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Abstract

Cardiometabolic diseases, including type 2 diabetes mellitus (T2DM) and
cardiovascular disease (CVD), pose a growing public health burden globally and
in the UK. Effective policy responses require robust modeling tools to evaluate
the long-term clinical and economic impacts, particularly for preventative
interventions. This thesis presents the development of a cardiometabolic disease
(CMD) policy model designed to simulate the natural history and progression of

major cardiometabolic conditions.

The model adopts a multi-state survival analysis model with semi-Markov
structure, by utilising real-world patient-level data from the Clinical Practice
Research Datalink (CPRD) Aurum, linked with Hospital Episode Statistics

(HES), mortality records, and the Index of Multiple Deprivation (IMD). It
estimates transition probabilities across key health states: disease-free, T2DM,

first and recurrent cardiovascular events, and death.

Both parametric and flexible survival models are explored to estimate transition
risks and enable long-term extrapolation. The model also incorporates time-
dependent covariates, allowing risks to evolve as patient characteristics change.

Model performance is assessed through rigorous diagnostics and validation.

A key feature of this model is its hybrid approach, which combines cohort-based
transitions with microsimulation components. This structure captures both
population-level trends and individual-level heterogeneity, enhancing the
model’s flexibility and relevance for policy analysis. Model outputs include life-
years, quality-adjusted life years (QALYs), and healthcare costs, with also the
extended ability to assess outcomes across different ethnic groups and

explore health inequalities.

This CMD policy model offers a flexible, real-world-informed decision-support
tool for policymakers, health economists, and public health planners. Its hybrid
structure provides a foundation for supporting the long-term clinical and
economic impacts of interventions to reduce the burden of cardiometabolic

diseases in the UK population.
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Chapter 1 Introduction

1.1 Overview

Cardiometabolic diseases (CMD), encompassing conditions such as type 2
diabetes mellitus (T2DM) and cardiovascular disease (CVD), represent a major
and growing global health concern. Driven by demographic shifts, urbanisation,
and changes in lifestyle behaviours, the prevalence of CMD has increased
markedly in recent decades. This trend poses significant challenges not only to
population health but also to the sustainability of healthcare systems and the

broader socioeconomic landscape.

The World Health Organization (WHO) has identified T2DM and CVD as leading
contributors to global morbidity and mortality.'-2 These conditions are closely
interrelated, sharing a cluster of modifiable risk factors, including obesity, poor
diet, physical inactivity, tobacco use, and dyslipidaemia, therefore often
conceptualised collectively under the term cardiometabolic disease. Together,
they account for a substantial proportion of preventable illness and healthcare

expenditure worldwide.?

This chapter provides a structured overview of cardiometabolic diseases,
including their clinical and epidemiological characteristics, associated disease
burden, and economic implications. It also examines key risk factors, current
strategies for prevention and management, and the role of policy and economic
modelling in informing healthcare decision-making. Particular attention is given
to the use of real-world evidence (RWE) in enhancing the applicability and

impact of such models in policymaking.



1.2 Cardiometabolic disease: a definition

Cardiometabolic disease (CMD) is an umbrella term used to describe a spectrum
of interrelated conditions that affect metabolic processes, vascular function,
and cardiovascular health. It encompasses disorders such as, hypertension,
dyslipidaemia, and obesity, which collectively increase the risk of type 2
diabetes (T2DM) disease and/or cardiovascular disease (CVD). Historically, the
term cardiometabolic syndrome (CMS) was used to refer to a cluster of
metabolic abnormalities, including insulin resistance, impaired glucose
tolerance, dyslipidaemia, central adiposity, and elevated blood pressure.4*®
Although CMS remains a recognised clinical construct, there has been a shift
toward framing these conditions more broadly under the CMD umbrella due to
their shared pathophysiological pathways and cumulative impact on

cardiovascular outcomes.

The World Health Organization (WHO), the National Cholesterol Education
Program (NCEP), and the American Association of Clinical Endocrinologists
(AACE) have contributed to the conceptual development of this framework and

recognise the clinical significance of cardiometabolic risk clustering.’

The pathophysiology of CMD is multifaceted, involving an intertwined collective
mechanism between genetic predisposition, metabolic pathways, and
environmental exposure, compounded by lifestyle factors and hormonal
imbalances. Insulin resistance plays a central role in the development of these
conditions, leading to impaired glucose and lipid metabolism and contributing to
the accumulation of visceral fat.®? In turn, this inflammatory process further
damages metabolic and cardiovascular function. While each of these conditions
can co-occur (Figure 1.1), this significantly raises the risk of developing type 2
diabetes (T2DM) and cardiovascular diseases (CVDs).”'%1 |dentifying and
understanding the risk factors are crucial for further prevention, early

detection, and management.
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Figure 1.1 Factors contributing to the cardiometabolic risk'®

The complex interplay of non-modifiable and modifiable risk factors influences
cardiometabolic diseases.® Non-modifiable risk factors are crucial for assessing
overall risk and tailoring preventive measures. These include age, sex, genetic
predispositions, and ethnicity. For example, the risk of developing CMD increases
with age, and men generally have a higher risk of CVD, while women’s risk
increases and may surpass men’s risk after menopause.'?'3 Ethnicity is also
associated with T2DM and CVD, people from South Asian, African, and Hispanic
origin have a higher risk of developing the disease compared with individuals of

White/European origin.'#16

On the other hand, low physical activity, an unhealthy diet, smoking, and
alcohol consumption are considered modifiable risk factors '®'7. These risks can
be altered, reduced, or eliminated through behavioural changes and lie within
an individual’s control. Targeting the modifiable risk factors can decrease the

likelihood of developing CMD.



1.3 Burden of cardiometabolic disease

1.3.1 Disease burden

The global prevalence of diabetes has increased rapidly, with over 536 million
people living with diabetes, and it is projected to increase to 643 million in
2030." In 2021, diabetes was the direct cause of approximately 1.6 million
deaths, with more than 90% having T2DM.? Diabetes also doubles the risk of CVD
mortality.' Meanwhile, CVDs (including coronary heart disease, stroke, and
peripheral artery disease) account for an estimated 17.9 million deaths
annually.’ Based on these recent estimates, CVDs remain the leading cause of
death, contributing 32% of all global deaths.’

Regarding regional variation, T2DM is highly prevalent in high-income countries
(HICs), but the rate of increase has somewhat stabilised due to the improved
healthcare system and disease management strategies.?%?! The incidence of
CVDs has generally declined as well.?223 However, CVDs remain a leading cause
of death and disability.2? In contrast, T2DM and CVDs are on the rise in LMICs,
driven by lifestyle change, urbanisation, infrastructure development challenges,
and the ageing population. This causes a double disease burden in these

countries, both from communicable and non-communicable diseases.20:24.25

In the UK, there are approximately 4.6 million people diagnosed with diabetes,
of which 90% of adults are diagnosed with T2DM (Table 1.1). The prevalence of
T2DM increases significantly with age, rising to 16% among adults aged 75 and
over.? In addition, an estimated 850,000 people are currently undiagnosed. The
National Institute for Health and Care Excellence (NICE) estimates that more
than 5 million people in the UK will be diagnosed with diabetes (both types) by
2025.7

Approximately 7.6 million people are living with CVD in the UK, including around
4 million males and 3.6 million females (Table 1.1).22 When all diseases of the
circulatory system are considered, including congenital heart disease, vascular
dementia, and cardiovascular conditions originating in the perinatal period—CVD
was recorded as the underlying cause of 163,888 deaths in 2019, accounting for
27.1% of all deaths in the UK.
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As expected, mortality was heavily concentrated in older age groups, with 73.6%

of CVD deaths occurring among individuals aged 75 years and over. However,
more than 43,000 deaths occurred before the age of 75, indicating a substantial

burden of premature mortality.?°

Table 1.1 Number of people diagnosed with diabetes and cardiovascular disease
by UK nation (2023)28

Nation Diabetes CvD
England 3.8 million 6.4 million
Scotland 310,000 730,000
Wales 220,000 340,000
Northern 110,000 225,000
Ireland
UK 4.6 million 7.6 million

Diabetes (both type 1 and type 2) contributes to a substantial burden of
mortality. With millions living with the condition, diabetes increases the risk of

developing other serious health conditions that could lead to premature death.

Figure 1.2 shows the mortality rate from diabetes in the UK between 2000 and
2021, measured in deaths per 100,000 population. From 2014 to 2019, there was
a slight increase in mortality, nearing 10 deaths per 100,000, before dropping
slightly again. In 2021, the rate was recorded at 9 deaths per 100,000

population.3°
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For CVD, the mortality burden is declining in the UK, particularly due to the
reduction in coronary heart disease (CHD) and stroke. In 2021, there were 259
deaths per 100,000 population from CVD, the lowest rate over the period (Figure
1.3).3" Despite this improvement, the number of people living with CVD remains
high. The British Heart Foundation (BHF) notes that heart and circulatory
diseases cause more than a quarter of all deaths in the UK, or nearly 170,000

deaths each year.?8

An increase in the aging population and population growth potentially contribute
to a continuous rise in CVD events. Older adults are more susceptible to CVD,
which means the overall burden of these diseases may not diminish even if
mortality rates improve.32:33 Additionally, the disparities in different socio-
economic regions within the UK also contributed to CVD prevalence. For
example, areas with higher levels of deprivation tend to have higher rates of
CVD.3

1.3.2 Economic burden

Cardiometabolic disease (CMD) imposes a significant economic burden, affecting
direct and indirect medical costs and productivity.3>-3” People with T2DM or CVDs
are likely to have more healthcare visits, and medication not only for treating
the disease but also its complications, have a higher probability of being
hospitalised, and require long-term/social/informal care compared to people

with no disease.3>37

Studies in the UK have estimated the current and future economic burden of
T2DM and CVD and highlighted the consistently growing cost of CMD. The current
annual total cost associated with diabetes is approximately £23.7 billion,
projected to increase to £39.8 billion by 2035/6 (Figure 1.4).38 A current cost of
illness study showed that direct medical costs of diabetes in 2021/22 are
estimated at £10.7 billion with more than 80% of these costs being incurred by
T2DM patients. Estimates for indirect costs associated with T2DM reached £3.3

billion.3°

Currently, around 10% of the NHS budget is spent on treating diabetes and its

complications. However, if current trends continue, this figure is forecasted to



rise to as much as 17% by 2035/364° Beyond direct healthcare costs, diabetes
also imposes a broader economic impact through lost productivity and wider
societal costs associated with managing the condition and its long-term

complications. 383

Figure 1.4 Estimated direct and indirect costs of diabetes in the UK 2035/3638

Similar to type 2 diabetes, cardiovascular disease (CVD) places a substantial and
growing economic burden on both the NHS and wider society. Annual NHS
healthcare costs amount to about £10 billion, while the overall economic impact,
including long-term care, disability, informal care, and premature mortality is
approximately £24 billion each year.2® UK-wide data for 2021/22 further
indicate a total societal cost of £29.0 billion, comprising £16.6 billion in direct

healthcare spending and £12.4 billion in indirect costs.*!

Efforts to address the disease and economic burden of CMD in the UK require
comprehensive strategies which include improving cost-effective disease
preventative strategies, ensuring healthcare capacity, improving health
promotion and self-management education, and improving lifestyle behaviour.
Strengthening these strategies would not only mitigate the impact on the UK
healthcare system but also improve quality of life and financial capability for
those with or at risk of CMD.



1.4 Prevention and management of cardiometabolic disease

1.4.1 Types of public health prevention

Public health prevention encompasses a spectrum of interventions aimed at

reducing the risk of developing the disease and promoting well-being within

populations. These are categorised into five levels, each with a distinct focus

and approach.44

1.

Primordial prevention: targeting the root causes of diseases by addressing
social, economic, and environmental determinants of health. It aims to
create conditions that prevent the development of risk factors. For
example: the implementation of a sugar tax and the development of
walking paths that promotes a healthier living environment.

Primary prevention: involves interventions that aim to prevent the onset
of diseases, focus on reducing risk factors, and promote protective
factors. This is crucial in reducing the incidence of the disease at the
population level. For example: health education, vaccination
programmes.

Secondary prevention: this focuses on early detection and intervention to
halt the progression of diseases. Secondary prevention plays a vital role in
reducing the impact of diseases on individual or population levels. For
example: screening programmes.

Tertiary prevention: the intervention aims to improve the quality of life
and reduce the complications of established disease. For example:

diabetic foot care.

. Quaternary prevention: focuses on avoiding unnecessary interventions and

over-medicalisation. It includes ethical considerations, patient-centred
care, and shared decision-making to prevent harm from
excessive/unnecessary medical procedures. For example: the use of

hormone replacement therapy that is susceptible to over-treatment.
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The five levels of prevention provide a comprehensive framework for addressing

diseases at different stages, from addressing the root cause to minimising harm
from unnecessary interventions. This section, however, only focuses on
preventative strategies as the thesis aims to develop a model that can
accommodate the evaluation of early prevention (including prevention levels 1-
3). Hence, this thesis will not cover clinical management and medication

strategies for CMD.

1.4.2 Prevention guidance for cardiometabolic diseases

In the UK, cardiometabolic disease prevention and treatment guidelines are still
under development.* However, there are prevention guidelines available for the
prevention of T2DM and CVD. 4546

Current NICE guidelines primarily focus on identifying individuals at high risk of
developing type 2 diabetes mellitus (T2DM). Risk assessment can be conducted
using blood tests that measure fasting plasma glucose or HbA1c levels (to
indicate prediabetes), validated risk assessment tools, and consideration of
ethnicity-related risk factors. Key interventions for high-risk individuals include
promoting healthy eating (a balanced intake of fat, sugar, and other nutrients),
increasing physical activity (at least 150 minutes of moderate-intensity exercise
per week), and maintaining a healthy weight. Prioritisation is given to those at
the highest risk of T2DM for referral to intensive lifestyle-change programmes,
particularly individuals with HbA1c levels between 44-47 mmol/mol (6.2-6.4%) or

fasting plasma glucose levels between 6.5-6.9 mmol/L.4748

For CVD prevention, current guidelines focus on modifiable risk factors,
including a healthy balanced diet, physical activity, smoking cessation, and
limited alcohol intake. NICE recommends using risk assessment tools to identify
individuals at increased risk of CVD. The QRISK (Quantifying Risks in Individuals
with Systolic Hypertension and Kindred) is a primary assessment tool for CVD
risk, a widely used algorithm that calculates a patient's 10-year risk of
experiencing a cardiovascular event (heart attack or stroke). Based on this
assessment, personalised preventative strategies can be developed including
blood pressure control (generally below 140/90 mmHg for people under 80 years

old, lipid management (use of statin for lowering LDL cholesterol), and
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management of other conditions such as addressing diabetes or obesity that

contribute to CVD.4%50

Additional considerations are socioeconomic factors and the impact of social
deprivation on CVD risk, and addressing these factors in building public health
strategies.3* Another important consideration is family history. Individuals with a
family history of premature CVD are at significantly increased risk. In such cases,
more proactive and aggressive risk management strategies may be needed.
These may include earlier and more frequent cardiovascular screening, stricter
control of blood pressure and lipid levels, lifestyle interventions targeting diet,
physical activity, and smoking cessation, and, in some cases, earlier initiation of
pharmacological treatments, even when traditional risk factors are only

moderately elevated.>°

1.5 The importance of policy models

1.5.1 Defining a Disease Policy Model

Given the significant and growing burden of T2DM and CVD on both individuals
and the healthcare system, there is a pressing need for informed decision-
making around prevention and management strategies. As healthcare resources
are limited, policy-makers require robust tools to prioritise interventions that
are not only clinically effective but also economically sustainable. This is where
policy models become essential. They help synthesise clinical and economic
evidence, enabling simulation of long-term outcomes and estimation of the
value of interventions under varying scenarios. Understanding and applying such
models is critical for guiding policies aimed at reducing the impact of these

chronic conditions.

In a broad sense, a “model” is a simplified representation of reality. It is
designed to provide understanding, analysis, and prediction from complex
systems, behaviour, and phenomena.>'>? A policy model in this context is “a
model that can evaluate the effectiveness and cost-effectiveness of
interventions and inform policy decisions.” In this thesis, the terms “policy

model”, “decision model”, “health economic model” may be used
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interchangeably. The distinction between them depends on the model’s purpose

and the context in which it is applied.

There are some examples of policy models developed. The Sheffield Type 1
Diabetes Policy Model is a mathematical simulation model that was specifically
developed to evaluate health outcomes and the cost-effectiveness of treatments
and interventions for T1DM patients. This model integrates various health states
and complications associated with T1DM, such as hypoglycaemia, kidney disease,
and CVD. This model used data from clinical trials and other studies to simulate
how new health technologies (glucose monitors, insulin therapies), might
influence the progression of the disease, the quality of life, and the economic

costs involved.>3

The Scottish Type 2 Diabetes Model is another example of a simulation model
that is specifically developed for the T2DM population.>* Like the Sheffield
model®3, this model incorporates a range of clinical and economic inputs,
including disease progression, complications, and the effectiveness and costs of
treatments. This model simulates outcomes such as life expectancy, quality-
adjusted life years (QALYs), and the costs associated with diabetic complications

like CVDs, renal failure, and diabetic retinopathy.>*

Furthermore, a model in the same Scotland context is The Scottish
Cardiovascular Disease (CVD) Policy Model, a model that is designed to analyse
and predict the impact of CVD, taking into account the unique demographic and
healthcare system characteristics in Scotland’s population.> The Scottish CVD
model is a state transition model that simulates the progression of CVD within
the population over time. Data was used from hospital records, national health
surveys, and mortality statistics. The model can accommodate the estimation of

economic costs as well.>>:%¢

Initiated by the University of California San Francisco (UCSF) team, The
Cardiovascular Disease (CVD) Policy Model is a model which applies a cohort-
based approach that is designed to evaluate the health outcomes and economic
impacts of various CVD events, including CHD and stroke, within specific

populations. The model is intended to simulate the lifetime health outcomes,
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healthcare costs, and cost-effectiveness of interventions aimed at preventing

and managing CVDs. The model draws on various data sources, including
epidemiological studies, clinical trials, health surveys, and national health

statistics.>”

Most of these policy models have been used in several important studies and
evaluations to inform and strengthen the justification regarding the decision-
making process. Models have not only been applied to evaluating various health
technologies or interventions but have also been adopted in different settings

and contexts.>8-¢0

1.5.2 Common challenges and limitations of disease policy models

Despite the benefits of constructing a policy model, there are diverse
methodological challenges and inherent limitations that can affect the model’s
accuracy and applicability. These include poor generalisability, low model

quality, lack of transparency, as well as inconsistency in conclusions.®-63

One of the most significant challenges is the availability and quality of data.
Data may be incomplete, lack detail, or be outdated, which can limit the
generalisability of results to other settings.®3%8 This not only includes the clinical
or epidemiological data but also cost data for economic models. Uncertainties

may arise due to these limitations.

Another challenge is the simplification and assumptions that are often necessary
to represent complex realities and make the model computationally feasible.
These assumptions might include disease progression, treatment adherence, or
patient behaviours.®46%6%.70 While necessary, these simplifications can introduce
bias and inaccuracies that may not fully capture the real-world view of an
intervention. Additionally, the choice of time horizon in a model critically
influences its outcomes.”"72 A model that only considers short-term effects may
overlook long-term benefits, potentially misrepresenting the value of preventive
or chronic disease interventions. Determining the appropriate time horizon can
be challenging too, especially when long-term data is unavailable, or current

data is less credible to incorporate into a model.
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Capturing the non-health outcomes and societal costs, as well as considering the

dynamic complexity of health interventions and incorporating human behaviour,
might still be a common limitation of policy models.%%73 Moreover, since policy
models often focus on epidemiological outcomes and cost-effectiveness, broader

considerations such as equality, equity, and accessibility are often overlooked.
74,75

1.6 The role of real-world evidence

1.6.1 Real-world data (RWD) and Real-world evidence (RWE)

Real-world data (RWD) refers to data collected from sources other than
traditional randomised controlled trials (RCTs). RCTs have been widely viewed as
a “gold standard” in health and medical research. However, there are several
limitations in terms of the practicality of RCTs, such as intensive resources,
restricted inclusion/exclusion criteria, controlled environment, and mostly
conducted in a short study period resulting in limited generalisability.’®”” Hence,
the use of RWD can complement evidence generated from RCTs by offering more

insight from real-world clinical practice.

RWD includes electronic health records (EHR), administrative databases, patient
registries, claim data, and other sources that reflect real-life patient
experiences and healthcare delivery. The evidence that is derived from real-

world data is often called real-world evidence (RWE).”®

RWE, which is generated from RWD provides valuable information, for instance:
treatment patterns, medication effectiveness, comparative patient outcomes in
authentic clinical settings, regulatory process, as well as broader clinical and
health decision-making.’¢7° Moreover, with proper use of RWE, a comprehensive
understanding of existing constraints outside a controlled environment can be

achieved. 77,80

Several types of RWD have been used extensively to support clinical and health
decision making such as NHS Digital Health®'!, Clinical Practice Research Datalink
(CPRD)82, Hospital Episodes Statistics (HES)®3, UK Biobank®, Scottish Health

Research Register (SHARE)®>, and more. These databases have been utilised for a
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wide variety of research projects covering clinical, epidemiological, as well as

cost-effectiveness studies.

In recent years the use of RWE has gained attention in health and medical
research, including cardiometabolic disease. Razieh et al. (2022) explored the
association of sociodemographic, lifestyle, environmental, and clinical factors
with the risk of CVD across different ethnic groups. A study by Buckland et al.
(2023)% and Eriksen et al. (2018)% examined adherence to UK dietary guidelines
and nutrient profiling with cardiometabolic risk markers, emphasising the

importance of diet quality in managing cardiometabolic health.

As highlighted by Dobson & Prendergast (2022)%, the UK's national registries,
such as the UK TAVI registry for transcatheter aortic valve implantation (TAVI),
have provided valuable real-world patient data to inform clinical practice.
Furthermore, utilising CPRD data, Canoy et al. (2021)% assess the association
between myocardial infarction (Ml), stroke and diabetes with excess mortality. It
was confirmed that other comorbidities are also strongly related to this excess
mortality risk. Additionally, the study by Gulliford et al. (2020)°' compares
antibiotic prescribing records in two UK primary care EHR systems, highlighting
the potential of combining CPRD GOLD and CPRD Aurum data for research

purposes.

1.6.2 Utilising RWD for disease policy models: an opportunity

In health economics and policy models, RWD has become increasingly important
due to its ability to provide a comprehensive understanding of real-world care
settings, effectiveness, and value of healthcare interventions.% National bodies
such as NICE UK utilise RWD to guide clinical decision-making and health

technology assessment (HTA).%3

As mentioned in the NICE strategy 2021-2026, RWD and RWE have potential to
address the knowledge gap and engage further access to patient innovations.
These gaps include the limited generalisability of RCTs, the underrepresentation
of certain patient populations, and the lack of long-term outcome data. The
NICE RWD framework has been developed to support these initiatives and offer

guidance for identifying appropriate data sources to reduce uncertainties in
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evidence generation and to strengthen clinical and economic recommendations.

It also outlines best practice standards for conducting and reporting RWE
studies, aiming to improve the quality, transparency, and policy relevance of the

evidence produced.®

In addition, the pharmaceutical industry, regulatory agencies, and payers also
recognise the value of RWD as a complementary source or approach that can
work hand in hand with RCTs for establishing more robust evidence in clinical
practice.’®% Current technological advancement and improved data governance
have strengthened the potential use of real-world health data to benefit patient

care and further health services, decision-making, and patient outcomes. 78

In terms of practicality, RWD also offers the advantage of providing large sample
sizes at a low cost, making it a practical and cost-effective resource for
generating medical evidence.””-80:% For instance, the secondary use of electronic
health records (EHRs), patient registries, and insurance claims or billing data
enables researchers to examine patient outcomes in routine clinical settings.
This not only enhances the relevance and generalisability of findings but also
holds significant value for healthcare economic modelling, where understanding
the real-world impact and cost-effectiveness of interventions is crucial for

informing policy and resource allocation.?3%

While the use of RWD has great potential for improving understanding in routine
settings, challenges and limitations remain to be addressed to generate robust

results and improve evidence quality.80:%

Although various policy models have been developed to inform prevention and
management of chronic diseases, there remains a need for modelling approaches
that address the complexity of cardiometabolic disease (CMD) as an
interconnected condition. Given the long-term nature of CMD progression and its
broad population impact, modelling plays a critical role in supporting evidence-
based decision-making, particularly for evaluating the health and economic
implications of preventive strategies. When informed by real-world data (RWD),
models can more accurately reflect routine care, diverse patient populations,

and the cumulative burden of disease. This thesis seeks to contribute to ongoing
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efforts by exploring how policy modelling, supported by current and locally

relevant RWD, can enhance the relevance and utility of prevention-focused

evaluations for CMD.

1.7 Conclusions

Cardiometabolic disease remains a public health concern in the UK, contributing
to a significant burden on morbidity, mortality, and healthcare costs. Well-
targeted and cost-effective preventative strategies are needed to improve
cardiometabolic health in the population. Therefore, to understand or compare the
costs and benefits of CMDs preventative strategies, developing a model can be
beneficial to generate evidence by simulating and predicting health and economic
outcomes. Incorporating RWD offers opportunities to increase representativeness

and generalisability of the policy model.

By leveraging the use RWD, the model potentially provides a foundation for
assessing the real-world impact of preventative strategies, optimising resource
allocation, and informing evidence-based decision-making that could improve

patient outcomes and healthcare efficiency.
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Chapter 2 Research aims and objectives

2.1 Overview

Building on the rationale presented in Chapter 1, this chapter sets out the
research objectives that guide the development of a policy model for
cardiometabolic disease (CMD) prevention. Given the complex and interrelated
nature of CMD conditions, and the potential of real-world data (RWD) to improve
the relevance of policy models, there is a heed for modelling approaches that
reflect real-life care settings and long-term disease trajectories. This chapter
outlines the aims of the study, which seeks to develop a real-world-data-
informed model capable of evaluating preventative strategies across the CMD

continuum.

RWD-informed modelling is especially valuable for preventative strategies, which
involve complex disease pathways and long-time horizon. By capturing routine
care patterns, such models can better estimate the long-term health and
economic impact of early interventions, supporting evidence-based decision-

making.

The following sections outline the specific research aims (Section 2.2) and the

overall structure and layout of the thesis (Section 2.3).

2.2 Aims and objectives of the thesis

This thesis aims to develop a Cardiometabolic Disease (CMD) Policy Model, a
framework that contributes to future health and economic analyses. It explores
the opportunities and challenges associated with utilising UK primary care data,

acknowledging both its potentials and limitations.
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The specific objectives of this thesis are:
1. To critically review existing published cardiometabolic disease policy and
health economic models.
2. To propose and conceptualise a Cardiometabolic Disease Policy Model
3. To construct and analyse a multi-state model using UK primary care data
4. To demonstrate and simulate the cost-effectiveness of preventive

strategies using the Cardiometabolic Disease Policy Model

2.3 Thesis structure

Chapter 3 presents a systematic review of cardiometabolic disease (CMD) policy
models, specifically those addressing type 2 diabetes (T2DM) and/or
cardiovascular disease (CVD) prevention at population level. The review
examines and critically appraises a range of modelling approaches found in the
existing literature, focusing on model structures, data sources, and validation
methods. It highlights the strengths and limitations of current models and
provides foundational insights to inform the development of the conceptual

model in the following chapter.

Chapter 4 introduces the conceptual model that forms the foundation for the
development of the CMD policy model. This conceptual model represents the
initial step in systematically capturing and communicating the contextual
understanding of the problem, including disease progression, relevant evidence,
and the rationale behind modelling choices and structure. The model is informed
by findings from the systematic review (Chapter 3), current clinical guidelines,
and expert input, ensuring that it reflects both the theoretical and practical

dimensions of cardiometabolic disease prevention.

Chapter 5 describes the data preparation process using Clinical Practice
Research Datalink (CPRD) Aurum. It summarises how the raw data were cleaned,
processed, and transformed to be suitable for statistical analysis and model

implementation. This includes steps taken to ensure data structure, covariates
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standardisation, and overall cohort identification in accordance with the

requirements of the modelling framework developed in earlier chapters.

Chapter 6 presents the detail of the cardiometabolic disease (CMD) Policy Model
development, including the application of multi-state survival analysis. It
simulates different model specifications (such as non-parametric, semi-
parametric, and parametric approaches) with a particular focus on implementing
a semi-Markov framework for parametric modelling. The chapter also discusses
model diagnostics and evaluates the adequacy and performance of each
modelling approach. This chapter shows how the developed model can support
the long-term analysis and projections, which are essential for assessing the

impact of public health preventative strategies.

Chapter 7 discusses the application of the CMD Policy Model to evaluate a set of
hypothetical public health interventions, including dietary change initiatives and smoking
cessation programmes. The purpose of these analyses is not to estimate the real-world
effectiveness or cost-effectiveness of the interventions, but to demonstrate how the
model can be used to simulate and compare outcomes across different policy scenarios.
This chapter showcases the flexibility and practical utility of the CMD Policy Model in

epidemiological and health economic evaluation.

Finally, Chapter 8 concludes the thesis by summarising the key findings,
methodological contributions, and policy implications of the research. It reflects
on the research questions posed at the outset and evaluates how they were
addressed through the development of the CMD Policy Model. The chapter also
outlines areas for future research, including opportunities to enhance the model
further and expand its application in supporting evidence-based decision-making

for CMD prevention.
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Chapter 3 Cardiometabolic diseases policy

models: a systematic review

3.1 Overview

Chapter 3 covers the systematic review (SR) of the published cardiometabolic
diseases policy model (T2DM and/or CVD). The SR is performed to identify
current gaps in evidence and knowledge and shape the future direction of
conceptualising a Cardiometabolic Disease Policy Model by consolidating and

critically appraising multiple published articles.

3.2 Rationale for systematic review

As previously mentioned in Chapter 1, cardiometabolic disease (CMD), including
T2DM and CVD are major contributors to morbidity and mortality, imposing
substantial health and economic burden both for healthcare systems and
society.>® As these conditions are relatively preventable, there is a need for
effective public health strategies and policies that can address the risk factors

and manage the disease burden across the population.

Given the finite resources and competing needs, not all strategies or
interventions can easily be offered or implemented. Resources are scarce, and
consequently, the assessment and prioritisation of prevention initiatives should
be carefully considered.”% In addition to considerations around an
intervention’s effectiveness in health/clinical settings, ‘value for money’ needs
to be assessed in order to decide how to allocate resources optimally for
producing maximum benefit to society.”? Thus, the assessment of a health

intervention is required as a part of the decision-making process.
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To facilitate this, modelling has become largely used to reflect and simulate the

disease, intervention, and economic outcomes.%% A model in the context of
medical research is defined as “analytic methodology that accounts for events
over time and across populations, that is based on data drawn from primary
and/or secondary sources, and whose purpose is to estimate the effects of an
intervention on valued health consequences and costs”.>2 Through these models,
policymakers can gain predictive insights into the effectiveness and cost-
effectiveness of health interventions, making them indispensable in the planning

and evaluation of health policies.

Modelling also transcends the complexities in RCTs design which has limitations
in terms of resources, time and generalisability.%? It can generate long-term and
generalisable evidence, as well as overcome issues related to limited observable
time.?? It is, therefore, useful to assess chronic conditions like CMD, which are
characterised by their presence of competing risks, complications, and long-term

morbidity.

Several policy models have been developed, particularly for T2DM and CVD,
including state transition models, discrete event simulations (DES),
microsimulations, or other mathematical simulations. 1% All these models can
facilitate the evaluation of various public health strategies. However, current
models are often tailored to medium to high-risk patients, primarily evaluating
clinical interventions, mostly on medication strategies instead of population-
wide early preventative strategies, and predominantly focused on the summary
of cost-effectiveness outcomes rather than providing a detailed modelling

Hence, there is an opportunity to summarise policy models capable of capturing
the full continuum of cardiometabolic disease progression across the entire
population, beyond high-risk groups or individuals with established diagnoses,
and of jointly evaluating the two main CMDs (T2DM and CVD) and their
interrelationships. In addition, this review will place particular emphasis on the
modelling approaches themselves, as the suitability of a given modelling
framework depends on the decision problem, disease complexity, and type of

intervention being evaluated. Different modelling approaches offer distinct
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strengths and limitations in representing long-term disease progression,

intervention effects, and population-level outcomes, all of which are critical

considerations for policy-relevant decision-making.

3.3 Methods

The preferred reporting items for systematic reviews and meta-analyses
(PRISMA) guidelines were followed.'% The review is registered in PROSPERO with
registration number CRD42022354399."1°

3.3.1 Eligibility criteria

A policy model in this SR is defined as any mathematical/simulation
model/framework that can predict health outcomes, costs, and cost-
effectiveness. The model can explain and evaluate preventative strategies which
guide decision-makers. Dietary policies were chosen as an example to illustrate
the application of these models. These include sugar taxes, pack labelling, and
food reformulation, which are designed to create healthier environments and

reduce CMD risk before metabolic disturbance occur.

This review included models that start with a general or low-risk population
(i.e., those without clinically diagnosed CMD) to assess the impact of primordial
preventative strategies before disease onset. Also, this review required models
that are able to predict long-term or lifetime outcomes (=10 years) since policy
interventions often have delayed effects on population health. Furthermore,
models focusing on specific subgroups (e.g., obese adults or hypertensive
individuals) and those assessing primary prevention with medication, as our
interest lies in regulatory and public health measures rather than clinical

interventions are excluded.
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Table 3.1 Eligibility criteria for included studies in the review

Inclusion Exclusion

¢ Models starting with a general or e Clinical studies, cell and animal
low-risk population and without any studies
CMDs (without clinical diagnoses of e Models starting with CMD and only
CVD/ T2DM—disease free) including specific subgroups

¢ The model predicts long- (obese adults, people with
term/lifetime outcomes (>10 years) hypertension)

¢ Adult population (> 18 years) ¢ Models focussing on accuracy or

e Mathematical models that can cost-effectiveness of diagnostic
accommodate both health and tools, primary prevention with
economic outcomes (cost- medication (i.e.: statin use)
effectiveness evidence) e Models reporting effectiveness

¢ Only models which were assessing only
and evaluating primordial e Models that were published as
preventative strategies (restricted to presentations, abstracts,
regulations/policy for population commentaries, letters, and
dietary, limited to sugar/salt/sodium review articles

and fruit/vegetables public health
policies) targeting the whole
population or population-based

prevention

3.3.2 Search strategy and study selection

A systematic search strategy was developed and run on 6t December 2022
(updated search on 315t May 2024) in MEDLINE (Ovid), EMBASE (Ovid), CINAHL,
Google Scholar, and Open Grey with restricting the publication year from 15t
January 2000 to May 2024, applying Medical Subject Heading (MesH). The search
strategy is presented in the Appendix 1. To minimise the risk of excluding
relevant articles, hand-searching the reference lists of previous
systematic/literature reviews was performed using the snowball technique.'"’
The search strategy has been developed with the support of a University of
Glasgow subject librarian as well as thesis supervisors. Article management and

duplicate removal were undertaken using Zotero®.
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3.3.3 Data extraction

Data from fully eligible studies were extracted using a standardised matrix in a
spreadsheet Microsoft Excel®. Items for data extraction include author/model
name, year of publication, country, model type and structure, perspective,
events, outcomes (clinical and economic), data sources, time horizon, validity,
and sensitivity analysis. One reviewer (SP) performed data extraction, and
double extraction''? was done independently for 20% of the total number of
included papers by supervisors. Disagreements were resolved by team

discussion.

3.3.4 Quality Assessment

Three independent reviewers (SP, HF, YD) assessed the quality of decision
models and economic evaluation studies using the Phillips et al. checklist.®’ If
there were any disagreements, these were resolved by seeking advice from
supervisors. Findings from this assessment are illustrated in the checklist

tables and are also presented visually and in a narrative format.

3.4 Results

3.4.1 Selection process

The PRISMA flow diagram (Figure 3.1) visually depicts the article selection
process. An initial search yielded 1109 records, which were reduced to 217
following the removal of duplicates and screening of titles and abstracts. A
thorough full-text assessment of these 217 articles resulted in 32 studies that
met the established inclusion criteria. A characteristics summary of these

included articles is provided in Table 3.2.
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Identification of studies via other methods

Records removed before
screening:
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Citation searching (n = 1)
etc.

Records excluded**
(n =820)

Reports not retrieved
(n=0)
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(n=2)
'
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Model started with confirmed diagnosis
(n =46)

High risk population (n=25)
Diagnostic, trial, lab based (n=17)
Secondary/drugs prevention (n=58)
Policy model accommodating only
health outcome/effectiveness (n=15)
Only assess cost (n=6)

Children population (=4)
Commentaries/abstracts (n = 4)

Reports assessed for eligibility
(n=2)

_E Records identified from*:
® Databases MEDLINE,
b EMBASE, CINAHL
T (n=1109)
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3
m |
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o
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o (n =217)
o
o
’ '
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‘_é *after updated searching to 2024
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Figure 3.1 PRISMA flow diagram

\4

Reports not
retrieved
(n=0)

Reports excluded:
(n=0)

26



Table 3.2 Description of included studies

Author Country Model’s Policy assessment/ Perspective Model types Simulation Time Disease states/
(year) name scenarios/evaluation level horizon, measurement
cycle
Moran et China CHD Policy Estimation and N/A Markov Cohort 30 years, Free CHD, CHD, CHD
al. Model-China  assessment of the CHD annual death, non-CHD
(2008)""3 events based on to death.

demographic changes

Moran et China CHD Policy Estimation of future risk N/A Markov Cohort 20 years, Free CHD, person

al. (2010 "4 Model-China  factors on CHD and annual with CHD, CHD
stroke death, non-CHD

death.

Bibbins- us CHD Policy Estimation of benefits Healthcare Markov Cohort 10 years, Free CHD, person

Domingo et Model (rates, costs and cost- annual with CHD, CHD

al. effectiveness) of salt death, non-CHD

(2010)"° reduction intervention death.

