

BMI (kg/m2)     
<18.5 17.60  

(16.80-18.10) 
1,233 (1.45) 17.67  

(17.00—18.13) 
527 (0.55) 

18.5‐24.9 22.87  
(20.13-23.37) 

20,608 (52.00) 23.30  
(22.00-24.20) 

18,205 (19.13) 

25‐29.9 27.37 (26.15-
28.60) 

29,443 (32.84) 27.40  
(26.20-28.60) 

40,224 (42.25) 

≥ 30 20.75 (31.88-
38.22) 

38, 361 (42.81) 19.61  
(31.31-36.20) 

36,244 (38.07) 

     
HDL (mmol/l)     
<1.03 0.95 (0.89-1.00) 7,603 (8.48) 0.92 (0.85-0.99) 24,466 (25.70)  

1.03‐1.54 1.30 (1.20-1.41) 45,091 (50.30) 1.23 (1.13-1.36) 55,778 (58.60) 
≥1.55 1.80 (1.66-2.05) 36,951 (41.22) 1.74 (1.62-1.95) 14,956 (15.70) 
     
LDL (mmol/l)     
<2.6 2.20 (1.90-2.43) 24,339 (27.15) 2.17 (1.83-2.40) 31,175 (32.75) 
2.6‐3.3 2.99 (2.80-3.15) 27,091 (30.22) 2.97 (2.80-3.14) 29,208 (30.70) 

3.4‐3.9 3.60 (3.45-3.74) 20,111 (22.43) 3.60 (345-3.74) 19,285 (20.25) 
4.0‐4.9 4.27 (4.09-4.52) 15,528 (17.33) 4.27 (4.09-4.52) 13,668 (14.35) 
≥4.9 5.38 (5.17-5.70) 2,576 (2.87) 5.33 (5.15-5.67) 1,864 (1.95) 

 

     
 

 



 

 

106 

 Male (n= 89,645) Female (n= 95,200) 

   
 Median  

(Q1-Q3) 
n (%) Median  

(Q1-Q3) 
n (%) 

 

SBP (mmHg)     
<120 115.13  

(110.85-118.25) 
6,721 (7.50) 115.83  

(111.50-118.56) 
6,415 (6.74) 

120‐140 132.75  
(128.0-136.62) 

39,042 (43.55) 132.88  
(128.08-136.67) 

41,120 (43.20) 

≥ 140 148.75  
(144.12-155.00) 

43,882 (48.95) 148.67 
(144.12-155.00) 

47,665 (50.06) 

     
DBP (mmHg)     
<80 75.35  

(71.78-78.00) 
38,526 (42.97) 75.50  

(71.75-78.00) 
35,418 (37.20) 

80>90 84.44  
(82.22-86.93) 

38,913 (43.41) 84.46  
(82.50-87.29) 

40,623 (42.67) 

≥ 90 93.22  
(91.44-96.08) 

12,206 (13.62) 94.00  
(91.82-97.30) 

19,159 (20.13) 

     
Triglycerides(mmol/l)     
<1.7 1.15 (0.90-1.40) 56,243 (32.38) 1.18 (0.92-1.42) 56,243 (59.10) 
1.7‐2.2 1.92 (1.80-2.06) 16,626 (8.11) 1.93 (1.80-2.06) 16,626 (17.45) 

2.3‐5.6 2.70 (2.40-2.18) 14,633 (7.92) 2.80 (2.45-3.38) 21,658 (22.75) 
≥ 5.6 6.40 (5.95-7.55) 167 (0.09) 6.60 (6.00-7.92) 673 (0.70) 
     
Blood glucose (mmol/l)     
<5.4 4.70 (4.50-4.90) 35,003 (39.04) 4.75 (4.53-4.90) 28,466 (29.90) 
5.5‐7 5.58 (5.27-6.06) 45,479 (50.73) 5.60 (5.30-6.10) 54,043 (56.77) 
≥7 8.10 (7.40-10.10) 9,163 (10.23) 8.33 (7.45-10.90) 12,700 (12.33) 

     
Total cholesterol (mmol/l)     
<5.0 4.51 (4.15-4.80) 32,004 (35.70) 4.40 (3.97-4.72) 46,459 (48.80) 
5‐5.5 5.27 (5.14-5.40) 18,211 (20.31) 5.25 (5.13-5.40) 18,519 (19,45) 
5.6‐6 5.75 (5.63-5.89) 16,310 (23.48) 5.75 (5.63-5.89) 14,073 (14.80) 
≥ 6 6.52 (6.24-6.96) 23,120 (25.90) 6.48 (6.20-6.90) 16,149 (17.25) 

     
IMD: index of multiple deprivation, BMI: body mass index, HDL/LDL: high/low density lipoprotein, SBP/DBP: systolic/diastolic 
blood pressure. 

Note: Alcohol consumption level (0: abstinence, non-drinker, 1: moderate drinking  14 units/week, 2:  14 units/week), smoking 
status (active: ≥1 cigarette/day, includes e-cigarettes, ex: Stopped ≥6 months ago, non: Never smoked or <100 lifetime 
cigarettes). 
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5.8 Discussion and conclusions 

Data preparation is a critical part of real-world data research, often accounting 

for 50–80% of the analytical workload.241 This section outlines the key steps 

taken to prepare CPRD Aurum data for the cardiometabolic disease (CMD) policy 

model, capturing both technical and conceptual aspects. Documenting this 

process supports transparency, reproducibility, and methodological rigour. In the 

context of growing reliance on real-world evidence and open science practices, 

such documentation also contributes to broader efforts in promoting 

accountability and openness in health research.242,243 

 

In addition to the computational demands, this process highlights several 

challenges in preparing CPRD Aurum data. The relational database structure 

requires careful merging, especially for time-to-event analyses, so that the data 

accurately captures the trajectory and hierarchy of events. Additionally, Aurum 

uses different clinical coding systems compared to CPRD GOLD; therefore, using 

validated code lists is strongly recommended. As mentioned earlier, there is also 

a high likelihood of implausible data entries, so double-checking data quality can 

be beneficial before proceeding with further data manipulation. 

 

This data preparation documentation addresses key challenges in large-scale 

data analysis through several practical advantages. First, adopting the Parquet 

file format enhances processing speed and scalability, particularly for high-

volume datasets. Parquet files in R demonstrate superior computational 

efficiency and reduced storage demands compared to traditional formats such as 

SAS, especially when managing large health records.223,244 Second, linking and 

extracting data from both primary and secondary care sources enables a more 

complete representation of disease trajectories and cohort development, also by 

building new R functions replication is possible when preparing the analysis-

ready dataset, particularly for multi-state modelling. Third, applying established 

updated R functions available for cleaning covariates and biomarkers ensures a 

reproducible and streamlined workflow, eliminating the need for manual 

adjustments.222,226 
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It is important to recognise that data preparation methods can vary significantly 

depending on research objectives, prior expertise, and the availability of data 

infrastructure. Furthermore, as computational and data management techniques 

continue to evolve through advancements in automation, function development, 

and other innovations, thus there is considerable potential to refine and improve 

the efficiency of data preparation processes. While the methods described here 

were tailored to the specific needs of this study, alternative approaches may 

offer greater efficiency, particularly when handling large-scale and complex 

datasets.
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Chapter 6 Developing a Cardiometabolic 

Disease Policy Model  

 

 

 

6.1 Introduction 

Chapter 6 presents the development of a Cardiometabolic Disease (CMD) Policy 

Model to support further long-term epidemiological analysis and health economic 

analysis. Building on the conceptual framework outlined in Chapter 4 and the 

data sources (Clinical Practice Research Datalink (CPRD) Aurum and linked 

datasets) described in Chapter 5, this chapter applies time-to-event multi-state 

survival analyses to model transitions between cardiometabolic health states. 

 

Sections 6.2 and 6.3 outline the statistical and modelling principles underpinning 

the CMD Policy Model, including the rationale for using survival analysis, the 

structure and logic of the multi-state framework, and the time-dependency 

assumptions that govern disease progression. The CMD Policy Model captures 

progression across seven health states from disease-free to type 2 diabetes 

mellitus (T2DM), myocardial infarction (MI), stroke, and death, via 13 clinically 

defined transitions.  

 

To reflect the complexity of disease pathways and enable extrapolation, a range 

of survival modelling approaches is explored, including non-parametric (e.g., 

Kaplan-Meier), semi-parametric (e.g., Cox regression), standard 

parametric (e.g., exponential, Weibull), and flexible parametric (e.g., Royston-

Parmar spline) models. These methods are embedded within a multi-state 

framework and extended using a semi-Markov structure. The model results and 

the final CMD Policy Model are presented in sections 6.4 and 6.5, respectively. 
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6.2 Overview of modelling strategy 

6.2.1 Rationale for survival analysis 

Definition 

Survival data has been widely applied across various disciplines, particularly in 

medicine and public health. Also known as time-to-event (TTE) data, it provides 

information not only about whether an event of interest (e.g., death) has 

occurred, but also on how the ‘hazard’ of when it occurs changes over time. 

 

Survival analysis is designed to handle TTE data, particularly in situations where 

traditional regression methods (e.g., logistic or linear regression) are inadequate 

due to censoring or the time-dependent nature of outcomes." 245,246  While 

conventional regression methods can assess the relationship between risk factors 

and the occurrence of an event, they are not well-suited for scenarios where 

some subjects do not experience the event within the study period.247 Survival 

analysis addresses this limitation by properly accounting for censored 

observations and enabling estimation of the timing and risk of events over 

time.245,246  

 

Typically, survival analyses have several objectives: 1) estimate, interpret, or 

compare survival and/hazard functions over time 2) identify and assess predictor 

(explanatory variables) of survival time (in proportional hazard assumptions) 3) 

handle censored data appropriately. These will be briefly discussed in following 

sections. 

Censoring 

A fundamental concept in survival analysis is censoring, which occurs when the 

exact time of the event of interest is not observed for some individuals. This 

typically arises when participants do not experience the event within the study's 

observation period. In such cases, it is known that the event has not yet 

occurred, but it remains uncertain if or when it will happen in the future.248 

Survival data analysis becomes methodologically challenging due to the variation 

in follow-up times across participants and the presence of censored 
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observations, which must be properly accounted for to avoid biased estimates of 

event timing and risk. 

 

There are several reasons why censoring occurs in survival analysis. First, the 

study may conclude before all participants experience the event of interest, 

leaving their full survival times unknown. Second, some participants may drop 

out or be lost to follow-up, resulting in incomplete outcome data. Third, 

participants may withdraw consent, relocate, or experience a different event 

that prevents further data collection.249–251 Additionally, individuals who have 

not experienced the event of interest by the end of the follow-up period are 

treated as right-censored, as their event time remains unknown but may occur 

in the future.252  

 

Censoring can be categorised into three main types: right censoring, left 

censoring, and interval censoring.248  Right censoring occurs when a subject's 

follow-up ends before they experience the event of interest (e.g., death, 

disease onset), this is by far the most common of censoring. The situation when 

a study terminates before all participants have died, those who are still alive at 

the end of the study are considered right censored.253 For instance, if a 

participant(s) in a 10-year cohort study does not develop diabetes by the end of 

the follow-up period. The study ends in 2030, and some individuals remain 

diabetes-free until then. Since we do not know if they develop diabetes after 

2030, their data is right censored in 2030. 

 

Interval censoring arises when the exact time of the event is unknown, but it is 

known to have occurred within a specific time range.248 For example, consider 

the case of atrial fibrillation (AF): older adults might undergo routine 

electrocardiograms (ECGs) annually to monitor heart health, and then a patient 

who had a normal ECG in January 2020, missed their 2021 follow-up, and was 

then found to have AF in January 2022. Since the patient was known to be free 

of AF in 2020 but had a confirmed diagnosis by 2022, the actual onset occurred 

at some unknown point within that two-year window.  

 

The less common censoring, left censoring, happens when the event of interest 

has occurred before the study begins, but the exact timing is unknown..248  This 
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means that the event time is only known to be less than a certain value, rather 

than observed precisely.253 For example, if a participant is enrolled in a study 

while already hospitalised with Covid-19, but the exact date of infection is 

unknown, the data is considered left-censored. In this case, the Covid-19 

infection clearly occurred before study entry, yet the precise timing remains 

unobserved. Dey et al (2020)253 illustrated clearly these different types of 

censoring (the illustration is reproduced in Figure 6.1) 

 

 

 

 

Figure 6.1 Illustration of three types of censoring 

 

From those examples if the participant was censored simply because the study 

ended, it means the censoring is unrelated to the underlying risk of the events 

which is defined as ‘non-informative’ censoring.245,249  However, there is also a 

possible condition where participants with worsening health are more likely to 

drop out, and that health decline is associated with higher event risk, then their 

censoring can be potentially ‘informative’, which can bias survival estimates if 

not properly handled.250 

 

Finally, censoring is an unavoidable and natural feature of survival data in 

longitudinal research. Rather than excluding these observations, survival analysis 

methods are designed to incorporate them appropriately to maintain the validity 

and power of the study. 
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Hazard function and survival function 

Two fundamental and related concepts in survival analysis are: survival function 

denoted by 𝑆(𝑡) as the probability of individual surviving to at least a certain 

time, and Hazard function ℎ(𝑡) describes the instantaneous risk of the event 

occurring at time 𝑡, given that the individual has survived up to that time.189,246 

 

Mathematically, S(t) is expressed as: 

 

𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡) 

(Equation 6.1) 

 

T is a non-negative random variable representing the time until the occurrence of 

the event (𝑇 ≥ 0). At the beginning of observation (𝑡 = 0), everyone is alive 

𝑆(0) = 1. As time progresses, 𝑆(𝑡), when t= decreases because some people 

will experience and event, so 𝑆(𝑡) is always non-increasing and will fall to 0 

when eventually nobody survives the event.  

 

In theory, the survival 𝑆(𝑡) is a smooth curve, but when we estimate with 

data/models it often looks like step function (Figure 6.2). It means that the 

event of interest occurs in specific discrete time points, not continuously. It 

means 𝑆(𝑡) ‘drops’ when an event occurs creating a step pattern.189  

 

 

Figure 6.2 Theoretical versus practical survival curve 
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In contrast to the survivor function 𝑆(𝑡), the hazard function ℎ(𝑡) focuses on the 

risk that the event will occur. This function describes the instantaneous rate at 

which an event (such as failure, death, or relapse) is expected to occur at time 

𝑡, given that the individual has survived up to that time.189,246 

 

To clarify the often challenging concept of the hazard function, Kleinbaum 

(2012)189 uses the analogy of a car’s speedometer. When a driver sees a reading 

of 60 mph (miles per hour), it does not mean that the driver will travel 60 miles 

in the next hour. Rather, it shows the instantaneous speed at that specific 

moment. Driver might speed up, slow down, or even stop altogether in the next 

hour, but at the point the driver glances at the gauge, 60 mph is the current 

speed.  

 

In the same way, the hazard function provides an instantaneous rate at which an 

event might occur at time 𝑡, assuming the individual has survived up to that 

time. It does not predict whether the event will occur at that moment, just as 

the speedometer does not predict how far the car will travel. Instead, it gives 

the rate at which the event is likely to happen if current conditions continue. 

Mathematically, ℎ(𝑡) is represented as follows. 

 

 

ℎ(𝑡) = lim
𝑑𝑡→0

Pr⁡(𝑡 < 𝑇 ≤ 𝑡 + 𝑑𝑡|𝑇 > 𝑡)

𝑑𝑡
=
𝑓(𝑡)

𝑆(𝑡)
 

(Equation 6.2) 

 

 

This equation illustrates that as the time interval approaches zero lim
dt→0

, the 

instantaneous rate is obtained, given that the individual has survived up to that 

point. It is important to note that the hazard function is not a ‘probability’, as it 

involves dividing a probability by a time interval, resulting in a rate rather than 

a probability value between 0 and 1.245 Because it is conditional on survival up to 

time 𝑡, the hazard function is often referred to as the conditional failure rate.  
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This can also be rewritten in terms of a probability density function 𝑓(𝑡) and the 

survival function 𝑆(𝑡), and can use derivative of the survivor function as246:   

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= −

𝑑⁡ln⁡(𝑆(𝑡))

𝑑(𝑡)
 

 

(Equation 6.3) 

 

The following formula indicates the relationship between 𝑆(𝑡), ℎ(𝑡), and 𝐻(𝑡), 

with 𝐻(𝑡) being the cumulative hazard, representing the accumulated risk up to 

time 𝑡. 

𝐻(𝑡) = −∫ ℎ(𝑢)⁡𝑑𝑢
𝑡

0

 

ℎ(𝑡) = −
𝑑⁡𝑙𝑛⁡(𝑆(𝑡))

𝑑(𝑡)
 

𝐻(𝑡) = −𝑙𝑛⁡(𝑆(𝑡)) 

𝑆(𝑡) = 𝑒−𝐻(𝑥) 

(Equation 6.4) 

 

In summary, the equation above shows that the survival function decreases 

exponentially as the cumulative hazard increases. When cumulative hazard is 

low, the survival probability remains high; as cumulative hazard increase over 

time, survival drops more steeply.  

 

While the formula above may not be essential for routine data analysis since the 

statistical software can easily compute transformations between functions—it is 

important to understand the conceptual relationship between them, as they are 

mathematically linked.  

 

6.2.2 Multi-state framework and its suitability for CMD Policy Model 

Based on the explanation in previous sub-sections, standard survival models are 

effective for analysing time to a single event (e.g., death). However, they are 

often inadequate for chronic and progressive conditions like cardiometabolic 

disease (CMD). CMD typically involves multiple intermediate events, such as the 
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development of type 2 diabetes mellitus (T2DM), myocardial infarction (MI), and 

stroke, before reaching a death event. Standard survival models do not account 

for the order, timing, or recurrence of such events, nor can they model 

transitions between intermediate disease states. In summary, standard survival 

modelling is too restrictive to analyse overall complex CMD processes (Chapter 

4). 

 

In contrast, multi-state models (MSMs) provide a more flexible and clinically 

realistic framework by allowing individuals to transition between multiple 

defined health states over time. This enables the estimation of transition-

specific hazards and accommodates time-dependent covariates, making them 

more appropriate for capturing the complexity of CMD progression.254–256 

Traditional survival analysis, can be viewed as a simple form of a MSM, for 

example, modelling the transition from being ‘alive to dead’ only (Figure 6.3a).  

 

Before delving deeper, it is important to clarify that MSMs serve as an umbrella 

framework in survival analysis, capable of representing a wide range of disease 

or life-course processes through transitions between well-defined states. These 

states may include intermediate stages (such as disease onset or recovery) and 

absorbing states (such as death). This clarification helps prevent confusion, 

particularly around the concept of competing risks (will be discussed later). 

While competing risks can appear conceptually similar to multi-state models, 

they are best understood as a special case within the broader multi-state 

framework. Although their definitions and applications may sometimes overlap, 

they differ in both structure and analytical scope.257–260 

 

Therneau et al. (2024)261 presented a series of diagrams illustrating MSMs (Figure 

6.3). Each diagram offers a different perspective depending on the structure of 

the available dataset and the specific research questions being addressed.  
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Figure 6.3 Four multi-state models 

 

Figure 6.3 (a) depicts the simplest survival model, where an individual begins in 

the "alive" state and transitions to the "dead" state; this reflects the traditional 

survival analysis framework. Figure 6.3 (b) illustrating ordered, repeated, or 

progressive events, such as stages of disease or increasing severity, with state 0 

representing study entry and subsequent states indicating sequential transitions. 

Figure 6.3 (c) represents a typical competing risks scenario, in which an 

individual starts in a single initial state (e.g., "alive") and may transition to one 

of several mutually exclusive terminal states (e.g., different causes of death), 

with no further transitions possible. Lastly, Figure 6.3 (d) presents the well-

known illness-death model, characterised by transitions between "health" and 

"illness", allowing for recovery or relapse, before reaching the absorbing state of 

"death." This model is particularly relevant in the study of chronic diseases and 

long-term prognoses. 

 

Understanding the framework of multi-state models (MSMs) allows for diverse 

perspectives and definitions in both estimation and modelling. MSMs provide a 

flexible approach to estimating various measures of interest, such as the 

probability of being in a specific state (or set of states) over time, the likelihood 

of transitioning between states, the expected duration spent in a particular 
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state, the probability of ever entering a given state, and transition-specific 

hazard rates or hazard ratios. 

 

A notable key feature within this MSM framework is the ability to account for 

competing risks. Competing risks commonly arise in clinical studies using time-

to-event (TTE) data when multiple potential outcomes can occur, and the 

occurrence of one event precludes the occurrence of others. For example, in the 

context of cardiovascular disease (CVD), a patient may die due to stroke, 

myocardial infarction (MI), or another cause.  

 

A paper by Putter et al. (2007)260 outlines several scenarios involving competing 

risks. The classical competing risks framework, as illustrated in Figure 6.7 (c), 

describes situations where multiple mutually exclusive events can occur, and the 

occurrence of one precludes the others. Another important scenario is 

the illness-death model, in this setting, an individual may develop an illness 

(e.g., diabetes) and subsequently die. Death competes with illness when 

analysing ‘time to illness’, since death may occur before the illness develops. 

However, illness does not compete with death, as death can still occur 

afterward. This asymmetry is referred to as "semi-competing."260 

 

Putter et al. (2007)260 also describe scenarios where a non-fatal event is the 

primary outcome of interest and death acts as a competing risk. The other 

possible scenario, for example death may be considered a competing event when 

the event of interest is hospitalisation. These examples highlight that competing 

risks either fully prevent the occurrence of the event of interest or 

simply preclude it from occurring first, which is crucial in selecting an 

appropriate modelling approach.258,260 

 

Several foundational studies across various disease areas have demonstrated that 

ignoring competing risks can significantly distort both the estimation of survival 

probabilities and the interpretation of covariate effects.262–266 Those emphasised 

that relying on Kaplan–Meier estimates and standard Cox models (within a simple 

alive–dead framework) can lead to inflated survival probabilities. It tends to 

overestimate cumulative incidence in long-term studies because they treat 
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competing events as censored, thus assuming individuals remain at risk 

indefinitely for the event of interest.  

 

The consequences of neglecting competing risks goes beyond statistical 

inaccuracy; they carry direct clinical implications. When treatment efficacy is 

evaluated without considering competing risks, researchers or clinicians may be 

misled about patients’ true survival prognosis.257,259,260,267,268 Having awareness 

about the competing risk scenario then can be helpful to decide which statistical 

model or scenario aligns with study objectives. The statistical approach to 

handle this condition will be presented in the following section.  

 

6.2.3 State-transition model structure 

The state-transition structure of the CMD Policy Model comprising seven disease 

states and thirteen clinically plausible transitions was first introduced in Chapter 

4 (Figure 4.4). That conceptual model provides the foundation for the statistical 

multi-state modelling presented in this chapter. 

 

Each of the thirteen transitions is treated as a distinct time-to-event (TTE) 

process and was analysed using appropriate survival modelling approaches. 

These methods enable the estimation of transition-specific hazards, the 

inclusion of relevant covariates, time-dependent effects, and support for 

extrapolation beyond the observed follow-up period. 

