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Abstract

This thesis leverages Bayesian methods to address econometric challenges in microeconomic

settings, with a focus on causality and heterogeneity. The contributions are provided in three

essays.

The first essay (Chapter 2) proposes a novel approach, Bayesian Analogue of Doubly

Robust (BADR) estimation, to estimate unconditional Quantile Treatment Effects (QTEs) in

observational studies. This estimand offers valuable insights into treatment effect heterogeneity

across different outcome ranks. By incorporating Bayesian machine learning techniques, the

framework can effectively handle high-dimensional covariates and nonlinear relationships

to achieve better accuracy and appropriate uncertainty quantification. The simulation results

show that BADR estimators yield a substantial improvement in bias reduction for QTE

estimates compared with popular alternative estimators found in the literature. I revisit the role

of microcredit expansion and loan access on Moroccan household outcomes, demonstrating

how the new method adds value in characterising heterogeneous distributional impacts on

outcomes and detecting changes in overall economic inequality, which is also appealing to

other applied contexts.

The second essay (Chapter 3) introduces a new approach that harnesses network or

spatial data to identify and estimate direct and indirect causal effects in the presence of

selection-on-unobservables and spillovers. The proposed framework nests the Generalised

Roy model to explicitly account for endogenous selection into treatment and goes beyond

to capture spillovers through exposure mapping to neighbours’ treatment. This allows for

heterogeneous effects across individuals and enables exploration of various policy-relevant

treatment effects. I develop Bayesian estimators based on data augmentation methods, offering

efficient computation and proper uncertainty quantification, which is supported by simulation

experiments. I apply the method to evaluate the Opportunity Zones (OZ) program, which

aims to stimulate economic growth in distressed U.S. census tracts through tax incentives. The

results show both direct and indirect positive impacts on housing unit growth in designated
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Qualified Opportunity Zones (QOZs), but unselected tracts (non-QOZs) experience no

beneficial spillovers, remaining at a disadvantage. Moreover, the model predicts that offering

investment tax credits to non-QOZs would lead to negative outcomes, making the program’s

expansion to these areas ineffective.

The third essay (Chapter 4) is based on a joint work with Dr Santiago Montoya-Blandón. We

develop a new econometric framework for modelling network interactions with heterogeneous

effects, while addressing the issue of network endogeneity. The proposed Selection-corrected

Heterogeneous Spatial Autoregressive (SCHSAR) model overcomes the limitations inherent

in the standard spatial autoregressive (SAR) specification by achieving these dual objectives.

We incorporate a finite mixture structure to capture rich heterogeneity in network interaction

effects and explicitly model link formation, with latent variables playing a crucial role. For

estimation and inference, our fully Bayesian approach effectively handles the computational

challenges arising from the complex likelihood function and latent structure. We present a

simulation study that validates the proposed approach. In the empirical application to an

innovation network among American firms, we reveal significant positive yet heterogeneous

interaction effects on corporate R&D investments, after accounting for endogenous network

formation. The findings highlight different firm behaviours and reveal notable transmitters and

absorbers in response to exogenous R&D policy shocks. This framework enables quantification

of firm-level direct and spillover effects, thus providing valuable insights for evidence-based

and targeted policy design.

By utilising recent developments in Bayesian econometrics, my research seeks to overcome

the limitations of conventional methods, particularly in handling high-dimensional models,

endogeneity, heterogeneity, and several forms of spillovers. Ultimately, the proposed methods

enable more flexible and robust microdata analysis, contributing to a deeper understanding of

individual and group differences in economic behaviour, as well as causal effects. This, in

turn, can lead to more informed and effective policy decisions.
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Chapter 1

Introduction

1.1 General Background

Microeconometrics plays a vital role in developing sophisticated tools and methods that

integrate microdata analysis with microeconomic modelling. At the heart of this field are two

critical aspects: causality and heterogeneity.

Knowledge of causes and effects is profoundly important for decision-making, whether

in government designing policies, firms allocating resources, or individuals making life

choices. Causal inference has transformed our ability to move beyond mere correlation to

establish genuine causal relationships. Within economic contexts, agents often operate in

complex, interdependent systems where multiple factors simultaneously influence outcomes.

Consequently, confounding factors can give rise to endogeneity, which poses a substantial

challenge in identifying and estimating economic quantities of interest. Without proper

attention to causality, applied microeconometric work risks producing misleading guidance

that could lead to ineffective or even counterproductive interventions. Methodological

advancements are thus crucial to equip researchers with rigorous tools for recovering causal

effects. The field of causal inference in econometrics has experienced significant progress,

culminating in the 2021 Nobel Prizes awarded to David Card, Josh Angrist, and Guido

Imbens. As Imbens (2022) reflected in his Nobel Lecture, the field had rapidly evolved

through fruitful dialogue between empirical practice and interdisciplinary research, enhancing

both transparency and relevance. This recognition at the highest academic level underscores

that embracing causality has become a defining feature of modern microeconometrics.

Heterogeneity is another crucial dimension well documented in microeconometrics,

especially since Heckman (2001). He emphasised that “Accounting for heterogeneity

and diversity and its implications for economics and econometrics is . . . a main theme”

in the field. This marked a decisive departure from traditional economic models that

1
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assumed homogeneous responses across individuals or units, a simplification that often

obscured crucial variations in economic behaviour. The empirical reality reveals substantial

heterogeneity: different individuals respond differently to identical policies, treatments,

or economic shocks. This variation is not merely a statistical nuisance to be averaged out

through aggregate measures. Rather, heterogeneity may contain essential information about

the underlying economic processes and mechanisms that drive individual decision-making

and outcomes. Understanding this heterogeneity is of great importance because it determines

who benefits from policies, under what conditions interventions are effective, and how

economic relationships vary across different populations or contexts. A growing focus on

heterogeneous effects has been enabled by the availability of increasingly rich, granular

datasets that allow researchers to examine variation across individuals, firms, regions, and

time periods in unprecedented detail. These data developments necessitate methodological

advancements to enhance the field’s capacity to move beyond “one-size-fits-all” conclusions.

This dual focus on causality and heterogeneity has become a central theme in

microeconometrics, however, creating substantial challenges that demand innovative

methodological solutions.

1.2 Bayesian Inference in a Nutshell

Bayesian inference is a framework for statistical reasoning, where probability represents a

degree of belief that is updated systematically as new data become available. Fundamentally,

this is grounded in Bayes’ theorem, which combines prior beliefs with empirical evidence to

produce a posterior distribution. This posterior quantifies the uncertainty regarding the model

parameters after observing the data in a principled, probabilistic manner. The formal setup is

discussed below.

Likelihood function

The starting point of Bayesian analysis is a model of the data-generating process. Let

θ ∈ Θ ⊆ Rd denote the unknown parameter vector and y = [y1, . . . , yn] be the observed

data. The conditional probability density (or mass) function of the data given the parameters

is

p(y|θ) =
n∏
i=1

p(yi|θ).

This is called the likelihood function when viewed as a function of θ for fixed y: L(θ) =
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p(y|θ). According to the likelihood principle, all evidence about θ provided by the data is

contained in L(θ). Bayesian inference proceeds by combining this likelihood with a prior

distribution over θ.

Prior specification

The prior distribution p(θ) expresses beliefs about the values of θ before observing any data,

and must be explicitly stated by the researcher. When reliable prior knowledge is available,

such as that from domain expertise, economic theory, or previous studies, informative priors

can be used to incorporate that information. In the absence of such knowledge, diffuse (or

non-informative) priors are often chosen to exert minimal influence on the inference process,

allowing the data to “speak for themselves”.

In complex econometric models, particularly those with heterogeneous agents or high-

dimensional parameter spaces, simple prior choices may prove inadequate. In these settings,

hierarchical priors introduce an additional layer of modelling, where the parameters themselves

are drawn from distributions governed by higher-level (hyper-)parameters. For instance, rather

than specifying a single prior for all parameters, we allow the prior distribution of each

individual or group-specific parameter θi to depend on shared hyperparameters ψ, which are

themselves estimated from the data

θi ∼ p(θi|ψ), ψ ∼ p(ψ).

By borrowing strength across units, this structure enables partial pooling, a Bayesian

compromise between no pooling (fully individual estimates) and complete pooling

(homogeneous parameters). Another example is a class of shrinkage priors in high-

dimensional settings (many parameters relative to observations). Here, hierarchical priors

underpin modern Bayesian regularisation strategies to induce sparsity and shrinkage towards

zero. These approaches are particularly powerful in microeconometrics, where data per unit

(e.g., individual or firm) may be limited.

Bayes’ theorem

Bayes’ theorem provides the mechanism to update prior beliefs in light of the data, which

translates into posterior beliefs

p(θ|y) = p(y|θ)p(θ)
p(y) = p(y|θ) · p(θ)∫

Θ p(y|θ) · p(θ)dθ .
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The resulting posterior distribution p(θ|y) reflects updated uncertainty about θ given observed

data. The denominator p(y) =
∫

Θ p(y|θ) · p(θ)dθ is the marginal likelihood, which serves as

the normalising constant to ensure that the posterior integrates to one. In this step, we often

use a shortcut and bypass the need to directly compute the integral. Specifically, we can work

with the unnormalised posterior, noting that as a function of θ, the conditional density of θ

given y is proportional to

p(θ|y) ∝ p(y|θ) · p(θ) = L(θ|y) · p(θ),

which only requires knowing the posterior density up to a normalising constant. This

proportionality is sufficient for most inferential and computational tasks, particularly in

simulation-based approaches.

Posterior summary

A key advantage of Bayesian procedures is their capacity to quantify uncertainty fully in

the form of the entire posterior distribution of the parameters of interest. Researchers are left

to decide which summary statistics to report, potentially on the basis of decision-theoretic

criteria. Common point estimators include the posterior mean (minimising posterior expected

squared loss), median (minimising absolute loss), or mode, known as the Maximum A

Posteriori (MAP) estimator, which minimises the Dirac loss. Notably, with a flat prior density,

the posterior mode coincides with the maximum likelihood estimator (MLE). Regarding

interval estimation, Bayesian credible intervals (e.g., 95% highest posterior density (HPD)

intervals), which directly express the posterior probability that parameters lie within a specific

region, provide a natural interpretation of uncertainty.

Properties of Bayesian procedures in both large and small samples are generally at

least as good as those of maximum likelihood-based procedures. Bayesian analysis, being

conditional on the data, yields exact finite-sample inference, thereby obviating the need for

finite-sample corrections. This is particularly attractive in econometric contexts involving

limited data, weak identification, or complex hierarchical structures, where frequentist

methods may be unreliable. Furthermore, as the sample size increases, the influence of

the prior diminishes and the likelihood component of the posterior becomes dominant.

Consequently, Bayesian estimators tend to align closely with their frequentist counterparts in

large samples. This insight is formalised as the Bernstein-von Mises theorem in the literature
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(see, e.g., Van der Vaart, 2000, chap. 10). Under suitable regularity conditions, the posterior

distribution is asymptotically normal and centred at the MLE with variance equal to the

inverse Fisher information matrix (the asymptotic variance of the MLE). From a frequentist

viewpoint, this result implies that Bayesian methods can produce point estimators that are

asymptotically efficient, as well as confidence intervals that have asymptotically correct

coverage probability. Asymptotically, frequentist and Bayesian inferences rely on the same

limiting multivariate normal distribution. Thus, in regular cases and large samples, there is no

significant discrepancy between the two approaches.

Bayesian computation

The appealing theoretical properties of Bayesian methods have been acknowledged for

many years, but traditionally computational difficulties held back their practical applications.

Bayesian inference fundamentally involves evaluating integrals of the form

Eθ|y[h(θ)] =
∫

Θ
h(θ)p(θ|y)dθ,

which typically have no closed-form solution, especially in high-dimensional parameter spaces

common in econometric models. The high dimensionality and intractability of posterior

distributions pose substantial barriers, necessitating numerical approximation techniques.

Computational advances over the past decades – most notably, the advent and refinement

of Markov chain Monte Carlo (MCMC) algorithms – have significantly mitigated earlier

computational challenges. MCMC methods simulate a dependent random sequence, known as

a “Markov chain”, of parameter draws {θ(1), . . . ,θ(B)} whose stationary distribution matches

the posterior distribution p(θ|y). The simulated chain facilitates empirical approximation of

posterior expectations as

Eθ|y[h(θ)] ≈ 1
B

B∑
b=1

h(θ(b)).

Metropolis-Hastings (MH) is a versatile and widely-used class of MCMC algorithms

that constructs a Markov chain by iteratively proposing parameter values from a chosen

distribution and correcting potential inaccuracies through acceptance-rejection steps. A

common implementation, the random-walk Metropolis algorithm generates a candidate

parameter draw by sampling from a Gaussian proposal distribution centred at the current

state. Formally, given a current state is θcurr, a candidate draw θcand is generated as
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θcand ∼ N (θcurr, σ2I). The move from θcurr to θcand is accepted with probability

α = min
{
p(θcand|y)
p(θcurr|y) , 1

}
,

and rejected (i.e., remaining at θcurr) with probability 1 − α. Despite being robust and

broadly applicable, the efficiency of MH depends critically on properly tuning the

proposal distribution. Gibbs sampling, a special case of the Metropolis–Hastings algorithm

with an acceptance probability of one, breaks the curse of dimensionality by exploiting

low-dimensional conditional distributions. The Gibbs sampler cycles sequentially through

parameter blocks, drawing each component from its full conditional posterior distribution

θ
(b)
j ∼ p(θj|θ(b−1)

−j ,y).

This significantly simplifies the computation when these conditional posteriors have a

convenient analytical form. When facing complex conditional targets, Gibbs sampling

is often combined with the Metropolis-Hastings steps, resulting in a hybrid MH-within-

Gibbs approach utilised efficiently in numerous applications. Notably, efficient Bayesian

computation remains an active interdisciplinary research area, although detailed discussion

exceeds the scope of this overview.

In summary, the computational revolution has made Bayesian inference widely feasible

across econometric settings. There are now few restrictions regarding the choice of priors,

complexity of likelihood functions, or dimensionality of parameter spaces. Consequently,

Bayesian methods have evolved to serve as superior alternatives to classical methods,

delivering innovative computational and modelling solutions to complex econometric

problems. Early examples of significant microeconometric issues, especially related to

causality and heterogeneity, solved using Bayesian methods include: (1) Discrete choice

models and panel data models with individual heterogeneity (e.g., Athey and Imbens,

2007; Chamberlain and Hirano, 1999; McCulloch and Rossi, 1994), and (2) Causal

inference, treatment effects, and selection models (e.g., Chamberlain and Imbens, 2003;

Chib and Jacobi, 2007; Jacobi et al., 2016). This list, of course, is not exhaustive. Bayesian

econometric applications have kept expanding rapidly. In microeconometrics, the Bayesian

approach enables flexible, coherent, and computationally feasible inference in settings where

heterogeneity, dynamics, and complex data structures matter.
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This brief overview can only provide a preliminary map to the major ideas and developments

of Bayesian methods in microeconometrics. For more comprehensive discussions, the reader

is referred to Li and Tobias (2011), Cameron and Trivedi (2005; 2022), Chan et al. (2019), and

Rossi et al. (2024). The merits of the Bayesian approach combined with efficient computational

techniques are manifold. Importantly, there is an ongoing synthesis of Bayesian and frequentist

perspectives, shifting emphasis from philosophical debate toward methodological practicality

regarding what works best for different types of problems. As both approaches have appealing

features, recognising this synergy is beneficial for empirical research. In the golden age of

algorithmic development and the rising popularity of probabilistic programming, Bayesian

methods show great potential to meet the demands of modern microeconometrics and deserve

further exploration.

1.3 Thesis Contribution

In light of the motivation outlined above, this thesis develops methods for three distinct – yet

methodologically interconnected – settings in microeconometrics, with a consistent focus

on both causality and heterogeneity. The common vantage point is a Bayesian inferential

framework for handling the specific technical challenges that arise in each setting.

The first essay addresses the challenges associated with estimating unconditional Quantile

Treatment Effects (QTEs) in observational studies. This causal estimand offers valuable

insights into treatment effect heterogeneity by examining how effects vary across different

ranks of the outcome distribution, moving beyond average treatment effects (ATEs), which

can mask important distributional impacts. However, applied researchers often encounter

a vast set of possible covariates in observed datasets yet remain uncertain about which

specific ones are necessary to control for when recovering treatment effects. Additionally,

the QTE estimation problem involves nuisance parameters, including the entire conditional

cumulative distribution function (CDF) of each potential outcome conditional on potentially

high-dimensional covariates, which increases computational complexity. To circumvent

such obstacles, I propose the Bayesian Analogue of Doubly Robust (BADR) approach

with two key ingredients. First, to effectively accommodate high-dimensional covariates

and nonlinear relationships while achieving proper uncertainty quantification, I incorporate

Bayesian regularisation methods with attractive prediction performance to generate auxiliary

estimators for both the propensity score and conditional outcome distribution. I leverage
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multiple Bayesian quantile regressions augmented with shrinkage priors to address the unique

challenge of quantile estimation. Second, I derive the estimator for target QTEs by solving

an estimating equation built upon an efficient influence function specifically tailored to

quantile functionals. This results in double robustness, ensuring the final estimator remains

consistent if either the treatment assignment model or the outcome regression model is

consistently estimated but not necessarily both. The framework features a highly flexible

Bayesian modelling scheme that showcases favourable frequentist properties in finite samples

for QTEs, which has not been explored before. The simulation results show that BADR

estimators yield a substantial improvement in bias reduction for QTE estimates compared

with popular alternative estimators found in the literature.

While the first essay maintains selection-on-observables – stipulating that treatment is as

good as randomly assigned once we condition on observables – this assumption may not hold

in economic scenarios when unobservable factors simultaneously influence both individual

choices and their outcomes. The second and third essays delve into these more complex

sources of endogeneity in contexts such as noncompliance and network interference, while

continuing to model heterogeneous effects.

The second essay develops a new approach that utilises network or spatial data to identify

and estimate direct and indirect causal effects when both selection-on-unobservables and

spillovers (also known as interference) are present. The endogeneity challenge here is twofold:

unobservable characteristics affect treatment selection, and spillovers create interdependence

among individuals, which violates standard causal inference assumptions. The proposed

framework nests the Generalised Roy model to explicitly account for endogenous selection

into treatment and captures spillovers through exposure mapping to neighbours’ treatment.

Crucially, this allows for heterogeneous effects both across individuals and in terms of how

they respond to neighbours’ treatments, enabling the exploration of various policy-relevant

treatment effects. Given the inherent nature of the setting as a missing data problem, I develop

Bayesian estimators based on data augmentation methods, offering efficient computation and

proper uncertainty quantification.

A natural extension arises when the network structure that shapes the interference pattern

itself is endogenous. This is relevant to models of network interactions, where individual

outcomes depend on their peers in a network, and the network structure itself is endogenously

formed. Specifically, the decision to form links and the outcome of interest may be jointly
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determined by unobservable factors, creating a complex source of endogeneity. This concern

motivates the third essay, which shifts the focus to modelling network interactions with

heterogeneous effects while addressing the issue of network endogeneity. The third essay

introduces Selection-corrected Heterogeneous Spatial Autoregressive (SCHSAR) model, a

new econometric framework that overcomes the limitations inherent in the standard spatial

autoregressive (SAR) specification. We incorporate a finite mixture structure to capture rich

heterogeneity in network interaction effects and explicitly model endogenous link formation,

with latent variables playing a crucial role. The fully Bayesian approach effectively handles the

computational challenges arising from the complex likelihood function and latent structure.

Taken together, each essay demonstrates how flexible Bayesian modelling can overcome

limitations of conventional approaches. Beyond methodological contributions, these essays

provide empirical analyses using proposed methods, yielding policy-relevant insights across

diverse economic contexts. From understanding distributional impacts of financial expansion

(the first essay) to evaluating place-based economic development policies with spillovers

(the second essay), to informing targeted innovation policies based on firm-level network

formation and interaction (the third essay), the findings illustrate how accounting for both

causality and heterogeneity can enhance policy relevance.

The remainder of this thesis is organised as follows. Chapter 2 introduces the first essay,

“Causal Inference on Quantiles in High Dimensions: A Bayesian Approach”. Chapter 3

presents the second essay, “Bayesian Causal Inference in the Presence of Endogenous

Selection into Treatment and Spillovers”. Chapter 4 covers the third essay, “Modelling

Interactions with Heterogeneous Effects and Endogenous Network Formation”. Each essay is

self-contained, providing necessary information for the reader to understand the setting and

rationale underlying the proposed method. Finally, the conclusions summarise the findings

and offer broader implications. The technical details and supplementary results are relegated

to the appendices. Notation is introduced when appropriate.



Chapter 2

Causal Inference on Quantiles in High Dimensions:

A Bayesian Approach

2.1 Introduction

When evaluating the causal effect of policy interventions, the distributional impact appeals

to researchers and policymakers rather than the average impact alone. It helps to gain more

comprehensive and nuanced understanding of the complex effects, ultimately leading to more

effective decision-making. In many instances, uniform policies may benefit certain individuals

while adversely affecting others. If the effects are considerably heterogeneous, the average

treatment effect may not be a sufficient measure, as it likely masks substantial positive and

negative effects. Consequently, it is crucial to determine whether certain individuals are

worse off as a result of the policy. Even if multiple programs generate positive effects for all

individuals, the one that offers the greatest benefits to those at the lower tail of the distribution

of the outcome variable might be the most favourable. To illustrate, consider two job training

programs with identical mean net impact that is positive. The first program, which increases

wages at the bottom of the wage distribution, would be more appreciated than the second

program, which only raises the top of the wage distribution. This necessitates the advancement

of econometric techniques to enable studies on distributional treatment effects in the presence

of heterogeneity. This goal has received special interest and has become increasingly relevant

in economic applications1.

Sets of quantile treatment effects (QTEs) can characterise the heterogeneous impacts of

the treatment on different points of the outcome distribution. With a binary treatment, as

originally defined by Doksum (1974) and Lehmann et al. (1974), QTEs measure the difference

1A variety of relevant applications include, but are not limited to, financial interventions (Callaway and Li,
2019; Meager, 2022), educational subsidies (Duflo et al., 2021), public health policies (Schiele and Schmitz,
2016), and local migration incentives (Bryan et al., 2014; Chetty et al., 2016); all entail social welfare implications
and garner substantial attention in public discourse.

10
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between the unconditional quantiles of the potential outcome distribution under treatment

and the potential outcome distribution under nontreatment. Put differently, this captures any

difference between the two cumulative distribution functions of treated and untreated potential

outcomes. Moreover, the quantile method may be employed, even by those not primarily

interested in distributional consequences, to enhance the robustness of their analysis. This

is particularly relevant in light of the well-established fact that median regression is more

resistant to outliers than mean regression, while many economic data sets involve heavy tails.

One notable example in development economics is household welfare measures, including

consumption and business outcomes.

The difference between these two unconditional distributions of the potential outcomes itself

might be appealing to policymakers. This reflects the change in the distribution function as a

whole when the treatment could be exogenously shifted between two distinct counterfactual

scenarios: universal treatment and no treatment. As the entire distribution function often yields

insights into inequality or social welfare analysis, computing QTEs serves as a convenient way

to summarise noteworthy aspects. For instance, this enables the detection of changes in overall

inequality in the distribution of outcomes, which is a critical concern given the potentially

negative consequences of social and economic inequality in the contemporary world2.

By definition, QTEs can reveal heterogeneity in the causal effects on different quantiles.

However, individual results are only interpretable under a rank preservation assumption on the

underlying treatment effect distribution. This assumption asserts that an observed individual

would maintain their position (rank) in the distribution regardless of their treatment status. As

a result, the set of quantile treatment effects is equivalent to the quantiles of the distribution

of individual treatment effects. Nonetheless, rank preservation is a strong assumption because

it requires the relative value of the potential outcome for a given individual to be unchanged,

whether that individual is treated or untreated. Even when rank preservation is violated,

heterogeneity in the effects across various quantiles shows evidence of heterogeneity in these

individual effects, making QTEs remain a meaningful parameter for policy purposes (see,

e.g., Angrist and Pischke, 2009; Meager, 2022).

In this paper, the primary focus is on unconditional QTEs, which are separate from

conditional QTEs. Although both are standard parameters of interest in the program evaluation

literature, it is important to highlight the distinction between them. An unconditional

2This interest is at the core of the econometric literature strand on distributional counterfactual analysis (see,
e.g., Chernozhukov et al., 2013; Firpo and Pinto, 2016; Rothe, 2010).
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(marginal) quantile function is a one-dimensional function of the quantile level τ only.

Defined as the difference between the unconditional quantiles of the treated and untreated

potential outcome distributions, unconditional QTEs describe the effects of treatment status

on the overall outcome distribution without conditioning on the covariates. In contrast,

conditional quantile functions are multi-dimensional, depending on not only a chosen quantile

level but also values of the covariates. Conditional QTEs thereby express the effects on

the outcome distribution within sub-populations characterised by covariate values. More

specifically, an individual may rank high in the unconditional distribution of the outcome,

meanwhile possessing a low rank in the conditional distribution of the outcome. This is

possible if that person has values of observed characteristics that are associated with a large

value of outcome overall, yet within the group of people sharing identical values of the

observed characteristics, he or she has a comparatively low outcome3. Conditional QTEs

enable examination of the heterogeneity of the effects with respect to the observables;

however, they might be sensitive to the choice of covariates to be included. Unconditional

QTEs, on the other hand, aggregate the conditional effects across the entire population,

thereby being more easily conveyed to the policymakers and the public, at the cost of not

providing any information about the relationship between the covariates and the outcome.

Further discussion can be found in surveys by Glewwe and Todd (2022) and Frölich and

Melly (2013). The unconditional quantile treatment effects are appropriate estimands to focus

on when the ultimate objective is related to the marginal distribution, for example, the welfare

of the (unconditionally) poor. This unconditional effect has been a central estimand of interest

in the literature on micro-credit expansion and housing outcomes, reinforcing the need for

robust methods suited to recovering and exploring heterogeneity in these effects.

When the target causal estimand is an unconditional quantile treatment effect (QTE),

several identification strategies have been developed in the literature. One common approach

relies on the assumption of exogenous treatment, typically in the form of a randomised

controlled experiment where all participants comply with their treatment assignment. In this

ideal scenario, implementing an unconditional QTE estimator is a straightforward process,

similar to estimating the average treatment effect (ATE) directly from the realised outcomes

of control and treatment groups. However, when such experimental data is unavailable,

inferring causal relationships from observational data poses challenges because the observed

3Consider a simple example involving wages and years of education, the median income of all individuals
with doctoral degrees may be greater than the top quantile for high school dropouts, presuming a strong positive
association between education levels and earnings.
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treatment status is not assigned randomly. This gives rise to the second approach based on the

selection-on-observables assumption, which implies that the treatment is as good as randomly

assigned once we condition on observables. It is worth noting that, although our ultimate

goal is to obtain an unconditional QTE, covariate information serves to correctly identify the

unconditional quantiles and remove selection bias.

In this paper, we maintain the identifying assumption of selection-on-observables, which is

widely applicable to empirical studies in economics. This is due to the fact that randomised

controlled trials (RCTs) are often intricate and expensive, rendering them infeasible in many

cases. In addition, this assumption is justifiable in various contexts, such as when the treatment

is randomly allocated within demographic groups. As elaborated in the subsequent sections,

employing covariates for the sake of identification involves identifying the entire conditional

cumulative distribution function (CDF) of each potential outcome conditional on potentially

high-dimensional covariates. This CDF is then a nuisance function for the identification of

QTEs. More often than not, applied researchers encounter a vast set of possible covariates,

but they are uncertain about which specific ones are necessary to control for when recovering

treatment effects. In addition, the conditional CDF can itself be a complex function. This

necessitates the consideration of high-dimensional models to estimate quantile treatment

effects.

This paper aims to circumvent such obstacles and contribute to the emerging econometric

literature on identification and estimation of QTEs. We propose a novel framework, the

Bayesian Analogue of Doubly Robust (BADR) approach, for estimating QTEs in an

observational study while accounting for the presence of potentially high-dimensional

covariates. Briefly, we employ Bayesian techniques to specify and estimate both the treatment

assignment and the outcome models, obtaining posterior draws that are then plugged

into the doubly robust estimator for QTEs. This estimator is derived as the solution to

efficient influence functions, leading to its double-robustness property. The resulting BADR

framework comprises two ingredients. First, to effectively accommodate high-dimensional

covariates and nonlinear relationships while achieving proper uncertainty quantification, we

incorporate various Bayesian regularisation methods including sparsity-inducing priors and

Bayesian nonparametric methods to generate auxiliary estimators for both the propensity

score and the conditional distribution of the outcome variable. We leverage multiple Bayesian

quantile regressions to address the unique challenge in quantile estimation, which differs
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from previous studies on ATE. Second, our method provides double protection against model

specification by employing posterior predictive distributions of parameters from both the

treatment assignment and outcome models. In the absence of high-dimensional covariates,

this approach collapses to a doubly-robust Bayesian estimator for the QTEs without shrinkage

priors, which itself has not been explored in previous literature. Overall, the proposed strategy

enables us to obtain QTE estimators which showcase highly flexible Bayesian modelling

manner coupled with favourable frequentist properties in finite samples.

The advantages of the proposed estimators are demonstrated in Monte Carlo simulations,

which consider difficult settings such as high-dimensional covariate spaces or complex

nonlinear effects of covariates. Through numerical evidence, we observe substantial gains

in bias reduction for QTE estimates across all scenarios, highlighting the strong estimation

and inferential features of our methodology in comparison with the naive estimator and

popular approaches considered in the literature. The proposed methodology introduces a fresh

perspective to empirical research by offering a novel approach for estimating unconditional

QTEs in microeconomic applications. The new estimator, Bayesian Doubly Robust with

shrinkage prior, allows us to revisit the microcredit experiment originating from the work

of Crépon et al. (2015) and explore the impact of household financial access on household

welfare. Unlike previous studies that strictly rely on the randomisation of microcredit

availability at the village level, we employ a new causal estimand and identification strategy

that utilises observed, non-random borrowing patterns at the household level as well as

observable household characteristics. Our findings indicate an overall positive effect,

with heterogeneous impacts across the different points of each outcome distribution of

interest. It is anticipated that universal financial access will result in an ex-post increase in

economic inequality among households, mostly attributed to the significant improvements

in consumption and business outcomes at the upper quantiles. Notably, there is evidence of

systematic harm in terms of total profit, as a segment of households may experience adverse

effects that extend the left tail of the distribution to the left.

The remainder of this paper is organised as follows. Section 2.2 presents a brief review

of existing studies relevant to our paper and situates the paper within existing literature.

In Section 2.3, we formally define quantile treatment effects in a causal framework along

with key identification assumptions. In Section 2.4, we present the proposed approach for

estimating quantile treatment effects. Next, we evaluate the performance of our methods using
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simulations in Section 2.5 and use the proposed method to examine the causal impact of loan

access on the distribution of household outcomes in Section 2.6. Finally, we conclude the

paper in Section 2.7 with brief final remarks on the method and policy recommendations

based on our results.

2.2 Related Literature

2.2.1 Causal Inference on Quantiles

Firpo (2007) first considered efficient estimation of unconditional quantile treatment effects

(QTEs) and proposed an inverse propensity weighting (IPW) estimator based on propensity

scores estimated using a sieve approach, specifically a logistic power series approximation.

Under strong smoothness conditions, this IPW estimator is
√
N -consistent4 and achieves

the semiparametric efficiency bound, which is reminiscent of analogous results for the IPW

estimator for the average treatment effect (ATE) with nonparametrically estimated propensities

(Hirano et al., 2003). Although these purely weighted methods circumvent the estimation

of nuisances that depend on the estimand, their desired behaviour is restricted to certain

nonparametric weight estimators and requires strong smoothness assumptions. Extending the

IPW estimator to high-dimensional settings runs into issues due to the fact that its convergence

rate can be slowed down by that of the propensity score and its error may depend heavily on

the particular method used to learn the propensity score. The properties prohibit the use of

general machine learning methods and potentially leading to unstable estimates. In this sense,

Firpo’s (2007) IPW estimator lacks the double robustness and flexibility of our proposal.

Zhang et al. (2012) developed several nonparametric methods that resemble those used

for ATE and proved that the augmented inverse probability weighted (AIPW) estimator, by

augmenting a term that involves the residuals from the outcome regression model, enhances

the efficiency of the IPW estimator. The AIPW estimator is expected to be locally efficient

and doubly robust under regularity conditions. Díaz (2017) proposed a semiparametric

approach using targeted maximum likelihood estimation (TMLE) for marginal quantiles.

While sharing the same asymptotic properties as the standard AIPW, the TMLE estimator

demonstrates better finite-sample performance when analysing causal effects on the quantiles,

similar to improvements in the mean effect (e.g., Van der Laan et al., 2011). Our proposed

approach relates to both AIPW and TMLE estimators when solving the estimating equation

4N is the sample size.
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derived from the efficient influence function, a core concept for achieving double robustness.

However, Zhang et al.’s (2012) AIPW method assumes strong distributional assumption (e.g.,

a normal linear model after a Box-Cox transformation of the outcome for each treatment),

limiting its application to cases of positive outcomes. In contrast, our Bayesian Analogue of

Doubly Robust estimation framework employs Bayesian data-adaptive estimation to flexibly fit

nuisance functions. Diaz’s (2017) TMLE approach can be considered quite general and closest

to our approach among frequentist methods. While both opt for estimating the conditional

distribution as an important middle step, the distinct feature of our modelling strategy lies

in utilising multiple Bayesian quantile regressions and thus can incorporate regularisation

seamlessly.

Unlike previous studies that did not explicitly consider the case of potentially high-

dimensional covariates, Kallus et al. (2024) proposed Localized Debiased Machine Learning

(LDML) to enable efficient inference on QTEs in this scenario. For ATE estimation, nuisance

functions do not depend on the estimand and can therefore be estimated independently using

flexible, data-driven, machine learning methods and plugged into the estimating equation.

This Debiased Machine Learning (DML) approach is, however, far more challenging for

QTEs estimation, as the efficient influence function involves nuisances that depend on the

estimand of interest. Specifically, DML requires we learn the whole conditional cumulative

distribution function of a real-valued outcome, potentially conditioned on high-dimensional

covariates, evaluated at the quantile of interest. To obviate this cumbersomeness, Kallus et al.

(2024) localise the nuisance estimation step to a single initial rough guess of the estimand,

such as the IPW estimate, thereby enabling the standard use of machine learning methods

in this DML-extended framework. Despite also aiming for a flexible modelling manner, our

paper takes a different approach, estimating the whole continuum of the estimand-dependent

nuisances by discretising a hypothetical continuum of quantile regression estimators. The

rationale for our choice is based on the advantages of Bayesian quantile regression over the

frequentist alternative.

While most studies on unconditional QTEs are based on frequentist methods, Xu et

al. (2018) proposed a Bayesian nonparametric approach (BNP) that utilises a Bayesian

additive regression tree (BART) model to estimate the propensity score, followed by a

Dirichlet process mixture (DPM) of normals model to construct the distribution of potential

outcomes conditional on the estimated propensity score. A key advantage of this approach
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over frequentist methods is the simultaneous estimation of multiple quantiles of interest.

However, it can be regarded as a propensity score analysis which avoids directly modelling the

conditional distribution of potential outcomes given the covariates. In contrast, we propose

Bayesian Analogue of Doubly Robust estimators that can handle a large number of covariates

and are more robust to misspecifications.

2.2.2 Causal Inference in High Dimensions

This paper fits into a broader literature on high-dimensional causal inference with

observational data. High-dimensional settings are becoming increasingly prevalent, presenting

challenges for causal inference. This problem involves either a large number of available

covariates or an outcome model with an infinite or large number of parameters, such as

nonparametric and semiparametric models. regularisation, a popular technique originally

designed to perform prediction in high-dimensional data analysis, has garnered substantial

attention in causal inference. It gives rise to numerous causal machine-learning techniques

which provide high-quality inference on treatment effects (Athey et al., 2018; Belloni et al.,

2014; Chernozhukov et al., 2018; Farrell, 2015). While the majority of studies are frequentist

regularisation-based approaches, there has been growing interest in adopting Bayesian

regularisation-based techniques into causal inference, as Bayesian inference is a natural

probabilistic framework for quantifying uncertainty and learning about model parameters. It

is known that many frequentist penalised likelihood estimators can be considered equivalent

to the posterior modes of Bayesian estimators under certain choices of shrinkage priors such

as spike-and-slab prior (Ishwaran and Rao, 2005; Mitchell and Beauchamp, 1988), Bayesian

Lasso prior (Park and Casella, 2008), and Horseshoe prior (Carvalho et al., 2010, 2009).5

Recent studies have successfully deployed these techniques for confounding adjustment to

estimate average treatment effects in the presence of high-dimensional controls (Antonelli et

al., 2022, 2019; Hahn et al., 2018). Bayesian nonparametric methods are also powerful tools

utilised for regularisation within the Bayesian paradigm. Among them, the Bayesian Additive

Regression Tree (BART) has emerged as a workhorse widely used for causal inference.

Introduced by Chipman, George, and McCulloch (2006; 2012), BART models offer several

advantages over linear models, such as automatic adaptation to nonlinearity. Regarding

implementation, BART is also preferred due to its fast computation, good performance of

5Thorough reviews and well-designed simulations could be found in Korobilis and Shimizu (2022), Van Erp
et al. (2019) and Polson and Sokolov (2019), who advocate the merits of Bayesian sparsity-inducing priors in
comparison to frequentist counterparts.
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default choices of hyperparameters and available software (Linero and Antonelli, 2023).

When there is sufficient covariate overlap, BART has been shown to outperform numerous

Frequentist machine learning methods in prediction problems, including random forests. Hill

(2011) further proposed the use of BART in causal inference and demonstrated its efficacy in

flexibly modelling the response surface. To mitigate the regularisation-induced confounding

issue (Hahn et al., 2018) when using a BART outcome model, Hahn et al. (2020) developed

the Bayesian causal forest model, a BART-based approach that includes a fixed estimate

of the propensity score for additional adjustment in the outcome model. This model yields

excellent performance in estimating heterogeneous treatment effects, making BART a strong

default choice for integrating Bayesian nonparametric methods into causal effect modelling.

Subsequent studies by Spertus and Normand (2018) and Xu et al. (2018) employed BART

models to fit the propensity score in the first stage, enabling the use of Bayesian propensity

score analysis to estimate ATE (with high-dimensional data) and QTEs, respectively.

2.2.3 Double Robustness

This paper also adds to the development of doubly robust estimators, which have gained

extensive use in the causal inference literature (Bang and Robins, 2005; Scharfstein et

al., 1999) owing to their desirable property of providing consistent inference even under

misspecification of either the treatment assignment or outcome regression models (but not

both). For a comprehensive survey of doubly robust estimators and their properties, we refer

interested readers to Daniel (2014).

Doubly robust estimators have been extended to accommodate nonparametric or high-

dimensional settings by enabling data-adaptive estimation of treatment and outcome models.

This includes doubly robust estimators with the group Lasso (Farrell, 2015), double machine

learning estimators (Chernozhukov et al., 2018), doubly robust matching estimators (Antonelli

et al., 2018) and targeted maximum likelihood estimators (Van der Laan et al., 2011),

among others. In these complex settings, doubly robust estimators offer an extra benefit that

parametric convergence rates (
√
N ) can be achieved even when each of the propensity score

or outcome regression models converges at slower rates ( 4
√
N or faster). Roughly speaking,

this echoes the insights from recent advances in the double machine learning literature

(Chernozhukov et al., 2022). Specifically, penalising either the propensity score model or the

outcome model alone would be insufficient for valid causal inference, but combining the two

as nuisance functions achieves a desirable convergence rate and finite-sample performance in
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high-dimensional causal analyses.

There have been attempts to propose doubly robust Bayesian recipes, however, this area

is still less established than its Frequentist counterpart. This is mainly due to a lack of

consensus on propensity score adjustment in the Bayesian causal modelling framework (Li

et al., 2023; Robins et al., 2015; Robins and Ritov, 1997), despite its central role being

well recognised in the literature (Rosenbaum and Rubin, 1983; Zigler, 2016). Pioneering

work on the Bayesian approach for doubly robust causal inference was done by Saarela

et al. (2016), in which the authors formalised the problem and addressed it by combining

the posterior predictive distribution of parameters with the Bayesian bootstrap. The idea

of utilising posterior predictive distribution was later advanced in the line of work by

Antonelli et al. (2022) and Shin and Antonelli (2023), who aimed to improve inference

for doubly robust estimators for the average treatment effect (ATE) and the conditional

average treatment effect (CATE), respectively. The general strategy involves estimating both

the propensity score and the conditional outcome mean using Bayesian methods. Posterior

draws from their respective posterior predictive distributions are then obtained and plugged

into a doubly robust estimator. While this approach is not fully Bayesian because there is

no joint likelihood for all parameters stated, it effectively integrates Bayesian modelling

techniques and Frequentist inferential procedures for causal analysis with proper uncertainty

quantification. These features are particularly important in high-dimensional scenarios, where

handling large numbers of covariates and quantifying uncertainty can be challenging. Recent

theoretical developments have established Bernstein-von Mises (BvM) results when examining

the asymptotic behaviours of Bayesian inference procedures for causal effects. Ray and Vaart

(2020) attained BvM for ATE using propensity score-adjusted priors, however, that prior

adjustment alone leaves a bias when smoothness is traded off between the propensity score

and the conditional outcome mean functions. Breunig et al. (2025) made this issue explicit and

introduced a posterior correction to eliminate the bias term, yielding a semiparametric BvM

under double-robust smoothness conditions. Additionally, Yiu et al. (2025) demonstrated that

using double robust estimands still requires posterior corrections for valid inference, even

when their conditions for the BvM theorem impose Donsker properties on the propensity

score and the conditional mean functions – a more restrictive assumption than the prior

correction of Ray and Vaart (2020) and particularly, the double robust method of Breunig et

al. (2025). A comparison between the double robust method and semiparametric Bayesian

methods was also provided in Breunig et al. (2024) for average treatment effects on the treated
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(ATT) in the Difference-in-Differences (DiD) context. Both satisfy the BvM, but only the

regularized version achieves it under double robust smoothness conditions. In more regular,

low-dimensional settings, the semiparametric Bayesian approach is very competitive, but its

performance declines with increasing model complexity. These findings serve as an interesting

motivation for doubly robust approaches combined with posterior corrections under more

complex designs.

In spite of the progress made in Bayesian literature, most studies have focused on the

doubly robust estimation of either unconditional or conditional average treatment effect.

Our paper presents a distinctive contribution by concentrating on unconditional quantile

treatment effects (QTE). This causal estimand is of independent interest as it offers a

different and complementary approach to uncover treatment effect heterogeneity. Although the

conditional average treatment effect (CATE) also characterises treatment effect heterogeneity,

the effects vary across individuals or subgroups defined by observed characteristics. In

contrast, unconditional QTE focuses on the effect heterogeneity of the treatment across

different outcome ranks without conditioning on individual characteristics or covariates.

Evaluating the impact on the entire outcome distribution of interest makes this approach

particularly relevant to distributional concerns and inequality, offering valuable insights when

used alongside other estimands, such as CATE, to understand the potential consequences

of treatments and policies. With regard to methodology, we build on the work of Antonelli

et al. (2022), who combined the posterior predictive distribution of nuisance parameters

with the Frequentist doubly robust estimator initially proposed for the ATE. We develop a

Bayesian Analogue of Doubly Robust estimators for the QTE, tackling unique challenges

that arise in the quantile setting. First, we address the need for different doubly robust

estimators for the QTE compared to the ATE setting by solving an estimating equation built

upon an efficient influence function specifically tailored to quantile functionals. Second, the

QTE estimation problem involves new nuisance parameters, including the entire conditional

cumulative distribution function (CDF) of each potential outcome conditional on potentially

high-dimensional covariates, which increases the computational complexity. We overcome

this hurdle by employing multiple Bayesian quantile regressions that incorporate shrinkage

priors. This helps us explicitly estimate the conditional distribution while accounting for

high dimensionality. This approach has not been pursued in previous studies, making our

contribution unique in the literature.
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2.3 Notation and Causal Estimand

2.3.1 Notation

Let T and Y be the treatment and outcome of interest, respectively, while X is a p-dimensional

vector of potential controls. Denote Po as the joint distribution of the observed data. Assume

that we observe an independent and identically distributed (i.i.d.) sample Zi = {Yi, Ti,Xi}

for i = 1, . . . , N with empirical distribution PN , where we collect all observations into

Z = (Z1, . . . ,ZN). For t ∈ {0, 1}, let

• Y (t) be the potential outcome for a generic subject under treatment t.

• Ft(y) := P[Y (t) ≤ y] be the cumulative distribution function (CDF) of Y (t), and

qt(τ) := F−1
t (τ) = inf{y | Ft(y) ≥ τ} be its τ th quantile, where τ ∈ (0, 1).

• Ft|1(y) := P[Y (t) ≤ y | T = 1] be the cumulative distribution function (CDF) of Y (t)

given T = 1, and qt|1(τ) := F−1
t|1 (τ) = inf{y | Ft|1(y) ≥ τ} be its τ th quantile, where

τ ∈ (0, 1).