Wang et al. US CHD Policy Estimation of potential  Healthcare Markov Cohort 10 years, Free CHD, person

(2012)"16 Model health impact and annual with CHD, CHD
spending of a penny- death, non-CHD
per-ounce excise death.

nationwide tax policy

Basuetal. US - Estimation of health Government  Microsimulation Individual 10 years, CVD mortality
(2013)'"7 effects and cost- annual

effectiveness SNAP

programme
Konfino et  Argentina CVD Policy Assessment of the N/A Markov Cohort 10 years, Free CHD, person
al. (2013)%° Model- impact of sodium annual with CHD, CHD

Argentina reduction policies




No. Author Country Model’s Policy assessment/ Perspective Model types Simulation Time Disease states/
(year) name scenarios/evaluation level horizon, measurement
cycle
death, non-CHD
death.
7. Basuetal. India Estimation of the health Government  Microsimulation Individual 10 years, T2DM incidence
(2014)"8 effect on SSB taxation annual
policy
8. Collins et England CHD IMPACT  Cost-effectiveness Health Cell-based model Cohort N/R CHD death
al. Model analysis of four sector
(2014)"9 population health
policies on salt intake
9. Mason et Tunisia, CHD IMPACT  Cost-effectiveness Public/ Cell-based model Cohort N/R CHD death
al. Syria, Model analysis of population- private
(2014)'%0 Palestine, based salt reduction sector,
Turkey policies in four Eastern  healthcare
Mediterranean countries
10. Lewsey et Scotland Scottish CVD  The development of Markov Cohort Potentially CVD event free, non-
al. (2015)* Policy Model  CVD policy model that lifetime, fatal CHD, non-fatal
predicts life expectancy annual CBVD, fatal CVD,
and incorporating fatal non-CVD, fatal
socioeconomic all cause
deprivation
11. Manyema South Africa Estimation of the effect Healthcare Markov-multi Cohort 20 years, BMI changes,
et al. of 20% SSB tax on the state life table annual diabetes

(2015)12"

diabetes burden

28
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No. Author Country Model’s Policy assessment/ Perspective Model types Simulation Time Disease states/
(year) name scenarios/evaluation level horizon, measurement
cycle
12. Wilcox et Syria CHD IMPACT  Cost-effectiveness Public/ Cell-based model Cohort 10 years, CHD death
al. Model analysis of salt private annual
(2015)12 reduction policies sector,
healthcare
13. Collins et England Projection of 20 % of Healthcare Microsimulation Individual 20 years, Diabetes, stroke,
al. sugary drinks duty annual CHD
(2015)'% impact on disease
events
14. Lawson et Scotland Scottish CVD  The development of N/A Markov Cohort Potentially = CVD event free, non-
al. (2016)%¢ Policy Model  model for conducting lifetime, fatal CHD, non-fatal
economic evaluation annual CBVD, fatal CVD,
fatal non-CVD, fatal
all cause
15. Sa’'nchez- Mexico CVD Policy Projection of SSB tax N/A Markov Cohort 10 years, No event, CVD event
Romero et Model- policies annual (MI, stroke, angina),
al. (2016)%8 Mexico death
16. Wang et China CVD Policy Estimation of the effect Healthcare Markov Cohort Lifetime, CVD free, acute CVD
al., Model-China  of population-wide salt  system annual events, chronic CVD
(2016)"%4 restriction in China payer’s states, fatal CHD or
stroke, non-CVD
death
17. Breeze et UK SPHR Cost effectiveness NHS/PSS Microsimulation Individual Lifetime, Metabolic profile, no
al. Model analysis of different annual diabetes, diabetes,
(2017)'% interventions for type 2 complications, CVD,

diabetes prevention

cancer, osteo,
depression,
mortality
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No. Author Country Model’s Policy assessment/ Perspective Model types Simulation Time Disease states/
(year) name scenarios/evaluation level horizon, measurement
cycle
18. Pandya et us CVD- Description of the CVD N/A Microsimulation Individual Potentially Disease free, CHD,
al. PREDICT model in detail; and lifetime stroke, death
(2017)"%¢ performed model
validation analyses
19. Mozaffarian US CVD-PREDICT Estimation of the health Societal and  Microsimulation Individual 5-20 years No CVD, acute CHD,
et al. impact and cost- government and chronic CHD, repeat
(2018)'%7 effectiveness in SNAP lifetime, MI or CVA, acute
program annual CVA, chronic CVA,
CVD/non-CVD death
20. Riveros et Brazil Adaptation Calibration of Brazilian  N/A Markov Cohort N/R CVD event free, non-
al. of Scottish CVD model fatal CHD, non-fatal
(2018)'28 CVD Policy CBVD, fatal CVD,
Model fatal non-CVD, fatal
all cause
21. Schonbach  Germany DYNAMO-HIA  Estimation of health N/A Markov Individual 10 years, Prevalence in CHD,
et al. impact of tax on (extended to annual diabetes, cancer
(2018)'% processed meat microsumulation)
22. Huang et us CHD IMPACT  Estimation of the health Healthcare Cell-based model Cohort 20 years, CHD incidence,
al. model impact and cost- and societal annual stroke incidence,
(2019)"30 effectiveness added T2DM incidence
sugar labelling on all
packaged food and
beverages
23, Salgado et  Argentina CVD Policy The update Argentina N/A Markov Cohort Lifetime, CVD free, acute and
al. Model- CVD Policy Model annual chronic CVD states,
(2019)"% Argentina




No. Author Country Model’s Policy assessment/ Perspective Model types Simulation Time Disease states/
(year) name scenarios/evaluation level horizon, measurement
cycle
fatal CHD/ stroke,
non-CVD death
24, Wildeetal. US CVD-PREDICT Estimation of the health Healthcare Microsimulation Individual Lifetime, Disease free, CHD,
(2019)132 impact and cost- and societal annual stroke, death
effectiveness of a
national penny per-
ounce SSBs tax
25. Broeks et Netherlands DYNAMO-HIA Estimation of the Societal Markov Cohort 30 years, Healthy, disease,
al. effects of a tax on meat annual death
(2020)"3 and a subsidy on fruit
and vegetables (F&V)
consumption
26. Lee et al. us CVD-PREDICT Estimation of the health Healthcare, Microsimulation Individual Lifetime, Disease free, CHD,
(2020)"34 impact and cost- government, annual stroke, death
effectiveness of three societal
SSBs tax designs
27. Liuetal. us CVD-PREDICT Estimation of the health Healthcare Microsimulation Individual Lifetime, Disease free, CHD,
(2020) 1% impact and cost- and societal annual stroke, death
effectiveness of menu
calorie labelling policy
28. Salgado et  Argentina CVD Policy Estimation of the N/A Markov Cohort 10 years, CVD free, acute CVD
al. Model- impact of reducing SSB annual events, chronic CVD
(2020)"3 Argentina consumption states, fatal CHD or

stroke, non-CVD
death

31




No. Author Country Model’s Policy assessment/ Perspective Model types Simulation Time Disease states/
(year) name scenarios/evaluation level horizon, measurement
cycle
29. Dehmeret US - Evaluate prospective Healthcare Microsimulation Individual 10 years, Disease free,
al. CVD related sodium annual hypertension, CVD,
(2020)"¥ reduction targets post-CVD, death
30. Shangguan  US CVD-PREDICT Assessment of the Healthcare Microsimulation Individual Lifetime, Sugar intake, acute
et al. effect of sugar and societal annual CVD, diabetes,
(2021)'38 reformulation policy chronic CVD, CVD or
non-CVD death
31. Thomas et  England SPHR model  Estimation of health NHS/PSS Microsimulation  Cohort Lifetime Metabolic profile, no
al. benefits, costs, and diabetes, diabetes,
(2022)'¥ equity impact of food complications, CVD,
advertising across cancer, osteo,
London transport depression,
network mortality
32. Louetal. us CVD Policy Impact assessment of Societal Microsimulation Individual 10 years, Healthy, CHD,
(2023)'%0 Model implementing SSB taxes annual stroke, both CHD

and FV subsidies on
long-term CVD
outcomes and
healthcare costs

and stroke, CVD-
related death, and
non-CVD-related
death

32

Notes: CHD: coronary heart disease, CVA: cerebral vascular accident, CVD: cardiovascular disease, DM: diabetes mellitus, F/V: food and vegetables, Ml: myocardial infarction, NHS/PSS:
national health services/personal social services, SSB: sugar-sweetened beverage, T2DM: type 2 diabetes
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3.4.2 Description of included studies

From 32 articles retrieved, there is a diverse range of geographical study
locations, including the US (n=12)115—117,126,127,130,132,134,135,137,138,140’ UK (n=6)
23,56,119,123,125,139 ' Netherlands (n=1)"*}, Germany (n=1)'?%, Latin America (n=5)
58,60,128,131,136 ' South Africa (n=1)'?"!, India (n=1)""8, China (n=3)"'3:114.124_ Eastern

Mediterranean (n=2)'20122,

Policy models are primarily characterised as computational simulations that
utilise mathematical frameworks, such as Markov models, cell-based models,
and microsimulation techniques to project population-level outcomes, including
mortality, morbidity, disease burden, and associated economic costs. These
models frequently quantify the financial implications of health-related outcomes
and evaluate the effects of policy interventions on both health and economic
dimensions. While some studies explicitly articulate the concept of a "policy
model,” others implicitly adopt this framework by employing decision-analytic
models for economic evaluations or health outcome projections, thereby
assessing the impact of interventions at a population level. This approach
underscores the integration of methodological rigour and policy relevance in

addressing complex public health challenges. 719,123

Several studies emphasised the importance of rigorous model
development, calibration, and validation. Studies by Lewsey et al. (2015)%,
Lawson et al. (2016)°¢, Pandya et al. (2017)'%¢, and Breeze et al. (2017)'?
described their policy models’ framework that allows evaluation of further

primary preventions/interventions.

All included policy models met the eligibility criteria by demonstrating the
capacity to incorporate both epidemiological and economic parameters.
However, the scope and depth of analysis varied significantly across studies.
Some models focused exclusively on clinical or health outcomes, such as CVD
mortality or T2DM incidence, while others emphasised cost and outcome
estimations or conducted comprehensive economic evaluations, including cost-
effectiveness analyses using metrics such as the incremental cost-effectiveness

ratio (ICER). The dietary policies examined encompassed a diverse range of
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interventions, including sugar taxes, salt reduction initiatives, and food labelling

strategies. Importantly, this systematic review prioritises the methodological
aspects of model structure and application rather than the efficacy or

effectiveness of specific public health interventions.

There are a few reasons why this review mostly retrieved CVD models rather
than T2DM models, despite both diseases being major concerns globally—
particularly under a cardiometabolic umbrella. This review includes only models
that started with disease-free or healthy populations, many T2DM models may
choose to start with pre-diabetic or high-risk states when the interventions
might be more actionable.0:1%.141 The strategies for managing CVD can often be
implemented at various system levels (community, healthcare system, policy),
while diabetes prevention and management often require more individualised
approaches, also the complex presence of complications in diabetes patients
makes the model more focused on treatment evaluation.'7° The other possible
reason is CVD is linked with many other health conditions, such as diabetes and
obesity, or vice versa. Effective CVD intervention that is represented in the CVD
model might also indirectly influence diabetes management policies, given the

overlap in risk factors like diet and exercise. 101

3.4.3 Modelling types and structure
Types of mathematical model

Cohort models (Markov) have been the predominant approach in this review
(47%) 25-°8,60,113-116,121,124,129,131,133,136 and microsimulations have been extensively
performed in recent years (40%).'17,118,123,125-127,132,134,137-140 Additionally, a
smaller proportion of studies (13%) employed simpler forms of microsimulation
models, such as cell-based models."9:120,122,130 The models typically begin with a
‘disease-free’ or ‘healthy’ state, progressing through disease states and
culminating in death. They commonly employ an annual cycle and adopt a long-
term time horizon (>10 years or lifetime), enabling the quantification of health

outcomes, benefits, and associated costs over extended periods.

Mathematical model can be broadly distinguished according to whether they
simulate populations at the cohort level or individuals at the patient level, as

well as by the underlying model structure used to represent disease progression.
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Cohort models are typically implemented as state-transition models, in which

proportions of a population move between predefined health states over
discrete time cycles. These state-transition cohort models may take the form of
Markov, semi-Markov, or other related structures, and generally rely on

aggregated data to estimate transition probabilities.¢?

In contrast, individual patient simulation models, commonly referred to as
microsimulation models, simulate disease trajectories at the level of individual
patients rather than aggregated cohorts. Microsimulation models may also be
implemented using state-transition frameworks, including Markov or semi-Markov
formulations, but transitions occur at the individual level and can depend on
patient-specific characteristics, prior events, and time-varying risk factors. This
structure allows microsimulation models to represent individual heterogeneity,
complex interactions, and dynamic disease pathways more flexibly than cohort-

based approaches.>2:62:142

The choice between cohort-based state-transition models and individual patient
simulation (microsimulation) models should be guided by the decision problem,
disease complexity, intervention characteristics, and data availability, rather
than by methodological preference alone. Simpler cohort models are often
sufficient when disease progression can be adequately represented by a limited
number of mutually exclusive health states, transition risks are relatively stable,
and outcomes of interest depend primarily on current health status rather than
prior history.'#:% |n such contexts, cohort models offer advantages in
transparency, ease of validation, lower data requirements, and reduced
computational burden, which are important considerations for policy-facing

analyses. 144,145

Microsimulation models are more appropriate when the decision problem
requires explicit representation of individual heterogeneity, history-dependent
risks, competing events, or time-varying covariates. These features are
particularly relevant for chronic and multifactorial conditions where disease
progression and intervention effects depend on accumulated risk exposure,
comorbidities, or prior events. Microsimulation also enables the evaluation of

interventions that target specific subgroups or operate through multiple
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interacting pathways. However, these benefits come at the cost of increased

model complexity, higher computational demands, and a reliance on detailed

individual-level data, which may not always be available or robust. 44145

Importantly, increasing model complexity does not automatically lead to more
accurate or policy-relevant results. Overly complex models may obscure key
assumptions, hinder validation, and introduce additional uncertainty if data
inputs are weak or poorly characterised. Methodological guidance therefore
emphasises the principle of parsimony, whereby the simplest model capable of

addressing the decision problem should be preferred.45-148

In many applications, simpler and more complex models can produce similar
cost-effectiveness conclusions when they are appropriately specified and
parameterised. However, differences may arise when individual heterogeneity,
non-linear risk accumulation, or history-dependent processes materially
influence costs or outcomes. In such cases, it may alter incremental cost-
effectiveness estimates and, potentially, policy conclusions. Consequently,
model choice should be justified based on whether additional complexity is
expected to meaningfully affect decision-relevant outcomes, rather than on

technical sophistication alone.'44147,148

Overall, the selection of modelling approach should be driven by the alighment
between the model structure and the underlying clinical and policy questions,
balanced against considerations of transparency, data availability, uncertainty,

and feasibility.

From this systematic review, there are feature details on the major policy model
applied. Each model has its strengths, limitations and potential applicability.

Table .3 presents a comparison between these policy models.



Table 3.3 Key differences between cohort and microsimulation models
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Model features

Cohort model

Microsimulation model

Structure

States and transitions

Individual-level simulation

Memory

Memoryless (Markovian

property)

History-dependent

Granularity

Simplified representation

Detailed representation

Modelling Flexibility

Fixed time intervals, limited

interactions

Flexible time intervals
complex interactions
Captures individual
heterogeneity, complex
disease modelling, dynamic

risk factors

Time

Discrete time steps (e.g.,
annual), constant transition

probability

Continuous or discrete time
steps, detailed event

modelling

Data Requirements

Aggregated data

Detailed individual-level
data.

Limitations

Oversimplifies disease
progression, less exploring
patient heterogeneity,
Markov assumption, lower

computational demand

Computationally intensive,

complex model development.

DYNAMO-HIA (Dynamic Modelling for Health Impact Assessment) is a model that

quantifies policies’ impact on health determinants. It employs a Markov-based

modelling approach, allowing for the simulation of a real-life population by

explicitly considering risk factor states.'2%133 DYNAMO-HIA focuses on assessing

the health impacts of policies on non-communicable diseases (NCDs), including

CVD and diabetes. Its strengths lie in its comprehensive analysis, though its

complexity and substantial data requirements can pose implementation

challenges. 29133
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Meanwhile, the CVD Policy Model8:6%:136,140  CHD Policy Model''3*11¢  and Scottish

Policy Model>>3¢ evaluate cardiovascular disease interventions at the population
level using a state-transition model. It is robust for evaluating population-level

interventions but can be complex to adapt to new populations or interventions.

The School of Public Health Research (SPHR) University of Sheffield model has
applied a state-transition approach as well.'?>'3° The SPHR Diabetes Model is a
predictive tool that calculates the risk of developing type 2 diabetes (T2DM). It
utilises a range of demographic, clinical, and lifestyle factors to generate
personalised risk assessments, aiding in the prevention and management of
diabetes. The SPHR Diabetes Model models the impact of diabetes prevention
and intervention strategies at the population level using a system dynamics
approach, with strengths in assessing diabetes-specific interventions but

limitations due to complexity and data requirements. '

In addition, CVD-PREDICT (Cardiovascular Disease Policy Model for Risk, Events,
Detection, Interventions, Costs, and Trends) also applied a microsimulation
model to assess public health prevention programmes such as sugar-sweetened
beverages (SSB) tax related diseases or other dietary policies. 26,127,132,134,135,138
IMPACT study employed a cell-based policy model, a subtype of compartmental,
spreadsheet-based microsimulation, which produces aggregate estimates of
population dynamics over time, in this case, focusing on life-years and mortality
related to CHD. This modeling approach has since been adapted to other

NCD5.119,120,122

Those models included common risk factors and baseline parameters such as
age, sex, body mass index (BMI), systolic blood pressure (SBP), low-density
lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol,
glycated haemoglobin (HbA1c), smoking and alcohol status, and other related
factors. The structure of the model depends on the policy model itself, and most
of them focus on a single disease (CVD or T2DM) or assign a CVD/T2DM state as a

risk factor or comorbid state. The risk factors included are illustrated below:
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Figure 3.2 Summary of risk factors included in published policy models
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Table 3.4 Comparison between cardiometabolic disease prevention policy models*

DYNAMO-HIA CVD Policy Model CHD Policy model IMPACT CHD CVD-PREDICT Scottish Policy SPHR Diabetes
model Model
Scope NCDs (non- CVD and related CVD and related CHD and CVD CVD with a Public health Diabetes and
communicable risk factors, risk factors, interventions, focus on with a specific related risk
diseases) focusing on focusing on evaluating prediction and focus on CVD and factors,
including CVD, prevention and prevention and their risk associated risk focusing on
diabetes, and risk treatment treatment effectiveness stratification factors in prevention,
factors strategies strategies for better Scotland management,
preventive and health
measures outcomes
Applicability Primarily Primarily used Primarily used in  Applicable Applicable Primarily used in  Primarily used
European in the US the US globally with globally, with a Scotland in the UK
countries, but regional focus on
adaptable adaptations predictive
globally analytics

Data sources

European health
surveys,
epidemiological
studies, and
literature

National health
surveys, clinical
trials,
epidemiological
studies

National health
surveys, clinical
trials,
epidemiological
studies

National health
surveys,

clinical trials,
epidemiological
studies

National health
surveys,

clinical trials,
epidemiological
studies

Scottish health
surveys, hospital
records, national
statistics

National health
surveys,

clinical trials,
epidemiological
studies
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DYNAMO-HIA CVD Policy Model CHD Policy model IMPACT CHD CVD-PREDICT Scottish Policy SPHR Diabetes
model Model
Outcome of Estimates Estimates Estimates Estimates Estimates - Estimates - Estimates
interests incidence, incidence, incidence, incidence, incidence, risk  incidence, incidence,
prevalence, prevalence, prevalence, mortality, prediction, mortality, prevalence,
mortality, QALY mortality, and mortality, QALY,  hospital mortality, and  hospital mortality,
health impact, healthcare health disparities admissions, health care admissions, QALE, QALY, cost-
under various costs, cost - healthcare costs cost- costs, health cost- effectiveness
policy scenarios effectiveness of CHD and stroke effectiveness outcomes, cost effectiveness
-effectiveness
Key strengths  Comprehensive Robust Extensive Comprehensive High Robust dataset Focus on
modelling of framework for validation with US evaluation of granularity of specific to diabetes-
individual and evaluating data; interventions; individual risk Scotland; focus specific
population-level  interventions at comprehensive focus on real- prediction; on real-world interventions
effects; a population risk factor world ability to applicability and  and outcomes;
integration of level; flexible to integration applicability; incorporate policy impact; ability to assess
multiple risk include various extensive data large datasets  capable of a wide range of
factors and types of sources and update addressing health potential
interventions for  interventions; predictions inequalities and interventions
a nuanced extensive with real-time  informing and their
analysis across validation with data. equitable policy population-
health outcomes  US data decisions level impacts.
Key Complexity in Can be complex Requires May not Requires access Limited to the Complexity and
weaknesses adapting to non-  to adapt to new extensive and account for all  to high-quality, Scottish data
European populations or high-quality data complex comprehensive  population, which requirements
contexts - to integrate for accurate interactions health records; may limit can limit
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DYNAMO-HIA CVD Policy Model CHD Policy model IMPACT CHD CVD-PREDICT Scottish Policy

SPHR Diabetes

model Model
Requires novel projections; between risk model accuracy generalisability to accessibility for
extensive data interventions complexity of factors and can be affected other regions; some users;
input without model may limit  interventions; by missing or data limitations relies on
substantial its accessibility data inaccurate data outside of accurate input
effort and data  for non- limitations can Scotland may data for
specialists affect accuracy affect model precise
accuracy predictions

*Only models from the review that were used repeatedly for evaluating various strategies.

DYNAMO HIA=Dynamic Modelling for Health Impact Assessment, CVD-PREDICT= Cardiovascular Disease Policy Model for Risk, Events, Detection, Interventions, Costs,

and Trends, SPHR= School of Public Health Research
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Overall, these models use various types such as microsimulation, state-
transition, compartmental, and system dynamics to support their specific
purposes and applications. They require robust data sources like national health
surveys and electronic health records for accurate predictions and assessments.
While primarily used to inform policy decisions and guide public health
strategies, these models vary in adaptability to different aims and health

outcomes.
Model structure: examples

These are examples of model structures/frameworks from several studies

included in this systematic review:

1. DYNAMO-HIA'2%:133

Healthy

Intervention / policy

Figure 3.3 DYNAMO-HIA model structure

The model aims to estimate the long-term health effects of interventions and
policy changes by altering the risk factor status of individuals, which
subsequently influences their probabilities of developing diseases or
experiencing mortality. This model employs health states to represent the
various conditions and stages of health that individuals may experience over
time, effectively capturing the progression and dynamics of NCDs with a
particular emphasis on CVD and associated risk factors. By modelling the
transitions between health states, the model facilitates a nuanced
understanding of how preventive measures can affect public health outcomes

over time.
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Figure 3.4 CVD-PREDICT model structure

Transitions between health states in the CVD-PREDICT model are determined by
a calibrated risk score that incorporates multiple demographic, clinical, and
lifestyle variables. The model uses these risk scores to simulate an individual’s
likelihood of progressing through different health states, capturing the dynamic
nature of CVD over time, categorising individuals into health states such as
"healthy,” "at risk,” "CVD event," "post-CVD event,” and "death”.
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3. SPHR Diabetes Policy Model'?

The SPHR Diabetes Model is a simulation-based framework that categorises
individuals into discrete health states to represent different stages of diabetes
progression, beginning with a normoglycemic state and potentially advancing to

pre-diabetes, diabetes, diabetes complications, and ultimately, mortality.

For instance, individuals in a normal glycaemic state may progress to pre-
diabetes if exposed to risk factors like obesity and lack of physical activity.
Similarly, those with pre-diabetes may transition to diabetes with worsening
glucose control and continued exposure to detrimental lifestyle factors. Poor
glycaemic management can further lead to complications, including neuropathy,
nephropathy, retinopathy, and cardiovascular diseases, significantly impacting

quality of life and increasing mortality risk. 2>

In general, the types of modelling approaches mentioned in this chapter are
suitable to represent chronic disease progression such as CMD, when the diseases
are preventable, persist for a long duration but often require ongoing disease
management. Brennan et al. (2006)'#? also provide a comprehensive taxonomy of

model structure for supporting justification of economic evaluation studies.

Finally, the choice between modelling types largely depends on several factors,
including research questions/objectives, disease characteristics, intervention
being evaluated, data availability, and the desired level of model complexity. In
some cases, combining or extending different modelling types can also provide a

more comprehensive analysis.
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Figure 3.5 SPHR Diabetes model structure
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3.4.4 Costs and Outcomes

Costs incorporated in the models were based on policy questions and
perspectives defined. Direct medical costs include expenses incurred due to
disease conditions, such as hospitalisation, healthcare provider services
(consultations, treatments), medication use, and laboratory/diagnostic costs.
Indirect costs are often associated with productivity loss due to disability or
illness. Programme costs in several studies represent expenses related to the

implementation of policy interventions.

About 72% of studies included direct medical costs in the analysis.58114-116,119-
125,127,129,132-140 |ndirect costs were included in some studies (38%) 119.125.127,129,132-
138 depending on their analysis perspective. Most of these studies focused on the
impact of dietary interventions, and 56% of studies reported their programme
costs. 116-120,122-125,127,129,132-134,139,149-151 From studies retrieved in this review,

monetary values were mostly reported in USD and international dollars.

Regarding the outcome measures, the majority of studies (90%) estimated
disease incidence or prevalence 113,114,116,117,119,55,122,123,56,58,124—126,129—131,133—140’
while 47% reported generic health outcomes such as Quality-Adjusted Life Years
(QALYs) or Disability-Adjusted Life Years (DALYs). '14.115,117,121,123-
125,127,130,132,134,135,139 (Table 3.5). While most studies estimated QALYs by
assigning utility weights to different health states, the methodology for deriving
these utility values is often poorly described. In many cases, utility values are
sourced from previously published studies, but the papers do not provide
detailed explanation of the methods used to derive these values-such as whether
they were obtained through direct methods (e.g.: time trade-off, standard
gamble) or indirect methods (e.g., EQ-5D, SF-6D).

For studies in which the decision model is used to conduct or illustrate a full
economic evaluation, incremental analysis, specifically the Incremental Cost-
Effectiveness Ratio (ICER) and Incremental Net Benefit (INB) were commonly
applied (28%).122,125,127,132,135,138,139 A small number of studies analysed how costs

and benefits were distributed across demographic groups.>>13°
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Regarding discounting, all studies incorporated a discount rate for both costs and
outcomes or only one of them. Two studies applied undiscounted simulations in
their main analysis but deterministically incorporated discount rates into their
scenario and sensitivity analyses. 2152 (Table 3.5) The discount rates ranged
between 0%-5% and the justifications for using those rates were mostly based on

local guidelines.

All models reported their main data sources incorporated in the model. These
included data from the published literature, meta-analysis evidence, local
statistical data, government data, survey data, or transferability of data from

other countries.

3.4.5 Model validation

Model validity is the evaluation of whether the model demonstrates proper
representation of the system and whether its results could serve as a solid basis
for decision-making.'3.1>4 Validating a model is essential in economic evaluation
to ensure the reliability, accuracy, and credibility of the models used. It
enhances transparency, supports evidence-based decision-making, and helps

identify and address model limitations.

In this review, five types of model validation were assessed: face validity
(checking if the model's structure, inputs, and outputs logically reflect known
behaviours and outcomes of certain diseases), internal validity (whether the
algorithms and relationships within the model correctly simulate the
progression), cross-validity (confirming that the model’s findings are consistent
across different samples or populations within the same study), external validity
(assesses the generalisability of the model to other settings, populations, or
times), and predictive validity (model or evaluation accurately predicts real-

world outcomes).
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Authors name Costs Outcomes” Discounting*

Direct Indirect Programme/ Disease cases/ LY/LE QALY/ ACER/ICER/

healthcare costs implementation event DALY INB/NMB

costs costs
Moran et al. (2008)''3 N - - N - J - \/
Moran et al. (2010)''4 N/R N/R N/R \ - - - N/R
Bibbins-Domingo et al. \/ - - N - N
(2010)'15
Wang et al. (2012)116 \ - \ \ - . - N
Basu et al. (2013)""7 - - N N - N . N
Konfino et al. (2013) N/R N/R N/R V - - - N/R
Basu et al. (2014)''8 - - N N - - . N/R
Collins et al. (2014)11° N \ \ \ \ - - N
Mason et al. (2014)120 - N N N . . N
Lewsey et al. (2015)% N/R N/R N/R V \ . - N/R
Manyema et al. \ - N N N ] N
(2015)121
Wilcox et al. (2015)122 \ - \ \ \ - N \
Collins et al. (2015)'23 N - N N . N . )
Lawson et al. (2016)5¢ N/R N/R N/R N \ - \
Sa’nchez-Romero et \ - N N . - . N/R
al. (2016)38
Wang et al., (2016)'24 v - N N - N . N
Breeze et al. (2017)'2%5 \ v v \ \ \/ v
Pandya et al. (2017)12¢ N/R N/R N/R v - - - N/R
Mozaffarian et al. N N\ \ - N N \

(2018)127
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Authors name Costs Outcomes” Discounting®

Direct Indirect Programme/ Disease cases/ LY/LE QALY/ ACER/ICER/

healthcare costs implementation event DALY INB/NMB

costs costs
Riveros et al. (2018)'28 N/R N/R N/R N N - - N/R
Schonbach et al. ol ol v v - - - N/R
(2018)'%°
Huang et al. (2019)130 N N N . N \ N
Salgado et al. N/R N/R N/R \ - - - N/R
(2019)131
Wilde et al. (2019)132 N N N - - N \ N
Broeks et al. (2020)'33 v N N N - . . N
Lee et al. (2020)"34 v N N N . N . N
Liu et al. (2020) '35 v N ~ N - N N N
Salgado et al. \ \ N - . . N/R
(2020)13¢6
Dehmer et al. N N N . . .
(2020)'37
Shangguan et al. N N N - N \ N
(2021)138
Thomas et al. \ - N N - N N N
(2022)13°
Lou et al. (2023)140 v - N N - N \ N

LY = life years, LE = life expectancy, QALY = quality-adjusted life years, DALY = disability-adjusted life years, ACER = Average cost-effectiveness ratio, ICER = incremental cost-effectiveness
ratio, INB = incremental net benefit, NMB = net monetary benefit. # Studies might have more than outcomes measured, *Discounting can be only cost or outcome or both, or part of scenario

analysis
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All studies conducted assessments of face and internal validity. Cross-validity
was mentioned in one study'?; however, the methodologies employed for
testing were often unclear. External validation was performed in 53% of studies,
indicating some efforts to evaluate the generalisability of models.
113,116,119,120,55,56,124,126,127,136,131,135,134,132 None of the included articles reported
predictive validation. This omission is likely due to the fact that the studies
relied on external validation procedures, which they considered sufficient for
evaluating the predictive performance of the models. A summary of model

validation performed is presented in Table 3.6.

3.4.6 Model uncertainty

Uncertainty is an important part of health economics and policy models. It arises
from various sources and can significantly impact the results or conclusion of an
analysis. Sensitivity analyses (SA) are commonly employed to explore these
uncertainties, either deterministically or probabilistically.’> Deterministic
sensitivity analyses (DSA), such as one-way or scenario analyses, systematically
examine the impact of uncertainty by incorporating plausible alternative values
or scenarios. In contrast, probabilistic sensitivity analyses (PSA) assign
probability distributions to uncertain parameters and performs multiple model

simulations to produce a distribution of outcomes.

All studies included in this review reported conducting sensitivity analyses as
part of their modelling process (Table 3.6). Of these, 50% (16 studies) performed

both DSA and PSA, while the remainder employed only one type of sensitivity
analysis. 55,56,58,58,116,117,119,123,125,127,130,132-134,136,138,139 .



Table 3.6 Validation test and uncertainty analysis
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Authors Validation test Uncertainty analysis
Face Internal Cross-validity External Predictive Deterministic SA (DSA) Probabilistic SA
validity validity validity validity (PSA)
Moran et al. (2008)'13 N N - \ - N )
Moran et al. (2010)""4 l V - N
Bibbins-Domingo et al. \ \ - Unclear \
(2010)115
Wang et al. (2012)"1¢ \ \ - N - N N
Basu et al. (2013)'""7 \ \ Unclear N N N
Konfino et al. (2013)&° \ \ - N
Basu et al. (2014)""® \ S - - N )
Collins et al. (2014)'? l V - N N N
Mason et al. (2014)'20 \ \ - N N )
Lewsey et al. (2015)5° \ \ - N N N
Manyema et al. (2015) \ \ - Unclear \
Wilcox et al. (2015)122 N N N )
Collins et al. (2015)123 \ \/ - - - N
Lawson et al. (2016)5¢ \ \ - N N N
Sa’nchez-Romero et \ \ Unclear \ \
al. (2016)38
Wang et al., (2016)124 N\ v - N N ]
Breeze et al. (2017)'25 \ \ \ - \ \
Pandya et al. \ \ - N N/R N/R
(2017)126
Mozaffarian et al. V V - V N N
(2018)127
Riveros et al. N N - N .

(2018)128
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Authors

Validation test

Uncertainty analysis

Face Internal Cross-validity External Predictive Deterministic SA (DSA) Probabilistic SA

validity validity validity validity (PSA)
Schonbach et al. N N - - - - N
(2018)129
Huang et al. (2019)130 \ \/ - \/ Unclear \ \
Salgado et al. \ \ - \ N/R N/R
(2019)131
Wilde et al. (2019)132 N N - N \ \
Broeks et al. (2020)33 \ \ - - \ \
Lee et al. (2020)'34 N N - N \ \
Liu et al. (2020) 135 \ \ - \ \ \
Salgado et al. \ \/ - \/ \ \
(2020)136
Dehmer et al. \ \ - \ \
(2020)137
Shangguan et al. \ S - \ \
(2021)138
Thomas et al. \ \ - \ \
(2022)13°
Lou et al. (2023)140 \ \ - \
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3.4.7 Quality appraisal

The quality of models was appraised using the Philips checklist®® (Appendix 2),
categorised into three distinct domains including structure, data, and
consistency. The ‘structure’ domain assessed how well the model’s framework
was constructed, including the clarity and appropriateness of the model’s design
about the decision problem aims to address. The ‘data’ domain evaluates the
sources, quality, and appropriateness of the data used within the model. The
‘consistency’ domain assesses the internal and external coherence of the model,
ensuring that its outputs are logical and comparable with those of other models

or data sources.

In the Figure 3.6, the blue colour represents "Yes" (indicating the criterion was
fulfilled), orange represents "No" (indicating the criterion was not fulfilled),
green indicates "Unclear” (where insufficient information or ambiguity was
present), and light blue denotes "N/R" (not related or not applicable). The graph

is based on cumulative percentages derived from each article's responses.

100%
90%
80%
70%
60%
50%
40%
30%

REPORTING PERCENTAGE

20%
10%

0%

Structure Data Consistency

mYes mNo mUnclear mN/R

Figure 3.6 Quality appraisal of studies included in the review
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Most policy models (80%) met the criteria for the ‘'model structure’ section. This

category includes the appraisal of how the decision problem was constructed,
encompassing the clarity of the decision problem, the study’s perspective,
transparency, and consistency of model justification, input, and structural
assumptions. Generally, model inputs and objectives were consistent with the
stated perspectives and initial justifications. However, while the perspectives
and settings were typically defined, not all models specified the decision-
makers, despite the study results being intended for decision-maker use.
Furthermore, most articles lacked explicit justification for the chosen time
horizon and cycle length, although these were appropriately applied—likely due
to the standard practice in modelling chronic diseases like CVD and T2DM.
Additionally, the reasons for excluding certain options or alternative

interventions were not always reported.

The cumulative quality of data and parameters used in the models was moderate
(50%). This part of the appraisal focused on the data sources, the inclusion of
parameters, and the methodological approaches reported in the articles. The
models utilised a variety of data sources, including systematic reviews, meta-
analyses, local and national epidemiological data, cost data, registries,
administrative data, expert opinions, and other published sources. However, the
quality assessment of the data incorporated into the models was often not
clearly explained 60.116.119.121,136,137 A significant limitation was the lack of local
representative data, which may have impacted final estimates and introduced
high uncertainty into the results. To address this, many studies relied on data

from other sources and constructed multiple assumptions. 114.116-118,124

Although face and internal validity seems subjectively well-reported, there was
less clarity regarding the transparency of validation efforts, which may have
been reported elsewhere or addressed implicitly without specifying the types of
validation tests performed. Despite these gaps, most models did acknowledge
aspects of consistency, particularly in model structure assumption and model
parameter as well as defining outcomes of interests. All models provided clear
evidence of internal assessment by conducting sensitivity analysis. The cross-

validity and external validation were conducted such as by calibrating against
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independent data and reporting calibration results. The consistency of the

articles was moderate to good (58%).

Overall, the review highlighted a moderate to good quality across different
aspects of the models, with notable strengths in model structure but areas for

improvement in reporting data transparency and validation.

3.5 Discussion

This systematic review offers a comprehensive critical appraisal of the
methodological quality of the existing published CMD models. By evaluating the
quality of these models, the findings provide valuable insights to inform and
enhance the development process of a de novo policy model that can address
some of the limitations identified and should be informed by a detailed

conceptual model.'®

The review enriches the evidence regarding policy models that can
accommodate the analysis of preventative strategies for healthy or low-risk
populations, while previous policy models are predominantly focused on general
applications of summarising the evidence of particular health
interventions/technologies or tailored to populations with moderate to high-risk

A ‘policy model’ in this review is broadly defined to encompass various
modelling approaches, including epidemiology-economic models,
microsimulation models, and decision models, all of which contribute to
informing health policy decision 3>114.118,129,135 The distinction between policy
models and decision models is often blurred, as decision models can be
embedded within a broader policy modelling framework. For example, a policy
model may incorporate decision-analytic components to answer specific
questions—such as the cost effectiveness of an intervention—while

simultaneously assessing its broader population-level and system-wide effects.
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Given this overlap, this review adopts a comprehensive perspective, defining a
policy model as a framework designed to evaluate clinical/health outcomes,
cost, cost-effectiveness, and broader societal implications of health
interventions. These models play a crucial role in guiding public health policies
and programmes, aiming to reduce disease burden and improve population

health by providing evidence-based projections of intervention impacts.

One of the clear advantages of modelling is the capability to estimate and
simulate long-term disease progression and the impact of an intervention, which
complements evidence generated in RCTs.'>71%® This SR established that models
were either simulated Markov-type cohort or individual-level models
(microsimulation), with different perspectives chosen, costs incurred, and
sensitivity analyses performed. Cohort simulations are advantageous for their
efficiency and generalisability but are limited by their inability to account for
individual variability, lack of precision, potential for ecological fallacy, and
challenges in modelling complex interactions. In contrast, individual-level
simulations offer greater granularity and personalised insights, capturing
heterogeneity and specific outcomes, but they require extensive data, are
resource-intensive, may involve significant uncertainty, and can be less
interpretable and generalisable. The choice between these approaches depends

on the study objectives, policy questions, and data availability.

Most policy models adopt a healthcare provider perspective; however,
incorporating patient perspectives and accounting for potential productivity
losses could provide a more comprehensive economic evaluation' Given that
the nature of CMD itself can significantly affect both patients’ and caregivers'
spending, a broader economic perspective may enhance policy relevance.
However, existing studies reviewed do not provide further justification for not
considering broader perspective, likely because the economic framework is

typically established at the outset to align with specific policy questions.
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The quality of models, as established in current appraisal does heavily rely on
the quality of the data used. Many studies have highlighted concerns regarding
the limited availability of representative or local data for model analysis. The
lack of local clinical epidemiology data often necessitates the use of assumptions
or non-local data, introducing uncertainty and raising concerns about data
quality. While the use of published data from other sources can be valuable,
issues regarding data transferability standards and the processes for adopting
such data remain an issue. Justifications for data transferability were not
consistently addressed in the reviewed studies, leading to reliance on multiple
assumptions about parameters, which may introduce further limitations.
Additionally, many models relied on survey and observational data (e.g., survey,
self-reported non-local data), which is prone to under-reporting, selection bias,

and recall bias, potentially affecting the accuracy of estimations.

The use of real-world data (RWD) and updated local data is potentially beneficial
for enhancing model accuracy and representativeness. RWD reflects actual
patient experiences and outcomes in routine clinical practice, providing a more
accurate representation of the broader population. This improves the
generalisability of findings and offers a deeper understanding of the real-world
impact of healthcare interventions.®%%-% However, despite its significant
potential, the use of RWD requires careful consideration of potential
confounding variables, missing data, lead-time bias, and the inherent
complexities of the data itself. Addressing these challenges effectively is crucial

to maximising the benefits of RWD in modelling analysis.8%:%

Uncertainty is inherent in every modelling exercise, underscoring the need for
improved reporting and characterisation of uncertainty. Additionally, it is crucial
to report clear validation tests conducted to enhance the transparency of model
development.®'62 The model validation process was mostly not extensively
discussed in published articles or overlapped terms in validation itself in

publication-related health economic studies, thus limiting the reporting quality.
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Addressing equality and equity concerns in health economic analysis can enhance

overall results. Policies that are designed solely on cost-effectiveness without
considering equity can lead to interventions that are efficient in aggregate but
may exacerbate existing inequalities. By integrating equity, policymakers can
design more holistic interventions that balance efficiency with fairness, leading

to more socially acceptable and sustainable health policies. 16,162

The overall quality of the models in this review is relatively good. Most of the
important model features are well-reported. However, in line with several
current systematic literature reviews'.163,1¢4 not all policy models are fully
comparable, due to the different model assumptions, modelling approaches,

perspectives, and outcomes generated from the model.

This review is subject to some limitations. First, this review only focused our
search and review on articles that defined policy or decision models in a very
specific dietary policy intervention. There are probably many primordial public
health strategies besides dietary intervention, such as physical activities or
smoking cessation policies. Second, the various applications of the policy model
objectives and parameters inputted might influence conclusions in terms of
generalisability from this review. Variations in data availability and quality
across studies may have influenced the reported outcomes, potentially affecting
the overall reliability of the evidence based. Hence, the general interpretation
of this review should be accompanied with caution since it applies a wide range
of aims, model details, and reporting. It is important to note that the suitability
of a policy model depends on the specific research question and data

availability.