 

For clarity, the full state-transition structure is recalled from Chapter 4, along 

with corresponding transition labels used in subsequent sections, and is 

summarised in Figure 6.4. The labelling here serves to map transition 

movements and to inform subsequent statistical analyses.
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Figure 6.4 State transition model (labelled) 

Note: T1 = "Disease-free to T2DM",  T2 = "Disease-free to MI",  T3 = "Disease-free 

to Stroke", T4 = "Disease-free to Death",T5 = "T2DM to MI", T6 = "T2DM to Stroke", 

T7 = "T2DM to Death", T8 = "MI to Post-MI", T9= "MI to Death", T10 = "Post-MI to 

Death", T11 = "Stroke to Post-Stroke", T12 = "Stroke to Death", T13 = "Post-stroke 

to Death" 

 

The survival framework outlined here sets the foundation for modelling time-to-

event outcomes across multiple disease states. This approach is extended 

through a multi-state structure to reflect the complexity and progression of 

cardiometabolic disease. The implementation depends on how transition risks 

are assumed to evolve over time, particularly in relation to Markov versus semi-

Markov assumptions, which have been justified in the conceptual model (Chapter 

4). The rationale and statistical approaches for survival analysis and Markov 

assumptions are detailed in Section 6.3.  



 

 

 

121 

6.3 Statistical method for multi-state survival analysis model 

6.3.1 Non-parametric model 

Kaplan-Meier estimator 

The Kaplan-Meier (KM) is a non-parametric technique used to estimate the 

survival function when the time to an event varies across individuals.245,269 

Introduced in a 1958 paper by Edward L. Kaplan and Paul Meier, this method 

provided a practical solution for handling censored data.270 The KM estimator, 

also known as the ‘product-limit’ method has since become the most common 

technique used for survival analysis.271 

 

The central idea of KM is that time intervals are not predetermined but are 

instead based on the actual occurrence of events. This allows for a stepwise 

construction of survival curve, with the probability of survival recalculated each 

event time and the curve remaining constant between events.270 Then the 

estimator adjusts for censoring by appropriately modifying the number of 

individuals at risk at each time point. For example, the primary endpoint over 1 

year period of a cohort study is stroke occurrence, if individuals experience 

more than one non-fatal stroke (after 5 months, and after 10 months), the KM 

only include the first occurrence of stroke, which is at 5 months. However, does 

not accommodate multiple or recurrent events unless extended models are 

applied. 

 

Under the assumption that events happen independently, the overall survival 

probability at any time point can be estimated by multiplying the conditional 

probabilities of surviving each interval. Specifically, the survival probability at 

time 𝑡𝑖, denoted 𝑆̂(𝑡𝑖) is derived from the survival probability at the previous 

event time 𝑆̂(𝑡𝑖−1),⁡the number of individuals at risk just before time 𝑡𝑖, 

(denoted 𝑛𝑖), and the number of events occurring at that time (𝑑𝑖). The KM 

estimator uses the formula271: 

𝑆̂(𝑡𝑖) = 𝑆̂(𝑡𝑖−1) (1 −
𝑑𝑖
𝑛𝑖
) 

(Equation 6.5) 
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with 𝑆(0) = 1 as the starting condition. Between observed event times, the 

survival probability remains unchanged, resulting in a characteristic stepwise 

curve. This method ensures that each participant contributes survival 

information up to the point of event or censoring. In the absence of censoring, 

the survival estimate simplifies to the proportion of individuals who remain 

event-free at each time point. 

 

 One of the strengths of the KM method is that it does not require assumptions 

about the underlying survival time distribution.245,269,270 This makes KM flexible 

for analysing data where distributional assumptions may not hold. Also, the KM 

handles censored data efficiently by allowing the inclusion of individuals who are 

lost to follow up or have not yet experienced the event by the end of study.269 

The generation of KM survival curves provide a visualisation of survival 

probability over time and is useful for estimating metrics such as median 

survival.272  

 

Figure 6.5 illustrates the example of a hypothetical KM survival curve (with 

confidence interval) between treatment and control group over specific time. It 

illustrates that the treatment group has higher survival probability compared to 

a control group. For example, 60% of individuals are still event-free at the 10 

months in treatment group, while only 45% event-free individuals in control 

group. 
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Figure 6.5 Kaplan-Meier survival probability curve 

 

The KM approach has several limitations. Akey limitation is its inability to adjust 

for covariates, which may limit studies aiming to measure causal effects or 

account for prognostic differences between groups.270  

 

Furthermore, KM assumes non-informative censoring, which may not always be 

realistic. If censoring is related to the probability of the event, survival 

estimates may be biased.269,273 KM also assumes that there are no competing 

risks, meaning that, meaning that the event of interest is the only possible 

outcome.189 If another event, such as death from an unrelated cause, prevents 

the main event from happening, the KM estimates may not reflect the true 

survival experience.274 Lastly, is that KM curves become less reliable with small 

sample sizes or heavy censoring, as the number of individuals at risk decreases 

over time.272
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Log-rank test 

Often paired with KM, the Log-rank test is a non-parametric test that provides a 

formal statistical comparison between groups, by comparing the observed and 

expected number of events in each group at each time point under the null 

hypothesis. If the observed differences are large enough, it is indicating a 

statistically significant difference in survival.189,245,275 

 

At each time an event occurs the method calculates the observed number of 

events in each group and compares it to the expected number under the null 

hypothesis of no group difference. Conceptually, these expected values are 

summed over all event times to obtain the total expected number of events for 

each group, denoted as 𝐸𝑖. The actual number of events observed in each group 

is called 𝑂𝑖. The log-rank test then compares the observed (𝑂𝑖) and expected 

(𝐸𝑖) values using a test statistic that follows a chi-square (𝑋2) distribution. This 

allows calculation of a p-value to determine whether the differences in survival 

across the groups are statistically significant.245 

 

𝑋2 = ⁡∑
(𝑂𝑖 − 𝐸𝑖⁡⁡)

2

𝐸𝑖

𝑔

𝑖=1

 

(Equation 6.6) 

 

If only two groups are compared, the Log-rank test is assessing the null 

hypothesis, whether the ratio of the hazard rates in the two group (hazard ratio) 

is equal to 1. The ratio 
Oi

Ei
⁄  represents the estimated relative (or excess) 

hazard in group 𝑖.  A hazard ratio (HR) of 1 indicates no difference in survival 

between the groups, while values above or below 1 suggest higher or lower risk, 

respectively. 

 

𝐻𝑅 =
𝑂1/𝐸1
𝑂2/𝐸2

 

 
(Equation 6.7) 
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The Log-rank has several important limitations, despite its non-parametric 

strengths. One major drawback is that it does not adjust for covariates, making 

it less suitable when multiple risk factors need to be considered 

simultaneously189,276,277 Additionally, because this test is based on rankings rather 

than raw data, it is also less sensitive to extreme values that might otherwise 

influence the analysis.278 

 

While the Log-rank test is the most commonly used non-parametric method for 

comparing survival curves, several alternative non-parametric tests exist. These 

include the Wilcoxon (Breslow) test278, which places greater emphasis on early 

survival differences; the Fleming-Harrington test279, which allows for flexible, 

weight-based comparisons across the survival curve; and the Tarone-Ware test, 

which offers a balanced weighting approach between early and late events.276 

However, this thesis limits its scope to the use of the KM estimator in 

conjunction with the log-rank test, as it represents the most widely accepted 

and applied method in non-parametric survival analysis. 

Nelson-Aalen estimator 

Another non-parametric method is the Nelson-Aalen (NA) estimator, a method 

used to estimate the cumulative hazard function 𝐻(𝑡) in survival analysis.280 It is 

especially helpful when the focus is on modelling hazard rates over time rather 

than survival probabilities, as explained in the previous section. 

 

𝐻̂(𝑡) =∑
𝑑1
𝑛𝑖

𝑡𝑖≤𝑡

 

(Equation 6.8) 

 

Where 𝑡𝑖 represents each distinct time an event occurs, 𝑑𝑖 is the number of 

observed events (e.g., deaths) at time 𝑡𝑖, and 𝑛𝑖 is the number of individuals at 

risk just before time 𝑡𝑖.  

 

This additive approach builds up the cumulative hazard over time by summing 

small risk contributions at each event time. It is especially helpful in visualising 

and comparing hazard patterns across different groups or periods. While it does 
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not provide a formal statistical test for group comparisons like the Log-rank test, 

it plays an important descriptive role and can also serve as a basis for estimating 

survival through the relationship 𝑆̂(𝑡) = 𝑒−𝐻̂(𝑥) 

 

 

Figure 6.6 Nelson-Aalen cumulative hazard curve 

 

 

Figure 6.6 (with confidence interval) indicates that the treatment group had a 

lower cumulative hazard over time compared to the control group, indicating 

the treatment may be protective or effective in reducing the risk of the event 

(i.e., death). The control group experienced more events which generated high 

cumulative hazard. Compared to KM, the NA describes the accumulation of risk 

rather than individual survival probabilities. When the cumulative hazard 

exceeds 1 (for example, reaching 2), it indicates that, on average, each 

individual has accumulated “two units” of risk. This does not directly represent 

the proportion of people who experienced the event. Thus, this non-linear 

outcome is more challenging to interpret and less intuitive. To interpret them 



 

 

 

127 

meaningfully, it is often necessary to transform them back to survival 

probability, or pair them with KM plot. 

 

Sharing the same non-parametric, univariable, and descriptive nature with KM, 

the NA estimator also has similar key limitations. The method cannot account for 

multiple risk factors or perform covariate-adjusted analysis.189,274,278 To address 

this, more advanced methods such as semi-parametric models like the Cox 

proportional hazards model are required.281  

6.3.2 Semi-parametric model 

Cox Model: preliminaries  

In health and medical research, there are many situations where multiple 

variables (known as covariates) can influence an individual’s prognosis.189,275 For 

example, consider a study comparing two groups (treatment versus control), 

individuals may have a condition such as with and without family history of 

diabetes, as well as varying ages. Any observed differences in survival outcomes 

beyond treatment effect itself could be due to older age, family history, or 

combination of both. Therefore, when examining the effect of a particular 

factor on survival, it’s important to adjust for other variables that might also 

impact the outcome. Such adjustments can improve the precision of estimates, 

particularly when assessing the effect of a treatment or exposure. 

 

In 1972, David Cox presented his paper entitled “Regression Models and Life-

Tables” which presented a regression method for analysing survival data.190 The 

purpose of the method is to investigate several variables on survival 

simultaneously, known as proportional hazard (PH) regression analysis. A 

common way of referring to this well recognised and most applied survival 

analysis method is  the ‘Cox model’. In this thesis, the general term ‘Cox model’ 

will be used to represent term such as Cox regression and Cox PH model, since 

these refer to the same underlying method.  

 

The Cox model is categorised as semi-parametric, simply because it has two 

parts: parametric and non-parametric.248,252,282 A parametric part is the model 

assumes a specific form of how covariates affect the hazard (through linear 

combination), just like in regular regression. 
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The Cox model does not require a specified functional form for the baseline 

hazard, and it does not estimate it directly. Instead, the model focuses on 

estimating the relative effects of covariates on the hazard. No assumptions are 

made about the shape of the baseline hazard, it can increase, decrease, or vary 

in any form over time. 

Assumptions and interpretations of Cox model 

The Cox model is represented by the conditional hazard function ℎ(𝑡|𝑋). In this 

case, this ℎ(𝑡|𝑋) can be interpreted as the risk of having an event at time t190: 

 

 

ℎ(𝑡|𝑋) = ℎ0(𝑡). 𝑒𝑥𝑝⁡(1𝑋1 + 
2
𝑋2 +⋯ .+

𝑝
𝑋𝑝) 

ℎ(𝑡|𝑋) = ℎ0(𝑡). 𝑒𝑥𝑝⁡(
𝑋) 

 

(Equation 6.9) 

 

Where 𝑡 is the survival time, h0 is the baseline hazard function, representing the 

hazard when all covariates equal to zero. This is as the reminder that the 

baseline hazard can change over time. 𝑋1, 𝑋2, . . 𝑋𝑝 are covariates and the 


1
, 

2
, . . 

𝑝
 are the coefficients that measure the impact of the covariates on 

hazard. Thus, the 𝑒𝑥𝑝⁡(𝑋) is known as hazard ratio (HR) for covariate 𝑋𝑖 , 

indicating the relative change in hazard for a one-unit increase in that variable. 

For interpretation189:  

• HR = 1 indicates no effect on the hazard. 

• HR > 1 suggests an increased hazard (event occurs sooner). 

• HR < 1 indicates a decreased hazard (delayed event). 

In other words, a HR greater than 1 means that as the value of a covariate 

increases, the event (e.g., death, disease) is more likely to happen sooner. 

Conversely, a HR less than 1 indicates a protective effect, delaying the event. 
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To understand assumptions on proportionality, consider the HR between two 

individuals with 𝑋1⁡and⁡𝑋2⁡: 

𝐻𝑅 =
ℎ(𝑡|𝑋1)

ℎ(𝑡|𝑋2)
=
ℎ0(𝑡). 𝑒𝑥𝑝⁡(

𝑋1)⁡

ℎ0(𝑡). 𝑒𝑥𝑝⁡(
𝑋2)

= exp⁡((𝑋1 −⁡𝑋2)) 

 

(Equation 6.10) 

 

The fact that time 𝑡 disappears from the HR expression is exactly what the 

proportional hazard refers to.252 It means that the hazard ratio does not change 

over time. The effect of the covariates (that represent through HR) is constant 

throughout the follow up-period.  

 

A key strength of the Cox model is that it does not require the specification of 

the functional form of the baseline hazard. That is, the shape of ℎ0(𝑡) is left 

unspecified and estimated non-parametrically from the data.190,252,283 This 

characteristic gives the Cox model its ‘semi-parametric’ nature which makes the 

model very flexible. A simple illustration of this semi-parametric model is for 

example when studying how smoking and blood pressure (BP) affect myocardial 

infarction (MI). The Cox model will estimate how smoking and BP change the 

relative risk, but it would not assume how the baseline risk of MI changes over 

time.  

 

Despite its flexibility, the Cox proportional hazards model relies on several key 

assumptions that must be satisfied to ensure valid and interpretable results. The 

most fundamental is the proportional hazards assumption189,252, as stated above. 

If this assumption is violated, the estimated HRs may be biased, and the model 

may not accurately reflect the relationship between covariates and the event 

risk.190,278  

 

Another important assumption is the independence of survival times across 

individuals, meaning that the occurrence of an event in one subject does not 

influence the risk in another. This assumption can be problematic in clustered or 

correlated data, such as patients within the same hospital or community, and 
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may require advanced modelling approaches like frailty models.284 Additionally, 

the model assumes a linear relationship between covariates and the log-hazard 

function; non-linearity can lead to misestimation of effects and may be 

addressed using transformations or spline functions.285 

 

Finally, the model assumes non-informative censoring, if censoring is 

informative, specialised methods or sensitivity analyses may be required.286,287 

Careful evaluation of these assumptions through residual diagnostics and model 

checking is essential to ensure the robustness and reliability of the Cox model’s 

findings.  

Other semi-parametric method for handling competing risk 

In the presence of competing risks, standard Cox regression (if alive to death 

state) can be extended using two main semi-parametric approaches: the cause-

specific hazard (CSH) model and the sub-distribution hazard model, also known 

as the Fine–Gray (FG) model.267,288 It estimates the effect of covariates on 

the instantaneous risk of experiencing a specific type of event, while treating 

other competing events as censored.289,290 

 

In the context of MSM, each transition between defined health states is 

modelled separately, and these transition-specific hazards align with CSH, 

assuming the transitions from a given state are mutually exclusive.290 That said, 

it is important to be clear about the framing. Competing risk models typically 

begin from a single starting state and consider multiple mutually exclusive end 

events, such as different causes of death. In contrast, multi-state models go 

further by allowing for multiple intermediate and absorbing states, which means 

they can capture sequential events and more complex pathways.261  

 

The sub distribution hazard model, commonly known as the Fine–Gray (FG) 

model, was introduced in 1999 to directly model the cumulative incidence 

function (CIF) for a specific event, while appropriately accounting for the 

presence of competing risks.288 Unlike cause-specific hazard models, the FG 

model does not censor individuals who experience competing events. Instead, it 

includes them in the risk set using adjusted weighting, which allows for a more 

accurate estimation of event probabilities over time.259,267 
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However, for long-term analysis, both CSH and FG model have 

limitations.267,268,289,291 Because it is a semi-parametric model and does not 

impose a parametric form on the baseline hazard, it cannot easily 

extrapolate beyond the observed follow-up period. Like the standard Cox model, 

it relies heavily on the observed data, and the cumulative incidence estimates 

are constrained to the time frame of the available follow-up.292 

 

Since this thesis primarily focuses on developing a model capable of projecting 

long-term outcomes and supporting extrapolation, the discussion of competing 

risks methods is limited to a conceptual overview. Ultimately, the CMD Policy 

Model is designed to prioritise flexibility in extrapolation through a multi-state 

framework. While Cox models within the multi-state structure are still used to 

assess covariate effects, the emphasis of the model lies in capturing disease 

progression over time rather than modelling mutually exclusive terminal events. 

 

Model diagnostics  

Schoenfeld residuals are used to evaluate whether the proportional hazard 

assumption holds by examining the relationship between residuals and time. 

Specifically, these residuals assess whether the effect of a covariate changes 

over time by testing for a correlation between the residuals and event time.293 A 

statistically significant correlation suggests a potential violation of the 

proportional hazards’ assumption for that covariate.294 

 

Schoenfeld residuals are calculated for each covariate and for each individual 

who experiences the event of interest (i.e., uncensored observations). Each 

residual represents the difference between the observed value of the covariate 

for an individual who had the event and the expected value of that 

covariate across all individuals who were at risk at the time of the event. If the 

proportional hazards assumption holds, these residuals should be randomly 

scattered with no systematic pattern over time. Graphical inspection and formal 

testing can help identify whether any covariate violates this key 

assumption.295,296 

 

In addition, Martingale residuals are primarily used to assess whether 

the functional form of continuous covariates is appropriately specified in the 
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model.297 The Cox model assumes that the effect of each covariate is linearly 

related to the log-hazard.190 To check this assumption, Martingale residuals are 

plotted against continuous covariates. If the relationship is truly linear, the plot 

should show no systematic pattern, the points would appear randomly scattered. 

However, if the plot shows a curved or non-random trend, this may indicate non-

linearity in the covariate’s effect.294 

 

Martingale residuals are defined for all individuals, regardless of whether they 

experienced the event or were censored, and they typically take values 

between −∞ and 1.297 The residual tends to be closer to 1 for individuals who 

experienced the event and much smaller (or negative) for censored 

observations.297 

 

Deviance residuals are used to identify outliers or influential observations that 

may disproportionately affect the model’s estimates, especially for identifying 

data points that the model fits poorly. Large positive or negative deviance 

residuals suggest the observed survival time deviates substantially from what the 

model predicts. Such observations could be outliers or influential cases  where 

data points with high leverage that may shift the estimated coefficients 

significantly if removed. Plotting deviance residuals against fitted values or 

covariates can reveal which individuals may be problematic and deserve further 

investigation.  

 

Another test to assess model adequacy is Cox-Snell residual.298 For each 

individual, the residual is defined as the estimated cumulative hazard at their 

observed event or censoring time. Under the assumption that the model is 

correctly specified, these residuals should follow a unit exponential 

distribution.299 In practice, the model is assessed by plotting cumulative hazard 

function of the Cox-Snell residuals, typically using the NA estimator—against the 

residual values themselves. A well-fitting model will produce a plot that closely 

aligns with the 45-degree line, reflecting agreement between the observed data 

and the model’s hazard predictions.300 

 

 



 

 

 

133 

Although the Cox model is semi-parametric, it allows for the computation of 

cumulative hazards through methods such as Breslow’s estimator.301 Unlike 

diagnostic tools such as Schoenfeld or Martingale residuals, which target specific 

assumptions (e.g., proportional hazards or covariate functional form), Cox-Snell 

residuals provide a more general assessment of model fit.298 Their use adds an 

important layer of validation to ensure that the model offers a reasonable 

representation of the underlying survival process.  

6.3.3 Standard parametric model 

In parametric survival models, all parts of the model are fully specified, both the 

hazard function and the covariates’ effect. Parametric survival analysis assumes 

that survival times follow specific statistical distributions (e.g., Log-normal, 

Exponential, Weibull). These assumptions define the shape of hazard and 

survival curves using mathematical equations. The general form of a parametric 

survival model (proportional hazards) is189: 

 

ℎ(𝑡|𝑋) = ℎ0(𝑡; 𝜃). exp(
𝑋)  

(Equation 6.11) 

 

which is equivalent as: 

 

𝑆(𝑡|𝑋) = 𝑆0(𝑡; 𝜃)
exp(𝑋) 

 

(Equation 6.12) 

 

 

Similar definition of survival formula, the ℎ0(𝑡; 𝜃) is the parametrically specified 

baseline hazard function with parameter(s) 𝜃, and  𝑆0(𝑡; 𝜃) is the corresponding 

baseline survival function. As it fully determines the hazard shape and survival 

functions, the choice of distribution for survival times is important. Different 

distributions make distinct assumptions about how the hazard rate ‘behaves’ 

over time. Choosing an appropriate distribution depends on the nature of the 

event process being modelled and the shape suggested by the data. 
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In addition to the PH formulation, parametric survival models can also be 

expressed using the accelerated failure time (AFT) formulation. The AFT model 

expresses the effect of covariates as a direct acceleration (or deceleration) of 

the survival time: 

 

𝑙𝑜𝑔(𝑇) = 𝜇 + 𝛽X +  

 

(Equation 6.13) 

 

where T is the survival time, μ  is the intercept term, 𝛽𝜏𝑋⁡represents the linear 

predictor, and ε is a random error term following a specific distribution. In this 

formulation, covariates act to stretch or shrink the time scale, rather than 

modifying the hazard multiplicatively as in PH models. 

 

The two modelling approaches, proportional hazard (PH) and accelerated failure 

time (AFT) models represent two different ways of understanding how covariates 

affect survival time.302 In PH model, the idea is that covariates affect the risk of 

an event happening at any moment in time.295 For example, there are two 

patients: one who smokes and one who does not. If smoking doubles the risk of 

death, this doubling stays the same over time, at every day, every month, and 

every year, the smoker’s risk is always twice as high. Covariates in PH models 

multiply the hazard (the risk) but do not change how the risk evolves over time.  

 

In contrast, an AFT model is formulated differently (see equation 6.12). Instead 

of focusing on the risk at each moment, it focuses on the entire survival time. 

Covariate effects in AFT models stretch or compress the survival timeline.302,303 

For example, a treatment might double the survival time compared to no 

treatment, meaning patients live twice as long, but the shape of the survival 

curve stays the same. 

 

Table 6.1 summarises the common parametric distributions used in survival 

analysis, presenting their mathematical forms, parameterisations, and typical 

applications in research. These models can be easily estimated using statistical 
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software, which also enables graphical visualisation (curves) of their survival and 

hazard functions. 

 

Regarding how to specify these distributions, in simple terms, the main 

differences between these distributions lie in how the underlying hazard over 

time are modelled. Some distributions assume a constant risk, while others allow 

the risk to increase, decrease, or vary in more complex ways.304,305 In addition to 

the primary regression parameters, many distributions include ancillary 

parameters that govern the shape, variability, or higher-order moments of the 

distribution.304 These ancillary parameters critically influence the hazard 

function, allowing it to assume a variety of forms, such as constant, monotonic, 

or hump-shaped, depending on the distribution chosen189 (Figure 6.7). 