2.3.2 Causal Estimand

Quantile Treatment Effects (QTEs) are defined as the difference between the τ th quantiles

(for a particular value of τ ) of the treated potential outcome distribution and the untreated

potential outcome distribution. For τ ∈ (0, 1),

QTE(τ) := F−1
1 (τ)− F−1

0 (τ) = q1(τ)− q0(τ). (2.1)

For identification, a fundamental issue is whether each of the potential outcome

distributions, F1(y) and F0(y), is identified. We therefore make the following assumptions in

our setup:

1. Unconfoundedness (Selection-on-Observables)

Y (1), Y (0) ⊥⊥ T |X, (2.2)

where ⊥⊥ denotes statistical independence.
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2. Strong Overlap

∃δ ∈ R : 0 < δ < P[T = 1 | X] < 1− δ < 1. (2.3)

3. Stable Unit Treatment Value Assumption (SUTVA)

Ti = t implies Y obs
i = Y

(t)
i , for t ∈ {0, 1}. (2.4)

The conditional distributions of potential outcomes are therein identified by determining the

conditional distribution of observed outcomes for individuals within each group, as expressed

by: P[Y (t) ≤ y | X] = P[Y ≤ y | T = t,X]. Consequently, the marginal distribution of

potential outcomes can be identified and calculated as

Ft(y) =
∫
P[Y ≤ y | T = t,X = x]dFX(x), for t ∈ {0, 1}, (2.5)

where FX(x) is the marginal distribution of covariates X in the population of interest.

Figure 2.1: Illustration of Quantile Treatment Effects (QTEs). The left-hand figure demonstrates
unconditional distributions of Treated and Untreated potential outcomes, which are colored in green
and blue, respectively. The horizontal distance between these two distributions yields QTEs. For
instance, QTE(0.95), QTE(0.5), and QTE(0.05) are represented by three dashed lines in the figure.
QTEs across all values of quantile levels are plotted in the right-hand figure.
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2.4 Proposed Estimation Approach

2.4.1 Justification

With the primary parameter of interest being Quantile Treatment Effects (QTE), we develop

the Bayesian Analogue of Doubly Robust (BADR) estimation framework for this target causal

estimand. Our approach draws inspiration from the work by Antonelli et al. (2022), originally

proposed for the Average Treatment Effect (ATE), to combine Bayesian modelling methods

for treatment assignment and outcome models with Frequentist doubly robust estimators

using posterior predictive distributions. By tackling extra unique challenges that arise in the

quantile setting, our framework aims to offer enhanced finite-sample performance without

strict reliance on correct model specifications.

The implementation procedure is straightforward as follows:

1. Specify separate Bayesian treatment assignment and outcome models;

2. Draw the propensity score and the conditional distribution of each potential outcome

from their corresponding posterior predictive distributions; and

3. Plug these values into a doubly robust estimator associated with the parameter of

interest.

While our estimation approach is applicable in general, it is particularly useful in handling

high dimensionality, addressing challenges posed by potentially large numbers of controls

and the involvement of the entire conditional potential outcome distribution as a nuisance

parameter. In subsection 2.4.2, we propose a modelling framework in high dimensions that

flexibly incorporates Bayesian regularisation techniques. Before doing so, we first establish a

foundation by defining the doubly robust estimator of QTE. Then, we demonstrate a promising

avenue for estimation and inference within a Bayesian framework.

2.4.1.1 The Doubly Robust Estimator for Quantile Treatment Effects

Let π(X) := P(T = 1 | X; Θπ) be the propensity score (i.e., the probability of receiving

active treatment given covariates X), which is associated with the treatment assignment

model; and G(y | t,X) := P[Y ≤ y | T = t,X; ΘG] (for t ∈ {0, 1}) be the conditional

distributions of Y given the treatment status and covariates, which is associated with the

outcome model. Let Θ = Θπ ∪ ΘG represent the parameters of the treatment assignment

and outcome models. A general QTE estimation problem involves π(X) and G(y | t,X) as
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nuisance functions. We denote π̂(X) and Ĝ(y | t,X) as estimators of π(X) and G(y | t,X)

(for t ∈ {0, 1}), respectively.

For a chosen quantile level τ ∈ (0, 1), a doubly robust (DR) estimator of the QTE for binary

treatments is given by

Q̂TE
dr

(τ) = q̂dr1 (τ)− q̂dr0 (τ), (2.6)

where for a sample of size N

• q̂dr1 (τ) is a DR estimator of the τ -quantile of treated potential outcome and can be

derived as the solution to

N−1∑
i

{
Ti

π̂(Xi)
[
1{Yi ≤ q1} − Ĝ(q1 | 1,Xi)

]
+ Ĝ(q1 | 1,Xi)

}
= τ. (2.7)

• q̂dr0 (τ) is a DR estimator of the τ -quantile of untreated potential outcome and can be

derived as the solution to

N−1∑
i

{
1− Ti

1− π̂(Xi)
[
1{Yi ≤ q0} − Ĝ(q0 | 0,Xi)

]
+ Ĝ(q0 | 0,Xi)

}
= τ. (2.8)

Formal derivation and discussion regarding q̂dr1 (τ) are presented in Appendix A.1, where

(A.14) is equivalent to equation (2.7). Estimating equations (2.7) and (2.8) are built upon

the efficient influence function for quantiles of each potential outcome distribution. The

efficient influence function captures the first-order sensitivity of the target parameter to

small perturbations in the underlying distributions. In our estimation problem, which involves

two nuisance models – treatment assignment and outcome – the efficient influence function

exhibits a double robustness property, resulting in a doubly robust estimator. This estimator

is consistent provided that either the propensity score π̂(X) or the conditional outcome

distribution Ĝ(y | t,X) is consistent, but not necessarily both.

Estimating equations (2.7) and (2.8) are also closely connected to the Neyman orthogonal

moment conditions, which is extensively leveraged in the debiased machine learning literature

(see, e.g., Belloni et al., 2017; Chernozhukov et al., 2018; Kallus et al., 2024). Neyman

orthogonality is a desirable property that ensures the final estimate of the target parameter

remains robust even when there are small errors in the estimation of nuisance parameters.

This property is particularly relevant when regularisation methods are needed to handle
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high-dimensional covariates in estimating the nuisances. In such cases, employing Neyman

orthogonal moment conditions helps correct for the first-order biases that may arise from

plugging in estimates of the nuisance parameters.

2.4.1.2 The Bayesian Analogue of Doubly Robust Estimator

The population parameters Θ are typically unknown and need to be estimated. In this setting,

we consider a Bayesian framework to estimate the parameters associated to both the treatment

assignment and outcome models. This enables uncertainty in parameter estimation to be

directly captured from the posterior distribution.

LetPΘ|Z denote the posterior distribution, and {Θ(b)}Bb=1 be a sequence ofB draws obtained

from this posterior distribution. The point estimator ∆̂ for the estimand of interest ∆ takes a

form of the posterior mean

∆̂ := EΘ|Z[∆(Z,Θ)] ≈ B−1∑
b

∆(Z,Θ(b)), (2.9)

where ∆(Z,Θ(b)) is evaluated using the observed data Z and parameters Θ(b). Therefore, our

point estimator for the QTE at a chosen quantile level τ ∈ (0, 1) is the average value of the

quantity in (2.6) with respect to the posterior distribution of model parameters.

Regarding inference, our variance of interest corresponds to the variance of the estimator’s

sampling distribution and can be defined as follows

VZ(∆̂) := VZ(EΘ|Z[∆(Z,Θ)]). (2.10)

Variance estimation can be implemented using the nonparametric bootstrap (Tibshirani and

Efron, 1993) to account for uncertainty in all stages of the estimator. Specifically, L multiple

datasets {Z(l)}Ll=1 are created by sampling with replacement from the empirical distribution

of the data. For each resampled dataset, we re-estimate the posterior distribution of Θ and

then recalculate EΘ|Z[∆(Z,Θ)] accordingly. Finally, we compute variance of this quantity

across all bootstrap samples. It is worth noting that there are two main sources of uncertainty

arising throughout our QTE estimation procedure: first, the sampling variability stemming

from the data even if we know the true outcome and treatment assignment models; second,

the variability in parameter estimation for the propensity score and conditional outcome
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distributions. An alternative inference scheme from Antonelli et al. (2022) can be adopted by

targeting these two parts separately

VZ(∆̂) = VZ(l){EΘ|Z[∆(Z(l),Θ)]}︸ ︷︷ ︸
uncertainty stemming

from the data

+ VΘ|Z[∆(Z,Θ)]︸ ︷︷ ︸
uncertainty in estimation
of nuisance parameters

. (2.11)

The first term resembles the true variance, except for the outer moment, which is associated

with a resampled version Z(l) of the original data Z. The posterior samples of parameters Θ

estimated using the original data are maintained, but the point estimator EΘ|Z[∆(Z(l),Θ)] is

recalculated for each resampled dataset. In this way, it captures only the uncertainty of the

data, not that resulting from parameter estimation. In contrast, the second term accounts for

the latter type of uncertainty based on the variability of the full posterior samples of ∆(Z,Θ)

given the observed data Z.

2.4.2 Modelling Framework in High Dimensions

At this juncture, we present the high-dimensional modelling framework we use to provide

scalable estimation algorithms. We employ Bayesian techniques to specify and estimate

the treatment assignment and outcome models separately. To address the challenges posed

by high-dimensional feature spaces, we integrate various Bayesian regularisation methods

into our proposed framework to yield estimators of the nuisance functions corresponding to

the propensity score and the conditional distribution of the outcome, denoted as π̂(X) and

Ĝ(y | t,X), respectively. For the treatment assignment model, we adopt Bayesian Additive

Regression Trees (BART) priors, whose merits have been increasingly recognised (see, e.g.,

Chipman et al., 2012; Hahn et al., 2020; Hill, 2011; Linero and Antonelli, 2023). For the

outcome model, we leverage multiple Bayesian quantile regressions combined with shrinkage

priors to explicitly estimate the conditional distribution while accommodating potentially

high-dimensional covariates. This combined strategy allows us to develop a flexible and

doubly-robust Bayesian estimator with desirable finite-sample frequentist properties. To the

best of our knowledge, this modelling framework has not been previously pursued in the

literature, resulting in a novel approach to estimation of heterogeneous treatment effects.
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2.4.2.1 Treatment Assignment Model

We fit a binary Bayesian Additive Regression Trees (BART) model on the observations

{Ti,Xi}ni=1 to model the regression of the treatment assignment on control variables, that is,

π(Xi) = P (Ti = 1 | Xi) = H [fBART (Xi)] , (2.12)

where the link function H is either the CDF of the standard normal distribution for probit

BART or the CDF of the logistic distribution for the logit BART, and

fBART(Xi) =
M∑
m=1

ftree (Xi; Γm, µm) are sum of M Bayesian regression trees.

For m ∈ {1, . . . ,M}, Γm is a tree structure that consists of a set of splitting rules and a set

of terminal nodes; and µ = (µm,1, . . . , µm,bm) is a vector of parameters associated with bm

terminal nodes of Γm, such that ftree(Xi; Γm, µm) = µm,l if Xi is corresponding to the lth

terminal node of Γm.

The modelling choices used to implement the BART specification are presented in

Appendix A.2. Once a sequence of B posterior draws for the underlying BART parameters

has been obtained, B posterior samples of the fitted propensity score {π(b)(X)}Bb=1 can be

calculated by

π(b)(Xi) = H

[
M∑
m=1

ftree

(
Xi; Γ(b)

m , µ
(b)
m

)]
for i = 1, . . . , N and b = 1, . . . , B. (2.13)

2.4.2.2 Outcome Model

In contrast to the literature’s extensive coverage of conditional expectation estimation, data-

adaptive estimation of conditional distributions has received considerably less attention. For

each t ∈ {0, 1}, we estimate the conditional distribution based on fitted conditional quantiles,

employing the sample analogue of the following alternative representation of the conditional

distribution

FY |X(y) =
∫ 1

0
1

{
F−1
Y |X(τ) ≤ y

}
dτ =

∫ 1

0
1

{
QY |X(τ) ≤ y

}
dτ, (2.14)

where FY |X(·) andQY |X(·) are conditional distribution and conditional quantiles, respectively.
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The corresponding estimator is

F̂Y |X(y) =
∫ 1

0
1

{
Q̂Y |X(τ) ≤ y

}
dτ

≈ ϵ+
∫ 1−ϵ

ϵ
1

{
Q̂Y |X(τ) ≤ y

}
dτ

≈ ϵ+
S∑
s=1

δs1
{
Q̂Y |X(τs) ≤ y

}
,

(2.15)

where Q̂Y |X(τs) = X⊤β̂(τs) can be obtained by estimating S Bayesian quantile regression

model for each {τs}Ss=1, where ϵ ≤ τ0 < . . . < τs ≤ 1− ϵ and the width δs = τs − τs−1 →

0 as S → ∞. The second equation is adapted for tail trimming. The third equation aims

to avoid estimating the whole quantile regression process. Our discretisation technique is

similar to some previous studies (Belloni et al., 2017; Chernozhukov et al., 2013; Frölich and

Melly, 2013), however, we use the Bayesian quantile regression model rather than Koenker

and Bassett’s (1978) quantile regression from a frequentist viewpoint.

There are several advantages of this computational approach to the problem of estimating

conditional distributions. First, it enables us to leverage the Bayesian quantile regression

model, which not only suits our overall framework but also offers more flexibility than its

frequentist counterpart. Especially, Bayesian shrinkage priors can be readily applied to this

parametric quantile model with minor modifications, thereby handling better high-dimensional

covariates. This feature is thoroughly reviewed by Korobilis and Shimizu (2022). In addition,

while a very fine grid for values of τs (i.e., large S) is often required to gain accuracy, we

can make use of parallel computation because the conditional posteriors are applied in each

quantile level independently. While crossing or non-monotonic estimated quantiles are a valid

concern when the regression for each quantile is estimated separately6, the algorithm presented

above is originally designed for the rearrangement of crossing quantiles. This ensures that

our primary objective of interest, the conditional distribution, remains unaffected by these

potential estimation issues.

Further discussion on the Bayesian shrinkage priors and Bayesian quantile regression can

be found in Appendices A.3 and A.4, respectively. By drawing a sequence of B posterior

draws for the quantile regression parameters, we can obtain B posterior samples of the fitted

conditional outcome distributions {G(b)(y | 0,X)}Bb=1 and {G(b)(y | 1,X)}Bb=1.

6The estimated conditional quantile functions may be non-monotonic in the sense that τ̄ > τ̃ does not
necessarily imply Q̂Y |X(τ̄) > Q̂Y |X(τ̃).
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2.4.2.3 Algorithms for the Bayesian Analogue of Doubly Robust (BADR) Estimation

Upon acquiring sequences of B posterior draws of the fitted propensity score {π(b)(X)}Bb=1

and the fitted conditional outcome distributions {G(b)(y | t,X)}Bb=1 for t ∈ {0, 1}, we can

compute B values of the corresponding Quantile Treatment Effect (QTE) based on the full

posterior distribution of these nuisance parameters. The BADR point estimate of the QTE used

in this paper is derived as the average of these B values. The details of the implementation

are presented in Algorithm 2.1. Utilising B posterior samples of QTE, variance estimation

can be proceeded according to (2.11).

It is noteworthy that following Algorithm 2.1 requires solving two estimation equations,

(2.7) and (2.8), B times. This step may lead to intensive computations, particularly when

bootstrapping is involved. An alternative approach to combining the posterior distribution of

model parameters and the doubly robust estimator in Algorithm 2.1 would replace the nuisance

parameters π(X) and G(y | t,X) with plug-in estimates, such as their posterior means, as

outlined in Algorithm 2.2. This aligns with a frequentist modelling approach where doubly

robust estimators are evaluated using plug-in estimates of the parameters Θ. While Algorithm

2.2 uses more compact information, there is a clear computational gain due to the fact that

estimation equations only need to be solved once. The inference procedure is conducted using

the original bootstrap variance estimation in (2.10) for ease of implementation. Furthermore,

our pilot Monte Carlo findings suggest that the alternative estimator yields similar results.
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Algorithm 2.1:
Bayesian Analogue of Doubly Robust (BADR) estimation for QTEs
(Full posterior samples)
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
Result: Q̂TE

dr
(τ)

1 Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples
{π(b)(X)}Bb=1.

2 for t = 0, 1 do
3 Fit outcome model on {Yi,Xi}i:Ti=t and obtain B posterior samples

{G(b)(y | t,X)}Bb=1.
end

4 for b = 1, . . . , B do
5 Solve q(b)

1 (τ), q(b)
0 (τ) based on π(b)(X) and G(b)(y | t,X). ▷ (2.7) and (2.8)

6 Calculate QTE(b)(τ) = q
(b)
1 (τ)− q(b)

0 (τ). ▷ (2.6)
end

7 Calculate ∆̂τ := Q̂TE
dr

(τ) = 1
B

∑B
b=1 QTE

(b)(τ). ▷ (2.9)

Algorithm 2.2:
Bayesian Analogue of Doubly Robust (BADR) estimation for QTEs
(Posterior means)
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
Result: Q̂TE

dr
(τ)

1 Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples
{π(b)(X)}Bb=1.

2 for t = 0, 1 do
3 Fit outcome model on {Yi,Xi}i:Ti=t and obtain B posterior samples

{G(b)(y | t,X)}Bb=1.
end

4 Derive posterior mean from B posterior samples
5 π̂(X) = 1

B

∑B
b=1 π

(b)(X) and Ĝ(y | t,X) = 1
B

∑B
b=1 G

(b)(y | t,X). ▷ (2.9)
6 Solve q̂dr1 (τ), q̂dr0 (τ) based on π̂(X) and Ĝ(y | t,X). ▷ (2.7) and (2.8)

7 Calculate ∆̂τ := Q̂TE
dr

(τ) = q̂dr1 (τ)− q̂dr0 (τ). ▷ (2.6)
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2.5 Simulation Study

We assess the finite-sample performance of our proposed approach, Bayesian Analogue of

Doubly Robust (BADR) estimation, in two simulations with details described below. For each

simulation, we specify the distribution of covariates, the treatment assignment mechanism

and the distribution of potential outcomes. The first simulation focuses on a linear setting

with varying covariate dimensionality to sample size ratio (p/N ). In the second simulation,

we consider a nonlinear setting and further examine the double robustness of our proposed

estimators. Both of these data designs imply that assignment to the treatment is not completely

random, but satisfies the selection-on-observables assumption. From a theoretical perspective,

estimation of treatment effects that fails to account for the selection problem will inevitably

produce inconsistent estimates. We regard this approach as a benchmark and consider the

Naive estimator, which is an estimator of simple differences between empirical quantiles of

treated and control groups, without any correction for selection bias.

We develop two versions of the estimators which represent our proposed methodology

− Bayesian Doubly Robust estimator (BDR) and an extension that adds shrinkage priors

(BDRS). Specifically, the former employs the original Bayesian Quantile Regression while

the latter incorporates the Adaptive Lasso in order to account for sparsity and uncertainty in

the outcome model. Both estimators fit the propensity score using a logit BART model in

the first step. Furthermore, we also compare our proposed method with existing estimators.

The Bayesian nonparametric counterpart (BNP) is a fully Bayesian approach developed in

Xu et al. (2018), where the propensity score is estimated using a logit BART, then the

conditional distribution of the potential outcome given a BART posterior sample of the

propensity score in each treatment group is estimated separately using a Dirichlet process

mixture of multivariate normals. We additionally compare three frequentist methods – the

Localized Debiased Machine Learning (LDML) method introduced in Kallus et al. (2024),

the Targeted Maximum Likelihood Estimation (TMLE) method proposed in Díaz (2017), and

Firpo’s Inverse Probability Weighted (FIPW) method developed in Firpo (2007). Among

them, LDML and TMLE are two estimators that can leverage a variety of machine learning

methods. Particularly, in our simulation exercise, Random Forest is incorporated into LDML

and Lasso is integrated into TMLE. Implementation details of these methods can be found in

Appendix A.5.1.

In each simulation design, we generate 100 synthetic datasets. For each simulated dataset,
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we calculate quantile causal effects for 5 quantile levels, τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90},

and their 95% credible (or confidence) intervals (CIs). We compare all the different approaches

in terms of average bias, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

2.5.1 Simulation Design 1 (SD1)

We first consider a linear setting in which the mean of potential outcomes is a linear

combination of covariates. We draw 40-dimensional covariates X (p = 40) from

the independent standard normal distributions and allow different sample sizes

N ∈ {100, 500, 1000} of the dataset. Accordingly, we could evaluate the estimation

procedure across varying feature dimensionality (i.e., p/N ratio). The exact form of the true

model used to generate synthetic data is as follows:

T | X ∼ Bern (π(X)) ,

Y (0) | X ∼ N
(
µ(X), 2.52

)
,

Y (1) | X ∼ N
(
1 + µ(X), 3.752

)
,

Y = T × Y (1) + (1− T )× Y (0);

where π(X) = {1 + exp [−(X1 +X2 +X3)]}−1,

µ(X) = X1 +X2 +X4 +X5.

(2.16)

Figure 2.2: True marginal densities and marginal distributions of the treated and untreated potential
outcomes in SD1. This design emulates a thought experiment relevant to policy evaluation literature.
Hypothetically assigning the entire population either to treatment or to control induces a change in
both location and shape of the outcome distribution.

Under this specification, the unconditional distribution of potential outcomes are Y (0) ∼

N (0, 10.25) and Y (1) ∼ N (1, 18.0625). Figure 2.2 provides a visual illustration of the

corresponding marginal densities and marginal distributions. As a result, the population
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quantile treatment effects can be computed analytically. In particular, the true 10th, 25th,

50th, 75th and 90th QTEs are ∆0.10 = (−4.447)− (−4.103) = −0.344, ∆0.25 = (−1.866)−

(−2.159) = 0.293, ∆0.5 = 1 − 0 = 1, ∆0.75 = 3.866 − 2.159 = 1.707, and ∆0.90 =

6.447− 4.103 = 2.344, respectively.

Table 2.1: Comparison of point estimates for QTEs across 100 replicates (N = 1000, p = 40)

Percentiles

10th 25th 50th 75th 90th

True QTEs -0.34 0.29 1.00 1.71 2.34

BDR
-0.37

(-1.20, 0.46)

0.30

(-0.38, 0.97)

0.95

(0.37, 1.53)

1.64

(1.00, 2.27)

2.30

(1.50, 3.11)

BDRS
-0.34

(-1.16, 0.48)

0.31

(-0.34, 0.96)

0.95

(0.38, 1.53)

1.65

(1.03, 2.27)

2.34

(1.56, 3.12)

BNP
0.92

(0.24, 1.58)

1.55

(1.01, 2.09)

2.24

(1.74, 2.74)

2.93

(2.39, 3.48)

3.59

(2.91, 4.25)

LDML
0.29

(-0.74, 1.31)

0.96

(-0.08, 2.01)

1.63

(0.25, 3.01)

2.35

(-0.00, 4.70)

3.04

(-1.74, 7.82)

TMLE
-0.38

(-1.63, 0.86)

0.39

(-0.44, 1.22)

1.07

(0.36, 1.78)

1.75

(0.94, 2.56)

2.32

(1.15, 3.49)

FIPW
-0.38

(-1.71, 0.96)

0.27

(-0.93, 1.47)

0.92

(-0.18, 2.02)

1.64

(0.43, 2.85)

2.25

(0.88, 3.63)

Naive
0.94

(0.14, 1.74)

1.58

(0.97, 2.19)

2.25

(1.67, 2.84)

2.97

(2.35, 3.59)

3.65

(2.86, 4.43)

Notes: 95% CIs in parentheses correspond to 95% confidence intervals in Frequentist approach

or 95% posterior credible intervals in Bayesian approach. To estimate these 95% CIs, LDML and

FIPW use analytical standard errors, whereas others rely on the bootstrap method.

Table 2.1 presents point estimates for the quantile treatment effects, along with the average

lower and upper bounds of the corresponding 95% CIs across 100 simulated datasets. These

computations are based on a sample size of N = 1000 and p = 40. It is clear that the Naive

method exhibits substantial bias in its point estimates. This can be attributed to the absence of

adjustment for confounders in X, resulting in poor performance as expected. In comparison,

all other methods considered in our current setting outperform the Naive method in terms of

both bias and coverage, proving their effectiveness in correcting selection bias to some extent.

Our proposed estimators, BDR and BDRS, yield point estimates closest to the true values of

QTEs. Notably, incorporating a shrinkage prior, as in BDRS, further enhances the performance
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of BDR, particularly when the object of interest is extreme tails (i.e., 10th and 90th percentiles).

Despite sharing a probabilistic approach, the Bayesian nonparametric estimator, BNP,

demonstrates differences from our proposed estimators. While the nonparametric method

produces point estimates slightly better than Naive method, they are still far from the truth.

Moreover, the 95% credible intervals associated with BNP fail to cover the true values of

QTEs at any percentile. It aligns with the observation that BNP exhibits the smallest CI widths

among all surveyed methods, posing challenges in achieving satisfactory coverage rates. It

is worth noting that because both BDR and BNP use BART-logit to model the treatment

assignment in the first stage, their distinct performance illustrates the role of modelling the

conditional distribution of potential outcomes given confounders. Intuitively, BNP avoids

directly modelling the conditional distribution of potential outcomes given confounders.

Instead, it is grounded in the balancing property of the propensity score (Rosenbaum and

Rubin, 1983) to model the conditional distribution of the outcome given the propensity

score alone. While this approach involves estimating a less complex distribution due to

having only one binary regressor (i.e., the estimated propensity score) in the second stage,

it becomes skeptical in the case of misspecified treatment assignment. According to Monte

Carlo results in the original paper by Xu et al. (2018), the inclusion of non-confounders in the

treatment assignment equation entails less precise estimations of QTEs, thereby compromising

the performance of the BNP method. Aside from efficiency loss, finite-sample bias is also a

notable drawback of methods targeting a set of variables that best predict treatment assignment

without accounting for how these variables are related to the outcome, as widely discussed in

the context of average treatment effect (Belloni et al., 2014; Zigler and Dominici, 2014, etc.).

Among frequentist approaches, TMLE and FIPW perform reasonably well in terms of bias,

although they do not surpass our proposed estimators. Whilst the bootstrapped standard errors

of TMLE are smaller than the estimated asymptotic standard errors of FIPW7, both methods

provide corresponding 95% confidence intervals that contain the truth at any percentile. In

contrast, LDML yields point estimates that are less favourable compared to TMLE and FIPW.

However, its asymptotically calibrated confidence intervals still effectively capture the true

QTEs, despite having the widest spans across all quantile levels.

Boxplots in Figure 2.3 offer more insight on the sampling distributions of the difference

between the true and estimated quantities which produced by all estimators across 100

7Firpo (2007) also recommends bootstrapping as possibly a good alternative to analytical standard errors
estimation in FIPW.
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simulated datasets. When N = 1000, BDR and BDRS showcase nearly zero median (or mean)

bias as well as small variation, outperforming other methods. Their strong performance

persists even in smaller sample size of N = 500. Interestingly, the advantage of BDRS, which

is developed by adopting a hierarchical shrinkage prior, becomes prominent when N = 100.

While the performance of BDR exhibits instability in the presence of high-dimensional

covariates, BDRS handles such settings more effectively, as evidenced by the remarkably

reduced box widths observed for all QTEs of interest.

Figure 2.3: Sampling distributions of the difference between the true and estimated quantities for 10th,
25th, 50th, 75th, and 90th QTEs across 100 replicates. The dashed line indicates zero difference.

Table 2.2 numerically validates our above findings on the pattern of mean bias. Both BDR

and BDRS alternately secure the top rank, exhibiting the smallest average bias across all

computed percentiles. While the challenge of pronounced average bias is inherent in the

high-dimensional setting (N = 100 and p = 40), as the p/N ratio decreases, the average

bias diminishes relatively fast for QTEs estimated by methods BDR, BDRS, TMLE, and FIPW.

Additionally, LDML also exhibits a declining trend in average bias, albeit at a slower rate. This

phenomenon is not observed with the Naive and BNP estimators.
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Table 2.2: Simulation Results for SD1, Average Bias

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW Naive

1000 -0.022 0.001 1.261 0.63 -0.041 -0.034 1.282

500 0.008 0.153 1.261 0.794 0.121 0.102 1.26910th

100 -0.659 0.56 1.267 0.928 0.724 0.901 1.398

1000 0.003 0.017 1.261 0.669 0.1 -0.025 1.288

500 0.047 0.103 1.245 0.764 0.266 -0.035 1.23725th

100 0.265 0.49 1.32 1.03 0.793 0.794 1.296

1000 -0.049 -0.045 1.24 0.632 0.071 -0.08 1.25

500 0.035 0.053 1.209 0.718 0.215 -0.054 1.24150th

100 0.696 0.595 1.284 1.073 0.85 0.852 1.295

1000 -0.071 -0.057 1.228 0.641 0.045 -0.068 1.266

500 0.022 0.071 1.192 0.743 0.172 -0.111 1.22675th

100 0.809 0.574 1.24 0.941 0.673 0.822 1.179

1000 -0.039 -0.006 1.247 0.696 -0.024 -0.089 1.302

500 -0.008 0.096 1.21 0.736 0.094 0.07 1.20690th

100 0.564 0.712 1.293 1.036 0.825 1.093 1.314

Notes: This table displays the average bias across 100 replicates of different estimation methods.

The rows contain results for various percentile levels and for various sample size N .

With respect to the relative Mean Absolute Error (MAE), as presented in Table 2.3,

our proposed approach outperforms all competitors at high percentiles 50th, 75th, and 90th.

Meanwhile, BDRS performs better than BDR in the majority of cases, especially in high-

dimensional scenarios. In addition, line plots of raw MAE in Figure 2.4 illustrate a downward

trend for both BDR and BDRS across all quantile levels as the p/N ratio decreases.

In conclusion, BDR and BDRS demonstrate similarly excellent performance in moderate

dimensionality, thereby facilitating robustness checks in practical use. BDRS even provides

extra merit thanks to its adaptation to high-dimensional settings. It is trivial that the Bayesian

Adaptive Lasso in BDRS is only one option among a wide range of shrinkage priors which can

be incorporated into our proposed framework. Thus, the results from this simulation exercise

imply the great potential of our methodology in flexibly handling high dimensions when

estimating quantile treatment effects.
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Table 2.3: Simulation Results for SD1, Relative MAE

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW

1000 1.67 1.645 0.99 1.169 1.741 1.741

500 1.571 1.462 0.964 1.078 1.547 1.63410th

100 2.449 1.194 0.945 1.123 1.272 1.346

1000 0.999 0.996 0.969 0.862 0.978 1.077

500 1.135 1.117 1.017 0.947 1.07 1.39125th

100 1.182 0.986 0.93 1 0.992 1.107

1000 0.628 0.628 0.994 0.739 0.64 0.688

500 0.673 0.666 0.976 0.778 0.676 0.69450th

100 0.876 0.81 0.964 0.943 0.876 1.012

1000 0.477 0.479 0.981 0.704 0.513 0.523

500 0.547 0.56 0.981 0.776 0.592 0.60475th

100 0.927 0.771 1.004 0.912 0.81 0.992

1000 0.519 0.529 0.979 0.771 0.539 0.534

500 0.572 0.596 1.002 0.819 0.623 0.66990th

100 1.109 0.822 0.988 0.919 0.851 1.06

Notes: This table displays the relative Mean Absolute Error (MAE) of different

estimation methods across 100 replicates. The rows contain results for various

percentile levels and for various sample size N . The relative MAE is the MAE

in comparison with the Naive method as the benchmark, where MAE =

R−1∑R
r=1 |α̂r − α| and R = 100.

Figure 2.4: Line plots of raw MAE for 10th, 25th, 50th, 75th, and 90th QTEs estimated based on 100
replicates.
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2.5.2 Simulation Design 2 (SD2)

In this simulation design, we explore a setting with nonlinearities, where the mean of potential

outcomes involves polynomial functions of covariates. We draw covariates X with p = 5

from the independent standard normal distributions. The sample size is fixed at N = 1000 for

the remainder of the exercise given small sample sizes are likely to be inadequate to explore

nonlinearities. The true model for data generation takes the following form:

T | X ∼ Bern (π(X)) ,

Y (0) | X ∼ N
(
µ(X), 12

)
,

Y (1) | X ∼ N
(
1 + µ(X), 1.52

)
,

Y = T × Y (1) + (1− T )× Y (0);

where π(X) = {1 + exp [−(−0.6X1 + 0.8X2 + 1.2X3)]}−1,

µ(X) = −X1 +X2
2 + 1.5X3X4 + 1.5X3

5 .

(2.17)

Unlike the first simulation study, the true unconditional density and the true quantiles of

the potential outcomes for this simulation are not analytically achievable. However, the true

unconditional quantiles can be derived approximately from a large sample. At sample size of

107, the approximate values for true 10th, 25th, 50th, 75th, and 90th QTEs are ∆0.10 = 0.705,

∆0.25 = 0.794, ∆0.5 = 1.022, ∆0.75 = 1.205, and ∆0.90 = 1.205, respectively.

We introduce two simpler variants of our proposed framework in this simulation exercise.

The first variant consists of Bayesian Outcome Modelling without and with shrinkage priors,

represented by BOM and BOMS estimators, respectively. It could be regarded as an outcome-

regression-based approach that omits the treatment assignment model fitted in the initial step

of the BADR framework. Instead, it focuses solely on estimating the conditional distribution

by using multiple Bayesian quantile regressions in the outcome model of each treatment group.

Shrinkage priors, akin to the doubly robust approach, can be readily incorporated. In particular,

the BOMS estimator considers the Adaptive Lasso prior. The second variant is Bayesian

Propensity Score Analysis (BPSA), a treatment-assignment-based approach. Specifically, it

involves fitting the treatment assignment using a logit BART model. Subsequently, it employs

multiple Bayesian quantile regressions to model the conditional distribution of the outcome

given the posterior mean of the propensity score in each treatment group. Further details on

the implementation can be found in Appendix A.5.2.
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We evaluate the performance of the methods with respect to two distinct modelling

strategies: linear and nonlinear specification. For the linear specification, we use 5 raw

covariates X1, . . . , X5. For the nonlinear specification, we expand the covariates X to a

55-dimensional space by incorporating full cubic polynomials along with interaction terms.

BDR, BOM, and BNP are excluded as competitors in the second specification since they are

less suitable for high-dimensional contexts.

SD2a. Linear Specification

Table 2.4 illustrates simulation results when 5-dimensional covariates are employed as control

variables. Overall, BDR and BDRS outperform all competing methods, achieving the smallest

average bias at 25th and 75th percentiles. Frequentist methods including TMLE, LDML, and

FIPW, individually rank first once at 10th, 50th, and 90th, respectively. However, each of them

is less superior to our proposed estimators in at least three of the five quantile levels of interest.

The Bayesian nonparametric method, BNP, continues to register the lowest rank, offering only

a marginal reduction in bias compared to the benchmark.

Table 2.4: Simulation Results for SD2a, Average Bias and Relative MAE

Bias MAE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Linear specification

BDR 0.055 0.002 -0.032 -0.008 0.016 1.349 1.049 0.621 0.597 0.781

BDRS 0.061 0.002 -0.030 -0.006 0.024 1.331 1.056 0.624 0.595 0.790

BOM 0.040 0.092 -0.013 -0.094 -0.053 0.926 0.808 0.505 0.559 0.828

BOMS 0.059 0.102 -0.002 -0.076 -0.025 0.924 0.801 0.507 0.558 0.823

BPSA 0.078 -0.042 -0.044 0.061 0.112 0.752 0.945 0.493 0.555 0.725

BNP 0.335 0.368 0.343 0.328 0.284 1.114 1.005 0.861 0.939 1.095

LDML 0.009 0.010 -0.009 0.019 0.163 0.997 0.963 0.584 0.620 0.832

TMLE 0.000 -0.005 -0.022 -0.041 0.025 1.284 1.181 0.657 0.683 1.156

FIPW 0.019 -0.039 -0.034 -0.010 0.014 1.576 1.218 0.671 0.717 1.240

No covariates

Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Mean Absolute Error (MAE)

of different estimation methods across 100 replicates. The relative MAE is the MAE in

comparison with the Naive method as the benchmark, where MAE = R−1∑R
r=1 |α̂r − α|

and R = 100.

Further investigation can unveil the mechanics of our analogue doubly robust estimators. It
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is essential to note that, by considering only 5 raw covariates X, there is a misspecification in

the functional form of covariates in the outcome equation.

Bayesian Outcome Modelling estimators, BOM and BOMS, inherit the advantages of

Bayesian Quantile Regression and shrinkage priors, as same as our primary approach.

Nonetheless, since these estimators ignore the treatment assignment equation, they exhibit

significantly higher average bias than doubly robust estimators, irrespective of whether

penalisation in covariate space is introduced or not. In contrast, by fitting the propensity

score, doubly robust estimators gain another protective layer against misspecification of

the outcome. A similar rationale applies to the favourable performance of TMLE, which is

originally a doubly robust estimator from frequentist viewpoints. Other methods, LDML and

FIPW, do not utilise both the whole conditional cumulative distribution function and the

propensity score function as inputs in the doubly robust estimation procedure. However, their

reliance on the treatment assignment equation from the outset makes them less affected by the

misspecification of the outcome, resulting in reasonably good performance.

Bayesian Propensity Score Analysis estimator, BPSA, exhibits lower average bias than

both BOM and BOMS when estimating 25th and 75th QTEs. Nevertheless, its performance is

dominated by both BDR and BDRS in terms of average bias across all evaluated quantile

levels. Despite sharing the first stage with doubly robust estimators when fitting the propensity

score by a logit BART model, BPSA then uses posterior samples of propensity score rather

than 5-dimensional covariates as control variables to estimate the conditional distribution of

potential outcomes. Its inferiority compared to BDR underscores the doubly robust approach,

suggesting that using the estimated propensity score alone is less favourable, especially when

the treatment assignment and potential outcome equations contain different sets of control

variables. This observation also aligns with the poor performance of BNP and reinforces our

conclusion from the first simulation exercise.

SD2b. Nonlinear Specification

Table 2.5 presents simulation results when the 55-dimensional expansion of covariates is

utilised as control variables. It can be seen that the performance of BDRS is noticeably

improved, particularly in the extreme tails. BDRS outperforms all frequentist methods in

terms of both average bias and MAE, across most quantile levels except for two instances

when it ranks second after TMLE. This finding again highlights the superiority of BDRS in
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high dimensions. Continuing our previous discussion on the double robustness of BDRS,

when considering this basis expansion of covariates, the treatment assignment equation is

misspecified to some extent. Because the logit link is maintained across Bayesian methods,

the use of high-order polynomials induces a nonlinear functional form of X, whereas the

true model involves only a linear combination of X1, X2, and X3. BPSA produces larger

average bias than BOMS across almost all quantile levels, other than 25th QTEs, and remains

persistently dominated by BDRS.

Table 2.5: Simulation Results for SD2b, Average Bias and Relative MAE

Bias MAE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Nonlinear specification

BDRS -0.014 0.015 0.019 0.027 0.011 0.724 0.859 0.503 0.527 0.550

BOMS 0.041 0.027 0.020 0.015 0.001 0.547 0.709 0.463 0.455 0.441

BPSA 0.140 -0.019 -0.029 0.077 0.099 0.744 0.913 0.494 0.562 0.724

LDML 0.111 0.052 0.047 0.062 0.182 0.880 0.922 0.663 0.683 0.820

TMLE -0.020 0.009 0.023 0.023 0.064 0.728 0.863 0.500 0.533 0.667

FIPW 0.034 0.120 0.090 -0.050 -0.051 1.577 1.290 0.873 0.926 1.298

No covariates

Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Mean Absolute Error (MAE) of

different estimation methods across 100 replicates. The relative MAE is the MAE in comparison

with the Naive method as the benchmark, where MAE = R−1∑R
r=1 |α̂r − α| and R = 100.

In summary, our proposed doubly robust estimators (BDR and BDRS) consistently surpass

at least one among outcome-regression-based estimators (BOM and BOMS) or treatment-

assignment-based estimator (BPSA) regarding the average bias, when either the outcome

equation or treatment equation is misspecified. By flexibly incorporating shrinkage priors,

BDRS outperforms its Bayesian nonparametric counterpart and all frequentist competitors in

high-dimensional settings. This result demonstrates that our proposed framework features not

only adaptability to complexity but also robustness to misspecification.
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2.6 Empirical Illustration

2.6.1 Overview

To demonstrate the applicability and usefulness of our proposed method, we revisit the

microcredit study by Crépon et al. (2015), which was derived from a randomised experiment

conducted in Morocco. The dataset enables us to examine the potential of our approach in two

distinct contexts. In the first setting, we employ the random treatment assignment available

in the original research to investigate the effect of microcredit availability on household

borrowing activities, such as the total amount of loans. Our second setting deviates from

randomisation – we instead use observational data while assuming selection-on-observables

to evaluate the welfare impact of household loans.

The evaluation was conducted across 162 Moroccan villages that were paired based on their

observable similarities. The intervention was microcredit availability, which was randomly

assigned to one village within each pair. These designated villages constituted the treated

group, whereas the remaining villages formed the control group. In particular, a microfinance

institution was established in the treated villages between 2006 and 2007. In 2009, a follow-up

study surveyed 5551 households in both treated and control villages.

The expansion of microcredit, or access to loans in general, can have potentially

heterogeneous effects on household welfare for several reasons. First, households have

diverse loan take-up behaviours. They may differentially select into borrowing activities

based on their characteristics, leading to varying outcomes. Those who do not take up loans

may end up worse off due to effects on wages or the displacement of informal lending in

a dynamic general equilibrium (Kaboski and Townsend, 2011; Morduch, 1999). Second,

among borrowers, the effects may vary due to differences in the efficiency of loan use and

uneven investment opportunities. Indeed, certain households may not benefit from loans

if the requirements for investment purposes are restrictive or the term to maturity is too

short (Banerjee, 2013). Additionally, multiple microlenders in a community can engage in

exploitative lending practices and “overlending” to households who cannot feasibly repay

the loan (Ahmad, 2003; Schicks, 2013). This can result in high-productivity borrowers

benefiting from the positive impact, whereas the most vulnerable borrowers are systematically

harmed by the saturation of credit markets. In summary, there are potential winners and

losers to financial market expansion. Even if disadvantaged groups are small, social welfare
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consequences could be substantial, particularly if economic inequality across households is

exacerbated (Meager, 2022).

The average treatment effect (ATE), which is most commonly utilised in empirical research,

cannot reveal this heterogeneity. Even though loan access might have no impact on average,

it could still have significant positive or negative effects on different types of households.

This policy implication is particularly critical for developing countries. To gain a more

comprehensive understanding of causal effects, it is worthwhile to estimate unconditional

quantile treatment effects (QTEs), which offer a valid measurement that goes beyond the ATE

for the entire population. Therefore, our proposed framework is well suited for this empirical

context.

In contrast to the original paper and previous studies that typically rely on randomised

controlled trial (RCT) design and ad hoc selection of baseline covariates, our approach

offers more flexible specifications and data-driven estimation. This enables us to conduct new

analyses using either data from randomised experiments or observational data, as demonstrated

in sections 2.6.2 and 2.6.3, respectively.

Specifically, our general strategy is to initially create a large set of covariates by combining

village pair dummies and full cubic polynomials along with interaction terms of household

observed characteristics. Once collinear columns are removed, this set serves as the baseline

specification of X and can be readily integrated into our Bayesian Analogue of Doubly Robust

(BADR) estimation framework. Given the high dimensionality of this empirical issue, we

opt for the Bayesian Doubly Robust estimator with Adaptive Lasso (BDRS) due to its proven

merits in our prior simulation study. To compare our results with the benchmark, we also

include the Naive estimator (Naive) in our analysis.

2.6.2 Impact of Microcredit Availability on Loan Amount

We begin with the context of random treatment assignment, where our objective of interest is

the effect of microcredit availability on the total amount of loans at the household level. To

examine the balance between the treated and control groups, we select pre-treatment covariates

which are observed characteristics for each household, including head age, education of the

head, number of adults, total number of members in a household, indicators for households

doing animal husbandry, doing other non-agricultural activities, and whether household

spouse responded to the survey. Table 2.6 reports the mean values of these covariates in



CHAPTER 2. CAUSAL INFERENCE ON QUANTILES IN HIGH DIMENSIONS:
A BAYESIAN APPROACH 44

addition to the outcome and treatment variables, both for the whole sample and for each of

the treated and control groups.

Table 2.6: Summary Statistics of Households

Treated Control Treated – Control

Treatment: Microcredit Availability (RCT) Mean (sd) Mean (sd) Diff.Mean t-statistic

Outcome variable

Total amount of loans (in MAD) 2350.44 (10865.84) 1547.75 (7381.73) 802.69 * 2.54

Baseline covariates

Head age 49.18 (15.83) 48.14 (15.85) 1.05 . 1.95

Head with no education 0.67 (0.47) 0.68 (0.47) -0.01 -0.89

Number of members 5.70 (2.54) 5.64 (2.44) 0.06 0.71

Number of adults 3.81 (1.99) 3.76 (1.91) 0.05 0.83

Number of members aged 6-16 1.22 (1.29) 1.25 (1.26) -0.03 -0.72

Declared animal husbandry activities 0.60 (0.49) 0.55 (0.50) 0.05 ** 2.73

Declared non-agricultural activities 0.17 (0.37) 0.21 (0.41) -0.04 ** -3.15

Spouse of head responded 0.09 (0.29) 0.07 (0.26) 0.02 * 2.27

Member responded 0.05 (0.22) 0.05 (0.21) 0.00 0.62

Data sources: Moroccan household survey (Crépon et al., 2015).

Although the randomisation of microcredit availability and the absence of confounding

factors leading to self-selection into treatment is plausible, there are slightly imbalances in

covariates across the two groups. Regarding the unconditional means, the households’ total

loan amount for the treated group (2350.44) significantly exceeds that of the control group

(1547.75). The potential heterogeneity of microcredit motivates us to further investigate this

positive average treatment effect using quantile analysis.