Based on this systematic review, the following recommendations are made to

enhance the development of CMD policy models (Table 3.7)
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Table 3.7 Evidence-based recommendations for CMD Policy Modelling

Area

Key recommendations

Model selection

Integration of
CMDs

Risk factors

Data quality

Economic
perspective

Uncertainty
analysis

Validation

Transparency &
reporting

Equity &
distributional
analysis

Reproducibility
& open science

State-transition models (e.g., Markov models) are commonly used
for CMD progression, but analysts should align the model

choice with the policy question, available data, and
computational feasibility.

Given the shared risk factors of T2DM and CVD, incorporating
them into the same model can improve accuracy and capture
event-related risks.

Models can integrate modifiable risk factors (e.g., BMI,
cholesterol, lifestyle changes) to ensure more realistic
projections.

High-quality patient-level and representative epidemiological
data should be prioritised. Incorporating clinical biomarkers and
capturing heterogeneous effects can improve generalisability.

If data permit, a societal perspective should be used when
interventions generate substantial non-healthcare costs or
benefits, particularly for public health and preventive
interventions; otherwise, a healthcare payer perspective is
generally sufficient, with societal impacts explored in sensitivity
analyses where relevant.

Specifying uncertainty and conducting appropriate sensitivity
analyses is essential for ensuring robust conclusions.

Reporting validation tests (internal, external, face validity) is
recommended to improve model reliability and reproducibility.

Clearly document model rationale, assumptions, and
methodologies. Conceptual models should be well-documented to
enhance credibility.

Ensuring that models assess distributional impacts can support
policies that reduce health inequalities.

Adhering to best research practices and making policy models
open source can improve transparency, accessibility, and
reproducibility
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3.6 Conclusions

In conclusion, the policy models reviewed herein show promising insights for
informing policy decisions, particularly in the context of public health
preventative strategies. Based on this systematic review, several
recommendations are established to enhance the development of a CMD policy
model. The findings of this review directly inform the development of the
conceptual model (Chapter 4), which serves as the foundation for the modelling

framework developed in the subsequent chapters.
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Chapter 4 The conceptualisation of a

cardiometabolic disease policy model

4.1 Introduction

Developing a conceptual model is a critical aspect of mathematical/statistical
works. This chapter describes how the CMD policy model is conceptualised,
translating the complex ideas into a structured-concise format. Following good
practice in modelling, the model development process is documented. It serves
as a way to communicate problem understanding and model choice before doing
further analysis. Establishing the conceptual model primarily aims to enhance

model development's transparency.

The previous systematic review chapter informs the development of a
conceptual CMD model in this Chapter. In Chapter 3, the existing published
literature on CMD models was assessed to gain insight regarding model quality.
Several aspects of modelling were critically appraised in the systematic review.
Information from the review is finally summarised to inform the current
conceptual model development, identifying the modelling aspects that need to

be improved or can be addressed in our current model.

Chapter 4 consists of several sub-chapters, including the need for a conceptual
model, the methods and guidelines used, and the process of model
conceptualisation as described in section 4.2 to 4.3. The methods section
explains the two-stage process model conceptualisation: conceptualising the
problem and conceptualising the model structure. These included the
combination of findings from the systematic review, clinical guidelines review,
and expert consultation. Finally, details of the conceptual model that will be

applied further for analysis are presented (sub-section 4.4.3).
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4.2 The importance of a conceptual model

Over two decades, modelling techniques have been increasingly applied to assist
decision-makers in various settings.'5-1%6 Results from modelling are utilised by
stakeholders particularly when making or evaluating decisions about
interventions or strategies that can improve health, both at individual and

population level.

Although the use of policy models has emerged, there remains a need to improve
their credibility.'” The development process itself particularly influences the
estimation of health and economic outcomes generated from these models.
Appropriate development of policy models goes beyond mathematical
operationalisation alone.®® It requires an understanding of the complexity of
real systems as well as the ability to translate those into credible conceptual
structures. This understanding and conceptualising can be structured using a

conceptual model.67:168

In the realm of health economic modelling, the process of conceptualisation is
essential but often underreported, it might be due to the limited literature,
agreed definition, and missing familiarity with the importance of this idea.'®°
Nevertheless, providing a clear conceptualisation process for economic models
will be helpful to ensure that decision problems are translated effectively into

mathematical/quantitative models.

Developing a conceptual model has many advantages, such as improving our
understanding of the decision problem, addressing the decision/policy needs,
exploring current clinical/public health practice in a particular setting, and
increasing the knowledge of currently available strategies.'®” A conceptual
model not only allows us to visually represent the relationships between the
model attributes, but also gives room for clarification of the decision problem
being analysed and fosters better communications between researchers,
policymakers, and stakeholders. %171 |t is also beneficial for engaging the
stakeholders' roles to obtain an agreement and approval of the problem defined
as well as model structure development, considerations on relevant

assumptions, and parameters incorporated in the model.'%7:1%-171 Hence, the
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development of a conceptual model is recommended as an initial stage of the

model development process.

4.3 Methods

A well-developed conceptual model serves as the foundation of robust and
informative modelling. It ensures the overall clarity, validity, and credibility of
the model. Tappenden (2012)'¢® published guidance for conceptual model
development. It consists of two distinct stages: problem-oriented and design-
oriented. Problem-oriented represents the problem that exists within the
system, diving into a deeper understanding of the disease and treatment
pathways. Conversely, the design-oriented model articulates the envisioned
framework of the model, and the proposed plan for the model structure, taking

into account the available evidence. 68

Similarly, The International Society of Pharmacoeconomics and Outcomes
Research-Society of Medical Decision Making (ISPOR-SMDM) Modelling Good
Research Practices Task Force-2 published guidelines for conceptualising a
model.'®” Two main components of modelling processes are provided in this
report (Figure 4.1). First, the conceptualisation of the problem, which covers
the translation of the healthcare process knowledge into a representation of the
problem (step 1 in Figure 4.1). Second, as a sequential process, model
conceptualisation is used to determine which modelling types and their
attributes best represent the defined problem (steps 2,3 and 4 in Figure 4.1) as
well as data and parameters used (step 5 in Figure 4.1), followed by
transparency and validation of the model (step 6 in Figure 4.1). The nature of
the conceptual model described in these two reports is not too distinct, both set

boundaries between two sequential stages in model development. 67,168

This ISPOR-SMDM report guides researchers by outlining good research practices
for developing conceptual models in health economic evaluations. It does not
prescribe a specific model but offers the framework for developing and choosing
a suitable model that fits specific research questions, and the decision problem
addressed. This thesis follows the ISPOR-SMDM guidelines for developing a CMD
Policy Model.'®” The general stages of the conceptual model process are

illustrated in the following figure (Figure 4.2).
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4.3.1 Part 1: Conceptualising the problem

A conceptualisation of the problem requires an understanding of CMD
progression and prevention based on clinical and public health guidelines
available in the UK. This is guided by the findings from the systematic review

that has been conducted in Chapter 3.

The initial conceptual model was developed based on clinical guidelines and
systematic review findings to reflect assumptions about disease progression and
structure. This outlines key components of conceptual modelling framework by

providing a foundation for expert input and iterative refinement (Appendix 3).

4.3.2 Part 2: Conceptualising the model

Expert opinion

The objective of the model development is not to reproduce, but to represent a
simplified reality. The model development process should reflect the reality that
represents the decision problem.'®® To accommodate this, the role of clinical
experts is important to meet contextual relevance. This stage highlighted the
significance of collaboration between clinical experts and experienced modellers

to achieve consensus on the model structure.

The expert group, consisting of a clinician, two health economists, and a
medical statistician, provided diverse and valuable perspectives that contributed
to the refinement of the model. The clinician’s input was particularly crucial in
ensuring that the model remained aligned with clinical practice and relevant to
real-world applications. The conceptual model draft (Appendix 3) was presented
to the group, and informal feedback was gathered during the presentation. After
informal consultations with these experts (2-3 meetings), the conceptual model
and model structure were revised to better reflect clinical realities and to

enhance its overall validity.
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4.4 Results

4.4.1 Understanding the disease progression

Cardiometabolic disease (CMD) is inherently complex due to its multifactorial
nature of interconnected risk factors and comorbidities. The interrelation of
genetic, environmental, and lifestyle factors collectively contribute to the
development and progression of cardiometabolic conditions that lead to wide

pathophysiological mechanisms and clinical manifestations.®’

The progression of CMD typically begins with insulin resistance, which may lead
to metabolic syndrome or ‘pre-diabetes’. As cardiometabolic syndrome (CMS)
progresses, the body's ability to respond to insulin diminishes, compelling the
pancreas to compensate by producing higher levels of insulin. However, over
time, this compensatory mechanism becomes insufficient, leading to impaired
glucose tolerance (IGT) and, ultimately, the onset of T2DM. CMS also doubles
the risk of CVD contributing to the rising incidence of heart attacks, strokes, and
coronary artery disease. The interplay of insulin resistance, dyslipidaemia,
hypertension, and chronic inflammation in CMS accelerates atherosclerosis by
promoting endothelial dysfunction, oxidative stress, and plaque formation. This
process narrows the arteries, increasing the likelihood of myocardial infarction

(MI) and stroke.172-174

Guidelines for identifying and diagnosing the risk of cardiometabolic syndrome
are based on sources generated from the World Health Organization (WHO)'73,
the European Group for the Study of Insulin Resistance (EGIR)'’¢, the
International Diabetes Federation (IDF)'”7, National Cholesterol Education
Project Adult Treatment Panel Ill (NCEP ATP II1)'78, the National Heart, Lung, and
Blood Institute/American Heart Association (NHLBI/AHA)'®. Several recent
recommendations and guidelines for CMD staging have also been introduced
(Table 4.1).180,181
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Table 4.1 The Cardiometabolic Disease Staging System (CMDS)

Stage Descriptor Criteria

Stage 0  Metabolically No risk factors
Healthy

Stage 1  One or tworisk Have one or two of the following risk factors:
factors a. high waist circumference

b. elevated blood pressure or on anti-hypertensive
medication

c. reduced serum HDL cholesterol or on medication

d. elevated fasting serum triglycerides or on
medication.

Stage 2  Metabolic Have only one of the following three conditions in isolation
syndrome or a. Metabolic Syndrome based on three or more of four
prediabetes risk factors.

b. Impaired Fasting Glucose (IFG)
c. Impaired Glucose Tolerance (IGT)

Stage 3  Metabolic Have any two of the following three conditions:
syndrome + a. Metabolic Syndrome
prediabetes b. IFG

c. IGT

Stage 4 T2DM and/or Have Type 2 Diabetes Mellitus (T2DM) and/or cardiovascular

CvD disease (CVD):

a. T2DM (fasting glucose =126 mg/dL or 2-hour glucose
>200 mg/dL or on anti-diabetic therapy)

b. active CVD (angina pectoris, or status post a CVD
event such as acute coronary artery syndrome, stent
placement, coronary artery bypass, thrombotic
stroke, non-traumatic amputation due to peripheral
vascular disease)

Cardiometabolic staging involves the classification and progression of CMD,

including CVD, diabetes, and associated risk factors, to facilitate targeted

interventions and management strategies. The identification of distinct disease

patterns and subtypes within the spectrum of CMD highlights the heterogeneity

and complexity of these conditions. The complexity of CMD is also evident in the

need for comprehensive guidelines and interventions to address the nature of

these conditions.
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As mentioned in Chapter 1, the CMD prevention and treatment guidelines are

still in the development stage in the UK. #* A screening strategy has also recently
been proposed.4 However, the diagnosis, prevention, and treatment guidelines
for CVD and T2DM have been published by The National Institute of Care and
Excellence (NICE)'8%'8 as well as the Scottish Intercollegiate Guidelines Network
(SIGN).'84 Physical activity, dietary recommendations, behavioural changes, and
other primordial preventive policies are covered in the guidelines and
recommendations as described. These guidelines are continuously evolving based
on the latest evidence and are aimed at addressing the prevention and

management of CMD in the population.

4.4.2 Summary of published evidence

The details of a systematic review of published literature have been described in
Chapter 3. To prevent repetition, only result summaries are outlined here to

integrate the justification of problem conceptualisation.

Model types and structure

State transition models (STMs), particularly those using a cohort-based Markov
framework, are commonly employed in the analysis of chronic, long-term
conditions such as CMD. In these models, health states are typically defined
based on clinical guidelines and the natural progression of disease. While
existing models often focus on later stages of CMD, future approaches could
benefit from a more comprehensive structure that explicitly incorporates
intermediate complications of type 2 diabetes mellitus (T2DM) and
cardiovascular disease (CVD) events, such as myocardial infarction (MIl) and

stroke. 185

Markov models are well-suited to represent transitions between health states
over time. They allow for the simulation of time-dependent risks, recurrent
events, and disease trajectories that involve repeated or episodic outcomes

(e.g., MI, stroke).
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Risk Factors

Risk factors and covariates can generally be classified into two categories:
modifiable (e.g., lifestyle, biomarkers) and non-modifiable (e.g., age, family
history). The systematic review in Chapter 3 identified published models that
incorporate both types. Moreover, dynamically modelling changes in key
biomarkers over time can enhance the realism and accuracy of estimated

outcomes. %6

Other models’ features (costs, outcome, validation, sensitivity analyses)
From the review, most policy models adopt a healthcare perspective.
Incorporating productivity losses from patient and caregiver viewpoints could
enhance decision-making relevance. While sensitivity analyses (SA) like
deterministic, probabilistic, or both are routinely reported to address
uncertainty, validation procedures (e.g., face/internal validation) require
greater transparency in reporting methodologies and impacts. Few studies assess
equity implications, though integrating these could foster more holistic, socially

sustainable policies that balance efficiency and fairness. '

Model reliability fundamentally depends on input data quality; a key challenge is
the scarcity of representative local data for development. Heavy reliance on
assumptions or external data introduces uncertainty and compromises validity.
Though secondary data offer utility, inconsistent transferability standards and
inadequate justification for their use limit effectiveness. Integrating fit-for-
purpose real-world data (RWD) may improve model accuracy and

generalisability. 8>

Expert opinion

Inputs from a clinician and experts are mostly focused on the proposed model
structure and key features of the model. Initially, the general risk factors were
based on findings from the systematic review. However, following a review of
clinical guidelines, metabolic conditions such as obesity, hypertension and
hyperlipidemia/dyslipidaemia are also considered as covariates due to their

strong correlation with metabolic syndrome. %7172
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Experts proposed atrial fibrillation (AF) to be included as a health state in the

conceptual model, as cardiometabolic risk factors can increase the risk of

AF, while AF itself can contribute to the progression of cardiometabolic
conditions.'8 Another recommendation was to re-evaluate T2DM progression, in
particular whether we should include states with/without diabetes complications
before the final state. The onset of diabetes accelerates the development of
atherosclerosis and other CVD risk factors, showing that people with diabetes
also have a risk of having CVD.'72 This progression was recommended to be
added to the final conceptual model since the conceptual model draft did not

consider this relationship.

For CVD state (stroke and MI), defining post-CVD event must be ensured 6126,
since there may be differences in terms of utility assessment that could
influence the cost-effectiveness results if we plan to conduct further cost-utility
analysis (CUA). For instance, fatal MI/Stroke would have different utility values

than non-fatal events. 3¢

Finally, in further discussions with the health economists, it was agreed that the
model should remain representative but not overly complex, and that atrial
fibrillation (AF) should be considered as a potential covariate in the model. In
addition, the model structure was presented at an internal meeting attended by
a broader research audience. Three main points were raised. First, the model
was commended for its simplicity and representativeness; however, it was noted
that these should be balanced against the feasibility and time required for the
analysis and modelling exercise. Second, it was recommended to explore options
for incorporating productivity loss parameters into the analysis or sensitivity
analyses, to capture indirect costs from patient and caregiver perspectives in
addition to direct costs. Third, the model should also address equality and

equity considerations, consistent with the findings from the systematic review.

4.4.3 Final conceptual model

The final conceptual model is illustrated using an influence diagram form (Figure
4.3). This proposed model will facilitate the improvement of clinical and
economic representation of CMD, where metabolic dysfunction conditions could

lead to various events including both CVD and T2DM.
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To operationalise this conceptual model, a detailed model-structuring stage is

specified (Figure 4.4). The target population comprises all adults (> 18 years)
without a confirmed CMD at model entry. Baseline characteristics with various
risk factors determine individual risk profiles. Disease states include: disease-
free; type 2 diabetes mellitus (T2DM); CVD (myocardial infarction [MI], stroke);
post-CVD (post-MI, post-stroke); and death. All individuals begin in the disease-
free state and may transition to T2DM, MI, stroke, or directly to death. Those
who develop T2DM face elevated risks of MI, stroke, or death. Patients
experiencing MI or stroke either die or survive and move into the corresponding

post-CVD state, where they remain at risk for subsequent events or death.

Diabetes remission was not explicitly modelled. Although recent diabetes
remission programmes have shown promising results, evidence on the long-term
durability of remission at the population level remains limited, with substantial
relapse observed within 2-5 years.'87-18 Modelling remission would require strong
assumptions regarding remission duration, relapse rates, and long-term
cardiovascular risk reduction, introducing considerable structural uncertainty.
Diabetes was therefore modelled as a chronic condition influencing
cardiovascular risk trajectories, consistent with established economic evaluation
guidance and cardiometabolic policy models that discussed in systematic

reviews. 18

The model is progressive: once a higher-severity state is reached, reversion to a
less severe state is not permitted. Death functions as the sole absorbing state,
accessible via multiple pathways. Key outputs include all-cause mortality,
disease-specific mortality, life expectancy, quality-adjusted life expectancy
(QALE)/quality-adjusted life years (QALYs), and lifetime health-care costs. This
structure supports evaluation of disease progression, long-term health outcomes,
and the cost-effectiveness of interventions, thereby informing survival analyses

and health-policy decision-making.

Semi-parametric (e.g., Cox) and fully parametric survival models were
performed, feeding into a semi-Markov state-transition framework.8%1%0 While
traditional cohort Markov models are commonly identified in the systematic

review, the semi-Markov extension more closely aligns with the nature of CMD
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and lets the model handle varying time spent in each state and time-dependent

transitions, better reflecting CMD progression.

The semi-Markov framework offers several technical advantages for the CMD
model. 1193 First, it permits non-exponential sojourn distributions, capturing
clinically plausible phenomena such as escalating progression risk after
prolonged residence in a pre-disease or intermediate state. Second, transition
probabilities may depend on both fixed and time-varying covariates thereby
yielding more personalised patient trajectories. Third, integration with
longitudinal data methods enables joint modelling of state transitions alongside
continuous outcomes, supporting comprehensive long-term health and economic
assessments. 91193 By contrast, standard (memoryless) Markov models often
oversimplify these dynamics, risking underestimation or mischaracterisation of
transition timings and probabilities. The semi-Markov approach thus furnishes a
more realistic and policy-relevant foundation for modelling CMD progression and

evaluating interventions.

To parameterise this, Clinical Practice Research Datalink (CPRD) data was used.
CPRD comprises records for 60 million patients of whom 18 million are currently
registered across England, Scotland, Wales, and Northern Ireland. ' The

remaining records represent patients who were previously registered but are no

longer active in the database.

The dataset captures routine clinical information on demographics, behavioural
factors, signs and symptoms, diagnoses, prescriptions, immunisations, referrals,
and lifestyle measures. Beyond its large, nationally representative sample,
CPRD’s longitudinal design enables analysis of disease onset and progression over
extended periods. Moreover, linkage to hospital and mortality registries

facilitates reconstruction of complete patient pathways. %
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4.5 Discussion
It is well-understood that models must be clearly defined and conceptualised
prior to analysis. %197 This chapter introduces a conceptual model serving as a
foundational framework for developing policy models that is both appropriate
and fit for purpose, by explicitly defining core components, relationships, and
underlying assumptions. This framework ensures subsequent policy models

possess robust theoretical grounding and practical utility.

Given the adequate reporting quality established in the systematic review, the
findings were deemed reliable and provided valuable insights for conceptual
model development. Integration of clinical guidelines, systematic review
evidence, and expert consultation significantly strengthened the modelling
process. Particular emphasis was placed on model structuring®, yielding a

technically precise and detailed conceptual framework.

Areas which required further attention include rigorous selection and
incorporation of parameters, especially leveraging high-quality routine data to
enhance conclusion generalisability.'8> These considerations have been
addressed in the final conceptual model. The proposed structure aligns with
established CMD stages and existing economic evaluation frameworks,
demonstrating methodological consistency with current practices. Based on
this alignment, no major modifications appear necessary in this conceptual

model.

Following development, the CMD policy model could be applied to evaluate
early preventative strategies, including dietary interventions, screening
programmes, and preventive medications. Subsequent analyses will
incorporate structural sensitivity testing and model performance evaluation in

accordance with established modelling best practices.®’

To date, published conceptual models in this domain remain relatively
limited. 70,1919 The conceptual model presented herein advances current
research on CMD, particularly within health economic modelling. It extends

existing frameworks through a comprehensive and systematic
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conceptualisation process, prioritising modelling transparency and

methodological rigor.

Some limitations of this conceptual model are acknowledged. First, an
experienced clinician and experts were asked to ensure the disease state
relevance at a practice level. This is done by gathering input informally
during the presentation of the modelling plan. Conducting a Delphi panel
with a structured questionnaire would potentially improve the process and
minimise subjectivity. Second, the structure is trying to cover both T2DM and
CVD states that represent major CMD events. Unlike the second event such as
the post-CVD event, the model did not consider T2DM complications as a
subsequent state from T2DM state. The model assumed that patients would
progress to death over time, no matter what diabetic event occurs after the
initial T2DM event. Third, transitions between MI and stroke were not
permitted in the model. MI and stroke were treated as competing first
cardiovascular events arising from a shared atherosclerotic process. Explicitly
modelling MI-stroke transitions would require robust, time-dependent
estimates of conditional second-event risks, which are limited and highly
uncertain. Instead, subsequent vascular risk was captured within post-MI and
post-stroke states through increased mortality, costs, and utility decrements.
This structure is consistent with established cardiovascular policy models but
may underestimate the burden associated with multiple sequential
cardiovascular events.290.20! Fourth, a healthcare perspective is planned to be
used for the model in terms of facilitating further economic analysis.
Considering a societal perspective in the model may optimise societal
decisions. If sufficient data are available, this economic perspective may be

incorporated in sensitivity analysis.

Furthermore, the use of utility values to generate QALYs is considered, such
as EQ-5D. However, the EQ-5D-5L valuation study remains ongoing for the UK
general population.292 A solution here is to use published EQ-5D-3L for each
state (if a hypothetical public health intervention is conducted), or use QALE

as one of the outcomes.



4.6 Conclusions "
It is widely accepted that clearly defining and conceptualising the model is a
crucial first step before analysis. The conceptual model developed in this
Chapter serves as a first step in representing the systematic process for
communicating the contextual understanding of the current problem and
knowledge, disease progression, and modelling choice as well as its structure.
Basically, the conceptual model describes how the decision problems are
specified and how the model structure is established. It will be beneficial to
provide insight to the broader audience for the modelling development

process before further analysis.
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Chapter 5 Data preparation

5.1 Introduction

Data preparation is a pivotal stage in the data analysis pipeline, especially when
dealing with real-world data (RWD), as it transforms raw data into a structured
and analysable format suitable for advanced statistical and computational
analysis. Chapter 5 offers a detailed exploration of the data preparation process
for (Clinical Practice Research Datalink) CPRD Aurum, outlining the pipeline and
the sequence of operations such as cleaning, linking, integrating, and

manipulating the data—while addressing key challenges inherent to this phase.

The dataset utilised in this study has been granted ethical approval by the UK
Health Research Authority (HRA) Research Ethics Committee (REC) as part of
CPRD’s standard governance protocols. Specific ethical clearance for the
cardiometabolic disease study was secured from the Independent Scientific
Advisory Committee (ISAC) under project number 20_129.2 Furthermore, a Data
Management Plan (DMP) was submitted to the University of Glasgow in 2023,
ensuring compliance with institutional standards for secure data handling and

storage (Appendix 4).

All data management and analysis processes are conducted in collaboration with
the Medical, Veterinary and Life Sciences (MVLS) Advanced Research System
(MARS) University of Glasgow, a high-performance computing (HPC) platform
that facilitates complex, computationally intensive research.? To ensure
transparency and reproducibility, the entire data preparation process, including

all relevant code, is available publicly via a GitHub repository.

a Cardiometabolic disease prediction using general practice consultation pattern: Use of machine
learning (ML) https://www.cprd.com/approved-studies/cardiometabolic-disease-prediction-
using-general-practice-consultation-pattern-use

b MVLS Advanced Research System. High Performance Computing. https://mars.ice.gla.ac.uk



https://github.com/Septiara20/CPRD
https://mars.ice.gla.ac.uk/
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5.2 Secondary use of routine data

Routine data, or routine health data is information collected as a part of regular
healthcare delivery. The primary use of this is to directly inform the care of
individuals/patients whose data was collected. This data is typically gathered by
healthcare providers during visits, hospital admissions, and immunisation
programmes (e.g.: electronic health records, disease registries, administrative
data, claim data, epidemiologic surveillance, etc.). However, this data has a
wealth of potential beyond informing individuals or clinicians. The secondary use
of routine health data focuses on leveraging aggregated information to benefit a

broader population.

Over two decades, there has been substantial growth in the use of routine data
for public health research. The secondary use of this data plays a pivotal role in
providing a more comprehensive understanding of health and disease in
individuals/populations, improving clinical decision-making, medical
intervention, and personalised care, as well as enhancing the wider impact of
the healthcare system.203-295 Furthermore, the use of routine data (i.e.:
electronic health records) enables insights into population representativeness

and the possibility of long-term follow-up analysis.?206-29

Routine data utilisation enables a reflection of the health and disease conditions
in the general population, captures the reality of clinical practice, and allows

for a more granular understanding of real-world clinical practice.

In the UK, one of the routine EHR-based databases is the Clinical Practice
Research Datalink (CPRD), which stands as the pre-eminent repository of primary
care data, offering anonymised, comprehensively coded EHR data that are
collected every month by a nationwide GP network. All patient data are securely
stored in EHR software, and datasets generated from this can be utilised to
support retrospective and prospective public health research.2'® For more than
30 years, CPRD data has supported the development of clinical guidance and
best practices, including medicine use, drug safety investigations, disease risk

factors, healthcare delivery, and the effectiveness of health policy.2'1.212
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CPRD launched a new database called CPRD Aurum in 2017, and it became

available to use in 2018. CPRD Aurum contains data that is predominantly
sourced in England and Northern Ireland, capturing symptoms, diagnoses, tests,
prescriptions, and referrals for over 20 million patients. CPRD Aurum has a
different data platform system for electronic records compared to the well-
known CPRD GOLD. CPRD Aurum uses the EMIS® platform data system, while
CPRD GOLD uses Vision® software that has reduced in use by GPs in recent
years. Despite these differences, both databases remain to provide research
potential to support public health research.2' This thesis will utilise the CPRD
Aurum to build a CMD policy model, a mathematical framework, particularly a
state transition model that can accommodate health and economic analysis. The

details of this model conceptualisation have been presented in Chapter 4.

In general, EHR-based data are mainly inputted by end-user healthcare providers
as a part of routine patient care. The vast amount of information contained in
EHR-based databases result in massive database size, complex data relations and
structure, and comprehensive information on individual clinical history. Given
the complexity and voluminous nature of the database, researchers are often

confronted with formidable challenges during the data preparation stage.?'3:214

Data preparation is the most critical phase in the analytical process, as a
significant portion of coding effort is dedicated to ensuring data quality. This
involves data transfer, ingestion, cleaning, handling missing values,
manipulation, and structuring. These steps entail complex, iterative technical
tasks, ultimately producing refined datasets that are ready and suitable for

subsequent statistical analysis.
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5.3 Data source profile

5.3.1 The Clinical Practice Research Datalink (CPRD)

Clinical Practice Research Datalink (CPRD) is a UK government research data
service that provides real-world routine collected data that support
observational clinical and public health studies. It is jointly supported by the
Medicines and Healthcare Products Regulatory Agency (MHRA) and the National
Institute of Health Research (NIHR), as part of the UK Department of Health and
Social Care. Established in 1987, the Value-Added Medical Products (VAMP)
dataset expanded to become the General Practice Research Database (GPRD) in
1993 and continuously became CPRD in 2012.2'1,212

CPRD collects anonymised patient-level data from participating GP practices
across the UK and extensively recorded data for millions of patients. With
reliable research standard data, CPRD represents almost 25% of the UK
population, and currently encompasses more than 60 million patients, including
18 million currently registered patients.2'> Data recorded in CPRD include
primary diagnosis, clinical events, prescriptions, tests, demographics, referrals,
admissions, and preventative care. Primary care data are collected
electronically daily by the GPs and uploaded to CPRD secure servers on a
monthly basis before being released further for public health research.
Moreover, CPRD datasets were linked to Hospital Episodes Statistics (HES) for
admitted patients and outpatients, the Office for National Statistics (ONS) as

well as Index of Multiple Deprivation (IMD).2'0

Before the data is fully released for research purposes, validation and quality
checks are performed. First, the collection level validation ensures the data
element is correctly captured and checks for duplication. Second, the
transformation level ensures all events are linked to patients. Third, the
research quality level includes a check of recording and internal consistency of
key variables.2' It is possible to extend these checks to include specific checks

and validation if required, or to fit the research purpose.
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5.3.2 CPRD GOLD versus CPRD Aurum
Although CPRD GOLD and CPRD Aurum are UK EHR-based large databases that

collect de-identified primary care patient-level data, there are several
differences between these useful databases. The main difference is the patient
management software system to record routine clinical data. CPRD GOLD uses
the web-based Vision® software, the data source generated from this system has

been used for more than 30 years for research.?'0

Meanwhile, GP practices in the UK are gradually switching to a new system
called EMIS® software. The clinical coding system for the medical dictionary is
different. The medical dictionary for CPRD GOLD contains information on all
medical history using read version v.2 codes referenced in the data file as
‘medcode’, while CPRD Aurum uses a combination of SNOMED, Read, and local
EMIS® Codes. For drugs and prescriptions, it is referenced as ‘prodcode’
(gemscript product code) and dictionary of medicines devices (DM+D),

respectively.?°

There are similarities and differences between these two databases summarised
by Jick et al. (2023)2" This distinction allows the researcher to strengthen the

consideration and justification when planning research using CPRD data.
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Table 5.1 Data use consideration when using CPRD and linked data?’”

CPRD GOLD and = CPRD Aurum contains more patients than Gold, especially
CPRD Aurum data within currently contributing practices (data form 1989 to
coverage present)’

= CPRD Aurum primarily includes English practices (data form
1989 to present)’

= CPRD GOLD covers practices from all UK nations; however,
currently contributing practices are predominantly located in
Scotland and Wales (data form 1989 to present)?

CPRD GOLD and = Similar data quality in GP record for CPRD GOLD and Aurum,
CPRD Aurum data particularly post- 2004, though variability in completeness
quality and quality exists over time.

= Validation effort should be an ongoing component of research
using database.

HES and ONS = HES and ONS linkage are available for practices in England
Death registration = Most CPRD Aurum practices have linkage to HES and ONS
= Very few currently contributing CPRD GOLD practice have
linkage to HES and ONS data (due to linkage availability for
English practices only
= HES APC started in 1997 and ONS death registration started in
1998, the start of CPRD GOLD and Aurum data
= HES APC and ONS are updated approximately yearly?:
= HES OP has limited capture diagnosis information

Notes: 2 at the time of the paper publication (2023). Abbreviations GP: general practitioner,
HES: hospital episodes statistics, HES APC: HES admitted patient care, HES OP: HES outpatient
data, ONS: Office of National Statistics

In addition, CPRD GOLD have practices up to standard (UTS) date, while this is
missing from Aurum. Both include derived death date and acceptable patient
flag.2'% Recent publications compared CPRD GOLD and Aurum for breast cancer?'®
and rheumatoid arthritis (RA)2'® in terms of the consistencies between the two
databases. The information on clinical details was consistent, also the

correctness and completeness of the diagnosis were similar.

Based on the information above, the selection of CPRD Aurum over CPRD GOLD
for this study is justified by several key factors related to data coverage,
quality, and linkage availability, as outlined in the comparative profile of the
two databases. Although both CPRD GOLD and CPRD Aurum are valuable UK-

based electronic health record (EHR) databases, CPRD Aurum offers distinct
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advantages that align with the research objectives and requirements of this

study.

First, CPRD Aurum contains a larger patient population than CPRD GOLD,
particularly within currently contributing practices (data from 1989 to present).
This extensive coverage enhances the statistical power and generalisability of
the study findings.?'° Second, CPRD Aurum utilises the EMIS® software, which is
increasingly adopted by GP practices across the UK, reflecting a more
contemporary and widely used system for recording routine clinical data. This
modern coding system enhances the accuracy and relevance of the data for
current clinical research.2'® Third, the superior linkage to secondary care and
mortality data is critical for this study, as it enables a more holistic analysis of
patient outcomes. It also provides data for longitudinal follow-up, including

hospitalisations and mortality.2'”

In summary, CPRD Aurum’s broader patient coverage, alignment with modern
clinical coding systems, superior linkage to secondary care and mortality data,
and relevance to current and future research make it the preferred choice for
this study. These advantages outweigh the benefits of CPRD GOLD, particularly
given the study’s focus on English primary care data and the need for

comprehensive linked datasets to analyse patient outcomes effectively.

5.3.3 Data structure of CPRD Aurum

Primary care data in CPRD Aurum has a complex relational data structure and
format. There are eight structured separate files, and data are formatted in long
format, where a patient could have multiple rows of data. The patient file
contains the basic information of patient’s demographics, registration details,
and date of death. The practice file contains the practice region and date of
data collection by practice. Meanwhile, the staff file records the job category

for staff registered in CPRD Aurum.'?
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Furthermore, the observation files record the medical history of patients,
including symptoms, clinical measurement, laboratory tests, and diagnosis as
well as patient ethnicities. The consultation files contain the type of
consultation performed by the GP (i.e: telephone, visits type), these files can be
linked with observation and or the problem, referral, as drug files data relating

to prescriptions (Figure 5.1)

Patient

—

F

------------- Observation _— —

Consultation Drug issue

| Problem | | Referral |
e____J wv____J

Linked via: patient id practice id........... staff id — _ observationid _._. consultation id

Note: Observation files contain symptoms, diagnoses, immunizations, tests, and lifestyle factors. Problem
and referral files contain add-on information for certain types of observation. Some drug issues are linked
to problem-type observation.

Figure 5.1 CPRD Aurum dataset structure

By May 2022, the CPRD Aurum database recorded over 41 million acceptable
patients for research, with 38 million eligible for linkage. The total number of
NHS GP practices is 1,491. In terms of coverage, this data covers approximately

13 million patients in the UK population (Table 5.2).%"3
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Table 5.2 Updated version of Aurum database, May 20222

Metrics Coverage
Total number of acceptable patients' (including transferred 41,200,722
out and deceased patients):
Current acceptable patients (i.e: registered at currently 13,300,067

contributing practices, excluding transferred out and
deceased patients):

Percentage UK population coverage? (current patients
only):

Total patients eligible for linkage

Available follow-up time in years since 15t January 19953 (all
patients including transferred out and deceased):

Mean (standard deviation)

Median (25% and 75t percentile)

Available follow-up time in years since 1%t January 1995 (all
patients including transferred out and deceased):

Mean (standard deviation)

Median (25% and 75% percentile)

Total number of practices (current and historic) included in
the database:

Currently contributing practices:

Percentage coverage of UK GPs (currently contributing
practices only):

Regional distribution of currently contributing practices*
England

Northern Ireland

Scotland

Wales

13,300,067 of 67,081,000
(19.83%)

38,377,503

7.93 (7.97)
4.76 (1.80-11.77)

11.66 (9.49)
8.74 (3.25-19.85)

1,491

1,345

1,345 of 8,178 (16.45%)

1,332 (99.03%)
13 (0.97%)

0 (0.00%)

0 (0.00%)

' Permanent registration only; 2 Based on lates UK population estimates from ONS; 3 Follow-up time stated
does not incorporated UTS data and the database includes records pre-dating the 1st January 1995.;
4Expressed as a percentage of all practices currently contributing to CPRD Aurum
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Apart from this, the missing data and the different GP IT systems and coding

should be explored more when using CPRD Aurum data. Recently published
studies reported the correctness and completeness of several diseases
(pulmonary embolism, MI, T2DM, comorbidities)?04220.22! recorded in CPRD Aurum
is suitable to be used for research. We therefore arguably focus on the data
cleaning stage since the data checking, quality assurance, as well as data quality

and accuracy has been performed by CPRD and these published studies.

5.3.4 Variables in datasets

Variables in CPRD Aurum datasets encompass a wide range of clinical,
demographic, and administrative data. The details of overall data specification
are presented in CPRD Aurum data specifications. For this thesis the key sub-
dataset and variables are presented in Table 5.3. These datasets are linked to
each other to draw the sequence and comprehensive journey of patients
recorded in CPRD. This serves as the specific information that will be utilised in
the CMD model.

Table 5.3 Details on dataset used for model development and statistical analysis

Dataset

Description

Key variables

Patient

Observation

Diagnosis

Linkage

Death

Patient and practice information, HES
id and patient’s ethnicity

Covers any clinical data/measurement
reported in certain observation time

Divided into three datasets: primary
diagnosis, episodes, hospitalisation.

Consists of episodes and hospitalisation
information. Unique identifiers for
each clinical episode in database, also
the time of clinical episodes/events.

List of patients who are eligible to be
linked to HES and ONS death data

Details of patient death information
including date of death and cause of
death

patient id, age, gender,
practice id, hes id, ethnicity,
deprivation index

observation date, medcode
id, measurement values
(numutid),

ICD, admission and discharge
date, start and end date
(episodes),

linked date, HES, spno,
death

date of death, cause of
death

HES: hospital episode statistics; ICD: international classification of diseases; medcode: A unique identifier
used to represent specific medical concepts, such as diagnoses/symptoms/clinical observations selected by
GP; spno: spell number uniquely identifying a hospitalisation
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5.4 Data pipeline

The patient-level data was obtained directly from CPRD and securely stored
within the University of Glasgow’s cloud services (NextCloud). Prior to sampling,
a data pipeline was constructed to facilitate the ingestion, transformation, and
manipulation of CPRD Aurum data, ensuring its readiness for analysis. This stage
is critical for maintaining efficient data flow and preparing the dataset for

downstream statistical work.

Initially, the CPRD Aurum data was imported into a Structured Query Language
(SQL) relational database management system. SQL was used primarily for data
discovery, allowing the team to explore the general structure of the database
and experiment with generating sample patient index values. However, due to
performance limitations and inefficiencies in handling large volumes of data (N=

14,464,503), SQL was used solely for initial inspection and exploratory purposes.

With the full support of the University of Glasgow’s MVLS Advanced Research
System (MARS), all subsequent queries and analyses were transitioned to R, a
more efficient and flexible environment for processing large-scale datasets. This
shift significantly improved operational efficiency, enabling streamlined data
manipulation and analysis while maintaining the integrity and security of the

data throughout the pipeline (Figure 5.2).
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Figure 5.2 Data preparation workflow

The initial data processing was primarily conducted using the Aurum pipeline
package in R, developed by Jay Hughes (2022).222 The aurum pipeline ( )
function was executed to process raw electronic health records (EHRs) and store
the output in Parquet format. Parquet is a highly efficient columnar storage file
format, specifically optimised for handling large-scale datasets. Unlike
traditional row-based storage formats (e.g., CSV or JSON), Parquet enables
efficient data compression and encoding, significantly reducing storage
requirements. By organising data into columns rather than rows, Parquet
facilitates vectorised processing, allowing analytical queries to retrieve only the
required columns instead of scanning entire rows.?23 This columnar structure
enhances performance in big data analytics, making Parquet particularly well-
suited for large healthcare datasets like Aurum, where millions of patients

generate vast longitudinal clinical records.

Once the data was processed and stored in Parquet, it was loaded into an R data
frame for further analysis. To efficiently query and manipulate these large
datasets, the ‘Arrow’ package in R was applied. The Apache Arrow project

provides a cross-language development platform for high-performance in-
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memory computing. It offers a unified interface that allows seamless interaction

with multiple data storage formats, including Parquet and csv. The Arrow
package enables zero-copy reads, minimising memory overhead when handling
large datasets, which is crucial when working with highly granular longitudinal
EHR data (e.g., Aurum observation records where a single patient can have
thousands of time-stamped clinical encounters over several years). The Arrow R
package integrates seamlessly with dp1yr??4, allowing analysts to write
expressive and optimised data transformation pipelines without requiring
explicit low-level memory management. This functionality is particularly
beneficial for filtering, aggregating, and joining high-dimensional datasets
efficiently. The full code implementation for this process is available in Github

for reproducibility and transparency.