6.3.4 Flexible parametric model 

Another alternative in parametric survival modelling is the flexible parametric 

survival model (FPM), which was popularised by Royston and Parmar and is often 

referred to as the Royston-Parmar (RP) model.306,307 Methodologically, this 

approach models the baseline hazard using smooth functions, typically restricted 

cubic splines (also known as natural splines) applied to the log cumulative 

hazard.308 

 

This spline-based framework enables the model to flexibly capture complex 

hazard patterns, allowing for smooth hazard function estimation without the 

need to assume a specific parametric distribution. As a result, FPMs combine the 

interpretability and structure of traditional parametric models with the 

adaptability to fit non-linear and non-monotonic hazard shapes.306 

 

Unlike standard parametric models that impose a fixed functional form (e.g., 

always increasing or decreasing hazard), flexible parametric models allow the 

data to guide the shape of the hazard (Equation 6.14), making them especially 

valuable when the true hazard function is unknown or varies over time.309 These 

models let the data “speak” about the hazard shape. 
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log𝐻(𝑡) = 𝜂(𝑡) = ⁡ 𝛾0 +⁡𝛾1𝑠1(log 𝑡) + ⋯+⁡𝛾𝑘𝑠𝑘(log 𝑡) + 𝑥𝑇𝛽 

(Equation 6.14) 

 

Where 𝐻(𝑡)⁡is cumulative hazard, 𝑠1 is spline functions of log-time, x= covariates  

and 𝛽 is coefficients for covariates.  

 

This flexibility, however, relies on careful specification of the spline structure 

especially the number and placement of knots, which define where the spline 

can bend to capture changes in the hazard function. The choice of knots is 

critical: too few can lead to underfitting and missed hazard features, while too 

many can result in overfitting and unstable estimates.306,310 In practice, knot 

placement is commonly based on quantiles of the log event times, and the 

degree of flexibility is controlled by specifying either the degrees of freedom 

(df) or the number of internal knots (k), depending on the software 

implementation. A common approach is to begin with a model equivalent to a 

Weibull distribution (e.g., df = 1 or k = 1) and then gradually increase 

complexity, evaluating improvements in fit.309  

 

A key advantage of RP model lies in its flexibility, particularly in the direct 

estimation of baseline and cumulative hazard functions, as well as their ability 

to provide analytic expressions that facilitate further inference—such as the 

computation of cumulative incidence functions or restricted mean survival 

times306,309,311,312. This flexibility enhances both model fit and interpretability, 

allowing researchers to visually and statistically assess the shape of the baseline 

hazard, manage the risk of overfitting when incorporating time-varying effects, 

and compare alternative model specifications. 
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Table 6.1 Parametric distributions 

Distribution Metric Survival function 𝑆(𝑡) Parameterisation Ancillary 

parameters 

Common use 

Exponential PH & AFT 𝑆(𝑡) = 𝑒𝑥𝑝⁡(−𝑡) 

 

 

𝜆𝑖 = 𝑒𝑥𝑝⁡(𝑋𝑖𝛽) None Models constant risk over time. Used in mechanical 

failures, rare in clinical studies. 

Weibull PH & AFT 𝑆(𝑡) = 𝑒𝑥𝑝⁡(−𝑡𝛾) 

 

𝜆𝑖 = 𝑒𝑥𝑝⁡(𝑋𝑖𝛽)  (shape) Models monotonic increasing or decreasing hazards. 

Common in chronic disease survival. 

 

Gompertz PH 
𝑆(𝑡) = 𝑒𝑥𝑝⁡− (



𝛾
(𝑒𝛾 − 1)) 

 

𝜆𝑖 = 𝑒𝑥𝑝⁡(𝑋𝑖𝛽)  (growth rate) Models exponentially increasing hazard. Typical for 

human aging and mortality data. 

Log-normal AFT 
𝑆(𝑡) = 1 − ⁡⁡ (

𝑙𝑜𝑔(𝑡) − 𝜇

𝜎
) 

 

𝜇𝑖 = 𝑋𝑖𝛽  (scale)  Hazard rises then falls. Useful for time to disease 

recurrence or epidemics. 

Log-logistic AFT 𝑆(𝑡) = (1 + (𝑡)𝛾)−1 

 

𝜆𝑖 = 𝑒𝑥𝑝⁡(−𝑋𝑖𝛽)  (shape) Models’ long-term survival patterns. Good for chronic 

conditions with heavy-tailed survival. 

 

Gamma AFT 
𝑆(𝑡) = 1 − 𝐹(𝑡) = 1 −

𝛾(𝑘, 𝑡)

𝛤(𝑘)
 

 

𝜇𝑖 = 𝑋𝑖𝛽  (scale) Models waiting times for multi-stage biological 

processes (e.g., disease progression) 

Generalised 

gamma 

AFT If > 0, 𝑆(𝑡) = 1 − 𝐼(𝛾, 𝑢)  

if < 0, 𝑆(𝑡) = 1 − 𝐼(𝛾, 𝑢), 

where 𝑢 = (𝑒𝛽𝑡)𝜆 

𝜇𝑖 = 𝑋𝑖𝛽 ,  Extremely flexible; nests Weibull, log-normal, 

gamma. Used for extrapolation in economic models. 

  PH: proportional hazard, AFT: accelerated failure time 
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S(t): survival function, Xi⁡= covariate, β= regression coefficient, λi= hazard function modified by covariates under proportional hazard, μi: location parameter for  models with AFT  

interpretation, : shape parameters, can be defined as increasing/decreasing hazard or positive hazard=increasing,  = normal cumulative distribution function (CDF), γ(k, t) 
incomplete gamma function, Γ(k)= gamma function, u: transform time variable,   and : additional shape and flexibility parameter 
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Figure 6.7 Survival and hazard function curves of parametric models
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6.3.5 Model selection and evaluation for parametric modelling 

Like semi-parametric models discussed earlier, it is essential to evaluate 

whether a parametric survival model adequately represents the underlying data 

after fitting. This evaluation helps to enduse that the model prediction is 

accurate and reliable.  

 

One common approach for evaluating model fit is through goodness-of-fit 

statistics, particularly the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC).304,305 Both metrics balance model fit and complexity 

by penalising the number of estimated parameters to reduce the risk of 

overfitting. Their general formulas are: 

 

 

𝐴𝐼𝐶 = −2 log(𝐿) + 2𝑘 

𝐵𝐼𝐶 = −2 log(𝐿) + 𝑘 log(𝑛) 

(Equation 6.15) 

 

Where L is the likelihood of the model, k is the number or parameters in the 

model, and n is the sample size. 

 

Both criteria incorporate a penalty for model complexity, but BIC imposes a 

stronger penalty as it scales with the logarithm of the sample size 

(log(n)),⁡whereas AIC uses a constant multiplier. As a result, BIC tends to favour 

simpler models more heavily, particularly in large datasets. Lower values of AIC 

or BIC indicate a better balance between model fit and parsimony, with the 

preferred model being the one with the lowest score among the candidates.  

 

In addition to numerical criteria, visual inspection is also a valuable tool for 

assessing model fit. This involves comparing the estimated survival function from 

the parametric model to the non-parametric Kaplan-Meier (KM) survival curve.313 

A close alignment between the two curves indicates that the parametric model 

captures the observed survival pattern well. Conversely, systematic deviations 

suggest misspecification of the hazard function or distributional form.  
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Figure 6.8 is a visual example when comparing the KM survival curve with seven 

common parametric models. Among these, the Weibull distribution demonstrates 

the best overall fit, closely aligning with the non-parametric estimate across 

entire study period. This is further supported by its lowest AIC and BIC values 

among the standard distributions considered, indicating better model parsimony 

and goodness-of-fit. While the Gamma distribution also provides reasonable 

approximation, its slightly higher AIC/BIC values suggest that Weibull is 

statistically more appropriate for the data presented. Consequently, the Weibull 

model was selected for subsequent analyses and simulations.  

 

 

 

 

Figure 6.8 Comparison of parametric survival model and Kaplan-Meier estimation 

 

In the flexible parametric context, the fit of the RP model can also be evaluated 

by visually comparing it with the KM curve as illustrated in Figure 6.8. A 

practical demonstration involves fitting RP models with increasing spline 

complexity (e.g., using one, two, or three internal knots) to show how added 

flexibility affects model fit..312 Beyond visual comparison, RP models also allow 

formal evaluation using information criteria such as AIC/BIC, enabling 

assessment of relative fit across different specifications.314 
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 These RP models alongside traditional parametric alternatives, can be both 

plotted against KM estimates and compared using numerical criteria to aid model 

selection. 

 

Residual-based methods, such as Cox-Snell and deviance residuals, can help 

identify systematic departures from model assumptions and are applicable in 

both parametric and semi-parametric survival models.296,298 However, the key 

difference lies in the underlying assumptions: parametric models rely on a fully 

specified distribution for survival times, making residual diagnostics particularly 

important for assessing the appropriateness of the chosen distribution. In 

contrast, semi-parametric models like the Cox model do not assume a specific 

baseline hazard function, so residuals are typically used to assess proportional 

hazards assumptions and covariate effects rather than the shape of the survival 

distribution itself. 

6.3.6 Time-dependent covariates  

Covariate effects are often assumed constant over time, particularly in traditional 

survival analysis, however in many real-world settings, individual characteristics 

such as clinical biomarkers, treatment status, or health behaviours change over 

the course of follow-up.315,316 

 

Time-dependent covariates allow the model to more realistically represent 

evolving risk profiles. For example, a patient’s cholesterol level may be elevated 

at baseline but improve with statin therapy, or a diabetes diagnosis may lead to 

lifestyle modifications that influence subsequent risk of stroke or myocardial 

infarction (MI). Failing to account for such changes risks misclassifying exposure 

status, which can result in biased estimates, attenuated hazard ratios, or 

misleading associations. By updating covariate values over time and aligning them 

with the appropriate intervals, survival models can provide more accurate 

estimates of how these variables impact the hazard function.317,318 

 

Time-dependent covariates can be broadly classified as either external—such as 

calendar-based events or policy changes that are unrelated to the individual's 

event history—or internal, which include updated lab values or clinical 

conditions that may be influenced by the underlying disease process.319,320  
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One practical implementation involves incorporating the time since entry into a 

state (referred to as sojourn time) as a covariate in a Cox-type survival model to 

estimate transition hazards alongside evolving individual characteristics. This 

allows incorporation of updated information such as age, treatment status, or 

biomarker changes. The model relies on the baseline hazard, representing the 

event risk when covariates are zero, and may use the log cumulative hazard, a 

transformed version of the cumulative risk, to support model estimation. 

6.3.7 Summary of different statistical models  

The different feature of each model is summarised in Table 6.2. Based on the 

explanation provided earlier, survival analysis methods differ in term of 

assumptions, model structure, flexibility and practical application.  

 

Non-parametric models provide empirical survival estimates without assuming 

any specific hazard structure; however, they do not support covariate 

adjustment or extrapolation beyond the observed data.269 Semi-parametric 

models, incorporate covariate effects without specifying the baseline hazard 

function, though they depend on the proportional hazards’ assumption.190 

Parametric models assume a predefined distributional for both the baseline 

hazard and covariate effects, offering ease of interpretation and the ability to 

extrapolate, albeit with limited flexibility in capturing complex hazard 

patterns.313 Flexible parametric models, allow for more adaptable hazard 

shapes, the inclusion of time-dependent effects, and improved extrapolation 

capabilities. This makes them especially useful for modelling complex survival 

data and projecting long-term outcomes, even though in practice this method is 

still underutilised.321 

 

In summary, the choice between non, semi, or flexible parametric in survival 

models depends critically on the study objectives, complexity of the survival 

data as well as modelling requirements. Key considerations include whether the 

analysis is focused solely on estimating covariate effects or also aims to perform 

long-term extrapolation. 
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Table 6.2 Comparison of statistical models 

Feature Non-parametric Semi-parametric Parametric Flexible parametric 

Model characteristics No assumptions; empirical 
estimation 

Parametric covariate 
effects, unspecified baseline 

hazard 

Fully parametric: baseline and 
covariate effects specified 

Parametric covariate effects, 
spline-based hazard 

Baseline hazard Not modelled explicitly Not estimated directly Assumed known form (e.g., 
exponential, Weibull etc) 

Estimated via restricted 
cubic splines 

Hazard shape 
assumption 

None None (but assumes 
proportional hazards) 

Fixed functional form Flexible, data-driven 

Proportional hazard 
assumption 

Not applicable Required (unless extended) Often assumed Can be relaxed 

Covariate inclusion Not supported Supported Supported Supported 

Time-dependent effect Not supported Can be included (extended 
Cox) 

Difficult to implement easily included via spline 
interactions 

Interpretability Easy to interpret survival 
probabilities 

Covariate effects 
interpretable; baseline 

hazard is abstract 

High interpretability if model 
fits well 

Interpretation more complex 
due to splines 

Model fit assessment Visual (e.g., survival curves) Residuals (e.g., Schoenfeld) AIC/BIC, likelihood, visual fit AIC/BIC, visual fit, spline 
tuning 

Extrapolation 
capability 

Not possible Not recommended Possible Possible 
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Flexibility High for empirical survival, 
low overall 

Moderate Low to moderate High 
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6.3.8 Markov and semi-Markov assumptions 

From the analytical standpoint, multi-state models (MSMs) are built upon either 

Markov or semi-Markov processes, where the assumptions about memory of past 

transition differs. Markov models assume that future transitions depend solely on 

the present state, while semi-Markov allow the sojourn time in a given state to 

influence future transitions.322 

 

This conceptual difference is often reflected in the choice of time scale, 

typically described as either ‘clock-forward’ or ‘clock-reset’.260 In a clock-

forward model (aligned with the Markov assumption), the hazard of transition 

depends on the time since the beginning of the process (e.g., since study entry 

or baseline). Time continuously accumulates as an individual moves through 

different states. In contrast, a ‘clock-reset’ model (used in semi-Markov 

settings) resets the time counter each time a new state is entered, meaning that 

the hazard of transition depends on the time since entering the current state.323 

 

For example, in modelling disease progression, the risk of death in a ‘clock-

forward’ model might depend on the total time since diagnosis, while in a 

‘clock-reset model’, the risk of death after a stroke would depend specifically 

on the time since the stroke occurred. These assumptions have important 

implications for how risk evolves over time and must be carefully matched to the 

nature of the disease and available data. 

Markov models 

A Markov model assumes that the probability of moving from one state to 

another depends on the current state, not on the time already spend in that 

state. This feature known as ‘memoryless property’, In simple terms, the chance 

of transitioning out of state depends on the current state, but not on how long 

the individual has been there.324  

 

In a discrete-time Markov model, time moves forward in fixed steps (e.g.: 

monthly, annual). At each step, a person can either stay in the same state or 

move to a different one.325 The model then uses a transition probability matrix 
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to show the chance of moving between states. Each number in the matrix  𝑝𝑟𝑠, 

tells the probability of going from state 𝑟 to state 𝑠 in one time step.  

 

𝑝𝑟𝑠 = 𝑃(𝑋𝑡+1 = 𝑠⁡|⁡𝑋𝑡 = 𝑟) 

(Equation 6.16) 

 

This means, what is the chance that someone will be in state 𝑠⁡at the next time 

step, given that they are currently in state 𝑟. Each row of matrix adds up to 1, 

because it includes all possible outcomes for someone in a given state.  

 

In a continuous-time Markov model, changes between states can happen at any 

moment in time, not just at fixed intervals.325 Instead of transition probabilities, 

this model uses transition rates, written in a matrix called 𝑄. Each value 𝑞𝑟𝑠 tell 

about how quickly someone in state 𝑟 is expected to move to state 𝑠. The higher 

the number, the faster the expected transition. The rows are set up so that 

everything balances out (i.e., each row sums to zero).  

 

If the transition rates do not change over time, the model is called a time-

homogeneous continuous-time Markov model.326 In this case, the transition 

intensity matrix 𝑄 remains constant over time. However, in the time-

inhomogeneous version, the transition rates depend on time, meaning the 

chance of moving between states can vary as time progresses327 , for example, 

the risk of death may increase with age or disease duration. 

 

In the time-homogeneous case, the transition probability matrix 𝑃𝑡 which gives 

the probability of being in each state at time 𝑡, can be calculated using 

the matrix exponential:  

 

𝑃(𝑡) = exp⁡(𝑄𝑡) 

 

(Equation 6.17) 
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In contrast, for time-inhomogeneous models where 𝑄𝑡 varies with time, 𝑃𝑡 must 

be calculated by solving the Kolmogorov forward differential equation:  

𝑑𝑃(𝑡)

𝑑𝑡
= (𝑃𝑡)⁡. (𝑄𝑡) 

(Equation 6.18) 

 

To help illustrate this, a simple illness-death model structure is adopted as an 

example (Figure 6.8). This setup can be used in either discrete or continuous 

time models to describe how people move through different stages of health. 

For example, someone might stay healthy, become diseased, or die. These 

transitions then can be simulated over time depending on the structure and 

assumptions of the model. 

 

 

Figure 6.9 Three states Markov model 

 

 

 

The general transition matrix can be illustrated as below. The format is common 

for discrete-time Markov models, where each row sums to 1, representing the 

probabilities of moving from a current state to all possible states in the next 

time period. 

 

𝑃 =⁡(
1 −⁡𝛼12 − 𝛼13 𝛼12 𝛼13

0 1 −⁡𝛼23 𝛼23
0 0 1

) 

 

(Equation 6.19) 



 

 

 

149 

and then re-parameterised the matrix with actual transition probabilities: 

 

𝑃 = ⁡(
0.85 0.10 0.05
0 0.80 0.20
0 0 1.00

) 

 

From this matrix, it can be interpreted that there are 85% chance of remaining 

in healthy state, 10% chance of progressing to diseased, and 5% chance of 

directly transitioning to dead.  

If this were in continuous time, the matrix would instead represent transition 

intensities (rates), typically called a Q-matrix, and the matrix exponentiation  

𝑃(𝑡) = 𝑒𝑥𝑝⁡(𝑄𝑡) would be used to derive probabilities over time. 

Semi-Markov models 

Standard Markov models rely on the memoryless assumption, a key consequence 

of this assumption is that sojourn times are exponentially distributed and “non-

ageing,” with a constant hazard rate that does not change as time in state 

accrues.260,328 This is a stringent limitation in many clinical applications, since 

the risk of an event often varies with the length of time a patient has spent in a 

given health state. 

 

In other words, the Markov model ignores any duration effect – a patient who 

has just entered a state is treated the same as one who has stayed there for 

months or years. Empirical evidence and theory have long shown that such an 

assumption can be unrealistic: the hazard of disease progression or death can 

increase or decrease as a function of time already spent in the current state. 

Consequently, a pure Markov approach may misrepresent the natural course of 

disease when past “time in state” is a strong determinant of what happens 

next.329 

 

In a semi-Markov model, the transition process is still governed by a transition 

intensity matrix or by transition probabilities, but the waiting time distributions 

between transitions are no longer restricted to the exponential distribution (as 

in continuous-time Markov models).257,329 This flexibility allows for more realistic 

modelling of TTE data, particularly when empirical evidence suggests that 

hazards change with time in state. 
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𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐺𝑖𝑗(𝑡) 

 

(Equation 6.20) 

A semi-Markov, where 𝑝𝑖𝑗 ⁡probability of transition from i to j. 𝐺𝑖𝑗⁡probability of 

transitioning within time 𝑡, given entry to state 𝑖. These G functions are survival 

distributions.  

 

𝑄(𝑡) = ⁡ (
𝐺11(𝑡) ⁡𝐺12(𝑡) ⁡𝐺13(𝑡)
0 𝐺22(𝑡) 𝐺23(𝑡)
0 0 1.00

) 

 

(Equation 6.21) 

 

It should be noted that the 𝐺𝑖𝑖(𝑡) are typically not defined, it is just implied that 

the individual staying at the same state or not leaving the state.  

 

By allowing hazard rates to vary with the time spent in a given state, semi-

Markov models provide a more flexible and clinically realistic framework for 

multi-state survival analysis. They are particularly well-suited to capturing the 

natural history of diseases in which the risk of progression or adverse outcomes 

evolves over time. 

 

A commonly cited example is the illness–death model used in chronic disease 

contexts. In such cases, patients who remain longer in an intermediate or 'ill' 

state often face an increased risk of death, a feature that cannot be adequately 

captured under the memoryless assumption of a standard Markov model. Semi-

Markov models overcome this limitation by incorporating sojourn time into the 

hazard function. Thus, if empirical data suggest that longer time in a progression 

state corresponds to higher mortality risk, the semi-Markov model can reflect 

this by allowing transition hazards to increase with sojourn time. 

 

This enhanced clinical realism makes semi-Markov models particularly valuable 

for health policy modelling and medical decision-making. In health economics, 

Markov decision models are widely used to simulate patient trajectories and 
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evaluate the cost-effectiveness of interventions. However, it is increasingly 

recognised that the assumption of time-homogeneous (memoryless) transitions, 

inherent in standard Markov models, may lead to oversimplification and 

misrepresentation of disease processes. Semi-Markov models address this by 

enabling transition probabilities or hazards to depend explicitly on the time 

elapsed since entering a state, thus allowing simulations to be conducted in 

continuous time rather than through fixed-cycle approximations.248,318,319  

 

This is especially important for long-term modelling where the timing of events 

such as disease progression, relapse, or death has a significant impact on clinical 

outcomes, resource use, and costs.323,324 By explicitly modelling how long 

patients remain in each state before transitioning, semi-Markov models can more 

realistically project outcomes for interventions whose effectiveness or cost-

effectiveness depends on when events occur. For example, an intervention that 

aims to delay the progression of a disease will have different implications if 

progression is postponed by a few months versus several years. A semi-Markov 

approach can capture these differences by accounting for the distribution of 

sojourn times in the pre-progression state.  

 

Similarly, time-sensitive policies (such as earlier screening or rapid treatment 

escalation after a diagnosis) can be evaluated in a framework that reflects the 

natural timing of disease events.  

 

6.4 Model Results 

Based on the state transition model structure presented in Figure 6.4 (and 

described in Chapters 4 and 5), this section applies a range of survival modelling 

strategies using data from the Clinical Practice Research Datalink (CPRD) Aurum. 

The results are organised by modelling approach: non-parametric, semi-

parametric, standard parametric, and flexible parametric to estimate event-

specific risks across the model’s 13 transitions. For each modelling strategy, 

transition-specific hazard estimates are presented alongside diagnostic 

assessments to identify the most appropriate model specifications.  
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It is important to note that these results do not represent a direct comparison of 

which modelling strategy is “superior,” as each method offers distinct 

advantages. The Kaplan-Meier (KM) method offers a descriptive approach for 

estimating crude survival probabilities without adjusting for covariates. The Cox 

model allows for the inclusion of covariates to examine how individual 

characteristics affect transition risks while making minimal assumptions about 

the baseline hazard. Standard parametric models provide interpretable hazard 

functions and are suitable when the underlying risk can be reasonably 

approximated by predefined distributions. In contrast, flexible parametric 

models offer greater adaptability and can better accommodate non-proportional 

or non-linear risk patterns observed in empirical data. 