The results of Quantile Treatment Effects (QTEs), as estimated by the Naive and BDRS

methods, are depicted in Figure 2.5. According to the findings, microcredit expansion has

a precise zero effect below the 75th percentile of the distribution of total loan amounts, but

exhibits positive effects above this threshold. In particular, at the 90th percentile, the positive

effect is statistically significant (2300), contributing to the decomposition of the average

treatment effect (802.69). Compared with naive estimates, BDRS produces similar results,

only higher at the 90th percentile; however, the difference is insignificant. The result is robust

after adjusting for the influence of covariate imbalance on the outcome.
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Figure 2.5: Quantile Treatment Effects (QTEs) of microcredit availability on households’ total loan
amount. The graph on the left demonstrates Naive estimation results. Red bar plots represent naive
QTEs, which are differentials between empirical quantiles of treated group (in green) and control
group (in blue). Red dashed line indicates naive Average Treatment Effects (ATE), which is simple
mean difference between these two groups. Results obtained using BDRS method, QTE point estimates
and corresponding 95% CI at five quantile levels based on 100 bootstrap replications, are plotted as
error bars in the right-hand graph.

Using the same dataset, findings in Chernozhukov et al. (2017) and Jacob (2021) also

document the heterogeneity of the microcredit availability on total loan amount; however,

their estimand is conditional ATE, different from this paper (QTEs).

2.6.3 Impact of Loan Access on Household Outcomes

Our second objective is to explore the causal impact of access to loans on household welfare,

with a focus on the distribution of consumption and business outcomes, including total

consumption, consumption of temptation goods, total output, and total profit. Unconditional

QTEs provide deeper insights into the potential heterogeneity of causal effects across the

distribution of each outcome interest, as well as the resulting change in household inequality.

The binary treatment we consider is the actual borrowing status recorded at the household

level. Table 2.7 indicates that the difference in mean between two groups of households

(borrowers and non-borrowers) is highly statistically significant regarding consumption, but

not for business outcomes. However, there are two caveats to these naive ATE estimates.
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Table 2.7: Summary Statistics of Household Outcomes.

Borrowers Non-borrowers Borrowers – Non-borrowers

Outcome variables Mean St.Dev. Mean St.Dev. Diff.Mean t-statistic

(in MAD)

Total Consumption 3268.62 (2956.01) 2863.49 (1792.97) 405.13 *** 3.82

Temptation Goods 312.33 (229.91) 270.31 (219.33) 42.01 *** 4.73

Total Output 32672.06 (85071.58) 30885.38 (85939.63) 1786.68 0.54

Total Profit 10081.86 (37986.07) 8409.95 (45277.88) 1671.91 1.07

Data sources: Moroccan household survey (Crépon et al., 2015). Definition: Total Consumption is monthly

total consumption (in MAD); Temptation Goods is monthly expenditure on temptation and entertainement(in

MAD); Total Output is sum of agricultural, livestock, and non-agricultural business production over the 12

months prior to the survey (in MAD); Total Profit is total profit of self-employment activities over the 12

months prior to the survey (in MAD).

Firstly, all outcome variables in this empirical setting exhibit heavy tails and large variability,

as illustrated in histograms in Figure 2.6. This is another motivation for quantile analysis since

estimation results for a set of quantiles would be less susceptible to the influence of outliers

than results for the mean.

Figure 2.6: Histograms of various consumption and business outcomes of borrowing households (in
green) and nonborrowing households (in blue). These graphs display raw data without any truncation
applied.
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Secondly, the treatment variable – borrowing pattern observed in the dataset – is no

longer randomly assigned among households in the present context. This is confirmed

by the imbalances between these two groups regarding the mean values of the observed

characteristics, as shown in Table 2.8. Specifically, borrowing households tend to have larger

average household sizes. They are also more inclined to engage in non-agricultural self-

employment activities and reside in villages where microcredit is available. The discrepancy

observed is more than what would be expected by pure chance. Therefore, to identify causal

effects using non-experimental data, we pursue the selection-on-observables assumption. That

means, conditional on observed covariates, unmeasured factors that influence household loan

access are independent of household outcomes.

Table 2.8: Covariate Balance between Borrowers and Non-borrowers.

Borrowers Non-borrowers Borrowers – Non-borrowers

Control variables Mean (sd) Mean (sd) Diff.Mean t-statistic

Head age 49.01 (15.62) 48.53 (15.93) 0.49 0.79

Head with no education 0.68 (0.47) 0.68 (0.47) 0.00 0.05

Number of members 6.06 (2.46) 5.54 (2.48) 0.52 *** 5.36

Number of adults 4.02 (2.01) 3.71 (1.92) 0.31 *** 3.99

Number of members aged 6-16 1.36 (1.30) 1.19 (1.27) 0.16 ** 3.23

Declared animal husbandry activities 0.59 (0.49) 0.57 (0.50) 0.02 1.23

Declared non-agricultural activities 0.23 (0.42) 0.18 (0.38) 0.05 ** 3.17

Spouse of head responded 0.05 (0.23) 0.09 (0.29) -0.04 *** -3.96

Member responded 0.05 (0.21) 0.05 (0.22) 0.00 -0.36

Microcredit availability 0.55 (0.50) 0.47 (0.50) 0.07 *** 3.73

Data sources: Moroccan household survey (Crépon et al., 2015).

Whilst a violation of randomisation may threaten the performance of the naive estimator, the

BDRS estimator serves as a debiasing device, as illustrated in our simulation using synthetic

data. Table 2.9 presents the results for key outcome variables related to household consumption

and business. Unlike the first setting, the BDRS estimates differ considerably from the naive

estimates of QTEs because selection bias is accounted for in our proposed approach. Overall,

the point estimates at extreme tails (10th and 90th percentiles) are fairly imprecise, as indicated

by large credible intervals compared to the other quantile levels. Interestingly, the causal effect

in the upper tail remains significantly positive in most cases.
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Table 2.9: Quantile Treatment Effects of Loan Access on Household Outcomes.

BDRS Naive

Outcomes Percentiles QTEs Upper bound Lower bound QTEs

10th 20.093 1469.207 -1429.020 232.795

25th 9.242 173.511 -155.027 173.456

50th 79.949 229.587 -69.690 229.753

75th 132.22 273.974 -9.534 286.680

Total Consumption

90th 237.699 543.355 -67.956 685.442

10th -8.69 65.660 -83.040 17.380

25th 13.035 29.871 -3.801 21.725

50th 30.415 45.962 14.868 43.450

75th 47.795 79.225 16.365 60.830

Temptation Goods

90th 78.21 129.145 27.275 78.210

10th 0 13146.948 -13146.948 0.000

25th -330 19.769 -679.769 1093.446

50th 50 1385.992 -1285.992 1787.500

75th 1666 6933.205 -3601.205 2771.616

Total Output

90th 27360 52964.198 1755.802 2744.044

10th -5500 -1183.536 -9816.464 -1142.697

25th -945 158.825 -2048.825 -241.876

50th 561 1117.727 4.273 979.125

75th 1780.769 4273.915 -712.377 549.373

Total Profit

90th 8954.377 16664.233 1244.520 -1086.350

Notes: Upper bound and Lower bound for BDRS method are associated with the

estimates of 95% CI based on 100 bootstrap replications.

Regarding total consumption, although all naive estimates of ATE and QTE are positive,

estimation results obtained using the BDRS method reveal notably lower effects across all

quantile levels. The effects of loan access are most pronounced at the 75th and 90th percentiles

of the consumption distribution; however, they are insignificantly positive. While the naive

method overestimates the effect of loan access compared to the BDRS estimator, the upward

bias suggests a possible selection-on-gain pattern. Households inclined to borrow to support

their consumption are more likely to gain higher total consumption when they have financial

access.

Further examination of the impact of borrowing on temptation consumption shows a similar

upward bias in the Naive method relative to the BDRS method. The effect is slightly negative
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at the lowest percentile (10th) yet clearly insignificant. By contrast, significant positive effects

are observed at the median and higher percentiles. This seems inconsistent with other works

that have found a statistically significant reduction in nonessential expenditures. However,

these studies used different treatment variables and designs compared to this paper.

With respect to household business outcomes, there is a statistically significant increase in

total output, concentrated only at the highest quantile level. For the rest of the community,

specifically those below the 90th percentile, no systematic change appears to be taking place.

Consequently, the majority of the total output distribution remains unchanged with or without

universal access to loans.

Interestingly, there is notable evidence of heterogeneous effects on total profit. The effect

on the median household estimated by the BDRS method is quite close to the naive ATE

estimate, which is moderately positive. In general, access to loans has a favourable impact

on households’ profit by shifting the center of distribution towards the right. However, the

impacts exhibited at extreme tails are more dramatic, with a negative effect at the lowest

percentile (10th) and a positive effect at the highest percentile (90th), and both are statistically

significant. If the rank invariance assumption is invoked, the rightward expansion of the upper

tail means that high-profit households gain benefits, while the leftward expansion of the lower

tail means that low-profit households experience loss when loans are accessible to everyone,

compared to the opposite counterfactual scenario. While this assumption might be difficult to

defend given the complexity and nonlinearities inherent to the financial market, interpretations

about the shape change of distribution of household total profit remain valid. There do exist

both winners and losers, even when we cannot identify the specific households that belong to

each group. The outcome distribution disperses wider leading to the exacerbation of inequality

across households.

Taken together, the estimated QTE patterns collectively indicate that broadening financial

access is likely to result in an ex-post rise in economic inequality across households.

Specifically, the increase in total output and consumption at the household level is solely

attributable to the right tail of distributions expanding rightward, suggesting that certain

households are likely to experience an improvement in their economic circumstances without

incurring any systematic losses from others. Further investigation of total profit, however,

reveals a more nuanced picture. While the overall impact of access to loans on total profit

is positive, indicating a shift towards higher profits for many households, there is evidence



CHAPTER 2. CAUSAL INFERENCE ON QUANTILES IN HIGH DIMENSIONS:
A BAYESIAN APPROACH 50

of extreme heterogeneity. The effect is asymmetric as certain households may experience

negative effects on their profits.

Although the treatment variable and identification strategies employed in this setting differ

from those used in Crépon et al. (2015), the findings converge in several respects. In the

original paper, both the reduced-form quantile regressions and instrumental variable (IV)

estimates suggest substantial heterogeneity in the profitability of microfinance investments

and emphasise the detrimental effects on certain households. Specifically, their reduced-form

quantile analysis measures Intention-to-Treat (ITT) effects because the treatment variable is

microcredit availability at the village level rather than actual borrowing at the household level.

Additionally, the IV estimates in this study reveal changes in the unconditional distribution of

total profit for those who take up microcredit (i.e., compliers only). These results are only valid

when randomisation holds. In contrast, the findings of this paper have broader implications for

the understanding of economic inequality, as we focus on the entire population of households

utilising non-experimental data and a selection-on-observables assumption.
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Figure 2.7: Quantile Treatment Effects (QTEs) of loan access on various household outcomes. Graph
on the left demonstrates Naive estimation results. Red bar plots represent naive QTEs, which are
differentials between empirical quantiles among borrowing households (in green) and nonborrowing
households (in blue). Red dashed line indicates naive Average Treatment Effect (ATE), which is simple
mean difference between these two groups. Results obtained using BDRS method, QTE point estimates
and corresponding 95% CI at five quantile levels based on 100 bootstrap replications, are plotted as
error bars in the right-hand graphs.
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2.7 Concluding Remarks

The goal of this paper was to address the challenges associated with estimating unconditional

Quantile Treatment Effects (QTEs) in observational studies and to make a contribution to the

burgeoning econometric literature on QTEs as well as causal machine learning. We introduced

a novel approach, Bayesian Analogue of Doubly Robust (BADR) estimation, which accounts

for potentially high-dimensional covariates. The framework features a highly flexible Bayesian

modelling scheme that showcases favourable frequentist properties in finite samples, even in

the presence of high dimensions or model misspecifications, which has not been explored in

previous literature. This approach, while not fully Bayesian in nature, offers a straightforward

and versatile implementation for integrating probabilistic machine learning techniques into

causal analysis on quantiles, with precise estimation and reliable uncertainty quantification.

These attributes are particularly advantageous in complex, high-dimensional settings.

The performance of the proposed method was assessed through a simulation study in

two different settings. The first simulation focused on a linear setting with varying feature

dimensionality, whereas the second simulation considered a nonlinear setting and examined

the double robustness of the proposed estimators. Through a comparison with both the naive

approach and existing popular estimators, the simulation results consistently indicated a

substantial improvement in bias reduction for QTE estimates when using the new method.

This finding demonstrates that our proposed framework features not only the ability to adapt

to high dimensions and complexity, but also robustness to misspecification.

The empirical illustration of estimating QTEs of financial access on household outcomes

showed the potential benefits of using causal inference on quantiles to help characterise the

heterogeneity or distributional impact of interventions, which is often appealing to researchers

and easily conveyed to policymakers and stakeholders. Our proposed approach makes this

possible even in the absence of experimental data. We found strong evidence for an overall

positive effect yet heterogeneous across different points of outcome distributions. An ex-post

rise in economic inequality among households is likely to occur, primarily driven by significant

improvements in consumption and business outcomes at the top quantiles. However, certain

households may experience adverse effects on their total profit.

An interesting extension of this framework to be explored in the future would be estimating

QTEs when the selection-on-observable assumption is violated, that is, when there exists
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unmeasured confounding that drives endogenous selection into treatment. Another aspect

is improving the bootstrap inference scheme for doubly robust estimators. Although this

objective could be achieved effectively in the BADR framework for average treatment effect,

it is computationally demanding when applied to quantiles.



Chapter 3

Bayesian Causal Inference in the Presence of Endogenous

Selection into Treatment and Spillovers

3.1 Introduction

Spillovers, often referred to as interference, despite being of great significance in economic

settings, complicate conventional approaches in causal inference and have received insufficient

attention. This phenomenon occurs when the outcome of a unit is influenced not only

by its own treatment but also by the treatments applied to other units within a network

or spatial domain (see, e.g., Forastiere et al., 2021; Giffin et al., 2022.). This poses a

challenge to the Stable Unit Treatment Value Assumption (SUTVA), which stipulates that the

potential outcome for any unit remains unaffected by treatment assignments to other units.

Understanding both direct and indirect effects is essential for evaluating programs in situations

where spillovers exist. Direct effects quantify how an individual’s own treatment alters their

outcome, while indirect effects quantify how their peers’ treatments impact their outcome.

Our first motivation comes from the presence of network interference through exogenous

social networks. For example, an After-School Program (ASP) aimed at enhancing personal

or social skills in youth can lead to spillover effects via knowledge sharing or behavioural

influence, given that participants interact with non-program peers. Another important setting

is the presence of spatial interference of place-based policies, such as the Opportunity Zone

(OZ) program, a U.S. tax incentive program designed to stimulate private investment in

economically disadvantaged communities. Spatial interference arises when a census tract

receives the program, possibly affecting non-designated neighbouring tracts. This can occur

through increased property values and economic activity in Opportunity Zones (OZs), which

may spill over into adjacent areas, or by attracting businesses and investors to relocate to

designated OZs, influencing surrounding regions. Policymakers may be concerned about the

potential for indirect effects to counteract the direct effects of such programs.

54
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In the presence of spillovers, the outcome of an individual is a function of the entire vector

of treatments allocated to the population. Consequently, there are an extremely large number of

possible potential outcomes, hindering the use of the conventional causal inference framework

(Rubin, 1986, 1974). As a result, researchers typically resort to alternative experimental

designs, specific assumptions, or additional information. The existing literature can be divided

into two primary approaches. The first approach relies on the partial interference assumption

which requires that units are a priori partitioned into disjoint treatment clusters, and spillovers

occur only within clusters and not between them (see, e.g., DiTraglia et al., 2023; Hudgens

and Halloran, 2008; Manski, 2013; Sobel, 2006.). Nevertheless, this requirement is only

plausible in limited settings when the data naturally segregates a significant distance. In

other circumstances, such as when bordering counties in two states influence each other,

it may be impractical to apply this assumption. A more recent approach has attempted

to relax the assumption of partial interference, thereby allowing for spillovers of quite

general forms without the notion of cluster. This departure requires extra knowledge of

the interference structure, which is increasingly obtainable from the deluge of network or

spatial data, and formulates exposure mappings1 through which interference affects individual

outcomes. Early studies in econometrics and statistics, which employed this methodology,

focused on randomised experiments on social networks, including works by Toulis and Kao

(2013), Aronow and Samii (2017), Leung (2020), Yuan and Altenburger (2022), and others.

Additionally, there is an active line of research in observational studies where the network

is observed by the researcher, with works by Laan and Sofrygin (2017), Forastiere et al.

(2021), Forastiere et al. (2022), Ogburn et al. (2022), Sanchez-Becerra (2022), Leung and

Loupos (2022), among others. To address identification, these studies establish analogs of the

unconfoundedness and support conditions for the applicable settings. Despite the technical

advancements, unconfoundedness states that the treatment would be as good as randomly

assigned once conditioned on observables. This assumption is not always justifiable in real-

world applications, where selection on unobservables is the norm rather than the exception.

However, there has been little exploration of this violation. In the context of After-School

Programs (ASPs), self-selection is a significant issue. As participation is voluntary, young

individuals who enroll in and attend ASPs may differ in numerous ways from those who

do not participate. With respect to the OZ program, endogenous selection into treatment

may occur in the assignment process of the program. The selection of which communities

1For a more comprehensive survey, we refer interested readers to Huber (2023).
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to be designated as Opportunity Zones was based on a combination of factors, including a

recommendation from the governor of the state and the support of the local government. If the

recommendation and support are based on factors related to the economic performance of the

community, such as high levels of economic activity or growth potential, this may result in the

OZ program only being available to the most promising communities, thereby exaggerating

its benefits.

In this paper, we provide methods that use observational network or spatial data to identify

and estimate direct and indirect causal effects in the presence of both endogenous selection

into treatment and spillovers. This scenario causes the violation of the unconfoundedness and

SUTVA assumption. We propose a new econometric framework that nests the Generalised

Roy model and accommodates spillovers in a form of neighbourhood treatment (exposure

mapping). In this way, we explicitly model endogenous selection into treatment and allow for

heterogeneous effects across individuals, making it economically interpretable. For estimation

and inference, we develop further Bayesian Data Augmentation algorithms that enable more

efficient computation when models involve latent data structures and the maximization of the

likelihood function is challenging numerically. We suggest an extension of our method using

a Bayesian semiparametric approach that relaxes distributional assumptions.

To assess the performance of our proposed approach in finite samples, we conduct

simulations using synthetic data and an empirical Monte Carlo study that utilised friendship

networks and covariates from the National Longitudinal Study of Adolescent Health (Add

Health). The Bayesian estimators demonstrate strong performance in terms of bias, root

mean squared error (RMSE), and coverage rate. Furthermore, the inclusion of neighbourhood

treatment terms is found to be plausible, regardless of the presence of interference in the true

data-generating process. In contrast, neglecting neighbourhood treatment leads to a larger bias

and a lower coverage rate, even when the causal estimand is the direct treatment effect.

Finally, in a realistic setting, we apply the framework to evaluate the effects of the

Opportunity Zones (OZ) program, a place-based policy offering tax incentives to promote

economic development in distressed communities in the United States. We model the selection

process of Qualified Opportunity Zones (QOZs) by state governors and estimate the program’s

impact on housing unit growth in census tracts. Endogenous selection into treatment is

present. Our findings reveal a selection-on-gains pattern, where treatment effects vary

across unmeasured tract heterogeneity. Governors tend to designate census tracts based
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on characteristics that drive expected future growth, such as the level of prior investment

or development. Although these factors are unobservable in the data, governors appear to

obtain this information from their local political networks. In fact, the results also indicate

that governors are more likely to choose tracts represented by members of their political

party, which supports our use of political affiliation as an instrumental variable. With regard

to targeted areas, both direct and indirect effects on the treated tracts (QOZs) are positive.

However, eligible but unselected tracts (non-QOZs) remain a disadvantaged group that does

not experience any positive spillover effects. Additionally, unobserved differences between

QOZs and non-QOZs make it unlikely that positive treatment effects on QOZs would be

replicated if non-QOZs were granted investment tax credit. In fact, the strongly negative

average direct treatment effect on the untreated (ADTUT) even predicts that non-QOZs would

likely suffer adverse consequences in that case. Consequently, extending the OZ program to

communities that do not currently receive tax credit would not be effective.

Beyond the related literature on violation of the SUTVA, which has been mentioned earlier,

our paper also broadly fits the econometrics literature on estimation of treatment-response and

selection models under non-random treatment assignment. The proposed framework is closely

connected to the canonical Generalised Roy Model (GRM) and its extensions (see, e.g.,

Abbring and Heckman, 2007; Eisenhauer et al., 2015; Heckman and Vytlacil, 2007, 2005),

which form a cornerstone of the literature in econometric causality and structural policy

analysis2. Specifically, our model inherits GRM’s key advantages in modelling heterogeneity

and self-selection into treatment based on unobserved gains from treatment, enabling a richer

characterisation of causal estimands beyond mean treatment effects. In terms of identification

and estimation, the full covariance structure of disturbance terms plays a pivotal yet technically

challenging role. First, correlations of unobservables in selection and outcome equations

need to be considered to tackle selection bias. It is well known that the variance of the

disturbance term in the selection equation is unidentified and therefore requires normalization.

Second, when jointly modeling multiple potential outcomes–which is essential for learning

distributions of treatment effects–the cross-regime correlation between treated and untreated

outcomes becomes another unidentified parameter, since each individual is observed in only

one regime. To address these challenges, our Bayesian estimation strategy builds on the

previous approaches to Gaussian selection model Poirier and Tobias (2003), which place an

Inverse Wishart prior over the full covariance matrix. Our approach, however, differs in how

2See Heckman and Pinto (2022; 2024) for recent comprehensive discussions.
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we handle the unidentified variance of the selection-equation disturbance, which complicates

posterior sampling. Rather than fixing this parameter throughout–as suggested in Nobile

(2000)–we employ parameter expansion techniques to construct efficient Gibbs samplers that

accommodate the normalization constraint while improving convergence rates. In this regard,

our paper also connects to the line of work on Bayesian approaches to sample selection and

latent-index models (Ding, 2014; Doğan and Taşpinar, 2018; Imai and Van Dyk, 2005; Jiao

and Dyk, 2015). Nevertheless, to our knowledge, no existing studies in this body of research

jointly model endogenous selection and spillovers, which is the central contribution of this

paper.

The remainder of this paper is structured as follows. In Section 3.2, we formally present

a causal framework in the presence of endogenous selection into treatment and spillovers

and define causal estimands of interest along with key identification assumptions. In Section

3.3, we propose Bayesian Data Augmentation algorithms to estimate the model and conduct

inference. Next, we evaluate the performance of our method using simulations in Section 3.4

and use the proposed approach to investigate the causal impact of the American Opportunity

Zones (OZ) program on economic outcomes in Section 3.5. Finally, we conclude the paper in

Section 3.6 with brief final remarks on the method and policy recommendations based on our

results.

3.2 Causal Framework in the Presence of Endogenous Selection into

Treatment and Spillovers

3.2.1 General Model Setup

We consider a general setting for n agents (i = 1, . . . , n) which involves treatment and

outcome processes.

Treatment process

• Let Di be the observed binary treatment decision, which takes the value of 1 if the unit

receives the treatment and 0 otherwise. This could be regarded as individual treatment.

From a choice-theoretical perspective, this selection process can be expressed as an

individual decision-making problem relied on cost-benefit assessment. Denote D∗
i

the net benefit to the individual of enrolling the program (/the net desire for receipt

of treatment), which depends on observable characteristics (Zi,Xi) and unobservable
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factors (Ui). Zi represents the availability of some exclusion restriction in choice

equation that does not appear in outcome equations.

D∗
i = µ(Zi, Xi)− Ui;

Di = 1 if D∗
i ≥ 0; Di = 0 otherwise.

(3.1)

Here, Ui is assumed to be a continuous random variable with a strictly increasing

distribution function FU . Define Vi = FU(Ui), then it has uniformly distribution and

indicates different quantile level of Ui. Let ν(Zi, Xi) = FU(µ(Zi, Xi)), which is the

mean scale utility function in discrete choice theory, we can thereby rewriting:

Di = 1{µ(Zi, Xi) ≥ Ui} = 1{ν(Zi, Xi) ≥ Vi}. (3.2)

Since Vi enters the selection equation with a negative sign, it embodies characteristics

that make individuals less likely to receive treatment yet being unmeasurable by the

researcher. Put differently, Vi can be interpreted as the unobservable resistance to the

treatment.

• To capture spillovers, for each agent i, we formulate a neighbourhood treatment term

D̄N i, which is a summary measure of the treatment status of all agent j other than i.

It is possible to calculate D̄N i based on the knowledge of wij , which represents the

connection between units i and j. We can exploit this information from an available

adjacency matrix, which defines spillovers structure in the case of either spatial

interference or network interference.

D̄N i =
n∑

j=1,j ̸=i
wijDj,

∑
j=1,j ̸=i

wij = 1. (3.3)

Outcome process

• Y (1)
i and Y (0)

i are treated and untreated potential outcomes, respectively. In particular,

Y
(1)
i is the potential outcome when agent i enrolls the program while Y (0)

i is the

potential outcome when agent i does not. In both cases, potential outcome depends

on individual characteristics Xi and an idiosyncratic component (ϵ(1)
i or ϵ(0)

i ). We also

extend the standard formula of potential outcomes to allow for possible impact of the
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neighbourhood treatment term D̄Ni.

Y
(1)
i = µ1

(
D̄N i, Xi

)
+ ϵ

(1)
i and

Y
(0)
i = µ0

(
D̄N i, Xi

)
+ ϵ

(0)
i ,

(3.4)

where µ1
(
D̄N i, Xi

)
= E

[
Y

(1)
i | D̄N i, Xi

]
and µ0

(
D̄N i, Xi

)
= E

[
Y

(0)
i | D̄N i, Xi

]
are mean response functions.

• Yi is the revealed outcome, which equals treated potential outcome when i is treated

(Di = 1) and equals untreated potential outcome when i is untreated (Di = 0)

Yi = DiY
(1)
i + (1−Di)Y (0)

i . (3.5)

Taken together, we present a full model specification as follows

Di = 1{ν(Zi, Xi) > Vi},

D̄N i =
n∑

j=1,j ̸=i
wijDj,

∑
j=1,j ̸=i

wij = 1,

Y
(1)
i = µ1

(
D̄N i, Xi

)
+ ϵ

(1)
i ,

Y
(0)
i = µ0

(
D̄N i, Xi

)
+ ϵ

(0)
i ,

Yi = DiY
(1)
i + (1−Di)Y (0)

i .

(3.6)

Example 1. (Causal Inference in the presence of endogenous selection into treatment and

spatial interference of place-based policies)

In the context of the Opportunity Zone (OZ) program, there are n census tracts, indexed by

i = 1, . . . , n. Di denotes the participation indicator in the OZ program, while Yi represents

the housing price or new development as the outcome variable. Xi is a vector of exogenous

covariates, such as poverty rate, median earnings, and employment rate, among others. Zi is a

vector of instrumental variables that directly determineDi but only indirectly affect Yi through

Di. For instance, political alignment between the census tract and the state governor is likely to

be correlated with treatment decisions. The unobservable cost Vi would reflects factors such as

the level of economic growth potential of the community. For d ∈ {0, 1}, Y (d)
i represents the

potential outcome when Di = d, and ϵ(d)
i is the corresponding unobservable determinant of

Y
(d)
i . We may suspect the presence of endogeneity in the OZ program assignment process since
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the unobservable component Vi and (ϵ(1)
i , ϵ

(0)
i ) may share factors related to local economic

performance. It is plausible to imagine that when the OZ program is introduced in community

i, the surrounding areas that are not designated as OZs may also be affected due to spatial

interference (spillovers). For instance, this program may lead to the displacement of low-

income residents and unskilled workers as property values, living costs, and job requirements

increase in the designated zone. Since displaced people may have to seek employment

opportunities in other areas, the effects on the local economic outcome Yj in census tract i’s

neighbouring areas j may be considerable. To measure the neighbourhood treatment term

D̄N i, we could employ wij from a spatial weights matrix.

Example 2. (Causal Inference in the presence of endogenous selection into treatment and

network interference via a known exogenous social network)

In the case of the After-School Program (ASP), there are n students, labeled as i = 1, . . . , n.

Individual treatment Di is an index of participation in the program, while Yi measures a

desired outcome, such as academic performance, social-emotional learning (SEL)-related

outcomes, and involvement in juvenile crime and violence. The exogenous variables Xi

consist of individual characteristics including gender, grade, and race, among others. The

instrumental variable Zi could be in the form of cost-shifters, for example, the distance to the

program location, which varies from living directly next to the program to living far away. As

participation in the program is voluntary, unmeasured resistance to treatment Vi is likely to be

correlated with unobservable components (ϵ(1)
i , ϵ

(0)
i ) in the outcome equations. To account

for network interference (spillovers) resulting from peer effects on students’ outcomes, we

compute the neighbourhood treatment D̄N i as the proportion of the number of treated friends

among all friends. Information on network link wij can be extracted using the adjacency

matrix of the students’ friendship network.

3.2.2 Identification and Causal Estimands

3.2.2.1 Assumptions

For identification, we make the following assumptions in our setting.
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Assumption 1. {Yi, Di}ni=1 is generated according to a parametric model specified below

Di = 1{Ziα +Xiβ
(D) + ϵ

(D)
i > 0},

D̄N i =
n∑

j=1,j ̸=i
wijDj,

∑
j=1,j ̸=i

wij = 1,

Y
(1)
i = δ(1)D̄N i +Xiβ

(1) + ϵ
(1)
i ,

Y
(0)
i = δ(0)D̄N i +Xiβ

(0) + ϵ
(0)
i ,

Yi = DiY
(1)
i + (1−Di)Y (0)

i .

(3.7)

This specification implies the linearity (in parameters) of mean response functions

µ1
(
D̄N i, Xi

)
, µ0

(
D̄N i, Xi

)
, and ν(Zi, Xi). It also allows the outcome Yi to depend on

the (binary) individual treatment Di, (multi-valued) neighbourhood treatment D̄N i, and their

interaction.3

Assumption 2.
(
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

)
⊥⊥ (Xi, Zi), where ⊥⊥ denotes statistical independence.

This is a stronger independence assumption compared to exclusion restriction in

conventional IV literature, which requires Z to be exogenous with respect to the outcome

processes after conditioning on observed covariates X . An increasing number of empirical

studies adopt this assumption in order to overcome the limitations associated with instrumental

variation (see, e.g., Brinch et al., 2017; Carneiro et al., 2011; Cornelissen et al., 2018).

Assumption 3. For i = 1, . . . , n

ϵi =


ϵ

(D)
i

ϵ
(1)
i

ϵ
(0)
i


ind∼

G∑
g=1

πgN (0,Σg) (3.8)

where
G∑
g=1

πg = 1; Σg =


1 σ1D,g σ0D,g

σ2
1,g σ10,g

σ2
0,g


The variance parameter of the disturbance term in the selection equation for the binary

3In this way, it connects to Correlated Random Coefficients (CRC) Model for potential outcome functions

Yi(Di, D̄N i) = γiDi + δiD̄N i + ηiDiD̄N i + ϵ
(Y )
i
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treatment indicator D is normalised to unity: σ2
D∗ = 1; because it is only identified up to

scale. Without this condition, multiple values for the model parameters give rise to the same

value for the likelihood function (see, e.g., Doğan and Taşpinar, 2018).

Assumption 4. For i = 1, . . . , n

Y
(1)
i (d̄N ) ⊥⊥ D̄N i | Xi ∀d̄N ∈ [0, 1],

Y
(0)
i (d̄N ) ⊥⊥ D̄N i | Xi ∀d̄N ∈ [0, 1].

(3.9)

This assumption is crucial for identifying the causal indirect effects; it could be regarded

as weak unconfoundedness for the continuous exposure, analogous to continuous-treatment

settings, with conditional independence being required to hold for each value of the treatment

(Hirano and Imbens, 2004). Unconfoundedness of neighbourhood treatment rules out the

presence of unmeasured confounding variables.4

Proposition 1. Suppose Assumptions 1 – 4 hold. Denote σ1D = Cov
(
ϵ

(1)
i , ϵ

(D)
i

)
and σ0D =

Cov
(
ϵ

(0)
i , ϵ

(D)
i

)
. Then, parameters δ(1), δ(0), β(1), β(0), σ1D, σ0D are identified.

Proof. See Appendix B.1.

Remark. The proposed model nests the Generalised Roy model (Heckman and Vytlacil,

2005) by maintaining its latent-index selection and correlated potential outcomes, but extends

the framework to allow outcomes to depend on the neighbours’ treatments through D̄N i with

potentially different slopes when treated versus untreated, δ(1) and δ(0). Our resulting model

thereby captures both endogenous selection into treatment and network/spatial interference.

When neighbourhood exposures are absent (D̄N i = 0 ∀i) or exert no effects δ(0) = δ(1) = 0,

the model collapses to the canonical Generalised Roy framework. The identification of

the parameters (σ1D, σ0D) in Proposition 1 follows a same principle as in the Heckman

selection models (Heckman, 1979): the exclusion of Zi from the outcome equation and the

joint distributional assumption on
(
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

)
imply that the conditional expectations of

outcome errors vary with the inverse Mills ratio derived from the selection index ν(Xi, Zi).

Our model, however, first partials out the neighbourhood exposure D̄N i before applying this

logic, thus unifying selection correction and spillover identification under Assumptions 1 – 4.

4This assumption implicitly requires that units’ enrolling decision {Di}n
i=1 are independent.



CHAPTER 3. BAYESIAN CAUSAL INFERENCE IN THE PRESENCE OF ENDOGENOUS SELECTION
INTO TREATMENT AND SPILLOVERS 64

3.2.2.2 Causal Estimands

Our object of interest includes the direct and indirect causal effects of the binary treatment D.

Indirect Causal Effects

Average Indirect Effect (AIE) is the average effect of exogenously increasing an individual’s

neighbourhood treatment D̄N i from d̄N to d̄N + ∆ while holding the individual’s own

treatment status Di fixed at d. In particular, this results in two types of Average Indirect

Effects (spillover effects) - either on the treated or on the untreated as follows

AIE(1)(d̄N ,∆) := E

[
Y

(1)
i (d̄N + ∆)− Y (1)

i (d̄N )
]

;

AIE(0)(d̄N ,∆) := E

[
Y

(0)
i (d̄N + ∆)− Y (0)

i (d̄N )
]
.

(3.10)

Suppose assumptions A1-A4 hold, we can identify Average Partial Indirect Effects (APIE),

which measure the average partial effects of changing the neighbourhood treatment D̄N on

the treated and on the untreated

APIE(1) = δ(1) and APIE(0) = δ(0). (3.11)

Direct Causal Effects

Average Direct Treatment Effect (ADTE), is the average effect of exogenously changing an

individual’s own treatment Di from 0 to 1 while holding their neighbourhood treatment fixed

at d̄N

ADTE(d̄N ) := E

[
Y

(1)
i − Y (0)

i | D̄N i = d̄N , Xi

]
, (3.12)

where the expectation is taken over all individuals in the population. According to assumptions

A1-A4, we obtain

ADTE
(
d̄N
)

=
(
δ(1) − δ(0)

)
d̄N +

(
β(1) − β(0)

)
E [Xi] . (3.13)

Evaluated at mean values of the covariates X , ADTE would exhibit heterogeneity in treatment

effects due to d̄N if δ(1)− δ(0) ̸= 0. Furthermore, δ(1)− δ(0) implies the patterns of interaction

effects between individual treatment and neighbourhood treatment: Positive interaction (δ(1)−
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δ(0) > 0) means the treatment is more valuable when more of neighbours are treated. In

contrast, negative interaction (δ(1) − δ(0) < 0) means the treatment is more valuable when

less of neighbours are treated.

Figure 3.1 illustrates a hypothetical example of Opportunity Zone (OZ) program, where

outcome variable Y indicates new development in census tract. Both average potential

outcomes have positive slopes (δ(1) > 0 and δ(0) > 0), corresponds to positive average

partial indirect effects defined in (3.11). This means that new development in a census tract

increases if more of its neighbouring areas are designated as OZs. As δ(1) > δ(0), the spillover

is even more beneficial if the census tract is treated, implying a positive interaction effect of

the policy. The average direct treatment effect defined in (3.13) and represented by the gap

between two lines is positive for all d̄N and increases as d̄N does: Receiving investment tax

incentive is more valuable to a census tract when more of its neighbouring areas obtain them.

Marginal Direct Treatment Effect (MDTE), is the average direct causal effect of D on Y

for individuals with unobserved heterogeneity V = v and observed neighbourhood treatment

D̄N = d̄N

MDTE
(
d̄N , v

)
:= E

[
Y

(1)
i − Y (0)

i | D̄N i = d̄N , Vi = v,Xi

]
. (3.14)

Evaluated at mean values of the covariates X , MDTE is a function of not only d̄N but

also unmeasured resistance to the treatment v. This goes beyond average direct treatment

effect to uncover direct treatment effects at different points in the distribution of unobserved

heterogeneity, providing insights into how effects vary among agents who are marginally

indifferent to receiving the treatment. According to assumptions A1-A4,

MDTE
(
d̄N , v

)
=
(
δ(1) − δ(0)

)
d̄N +E

[
ϵ

(1)
i − ϵ

(0)
i | Vi = v

]
+
(
β(1) − β(0)

)
E [Xi]

=
(
δ(1) − δ(0)

)
d̄N +E

[
ϵ

(1)
i − ϵ

(0)
i | ϵ

(D)
i = −F−1(v)

]
+
(
β(1) − β(0)

)
E [Xi] .

(3.15)

Without loss of generality, we consider E
[
ϵ

(1)
i | ϵ

(D)
i = ε

]
. From (3.8), we know that

ϵi =

ϵ(D)
i

ϵ
(1)
i

 ind∼
G∑
g=1

πgN


0

0

 ,
 1 σ1D,g

σ1D,g σ2
1,g


 .
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Hence, ϵ(D)
i ∼ N(0, 1) and

E

[
ϵ

(1)
i | ϵ

(D)
i = ε

]
=

G∑
g=1

πg
fg(ε)
f(ε) Eg

[
ϵ

(1)
i | ϵ

(D)
i = ε

]

=
G∑
g=1

πg
ϕ(ε)
ϕ(ε)

σ1D,g√
1
ϵ =

G∑
g=1

πgσ1D,gε.

(3.16)

Therefore,

MDTE
(
d̄N , v

)
=
(
δ(1) − δ(0)

)
d̄N −

G∑
g=1

πg
σ1D,g − σ0D,g√

1
Φ−1(v) +

(
β(1) − β(0)

)
E [Xi] .

(3.17)

In a special case when G = 1 (i.e. trivariate normal distribution), the function becomes

MDTE
(
d̄N , v

)
=
(
δ(1) − δ(0)

)
d̄N + σ1D − σ0D√

1
Φ−1(v) +

(
β(1) − β(0)

)
E [Xi] . (3.18)
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Figure 3.1: Illustration of average potential outcome when being treated (the top line) and when being
untreated (the bottom line), as functions of the neighbourhood treatment term d̄N . The corresponding
slopes, δ(1) and δ(0), are the average partial indirect effect when being treated and when being untreated,
respectively. The gap between the two lines is the average direct treatment effect.

Figure 3.2: Illustration of Marginal Direct Treatment Effects with respect to unmeasured resistance to
the treatment v and neighbourhood treatment d̄N . The slope of MDTE curves reveals the patterns of
selection into treatment: a rising MDTE curve which exhibits an upward sloping shape (σ1D−σ0D > 0)
indicates a pattern of reverse selection on gains in unobserved characteristics; a falling MDTE curve
which exhibits a downward sloping shape (σ1D − σ0D < 0) indicates a pattern of positive selection
on gains in unobserved characteristics; a flat MDTE curve (σ1D = σ0D) implies there is no selection
based on unobserved gains. The dispersion of MDTE curves characterises the patterns of interaction
effects, reflecting in δ(1) − δ(0) similar to ADTE.
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3.3 Bayesian Estimation and Inference

3.3.1 Bayesian Data Augmentation

In this section, we develop Bayesian estimation methods for the model parameters

δ(1), δ(0), β(1), β(0), σ1D, and σ0D, followed by the causal estimands in Section 3.2.2. Inference

about these causal estimands is based on their respective posterior distributions, which

accounts for the uncertainty in parameter estimation.

Rewrite Pi = [Zi, Xi]⊤, Qi = [D̄N i, Xi]⊤, γ =
[
α, β(D)

]⊤
, κ1 =

[
δ(1), β(1)

]⊤
, and

κ0 =
[
δ(0), β(0)

]⊤
. Then, the model (3.7) can be more compactly written as the following

standard form of Generalised Roy model:

D∗
i = P⊤

i γ + ϵ
(D)
i ,

Y
(1)
i = Q⊤

i κ1 + ϵ
(1)
i ,

Y
(0)
i = Q⊤

i κ0 + ϵ
(0)
i ,

Di = 1{D∗
i > 0},

Yi = DiY
(1)
i + (1−Di)Y (0)

i .

(3.19)

As a starting point, we consider a fully parametric approach by imposing the trivariate

normal distribution assumption on the error terms

ϵi =
[
ϵ

(D)
i ϵ

(1)
i ϵ

(0)
i

]⊤
iid∼ N (0,Σ) (3.20)

Σ =


σ2
D = 1 σ1D σ0D

σ2
1 σ10

σ2
0

 =


1 ρ1Dσ1 ρ0Dσ0

σ2
1 ρ10σ1σ0

σ2
0


where ρ10 := corr(ϵ1, ϵ0), ρ1D := corr(ϵ1, ϵD), ρ0D := corr(ϵ0, ϵD).

A challenge posed in model (3.19) is that the latent utility (D∗
i ) and the potential outcomes

(Y (1)
i and Y (0)

i ), for i = 1, . . . , n, are unobserved. Instead, we can only observe the treatment

status Di and the revealed outcome Yi of each individual. These missing data perspectives

necessitate suitable techniques to estimate all model parameters. We therefore consider
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the Bayesian data augmentation approach which involves two main stages implemented

iteratively: In imputation stage, we augment the posterior with the latent utility (D∗
i ) and

the missing potential outcome (Y miss
i ), for i = 1, . . . , n. In posterior stage, conditional on

these unobserved latent quantities, the regression coefficients and covariance matrix can be

sampled in a straightforward manner.

To work with augmented outcome data, for each individual i = 1, . . . , n, we let

L∗
i =


D∗
i

Y
(1)
i

Y
(0)
i

 =


D∗
i

DiYi + (1−Di)Y miss
i

DiY
miss
i + (1−Di)Yi

 , Ri =


P⊤
i 01×kq 01×kq

01×kp Q⊤
i 01×kq

01×kp 01×kq Q⊤
i

 , (3.21)

where kp and kq denote the numbers of column vectors in P and Q, respectively.

We also stack each equation independently

L∗
3n×1 =


D∗

Y(1)

Y(0)

 =


D∗

D ◦Y + (1−D) ◦Ymiss

D ◦ Y miss + (1−D) ◦Y

 ,R3n×k =


P 0n×kq 0n×kq

0n×kp Q 0n×kq

0n×kp 0n×kq Q

 , ϵ =


ϵD

ϵ1

ϵ0

 ,
(3.22)

where k = kp + 2kq.

Denote θ = (γ⊤, β⊤
1 , β

⊤
0 )⊤. Then

L∗
i = Riθ + ϵi for i = 1, . . . , n;

L∗ = Rθ + ϵ; and E[ϵ⊤ϵ] = Ω = Σ⊗ In.
(3.23)

Likelihood function

The augmented likelihood (also known as complete-data likelihood), which includes latent

quantities, factorises as

p(Y,D,L∗ | θ,Σ) = p(Y,D | θ,Σ,L∗) · p(L∗ | θ,Σ), (3.24)

where the first term encapsulates the observed data given latent variables and the second term

represents how latent variables relate to parameters in our structural model.
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The second term is straightforwardly derived from the representation of latent variables in

(3.23) and the multivariate normal assumption (3.20)

p(L∗ | θ,Σ) = (2π)−n |Σ|−n/2 × exp
{
−1

2(L∗ −Rθ)⊤Ω−1(L∗ −Rθ)
}

= (2π)−n |Σ|−n/2 ×
n∏
i=1

exp
{
−1

2(L∗
i −Riθ)⊤Σ−1(L∗

i −Riθ)
}
,

(3.25)

Since knowing (Y (1)
i , Y

(0)
i ) and the sign of D∗

i perfectly determines the value of Di and Yi,

we can derive the first term in (3.24) as follows

p(Y,D | θ,Σ,L∗)

=
n∏
i=1

[
1(D∗

i > 0)1(Di = 1)1(Yi = Y
(1)
i ) + 1(D∗

i ≤ 0)1(Di = 0)1(Yi = Y
(0)
i )

]
.

=
∏

{i:Di=1}
p
(
Y

(1)
i , D∗

i > 0
) ∏

{i:Di=0}
p
(
Y

(0)
i , D∗

i ≤ 0
)

=
∏

{i:Di=1}

∫ ∞

0
p
(
Y

(1)
i , D∗

i

)
dD∗

i

∏
{i:Di=0}

∫ 0

−∞
p
(
Y

(0)
i , D∗

i

)
dD∗

i

=
∏

{i:Di=1}

∫ ∞

0
p
(
D∗
i | Y

(1)
i

)
p
(
Y

(1)
i

)
dD∗

i

∏
{i:Di=0}

∫ 0

−∞
p
(
D∗
i | Y

(0)
i

)
p
(
Y

(0)
i

)
dD∗

i

=
∏

{i:Di=1}
Φ
(
uDi + ρ1Du1i

(1− ρ2
1D)−1/2

)
1
σ1
ϕ(u1i)

∏
{i:Di=0}

[
1− Φ

(
uDi + ρ0Du0i

(1− ρ2
0D)−1/2

)]
1
σ0
ϕ(u0i),

(3.26)

where

uDi := P⊤
i γ; u1i := Y

(1)
i −Q⊤

i κ1

σ1
; u1i := Y

(0)
i −Q⊤

i κ0

σ0
.