Additionally, SQL was utilised for a limited subset of data processing tasks,
primarily for initial data exploration, generating patient indices, and performing
inner joins with linked datasets such as HES via the patient identifier. At an
earlier stage of the pipeline, data transformation was partially executed on a
high-performance computing (HPC) system before transitioning to an R-based
processing workflow. However, depending on system requirements and
computational efficiency, analysts may choose to perform all data management

within R, Python, or a hybrid approach leveraging SQL servers.

While SQL-based data warehousing solutions (e.g., cloud-based systems such as
Google BigQuery, Microsoft SQL Server) provide robust scalability, they introduce
additional costs and require ongoing maintenance. Furthermore, when working
with sensitive patient-level data, analysts must ensure compliance with
institutional governance frameworks and data protection regulations (e.g., GDPR
in the UK). The decision to integrate SQL with R or Python should be based on

computational efficiency, security, and data governance considerations.
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5.5 Cohort identification

5.5.1 Inclusion criteria

As described in Chapter 4, the state transition model has seven states, including
disease free, type 2 diabetes (T2DM), myocardial infarction (Ml), post-MI, stroke
and post-stroke, and death. The basic premise of this structure is to describe

and analyse how individuals transition through multiple health states over time.

Given these characteristics, the thesis adopts the term of ‘multi-state model’ to
represent the analytical framework. Unlike traditional analysis, which typically
considers a single transition (e.g. from alive to death), a multi-state model
accommodates complex disease trajectories, capturing the progression through
intermediate health conditions.'¢”:225 This approach necessitates a structured
data management process ensuring that transitions between states are
accurately defined and modelled. The statistical method will be

comprehensively presented in Chapter 6.

From the total CMD patient population within the CPRD Aurum dataset
(N=14,464,503), approximately 10% (n=1,344,338) were eligible for linkage with
Hospital Episode Statistics (HES) and mortality data. In this context, eligibility
refers to registration with GPs that had provided consent for data linkage to
external sources. Patients registered with practices that had not opted into the
linkage scheme contribute complete primary care records within CPRD Aurum
but cannot be linked to hospital admissions or death records for governance and

data-sharing reasons.

Accordingly, linkage eligibility was determined at the practice level rather than
the individual patient level, and does not reflect clinical characteristics, disease
severity, or differential data completeness. The proportion of linkable patients

therefore reflects the extent of practice participation in the CPRD linkage

programme during the study period.

For this study, the inclusion criteria encompassed adult patients (=18 years old)
who were registered with a GP between 2000 and 2020, ensuring consistency in

clinical coding practices over time. Based on these criteria, the observation
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period spans from 1990 to 2020 followed by filtering the plausible data, which is

justified by the number of recorded observation years per patient (Figure 5.3).

o ni

Fear

Figure 5.3 Number of patients by observation period

The cardiometabolic “disease-free” state was defined as the absence of any
recorded CMD prior to study entry. This classification encompassed individuals
with no prior diagnoses of T2DM, MI, coronary heart disease (CHD), stroke,
transient ischaemic attack (TIA), cerebrovascular disease (CBVD), or acute
coronary events, as determined by ICD-10 codes. Fatal stroke and MI were
defined as cases where death occurred within 30 days of the event; otherwise,

these were categorised as post-stroke or post-MI events.

The first cardiometabolic event was identified as the earliest recorded diagnosis
of T2DM, stroke, or MI, irrespective of whether it was documented as a primary
or secondary diagnosis, recorded within a hospital episode, associated with a
single hospital admission, or listed as a comorbidity. To ensure a comprehensive
assessment of patient trajectories, primary care records were linked with
hospital episode data, enabling the identification of transitions between primary
and secondary care settings and the determination of first consultations or
hospital visits. Events that were not associated with cardiometabolic disease
(CMD) were classified as non-CMD events, referring to diagnoses not included

within the ICD-10 classifications for CMD-related conditions.
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The covariates (and clinical biomarkers) and clinical events of interest included

in this CMD model development are presented in Table 5.4. The medical code

(medcode) list and its description were retrieved from various published

literature. Furthermore, the medcodeid was re-checked, compared between

studies, and summarised as new medcode files that represent current events of

interest. For the hospital data (HES), ICD-10 is used to define the clinical event

of interests.

Table 5.4 Code source for variables included in the model

Variables Description Code Sources
Covariates e age, gender, deprivation medcodeid Exeter
index, ethnicity Diabetes
e smoking status, alcohol Research Team
status, codelists?2,
e family history (T2DM and LSHTM Data
CVD), presence of diagnosis Compass??’ 22,
(atrial fibrillation, DaRe2THINK230
hyperlipidaemia,
hypertension
e BMI (kg/m?), blood glucose
(mmol/l), blood pressure
(mmHg), HbA1C (mmol/l),
HDL (mmol/l), LDL
(mmol/l), triglycerides
(mmol/l), total cholesterol
(mmol/l)
Clinical T2DM, MI, Stroke medcodeid Exeter
event Diabetes
(primary Research Team
care) codelists?2¢,
LSHTM Data
Compass?27-229,
DaRe2THINK?30
Clinical T2DM E11, 024.1 ICD-10
event dictionary?3'
(secondary
care)
MI 121, 122, 123, ICD-10
124.1, 125.2 dictionary?3
Stroke 160, 161, 162, 163, ICD-10

164

dictionary?3
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After filtering by observation period and data filtering, 1,191,377 patients

remained, the data underwent filtering to address potential issues related to
invalid coding, duplication, and inconsistencies within clinical code lists. At this
stage, all invalid and inconsistent data were removed before constructing the

final standardized dataset.

Invalid coding in this context refers to patients with discrepant or implausible
data entries, particularly inconsistencies between primary care records and
hospital data. Examples include erroneous diagnosis entry dates (e.g., a
recorded year of 1895), observation dates that match a patient’s birth date,
making it impossible to determine the precise timing of a diagnosis or
procedure, or cases where patients were recorded as deceased but continued to

have observations documented after their date of death.

A five-year lookback period was employed to ensure accurate classification of
baseline health status by examining clinical event histories prior to cohort entry.
This period serves to identify and exclude patients with CMD events. By doing so,
the analysis minimises left-censoring bias and ensures that only individuals
without CMD enter the model.

Technically (see Github), to get eligible baseline individuals,

the getQualifyingPatients () function identified eligible individuals aged
18 or older by 1990 and without prior records of CMD events, using general
practice and hospital-coded data. The generateStateTransitionTable ()
function then constructed a chronologically ordered dataset of CMD events after
1t January 1990, harmonising formats, integrating death records, and

calculating time variables to support longitudinal analyses.

To ensure clinical validity, the filtering functions were also established by
removing overlapping Ml and stroke events within a single hospital episode and
generate only the first diabetes diagnosis per patient. For CVD events, it begins
by linking each event in the main event table to the corresponding hospital
discharge date, based on a shared ‘spno’ number. It then iterates through each

patient’s records, applying logic to retain only the first occurrence of Ml or
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stroke, and exclude subsequent events of the same type if they fall within the

previously recorded hospital discharge window.

The relabelFirstSecondCVD () function enhances the model by
distinguishing initial from subsequent MI or stroke events, labelling the latter as
post-MI or post-stroke to capture disease progression.

The removeCompetingCVDEvents () function enforces a hierarchy between Mi
and stroke. This approach assumes that recurrent events within the same
hospital episode likely represent continued care for the same incident, rather
than new, independent events. By systematically updating the most recent
discharge date and comparing it to the timing of subsequent events, the function
ensures that only clinically meaningful, non-overlapping Ml and stroke events are
preserved. The dataset is then re-ordered chronologically by patient and event

date, with recalculated inter-event durations.

5.6 Data cleaning and pre-processing

5.6.1 Complete case and missing data

For the development of the CMD model, a complete case analysis (CCA)
approach was employed. The dataset was filtered to include only those
observations with complete data for the primary covariates of interest, namely
age, sex, cholesterol levels, glucose levels, and blood pressure. CCA, also
referred to as listwise deletion, is a widely used statistical method in scenarios
where the focus is on analysing observations with no missing values, excluding

incomplete cases from the dataset.

As part of this process, the biomarkers data quality was checked and cleaned by
applying EHRBiomarkr packages in R developed by Exeter Diabetes Research
Team (2023).%% This package has two main functions,

clean biomarker values, which removes implausible biomarker values, or
extreme value ranges, and the clean biomarker units function retains only
biomarker values with appropriate unit codes (numunitid) or those with a
missing unit code in CPRD Aurum. Prior to applying this, the relevant biomarker
units were checked to make sure all biomarkers are already converted to

standard units.
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After applying the filtering criteria, a total of 184,845 patients were included as
the baseline for model development and cohort construction. All covariates in
the dataset were complete; however, one biomarker, HbA1c, exhibited a high
proportion of missing data (70%) observed across both male and female
populations. HbA1c is a critical indicator of glycaemic control in patients with
diabetes and is often associated with a range of health outcomes, making its
inclusion potentially valuable for the analysis. Furthermore, when examining
HbA1c specifically in the context of T2DM status, the missingness remained

notably high, reinforcing the decision to address this issue carefully.

Missing data can indeed be addressed through imputation techniques, and there
is no universally defined threshold for the percentage of missingness that
necessitates imputation. However, guidance from the literature suggests that
missing data exceeding 10-15% generally warrants consideration of imputation
methods.232 In cases where missingness approaches 20-30%, more advanced
techniques, such as multiple imputation, are particularly valuable due to their
ability to account for the uncertainty associated with missing data. Multiple
imputation creates several plausible datasets by replacing missing values with
estimates based on observed data, thereby preserving the variability and

relationships within the dataset.232:233

Given the exceptionally high missingness rate of 70% for HbA1c, the decision was
made not to perform multiple imputation due to several technical and
methodological concerns. First, imputing more than 70% of the data for a
variable means that many of the values would be estimated rather than
observed, leading to over-reliance on the imputation model and potentially
distorting the true relationships within the data.?3423 Second, with such a high
proportion of missing data, there may not be sufficient observed information to
generate accurate imputations, even when using advanced techniques,
increasing the risk of implausible or unreliable values.?32:233236 Third, imputed
values may artificially reduce the natural variability in the data, leading to an
underestimation of uncertainty and overconfidence in the results. Finally,
multiple imputation assumes that the data are Missing at Random (MAR), but

with >70% missingness, this assumption is often violated, as the missingness
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pattern is more likely to be Missing Not at Random (MNAR).234237 |n such cases,

the missingness may depend on unobserved factors or the true values of HbA1c
itself, rendering standard imputation methods inappropriate and potentially

biased.

In addition, the model was designed to begin with a disease-free population,
rather than being exclusively focused on diabetes patients. Given this scope, the
other biomarkers included in the analysis were already deemed sufficient and
important for predicting the metabolic profiles, progression, and outcomes of

the model.

All patients with cardiometabolic diseases registered in CPRD
Aurum
(N=14,464,503)

Eligible to be linked with HES, IMD
(n=1,344,338)

Registered between 2000-2020, adult patients >18 years old,
observation time between 1990-2020, duplication and
inconsistent data removed
(n=1,191,377)

Complete dataset used
(n=184,845)

Figure 5.4 Data filtering process
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5.6.2 Structuring data for multi-state model analysis

The next step in data preparation is to structure the dataset to be analysis-ready
within a multi-state modelling framework. This requires ensuring the dataset
captures event times and disease states, which are essential for modelling
transitions between health states over time. The method of how the data will be

analysed is presented in detail in Chapter 6.

The function createTransitionMatrix () constructs a transition matrix that
defines the permissible state transitions within the multi-state model. Utilising
the transMat function from the mstate package in R, it encodes the possible
clinical pathways a patient may follow through various CMD events. The ‘long
format’ table is compatible with the mstate package means that in the long

format there are multiple rows for the same ‘patid’.

Conversion from long to wide (patid occupies one row, with separate columns for
each event and censoring indicator) will depend on the need of further analysis.
For instance, wide format will be more straightforward for summary statistic or
further single event survival model. Hence, using either long or wide format

would be dependent on the analysis undertaken.

Table 5.5 Long format transition table

patid from to Tstart Tstop Status Covariates
(days) (days) (1,2...)

001 Disease-free | Diabetes 0 1200 1 XXXXX

001 T2DM Death 1200 1800 1 XXXXX

*Tstart is the time of entry in the state, and Tstop the event or censoring time, depending on the

value of status

Based on this established table (Table 5.5), the matrix can be computed,
summarising disease trajectories and number of individuals in each state, this
mapping is essential for estimating future transition-specific hazards in survival

analysis.
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The transition matrix (Table 5.6) defines the allowed transitions between health

states in the multi-state model, with each numbered transition corresponding to
a specific pathway (e.g., from disease-free to T2DM is transition 1). These

transitions reflect the natural progression of CMD and mortality.

Table 5.6 Transition matrix

print (transitionMatrix)

events (msdataContinous)

to
from Disease- T2DM MI Post- Stroke Post- Death
free MT Stroke

Disease- NA 1 2 NA 3 NA 4
free

T2DM NA NA 5 NA 6 NA 7
MI NA NA NA 8 NA NA 9
Post-MI NA NA NA NA NA NA 10
Stroke NA NA NA NA NA 11 12
Post- NA NA NA NA NA NA 13
Stroke

Death NA NA NA NA NA NA NA

Labelled as: 1="Disease-free to T2DM", 2 = "Disease-free to MI", 3 = "Disease-free to Stroke", 4 = "Disease-free
to Death",5 = "T2DM to MI", 6 = "T2DM to Stroke",7 = "T2DM to Death",8 = "MI to Post-MI", 9 = "MI to Death",10
= "Post-MI to Death", 11 = "Stroke to Post-Stroke", 12 = "Stroke to Death",13 = "Post-stroke to Death".

The accompanying event frequency table summarises (Table 5.7) the observed
number of individuals who experienced each transition, along with the total
number entering each state. For instance, among those initially disease-free,
59,226 developed T2DM, 11,806 experienced an MI, 12,505 had a stroke, and
21,355 died without developing any of those conditions. This structure supports
a multi-state framework by clearly identifying the sequence of disease
progression and allows for the estimation of transition-specific survival models

using real-world patient data.
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Table 5.7 Summary of events in each states

SFrequencies
to
from Disease- T2DM MI Post- Stroke Post- Death Total Total
free MI Stroke n entering
event
Disease- 0 59226 11806 0 12505 0 21355 79953 184845
free
T2DM 0 0 2692 0 2560 0 9676 44298 59226
MI 0 0 0 2217 0 0 4245 8036 14498
Post-MI 0 0 0 0 0 0 912 1305 2217
Stroke 0 0 0 0 0 2988 5970 6107 15065
Post- 0 0 0 0 0 0 1483 1505 2988
Stroke
Death 0 0 0 0 0 0 0 43641 43641

5.6.3 Assigning time-dependent covariates

The hazard (risk) of an event often depends not only on baseline values but on
the most recent or cumulative values of covariates at the time the event is being
assessed.?3® This dynamic relationship underscores the necessity of incorporating

time-dependent covariates especially in survival and multi-state models.

There are several reasons for assigning time dependencies before conducting
analysis. First, the model is intended to reflect the real-world clinical
progression, many risk factors (e.g., biomarkers) evolve over time, and their
current values—rather than just baseline measurements—directly influence event
risks. This aligns with the previously discussed systematic review
recommendation in Chapter 3, where dynamic covariates are integral to
accurately modelling disease progression.Second, as an attempt to prevent
survivorship bias and misclassification, for instance: if patients must survive 6
months to receive a medication, treating them as "treated” from baseline may
underestimate their early risk. It would artificially inflate their apparent survival
advantage by ignoring early untreated follow-up time. Third, adjustment for
intermediate events is important, particularly in models with transitions
between states. In such models, covariates can be updated after each transition,

ensuring that the hazard function reflects the patient’s most recent clinical
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status. Also, when static models may underestimate variability in risk, time-

dependent models adapt to new information.

All covariates in this model are treated as time-dependent, age was computed
from full date of birth and updated each interval, meaning the most recent
recorded value before the start of each interval (Tstart) was used. This
ensures that covariate values reflect the patient's most up-to-date state just
before entering the event risk window, allowing the model to more accurately

capture real-world disease progression.

This approach ensures the model captures the patient’s state immediately
preceding each event-risk window. The resulting data structure is compatible
with standard survival analysis tools (e.g., the survival package in R) and means
that it can be seamlessly integrated into Cox models while properly accounting

for time-varying effects.

5.7 Cohort characteristics

In a cohort of 184,845 individuals (Table 5.8), comprising 89,645 males and
95,200 females, the median age was 42 years (IQR: 32-52) for both sexes. This
exploratory analysis serves as a foundation for identifying transitions where sex

differences may influence disease progression.

A family history of diabetes was common in both sexes, reported by 46.4% of
males and 42.6% of females, while approximately one-fifth reported a family
history of cardiovascular disease (CVD). Around one-third of participants had no
reported family history of diabetes or CVD. The cohort was predominantly of
White ethnicity (approximately 73% in both sexes), followed by Asian and Black
ethnic groups. The ethnic distribution was broadly comparable between males
and females, with a slightly higher proportion of females classified as “Other”

ethnicity.

In terms of health-related behaviours, most participants reported low-risk

alcohol consumption, although abstention was more common among males
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(14.2%) than females (7.2%). Females had a higher prevalence of current and

former smoking, whereas males were more likely to be never smokers.
Socioeconomic status, measured using the Index of Multiple Deprivation (IMD),
showed a relatively even distribution across quintiles for both sexes, with a
modest concentration in the most deprived quintile (IMD 5).

Regarding baseline clinical conditions, hypertension was highly prevalent,
affecting 45.0% of males and 49.3% of females. Hyperlipidaemia was present in
around 17% of both sexes, while atrial fibrillation was more common in males
than females (6.3% vs 4.6%).

Anthropometric and biochemical risk factors differed by sex. Overweight and
obesity (BMI >25 kg/m?2) were highly prevalent in both groups, particularly
among females. Females also had a higher proportion classified as obese (BMI
>30 kg/m?2). Males were more likely to have low HDL cholesterol, while females

more frequently exhibited higher HDL levels.

Blood pressure measurements indicated a high prevalence of elevated systolic
blood pressure (=140 mmHg) in both sexes, particularly among females. Raised
diastolic blood pressure (290 mmHg) was more common in females than males.
Finally, glycaemic measures showed that the majority of participants had blood
glucose levels in the prediabetes range (5.5-7.0 mmol/L), with a higher
proportion of females meeting criteria for diabetes (>7.0 mmol/L). Triglyceride
levels were generally lower among females, whereas males were more likely to

have elevated triglycerides.

The categorisation of baseline characteristics in Table 5.8 was based on
established clinical thresholds and common epidemiological conventions to
support interpretability and comparability. Age, blood pressure, body mass
index, lipid fractions, and glycaemic measures were grouped using clinically
recognised cut-points rather than data-driven thresholds.23%:240 A single set of
HDL cholesterol categories was applied across sexes to ensure consistency and
facilitate direct comparison, with sex-specific differences reflected through
stratified reporting. All categorical distributions are presented as column

percentages within sex, in line with conventional practice.
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Table 5.8 Baseline characteristics of study population by sex

Male (n= 89,645)

Female (n=95,200)

Median n (%) Median n (%)
(Q1-Q3) (Q1-Q3)
Age (years), all 42 (32-52)
18-25 8,146 (9.08) 9,761 (10.25)
25-34 16,235 (18.11) 20,701 (21.75)
35-44 20,053 (22.37) 24,520 (25.76)
45-54 21,347 (23.81) 22,586 (23.72)
55-64 16,721 (18.65) 13,775 (14.47)
>65 7,143 (7.98) 3,857 (4.05)
Family history
Diabetes 41,562 (46.36) 40.583 (42.63)
CVvD 18,030 (20.11) 19,470 (20.45)
No family history 30,053 (33.53) 35,147 (36.92)
Ethnicity
White 65,229 (72.76) 69,405 (72.91)
Asian 6,550 (7.31) 6,836 (7.18)
Black 4,456 (4.97) 3,536 (3.71)
Mixed 582 (0.65) 527 (0.55)
Other 12,828 (14.31) 14,896 (15.65)
Alcohol consumption
Level 0 12,703 (14.17) 6,815 (7.16)
Level 1 73,809 (82.34) 81,172 (85.26)
Level 2 1,140 (1.27) 3,339 (3.50)
Not reported 1,018 (1.14) 837 (0.88)
Missing 975 (1.08) 3,037 (3.20)
Smoking status
Active smoker 20,423 (22.78) 26,277 (27.60)
Ex smoker 19,114 (21.32) 30,477 (32.03)
Non-smoker 50,108 (55.90) 38,446 (40.38)
Deprivation index
IMD 1 15,007 (16.74) 17,715 (18.61)
IMD 2 16,749 (18.68) 18,553 (19.48)
IMD 3 17,133 (19.11) 18,344 (19.27)
IMD 4 19,118 (21.33) 19,253 (20.23)
IMD 5 21,638 (24.14) 21,235 (22.31)
Presence diagnosis
Atrial fibrillation 5,612 (6.26) 4,374 (4.59)
Hyperlipidaemia 15,811 (17.64) 15,944 (16.75)
Hypertension 40,343 (45) 46,885 (49.25)
BMI (kg/m2)
<18.5 17.60 1,233 (1.45) 17.67 527 (0.55)
(16.80-18.10) (17.00—18.13)
18.5-24.9 22.87 20,608 (52.00) 23.30 18,205 (19.13)
(20.13-23.37) (22.00-24.20)
25-29.9 27.37 (26.15- 29,443 (32.84) 27.40 40,224 (42.25)
28.60) (26.20-28.60)
> 30 20.75 (31.88- 38, 361 (42.81) 19.61 36,244 (38.07)
38.22) (31.31-36.20)
HDL (mmol/l)
<1.03 0.95 (0.89-1.00) 7,603 (8.48) 0.92 (0.85-0.99) 24,466 (25.70)
1.03-1.54 1.30 (1.20-1.41) 45,091 (50.30) 1.23 (1.13-1.36) 55,778 (58.60)
>1.55 1.80 (1.66-2.05) 36,951 (41.22) 1.74 (1.62-1.95) 14,956 (15.70)
LDL (mmol/l)
<2.6 2.20 (1.90-2.43) 24,339 (27.15) 2.17 (1.83-2.40) 31,175 (32.75)
2.6-3.3 2.99 (2.80-3.15) 27,091 (30.22) 2.97 (2.80-3.14) 29,208 (30.70)
3.4-3.9 3.60 (3.45-3.74) 20,111 (22.43) 3.60 (345-3.74) 19,285 (20.25)
4.0-4.9 4.27 (4.09-4.52) 15,528 (17.33) 4.27 (4.09-4.52) 13,668 (14.35)
>4.9 5.38 (5.17-5.70) 2,576 (2.87) 5.33 (5.15-5.67) 1,864 (1.95)
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Male (n= 89,645)

Female (n=95,200)

Median n (%) Median n (%)
(Q1-Q3) (Q1-Q3)
SBP (mmHg)
<120 115.13 6,721 (7.50) 115.83 6,415 (6.74)
(110.85-118.25) (111.50-118.56)
120-140 132.75 39,042 (43.55) 132.88 41,120 (43.20)
(128.0-136.62) (128.08-136.67)
> 140 148.75 43,882 (48.95) 148.67 47,665 (50.06)
(144.12-155.00) (144.12-155.00)
DBP (mmHg)
<80 75.35 38,526 (42.97) 75.50 35,418 (37.20)
(71.78-78.00) (71.75-78.00)
80>90 84.44 38,913 (43.41) 84.46 40,623 (42.67)
(82.22-86.93) (82.50-87.29)
> 90 93.22 12,206 (13.62) 94.00 19,159 (20.13)

Triglycerides(mmol/l)

(91.44-96.08)

(91.82-97.30)

<1.7 1.15 (0.90-1.40) 56,243 (32.38) 1.18 (0.92-1.42) 56,243 (59.10)
1.7-2.2 1.92 (1.80-2.06) 16,626 (8.11) 1.93 (1.80-2.06) 16,626 (17.45)
2.3-5.6 2.70 (2.40-2.18) 14,633 (7.92) 2.80 (2.45-3.38) 21,658 (22.75)
>5.6 6.40 (5.95-7.55) 167 (0.09) 6.60 (6.00-7.92) 673 (0.70)
Blood glucose (mmol/l)

<5.4 4.70 (4.50-4.90) 35,003 (39.04) 4.75 (4.53-4.90) 28,466 (29.90)
5.5-7 5.58 (5.27-6.06) 45,479 (50.73) 5.60 (5.30-6.10) 54,043 (56.77)
>7 8.10 (7.40-10.10) 9,163 (10.23)  8.33 (7.45-10.90) 12,700 (12.33)
Total cholesterol (mmol/l)

<5.0 4.51 (4.15-4.80) 32,004 (35.70) 4.40 (3.97-4.72) 46,459 (48.80)
5-5.5 5.27 (5.14-5.40) 18,211 (20.31) 5.25 (5.13-5.40) 18,519 (19,45)
5.6-6 5.75 (5.63-5.89) 16,310 (23.48) 5.75 (5.63-5.89) 14,073 (14.80)
>6 6.52 (6.24-6.96) 23,120 (25.90) 6.48 (6.20-6.90) 16,149 (17.25)

IMD: index of multiple deprivation, BMI: body mass index, HDL/LDL: high/low density lipoprotein, SBP/DBP: systolic/diastolic

blood pressure.

Note: Alcohol consumption level (0: abstinence, non-drinker, 1: moderate drinking < 14 units/week, 2: > 14 units/week), smoking
status (active: >1 cigarette/day, includes e-cigarettes, ex: Stopped >6 months ago, non: Never smoked or <100 lifetime

cigarettes).
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5.8 Discussion and conclusions

Data preparation is a critical part of real-world data research, often accounting
for 50-80% of the analytical workload.?*' This section outlines the key steps
taken to prepare CPRD Aurum data for the cardiometabolic disease (CMD) policy
model, capturing both technical and conceptual aspects. Documenting this
process supports transparency, reproducibility, and methodological rigour. In the
context of growing reliance on real-world evidence and open science practices,
such documentation also contributes to broader efforts in promoting

accountability and openness in health research.?42:243

In addition to the computational demands, this process highlights several
challenges in preparing CPRD Aurum data. The relational database structure
requires careful merging, especially for time-to-event analyses, so that the data
accurately captures the trajectory and hierarchy of events. Additionally, Aurum
uses different clinical coding systems compared to CPRD GOLD; therefore, using
validated code lists is strongly recommended. As mentioned earlier, there is also
a high likelihood of implausible data entries, so double-checking data quality can

be beneficial before proceeding with further data manipulation.

This data preparation documentation addresses key challenges in large-scale
data analysis through several practical advantages. First, adopting the Parquet
file format enhances processing speed and scalability, particularly for high-
volume datasets. Parquet files in R demonstrate superior computational
efficiency and reduced storage demands compared to traditional formats such as
SAS, especially when managing large health records.??32# Second, linking and
extracting data from both primary and secondary care sources enables a more
complete representation of disease trajectories and cohort development, also by
building new R functions replication is possible when preparing the analysis-
ready dataset, particularly for multi-state modelling. Third, applying established
updated R functions available for cleaning covariates and biomarkers ensures a
reproducible and streamlined workflow, eliminating the need for manual

adjustments. 222,226
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It is important to recognise that data preparation methods can vary significantly

depending on research objectives, prior expertise, and the availability of data
infrastructure. Furthermore, as computational and data management techniques
continue to evolve through advancements in automation, function development,
and other innovations, thus there is considerable potential to refine and improve
the efficiency of data preparation processes. While the methods described here
were tailored to the specific needs of this study, alternative approaches may
offer greater efficiency, particularly when handling large-scale and complex

datasets.



109

Chapter 6 Developing a Cardiometabolic

Disease Policy Model

6.1 Introduction

Chapter 6 presents the development of a Cardiometabolic Disease (CMD) Policy
Model to support further long-term epidemiological analysis and health economic
analysis. Building on the conceptual framework outlined in Chapter 4 and the
data sources (Clinical Practice Research Datalink (CPRD) Aurum and linked
datasets) described in Chapter 5, this chapter applies time-to-event multi-state

survival analyses to model transitions between cardiometabolic health states.

Sections 6.2 and 6.3 outline the statistical and modelling principles underpinning
the CMD Policy Model, including the rationale for using survival analysis, the
structure and logic of the multi-state framework, and the time-dependency
assumptions that govern disease progression. The CMD Policy Model captures
progression across seven health states from disease-free to type 2 diabetes
mellitus (T2DM), myocardial infarction (Ml), stroke, and death, via 13 clinically

defined transitions.

To reflect the complexity of disease pathways and enable extrapolation, a range
of survival modelling approaches is explored, including non-parametric (e.g.,
Kaplan-Meier), semi-parametric (e.g., Cox regression), standard

parametric (e.g., exponential, Weibull), and flexible parametric (e.g., Royston-
Parmar spline) models. These methods are embedded within a multi-state
framework and extended using a semi-Markov structure. The model results and

the final CMD Policy Model are presented in sections 6.4 and 6.5, respectively.
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6.2 Overview of modelling strategy

6.2.1 Rationale for survival analysis

Definition

Survival data has been widely applied across various disciplines, particularly in
medicine and public health. Also known as time-to-event (TTE) data, it provides
information not only about whether an event of interest (e.g., death) has

occurred, but also on how the ‘hazard’ of when it occurs changes over time.

Survival analysis is designed to handle TTE data, particularly in situations where
traditional regression methods (e.g., logistic or linear regression) are inadequate
due to censoring or the time-dependent nature of outcomes." 24246 While
conventional regression methods can assess the relationship between risk factors
and the occurrence of an event, they are not well-suited for scenarios where
some subjects do not experience the event within the study period.?* Survival
analysis addresses this limitation by properly accounting for censored
observations and enabling estimation of the timing and risk of events over

Typically, survival analyses have several objectives: 1) estimate, interpret, or
compare survival and/hazard functions over time 2) identify and assess predictor
(explanatory variables) of survival time (in proportional hazard assumptions) 3)
handle censored data appropriately. These will be briefly discussed in following

sections.

Censoring

A fundamental concept in survival analysis is censoring, which occurs when the
exact time of the event of interest is not observed for some individuals. This
typically arises when participants do not experience the event within the study's
observation period. In such cases, it is known that the event has not yet
occurred, but it remains uncertain if or when it will happen in the future.?4
Survival data analysis becomes methodologically challenging due to the variation

in follow-up times across participants and the presence of censored
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observations, which must be properly accounted for to avoid biased estimates of

event timing and risk.

There are several reasons why censoring occurs in survival analysis. First, the
study may conclude before all participants experience the event of interest,
leaving their full survival times unknown. Second, some participants may drop
out or be lost to follow-up, resulting in incomplete outcome data. Third,
participants may withdraw consent, relocate, or experience a different event
that prevents further data collection.?#%2>! Additionally, individuals who have
not experienced the event of interest by the end of the follow-up period are
treated as right-censored, as their event time remains unknown but may occur

in the future.2%?

Censoring can be categorised into three main types: right censoring, left
censoring, and interval censoring.?® Right censoring occurs when a subject'’s
follow-up ends before they experience the event of interest (e.g., death,
disease onset), this is by far the most common of censoring. The situation when
a study terminates before all participants have died, those who are still alive at
the end of the study are considered right censored.?>? For instance, if a
participant(s) in a 10-year cohort study does not develop diabetes by the end of
the follow-up period. The study ends in 2030, and some individuals remain
diabetes-free until then. Since we do not know if they develop diabetes after
2030, their data is right censored in 2030.

Interval censoring arises when the exact time of the event is unknown, but it is
known to have occurred within a specific time range.2* For example, consider
the case of atrial fibrillation (AF): older adults might undergo routine
electrocardiograms (ECGs) annually to monitor heart health, and then a patient
who had a normal ECG in January 2020, missed their 2021 follow-up, and was
then found to have AF in January 2022. Since the patient was known to be free
of AF in 2020 but had a confirmed diagnosis by 2022, the actual onset occurred

at some unknown point within that two-year window.

The less common censoring, left censoring, happens when the event of interest

has occurred before the study begins, but the exact timing is unknown..?®® This
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means that the event time is only known to be less than a certain value, rather

than observed precisely.?? For example, if a participant is enrolled in a study
while already hospitalised with Covid-19, but the exact date of infection is
unknown, the data is considered left-censored. In this case, the Covid-19
infection clearly occurred before study entry, yet the precise timing remains
unobserved. Dey et al (2020)2>3 illustrated clearly these different types of

censoring (the illustration is reproduced in Figure 6.1)

Beginning of Study End of Study

Unknown

F—=—1 Interval Censored
=P Right
Censored

@ Right Censored

Left
Censored

Not Censored

\

Unknown Period ———— Alive *

Dead @

Known Period

Figure 6.1 Illustration of three types of censoring

From those examples if the participant was censored simply because the study
ended, it means the censoring is unrelated to the underlying risk of the events
which is defined as ‘non-informative’ censoring.?4249 However, there is also a
possible condition where participants with worsening health are more likely to
drop out, and that health decline is associated with higher event risk, then their
censoring can be potentially ‘informative’, which can bias survival estimates if

not properly handled.?*°

Finally, censoring is an unavoidable and natural feature of survival data in
longitudinal research. Rather than excluding these observations, survival analysis
methods are designed to incorporate them appropriately to maintain the validity

and power of the study.
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Two fundamental and related concepts in survival analysis are: survival function

denoted by S(t) as the probability of individual surviving to at least a certain

time, and Hazard function h(t) describes the instantaneous risk of the event

occurring at time t, given that the individual has survived up to that time.8%.246

Mathematically, S(t) is expressed as:

St)=Pr(T>1t)

(Equation 6.1)

T is a non-negative random variable representing the time until the occurrence of

the event (T = 0). At the beginning of observation (t = 0), everyone is alive

S(0) = 1. As time progresses, S(t), when t=co decreases because some people

will experience and event, so S(t) is always non-increasing and will fall to 0

when eventually nobody survives the event.

In theory, the survival S(t) is a smooth curve, but when we estimate with

data/models it often looks like step function (Figure 6.2). It means that the

event of interest occurs in specific discrete time points, not continuously. It

means S(t) ‘drops’ when an event occurs creating a step pattern.'®

S(t)

Theoretical S(1)

Y

S(t)

Practical S(t)

Y

t

Figure 6.2 Theoretical versus practical survival curve

Study's end
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In contrast to the survivor function S(t), the hazard function h(t) focuses on the
risk that the event will occur. This function describes the instantaneous rate at
which an event (such as failure, death, or relapse) is expected to occur at time

t, given that the individual has survived up to that time.'8%.246

To clarify the often challenging concept of the hazard function, Kleinbaum
(2012)'® uses the analogy of a car’s speedometer. When a driver sees a reading
of 60 mph (miles per hour), it does not mean that the driver will travel 60 miles
in the next hour. Rather, it shows the instantaneous speed at that specific
moment. Driver might speed up, slow down, or even stop altogether in the next
hour, but at the point the driver glances at the gauge, 60 mph is the current

speed.

In the same way, the hazard function provides an instantaneous rate at which an
event might occur at time t, assuming the individual has survived up to that
time. It does not predict whether the event will occur at that moment, just as
the speedometer does not predict how far the car will travel. Instead, it gives
the rate at which the event is likely to happen if current conditions continue.

Mathematically, h(t) is represented as follows.

PI‘(t<TSt+dt|T>t)_f(t)
dt—0 dt _S(t)

(Equation 6.2)

This equation illustrates that as the time interval approaches zero (}%mo, the

instantaneous rate is obtained, given that the individual has survived up to that
point. It is important to note that the hazard function is not a ‘probability’, as it
involves dividing a probability by a time interval, resulting in a rate rather than
a probability value between 0 and 1.24 Because it is conditional on survival up to

time t, the hazard function is often referred to as the conditional failure rate.
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This can also be rewritten in terms of a probability density function f(t) and the

survival function S(t), and can use derivative of the survivor function as?#:

f(@®) _ dIn(S@)
St) da(t)

h(t) =

(Equation 6.3)

The following formula indicates the relationship between S(t), h(t), and H(t),
with H(t) being the cumulative hazard, representing the accumulated risk up to

time t.

H(t) = —fth(u) du
0

din(S
B = — r; Et)(t))
H(t) = —In (5(t))
S(t) = eH®

(Equation 6.4)

In summary, the equation above shows that the survival function decreases
exponentially as the cumulative hazard increases. When cumulative hazard is
low, the survival probability remains high; as cumulative hazard increase over

time, survival drops more steeply.

While the formula above may not be essential for routine data analysis since the
statistical software can easily compute transformations between functions—it is
important to understand the conceptual relationship between them, as they are

mathematically linked.

6.2.2 Multi-state framework and its suitability for CMD Policy Model

Based on the explanation in previous sub-sections, standard survival models are
effective for analysing time to a single event (e.g., death). However, they are
often inadequate for chronic and progressive conditions like cardiometabolic

disease (CMD). CMD typically involves multiple intermediate events, such as the
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development of type 2 diabetes mellitus (T2DM), myocardial infarction (Ml), and

stroke, before reaching a death event. Standard survival models do not account
for the order, timing, or recurrence of such events, nor can they model
transitions between intermediate disease states. In summary, standard survival
modelling is too restrictive to analyse overall complex CMD processes (Chapter
4).

In contrast, multi-state models (MSMs) provide a more flexible and clinically
realistic framework by allowing individuals to transition between multiple
defined health states over time. This enables the estimation of transition-
specific hazards and accommodates time-dependent covariates, making them
more appropriate for capturing the complexity of CMD progression. 234256
Traditional survival analysis, can be viewed as a simple form of a MSM, for

example, modelling the transition from being ‘alive to dead’ only (Figure 6.3a).

Before delving deeper, it is important to clarify that MSMs serve as an umbrella
framework in survival analysis, capable of representing a wide range of disease
or life-course processes through transitions between well-defined states. These
states may include intermediate stages (such as disease onset or recovery) and
absorbing states (such as death). This clarification helps prevent confusion,
particularly around the concept of competing risks (will be discussed later).
While competing risks can appear conceptually similar to multi-state models,
they are best understood as a special case within the broader multi-state
framework. Although their definitions and applications may sometimes overlap,

they differ in both structure and analytical scope.?>7-260

Therneau et al. (2024)%¢" presented a series of diagrams illustrating MSMs (Figure
6.3). Each diagram offers a different perspective depending on the structure of

the available dataset and the specific research questions being addressed.
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Figure 6.3 Four multi-state models

Figure 6.3 (a) depicts the simplest survival model, where an individual begins in
the "alive" state and transitions to the "dead" state; this reflects the traditional
survival analysis framework. Figure 6.3 (b) illustrating ordered, repeated, or
progressive events, such as stages of disease or increasing severity, with state 0
representing study entry and subsequent states indicating sequential transitions.
Figure 6.3 (c) represents a typical competing risks scenario, in which an
individual starts in a single initial state (e.g., "alive") and may transition to one
of several mutually exclusive terminal states (e.g., different causes of death),
with no further transitions possible. Lastly, Figure 6.3 (d) presents the well-
known illness-death model, characterised by transitions between "health” and
"“illness”, allowing for recovery or relapse, before reaching the absorbing state of
"death.” This model is particularly relevant in the study of chronic diseases and

long-term prognoses.

Understanding the framework of multi-state models (MSMs) allows for diverse
perspectives and definitions in both estimation and modelling. MSMs provide a
flexible approach to estimating various measures of interest, such as the
probability of being in a specific state (or set of states) over time, the likelihood

of transitioning between states, the expected duration spent in a particular
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state, the probability of ever entering a given state, and transition-specific

hazard rates or hazard ratios.

A notable key feature within this MSM framework is the ability to account for
competing risks. Competing risks commonly arise in clinical studies using time-
to-event (TTE) data when multiple potential outcomes can occur, and the
occurrence of one event precludes the occurrence of others. For example, in the
context of cardiovascular disease (CVD), a patient may die due to stroke,

myocardial infarction (M), or another cause.