 

In the context of current objective for policy modelling, the selection of survival 

modelling approaches was guided by a trade-off between model complexity, 

data availability, and the requirement for accurate long-term extrapolation. KM 

analysis was employed as an exploratory tool to visualise observed survival 

patterns and assist in identifying suitable parametric survival distributions. 

However, due to its inability to incorporate covariates or extrapolate beyond the 

observed follow-up period, it was not used directly in the policy model. Instead, 

modelling approaches were selected to account for multiple covariates, reflect 

the complexity of CMD progression, and support reliable extrapolation over a 

lifetime horizon. 

 

As background, the study population comprises 184,845 individuals (89,645 males 

and 95,200 females), with baseline characteristics detailed in Chapter 5. Figures 

6.10 and 6.11 summarise the distribution of modifiable and non-modifiable risk 

factors, stratified by sex. Stratification by sex was undertaken given the well 

documented differences in cardiometabolic disease (CMD) risk profiles, 

presentation, and progression between males and females. Non-modifiable 

factors (e.g., age, sex), along with behavioural characteristics (e.g., smoking 

status, alcohol consumption), are included due to their established associations 

with CMD risk. While their inclusion does not ensure model accuracy, these 

covariates help reflect individual-level heterogeneity and strengthen the clinical 

relevance of the estimated transition hazards. 
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Figure 6.10 Non-modifiable and behavioural covariates by sex 

 

 
 

Figure 6.11 Modifiable biomarker covariates by sex
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6.4.1 Kaplan-Meier results 

As an initial step in exploring time-to-event patterns across the 13 transitions in 

the multi-state model, Kaplan-Meier (KM) survival analysis was conducted. This 

non-parametric method enables visualisation and comparison of survival 

distributions without assuming an underlying hazard structure, making it well-

suited for preliminary investigation of event timing across subgroups.189  In this 

case, sex-based differences were assessed, with log-rank tests used to evaluate 

statistical significance between male and female survival curves for each 

transition.   

 

KM curves (Figure 6.12) indicated sex-based differences in progression across 

several transitions. Females exhibited faster progression from disease-free to 

T2DM (Transition 1) and from T2DM to death (Transition 7), while males showed 

more rapid transitions to MI from both disease-free (Transition 2) and diabetic 

states (Transition 5). In post-MI and post-stroke transitions, males consistently 

demonstrated longer survival, particularly in transitions to death (Transitions 9, 

10, 12, and 13). Conversely, no statistically significant differences were 

observed in transitions such as disease-free to stroke (Transition 3), disease-free 

to death (Transition 4), and stroke to post-stroke (Transition 11), suggesting that 

sex-related disparities may be more pronounced in cardiovascular progression 

and mortality than in stroke onset or general survival. 

 

Furthermore, Figure 6.13 presents cumulative hazard curves across all 

transitions. Cumulative hazard functions provide a complementary perspective 

to survival probabilities by illustrating the accumulated risk of an event 

occurring over time. Compared to KM curves, cumulative hazard plots emphasise 

the intensity and pace at which events accumulate, which is particularly 

informative when evaluating long-term risk trajectories. 

 

The cumulative hazard plots reinforce the patterns observed in the survival 

analysis. Males exhibit a slower cumulative risk of progressing to T2DM 

(Transition 1) but a faster accumulation of MI risk from both disease-free 

(Transition 2) and diabetic states (Transition 5). Females demonstrate steeper 



 

 

 

155 

cumulative hazards for death following T2DM (Transition 7), MI (Transition 9), 

and post-MI (Transition 10), highlighting increased mortality risk in these 

transitions. These differences are statistically significant, consistent with the 

log-rank p-values. For other transitions such as disease-free to death (Transition 

4), T2DM to stroke (Transition 6), and stroke to post-stroke (Transition 11), the 

cumulative hazard curves are largely parallel, indicating no significant sex-based 

divergence in event accumulation.  

 

However, as non-parametric methods, KM and cumulative hazard estimates do 

not adjust for potential confounding variables such as age, socioeconomic status, 

comorbidities, or biomarker profiles (factors that can significantly affect 

transition risks).270,271 To accommodate this, further analysis is conducted using 

Cox proportional hazards models.190 The Cox model enables the estimation of 

hazard ratios and can incorporate both fixed and time-dependent covariates, 

providing a more comprehensive and interpretable framework for understanding 

the determinants of cardiometabolic disease progression in diverse 

subpopulations. 
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Figure 6.12 Kaplan-Meier survival probability across all transitions  
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Figure 6.13 Cumulative hazard across all transitions
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6.4.2 Cox regression results 

The pre-specified covariates were included in the Cox proportional hazards 

analysis, with appropriate reference groups assigned for categorical 

variables. Figures 6.14 to 6.20 present the results of Cox proportional hazards 

models. Each figure displays hazard ratios (HRs) with corresponding 95% 

confidence intervals (Cis). Statistically significant associations (p < 0.05) are 

highlighted in blue, whereas non-significant effects are displayed in red. In 

addition, the details of survival and hazard curves of Cox model results are 

presented in Appendix 5. 

 

From the analysis, age shows a consistent and significant association with 

increased mortality risk across transitions, particularly from stroke and T2DM to 

death, which is well-documenter in most longitudinal studies.  

 

High-density lipoprotein (HDL) is uniformly protective, while total 

cholesterol and low-density lipoprotein (LDL) are strongly associated with 

increased risk of T2DM, MI and stroke332–335. Smoking, both current and former, 

significantly elevates risk of CVD and death across states which is frequently 

observed in published epidemiological studies.336,337 

 

Similarly, the findings regarding body mass index (BMI) and its complex 

relationship with cardiovascular outcomes emphasise that BMI is a significant 

but not straightforward indicator of cardiovascular health risks. BMI increases 

the risk of developing T2DM but is inversely associated with MI and stroke 

incidence, reflecting the well-documented ‘obesity paradox’ in cardiovascular 

outcomes. The obesity paradox refers to the surprising and counterintuitive 

finding that, in some populations or clinical conditions, people classified as 

overweight or mildly obese (based on BMI) seem to have better health outcomes 

than those with a "normal" BMI. This terminology is introduced by Lavie et al 

(2009)338, as his paper observed that overweight and obese patients with heart 

failure had better survival rates than leaner patients. This phenomenon has since 

been widely discussed, as similar findings have been reported in several studies 

on CVD.339–341 
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The obesity paradox can happen due to BMI measurement itself that does not 

distinguish between fat and muscle, or fat distribution (visceral vs 

subcutaneous). The other case may be due to metabolic activity, when extra 

body fat might provide energy during illness or stress, or sicker people may lose 

weight (reverse causality), or the “normal BMI” group might include people who 

are underweight due to disease.339–341 

 

In terms of presence of disease, atrial fibrillation consistently shows the 

strongest association with higher risk across nearly all events, especially 

for stroke-related transitions and cardiovascular death, aligning with extensive 

clinical evidence. Hypertension also emerges as a key risk factor, particularly 

after the onset of disease (e.g., post-T2DM or post-MI), reinforcing its 

cumulative impact on downstream complications. 

 

Ethnicity plays a key role, with individuals of Black and Asian 

backgrounds generally exhibiting lower hazards for MI, stroke, and death, 

especially Black ethnicity (e.g., HR = 0.37 for MI). These patterns are consistent 

with findings from UK-based datasets like CPRD342, ONS343, and UK 

Biobank344. Socioeconomic deprivation (higher IMD quintiles) is also consistently 

associated with elevated risk of adverse outcomes, particularly in transitions 

from disease-free to T2DM, MI, stroke, or death. The impact of socioeconomic 

deprivation, as indicated by indices of multiple deprivation, further emphasises 

the association of lower social standing with poorer health outcomes. 

 

Compared to non-drinkers, moderate intake of alcohol is not showing increase 

hazard while heavy use increases mortality risk, matching global burden of 

disease findings.345 Moderate drinking appears protective while heavy 

consumption yields adverse outcomes, aligning with findings from various 

systematic reviews.346,347  

 

From these results, it can be concluded that the use of time-dependent Cox 

model offers a robust framework for incorporating evolving covariate values and 

capturing dynamic risk profiles across disease transitions. This semi-parametric 

approach effectively highlights the relative strength of covariate effects on 

transition hazards. However, one key limitation is that the Cox model does not 
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specify the baseline hazard function, which restricts its interpretability in terms 

of absolute risk estimation and long-term extrapolation. Additionally, the 

model’s validity may be compromised if the PH assumption is violated. 

 

To address these PH limitations and assess the adequacy of the model, 

diagnostic procedures were undertaken. Specifically, Schoenfeld residuals296, 

and Martingale residuals were examined for all transitions.297  

Model diagnostics 

The Schoenfeld test evaluates the proportional hazards assumption by testing 

whether the effect of a covariate on the hazard function remains constant over 

time. A significant p-value (p < 0.001) indicates a violation of this assumption, 

suggesting that the covariate's effect varies over time. The details on this is 

presented in Appendix 6. 

 

The global test was significant across all transitions, indicating that for each 

transition, at least one covariate violated the proportional hazards assumption. 

Covariates exhibited consistent violations at the individual level, despite the use 

of time-updated values. This underscores an important limitation: while time-

updated covariates capture changes in exposure status (e.g., biomarker levels), 

they do not account for changes in the effect of those covariates over time. In 

other words, the hazard ratio itself may vary with time, which is not addressed 

by simply updating covariate values. To meet the PH assumption in such cases, it 

may be necessary to include explicit time, covariate interaction terms or apply 

stratified Cox models that allow baseline hazards to differ across strata.189,301 

 

Another reason may be the large statistical power inherent in this dataset. With 

such a large sample size, even minor deviations from proportionality unlikely to 

be clinically meaningful can produce statistically significant p-values in PH tests. 

Importantly, the hazard ratio represents an average relative effect over the 

follow-up period. Even when the proportional hazards assumption is not strictly 

valid across the entire duration, the estimated hazard ratios may still provide a 

meaningful summary of the average benefit over time. This interpretation aligns 

with conclusions from the WOSCOPS study, which acknowledged the potential 

violation of the PH assumption but still considered the HRs to reflect a valid 

average effect over the follow-up period.348 
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Figure 6.14 Forest plot on hazard ratios (HRs) from Cox regression (transition 1-2) 
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Figure 6.15 Forest plot on hazard ratios (HRs) from Cox regression (transition 3-4) 
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Figure 6.16 Forest plot on hazard ratios (HRs) from Cox regression (transition 5-6) 
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Figure 6.17 Forest plot on hazard ratios (HRs) from Cox regression (transition 7-8) 
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Figure 6.18 Forest plot on hazard ratios (HRs) from Cox regression (transition 9-10) 
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Figure 6.19 Forest plot on hazard ratios (HRs) from Cox regression (transition 11-12) 
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Figure 6.20 Forest plot on hazard ratios (HRs) from Cox regression (transition 13) 
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Covariates such as age, blood pressure, BMI, and glucose showed the strongest 

and most consistent evidence of non-proportionality, particularly in transitions 

to death (e.g., Transition 4, 7, 9, 12, and 13), where risk is likely to evolve with 

time since prior events. This implies that the hazard ratios associated with these 

covariates change meaningfully over the disease trajectory. Consequently, 

modelling approaches that incorporate time-by-covariate interactions or 

parametric (including flexible) methods may be necessary to accurately 

represent these dynamics. For instance, age showed highly significant deviations 

in nearly every transition as did blood pressure across mortality and post-event 

pathways. While time-updated covariates were included to reflect changing 

exposure values, they do not address time-varying effects of those covariates. 

That is, a time-updated value for glucose may capture current status, but if the 

hazard ratio associated with glucose changes over time, this would still violate 

the PH assumption. Therefore, additional diagnostics led to testing interactions 

between covariates and time or exploring stratification by covariates such as age 

group or sex.  

 

Where violations of the proportional hazards assumption are persistent and 

clinically plausible, further modelling strategies should be employed. Parametric 

survival models, which accommodate time-varying hazards and covariate-time 

interactions potentially useful in transitions with complex or non-monotonic risk 

patterns, as observed in several post-event and mortality transitions. 

 

It is important to note a limitation in the standard visual interpretation of 

Schoenfeld residual plots. When time-varying effects are subtle, for example: a 

log HR that increases by only 0.01 per year—the resulting curve may appear 

nearly flat. This is due to the plot's scale being adjusted to accommodate all 

transitions and long follow-up periods (e.g., over 30 years), which can obscure 

small but meaningful trends. Furthermore, the residual dots may overlap or 

obscure the fitted line, making it difficult to visually detect time-dependent 

effects. However, such gradual changes can still accumulate to meaningful 

levels over time (e.g., a 0.1 increase over ten years) and may be statistically 

significant, particularly in large datasets. For this reason, smoothed 
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visualisations of time-varying coefficients are provided alongside standard 

Schoenfeld plots to better illustrate these subtle trends. (Appendix 6). 

 

In addition to Schoenfeld residuals test, residuals were also checked to evaluate 

the functional form of the continuous covariates using Martingale residuals test. 

Martingale residuals can help to detect an appropriate non-linear relationship 

between continuous predictors and the hazard. This diagnostic is particularly 

important in the present analysis due to the inclusion of several continuous 

variables and the evidence of time-varying effects.  

 

Overall Martingale residuals were plotted against the linear predictor for each 

transition, also the plot that illustrated the residual in each continuous covariate 

(Appendix 7). In a well-specified model, residuals should be symmetrically 

scattered around zero with no clear trend, and the smoothed loess line should 

remain flat along the horizontal axis. Deviations from this expectation may 

indicate that the model fails to capture the true hazard structure, often due to 

non-linearity or omitted variable interactions. 

 

In general, Transitions 1 to 4 (from the Disease-free state) show clear non-linear 

trends, particularly in Transitions 1 (to T2DM), 2 (to MI), and 3 (to Stroke), 

where the smoothed lines show strong curvature. This suggests that the 

combined effects of covariates are not adequately modelled by the linear 

predictor, likely due to non-linear biomarker-risk relationship. Transition 4 (to 

Death) also shows notable deviation, though with slightly less curvature, 

reinforcing the complexity of mortality modelling from a baseline healthy state. 

 

Transitions 5 to 7 (from T2DM) and Transitions 8 to 13 (post-MI and post-Stroke 

pathways) display moderate to mild non-linearity. For instance, Transition 9 (MI 

to Death) and Transition 10 (Post-MI to Death) reveal upward-sloping trends in 

the smoothed residuals, indicating possible underestimation of risk in higher-risk 

patients. Some later transitions (e.g., Transitions 11–13) show relatively stable 

residual patterns, suggesting that the linear predictor performs more adequately 

in later disease stages, potentially due to more homogeneous risk profiles. All 

covariates have highly significant p-values (p < 0.001), confirming their 
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relevance, but also suggesting the current model may not be using the most 

appropriate functional form for them. 

 

Based on this test, overall model structure appears sound, the observed non-

linearities indicate that several transitions, particularly form early state 

(disease-free) may require more flexible modelling such as Royston-Parmar (RP) 

modelling to better capture the relationships between biomarkers and event 

risk. 

 

Both Schoenfeld and Martingale tests results are useful tools to evaluate the Cox 

model. For Schoenfeld, these findings do not indicate a failure of the model but 

rather affirm its capacity to detect and reflect true temporal variation in 

covariate effects. Similarly, Martingale residual test does not invalidate the 

model, rather they provide critical insight that the relationship between 

biomarkers and risks may be complex and non-linear, that indicate more flexible 

modelling may needed to strengthen predictive accuracy and its clinical 

relevance.  

 

6.4.3 Parametric modelling results  

Fitting parametric models 

Parametric models are integral to survival analysis, particularly in healthcare 

settings where extrapolation beyond observed follow-up is often required. Unlike 

semi-parametric models such as the Cox model, parametric models explicitly 

define the baseline hazard and the functional relationship between covariates 

and survival outcomes.189,313  

 

Various distributional forms are employed to describe survival time in this 

current parametric approach. As previously mentioned, the model selection is 

typically guided by information criteria like the Akaike Information Criterion 

(AIC) and the Bayesian Information Criterion (BIC). The lowest value of these 

represents the potentially best-fitting model (Table 6.5). 
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Information criteria test such as AIC/BIC are useful for comparing the relative fit 

of candidate models for a specific state transition, however, they may not fully 

capture overall model adequacy, especially when multiple models fit the data 

reasonably well.349 Hence, the current model selection was supplemented with 

additional diagnostic, including visual inspection by comparing fitted parametric 

curves with Kaplan-Meier (KM) estimates (Figure 6.21), as well as residual-based 

diagnostics.  

 

Based on the parametric model evaluation, AIC/BIC selections were consistent 

across all transitions. The Log-normal distribution emerged as the optimal fit for 

the initial transitions from the disease-free state (Transitions 1–3).  This aligns 

with the natural progression of cardiometabolic diseases, where risk accelerates 

gradually over time, particularly as metabolic dysregulation worsens with aging 

or cumulative exposures, or potential competing risks. (Figure 6.21) 

 

In Transition 4 (Disease free to Death), The Weibull distribution is the best 

fitting one, showing its flexibility by allowing for increasing, decreasing or 

constant hazard. For all-cause mortality from a disease state, this aligns with 

the known pattern of increasing mortality risk with age.  

 

For T2DM-related events and death (Transitions 5–7), the Gompertz distribution 

characterised by an exponentially increasing hazard seems appropriate, as it 

reflects the rising likelihood of complications with longer disease duration. In 

individuals with diabetes, prolonged exposure to hyperglycaemia contributes to 

progressive vascular and neurological damage, elevating the risk of adverse 

outcomes over time. 
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Table 6.3 AIC/BIC score (parametric models) 

Transition and 

distribution tests 

Exponential Gamma Gen_Gamma Gompertz Log-logistic Log-normal Weibull 

 AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

T1: Disease-free → 

T2DM 

599,580 599,873 510,897 511,201 488,768 489,082 508,818 509,122 487,671 487,975 487,616 487,920 498,031 498,335 

T2: Disease-free→ MI 156,986 157,279 143,595 143,899 143,114 143,428 139,070 139,374 136,964 137,268 136,282 136,586 137,223 137,527 

T3: Disease-free→ 

Stroke 

163,829 164,123 142,433 142,737 141,277 141,590 143,939 144,243 141,838 142,141 141,230 141,533 142,055 142,358 

T4: Disease-free→ 

Death 

250,743 251,036 214,451 214,755 207,388 207,702 204,652 204,955 204,428 204,732 206,064 206,368 203,633 203,937 

T5: T2DM→ MI 28,965 29,226 28,969 29,238 29,616 29,894 28,952 29,221 28,967 29,236 29,169 29,438 28,967 29,237 

T6: T2DM→ Stroke 28,246 28,506 28,248 28,517 28,966 29,245 28,223 28,492 28,250 28,519 28,458 28,726 29,246 28,515 

T7: T2DM→ Death 85,209 85,470 86,356 86,625 89,840 85,219 84,833 85,102 85,792 86,061 87,545 87,814 85,182 85,451 

T8: MI→post-MI 18,252 18,472 15,033 15,260 14,714 14,949 16,885 17,112 14,915 15,142 14,775 15,002 14,971 15,198 

T9: MI→Death 27,729 27,948 23,511 23,738 23,513 23,747 26,895 27,122 23,748 23,975 23,892 24,119 23,555 23,782 

T10: Post-MI→Death 5,576 5,741 4,908 5,079 4,910 5,087 5,396 5,566 4,958 5,129 4,993 5,163 4,914 5,058 

T11: Stroke→post-

stroke 

21,911 22,131 17,199 17,427 16,648 16,883 19,661 19,888 16,987 17,215 16,771 16,999 17,090 17,318 

T12: Stroke→Death 34,967 35,187 27,707 27,935 27,450 27,685 32,834 33,062 27706 27,934 27,615 27,843 27,528 27,755 

T13: Post-

Stroke→Death 

8,483 8,657 7,359 

 

  

7,539 3,802 3,988 8,029 8,209 7,401 7,580 7,408 7,588 7,357 7,536 

AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion  
*Grey highlighted: lowest score 
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Figure 6.21 Standard Parametric vs Kaplan-Meier survival curves
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For post-event transitions, such as those following MI or stroke (Transitions 8 and 

11–13), the Generalised Gamma distribution consistently offered the best fit. This 

is supported by studies that report non-constant hazards, for example the risk of 

death after MI is highest in the first 30 days and then declines, or as defined as 

post-acute CVD events.350,351 

 

It can be seen that transition 13 likely overfit (Table 6.3), with a very large 

difference score compared to other distributions. It might be due to small event 

counts in this transition render likelihood-based criteria unstable or overly 

responsive to model complexity, potentially affecting convergence. Nevertheless, 

visual inspection of this transition fit confirms that Generalised Gamma closely 

follows the observed KM curve throughout the follow-up period. 

 

In terms of extrapolation, figure 6.21 demonstrates that several models fit the 

observed data similarly within the follow-up range, but diverge in their 

extrapolated tails. For instance, exponential and Gompertz distributions often 

showed either persistent survival (flattened curves) or overly rapid decline, 

particularly visible in transitions 11–13 (stroke-related mortality). These patterns 

were judged implausible based on known disease trajectories. Conversely, the log-

normal and Weibull distributions produced extrapolations that more closely aligned 

with clinical expectations, such as gradual risk increase in early transitions and 

steeper declines in mortality-related transitions. The generalised 

gamma distribution also performed well in  transitions 11-13, offering flexible 

shapes that could mimic the more clinically credible behaviour of log-normal and 

Weibull models, while also fitting the observed data reasonably. These visual 

assessments supported the final model selection process, prioritising both 

goodness-of-fit and credible long-term projection. 

 

Model diagnostics  

Cox-Snell residual plots were generated to assess the goodness-of-fit of the final 

parametric models across all 13 transitions. A well-fitting model is expected to 

produce a cumulative hazard plot of residuals that follows a 45-degree line (i.e., 

the unit exponential distribution). Overall, most transitions showed reasonable 

alignment with this expectation, suggesting acceptable model calibration for the 
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majority of transitions, particularly in early- to mid-follow-up periods. Transitions 

such as Transition 3, 4, 9, 10 and 12 demonstrated near-linear residual behaviour, 

indicating a good fit between predicted and observed hazards. 

 

Transitions 2, 3, 7, 8, 11 exhibit minor deviations, particularly at the tails. These 

may indicate limited data at later time points or slight misspecification. T1, T5, 

T6, T13 show more noticeable divergence from the ideal line. This suggests the 

chosen parametric models might not fully capture the shape of the hazard over 

time, perhaps due to time-varying risks or heterogeneity in event patterns. 

6.4.4 Flexible parametric results  

Fitting flexible parametric models 

While standard parametric distributions offer a foundation for extrapolation, 

Figure 6.21 demonstrates cases where some models inadequatly capture the 

empirical survival patterns, especially in the early follow-up periods (see the 

divergence on transition 7, 9, 10, 12), where rigid assumptions about hazard shapes 

limit model fit. 

 

The flexible parametric survival model, particularly the Royston-Parmar (RP) model 

is introduced to address limitations of standard parametric approaches. They 

model the log cumulative hazard as a smooth function of time using restricted 

cubic splines 306, enabling the hazard to follow more realistic, non-monotonic 

patterns often observed in chronic and multi-phase disease processes like 

cardiometabolic disease. 