Prior specification

To carry out full Bayesian inference, a suitable prior specification is necessary. Let p(θ,Σ)

be the joint prior distribution function of regression coefficients θ and the covariance matrix

Σ. We consider a multivariate Normal prior for the regression coefficients

θ ∼ Nkp+2kq(µθo ,Vθo). (3.27)

Placing a prior over the full covariance matrix Σ mitigate the issue of unidentified

correlation parameters between two potential outcomes5. In addition, because the (1, 1)th

5Unidentified cross-regime correlation parameter satisfies ρ10 ≤ ρ10 ≤ ρ10; where ρ10 = ρ10(ρ1D, ρ0D) =
ρ1Dρ0D − [(1 − ρ2

1D)(1 − ρ2
0D)]1/2 and ρ10 = ρ10(ρ1D, ρ0D) = ρ1Dρ0D + [(1 − ρ2

1D)(1 − ρ2
0D)]1/2 (Li et
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element Σ11 equals to unity, a natural choice of prior for the covariance matrix Σ is the Inverse

Wishart prior along with this normalisation constraint

Σ ∼ W−1(Ψo, νo)1(Σ11=1). (3.28)

However, this restriction makes it difficult to sample Σ from its posterior distribution directly6.

We therefore facilitate the computation by employing the parameter expansion technique.

Specifically, we reparameterize the model by introducing an expansion parameter to improve

the convergence rate of the resulting Markov chains. A general two-step procedure can

be described as follows. First, the model is transformed by the expansion parameter in

such a way that the transformed model has an unconstrained covariance matrix and the

computational complications are circumvented for the posterior analysis. Second, an Inverse

Wishart distribution is assigned as a prior to the unconstrained covariance matrix. At this

step, the priors for the expansion parameter and the constrained covariance matrix are also

determined to complete a Gibbs sampler.

To begin, we let a positive scalar parameter τ be the expansion parameter and define

ϵ̃i =


τ 0 0

0 1 0

0 0 1

× (L∗
i −Riθ). (3.29)

Given the normality assumption, we have ϵ∗ | θ, Σ̃ ∼ N
(
03×3, Σ̃

)
, where Σ̃ is the

unconstrained covariance matrix of (ϵDi, ϵ1i, ϵ0i)⊤ as follows

Σ̃3×3 =


τ 0 0

0 1 0

0 0 1

×Σ3×3 ×


τ 0 0

0 1 0

0 0 1

 =


τ 2 ρ1Dτσ1 ρ1Dτσ0

ρ1Dτσ1 σ2
1 ρ10σ1σ0

ρ1Dτσ0 ρ10σ1σ0 σ2
0

 . (3.30)

al., 2004).
6Covariance matrix Σ: Σ | Θ−Σ,Y,D ∼ W−1 (M + Ψo, n+ νo, )1{Σ11=1}, with

M =

ϵ⊤DϵD ϵ⊤Dϵ1 ϵ⊤Dϵ0
ϵ⊤1 ϵD ϵ⊤1 ϵ1 ϵ⊤1 ϵ0
ϵ⊤0 ϵD ϵ⊤0 ϵ1 ϵ⊤0 ϵ0

 ; ϵD = D∗ −Pγ; ϵ1 = Y(1) −Qκ1; ϵ0 = Y(0) −Qκ0.
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Then, the Inverse Wishart distribution can be assigned as a prior for Σ̃

Σ̃ ∼ W−1(Ψo, νo), (3.31)

which implies the following prior for τ 2 and Σ

p(τ 2 | Σ) ∝
[(

1 + 2ρ10ρ1Dρ0D − ρ2
10 − ρ2

1D − ρ2
0D

1− ρ2
10

)
χ2

(νo+4)

]−1

, (3.32)

p(Σ) ∝ |Σ|−(νo+4)/2exp
{
− 1

2τ 2 ×
1− ρ2

10
1 + 2ρ10ρ1Dρ0D − ρ2

10 − ρ2
1D − ρ2

0D

}
. (3.33)

Details of the derivations for (3.32) and (3.33) can be found in Appendix B.2.1. The

advantage of this approach is documented in the literature on sample selection models (Ding,

2014; Doğan and Taşpinar, 2018), suggesting that the algorithm improves the convergence

rate of resulting Markov chains. Alternatively, we also adopt the marginal data augmentation

technique similar to Imai and Van Dyk (2005)7 for the multinomial probit model, which

incorporates the expansion parameter differently. We present our corresponding algorithm

in Appendix B.2.2. In the Gaussian Generalised Roy setting, the original approach by Li

et al. (2004) and Poirier and Tobias (2003) is fixing the unidentified parameter during the

posterior analysis, as per Nobile’s (2000) suggestion. Among these algorithms, we found the

first approach achieved the best performance during initial simulation exercises, while others

might encounter numerical issues. The rest of this paper focuses on the first algorithm to

discuss posterior analysis, Monte Carlo experiments with synthetic data, and the empirical

application.

3.3.2 Computation

The augmented join posterior including latent quantities L∗ can be expressed as

p(θ,Σ,L∗ | Y,D) ∝ p(θ,Σ) · p(L∗ | θ,Σ) · p(Y,D | θ,Σ,L∗). (3.34)

Accordingly, we can compute conditional posterior distribution for latent quantities and

model parameters as detailed below.

First, we can impute the latent quantities based on their conditional posterior distribution

given the observed data and the parameters.

7There is a correction in Jiao and Dyk (2015).
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(a) Missing potential outcome Ymiss

Y miss
i | Θ−Y miss

i
,Y,D ind∼ N ((1−Di)µ1i +Diµ0i, (1−Di)V1i +DiV0i) , (3.35)

where

µ1i = Q⊤
i κ1 + (D∗

i −P⊤
i γ)

[
σ2

0σ1D − σ10σ0D

σ2
0 − σ2

0D

]
+ (Yi −Q⊤

i κ0)
[
σ10 − σ0Dσ1D

σ2
0 − σ2

0D

]
,

µ0i = Q⊤
i κ0 + (D∗

i −P⊤
i γ)

[
σ2

1σ0D − σ10σ1D

σ2
1 − σ2

1D

]
+ (Yi −Q⊤

i κ1)
[
σ10 − σ0Dσ1D

σ2
1 − σ2

1D

]
,

V1i = σ2
1 −

σ2
1Dσ

2
0 − 2σ10σ0Dσ1D + σ2

10
σ2

0 − σ2
0D

, V0i = σ2
0 −

σ2
0Dσ

2
1 − 2σ10σ0Dσ1D + σ2

10
σ2

1 − σ2
1D

.

(b) Latent utility D∗

D∗
i | Θ−D∗

i
,Y,D ind∼

 T N(0,+∞)(µDi, VDi) if Di = 1

T N(−∞,0](µDi, VDi) if Di = 0
, (3.36)

where T N denotes a truncated normal distribution and

µDi = P⊤
i γ +

[
DiYi + (1−Di)Y miss

i −Q⊤
i κ1

] [σ2
0σ1D − σ10σ0D

σ2
1σ

2
0 − σ2

10

]
,

+
[
DiY

miss
i + (1−Di)Yi −Q⊤

i κ0
] [σ2

1σ0D − σ10σ1D

σ2
1σ

2
0 − σ2

10

]
,

VDi = 1− σ2
1Dσ

2
0 − 2σ10σ0Dσ1D + σ2

1σ
2
0D

σ2
1σ

2
0 − σ2

10
.

After imputing the missing data, we can infer the posterior distribution of remaining

parameters, conditioning on the complete data.

(c) Regression coefficients θ

θ | Θ−θ,Y,D ∼ N (µθ,Vθ), (3.37)

where
µθ = Vθ[R⊤Ω−1L∗ + V−1

θo
µθo ,

Vθ = [R⊤Ω−1R + V−1
θo

]−1.

(d) Parameter expansion entails conjugate posterior distributions to estimate covariance
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matrix Σ

Conditional posterior of Σ̃ is of the form

p(Σ̃ | θ, ϵ̃,L∗,Y,D) ∝
∣∣∣Σ̃∣∣∣−(νo+4)/2

exp
{
−1

2 tr(ΨoΣ̃−1)
}
×
∣∣∣Σ̃∣∣∣−n/2

exp
{
−1

2 ϵ̃
⊤Ω̃−1ϵ̃

}
∝
∣∣∣Σ̃∣∣∣−(νo+4)/2

exp
{
−1

2 tr(ΨoΣ̃−1)
}
×
∣∣∣Σ̃∣∣∣−n/2

exp
{
−1

2 tr(M̃Σ̃−1)
}
,

(3.38)

with

M̃ =


τ 2ϵ⊤

DϵD τϵ⊤
Dϵ1 τϵ⊤

Dϵ0

τϵ⊤
1 ϵD ϵ⊤

1 ϵ1 ϵ⊤
1 ϵ0

τϵ⊤
0 ϵD ϵ⊤

0 ϵ1 ϵ⊤
0 ϵ0

 ; ϵD = D∗ −Pγ; ϵ1 = Y1 −Qκ1; ϵ0 = Y0 −Qκ0;

thus,

Σ̃ | θ, ϵ̃,L∗,Y,D ∼ W−1(M̃ + Ψo, n+ νo).

To marginalize over τ 2, we draw Σ̃ fromW−1(M̃ + Ψo, n+ νo) and set τ 2 = Σ̃11.

To recover Σ, we set

Σ =


1/τ 0 0

0 1 0

0 0 1

× Σ̃×


1/τ 0 0

0 1 0

0 0 1

 . (3.39)

The details of the implementation are presented in Algorithm 3.1.
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Algorithm 3.1: Markov chain Monte Carlo (MCMC) Sampler I

Procedure
1 Step 0: Initialize parameters s = 0, θ[0],Σ[0] for MCMC-chains
2 while s < S do
3 Step 1: Impute L∗[s+1] via p(L∗ | Y,D, θ[s],Σ[s]).
4 sampling Ymiss as in (3.35) and D∗ as in (3.36),
5 setting L∗[s+1] = [D∗ Y(1) Y(0)]⊤.
6 Step 2: Update θ[s+1] from p(θ | Y,D,L∗[s+1],Σ[s]) as in (3.37).
7 Step 3: Update Σ[s+1] via p(Σ | Y,D, θ[s+1],L∗[s+1]) by
8 (a) sampling (τ 2)⋆ from p(τ 2 | Σ[s])

(τ 2)⋆ ∼
1 + 2ρ[s]

10ρ
[s]
1Dρ

[s]
0D − (ρ[s]

10)2 − (ρ[s]
1D)2 − (ρ[s]

0D)2

1− (ρ[s]
10)2

χ2
(νo+4)

−1

,

9 (b) calculating (ϵ∗)⋆ via the transformation,
10 (c) sampling Σ̃⋆ from p(Σ̃ | Y,D, θ[s+1],L∗[s+1], (ϵ∗)⋆) as in (3.38),
11 (d) setting (τ 2)⋆ = Σ̃⋆

11,
12 (e) recovering Σ[s+1] according to (3.39).
13 return L∗[s+1], θ[s+1],Σ[s+1]

14 s← s+ 1
15 end while

end procedure

3.4 Simulation Study

To evaluate the performance of the proposed framework and Bayesian estimation algorithms,

we design a simulation study with details described below. We focus on the primary setting in

which both selection-on-unobservables and spillovers are present, as well as several scenarios

with misspecifications. In addition to synthetic data, we also conduct an empirical Monte

Carlo study which employs the Add Health friendship network data in Appendix B.4.

3.4.1 Data Generating Processes

We draw 5 exogenous variables X̃k (k = 1, . . . , 5) independently from the standard normal

distribution and set X =
[
ι⊤n , X̃

⊤
]⊤

. The instrumental variable Z is also generated from

the same distribution. Regarding network/spatial structure, we design the weight matrix

W based on the interaction scenario described in Liu and Lee (2010). W is a block

diagonal matrices where each block represents the interaction structure of a group. Let

the total sample involve G = 30 groups where the gth group has the groups size mg. We
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allow mg to vary across G groups by randomly assigning a value from the set of integers

{⌊n/G⌋ − 2, ⌊n/G⌋ − 1, . . . , ⌊n/G⌋+ 3} to each group size and adjust mG such that∑G
g=1 mg = n. The weight matrix Wg for the gth group is generated in two steps. First, for

the ith row of Wg (i = 1, . . . ,mg), an integer value τig is uniformly drawn from the set of

integer values {1, 2, 3, 4}. Then, if i+ τig ≤ mg, we set the (i+ 1)th, . . . , (τgi + 1)th elements

of the ith of Wg to be ones and the rest elements in that row to be zeros; otherwise, the

first (τig + i − mg) entries of the ith row are set to ones and the rest elements in that row

are set to zeros. Finally, we set W := diag(W⊤
1 + W1, . . . ,W

⊤
g + Wg) and transform to a

row-normalised or doubly stochastic matrix.

The general data generating process (DGP) is based on model (3.7), which corresponds to8:

Di = 1{Ziα +Xiβ
(D) + ϵ

(D)
i > 0}, for i = 1, . . . , n

D̄N = WD,

Y (1) = δ(1)D̄N +Xβ(1) + ϵ(1),

Y (0) = δ(0)D̄N +Xβ(0) + ϵ(0),

Y = D ◦ Y (1) + (1−D) ◦ Y (0),

(3.40)

where the associated regression coefficients of covariates X in the selection equation and two

potential outcome equations are β(D) =
[
0, β̃(D)

1×5

]⊤
, β(1) =

[
2, β̃(1)

1×5

]⊤
, β(0) =

[
1, β̃(0)

1×5

]⊤
.

Throughout, true values of the intercepts are fixed in all three equations, and other coefficients

are generated from the independent uniform distributions U[−1,1]. The coefficient α = 1.5

controls the strength of the instrument Z. The presence of spillovers is implied by δ(1) =

1.5 and δ(0) = 0.5. We specify a multivariate normal distribution of the error term ϵi =[
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

]⊤
for i = 1, . . . , n as below

ϵi =
[
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

]⊤ iid∼ N (0,Σ) ; Σ =


1 0.9 0.7

1 0.6

1

 ;

i.e., σ2
D = σ2

1 = σ2
0 = 1 and (ρ1D, ρ0D, ρ10) = (0.9, 0.7, 0.6), which accommodates positive

correlation of unobservables.

We allow different sample sizes n ∈ {500; 1, 000; 5, 000} of the dataset. For each of

8The operator ◦ denotes the Hadamard product (also known as the element-wise product).
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the generated data sets, we specify two versions of models to be estimated by using the

proposed Bayesian MCMC sampler - Algorithm 3.1. First, Gaussian Generalised Roy model

without spillovers (GGRM-noSI) serves as the benchmark model, without neighbourhood

term (D̄N ) and with a normal distribution of the error term. Second, Gaussian Generalised

Roy model with spillovers (GGRM-SI) is the full model with neighbourhood term (D̄N ) and

a normal distribution of the error term. We run each MCMC algorithm for 11, 000 iterations,

with the first 1, 000 draws are discarded as a burn-in period. Throughout our simulation

study, the parameters for the prior distributions are chosen as follows: µθo = 021; Vθo =

102 ∗ I21×21; Ψo = I3×3; νo = 4. The number of independent replicates is R = 1, 000.

3.4.2 Simulation Results

For each simulated dataset, given the posterior distribution of each model parameter resulted

from MCMC draws, we derive the posterior mean for a point estimate and compute the

corresponding 95% credible interval. We thereby calculate across the 1, 000 replicates the

average bias and the root mean square error (RMSE) of the point estimates, followed by the

coverage rate of the 95% credible intervals. The simulation results are presented in Table 3.1,

where the true values of the DGP parameters are also listed.

Table 3.1: Simulation Results for Model Parameters

Quantities of Interest Other Parameters

Model Metric n δ(1) δ(0) δ(1) − δ(0) σ1D − σ0D α β(D) β
(1)
1 β

(0)
1 σ2

1 σ2
0 ρ1D ρ0D ρ10

True Value 1.500 0.500 1.000 0.200 1.500 0.000 2.000 1.000 1.000 1.000 0.900 0.700 0.600

500 -1.500 -0.500 -1.000 -0.035 0.073 -0.016 0.762 0.243 0.134 0.015 -0.093 -0.012 0.113

1,000 -1.500 -0.500 -1.000 -0.021 0.033 -0.008 0.756 0.248 0.129 0.016 -0.075 -0.009 0.123Bias

5,000 -1.500 -0.500 -1.000 -0.004 0.005 -0.001 0.751 0.250 0.127 0.016 -0.055 -0.005 0.138

500 1.500 0.500 1.000 0.134 0.157 0.079 0.768 0.259 0.176 0.100 0.106 0.086 0.132

1,000 1.500 0.500 1.000 0.093 0.099 0.056 0.759 0.256 0.151 0.076 0.084 0.062 0.134RMSE

5,000 1.500 0.500 1.000 0.044 0.037 0.024 0.752 0.252 0.131 0.036 0.058 0.029 0.148

500 0.000 0.000 0.000 0.947 0.881 0.942 0.000 0.221 0.807 0.956 0.660 0.957 0.987

1,000 0.000 0.000 0.000 0.947 0.901 0.945 0.000 0.030 0.649 0.934 0.487 0.967 0.984

GGRM-noSI

Coverage

5,000 0.000 0.000 0.000 0.947 0.934 0.957 0.000 0.000 0.050 0.914 0.052 0.944 0.847

500 -0.001 -0.024 0.023 -0.050 0.074 -0.024 0.022 0.004 0.004 0.002 -0.053 -0.004 0.105

1,000 0.000 0.007 -0.007 -0.028 0.035 -0.013 0.011 -0.006 0.003 0.002 -0.028 -0.001 0.110Bias

5,000 0.000 0.000 0.000 -0.006 0.005 -0.002 0.002 0.000 0.002 0.003 -0.005 0.000 0.112

500 0.226 0.244 0.334 0.133 0.154 0.080 0.138 0.150 0.102 0.099 0.067 0.086 0.128

1,000 0.144 0.171 0.225 0.089 0.097 0.056 0.089 0.106 0.068 0.073 0.039 0.061 0.124RMSE

5,000 0.066 0.077 0.100 0.040 0.035 0.024 0.041 0.048 0.029 0.032 0.014 0.029 0.119

500 0.954 0.946 0.954 0.934 0.870 0.946 0.955 0.958 0.968 0.954 0.904 0.951 0.973

1,000 0.968 0.950 0.953 0.947 0.903 0.946 0.961 0.951 0.975 0.941 0.940 0.958 0.960

GGRM-SI

Coverage

5,000 0.960 0.951 0.960 0.957 0.927 0.950 0.963 0.954 0.972 0.954 0.956 0.944 0.879

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across R = 1, 000 replicates; where

Bias = R−1∑R
r=1(α̂r − α), RMSE =

√
R−1∑R

r=1(α̂r − α)2, and Coverage = R−1∑R
r=1 1{α ∈ ĈI0.95,r}. The rows contain results for models with/without

spatial interference and for various sample size n.
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It can be seen that under the correct specification, estimating Gaussian Generalised Roy

model with spillovers (GGRM-SI) using our proposed Bayesian Data Augmentation algorithm

can successfully recover the true parameter values. Average bias and RMSE decrease as

n increases; the empirical coverage rate is always close to the nominal level (95%). On

the other hand, when the existing spillover phenomenon is not taken into consideration

(i.e., estimating GGRM-noSI model which does not include neighbourhood treatment term

D̄N ), not only δ(1) and δ(0) are clearly ignored but estimates of other relevant parameters

(β(1), β(0), σ2
1, σ

2
0, ρ1D, ρ0D) are also considerably affected – with larger average bias and

RMSE, in addition to a lower coverage rate on average.

Figure 3.3: Plots of average bias, RMSE, and coverage rate of the estimation for average direct
treatment effects. Models without and with spillovers are shown in red and in green, respectively.

Furthermore, we investigate the consequence of neglecting spillovers even when the

causal estimand of interest is the direct effect of the treatment. Table 3.2 and Figure 3.3

report the performance of the estimators for Average Direct Treatment Effects, ADTE(d̄N ),

with different levels of the neighbourhood treatment d̄N ∈ {0.1, 0.2, . . . , 0.9}. Estimating

GGRM-SI model again achieves good frequentist performance, which is consistent with the

relation between ADTE(d̄N ) and the model parameters in equation (3.13). On the contrary,

estimating GGRM-noSI leads to a higher magnitude of bias which persists even in the case

of a large sample (n = 5, 000). It is due to the omission of the term
(
δ(1) − δ(0)

)
d̄N when

we ignore spillovers. The coverage rate also deteriorates substantially, especially for extreme

values of the neighbourhood treatment d̄N . Similar issues is observed for the Marginal Direct
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Treatment Effects, MDTE(d̄N , v). Table 3.3 displays simulation results for this estimand of

interest at a fixed value of d̄N = 0.5 and different values of the unmeasured resistance level

v ∈ {0.1, 0.2, . . . , 0.9}.

Table 3.2: Simulation Results for Average Direct Treatment Effects

n = 500 n = 1,000 n = 5,000

Model Grid Bias RMSE Coverage Bias RMSE Coverage Bias RMSE Coverage

0.1 0.419 0.437 0.098 0.408 0.418 0.007 0.401 0.403 0.000
0.2 0.319 0.343 0.302 0.308 0.321 0.083 0.301 0.303 0.000
0.3 0.219 0.252 0.605 0.208 0.227 0.377 0.201 0.204 0.001
0.4 0.119 0.173 0.880 0.108 0.141 0.776 0.101 0.108 0.284
0.5 0.019 0.127 0.948 0.008 0.091 0.949 0.001 0.038 0.961
0.6 -0.081 0.149 0.905 -0.092 0.129 0.813 -0.099 0.106 0.291
0.7 -0.181 0.220 0.712 -0.192 0.212 0.451 -0.199 0.203 0.002
0.8 -0.281 0.308 0.423 -0.292 0.306 0.099 -0.299 0.302 0.000

GGRM-noSI

0.9 -0.381 0.401 0.132 -0.392 0.402 0.007 -0.399 0.401 0.000

0.1 0.020 0.178 0.959 0.016 0.121 0.954 0.002 0.054 0.960
0.2 0.023 0.155 0.956 0.015 0.105 0.954 0.002 0.047 0.957
0.3 0.025 0.136 0.952 0.014 0.093 0.957 0.002 0.041 0.960
0.4 0.027 0.124 0.944 0.014 0.084 0.957 0.002 0.037 0.963
0.5 0.029 0.120 0.944 0.013 0.082 0.962 0.002 0.036 0.961
0.6 0.032 0.125 0.952 0.012 0.085 0.963 0.002 0.037 0.966
0.7 0.034 0.138 0.958 0.011 0.094 0.954 0.002 0.040 0.966
0.8 0.036 0.158 0.956 0.011 0.107 0.955 0.002 0.046 0.963

GGRM-SI

0.9 0.039 0.181 0.952 0.010 0.122 0.958 0.002 0.053 0.965

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage)
across R = 1, 000 replicates. The rows contain results for models with/without spatial interference across various sample
size n.

Table 3.3: Simulation Results for Marginal Direct Treatment Effects

n = 500 n = 1,000 n = 5,000

Model Grid Bias RMSE Coverage Bias RMSE Coverage Bias RMSE Coverage

0.1 -0.026 0.225 0.330 -0.019 0.160 0.100 -0.004 0.073 0.000
0.2 -0.011 0.180 0.616 -0.009 0.128 0.404 -0.002 0.057 0.005
0.3 0.000 0.152 0.823 -0.003 0.109 0.653 -0.001 0.048 0.141
0.4 0.010 0.135 0.929 0.003 0.097 0.877 0.000 0.042 0.625
0.5 0.019 0.127 0.948 0.008 0.091 0.949 0.001 0.038 0.961
0.6 0.028 0.127 0.939 0.014 0.091 0.930 0.002 0.038 0.657
0.7 0.037 0.137 0.870 0.019 0.098 0.712 0.003 0.042 0.121
0.8 0.049 0.159 0.734 0.026 0.112 0.484 0.004 0.049 0.003

GGRM-noSI

0.9 0.064 0.200 0.439 0.035 0.140 0.108 0.006 0.063 0.000

0.1 -0.035 0.220 0.956 -0.023 0.153 0.955 -0.005 0.070 0.957
0.2 -0.013 0.174 0.952 -0.011 0.122 0.955 -0.003 0.055 0.962
0.3 0.003 0.146 0.950 -0.002 0.102 0.956 -0.001 0.046 0.961
0.4 0.017 0.128 0.942 0.006 0.089 0.960 0.001 0.039 0.963
0.5 0.029 0.120 0.944 0.013 0.082 0.962 0.002 0.036 0.961
0.6 0.042 0.121 0.946 0.020 0.080 0.959 0.004 0.034 0.967
0.7 0.056 0.131 0.952 0.028 0.085 0.961 0.005 0.036 0.969
0.8 0.072 0.154 0.955 0.036 0.098 0.955 0.007 0.042 0.965

GGRM-SI

0.9 0.094 0.196 0.954 0.049 0.125 0.954 0.009 0.054 0.963

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage)
across R = 1, 000 replicates. The rows contain results for models with/without spatial interference across various sample
size n.
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3.4.3 Other Scenarios

In this section, we slightly depart from the original design by considering other scenarios

which include: (i) no spillover; or (ii) non-normality.

Scenario (i). No spillover δ(1) = δ(0) = 0

We use the same model specification (3.40) except for δ(1) = δ(0) = 0 to simulate datasets.

Table 3.4 indicates that using our proposed Bayesian Data Augmentation algorithm to estimate

the Gaussian Generalised Roy model with spillovers (GGRM-SI) can recover the true values

of model parameters successfully, as well as the quantities of interest. As sample size n

increase, the average bias vanishes, the RMSE declines, and the coverage rate of 95%

credible interval remains close to the nominal coverage. Compared to the original design

in Table 3.1, estimation for the elements of covariance matrix is almost unaffected. These

findings suggest the validity of tests for indirect (spillover) effects, patterns of interaction and

endogenous selection into treatment, as outlined in Section 3.2. In summary, the inclusion of

neighbourhood treatment term to capture potential spillover is plausible, regardless of whether

this phenomenon is present in the true data generating process.

Table 3.4: Simulation Results for Scenario (i)

Quantities of Interest Other Parameters

Metric n δ(1) δ(0) δ(1) − δ(0) σ1D − σ0D α β(D) β
(1)
1 β

(0)
1 σ2

1 σ2
0 ρ1D ρ0D ρ10

True Value 0.000 0.000 0.000 0.200 1.500 0.000 2.000 1.000 1.000 1.000 0.900 0.700 0.600

500 0.000 -0.024 0.023 -0.050 0.075 -0.024 0.022 0.004 0.004 0.002 -0.053 -0.004 0.106

1,000 0.000 0.007 -0.007 -0.028 0.034 -0.013 0.011 -0.006 0.003 0.002 -0.028 -0.001 0.109Bias

5,000 0.000 0.000 0.000 -0.006 0.005 -0.002 0.002 0.000 0.002 0.003 -0.005 0.000 0.111

500 0.227 0.244 0.335 0.132 0.154 0.080 0.139 0.150 0.101 0.099 0.067 0.086 0.129

1,000 0.144 0.171 0.226 0.089 0.098 0.056 0.089 0.106 0.069 0.073 0.039 0.061 0.123RMSE

5,000 0.066 0.077 0.100 0.040 0.035 0.024 0.041 0.048 0.029 0.032 0.014 0.029 0.118

500 0.952 0.944 0.955 0.937 0.868 0.942 0.958 0.956 0.968 0.954 0.908 0.955 0.977

1,000 0.970 0.951 0.951 0.946 0.891 0.944 0.962 0.947 0.968 0.940 0.931 0.958 0.969Coverage

5,000 0.957 0.951 0.956 0.953 0.934 0.948 0.962 0.952 0.973 0.952 0.958 0.946 0.894

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across R = 1, 000

replicates; where Bias = R−1∑R
r=1(α̂r − α), RMSE =

√
R−1∑R

r=1(α̂r − α)2, and Coverage = R−1∑R
r=1 1{α ∈ ĈI0.95,r}. The rows contain

results for various sample size n.

Scenario (ii). Non-normality

Although the assumption of joint normality of the error terms is computationally convenient,

it may be inadequate to describe data in some cases. We consider below a finite mixture
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of Gaussian distributions of the error terms and examine the influence of this small model

misspecification on performance of the proposed approach.

ϵi =
[
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

]⊤
ind∼ 1

3N (0,Σ1) + 2
3N (0,Σ2) ,

where

Σ1 =


7.50 6.75 5.25

7.50 4.50

7.50

 and Σ2 =


0.75 0.675 0.525

0.75 0.45

0.75

 .

It can be seen from Table 3.5 that estimation for parameters related to error terms are

affected, which is evident by upward biases and lower coverage rates compared to the original

design with joint normality. Estimation for other parameters of interest including δ(1), δ(0),

and δ(1) − δ(0) still exhibits good coverage, although we do observe a slight increase in the

RMSE and the bias. This confirms the robustness of the Bayesian estimation approach, which

generally exhibits very good frequentist properties. Furthermore, we can introduce greater

flexibility into the proposed approach by explicitly consider a finite mixture of normals, with

details can be found in Appendix B.3.

Table 3.5: Simulation Results for Scenario (ii)

Quantities of Interest Other Parameters

Metric n δ(1) δ(0) δ(1) − δ(0) σ1D − σ0D α β(D) β
(1)
1 β

(0)
1 σ2

1 σ2
0 ρ1D ρ0D ρ10

True Value 1.500 0.500 1.000 0.200 1.500 0.000 2.000 1.000 1.000 1.000 0.617 0.480 0.600

500 0.008 0.000 0.008 -0.012 -0.009 -0.005 -0.038 0.037 0.039 0.035 0.031 0.045 -0.003

1,000 -0.002 -0.001 -0.002 0.005 -0.039 0.001 -0.037 0.035 0.022 0.022 0.057 0.052 0.033Bias

5,000 0.000 0.002 -0.002 0.025 -0.068 0.002 -0.048 0.032 0.025 0.017 0.076 0.055 0.080

500 0.238 0.264 0.352 0.190 0.150 0.076 0.157 0.173 0.196 0.192 0.103 0.142 0.118

1,000 0.175 0.188 0.260 0.135 0.112 0.059 0.120 0.124 0.133 0.138 0.092 0.108 0.102RMSE

5,000 0.076 0.081 0.110 0.072 0.084 0.024 0.068 0.062 0.062 0.058 0.084 0.072 0.126

500 0.967 0.956 0.965 0.949 0.915 0.961 0.959 0.950 0.715 0.726 0.954 0.928 0.999

1,000 0.945 0.937 0.938 0.945 0.896 0.939 0.925 0.938 0.733 0.699 0.888 0.903 0.999Coverage

5,000 0.962 0.958 0.960 0.904 0.611 0.960 0.843 0.904 0.707 0.719 0.429 0.741 0.939

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across R = 1, 000

replicates; where Bias = R−1∑R
r=1(α̂r − α), RMSE =

√
R−1∑R

r=1(α̂r − α)2, and Coverage = R−1∑R
r=1 1{α ∈ ĈI0.95,r}. The rows contain

results for various sample size n.
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3.5 Empirical Application

To demonstrate the applicability and usefulness of the proposed method, we investigate the

effects of the Opportunity Zones (OZ) program, America’s largest new place-based policy.

This program offers investment tax incentives to a limited number of designated census

tracts nationwide to promote economic development in distressed communities. In contrast to

previous federal place-based tax policies, which required the U.S. government to determine

eligible areas through an application process, state governors held primary authority and

significant discretion in selecting their respective states’ qualifying zones for the Opportunity

Zone program. As the program aimed to encourage investment in low-income and high-

poverty neighbourhoods, eligibility for OZ designation was based on the 5-year 2011-2015

American Community Survey (ACS), requiring tracts with poverty rates above 20% or median

family incomes below 80% of the area median income. Approximately 40% of the U.S. census

tracts, totaling 31,866, were eligible for OZ designation. State governors then had 90-120 days

after the law’s passage, until March 21, 2018, to nominate a quarter of their eligible tracts for

OZ designation. On July 9, 2018, the Treasury (Internal Revenue Service) released a list of

8,764 approved census tracts, hereafter referred to as Qualified Opportunity Zones (QOZs),

which included 8,534 low-income communities and 230 contiguous tracts. Figure 3.4 depicts

a map of the zones on the U.S. mainland.

Figure 3.4: Illustration of the treatment assignment under the context of the U.S. Opportunity Zone
program. This figure maps the census tracts governors selected as Opportunity Zones (red), as well as
the eligible tracts not selected (blue).

It is imperative for policymakers to have a thorough understanding of the impact of

interventions on targeted areas, as well as any potential spillover effects, such as beneficial
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externalities or reallocations, on neighbouring communities. The economic outcome of

interest we examine is the growth of housing units in census tracts, which is closely linked to

overall economic growth. Predictions regarding the impacts of the OZ program are diverse9.

On the one hand, providing tax incentives to investors can make investing in the housing

market more financially attractive, thus encouraging the development of new housing projects

in OZ areas. This could lead to an increase in housing unit growth. On the other hand, it

may be challenging to promote new developments in certain underprivileged communities,

particularly those with limited resources and infrastructure. There is also a concern that the

OZ status of one location may affect potential outcomes of another, inducing spillovers beyond

the direct effects. One possibility is that OZ designations could crowd housing investment

into surrounding neighbourhoods through beneficial externalities. Another possibility is that

it could reduce housing investment in nearby areas through investors reallocating projects

towards tax-advantaged OZs.

3.5.1 Model Specification and Data Source

We consider the following specification that aligns with the proposed framework

QOZi = 1

{
αPoliticali + β

(D)
0 +

K∑
k=1

β
(D)
k Demographick,i + ϵ

(D)
i > 0

}

QOZi =
∑

j=1,j ̸=i

wijQOZj ;
∑

j=1,j ̸=i

wij = 1

%∆Housingi =


δ(1)QOZi + β

(1)
0 +

∑K
k=1 β

(1)
k Demographick,i + ϵ

(1)
i , if QOZi = 1

δ(0)QOZi + β
(0)
0 +

∑K
k=1 β

(0)
k Demographick,i + ϵ

(0)
i , if QOZi = 0


ϵ

(D)
i

ϵ
(1)
i

ϵ
(0)
i

 ind∼ N

0,


1 σ1D σ0D

σ2
1 σ10

σ2
0




(3.41)

Under this model specification, individual treatment (QOZ) is an indicator variable equal to

one if the tract was selected as an Opportunity Zone from the pool of eligible tracts and zero

otherwise. Opportunity Zone details are provided by the Urban Institute, including whether a

tract belongs to the 31, 866 eligible tracts and the selected 8, 762 tracts. The neighbourhood

treatment (QOZ) is computed as the proportion of treated neighbours using the spatial

9A range of empirical evidences include, but are not limited to, studies by Corinth and Feldman (2024),
Freedman et al. (2023), Chen et al. (2023), and Wheeler (2022).
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adjacency matrix. Spatial-related information is retrieved from 2010 census tract locations

and shapes, available in Census TIGER 2018 shapefiles.

Demographic characteristics (Demographic) are incorporated into the selection process

to capture criteria that specify eligible census tracts. Some key variables include the poverty

rate, median earnings, and employment rate. These variables also potentially affect tract

outcomes, thereby being included in outcome equations. We measure them using the American

Community Survey (ACS) 2013-2017 5-year estimates.

We employ political affiliation (Political) as the instrumental variable in this setting10.

Regarding the selection process, the governor’s party-affiliated census tracts have a higher

likelihood of designation as an Opportunity Zone (see, e.g., Alm et al., 2021; Eldar and

Garber, 2022; Frank et al., 2022). This can be attributed to two reasons. First, a governor’s

local political network can provide better information about localities that will benefit the

most from the policy, which can influence the selection decision. Second, governors may

choose to lend support to politically aligned representatives and constituencies as a means of

bolstering their political standing. We measure political affiliation using an indicator equal to

one if representative to the state’s lower house state of a census tract and the state’s governor

are members of the same political party. We obtain these data published the month preceding

the first Opportunity Zone selection (i.e., on March 1, 2018) from ballotpedia.com and assign

the state representatives to each tract using the 2016 State Legislative Block Equivalency Files

from the U.S. Census Bureau.

We restrict our analysis to the state of California because of its availability of comprehensive

data sources. Our final California data include 3, 699 eligible census tracts, which consist of

727 selected tracts (QOZs) and 2, 972 eligible albeit not selected tracts (Non-QOZs). Details

of variable definition, data sources, and a map of Opportunity Zone status of California census

tracts are shown in Appendix B.5. Summary statistics and covariate balancing tests between

the two subpopulations are reported in Table 3.6. It can be seen that compared to the control

group, the selected OZs are less wealthy, less employed, less likely to attain higher education,

have more rental units, and are less populated.

10That means, political affiliation is the excluded variable which enters the selection equation but does not
appear in outcome (housing unit growth) equations. To test this supposition, we incorporated this political
affiliation to the outcome equations. We found that it played negligible role in those equations, and its inclusion
had little to no effect on the estimates of the remaining parameters.
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Table 3.6: Summary Statistics and Balancing Tests

All tracts (n=3699) QOZs (n=727) Non-QOZs (n=2972) QOZs – Non-QOZs

Variables Mean (std) Mean (std) Mean (std) Diff.Mean t-statistic

Outcome

Housing Unit Growth 0.03 (0.17) 0.04 (0.14) 0.03 (0.17) 0.02 * 2.57

Observed Characteristics

Political Affiliation 0.79 (0.41) 0.82 (0.38) 0.78 (0.42) 0.04 ** 2.72

Poverty Rate 0.19 (0.09) 0.27 (0.09) 0.17 (0.08) 0.09 *** 24.64

Median Earnings 10.17 (0.31) 10.01 (0.26) 10.21 (0.30) -0.21 *** -18.60

Employment Rate 0.29 (0.07) 0.26 (0.07) 0.29 (0.07) -0.04 *** -12.87

% White 0.56 (0.21) 0.53 (0.20) 0.56 (0.21) -0.04 *** -4.35

% Native 0.90 (0.04) 0.89 (0.04) 0.91 (0.04) -0.02 *** -9.05

% Higher ed. 0.15 (0.09) 0.11 (0.07) 0.16 (0.09) -0.05 *** -15.23

% Rent 0.57 (0.21) 0.67 (0.19) 0.54 (0.21) 0.13 *** 16.47

Population 4509.55 (1613.93) 4305.31 (1476.18) 4559.51 (1642.24) -254.20 *** -4.07

Notes: This table presents summary statistics at the census tract level in California. All tracts refer to the entire sample of

eligible census tracts for Opportunity Zones, which consist of selected tracts (QOZs) and eligible, non-selected tracts (Non-

QOZs). Two-sample t-statistics of tests for differences in mean values between two subsamples are reported. The asterisks *,

**, and *** indicate statistical significance at the 10%, 5%, and 1%, respectively.

3.5.2 Estimation Results

Our model (3.41) is estimated using the Bayesian Data Augmentation algorithm discussed

in previous sections. The estimation results are reported in Table 3.7. With respect to the

treatment decision equation, the coefficient estimates are consistent with our expectations.

Governors tend to select even more distressed communities, characterised by higher poverty

rates and lower median earnings, from the pool of already low-income tracts. Additionally,

the instrument appears to play an important role in the selection process, as governors are

more likely to choose tracts represented by members of the same political party. Regarding

the outcome equations, non-QOZs with lower poverty rates, larger median earnings, and

higher employment rates tend to experience greater changes in total housing units on average.

These effects are statistically significant at the 5% level. In contrast, for selected census tracts

(QOZs), higher poverty rates are associated with more significant changes in total housing

units.
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Table 3.7: Estimation Results

(I) No Controls (II) Additional Controls

Mean Std LB UB Mean Std LB UB

Treatment Decision Equation

P olitical Affiliation (α) 0.119 0.043 0.034 0.203 0.116 0.053 0.017 0.221

Intercept (β(D)
0 ) -0.823 0.042 -0.907 -0.742 1.184 1.141 -1.077 3.410

P overty Rate (β(D)
1 ) – – – – 4.951 0.334 4.307 5.612

Median Income (β(D)
2 ) – – – – -0.317 0.113 -0.538 -0.095

Employment Rate (β(D)
3 ) – – – – 0.530 0.459 -0.350 1.423

Outcome Equation for QOZs

Neighbourhood T reatment (δ(1)) 0.034 0.016 0.002 0.066 0.033 0.017 0.001 0.067

Intercept (β(1)
0 ) -0.223 0.028 -0.269 -0.158 -0.573 0.295 -1.164 0.001

P overty Rate (β(1)
1 ) – – – – 0.857 0.101 0.667 1.054

Median Income (β(1)
2 ) – – – – 0.017 0.030 -0.041 0.074

Employment Rate (β(1)
3 ) – – – – 0.057 0.109 -0.153 0.270

Outcome Equation for Non-QOZs

Neighbourhood T reatment (δ(0)) 0.016 0.013 -0.010 0.042 0.025 0.014 -0.003 0.052

Intercept (β(0)
0 ) -0.025 0.004 -0.033 -0.017 -0.718 0.152 -1.016 -0.420

P overty Rate (β(0)
1 ) – – – – -0.308 0.050 -0.408 -0.212

Median Income (β(0)
2 ) – – – – 0.080 0.015 0.050 0.109

Employment Rate (β(0)
3 ) – – – – -0.200 0.059 -0.315 -0.084

Correlations and Variances

σ2
1 0.049 0.007 0.035 0.062 0.041 0.005 0.033 0.051

σ2
0 0.038 0.001 0.036 0.041 0.035 0.001 0.033 0.038

ρ1D 0.892 0.046 0.808 0.929 0.868 0.024 0.815 0.907

ρ0D -0.841 0.011 -0.861 -0.819 -0.811 0.014 -0.835 -0.782

ρ10 -0.752 0.043 -0.800 -0.668 -0.707 0.032 -0.765 -0.640

Criteria

Log likelihood -894.939 43.593 -977.288 -801.430 -514.188 41.854 -597.910 -433.570

AICM 1948.754 – – – 1102.365 – – –

Observations 3699.000 – – – 3699.000 – – –

Quantities of Interest

δ(1) 0.034 0.016 0.002 0.066 0.033 0.017 0.001 0.067

δ(0) 0.016 0.013 -0.010 0.042 0.025 0.014 -0.003 0.052

∆δ(1)−δ(0) 0.018 0.021 -0.023 0.058 0.008 0.022 -0.035 0.051

∆σ1D−σ0D 0.362 0.021 0.321 0.396 0.329 0.015 0.301 0.358

Notes: This table presents estimation results from Gaussian Generalised Roy model with spillovers. Posterior means, standard deviations,

as well as upper bounds and lower bounds of 95% credible intervals are reported. Baseline specification (I) employs no control variables.

Specification (II), which uses demographic characteristics as controls, provides robust results of quantities of interest and gains better Log

marginal likelihood and Akaike’s Information Criterion Monte Carlo (AICM, Raftery (2007)).

Recall that the coefficients of neighbourhood treatment, namely δ(1) and δ(0), represent

the average partial indirect effects when treated and when untreated, respectively. Although

we estimate a significantly positive average indirect effect for treated census tracts, with a

point estimate of δ̂1 = 0.033 and a credible interval of [0.001, 0.067], this effect becomes

statistically insignificant for untreated counterparts, with a point estimate of δ̂0 = 0.025 and a

credible interval of [−0.003, 0.052]). This suggests that, on average, a greater proportion of
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neighbouring census tracts designated as QOZs is typically associated with a higher increase

in the growth of housing units in selected tracts. However, the spillover effect is negligible

when these tracts are not selected.

Using these estimates, we can also reconstruct corresponding treated and untreated average

potential outcome functions, as illustrated in Figure 3.5. We report the average functions as

bold lines, which show a moderately upward trend across increasing values of neighbourhood

treatment because of the positive estimated slopes. The corresponding (pointwise) 95%

credible intervals represented by dashed curves are derived from the posterior samples.

Figure 3.5: The average potential outcome when being treated and when being untreated (right-hand
side panel), as a function of the neighbourhood treatment d̄N . The dashed curves represent 95%
credible intervals derived from posterior samples. Ticks in the rug plot on the horizontal axis represent
empirical distribution of d̄N based on the real network. Estimation results for specification (II) with
control variables are used.

The differential between these two average potential outcomes recovers the average direct

treatment effects evaluated at various neighbourhood treatment levels, as depicted in Figure

3.6. The nearly flat curve, of which the estimated slope (∆̂δ(1)−δ(0)) is positive albeit not

statistically significant, reveals that the direct effect of being selected for OZ program on

census tracts’ housing unit growth is almost unaffected by the neighbourhood treatment. Put

differently, no significant interaction effect is found. This pattern is consistent with numerical

results in Table 3.8. It worth noting that computed 95% credible interval bounds below zero

in all cases, implying that the average direct treatment effects of OZ program for a census

tract picked at random from the whole population of eligible census tracts are significantly

negative. Although there no evidence that these estimated average direct treatment effects are

heterogeneous relative to various levels of neighbourhood treatment, the average results may

mask positive and negative effects for different subpopulations of census tracts characterised
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by other dimensions.

Figure 3.6: The average direct treatment effect as a function of the neighbourhood treatment d̄N . The
dashed curves represent 95% credible intervals derived from posterior samples. Ticks in the rug plot
on the horizontal axis represent empirical distribution of d̄N based on the real network. Estimation
results for specification (II) with control variables are used.