A paper by Putter et al. (2007)%¢° outlines several scenarios involving competing
risks. The classical competing risks framework, as illustrated in Figure 6.7 (c),
describes situations where multiple mutually exclusive events can occur, and the
occurrence of one precludes the others. Another important scenario is

the illness-death model, in this setting, an individual may develop an illness
(e.g., diabetes) and subsequently die. Death competes with illness when
analysing ‘time to illness’, since death may occur before the illness develops.
However, illness does not compete with death, as death can still occur

afterward. This asymmetry is referred to as "semi-competing. 260

Putter et al. (2007)%%° also describe scenarios where a non-fatal event is the
primary outcome of interest and death acts as a competing risk. The other
possible scenario, for example death may be considered a competing event when
the event of interest is hospitalisation. These examples highlight that competing
risks either fully prevent the occurrence of the event of interest or

simply preclude it from occurring first, which is crucial in selecting an

appropriate modelling approach.2°8:260

Several foundational studies across various disease areas have demonstrated that
ignoring competing risks can significantly distort both the estimation of survival
probabilities and the interpretation of covariate effects.?6%266 Those emphasised
that relying on Kaplan-Meier estimates and standard Cox models (within a simple
alive-dead framework) can lead to inflated survival probabilities. It tends to

overestimate cumulative incidence in long-term studies because they treat
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competing events as censored, thus assuming individuals remain at risk

indefinitely for the event of interest.

The consequences of neglecting competing risks goes beyond statistical
inaccuracy; they carry direct clinical implications. When treatment efficacy is
evaluated without considering competing risks, researchers or clinicians may be
misled about patients’ true survival prognosis.237,259,260,267,.268 Hayving awareness
about the competing risk scenario then can be helpful to decide which statistical
model or scenario aligns with study objectives. The statistical approach to

handle this condition will be presented in the following section.

6.2.3 State-transition model structure

The state-transition structure of the CMD Policy Model comprising seven disease
states and thirteen clinically plausible transitions was first introduced in Chapter
4 (Figure 4.4). That conceptual model provides the foundation for the statistical

multi-state modelling presented in this chapter.

Each of the thirteen transitions is treated as a distinct time-to-event (TTE)
process and was analysed using appropriate survival modelling approaches.
These methods enable the estimation of transition-specific hazards, the
inclusion of relevant covariates, time-dependent effects, and support for

extrapolation beyond the observed follow-up period.

For clarity, the full state-transition structure is recalled from Chapter 4, along
with corresponding transition labels used in subsequent sections, and is
summarised in Figure 6.4. The labelling here serves to map transition

movements and to inform subsequent statistical analyses.
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Figure 6.4 State transition model (labelled)

Note: T1 = "Disease-free to T2DM", T2 = "Disease-free to MI", T3 = "Disease-free
to Stroke", T4 = "Disease-free to Death",T5 = "T2DM to MI", T6 = "T2DM to Stroke",
T7 = "T2DM to Death”, T8 = "MI to Post-MI", T9= "MI to Death”, T10 = "Post-MI to
Death”, T11 = "Stroke to Post-Stroke", T12 = "Stroke to Death”, T13 = "Post-stroke
to Death”

The survival framework outlined here sets the foundation for modelling time-to-
event outcomes across multiple disease states. This approach is extended
through a multi-state structure to reflect the complexity and progression of
cardiometabolic disease. The implementation depends on how transition risks
are assumed to evolve over time, particularly in relation to Markov versus semi-
Markov assumptions, which have been justified in the conceptual model (Chapter
4). The rationale and statistical approaches for survival analysis and Markov

assumptions are detailed in Section 6.3.
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6.3 Statistical method for multi-state survival analysis model

6.3.1 Non-parametric model

Kaplan-Meier estimator

The Kaplan-Meier (KM) is a non-parametric technique used to estimate the
survival function when the time to an event varies across individuals. 24,269
Introduced in a 1958 paper by Edward L. Kaplan and Paul Meier, this method
provided a practical solution for handling censored data.?’® The KM estimator,
also known as the ‘product-limit’ method has since become the most common

technique used for survival analysis.?”’

The central idea of KM is that time intervals are not predetermined but are
instead based on the actual occurrence of events. This allows for a stepwise
construction of survival curve, with the probability of survival recalculated each
event time and the curve remaining constant between events.?’? Then the
estimator adjusts for censoring by appropriately modifying the number of
individuals at risk at each time point. For example, the primary endpoint over 1
year period of a cohort study is stroke occurrence, if individuals experience
more than one non-fatal stroke (after 5 months, and after 10 months), the KM
only include the first occurrence of stroke, which is at 5 months. However, does
not accommodate multiple or recurrent events unless extended models are

applied.

Under the assumption that events happen independently, the overall survival
probability at any time point can be estimated by multiplying the conditional

probabilities of surviving each interval. Specifically, the survival probability at

time t;, denoted 5'(ti) is derived from the survival probability at the previous

event time f(ti_l), the number of individuals at risk just before time t;,

(denoted n;), and the number of events occurring at that time (d;). The KM

estimator uses the formula?’':
) ) d,
St =St (1-1)
n;

(Equation 6.5)
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with S(0) = 1 as the starting condition. Between observed event times, the
survival probability remains unchanged, resulting in a characteristic stepwise
curve. This method ensures that each participant contributes survival
information up to the point of event or censoring. In the absence of censoring,
the survival estimate simplifies to the proportion of individuals who remain

event-free at each time point.

One of the strengths of the KM method is that it does not require assumptions
about the underlying survival time distribution.24>-26%:270 This makes KM flexible
for analysing data where distributional assumptions may not hold. Also, the KM
handles censored data efficiently by allowing the inclusion of individuals who are
lost to follow up or have not yet experienced the event by the end of study.?¢®
The generation of KM survival curves provide a visualisation of survival
probability over time and is useful for estimating metrics such as median

survival.2”2

Figure 6.5 illustrates the example of a hypothetical KM survival curve (with
confidence interval) between treatment and control group over specific time. It
illustrates that the treatment group has higher survival probability compared to
a control group. For example, 60% of individuals are still event-free at the 10

months in treatment group, while only 45% event-free individuals in control

group.
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Figure 6.5 Kaplan-Meier survival probability curve

The KM approach has several limitations. Akey limitation is its inability to adjust
for covariates, which may limit studies aiming to measure causal effects or

account for prognostic differences between groups.?7°

Furthermore, KM assumes non-informative censoring, which may not always be
realistic. If censoring is related to the probability of the event, survival
estimates may be biased.?¢%273 KM also assumes that there are no competing
risks, meaning that, meaning that the event of interest is the only possible
outcome.'® If another event, such as death from an unrelated cause, prevents
the main event from happening, the KM estimates may not reflect the true
survival experience.?’# Lastly, is that KM curves become less reliable with small
sample sizes or heavy censoring, as the number of individuals at risk decreases

over time.?272
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Log-rank test

Often paired with KM, the Log-rank test is a non-parametric test that provides a
formal statistical comparison between groups, by comparing the observed and
expected number of events in each group at each time point under the null
hypothesis. If the observed differences are large enough, it is indicating a

statistically significant difference in survival. 18%:243,275

At each time an event occurs the method calculates the observed number of
events in each group and compares it to the expected number under the null
hypothesis of no group difference. Conceptually, these expected values are
summed over all event times to obtain the total expected number of events for
each group, denoted as E;. The actual number of events observed in each group
is called 0;. The log-rank test then compares the observed (0;) and expected
(E;) values using a test statistic that follows a chi-square (X?) distribution. This
allows calculation of a p-value to determine whether the differences in survival

across the groups are statistically significant.#

g

¥2 = Z(Oi_Ei )?
E;

i=1

(Equation 6.6)

If only two groups are compared, the Log-rank test is assessing the null

hypothesis, whether the ratio of the hazard rates in the two group (hazard ratio)
is equal to 1. The ratio Oi/E. represents the estimated relative (or excess)
1

hazard in group i. A hazard ratio (HR) of 1 indicates no difference in survival
between the groups, while values above or below 1 suggest higher or lower risk,

respectively.

_0/E

HR =
0,/E;

(Equation 6.7)
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The Log-rank has several important limitations, despite its non-parametric

strengths. One major drawback is that it does not adjust for covariates, making
it less suitable when multiple risk factors need to be considered
simultaneously'®:276.277 Additionally, because this test is based on rankings rather
than raw data, it is also less sensitive to extreme values that might otherwise

influence the analysis.?’8

While the Log-rank test is the most commonly used non-parametric method for
comparing survival curves, several alternative non-parametric tests exist. These
include the Wilcoxon (Breslow) test?’8, which places greater emphasis on early
survival differences; the Fleming-Harrington test?’°, which allows for flexible,
weight-based comparisons across the survival curve; and the Tarone-Ware test,
which offers a balanced weighting approach between early and late events.2’¢
However, this thesis limits its scope to the use of the KM estimator in
conjunction with the log-rank test, as it represents the most widely accepted

and applied method in non-parametric survival analysis.

Nelson-Aalen estimator

Another non-parametric method is the Nelson-Aalen (NA) estimator, a method
used to estimate the cumulative hazard function H(t) in survival analysis.?8 It is
especially helpful when the focus is on modelling hazard rates over time rather

than survival probabilities, as explained in the previous section.

A() =Z%

tis t

(Equation 6.8)

Where t; represents each distinct time an event occurs, d; is the number of
observed events (e.g., deaths) at time t;, and n; is the number of individuals at

risk just before time t;.

This additive approach builds up the cumulative hazard over time by summing
small risk contributions at each event time. It is especially helpful in visualising

and comparing hazard patterns across different groups or periods. While it does
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not provide a formal statistical test for group comparisons like the Log-rank test,

it plays an important descriptive role and can also serve as a basis for estimating

survival through the relationship $(¢) = e #®
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Figure 6.6 Nelson-Aalen cumulative hazard curve

Figure 6.6 (with confidence interval) indicates that the treatment group had a
lower cumulative hazard over time compared to the control group, indicating
the treatment may be protective or effective in reducing the risk of the event
(i.e., death). The control group experienced more events which generated high
cumulative hazard. Compared to KM, the NA describes the accumulation of risk
rather than individual survival probabilities. When the cumulative hazard
exceeds 1 (for example, reaching 2), it indicates that, on average, each
individual has accumulated “two units” of risk. This does not directly represent
the proportion of people who experienced the event. Thus, this non-linear

outcome is more challenging to interpret and less intuitive. To interpret them
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meaningfully, it is often necessary to transform them back to survival

probability, or pair them with KM plot.

Sharing the same non-parametric, univariable, and descriptive nature with KM,
the NA estimator also has similar key limitations. The method cannot account for
multiple risk factors or perform covariate-adjusted analysis. 89274278 To address
this, more advanced methods such as semi-parametric models like the Cox

proportional hazards model are required.??

6.3.2 Semi-parametric model

Cox Model: preliminaries

In health and medical research, there are many situations where multiple
variables (known as covariates) can influence an individual’s prognosis.'8%:27> For
example, consider a study comparing two groups (treatment versus control),
individuals may have a condition such as with and without family history of
diabetes, as well as varying ages. Any observed differences in survival outcomes
beyond treatment effect itself could be due to older age, family history, or
combination of both. Therefore, when examining the effect of a particular
factor on survival, it’s important to adjust for other variables that might also
impact the outcome. Such adjustments can improve the precision of estimates,

particularly when assessing the effect of a treatment or exposure.

In 1972, David Cox presented his paper entitled “Regression Models and Life-
Tables” which presented a regression method for analysing survival data.' The
purpose of the method is to investigate several variables on survival
simultaneously, known as proportional hazard (PH) regression analysis. A
common way of referring to this well recognised and most applied survival
analysis method is the ‘Cox model’. In this thesis, the general term ‘Cox model’
will be used to represent term such as Cox regression and Cox PH model, since

these refer to the same underlying method.

The Cox model is categorised as semi-parametric, simply because it has two
parts: parametric and non-parametric.248:252,.282 A parametric part is the model
assumes a specific form of how covariates affect the hazard (through linear

combination), just like in regular regression.
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The Cox model does not require a specified functional form for the baseline

hazard, and it does not estimate it directly. Instead, the model focuses on
estimating the relative effects of covariates on the hazard. No assumptions are
made about the shape of the baseline hazard, it can increase, decrease, or vary

in any form over time.

Assumptions and interpretations of Cox model
The Cox model is represented by the conditional hazard function h(t|X). In this

case, this h(t|X) can be interpreted as the risk of having an event at time t'%:

h(t|X) = ho(t).exp (B X1 + B, X; + . + 8 Xp)

h(t|X) = ho(t). exp (B'X)

(Equation 6.9)

Where t is the survival time, h, is the baseline hazard function, representing the
hazard when all covariates equal to zero. This is as the reminder that the

baseline hazard can change over time. X;,X,,..X,, are covariates and the

By, B,,.. B, are the coefficients that measure the impact of the covariates on

hazard. Thus, the exp (87X) is known as hazard ratio (HR) for covariate X;,
indicating the relative change in hazard for a one-unit increase in that variable.

For interpretation®:

¢ HR =1 indicates no effect on the hazard.
e HR > 1 suggests an increased hazard (event occurs sooner).

e HR < 1 indicates a decreased hazard (delayed event).

In other words, a HR greater than 1 means that as the value of a covariate
increases, the event (e.g., death, disease) is more likely to happen sooner.

Conversely, a HR less than 1 indicates a protective effect, delaying the event.
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To understand assumptions on proportionality, consider the HR between two

individuals with X; and X, :

_ h(t1Xy) _ ho(t)-exp (B'Xy) _

MR = REX) ™ ho(0)exp (FXy)

exp (B'(X1 — X2))

(Equation 6.10)

The fact that time t disappears from the HR expression is exactly what the
proportional hazard refers to.?°? It means that the hazard ratio does not change
over time. The effect of the covariates (that represent through HR) is constant

throughout the follow up-period.

A key strength of the Cox model is that it does not require the specification of
the functional form of the baseline hazard. That is, the shape of h(t) is left
unspecified and estimated non-parametrically from the data.'90:252.283 This
characteristic gives the Cox model its ‘semi-parametric’ nature which makes the
model very flexible. A simple illustration of this semi-parametric model is for
example when studying how smoking and blood pressure (BP) affect myocardial
infarction (MI). The Cox model will estimate how smoking and BP change the
relative risk, but it would not assume how the baseline risk of MI changes over

time.

Despite its flexibility, the Cox proportional hazards model relies on several key
assumptions that must be satisfied to ensure valid and interpretable results. The
most fundamental is the proportional hazards assumption'8%:252  as stated above.
If this assumption is violated, the estimated HRs may be biased, and the model

may not accurately reflect the relationship between covariates and the event
risk.19°’278

Another important assumption is the independence of survival times across
individuals, meaning that the occurrence of an event in one subject does not
influence the risk in another. This assumption can be problematic in clustered or

correlated data, such as patients within the same hospital or community, and
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may require advanced modelling approaches like frailty models.28* Additionally,

the model assumes a linear relationship between covariates and the log-hazard
function; non-linearity can lead to misestimation of effects and may be

addressed using transformations or spline functions.?®

Finally, the model assumes non-informative censoring, if censoring is
informative, specialised methods or sensitivity analyses may be required. 286287
Careful evaluation of these assumptions through residual diagnostics and model
checking is essential to ensure the robustness and reliability of the Cox model’s

findings.

Other semi-parametric method for handling competing risk

In the presence of competing risks, standard Cox regression (if alive to death
state) can be extended using two main semi-parametric approaches: the cause-
specific hazard (CSH) model and the sub-distribution hazard model, also known
as the Fine-Gray (FG) model.2¢7:288 |t estimates the effect of covariates on

the instantaneous risk of experiencing a specific type of event, while treating

other competing events as censored.?8%:2%0

In the context of MSM, each transition between defined health states is
modelled separately, and these transition-specific hazards align with CSH,
assuming the transitions from a given state are mutually exclusive.?® That said,
it is important to be clear about the framing. Competing risk models typically
begin from a single starting state and consider multiple mutually exclusive end
events, such as different causes of death. In contrast, multi-state models go
further by allowing for multiple intermediate and absorbing states, which means

they can capture sequential events and more complex pathways.2%!

The sub distribution hazard model, commonly known as the Fine-Gray (FG)
model, was introduced in 1999 to directly model the cumulative incidence
function (CIF) for a specific event, while appropriately accounting for the
presence of competing risks.28 Unlike cause-specific hazard models, the FG
model does not censor individuals who experience competing events. Instead, it
includes them in the risk set using adjusted weighting, which allows for a more

accurate estimation of event probabilities over time.2>%.267
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However, for long-term analysis, both CSH and FG model have

limitations.267,268,.289.291 Because it is a semi-parametric model and does not
impose a parametric form on the baseline hazard, it cannot easily

extrapolate beyond the observed follow-up period. Like the standard Cox model,
it relies heavily on the observed data, and the cumulative incidence estimates

are constrained to the time frame of the available follow-up.?%

Since this thesis primarily focuses on developing a model capable of projecting
long-term outcomes and supporting extrapolation, the discussion of competing
risks methods is limited to a conceptual overview. Ultimately, the CMD Policy
Model is designed to prioritise flexibility in extrapolation through a multi-state
framework. While Cox models within the multi-state structure are still used to
assess covariate effects, the emphasis of the model lies in capturing disease

progression over time rather than modelling mutually exclusive terminal events.

Model diagnostics

Schoenfeld residuals are used to evaluate whether the proportional hazard
assumption holds by examining the relationship between residuals and time.
Specifically, these residuals assess whether the effect of a covariate changes
over time by testing for a correlation between the residuals and event time.?%3 A
statistically significant correlation suggests a potential violation of the

proportional hazards’ assumption for that covariate.2%4

Schoenfeld residuals are calculated for each covariate and for each individual
who experiences the event of interest (i.e., uncensored observations). Each
residual represents the difference between the observed value of the covariate
for an individual who had the event and the expected value of that

covariate across all individuals who were at risk at the time of the event. If the
proportional hazards assumption holds, these residuals should be randomly
scattered with no systematic pattern over time. Graphical inspection and formal
testing can help identify whether any covariate violates this key

assumption,293,2%

In addition, Martingale residuals are primarily used to assess whether

the functional form of continuous covariates is appropriately specified in the
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model.?°” The Cox model assumes that the effect of each covariate is linearly

related to the log-hazard.' To check this assumption, Martingale residuals are
plotted against continuous covariates. If the relationship is truly linear, the plot
should show no systematic pattern, the points would appear randomly scattered.
However, if the plot shows a curved or non-random trend, this may indicate non-

linearity in the covariate’s effect.?%

Martingale residuals are defined for all individuals, regardless of whether they
experienced the event or were censored, and they typically take values
between -~ and 1.2%” The residual tends to be closer to 1 for individuals who
experienced the event and much smaller (or negative) for censored

observations.2%

Deviance residuals are used to identify outliers or influential observations that
may disproportionately affect the model’s estimates, especially for identifying
data points that the model fits poorly. Large positive or negative deviance
residuals suggest the observed survival time deviates substantially from what the
model predicts. Such observations could be outliers or influential cases where
data points with high leverage that may shift the estimated coefficients
significantly if removed. Plotting deviance residuals against fitted values or
covariates can reveal which individuals may be problematic and deserve further

investigation.

Another test to assess model adequacy is Cox-Snell residual.?®® For each
individual, the residual is defined as the estimated cumulative hazard at their
observed event or censoring time. Under the assumption that the model is
correctly specified, these residuals should follow a unit exponential
distribution.?%? In practice, the model is assessed by plotting cumulative hazard
function of the Cox-Snell residuals, typically using the NA estimator—against the
residual values themselves. A well-fitting model will produce a plot that closely
aligns with the 45-degree line, reflecting agreement between the observed data

and the model’s hazard predictions.3%
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Although the Cox model is semi-parametric, it allows for the computation of

cumulative hazards through methods such as Breslow’s estimator.3°! Unlike
diagnostic tools such as Schoenfeld or Martingale residuals, which target specific
assumptions (e.g., proportional hazards or covariate functional form), Cox-Snell
residuals provide a more general assessment of model fit.?*® Their use adds an
important layer of validation to ensure that the model offers a reasonable

representation of the underlying survival process.

6.3.3 Standard parametric model

In parametric survival models, all parts of the model are fully specified, both the
hazard function and the covariates’ effect. Parametric survival analysis assumes
that survival times follow specific statistical distributions (e.g., Log-normal,
Exponential, Weibull). These assumptions define the shape of hazard and
survival curves using mathematical equations. The general form of a parametric

survival model (proportional hazards) is'®:

h(t|X) = ho(t; 8).exp(B'X)
(Equation 6.11)

which is equivalent as:
S(E|X) = Sy (t; 0)*P('X)

(Equation 6.12)

Similar definition of survival formula, the h,(t; 8) is the parametrically specified
baseline hazard function with parameter(s) 8, and S,(t; 8) is the corresponding
baseline survival function. As it fully determines the hazard shape and survival
functions, the choice of distribution for survival times is important. Different
distributions make distinct assumptions about how the hazard rate ‘behaves’
over time. Choosing an appropriate distribution depends on the nature of the

event process being modelled and the shape suggested by the data.
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In addition to the PH formulation, parametric survival models can also be

expressed using the accelerated failure time (AFT) formulation. The AFT model
expresses the effect of covariates as a direct acceleration (or deceleration) of

the survival time:

log(T)=pu+pX+e¢

(Equation 6.13)

where T is the survival time, p is the intercept term, S*X represents the linear
predictor, and € is a random error term following a specific distribution. In this
formulation, covariates act to stretch or shrink the time scale, rather than

modifying the hazard multiplicatively as in PH models.

The two modelling approaches, proportional hazard (PH) and accelerated failure
time (AFT) models represent two different ways of understanding how covariates
affect survival time.3%2 In PH model, the idea is that covariates affect the risk of
an event happening at any moment in time.?> For example, there are two
patients: one who smokes and one who does not. If smoking doubles the risk of
death, this doubling stays the same over time, at every day, every month, and
every year, the smoker’s risk is always twice as high. Covariates in PH models

multiply the hazard (the risk) but do not change how the risk evolves over time.

In contrast, an AFT model is formulated differently (see equation 6.12). Instead
of focusing on the risk at each moment, it focuses on the entire survival time.
Covariate effects in AFT models stretch or compress the survival timeline.30%303
For example, a treatment might double the survival time compared to no
treatment, meaning patients live twice as long, but the shape of the survival

curve stays the same.

Table 6.1 summarises the common parametric distributions used in survival
analysis, presenting their mathematical forms, parameterisations, and typical

applications in research. These models can be easily estimated using statistical
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software, which also enables graphical visualisation (curves) of their survival and

hazard functions.

Regarding how to specify these distributions, in simple terms, the main
differences between these distributions lie in how the underlying hazard over
time are modelled. Some distributions assume a constant risk, while others allow
the risk to increase, decrease, or vary in more complex ways.3%43% |n addition to
the primary regression parameters, many distributions include ancillary
parameters that govern the shape, variability, or higher-order moments of the
distribution.3%4 These ancillary parameters critically influence the hazard
function, allowing it to assume a variety of forms, such as constant, monotonic,

or hump-shaped, depending on the distribution chosen'®® (Figure 6.7).

6.3.4 Flexible parametric model

Another alternative in parametric survival modelling is the flexible parametric
survival model (FPM), which was popularised by Royston and Parmar and is often
referred to as the Royston-Parmar (RP) model.3%-307 Methodologically, this
approach models the baseline hazard using smooth functions, typically restricted
cubic splines (also known as natural splines) applied to the log cumulative

hazard.308

This spline-based framework enables the model to flexibly capture complex
hazard patterns, allowing for smooth hazard function estimation without the
need to assume a specific parametric distribution. As a result, FPMs combine the
interpretability and structure of traditional parametric models with the

adaptability to fit non-linear and non-monotonic hazard shapes. 30

Unlike standard parametric models that impose a fixed functional form (e.g.,
always increasing or decreasing hazard), flexible parametric models allow the
data to guide the shape of the hazard (Equation 6.14), making them especially
valuable when the true hazard function is unknown or varies over time.3% These

models let the data “speak” about the hazard shape.
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logH(t) =n(t) = yo + v15:(logt) + - + yis(logt) +x"B

(Equation 6.14)

Where H(t) is cumulative hazard, s, is spline functions of log-time, x= covariates

and p is coefficients for covariates.

This flexibility, however, relies on careful specification of the spline structure
especially the number and placement of knots, which define where the spline
can bend to capture changes in the hazard function. The choice of knots is
critical: too few can lead to underfitting and missed hazard features, while too
many can result in overfitting and unstable estimates.3%:310 |n practice, knot
placement is commonly based on quantiles of the log event times, and the
degree of flexibility is controlled by specifying either the degrees of freedom
(df) or the number of internal knots (k), depending on the software
implementation. A common approach is to begin with a model equivalent to a
Weibull distribution (e.g., df = 1 or k = 1) and then gradually increase

complexity, evaluating improvements in fit.3%

A key advantage of RP model lies in its flexibility, particularly in the direct
estimation of baseline and cumulative hazard functions, as well as their ability
to provide analytic expressions that facilitate further inference—such as the
computation of cumulative incidence functions or restricted mean survival
times306,309,311.312 Thjs flexibility enhances both model fit and interpretability,
allowing researchers to visually and statistically assess the shape of the baseline
hazard, manage the risk of overfitting when incorporating time-varying effects,

and compare alternative model specifications.
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Table 6.1 Parametric distributions

Distribution  Metric Survival function S(t) Parameterisation Ancillary Common use
parameters
Exponential PH & AFT S(t) = exp (—At) A =exp (X;B) None Models constant risk over time. Used in mechanical

failures, rare in clinical studies.

Weibull PH & AFT S(t) = exp (—AtY) A; = exp (Xif5) v (shape) Models monotonic increasing or decreasing hazards.
Common in chronic disease survival.

A =exp (X;B) v (growth rate)  Models exponentially increasing hazard. Typical for
human aging and mortality data.

A
Gompertz PH S(t) = exp — <; (e¥ — 1))

Log-normal AFT S(8) = 1 log(t) — u w = X;B c (scale) Hazard rises then falls. Useful for time to disease
O)=1-4¢ o recurrence or epidemics.
Log-logistic AFT S =0+t A = exp (=X;5) v (shape) Models’ long-term survival patterns. Good for chronic
conditions with heavy-tailed survival.
Gamma AFT y(k, At) U = X;B o (scale) Models waiting times for multi-stage biological
SW)=1-Ft)=1- . .
rk) processes (e.g., disease progression)
Generalised AFT If >0, S(t) =1—-1(y,uw) w = X;B c, K Extremely flexible; nests Weibull, log-normal,
gamma if k<0, S(t) =1—I(y,u), gamma. Used for extrapolation in economic models.

where u = (eft)*
PH: proportional hazard, AFT: accelerated failure time
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S(t): survival function, X; = covariate, = regression coefficient, A;= hazard function modified by covariates under proportional hazard, p;: location parameter for models with AFT
interpretation, y: shape parameters, can be defined as increasing/decreasing hazard or positive hazard=increasing, ¢ = normal cumulative distribution function (CDF), y(k, At)
incomplete gamma function, I'(k)= gamma function, u: transform time variable, ¢ and «: additional shape and flexibility parameter
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6.3.5 Model selection and evaluation for parametric modelling

Like semi-parametric models discussed earlier, it is essential to evaluate
whether a parametric survival model adequately represents the underlying data
after fitting. This evaluation helps to enduse that the model prediction is

accurate and reliable.

One common approach for evaluating model fit is through goodness-of-fit
statistics, particularly the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC).304305 Both metrics balance model fit and complexity
by penalising the humber of estimated parameters to reduce the risk of

overfitting. Their general formulas are:

AIC = =2log(L) + 2k
BIC = —2log(L) + klog(n)
(Equation 6.15)

Where L is the likelihood of the model, k is the number or parameters in the

model, and n is the sample size.

Both criteria incorporate a penalty for model complexity, but BIC imposes a
stronger penalty as it scales with the logarithm of the sample size

(log(n)), whereas AIC uses a constant multiplier. As a result, BIC tends to favour
simpler models more heavily, particularly in large datasets. Lower values of AIC
or BIC indicate a better balance between model fit and parsimony, with the

preferred model being the one with the lowest score among the candidates.

In addition to numerical criteria, visual inspection is also a valuable tool for
assessing model fit. This involves comparing the estimated survival function from
the parametric model to the non-parametric Kaplan-Meier (KM) survival curve.3'3
A close alignment between the two curves indicates that the parametric model
captures the observed survival pattern well. Conversely, systematic deviations

suggest misspecification of the hazard function or distributional form.
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Figure 6.8 is a visual example when comparing the KM survival curve with seven
common parametric models. Among these, the Weibull distribution demonstrates
the best overall fit, closely aligning with the non-parametric estimate across
entire study period. This is further supported by its lowest AIC and BIC values
among the standard distributions considered, indicating better model parsimony
and goodness-of-fit. While the Gamma distribution also provides reasonable
approximation, its slightly higher AIC/BIC values suggest that Weibull is
statistically more appropriate for the data presented. Consequently, the Weibull

model was selected for subsequent analyses and simulations.

1.0¢
— Kaplan-Meier
== Weibull (AIC=1054.0, BIC=1063.3)
Log-normal | (AIC=1085.5, BIC=1094.7)
= = Log-logistic {AIC=1166.9, BIC=1173.0)
== Gamma (AIC=1074.0, BIC=1083.3)
== Generalised Gamma (AIC=1065.9, BIC=1078.3)
= = Exponential (AIC=1062.0, BIC=1068.2)
Gompertz (AIC=1063.7, BIC=1072.9)
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o
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Time (months)

Figure 6.8 Comparison of parametric survival model and Kaplan-Meier estimation

In the flexible parametric context, the fit of the RP model can also be evaluated
by visually comparing it with the KM curve as illustrated in Figure 6.8. A
practical demonstration involves fitting RP models with increasing spline
complexity (e.g., using one, two, or three internal knots) to show how added
flexibility affects model fit..3'2 Beyond visual comparison, RP models also allow
formal evaluation using information criteria such as AIC/BIC, enabling

assessment of relative fit across different specifications.3'4
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These RP models alongside traditional parametric alternatives, can be both

plotted against KM estimates and compared using numerical criteria to aid model

selection.

Residual-based methods, such as Cox-Snell and deviance residuals, can help
identify systematic departures from model assumptions and are applicable in
both parametric and semi-parametric survival models.2%¢:2% However, the key
difference lies in the underlying assumptions: parametric models rely on a fully
specified distribution for survival times, making residual diagnostics particularly
important for assessing the appropriateness of the chosen distribution. In
contrast, semi-parametric models like the Cox model do not assume a specific
baseline hazard function, so residuals are typically used to assess proportional
hazards assumptions and covariate effects rather than the shape of the survival

distribution itself.

6.3.6 Time-dependent covariates

Covariate effects are often assumed constant over time, particularly in traditional
survival analysis, however in many real-world settings, individual characteristics
such as clinical biomarkers, treatment status, or health behaviours change over

the course of follow-up.313:316

Time-dependent covariates allow the model to more realistically represent
evolving risk profiles. For example, a patient’s cholesterol level may be elevated
at baseline but improve with statin therapy, or a diabetes diagnosis may lead to
lifestyle modifications that influence subsequent risk of stroke or myocardial
infarction (MI). Failing to account for such changes risks misclassifying exposure
status, which can result in biased estimates, attenuated hazard ratios, or
misleading associations. By updating covariate values over time and aligning them
with the appropriate intervals, survival models can provide more accurate

estimates of how these variables impact the hazard function.3'7:318

Time-dependent covariates can be broadly classified as either external—such as
calendar-based events or policy changes that are unrelated to the individual's
event history—or internal, which include updated lab values or clinical

conditions that may be influenced by the underlying disease process.3'%:320
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One practical implementation involves incorporating the time since entry into a
state (referred to as sojourn time) as a covariate in a Cox-type survival model to
estimate transition hazards alongside evolving individual characteristics. This
allows incorporation of updated information such as age, treatment status, or
biomarker changes. The model relies on the baseline hazard, representing the
event risk when covariates are zero, and may use the log cumulative hazard, a

transformed version of the cumulative risk, to support model estimation.

6.3.7 Summary of different statistical models

The different feature of each model is summarised in Table 6.2. Based on the
explanation provided earlier, survival analysis methods differ in term of

assumptions, model structure, flexibility and practical application.

Non-parametric models provide empirical survival estimates without assuming
any specific hazard structure; however, they do not support covariate
adjustment or extrapolation beyond the observed data.?® Semi-parametric
models, incorporate covariate effects without specifying the baseline hazard
function, though they depend on the proportional hazards’ assumption. '
Parametric models assume a predefined distributional for both the baseline
hazard and covariate effects, offering ease of interpretation and the ability to
extrapolate, albeit with limited flexibility in capturing complex hazard
patterns.3'3 Flexible parametric models, allow for more adaptable hazard
shapes, the inclusion of time-dependent effects, and improved extrapolation
capabilities. This makes them especially useful for modelling complex survival
data and projecting long-term outcomes, even though in practice this method is

still underutilised. 3

In summary, the choice between non, semi, or flexible parametric in survival
models depends critically on the study objectives, complexity of the survival
data as well as modelling requirements. Key considerations include whether the
analysis is focused solely on estimating covariate effects or also aims to perform

long-term extrapolation.



Table 6.2 Comparison of statistical models
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Feature

Non-parametric

Semi-parametric

Parametric

Flexible parametric

Model characteristics

Baseline hazard
Hazard shape
assumption

Proportional hazard
assumption

Covariate inclusion

Time-dependent effect

Interpretability

Model fit assessment

Extrapolation
capability

No assumptions; empirical
estimation

Not modelled explicitly

None

Not applicable

Not supported

Not supported

Easy to interpret survival
probabilities

Visual (e.g., survival curves)

Not possible

Parametric covariate
effects, unspecified baseline
hazard
Not estimated directly
None (but assumes

proportional hazards)

Required (unless extended)

Supported

Can be included (extended
Cox)

Covariate effects
interpretable; baseline
hazard is abstract

Residuals (e.g., Schoenfeld)

Not recommended

Fully parametric: baseline and
covariate effects specified

Assumed known form (e.g.,
exponential, Weibull etc)
Fixed functional form

Often assumed

Supported

Difficult to implement

High interpretability if model
fits well

AIC/BIC, likelihood, visual fit

Possible

Parametric covariate effects,
spline-based hazard

Estimated via restricted
cubic splines

Flexible, data-driven

Can be relaxed

Supported

easily included via spline
interactions

Interpretation more complex
due to splines
AIC/BIC, visual fit, spline

tuning

Possible
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Flexibility High for empirical survival, Moderate Low to moderate High
low overall
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6.3.8 Markov and semi-Markov assumptions

From the analytical standpoint, multi-state models (MSMs) are built upon either
Markov or semi-Markov processes, where the assumptions about memory of past
transition differs. Markov models assume that future transitions depend solely on
the present state, while semi-Markov allow the sojourn time in a given state to

influence future transitions.322

This conceptual difference is often reflected in the choice of time scale,
typically described as either ‘clock-forward’ or ‘clock-reset’.20 In a clock-
forward model (aligned with the Markov assumption), the hazard of transition
depends on the time since the beginning of the process (e.g., since study entry
or baseline). Time continuously accumulates as an individual moves through
different states. In contrast, a ‘clock-reset’ model (used in semi-Markov
settings) resets the time counter each time a new state is entered, meaning that

the hazard of transition depends on the time since entering the current state.3%3

For example, in modelling disease progression, the risk of death in a ‘clock-
forward’ model might depend on the total time since diagnosis, while in a
‘clock-reset model’, the risk of death after a stroke would depend specifically
on the time since the stroke occurred. These assumptions have important
implications for how risk evolves over time and must be carefully matched to the

nature of the disease and available data.

Markov models

A Markov model assumes that the probability of moving from one state to
another depends on the current state, not on the time already spend in that
state. This feature known as ‘memoryless property’, In simple terms, the chance
of transitioning out of state depends on the current state, but not on how long

the individual has been there.324

In a discrete-time Markov model, time moves forward in fixed steps (e.g.:
monthly, annual). At each step, a person can either stay in the same state or

move to a different one.3% The model then uses a transition probability matrix
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to show the chance of moving between states. Each number in the matrix p,.,

tells the probability of going from state r to state s in one time step.

Drs = PXep1 =5 | X, =71)
(Equation 6.16)

This means, what is the chance that someone will be in state s at the next time
step, given that they are currently in state r. Each row of matrix adds up to 1,

because it includes all possible outcomes for someone in a given state.

In a continuous-time Markov model, changes between states can happen at any
moment in time, not just at fixed intervals.3% Instead of transition probabilities,
this model uses transition rates, written in a matrix called Q. Each value g, tell
about how quickly someone in state r is expected to move to state s. The higher
the number, the faster the expected transition. The rows are set up so that

everything balances out (i.e., each row sums to zero).

If the transition rates do not change over time, the model is called a time-
homogeneous continuous-time Markov model.3%¢ In this case, the transition
intensity matrix Q remains constant over time. However, in the time-
inhomogeneous version, the transition rates depend on time, meaning the
chance of moving between states can vary as time progresses3?’ , for example,

the risk of death may increase with age or disease duration.
In the time-homogeneous case, the transition probability matrix P, which gives

the probability of being in each state at time t, can be calculated using

the matrix exponential:

P(t) = exp (Qt)

(Equation 6.17)
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In contrast, for time-inhomogeneous models where Qt varies with time, Pt must

be calculated by solving the Kolmogorov forward differential equation:

dP(t)
dt

= (Pt).(Qt)

(Equation 6.18)

To help illustrate this, a simple illness-death model structure is adopted as an
example (Figure 6.8). This setup can be used in either discrete or continuous
time models to describe how people move through different stages of health.
For example, someone might stay healthy, become diseased, or die. These
transitions then can be simulated over time depending on the structure and

assumptions of the model.

. 2 - diseased
1 - healthy §
T
3- dead

Figure 6.9 Three states Markov model

The general transition matrix can be illustrated as below. The format is common
for discrete-time Markov models, where each row sums to 1, representing the
probabilities of moving from a current state to all possible states in the next

time period.

1— a;;, — a3 4P) aq3
P = 0 1 —_ azs azs

(Equation 6.19)
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and then re-parameterised the matrix with actual transition probabilities:

0.85 0.10 0.05
P = 0 0.80 0.20

0 0 1.00

From this matrix, it can be interpreted that there are 85% chance of remaining
in healthy state, 10% chance of progressing to diseased, and 5% chance of

directly transitioning to dead.

If this were in continuous time, the matrix would instead represent transition
intensities (rates), typically called a Q-matrix, and the matrix exponentiation

P(t) = exp (Qt) would be used to derive probabilities over time.

Semi-Markov models

Standard Markov models rely on the memoryless assumption, a key consequence
of this assumption is that sojourn times are exponentially distributed and “non-
ageing,” with a constant hazard rate that does not change as time in state
accrues.260:328 This is a stringent limitation in many clinical applications, since
the risk of an event often varies with the length of time a patient has spent in a

given health state.

In other words, the Markov model ignores any duration effect - a patient who
has just entered a state is treated the same as one who has stayed there for
months or years. Empirical evidence and theory have long shown that such an
assumption can be unrealistic: the hazard of disease progression or death can
increase or decrease as a function of time already spent in the current state.
Consequently, a pure Markov approach may misrepresent the natural course of
disease when past “time in state” is a strong determinant of what happens

next.32°

In a semi-Markov model, the transition process is still governed by a transition
intensity matrix or by transition probabilities, but the waiting time distributions
between transitions are no longer restricted to the exponential distribution (as
in continuous-time Markov models).?%7:32° This flexibility allows for more realistic
modelling of TTE data, particularly when empirical evidence suggests that

hazards change with time in state.
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Qi (t) = p;;G;;(t)

(Equation 6.20)

A semi-Markov, where p;; probability of transition from i to j. G;; probability of

transitioning within time t, given entry to state i. These G functions are survival

distributions.

G11(8)  Gi2(8)  Gy3(D)
Q) = ( 0 G2 (1) st(t)>
0 0 1.00

(Equation 6.21)

It should be noted that the G;;(t) are typically not defined, it is just implied that

the individual staying at the same state or not leaving the state.