 

This is achieved without introducing excessive model complexity or sacrificing 

interpretability. RP models allow the hazard function to bend smoothly 

at predefined knot points. The selection of these knot numbers was guided by the 

principle of parsimony: while additional knots increase the model’s ability to 

capture complex hazard shapes, they also risk overfitting and reduced 

interpretability. Fewer knots (e.g., 1) yield smoother and more stable hazard 

curves, which are easier to interpret and generalise, particularly when sample 

sizes are moderate or follow-up is limited. Conversely, more knots (e.g., 3) provide 

greater flexibility to accommodate non-linear hazard trajectories where supported 

by the data. 
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Figure 6.22 Cox-Snell Residual for best parametric models
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In this thesis, limiting the knot range to 1–3 allowed for exploration of model 

performance under increasing complexity without excessive computational 

burden or risk of instability. Model selection was based on a combination of 

statistical criteria (AIC and BIC) and visual inspection of survival and hazard 

curves to ensure that improvements in fit did not come at the cost of overfitting 

or loss of clinical interpretability (Table 6.6). 

 

Overall, increasing the number of knots generally improves model fit, as 

indicated by lower AIC/BIC values. RP models provided better fit than standard 

parametric models in transitions with complex or non-monotonic hazard patterns 

(e.g., Transition 1, 2, 3, 7), particularly when using higher knot values (k=2 or 

3), aligning more closely with Kaplan-Meier estimates. For mortality-related 

transitions (Transition 9-13), standard models often diverged over time, while RP 

models more followed observed survival trends. In transitions with limited 

follow-up (e.g., Transition 6,8,11), it performed similarly to parametric, though 

RP models offered greater flexibility and reduced risk of misfit.  

 

Table 6.4 AIC/BIC score (flexible parametric models) 

Transition and 

knots simulation  

k=1 k=2 k=3 

 AIC BIC AIC BIC AIC BIC 

T1: Disease-free → 

T2DM 

487,029 487,343 486,511 486,835 484,927 485,261 

T2: Disease-free→ 

MI 

134,892 135,206 138,568 138,892 134,928 135,262 

T3: Disease-free→ 

Stroke 

139,647 139,960 139,960 140,284 139,706 140,040 

T4: Disease-free→ 

Death 

226,039 226,069 225,531 225,572 225,156 225,206 

T5: T2DM→ MI 28,911 29,189 28,913 29,200 30,126 30,171 

T6: T2DM→ Stroke 29,249 29,276 29,246 29,282 29,247 29,292 

T7: T2DM→ Death 91,802 91,829 91,570 91,606 91,538 91,583 

T8: MI→post-MI 14,866 15,101 14,423 14,665 14,365 14,615 

T9: MI→Death 23,550 23,785 22,708 22,950 22,628 22,878 

T10: Post-

MI→Death 

4,916 5,092 4,848 5,030 4,844 5,032 

T11: Stroke→post-

stroke 

16,773 17,009 17,005 17,036 16,998 17,036 

T12: Stroke→Death 27,454 27,689 26,246 26,489 26,201 26,451 

T13: Post-

Stroke→Death 

7,349 7,534 7,258 7,450 7,250 7,448 
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In addition, some transitions, especially those occurring later in the disease 

progression, such as from post-MI or post-stroke to death show only marginal 

improvements or even slight deterioration in model fit with additional knots, 

suggesting simpler hazard structures or limited event data.  

 

Model diagnostics 

Figure 6.24 illustrates Cox-Snell residual diagnostics for RP models across all 13 

transitions show generally improved model fit compared to standard parametric 

counterparts. In most transitions, the cumulative hazard (black line) closely 

follows the expected 45-degree reference line (blue dashed), indicating a good 

approximation to the observed data. Slight deviations are visible in transitions 

with sparse events or extended follow-up (e.g., Transition 11-13). However, the 

flexible structure of RP models makes them appealing for extrapolation 

scenarios where standard parametric forms may be too restrictive. Therefore, 

their use is justified not solely by fit, but by their capacity to reflect plausible 

hazard trajectories beyond observed data, especially when supported by clinical 

or external validation. 
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Figure 6.23 Flexible Parametric vs Kaplan-Meier survival plot 
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Figure 6.24 Cox-Snell Residual for Royston-Parmar 
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6.4.5 Incorporating semi-Markov framework for extrapolation  

The semi-Markov framework provides a structured approach to modelling multi-

state processes where the transition hazard depends on how long an individual 

has remained in a particular state (sojourn time).260 This differs from traditional 

Markov models, which assume transition hazards depend only on the current 

state and baseline time. In this context, parametric survival models (both 

standard and flexible) define the underlying hazard function, shaping how 

transition risks evolve over time. 

 

For example, in cardiometabolic modelling, the risk of death after a MI or stroke 

may change depending on how long a patient remains in the post-event state. 

This dynamic cannot be captured using baseline time alone but can be modelled 

effectively with a semi-Markov approach that incorporates parametric hazard 

functions. In simpler terms, while parametric models are useful for extrapolating 

risks beyond observed data due to their well-defined hazard functions, they are 

not sufficient to represent the complexities of multi-state disease processes on 

their own.  

 

Therefore, integrating parametric models within a semi-Markov framework is 

important for several reasons. First, it ensures the correct time scale is used. In 

semi-Markov models, time resets at entry into each new state, so hazards 

depend on the time spent in that state rather than on total follow-up time.260 

Second, parametric models need to be applied to the correct time scale to work 

effectively. The semi-Markov structure ensures that these models align with 

sojourn time, which reflects real-world disease progression more accurately than 

baseline time.324 

 

Table 6.5 summarises the final survival model selected for each transition in the 

CMD Policy Model, which is embedded within a semi-Markov framework. Model 

selection was based on a combination of statistical goodness-of-fit criteria (AIC 

and BIC), visual inspection of observed and fitted survival curves, and 

assessment of clinical plausibility of the implied hazard functions.(see section 

6.3 and 6.5) 
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Table 6.5 Summary of final survival model selected for each transition in the 
CMD Policy Model 

Transition Standard parametric 

(distribution) 

Flexible Parametric 

(k=number of knots) 

T1: Disease-free → T2DM Log-normal k=3 

T2: Disease-free→ MI Log-normal k=1 

T3: Disease-free→ Stroke Log-normal k=1 

T4: Disease-free→ Death Log-normal k=3 

T5: T2DM→ MI Weibull k=1 

T6: T2DM→ Stroke Gompertz k=2 

T7: T2DM→ Death Gompertz k=3 

T8: MI→post-MI Generalised gamma k=3 

T9: MI→Death Gamma k=3 

T10: Post-MI→Death Gamma k=3 

T11: Stroke→post-stroke Generalised gamma k=1 

T12: Stroke→Death Generalised gamma k=3 

T13: Post-Stroke→Death Generalised gamma k=3 

 

 

In this thesis, the semiMarkov()function developed by Williams et al., (2017) 

324 was applied, that constructs a sojourn-time-based multi-state model. For 

each of the 13 transitions, the best-fitting parametric distribution and the 

optimal number of spline knots for RP models (see sub section 6.4.3 to 6.4.4) 

were identified and embedded into the function to generate transition-specific 

estimates. 

 

The model produces estimated cumulative hazards 𝐻(𝑡)  and state occupancy 

probabilities over time, both of which can be adjusted based on the chosen 

distributions and model parameters. These outputs can then be transformed into 

transition probabilities 𝑃(𝑡), enabling the estimation of the likelihood that an 

individual will move from one health state to another at any given time point.352  

 

𝑃(𝑡) = 1 − exp⁡(−𝐻(𝑡)) 

 

(Equation 6.22) 
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To support interpretation and link back to the model structure described in 

Chapter 4 and Figure 6.4, the full transition probability matrix of the CMD Policy 

Model is re-stated below for completeness. 

 

Table 6.6 Transition probability matrix of CMD Policy Model 

 Disease-free T2DM MI Post-MI Stroke Post-

stroke 

Death 

Disease-

free 

1- TP1-TP2-TP3-TP4 TP1 TP2 - TP3 - TP4 

T2DM - 1- TP5- TP6- TP7 TP5 - TP6 - TP7 

MI - - 1-TP8-TP9 TP8 - - TP9 

Post-MI - - - 1- TP10 - - TP10 

Stroke - - - - 1- TP11 -TP12 TP11 TP12 

Post-stroke - - - - - 1- TP13 TP13 

Death - - - - - - 1 

Note: TP= Transition probability. 1 = "Disease-free to T2DM",  2 = "Disease-free to MI",  3 = "Disease-free to 
Stroke", 4 = "Disease-free to Death",5 = "T2DM to MI", 6 = "T2DM to Stroke", 7 = "T2DM to Death", 8 = "MI to 
Post-MI", 9= "MI to Death", 10 = "Post-MI to Death", 11 = "Stroke to Post-Stroke", 12 = "Stroke to Death", T13 
= "Post-stroke to Death" 

 

This transformation enables the estimation of the likelihood that an individual 

will transition from one health state to another at any given time point. 

Importantly, these outputs can be used to inform decision-analytic models, such 

as cost-effectiveness analyses, that require long-term risk estimation across 

different health states. 

 

While most transition-specific models demonstrated good agreement with 

observed Kaplan-Meier estimates, a few transitions exhibited overly optimistic 

survival projections. The inclusion of background mortality serves to correct this 

bias and produce more realistic survival outcomes across the full disease 

trajectory.  

 

Background mortality was incorporated to account for the risk of death from 

causes unrelated to the explicitly modelled disease processes. This was derived 

from age- and sex-specific national life tables provided by the UK Office for 

National Statistics (ONS)353 and applied in addition to the disease-specific 

mortality transitions. 
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To ensure realistic mortality estimates, the cumulative background mortality risk 

(derived from life tables) was applied to proportionally scale down all other 

state probabilities at each time point. Specifically, after computing transition 

probabilities from the semi-Markov model, the probability of background (non-

disease-related) death was subtracted from the total probability mass. The 

remaining probabilities for all other states were then rescaled proportionally to 

ensure that the full set of state probabilities still summed to one (see 

implementation details on GitHub). This adjustment is particularly important to 

avoid underestimation of overall mortality, especially in earlier disease stages or 

among older individuals who may face substantial non-disease-related death 

risks. 

 

Using this semi-Markov framework, state occupancy probabilities are generated 

both for standard parametric and flexible parametric models. The simulation 

starts age 40 years (median age of sample population is 42 years), and all 

‘healthy’ biomarkers and behaviour covariate levels (e.g, non-smoking, alcohol 

level 0).  

 

It should be noted that this simulation started at age 40, meaning that lifetime 

projections are over 60 years (standard lifetime horizon). However, the  figures 

that follow show an extrapolation period up to 100 years to help show potential 

implausible probabilities of being over 100 years old. In practice, analysts may 

only use a maximum 60 years to model natural disease progression.  
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Figure 6.25 State occupancy probabilities (Semi Markov-embedded standard 

parametric) 

 

 

 
 

Figure 6.26 State occupancy probabilities (Semi Markov-embedded flexible 

parametric) 
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The two figures above (Figure 6.25 and 6.26) represent the estimated state 

occupancy probabilities over time derived from semi-Markov models using 

different types of parametric survival functions. The first plot is based 

on standard parametric distributions, while the second employs flexible 

parametric models that allow greater adaptability in hazard shapes over time.  

In the standard model, transitions between states appear more abrupt and 

follow a relatively uniform pattern, with the disease-free state move to the next 

states earlier. This approach benefits from simplicity and computational 

efficiency, making it suitable for settings where hazard patterns are expected to 

follow known distributions. 

In contrast, the flexible parametric model displays smoother and more gradual 

transitions, particularly in the timing of disease onset and mortality. People 

remain in disease-free state slightly longer, and progression through conditions 

such as T2DM, MI, and stroke occurs more slowly before reaching death state. 

This approach offers improved flexibility in capturing changes in risk over time, 

allowing the model to better represent real-world patterns of disease 

progression. 

 

6.5 Final CMD Policy Model : discussion  

In summary, the Cardiometabolic Disease (CMD) Policy model presented in this 

thesis is defined as a statistical model based on multi-state survival analysis that 

is designed to project future health trajectories and support both 

epidemiological and economic evaluation analysis. 

 

Using complex, linked UK patient-level data sets210, the model captures the 

progression of key cardiometabolic events such as type 2 diabetes mellitus 

(T2DM), myocardial infarction (MI), and stroke. These events are modelled as 

distinct health states within a multi-state structure, allowing the flexibility for 

transition probability estimation, state occupancy over time, as well as long-

term impact of disease progression on both clinical and economic outcomes. 
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For long-term extrapolation, in a semi-Markov framework, each transition is 

modelled using standard or flexible parametric survival models, enabling the 

calculation of cumulative hazard over time, which is eventually converted to 

transition probabilities. This allows simulation of individual-level pathways 

through disease progression.   

 

Although the CMD Policy Model follows a semi-Markov multi-state structure, it 

can be best described as a “hybrid model” that blends features of 

both microsimulation and cohort modelling. Like a traditional cohort model, it 

estimates state occupancy probabilities over time for a representative 

population, allowing aggregation of outcomes such as life expectancy or disease 

prevalence at the population level. These probabilities are calculated based on 

transition-specific hazard models, using parametric or flexible parametric 

survival functions applied to a defined cohort. However, the model also 

embodies ‘microsimulation-like’ characteristics. It supports individual-level risk 

stratification by allowing covariates (e.g., age, sex, clinical biomarkers) to 

influence transition hazards. This means that transitions are not governed by 

average population risks alone but can vary across subgroups or individuals, 

depending on their risk profiles. Additionally, because hazards are converted 

into transition probabilities at each time step, the model can simulate pathways 

that resemble those seen in discrete-time microsimulation, where individuals 

probabilistically move between states over time. 

 

Hence, while the output is aggregated (as in cohort models), the structure and 

flexibility of the model, particularly in accommodating individual-level 

heterogeneity and time-updated covariates, make it more aligned with hybrid 

policy modelling approaches. This design balances computational 

efficiency with granular clinical plausibility, enabling its application in 

both population health forecasting, cost-effectiveness analysis, and inequality 

impact where subgroup-specific insights are essential. 

 

Strengths and limitations of CMD Policy Model 

One of key strengths of this CMD Policy Model is its use of large-scale UK patient-

level data (CPRD Aurum), linking primary and secondary care with death records 

and deprivation indices. This enhances population representativeness and policy 
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relevance. The model also includes a wide range of time-varying covariates, 

including clinical biomarkers, behavioural risk factors (e.g., smoking, alcohol), 

and socioeconomic indicators, supporting analysis of health inequalities and 

subgroup-specific outcomes. 

 

While CPRD Aurum has underpinned numerous epidemiological studies, its use in 

constructing multi-state frameworks to analyse transitions between CMD states 

remains underexplored.354  This is the first CMD policy model integrating CPRD 

Aurum to explicitly capture these transitions, enabling UK population-level 

preventive evaluations and policy adoption. 

  

Methodologically, applying a semi-Markov structure offers a clinically realistic 

representation of chronic disease progression. This is particularly relevant for 

conditions such as type 2 diabetes mellitus (T2DM), myocardial infarction (MI), 

and stroke, where risks evolve with disease duration. Additionally, the model 

adopts a hybrid approach, combining elements of microsimulation and cohort 

modelling.  

 

Each transition in the model is estimated using either standard parametric 

distributions or flexible parametric survival models, which provides the 

flexibility to adapt hazard functions based on empirical data and clinical 

relevance. This improves both the precision and credibility of long-term risk 

estimates, particularly when modelling interventions or projecting disease 

burden over time. 

 

Despite its strengths, the CMD Policy Model has some limitations. First, it 

remains dependent on the quality and completeness of the input data. Any bias 

or missingness in the underlying patient-level data may affect the validity and 

generalisability of model outputs, particularly for underrepresented subgroups. 

Additionally, the model does not explicitly account for intermediate 

complications of T2DM, such as microvascular and macrovascular events that 

may influence transition hazards, unless manually incorporated into the model 

structure.  
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The conceptual model underlying the CMD framework was informed by clinical 

literature and expert input, providing face validity. Internal diagnostic 

procedures were conducted, such as AIC/BIC comparisons, residual checks, and 

visual inspection of survival curves against Kaplan-Meier estimates which 

demonstrated acceptable internal model fit. However, external validation using 

independent datasets (e.g., CPRD GOLD) has not yet been performed.69,153 

Moreover, the current implementation of the model requires manual 

manipulation of code and parameters within R, which may present a barrier to 

uptake. A web-based application or graphical user interface could improve 

accessibility for broader use by researchers, clinicians, and policymakers. 

 

When compared to other established policy models, the CMD Policy Model offers 

several unique advantages. For example, the UKPDS Outcomes Model is widely 

used in health economic evaluations of diabetes.355 It shares a multi-state 

framework with the CMD model but focuses more narrowly on diabetes-related 

complications using trial-derived risk equations. In contrast, the CMD model is 

based on routine population-level data and accommodates a wider range of 

disease trajectories, making it better suited for early prevention and population-

level policy analysis. 

 

Similarly, the Cardiovascular Disease Policy Model (CVDPM)356 developed in the 

United States uses a Markov-based structure with detailed treatment modules 

and heterogeneous populations. However, it assumes memoryless transitions and 

often requires calibration to external data. The CMD model improves upon this 

by employing a sojourn-time-based semi-Markov structure, enabling more 

dynamic and time-sensitive modelling of disease progression without reliance on 

empirical calibration.  

 

Another model, The IMPACT CHD Policy Model has been valuable in quantifying 

the contributions of risk factor changes and treatment uptake to coronary heart 

disease mortality trends at the population level.357 However, it does not include 

morbidity outcomes (e.g., diabetes, MI, stroke), which limits its ability to 

capture the full burden of disease or evaluate quality-of-life outcomes which are 

addressed in current CMD Policy Model. The model is well-suited 

for retrospective analysis of observed mortality trends but less equipped 
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for prospective simulation of new or complex policies, especially those affecting 

disease incidence, or long-term resource use. 

 

Unlike more complex platforms such as CVD-PREDICT126 and SPHR model125, 

which employ full microsimulation modelling, the CMD Policy Model offers 

a computationally efficient hybrid design. It supports individual-level 

heterogeneity through covariates while retaining tractability for large-scale 

scenario analysis. This makes it more accessible for routine use in academic and 

policy contexts without requiring high-performance simulation environments. 

 

In summary, the CMD Policy Model provides a transparent, flexible, and 

methodologically robust framework for simulating cardiometabolic disease 

progression and estimating population-level health and economic outcomes. 

While its current scope and validation status present areas for further 

development, the model stands out for its real-world data foundations, semi-

Markov logic, and hybrid architecture, positioning it as a valuable tool for 

informing prevention strategies and healthcare resource planning. 

 

6.6 Conclusions 

The development of the CMD Policy Model represents a step toward more 

integrated and policy-relevant simulation tools for cardiometabolic disease 

prevention. Rather than relying on simplified assumptions or narrowly defined 

clinical cohorts, the model provides a structured yet flexible framework that 

balances methodological rigour with real-world applicability. By combining 

advanced statistical modelling with UK patient-level data, it enables meaningful 

forecasting and supports decisions that reflect the complexity of 

cardiometabolic care. 

As policy demands grow more complex, the model provides a strong foundation 

for future developments, including external validation, expanded disease 

coverage, and user-friendly interfaces. Designed for practical use, it enables the 

simulation of targeted interventions, such as dietary changes, metabolic control, 

or smoking cessation, by adjusting covariates and estimating their impact on 

transition risks and outcomes, thereby supporting effective public health 

planning and resource allocation.  
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Chapter 7 Case studies  

 

 

 

 

7.1 Introduction 

Following the development and validation of the CMD Policy Model in Chapter 6, 

Chapter 7 demonstrates its practical application through a case study focused on 

targeted preventative strategies. Leveraging detailed individual-level healthcare 

data and advanced multi-state survival models, the model enables simulation of 

various clinical and policy scenarios, offering a platform for forecasting 

cardiometabolic disease (CMD) trajectories within the UK population. 

 

The intervention scenarios examined in this chapter are inspired by priorities 

identified in guidance from the National Institute for Health and Care Excellence 

(NICE), particularly in areas related to cardiovascular and diabetes prevention. 

The current scenarios do not replicate existing NICE evaluations, but adopt 

similar intervention types and are implemented using the CMD Policy Model, with 

updated or adapted parameters as appropriate. The primary objective of this 

chapter is to demonstrate ‘how the model works’ and show its flexibility, rather 

than to produce results ready for direct policy use. 

 

The chapter includes two case studies, each demonstrating a distinct application 

of the model. The first focuses on dietary interventions aimed at preventing 

type 2 diabetes (T2DM) among ethnic minority populations in England. The 

second examines the cost-effectiveness of smoking cessation among adult 

smokers. Together, these examples illustrate two core ways in which the model 

can be utilised: first, by simulating the impact of modifying covariate profiles 

before and after an intervention; and second, by projecting long-term clinical 

outcomes and conducting health economic evaluations.



 

 

 

200 

7.2 Case study 1:  behavioural weight gain prevention 

The intervention in this study is informed by the NICE public health guideline 

(PH38)358, which focuses on the cost-effectiveness of preventing pre-diabetes 

among adults in high-risk groups. Originally published in 2012, this guideline 

specifically assessed the impact of dietary interventions among Black and 

minority ethnic populations in England with low socio-economic status (SES). 

While this thesis does not adopt all aspects of the original NICE modelling 

approach, it builds on its core concepts. The NICE model evaluated a range of 

weight management and dietary programme scenarios (retrieved from 

international published studies) that influence key metabolic risk factors such as 

body mass index (BMI), HDL, LDL, and total cholesterol.  

7.2.1 Overview of public health intervention  

In the UK, individuals of Black and other minority group (e.g.,South Asian) 

ethnicities and those living in areas of high deprivation are recognised as high-

risk groups for cardiometabolic diseases (CMD), including type 2 diabetes 

(T2DM), hypertension, and cardiovascular disease (CVD). National health data 

consistently show that Black communities, particularly of African and Caribbean 

descent, experience higher rates of obesity, diabetes, and stroke compared to 

the general population.359–361 These disparities are further exacerbated by socio-

economic inequalities, with people in the most deprived areas facing greater 

exposure to risk factors such as poor diet, limited access to green spaces for 

physical activity, and higher levels of stress and material hardship.361–363 

 

Structural barriers within the healthcare system, including reduced access to 

preventive services and culturally appropriate care, also contribute to delayed 

diagnosis and poorer disease outcomes. As a result, public health preventative 

strategies in the UK (such as NICE guidelines above) have increasingly targeted 

these high-risk groups to reduce health inequalities, improve early detection, 

and deliver more impactful and equitable health interventions.  

 

The CMD Policy Model allows for such targeted analysis and, in this instance, is 

applied to individuals of Black ethnicity living in the most deprived areas. This 

approach highlights the model’s capacity to incorporate subgroup-specific 
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characteristics and evaluate the potential impact of interventions on key 

metabolic risk factors. In the original NICE guidance, the scenarios for metabolic 

risk changes were used to estimate the cost per person per intervention. 

However, the focus of this case study is not to perform a full economic 

evaluation but rather to examine the effect of changes in covariates resulting 

from lifestyle interventions. 