Figure 3.7: The marginal direct treatment effect as a function of the neighbourhood treatment d̄N
and the unmeasured resistance level v, at average values of the covariates. Ticks in the rug plot on
the horizontal axis represent empirical distribution of v, obtained from posterior samples. Estimation
results for specification (II) with control variables are used.
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Table 3.8: Average Direct Treatment Effects

d̄N Mean (std) CI95

0.1 -0.1970 (0.0223) [-0.2413, -0.1546]

0.2 -0.1962 (0.0219) [-0.2394, -0.1546]

0.3 -0.1954 (0.0218) [-0.2377, -0.1544]

0.4 -0.1945 (0.0218) [-0.2373, -0.1538]

0.5 -0.1937 (0.0221) [-0.2373, -0.1532]

0.6 -0.1929 (0.0225) [-0.2373, -0.1514]

0.7 -0.1921 (0.0232) [-0.2379, -0.1493]

0.8 -0.1913 (0.0241) [-0.2387, -0.1471]

0.9 -0.1905 (0.0251) [-0.2406, -0.1441]

Notes: This table presents estimation results

for Average Direct Treatment Effects,

evaluated at nine grid values of the

neighbourhood treatment d̄N and average

values of the covariates in our sample.

Posterior means, standard deviations, as well

as 95% credible intervals for specification (II)

with control variables are reported.

Table 3.9: Marginal Direct Treatment Effects

v Mean (std) CI95

0.1 0.2258 (0.0127) [0.2010, 0.2506]

0.2 0.0809 (0.0137) [0.0538, 0.1075]

0.3 -0.0235 (0.0162) [-0.0554, 0.0071]

0.4 -0.1127 (0.0190) [-0.1502, -0.0766]

0.5 -0.1961 (0.0219) [-0.2393, -0.1546]

0.6 -0.2796 (0.0251) [-0.3288, -0.2320]

0.7 -0.3688 (0.0286) [-0.4247, -0.3151]

0.8 -0.4732 (0.0329) [-0.5376, -0.4115]

0.9 -0.6181 (0.0391) [-0.6945, -0.5451]

Notes: This table presents estimation results

for Marginal Direct Treatment Effects,

evaluated at nine grid values of the

unmeasured resistance level v and average

values of the neighbourhood treatment d̄N as

well as the covariates in our sample. Posterior

means, standard deviations, as well as 95%

credible intervals for specification (II) with

control variables are reported.

Table 3.10: Summary of Direct Treatment Effects

ADTE ADTT ADTUT

Mean (std) CI95 Mean (std) CI95 Mean (std) CI95

-0.196 (0.022) [-0.239, -0.155] 0.041 (0.015) [0.012, 0.069] -0.298 (0.026) [-0.349, -0.249]

Notes: This table presents estimation results for the average direct treatment effect (ADTE), the average

direct treatment effect on the treated (ADTT) and on the untreated (ADTUT) from Gaussian Generalised

Roy model with spillovers. Posterior means, standard deviations, as well as 95% credible intervals for

specification (II) with control variables are reported.
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From estimation results for the elements of covariance matrix in Table 3.7, it is evident

that the correlations (ρ1D and ρ0D) between unobserved component in treatment decision

equation and each of two potential outcome equations are significantly different from zero.

This reveals endogenous selection into treatment, which should be taken into account to

accurately characterise the causal effects of the OZ program.

Rewrite (3.41) using Vi = −Φ
(
ϵ

(D)
i

)
Then, Vi represents unobserved heterogeneity of

census tracts, which contributes to the selection process. Because higher values of Vi imply a

lower propensity for treatment, Vi can be interpreted as an unmeasured resistance to treatment.

Examining further marginal direct treatment effects (MDTE) allows for the estimation of

treatment effects at different points in the distribution of unobserved heterogeneity Vi,

providing insights into how treatment effects vary among census tracts that are marginally

indifferent to receiving the treatment.

Figure 3.7 depicts MDTE curves evaluated at mean values of covariates X in our sample.

Because of the null interaction effect documented above, these curves corresponding to various

values of d̄N are nearly identical. However, the MDTE curves decrease with increasing values

of the unmeasured resistance to treatment v, revealing a pattern of selection-on-gains. This

indicates that “low-resistance” tracts (i.e., very low v), which are most likely to be selected by

governors, appear to benefit the most from tax credit. This selection-on-gains pattern, implied

by the positive slope of the MDTE curve (∆σ1D−σ0D
), is statistically significant at the 5%

level. The figure referenced in 3.7 depicts mean value curves of MDTE evaluated at different

values of d̄N . These curves, which represent the null interaction effect, are nearly identical.

However, the MDTE curves decrease with increasing values of the unmeasured treatment

resistance v, revealing a selection-on-gains pattern. This indicates that “low-resistance” tracts,

which are most likely to be selected by governors and have very low v, benefit the most from

tax credits. The slope of the MDTE curve (∆σ1D−σ0D
) implies this selection-on-gains pattern

and is statistically significant at the 5% level.

Interestingly, estimation results from Table 3.9 further suggest that for the 20 percent of

census tracts most likely to be selected (v ≤ 0.2), the direct effects are positively significant.

In contrast, high-resistance census tracts that are less likely to be selected by governors exhibit

negatively significant direct effects. These tracts constitute 60 percent of the entire eligible

population (v ≥ 0.4). With a realized treatment rate in our data of approximately 20 percent,

our further interest is examining the treatment effects on the treated and untreated. By deriving
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proper weights and aggregating over the MDTE curve, a range of causal estimands can be

computed, as summarized in Table 3.10. The average direct treatment effect (ADTE) suggests

that OZ tax credit reduces the growth of housing units by 19.6 percentage points. Although

this result is statistically significant, it is generally insufficient for policy analysis and obscures

important treatment effect heterogeneity. Specifically, the average direct treatment effect on

the treated (ADTT), which places most weight on low-v communities, shows a substantial

increase of 4.1 percentage points in housing unit growth for tracts that are ultimately selected

as QOZs on average. On the other hand, the average direct treatment effect on the untreated

(ADTUT), which places most weight on high-v communities, shows a substantial decrease

of 29.8 percentage points for the non-QOZs on average. These findings provide insights

into the OZ program’s selection mechanism and effectiveness. Selection-on-gains appears

to be an empirically significant phenomenon that influences the governor’s designation

process. Governors prioritize census tracts with characteristics that have potential for ex-post

gains, which could generate a positive impact. This goal seems to have been achieved, as

indicated by the positive direct treatment effect on the treated tracts (QOZs). Additionally,

these findings can be reconciled with our previous discussion on the role of political affiliation

in governors’ choices. One possible explanation for this is the information advantage that local

political networks provide governors, enabling them to better understand which communities

will benefit the most from the policy. However, eligible but unselected tracts (non-QOZs)

remain a disadvantaged group. Although there is no evidence to support the initial concern

about a displacement effect, there are no beneficial externality spillovers into non-QOZs

either. Additionally, because of unobserved differences between QOZs and non-QOZs, it

is unlikely that positive treatment effects on QOZs would be replicated if non-QOZs were

granted investment tax credit. In fact, the strongly negative ADTUT even predicts an adverse

impact on non-QOZs in this hypothetical scenario. Therefore, expanding the OZ program to

communities that currently do not receive tax credit would not be effective.

These findings have important implications for the design of an optimal policy. Considering

the diverse impacts of the OZ program, it is vital to assess its overall efficacy and determine

whether its benefits are fairly distributed among communities. Given the role of unmeasured

tract heterogeneity in determining the OZ program’s effectiveness, an optimal design should

adopt a more refined approach to selection mechanisms. In order to address the disadvantages

faced by non-QOZs, policymakers should explore alternative strategies to support these

communities, rather than relying solely on tax incentives.
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3.6 Concluding Remarks

In this paper, we developed methods that use observational network or spatial data to identify

and estimate direct and indirect causal effects in the presence of endogenous selection into

treatment and spillovers. This scenario arises due to the violation of the unconfoundedness

and SUTVA assumptions, which are commonly assumed in the causal inference literature

yet implausible in many economic contexts. Our proposed framework nests the Generalised

Roy model and captures spillovers in the form of exposure to neighbours’ treatment. The

advantages of this approach are explicitly modelling selection process and allowing for

heterogeneous effects across individuals. Although the model is not fully structural, it is

economically interpretable. For estimation and inference, we improved the Bayesian data

augmentation algorithms to enable more efficient computation and greater flexibility. All

sources of variability are accounted for in the posterior distribution of the target causal

estimands. Both the simulation with synthetic data and an empirical Monte Carlo study that

uses friendship networks and covariates from Add Health data indicate that our Bayesian

estimators perform well in terms of bias, RMSE, and coverage rate.

We also applied the proposed method to evaluate the Opportunity Zones (OZ) program,

which offers tax incentives to boost economic development in distressed U.S. communities.

We modeled the selection mechanism of designating QOZs by state governors and estimated

the program’s impact on housing unit growth in census tracts, accounting for endogenous

selection into treatment. Our findings indicate a selection-on-gains pattern, where treatment

effects vary with unmeasured tract heterogeneity. Both the direct and indirect effects on

treated tracts (QOZs) are positive, while unselected tracts (non-QOZs) remain disadvantaged

without positive spillover effects. The unobserved differences between QOZs and non-

QOZs suggest that replicating positive treatment effects in non-QOZs is unlikely. Moreover,

our model predicts adverse outcomes for non-QOZs if they were granted investment tax

credits. Therefore, extending the OZ program to currently uncredited communities would be

ineffective.

Extending the methods discussed earlier, a Bayesian semiparametric approach can be

implemented to incorporate heterogeneous indirect effects and relax the distributional

assumption for disturbance terms. We outline an extension that adopts a finite mixture model

in Appendix B.3. A more general approach could be built on the work of Conley et al. (2008),

which utilises the Dirichlet process (DP) to enable parameters to be observation-specific
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and generated from a common distribution. We leave this direction for future research.

Furthermore, variable selection techniques based on spike and slab priors could be employed

in our Bayesian estimation procedure to account for uncertainty regarding control variables in

both potential outcome equations and the selection equation or to account for uncertainty

regarding the structure of the adjacency matrix that represents the network or spatial

connection.



Chapter 4

Modelling Interactions with Heterogeneous Effects and

Endogenous Network Formation

4.1 Introduction

Modelling network interactions is a significant topic in economics to understand how

individuals’ actions are shaped by those of their peers, with applications ranging from

education and labour markets to industrial organisation and beyond. With the growing

availability of detailed data that document connections among individuals, the spatial

autoregression model (SAR) has been extensively used to empirically analyse these

interactions and estimate peer effects in networks.

The foundational theoretical aspects related to identifying and estimating the standard SAR

model as a network interaction model were established by Bramoullé et al. (2009), as well as

by Lee et al. (2010), and Lin (2010). These studies are predicated on the assumption that the

network is exogenous. Nonetheless, this assumption has been challenged, as unobservable

characteristics often simultaneously influence individual activity outcomes and the formation

of networks, thereby introducing selection bias into the estimates of interaction effects. This

recognition has led to a new wave of research focusing on integrating models of network

interaction and formation to structurally address the endogeneity issue. Notable contributions

in this domain include subsequent studies by Goldsmith-Pinkham and Imbens (2013), Hsieh

and Lee (2016), Qu and Lee (2015), Johnsson and Moon (2021), and Auerbach (2022), which

employ various estimation techniques. These developments are naturally linked to evolving

literature on the econometrics of network formation (see, e.g., Chandrasekhar, 2016; Graham,

2015), and researchers are increasingly leveraging recent insights from this literature to expand

the SAR framework to account for network endogeneity.

Despite these advancements, the literature is still missing due to an implicit assumption

94
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embedded in the conventional specification of SAR. This typically imposes strict homogeneity

in the interaction effects, requiring that all individuals are influenced in exactly the same way

by the average outcome of their peers. This assumption is implausible in many context when

some individuals are clearly more susceptible to peers or exert greater influence than others.

Recent surveys (see, e.g., Bramoullé et al., 2020; Kline and Tamer, 2020) have acknowledged

the importance of accounting for individual heterogeneity in endogenous interaction effects.

Although the economic theory in these cases is well-examined (Jackson and Zenou, 2015),

econometric models addressing heterogeneous interaction effects remain underdeveloped. A

few exceptions have attempted to incorporate certain degree of pre-stipulated heterogeneity,

such as (Arduini et al., 2020a, 2020b), who generalised the standard model to allow for two

specific types with between and within-type interactions. Building upon this framework,

Beugnot et al. (2019) investigate the gender-heterogeneous peer effects on performance

within social networks. Their study reveals that men and women experience distinct peer

effects, and individuals may also be influenced differently by male and female peers. Rather

than pre-specifying heterogeneity based on observable characteristics of individuals, Masten

(2018) introduces the heterogeneity by studying identification for the linear-in-means model

with random coefficients. This model accommodates pair-specific interaction effects that

purely random and not driven by observable factors. The author proves that the marginal

distributions of the coefficients are point identified, provided there exists an instrument

with continuous variation over a large support. In a similar vein, Peng (2019) extends SAR

model by assuming varying rates of influence among individuals and imposed sparsity on

the number of influential individuals. Nonetheless, all of these studies essentially require the

network to be exogenously given, which compromises the efforts made in research addressing

endogenous network formation. This assumption is subject to considerable skepticism among

economists, raising the question of whether relaxing it has major implications for estimates

of heterogeneous network interaction effects in these studies. To the best of our knowledge,

simultaneously accommodating heterogeneous network interaction effects and accounting for

endogenous network formation is a gap in the literature of network/social interactions due to

the intertwined challenges.

This paper contributes to the literature by proposing a new framework that extends standard

SAR model to incorporate both heterogeneous network interaction effects and endogenous

network formation. We develop the Selection-corrected Heterogeneous Spatial Autoregressive

(hereafter referred to as SCHSAR) model, a unified framework to achieve these two objectives.
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At its core, the SCHSAR model features a mixture structure in which individuals belong

to finite latent types, each governed by distinct parameters when they interact with peers

in a network. This specification captures rich heterogeneity in network interaction effects,

allowing individual outcomes to vary in both the magnitude and direction of peer influence. To

address the endogeneity inherent in network formation, we explicitly model dyadic links as the

realisation of decision-making processes influenced by observable attributes and unobservable

individual-specific factors. By jointly incorporating these unobserved traits as latent variables

into the network formation and individual outcome equations, which resemble a two-stage

game, the SCHSAR framework corrects for potential selection bias arising from endogenous

links. The estimation is performed using a Bayesian data augmentation method, which enables

efficient computation and inference despite complex latent structures. Overall, SCHSAR

offers a flexible and robust approach to draw credible conclusions about network interaction

effects in settings where both individual heterogeneity and network endogeneity are present.

Our methodology builds on two strands of the literature in econometrics, and our

contributions are two-fold.

First, our strategy to correct selection bias stemming from endogenous network formation

follows the seminal works of Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee

(2016). These studies introduce Bayesian joint modelling approach that uses latent variables

to control for unobserved factors influencing both network formation and outcome. Our

SCHSAR framework goes beyond these foundational contributions in several ways. Most

notably, we relax the assumption of homogeneous peer effects by incorporating a finite

mixture structure that enables heterogeneous responses to peers. Broadly speaking, our

model nests Goldsmith-Pinkham and Imbens (2013) as a special case when the number of

mixture components is reduced to one. Additionally, unlike prior work that focuses solely on

unobserved homophily, our framework also allows unobserved degree heterogeneity to drive

network formation. This again provides a richer form of individual heterogeneity, facilitating

a more robust analysis. Lastly, we adopt a probit instead of logit link function for modelling

network formation via introducing normally distributed dyadic shocks. We gain another

latent-variable representation that integrates naturally into the hierarchical Bayesian structure

of our model, thereby simplifying posterior computation and improving convergence.

Second, to accommodate the heterogeneity in the network interaction effects, our model

draws inspiration from Cornwall and Parent (2017), who introduce a finite mixture approach
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to spatial econometric modelling. Their Spatial Autoregressive Mixture (henceforth, SAR-M)

model marks an innovative step toward integrating spatial dependence and heterogeneity,

and connects to a broader literature on heterogeneous spatial models (e.g., Aquaro et al.,

2021; LeSage and Chih, 2018, 2016). However, SAR-M and related models share a common

and significant limitation: the assumption that the spatial weights matrix (spatial version of

the network adjacency matrix) is exogenously given and fixed. This restricts their empirical

applicability, particularly in settings where spatial weights are constructed from economic

or behavioural variables (for example, GDP, income, or trade flows). In such cases, the

endogeneity of the spatial weights matrix becomes a first-order concern, as emphasised in

critical works (see Han and Lee, 2016; Kelejian and Piras, 2014; Qu and Lee, 2015). Our

SCHSAR framework addresses this limitation by endogenizing the network formation process,

allowing the adjacency (or spatial weight) matrix to be driven by unobserved factors. In doing

so, our model advances Cornwall and Parent’s (2017) SAR-M model in a cross-sectional

setup, and the insights may be extended to heterogeneous models utilising panel data, such as

in LeSage and Chih (2018).

By bridging recent advancements in two distinct lines of research, SCHSAR provides a

unified and flexible framework that can be readily applied to both social networks and spatial

data contexts.

To estimate the SCHSAR model, we develop a Bayesian Markov chain Monte Carlo

(MCMC) algorithm that offers several methodological and practical advantages. First, we

leverage the Bayesian data augmentation technique to sample parameters alongside latent

variables from the joint posterior distribution. This approach provides a tractable solution to

the computational challenges typically faced in maximum likelihood estimation, particularly

those involving high-dimensional integrals arising from latent structures. Second, the proposed

algorithm simultaneously addresses heterogeneity and endogeneity, the two central features of

the SCHSAR framework, by utilising latent variables in a unified model. It also enables the

seamless integration of model constraints. This unified Bayesian approach facilitates one-step

inference across all unknown quantities, providing principled uncertainty quantification.

Third, the algorithm yields posterior predictive distributions for the individual-level latent

variables, including the unobserved random effects and latent type indicators. These posterior

draws allow for a data-driven probabilistic assignment of individuals to latent types, enabling

the model to uncover clusters of heterogeneous interaction effects through a finite mixture
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structure. Moreover, this facilitates an examination of how latent heterogeneity correlates with

observable characteristics, enriching the interpretability of the model. Finally, the Bayesian

framework naturally allows for inference on policy-relevant quantities, such as total spillin

and spillout effects, which are highly nonlinear functions of the model parameters. These

effects can be computed directly from posterior samples as a by-product of estimation. The

computational tractability and convergence of our Bayesian estimation method is supported by

simulation evidence. The simulation study also demonstrates favourable frequentist properties,

showing that the SCHSAR model delivers valid inference and improved performance relative

to more naive approaches that either ignore endogenous network formation or assume

homogeneous interaction effects.

Having developed valid tools for estimation, we apply the proposed SCHSAR framework

to study the formation of a technological collaboration network among U.S. firms and

heterogeneous interaction effects on firm performance, with a focus on their R&D efforts. The

empirical analysis confirms significant positive, yet heterogeneous, network interaction effects

on corporate R&D investments, even after controlling for selection bias due to endogenous

network formation. We find substantial heterogeneity in firm behaviour and uncover notable

transmitters and absorbers in response to exogenous R&D policy shocks. This framework

facilitates the quantification of firm-level direct, spillin, and spillout effects, thereby offering

valuable insights for the design of evidence-based and targeted policy interventions.

The remainder of this paper is organised as follows. In Section 4.2, we formally present the

Selection-corrected Heterogeneous Spatial Autoregressive (SCHSAR) framework, accounting

for heterogeneous interaction effects and endogenous network formation. In Section 4.3, we

develop Bayesian MCMC algorithms to estimate the model and conduct inferences. Next,

we evaluate the performance of our method using simulations in Section 4.4 and apply the

proposed approach to study U.S. firms’ technological collaboration network in Section 4.5.

Finally, we conclude the paper in Section 4.6 with brief remarks on the method and policy

recommendations based on our results.
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4.2 Selection-corrected Heterogeneous Spatial Autoregressive Model

4.2.1 Network Interaction with Heterogeneous Effects

Suppose there are N individuals, indexed by i ∈ {1, . . . , N} in a network.

Let W := [wij] be an N ×N adjacency matrix that characterises the network, where wij

equals one if individuals i and j are connected, and zero otherwise. The diagonal entries in

W are always zero.

Let Y := [Y1, . . . , YN ]⊤ be anN -dimensional vector of the outcomes of interest, defined for

all individuals. Let X be an N ×K matrix of exogenous covariates that represents individual

characteristics, with k-th column denoted as Xk.

The standard spatial autoregressive (SAR) model for studying interactions in networks is

specified as

Yi = λ
N∑
j=1

wijYj +Xiβ + ui; (4.1)

where λ captures the endogenous peer effect (a.k.a. network interaction effect), where an

individual’s choice of activity level (outcome) may depend on those of their peers; β =

[β1, . . . , βK ]⊤ captures the influence from the individuals’ exogenous characteristics on the

outcome; and u = [u1, . . . , uN ]⊤ is a vector of stochastic errors whose elements are i.i.d. with

zero mean and constant variance σ2
u.

The network interaction model (4.1) has been widely studied (Bramoullé et al., 2009; Lee et

al., 2010; Lin, 2010, among many others) and is also referred to as the linear-in-means network

model. Despite many available variants in the literature, these models typically assume that

the interaction effect parameter λ is constant and common to all individuals. This means

that all individuals are influenced in the same way by a summary of their peers’ outcomes.

However, assuming homogeneous effects is restrictive when some individuals may be highly

susceptible to peer effects, while others remain relatively independent in their behaviours.

To accommodate this heterogeneity, we assume that our sample is representative of a

population composed of a finite number of latent types of individuals, indexed by g ∈ G :=

{1, . . . , G}. Each type g is characterised by its own set of parameters {λg, βg, σ2
ug}, which

are similar for all individuals of the same type but vary across types. The type is assigned

independently among individuals, following a multinomial distribution with probability



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 100

π := [π1, . . . , πG], where 0 < πg ≤ 1 and
∑G
g=1 πg = 1. We denote zig as the individual-

type indicators, where zig = 1 means i belongs to type g, and zig = 0 otherwise. Combine

zi := [zi1, zi2, . . . , ziG] and stack them in an N ×G matrix of allocation, z := [z⊤
1 , . . . , z

⊤
N ]⊤.

These indicators are stochastic and unobserved, and the probability that the latent type of i is g

isP(zig = 1) = πg. We denote Ig as the set of type-g individuals andNg as the corresponding

cardinality. I1, . . . , IG are thus sets that partition {1, . . . , N}, and
∑G
g=1 Ng = N . In this way,

all parameters in the original model (4.1) become type-specific as follows

Yi = λg
N∑
j=1

wijYj +Xiβg + ui; ui ∼ N (0, σ2
ug); (4.2)

for each individual i ∈ Ig.

Collect type-specific parameters into G-dimensional vectors and define N -dimensional

vectors of individual-specific parameters listed below

λ̌ := [λ1, . . . , λG]⊤, λ̃ := zλ̌;

β̌k := [βk1 , . . . , βkG]⊤, β̃k := zβ̌k, k = 1, . . . , K;

σ̌2
u := [σ2

u1, . . . , σ
2
uG]⊤, σ̃2

u := zσ̌2
u.

Accordingly, we obtain a heterogeneous version of the spatial autoregressive model (HSAR)

Yi = λ̃i
N∑
j=1

wijYj +Xiβ̃i + ui; ui ∼ N (0, σ̃2
u,i); (4.3)

where λ̃i, β̃i, and σ̃2
u,i are individual-specific parameters for individual i, which depend on

what type he/she is assigned and parameters of that type.

Remark 1. The HSAR specification offers greater flexibility in modelling network interaction

effects than the standard SAR. This relaxes the assumption that peer effects must be uniformly

positive or negative across all individuals. Some may be positively influenced, adopting

behaviours or attitudes from their peers, whereas others may react negatively. Furthermore,

the HSAR specification accounts for varying intensities of peer influence, as represented by the

magnitude of |λ̃i|. It is important to note that, when introducing various latent types, the model

permits unrestricted interactions both within and between types in the network. Individuals

who tend to share the same type, by definition, exhibit similar “receiving rates,” but this is

not strictly tied to their network positions or any predetermined characteristics (ex-ante).
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We will demonstrate later that, by placing priors for both type indicators (z) and assignment

probabilities (π), their updated posteriors produces a data-driven probabilistic assignment of

individuals to types (groups). For now, we note how our setup with latent types directly leads to

a finite mixture approach. Define Y (i) := ∑N
j=1 wijYj and Ỹi := Yi− λ̃iY (i), for i = 1, . . . , N .

Knowing the latent individual-type indicator zig = 1 informs us: Ỹi ∼ N
(
Xiβg, σ

2
ug

)
. Hence,

marginalising over the type indicator zi, we obtain the mixture distribution

p
(
Ỹi | Xi, {λg, βg, σ2

ug, πg}Gg=1

)
∝

G∑
g=1

πgN (Xiβg, σ
2
ug), where

G∑
g=1

πg = 1. (4.4)

Let L := diag(λ̃) be an N ×N diagonal matrix of which each diagonal element λ̃i = λg if

individual i belongs to g-type group. Given that the outcomes for all individuals i = 1, . . . , N

obey equations analogous to (4.3), the system of equations can be more compactly written in

matrix notation as

Y = LWY +
K∑
k=1

β̃k ◦Xk + u, (4.5)

where ◦ denotes the Hadamard (element-wise) multiplication. This can be further expressed

in the reduced form below

Y = [IN − LW]−1
(

K∑
k=1

β̃k ◦Xk + u
)
. (4.6)

By definition, Ỹ = [IN − LW] Y. Conditional on all individual-type indicators, we get the

joint density

p
(
Ỹ | z,W,X, {λg, βg, σ2

ug, πg}Gg=1

)
=

N∏
i=1

G∏
g=1

[ϕ(Xiβg, σ
2
ug)]zig

=
G∏
g=1

(2πσ2
ug)−Ng/2exp

{
N∑
i=1
−zig(Ỹi −Xiβg)2

2σ2
ug

}
,

(4.7)

where Ng = ∑N
i=1 zig, by definition, represents the number of type-g individuals.

Conditional on (W,X), the augmented likelihood function for the model parameters is

associated with the joint distribution of the observed outcome and latent type indicators (Y, z)
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and of the form

p
(
Y, z |W,X, {λg, βg, σ2

ug, πg}Gg=1

)
= p

(
Y | z,W,X, {λg, βg, σ2

ug}Gg=1

)
p (z | π)

= |IN − LW|
G∏
g=1

(2πσ2
ug)−Ng/2exp

{
N∑
i=1
−
zgi(Yi − λgY (i) −Xiβg)2

2σ2
ug

}
πNg
g .

(4.8)

Remark 2. For simplicity, we present here a local-aggregate model specification (i.e., the

adjacency matrix W is not row-normalised), but the HSAR is also applicable to a local-

average model (i.e., the matrix W is row-normalised such that each row sums to unity).1 A

pertinent issue concerns the constraints on {λg}Gg=1 in order that IN −LW is invertible. In

accordance with the suggestion by Kelejian and Prucha (2010), we restrict the value of all λg

to the interval (−1/τ ∗, 1/τ ∗), where τ ∗ := min
{

max
1≤i≤N

∑N
j=1 |wij|, max

1≤j≤N

∑N
i=1 |wij|

}
. When

W is a row-normalised matrix, the condition |λg| < 1 for all g = 1, . . . , G is sufficient. We

impose this assumption throughout the paper and on the estimation procedure for λg.

In the spatial econometrics context, Cornwall and Parent (2017) introduces a similar

modelling approach, known as the spatial autoregressive mixture (SAR-M) model. They show

that the true parameters λg can be recovered well. However, the spatial weight matrix in

their paper is treated as strictly exogenous, a common yet strong assumption that is unlikely

to hold within our network interaction framework. Indeed, if unobserved factors influence

both the network links used to construct wij and individual outcomes Yi, this introduces

endogeneity into the matrix W in (4.5). We let ai be a scalar random variable capturing

such unobservables which determine the outcome Yi, and collect a := [a1, . . . , aN ]⊤. If the

generation of W also involves a, it would be important to model network formation more

explicitly to avoid potential endogeneity. In the following subsection, we examine W through

the lens of a network formation process, which naturally frames our setup as a two-stage

game: networks are formed in the first stage, and actions (outcomes) are determined in the

second stage given the network structure. Afterward, we will return to the HSAR model to

address challenges arising from the potential endogeneity issue.

1Aggregate and average models differ in terms of their behavioural foundations, which entails different
interpretations for the interaction effect parameter λ (Liu et al., 2014).
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4.2.2 Strategic Network Formation

Network formation is modelled through a strategic choice framework, where individuals

decide to form a link based on perceived utility gain. We consider each dyad (i, j) composed

of individuals i and j, with i ̸= j. The respective marginal utilities2 individuals i and j receive

from forming a link are

Uij(ϵ∗
ij) = ψij + ϵ∗

ij and Uji(ϵ∗
ji) = ψji + ϵ∗

ji, (4.9)

where ψij and ψji are score functions that depend on individual attributes of i and j, and

(ϵ∗
ij, ϵ

∗
ji) is a pair of idiosyncratic shocks that captures the uncertainty in their connection

decision.

We assume the score function to be symmetric and deterministic across dyads. In addition,

while each dyad can fully observe their characteristics when making decisions, there exists a

component unobservable to the researcher. Specifically,

ψij = ψji = C⊤
ijγ + f(ai, aj). (4.10)

In equation (4.10), Cij is an L-dimensional vector of dyad-specific regressors derived from

the observed exogenous characteristics of individuals i and j. For example, C l
ij = |cli − clj|

reflects homophily in observables, one of the key features in the network formation literature

to acknowledge that individuals prefer linking to similar others. Furthermore, the unobserved

component, f(ai, aj), is a function of individual unobserved characteristics. Here, we have

introduced ai as a scalar summary of individual i’s unobserved characteristics, which is also

regarded as an individual random effect. We assume ai are independent across individuals

with a commonly used parametric distribution p(ai|θa). The specification of f(ai, aj) depends

on how ai drives link preferences, and thus could be in the form of either unobserved degree

heterogeneity or unobserved homophily. The choice is determined by which feature is more

likely to be predominant.

When unobserved homophily is exhibited, the larger the difference in unobservables

between individuals i and j, the less likely they are to connect. To capture homophily on

unobserved dyad attributes, we use the conventional specification in the literature (see, e.g.,

2That is, the difference in utility between two options, linking or not.
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Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016).

f(ai, aj) = −|ai − aj|. (4.11)

Apart from homophily, Graham (2017) highlighted that individual heterogeneity in the number

of links (a.k.a. degree), is another common feature of social networks. This is due to the

fact that, the degree varies among individuals in many social networks – a few individuals

serve as prominent “hubs” with numerous links, whereas others only own a few links. In

addressing unobserved degree heterogeneity, we build on studies that accommodate this

feature in network formation models (e.g., Ding et al., 2023; Dzemski, 2019) and incorporate

individual-specific heterogeneity in an additive manner

f(ai, aj) = ai + aj. (4.12)

The unobserved individual characteristic ai can be interpreted as social capital, which

enhances the likelihood of forming a link. Depending on the context, these characteristics may

include trustworthiness, socioeconomic status, or charisma. These intangible factors also tend

to affect individual activity outcomes, as evidenced in previous studies combining network

formation and interaction (Han et al., 2021; Johnsson and Moon, 2021; Weng and Parent,

2023, among others).

Remark 3. To facilitate the discussion of the identification and estimation procedure that

will be addressed later, we assume ai ∼ N (0, σ2
a) in the context of unobserved degree

heterogeneity, and ai ∼ Bern(p) when considering unobserved homophily.

A link between individuals i and j is formed if and only if it improves the average utility of

i and j given by

w∗
ij :=

Uij(ϵ∗
ij) + Uji(ϵ∗

ji)
2 = ψij +

ϵ∗
ij + ϵ∗

ji

2 ≥ 0. (4.13)

Thus, binary link indicators representing the network are realisations of these latent average

utilities

wij = wji =


1 if w∗

ij ≥ 0,

0 if w∗
ij < 0.

for i = 1, . . . , N ; j = 1, . . . , i− 1. (4.14)
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By defining the average of dyad-level shocks ϵij := ϵ∗ij+ϵ∗ji

2 , we can write the network formation

model succinctly as follows

w∗
ij = C⊤

ijγ + f(ai, aj) + ϵij,

wij = wji = 1(w∗
ij ≥ 0), for i = 1, . . . , N ; j = 1, . . . , i− 1;

(4.15)

where 1(·) is the indicator function.

Define Aij := f(ai, aj) for i = 1, . . . , N and j = 1, . . . , N with i ̸= j. Substituting into the

representation of latent dyadic utilities w∗
ij , we obtain

w∗
ij = C⊤

ijγ + Aij + ϵij. (4.16)

Following the ways the elements of the adjacency matrix W = [wij] are indexed, we can

stack across row i for a given j as detailed below

w∗
−j = C−jγ + A−j + ϵ−j, j = 1, . . . , N ; (4.17)

where w∗
−j , A−j , and ϵ are (N − 1)-dimensional vectors, C−j is a (N − 1)× L2 matrix

w∗
−j =



w∗
1j
...

w∗
j−1,j

w∗
j+1,j
...

w∗
Nj


, C−j =



C⊤
1j
...

C⊤
j−1,j

C⊤
j+1,j
...

C⊤
Nj


, A−j =



A1j
...

Aj−1,j

Aj+1,j
...

ANj


, ϵ−j =



ϵ1j
...

ϵj−1,j

ϵj+1,j
...

ϵNj


.

We can then stack across the index j to obtain

w∗ = Cγ + A + ϵ, (4.18)

where w∗, A, and ϵ are N(N − 1)-dimensional vectors and C is a N(N − 1)× L matrix

w∗ =


w∗

−1
...

w∗
−N

 ,C =


C−1

...

C−N

 ,A =


A−1

...

A−N

 , ϵ =


ϵ−1

...

ϵ−N

 .
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As the uncertainty in the linking decision comes solely through ϵij in (4.15), we lastly

assume that this idiosyncratic error is i.i.d across dyads with a standard normal distribution

such that

p(ϵ) =
N∏
i=1

∏
j<i

ϕ(ϵij), (4.19)

where ϕ(·) denotes the standard normal density. This assumption is equivalent to setting the

distributions of the original ϵ∗
ij as N (0, 2) independently across dyads. Fixing the variance of

shocks, which is unity due to our normalisation, can be seen as an identifying restriction. This

is standard in models with binary dependent variables (see, e.g., Cameron and Trivedi, 2005;

Chan et al., 2019). Indeed, as we only observe whether a specific link was formed or not, all

scalings of the idiosyncratic shocks will be observationally equivalent. Furthermore, while

the distribution of ϵij is often specified as logistic in the network formation literature, the

advantages of (4.19) are demonstrated in Ding et al. (2023). They advocate that this assumption

leads to a normal likelihood for the latent variables, which facilitates the incorporation of

other elements into their sampling scheme in a Bayesian context.

Conditional on (C, a), the augmented likelihood3 function for parameters in the network

formation model in (4.15) is associated with the joint distribution of the observed network

and latent link utilities (W,w∗) and can be expressed as

p
(
W,w∗ | C, a, γ

)
= p

(
W | w∗) · p(w∗ | C, a, γ

)
=

N∏
i=1

∏
j<i

[
1(w∗

ij ≥ 0)1(wij = 1) + 1(w∗
ij < 0)1(wij = 0)

]
ϕ
(
w∗
ij | ψij, 1

)
,

(4.20)

where ϕ
(
w∗
ij | ψij, 1

)
= ϕ

(
w∗
ij − C⊤

ijγ − f(ai, aj)
)
.

This expression immediately implies that the conditional posterior distributions of preference

parameters (γ) will only depend on the networks through values of w∗.

3Without introducing w as latent data, the likelihood of observing network W is given by: p(W | C,a, γ) =∏N
i=1
∏

j<i[1 − Φ(ψij)]1−wij [Φ(ψij)]wij . When used in a Bayesian setting, it does not yield conjugate full
conditionals, making sampling from the posterior distribution of parameters computationally expensive and less
efficient.
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4.2.3 SCHSAR – A Joint Modelling Approach

4.2.3.1 Potential Endogeneity

We now reconsider the HSAR model in (4.2), accounting for individual unobserved

heterogeneity, represented as a = [a1, . . . , aN ]⊤. To expand this idea, we assume that a

results from a component of individual characteristics in X that is unobservable to the

researcher. Isolating a from X yields the following version of the model

Yi = λg
N∑
j=1

wijYj +Xiβg + aiκg + ui; ui ∼ N (0, σ2
ug), (4.21)

for each individual i ∈ Ig, where g = 1, . . . , G. Similar to βkg , κg is a type-specific coefficient

that captures the magnitude and direction of the effect of ai on the individual outcome. We

define κ := [κ1, . . . , κG]⊤ and κ̃ := zκ.

If one ignores the unobserved factor a, the simplified model to be estimated becomes

Yi = λg
N∑
j=1

wijYj +Xiβg + vi, for i ∈ Ig, (4.22)

where the error term vi mistakenly includes the omitted variable ai: vi = aiκg+ui. Along with

the network formation in equation (4.15), this misspecification induces correlation between

the peer outcome Ȳ(i) = ∑N
j=1 wijYj and the error term, thus creating omitted variable bias

(selection bias), even when observations are correctly classified into type groups. If κg were

all zero, ai and vi would be uncorrelated. In this situation, the influences of the endogeneity

of W on outcomes would be absent and the HSAR model can be estimated by treating W as

exogenously given. Otherwise, the selection bias issue should be addressed.

Therefore, we propose the Selection-corrected Heterogeneous Spatial Autoregressive

(SCHSAR) specification which takes into account potential endogenous selection within

a network

Y = LWY +
K∑
k=1

β̃k ◦Xk + κ̃ ◦ a + u, (4.23)

By explicitly introducing a, the SCHSAR outcome equation in (4.23) is a further generalisation

of the HSAR outcome equation in (4.5). Conditional on (W,X, a), the augmented likelihood



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 108

function for parameters in the outcome equation becomes

p
(
Y, z |W,X, a, {λg, βg, κg, σ2

ug, πg}Gg=1

)
= |IN − LW|

G∏
g=1

(2πσ2
ug)−Ng/2exp

{
N∑
i=1
−
zgi(Yi − λgY (i) −Xiβg − aiκg)2

2σ2
ug

}
πNg
g .

(4.24)

Putting everything together, the complete-data likelihood function for all model parameters is

associated with the joint distribution of observed and latent data (W,w∗,Y, z, a) and can be

written as

p
(
W,w∗,Y, z, a | C,X, θa, γ, {λg, βg, κg, σ2

ug, πg}Gg=1

)
= p

(
W,w∗,Y, z | C,X, a, γ, {λg, βg, κg, σ2

ug, πg}Gg=1

)
· p (a | θa)

= p (W,w∗ | C, a, γ) · p
(
Y, z |W,X, a, {λg, βg, κg, σ2

ug, πg}Gg=1

)
· p (a | θa) ,

(4.25)

The likelihood function factorises into a part associated with (W,w∗,Y, z) conditional on

a, and another part where a conditional on the parameters. The first part further factorises

into separate contributions from the network and the outcome, as derived in (4.20) and

(4.24), respectively. To obtain the marginal likelihood function in terms of the observed data

(W,Y)4, we need to integrate out all latent variables (w∗, z, a) from the joint likelihood

in (4.25). Maximum likelihood estimation of this likelihood is impeded by the challenges

associated with high-dimensional integration. Instead, we employ the Bayesian approach for

estimation and inference, which is particularly advantageous in this setting. First, Bayesian

data augmentation technique (Albert and Chib, 1993; Tanner and Wong, 1987) can be adopted

to sample parameters together with latent variables from the joint posterior distribution. This

circumvents the need to work with the marginal posterior distribution that lacks a closed-

form expression. Second, the full Bayesian framework facilitates inference without relying

on asymptotic approximations. By utilising the posterior sample, we can directly perform

inference on various functions of the model parameters, such as direct and indirect effects.

It is noteworthy that these effects are computed as own- and cross-partial derivatives for the

response of outcome Y to changes in the explanatory variable Xk, which exhibit a nonlinear

relationship with the model parameters.

Remark 4. Our Bayesian joint modelling approach to correct for selection on unobservables

4That is, the observed-data likelihood.
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aligns with the classical control function method based on correlated unobservables (see, i.e,

Heckman, 1979; Heckman and Robb Jr, 1985; Navarro, 2010), which has been extended to

broader settings of social interaction models (see Blume et al., 2015; Johnsson and Moon,

2021 for recent treatments). The key mechanism of the control function approach is to identify

and recover a proxy or function of the unobserved variable that drives endogeneity, using its

statistical relationship with observed data. This allows us to condition on this function – termed

a “control function” – to eliminate bias from omitted variables. In our context, the source of

network endogeneity is unobserved individual heterogeneity, ai, which concurrently influences

both the network formation process and the individual outcomes. If ai were observed, it would

be straightforward to include it directly in the estimation and resolve the endogeneity issue.

Since ai is unobserved, we instead specify a joint Bayesian model where ai enters explicitly as

a latent variable in both the network formation equation and the outcome equation. Through

this structure, the posterior distribution of ai is updated based on the observed links and

outcomes, effectively recovering a probabilistic representation of the latent heterogeneity.

By incorporating ai into the system, we convert a structural endogeneity problem into one

of missing data, solvable through the complete-data likelihood. Model parameters can thus

be estimated properly within a coherent inferential framework. Notably, this approach does

not require external instruments – especially valuable when valid instruments are weak or

unavailable. Moreover, the Bayesian approach is particularly advantageous in our setting,

where heterogeneous network interaction effects are modelled via latent types in a finite

mixture structure, further complicating the applicability of traditional instrumental variable

methods. Broadly speaking, our SCHSAR approach inherits the Bayesian recipe by Goldsmith-

Pinkham and Imbens (2013) and Hsieh and Lee (2016), but nests their models as a special

case when the number of mixture components G is set to one.

4.2.3.2 Identification

We briefly outline our identification strategy for the proposed model as follows. First,

the network model is semiparametrically identified, i.e., parameters in the deterministic

components as well as distributions of disturbances (including individual unobserved

heterogeneity, a, and the idiosyncratic error, ϵ) are identified. The network formation equation

in (4.15) implies a single-index equation

E(wij|C) = P(wij = 1|C) = P(Cijγ + f(ai, aj) + ϵij ≥ 0|C) = 1− Fηij
(−ξij), (4.26)
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where ξij := Cijγ represents the deterministic component and ηij := f(ai, aj)+ ϵij represents

the stochastic component which has the distribution function Fηij
(·). Ichimura (1993) shows

that, even when Fηij
(·) is unknown, parameters in the linear index ξij are identified up to

a scale. With further parametric assumptions and constraints on ηij , parameters in ξij are

identified, and hence ξij can be determined. As ξij is identified, the distribution function

Fηij
(·) can also be identified (estimated) from the data by a nonparametric kernel regression

with ξij as the regressor. Given that ηij is continuous, if we assume ξij can take values that

cover the support of the probability density function fηij
(·), the moments of ηij can also be

estimated from the data. Accordingly, we can obtain p(a|θa) in both cases of unobserved

degree heterogeneity5 and unobserved homophily.6

Concerning the identification of unknown parameters in the SCHSAR outcome equation in

(4.23), we consider first G = 1.

Y = λWY + Xβ + aκ+ u. (4.27)

Deriving an expectation conditional on W of both sides, we obtain

E(Y|W) = λE(WY|W) +E(X|W)β +E(a|W)κ, (4.28)

where E(Y|W), E(WY|W). and E(X|W) can be identified from the data7. Although a is

unobserved, we can identify

E(a|W) =
∫
a

ap(a|W)da =
∫
a

a
p(a)p(W|a)

p(W) da, (4.29)

provided that (i) p(W) and parameters in p(W|a) are identifiable from the network

data; and (ii) p(a) is specified. Noting that p(W|a) is invariant between 1 and 0 under

unobserved homophily, we restrict κ to be positive in this case for identification. Now,

we let Ω = [E(WY|W),E(X|W),E(a|W)] . The necessary condition that Ω⊤Ω has a

full rank will identify the parameters in (4.28), including κ. Hence, there is no rotational

indeterminacy issue on a and κ. This identification strategy suggests the possibility of a

two-step estimation approach similar to Heckman’s (1979) correction for sample selection.

5ηij = ai + aj + ϵij , where ai ∼ N (0, σ2
a); thus, V(ηij) = V(ai) +V(aj) +V(ϵij) = 2σ2

a + 1.
6ηij = −|ai − aj | + ϵij , where ai ∼ Bern(p); thus, V(ηij) = V(|ai − aj |) +V(ϵij) = [2p(1 − p) −

4p2(1− p)2] + 1.
7Exclusion restriction condition for the selection models: in our specification the dyad-specific regressors in

the network formation model are naturally excluded from the outcome model (Hsieh and Lee, 2016).
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However, this two-step procedure might be difficult to implement in practice, because the

calculation of E(a|W) involves a high-dimensional integration. A standard method to replace

integration in E(a|W) is to use the sampling average of a from the target density p(a|W) via

simulation. As mentioned earlier, our Bayesian approach coupled with posterior simulators

offer computational tractability and straightforward inference.

To extend our identification arguments to the proposed framework when the number

of latent groups G > 1, we could build on insight from Frühwirth-Schnatter (2006) on

mixtures of Gaussian regression models. A trivial identification issue can occur due to the

invariability of the likelihood to permutations of the labels. We avoid these problems by

assuming that all types have pairwise different sizes and restricting the feasible parameter

space: 1 > πg > πg′ > 0 for all 1 ≤ g < g′ ≤ G.