By allowing hazard rates to vary with the time spent in a given state, semi-
Markov models provide a more flexible and clinically realistic framework for
multi-state survival analysis. They are particularly well-suited to capturing the
natural history of diseases in which the risk of progression or adverse outcomes

evolves over time.

A commonly cited example is the illness-death model used in chronic disease
contexts. In such cases, patients who remain longer in an intermediate or ‘ill’
state often face an increased risk of death, a feature that cannot be adequately
captured under the memoryless assumption of a standard Markov model. Semi-
Markov models overcome this limitation by incorporating sojourn time into the
hazard function. Thus, if empirical data suggest that longer time in a progression
state corresponds to higher mortality risk, the semi-Markov model can reflect

this by allowing transition hazards to increase with sojourn time.

This enhanced clinical realism makes semi-Markov models particularly valuable
for health policy modelling and medical decision-making. In health economics,

Markov decision models are widely used to simulate patient trajectories and
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evaluate the cost-effectiveness of interventions. However, it is increasingly

recognised that the assumption of time-homogeneous (memoryless) transitions,
inherent in standard Markov models, may lead to oversimplification and
misrepresentation of disease processes. Semi-Markov models address this by
enabling transition probabilities or hazards to depend explicitly on the time
elapsed since entering a state, thus allowing simulations to be conducted in

continuous time rather than through fixed-cycle approximations.248318,319

This is especially important for long-term modelling where the timing of events
such as disease progression, relapse, or death has a significant impact on clinical
outcomes, resource use, and costs. 323324 By explicitly modelling how long
patients remain in each state before transitioning, semi-Markov models can more
realistically project outcomes for interventions whose effectiveness or cost-
effectiveness depends on when events occur. For example, an intervention that
aims to delay the progression of a disease will have different implications if
progression is postponed by a few months versus several years. A semi-Markov
approach can capture these differences by accounting for the distribution of

sojourn times in the pre-progression state.

Similarly, time-sensitive policies (such as earlier screening or rapid treatment
escalation after a diagnosis) can be evaluated in a framework that reflects the

natural timing of disease events.

6.4 Model Results

Based on the state transition model structure presented in Figure 6.4 (and
described in Chapters 4 and 5), this section applies a range of survival modelling
strategies using data from the Clinical Practice Research Datalink (CPRD) Aurum.
The results are organised by modelling approach: non-parametric, semi-
parametric, standard parametric, and flexible parametric to estimate event-
specific risks across the model’s 13 transitions. For each modelling strategy,
transition-specific hazard estimates are presented alongside diagnostic

assessments to identify the most appropriate model specifications.
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It is important to note that these results do not represent a direct comparison of

which modelling strategy is “superior,” as each method offers distinct
advantages. The Kaplan-Meier (KM) method offers a descriptive approach for
estimating crude survival probabilities without adjusting for covariates. The Cox
model allows for the inclusion of covariates to examine how individual
characteristics affect transition risks while making minimal assumptions about
the baseline hazard. Standard parametric models provide interpretable hazard
functions and are suitable when the underlying risk can be reasonably
approximated by predefined distributions. In contrast, flexible parametric
models offer greater adaptability and can better accommodate non-proportional

or non-linear risk patterns observed in empirical data.

In the context of current objective for policy modelling, the selection of survival
modelling approaches was guided by a trade-off between model complexity,
data availability, and the requirement for accurate long-term extrapolation. KM
analysis was employed as an exploratory tool to visualise observed survival
patterns and assist in identifying suitable parametric survival distributions.
However, due to its inability to incorporate covariates or extrapolate beyond the
observed follow-up period, it was not used directly in the policy model. Instead,
modelling approaches were selected to account for multiple covariates, reflect
the complexity of CMD progression, and support reliable extrapolation over a

lifetime horizon.

As background, the study population comprises 184,845 individuals (89,645 males
and 95,200 females), with baseline characteristics detailed in Chapter 5. Figures
6.10 and 6.11 summarise the distribution of modifiable and non-modifiable risk
factors, stratified by sex. Stratification by sex was undertaken given the well
documented differences in cardiometabolic disease (CMD) risk profiles,
presentation, and progression between males and females. Non-modifiable
factors (e.g., age, sex), along with behavioural characteristics (e.g., smoking
status, alcohol consumption), are included due to their established associations
with CMD risk. While their inclusion does not ensure model accuracy, these
covariates help reflect individual-level heterogeneity and strengthen the clinical

relevance of the estimated transition hazards.



Deprivation Level

N

153

Alcohol Consumption Level

40-
—10- 9 _
£ £ Fao-
o Gender @ Gender Gender
g W 3 6 W 8 [~
= e 5 e G 20" W s
8 5 8 g
@D @ @
& ' - n h ——— s
I 10-
o- - 1 | | | | 0- | | | | | 0- | ) | 1
1824 25°34 3544 4554 5564 265 1 Level 0 Level 1 Level 2 Level 3
Age group Deprivation Level (1 = most deprived 5 = least deprived) Alcohal Consumption Level
Latest Smoking Status Ethnicity Family History
20~
60-
—20- — —
= = & 15-
@ Gender a Gender @ Gender
g e Y oo € W e
ata ot 10- Mt
£ 10- = 2 L 3 | |
@ @ @
a & 20- &
5
o o - e o
Active smaker Ex-smaker Non-smoker White Other Aslan Black Mixed cvdFH diabetesFH
Smoking Status Ethnicity Family History
Presence Diagnosis
- 20~
S
@ Gender
g -
g 0] W e
@
a
o i -
atrialFib hyperlipidaemia  hypertension
Condition
Figure 6.10 Non-modifiable and behavioural covariates by sex
Body Mass Index (BMI) Total Cholesterol Blood Glucose
30-
20-
ERER az Ea0-
@ Gender @ 15- Gendar o Gender
{=] (=21 o
£ Female 8 M reee £ W o
£ 10- 4 =
53 B e S 49- B v 3 | 5
& 3 & 10-
o o o
0- — o-
<185 18.5:24.9 25-29.9 230
BMI Category (kg/m?)
Triglycerides
30-
=
o 20
)
o
=
@
e
&£ 10-

1.7-2.2 2256 =256
Triglycerides level (mmol/l)

Systolic Blood Pressure (SBP)

<17

<5.0 5055 5660 =26.0

Total cholesterol level (mmol/l)

High-density lipoprotein (HDL) cholesterol

30-

=2 20-

@
Gender o
W e T

(=
v o

e

5 10-

o

J'I.

<1.03 1.03:1.54 2155
HDL level (mmol/l)

5.0-7.0 =7.0
Blood Glucose Level (mmol/l)
Low-density lipoprotein (LDP) cholesterol

<5.0

B-°
Gender 8,101 Gender
W remee & | &0
W - 5 W v

e

& s-

<2.6 26-3.3 3.4:3.9 4049 250
LDL level (mmaol/l)

Diastolic Blood Pressure (DBP)

__20-

= 3‘3 15-
@ Gender @

[=] (=]

£ MW e S 10-
g 10- e 8

D ]

o o

. I

<120 120-139
SBP level (mmHg)

=140

80-90
DBP level (mmHg)

=90

Gender

W e
™

Figure 6.11 Modifiable biomarker covariates by sex



154

6.4.1 Kaplan-Meier results

As an initial step in exploring time-to-event patterns across the 13 transitions in
the multi-state model, Kaplan-Meier (KM) survival analysis was conducted. This
non-parametric method enables visualisation and comparison of survival
distributions without assuming an underlying hazard structure, making it well-
suited for preliminary investigation of event timing across subgroups.'® In this
case, sex-based differences were assessed, with log-rank tests used to evaluate
statistical significance between male and female survival curves for each

transition.

KM curves (Figure 6.12) indicated sex-based differences in progression across
several transitions. Females exhibited faster progression from disease-free to
T2DM (Transition 1) and from T2DM to death (Transition 7), while males showed
more rapid transitions to Ml from both disease-free (Transition 2) and diabetic
states (Transition 5). In post-MI and post-stroke transitions, males consistently
demonstrated longer survival, particularly in transitions to death (Transitions 9,
10, 12, and 13). Conversely, no statistically significant differences were
observed in transitions such as disease-free to stroke (Transition 3), disease-free
to death (Transition 4), and stroke to post-stroke (Transition 11), suggesting that
sex-related disparities may be more pronounced in cardiovascular progression

and mortality than in stroke onset or general survival.

Furthermore, Figure 6.13 presents cumulative hazard curves across all
transitions. Cumulative hazard functions provide a complementary perspective
to survival probabilities by illustrating the accumulated risk of an event
occurring over time. Compared to KM curves, cumulative hazard plots emphasise
the intensity and pace at which events accumulate, which is particularly

informative when evaluating long-term risk trajectories.

The cumulative hazard plots reinforce the patterns observed in the survival
analysis. Males exhibit a slower cumulative risk of progressing to T2DM
(Transition 1) but a faster accumulation of Ml risk from both disease-free

(Transition 2) and diabetic states (Transition 5). Females demonstrate steeper
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cumulative hazards for death following T2DM (Transition 7), Ml (Transition 9),

and post-MI (Transition 10), highlighting increased mortality risk in these
transitions. These differences are statistically significant, consistent with the
log-rank p-values. For other transitions such as disease-free to death (Transition
4), T2DM to stroke (Transition 6), and stroke to post-stroke (Transition 11), the
cumulative hazard curves are largely parallel, indicating no significant sex-based

divergence in event accumulation.

However, as non-parametric methods, KM and cumulative hazard estimates do
not adjust for potential confounding variables such as age, socioeconomic status,
comorbidities, or biomarker profiles (factors that can significantly affect
transition risks).2’%27" To accommodate this, further analysis is conducted using
Cox proportional hazards models.'® The Cox model enables the estimation of
hazard ratios and can incorporate both fixed and time-dependent covariates,
providing a more comprehensive and interpretable framework for understanding
the determinants of cardiometabolic disease progression in diverse

subpopulations.
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Figure 6.12 Kaplan-Meier survival probability across all transitions
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Figure 6.13 Cumulative hazard across all transitions
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6.4.2 Cox regression results

The pre-specified covariates were included in the Cox proportional hazards
analysis, with appropriate reference groups assigned for categorical
variables. Figures 6.14 to 6.20 present the results of Cox proportional hazards
models. Each figure displays hazard ratios (HRs) with corresponding 95%
confidence intervals (Cis). Statistically significant associations (p < 0.05) are
highlighted in blue, whereas non-significant effects are displayed in red. In
addition, the details of survival and hazard curves of Cox model results are

presented in Appendix 5.

From the analysis, age shows a consistent and significant association with
increased mortality risk across transitions, particularly from stroke and T2DM to

death, which is well-documenter in most longitudinal studies.

High-density lipoprotein (HDL) is uniformly protective, while total

cholesterol and low-density lipoprotein (LDL) are strongly associated with
increased risk of T2DM, Ml and stroke33233>, Smoking, both current and former,
significantly elevates risk of CVD and death across states which is frequently

observed in published epidemiological studies. 336,337

Similarly, the findings regarding body mass index (BMI) and its complex
relationship with cardiovascular outcomes emphasise that BMI is a significant
but not straightforward indicator of cardiovascular health risks. BMI increases
the risk of developing T2DM but is inversely associated with MI and stroke
incidence, reflecting the well-documented ‘obesity paradox’ in cardiovascular
outcomes. The obesity paradox refers to the surprising and counterintuitive
finding that, in some populations or clinical conditions, people classified as
overweight or mildly obese (based on BMI) seem to have better health outcomes
than those with a "normal” BMI. This terminology is introduced by Lavie et al
(2009)338 as his paper observed that overweight and obese patients with heart
failure had better survival rates than leaner patients. This phenomenon has since
been widely discussed, as similar findings have been reported in several studies

on CVD, 339341
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The obesity paradox can happen due to BMI measurement itself that does not

distinguish between fat and muscle, or fat distribution (visceral vs
subcutaneous). The other case may be due to metabolic activity, when extra
body fat might provide energy during illness or stress, or sicker people may lose
weight (reverse causality), or the “normal BMI” group might include people who

are underweight due to disease.33%341

In terms of presence of disease, atrial fibrillation consistently shows the
strongest association with higher risk across nearly all events, especially

for stroke-related transitions and cardiovascular death, aligning with extensive
clinical evidence. Hypertension also emerges as a key risk factor, particularly
after the onset of disease (e.g., post-T2DM or post-MIl), reinforcing its

cumulative impact on downstream complications.

Ethnicity plays a key role, with individuals of Black and Asian

backgrounds generally exhibiting lower hazards for MI, stroke, and death,
especially Black ethnicity (e.g., HR = 0.37 for Ml). These patterns are consistent
with findings from UK-based datasets like CPRD3#2, ONS343, and UK

Biobank344. Socioeconomic deprivation (higher IMD quintiles) is also consistently
associated with elevated risk of adverse outcomes, particularly in transitions
from disease-free to T2DM, MI, stroke, or death. The impact of socioeconomic
deprivation, as indicated by indices of multiple deprivation, further emphasises

the association of lower social standing with poorer health outcomes.

Compared to non-drinkers, moderate intake of alcohol is not showing increase
hazard while heavy use increases mortality risk, matching global burden of
disease findings.3* Moderate drinking appears protective while heavy
consumption yields adverse outcomes, aligning with findings from various

systematic reviews. 346,347

From these results, it can be concluded that the use of time-dependent Cox
model offers a robust framework for incorporating evolving covariate values and
capturing dynamic risk profiles across disease transitions. This semi-parametric
approach effectively highlights the relative strength of covariate effects on

transition hazards. However, one key limitation is that the Cox model does not
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specify the baseline hazard function, which restricts its interpretability in terms

of absolute risk estimation and long-term extrapolation. Additionally, the

model’s validity may be compromised if the PH assumption is violated.

To address these PH limitations and assess the adequacy of the model,
diagnostic procedures were undertaken. Specifically, Schoenfeld residuals?®,

and Martingale residuals were examined for all transitions.2%’

Model diagnostics

The Schoenfeld test evaluates the proportional hazards assumption by testing
whether the effect of a covariate on the hazard function remains constant over
time. A significant p-value (p < 0.001) indicates a violation of this assumption,
suggesting that the covariate's effect varies over time. The details on this is

presented in Appendix 6.

The global test was significant across all transitions, indicating that for each
transition, at least one covariate violated the proportional hazards assumption.
Covariates exhibited consistent violations at the individual level, despite the use
of time-updated values. This underscores an important limitation: while time-
updated covariates capture changes in exposure status (e.g., biomarker levels),
they do not account for changes in the effect of those covariates over time. In
other words, the hazard ratio itself may vary with time, which is not addressed
by simply updating covariate values. To meet the PH assumption in such cases, it
may be necessary to include explicit time, covariate interaction terms or apply

stratified Cox models that allow baseline hazards to differ across strata.!89:301

Another reason may be the large statistical power inherent in this dataset. With
such a large sample size, even minor deviations from proportionality unlikely to
be clinically meaningful can produce statistically significant p-values in PH tests.
Importantly, the hazard ratio represents an average relative effect over the
follow-up period. Even when the proportional hazards assumption is not strictly
valid across the entire duration, the estimated hazard ratios may still provide a
meaningful summary of the average benefit over time. This interpretation aligns
with conclusions from the WOSCOPS study, which acknowledged the potential
violation of the PH assumption but still considered the HRs to reflect a valid

average effect over the follow-up period.348
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Figure 6.14 Forest plot on hazard ratios (HRs) from Cox regression (transition 1-2)
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Figure 6.15 Forest plot on hazard ratios (HRs) from Cox regression (transition 3-4)
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Figure 6.16 Forest plot on hazard ratios (HRs) from Cox regression (transition 5-6)
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Figure 6.17 Forest plot on hazard ratios (HRs) from Cox regression (transition 7-8)
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Figure 6.19 Forest plot on hazard ratios (HRs) from Cox regression (transition 11-12)
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Covariates such as age, blood pressure, BMI, and glucose showed the strongest
and most consistent evidence of non-proportionality, particularly in transitions
to death (e.g., Transition 4, 7, 9, 12, and 13), where risk is likely to evolve with
time since prior events. This implies that the hazard ratios associated with these
covariates change meaningfully over the disease trajectory. Consequently,
modelling approaches that incorporate time-by-covariate interactions or
parametric (including flexible) methods may be necessary to accurately
represent these dynamics. For instance, age showed highly significant deviations
in nearly every transition as did blood pressure across mortality and post-event
pathways. While time-updated covariates were included to reflect changing
exposure values, they do not address time-varying effects of those covariates.
That is, a time-updated value for glucose may capture current status, but if the
hazard ratio associated with glucose changes over time, this would still violate
the PH assumption. Therefore, additional diagnostics led to testing interactions
between covariates and time or exploring stratification by covariates such as age

group or sex.

Where violations of the proportional hazards assumption are persistent and
clinically plausible, further modelling strategies should be employed. Parametric
survival models, which accommodate time-varying hazards and covariate-time
interactions potentially useful in transitions with complex or non-monotonic risk

patterns, as observed in several post-event and mortality transitions.

It is important to note a limitation in the standard visual interpretation of
Schoenfeld residual plots. When time-varying effects are subtle, for example: a
log HR that increases by only 0.01 per year—the resulting curve may appear
nearly flat. This is due to the plot's scale being adjusted to accommodate all
transitions and long follow-up periods (e.g., over 30 years), which can obscure
small but meaningful trends. Furthermore, the residual dots may overlap or
obscure the fitted line, making it difficult to visually detect time-dependent
effects. However, such gradual changes can still accumulate to meaningful
levels over time (e.g., a 0.1 increase over ten years) and may be statistically

significant, particularly in large datasets. For this reason, smoothed
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visualisations of time-varying coefficients are provided alongside standard

Schoenfeld plots to better illustrate these subtle trends. (Appendix 6).

In addition to Schoenfeld residuals test, residuals were also checked to evaluate
the functional form of the continuous covariates using Martingale residuals test.
Martingale residuals can help to detect an appropriate non-linear relationship
between continuous predictors and the hazard. This diagnostic is particularly
important in the present analysis due to the inclusion of several continuous

variables and the evidence of time-varying effects.

Overall Martingale residuals were plotted against the linear predictor for each
transition, also the plot that illustrated the residual in each continuous covariate
(Appendix 7). In a well-specified model, residuals should be symmetrically
scattered around zero with no clear trend, and the smoothed loess line should
remain flat along the horizontal axis. Deviations from this expectation may
indicate that the model fails to capture the true hazard structure, often due to

non-linearity or omitted variable interactions.

In general, Transitions 1 to 4 (from the Disease-free state) show clear non-linear
trends, particularly in Transitions 1 (to T2DM), 2 (to MI), and 3 (to Stroke),
where the smoothed lines show strong curvature. This suggests that the
combined effects of covariates are not adequately modelled by the linear
predictor, likely due to non-linear biomarker-risk relationship. Transition 4 (to
Death) also shows notable deviation, though with slightly less curvature,

reinforcing the complexity of mortality modelling from a baseline healthy state.

Transitions 5 to 7 (from T2DM) and Transitions 8 to 13 (post-MI and post-Stroke
pathways) display moderate to mild non-linearity. For instance, Transition 9 (M|
to Death) and Transition 10 (Post-MI to Death) reveal upward-sloping trends in
the smoothed residuals, indicating possible underestimation of risk in higher-risk
patients. Some later transitions (e.g., Transitions 11-13) show relatively stable
residual patterns, suggesting that the linear predictor performs more adequately
in later disease stages, potentially due to more homogeneous risk profiles. All

covariates have highly significant p-values (p < 0.001), confirming their
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relevance, but also suggesting the current model may not be using the most

appropriate functional form for them.

Based on this test, overall model structure appears sound, the observed non-
linearities indicate that several transitions, particularly form early state
(disease-free) may require more flexible modelling such as Royston-Parmar (RP)
modelling to better capture the relationships between biomarkers and event

risk.

Both Schoenfeld and Martingale tests results are useful tools to evaluate the Cox
model. For Schoenfeld, these findings do not indicate a failure of the model but
rather affirm its capacity to detect and reflect true temporal variation in
covariate effects. Similarly, Martingale residual test does not invalidate the
model, rather they provide critical insight that the relationship between
biomarkers and risks may be complex and non-linear, that indicate more flexible
modelling may needed to strengthen predictive accuracy and its clinical

relevance.

6.4.3 Parametric modelling results

Fitting parametric models

Parametric models are integral to survival analysis, particularly in healthcare
settings where extrapolation beyond observed follow-up is often required. Unlike
semi-parametric models such as the Cox model, parametric models explicitly
define the baseline hazard and the functional relationship between covariates

and survival outcomes. 189,313

Various distributional forms are employed to describe survival time in this
current parametric approach. As previously mentioned, the model selection is
typically guided by information criteria like the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). The lowest value of these

represents the potentially best-fitting model (Table 6.5).
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Information criteria test such as AIC/BIC are useful for comparing the relative fit
of candidate models for a specific state transition, however, they may not fully
capture overall model adequacy, especially when multiple models fit the data
reasonably well.3* Hence, the current model selection was supplemented with
additional diagnostic, including visual inspection by comparing fitted parametric
curves with Kaplan-Meier (KM) estimates (Figure 6.21), as well as residual-based

diagnostics.

Based on the parametric model evaluation, AIC/BIC selections were consistent
across all transitions. The Log-normal distribution emerged as the optimal fit for
the initial transitions from the disease-free state (Transitions 1-3). This aligns
with the natural progression of cardiometabolic diseases, where risk accelerates
gradually over time, particularly as metabolic dysregulation worsens with aging

or cumulative exposures, or potential competing risks. (Figure 6.21)

In Transition 4 (Disease free to Death), The Weibull distribution is the best
fitting one, showing its flexibility by allowing for increasing, decreasing or
constant hazard. For all-cause mortality from a disease state, this aligns with

the known pattern of increasing mortality risk with age.

For T2DM-related events and death (Transitions 5-7), the Gompertz distribution
characterised by an exponentially increasing hazard seems appropriate, as it
reflects the rising likelihood of complications with longer disease duration. In
individuals with diabetes, prolonged exposure to hyperglycaemia contributes to
progressive vascular and neurological damage, elevating the risk of adverse

outcomes over time.
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Table 6.3 AIC/BIC score (parametric models)

Transition and Exponential Gamma Gen_Gamma Gompertz Log-logistic Log-normal Weibull

distribution tests

AlC BIC AlC BIC AlC BIC AIC BIC AlC BIC AlC BIC AlC BIC
T1: Disease-free > 599,580 599,873 510,897 511,201 488,768 489,082 508,818 509,122 487,671 487,975 487,616 487,920 498,031 498,335
T2DM
T2: Disease-free> Ml 156,986 157,279 143,595 143,899 143,114 143,428 139,070 139,374 136,964 137,268 136,282 136,586 137,223 137,527
T3: Disease-free> 163,829 164,123 142,433 142,737 141,277 141,590 143,939 144,243 141,838 142,141 141,230 141,533 142,055 142,358
Stroke
T4: Disease-free> 250,743 251,036 214,451 214,755 207,388 207,702 204,652 204,955 204,428 204,732 206,064 206,368 203,633 203,937
Death

T5: T2DM> MI 28,965 29,226 28,969 29,238 29,616 29,894 28,952 29,221 28,967 29,236 29,169 29,438 28,967 29,237
T6: T2DM-> Stroke 28,246 28,506 28,248 28,517 28,966 29,245 28,223 28,492 28,250 28,519 28,458 28,726 29,246 28,515
T7: T2DM-> Death 85,209 85,470 86,356 86,625 89,840 85,219 84,833 85,102 85,792 86,061 87,545 87,814 85,182 85,451
T8: MI=>post-MI 18,252 18,472 15,033 15,260 14,714 14,949 16,885 17,112 14,915 15,142 14,775 15,002 14,971 15,198
T9: MI>Death 27,729 27,948 23,511 23,738 23,513 23,747 26,895 27,122 23,748 23,975 23,892 24,119 23,555 23,782
T10: Post-MI->Death 5,576 5,741 4,908 5,079 4,910 5,087 5,396 5,566 4,958 5,129 4,993 5,163 4,914 5,058
T11: Stroke->post- 21,911 22,131 17,199 17,427 16,648 16,883 19,661 19,888 16,987 17,215 16,771 16,999 17,090 17,318
stroke

T12: Stroke->Death 34,967 35,187 27,707 27,935 27,450 27,685 32,834 33,062 27706 27,934 27,615 27,843 27,528 27,755
T13: Post- 8,483 8,657 7,359 7,539 3,802 3,988 8,029 8,209 7,401 7,580 7,408 7,588 7,357 7,536
Stroke—>Death

AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion
*Grey highlighted: lowest score
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For post-event transitions, such as those following MI or stroke (Transitions 8 and

11-13), the Generalised Gamma distribution consistently offered the best fit. This
is supported by studies that report non-constant hazards, for example the risk of

death after Ml is highest in the first 30 days and then declines, or as defined as

post-acute CVD events. 30,351

It can be seen that transition 13 likely overfit (Table 6.3), with a very large
difference score compared to other distributions. It might be due to small event
counts in this transition render likelihood-based criteria unstable or overly
responsive to model complexity, potentially affecting convergence. Nevertheless,
visual inspection of this transition fit confirms that Generalised Gamma closely

follows the observed KM curve throughout the follow-up period.

In terms of extrapolation, figure 6.21 demonstrates that several models fit the
observed data similarly within the follow-up range, but diverge in their
extrapolated tails. For instance, exponential and Gompertz distributions often
showed either persistent survival (flattened curves) or overly rapid decline,
particularly visible in transitions 11-13 (stroke-related mortality). These patterns
were judged implausible based on known disease trajectories. Conversely, the log-
normal and Weibull distributions produced extrapolations that more closely aligned
with clinical expectations, such as gradual risk increase in early transitions and
steeper declines in mortality-related transitions. The generalised

gamma distribution also performed well in transitions 11-13, offering flexible
shapes that could mimic the more clinically credible behaviour of log-normal and
Weibull models, while also fitting the observed data reasonably. These visual
assessments supported the final model selection process, prioritising both

goodness-of-fit and credible long-term projection.

Model diagnostics

Cox-Snell residual plots were generated to assess the goodness-of-fit of the final
parametric models across all 13 transitions. A well-fitting model is expected to
produce a cumulative hazard plot of residuals that follows a 45-degree line (i.e.,
the unit exponential distribution). Overall, most transitions showed reasonable

alignment with this expectation, suggesting acceptable model calibration for the
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majority of transitions, particularly in early- to mid-follow-up periods. Transitions

such as Transition 3, 4, 9, 10 and 12 demonstrated near-linear residual behaviour,

indicating a good fit between predicted and observed hazards.

Transitions 2, 3, 7, 8, 11 exhibit minor deviations, particularly at the tails. These
may indicate limited data at later time points or slight misspecification. T1, T5,
Té6, T13 show more noticeable divergence from the ideal line. This suggests the
chosen parametric models might not fully capture the shape of the hazard over

time, perhaps due to time-varying risks or heterogeneity in event patterns.

6.4.4 Flexible parametric results

Fitting flexible parametric models

While standard parametric distributions offer a foundation for extrapolation,

Figure 6.21 demonstrates cases where some models inadequatly capture the
empirical survival patterns, especially in the early follow-up periods (see the
divergence on transition 7, 9, 10, 12), where rigid assumptions about hazard shapes

limit model fit.

The flexible parametric survival model, particularly the Royston-Parmar (RP) model
is introduced to address limitations of standard parametric approaches. They
model the log cumulative hazard as a smooth function of time using restricted
cubic splines 3%, enabling the hazard to follow more realistic, non-monotonic
patterns often observed in chronic and multi-phase disease processes like

cardiometabolic disease.

This is achieved without introducing excessive model complexity or sacrificing
interpretability. RP models allow the hazard function to bend smoothly

at predefined knot points. The selection of these knot numbers was guided by the
principle of parsimony: while additional knots increase the model’s ability to
capture complex hazard shapes, they also risk overfitting and reduced
interpretability. Fewer knots (e.g., 1) yield smoother and more stable hazard
curves, which are easier to interpret and generalise, particularly when sample
sizes are moderate or follow-up is limited. Conversely, more knots (e.g., 3) provide
greater flexibility to accommodate non-linear hazard trajectories where supported
by the data.
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Figure 6.22 Cox-Snell Residual for best parametric models
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In this thesis, limiting the knot range to 1-3 allowed for exploration of model
performance under increasing complexity without excessive computational
burden or risk of instability. Model selection was based on a combination of
statistical criteria (AIC and BIC) and visual inspection of survival and hazard
curves to ensure that improvements in fit did not come at the cost of overfitting

or loss of clinical interpretability (Table 6.6).

Overall, increasing the number of knots generally improves model fit, as
indicated by lower AIC/BIC values. RP models provided better fit than standard
parametric models in transitions with complex or non-monotonic hazard patterns
(e.g., Transition 1, 2, 3, 7), particularly when using higher knot values (k=2 or
3), aligning more closely with Kaplan-Meier estimates. For mortality-related
transitions (Transition 9-13), standard models often diverged over time, while RP
models more followed observed survival trends. In transitions with limited
follow-up (e.g., Transition 6,8,11), it performed similarly to parametric, though

RP models offered greater flexibility and reduced risk of misfit.

Table 6.4 AIC/BIC score (flexible parametric models)

Transition and k=1 k=2 k=3
knots simulation

AlC BIC AIC BIC AIC BIC
T1: Disease-free > 487,029 487,343 486,511 486,835 484,927 485,261
T2DM
T2: Disease-free> 134,892 135,206 138,568 138,892 134,928 135,262
MI
T3: Disease-free> 139,647 139,960 139,960 140,284 139,706 140,040
Stroke
T4: Disease-free> 226,039 226,069 225,531 225,572 225,156 225,206
Death
T5: T2DM> MI 28,911 29,189 28,913 29,200 30,126 30,171
T6: T2DM-> Stroke 29,249 29,276 29,246 29,282 29,247 29,292
T7: T2DM-> Death 91,802 91,829 91,570 91,606 91,538 91,583
T8: MI=>post-MI 14,866 15,101 14,423 14,665 14,365 14,615
T9: MI=>Death 23,550 23,785 22,708 22,950 22,628 22,878
T10: Post- 4916 5,092 4,848 5,030 4,844 5,032
MI->Death
T11: Stroke—>post- 16,773 17,009 17,005 17,036 16,998 17,036
stroke
T12: Stroke>Death 27,454 27,689 26,246 26,489 26,201 26,451
T13: Post- 7,349 7,534 7,258 7,450 7,250 7,448

Stroke—>Death
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In addition, some transitions, especially those occurring later in the disease
progression, such as from post-MI or post-stroke to death show only marginal
improvements or even slight deterioration in model fit with additional knots,

suggesting simpler hazard structures or limited event data.

Model diagnostics

Figure 6.24 illustrates Cox-Snell residual diagnostics for RP models across all 13
transitions show generally improved model fit compared to standard parametric
counterparts. In most transitions, the cumulative hazard (black line) closely
follows the expected 45-degree reference line (blue dashed), indicating a good
approximation to the observed data. Slight deviations are visible in transitions
with sparse events or extended follow-up (e.g., Transition 11-13). However, the
flexible structure of RP models makes them appealing for extrapolation
scenarios where standard parametric forms may be too restrictive. Therefore,
their use is justified not solely by fit, but by their capacity to reflect plausible
hazard trajectories beyond observed data, especially when supported by clinical

or external validation.
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Figure 6.23 Flexible Parametric vs Kaplan-Meier survival plot
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6.4.5 Incorporating semi-Markov framework for extrapolation

The semi-Markov framework provides a structured approach to modelling multi-
state processes where the transition hazard depends on how long an individual
has remained in a particular state (sojourn time).2%° This differs from traditional
Markov models, which assume transition hazards depend only on the current
state and baseline time. In this context, parametric survival models (both
standard and flexible) define the underlying hazard function, shaping how

transition risks evolve over time.

For example, in cardiometabolic modelling, the risk of death after a Ml or stroke
may change depending on how long a patient remains in the post-event state.
This dynamic cannot be captured using baseline time alone but can be modelled
effectively with a semi-Markov approach that incorporates parametric hazard
functions. In simpler terms, while parametric models are useful for extrapolating
risks beyond observed data due to their well-defined hazard functions, they are
not sufficient to represent the complexities of multi-state disease processes on

their own.

Therefore, integrating parametric models within a semi-Markov framework is
important for several reasons. First, it ensures the correct time scale is used. In
semi-Markov models, time resets at entry into each new state, so hazards
depend on the time spent in that state rather than on total follow-up time.2°
Second, parametric models need to be applied to the correct time scale to work
effectively. The semi-Markov structure ensures that these models align with
sojourn time, which reflects real-world disease progression more accurately than

baseline time.324

Table 6.5 summarises the final survival model selected for each transition in the
CMD Policy Model, which is embedded within a semi-Markov framework. Model
selection was based on a combination of statistical goodness-of-fit criteria (AIC
and BIC), visual inspection of observed and fitted survival curves, and
assessment of clinical plausibility of the implied hazard functions. (see section
6.3 and 6.5)
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Table 6.5 Summary of final survival model selected for each transition in the
CMD Policy Model

Transition Standard parametric Flexible Parametric

(distribution) (k=number of knots)
T1: Disease-free > T2DM Log-normal k=3
T2: Disease-free> MI Log-normal k=1
T3: Disease-free—> Stroke Log-normal k=1
T4: Disease-free-> Death Log-normal k=3
T5: T2DM-> MI Weibull k=1
T6: T2DM-> Stroke Gompertz k=2
T7: T2DM-> Death Gompertz k=3
T8: MI=>post-MI Generalised gamma k=3
T9: MI->Death Gamma k=3
T10: Post-MI->Death Gamma k=3
T11: Stroke->post-stroke Generalised gamma k=1
T12: Stroke->Death Generalised gamma k=3
T13: Post-Stroke>Death Generalised gamma k=3

In this thesis, the semiMarkov () function developed by Williams et al., (2017)
324 was applied, that constructs a sojourn-time-based multi-state model. For
each of the 13 transitions, the best-fitting parametric distribution and the
optimal number of spline knots for RP models (see sub section 6.4.3 to 6.4.4)
were identified and embedded into the function to generate transition-specific

estimates.

The model produces estimated cumulative hazards H(t) and state occupancy
probabilities over time, both of which can be adjusted based on the chosen
distributions and model parameters. These outputs can then be transformed into
transition probabilities P(t), enabling the estimation of the likelihood that an

individual will move from one health state to another at any given time point.3>2

P(t) =1 —exp (=H(D))

(Equation 6.22)
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To support interpretation and link back to the model structure described in
Chapter 4 and Figure 6.4, the full transition probability matrix of the CMD Policy

Model is re-stated below for completeness.

Table 6.6 Transition probability matrix of CMD Policy Model

Disease-free T2DM MI Post-MI Stroke Post- Death
stroke

Disease- 1- TP1 'TPZ'TP3'TP4 TP1 TPZ - TP3 - TP4
free

T2DM - 1- TPs- TP¢- TP, TPs - TP - TP,
MI - - 1-TPg-TPy TPs - - TP,
Post-MI - - - 1- TPso - - TPo
Stroke - - - - 1- TP11 'TP12 TP11 TP12
Post-stroke - - - - - 1- TPy3 TPz
Death - - - - - - 1

Note: TP= Transition probability. 1 = "Disease-free to T2DM", 2 = "Disease-free to MI", 3 = "Disease-free to
Stroke", 4 = "Disease-free to Death",5 = "T2DM to MI", 6 = "T2DM to Stroke", 7 = "T2DM to Death", 8 = "MI to

Post-MI", 9= "MI to Death", 10 = "Post-MI to Death", 11 = "Stroke to Post-Stroke", 12 = "Stroke to Death", T13
= "Post-stroke to Death"”

This transformation enables the estimation of the likelihood that an individual
will transition from one health state to another at any given time point.
Importantly, these outputs can be used to inform decision-analytic models, such
as cost-effectiveness analyses, that require long-term risk estimation across
different health states.

While most transition-specific models demonstrated good agreement with
observed Kaplan-Meier estimates, a few transitions exhibited overly optimistic
survival projections. The inclusion of background mortality serves to correct this
bias and produce more realistic survival outcomes across the full disease

trajectory.

Background mortality was incorporated to account for the risk of death from
causes unrelated to the explicitly modelled disease processes. This was derived
from age- and sex-specific national life tables provided by the UK Office for
National Statistics (ONS)3>3 and applied in addition to the disease-specific

mortality transitions.
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To ensure realistic mortality estimates, the cumulative background mortality risk

(derived from life tables) was applied to proportionally scale down all other
state probabilities at each time point. Specifically, after computing transition
probabilities from the semi-Markov model, the probability of background (non-
disease-related) death was subtracted from the total probability mass. The
remaining probabilities for all other states were then rescaled proportionally to
ensure that the full set of state probabilities still summed to one (see
implementation details on GitHub). This adjustment is particularly important to
avoid underestimation of overall mortality, especially in earlier disease stages or
among older individuals who may face substantial non-disease-related death

risks.

Using this semi-Markov framework, state occupancy probabilities are generated
both for standard parametric and flexible parametric models. The simulation
starts age 40 years (median age of sample population is 42 years), and all
‘healthy’ biomarkers and behaviour covariate levels (e.g, non-smoking, alcohol

level 0).

It should be noted that this simulation started at age 40, meaning that lifetime
projections are over 60 years (standard lifetime horizon). However, the figures
that follow show an extrapolation period up to 100 years to help show potential
implausible probabilities of being over 100 years old. In practice, analysts may

only use a maximum 60 years to model natural disease progression.
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The two figures above (Figure 6.25 and 6.26) represent the estimated state

occupancy probabilities over time derived from semi-Markov models using
different types of parametric survival functions. The first plot is based
on standard parametric distributions, while the second employs flexible

parametric models that allow greater adaptability in hazard shapes over time.

In the standard model, transitions between states appear more abrupt and
follow a relatively uniform pattern, with the disease-free state move to the next
states earlier. This approach benefits from simplicity and computational
efficiency, making it suitable for settings where hazard patterns are expected to

follow known distributions.

In contrast, the flexible parametric model displays smoother and more gradual
transitions, particularly in the timing of disease onset and mortality. People
remain in disease-free state slightly longer, and progression through conditions
such as T2DM, MI, and stroke occurs more slowly before reaching death state.
This approach offers improved flexibility in capturing changes in risk over time,
allowing the model to better represent real-world patterns of disease

progression.

6.5 Final CMD Policy Model : discussion

In summary, the Cardiometabolic Disease (CMD) Policy model presented in this
thesis is defined as a statistical model based on multi-state survival analysis that
is designed to project future health trajectories and support both

epidemiological and economic evaluation analysis.

Using complex, linked UK patient-level data sets?'%, the model captures the
progression of key cardiometabolic events such as type 2 diabetes mellitus
(T2DM), myocardial infarction (Ml), and stroke. These events are modelled as
distinct health states within a multi-state structure, allowing the flexibility for
transition probability estimation, state occupancy over time, as well as long-

term impact of disease progression on both clinical and economic outcomes.
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For long-term extrapolation, in a semi-Markov framework, each transition is

modelled using standard or flexible parametric survival models, enabling the
calculation of cumulative hazard over time, which is eventually converted to
transition probabilities. This allows simulation of individual-level pathways

through disease progression.

Although the CMD Policy Model follows a semi-Markov multi-state structure, it
can be best described as a “hybrid model” that blends features of

both microsimulation and cohort modelling. Like a traditional cohort model, it
estimates state occupancy probabilities over time for a representative
population, allowing aggregation of outcomes such as life expectancy or disease
prevalence at the population level. These probabilities are calculated based on
transition-specific hazard models, using parametric or flexible parametric
survival functions applied to a defined cohort. However, the model also
embodies ‘microsimulation-like’ characteristics. It supports individual-level risk
stratification by allowing covariates (e.g., age, sex, clinical biomarkers) to
influence transition hazards. This means that transitions are not governed by
average population risks alone but can vary across subgroups or individuals,
depending on their risk profiles. Additionally, because hazards are converted
into transition probabilities at each time step, the model can simulate pathways
that resemble those seen in discrete-time microsimulation, where individuals

probabilistically move between states over time.