7.2.2 Modelling method: risk factor modification 

This case study is informed by published clinical trial data focused on weight 

management interventions among the Black adult population in the UK. The 

intervention was a 12-month behavioural programme designed to support 

sustainable weight loss and metabolic improvement. It included behaviour 

change goals, weekly self-monitoring activities, monthly counselling sessions, 

training materials, and access to gym facilities. The baseline population consists 

of adults aged 18 years and older who were classified as obese and presented 

with moderate to high levels of clinical biomarkers associated with 

cardiometabolic risk. These biomarkers include elevated BMI, fasting glucose, 

blood pressure, and lipid levels.364 

Following the intervention, participants experienced measurable improvements 

in metabolic parameters. These changes are assumed to result from the 

combined effect of structured behavioural support and physical activity, as 

evidenced in the trial.365 The updated covariate values used in the intervention 

scenario reflect the post-intervention biomarker profile and are summarised in 

the table below. 

Table 7.1 Metabolic risk changes based on trials results 

Metabolic risks Baseline (Initial) After Intervention Target/Ideal 
BMI (kg/m2) 32 24 18.5–24.9 
Glucose (mmol/l) 7 4.8 4.5–5.0 (fasting) 
SBP (mmHg) 125 115 <120 
DBP (mmHg) 85 75 <80 
Cholesterol (mmol/l) 7 4.8 <5.0 
HDL (mmol/l) 1.2 1.6 >1.6 
LDL (mmol/l) 3.5 2.5 <3.0 
Triglycerides (mmol/l) 2.0 1.4 <1.7 
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Appendix 8 provides example R code that shows how the model works to 

accommodate the mean risk changes before simulation in R. The simulated 

individual used in this case study is defined through a set of baseline 

characteristics (initialCovariateValues) representing a high-risk profile 

within a Black adult population living in the most deprived areas of the UK. The 

individual is classified as obese with a BMI of 32, and exhibits elevated 

cardiometabolic biomarkers and has borderline blood pressure and sub-optimal 

lipid and glucose profile. Lifestyle factors include being a non-smoker and 

consuming alcohol within safe limits. 

 

The intervention scenario (interventionCovariateValues) assumes 

metabolic improvements following a structured 12-month behavioural weight 

management programme. This intervention is expected to result in reductions in 

metabolic risk levels.  

 

For the first four transitions (from disease free to T2DM and CVD) the covariates 

are drawn from the initialCovariateValues object. For all subsequent transitions 

(from diabetes or after a cardiovascular event), the covariates are based 

on interventionCovariateValues, which reflect improvements due to a 

lifestyle intervention. These changes simulate the metabolic benefits of a 

structured behavioural weight management programme and allow the model to 

evaluate how improved risk profiles affect progression to subsequent events and 

death.This approach allows the CMD Policy Model to assess how an intervention 

influences disease progression across different stages of cardiometabolic disease 

by updating the relevant covariate values at appropriate points in the disease 

pathway. 

 

Then the model can be fitted using either parametric or flexible parametric 

models for each transition. The best models (see Chapter 6) are embedded (see 

Chapter 6), ordered by transition name. Once the transition-specific models are 

fitted, the semi-Markov simulation can be executed. This involves 

computing state occupancy probabilities over time, which represent the 

likelihood that a simulated individual will occupy each health state (e.g., 

disease-free, diabetes, MI, stroke, death) at each time point during the 

simulation horizon.  
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7.2.3 Simulation results  

The two plots (Figure 7.1 and 7.2) illustrate the projected state occupancy 

probabilities over a life-time horizon for the individual profile in the CMD Policy 

Model. The first plot represents the baseline (pre-intervention) scenario, while 

the second plot shows outcomes under the intervention scenario, in which 

improved metabolic risk factors (e.g., reduced BMI, glucose, and blood pressure) 

are assumed after implementation of a 12-month behavioural weight 

management programme. 

 

The comparison between the pre-and post-intervention plots reveals several 

important shifts in disease progression. In the pre-intervention scenario, the 

“Disease-free” state begins to decline earlier (around age 20 to 25) indicating 

earlier onset of type 2 diabetes (T2DM). In contrast, the post-intervention plot 

shows a delayed decline in this state, with T2DM onset postponed by 

approximately 5 to 10 years, reflecting the preventive effect of improved 

metabolic risk factors. 

 

The progression to myocardial infarction (MI) and stroke is also slower and less 

pronounced after the intervention, consistent with better lipid and blood 

pressure control. Additionally, the burden of chronic post-event states is 

reduced: in the pre-intervention plot, post-MI and post-stroke segments appear 

earlier and are more prominent, while in the post-intervention scenario, these 

segments are narrower, suggesting fewer severe or repeated events. Finally, the 

transition to death is delayed in the post-intervention group, with a higher 

likelihood of survival beyond age 80, indicating potential gains in life expectancy 

as a result of the intervention. 
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Figure 7.1 State occupancy probabilities at baseline 

 

 
Figure 7.2 State occupancy probabilities after intervention 

 

 

Although the behavioural programme improves metabolic risk factors, it does not 

completely eliminate the risk of developing cardiometabolic conditions. The 

individual in the model still begins with a high-risk profile, and while those risks 

are reduced, they are not completely brought down to the level of a low-risk 

individual. 
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As a result, the person is still likely to develop disease eventually, just at a later 

point in life. For instance, someone who would have developed diabetes at age 

30 might now develop it at age 40 or 45 instead. Similarly, cardiovascular events 

may occur later but are not completely avoided. In the model, this leads 

to similar overall state trajectories, especially in the long term, since all 

individuals eventually transition to the "death” state.  

 

It also can be argued with optimistic scenarios that some individuals may adopt 

lasting lifestyle changes following an intervention, such as sustained quit 

smoking or improved diet, which could reduce their lifetime risk.  

 

This is why the shape of the state occupancy plot looks similar in both scenarios, 

even though the intervention is beneficial. The curves shift to the right 

(indicating delayed disease), but the overall structure remains intact. Hence, 

the intervention’s impact lies in delaying disease and extending healthy life, not 

in preventing disease altogether. 

 

The state occupancy probabilities data and transition probabilities generated by 

this model are presented in Appendix 9. From this, all modification by adding 

more parameters such as costs or utility can be performed, both in individual 

perspective or population level analysis, or simply comparing life expectancy.  

7.2.4 Discussion and conclusions 

This first case study demonstrates the application of the CMD Policy Model to 

simulate the health impact of a behavioural weight management intervention 

targeted at a high-risk subgroup: Black adults living in the most deprived areas 

of the UK. By modifying covariate inputs based on published clinical trial data, 

the model enables exploration of how realistic improvements in metabolic risk 

factors that can influence the progression of cardiometabolic diseases (CMD) 

over time. 

 

Simulation results indicated that improved risk profiles can meaningfully alter 

transition probabilities, potentially delaying the onset of diabetes and reducing 

the risk of cardiovascular events or premature death. These findings support the 

policy relevance of lifestyle interventions and demonstrate how individual-level 
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risk factor changes can translate into long-term health benefits. It supports 

subgroup-specific simulations, making it well-suited for analysing ethnic and 

socio-economic disparities in health outcomes. A major advantage is its ability to 

dynamically update covariates over time, enabling assessment of interventions 

that modify risk factors. Its flexible framework accommodates both standard 

parametric and Royston-Parmar spline models, improving fit across diverse 

transitions. It has potential for inequality inspection and equity analysis, 

although these features were not activated in this first case study. In terms of 

usability, the model provides a practical and adaptable platform, allowing 

researchers to easily modify covariate values and simulate alternative 

intervention scenarios with minimal effort. 

 

However, several limitations must be acknowledged. In this case study, the 

intervention effects were applied uniformly to all post-diagnosis transitions, 

without accounting for individual variation in adherence or behavioural relapse, 

factors that are common in real-world settings. Additionally, the model 

currently simulates a single average individual and does not capture 

heterogeneity across a population. While it is capable of accommodating 

subgroup differences based on deprivation index or ethnicity, this was not fully 

explored in the current scenario. Finally, although the intervention is informed 

by clinical trial data, the model has not yet been externally validated using long-

term real-world datasets. These limitations point to opportunities for further 

refinement and future development. 

 

In summary, this case study demonstrates how the model can be adapted with 

simple modifications to support epidemiological investigations. With the addition 

of cost and utility values assigned to each health state, the model could also 

support health economic evaluations. The next section will explore preventative 

strategies in more detail, using transition probabilities as the foundation for 

illustrating movement between health states, to offer more perspective 

regarding model usability. These transitions can be paired with effectiveness, 

costs, and utility estimates to quantify intervention impact at each stage of 

disease progression. 
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7.3 Case study 2: cost-effectiveness of smoking cessation 

intervention 

The first case study demonstrated how the CMD Policy Model can be used to 

simulate changes in disease progression based on behavioural risk factor 

modification, this approach can also be extended to incorporate economic 

dimensions. By linking clinical events with associated costs and health-related 

quality of life, the model enables the assessment of both cost-effectiveness and 

budget impact. This integration allows for a more comprehensive policy analysis, 

supporting decision-making not only on the basis of health outcomes but also on 

the value for money of interventions. The following sections explore how this 

modelling framework can be adapted for economic evaluation, using a 

combination of clinical evidence, cost data, and utility weights to inform 

resource allocation in the context of cardiometabolic disease prevention. 

7.3.1 Health economic evaluation: preliminary concept 

Definition 

A widely accepted definition of economic evaluation is provided by Drummond 

et al. (2015)73, who describes it as "the comparative analysis of alternative 

courses of action in terms of both their costs and consequences." This definition 

captures the essence of economic evaluation: it is not merely about calculating 

costs or measuring outcomes in isolation, but about assessing the relative value 

of competing interventions in a structured and transparent manner. 

Economic evaluation plays a critical role in informing public health policy by 

assessing the value for money of health interventions. It is a core component of 

evidence-based healthcare decision-making, aiming to ensure that limited 

resources are allocated efficiently to achieve the greatest possible health 

benefits. In public health and chronic disease prevention, economic evaluation is 

especially important because interventions often require substantial upfront 

investment but deliver benefits over an extended time horizon. Without such 

evaluations, there is a risk of under- or over-investing in interventions that may 

be ineffective, inefficient, or inequitable.366,367
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Types of economic evaluation 

There are several types of economic evaluation, each serving different decision-

making needs. Cost-minimisation analysis (CMA) is used when two interventions 

are proven to have equivalent outcomes; in such cases, the focus is solely on 

identifying the option with the lowest cost. Cost-effectiveness analysis 

(CEA) compares interventions based on the cost per unit of health outcome 

(e.g., cost per case of diabetes prevented), while cost-utility analysis 

(CUA) extends this by incorporating a generic outcome such as quality-adjusted 

life years (QALYs), capturing both the quantity and quality of life gained. Cost-

benefit analysis (CBA), in contrast, expresses both costs and outcomes in 

monetary terms, enabling comparisons across sectors or policy areas.73 

 

Table 7.2 Types of economic evaluation 

Method Costs Effects 

Cost-minimisation analysis Monetary unit (£) Considered equal 

Cost-effectiveness analysis 

(CEA)  

Monetary unit (£) Natural unit (LY, disease 

events prevented) 

Cost-utility analysis (CUA)  Monetary unit (£) QALYs, DALYs 

Cost-benefit analysis (CBA) Monetary unit (£) Monetary unit 

 

 

Importance of modelling in economic evaluation 

The most common applied modelling frameworks in economic evaluation are 

decision-trees and Markov models. Decision tree models are well-suited for 

short-term economic evaluations involving interventions with a limited number 

of outcomes and a clear sequence of events. They are relatively simple to 

construct and interpret but become less practical when events recur or evolve 

over time. The Markov framework (in state transition models), on the other 

hand, is designed for chronic conditions and long-term interventions, allowing 

individuals to transition between health states across multiple time cycles. This 

structure makes Markov models particularly advantageous for capturing disease 

progression, recurrent events, and cumulative outcomes like lifetime costs and 

QALYs. As a result, Markov modelling offers greater flexibility and realism in 

evaluating complex, long-term public health strategies.143,368 
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In the UK, health economic modelling plays a central role in evidence-based 

decision-making, particularly through institutions such as the National Institute 

for Health and Care Excellence (NICE). NICE routinely employs economic models 

to assess the clinical and cost-effectiveness of healthcare technologies, public 

health interventions, and disease preventative strategies.369–371 These models are 

essential for determining whether new interventions represent good value for 

money within the constraints of the NHS budget. 

Modelling allows NICE to extrapolate trial data over long-term horizons, assess 

uncertainty, and compare interventions across different diseases using a 

common metric such as cost per QALY gained. This is especially important in 

chronic conditions like cardiometabolic disease, where preventive strategies 

may offer small but cumulative health benefits over time. By simulating 

alternative scenarios, economic models help policymakers understand trade-offs 

between immediate costs and long-term health gains, examine the distribution 

of benefits across population subgroups (e.g., by ethnicity or deprivation), and 

support equitable resource allocation. In this way, health economic modelling 

not only informs funding decisions but also enhances the fairness, transparency, 

and accountability of health policy. 

In this thesis, the CMD Policy Model provides the structural foundation to 

integrate various modelling elements and support future cost-effectiveness 

evaluations of CMD preventative strategies. By incorporating clinical, 

epidemiological, and economic data, the model enables robust, long-term 

projections of value for money, thereby informing policy and resource allocation 

decisions. 

The first case study demonstrates how changes in metabolic risk factors 

influence state occupancy probabilities and transition probabilities, offering 

an epidemiological perspective on disease progression. Building on that, 

this second case study illustrates how transition probabilities can be adjusted 

using information from published evidence, such as intervention effectiveness, 

(e.g: risk ratios), inputs commonly employed in long-term economic evaluations. 

While the two case studies differ in their perspectives, one grounded in 

epidemiology and the other in literature-based effectiveness evidence, both 

approaches are valid and compatible within an economic evaluation framework.  
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7.3.2 Methods 

Intervention, comparator, and target population 

The intervention examined in this second case study is based on the Single 

Technology Appraisal (STA) published by Hind et al. (2007)358 which evaluated 

the clinical and cost-effectiveness of varenicline (Champix®) for smoking 

cessation. The appraisal explicitly recommended varenicline for adult smokers 

who wish to quit, noting it should ideally be prescribed alongside behavioural 

support, though it may still be offered when such support is declined.  

 

The STA provided the foundation for NICE guidance, supporting the routine 

commissioning of varenicline in the NHS in England and Wales. As of June 2025, 

updated resources from the National Centre for Smoking Cessation and Training 

(NCSCT) continue to support varenicline as a safe, effective, and cost-effective 

first-line treatment for smoking cessation, reaffirming its NICE-endorsed role in 

clinical practice.372,373 

Building on this context, the current thesis conducts a simple economic 

evaluation (cost-utility analysis) comparing varenicline to bupropion for adult 

smoking cessation. Bupropion was selected as the comparator in this evaluation 

because it has long been an established pharmacological aid for smoking 

cessation and was one of the first non-nicotine medications approved before the 

introduction of varenicline.374  However, bupropion carries a higher risk of 

adverse effects, most notably insomnia, dry mouth, and a dose-dependent risk 

of seizures, which restricts its use in patients with seizure disorders, eating 

disorders, or those on interacting medications.375 

Multiple clinical trials and meta-analyses, including those cited in the NICE 

technology appraisal (TA123), have demonstrated that compared to buproprion 

varenicline significantly improves quit rates relative to bupropion. The design of 

the analysis follows the PICOS framework, as outlined below:
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Table 7.3 PICOS  for economic evaluation 

PICOS Description 

Population Adult smokers (≥40 years) 
 

Intervention Varenicline 
Patients begin with a titration week, then proceed to 1 mg orally twice 
daily: 

- Week 1: Typically 0.5 mg once daily on days 1–3, then 0.5 mg 
twice daily on days 4–7. 

- Week 2–12: 1 mg twice daily (total 2 mg/day). 
Standard treatment 12 weeks, with a possibility of extending another 
12 weeks for patients who successfully quit in the first course. 

 
Comparator Buproprion 

- 150 mg orally twice daily; a total daily dose of 300 mg. 

- Duration: Used within a 12-week treatment course, consistent 
with smoking-cessation protocols 

 
Outcomes 
and study 
design  

- Model based economic evaluation 
- Cost per QALY gained (economic outcome) 

 
 
 
Model structure and assumptions 

The model follows the current structure of the CMD Policy Model, comprising 

seven health states and thirteen transition probabilities as previously outlined. 

Individuals enter the model at age 40 years in a disease-free state who 

are motivated to quit smoking, with a moderate metabolic risk profile and a 

current smoking status. The model simulates annual transitions over a lifetime 

horizon. Although the original appraisal included participants aged ≥18 years, 

the model assumes a baseline age of 40 to better represent the demographic 

more likely to engage seriously with cessation support and to maintain long-term 

abstinence. 

 

In contrast to earlier models such as BENESCO (BENefits of Smoking Cessation), 

developed for a Pfizer-commissioned technology appraisal, where smoking status 

(current, former, relapse) and related comorbidities (e.g., cardiovascular 

disease, chronic obstructive pulmonary disease) are explicitly modelled, the 

current model incorporates smoking status via relative risk adjustments.  
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The effectiveness of smoking cessation interventions is captured through the 

proportion of individuals who achieve smoking abstinence, and the associated 

risk reductions in disease onset. 

 

The seven health states included in the model are: Disease-free, Type 2 Diabetes 

Mellitus (T2DM), Myocardial Infarction (MI), Post-MI, Stroke, Post-stroke, and 

Death. Transition probabilities were adjusted based on treatment-specific quit 

rates: 21.9% for varenicline and 16.1% for bupropion, based on estimates from 

NICE STA 123358  Relative risk reductions associated with smoking cessation: 20% 

for T2DM, 30% for MI, 25% for stroke, and 15% for all-cause mortality were 

applied to the relevant transition probabilities.358,376 

 

Cost, perspective, and dicounting 

The analysis adopts the perspective of the UK National Health Service (NHS) and 

Personal Social Services (PSS), consistent with the NICE reference case for 

economic evaluations. This includes direct medical costs such as 

pharmacological treatment and hospitalisation, as well as long-term care costs 

related to complications such as post-stroke disability. Indirect costs (e.g., 

productivity losses) are not currently considered, but technically it is possible 

for them to be incorporated if a societal perspective is adopted. 

 

It is important to emphasise that the data used in the model are primarily 

derived from previously published NICE appraisals. The purpose of this example 

is to illustrate the structure and functionality of the CMD policy model, rather 

than to re-evaluate the cost-effectiveness of varenicline in the current UK 

context. 

 

Intervention costs were derived from the NICE STA for varenicline and were 

inflated to 2025 values using the UK Consumer Price Index (CPI). The cost of a 

12-week course of varenicline was estimated at £204.40, while the 

corresponding cost for bupropion was £104.21.358 These represent one-off 

treatment costs incurred at the outset of the model. Annual healthcare costs 

associated with each disease state were sourced from validated national 

datasets, including the NHS Reference Costs and the Personal Social Services 

Research Unit (PSSRU) Unit Costs of Health and Social Care.
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Table 7.4 Input parameter 

Parameters Values Distribution Description Sources 

Transition probabilities 0-1 Beta Lifetime transition probabilities CMD Policy Model 
Intervention costs     
Varenicline £293.80 Gamma As dosage mentioned in PICOS BNF [NICE STA 123]358 
Buproprion £144.63 Gamma As dosage mentioned in PICOS BNF [NICE STA 123]358 
Quit rate     
Varenicline 21.8% Gamma Quit rate at 12 months NICE STA123; adjusted from trial data358 
Buproprion 16.2% Gamma Quit rate at 12 months NICE STA123; adjusted from trial data358 
Healthcare costs (Annual)     
c_T2DM £2,900 Gamma Cost of managing T2DM Hex et al. 2012377 
c_MI £4,250 Gamma Cost of first MI NHS Ref Costs BNF [NICE STA 123/NIHR 

reports]358,378–380 
c_post-MI £810 Gamma Cost of post-MI maintenance NHS Ref Costs BNF [NICE STA 123/NIHR 

reports]358,378–380 
c_stroke £4,840 Gamma Cost of acute stroke NHS Ref Costs BNF [NICE STA 123/NIHR 

reports]358,378–380 

c_post-stroke £14,800 Gamma Annual cost of post-stroke disability 
and care 

NHS Ref Costs BNF [NICE STA 123/NIHR 
reports]358,378–380 

Relative risks (RR)     
rr_ T2DM 0.80 Log-normal RR of T2DM in ex-smokers vs smokers Pan et al., 2015381 
rr_ MI 0.70 Log-normal RR of MI in ex-smokers vs smokers Critchley & Capewell, 2003382 
rr_ stroke  0.75 Log-normal RR of stroke in ex-smokers vs smokers Peters et al., 2013383, Shah and Cole (2010)383 
Utility     
u_disease free 0.85 Beta Utility of disease free state Ara & Brazier (2010)384, NIHR reports379,385 
u_T2DM 0.78 Beta Utility of T2DM state Ara & Brazier (2010)384, NIHR reports379,385 
u_MI 0.76 Beta Utility of MI state Ara & Brazier (2010)384, NIHR reports379,385 
u_post-MI 0.65 Beta Utility of post MI state Ara & Brazier (2010)384, NIHR reports379,385 
u_stroke 0.73 Beta Utility of stroke state Ara & Brazier (2010)384, NIHR reports379,385 
u_post-stroke 0.48 Beta Utility of post stroke Ara & Brazier (2010)384, NIHR reports379,385 
Discount rate     
dr_costs 3.5% - Annual discount rate for costs NICE Reference Case369 
dr_outcomes  3.5% - Annual discount rate for outcomes NICE Reference Case369 
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NICE STA: National Institute for Health and Care Excellence; NIHR: National Institute for Health and Care Research, BNF:British National Formulary
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Health-related quality of life (HRQoL) was modelled using utility values from Ara 

and Brazier (2010)384, a widely cited UK-based source for economic evaluations.It 

is then adjusted with NIHR reports for smoking cessation. The model also 

incorporated the long-term health benefits of smoking cessation by 

applying relative risks (RRs) to transitions into smoking-related diseases. These 

RRs reflect the reduced incidence of disease among ex-smokers compared to 

continuing smokers and were applied proportionally, based on the intervention-

specific quit rates reported in NICE STA123.  

 

No risk reductions were applied to transitions into Post-MI or Post-stroke states, 

as these represent downstream consequences of the primary event and are 

assumed to be unaffected directly by smoking cessation. This is consistent with 

the structure of prior economic evaluations, including NICE STA123 and 

international models such as BENESCO and EQUIPTMOD (European Tobacco ROI 

Model). 

 

All future costs and health outcomes were then discounted at an annual rate of 

3.5%, consistent with the NICE reference case for economic evaluations in the 

UK.369 For probabilistic sensitivity analysis, model parameters were simulated 

using standard probability distributions commonly applied in health economic 

modelling. 
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Base-case analysis 

In economic evaluation, Incremental Cost-Effectiveness Ratio (ICER) and Net 

Monetary Benefit (NMB) are two fundamental tools for assessing cost-

effectiveness. The ICER is a key metric in health economic evaluation that 

compares the difference in costs and outcomes between two interventions. It is 

calculated as the difference in cost divided by the difference in effectiveness. It 

answers the question, “How much extra does it cost to gain one additional QALY 

with the new intervention?” The ICER helps decision-makers assess whether the 

additional benefits of a new intervention are worth the additional costs, relative 

to a comparator (often standard care). 