4.3 Bayesian Estimation

We implement Bayesian inference to simultaneously handle two key elements of the proposed

SCHSAR framework – heterogeneity and endogeneity – with latent variables playing a

crucial role, while allowing for seamless incorporation of model constraints. The procedure

begins with a prior probabilistic belief about unknown parameters, collected into θ, and

systematically updates this belief using observed sample data, denoted by D. Formally, Bayes’

rule gives us the posterior distribution as follows

p(θ | D) ∝ p(D | θ)× p(θ),

where p(D | θ) is the likelihood function, and p(θ) is the prior distribution.

Throughout, we define θ to encompass all model parameters – {λg, βg, κg, σ2
u,g, πg}Gg=1,

γ, θ2
a – augmented with latent variables comprising individual random effects a, latent

individual-type indicators z, and latent network link utilities w∗. The observed outcomes,

network data, and exogenous characteristics are compiled into D = (W,Y,C,X). This

unified Bayesian approach is computational tractability and enables one-step inference across

all unknown quantities, offering principled uncertainty quantification.

Having specified the likelihood function characterising our econometric model in (4.25),

we proceed with providing a prior specification for posterior inference. For the ease of

exposition, we initially focus on the case involving unobserved degree heterogeneity, where



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 112

the individual random effects influence network formation according to the linear additive

form f(ai, aj) = ai+aj . Unobserved homophily, characterised by f(ai, aj) = −|ai−aj|, can

be accommodated similarly within our Bayesian framework, albeit with minor modifications.

This extension is elaborated at the end of this section.

4.3.1 Prior Specification

We specify prior distributions for all unknown quantities in our model. For computational

convenience, we employ the conjugate priors commonly used in the Bayesian literature.

Regarding the individual random effect ai, we assume a normal distribution with prior mean

of zero and the variance σ2
a, where the variance itself follows an Inverse Gamma distribution.

This hyperparameter will be updated during our estimation procedure

ai | σ2
a
iid∼ N (0, σ2

a), (4.30)

σ2
a ∼ IG(sa, ra)⇔ p(σ2

a) = r
sa
a

Γ(sa)
(σ2

a)−(sa+1) exp
(
− ra
σ2
a

)
. (4.31)

For the network formation equation, we consider a multivariate normal prior for parameters γ

γ ∼ NL(νγ,Σγ). (4.32)

For the outcome equation, we assume standard priors independently for βg, κg, and σ2
ug.

Specifically, for each g = 1, . . . , G,

βg ∼ NK(νβ,Σβ), (4.33)

κg ∼ N (νκ,Σκ), (4.34)

σ2
ug ∼ IG(su, ru)⇔ p(σ2

ug) ∝
r
su
u

Γ(su)
(σ2

ug)−(su+1) exp
(
− ru
σ2
ug

)
. (4.35)

We also assume λ1, . . . , λG are independent a priori. The prior for each parameter λg is

assumed to follow a Beta distribution centered on zero, B(d, d), which is introduced by

LeSage and Parent (2007) to represent an alternative to the uniform prior on the interval

(−1, 1).

λg ∼ B(d, d)⇔ p(λg) = 1
Beta(d, d)

(1 + λg)d−1(1− λg)d−1

22d−1 , (4.36)
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where Beta(d, d) =
∫ 1

0 t
d−1(1 − t)d−1dt is the Beta function. Specifically, values for

hyperparameter do close to unity induce a relatively uninformative prior that places zero prior

weight on end points of the interval for λg. In our setting, we initialize d = 1.01. Recall that

in our model setup, the individual type indicator vector zi follows a Multinomial distribution

that depends on a vector of assignment probabilities π = [π1, . . . , πG]⊤. We complete by

assigning a Dirichlet prior on the distribution of π8

zi | π
iid∼ Mult(1, π)⇔ p(z | π) =

N∏
i=1

p(zi | π) =
N∏
i=1

G∏
g=1

πzgi
g , (4.37)

π ∼ Dir(α1, α2, . . . , αG)⇔ p(π) ∝ π
α1−1
1 π

α2−1
2 . . . π

αG−1
G . (4.38)

In our implementation for the simulation study and the empirical application in subsequent

sections, we set the prior hyperparameters to standard non-informative values as follows:

νγ = 0L, Σγ = 104IL, νβ = 0K , Σβ = 104IK , νκ = 0, Σκ = 104, ra = sa ≈ 0,

ru = su ≈ 0, and α1 = . . . = αG = 1/G.

4.3.2 Posterior Analysis

From Bayes’ theorem, the augmented joint posterior density of interest can be expressed as

p(θ | D) ∝ p
(
W,w∗,Y, z, a | C,X, σa, γ, {λg, βg, κg, σ2

u,g, πg}Gg=1

)
· p(λ, β, κ, σ2

u,π, γ, σ
2
a).

(4.39)

The first term on the right-hand side is the likelihood function defined previously in (4.25),

which factorises further into

p
(
W,w∗ | C, a, γ

)
· p
(
Y, z |W,X, a, {λg, βg, κg, σ2

u,g, πg}Gg=1

)
· p
(
a | σ2

a

)
= p

(
W | w∗) · p(w∗ | C, a, γ

)
· p
(
Y | z,W,X, σa, γ, {λg, βg, κg, σ2

u,g, πg
)
·p
(
z | π

)
· p
(
a | σ2

a

)
,

(4.40)

8We requires an explicit specification regarding the number of types (i.e., G, the number of mixture
components). This could be done by employing model selection criteria along with diagnostic plots.
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and the second term in (4.39) gives the joint prior of the model parameters and factorises into

independent priors as follows

p(λ, β, κ, σ2
u,π, γ, σ

2
a) = p(λ) · p(β) · p(κ) · p(σ2

u) · p(π) · p(γ) · p(σ2
a). (4.41)

With this representation, we estimate the model using the data-augmented Markov chain

Monte Carlo (MCMC) approach. Specifically, our MCMC scheme treats latent variables

(w∗, z, a) as parameters to be estimated, and samples unknowns from the joint posterior

distribution by cycling through three blocks of conditional distributions. The first block of

conditionals is used for updating the individual random effects {ai}Ni=1 and their variance σ2
a.

The second block of conditionals is for other parameters and latent network utilities associated

with the network formation equation. The third block of conditionals is for those associated

with the outcome equation, including latent mixture indicators. These blocks respectively are

a, σ2
a | sa, ra,w∗, γ, z, {λg, βg, κg, σ2

ug, πg}Gg=1,D;

w∗, γ | νγ,Σγ, a,D;

z, {λg, βg, κg, σ2
ug, πg}Gg=1 | d, νβ,Σβ, νκ,Σκ, su, ru, a,D.

(4.42)

For notational simplicity, let θ−θ1 denote the set of all parameters (including latent variables)

in θ excluding the component θ1.

4.3.2.1 Conditional posteriors for a, σ2
a, w∗, γ (random-effect and network blocks)

To facilitate efficient sampling, we introduce the following quantities relevant to the network

formation equation

w = [w⊤
−1, . . . , w

⊤
−N ]⊤, w−j = [w1j, . . . , wj−1,j, wj+1,j, . . . , wNj]⊤, j = 1, . . . , J ;

F = [F−1, . . . , F−N ]⊤, F−j = [e⊤
1 , . . . , e

⊤
j−1, e

⊤
j+1, . . . , e

⊤
N ]⊤, j = 1, . . . , J ;

E = IN ⊗ ιN−1;

H = F + E,

where ⊗ denotes the Kronecker product. Then, we can rewrite A = Ha and replace into

equation (4.15)

w∗ = Cγ + Ha + ϵ. (4.43)
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Consequently, the full conditional posterior distributions for parameters and latent variables

in the random-effects and network formation blocks can be written explicitly as follows

a | θ−ai
,D ∼ N

(
νa,Σa

)
, (4.44)

σ2
a | θ−σ2

a
,D ∼ IG(sa, ra), (4.45)

w∗ | θ−w∗ ,D ∼ TMNS
(
Cγ + Ha, IN(N−1)

)
, (4.46)

γ | θ−γ,D ∼ NL(νγ,Σγ), (4.47)

Here, TMNS denotes a multivariate normal distribution truncated to the region S implied

by the binary adjacency vector w above.9. The posterior hyperparameters governing other

conditional distributions are defined as

Σa :=
[
σ−2
a IN + H⊤H + κ̃κ̃⊤ ◦ diag(σ̃−2

u )
]−1

,

νa := Σa

[
H⊤(w∗ −Cγ) + κ̃ ◦ σ̃−2

u ◦
(

Ỹ −
K∑
k=1

Xk ◦ β̃k
)]

,

sa := sa + N

2 ,

ra := ra + a⊤a
2 ,

Σγ :=
[
Σ−1
γ + C⊤C

]−1
,

νγ := Σγ

[
Σ−1
γ νγ + C⊤(w∗ −Ha)

]
.

4.3.2.2 Conditional posteriors for z, {λg, βg, κg, σ2
ug, πg}Gg=1 (outcome block)

At each iteration, given the latent group assignments z, the data are partitioned into G mixture

components. For each group g = 1 . . . , G, let Ig index observations assigned to group g

and Ng := ∑N
i=1 zig denote the group size. We define Ỹg := {Ỹi}i∈Ig , Xg := {Xi}i∈Ig and

ag := {ai}i∈Ig . The conditional posteriors of group-specific parameters including λg, βg,

κg, and σ2
ug, can be characterised accordingly. Conversely, conditional on the parameters

of the mixture, allocation zi follows an independent Multinomial distribution with the

classification weights (i.e., the probability that each observation i belongs to a given group

g) can be calculated from the predictive densities. Finally, the conditional posterior for the

G-dimensional vector of component probability π follows a Dirichlet distribution.

9Specifically, the truncated region is [0,+∞) for elements corresponding to observed network links (wij =
1), and (−∞, 0) otherwise (wij = 0). Sampling from this truncated multivariate normal distribution can be
implemented efficiently using the algorithm proposed by Botev (2017).
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The full conditional posteriors for the parameters are given as follows

p(λg | θ−λg ,D) ∝ p (λg) · |IN − LW| · (2πσ2
ug)−Ng/2 (4.48)

×
G∏
g=1

exp
{
− 1

2σ2
ug

(Ỹg −Xgβg − agκg)⊤(Ỹg −Xgβg − agκg)
}
, g = 1, . . . , G,

which is the only one that does not belong to a known class of distributions, whereas the

conditional posteriors for other parameters follow standard conjugate results

βg | θ−βg ,D ∼ NK
(
νβg,Σβg

)
, g = 1, . . . , G, (4.49)

κg | θ−κg ,D ∼ N
(
νκg,Σκg

)
, g = 1, . . . , G, (4.50)

σ2
ug | θ−σ2

ug
,D ∼ IG

(
sug, rug

)
, g = 1, . . . , G, (4.51)

zi | θ−zi
,D ∼Mult (1, [ωi1, ωi2, . . . , ωiG]) , i = 1, . . . , N, (4.52)

π | θ−π,D ∼ Dir(α1, α2, . . . , αG), (4.53)

with posterior hyperparameters (for i = 1, . . . , N and g = 1, . . . , G) are

Σβg :=
(
Σ−1
β + σ−2

ugX
⊤
g Xg

)−1
,

νβg := Σβg

[
Σ−1
β νβ + σ−2

ugX
⊤
g (Ỹg − agκg)

]
,

Σκg :=
(
Σ−1
κ + σ−2

u,ga
⊤
g ag

)−1
,

νκg := Σκg

[
Σ−1
κ νκ + a⊤

g (Ỹg −Xgβg)
]
,

sug := su + Ng

2 ,

rug := ru + 1
2
(
Ỹg −Xgβg − agκg

)⊤ (
Ỹg −Xgβg − agκg

)
,

ωig := Pr
(
zig = 1 | θ−zig

,D
)

= πgqig∑G
g=1 πgqig

,

qig := (2πσ2
ug)−1/2 exp

{
− 1

2σ2
ug

(Yi − λgY (i) −Xiβg − aiκg)2
}
,

αg := αg +Ng.

4.3.3 Markov Chain Monte Carlo (MCMC) Algorithm

As in the preceding posterior analysis, with conjugate priors, {ai}, {w∗
ij}, γ, {zig}, {βg},

{κg}, {σ2
ug}, {πg} can be sampled straightforwardly via Gibbs sampling. By contrast, the

conditional posterior distribution of {λg} shown in (4.48) does not conform to a standard
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form. To address this issue, a Metropolis-Hastings (M-H) step with an important twist is

incorporated into the procedure, resulting in Metropolis-within-Gibbs sampling. Specifically,

at the s-th iteration, for each group g = 1, . . . , G, sampling λg from p(λg | θ−λg ,D) involves

two main steps:

First, we generate a candidate value for λg by perturbing the current value using a proposal

distribution:

Propose λ⋆g = λ(s−1)
g + N (0, τg), where the scaling parameter (i.e., proposal increment

shape) τg is tuned according to Adaptive Scaling Metropolis (ASM) algorithm (Andrieu and

Thoms, 2008; Vihola, 2022), with details can be found in Appendix C.1.1. Compared with

the standard random-walk Metropolis sampler, the key idea is to implement an automatic

adjustment of τg based on monitoring the acceptance rates and stepsizes during the MCMC

sampling procedure. As a result, this adaptation can learn from the historical MCMC draws

(accepted draws) to make the proposal distribution better suited to the target distribution,

thereby improving the efficiency and convergence of the algorithm.

Second, we compute the acceptance rate using the ratio of the posterior densities at the

proposed and current values:

Let L⋆·|g = diag
(
z[λ1, . . . , λg−1, λ

⋆
g, λg+1, . . . , λG]⊤

)
, Ỹ⋆

g =
[
IN − L̃⋆·|gW

]
Y ◦ zg; and

L(s−1)
·|g = diag

(
z[λ1, . . . , λg−1, λ

(s−1)
g , λg+1, . . . , λG]⊤

)
,Ỹ(s−1)

g =
[
IN − L̃(s−1)

·|g W
]

Y ◦ zg.

Also,
u⋆·|g = Ỹ⋆

g −Xgβg − agκg

u
(s−1)
·|g = Ỹ(s−1)

g −Xgβg − agκg

Then, recall that p(λg) is the density function of the Beta prior distribution defined in (4.36),

with the acceptance rate

α(λ⋆g, λ(s−1)
g ) := min

 |IN − L̃⋆·|gW| exp
[
−u⋆⊤

·|g u
⋆
·|g/(2σ2

ug)
]

| IN − L̃(s−1)
·|g W | exp

[
−u(s−1)⊤

·|g u
(s−1)
·|g /(2σ2

ug)
] × p(λ⋆g)

p(λ(s−1)
g )

, 1

 ,
(4.54)

update λ(s)
g = λ⋆g, else set λ(s)

g = λ(s−1)
g .

The full implementation of MCMC sampling scheme for the SCHSAR model with

unobserved degree heterogeneity is outlined in Algorithm 4.1.



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 118

Algorithm 4.1: MCMC Sampler for SCHSAR Model
(Unobserved Degree Heterogeneity)

Procedure
1 Set initial values for all model parameters (augmented with latent variables) in θ.
2 Step 1: Update individual random effects a by sampling
3 (a1) a from N

(
νa,Σa

)
, given θ−a,D; ▷ (4.44)

4 (a2) σ2
a from IG(sa, ra), given a. ▷ (4.45)

5 Step 2: Conditional on a, update parameters in the network formation equation by
sampling

6 (b1) w∗ from TMNS
(
Cγ + Ha, IN(N−1)

)
, given θ−w∗ ,D; ▷ (4.46)

7 (b2) γ from NL(νγ,Σγ), given θ−γ,D. ▷ (4.47)
8 Step 3: Conditional on a and the allocations z, update parameters in the outcome

equation by sampling
9 (c1) π from Dir(α1, α2, . . . , αG), given θ−π,D; ▷ (4.53)

10 (c2) each βg, for g = 1, . . . , G, from NK
(
νβg,Σβg

)
, given θ−βg,D; ▷ (4.49)

11 (c3) each κg, for g = 1, . . . , G, from N
(
νκg,Σκg

)
, given θ−κg ,D; ▷ (4.50)

12 (c4) each σ2
ug, for g = 1, . . . , G, from IG

(
sug, rug

)
, given θ−σ2

ug
,D; ▷ (4.51)

13 (c5) each λg, for g = 1, . . . , G, via ASM algorithm, given θ−λg ,D. ▷ (4.48)
14 Step 4: For each i = 1, . . . , N , sample the allocation zi from
Mult (1, [ωi1, ωi2, . . . , ωiG]), given θ−zi

,D. ▷ (4.52)
15 Repeat Steps 1-4 using the most recently updated values until convergence.

end procedure

4.3.4 Extension

We develop Bayesian estimation for the SCHSAR framework in the case of unobserved

homophily, where the individual random effects influence network formation via the function

f(ai, aj) = −|ai − aj|. In this setting, we assume that the unobserved types ai are binary,

modelled as independent Bernoulli random variables with mean p

ai
iid∼ Bern (p) i = 1, . . . , N. (4.55)

Due to the absolute difference structure |ai−aj|, the signs of κg are not fully identified, as the

likelihood is invariant under the transformations between κgai and (−κg)(−ai). Therefore,

we restrict κg to be nonnegative for estimation, which can be achieved seamlessly within the

MCMC sampling procedure. A careful initialisation for a based on community detection

algorithms described in Appendix C.1.2 further improves computational efficiency.
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The conditional posterior for each ai is

ai | θ−ai
,D ∼ Bern (p̄) , i = 1, . . . , N, (4.56)

where

p̄i := P1,i

P1,i + P0,i
,

P0,i := p× exp

−
G∑
g=1

zgi(Yi − λgY (i) −Xiβg − κg)2

2σ2
g

−
∑
j ̸=i

(w∗
ij − Cijγ + |1− aj|)2

2

 ,
P1,i := (1− p)× exp

−
G∑
g=1

zgi(Yi − λgY (i) −Xiβg)2

2σ2
g

−
∑
j ̸=i

(w∗
ij − Cijγ + |aj|)2

2

 .

The conditional posterior distributions for the other parameters remain the same as derived

previously, with adjustments required specifically for w∗, γ, κg. Explicitly, their conditional

posteriors become

w∗ | θ−w∗ ,D ∼ TMNS
(
Cγ −A, IN(N−1)

)
, (4.57)

γ | θ−γ,D ∼ N
(
νγ,Σγ

)
, (4.58)

κg | θ−κg ,D ∼ T N [0,+∞)
(
νκg,Σκg

)
, (4.59)

where T N [0,+∞) denotes a truncated normal distribution constrained to κg ≥ 0, and

Σγ :=
[
Σ−1
γ + C⊤C

]−1
,

νγ := Σγ

[
Σ−1
γ νγ + C⊤(w∗ + A

]
,

Σγ :=
[
Σ−1
γ + C⊤C

]−1
,

νκg := Σκg

[
Σ−1
κ νκ + a⊤

g (Ỹg −Xgβg)
]
, g = 1, . . . , G.

The full implementation of MCMC sampling scheme for the SCHSAR model with unobserved

homophily is outlined in Algorithm 4.2.
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Algorithm 4.2: MCMC Sampler for SCHSAR Model (Unobserved Homophily)

Procedure
1 Set initial values for all model parameters (augmented with latent variables) in θ.
2 Step 1: Sample unobserved component a by sampling
3 (a1) each ai, for i = 1, . . . , N , from Bern (p̄), given θ−ai

,D. ▷ (4.56)
4 Step 2: Conditional on a, sample parameters in the network formation equation by

sampling
5 (b1) w∗ from TMNS

(
Cγ −A, IN(N−1)

)
, given θ−w∗ ,D; ▷ (4.57)

6 (b2) γ from NL(νγ,Σγ), given θ−γ,D. ▷ (4.58)
7 Step 3: Conditional on a and the allocations z, sample parameters in the outcome

equation by sampling
8 (c1) π from Dir(α1, α2, . . . , αG), given θ−π,D; ▷ (4.53)
9 (c2) each βg, for g = 1, . . . , G, from NK

(
νβg,Σβg

)
, given θ−βg ,D; ▷ (4.49)

10 (c3) each κg, for g = 1, . . . , G, from T N [0,+∞)
(
νκg,Σκg

)
, given θ−κg ,D; ▷ (4.59)

11 (c4) each σ2
ug, for g = 1, . . . , G, from IG

(
sug, rug

)
, given θ−σ2

ug
,D; ▷ (4.51)

12 (c5) each λg, for g = 1, . . . , G, via ASM algorithm, given θ−λg ,D. ▷ (4.48)
13 Step 4: For each i = 1, . . . , N , sample the allocation zi from
Mult (1, [ωi1, ωi2, . . . , ωiG]), given θ−zi

,D. ▷ (4.52)
14 Repeat Steps 1-4 using the most recent values until convergence.

end procedure
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4.4 Simulation Study

We conduct a Monte Carlo simulation study to analyse the finite sample performance of the

proposed Bayesian MCMC algorithm for estimating the joint SCHSAR model of the network

formation equation in (4.15) and the outcome equation in (4.23). The simulation exercise also

enables us to examine the extent of estimation bias in the network interaction effect parameter

λ that arises when network endogeneity is ignored. Additionally, we evaluate the convergence

and mixing behaviour of the Markov chain by inspecting diagnostics from representative

simulation replications (see Appendix C.2.1).

4.4.1 Simulation Design

The general data-generating process (DGP) is based on the SCHSAR framework in Section

4.2, with the following key elements.

Generation of the individual random effects

Each individual i = 1, . . . , N is assigned an unobserved individual-specific factor ai, which

plays a central role in both the network formation and outcome equations. The form and

distribution of ai vary across simulation settings (detailed below).

Generation of the network data {wij}Ni,j=1

We generate observed dyad-specific exogenous variable {Cij}Ni,j=1 by first drawing two

random variables, v1 and v2, from the uniform distribution U(0, 1). We then set Cij = 1 if

both v1 and v2 are below 0.3 or above 0.7, and set Cij = 0 otherwise. The corresponding

coefficient of Cij is set to γ = 1.5. We simulate each entry of the adjacency matrix W based

on latent utilities following the network formation equation

wij = wji = 1{Cijγ + f(ai, aj) + ϵij ≥ 0}, for i = 1, . . . , N ; j = 1, . . . , i− 1, (4.60)

with idiosyncratic shock ϵij drawn either from a standard normal or logistic distribution,

depending on the specification.10

Generation of the outcome data {Yi}Ni=1

Individuals are randomly assigned to one of three latent types (i.e., G = 3) in each

10In other words, the conditional probability of each wij is P(wij = 1 | ·) = H
[
C⊤

ijγ + f(ai, aj)
]
, where

H is the link function, either probit or logit, to be specified later.
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simulation with fixed probabilities π = [0.45, 0.35, 0.2]. Each individual is endowed with two

observed covariates, {X1
i }Ni=1 and {X2

i }Ni=1, both from N (0, 4), whereas their corresponding

coefficients are type-specific and set to β1 = [−0.5, 0.5,−1.0]⊤ and β2 = [−0.75, 0.8, 1.2]⊤.

The effect of unobserved individual-specific factor ai is associated with κ = [0.8, 0.6, 0.25]⊤.

The type-specific peer effect parameter of interest is λ = [−0.15, 0.15, 0.3]⊤. The error term

ui is normally distributed with variance scaled across types by σ2
u = cσ × [1, 0.75, 0.5], where

cσ controls the desired signal-to-noise ratio. Combining all components, the outcome variable

is generated from the reduced form of the SCHSAR model11

Y = [IN − LW]−1
(

K∑
k=1

β̃k ◦Xk + κ̃ ◦ a + u
)
, (4.61)

where β̃k = zβk(k ∈ {1, 2}), and κ̃ = zκ, with z being the matrix of latent type indicators.

The sample size is kept constant across the simulations and is reflective of a large sample,

where N = 1000. Meanwhile, the specification of ai, ϵij , and cσ are varied in the simulation

study to account for different scenarios:

1. The form of the unobserved component in the network formation equation (source

of network endogeneity): In the large literature on economic and social network

analysis, the latent part associated with the endogeneity between network formation and

individual outcomes could present as unobserved degree heterogeneity or unobserved

homophily, depending on specific application contexts. Thus, we examine both cases

separately.

f(ai, aj) = ai + aj, where ai ∼ N (0, σ2
a) and σ2

a = 2; (4.62)

or f(ai, aj) = −|ai − aj|, where ai ∼ Bern
(1

2

)
. (4.63)

2. Possibility of misspecification of the link function: We switch the dyad-shock

distribution from standard normal (probit link) to logistic (logit link) to explore the

robustness of the estimator under misspecification.

3. The signal-to-noise ratio (SNR) in the outcome equation: We set cσ ∈ {0.01, 0.1, 1}

which represents high, medium, and low levels of signal, respectively.

11We employ the row-normalised version of W in this outcome equation to ensure compatibility with
interpretations in the empirical application. This can be implemented without loss of generality within our
SCHSAR framework.
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For each DGP, we generate Nsim = 100 independent replications. For each generated dataset,

we estimate the following two models:

1. Heterogeneous Spatial Autoregressive (HSAR) Model: This benchmark model ignores

the endogeneity of network structure by treating W as exogenous. It is conceptually

aligned with the SAR-M model introduced by (Cornwall and Parent, 2017), which

allows for heterogeneous interaction effects but assumes a fixed spatial weight matrix.

2. Selection-Corrected Heterogeneous Spatial Autoregressive (SCHSAR) Model: This

is the fully flexible model we propose, which jointly models network formation

and outcomes while accounting for heterogeneity in network interaction effects and

endogeneity in network links through the inclusion of latent variables.

Each MCMC estimation is run for 5, 500 iterations, with the first 500 iterations discarded as

burn-in.

4.4.2 Simulation Results

For every simulated dataset, given the posterior distribution of each model parameter resulting

from MCMC draws, we derive the posterior mean for a point estimate and compute the

corresponding equal-tailed 95% credible interval. We aggregate the results over 100 Monte

Carlo replications and evaluate performance through the average bias and the root mean

squared error (RMSE) of the point estimates, followed by the coverage rate of the 95%

credible intervals. The simulation results are presented in Table 4.1–4.4, where the true values

of the DGP parameters of interest are also listed in each table for ease of comparison.

Overall, across all data-generating processes (DGP I–IV) the proposed SCHSAR estimators

produce near-unbiasedness and nominal coverage. When the signal-to-noise ratio (SNR) is

high or medium, the true parameters are recovered very well as posterior means cluster tightly

around the truth. Precision falls in low-signal setting as expected, yet coverage remains close

to 0.95, indicating that intervals widen appropriately. By contrast, the benchmark HSAR

estimator, which ignores endogenous network formation, displays severe upward or downward

bias and virtually zero coverage for all peer-effect coefficients λ. Failing to model the link

formation process when the peer effect parameter is of interest, therefore, renders the statistical

inference unreliable.

When the latent component is unobserved degree heterogeneity (DGP I and II), SCHSAR
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estimators achieve negligible bias for the peer effects (λ) even at low SNR. The variance of

the individual random effects, σ2
a, is recovered quite accurately, indicating that the continuous

latent heterogeneity is effectively captured leads to the desirable performance of SCHSAR.

In contrast, under unobserved homophily (DGP III and IV), the latent mechanism penalises

dissimilar types. SCHSAR estimators perform well but both bias and variability of the peer-

effect estimates increase, particularly under low signal. A similar pattern arises for the loadings

κ, suggesting additional challenges added when capturing latent variables in this scenario.

DGP II and IV purposely replace the probit link assumed in estimation with a logit

link in the true model. The performance of SCHSAR degrades gracefully: RMSE of the

peer-effect estimates (λ) roughly increases relative to correctly specified cases but remains

modest. SCHSAR estimators also maintain decent coverage, with a slight drop in the case

of unobserved homophily yet stay above 0.85. Notably, while estimation for the network-

covariate coefficient γ becomes fragile under misspecification, this does not propagate to peer

effects, our primary quantities of interest. In short, link-function misspecification is tolerable

for peer-effect estimation, indicating SCHSAR is reasonably robust.

In terms of other parameters, SCHSAR estimators for exogenous slope parameters β and

group shares w exhibit virtually zero bias and coverage between 0.93 and 0.97 across all

designs. These results bolster confidence that the mixture structure and covariate effects are

recovered faithfully alongside endogenous peer effect parameters.

In summary, the Monte Carlo findings collectively demonstrate that the SCHSAR

framework delivers reliable estimation and inference.
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Table 4.1: DGP I: N = 1000, Unobserved Degree Heterogeneity

SCHSAR HSAR

SNR Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 -0.15 -0.151 0.010 -0.001 0.011 0.92 -0.881 0.101 -0.731 0.738 0.00

λ2 0.15 0.149 0.009 -0.001 0.010 0.94 -0.502 0.157 -0.652 0.670 0.00

λ3 0.30 0.298 0.019 -0.002 0.019 0.96 0.026 0.070 -0.274 0.283 0.00

ω1 0.45 0.452 0.015 0.002 0.015 0.98 0.451 0.020 0.001 0.020 0.98

ω2 0.35 0.349 0.016 -0.001 0.016 0.99 0.350 0.020 0.000 0.020 0.99

ω3 0.20 0.199 0.015 -0.001 0.015 0.93 0.199 0.017 -0.001 0.017 0.91

β11 -0.50 -0.500 0.003 0.000 0.003 0.93 -0.502 0.029 -0.002 0.029 0.92

β12 0.50 0.498 0.017 -0.002 0.017 0.86 0.496 0.026 -0.004 0.026 0.92

β13 -1.00 -0.966 0.332 0.034 0.333 0.98 -1.000 0.014 0.000 0.014 0.97

β21 -0.75 -0.750 0.003 0.000 0.003 0.93 -0.749 0.027 0.001 0.027 0.95

β22 0.80 0.800 0.004 0.000 0.004 0.95 0.801 0.021 0.002 0.021 0.96

β23 1.20 1.158 0.404 -0.042 0.406 0.95 1.201 0.013 0.001 0.013 0.97

κ1 0.80 0.798 0.005 -0.002 0.005 0.90 – – – – –

κ2 0.60 0.598 0.007 -0.002 0.007 0.99 – – – – –

κ3 0.25 0.227 0.227 -0.023 0.228 0.94 – – – – –

γ 1.50 1.501 0.010 0.001 0.010 0.80 – – – – –

High

σ2
a 2.00 2.001 0.083 0.001 0.083 0.99 – – – – –

λ1 -0.15 -0.153 0.033 -0.003 0.033 0.93 -0.876 0.105 -0.726 0.734 0.00

λ2 0.15 0.148 0.029 -0.002 0.029 0.95 -0.502 0.162 -0.652 0.672 0.00

λ3 0.30 0.300 0.031 0.000 0.031 0.96 0.028 0.081 -0.272 0.284 0.01

ω1 0.45 0.452 0.015 0.002 0.016 0.97 0.451 0.020 0.001 0.020 0.97

ω2 0.35 0.348 0.016 -0.002 0.016 0.98 0.349 0.021 -0.001 0.021 0.98

ω3 0.20 0.200 0.014 0.000 0.014 0.94 0.200 0.017 0.000 0.017 0.92

β11 -0.50 -0.501 0.009 -0.001 0.009 0.91 -0.503 0.030 -0.003 0.030 0.94

β12 0.50 0.500 0.010 0.000 0.010 0.90 0.496 0.028 -0.004 0.028 0.93

β13 -1.00 -0.999 0.008 0.002 0.008 0.97 -0.998 0.017 0.002 0.017 0.96

β21 -0.75 -0.750 0.008 0.000 0.008 0.94 -0.749 0.029 0.001 0.029 0.94

β22 0.80 0.800 0.008 0.000 0.008 0.95 0.801 0.023 0.001 0.023 0.96

β23 1.20 1.200 0.011 0.000 0.011 0.95 1.202 0.016 0.002 0.016 0.96

κ1 0.80 0.798 0.013 -0.002 0.013 0.95 – – – – –

κ2 0.60 0.598 0.013 -0.002 0.013 0.95 – – – – –

κ3 0.25 0.249 0.014 -0.001 0.014 0.96 – – – – –

γ 1.50 1.501 0.010 0.001 0.010 0.80 – – – – –

Medium

σ2
a 2.00 2.002 0.083 0.002 0.083 0.99 – – – – –

λ1 -0.15 -0.158 0.116 -0.008 0.117 0.95 -0.828 0.133 -0.678 0.691 0.00

λ2 0.15 0.135 0.117 -0.015 0.117 0.93 -0.492 0.203 -0.642 0.673 0.02

λ3 0.30 0.293 0.132 -0.007 0.132 0.95 0.011 0.175 -0.289 0.338 0.50

ω1 0.45 0.450 0.018 0.000 0.018 0.97 0.449 0.022 -0.001 0.022 0.99

ω2 0.35 0.348 0.022 -0.002 0.022 0.96 0.346 0.026 -0.004 0.027 0.98

ω3 0.20 0.203 0.018 0.003 0.018 0.95 0.205 0.022 0.005 0.023 0.93

β11 -0.50 -0.496 0.101 0.004 0.101 0.91 -0.487 0.141 0.013 0.141 0.95

β12 0.50 0.491 0.109 -0.009 0.110 0.91 0.468 0.194 -0.032 0.197 0.94

β13 -1.00 -0.990 0.033 0.010 0.035 0.96 -0.977 0.137 0.024 0.139 0.95

β21 -0.75 -0.735 0.154 0.015 0.155 0.94 -0.720 0.216 0.030 0.218 0.93

β22 0.80 0.784 0.153 -0.016 0.154 0.95 0.771 0.230 -0.029 0.232 0.92

β23 1.20 1.202 0.037 0.002 0.037 0.92 1.194 0.076 -0.006 0.076 0.94

κ1 0.80 0.798 0.048 -0.002 0.048 0.95 – – – – –

κ2 0.60 0.597 0.051 -0.003 0.051 0.94 – – – – –

κ3 0.25 0.246 0.062 -0.004 0.062 0.97 – – – – –

γ 1.50 1.501 0.010 0.001 0.010 0.80 – – – – –

Low

σ2
a 2.00 2.002 0.083 0.002 0.083 0.98 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R−1
∑R

r=1(α̂r −

α), RMSE =
√
R−1

∑R

r=1(α̂r − α)2, and Coverage = R−1
∑R

r=1 1{α ∈ ĈI0.95,r}.



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 126

Table 4.2: DGP II: N = 1000, Unobserved Degree Heterogeneity, Link Misspecification

SCHSAR HSAR

SNR Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 -0.15 -0.150 0.014 0.000 0.014 0.94 -0.878 0.110 -0.728 0.736 0.00

λ2 0.15 0.151 0.013 0.001 0.013 0.96 -0.590 0.217 -0.740 0.771 0.00

λ3 0.30 0.300 0.012 0.000 0.012 0.98 -0.021 0.114 -0.321 0.341 0.01

ω1 0.45 0.452 0.015 0.002 0.015 0.98 0.450 0.020 0.000 0.020 0.98

ω2 0.35 0.349 0.015 -0.001 0.015 0.98 0.350 0.021 0.000 0.021 0.99

ω3 0.20 0.200 0.014 0.000 0.014 0.91 0.200 0.017 0.000 0.017 0.93

β11 -0.50 -0.500 0.003 0.000 0.003 0.97 -0.502 0.031 -0.002 0.031 0.94

β12 0.50 0.500 0.003 0.000 0.004 0.81 0.495 0.028 -0.005 0.028 0.92

β13 -1.00 -1.000 0.002 0.000 0.002 0.98 -0.999 0.017 0.001 0.017 0.98

β21 -0.75 -0.750 0.003 0.000 0.003 0.96 -0.749 0.028 0.001 0.028 0.96

β22 0.80 0.800 0.003 0.000 0.003 0.96 0.802 0.023 0.002 0.023 0.97

β23 1.20 1.200 0.003 0.000 0.003 0.91 1.198 0.035 -0.002 0.035 0.98

κ1 0.80 1.387 0.000 0.587 0.587 0.00 – – – – –

κ2 0.60 1.041 0.000 0.441 0.441 0.00 – – – – –

κ3 0.25 0.434 0.006 0.184 0.184 0.00 – – – – –

γ 1.50 0.864 0.000 -0.636 0.636 0.00 – – – – –

High

σ2
a 2.00 0.661 0.023 -1.339 1.339 0.00 – – – – –

λ1 -0.15 -0.153 0.042 -0.003 0.042 0.94 -0.872 0.115 -0.722 0.731 0.00

λ2 0.15 0.150 0.037 0.000 0.037 0.96 -0.588 0.217 -0.738 0.769 0.00

λ3 0.30 0.300 0.039 0.000 0.039 0.97 -0.019 0.128 -0.319 0.344 0.03

ω1 0.45 0.452 0.016 0.002 0.016 0.98 0.451 0.020 0.001 0.020 0.99

ω2 0.35 0.348 0.016 -0.002 0.016 0.97 0.349 0.021 -0.001 0.021 0.98

ω3 0.20 0.200 0.014 0.000 0.014 0.96 0.200 0.018 0.000 0.018 0.94

β11 -0.50 -0.501 0.009 -0.001 0.009 0.90 -0.503 0.031 -0.003 0.032 0.94

β12 0.50 0.500 0.010 0.000 0.010 0.86 0.496 0.029 -0.004 0.029 0.94

β13 -1.00 -0.999 0.008 0.002 0.008 0.96 -0.998 0.017 0.002 0.017 0.97

β21 -0.75 -0.750 0.008 0.000 0.008 0.95 -0.749 0.030 0.001 0.030 0.94

β22 0.80 0.799 0.008 -0.001 0.008 0.95 0.801 0.025 0.001 0.025 0.96

β23 1.20 1.200 0.009 0.000 0.010 0.94 1.202 0.017 0.002 0.017 0.96

κ1 0.80 1.390 0.024 0.590 0.591 0.00 – – – – –

κ2 0.60 1.042 0.019 0.442 0.442 0.00 – – – – –

κ3 0.25 0.433 0.024 0.183 0.185 0.00 – – – – –

γ 1.50 0.864 0.000 -0.636 0.636 0.00 – – – – –

Medium

σ2
a 2.00 0.660 0.023 -1.340 1.340 0.00 – – – – –

λ1 -0.15 -0.160 0.148 -0.011 0.148 0.95 -0.816 0.144 -0.666 0.681 0.00

λ2 0.15 0.136 0.147 -0.014 0.147 0.92 -0.554 0.237 -0.704 0.743 0.05

λ3 0.30 0.281 0.171 -0.019 0.172 0.94 -0.040 0.226 -0.340 0.408 0.58

ω1 0.45 0.450 0.018 0.000 0.018 0.99 0.449 0.022 -0.001 0.022 0.99

ω2 0.35 0.348 0.022 -0.002 0.022 0.97 0.346 0.027 -0.004 0.027 0.98

ω3 0.20 0.202 0.018 0.002 0.018 0.95 0.205 0.022 0.005 0.023 0.92

β11 -0.50 -0.496 0.101 0.004 0.101 0.91 -0.486 0.141 0.014 0.142 0.95

β12 0.50 0.491 0.109 -0.009 0.110 0.90 0.481 0.155 -0.019 0.156 0.95

β13 -1.00 -0.989 0.033 0.011 0.035 0.96 -0.988 0.042 0.012 0.044 0.94

β21 -0.75 -0.735 0.154 0.015 0.155 0.94 -0.720 0.216 0.030 0.218 0.93

β22 0.80 0.784 0.153 -0.016 0.154 0.95 0.768 0.227 -0.032 0.229 0.93

β23 1.20 1.200 0.039 0.000 0.039 0.93 1.201 0.039 0.001 0.039 0.96

κ1 0.80 1.391 0.082 0.591 0.596 0.00 – – – – –

κ2 0.60 1.041 0.084 0.441 0.449 0.00 – – – – –

κ3 0.25 0.427 0.105 0.177 0.206 0.59 – – – – –

γ 1.50 0.864 0.000 -0.636 0.636 0.00 – – – – –

Low

σ2
a 2.00 0.660 0.023 -1.340 1.341 0.00 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R−1
∑R

r=1(α̂r −

α), RMSE =
√
R−1

∑R

r=1(α̂r − α)2, and Coverage = R−1
∑R

r=1 1{α ∈ ĈI0.95,r}.
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Table 4.3: DGP III: N = 1000, Unobserved Homophily

SCHSAR HSAR

SNR Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 -0.15 -0.102 0.228 0.048 0.232 0.91 0.973 0.055 1.123 1.124 0.00

λ2 0.15 0.184 0.170 0.034 0.172 0.92 0.983 0.030 0.833 0.834 0.00

λ3 0.30 0.318 0.108 0.018 0.109 0.90 0.744 0.166 0.444 0.474 0.00

ω1 0.45 0.452 0.015 0.002 0.015 0.97 0.454 0.020 0.004 0.020 0.94

ω2 0.35 0.348 0.015 -0.002 0.015 0.99 0.347 0.018 -0.003 0.018 0.97

ω3 0.20 0.199 0.013 -0.001 0.013 0.94 0.199 0.014 -0.001 0.014 0.94

β11 -0.50 -0.500 0.003 0.000 0.003 0.95 -0.490 0.071 0.010 0.071 0.92

β12 0.50 0.500 0.002 0.000 0.002 0.97 0.480 0.142 -0.020 0.142 0.94

β13 -1.00 -1.000 0.002 0.000 0.002 0.96 -0.991 0.071 0.009 0.071 0.92

β21 -0.75 -0.750 0.003 0.000 0.003 0.94 -0.716 0.236 0.034 0.238 0.94

β22 0.80 0.800 0.002 0.000 0.002 0.96 0.769 0.218 -0.031 0.219 0.97

β23 1.20 1.201 0.003 0.001 0.003 0.93 1.162 0.275 -0.038 0.276 0.91

κ1 0.80 0.753 0.224 -0.047 0.228 0.89 – – – – –

κ2 0.60 0.567 0.166 -0.034 0.168 0.91 – – – – –

κ3 0.25 0.235 0.079 -0.015 0.080 0.88 – – – – –

High

γ 1.50 1.501 0.005 0.001 0.005 0.81 – – – – –

λ1 -0.15 -0.105 0.251 0.045 0.254 0.91 0.966 0.052 1.116 1.117 0.00

λ2 0.15 0.182 0.195 0.032 0.197 0.94 0.970 0.033 0.820 0.821 0.00

λ3 0.30 0.311 0.156 0.011 0.155 0.92 0.736 0.088 0.436 0.444 0.00

ω1 0.45 0.452 0.016 0.002 0.016 0.97 0.453 0.018 0.003 0.018 0.97

ω2 0.35 0.349 0.017 -0.001 0.017 1.00 0.348 0.017 -0.002 0.017 0.98

ω3 0.20 0.199 0.015 -0.001 0.015 0.92 0.198 0.015 -0.002 0.015 0.94

β11 -0.50 -0.500 0.008 0.000 0.008 0.96 -0.500 0.012 0.000 0.012 0.93

β12 0.50 0.498 0.014 -0.002 0.014 0.96 0.499 0.013 -0.001 0.013 0.96

β13 -1.00 -0.999 0.013 0.001 0.013 0.95 -0.999 0.018 0.001 0.018 0.97

β21 -0.75 -0.750 0.008 0.000 0.008 0.95 -0.749 0.011 0.001 0.011 0.95

β22 0.80 0.800 0.009 0.000 0.009 0.96 0.800 0.010 0.000 0.010 0.97

β23 1.20 1.197 0.043 -0.003 0.043 0.92 1.199 0.031 -0.001 0.031 0.92

κ1 0.80 0.754 0.232 -0.046 0.235 0.89 – – – – –

κ2 0.60 0.568 0.171 -0.032 0.173 0.94 – – – – –

κ3 0.25 0.237 0.098 -0.013 0.098 0.92 – – – – –

Medium

γ 1.50 1.501 0.005 0.001 0.005 0.82 – – – – –

λ1 -0.15 -0.111 0.308 0.039 0.309 0.95 0.879 0.059 1.029 1.031 0.00

λ2 0.15 0.096 0.326 -0.054 0.329 0.94 0.864 0.067 0.714 0.717 0.00

λ3 0.30 0.142 0.289 -0.158 0.328 0.94 0.612 0.128 0.312 0.337 0.59

ω1 0.45 0.451 0.020 0.001 0.020 0.99 0.452 0.021 0.002 0.021 0.97

ω2 0.35 0.347 0.022 -0.003 0.022 0.98 0.347 0.023 -0.003 0.023 0.99

ω3 0.20 0.202 0.019 0.002 0.019 0.96 0.201 0.019 0.001 0.019 0.98

β11 -0.50 -0.488 0.099 0.012 0.100 0.96 -0.498 0.030 0.002 0.030 0.96

β12 0.50 0.489 0.104 -0.011 0.104 0.94 0.500 0.030 0.000 0.030 0.95

β13 -1.00 -1.000 0.032 0.000 0.032 0.97 -1.000 0.033 0.000 0.033 0.98

β21 -0.75 -0.735 0.159 0.015 0.159 0.92 -0.749 0.029 0.001 0.028 0.93

β22 0.80 0.782 0.157 -0.018 0.157 0.92 0.797 0.031 -0.003 0.031 0.92

β23 1.20 1.206 0.033 0.006 0.034 0.95 1.206 0.033 0.006 0.034 0.94

κ1 0.80 0.754 0.230 -0.046 0.233 0.95 – – – – –

κ2 0.60 0.610 0.210 0.010 0.209 0.95 – – – – –

κ3 0.25 0.308 0.173 0.058 0.182 0.92 – – – – –

Low

γ 1.50 1.501 0.005 0.001 0.005 0.84 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R−1
∑R

r=1(α̂r −

α), RMSE =
√
R−1

∑R

r=1(α̂r − α)2, and Coverage = R−1
∑R

r=1 1{α ∈ ĈI0.95,r}.
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Table 4.4: DGP IV: N = 1000, Unobserved Homophily, Link Misspecification

SCHSAR HSAR

SNR Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 -0.15 -0.066 0.294 0.084 0.305 0.89 0.961 0.067 1.111 1.113 0.00

λ2 0.15 0.208 0.220 0.059 0.226 0.89 0.974 0.044 0.824 0.825 0.00

λ3 0.30 0.335 0.141 0.035 0.145 0.89 0.723 0.216 0.423 0.474 0.00

ω1 0.45 0.452 0.015 0.002 0.015 0.98 0.454 0.021 0.004 0.022 0.95

ω2 0.35 0.349 0.016 -0.001 0.016 0.98 0.348 0.017 -0.002 0.017 0.99

ω3 0.20 0.198 0.015 -0.002 0.015 0.93 0.198 0.017 -0.002 0.017 0.93

β11 -0.50 -0.500 0.003 0.000 0.003 0.93 -0.475 0.112 0.025 0.114 0.86

β12 0.50 0.498 0.021 -0.002 0.021 0.97 0.451 0.219 -0.049 0.224 0.91

β13 -1.00 -1.000 0.002 0.000 0.002 0.97 -0.978 0.102 0.022 0.103 0.89

β21 -0.75 -0.750 0.003 0.000 0.003 0.95 -0.663 0.375 0.087 0.383 0.91

β22 0.80 0.800 0.007 0.000 0.007 0.94 0.722 0.340 -0.078 0.347 0.94

β23 1.20 1.201 0.003 0.001 0.003 0.93 1.112 0.397 -0.088 0.405 0.90

κ1 0.80 0.717 0.302 -0.083 0.312 0.85 – – – – –

κ2 0.60 0.539 0.224 -0.061 0.231 0.89 – – – – –

κ3 0.25 0.236 0.184 -0.014 0.184 0.87 – – – – –

High

γ 1.50 1.144 0.005 -0.356 0.356 0.00 – – – – –

λ1 -0.15 -0.080 0.287 0.070 0.294 0.88 0.956 0.060 1.106 1.107 0.00

λ2 0.15 0.194 0.224 0.044 0.227 0.91 0.962 0.039 0.812 0.813 0.00

λ3 0.30 0.324 0.158 0.024 0.160 0.91 0.731 0.095 0.431 0.441 0.00

ω1 0.45 0.452 0.016 0.002 0.016 0.97 0.453 0.018 0.003 0.018 0.97

ω2 0.35 0.349 0.017 -0.001 0.017 1.00 0.348 0.017 -0.002 0.017 0.97

ω3 0.20 0.199 0.015 -0.001 0.015 0.92 0.199 0.015 -0.001 0.015 0.93

β11 -0.50 -0.500 0.008 0.000 0.008 0.95 -0.500 0.013 0.000 0.013 0.94

β12 0.50 0.498 0.013 -0.002 0.013 0.94 0.500 0.011 0.000 0.011 0.96

β13 -1.00 -0.998 0.013 0.002 0.013 0.96 -1.001 0.009 -0.001 0.009 0.96

β21 -0.75 -0.750 0.008 0.000 0.008 0.95 -0.749 0.011 0.001 0.011 0.97

β22 0.80 0.800 0.009 0.000 0.008 0.94 0.800 0.010 0.000 0.010 0.97

β23 1.20 1.195 0.041 -0.005 0.041 0.92 1.202 0.010 0.002 0.010 0.93

κ1 0.80 0.726 0.292 -0.074 0.299 0.88 – – – – –

κ2 0.60 0.550 0.213 -0.050 0.218 0.92 – – – – –

κ3 0.25 0.225 0.112 -0.025 0.114 0.90 – – – – –

Medium

γ 1.50 1.144 0.005 -0.356 0.356 0.00 – – – – –

λ1 -0.15 -0.053 0.375 0.097 0.385 0.89 0.865 0.064 1.015 1.017 0.00

λ2 0.15 0.136 0.365 -0.014 0.364 0.88 0.846 0.076 0.696 0.700 0.00

λ3 0.30 0.192 0.300 -0.108 0.318 0.89 0.598 0.135 0.298 0.327 0.66

ω1 0.45 0.451 0.020 0.001 0.020 0.98 0.452 0.022 0.002 0.022 0.97

ω2 0.35 0.347 0.022 -0.003 0.022 0.98 0.347 0.023 -0.003 0.023 1.00

ω3 0.20 0.202 0.019 0.002 0.019 0.97 0.201 0.019 0.001 0.019 0.97

β11 -0.50 -0.488 0.100 0.012 0.100 0.95 -0.498 0.031 0.002 0.031 0.96

β12 0.50 0.489 0.104 -0.011 0.104 0.93 0.500 0.030 0.000 0.030 0.96

β13 -1.00 -1.000 0.032 0.000 0.032 0.97 -0.999 0.034 0.001 0.034 0.97

β21 -0.75 -0.735 0.158 0.015 0.158 0.92 -0.749 0.029 0.001 0.029 0.94

β22 0.80 0.782 0.157 -0.018 0.158 0.92 0.797 0.032 -0.002 0.032 0.93

β23 1.20 1.206 0.034 0.006 0.034 0.95 1.204 0.037 0.004 0.037 0.95

κ1 0.80 0.691 0.340 -0.109 0.356 0.88 – – – – –

κ2 0.60 0.565 0.261 -0.035 0.262 0.88 – – – – –

κ3 0.25 0.269 0.187 0.019 0.187 0.89 – – – – –

Low

γ 1.50 1.144 0.005 -0.356 0.356 0.00 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R−1
∑R

r=1(α̂r −

α), RMSE =
√
R−1

∑R

r=1(α̂r − α)2, and Coverage = R−1
∑R

r=1 1{α ∈ ĈI0.95,r}.
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4.5 Empirical Analysis

In this section, we apply the proposed methodology in the context of market-for-technology

network formation and corporate research and development (R&D) investments in the United

States.