Hence, while the output is aggregated (as in cohort models), the structure and
flexibility of the model, particularly in accommodating individual-level
heterogeneity and time-updated covariates, make it more aligned with hybrid
policy modelling approaches. This design balances computational

efficiency with granular clinical plausibility, enabling its application in

both population health forecasting, cost-effectiveness analysis, and inequality

impact where subgroup-specific insights are essential.

Strengths and limitations of CMD Policy Model
One of key strengths of this CMD Policy Model is its use of large-scale UK patient-
level data (CPRD Aurum), linking primary and secondary care with death records

and deprivation indices. This enhances population representativeness and policy
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relevance. The model also includes a wide range of time-varying covariates,

including clinical biomarkers, behavioural risk factors (e.g., smoking, alcohol),
and socioeconomic indicators, supporting analysis of health inequalities and

subgroup-specific outcomes.

While CPRD Aurum has underpinned numerous epidemiological studies, its use in
constructing multi-state frameworks to analyse transitions between CMD states
remains underexplored.3** This is the first CMD policy model integrating CPRD
Aurum to explicitly capture these transitions, enabling UK population-level

preventive evaluations and policy adoption.

Methodologically, applying a semi-Markov structure offers a clinically realistic
representation of chronic disease progression. This is particularly relevant for
conditions such as type 2 diabetes mellitus (T2DM), myocardial infarction (Ml),
and stroke, where risks evolve with disease duration. Additionally, the model
adopts a hybrid approach, combining elements of microsimulation and cohort

modelling.

Each transition in the model is estimated using either standard parametric
distributions or flexible parametric survival models, which provides the
flexibility to adapt hazard functions based on empirical data and clinical
relevance. This improves both the precision and credibility of long-term risk
estimates, particularly when modelling interventions or projecting disease

burden over time.

Despite its strengths, the CMD Policy Model has some limitations. First, it
remains dependent on the quality and completeness of the input data. Any bias
or missingness in the underlying patient-level data may affect the validity and
generalisability of model outputs, particularly for underrepresented subgroups.
Additionally, the model does not explicitly account for intermediate
complications of T2DM, such as microvascular and macrovascular events that
may influence transition hazards, unless manually incorporated into the model

structure.
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The conceptual model underlying the CMD framework was informed by clinical

literature and expert input, providing face validity. Internal diagnostic
procedures were conducted, such as AIC/BIC comparisons, residual checks, and
visual inspection of survival curves against Kaplan-Meier estimates which
demonstrated acceptable internal model fit. However, external validation using
independent datasets (e.g., CPRD GOLD) has not yet been performed.® 133
Moreover, the current implementation of the model requires manual
manipulation of code and parameters within R, which may present a barrier to
uptake. A web-based application or graphical user interface could improve

accessibility for broader use by researchers, clinicians, and policymakers.

When compared to other established policy models, the CMD Policy Model offers
several unique advantages. For example, the UKPDS Outcomes Model is widely
used in health economic evaluations of diabetes.3>> It shares a multi-state
framework with the CMD model but focuses more narrowly on diabetes-related
complications using trial-derived risk equations. In contrast, the CMD model is
based on routine population-level data and accommodates a wider range of
disease trajectories, making it better suited for early prevention and population-

level policy analysis.

Similarly, the Cardiovascular Disease Policy Model (CVDPM)3*¢ developed in the
United States uses a Markov-based structure with detailed treatment modules
and heterogeneous populations. However, it assumes memoryless transitions and
often requires calibration to external data. The CMD model improves upon this
by employing a sojourn-time-based semi-Markov structure, enabling more
dynamic and time-sensitive modelling of disease progression without reliance on

empirical calibration.

Another model, The IMPACT CHD Policy Model has been valuable in quantifying
the contributions of risk factor changes and treatment uptake to coronary heart
disease mortality trends at the population level.3” However, it does not include
morbidity outcomes (e.g., diabetes, MI, stroke), which limits its ability to
capture the full burden of disease or evaluate quality-of-life outcomes which are
addressed in current CMD Policy Model. The model is well-suited

for retrospective analysis of observed mortality trends but less equipped
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for prospective simulation of new or complex policies, especially those affecting

disease incidence, or long-term resource use.

Unlike more complex platforms such as CVD-PREDICT'?¢ and SPHR model'?>,
which employ full microsimulation modelling, the CMD Policy Model offers

a computationally efficient hybrid design. It supports individual-level
heterogeneity through covariates while retaining tractability for large-scale
scenario analysis. This makes it more accessible for routine use in academic and

policy contexts without requiring high-performance simulation environments.

In summary, the CMD Policy Model provides a transparent, flexible, and
methodologically robust framework for simulating cardiometabolic disease
progression and estimating population-level health and economic outcomes.
While its current scope and validation status present areas for further
development, the model stands out for its real-world data foundations, semi-
Markov logic, and hybrid architecture, positioning it as a valuable tool for

informing prevention strategies and healthcare resource planning.

6.6 Conclusions

The development of the CMD Policy Model represents a step toward more
integrated and policy-relevant simulation tools for cardiometabolic disease
prevention. Rather than relying on simplified assumptions or narrowly defined
clinical cohorts, the model provides a structured yet flexible framework that
balances methodological rigour with real-world applicability. By combining
advanced statistical modelling with UK patient-level data, it enables meaningful
forecasting and supports decisions that reflect the complexity of

cardiometabolic care.

As policy demands grow more complex, the model provides a strong foundation
for future developments, including external validation, expanded disease
coverage, and user-friendly interfaces. Designed for practical use, it enables the
simulation of targeted interventions, such as dietary changes, metabolic control,
or smoking cessation, by adjusting covariates and estimating their impact on
transition risks and outcomes, thereby supporting effective public health

planning and resource allocation.
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Chapter 7 Case studies

7.1 Introduction

Following the development and validation of the CMD Policy Model in Chapter 6,
Chapter 7 demonstrates its practical application through a case study focused on
targeted preventative strategies. Leveraging detailed individual-level healthcare
data and advanced multi-state survival models, the model enables simulation of
various clinical and policy scenarios, offering a platform for forecasting

cardiometabolic disease (CMD) trajectories within the UK population.

The intervention scenarios examined in this chapter are inspired by priorities
identified in guidance from the National Institute for Health and Care Excellence
(NICE), particularly in areas related to cardiovascular and diabetes prevention.
The current scenarios do not replicate existing NICE evaluations, but adopt
similar intervention types and are implemented using the CMD Policy Model, with
updated or adapted parameters as appropriate. The primary objective of this
chapter is to demonstrate ‘how the model works’ and show its flexibility, rather

than to produce results ready for direct policy use.

The chapter includes two case studies, each demonstrating a distinct application
of the model. The first focuses on dietary interventions aimed at preventing
type 2 diabetes (T2DM) among ethnic minority populations in England. The
second examines the cost-effectiveness of smoking cessation among adult
smokers. Together, these examples illustrate two core ways in which the model
can be utilised: first, by simulating the impact of modifying covariate profiles
before and after an intervention; and second, by projecting long-term clinical

outcomes and conducting health economic evaluations.
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7.2 Case study 1: behavioural weight gain prevention

The intervention in this study is informed by the NICE public health guideline
(PH38)3%8, which focuses on the cost-effectiveness of preventing pre-diabetes
among adults in high-risk groups. Originally published in 2012, this guideline
specifically assessed the impact of dietary interventions among Black and
minority ethnic populations in England with low socio-economic status (SES).
While this thesis does not adopt all aspects of the original NICE modelling
approach, it builds on its core concepts. The NICE model evaluated a range of
weight management and dietary programme scenarios (retrieved from

international published studies) that influence key metabolic risk factors such as

body mass index (BMI), HDL, LDL, and total cholesterol.

7.2.1 Overview of public health intervention

In the UK, individuals of Black and other minority group (e.g.,South Asian)
ethnicities and those living in areas of high deprivation are recognised as high-
risk groups for cardiometabolic diseases (CMD), including type 2 diabetes
(T2DM), hypertension, and cardiovascular disease (CVD). National health data
consistently show that Black communities, particularly of African and Caribbean
descent, experience higher rates of obesity, diabetes, and stroke compared to
the general population.3%-3¢" These disparities are further exacerbated by socio-
economic inequalities, with people in the most deprived areas facing greater
exposure to risk factors such as poor diet, limited access to green spaces for

physical activity, and higher levels of stress and material hardship.3¢1-363

Structural barriers within the healthcare system, including reduced access to
preventive services and culturally appropriate care, also contribute to delayed
diagnosis and poorer disease outcomes. As a result, public health preventative
strategies in the UK (such as NICE guidelines above) have increasingly targeted
these high-risk groups to reduce health inequalities, improve early detection,

and deliver more impactful and equitable health interventions.

The CMD Policy Model allows for such targeted analysis and, in this instance, is
applied to individuals of Black ethnicity living in the most deprived areas. This

approach highlights the model’s capacity to incorporate subgroup-specific
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characteristics and evaluate the potential impact of interventions on key

metabolic risk factors. In the original NICE guidance, the scenarios for metabolic
risk changes were used to estimate the cost per person per intervention.
However, the focus of this case study is not to perform a full economic
evaluation but rather to examine the effect of changes in covariates resulting

from lifestyle interventions.

7.2.2 Modelling method: risk factor modification

This case study is informed by published clinical trial data focused on weight
management interventions among the Black adult population in the UK. The
intervention was a 12-month behavioural programme designed to support
sustainable weight loss and metabolic improvement. It included behaviour
change goals, weekly self-monitoring activities, monthly counselling sessions,
training materials, and access to gym facilities. The baseline population consists
of adults aged 18 years and older who were classified as obese and presented
with moderate to high levels of clinical biomarkers associated with
cardiometabolic risk. These biomarkers include elevated BMI, fasting glucose,

blood pressure, and lipid levels. 3%

Following the intervention, participants experienced measurable improvements
in metabolic parameters. These changes are assumed to result from the
combined effect of structured behavioural support and physical activity, as
evidenced in the trial.3¢ The updated covariate values used in the intervention
scenario reflect the post-intervention biomarker profile and are summarised in
the table below.

Table 7.1 Metabolic risk changes based on trials results

Metabolic risks Baseline (Initial) After Intervention Target/Ideal

BMI (kg/m2) 32 24 18.5-24.9
Glucose (mmol/l) 7 4.8 4.5-5.0 (fasting)
SBP (mmHg) 125 115 <120

DBP (mmHg) 85 75 <80
Cholesterol (mmol/l) 7 4.8 <5.0

HDL (mmol/l) 1.2 1.6 >1.6

LDL (mmol/l) 3.5 2.5 <3.0
Triglycerides (mmol/l) 2.0 1.4 <1.7
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Appendix 8 provides example R code that shows how the model works to

accommodate the mean risk changes before simulation in R. The simulated
individual used in this case study is defined through a set of baseline
characteristics (initialCovariateValues) representing a high-risk profile
within a Black adult population living in the most deprived areas of the UK. The
individual is classified as obese with a BMI of 32, and exhibits elevated
cardiometabolic biomarkers and has borderline blood pressure and sub-optimal
lipid and glucose profile. Lifestyle factors include being a non-smoker and

consuming alcohol within safe limits.

The intervention scenario (interventionCovariateValues) assumes
metabolic improvements following a structured 12-month behavioural weight
management programme. This intervention is expected to result in reductions in

metabolic risk levels.

For the first four transitions (from disease free to T2DM and CVD) the covariates
are drawn from the initialCovariateValues object. For all subsequent transitions
(from diabetes or after a cardiovascular event), the covariates are based

on interventionCovariateValues, Which reflect improvements due to a
lifestyle intervention. These changes simulate the metabolic benefits of a
structured behavioural weight management programme and allow the model to
evaluate how improved risk profiles affect progression to subsequent events and
death.This approach allows the CMD Policy Model to assess how an intervention
influences disease progression across different stages of cardiometabolic disease
by updating the relevant covariate values at appropriate points in the disease
pathway.

Then the model can be fitted using either parametric or flexible parametric
models for each transition. The best models (see Chapter 6) are embedded (see
Chapter 6), ordered by transition name. Once the transition-specific models are
fitted, the semi-Markov simulation can be executed. This involves

computing state occupancy probabilities over time, which represent the
likelihood that a simulated individual will occupy each health state (e.g.,
disease-free, diabetes, MI, stroke, death) at each time point during the

simulation horizon.
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7.2.3 Simulation results

The two plots (Figure 7.1 and 7.2) illustrate the projected state occupancy
probabilities over a life-time horizon for the individual profile in the CMD Policy
Model. The first plot represents the baseline (pre-intervention) scenario, while
the second plot shows outcomes under the intervention scenario, in which
improved metabolic risk factors (e.g., reduced BMI, glucose, and blood pressure)
are assumed after implementation of a 12-month behavioural weight

management programme.

The comparison between the pre-and post-intervention plots reveals several
important shifts in disease progression. In the pre-intervention scenario, the
“Disease-free” state begins to decline earlier (around age 20 to 25) indicating
earlier onset of type 2 diabetes (T2DM). In contrast, the post-intervention plot
shows a delayed decline in this state, with T2DM onset postponed by
approximately 5 to 10 years, reflecting the preventive effect of improved

metabolic risk factors.

The progression to myocardial infarction (Ml) and stroke is also slower and less
pronounced after the intervention, consistent with better lipid and blood
pressure control. Additionally, the burden of chronic post-event states is
reduced: in the pre-intervention plot, post-MI and post-stroke segments appear
earlier and are more prominent, while in the post-intervention scenario, these
segments are narrower, suggesting fewer severe or repeated events. Finally, the
transition to death is delayed in the post-intervention group, with a higher
likelihood of survival beyond age 80, indicating potential gains in life expectancy

as a result of the intervention.
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Although the behavioural programme improves metabolic risk factors, it does not

completely eliminate the risk of developing cardiometabolic conditions. The

individual in the model still begins with a high-risk profile, and while those risks

are reduced, they are not completely brought down to the level of a low-risk
individual.
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As a result, the person is still likely to develop disease eventually, just at a later

point in life. For instance, someone who would have developed diabetes at age
30 might now develop it at age 40 or 45 instead. Similarly, cardiovascular events
may occur later but are not completely avoided. In the model, this leads

to similar overall state trajectories, especially in the long term, since all

individuals eventually transition to the "death” state.

It also can be argued with optimistic scenarios that some individuals may adopt
lasting lifestyle changes following an intervention, such as sustained quit

smoking or improved diet, which could reduce their lifetime risk.

This is why the shape of the state occupancy plot looks similar in both scenarios,
even though the intervention is beneficial. The curves shift to the right
(indicating delayed disease), but the overall structure remains intact. Hence,
the intervention’s impact lies in delaying disease and extending healthy life, not

in preventing disease altogether.

The state occupancy probabilities data and transition probabilities generated by
this model are presented in Appendix 9. From this, all modification by adding
more parameters such as costs or utility can be performed, both in individual

perspective or population level analysis, or simply comparing life expectancy.

7.2.4 Discussion and conclusions

This first case study demonstrates the application of the CMD Policy Model to
simulate the health impact of a behavioural weight management intervention
targeted at a high-risk subgroup: Black adults living in the most deprived areas
of the UK. By modifying covariate inputs based on published clinical trial data,
the model enables exploration of how realistic improvements in metabolic risk
factors that can influence the progression of cardiometabolic diseases (CMD)

over time.

Simulation results indicated that improved risk profiles can meaningfully alter
transition probabilities, potentially delaying the onset of diabetes and reducing
the risk of cardiovascular events or premature death. These findings support the

policy relevance of lifestyle interventions and demonstrate how individual-level
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risk factor changes can translate into long-term health benefits. It supports

subgroup-specific simulations, making it well-suited for analysing ethnic and
socio-economic disparities in health outcomes. A major advantage is its ability to
dynamically update covariates over time, enabling assessment of interventions
that modify risk factors. Its flexible framework accommodates both standard
parametric and Royston-Parmar spline models, improving fit across diverse
transitions. It has potential for inequality inspection and equity analysis,
although these features were not activated in this first case study. In terms of
usability, the model provides a practical and adaptable platform, allowing
researchers to easily modify covariate values and simulate alternative

intervention scenarios with minimal effort.

However, several limitations must be acknowledged. In this case study, the
intervention effects were applied uniformly to all post-diagnosis transitions,
without accounting for individual variation in adherence or behavioural relapse,
factors that are common in real-world settings. Additionally, the model
currently simulates a single average individual and does not capture
heterogeneity across a population. While it is capable of accommodating
subgroup differences based on deprivation index or ethnicity, this was not fully
explored in the current scenario. Finally, although the intervention is informed
by clinical trial data, the model has not yet been externally validated using long-
term real-world datasets. These limitations point to opportunities for further

refinement and future development.

In summary, this case study demonstrates how the model can be adapted with
simple modifications to support epidemiological investigations. With the addition
of cost and utility values assigned to each health state, the model could also
support health economic evaluations. The next section will explore preventative
strategies in more detail, using transition probabilities as the foundation for
illustrating movement between health states, to offer more perspective
regarding model usability. These transitions can be paired with effectiveness,
costs, and utility estimates to quantify intervention impact at each stage of

disease progression.
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7.3 Case study 2: cost-effectiveness of smoking cessation

intervention

The first case study demonstrated how the CMD Policy Model can be used to
simulate changes in disease progression based on behavioural risk factor
modification, this approach can also be extended to incorporate economic
dimensions. By linking clinical events with associated costs and health-related
quality of life, the model enables the assessment of both cost-effectiveness and
budget impact. This integration allows for a more comprehensive policy analysis,
supporting decision-making not only on the basis of health outcomes but also on
the value for money of interventions. The following sections explore how this
modelling framework can be adapted for economic evaluation, using a
combination of clinical evidence, cost data, and utility weights to inform

resource allocation in the context of cardiometabolic disease prevention.

7.3.1 Health economic evaluation: preliminary concept
Definition

A widely accepted definition of economic evaluation is provided by Drummond
et al. (2015)73, who describes it as "the comparative analysis of alternative
courses of action in terms of both their costs and consequences.” This definition
captures the essence of economic evaluation: it is not merely about calculating
costs or measuring outcomes in isolation, but about assessing the relative value

of competing interventions in a structured and transparent manner.

Economic evaluation plays a critical role in informing public health policy by
assessing the value for money of health interventions. It is a core component of
evidence-based healthcare decision-making, aiming to ensure that limited
resources are allocated efficiently to achieve the greatest possible health
benefits. In public health and chronic disease prevention, economic evaluation is
especially important because interventions often require substantial upfront
investment but deliver benefits over an extended time horizon. Without such
evaluations, there is a risk of under- or over-investing in interventions that may

be ineffective, inefficient, or inequitable. 366,367
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Types of economic evaluation

There are several types of economic evaluation, each serving different decision-
making needs. Cost-minimisation analysis (CMA) is used when two interventions
are proven to have equivalent outcomes; in such cases, the focus is solely on
identifying the option with the lowest cost. Cost-effectiveness analysis

(CEA) compares interventions based on the cost per unit of health outcome
(e.g., cost per case of diabetes prevented), while cost-utility analysis

(CUA) extends this by incorporating a generic outcome such as quality-adjusted
life years (QALYs), capturing both the quantity and quality of life gained. Cost-
benefit analysis (CBA), in contrast, expresses both costs and outcomes in

monetary terms, enabling comparisons across sectors or policy areas.’3

Table 7.2 Types of economic evaluation

Method Costs Effects
Cost-minimisation analysis  Monetary unit (£) Considered equal
Cost-effectiveness analysis Monetary unit (£) Natural unit (LY, disease
(CEA) events prevented)
Cost-utility analysis (CUA)  Monetary unit (£) QALYs, DALYs
Cost-benefit analysis (CBA) Monetary unit (£) Monetary unit

Importance of modelling in economic evaluation

The most common applied modelling frameworks in economic evaluation are
decision-trees and Markov models. Decision tree models are well-suited for
short-term economic evaluations involving interventions with a limited number
of outcomes and a clear sequence of events. They are relatively simple to
construct and interpret but become less practical when events recur or evolve
over time. The Markov framework (in state transition models), on the other
hand, is designed for chronic conditions and long-term interventions, allowing
individuals to transition between health states across multiple time cycles. This
structure makes Markov models particularly advantageous for capturing disease
progression, recurrent events, and cumulative outcomes like lifetime costs and
QALYs. As a result, Markov modelling offers greater flexibility and realism in

evaluating complex, long-term public health strategies. 43368
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In the UK, health economic modelling plays a central role in evidence-based

decision-making, particularly through institutions such as the National Institute
for Health and Care Excellence (NICE). NICE routinely employs economic models
to assess the clinical and cost-effectiveness of healthcare technologies, public
health interventions, and disease preventative strategies.3¢°-3’! These models are
essential for determining whether new interventions represent good value for

money within the constraints of the NHS budget.

Modelling allows NICE to extrapolate trial data over long-term horizons, assess
uncertainty, and compare interventions across different diseases using a
common metric such as cost per QALY gained. This is especially important in
chronic conditions like cardiometabolic disease, where preventive strategies
may offer small but cumulative health benefits over time. By simulating
alternative scenarios, economic models help policymakers understand trade-offs
between immediate costs and long-term health gains, examine the distribution
of benefits across population subgroups (e.g., by ethnicity or deprivation), and
support equitable resource allocation. In this way, health economic modelling
not only informs funding decisions but also enhances the fairness, transparency,

and accountability of health policy.

In this thesis, the CMD Policy Model provides the structural foundation to
integrate various modelling elements and support future cost-effectiveness
evaluations of CMD preventative strategies. By incorporating clinical,
epidemiological, and economic data, the model enables robust, long-term
projections of value for money, thereby informing policy and resource allocation

decisions.

The first case study demonstrates how changes in metabolic risk factors
influence state occupancy probabilities and transition probabilities, offering

an epidemiological perspective on disease progression. Building on that,

this second case study illustrates how transition probabilities can be adjusted
using information from published evidence, such as intervention effectiveness,
(e.g: risk ratios), inputs commonly employed in long-term economic evaluations.
While the two case studies differ in their perspectives, one grounded in
epidemiology and the other in literature-based effectiveness evidence, both

approaches are valid and compatible within an economic evaluation framework.
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7.3.2 Methods

Intervention, comparator, and target population

The intervention examined in this second case study is based on the Single
Technology Appraisal (STA) published by Hind et al. (2007)3>® which evaluated
the clinical and cost-effectiveness of varenicline (Champix®) for smoking
cessation. The appraisal explicitly recommended varenicline for adult smokers
who wish to quit, noting it should ideally be prescribed alongside behavioural

support, though it may still be offered when such support is declined.

The STA provided the foundation for NICE guidance, supporting the routine

commissioning of varenicline in the NHS in England and Wales. As of June 2025,
updated resources from the National Centre for Smoking Cessation and Training
(NCSCT) continue to support varenicline as a safe, effective, and cost-effective
first-line treatment for smoking cessation, reaffirming its NICE-endorsed role in

clinical practice.372:373

Building on this context, the current thesis conducts a simple economic
evaluation (cost-utility analysis) comparing varenicline to bupropion for adult
smoking cessation. Bupropion was selected as the comparator in this evaluation
because it has long been an established pharmacological aid for smoking
cessation and was one of the first non-nicotine medications approved before the
introduction of varenicline.?”* However, bupropion carries a higher risk of
adverse effects, most notably insomnia, dry mouth, and a dose-dependent risk
of seizures, which restricts its use in patients with seizure disorders, eating

disorders, or those on interacting medications.3”>

Multiple clinical trials and meta-analyses, including those cited in the NICE
technology appraisal (TA123), have demonstrated that compared to buproprion
varenicline significantly improves quit rates relative to bupropion. The design of

the analysis follows the PICOS framework, as outlined below:
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Table 7.3 PICOS for economic evaluation

PICOS Description

Population  Adult smokers (=40 years)

Intervention Varenicline
Patients begin with a titration week, then proceed to 1 mg orally twice
daily:
- Week 1: Typically 0.5 mg once daily on days 1-3, then 0.5 mg
twice daily on days 4-7.
- Week2-12: 1 mg twice daily (total 2 mg/day).
Standard treatment 12 weeks, with a possibility of extending another
12 weeks for patients who successfully quit in the first course.

Comparator Buproprion
- 150 mg orally twice daily; a total daily dose of 300 mg.
- Duration: Used within a 12-week treatment course, consistent
with smoking-cessation protocols

Outcomes - Model based economic evaluation
and study - Cost per QALY gained (economic outcome)
design

Model structure and assumptions

The model follows the current structure of the CMD Policy Model, comprising
seven health states and thirteen transition probabilities as previously outlined.
Individuals enter the model at age 40 years in a disease-free state who

are motivated to quit smoking, with a moderate metabolic risk profile and a
current smoking status. The model simulates annual transitions over a lifetime
horizon. Although the original appraisal included participants aged >18 years,
the model assumes a baseline age of 40 to better represent the demographic
more likely to engage seriously with cessation support and to maintain long-term

abstinence.

In contrast to earlier models such as BENESCO (BENefits of Smoking Cessation),
developed for a Pfizer-commissioned technology appraisal, where smoking status
(current, former, relapse) and related comorbidities (e.g., cardiovascular
disease, chronic obstructive pulmonary disease) are explicitly modelled, the

current model incorporates smoking status via relative risk adjustments.
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The effectiveness of smoking cessation interventions is captured through the

proportion of individuals who achieve smoking abstinence, and the associated

risk reductions in disease onset.

The seven health states included in the model are: Disease-free, Type 2 Diabetes
Mellitus (T2DM), Myocardial Infarction (Ml), Post-MI, Stroke, Post-stroke, and
Death. Transition probabilities were adjusted based on treatment-specific quit
rates: 21.9% for varenicline and 16.1% for bupropion, based on estimates from
NICE STA 12338 Relative risk reductions associated with smoking cessation: 20%
for T2DM, 30% for MI, 25% for stroke, and 15% for all-cause mortality were

applied to the relevant transition probabilities.3>8:376

Cost, perspective, and dicounting

The analysis adopts the perspective of the UK National Health Service (NHS) and
Personal Social Services (PSS), consistent with the NICE reference case for
economic evaluations. This includes direct medical costs such as
pharmacological treatment and hospitalisation, as well as long-term care costs
related to complications such as post-stroke disability. Indirect costs (e.g.,
productivity losses) are not currently considered, but technically it is possible

for them to be incorporated if a societal perspective is adopted.

It is important to emphasise that the data used in the model are primarily
derived from previously published NICE appraisals. The purpose of this example
is to illustrate the structure and functionality of the CMD policy model, rather
than to re-evaluate the cost-effectiveness of varenicline in the current UK

context.

Intervention costs were derived from the NICE STA for varenicline and were
inflated to 2025 values using the UK Consumer Price Index (CPI). The cost of a
12-week course of varenicline was estimated at £204.40, while the
corresponding cost for bupropion was £104.21.3°8 These represent one-off
treatment costs incurred at the outset of the model. Annual healthcare costs
associated with each disease state were sourced from validated national
datasets, including the NHS Reference Costs and the Personal Social Services
Research Unit (PSSRU) Unit Costs of Health and Social Care.
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Parameters Values Distribution Description Sources

Transition probabilities 0-1 Beta Lifetime transition probabilities CMD Policy Model

Intervention costs

Varenicline £293.80 Gamma As dosage mentioned in PICOS BNF [NICE STA 1231338

Buproprion £144.63 Gamma As dosage mentioned in PICOS BNF [NICE STA 123138

Quit rate

Varenicline 21.8% Gamma Quit rate at 12 months NICE STA123; adjusted from trial data3>®

Buproprion 16.2% Gamma Quit rate at 12 months NICE STA123; adjusted from trial data3>®

Healthcare costs (Annual)

c_T2DM £2,900 Gamma Cost of managing T2DM Hex et al. 2012377

c_Ml £4,250 Gamma Cost of first MI NHS Ref Costs BNF [NICE STA 123/NIHR
reports]38:378-380

c_post-MI £810 Gamma Cost of post-MI maintenance NHS Ref Costs BNF [NICE STA 123/NIHR
reports]358378-380

c_stroke £4,840 Gamma Cost of acute stroke NHS Ref Costs BNF [NICE STA 123/NIHR
reports]358,378-380

C_post-stroke £14,800 Gamma Annual cost of post-stroke disability NHS Ref Costs BNF [NICE STA 123/NIHR

and care reports]338,378-380

Relative risks (RR)

rr_ T2DM 0.80 Log-normal RR of T2DM in ex-smokers vs smokers ~ Pan et al., 2015%"

rr_ M 0.70 Log-normal RR of Ml in ex-smokers vs smokers Critchley & Capewell, 200332

rr_ stroke 0.75 Log-normal RR of stroke in ex-smokers vs smokers  Peters et al., 201333, Shah and Cole (2010)33

Utility

u_disease free 0.85 Beta Utility of disease free state Ara & Brazier (2010)384, NIHR reports379,38>

u_T2DM 0.78 Beta Utility of T2DM state Ara & Brazier (2010)%%4, NIHR reports379:385

u_Ml 0.76 Beta Utility of Ml state Ara & Brazier (2010)%%4, NIHR reports379:385

u_post-MI 0.65 Beta Utility of post MI state Ara & Brazier (2010)%%4, NIHR reports379:385

u_stroke 0.73 Beta Utility of stroke state Ara & Brazier (2010)%%4, NIHR reports379:385

u_post-stroke 0.48 Beta Utility of post stroke Ara & Brazier (2010)%%4, NIHR reports379:385

Discount rate

dr_costs 3.5% - Annual discount rate for costs NICE Reference Case’®®

dr_outcomes 3.5% - Annual discount rate for outcomes

NICE Reference Case?*’
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NICE STA: National Institute for Health and Care Excellence; NIHR: National Institute for Health and Care Research, BNF:British National Formulary
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Health-related quality of life (HRQoL) was modelled using utility values from Ara
and Brazier (2010)38, a widely cited UK-based source for economic evaluations. It
is then adjusted with NIHR reports for smoking cessation. The model also
incorporated the long-term health benefits of smoking cessation by

applying relative risks (RRs) to transitions into smoking-related diseases. These
RRs reflect the reduced incidence of disease among ex-smokers compared to
continuing smokers and were applied proportionally, based on the intervention-

specific quit rates reported in NICE STA123.

No risk reductions were applied to transitions into Post-MI or Post-stroke states,
as these represent downstream consequences of the primary event and are
assumed to be unaffected directly by smoking cessation. This is consistent with
the structure of prior economic evaluations, including NICE STA123 and
international models such as BENESCO and EQUIPTMOD (European Tobacco ROI
Model).

All future costs and health outcomes were then discounted at an annual rate of
3.5%, consistent with the NICE reference case for economic evaluations in the
UK.3%° For probabilistic sensitivity analysis, model parameters were simulated
using standard probability distributions commonly applied in health economic

modelling.
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Base-case analysis

In economic evaluation, Incremental Cost-Effectiveness Ratio (ICER) and Net
Monetary Benefit (NMB) are two fundamental tools for assessing cost-
effectiveness. The ICER is a key metric in health economic evaluation that
compares the difference in costs and outcomes between two interventions. It is
calculated as the difference in cost divided by the difference in effectiveness. It
answers the question, “How much extra does it cost to gain one additional QALY
with the new intervention?” The ICER helps decision-makers assess whether the
additional benefits of a new intervention are worth the additional costs, relative

to a comparator (often standard care).

ICER = Costintervention Costcomparator
Effectintervention EffecCtcomparator

(Equation 7.1)

Lower ICERs suggest more cost-effective options, and in many health systems,
including the UK, ICER thresholds (e.g., £20,000-£30,000 per QALY) guide
decisions on whether an intervention offers good value for money.3¢° To aid

interpretation, the Cost-Effectiveness (CE) Plane is used.

On the other hand, the NMB approach reformulates cost-effectiveness by
translating health outcomes into monetary terms using a predefined WTP
threshold.

NMB = (Ef fectiveness X 1) — Cost

(Equation 7.2)

Where effectiveness is typically measured in QALYs, A (lambda) is

WTP threshold per QALY . Cost is the total cost of the intervention. By
comparing two intervention, Incremental Net Monetary Benefit (INMB) can be
calculated using formula above incorporationg difference in effectiveness and

costs (AEffectiveness and ACosts).

If INMB > 0 it means the new intervention is cost-effective at the chosen WTP

threshold, and if INMB < 0 means that the comparator is more cost-effective.
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ICER expresses cost-effectiveness as a ratio, specifically, the additional cost per
additional quality-adjusted life year (QALY) gained, and is widely used by HTA
bodies such as NICE. Its main advantages lie in its intuitive interpretation and
strong alignment with established WTP thresholds, making it accessible to
policymakers and stakeholders. However, ICER has mathematical limitations,
particularly when the incremental difference in QALYs is very small or negative,
which can lead to unstable or misleading results. In contrast, the NMB
framework reformulates the cost-effectiveness question into a monetary value,
subtracting the cost of an intervention from the monetary value of the health
benefits. This approach is statistically more robust, especially for handling
uncertainty and conducting probabilistic sensitivity analyses. Moreover, NMB

is always defined, even in cases where ICER fails. Nevertheless, its main
drawbacks include the need to specify a willingness-to-pay threshold upfront
(which may vary across contexts) and the fact that monetary valuation of health
outcomes may be less intuitive for some audiences.38:3%7 Despite the growing
use of NMB in methodological research, ICER remains the most widely used

measure in policy-making, and this case study applying ICER for final result.

In terms of practicality, the NMB calculation can still be implemented within the
policy model by adding supplementary code to represent the mathematical

expression.

Sensitivity analysis

Sensitivity analysis is an essential component of health economic evaluation,
used to assess the robustness of model results to uncertainty in input
parameters. Deterministic sensitivity analysis (DSA) involves varying one (one-
way) or several (multi-way) parameters at a time within a plausible range to
observe the impact on outcomes such as the ICER.'>> This helps identify key

drivers of cost-effectiveness and supports transparent reporting of assumptions.

In contrast, probabilistic sensitivity analysis (PSA) simultaneously varies multiple
uncertain parameters by assigning probability distributions to model inputs (e.g.,

costs, utilities, transition probabilities) and using Monte Carlo simulation to
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generate a range of possible outcomes.'> PSA provides a more comprehensive

picture of uncertainty and allows the generation of outputs like the cost-
effectiveness acceptability curve (CEAC), which shows the probability that an
intervention is cost-effective at different willingness-to-pay thresholds. Both DSA
and PSA are performed in this current model to highlighting how uncertainty may

influence conclusions.

7.3.3 Results

Base case results

The updated model-based economic evaluation compared the lifetime costs and
health outcomes of two pharmacotherapies for smoking cessation,

varenicline and bupropion (based on a hypothetical UK cohort of 1,000). These
results show that varenicline is more effective, offering 0.06 additional

QALYs and 0.06 additional life-years per person. The resulting ICER of £1,656 per
QALY gained is well within the UK’s cost-effectiveness threshold of £20,000-
£30,000/QALY, suggesting that varenicline is highly cost-effective from an NHS

perspective.

Table 7.5 Base case result

Lifetime LYG QALY ICER
costs (discounted) (discounted)
(discounted)
Varenicline 33,205.16 19.60 15.63 £1,656
Buproprion 33,106.94 19.54 15.57

It can be said that the results of this analysis are nearly identical to those
reported by NICE STA 123.3%® They concluded that, on a per-person basis,
varenicline was associated with lower average costs (£10,717 vs. £10,820 for
bupropion) and higher average QALYs (13.27 vs. 13.25). To project these results
to the population level, the per-person estimates can be multiplied by the
number of eligible individuals. For example, in the NICE STA123 report, the
estimated number of adult smokers in England eligible for cessation services was
approximately 3,173,000 people, resulting in a total cost for varenicline of
£34.02 billion and a total of 42.14 million QALYs.38
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To extrapolate these findings to the population level, the per-person results can

be multiplied by the number of eligible individuals. For instance, if we assume
there are 4.09 million adult smokers aged 40 in England, this results in a total
cost of approximately £135.79 billion (£33,205.16 x 4.09 million) and a total
of 63.92 million QALYs (15.63 x 4.09 million) for Varenicline.

Sensitivity Analysis

Deterministic sensitivity analysis

Tornado Diagram: Change in ICER (£ per QALY)

quit varenicline
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Figure 7.3 Tornado diagram

The tornado diagram presents the results of a one-way sensitivity analysis,
highlighting how changes in individual model parameters affect the incremental
cost-effectiveness ratio (ICER) of varenicline compared with bupropion. The
most influential parameter was the quit rate for varenicline, as it directly
determines the number of individuals who successfully stop smoking and
therefore avoid future smoking-related diseases. A higher quit rate leads to
greater health gains (increased QALYs and life-years), which reduces the ICER
and makes the intervention appear more cost-effective. Conversely, a lower quit
rate weakens these health benefits, driving the ICER upwards. Similarly,

the relative risk reductions for death and stroke had a major impact, as these
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are high-burden outcomes where small changes in risk can result in significant

differences in life expectancy and healthcare costs over time. The quit rate for
bupropion also influenced the ICER considerably, since greater effectiveness of
the comparator diminishes the relative advantage of varenicline, making it

appear less favourable economically.

Moderate effects were seen from parameters related to diabetes and MI, as well
as health state utility values for stroke, MI, and diabetes. These influence the
QALY outcomes but to a lesser extent because the baseline utilities and disease
incidence are relatively stable or less impactful than stroke or death. In
contrast, treatment costs, including the drug acquisition costs for varenicline
and bupropion and the costs of managing cardiovascular and metabolic
conditions, had minimal impact on the ICER. This is because small changes in
unit costs are outweighed by the much larger health effects driving cost-

effectiveness.

Probabilistic sensitivity analysis

Incremental Costs (£)

@

-1000

0.0 0.1 0.2
Incremental QALYs

Figure 7.4 Cost-effectiveness plane
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The cost-effectiveness plane illustrates the results of the PSA, where each of the

1,000 simulations represents a random draw from probability distributions for
key model parameters. The x-axis shows the incremental QALYs gained by
varenicline compared to bupropion, while the y-axis reflects the corresponding
incremental costs. The majority of simulations fall within the southeast
quadrant, indicating that varenicline is both more effective and less costly than
bupropion—in other words, it is the dominant strategy in most scenarios. A small
number of simulations lie in the northeast quadrant, where Varenicline is more
effective but also more costly, yet still often falls below the WTP

threshold represented by the red dashed line. Very few simulations lie in the
northwest or southwest quadrants, which would imply that Varenicline is either

dominated or offers fewer QALYSs.
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Figure 7.5 Cost-effectiveness acceptability curve (CEAC)

The cost-effectiveness acceptability curve (CEAC) illustrates the probability that
Varenicline is cost-effective at varying levels of WTP thresholds/QALY gained.
The curve rises steeply and shows that at a WTP of £20,000 to £30,000 per

QALY (marked by the vertical red dashed line), the probability that Varenicline
is cost-effective is already above 90%, exceeding the accepted decision

threshold used by NICE.3%° This confirms the earlier findings from the cost-



222
effectiveness plane and base-case ICER, demonstrating that even when

parameter uncertainty is fully accounted for through PSA, varenicline remains
highly likely to be the most cost-effective option. The steep shape of the curve
also suggests that the model’s results are relatively insensitive to variations in
the decision-maker’s WTP, strengthening the policy argument for continued or
expanded investment in smoking cessation interventions using varenicline within
the NHS.

7.3.4 Discussion and conclusions

This analysis demonstrates not only that varenicline is a cost-effective
intervention for smoking cessation, but also that the economic evaluation model
performed consistently and reliably across a wide range of conditions. In the
base-case scenario, varenicline generated greater health benefits than
bupropion (15.63 QALYs vs. 15.57) at a slightly higher cost (£33,205 vs. £33,107),
resulting in an ICER of £1,656 per QALY gained. This is well below NICE’s
standard willingness-to-pay threshold and confirms the intervention’s strong
value for money. When extrapolated to a national level, assuming 4.09 million
adult smokers aged 40 years old in England, the model projected over £135.8
billion in total costs and 63.9 million QALYs. These outputs align with published
findings, including those from NICE’s STA123.3% Importantly, this case study
demonstrates how the model behaves in practice: it produces plausible, policy-
relevant outputs while efficiently linking short-term intervention effects to long-

term disease consequences and economic value.