 

𝐼𝐶𝐸𝑅 =
𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛
⁡- 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟

𝐸𝑓𝑓𝑒𝑐𝑡𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟
 

 

(Equation 7.1) 

 

Lower ICERs suggest more cost-effective options, and in many health systems, 

including the UK, ICER thresholds (e.g., £20,000–£30,000 per QALY) guide 

decisions on whether an intervention offers good value for money.369 To aid 

interpretation, the Cost-Effectiveness (CE) Plane is used. 

 

On the other hand, the NMB approach reformulates cost-effectiveness by 

translating health outcomes into monetary terms using a predefined WTP 

threshold.  

𝑁𝑀𝐵 = (𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 × 𝜆) − 𝐶𝑜𝑠𝑡 
 

(Equation 7.2) 

Where effectiveness is typically measured in QALYs,  λ (lambda) is 

WTP  threshold per QALY . Cost is the total cost of the intervention. By 

comparing two intervention, Incremental Net Monetary Benefit (INMB) can be 

calculated using formula above incorporationg difference in effectiveness and 

costs (ΔEffectiveness and ΔCosts). 

If INMB > 0 it means the new intervention is cost-effective at the chosen WTP 

threshold, and if INMB < 0 means that the comparator is more cost-effective.
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ICER expresses cost-effectiveness as a ratio, specifically, the additional cost per 

additional quality-adjusted life year (QALY) gained, and is widely used by HTA 

bodies such as NICE. Its main advantages lie in its intuitive interpretation and 

strong alignment with established WTP thresholds, making it accessible to 

policymakers and stakeholders. However, ICER has mathematical limitations, 

particularly when the incremental difference in QALYs is very small or negative, 

which can lead to unstable or misleading results. In contrast, the NMB 

framework reformulates the cost-effectiveness question into a monetary value, 

subtracting the cost of an intervention from the monetary value of the health 

benefits. This approach is statistically more robust, especially for handling 

uncertainty and conducting probabilistic sensitivity analyses. Moreover, NMB 

is always defined, even in cases where ICER fails. Nevertheless, its main 

drawbacks include the need to specify a willingness-to-pay threshold upfront 

(which may vary across contexts) and the fact that monetary valuation of health 

outcomes may be less intuitive for some audiences.386,387  Despite the growing 

use of NMB in methodological research, ICER remains the most widely used 

measure in policy-making, and this case study applying ICER for final result.  

 

In terms of practicality, the NMB calculation can still be implemented within the 

policy model by adding supplementary code to represent the mathematical 

expression. 

 

 

Sensitivity analysis 

Sensitivity analysis is an essential component of health economic evaluation, 

used to assess the robustness of model results to uncertainty in input 

parameters. Deterministic sensitivity analysis (DSA) involves varying one (one-

way) or several (multi-way) parameters at a time within a plausible range to 

observe the impact on outcomes such as the ICER.155 This helps identify key 

drivers of cost-effectiveness and supports transparent reporting of assumptions. 

 

In contrast, probabilistic sensitivity analysis (PSA) simultaneously varies multiple 

uncertain parameters by assigning probability distributions to model inputs (e.g., 

costs, utilities, transition probabilities) and using Monte Carlo simulation to 
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generate a range of possible outcomes.155 PSA provides a more comprehensive 

picture of uncertainty and allows the generation of outputs like the cost-

effectiveness acceptability curve (CEAC), which shows the probability that an 

intervention is cost-effective at different willingness-to-pay thresholds. Both DSA 

and PSA are performed in this current model to highlighting how uncertainty may 

influence conclusions. 

 

7.3.3 Results 

Base case results 

The updated model-based economic evaluation compared the lifetime costs and 

health outcomes of two pharmacotherapies for smoking cessation, 

varenicline and bupropion (based on a hypothetical UK cohort of 1,000). These 

results show that varenicline is more effective, offering 0.06 additional 

QALYs and 0.06 additional life-years per person. The resulting ICER of £1,656 per 

QALY gained is well within the UK’s cost-effectiveness threshold of £20,000–

£30,000/QALY, suggesting that varenicline is highly cost-effective from an NHS 

perspective. 

 

Table 7.5 Base case result 

 Lifetime 

costs 

(discounted) 

LYG 

(discounted) 

QALY 

(discounted) 

ICER 

Varenicline 33,205.16 19.60 15.63 £1,656 

Buproprion 33,106.94 19.54 15.57  

 

It can be said that the results of this analysis are nearly identical to those 

reported by NICE STA 123.358  They concluded that, on a per-person basis, 

varenicline was associated with lower average costs (£10,717 vs. £10,820 for 

bupropion) and higher average QALYs (13.27 vs. 13.25). To project these results 

to the population level, the per-person estimates can be multiplied by the 

number of eligible individuals. For example, in the NICE STA123 report, the 

estimated number of adult smokers in England eligible for cessation services was 

approximately 3,173,000 people, resulting in a total cost for varenicline of 

£34.02 billion and a total of 42.14 million QALYs.358 
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To extrapolate these findings to the population level, the per-person results can 

be multiplied by the number of eligible individuals. For instance, if we assume 

there are 4.09 million adult smokers aged 40 in England, this results in a total 

cost of approximately £135.79 billion (£33,205.16 × 4.09 million) and a total 

of 63.92 million QALYs (15.63 × 4.09 million) for Varenicline. 

 
 
Sensitivity Analysis 
 
Deterministic sensitivity analysis 

 
 

Figure 7.3 Tornado diagram 

The tornado diagram presents the results of a one-way sensitivity analysis, 

highlighting how changes in individual model parameters affect the incremental 

cost-effectiveness ratio (ICER) of varenicline compared with bupropion. The 

most influential parameter was the quit rate for varenicline, as it directly 

determines the number of individuals who successfully stop smoking and 

therefore avoid future smoking-related diseases. A higher quit rate leads to 

greater health gains (increased QALYs and life-years), which reduces the ICER 

and makes the intervention appear more cost-effective. Conversely, a lower quit 

rate weakens these health benefits, driving the ICER upwards. Similarly, 

the relative risk reductions for death and stroke had a major impact, as these 
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are high-burden outcomes where small changes in risk can result in significant 

differences in life expectancy and healthcare costs over time. The quit rate for 

bupropion also influenced the ICER considerably, since greater effectiveness of 

the comparator diminishes the relative advantage of varenicline, making it 

appear less favourable economically. 

Moderate effects were seen from parameters related to diabetes and MI, as well 

as health state utility values for stroke, MI, and diabetes. These influence the 

QALY outcomes but to a lesser extent because the baseline utilities and disease 

incidence are relatively stable or less impactful than stroke or death. In 

contrast, treatment costs, including the drug acquisition costs for varenicline 

and bupropion and the costs of managing cardiovascular and metabolic 

conditions, had minimal impact on the ICER. This is because small changes in 

unit costs are outweighed by the much larger health effects driving cost-

effectiveness.  

 

Probabilistic sensitivity analysis 

 
 

Figure 7.4 Cost-effectiveness plane 
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The cost-effectiveness plane illustrates the results of the PSA, where each of the 

1,000 simulations represents a random draw from probability distributions for 

key model parameters. The x-axis shows the incremental QALYs gained by 

varenicline compared to bupropion, while the y-axis reflects the corresponding 

incremental costs. The majority of simulations fall within the southeast 

quadrant, indicating that varenicline is both more effective and less costly than 

bupropion—in other words, it is the dominant strategy in most scenarios. A small 

number of simulations lie in the northeast quadrant, where Varenicline is more 

effective but also more costly, yet still often falls below the WTP 

threshold represented by the red dashed line. Very few simulations lie in the 

northwest or southwest quadrants, which would imply that Varenicline is either 

dominated or offers fewer QALYs. 

 

Figure 7.5 Cost-effectiveness acceptability curve (CEAC) 

 

 

The cost-effectiveness acceptability curve (CEAC) illustrates the probability that 

Varenicline is cost-effective at varying levels of WTP thresholds/QALY gained. 

The curve rises steeply and shows that at a WTP of £20,000 to £30,000 per 

QALY (marked by the vertical red dashed line), the probability that Varenicline 

is cost-effective is already above 90%, exceeding the accepted decision 

threshold used by NICE.369 This confirms the earlier findings from the cost-



 

 

 

222 

effectiveness plane and base-case ICER, demonstrating that even when 

parameter uncertainty is fully accounted for through PSA, varenicline remains 

highly likely to be the most cost-effective option. The steep shape of the curve 

also suggests that the model’s results are relatively insensitive to variations in 

the decision-maker’s WTP, strengthening the policy argument for continued or 

expanded investment in smoking cessation interventions using varenicline within 

the NHS. 

7.3.4 Discussion and conclusions 

This analysis demonstrates not only that varenicline is a cost-effective 

intervention for smoking cessation, but also that the economic evaluation model 

performed consistently and reliably across a wide range of conditions. In the 

base-case scenario, varenicline generated greater health benefits than 

bupropion (15.63 QALYs vs. 15.57) at a slightly higher cost (£33,205 vs. £33,107), 

resulting in an ICER of £1,656 per QALY gained. This is well below NICE’s 

standard willingness-to-pay threshold and confirms the intervention’s strong 

value for money. When extrapolated to a national level, assuming 4.09 million 

adult smokers aged 40 years old in England, the model projected over £135.8 

billion in total costs and 63.9 million QALYs. These outputs align with published 

findings, including those from NICE’s STA123.358 Importantly, this case study 

demonstrates how the model behaves in practice: it produces plausible, policy-

relevant outputs while efficiently linking short-term intervention effects to long-

term disease consequences and economic value. 

Nonetheless, this study has several limitations that warrant consideration. 

Structurally, the use of a cohort-based Markov model imposes simplifying 

assumptions such as permanent cessation status after quitting. This excludes the 

possibility of relapse, which is a clinically important factor in long-term smoking 

cessation. Additionally, the model is heavily reliant on published literature for 

utility values, disease risks, and cost data. While these sources provide a solid 

foundation, they may not fully capture recent changes in practice or reflect the 

heterogeneity of real-world patients. As a result, the external generalisability of 

the model outputs may be limited, particularly in settings where patient 

characteristics, healthcare costs, or intervention delivery differ significantly 

from the assumptions used in this evaluation. 
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The NHS perspective used here also omits indirect costs and non-medical costs 

such as lost productivity and informal care. However, it is important to stress 

that the current model is fully capable of incorporating these additional cost 

components. Their exclusion in this analysis was a deliberate modelling choice, 

primarily due to the reliance on published studies that often lack robust or 

consistent estimates for such parameters. Including them without high-quality 

supporting data could introduce substantial uncertainty into the model. Future 

versions using real-world or patient-level datasets could confidently extend the 

model’s perspective to capture a fuller range of economic impacts. 

Recent literature, including the study by Zhou et al. (2024)388, has highlighted 

the importance of estimating healthcare costs using individual-level data and 

regression models that account for cost variability and skewness. Applying these 

methods in future model updates would allow for more accurate cost 

estimations, particularly for conditions which significantly impact long-term 

healthcare expenditures. Integrating relapse dynamics and capturing individual 

differences in treatment adherence and disease risk would further improve the 

model’s validity and policy relevance.    

In conclusion, this analysis confirms that varenicline is a clinically effective and 

economically efficient option for smoking cessation. As the first case study 

applying the CMD policy model to a behavioural intervention, it provides a strong 

foundation for future modelling work. By incorporating individual-level data, 

relapse probabilities, and broader cost perspectives, future versions of the 

model can better inform tobacco control policies and support more promising 

decisions within the NHS and beyond. 

To enhance transparency and reporting quality, the current model is 

accompanied by the Consolidated Health Economic Evaluation Reporting 

Standards (CHEERS) checklist, which is provided in Appendix 10.
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Chapter 8 Main insights, policy 

implications, further research 

 

 

 

 

 

8.1 Introduction 

The general aim of this thesis was to develop a Cardiometabolic Disease (CMD) 

Policy Model by exploring the potential use of Clinical Practice Research Datalink 

(CPRD) Aurum and its relevant linked datasets within the UK setting. This model 

was designed to accommodate both epidemiological and health economic 

contexts in which extrapolation and long-term analyses are critical to inform 

decision-making in public health policy. 

 

Throughout the preceding chapters, the model development followed a 

sequential and structured process and included: a systematic review to map 

existing models and gap (Chapter 3), the conceptual model construction 

(Chapter 4), data preparation and cohort definition (Chapter 5), development 

and analysis of multi-state survival models (Chapter 6), and case studies on 

preventative interventions to illustrate the application and potential of the CMD 

Policy model (Chapter 7). 

 

As the final chapter, Chapter 8 is organised into three sections. First, main 

insights (section 8.2, covering sub-section 8.2.1-8.2.5), which provides a 

synthesis of the findings from Chapter 3 to 7, summarising the most important 

insights from the conceptual, data analysis, and modelling stages. Second, policy 

implications (section 8.3), providing the overall interpretation of the findings in 

the context of health policy, particularly for prevention and management of 

cardiometabolic diseases. Lastly, recommendations fo further research (section 

8.5), which outlines key areas where additional investigation, data 

improvement, or methodological refinement is needed to enhance the accuracy, 

relevance, and practical utility of the CMD Policy Model.  
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8.2 Main insights 

8.2.1 Critical literature review and conceptual model 

The systematic review in Chapter 3 offers a comprehensive evaluation of existing 

policy models aimed at preventing cardiometabolic disease (CMDs) through 

dietary interventions. By analysing 32 studies published between 2000-2024, the 

review provides critical insight into the methodologies, applications, and quality 

of these models.185  

 

Unlike previous reviews that extensively concentrate on clinical interventions or 

high-risk population, such as individuals already diagnosed with CMDs, this study 

highlights models assessing population-wide dietary policies. These include 

initiatives likes sugar taxes, salt reduction programme, and food labelling 

strategies for general or low-risk population. Such interventions aim to achieve 

primordial prevention by addressing risk factors before the onset of disease, 

aligning with the overarching goal of the CMD Policy model developed in this 

thesis. 

 

Most of the reviewed models demonstrated moderate to good reporting quality. 

However, a key limitation identified was the frequent reliance on non-local 

data, often without adequate justification regarding its transferability. 

Additionally, the review emphasised the need for greater transparency in the 

validation of input data and assumptions.185 

 

The results of this systematic review not only provide a critical appraisal of 

existing models and highlight the gaps in modelling practices but also serve as a 

foundational resource for developing conceptual models156 such as presented in 

Chapter 4. By integrating insights from reviews along with clinical guidelines and 

experts’ input, supporting both face and structural validity, the conceptual 

model then establishes a basis for overall model development.  

 

Based on the findings of this review, several key recommendations emerged. 

These include leveraging real-world data (RWD) to enhance population 

representativeness, improving the transparency and quality of data inputs, 
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adopting a broader economic perspective, and incorporating equity 

considerations into policy modelling.185 

 

The CMD Policy Model addresses many of these identified gaps through a series 

of methodological and structural advancements. First, it is explicitly grounded in 

UK-specific RWD, enhancing the contextual relevance and policy applicability of 

its outputs. Second, it incorporates time-dependent covariates to more 

accurately reflect dynamic risk profiles and capture the long-term impacts of 

behavioural interventions. Third, the model integrates both health and economic 

outcomes within a unified state-transition framework, enabling robust cost-

effectiveness analysis over a lifetime horizon. These design features position the 

CMD Policy Model as a significant advancement over many of the models 

identified in the review. It aligns closely with emerging best practices by 

improving data quality, enhancing model transparency, adopting a prevention-

focused perspective, and ability to applying economic evaluation analysis also 

with expansion of inequality outcomes generation. 

8.2.2 Caveats in data preparation 

Chapter 5 outlines the critical data preparation phase required to construct the 

CMD Policy Model using real-world data from CPRD Aurum. This stage details the 

steps involved in transforming raw patient-level electronic health records (EHR)  

into an analysis-ready dataset. While many existing studies focus on general data 

cleaning procedures or the construction of a baseline cohort, this chapter 

provides specific guidance on how the dataset was structured to fit the state-

transition modelling framework used in this thesis. It provides the technical 

insights that are often underreported in the modelling literature, not because 

data preparation is unimportant, but because most attention tends to be placed 

on how the data are analysed and the findings that emerge from those analyses. 

 

Three main components are addressed in data preparation section: 

1) Initial data manipulation. Before inclusion criteria was applied, the raw 

dataset included over 14 million patients, which introduced significant 

computational challenges. To address this, memory-efficient strategies 

were employed in R environment, enabling the processing and 
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transformation of the data within the limitations of available computing 

resources. 

2) Cohort construction and transition matrix development. The development 

of the transition matrix posed several challenges, which were addressed 

using a combination of custom-built R functions and existing published 

methods.  

3) Time-dependent covariate handling. All relevant covariates were treated 

as time-dependent variables, allowing the model to more accurately 

reflect changes in patient health status over time. 

 

8.2.3 CMD Policy Model: standard vs flexible parametric model 

The CMD Policy Model developed in this thesis relies on real-world data (RWD) 

rather that extrapolated results from clinical trial populations, which is more 

representative and generalisable for modelling future disease progression. It 

allows also the flexibility to incorporate public health strategies and simulate 

them for long-term time horizons. 

 

To model disease progression across health states, a wide range of survival 

analysis methods were applied. These ranged from simple non-parametric 

methods (e.g., Kaplan-Meier), to semi-parametric approach (e.g., Cox 

proportional hazards model), to standard parametric models (e.g., exponential, 

Weibull), and finally to flexible parametric models (e.g., Royston-Parmar 

splines). This methodological progression allowed for in-depth exploration of 

model performance across transitions. 

 

For extrapolation beyond the observed follow-up period, the findings in this 

thesis demonstrated that both standard and flexible parametric models are 

capable of generating long-term projections. While this thesis presents results 

using both approaches, it does not aim to compare them head-to-head or 

declare one as universally superior. Instead, the modelling framework was 

designed to remain flexible, allowing the selection of the most appropriate 

method based on the specific characteristics of each transition. 
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The choice between standard and flexible parametric models is not based solely 

on predictive accuracy. Each approach has distinct strengths and limitations, and 

their suitability depends on factors such as the shape of the underlying hazard, 

the amount and quality of available data, the complexity of disease progression, 

and the intended use of the model (e.g., for scenario simulation or policy 

evaluation). In this way, the CMD Policy Model accommodates both modelling 

approaches, using them pragmatically and adaptively to ensure robust and 

policy-relevant results. 

 

Instead, each modelling approach has its own advantages and 

limitations. Standard parametric models offer simplicity, computational 

efficiency, and ease of interpretation. However, they may lack flexibility when 

hazard functions are complex, time-varying, or non-monotonic.304,313,389,390 Each 

standard distribution imposes a specific functional form on the hazard, for 

example, the exponential model assumes a constant hazard over time, while the 

Weibull model assumes a hazard that is either monotonically increasing or 

decreasing. These fixed assumptions may not accurately reflect real-world 

disease dynamics, potentially leading to biased estimates, particularly when 

extrapolating beyond observed data. 

 

In contrast, flexible parametric models, such as Royston-Parmar spline-based 

approaches, are more adaptable and capable of capturing complex hazard 

shapes. They provide a better fit to observed data by modelling the log 

cumulative hazard (or log hazard) using restricted cubic splines. However, this 

flexibility comes at a cost: flexible models require more careful calibration and 

carry a higher risk of overfitting, especially when the number of spline knots is 

excessive or the sample size is limited. Moreover, while flexible models often 

perform well within the observed follow-up period, they may 

behave unpredictably during extrapolation, as the spline-based hazard function 

is not inherently constrained outside the data range.391–393 Without appropriate 

validation or sensitivity analyses, this can lead to unstable or implausible long-

term projections. 

 

Furthermore, by embedding each transition-specific survival model (standard or 

flexible) into a semi-Markov structure, the CMD Policy Model can simulate 
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patient trajectories over time with greater clinical plausibility and temporal 

precision. 

 

Both standard and flexible models were applied and evaluated using statistical 

criteria (e.g., AIC, BIC) and diagnostic plots checks (e.g., Cox-Snell residuals). 

The final model selection was conducted on a transition-specific basis, ensuring 

that each transition was represented by the most appropriate method. This 

approach allowed for an optimal balance between goodness-of-fit, 

interpretability, and the appropriateness of long-term projections. 

 

8.2.4 Perspective on applying CMD policy models: a hybrid approach  

The CMD Policy Model developed in this thesis adopts a hybrid approach, 

enabling both individual-level simulation and population-level aggregation. This 

dual perspective enhances the model’s applicability for a range of public health 

and policy evaluation scenarios. 

 

By using patient-level data, the model allows for customised simulations based 

on individual risk profiles, accounting for differences in age, sex, or clinical 

biomarker levels. This individual-level flexibility supports stratified analysis, 

which is critical for evaluating equity impacts, targeting high-risk subgroups, or 

tailoring interventions. At the same time, the outputs can be aggregated to 

reflect population-level outcomes, such as total cardiometabolc events 

prevented or life-years gained under various preventative scenarios. 

 

A key feature of this model is the ability to estimate and visualise transition 

probabilities between health states. These probabilities are not static; they are 

dynamically influenced by both individual characteristics and the duration of 

time spent in a given state, a feature made possible through the integration of 

a semi-Markov framework. The semi-Markov approach provides a more realistic 

and clinically plausible structure by allowing time-dependent risks to evolve 

based on the time since entering a health state.  

 

As reflected in the case studies, the flexibility of the CMD Policy Model enables a 

wide range of applications. For instance, it can simulate how changes in 
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metabolic risk factors influence transition probabilities before and after an 

intervention. The model can also be applied using fixed baseline characteristics 

to generate transition probabilities for cohort-based analyses, allowing the 

integration of various parameters which are often sourced from published 

literature (such as relative risks, costs, and utility values). This adaptability 

makes the model suitable for both clinical and economic evaluations, supporting 

evidence-based decision-making across diverse policy scenarios. 

 

Beyond that, even though it is not covered yet in case studies, the individual 

level parameters also can be analysed such as individual costs or quality of life 

that can be incorporated in the models, so the state based estimation can be 

obtained from those, as more reflecting mean estimation based on patient level 

calculations. In addition, socio-economic and ethnicity information from this 

model can further enrich long term analyses and address equity concerns via 

distributional cost-effectiveness analysis. 

 

In terms of reproducibility and scalability, this thesis optimised modular coding 

practices using R. Reproducibility was maintained through structured workflows, 

transparent documentation, and automated model-fitting loops across 13 

transitions. This allows for consistent model updating as new data become 

available and facilitates adaptation for different settings or subpopulations. 

Memory-efficient techniques were used to handle large datasets, and key 

modelling functions were designed for generalisability and reuse. 

 

8.3 Policy implications 

The findings of this thesis have several important policy implications, 

particularly for the prevention and management of cardiometabolic diseases 

(CMD) in the UK. The development of a multi-state CMD Policy Model based on 

real-world data (RWD) offers a powerful tool to support evidence-based public 

health decision-making. By capturing disease progression through key stages 

(from a disease-free state to the onset of type 2 diabetes, cardiovascular events, 

and death), the model enables policymakers to assess the long-term impact of 

interventions and resource allocation planning. 