4.5.1 Data Summary

We first construct a firm-level panel dataset for the period 1980–2014 using multiple sources,

which combines accounting data from US Compustat, patent trades between firms from

the USPTO Patent Assignment Dataset (PAD), and R&D tax credit information. More

specifically, we utilise the Link Compustat – USPTO Patent Assignment Dataset (PAD)12,

shared publicly by Arqué-Castells and Spulber (2022). These authors effectively matched

assignor/assignee names in the PAD to Compustat GVKEYs, almost directly producing

a match between Compustat and patent transactions that took place from 1980 to 2014.

Information on companies corresponding to these GVKEYs and their annual balance sheets

from the S&P North America Annual Compustat is available through Wharton Research Data

Services (WRDS). Federal tax information required to build the tax price of R&D is also

acquired from Arqué-Castells and Spulber (2022) and linked to firms by year13. The broadest

possible sample resulting from merging all the data sources includes 3, 896 Compustat firms

that interact in the market for technology with at least one other firm in the sample and for

which the deal has a known execution date.

To create a firm-level technology-collaboration network of interest, which is essential for

our analysis, we apply further filters. We keep innovating firms that have both adopter and

provider roles and invest in R&D during the sample periods in which they are available, with

non-missing information on relevant variables such as sales, capital, and employment. We

create undirected links among firms, represented by the binary variable wij which indicates

the presence or absence of at least one transaction in the technology market between firms i

and j. To maintain a manageable sample size, we exploit only the cross-sectional variation

between firm dyads and treat the network as time-invariant network. This approach allows

for a more stable analysis of relationships between firms during the study period. Firms that

12Data source: https://zenodo.org/record/6352358. DISCERN2 provides updated data covering 1980-2021.
13To calculate the federal component of the firm-specific tax price of R&D, they take advantage of the dataset

produced by Wilson (2009), who calculates the user cost of R&D faced by a representative firm conducting
R&D within a given state.

https://zenodo.org/record/6352358
https://zenodo.org/records/13619821
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are not connected to the network are excluded to ensure that all entities in the final sample

have meaningful technological collaborations. The resulting dataset comprises 1, 150 firms

with a total of 5, 576 links, providing a substantial network for examining the formation of

technology collaboration and its impact on firm performance and innovation. Figure 4.1

illustrates the network of interactions in the market for technology. Groups 2 (computers and

communications) and 3 (drugs and medical) in the National Bureau of Economic Research

Patent Data Project (NBER PDP) six-group aggregation of technology fields (see Hall et al.,

2001) – on the left and right extremes of the network, respectively, dominate the market for

technology. In between, there is a gradation of smaller technology clusters: chemical (Group

1), electrical and electronic (Group 4), mechanical (Group 5), and others (Group 6). The fact

that firms heavily cluster by technology field suggests that technological proximity plays an

important role in shaping the market-for-technology network.

Figure 4.1: Network of interactions by technological fields. This figure includes 1,150 Compustat
firms that play both roles as adopters and providers in the market-for-technology network (patent
transactions). All these firms are connected to the network through 5,576 links that accumulated
from 1980 to 2014. Each node represents a firm, with node size being proportional to the number
of connections of the firm). Nodes are arranged following the Fruchterman-Reingold force-directed
algorithm, and coloured by technology class (six groups in the NBER PDP classification: 1 (chemical),
2 (computers and communications), 3 (drugs and medical), 4 (electrical and electronic), 5 (mechanical),
and 6 (others). The main technology class of a firm is defined as the modal class of the patents of the
firm.

The primary firm outcome of interest in our application is the corporate R&D efforts,
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measured by the R&D expenditure-to-sales ratio, often referred to as R&D intensity. The

natural logarithm of R&D intensity among firms, as depicted in Figure 4.2, reveals a notable

multimodal distribution. Table 4.5 presents the definitions and descriptive statistics for

essential variables in our final sample, including various firm-level characteristics and the

federal component of the firm-specific tax price of R&D. The latter represents a supply-side

shock to corporate R&D induced by government policy.

Figure 4.2: Distribution of Research & Development intensity among firms (post transformation)
exhibits visible multimodality.

Table 4.5: Data Statistics and Definitions (N = 1, 150)

Variable Mean Med Std Min Max Description

RDintensity 3.075 0.113 63.804 0.000 1939.069 R&D intensity

RDexpense 252.891 31.579 764.907 0.095 7684.677 Annual R&D investment

Sales 5381.282 304.322 18627.362 0.005 230887.253 Sales

Capital 321.358 13.515 1333.668 0.007 15503.994 Capital expenditure

Employment 14.606 1.244 41.260 0.004 526.483 Employment

EBIT 468.475 16.656 1663.241 -380.792 21915.117 Earnings before interest and taxes

Revenue 4505.899 256.781 15820.807 0.004 197726.303 Revenue

Size 5616.906 359.009 21191.756 0.266 380628.074 Total assets

TaxPrice 0.910 0.910 0.040 0.820 1.019 Federal component of R&D tax price

Notes: This table presents summary statistics for the firm-level dataset, which includes 1, 150 firms in total with no

missing data. The values of RDexpense, Sales, Capital, Revenue, and Size are in millions of 2010 dollars.
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4.5.2 Model Specification

We employ the general SCHSAR framework to jointly model the formation of a firm

collaboration network and their R&D efforts in two sequential stages as follows.

Network Formation: Endogenous Formation of Technological Linkages

In the first stage, the network among N firms is formed with links determined by

wij = wji = 1{w∗
ij ≥ 0} for i = 1, . . . , N ; j = 1, . . . , i− 1; (4.64)

where wij indicates whether firms i and j have at least one transaction in the market of

technology, and w∗
ij measures the utility that each of the firms i and j gains from forming a

link

w∗
ij = γ0 + γ1 · sameSICij + γ2 · sameAAclassij + ai + aj + ϵij, where ϵij

iid∼ N (0, 1).

(4.65)

In particular, the utility depends on predetermined dyad-specific regressors that include:

Homophily measures such as whether the two firms are in the same industry (sameSICij),

whether they are in the same technology class (sameAAclassij), etc. γ0 is the fixed cost of

maintaining links. ai and aj represent firm-specific unobserved degree heterogeneity which is

concurrent with their ability to create linkages.

Network Interaction: Potential Heterogeneous Effects

Once the network is formed in the first stage, in the second stage, firms choose their actions

(e.g., R&D efforts or other firm outcomes) taking the network structure as given. To maximise

their quadratic payoff function, a firm’s activity intensity follows a best-response function

accounting for the choices of the others. Denote Yi as firm i’s logged R&D intensity, which

is measured by the natural logarithm of R&D expenditure-Sales ratio. Let Xk
i be the k-th

observed firm-specific characteristic. The degree heterogeneity ai can also affect Yi through

the unobserved part, making the N × N network adjacency matrix W = [wij] potentially

endogenous.

In accordance with the SCHSAR framework, the outcome equation for firm i can be
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expressed as

Yi = λg
N∑
j=1

wijYj +
K∑
k=1

Xk
i β

k
g + κgai + ui; ui ∼ N (0, σ2

u,g) (4.66)

for i belongs to cluster g (g ∈ {1, . . . , G}). {λg}Gg=1 represents the network interaction effect

and {βkg}Gg=1 captures the own influence of the k-th observed firm-specific characteristic.

This finite mixture structure flexibly allows for heterogeneity as it nests both the standard

SAR (G = 1) and the heterogeneous coefficients SAR (G = N ) specification as special

cases. Furthermore, this specification explicitly incorporates κgai as a control function to

model the endogeneity between network formation and firm outcomes, thereby correcting the

selection bias in the estimation of endogenous network effect λg. Using similar notations and

derivations to Section 4.2, we can obtain the reduced form below

Y = [IN − LW]−1
(

K∑
k=1

β̃k ◦Xk + κ̃ ◦ a + u
)
. (4.67)

This specification not only enables the heterogeneous network interaction effects (λ), but

also leads to a much richer interpretation of the effects of explanatory variables on the

outcome. Specifically, the marginal effects of a change in the k-th variable vector, Xk =[
Xk

1 , . . . , X
k
N

]⊤
, are given by the following matrix of partial derivatives

∂Y

∂Xk⊤ =



∂Y1
∂Xk

1

∂Y1
∂Xk

2
· · · ∂Y1

∂Xk
N

∂Y2
∂Xk

1

∂Y2
∂Xk

2
· · · ∂Y2

∂Xk
N...

... . . . ...
∂YN

∂Xk
1

∂YN

∂Xk
2
· · · ∂YN

∂Xk
N


= (IN − LW)−1 × diag

(
β̃k
)

=


IN −



λ̃1 0 · · · 0

0 λ̃2 · · · 0
...

... . . . ...

0 0 · · · λ̃N


W



−1

×



β̃k1 0 · · · 0

0 β̃k2 · · · 0
...

... . . . ...

0 0 · · · β̃kN


= [ℓij]Ni,j=1.

(4.68)

The direct effects show how changes in a firm’s own k-th characteristic influence its own

outcomes. Conversely, spillin effects represent the cumulative impact of changes in the k-th

characteristic of peer firms on a firm’s outcomes, while spillout effects demonstrate how
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changes in a firm’s k-th characteristic affect peers’ outcomes. The latter two effects are also

known as indirect effects.

We note that, G = 1 results in homogeneous models, allowing us to derive standard

summaries of the effects at the aggregate level. As defined by LeSage and Pace (2009), the

direct effect (DE) is quantified by averaging the diagonal elements of the matrix of partial

derivatives, and the indirect effect (IE) is determined by averaging the cumulative sums of

off-diagonal row or column-elements. The total effect is simply given by: TE = DE + IE.

When G > 1, the models become heterogeneous because of the mixture structure. Unlike

homogeneous models where scalar summary measures are used, in heterogeneous models,

these effects of interest are reported at the observation level for each firm in the sample to

capture the parameter heterogeneity. In particular, because of the heterogeneity of λ and

βk, the N -dimensional vectors of firm-level spillin and spillout effects are not equal even

when using a doubly-stochastic weight matrix, necessitating the calculation of both types

of indirect effects. In particular, they are computed as the cumulative sum of off-diagonal

elements in each row and in each column of the matrix of the partial derivatives, respectively.

Furthermore, both quantities depend not only on the individual group type but also on the

network position. From spatial perspective, a detailed discussion on the interpretation of such

heterogeneous models can be found in LeSage and Chih (2016) and Cornwall (2017), which

pertains to our proposed framework.

4.5.3 Estimation Results

We estimate the model parameters using the MCMC procedure described in Section 4.3. We

run the MCMC algorithm for 50, 491 iterations and drop the first 500 draws for burnin and

keep every 10th of the remaining draws to conduct the posterior analysis, that is, we compute

the posterior mean (as a point estimate) and posterior variance for each parameter.

4.5.3.1 Homogeneous Models

We begin with homogeneous models for comparison. That is the case when the number of

mixture components in the outcome equation reduces to G = 1, implying homogeneous

network interaction effect.
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Table 4.6: Parameter Estimates for the HSAR and SCHSAR Models (when G = 1)

SAR SCSAR

Mean (std) CI95 Mean (std) CI95

Network Interaction

Interaction Effect λ 0.190 (0.017) [0.156, 0.223] 0.157 (0.016) [0.125, 0.189]

Intercept β1 1.236 (0.196) [0.861, 1.623] 2.664 (0.221) [2.228, 3.098]

logTaxPrice β2 -8.332 (0.610) [-9.527, -7.147] -8.063 (0.581) [-9.210, -6.915]

logCapitalExpense β3 0.616 (0.038) [0.543, 0.691] 0.540 (0.036) [0.469, 0.611]

EBIT β4 0.071 (0.018) [0.035, 0.108] 0.042 (0.018) [0.008, 0.075]

logEmployment β5 -0.025 (0.049) [-0.120, 0.071] -0.073 (0.045) [-0.162, 0.015]

logRevenue β6 -0.983 (0.040) [-1.061, -0.905] -0.962 (0.038) [-1.038, -0.887]

Correlation κ – – 0.802 (0.067) [0.671, 0.933]

Unobserved Heterogeneity σ2
a – – 3.092 (0.130) [2.841, 3.358]

Network Formation

SIC homophily γ1 – – 0.722 (0.017) [0.689, 0.755]

Tech homophily γ2 – – 0.691 (0.010) [0.671, 0.711]

Criteria

Log likelihood -1484.935 (2.023) -45471.583 (7812.020)

AICM 2978.054 (0.279) 122146268.899 (2862451.223)

Observations 1150 1150

Notes: This table presents the estimation results for the homogeneous SAR and SCSAR models. MCMC

sampling runs a total of 50, 491 iterations, where the first 500 iterations are discarded as burn-in and every 10th

draw is retained, yielding 5, 000 effective draws. Posterior means, standard deviations, and 95% equal-tailed

intervals (ETI) are computed using MCMC draws.

Table 4.6 reports the estimation results of the homogeneous SAR and SCSAR models.

Parameter estimates for the standard SAR specification, presented in the first panel, suggests

that a majority of firm-specific characteristics are significant determinants of private R&D

efforts. Furthermore, the network interaction effect (λ) is positive and statistically significant,

confirming the theoretical conjecture that corporate R&D efforts are positively influenced by

their collaborators. Concerning the endogenous adjacent matrix inherent in this benchmark

model, the SCSAR model in the second panel takes into account the network formation process

among the firms. It can be seen that the homophily indeed matters for firm collaboration

in the market for technology, where firms are more likely to form links with those from

the same industry or technology cluster. Controlling for firms’ unobserved heterogeneity in

both network formation and economic outcome corrects for selection bias. In particular, the

network interaction effect (λ) decreases considerably from 0.190 to 0.156 when introducing
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unobserved heterogeneity. This positive effect remains statistically significant, as evidenced

by the corresponding 95% credible intervals.

Figure 4.3: Posterior mean of the firms’ unobserved degree heterogeneity.

It is worth exploring deeper insight into the role of firms’ unobserved heterogeneity,

ai, in the SCSAR model. This serves as the random effect of each firm i = 1, . . . , N on

both network formation and interaction stages. Figure 4.3 presents the posterior summary

of {ai}Ni=1. The distribution of posterior mean estimates is depicted in the histogram and

kernel density, characterising latent heterogeneity across firms. In the firm network graph,

each node i is coloured according to the associated posterior mean of ai. Clearly, firms who

possess unobserved degree heterogeneity with higher values (darker colours) tend to gain

more connections in the network, scattering surround the central area. This finding is also

validated numerically in Table C.5 and Figure C.33, which shows strong positive correlation

between the ai and common network centrality measures including degree, betweenness,

closeness, and eigenvector centrality. More importantly, ai is also positively correlated with

R&D efforts, as captured by a significant estimate of its coefficient (κ) in the R&D intensity

equation. Put differently, unmeasured confounding exists in the form of firm-specific latent

advantages that make firms become popular and exert greater R&D efforts simultaneously.

To avoid inaccurate inferences, it is essential to adequately model and estimate unobserved

heterogeneity that could affect both network formation and outcome.
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Table 4.7: Direct, Indirect and Total Effects from Explanatory Variables

SAR SCSAR

Direct Indirect Total Direct Indirect Total

logTaxPrice

-8.564

(0.621)

[-9.79, -7.35]

-1.723

(0.197)

[-2.13, -1.35]

-10.287

(0.749)

[-11.73, -8.84]

-8.216

(0.589)

[-9.37, -7.05]

-1.354

(0.171)

[-1.71, -1.03]

-9.570

(0.693)

[-10.92, -8.19]

logCapitalExpense

0.633

(0.039)

[0.56, 0.71]

0.127

(0.014)

[0.10, 0.16]

0.760

(0.047)

[0.67, 0.86]

0.550

(0.037)

[0.48, 0.62]

0.091

(0.011)

[0.07, 0.11]

0.641

(0.044)

[0.56, 0.73]

EBIT

0.073

(0.019)

[0.04, 0.11]

0.015

(0.004)

[0.01, 0.02]

0.088

(0.023)

[0.04, 0.13]

0.042

(0.018)

[0.01, 0.08]

0.007

(0.003)

[0.00, 0.01]

0.049

(0.021)

[0.01, 0.09]

logEmployment

-0.026

(0.050)

[-0.12, 0.07]

-0.005

(0.010)

[-0.03, 0.01]

-0.031

(0.060)

[-0.15, 0.09]

-0.074

(0.046)

[-0.16, 0.02]

-0.012

(0.008)

[-0.03, 0.00]

-0.086

(0.054)

[-0.19, 0.02]

logRevenue

-1.011

(0.041)

[-1.09, -0.93]

-0.203

(0.021)

[-0.25, -0.16]

-1.214

(0.054)

[-1.32, -1.11]

-0.980

(0.039)

[-1.06, -0.91]

-0.162

(0.019)

[-0.20, -0.13]

-1.142

(0.049)

[-1.24, -1.05]

Notes: This table presents the posterior means, standard deviations, and 95% credible intervals for each effect across firms.

The derivation of each effect is based on posterior samples of each parameter.

In addition to the change in the estimated network interaction effect parameter λ, we

can further examine how other estimated coefficients of the explanatory variables and their

interactions with λ are adjusted by the selection-corrected approach. Owing to the structure

of the SAR and SCSAR models, a change of any given explanatory variable in an individual

will affect not only the dependent variable of its own (direct effect), but also the dependent

variables of the others (indirect effects). Table 4.7 summarizes the average of direct, indirect

and total effects for the explanatory variables derived from the estimates of the SAR and

SCSAR models. Because a firm’s R&D intensity is positively influenced by its peers’ R&D

efforts through network interaction effects, the government R&D tax price for a specific firm

directly affects the firm itself and its peer firms indirectly. On average, both direct and indirect

effects are significantly negative, contributing to the average total impact of 1% increase in

the tax price the i−th firm receives on firms’ R&D intensity is significantly negative, with

10.29% and 9.57% declines in the SAR and SCSAR models, respectively. In other words, the

peer effect on corporate R&D policies generates a multiplier, defined as the ratio of the total

effect to the direct effect. By accounting for the endogenous network structure, the SCSAR

model avoids overestimating λ, thereby providing robust evidence for the multiplier although
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the magnitude of the ratio is slightly reduced compared to the SAR model.

4.5.3.2 Heterogeneous Models

Table 4.8 presents estimation results of the HSAR and SCHSAR models with two component

distributions (i.e., G = 2). Under a three-component model (i.e., G = 3), the parameter

estimates for the third type, including the assignment probability and network effect parameter,

are not significantly distinguishable from zero (see Table C.6).

Comparing the SCHSAR model with the homogeneous SCSAR, the estimates for

parameters in the network formation equation are almost preserved up to two decimals, as well

as those for the random effect variance. Visualising firms’ unobserved degree heterogeneity

{ai}Ni=1 and computing relevant statistics also give us similar pattern as in the previous case.

This aligns with our modelling approach when the first stage (network formation) is specified

for the entire population and does not depend on G. In terms of the network interaction

equation, the correlation coefficient κ remains positive in both types and is significant in

the first type. The two groups are ordered based on their weights to the sample population,

with the smaller group recording larger network interaction effect (λ̂2 ≈ 1.7λ̂1) and lower

regression coefficient of logTaxPrice (β̂22 ≈ 4.28β̂21). This interesting distinction indicates

that some firms are highly responsive to their peer R&D activities but less susceptible to

direct R&D tax price intervention from the government, and vice versa. Perhaps the latter

type includes more “self-reliant” innovators (and network peer effects are less important to

these firms), while firms of the former type are more influenced by what others are doing

(and hence less directly responsive to their own tax changes). For simplicity, we refer to these

groups as high-λ (more peer-driven) and low-λ (more self-driven) types. The group labels

themselves have no direct interpretation14, but some attributes of each group provide further

insight into the underlying mechanisms driving the heterogeneity.

14See Geweke (2007) and Frühwirth-Schnatter (2006) for full discussion.



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 139

Table 4.8: Parameter Estimates for the HSAR and SCHSAR Models (when G = 2)

HSAR SCHSAR

1st Type 2nd Type 1st Type 2nd Type

Network Interaction

Assignment Probability π
0.588 (0.043)

[0.50, 0.67]

0.412 (0.043)

[0.33, 0.50]

0.660 (0.041)

[0.58, 0.74]

0.340 (0.041)

[0.26, 0.42]

Interaction Effect λ
0.150 (0.026)

[0.10, 0.20]

0.226 (0.035)

[0.16, 0.29]

0.127 (0.024)

[0.08, 0.17]

0.215 (0.038)

[0.14, 0.29]

Intercept β1
1.315 (0.277)

[0.77, 1.86]

-3.171 (0.464)

[-4.08, -2.23]

3.153 (0.340)

[2.54, 3.79]

-3.077 (0.632)

[-4.23, -1.87]

logTaxPrice β2
-10.637 (1.035)

[-12.66, -8.65]

-2.428 (0.853)

[-4.08, -0.77]

-9.525 (0.930)

[-11.28, -7.76]

-2.223 (1.041)

[-4.23, -0.29]

logCapitalExpense β3
0.685 (0.058)

[0.57, 0.80]

0.292 (0.069)

[0.16, 0.43]

0.589 (0.054)

[0.48, 0.69]

0.263 (0.076)

[0.12, 0.42]

EBIT β4
0.059 (0.025)

[0.01, 0.11]

0.052 (0.027)

[-0.00, 0.11]

0.045 (0.021)

[0.00, 0.09]

0.058 (0.037)

[-0.01, 0.13]

logEmployment β5
-0.102 (0.081)

[-0.27, 0.05]

-0.617 (0.084)

[-0.79, -0.45]

-0.086 (0.070)

[-0.22, 0.05]

-0.639 (0.097)

[-0.82, -0.45]

logRevenue β6
-1.099 (0.051)

[-1.20, -1.00]

0.109 (0.094)

[-0.08, 0.29]

-1.080 (0.055)

[-1.17, -0.99]

0.135 (0.112)

[-0.07, 0.33]

Correlation κ – –
0.933 (0.108)

[0.72, 1.15]

0.083 (0.131)

[-0.17, 0.34]

Unobserved Heterogeneity σ2
a – –

3.093 (0.131)

[2.85, 3.37]

Network Formation

SIC homophily γ1 – –
0.724 (0.017)

[0.69, 0.76]

Tech homophily γ2 – –
0.692 (0.010)

[0.67, 0.71]

Criteria

Log likelihood -1958.68 (20.94) -44949.63 (9729.57)

AICM 4794.66 (20.68) 189418920.84 (4440159.24)

Observations 1150 1150

Notes: This table presents the estimation results for the HSAR and SCHSAR models with G = 2. MCMC

sampling runs a total of 50, 491 iterations, where the first 500 iterations discarded as burn-in and every 10th

draw is retained, yielding 5, 000 effective draws. Posterior means, standard deviations, and 95% equal-tailed

intervals (ETI) are computed using these MCMC draws.

In Table 4.9, we present regression results of the probability that firm i belongs to

the high-λ type on multiple firm characteristics. For the linear specification, we use a
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continuous dependent variable obtained from the posterior means of zi in (4.52). For the logit

specification, we use the binary type indicators derived from posterior median of of zi. The

findings consistently suggest that the larger firm size (measured by total assets), the higher

the probability that it belongs to the high-λ type. Technological class also plays a role in

determining the latent types.

Table 4.9: Regressions of Posterior Probability of Inclusion on Firm Characteristics

Dependent Variables Probability Binary

(Regresion) (Linear) (Logistic)

(1) (2) (3) (4)

logTotalAsset 0.016*** 0.013*** 0.150*** 0.129***

(0.003) (0.003) (0.033) (0.040)

Computers & Communications 0.210*** 0.205*** 1.109*** 1.077***

(0.021) (0.021) (0.273) (0.275)

Drugs & Medical 0.065*** 0.059*** 0.682** 0.643**

(0.022) (0.022) (0.292) (0.295)

Electrical & Electronic 0.191*** 0.189*** 1.177*** 1.156***

(0.025) (0.025) (0.303) (0.304)

Mechanical 0.135*** 0.140*** 0.862** 0.887***

(0.029) (0.029) (0.340) (0.341)

Others 0.035 0.039 0.506 0.527

(0.030) (0.030) (0.372) (0.373)

Degree Centrality 0.981* 4.751

(0.501) (5.061)

Intercept 0.115*** 0.132*** -2.955*** -2.843***

(0.027) (0.028) (0.350) (0.367)

Observations 1150 1150 1150 1150

Adjusted R2 0.138 0.140

AIC 1228.424 1229.540

Notes: Standard errors are reported in parentheses. Coefficients marked with *, **, and *** are significant at the 10%, 5%,

and 1% levels, respectively.

Turning to the response of corporate R&D efforts in the firm-level network to government

tax incentives for R&D, as mentioned earlier in the case of heterogeneous model, our

focus of inference are the direct and indirect (spillin and spillout) effect estimates at

individual/observational levels (i.e., one value for each firm). For i = 1, . . . , N , the direct

effect shows the elasticity response of i-th firm’s R&D intensity to its own R&D tax price,

given the fact that we employ the logarithm transformation for both quantities. The indirect
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spillin effect estimate represents the cumulative impact of changes in peer firms’ R&D tax

prices on i-th firm’s R&D intensity, whereas the indirect spillout effect estimate represents

the cumulative impact of changes in R&D tax prices of i-th firm on its peers’ R&D intensity.

These quantities provide fine-grained heterogeneity across firms, thus enabling a more

effective targeted policy.

In a policy scenario in which the government seeks to encourage corporate R&D

investments by lowering the costs incurred by firms, we assess the effects of a 1% reduction

in firm-specific R&D tax prices using estimation results from the SCHSAR model. To

summarize the observational-level effects of interest succinctly, we employ a combination of

coloured graphs and histograms to visualise these quantities. Specifically, the histograms

depict the empirical frequency of the posterior mean estimates across 1, 150 firms. We then

categorize these values into five quintiles and map corresponding colours to the firms in the

network graph. Additionally, we rank the firms and highlight those with the highest effects,

along with several of their characteristics. The results reveal a rich pattern of firm-level

heterogeneity in the estimates. Overall, all firms display values significantly different from

zero, as indicated by 95% credible intervals derived from the MCMC draws.

The direct effect estimates presented in Figure 4.4 and Table 4.10 align with the previous

analysis, revealing a bimodal distribution that supports the predictions of the two-component

mixture SCHSAR model. This bimodality is indicative of mixture-driven heterogeneity rather

than sampling noise, with most values being significantly positive and falling between 2

and 10. The distribution suggests two distinct firm types with varying levels of tax price

elasticity and dependence on peer network effects for innovation output. More specifically,

firms exhibiting the highest direct effects predominantly belong to the low-λ type which has

high tax price elasticity (large β2). This implies that these firms are less reliant on peer network

effects and more responsive to their own R&D incentives. Notably, firms in the Drugs &

Medical and Chemical classes are heavily represented in this group. Interestingly, the analysis

reveals that a firm’s centrality or size in the network negatively correlate with its direct effects.

For instance, despite its low size percentile, Cellcy Pharmaceuticals exhibits very high direct

effects, highlighting that even smaller or less-connected firms can demonstrate substantial

R&D responsiveness to tax incentives.

Figure 4.5 and Table 4.11 represent the indirect spillin effects across firms due to a 1%

reduction in peers’ R&D tax prices. The density plot reveals a less polarized distribution
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centred around 1.0-1.3, indicating that most firms experience positive spillin effects, albeit at

a lower magnitude than direct effects. This suggests that while peer effects exist and firms

benefit from their peers’ R&D becoming cheaper, these indirect effects are generally smaller

than the firm-specific responses. Large standard deviations relative to the effect size indicate

greater estimation uncertainty. This is consistent with the fact that these effects depend on

the matrix inverse (IN − LW)−1, which propagate uncertainty from both λ and W. The

empirical findings illustrate that a firm’s network position and network interaction elasticity

(λ) are pivotal in determining its responsiveness to peer-based incentives. Firms exhibiting

high spillin effects predominantly belong to high-λ type, emphasising the importance of

network interaction effects in shaping spillin patterns. From a theoretical standpoint, we refer

to these firms as “responsive absorbers” to distinguish them from “self-reliant innovators,”

who exhibit strong direct effects. In contrast to self-reliant innovators, responsive absorbers

are more reliant on external innovations, such as partnerships, and consequently display

greater peer dependency and weaker direct responses. Our data indicates that these top-ranked

firms span various technology classes, including Chemical, Drugs & Medical, Mechanical,

and Computers & Communications, indicating a broader mix compared to the direct effects.

Additionally, larger firm size and degree centrality are slightly linked to higher spillin effects.

Nonetheless, firms that are not highly central can still be significantly exposed to peer

innovation, as demonstrated by firms such as Fmc Corp and Seclone Pharmaceuticals, which

exhibit high spillins despite relatively low centrality. The top responsive absorbers, highlighted

in blue nodes, are also dispersed throughout the network graph rather than being heavily

clustered.

Figure 4.6 and Table 4.12 illustrate the indirect spillout effects from each firm to its peers

resulting from a 1% reduction in the firm’s own R&D tax price. When firms experience a

1% decrease in their R&D tax prices, their peers’ R&D intensities increase significantly, as

evidenced by all 95% intervals lying entirely above zero. However, these indirect effects have

wider credible intervals than direct effects, indicating greater uncertainty in their estimation.

While top spillin firms often belong to the high-λ type, most spillout leaders are classified

in the low-λ type. These low-λ firms are more sensitive to direct firm-level R&D incentives

(large β2), confirming that their own influence prevails even when their connected peers

are less elastic. Beyond network interaction effects λ, the calculation for spillouts involve

firms’ own price elasticity and network position, which enhance firms’ ability to transmit

cost shocks outward through collaboration and co-patenting links. Top spillout firms (in
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blue) are prominently centralised in the network graph, highlighting their potential as central

hubs capable of significantly affecting broader network activities. In accordance with theory,

we refer to them as “influential transmitters,” who can magnify strategic complementarities

(Bulow et al., 1985; Cooper and John, 1988) by virtue of their extensive linkages, serving as

critical “gatekeepers” or “bridges” (Katz and Shapiro, 1986) and transferring technological

shocks to many connected firms simultaneously. Firm size complements network centrality

in amplifying spillout effects; nearly all top spillout firms are in the 90th–100th percentile of

total asset. This joint condition – being large and central – defines the profile of influential

transmitters in the network. Additionally, sector concentration is evident, with the Computers

& Communications sector accounting for 13 out of the top 20 spillout firms, indicating that

technology-intensive classes drive network-wide R&D diffusion.

The empirical patterns observed across all three sets of results provide strong support

for the SCHSAR framework, demonstrating its ability to capture the intended network

mechanisms. Although direct incentives exhibit stronger effects, the significance of indirect

effects is noteworthy. These indirect effects are inherently more complex because of their

dependence on heterogeneous network interaction effect λ and network structure W, resulting

in larger standard deviations and wider credible intervals than direct effects. Furthermore,

our empirical findings distinguish firms that rank high in either indirect spillin or spillout

effects, characterising responsive absorbers and influential transmitters based on their specific

values of λ, β, and W. This observation aligns with the technical distinction made in the

SCHSAR framework, highlighting its flexibility and robustness in modelling complex network

interactions.

Taken together, these results underscore the importance of considering both firm-level

direct and indirect effects when evaluating the efficacy of government R&D tax incentives.

Ignoring the indirect effects inherent in the collaboration network can lead to a significant

underestimation of a policy’s true impact. The rich heterogeneity observed across firms

reveals various R&D behaviours within the market-for-technology network, enabling the

identification of self-reliant innovators, responsive absorbers, and influential transmitters,

among others. Measuring firm-level total effects – the sums of direct and indirect spillin

or spillout effects above – offers the most comprehensive basis for designing policies that

generate balanced and synergistic innovation outcomes.

The total spillin effect captures the cumulative impact of a 1% reduction in the R&D
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tax price of every firm in the network on a given firm’s R&D intensity. This measure is

especially relevant under a uniform tax policy in which all firms receive the same marginal

incentive from the government. This fully reflects both the firm’s own direct responsiveness

and the accumulated influence of peer firms’ incentive-driven R&D responses. Firms with

the highest (or lowest) total spillin effects are therefore best (or least) positioned to benefit

from such broad-based policy interventions. The empirical evidence presented in Figure 4.7

and Table 4.13 suggest that own-price elasticity (β2) plays a more dominant role than network

elasticity (λ) in determining top beneficiaries. In other words, firms that rank highest on total

spillin effect are often self-reliant innovators with strong internal responsiveness, rather than

responsive absorbers primarily driven by peer R&D behaviours. Many of these firms are

found in the Drugs & Medical and Chemical sectors.

The total spillout effect, on the contrary, captures the cumulative increase in network-wide

R&D intensity resulting from a 1% reduction in a single firm’s R&D tax price. This measure

is the most informative for designing cost-effective, high-impact policies, especially when

the government operates under a constrained budget and must selectively target a subset

of firms. It combines both the firm’s own R&D response and its downstream influence on

peers through the network. High-spillout firms act as policy multipliers; thus, subsidising

them can propagate innovation widely across the network at a relatively low cost. Figure 4.8

and Table 4.14 confirm that the top total spillout firms tend to be innovation initiators and

influencers, combining strong direct effects with extensive network reach. They are typically

highly central in the firm network and are often found in the Computers & Communications,

Chemical, or Drugs & Medical sectors. While some are large, capitalized industrial leaders

(e.g., GE, Apple, P&G), interestingly, well-connected but much smaller firms also appear on

the list. Conditional on sector and centrality, smaller firmsize tends to generate higher total

spillout effects. To maximise systemic diffusion from limited resources, policymakers should

strategically prioritize firms with high total spillout effects.
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Direct Effects for each firm due to a 1% reduction in the firm’s own R&D tax price

Figure 4.4: Direct effects of a 1% reduction in a firm’s own R&D tax price. The histogram shows the
distribution of the effects of interest across firms. In the network graph, firms are represented as nodes
colored by the effect magnitude.

Table 4.10: The Top 20 Firms with the Highest Direct Effects

Direct Effects

Rank Firm Field Centrality Size Type Mean (std) CI95

1 Norsk Hydro Asa Chemical 57 93 Low λ 9.770 (0.941) [7.950, 11.571]

2 Solectron Corp Computers & Communications 80 82 Low λ 9.744 (0.927) [7.930, 11.544]

3 Cellegy Pharmaceuticals -Old Drugs & Medical 37 5 Low λ 9.743 (0.925) [7.949, 11.535]

4 Synvista Therapeutics Inc Drugs & Medical 37 12 Low λ 9.742 (0.927) [7.938, 11.568]

5 Ballard Power Systems Inc Electrical & Electronic 68 52 Low λ 9.741 (0.979) [7.926, 11.548]

6 Neurogen Corp Drugs & Medical 57 26 Low λ 9.741 (0.929) [7.946, 11.543]

7 Cti Biopharma Corp Drugs & Medical 48 30 Low λ 9.737 (0.923) [7.946, 11.571]

8 Bj Services Co Others 37 76 Low λ 9.737 (0.952) [7.919, 11.572]

9 Salem Corp Others 8 21 Low λ 9.730 (0.923) [7.925, 11.553]

10 Genelabs Technologies Inc Drugs & Medical 78 11 Low λ 9.730 (0.922) [7.942, 11.536]

11 Linde Plc Others 83 89 Low λ 9.730 (0.930) [7.931, 11.538]

12 Windtree Therapeutics Inc Drugs & Medical 24 11 Low λ 9.730 (0.922) [7.928, 11.528]

13 Church & Dwight Inc Chemical 68 68 Low λ 9.729 (0.998) [7.905, 11.548]

14 Protein Polymer Technologies Chemical 37 0 Low λ 9.729 (0.926) [7.944, 11.531]

15 Aradigm Corp Drugs & Medical 48 19 Low λ 9.728 (0.995) [7.907, 11.559]

16 Respirerx Pharmaceuticals Drugs & Medical 37 1 Low λ 9.717 (0.981) [7.896, 11.541]

17 Immunogen Inc Drugs & Medical 84 27 Low λ 9.717 (0.946) [7.905, 11.529]

18 Sonus Pharmaceuticals Inc Drugs & Medical 63 11 Low λ 9.717 (0.954) [7.902, 11.519]

19 Hanson Plc Chemical 24 93 Low λ 9.716 (0.966) [7.899, 11.549]

20 Carpenter Technology Corp Mechanical 57 68 Low λ 9.714 (1.036) [7.869, 11.564]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents high/low

network interaction effect (λ).
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Indirect Spillin Effects to each firm from its peers due to a 1% reduction in peers’ R&D tax

price.

Figure 4.5: Indirect Spillin Effects to each firm from a 1% reduction in peers’ R&D tax price. The
histogram shows the distribution of the effects of interest across firms. In the network graph, firms are
represented as nodes colored by the effect magnitude.

Table 4.11: The Top 20 Firms with the Highest Indirect Spillin Effects

Indirect Spillin Effects

Rank Firm Field Centrality Size Type Mean (std) CI95

1 Fmc Corp Chemical 24 80 High λ 1.914 (0.568) [0.898, 3.009]

2 Sciclone Pharmaceuticals Inc Drugs & Medical 24 23 High λ 1.910 (0.596) [0.952, 3.104]

3 Alexion Pharmaceuticals Inc Drugs & Medical 48 63 High λ 1.854 (0.612) [0.885, 3.110]

4 Milacron Inc Mechanical 8 64 High λ 1.848 (0.606) [0.831, 3.029]

5 Amazon.com Inc Computers & Communications 63 89 High λ 1.842 (0.584) [0.675, 3.007]

6 Nordson Corp Chemical 24 59 High λ 1.833 (0.639) [0.764, 3.111]

7 Merck Drugs & Medical 98 97 High λ 1.829 (0.584) [0.864, 3.009]

8 Surmodics Inc Drugs & Medical 68 29 High λ 1.822 (0.587) [0.867, 3.000]

9 Deere & Co Others 63 94 High λ 1.810 (0.719) [0.287, 3.007]

10 Tripos Inc Computers & Communications 75 18 High λ 1.799 (0.604) [0.712, 2.960]

11 Tsi Corp Drugs & Medical 8 10 High λ 1.794 (0.590) [0.854, 2.992]

12 Astrazeneca Drugs & Medical 96 95 High λ 1.792 (0.586) [0.857, 2.993]

13 Lifecore Biomedical Inc Drugs & Medical 24 15 High λ 1.791 (0.594) [0.889, 3.013]

14 Visteon Corp Mechanical 71 87 High λ 1.783 (0.584) [0.868, 2.962]

15 Mattson Technology Inc Electrical & Electronic 8 37 High λ 1.782 (0.656) [0.541, 3.041]

16 Dot Hill Systems Corp Computers & Communications 24 31 High λ 1.776 (0.589) [0.860, 2.979]

17 Johnson Controls Intl Plc Others 71 89 High λ 1.769 (0.592) [0.861, 2.954]

18 Ici-Imperial Chem Inds Plc Chemical 88 92 High λ 1.762 (0.516) [0.823, 2.803]

19 Rohm And Haas Co Chemical 84 84 High λ 1.761 (0.588) [0.842, 2.966]

20 Parlex Corp Electrical & Electronic 24 19 High λ 1.758 (0.613) [0.667, 2.955]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents high/low

network interaction effect (λ).
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Indirect Spillout Effects from each firm to its peers due to a 1% reduction in the firm’s own

R&D tax price.

Figure 4.6: Indirect Spillout Effects from each firm to its peers due to a 1% reduction in the firm’s
own R&D tax price. The histogram shows the distribution of the effects of interest across firms. In the
network graph, firms are represented as nodes colored by the effect magnitude.