Nonetheless, this study has several limitations that warrant consideration.
Structurally, the use of a cohort-based Markov model imposes simplifying
assumptions such as permanent cessation status after quitting. This excludes the
possibility of relapse, which is a clinically important factor in long-term smoking
cessation. Additionally, the model is heavily reliant on published literature for
utility values, disease risks, and cost data. While these sources provide a solid
foundation, they may not fully capture recent changes in practice or reflect the
heterogeneity of real-world patients. As a result, the external generalisability of
the model outputs may be limited, particularly in settings where patient
characteristics, healthcare costs, or intervention delivery differ significantly

from the assumptions used in this evaluation.
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The NHS perspective used here also omits indirect costs and non-medical costs

such as lost productivity and informal care. However, it is important to stress
that the current model is fully capable of incorporating these additional cost
components. Their exclusion in this analysis was a deliberate modelling choice,
primarily due to the reliance on published studies that often lack robust or
consistent estimates for such parameters. Including them without high-quality
supporting data could introduce substantial uncertainty into the model. Future
versions using real-world or patient-level datasets could confidently extend the

model’s perspective to capture a fuller range of economic impacts.

Recent literature, including the study by Zhou et al. (2024)38, has highlighted
the importance of estimating healthcare costs using individual-level data and
regression models that account for cost variability and skewness. Applying these
methods in future model updates would allow for more accurate cost
estimations, particularly for conditions which significantly impact long-term
healthcare expenditures. Integrating relapse dynamics and capturing individual
differences in treatment adherence and disease risk would further improve the

model’s validity and policy relevance.

In conclusion, this analysis confirms that varenicline is a clinically effective and
economically efficient option for smoking cessation. As the first case study
applying the CMD policy model to a behavioural intervention, it provides a strong
foundation for future modelling work. By incorporating individual-level data,
relapse probabilities, and broader cost perspectives, future versions of the
model can better inform tobacco control policies and support more promising

decisions within the NHS and beyond.

To enhance transparency and reporting quality, the current model is
accompanied by the Consolidated Health Economic Evaluation Reporting
Standards (CHEERS) checklist, which is provided in Appendix 10.
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Chapter 8 Main insights, policy

implications, further research

8.1 Introduction

The general aim of this thesis was to develop a Cardiometabolic Disease (CMD)
Policy Model by exploring the potential use of Clinical Practice Research Datalink
(CPRD) Aurum and its relevant linked datasets within the UK setting. This model
was designed to accommodate both epidemiological and health economic
contexts in which extrapolation and long-term analyses are critical to inform

decision-making in public health policy.

Throughout the preceding chapters, the model development followed a
sequential and structured process and included: a systematic review to map
existing models and gap (Chapter 3), the conceptual model construction
(Chapter 4), data preparation and cohort definition (Chapter 5), development
and analysis of multi-state survival models (Chapter 6), and case studies on
preventative interventions to illustrate the application and potential of the CMD

Policy model (Chapter 7).

As the final chapter, Chapter 8 is organised into three sections. First, main
insights (section 8.2, covering sub-section 8.2.1-8.2.5), which provides a
synthesis of the findings from Chapter 3 to 7, summarising the most important
insights from the conceptual, data analysis, and modelling stages. Second, policy
implications (section 8.3), providing the overall interpretation of the findings in
the context of health policy, particularly for prevention and management of
cardiometabolic diseases. Lastly, recommendations fo further research (section
8.5), which outlines key areas where additional investigation, data
improvement, or methodological refinement is needed to enhance the accuracy,

relevance, and practical utility of the CMD Policy Model.
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8.2 Main insights

8.2.1 Critical literature review and conceptual model

The systematic review in Chapter 3 offers a comprehensive evaluation of existing
policy models aimed at preventing cardiometabolic disease (CMDs) through
dietary interventions. By analysing 32 studies published between 2000-2024, the
review provides critical insight into the methodologies, applications, and quality

of these models. 18

Unlike previous reviews that extensively concentrate on clinical interventions or
high-risk population, such as individuals already diagnosed with CMDs, this study
highlights models assessing population-wide dietary policies. These include
initiatives likes sugar taxes, salt reduction programme, and food labelling
strategies for general or low-risk population. Such interventions aim to achieve
primordial prevention by addressing risk factors before the onset of disease,
aligning with the overarching goal of the CMD Policy model developed in this

thesis.

Most of the reviewed models demonstrated moderate to good reporting quality.
However, a key limitation identified was the frequent reliance on non-local
data, often without adequate justification regarding its transferability.
Additionally, the review emphasised the need for greater transparency in the

validation of input data and assumptions. '8

The results of this systematic review not only provide a critical appraisal of
existing models and highlight the gaps in modelling practices but also serve as a
foundational resource for developing conceptual models'® such as presented in
Chapter 4. By integrating insights from reviews along with clinical guidelines and
experts’ input, supporting both face and structural validity, the conceptual

model then establishes a basis for overall model development.

Based on the findings of this review, several key recommendations emerged.
These include leveraging real-world data (RWD) to enhance population

representativeness, improving the transparency and quality of data inputs,
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adopting a broader economic perspective, and incorporating equity

considerations into policy modelling. '8

The CMD Policy Model addresses many of these identified gaps through a series
of methodological and structural advancements. First, it is explicitly grounded in
UK-specific RWD, enhancing the contextual relevance and policy applicability of
its outputs. Second, it incorporates time-dependent covariates to more
accurately reflect dynamic risk profiles and capture the long-term impacts of
behavioural interventions. Third, the model integrates both health and economic
outcomes within a unified state-transition framework, enabling robust cost-
effectiveness analysis over a lifetime horizon. These design features position the
CMD Policy Model as a significant advancement over many of the models
identified in the review. It aligns closely with emerging best practices by
improving data quality, enhancing model transparency, adopting a prevention-
focused perspective, and ability to applying economic evaluation analysis also

with expansion of inequality outcomes generation.

8.2.2 Caveats in data preparation

Chapter 5 outlines the critical data preparation phase required to construct the
CMD Policy Model using real-world data from CPRD Aurum. This stage details the
steps involved in transforming raw patient-level electronic health records (EHR)
into an analysis-ready dataset. While many existing studies focus on general data
cleaning procedures or the construction of a baseline cohort, this chapter
provides specific guidance on how the dataset was structured to fit the state-
transition modelling framework used in this thesis. It provides the technical
insights that are often underreported in the modelling literature, not because
data preparation is unimportant, but because most attention tends to be placed

on how the data are analysed and the findings that emerge from those analyses.

Three main components are addressed in data preparation section:
1) Initial data manipulation. Before inclusion criteria was applied, the raw
dataset included over 14 million patients, which introduced significant
computational challenges. To address this, memory-efficient strategies

were employed in R environment, enabling the processing and
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transformation of the data within the limitations of available computing

resources.

2) Cohort construction and transition matrix development. The development
of the transition matrix posed several challenges, which were addressed
using a combination of custom-built R functions and existing published
methods.

3) Time-dependent covariate handling. All relevant covariates were treated
as time-dependent variables, allowing the model to more accurately

reflect changes in patient health status over time.

8.2.3 CMD Policy Model: standard vs flexible parametric model
The CMD Policy Model developed in this thesis relies on real-world data (RWD)

rather that extrapolated results from clinical trial populations, which is more
representative and generalisable for modelling future disease progression. It
allows also the flexibility to incorporate public health strategies and simulate

them for long-term time horizons.

To model disease progression across health states, a wide range of survival
analysis methods were applied. These ranged from simple non-parametric
methods (e.g., Kaplan-Meier), to semi-parametric approach (e.g., Cox
proportional hazards model), to standard parametric models (e.g., exponential,
Weibull), and finally to flexible parametric models (e.g., Royston-Parmar
splines). This methodological progression allowed for in-depth exploration of

model performance across transitions.

For extrapolation beyond the observed follow-up period, the findings in this
thesis demonstrated that both standard and flexible parametric models are
capable of generating long-term projections. While this thesis presents results
using both approaches, it does not aim to compare them head-to-head or
declare one as universally superior. Instead, the modelling framework was
designed to remain flexible, allowing the selection of the most appropriate

method based on the specific characteristics of each transition.
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The choice between standard and flexible parametric models is not based solely

on predictive accuracy. Each approach has distinct strengths and limitations, and
their suitability depends on factors such as the shape of the underlying hazard,
the amount and quality of available data, the complexity of disease progression,
and the intended use of the model (e.g., for scenario simulation or policy
evaluation). In this way, the CMD Policy Model accommodates both modelling
approaches, using them pragmatically and adaptively to ensure robust and

policy-relevant results.

Instead, each modelling approach has its own advantages and

limitations. Standard parametric models offer simplicity, computational
efficiency, and ease of interpretation. However, they may lack flexibility when
hazard functions are complex, time-varying, or non-monotonic.3%4313,389,39 Each
standard distribution imposes a specific functional form on the hazard, for
example, the exponential model assumes a constant hazard over time, while the
Weibull model assumes a hazard that is either monotonically increasing or
decreasing. These fixed assumptions may not accurately reflect real-world
disease dynamics, potentially leading to biased estimates, particularly when

extrapolating beyond observed data.

In contrast, flexible parametric models, such as Royston-Parmar spline-based
approaches, are more adaptable and capable of capturing complex hazard
shapes. They provide a better fit to observed data by modelling the log
cumulative hazard (or log hazard) using restricted cubic splines. However, this
flexibility comes at a cost: flexible models require more careful calibration and
carry a higher risk of overfitting, especially when the number of spline knots is
excessive or the sample size is limited. Moreover, while flexible models often
perform well within the observed follow-up period, they may

behave unpredictably during extrapolation, as the spline-based hazard function
is not inherently constrained outside the data range.3°'-3%3 Without appropriate
validation or sensitivity analyses, this can lead to unstable or implausible long-

term projections.

Furthermore, by embedding each transition-specific survival model (standard or

flexible) into a semi-Markov structure, the CMD Policy Model can simulate
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patient trajectories over time with greater clinical plausibility and temporal

precision.

Both standard and flexible models were applied and evaluated using statistical
criteria (e.g., AIC, BIC) and diagnostic plots checks (e.g., Cox-Snell residuals).
The final model selection was conducted on a transition-specific basis, ensuring
that each transition was represented by the most appropriate method. This
approach allowed for an optimal balance between goodness-of-fit,

interpretability, and the appropriateness of long-term projections.

8.2.4 Perspective on applying CMD policy models: a hybrid approach
The CMD Policy Model developed in this thesis adopts a hybrid approach,

enabling both individual-level simulation and population-level aggregation. This
dual perspective enhances the model’s applicability for a range of public health

and policy evaluation scenarios.

By using patient-level data, the model allows for customised simulations based
on individual risk profiles, accounting for differences in age, sex, or clinical
biomarker levels. This individual-level flexibility supports stratified analysis,
which is critical for evaluating equity impacts, targeting high-risk subgroups, or
tailoring interventions. At the same time, the outputs can be aggregated to
reflect population-level outcomes, such as total cardiometabolc events

prevented or life-years gained under various preventative scenarios.

A key feature of this model is the ability to estimate and visualise transition
probabilities between health states. These probabilities are not static; they are
dynamically influenced by both individual characteristics and the duration of
time spent in a given state, a feature made possible through the integration of
a semi-Markov framework. The semi-Markov approach provides a more realistic
and clinically plausible structure by allowing time-dependent risks to evolve

based on the time since entering a health state.

As reflected in the case studies, the flexibility of the CMD Policy Model enables a

wide range of applications. For instance, it can simulate how changes in
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metabolic risk factors influence transition probabilities before and after an

intervention. The model can also be applied using fixed baseline characteristics
to generate transition probabilities for cohort-based analyses, allowing the
integration of various parameters which are often sourced from published
literature (such as relative risks, costs, and utility values). This adaptability
makes the model suitable for both clinical and economic evaluations, supporting

evidence-based decision-making across diverse policy scenarios.

Beyond that, even though it is not covered yet in case studies, the individual
level parameters also can be analysed such as individual costs or quality of life
that can be incorporated in the models, so the state based estimation can be
obtained from those, as more reflecting mean estimation based on patient level
calculations. In addition, socio-economic and ethnicity information from this
model can further enrich long term analyses and address equity concerns via

distributional cost-effectiveness analysis.

In terms of reproducibility and scalability, this thesis optimised modular coding
practices using R. Reproducibility was maintained through structured workflows,
transparent documentation, and automated model-fitting loops across 13
transitions. This allows for consistent model updating as new data become
available and facilitates adaptation for different settings or subpopulations.
Memory-efficient techniques were used to handle large datasets, and key

modelling functions were designed for generalisability and reuse.

8.3 Policy implications

The findings of this thesis have several important policy implications,
particularly for the prevention and management of cardiometabolic diseases
(CMD) in the UK. The development of a multi-state CMD Policy Model based on
real-world data (RWD) offers a powerful tool to support evidence-based public
health decision-making. By capturing disease progression through key stages
(from a disease-free state to the onset of type 2 diabetes, cardiovascular events,
and death), the model enables policymakers to assess the long-term impact of

interventions and resource allocation planning.
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First, the model underscores the importance of early prevention. The transition

from a disease-free state to CMD outcomes (e.g. type 2 diabetes, myocardial
infarction, stroke) can be predicted using routinely collected clinical and
biomarker data. This supports the implementation of population-level strategies,
such as risk-based screening, lifestyle modification programs, and preventive
care pathways. The model also facilitates identification of subgroups,
reinforcing the need for stratified care and targeted interventions for individuals

with modifiable risk factors (e.g., elevated BMI, hypertension, or dyslipidaemia).

Second, the integration of linked datasets (e.g., HES and ONS) enables a more
comprehensive understanding of patient trajectories across both primary and
secondary care settings. This aligns with NHS goals for integrated care systems
and allows policymakers to capture the broader health system impact of CMD,
including hospitalisations, complications, and mortality. The model therefore
moves beyond traditional reliance on clinical trial data, providing a framework
that incorporates real-world clinical pathways and enhances relevance for

service planning.

Third, the inclusion of time-dependent covariates allows for a dynamic
representation of disease risk, reflecting how patients’ risk profiles evolve over
time. This feature aligns with real-world clinical practice and supports policies
promoting continuity of care, regular monitoring, and proactive disease
management. Interventions that adapt to patient risk progression rather than
relying on static baseline assessments can be better evaluated using this model

structure.

Fourth, the semi-Markov structure captures disease progression where risk
evolves with duration in intermediate states. It supports precise evaluation of

interventions targeting long-term disease management.

Fifth, the model provides a foundation for resource allocation and economic
evaluation. By enabling long-term extrapolation of disease trajectories, the
model supports estimation of cost-effectiveness and potential health gains

associated with preventive strategies. This is especially relevant given increasing
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demands on the health system and the urgent need to balance short-term costs

with long-term benefits of upstream prevention.

In practical terms, policymakers might use outputs from the CMD Policy Model to
inform NHS commissioning decisions or public health investment. For example,
the model could be applied to evaluate the cost-effectiveness of a national
diabetes screening programme, estimating the number of cases prevented, long-
term healthcare costs avoided, and quality-adjusted life years (QALYs) gained
across different population segments. Similarly, the model could support
resource planning by projecting the impact of dietary interventions (e.g., a
sugar reduction strategy) on future rates of CVD events and hospital admissions,
helping NHS and local Integrated care boards prioritise funding towards

interventions that deliver the greatest health return on investment.

Finally, although health inequalities were not the central focus in this thesis, the
model structure allows for stratification by socioeconomic status, ethnicity, and
other relevant demographic variables. This can help policymakers understand
and address disparities in CMD burden and the differential impact of
interventions. For instance, the model could reveal whether the benefits of
lifestyle interventions are equitably distributed, or disproportionately favour
lower-risk groups. In line with this, the National Institute for Health and Care
Excellence (NICE) has proposed updates to its technology evaluation manual,
including explicit guidance on incorporating health inequality analysis into
decision-making. These updates (currently under consultation) highlight the
growing importance of embedding equity considerations into public health and
health technology assessments (HTA), making the model developed in this thesis

highly relevant for future policy evaluation frameworks. 3%4

8.4 Limitations

Although CPRD Aurum covers approximately 20% of the UK population, there are
notable gaps in geographic coverage, particularly in Scotland, Northern Ireland,
and Wales. This limitation may affect the geographic representativeness of the
study cohort and should be considered when generalising results to the wider UK

population.
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From a modelling perspective, although face and internal validation have been
performed, external validation was not conducted and remains an important
next step. Face validity was established through expert consultation and
alignment with clinical guidelines (see Chapter 4), while internal validation
involved checks on model logic, parameter consistency, and calibration against
observed event rates (see Chapter 6). Future work should focus on validating the
model against independent datasets and exploring its performance in different

population subgroups to strengthen its generalisability and policy relevance.

The baseline cohort in this thesis was constructed using a complete-case
approach, with no imputation applied. While this decision simplified the
modelling process and ensured internal consistency, it may pose challenges for
analysts seeking to adapt the model to different datasets, particularly those
with missing values. Additionally, the model includes a rich set of covariates,
which adds clinical realism but may impact computational stability in large-scale

analyses or when new variables are introduced.

An area of note relates to the transition from type 2 diabetes mellitus (T2DM) to
death, which showed poor model fit compared to observed data. This may
reflect the influence of competing risks and the absence of intermediate events,
such as diabetes-related complications, in the transition structure. This
limitation highlights the importance of ongoing model refinement, particularly in

transitions where disease trajectories are more complex.

The CMD Policy Model was designed to capture the natural progression of
cardiometabolic disease, rather than treatment-modified pathways. While this
focus is appropriate for model conceptualisation and baseline risk estimation,
additional parameterisation would be required to evaluate specific interventions
or treatment strategies. Consequently, adapting the model for intervention-
specific cost-effectiveness analyses may require further development to reflect

alternative patient pathways and treatment effects.
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Although the structure and codebase are transparent and can be followed by
experienced analysts or modellers, the current version does not

include automated functions or user-friendly interfaces for parameter
adjustment or translating state occupancy probabilities into transition
probabilities. Instead, guidance is provided through example code, which
requires a certain level of technical skill. Future development could address this
limitation by incorporating interactive features, such as graphical interfaces or
guided input forms (e.g., through R Shiny), to improve accessibility for non-
technical stakeholders and support wider use in public health policy decision-

making.

8.5 Areas for future research

From this work, several promising areas for potential future research can be

explored.

Future studies should assess the external validity of the current policy model by
comparing its performance with other relevant datasets. Such comparisons
would help to determine the model’s generalisability across different

populations and healthcare systems.

In terms of model application, the current framework mainly demonstrates ‘how
the model works’ using hypothetical public health interventions, rather than
evaluating real health policy questions. As such, further validation is required
before the model can be confidently applied to inform national decision-making.
External validation remains a critical next step to assess the model’s predictive
performance and generalisability. Nonetheless, the framework has considerable
potential for application in real-world health intervention and policy evaluation.
Incorporating individual-level parameters such as patient-level cost and resource

use data would enhance the model’s utility for health economic evaluations.

Applying a societal perspective in economic evaluation can be beneficial, and

this model is capable of accommodating such an approach. However, the current
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case study focuses on applying the model from the NHS and Personal Social

Services (PSS) perspective, as this was the primary objective at the time. If data
available, future studies could adapt the model to adopt this perspective,

allowing for a broader assessment of costs and outcomes.

Additionally, the model could be expanded to support distributional analyses, a
growing area of interest in health policy formulation, especially when socio-
economic data are already incorporated in the model. This extended analysis

can support long-term resource planning and equity focused decision-making.

Another important step forward would be making the model more accessible and
interactive. Developing friendly interface would allow users to explore different
scenarios, adjust parameters, and visualise outcome in real time. Alongside this,
a feasibility study employing qualitative methods could investigate how analysts
and policymakers use such tools in practice, thus ensuring functionality aligns
with users’ needs and embedding stakeholder involvement early in the design

process.

8.6 Conclusions

This thesis presents a body of work aimed at developing a flexible, data-driven
Cardiometabolic Disease (CMD) Policy Model to support the evaluation of early
preventative strategies and inform long-term public health planning. By
leveraging complex, individual-level real-world data and applying robust survival
modelling techniques, the model offers a transparent and adaptable platform for
simulating disease progression and assessing the impact of population-wide

policy interventions.

It is anticipated that the contributions of this research will support further
methodological advancements and practical applications in the field of health
policy modelling. By outlining both the potential and limitations of the
approach, this thesis provides a foundation for strengthening the evidence base

used in cardiometabolic health decision-making.
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Appendices

Appendix 1. Search strategy

EMBASE/ MEDLINE (OVID)

exp Diabetes Mellitus/

exp Diabetes Mellitus, Type 2/

(type* adj1 ("2" or "lI" or two*) adj2 (diabete* or diabeti*)).mp.

(T2D or T2DM).mp.

exp Dyslipidemias/

exp Insulin Resistance/

exp Glucose Intolerance/

1or2or3or4or5or6or7

exp Cardiovascular Diseases/

10 (CV or CVD).mp.

11 exp Stroke/

12 exp Hypertension/

13 exp Myocardial Infarction/

14 (cardiovascular disease® or heart disease* or ischaemic heart disease* or
ischemic heart disease* or angina or coronary disease* or cardiac or vascular
disease* or cerebrovascular or cerebral vascular).mp.

15 90or10or11or12or 13 or 14

16 exp Metabolic Diseases/

17 (metabolic adj1 (disease* or syndrom* or dysfunction* or disorder*)).mp.

18 (cardiometabolic or cardio-metabolic).mp.

19 16 or 17 or 18

20 8or150r19

21 (model* adj2 (decision* or analys* or simulat® or predict® or statistic* or
mathematic* or state transition or Markov or discrete event
simulation®)).mp.

22 20 and 21

23 exp Health Policy/ or health polic*.mp.

24 public health policy.mp.

25 (policy model* or health policy model* or diabetes polic* or cardiovascular
polic* or cardiometabolic polic*).

26 (policy adj2 (disease® or epidemiolog*)).mp.

27 23 or 24 or25o0r 26

28 22 and 27

29 limit 28 to (english language and yr="2000 - 2022")

OVONOURNWN=-

*Similar terms to CINAHL, Google Scholar, OpenGre
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STRUCTURE Yes | No | Unclear | Not
related

S1 Is there a clear statement of the decision problem?

S2 Is the objective of the evaluation and model specified and consistent with the stated decision problem?

S3 Is the primary decision-maker specified?

S4 Is the perspective of the model stated clearly?

S5 Are the model inputs consistent with the stated perspective?

S6 Has the scope of the model been stated and justified?

S7 | Are the outcomes of the model consistent with the perspective, scope and overall objective of the model?

S8 Is the structure of the model consistent with a coherent theory of the health condition under evaluation?

S9 Are the sources of data used to develop the structure of the model specified?

S10 | Are the causal relationships described by the model structure justified appropriately?

S11 | Are the structural assumptions transparent and justified?

S12 | Are the structural assumptions reasonable given the overall objective, perspective and scope of the model?

S13 | Is there a clear definition of the options under evaluation?

S14 | Have all feasible and practical options been evaluated?

S$15 | Is there justification for the exclusion of feasible options?

516 Is tgel?chosen model type appropriate given the decision problem and specified causal relationships within the
model?

S17 | Is the time horizon of the model sufficient to reflect all important differences between options?

518 Aretﬁrhed'c?ime horizon of the model, the duration of treatment and the duration of treatment effect described and
justified?

519 Do the disease states (state transition model) or the pathways (decision tree model) reflect the underlying
biological process of the disease in question and the impact of interventions?

S20 | Is the cycle length defined and justified in terms of the natural history of disease?
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Yes | No | Unclear | Not

DATA related

D1 Are the data identification methods transparent and appropriate given the objectives of the model?

D2 | Where choices have been made between data sources, are these justified appropriately?

D3 Has particular attention been paid to identfying data fo the important parameters in the model?

D4 | Has the quality of the data been assessed appropriately?

D5 | Where expert opinion has been used are the methods described and justified?

D6 | Is the data modelling methodology based on justifiable statistical and epidemiological techniques?

D7 | Is the choice of baseline data described and justified?

D8 | Are transition probabilities calculated appropriately?

D9 | Has a half-cycle correction been applied to both cost and outcome?

D10 | If not, has this omission been justified?

D11 | If relative treatment effects have been derived from trial data, have they been synthesised using appropriate
techniques?

D12 | Have the methods and assumptions used to extrapolate short-term results to final outcomes been documented
and justified?

D13 | Have alternative assumptions been explored through sensitivity analysis?

D14 | Have assumptions regarding the continuing effect of treatment once treatment is complete been documented and
justified? Have alternative assumptions been explored through sensitivity analysis?

D15 | Are the costs incorporated into the model justified?

D16 | Has the source for all costs been described?

D17 | Have discount rates been described and justified given the target decision-maker?

D18 | Are the utilities incorporated into the model appropriate?

D19 | Is the source for the utility weights referenced?

D20 | Are the methods of derivation for the utility weights justified?

D21 | Have all data incorporated into the model been described and referenced in sufficient detail?

D22 | Has the use of mutually inconsistent data been justified (i.e. are assumptions and choices appropriate)?

D23 | Is the process of data incorporation transparent?

D24 | If data have been incorporated as distributions, has the choice of distributions of each parameter been described

and justified?
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D25 | If data have been incorporated as distributions, is it clear that second order uncertainty is reflected?
D26 Have the four principal types of uncertainty been addressed?
D27 If not, has the omission of particular forms of uncertainty been justified?
D28 Have methodological uncertainties been addressed by running alternative versions of the model with different
methodological assumptions?
D29 Is there evidence that structural uncertainties have been addressed via sensitivity analysis?
D30 Has heterogenity been dealt with by running the model separately for different subgroups?
D31 Are the methods of assessment of parameter uncertainties have been addressed via sensitivity analysis?
D32 If data are incorporated as point estimates, are the ranges used for sensitivity analysis stated clearly and
justified?
Yes | No | Unclear | Not
CONSISTENCY related
C1 Is there evidence that the mathematical logic of the model explained has been tested thoroughly before use?
C2  Are any counterintuitive results from the model explained and justified?
C3 If the model has been calibrated against independent data, have any differences been explained and justified?
C4  Have the results of the model been compared with those of previous models and any differences in results

explained?
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Appendix 3. First conceptual model
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CVD: cardiovascular disease, T2DM: type 2 diabetes, CHD: chronic heart disease, HF: heart failure, AF: atrial fibrillation, TIA: transient ischemic attack, CKD: chronic
kidney disease, HRQoL: health related quality of life, QALE: quality adjusted life expectancy, QALY: quality adjusted life years
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Appendix 4. Data management plan (DMP)

University of Glasgow

Data Management Plan for PGR students

1. Overview

Student name Septiara Putri

Supervisor name Dr. Claudia Geue, Prof. Jim Lewsey, Dr. Giorgio Ciminata

Project title The development of cardiometabolic disease model in the UK

Funder & award number | Not applicable

Project Summary This project’s general objective is to develop and validate a
cardiometabolic disease (CMD) decision analytic model using Clinical
Practice Research Datalink (CPRD) data. Specifically, the state
transition model of CMD would be constructed to facilitate the
estimation of CMD incidence, life expectancy extrapolation, quality of
life, and direct medical costs. The quantitative model is intended to aid
decision making process in terms of healthcare resource allocation as
well as individual healthcare context in the UK setting.

2. Data

What types of data will be collected or created?

Clinical Practice Research Datalink (CPRD) that collects routine patients’ data across UK will be
utilized in this study. The data encompasses 60 million patients, including 16 million currently
registered patients. CPRD covers approximately 6% of UK population, the data include routine
clinical practice, such as information regarding symptoms, diagnoses, prescriptions, and referrals.
This large database is highly generalisable.

CPRD AURUM and CPRD GOLD data. CPRD AURUM would be utilized for model development, and
CPRD GOLD for model validation.
General data included:
- Patients’ profile
- Diagnosis and procedures
- Observation (metabolic data)
- Drug issue
Linked data:
- HES (Hospital Episodes Statistics)
- ONS (Office for National Statistics)
- IMD (Index of Multiple Deprivation)

Sample will be drawn to construct the state transition model from the total data retrieved
(n=2,656,165) patients.

What formats will you use?
- Data are in csv. and txt. Currently stored in Nextcloud University of Glasgow
- Further data storage and transfer will be used High Performance Computing (HPC) MARS
(MVLS Advanced Research) system
- Initial data query and sampling will be using PostGRE SQL or SQLite
- Code for data analysis will be written in R and recorded to GitHub
- Visual final model result and estimation will be using RShiny

How much data will you collect?

Version 1.0 - 2019
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The current data size approximately 200 GB (zipped file). It probably become higher depend on
transferring process and data checking/revision following CPRD data dictionary. Hence, to
anticipate this, the larger storage might be needed.

3. Documentation

How will the data be documented and described?

All CPRD data for this project will be documented under the University of Glasgow system.
Code for analysis will be recorded in GitHub.

Are there any standards for this in your field of research?

CPRD has its own standard for data documentation, metadata, and linkage. (See:
https://link.springer.com/article/10.1007/s10654-018-0442-4)

After sampling, our documentation and descriptive standards will be depending on the project’s
circumstances.

4. Ethics and Intellectual Property

Who owns the data in your project?

List of the team who can use CPRD data is available at: https://cprd.com/cardiometabolic-disease-
prediction-using-general-practice-consultation-pattern-use-machine-learning

Detail any ethical, legal or commercial considerations relating to your research data
Observational research undertaken using CPRD data must be for public health purposes and
approved by an Independent Scientific Advisory Committee (ISAC). This study has been approved
by ISAC.

How will these concerns be dealt with?
There are no legal, ethical and commercial issues as long as we follow the CPRD data use
governance.

- Datasets will be stored under MARS system until the end of analysis and will not be

shared even though the project output is finished and published.

- Patients were fully anonymised, non-identifiable, confidential

- Sharing data only allowed for researchers who are stated in the projects protocol

- My PhD scholarship funder has no right to see or access the data

5. Storage and organisation
How will the data be named, organised and structured?
- Since the original data were fragmented due to size reasons, we plan to combine all the
data first (i.e: combine each file, building script etc.)
- Two different folders for CPRD AURUM and CPRD GOLD
- Folder and variable naming will be following CPRD data dictionary
- Data will be structured by relational identification published by CPRD, and merged by
patient id.
- Each data update will be recorded with date/time to keep track the version, it would also
perform in SQL and R. Folders and files will be identified by date.

How will the data be stored for the duration of the project?
- Datasets are stored in NextCloud University of Glasgow and plan to migrate them to HPC
MARS system

Version 1.0 - 2019
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- May maintain access in J: drive space (with supervisors) for sampled data, if needed

How will the data be backed up during the project?
- Data back-up will be under university system, only for sampled CPRD data
- If possible, automatic backup services will be discussed with IT Services, so we will not rely
on manual process.

Does access to the data need to be controlled for the duration of the project?
- Password protecting files in system and laptop, screen locking
- Encrypted files if needed to email/cloud transfer
- Sharing drive only with supervisors

Who has the right to access the data during the project?
List of the team who can use CPRD data is available at: https://cprd.com/cardiometabolic-disease-
prediction-using-general-practice-consultation-pattern-use-machine-learning

6. Deposit and long-term preservation

Which data should be retained long-term?

Since this data will be used for various aims and different researchers (outside this PhD project), it
might depend on the agreement and project duration. It is also depend on the Pl and supervisors’
approval/agreement.

How long will data be retained for?

The University of Glasgow requires that data of long-term value should be retained for a minimum
of 10 years from the end of the project. But again, it depends on the reasons above. We may
consider whether is economically viable to keep, or any data governance procedures that we need
to review and discuss further.

Where will the data be archived at the end of the project?
- Under repository (recommended by CPRD team)
- Enlighten: research data University of Glasgow (if it is allowed)

What formats will the data be archived in?
Same format as in section 2.

7. Data sharing
Is any of the data suitable for sharing?
No.

- No archival data will be shared (i.e: for other researchers, journal supplementary
material)

How will the data be shared?

N/A

Who should be able to access and use the shared data?
N/A

| 8. Implementation
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Who is responsible for implementing this plan?
| will be responsible with data management activity, with supervision from academic supervisors
as well as projects’ PI.

How will this plan be kept up-to-date?
This plan will be reviewed regularly aligned with supervisory meeting or wider researchers whom
using CPRD.

What actions are necessary to implement this plan?
- Contact local IT support to ensure storage provision is adequate
- Ensure all data management activities are acceptable in terms of data governance and
protection
- Ensure data management and analysis are well reported and systematically recorded

What training or further information are needed to implement this plan?
- GDPRtraining
- Data query training
- Improve coding skill for data management
- Attend trainings/workshops about managing and analysing routine data
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Appendix 5. Cox model results (survival and hazard curves)
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Transition 1: Disease-free to T2DM
p <0.001

Transition 2: Disease-free to MI
p <0.001

Transition 3: Disease-free to Stroke

Transition 4: Disease-free to Death

279

Transition 5: T2DM to Mi
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Appendix 6. Schoenfeld residuals
Semi-parametric model diagnostic Schoenfeld residuals

By using standard one the result of residual plot as below, which is overlapped the line due to black scattered dots. Thus, to make
them clearer, the smoothed Schoenfeld residual were plotted to enhance plot clarity.
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Appendix 7. Martingale residuals
Appendix Figure 1. Overall plot
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Appendix Figure 2. Individual plot (by covariates)
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Appendix 8. R code for 15t case study

#Initial covariates wvalues
initialCovariateValues <- c(
startingAge = 18,
gender = unname (genderMap|["Female"]),
ethnicity = unname (ethnicityMap["Black"]),
deprivationIndex = 5, #most-deprived
cvdFH = 0,
diabetesFH = O,
atrialFib = 0,
hypertension = 0,
hyperlipidaemia = 1,
latestSmokingStatus = unname (smokingMap["Non smoker"]),
alcoholStatus = unname (alcoholMap["Safe alcohol"]),
bmi = 32,
hdl = 1.2,
1dl = 3.5,
triglycerides
cholesterol =
glucose = 7,
sbp = 125,
dbp = 85
)

= 2.0,
Ty

interventionCovariateValues <- initialCovariateValues
interventionCovariateValues <-

unlist (modifyList(as.list(initialCovariateValues), list(
bmi = 24,

hdl = 1.6,

1dl = 2.5
triglycerides = 1.4
cholesterol = 4.8,
glucose = 4.8,

sbp = 115,

dbp = 75,

)))

#Intervention effect

covEval <- rbind/(
initialCovariateValues,
initialCovariateValues,
initialCovariateValues, Disease-free -> Stroke
initialCovariateValues, Disease-free -> Death
interventionCovariateValues, # Diabetes -> MI
interventionCovariateValues, Diabetes -> Stroke
interventionCovariateValues, Diabetes -> Death
interventionCovariateValues, MI -> Post-MI
interventionCovariateValues, MI -> Death

Disease—-free -> Diabetes
Disease—-free -> MI

H o 3

#
#
id
#



314
interventionCovariateValues, # Post-MI -> Death
interventionCovariateValues, # Stroke -> Post-Stroke
interventionCovariateValues, # Stroke -> Death
interventionCovariateValues # Post-Stroke -> Death

#fitting model (standard vs felxible)

fparametric

dist <- cbind("logn", "logn", "logn", "wei", "gom", "gom",
"g—om"’ "g—am"’ "g—am"’ "g—am"’ "g—am"’ "g—am"’ "g—am")

#flexible parametric

dist <- cbind(
"rps3"’ "rpslll’ "rpsl", " rp83"’ "rpslﬂl "rps2"’ "rps3",
"rpsB", "rpS3"’ "rps3", "rpsl"’ "rpSZHI "rpSBH)



Appendix 9. State occupancy probabilities and transition probabilities

State occupancy probabilities

age time
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18
18
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18
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Post-
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.000

.995

sum
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Transition probabilities

time T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.001 0.002 0.002 0.003 0.001
2 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.005 0.002 0.003 0.006 0.005 0.002
3 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.008 0.003 0.004 0.010 0.008 0.004
4 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.011 0.004 0.004 0.014 0.010 0.005
5 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.015 0.005 0.005 0.019 0.012 0.006
6 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.018 0.006 0.006 0.023 0.013 0.007
7 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.021 0.007 0.006 0.027 0.015 0.007
8 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.024 0.007 0.007 0.030 0.017 0.008
9 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.027 0.008 0.008 0.034 0.018 0.009

36498 0.9969 0.2410 0.1386 1.0000 0.3481 0.3001 0.8885 0.6047 0.5231 0.6144 0.6935 0.6418 0.5958
36499 0.9969 0.2410 0.1386 1.0000 0.3481 0.3001 0.8885 0.6047 0.5232 0.6144 0.6936 0.6418 0.5958
36500 0.9%969 0.2410 0.1386 1.0000 0.3481 0.3001 0.8885 0.6047 0.5232 0.6144 0.6936 0.6418 0.5958
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CHEERS 2022 Checklist
. i Reported
Item| Guidance for Reporting insection
TITLE
. Identify the study as an economic evaluation and Page 194
Title specify theinterventions being compared.
ABSTRACT
Provide a structured summary that highlights context, key NA
Abstract methods,results and alternative analyses.
INTRODUCTION
Background and Give the context for the study, the study question and its Page 194-196
objectives 3 practicalrelevance for decision makingin policy or
practice.
METHODS
Health economic Indicate whether a health economic analysis plan was developed Page 196
analysis plan 4 and
where available.
. Describe characteristics of the study population (such Page 198
Study population 5| as age range, demographics, socioeconomic, or clinical 8
characteristics).
Setting and location 6| Provide relevant contextualinformation that may influence findings.| page 198
Comparators 7 Dﬁscnbe the interventions or strategies being compared and why Page 199
chosen.
Perspective 8| State the perspective(s) adopted by the study and why chosen. Page 199
Time horizon 9| State the time horizon for the study and why appropriate. Page 199
Discount rate 10 Reportthe discount rate(s) and reason chosen. Page 201
. Page 202
Selection of outcomes 1 Descr.lbe what outcomes were used as the measure(s) of g
benefit(s)and harm(s).
Measurement of 12 Describe how outcomes used to capture benefit(s) Page 202
outcomes and harm(s)were measured.
Valuation of outcomes 13| Describe the population and methods used to measure and value Page 202
outcomes.
Measurement and
valuation of resources 14| Describe how costs were valued. Page 202
and costs
Currency, price date, Report the dates of the estimated resource quantities and unit Page 199
and conversion 15| costs, plus thecurrency and year of conversion.
Rationale and If modelling is used, describe in detail and why used. Report if the Page 198
description of model 16| model
is publicly available and where it can be accessed.
Analytics and Describe any methods for analysing or statistically transforming NA
assumptions 17| data, anyextrapolation methods, and approaches forvalidating any
modelused.
Characterizing Describe any methods used for estimating how the results of NA
heterogeneity 18| the studyvary for sub-groups.
Characterizing Describe how impacts are distributed across different individuals NA
distributional effects 19| or adjustments made to reflect priority populations.
Characterizing . . L Page 8-9
uncertainty 20| Describe methods to characterize any sources of uncertainty in the
analysis.
Approach to . . .
engagement with Describe any approaches to engage patients or service NA
patients and others 21 recipients, the general public, communities, or stakeholders
affected by the study (e.g., clinicians or payers) inthe design of the study.
RESULTS
Report all analytic inputs (e.g., values, ranges, references) Page 200
Study parameters 22| includinguncertainty or distributional assumptions.
Summary of main Report the mean values for the main categories of costs and Page 204
results 23| outcomes ofinterest and summarise them in the most
appropriate overall measure.
Despribe how uncertainty about analytic judgments, inputs, or
Effect of uncertaint 24 projections Page 206-207
Y affect findings. Report the effect of choice of discount rate and g
time horizon,if applicable.
Effect of engagement . . . . .
with patients and o5 Report on any difference patient/service recipient, general public, NA
othersaffected by the community,or stakeholder involvement made to the approach or
study findings of the study
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DISCUSSION

Study findings,
limitations,
generalizability, and
current knowledge

26

Report key findings, limitations, ethical or equity considerations not
captured,and how these could impact patients, policy, or practice.

Page 209-210

OTHER RELEVANT INFORMATION

. Describe how the study was funded and any role of the NA
Source of funding 27| funder inthe identification, design, conduct, and
reporting of the analysis
Report authors conflicts of interest according to journal or NA

Conflicts of interest

28
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