 



 

 

 

231 

First, the model underscores the importance of early prevention. The transition 

from a disease-free state to CMD outcomes (e.g. type 2 diabetes, myocardial 

infarction, stroke) can be predicted using routinely collected clinical and 

biomarker data. This supports the implementation of population-level strategies, 

such as risk-based screening, lifestyle modification programs, and preventive 

care pathways. The model also facilitates identification of subgroups, 

reinforcing the need for stratified care and targeted interventions for individuals 

with modifiable risk factors (e.g., elevated BMI, hypertension, or dyslipidaemia). 

 

Second, the integration of linked datasets (e.g., HES and ONS) enables a more 

comprehensive understanding of patient trajectories across both primary and 

secondary care settings. This aligns with NHS goals for integrated care systems 

and allows policymakers to capture the broader health system impact of CMD, 

including hospitalisations, complications, and mortality. The model therefore 

moves beyond traditional reliance on clinical trial data, providing a framework 

that incorporates real-world clinical pathways and enhances relevance for 

service planning. 

 

Third, the inclusion of time-dependent covariates allows for a dynamic 

representation of disease risk, reflecting how patients’ risk profiles evolve over 

time. This feature aligns with real-world clinical practice and supports policies 

promoting continuity of care, regular monitoring, and proactive disease 

management. Interventions that adapt to patient risk progression rather than 

relying on static baseline assessments can be better evaluated using this model 

structure. 

 

Fourth, the semi-Markov structure captures disease progression where risk 

evolves with duration in intermediate states. It supports precise evaluation of 

interventions targeting long-term disease management. 

 

Fifth, the model provides a foundation for resource allocation and economic 

evaluation. By enabling long-term extrapolation of disease trajectories, the 

model supports estimation of cost-effectiveness and potential health gains 

associated with preventive strategies. This is especially relevant given increasing 
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demands on the health system and the urgent need to balance short-term costs 

with long-term benefits of upstream prevention. 

 

In practical terms, policymakers might use outputs from the CMD Policy Model to 

inform NHS commissioning decisions or public health investment. For example, 

the model could be applied to evaluate the cost-effectiveness of a national 

diabetes screening programme, estimating the number of cases prevented, long-

term healthcare costs avoided, and quality-adjusted life years (QALYs) gained 

across different population segments. Similarly, the model could support 

resource planning by projecting the impact of dietary interventions (e.g., a 

sugar reduction strategy) on future rates of CVD events and hospital admissions, 

helping NHS and local Integrated care boards prioritise funding towards 

interventions that deliver the greatest health return on investment. 

 

Finally, although health inequalities were not the central focus in this thesis, the 

model structure allows for stratification by socioeconomic status, ethnicity, and 

other relevant demographic variables. This can help policymakers understand 

and address disparities in CMD burden and the differential impact of 

interventions. For instance, the model could reveal whether the benefits of 

lifestyle interventions are equitably distributed, or disproportionately favour 

lower‐risk groups. In line with this, the National Institute for Health and Care 

Excellence (NICE) has proposed updates to its technology evaluation manual, 

including explicit guidance on incorporating health inequality analysis into 

decision-making. These updates (currently under consultation) highlight the 

growing importance of embedding equity considerations into public health and 

health technology assessments (HTA), making the model developed in this thesis 

highly relevant for future policy evaluation frameworks. 394 

 

8.4 Limitations 

Although CPRD Aurum covers approximately 20% of the UK population, there are 

notable gaps in geographic coverage, particularly in Scotland, Northern Ireland, 

and Wales. This limitation may affect the geographic representativeness of the 

study cohort and should be considered when generalising results to the wider UK 

population.  
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From a modelling perspective, although face and internal validation have been 

performed, external validation was not conducted and remains an important 

next step. Face validity was established through expert consultation and 

alignment with clinical guidelines (see Chapter 4), while internal validation 

involved checks on model logic, parameter consistency, and calibration against 

observed event rates (see Chapter 6). Future work should focus on validating the 

model against independent datasets and exploring its performance in different 

population subgroups to strengthen its generalisability and policy relevance. 

 

The baseline cohort in this thesis was constructed using a complete-case 

approach, with no imputation applied. While this decision simplified the 

modelling process and ensured internal consistency, it may pose challenges for 

analysts seeking to adapt the model to different datasets, particularly those 

with missing values. Additionally, the model includes a rich set of covariates, 

which adds clinical realism but may impact computational stability in large-scale 

analyses or when new variables are introduced. 

 

An area of note relates to the transition from type 2 diabetes mellitus (T2DM) to 

death, which showed poor model fit compared to observed data. This may 

reflect the influence of competing risks and the absence of intermediate events, 

such as diabetes-related complications, in the transition structure. This 

limitation highlights the importance of ongoing model refinement, particularly in 

transitions where disease trajectories are more complex. 

 

The CMD Policy Model was designed to capture the natural progression of 

cardiometabolic disease, rather than treatment-modified pathways. While this 

focus is appropriate for model conceptualisation and baseline risk estimation, 

additional parameterisation would be required to evaluate specific interventions 

or treatment strategies. Consequently, adapting the model for intervention-

specific cost-effectiveness analyses may require further development to reflect 

alternative patient pathways and treatment effects.
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Although the structure and codebase are transparent and can be followed by 

experienced analysts or modellers, the current version does not 

include automated functions or user-friendly interfaces for parameter 

adjustment or translating state occupancy probabilities into transition 

probabilities. Instead, guidance is provided through example code, which 

requires a certain level of technical skill. Future development could address this 

limitation by incorporating interactive features, such as graphical interfaces or 

guided input forms (e.g., through R Shiny), to improve accessibility for non-

technical stakeholders and support wider use in public health policy decision-

making. 

 

8.5 Areas for future research 

From this work, several promising areas for potential future research can be 

explored. 

 

Future studies should assess the external validity of the current policy model by 

comparing its performance with other relevant datasets. Such comparisons 

would help to determine the model’s generalisability across different 

populations and healthcare systems. 

 

In terms of model application, the current framework mainly demonstrates ‘how 

the model works’ using hypothetical public health interventions, rather than 

evaluating real health policy questions. As such, further validation is required 

before the model can be confidently applied to inform national decision-making. 

External validation remains a critical next step to assess the model’s predictive 

performance and generalisability. Nonetheless, the framework has considerable 

potential for application in real-world health intervention and policy evaluation. 

Incorporating individual-level parameters such as patient-level cost and resource 

use data would enhance the model’s utility for health economic evaluations. 

 

Applying a societal perspective in economic evaluation can be beneficial, and 

this model is capable of accommodating such an approach. However, the current 
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case study focuses on applying the model from the NHS and Personal Social 

Services (PSS) perspective, as this was the primary objective at the time. If data 

available, future studies could adapt the model to adopt this perspective, 

allowing for a broader assessment of costs and outcomes. 

 

Additionally, the model could be expanded to support distributional analyses, a 

growing area of interest in health policy formulation, especially when socio-

economic data are already incorporated in the model. This extended analysis 

can support long-term resource planning and equity focused decision-making. 

 

Another important step forward would be making the model more accessible and 

interactive. Developing friendly interface would allow users to explore different 

scenarios, adjust parameters, and visualise outcome in real time. Alongside this, 

a feasibility study employing qualitative methods could investigate how analysts 

and policymakers use such tools in practice, thus ensuring functionality aligns 

with users’ needs and embedding stakeholder involvement early in the design 

process.  

 

 

8.6 Conclusions 

This thesis presents a body of work aimed at developing a flexible, data-driven 

Cardiometabolic Disease (CMD) Policy Model to support the evaluation of early 

preventative strategies and inform long-term public health planning. By 

leveraging complex, individual-level real-world data and applying robust survival 

modelling techniques, the model offers a transparent and adaptable platform for 

simulating disease progression and assessing the impact of population-wide 

policy interventions. 

 

It is anticipated that the contributions of this research will support further 

methodological advancements and practical applications in the field of health 

policy modelling. By outlining both the potential and limitations of the 

approach, this thesis provides a foundation for strengthening the evidence base 

used in cardiometabolic health decision-making.  
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Appendices 

 

Appendix 1. Search strategy 

 

EMBASE/ MEDLINE (OVID)  
 
1 exp Diabetes Mellitus/  
2 exp Diabetes Mellitus, Type 2/  
3 (type* adj1 ("2" or "II" or two*) adj2 (diabete* or diabeti*)).mp.  
4 (T2D or T2DM).mp.  
5 exp Dyslipidemias/  
6 exp Insulin Resistance/  
7 exp Glucose Intolerance/  
8 1 or 2 or 3 or 4 or 5 or 6 or 7  
9 exp Cardiovascular Diseases/  
10 (CV or CVD).mp.  
11 exp Stroke/  
12 exp Hypertension/  
13 exp Myocardial Infarction/  
14 (cardiovascular disease* or heart disease* or ischaemic heart disease* or 

ischemic heart disease* or angina or coronary disease* or cardiac or vascular 
disease* or cerebrovascular or cerebral vascular).mp.  

15 9 or 10 or 11 or 12 or 13 or 14  
16 exp Metabolic Diseases/  
17 (metabolic adj1 (disease* or syndrom* or dysfunction* or disorder*)).mp.  
18 (cardiometabolic or cardio-metabolic).mp.  
19 16 or 17 or 18  
20 8 or 15 or 19  
21 (model* adj2 (decision* or analys* or simulat* or predict* or statistic* or 

mathematic* or state transition or Markov or discrete event 
simulation*)).mp.  

22 20 and 21  
23 exp Health Policy/ or health polic*.mp.  
24 public health policy.mp.  
25 (policy model* or health policy model* or diabetes polic* or cardiovascular 

polic* or cardiometabolic polic*). 
26 (policy adj2 (disease* or epidemiolog*)).mp.  
27 23 or 24 or 25 or 26  
28 22 and 27  
29 limit 28 to (english language and yr="2000 - 2022")  
 
*Similar terms to CINAHL, Google Scholar, OpenGre
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Appendix 2. Philips et al., checklist 

 

 
 STRUCTURE Yes No Unclear Not 

related 

S1 Is there a clear statement of the decision problem?     

S2 Is the objective of the evaluation and model specified and consistent with the stated decision problem?     

S3 Is the primary decision‐maker specified?     

S4 Is the perspective of the model stated clearly?     

S5 Are the model inputs consistent with the stated perspective?     

S6 Has the scope of the model been stated and justified?     

S7 Are the outcomes of the model consistent with the perspective, scope and overall objective of the model?     

S8 Is the structure of the model consistent with a coherent theory of the health condition under evaluation?     

S9 Are the sources of data used to develop the structure of the model specified?     

S10 Are the causal relationships described by the model structure justified appropriately?     

S11 Are the structural assumptions transparent and justified?     

S12 Are the structural assumptions reasonable given the overall objective, perspective and scope of the model?     

S13 Is there a clear definition of the options under evaluation?     

S14 Have all feasible and practical options been evaluated?     

S15 Is there justification for the exclusion of feasible options?     

S16 
Is the chosen model type appropriate given the decision problem and specified causal relationships within the 
model? 

    

S17 Is the time horizon of the model sufficient to reflect all important differences between options?     

S18 
Are the time horizon of the model, the duration of treatment and the duration of treatment effect described and 
justified? 

    

S19 
Do the disease states (state transition model) or the pathways (decision tree model) reflect the underlying 
biological process of the disease in question and the impact of interventions? 

    

S20 Is the cycle length defined and justified in terms of the natural history of disease? 
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 DATA 
Yes No Unclear Not 

related 

D1 Are the data identification methods transparent and appropriate given the objectives of the model?     

D2 Where choices have been made between data sources, are these justified appropriately?     

D3 Has particular attention been paid to identfying data fo the important parameters in the model?     

D4 Has the quality of the data been assessed appropriately?     

D5 Where expert opinion has been used are the methods described and justified?     

D6 Is the data modelling methodology based on justifiable statistical and epidemiological techniques?     

D7 Is the choice of baseline data described and justified?     

D8 Are transition probabilities calculated appropriately?     

D9 Has a half‐cycle correction been applied to both cost and outcome?     

D10 If not, has this omission been justified?     

D11 If relative treatment effects have been derived from trial data, have they been synthesised using appropriate 
techniques? 

    

D12 Have the methods and assumptions used to extrapolate short‐term results to final outcomes been documented 
and justified? 

    

D13 Have alternative assumptions been explored through sensitivity analysis?     

D14 Have assumptions regarding the continuing effect of treatment once treatment is complete been documented and 
justified? Have alternative assumptions been explored through sensitivity analysis? 

    

D15 Are the costs incorporated into the model justified?     

D16 Has the source for all costs been described?     

D17 Have discount rates been described and justified given the target decision‐maker?     

D18 Are the utilities incorporated into the model appropriate?     

D19 Is the source for the utility weights referenced?     

D20 Are the methods of derivation for the utility weights justified?     

D21 Have all data incorporated into the model been described and referenced in sufficient detail?     

D22 Has the use of mutually inconsistent data been justified (i.e. are assumptions and choices appropriate)?     

D23 Is the process of data incorporation transparent?     

D24 If data have been incorporated as distributions, has the choice of distributions of each parameter been described 
and justified? 
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D25 If data have been incorporated as distributions, is it clear that second order uncertainty is reflected?     

      

D26 Have the four principal types of uncertainty been addressed?     

D27 If not, has the omission of particular forms of uncertainty been justified?     

D28 Have methodological uncertainties been addressed by running alternative versions of the model with different 
methodological assumptions? 

    

D29 Is there evidence that structural uncertainties have been addressed via sensitivity analysis?     

D30 Has heterogenity been dealt with by running the model separately for different subgroups?     

D31 Are the methods of assessment of parameter uncertainties have been addressed via sensitivity analysis?     

D32 If data are incorporated as point estimates, are the ranges used for sensitivity analysis stated clearly and 
justified? 

    

 CONSISTENCY 
Yes No Unclear Not 

related 

C1 Is there evidence that the mathematical logic of the model explained has been tested thoroughly before use?     

C2 Are any counterintuitive results from the model explained and justified?     

C3 If the model has been calibrated against independent data, have any differences been explained and justified?     

C4 Have the results of the model been compared with those of previous models and any differences in results 
explained? 
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Appendix 3. First conceptual model 

 

 
CVD: cardiovascular disease, T2DM: type 2 diabetes, CHD: chronic heart disease, HF: heart failure, AF: atrial fibrillation, TIA: transient ischemic attack, CKD: chronic 
kidney disease, HRQoL: health related quality of life, QALE: quality adjusted life expectancy, QALY: quality adjusted life years
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Appendix 4. Data management plan (DMP) 
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Appendix 5. Cox model results (survival and hazard curves) 
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Appendix 6. Schoenfeld residuals 

Semi-parametric model diagnostic Schoenfeld residuals 

By using standard  one the result of residual plot as below, which is overlapped the line due to black scattered dots. Thus, to make 

them clearer, the smoothed Schoenfeld residual were plotted to enhance plot clarity.  
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Appendix 7. Martingale residuals  

Appendix Figure 1. Overall  plot 
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Appendix Figure 2. Individual plot (by covariates) 
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Appendix 8. R code for 1st case study  

 
#Initial covariates values 
initialCovariateValues <- c( 

    startingAge = 18, 

    gender = unname(genderMap["Female"]),        

    ethnicity = unname(ethnicityMap["Black"]),     

    deprivationIndex = 5, #most-deprived                         

    cvdFH = 0, 

    diabetesFH = 0, 

    atrialFib = 0, 

    hypertension = 0, 

    hyperlipidaemia = 1, 

    latestSmokingStatus = unname(smokingMap["Non smoker"]), 

    alcoholStatus = unname(alcoholMap["Safe alcohol"]), 

    bmi = 32,    

    hdl = 1.2,   

    ldl = 3.5, 

    triglycerides = 2.0,   

    cholesterol = 7,   

    glucose = 7,   

    sbp = 125,   

    dbp = 85    

  ) 

 

  interventionCovariateValues <- initialCovariateValues 

  interventionCovariateValues <-         

unlist(modifyList(as.list(initialCovariateValues), list( 

  bmi = 24,   

  hdl = 1.6,   

  ldl = 2.5   

  triglycerides = 1.4 

  cholesterol = 4.8,   

  glucose = 4.8,   

  sbp = 115,   

  dbp = 75,    

  ))) 

 

 

#Intervention effect 

covEval <- rbind( 

      initialCovariateValues, # Disease-free -> Diabetes 

      initialCovariateValues, # Disease-free -> MI 

      initialCovariateValues, # Disease-free -> Stroke 

      initialCovariateValues, # Disease-free -> Death 

      interventionCovariateValues, # Diabetes -> MI 

      interventionCovariateValues, # Diabetes -> Stroke 

      interventionCovariateValues, # Diabetes -> Death 

      interventionCovariateValues, # MI -> Post-MI 

      interventionCovariateValues, # MI -> Death 
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      interventionCovariateValues, # Post-MI -> Death 

      interventionCovariateValues, # Stroke -> Post-Stroke 

      interventionCovariateValues, # Stroke -> Death 

      interventionCovariateValues # Post-Stroke -> Death 

     

 

 
#fitting model (standard vs felxible) 

#parametric 

dist <- cbind("logn", "logn", "logn",  "wei", "gom", "gom", 

              "gom", "gam", "gam","gam", "gam", "gam", "gam")  

 

 

#flexible parametric 

dist <- cbind( 

    "rps3", "rps1", "rps1", " rps3", "rps1", "rps2", "rps3",          

    "rps3", "rps3", "rps3", "rps1", "rps2", "rps3")     
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Appendix 9. State occupancy probabilities and transition probabilities 

 
State occupancy probabilities 

 

age time 

Disease-

free T2DM MI Stroke Post-MI 

Post-

Stroke Death sum 

18 0 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 3 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 5 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 7 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 8 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

18 9 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

… … … … … … … … … … 

… … … … … … … … … … 

100 22259 0.000 0.001 0.002 0.001 0.001 0.000 0.995 1.000 
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Transition probabilities 

 

 

time T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.001 0.002 0.002 0.003 0.001 

2 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.005 0.002 0.003 0.006 0.005 0.002 

3 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.008 0.003 0.004 0.010 0.008 0.004 

4 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.011 0.004 0.004 0.014 0.010 0.005 

5 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.015 0.005 0.005 0.019 0.012 0.006 

6 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.018 0.006 0.006 0.023 0.013 0.007 

7 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.021 0.007 0.006 0.027 0.015 0.007 

8 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.024 0.007 0.007 0.030 0.017 0.008 

9 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.027 0.008 0.008 0.034 0.018 0.009 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

36498 0.9969 0.2410 0.1386 1.0000 0.3481 0.3001 0.8885 0.6047 0.5231 0.6144 0.6935 0.6418 0.5958 

36499 0.9969 0.2410 0.1386 1.0000 0.3481 0.3001 0.8885 0.6047 0.5232 0.6144 0.6936 0.6418 0.5958 

36500 0.9969 0.2410 0.1386 1.0000 0.3481 0.3001 0.8885 0.6047 0.5232 0.6144 0.6936 0.6418 0.5958 
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Appendix 10. CHEERS checklist  
CHEERS 2022 Checklist 

 
 

 Item Guidance for Reporting 
Reported 
in section 

TITLE  

Title 1 
Identify the study as an economic evaluation and 
specify the interventions being compared. 

Page 194 

ABSTRACT  

Abstract 2 
Provide a structured summary that highlights context, key 
methods, results and alternative analyses. 

NA 

INTRODUCTION  
Background and   
objectives 3 

Give the context for the study, the study question and its 
practical relevance for decision making in policy or 
practice. 

Page 194-196 

METHODS  
Health economic 
analysis plan 4 

Indicate whether a health economic analysis plan was developed 
and 
where available. 

Page 196 
 

Study population 5 
Describe characteristics of the study population (such 
as age range, demographics, socioeconomic, or clinical 
characteristics). 

Page 198 

Setting and location 6 Provide relevant contextual information that may influence findings. Page 198 
Comparators 7 Describe the interventions or strategies being compared and why 

chosen. Page 199 
Perspective 8 State the perspective(s) adopted by the study and why chosen. Page 199 
Time horizon 9 State the time horizon for the study and why appropriate. Page 199 
Discount rate 10 Report the discount rate(s) and reason chosen. Page 201 

Selection of outcomes 11 Describe what outcomes were used as the measure(s) of 
benefit(s) and harm(s). 

Page 202 

Measurement of 
outcomes 

12 Describe how outcomes used to capture benefit(s) 
and harm(s) were measured. 

Page 202 

Valuation of outcomes 13 Describe the population and methods used to measure and value 
outcomes. Page 202 

Measurement and 
valuation of resources 
and costs 

 
14 

 
Describe how costs were valued. 

 
Page 202 

Currency, price date, 
and conversion 

 
15 

Report the dates of the estimated resource quantities and unit 
costs, plus the currency and year of conversion. 

Page 199 
 

Rationale and 
description of model 16 

If modelling is used, describe in detail and why used. Report if the 
model 
is publicly available and where it can be accessed. 

Page 198 

Analytics and 
assumptions 17 

Describe any methods for analysing or statistically transforming 
data, any extrapolation methods, and approaches for validating any 
model used. 

NA 

Characterizing 
heterogeneity 18 

Describe any methods used for estimating how the results of 
the study vary for sub-groups. 

NA 

Characterizing 
distributional effects 19 

Describe how impacts are distributed across different individuals 
or adjustments made to reflect priority populations. 

NA 

Characterizing 
uncertainty 20 Describe methods to characterize any sources of uncertainty in the 

analysis. 

Page 8-9 

Approach to 
engagement with 
patients and others 
affected by the study 

 
21 

Describe any approaches to engage patients or service 
recipients, the general public, communities, or stakeholders 
(e.g., clinicians or payers) in the design of the study. 

 
NA 

RESULTS  

Study parameters 22 
Report all analytic inputs (e.g., values, ranges, references) 
including uncertainty or distributional assumptions. 

Page 200 

Summary of main 
results 23 

Report the mean values for the main categories of costs and 
outcomes of interest and summarise them in the most 
appropriate overall measure. 

Page 204 

 
Effect of uncertainty 

 
24 

Describe how uncertainty about analytic judgments, inputs, or 
projections 
affect findings. Report the effect of choice of discount rate and 
time horizon, if applicable. 

 
Page 206-207  

Effect of engagement 
with patients and 
others affected by the 
study 

 
25 

Report on any difference patient/service recipient, general public, 
community, or stakeholder involvement made to the approach or 
findings of the study 

 
NA 
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DISCUSSION  

Study findings, 
limitations, 
generalizability, and 
current knowledge 

 

26 

 
Report key findings, limitations, ethical or equity considerations not 
captured, and how these could impact patients, policy, or practice. 

 
Page 209-210 

OTHER RELEVANT INFORMATION 

Source of funding 27 
Describe how the study was funded and any role of the 
funder in the identification, design, conduct, and 
reporting of the analysis 

NA 

Conflicts of interest 28 
Report authors conflicts of interest according to journal or 
International Committee of Medical Journal Editors requirements. 

NA 

 
Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, Caulley L, 
Chaiyakunapruk N, Greenberg D, Loder E, Mauskopf J, Mullins CD, Petrou S, Pwu RF, Staniszewska S; CHEERS 
2022 ISPOR Good Research Practices Task Force. Consolidated Health Economic Evaluation Reporting 
Standards 2022 (CHEERS 2022) Statement: Updated Reporting Guidance for Health Economic Evaluations. 
BMJ. 2022;376:e067975. 
The checklist is Open Access distributed in accordance with the terms of the Creative Commons Attribution 
(CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial 
use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/. 
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