Table 4.12: The Top 20 Firms with the Highest Indirect Spillout Effects

Indirect Spillout Effects

Rank Firm Field Centrality Size Type Mean (std) CI95

1 Ibm Computers & Communications 100 99 High λ 6.490 (4.719) [0.642, 15.169]

2 Motorola Computers & Communications 100 93 Low λ 5.144 (2.298) [0.735, 8.860]

3 Oracle Computers & Communications 99 94 Low λ 4.980 (2.762) [0.670, 9.781]

4 Ge Electrical & Electronic 99 100 Low λ 4.734 (1.197) [1.534, 6.972]

5 Abbott Drugs & Medical 98 94 Low λ 4.512 (2.805) [0.464, 8.951]

6 Microsoft Computers & Communications 99 98 Low λ 4.399 (2.928) [0.435, 9.913]

7 Digitaleq Computers & Communications 95 88 Low λ 3.897 (1.961) [0.430, 7.288]

8 Pfizer Drugs & Medical 100 98 High λ 3.836 (2.916) [0.356, 9.307]

9 At&T Corp Computers & Communications 95 99 Low λ 3.463 (2.016) [0.410, 7.165]

10 Solectron Corp Computers & Communications 80 82 Low λ 3.318 (0.864) [1.813, 5.272]

11 Hp Computers & Communications 100 97 High λ 3.310 (2.727) [0.356, 9.346]

12 Intel Computers & Communications 100 96 Low λ 3.226 (2.106) [0.297, 7.068]

13 Endo International Plc Drugs & Medical 68 79 Low λ 3.126 (1.016) [0.531, 4.859]

14 Apple Computers & Communications 97 95 Low λ 3.070 (0.849) [1.630, 5.054]

15 Alcatel Computers & Communications 99 97 Low λ 3.051 (1.503) [0.442, 5.612]

16 Emc Computers & Communications 97 90 Low λ 3.033 (1.898) [0.304, 6.247]

17 Basf Chemical 98 98 Low λ 3.024 (0.723) [1.809, 4.639]

18 Verisign Inc Computers & Communications 80 80 Low λ 2.763 (1.308) [0.367, 5.271]

19 Illinois Tw Mechanical 92 86 Low λ 2.727 (1.010) [0.478, 4.859]

20 Schering Drugs & Medical 97 87 Low λ 2.722 (0.977) [0.468, 4.239]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents

high/low network interaction effect (λ).
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Total Spillin Effects on each firm due to a 1% reduction in the R&D tax price for all firms

Figure 4.7: Total Spillin Effects on each firm due to a 1% reduction in the R&D tax price for all firms.
The histogram shows the distribution of the effects of interest across firms. In the network graph, firms
are represented as nodes colored by the effect magnitude.

Table 4.13: The Top 20 Firms with the Highest Total Spillin Effects

Total Spillin Effects

Rank Firm Field Centrality Size Type Mean (std) CI95

1 Cygnus Inc Drugs & Medical 78 16 Low λ 10.921 (1.026) [8.911, 12.930]

2 Total Se Chemical 87 99 Low λ 10.921 (1.026) [8.911, 12.929]

3 Sulphco Inc Chemical 8 2 Low λ 10.920 (1.026) [8.911, 12.929]

4 Agenus Inc Drugs & Medical 48 23 Low λ 10.920 (1.025) [8.911, 12.930]

5 Conocophillips Chemical 24 98 Low λ 10.920 (1.025) [8.911, 12.922]

6 Genaera Corp Drugs & Medical 37 10 Low λ 10.920 (1.024) [8.911, 12.922]

7 Lyondellbasell Industries Nv Chemical 24 95 Low λ 10.919 (1.027) [8.905, 12.929]

8 Chevron Corp Chemical 75 99 Low λ 10.918 (1.025) [8.909, 12.925]

9 Valence Technology Inc Electrical & Electronic 37 18 Low λ 10.918 (1.027) [8.908, 12.922]

10 Macrochem Corp/De Drugs & Medical 63 2 Low λ 10.916 (1.032) [8.903, 12.922]

11 Emisphere Technologies Inc Drugs & Medical 68 14 Low λ 10.915 (1.035) [8.902, 12.919]

12 Abeona Therapeutics Inc Drugs & Medical 37 2 Low λ 10.913 (1.021) [8.903, 12.909]

13 Archer-Daniels-Midland Co Drugs & Medical 78 92 Low λ 10.913 (1.025) [8.908, 12.916]

14 Corixa Corp Drugs & Medical 81 38 Low λ 10.913 (1.041) [8.898, 12.930]

15 Orbital Atk Inc Chemical 71 75 Low λ 10.913 (1.047) [8.898, 12.922]

16 Bp Plc Chemical 90 99 Low λ 10.913 (1.023) [8.908, 12.913]

17 Crop Genetics Intl Corp Others 24 9 Low λ 10.912 (1.027) [8.902, 12.919]

18 Mobil Corp Chemical 48 97 Low λ 10.911 (1.042) [8.898, 12.913]

19 Colgate-Palmolive Co Chemical 57 86 Low λ 10.910 (1.040) [8.893, 12.915]

20 Atrix Laboratories Inc Drugs & Medical 68 21 Low λ 10.910 (1.031) [8.899, 12.908]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents

high/low network interaction effect (λ).
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Total Spillout Effects from each firm due to a 1% reduction in the firm’s own R&D tax price

Figure 4.8: Total Spillout Effects from each firm due to a 1% reduction in the firm’s own R&D tax
price. The histogram shows the distribution of the effects of interest across firms. In the network graph,
firms are represented as nodes colored by the effect magnitude.

Table 4.14: The Top 20 Firms with the Highest Total Spillout Effects

Total Spillout Effects

Rank Firm Field Centrality Size Type Mean (std) CI95

1 Ge Electrical & Electronic 99 100 Low λ 14.167 (2.588) [4.660, 17.978]

2 Motorola Computers & Communications 100 93 Low λ 13.158 (5.375) [2.025, 19.635]

3 Solectron Corp Computers & Communications 80 82 Low λ 13.061 (1.504) [10.315, 16.257]

4 Apple Computers & Communications 97 95 Low λ 12.743 (1.692) [9.954, 15.976]

5 Basf Chemical 98 98 Low λ 12.665 (1.486) [9.989, 15.585]

6 Cell Genesys Inc Drugs & Medical 85 46 Low λ 12.400 (1.362) [9.870, 15.055]

7 Engelhard Corp Chemical 71 75 Low λ 12.254 (1.598) [9.653, 14.978]

8 Calgene Inc Drugs & Medical 80 26 Low λ 12.202 (1.429) [9.733, 14.831]

9 Exxon Mobil Corp Chemical 87 100 Low λ 12.185 (1.346) [9.723, 15.029]

10 Endo International Plc Drugs & Medical 68 79 Low λ 12.167 (3.096) [2.273, 15.714]

11 Xoma Corp Drugs & Medical 81 25 Low λ 12.163 (1.445) [9.612, 15.080]

12 Oracle Computers & Communications 99 94 Low λ 12.094 (6.259) [1.682, 20.562]

13 Usg Corp Others 24 79 Low λ 12.071 (1.290) [9.621, 14.605]

14 Soligenix Inc Chemical 24 2 Low λ 12.059 (1.334) [9.612, 14.676]

15 Ciba Chemical 95 87 Low λ 11.974 (1.339) [9.674, 14.316]

16 Ionis Pharma Chemical 92 47 Low λ 11.914 (2.148) [3.727, 14.760]

17 P&G Chemical 96 98 Low λ 11.843 (2.470) [3.035, 14.976]

18 Bemis Co Inc Others 57 73 Low λ 11.837 (1.599) [9.108, 14.579]

19 Texaco Inc Chemical 84 96 Low λ 11.796 (1.269) [9.453, 14.456]

20 Ibm Computers & Communications 100 99 High λ 11.793 (8.407) [1.206, 25.793]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents high/low

network interaction effect (λ).
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For comparison with the homogeneous models in the previous section, we again summarize

the average direct, indirect, and total effects of 1% reduction in the R&D tax price for all firms.

As shown in Table 4.15, one consequence of averaging indirect effects over all observations

(firms) is that the average of the row- and column- sums of the derivative matrix are inevitably

the same. In fact, this equality is a result of uniform weighting, which is meaningful only for

a policy experiment in which every firm receives exactly the same 1% tax-price shock. In

other words, this can speak only to a “one-size-fits-all” counterfactual – a critical limitation

of homogeneous models (SAR/SCSAR). Compared to the homogeneous benchmarks in Table

4.7,15 the magnitude of the estimated effects shrinks once latent types are introduced to

capture firm heterogeneity (via a mixture structure). The reduction is not a loss of explanatory

power but a correction for over-aggregation. Once heterogeneity and endogenous network

selection are properly modelled under the SCHSAR framework, the inflated indirect effects

of the homogeneous SAR collapse to more credible values while remaining statistically and

economically significant. Furthermore, by relaxing the homogeneity restriction, SCHSAR

yields firm-specific effect estimates and delivers richer interpretations for targeted policy

designs.

Table 4.15: Direct, Indirect and Total Effects from R&D Tax Price.

HSAR SCHSAR

Mean (std) CI95 Mean (std) CI95

Direct 7.275 (0.613) [6.052, 8.482] 7.168 (0.601) [5.971, 8.296]

Indirect Splillin 1.320 (0.188) [0.981, 1.707] 1.157 (0.154) [0.871, 1.473]

Indirect Splillout 1.320 (0.188) [0.981, 1.707] 1.157 (0.154) [0.871, 1.473]

Total Splillin 8.595 (0.730) [7.171, 10.053] 8.325 (0.699) [6.945, 9.654]

Total Splillout 8.595 (0.730) [7.171, 10.053] 8.325 (0.699) [6.945, 9.654]

Notes: This table presents the posterior means, standard deviations, and 95% credible

intervals for each effect across firms. The derivation of each effect is based on posterior

samples of each parameter.

15The first row reports the effects of 1% increase in the tax price and therefore carries the opposite sign.
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4.6 Concluding Remarks

This paper introduces the Selection-corrected Heterogeneous Spatial Autoregressive

(SCHSAR) framework to address two critical challenges in network interaction models:

heterogeneous effects and endogenous network formation. The proposed approach extends the

standard SAR model by incorporating a finite mixture structure to capture rich heterogeneity

in network interaction effects, while simultaneously modelling the network formation

process to correct for potential selection bias. Three types of latent variables are integrated

into the framework: individual-type indicators associated with mixture components in the

outcome equation, dyadic utilities governing link formation in the network equation, and

individual-specific random effects accounting for endogeneity. This hierarchical structure,

while posing a challenge to the maximum likelihood estimators, is efficiently handled by our

Bayesian algorithm based on data augmentation techniques.

The simulation study validates our fully Bayesian approach. It is computationally tractable

and able to deliver reliable inference for the SCHSAR model across various data-generating

processes. The proposed estimators exhibit near-unbiasedness and nominal coverage,

especially when the signal level is favourable and endogenous network formation is mainly

driven by unobserved degree heterogeneity. In contrast, reliance on either exogeneity

or homogeneity results in significant bias and unreliable inference for interaction effect

coefficients when these assumptions are violated.

Our empirical application to a technological collaboration network among U.S. firms

provides several key insights. First, technological homophily significantly shapes the

network structure, complemented by firm-specific latent advantages that affect both linkage

ability and R&D intensity. Second, positive network interaction effects on corporate R&D

investments persist after correcting for selection bias due to endogenous network formation.

Our heterogeneous model reveals two distinct types of firms, with varying levels of network

peer effects and tax price responsiveness. Third, we find substantial firm-level heterogeneity

in both the direct and indirect (spillin and spillout) effects of R&D tax incentives. Different

firm behaviours are revealed: “self-reliant innovators” with strong direct effects, “responsive

absorbers” with high spillin effects, and “influential transmitters” with significant spillout

effects. This highlights the role of network position and firm attributes, such as firm size,

in driving innovation dynamics. Finally, evaluating firm-level total effects facilitates the

design of targeted policy interventions. For example, prioritising firms with high total spillout
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effects could be a cost-effective strategy to maximise systemic innovation diffusion across the

network.

The SCHSAR framework provides a flexible and robust approach to drawing credible

conclusions about network interaction effects by effectively accommodating both

heterogeneity and endogeneity. Future research directions include extending the framework

to dynamic panel settings, automatically selecting the number of mixture components, and

improving unobserved homophily handling. Although we focus on the analysis of firm

network data, a wide range of potential applications can be explored using this method.



Chapter 5

Conclusion

5.1 Summary & Implications

This thesis leverages Bayesian techniques to develop methods that tackle challenges in three

microeconometric settings with a focus on causality and heterogeneity.

As consistently demonstrated in the three essays, the Bayesian modelling approach, in

combination with efficient computational methods, showcases numerous advantages. First,

it provides flexible data-driven solutions to high-dimensional problems, nonlinearities,

endogeneity, and heterogeneity through sophisticated hierarchical priors. For example, high-

dimensional covariates are tackled by introducing regularisation through shrinkage priors (as

in quantile regressions), or unmeasured confounding is captured via latent variables (as in the

modelling of endogenous treatment selection and network formation). This flexibility allows

for effective and simultaneous handling of all key elements within a unified framework, even

in settings where traditional methods fail or are computationally infeasible. Second, it enables

principled uncertainty quantification through a probabilistic framework that incorporates all

sources of variability within the posterior distribution, including parameters, latent variables,

and missing data. This property is particularly valuable for drawing credible inferences in small

samples and enabling direct inference on nonlinear/nonstandard causal estimands or policy-

relevant quantities that would be difficult to obtain through traditional approaches. Ultimately,

the Bayesian approach not only provides computational tractability but also fundamental

improvements in handling complexity, addressing uncertainty, and enhancing interpretability

in modern microeconometric analysis. Across all three essays, proposed methods deliver

more accurate inference and substantial bias reduction compared to naive or misspecified

approaches.

Apart from methodological insights, the three essays in this thesis provide strong evidence

that accounting for both causality and heterogeneity is not merely an academic exercise but a
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policy imperative. Without proper causal identification, policies risk being based on spurious

relationships that lead to ineffective or harmful interventions. Without heterogeneity analysis,

policies miss opportunities for optimisation and may produce unintended distributional

consequences. In the first essay, quantile treatment effect (QTE) estimation reveals how

universal financial access affects different segments of the outcome distribution, highlighting

that while some households benefit substantially, others may experience negative impacts.

These distributional insights, which are hidden by average treatment effects, underscore the

importance of designing financial interventions that consider potential inequality-amplifying

consequences. The second essay shows that accounting for both endogenous selection and

spillovers is essential when evaluating place-based policies like the Opportunity Zone (OZ)

program. The findings indicate that benefits are concentrated among the selected zones,

driven by unobserved tract characteristics, whereas neighbouring areas do not experience

positive spillovers, suggesting that simply expanding the program may not yield similar

returns. Ignoring this heterogeneity could lead to misguided scaling of such policies. The third

essay demonstrates that firms’ responses to R&D tax incentives vary significantly with their

network positions and latent attributes. Identifying distinct types of firms, such as “influential

transmitters”, enables more targeted and cost-effective innovation policies, maximising the

total benefits across the network.

5.2 Avenues for Future Research

This thesis opens up several promising directions for future research, particularly at the

intersection of Bayesian methods and microeconometric analysis. In the first essay, future

work could improve bootstrap-based inference for QTE estimators or develop scalable fully

Bayesian inference procedures, especially for large datasets. Efficient implementation could

also facilitate the examination of the performance of the method with various choices

of priors. Additionally, establishing more rigorous theoretical results, such as deriving

Bernstein-von Mises theorems for Bayesian estimators of quantile treatment effects in

high-dimensional settings, would significantly contribute to the literature. The second and

third essays collaboratively demonstrate the capacity of the Bayesian approach to address

unmeasured confounding and capture heterogeneity in complex settings. As these essays target

different sources of endogeneity, namely endogenous selection into treatment and endogenous

network formation, an important extension would be to develop a unified framework that

jointly handles multiple causal challenges in the presence of networks. Although the proposed
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methods are grounded in parametric assumptions to ensure interpretability and computational

feasibility, future research could relax these assumptions to introduce greater flexibility.

Altogether, these directions highlight a rich research agenda in Bayesian microeconometrics,

which will be crucial for advancing empirical research in economics, especially in contexts

where classical tools fall short.
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Appendix A

Appendix for Chapter 2

A.1 Doubly Robust Estimator

To derive the doubly robust estimator for potential quantiles qt (t = 0, 1) as proposed in

section 2.4 in the paper, we adopt the general strategy outlined by Kennedy (2024) and Hines

et al. (2022). Without loss of generality, the following discussion focuses on the τ -quantile of

treated potential outcome, denoted by q1(τ). Let ψ (Po) represent this estimand of interest,

where Po is the true joint distribution of observed data Zi = {Yi, Ti, Xi}. The procedure first

requires calculation of the estimand’s efficient influence function1. Next, an estimator based

on the efficient influence function is constructed. Finally, the asymptotic properties of the

doubly robust estimator are briefly verified.

A.1.1 Deriving Influence Functions

Definition 1. For a given functional ψ(.), the influence function for ψ is the function φ

satisfying
∂ψ(P + ϵ(P̃ − P))

∂ϵ

∣∣∣∣∣
ϵ=0

=
∫
φ(z;P){p̃(z)− p(z)}dz, (A.1)

and
∫
φ(z;P)p(z)dz = 0 for any distribution P and P̃ with densities p and p̃. The left-hand

side measures the sensitivity of ψ(P) to small changes (slight perturbations) in the underlying

distribution P , in the direction of a fixed, deterministic distribution P̃ . This quantity is known

as the Gateaux derivative (Serfling, 2009).

To simplify the calculation of the efficient influence function, we follow the “point mass

contamination” strategy. In particular, we can isolate φ(z;P) by setting P̃ equal to a point

mass at single observation z̃, denoted by 1z̃(z). Equation (A.1) reduces to

1Efficiency refers to locally minimax semiparametric efficiency.
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∂ψ(P + ϵ(1z̃ − P))
∂ϵ

∣∣∣∣∣
ϵ=0

= φ(z̃;P). (A.2)

It should be noted that we focus here on perturbations in the direction parameterised via the

one-dimensional mixture model

Pϵ = ϵ1z̃ + (1− ϵ)P , ϵ ∈ [0, 1], (A.3)

which is called a parametric submodel. Hence, the efficient influence function at observation

z̃ is

φ (z̃;P) = dψ (Pϵ)
dϵ

∣∣∣∣∣
ϵ=0

. (A.4)

Building on this general definition, we can calculate the efficient influence function in the

context of estimating quantiles of treated potential outcome.

Theorem 1. (Efficient Influence Function)

Denote by ψo := ψ(Po) the τ -quantile of treated potential outcome under the true joint

distribution of observed data. The efficient influence function of ψo is equal to

φ(Z;Po) = − 1
f(ψo)

{
1{T = 1}
π(X) [1{Y ≤ ψo} −G(ψo | 1, X;Po)] +G(ψo | 1, X;Po)− τ

}
,

(A.5)

where π(X;Po) = P (T = 1 | X;Po) andG(ψ | 1, X;Po) = P (Y ≤ ψ | T = 1, X;Po) are

the propensity score and the conditional distribution of treated potential outcome, respectively.

Proof of Theorem 1.

By definition, ψϵ = ψ (Pϵ) satisfies

∫∫
1 {y ≤ ψϵ} fϵ (y | 1, x) fϵ (x) dydx = τ. (A.6)

Denote

Q (ψ, ϵ) =
∫∫
1 {y ≤ ψϵ} fϵ (y | 1, x) fϵ (x) dydx− τ, (A.7)

which results in Q (ψϵ, ϵ) = 0 and Q (ψo, 0) = 0.



APPENDIX A. APPENDIX FOR CHAPTER 2 174

Also

Q (ψ, ϵ) =
∫ ψ

−∞
fϵ (y) dy − τ, (A.8)

hence [
∂Q

∂ψ

]
(ψo,0)

= f (ψo) . (A.9)

By the Implicit Function Theorem

dψϵ
dϵ

∣∣∣∣∣
ϵ=0

= −
[
∂Q

∂ψ

]−1

(ψ0,0)
×
[
∂Q

∂ϵ

]
(ψo,0)

= − 1
f (ψo)

× dQ (ψo, ϵ)
dϵ

∣∣∣∣∣
ϵ=0

(A.10)

By the Chain Rule

dQ (ψo, ϵ)
dϵ

∣∣∣∣∣
ϵ=0

= d

dϵ

{∫∫
1 (y ≤ ψo)

fϵ (y, 1, x) fϵ (x)
fϵ (1, x) dydx

} ∣∣∣∣∣
ϵ=0

=
∫∫
1 (y ≤ ψo)

{
fϵ (x)
fϵ (1, x)

d

dϵ
fϵ (y, 1, x)

∣∣∣∣∣
ϵ=0
−fϵ (y, 1, x) fϵ (x)

fϵ (1, x)2
d

dϵ
fϵ (1, x)

∣∣∣∣∣
ϵ=0

+ fϵ (y, 1, x)
fϵ (1, x)

d

dϵ
fϵ (x)

∣∣∣∣∣
ϵ=0

}
dydx

=
∫∫
1 (y ≤ ψo)

f(y, 1, x)f(x)
f(1, x)

(
1ỹ,t̃,x̃(y, 1, x)
f(y, 1, x) −

1t̃,x̃(1, x)
f(1, x) + 1x̃(x)

f(x) − 1
)
dydx

= 1t̃(1)
π(x̃;Po)

[1 (ỹ ≤ ψo)−G (ψo | 1, x̃;Po)] +G (ψo | 1, x̃;Po)− τ

(A.11)

Hence

φ (z̃;Po) = dψ (Pϵ)
dϵ

∣∣∣∣∣
ϵ=0

= − 1
f (ψo)

{
1t̃(1)

π(x̃;Po)
[1 (ỹ ≤ ψo)−G (ψo | 1, x̃;Po)] +G (ψo | 1, x̃;Po)− τ

}
.

(A.12)

A.1.2 Efficient Influence Function-Based Estimator

Let Pn denote the empirical distribution from a sample of size n. Denote ho(X,ψ) = G(ψ |

1, X;Po); and πo(X) = π(X;Po). Then, ho(X,ψ) and πo(X) are function-valued nuisance

parameters of the estimation problem for the τ -quantile of treated potential outcome, which is

our target parameter denoted by ψo := ψ(Po).
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The moment condition associated with the efficient influence function in (A.5) to identify

the target parameter value ψo is

E [φ(Z;ho(X,ψo), πo(X)), ψo] = 0, (A.13)

in which the moment has zero derivative with respect to nuisances at ψo, ho and πo. Intuitively,

this moment condition satisfies Neyman orthogonality, that is the first-order insensitivity

of target parameter value to local perturbations of the values of nuisance parameters. This

property is desirable because it helps ensure that the estimation of the parameter of interest

remains robust even when there are small errors or uncertainties in the estimation of nuisance

parameters. When regularization methods are needed to handle high-dimensional covariates

or nonlinearities when estimating nuisance parameters, the use of Neyman orthogonal moment

conditions help eliminate the first-order biases stemming from these plugging-in estimators

(see e.g., Belloni et al., 2017; Chernozhukov et al., 2018; Kallus et al., 2024).

Therefore, the efficient influence function-based estimator for ψ(Po) is defined as a solution

to the estimating equation

EPn

[
φ(Z; ĥ(X,ψ), π̂(X)), ψ

]
= 0

⇔ 1
n

n∑
i=1

1{Ti = 1}
π̂(Xi)

[
1{Yi ≤ ψ} − ĥ(Xi, ψ)

]
+ ĥ(Xi, ψ)− τ = 0.

(A.14)

Denote by ψ̂dr the resulting estimator from (A.14). We will show that ψ̂dr is a doubly robust

estimator, which is consistent provided that either one of the nuisance estimators – ĥ or π̂ – is

consistent, but not necessarily both.

Lemma 1. (Double Robustness of Efficient Influence Function)

Let η∗ = (h∗, π∗) with either h∗ = ho or π∗ = πo. Then EPo [φ(η∗, ψo) = 0].

Sketch of Proof for Lemma 1.

• By the law of iterated expectation

EPo [φ(η∗, ψ)] = − 1
f(ψ)EPo

[
πo
π∗

(
ho,ψ − h∗

ψ

)
+ h∗

ψ − τ
]

= − 1
f(ψ)EPo

[(
πo
π∗ − 1

) (
ho,ψ − h∗

ψ

)
+ ho,ψ − τ

]
.
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• When either π∗ = πo or h∗ = ho, substituting ψ with ψo leads to EPo [φ(η∗, ψo)] = 0,

and the lemma follows.

Theorem 2. (Consistency of the Point Estimator)

Under Identifying Assumptions 2.2-2.4 and additional Regularity Conditions below, ψ̂dr is

consistent if either nuisance estimator ĥ or π̂ is consistent:

1. The cumulative distribution function F has compact support [a, b] ⊂ R and is

continuously differentiable on its support with strictly positive derivative f .

2. The class function {φ(η, ψ) : |ψ−ψo| < δ, ∥hψ−h∗
ψ∥ < δ, ∥πψ−π∗

ψ∥ < δ} is Donsker

for some δ > 0 and such that Po{φ(η, ψ)− φ(η∗, ψo)}2 → 0 as (η, ψ)→ (η∗, ψo).

Sketch of Proof for Theorem 2.

• By construction of ψ̂dr in (A.14) we haveEPnφ(η̂, ψ̂dr) = 0, where η̂ = (ĥ(X, ψ̂dr), π̂).

• By Lemma 1 we have EPo [φ(η∗, ψo)] = 0.

• An application of Theorem 5.9 of Van der Vaart (2000) yields ψ̂dr = ψo + oP(1),

thereby ψ̂dr is consistent. This completes the proof.

A.1.3 Bernstein–von Mises (BvM) Theorem

Definition 2. (Asymptotic efficiency)

A sequence of regular estimators ψ̂n = ψ̂n(Z(n)) is said to be asymptotically efficient at Po if

√
n
(
ψ̂n − ψ(Po)

)
= 1√

n

n∑
i=1

φ(Zi;Po) + oPo(1), (A.15)

where φ(Z;Po) is the efficient influence function in accordance with (A.5). We define the

variance Vo := EPo [φ2(Zi;Po)].

Definition 3. (Semiparametric BvM)

Let LΠ
(√

n
(
ψ(P) − ψ̂n

)
| Z(n)

)
denote the posterior law of

√
n
(
ψ(P) − ψ̂n

)
, where ψ̂n

is any sequence of estimators satisfying (A.15). The posterior satisfies the semiparametric

Bernstein–von Mises (BvM) theorem if

dBL
(
LΠ
(√

n
(
ψ(P)− ψ̂n

)
| Z(n)

)
, N

(
0, Vo

))
−→
Po

0.

where dBL is the bounded Lipschitz distance. In simpler terms, we can say that the posterior
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law of
√
n
(
ψ(P)− ψ̂n

)
“converges weakly to N

(
0, V0

)
in probability” (Yiu et al., 2025).

Assumption A1. (Nuisance convergence rate and complexity)

There exists a sequence of measurable sets (Hn)n of P satisfying Π(P ∈ Hn | Z(n)) −→
Po

1

such that:

(a) (Rates of convergence of π and h) There exist numbers ρn, εn → 0 such that

sup
P∈Hn

∥π − πo∥Po ≤ ρn, sup
P∈Hn

∥h− ho∥Po ≤ εn, and
√
n ρn εn → 0.

where ∥ · ∥Po denote L2(Po) norm.

(b) (Uniform bound) Overlap and tail bounds hold uniformly onHn.

(c) (Donsker class) The sequences of sets {π : P ∈ Hn} and {h : P ∈ Hn} are both

eventually contained in fixed Po–Donsker classes.

Theorem 3. (BvM for BADR quantiles)

Under Identifying Assumptions 2.2-2.4 and Assumption A1, the posterior induced by the

Bayesian analogue of doubly robust procedure for ψ := q1(τ) (shown in Algorithm 2.1)

satisfies the semiparametric Bernstein–von Mises theorem:

dBL
(
LΠ
(√

n
(
ψ − ψ̂dr

)
| Z(n)

)
, N

(
0, Vo

))
−→
Po

0.

where ψ̂dr is any efficient DR estimator solving (A.14).

Discussion

• The semiparametric BvM result implies that the constructed posterior for ψ is

asymptotically normal, centered at an efficient estimator, and with the variance

equal to the semiparametric efficiency bound. This also provides guarantees that

the point estimator (posterior mean/median) derived from the proposed procedure is

semiparametrically efficient.

• Rate double robustness property: By orthogonality, the first-order sensitivity to nuisance

error vanishes. The second-order remainder for ψ̂dr (or any plug-in posterior draw ψ(b))
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has a cross-term structure in terms of π and h:

∥π − π0∥ ∥h− h0∥ + ∥π − π0∥2 + ∥h− h0∥2,

that allows a faster rate of convergence for one nuisance parameter to compensate for

a slower rate for the other. Assumption A1(a) states that π and h must both converge

uniformly onHn to their respective truths in L2, and their combined rate of convergence

must be faster than n−1/2 to ensure o(n−1/2) remainder and deliver the BvM limit. For

instance, in a symmetric case, both nuisances (or their posteriors) contract faster than

n−1/4 would be sufficient.

• Misspecification of priors for the nuisances: Let (π⋆, h⋆) denote the pseudo-true limits

of the nuisance posteriors under misspecified priors. Evaluating the efficient influence

function mean at ψ0 gives

EPo [φ(Z; π⋆, h⋆, ψo)] = − 1
f(ψo)

EPo

[(
πo(X)
π⋆(X) − 1

)(
ho,ψo(X)− h⋆ψo

(X)
)]
,

which is zero if either π⋆ = πo or h⋆ = ho (i.e. double robustness regarding the

misspecification of one nuisance), but is generally nonzero if both nuisance posteriors

contract to pseudo-truths π⋆ ̸= πo and h⋆ ̸= ho. In that case, the posterior concentrates

at a pseudo-true quantile ψ† ̸= ψo solving the biased moment, and a BvM may still hold

but centered at ψ† rather than ψo, yielding asymptotically biased inference.
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A.2 Bayesian Additive Regression Tree (BART)

A.2.1 BART Model Specifications

BART is a nonparametric modelling technique that translates decision tree-based ensemble

methods to a Bayesian framework. Chipman et al. (2012) present a comprehensive overview

of the method. In essence, BART is a sum-of-trees model with prior distributions are placed

over the parameters including tree depth, splitting variables, splitting values, and terminal

node estimates.

Consider the regression problem that predicts a continuous Yi using a p-dimensional vector

of predictors Xi = (Xi1, . . . , Xip)⊤(i = 1, . . . , N), BART model can be expressed as

Yi = fBART(Xi) + ϵi, ϵ
iid∼ N (0, σ2), fBART(Xi) =

M∑
m=1

ftree(Xi; Γm, µm), (A.16)

where ftree(Xi; Γm, µm) is a Bayesian single regression tree; Γm is a tree structure that consists

of a set of splitting rules and a set of terminal nodes; and µ = (µm,1, . . . , µm,bm) is a vector of

parameters associated with bm terminal nodes of Γm, such that ftree(Xi; Γm, µm) = µm,l if Xi

is corresponding to the lth terminal node of Γm.

The prior of BART is specified for three components:

1. The ensemble structure {Γm}Mm=1

Independent regularization prior is placed on Γm. It consists of a Bernoulli distribution

with probability

Pr(split | d) = α(1 + d)−β, α ∈ (0, 1), β ∈ (0,∞), (A.17)

for splitting a node at tree depth d (d = {0, 1, . . .) into two child nodes and two discrete

uniform distributions for selecting a split variable and a split value given the selected

split variable. This regularization prior helps prevent individuals from becoming too

influential, thereby enhancing the overall fit and mitigating the risk of overfitting.

2. The parameters {µm}Mm=1 associated with the terminal nodes given {Γm}Mm=1

µm,l
iid∼ N (0, v) (A.18)
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3. The error variance σ2 that is independent with the former two

σ2 ∼ IG (r, s) (A.19)

The process of sampling the posterior distribution is carried out using a Metropolis-within-

Gibbs MCMC sampler, which can also be regarded as a special case of (generalised) Bayesian

backfitting algorithm (Hastie and Tibshirani, 2000), to update each tree iteratively. Estimated

outcome is achieved by averaging the posterior samples of fBART(Xi) after a burn-in period.

For binary outcome, the continuous BART model above has been extended to probit BART

and logit BART, which are specified as follows

P(Yi = 1 | Xi) = H[fBART(Xi)], (A.20)

where fBART(Xi) is the sum-of-trees function in (A.16) and H is the link function with the

probit link for probit BART and the logit link for logit BART. Both of the models maintain

the same prior assigned to the ensemble structure and the parameters of the terminal nodes,

i.e. {Γm, µm}Mm=1, but σ2 is fixed for for the sake of identifiability.

Probit BART employs data augmentation of Albert and Chib (1993) to adapt the Bayesian

backfitting sampler used in continuous BART. This involves introducing a latent variable Y ∗
i

such that Yi = 1{Y ∗
i > 0} for each response variable Yi. At each iteration of the MCMC

algorithm, Y ∗
i is imputed by sampling from the full conditional distribution of Y ∗

i given Yi

and other parameters, which is essentially a truncated normal distribution. The imputed Y ∗
i ’s

are then modelled using the continuous BART model with σ2 set to 1, enabling the completion

of the MCMC algorithm by performing the Bayesian backfitting algorithm of the continuous

BART model on the imputed Y ∗
i ’s.

Logit BART also introduces latent variable Y ∗
i that is instead assumed to follow a logistic

distribution, which has a heavier tail than a normal distribution, thus improving estimation

for extreme instances of P (Yi = 1 | Xi). These latent Y ∗
i ’s are sampled using the method

described by Gramacy and Polson (2012). Conditional on the imputed Y ∗
i ’s, the continuous

BART model with given heteroskedastic variance σ2
i ’s are fitted on Y ∗

i ’s, where σ2
i ’s are

obtained through the technique outlined by Robert (1995).



APPENDIX A. APPENDIX FOR CHAPTER 2 181

A.2.2 On Implementation

Computational details and implementation using BART R package can be found in Sparapani

et al. (2021). The actual sampling and computation are carried out in C++ code to maximize

computational efficiency. Both options for Probit BART and Logit BART are available in this

package, which can be utilised directly to fit the treatment assignment model in our proposed

BADR framework.
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A.3 Bayesian Shrinkage Priors

A.3.1 Hierarchical Bayes for Linear Regression

Consider the linear regression model

Yi = Xiβ + ϵi, ϵi
iid∼ N (0, σ2) (A.21)

Assuming that interest lies in learning about the regression coefficients β, then a simple

hierarchical specification takes the form

Yi | β, σ2 ∼ N (Xiβ, σ
2), i = 1 . . . , n

βj | τ 2, σ2 ∼ N (0, σ2τ 2), i = 1 . . . , p

τ 2 ∼ F (a, b)

σ2 ∼ 1
σ2

(A.22)

where F (a, b) denotes some distribution function with hyper-parameters a, b. Due to the fact

that choice of τ 2 is so crucial for the posterior outcome of βj , the idea behind this hierarchical

specification is to treat the hyper-parameter τ 2 as a random variable and learn about it via

Bayes Theorem.

A.3.2 Bayesian Shrinkage Priors

The major goal of shrinkage priors is to shrink small coefficients to zero while maintaining

true large coefficients, especially in high-dimensional settings. The possible variation in

shrinkage amounts among those priors depends on their specific designs. In particular, the

sharper the peak is around zero, the stronger shrinkage for small coefficients. Also, the heavier

the tail, the lighter the shrinkage for large coefficients.

Bayesian Lasso

The Bayesian counterpart of the Lasso penalty is Laplace prior, which was first proposed by

Park and Casella (2008). The Bayesian Lasso can be obtained as a scale mixture of a Normal

density with an Exponential density as below:
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βj | τ 2
j , σ

2 ∼ N
(
0, σ2τ 2

j

)
,

τ 2
j | λ2 ∼ Exp

(
λ2

2

)
, for j = 1, . . . , p,

λ ∼ half-Cauchy(0, 1),

σ2 ∼ 1
σ2 .

(A.23)

Integrating τ 2
j out leads to Double-exponential2 or Laplace priors on the regression

coefficients, i.e.,

βj | λ, σ ∼ Double-exponential
(

0, σ
λ

)
, for j = 1, . . . , p (A.24)

Although this version of Bayesian Lasso is the most popular form in literature so far; there

are also some alternative formulations suggested by Hans (2009), Mallick and Yi (2014) and

Alhamzawi and Taha Mohammad Ali (2020).

In addition to the overall shrinkage parameter λ, the Lasso prior has an additional predictor-

specific shrinkage parameter τj. Therefore, the Lasso prior is more flexible than the Ridge

prior, which only relies on the overall shrinkage parameter.

Horseshoe prior

A novel shrinkage prior in the Bayesian literature is the horseshoe prior Carvalho et al.

(2010)3. This prior is particularly attractive for sparse signal recovery.

βj | τ 2
j ∼ N

(
0, τ 2

j

)
τj | λ ∼ half-Cauchy(0, λ), for j = 1, . . . , p

λ | σ ∼ half-Cauchy(0, σ)

(A.25)

2Mathematical representation:

∫ ∞

0

1√
2πσ2sj

e

(
−

β2
j

2σ2sj

)
λ2

2 e
− λ

2sj dsj = λ

2
√
σ2
e−λ|βj |/

√
σ2

3Note that Carvalho et al. (2010) explicitly include the half-Cauchy prior for λ in their specification, thereby
implying a full Bayes approach. This formulation results in a horseshoe prior that is automatically scaled by the
error standard deviation σ.
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The half-Cauchy prior can be written as a mixture of Inverse Gamma densities4 (Makalic and

Schmidt, 2015), so that the horseshoe prior in Equation (A.25) can be equivalently specified

as:

βj | τ 2
j ∼ N

(
0, τ 2

j

)
τ 2
j | ω ∼ IG

(1
2 ,

1
ω

)
ω | λ2 ∼ IG

(1
2 ,

1
λ2

)
λ2 | γ ∼ IG

(
1
2 ,

1
γ

)

γ | σ2 ∼ IG
(1

2 ,
1
σ2

)
(A.26)

An expression for the marginal prior of the regression coefficients βj is not analytically

tractable, but a tight lower bound Carvalho et al. (2010) can be used instead.

− log p (βi | λ) ≥ − log log
(

1 + 2λ2

β2
j

)
(A.27)

The key features for the appealing performance of horseshoe prior are its Cauchy-like tails

and an asymptote at origin (unique advantage), which make horseshoe adaptive to sparsity

and robust to large signals so outperform other shrinkage priors we have discussed.

In the search for intuitive reasons, we consider a common framework of shrinkage rules. Define

κj = 1/(1 + τ 2
j ), then κj is a random shrinkage coefficient in [0, 1]. Under a multivariate

normal scale mixture prior (i.e. the general form of all shrinkage priors we are discussing),

the posterior mean can be written as a linear function of the observation:

E [βj | Yj] = {1− E [κi | Yj]}Yj (A.28)

Hence, E [κi | Yj] implies the amount of weight that the posterior mean for βj places on 0

once the data have been observed. A shrinkage coefficient κj that is close to zero leads to

virtually no shrinkage, thus describes signals. A shrinkage coefficient κj that is close to one

leads to nearly-total shrinkage, thus describes noises. Intuitively speaking, the behavior of

a priori p(κj) near κj = 1 will control the robustness of signal at tail, while near κj = 0

will control the shrinkage of noise toward 0. Because of difference choice of p(τj), each type

4If x2 | z ∼ IG(1/2, 1/z) and z ∼ IG
(
1/2, 1/α2) then x ∼ C+(0, α)
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of shrinkage prior has distinct p(κj) reflecting its attempt to separate signal and noise. For

horseshoe prior, the attempt is even implied in its name, which arises from the fact that for

fixed values λ = σ = 1, p(κj) is similar to a horseshoe-shaped Beta (1/2, 1/2). This prior is

symmetric and unbounded at both 0 and 1; thereby, small coefficients (noises) are heavily

shrunken towards zero while substantial coefficients (signals) remain large. None of these

common shrinkage priors above shares this characteristic. For instance, the Laplace prior,

where p(κj) is bounded at both 0 and 1, tends to over-shrink strong signals yet under-shrink

noises. Carvalho et al. (2009), Carvalho et al. (2010) provide more explanation for other

priors.

In fact, unlike local shrinkage priors above, the horseshoe prior is a member of a wider class

of global-local shrinkage priors (Bhadra et al., 2019; Polson and Scott, 2010) because it

enables a clear separation between global and local shrinkage effects. Put another way, this

class of priors adapt to sparsity by a global shrinkage parameter and recover signals by a local

shrinkage parameter.
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A.4 Bayesian Quantile Regression (BQR)

A.4.1 Bayesian Quantile Regression

Consider the linear quantile regression model (Koenker and Bassett, 1978) at a given quantile

level τ ∈ (0, 1)

Qτ (Y | X) = Xβ(τ), (A.29)

The quantile specific coefficient β(τ) can be consistently estimated by

β̂(τ) = argmin
β

n∑
i=1

ρτ (Yi −Xiβ) , (A.30)

where ρτ (u) = u (τ − 1{u < 0}) is the quantile loss function. As this functional form is

an asymmetric L1 loss function proportional to the negative log density of the asymmetric

Laplace distribution (ALD), the connection allows researcher to recast the quantile regression

as a maximum likelihood problem of the linear model Yi = Xiβ(τ) + ϵi,(τ) where ϵi,(τ) ∼

ALD
(
τ, 0, σ(τ)

)
5. The working likelihood is of the form

f
(
Y | X, β(τ), σ(τ), τ

)
= τn(1− τ)n

σn(τ)
exp

{
−

n∑
i=1

ρτ (Yi −Xiβ)
σ(τ)

}
. (A.31)

The asymmetric Laplace distribution is known to be expressible as a scale mixture of normals

(Kotz et al., 2012), we thus can rewrite ϵi,(τ) as follows

ϵi,(τ) = θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui, with θ(τ) = 1− 2τ

τ(1− τ) and κ2
(τ) = 2

τ(1− τ) ,

where zi,(τ) = σ(τ)ζi,(τ) with ζi,(τ) ∼ Exp(1), and ui ∼ N (0, 1).

As a result, the Bayesian quantile regression model has the following representation

Yi = Xiβ(τ) + θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui, for i = 1, . . . , n. (A.32)

5ϵi,(τ) follows asymmetric Laplace distribution with density

fALD
(
ϵ(τ)
)

= τ(1− τ)
σ(τ)

exp
{
−ρτ

(
ϵ(τ)
)
/σ(τ)

}
.
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This leads to the following likelihood function:

f
(
Y | X, β(τ), σ(τ), z(τ), τ

)
∝ exp

−
n∑
i=1

(Yi −Xiβ(τ) − θ(τ)zi,(τ))2

2κ2
(τ)σ(τ)zi,(τ)


n∏
i=1

1
√
σ(τ)zi,(τ)

.

(A.33)

We assume the priors as below (Kozumi and Kobayashi, 2011)

β(τ) ∼ N
(
0,Σ0,(τ)

)
, (A.34)

zi,(τ) ∼ Exp
(
σ(τ)

)
∝ σ−1

(τ) exp
{
−σ−1

(τ)zi,(τ)
}
∀i = 1, . . . , n, (A.35)

σ(τ) ∼ IG
(
r0,(τ), s0,(τ)

)
∝
(
σ−1

(τ)

)r0,(τ)+1
exp

{
−s0,(τ)σ

−1
(τ)

}
; (A.36)

where for simplicity, Σ0,(τ) = Dλ,(τ) = λ× Ip where λ is fixed and known for all τ .

The conditional posteriors are of the form

β(τ) | • ∼ Np
(
µβ,(τ),Σβ,(τ)

)
, (A.37)

zi,(τ) | • ∼ GIG
(1

2 , ai,(τ), bi,(τ)

)
∝ z

− 1
2

i,(τ) exp
{
−1

2
(
ai,(τ)zi,(τ) + bi,(τ)z

−1
i,(τ)

)}
, (A.38)

σ(τ) | • ∼ IG
(
rσ,(τ), sσ,(τ)

)
∝
(
σ−1

(τ)

)rσ,(τ)+1
exp

{
−sσ,(τ)σ

−1
(τ)

}
; (A.39)

where

Σβ,(τ) =
(
X⊤U−1X + Σ−1

0,(τ)

)−1
and µβ,(τ) = Σβ,(τ) ×X⊤U−1

(
Y − θ(τ)z(τ)

)
,

U =
(
σ(τ)κ

2
(τ)

)
× diag

(
z(τ)

)
, z(τ) =

(
z1,(τ), . . . , zn,(τ)

)⊤
,

ai,(τ) = 1
σ(τ)

2 +
θ2

(τ)

κ2
(τ)

 and bi,(τ) =

(
Yi −Xiβ(τ)

)2

σ(τ)κ2
(τ)

,

rσ,(τ) = r0,(τ) + 3n
2 and sσ,(τ) = s0,(τ) +

n∑
i=1

(
Yi −Xiβ(τ) − θ(τ)zi,(τ)

)2

2κ2
(τ)zi,(τ)

+
n∑
i=1

zi,(τ);

for i = 1, . . . , n.
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A.4.2 Bayesian Quantile Regression with the Adaptive Lasso

Bayesian Quantile Regression with the Adaptive Lasso is a Bayesian hierarchical model given

by

Yi = Xiβ(τ) + θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui; (A.40)

ui ∼ N (0, 1), (A.41)

zi,(τ) ∼ Exp
(
σ(τ)

)
∝ σ−1

(τ) exp
{
−σ−1

(τ)zi,(τ)
}

(A.42)

βj,(τ), vj,(τ) | σ(τ), λ
2
j,(τ) ∼

1√
2πvj,(τ)

exp
{
−
β2
j,(τ)

2vj,(τ)

}
σ−1

(τ)

2λ2
j,(τ)

exp

−σ
−1
(τ)

2λ2
j,(τ)

vj,(τ)

 , (A.43)

λ2
j,(τ) ∼ IG

(
c0,(τ), d0,(τ)

)
∝

 1
λ2
j,(τ)

c0,(τ)+1

exp

−d0,(τ)

λ2
j,(τ)

 , (A.44)

σ(τ) ∼ IG
(
r0,(τ), s0,(τ)

)
∝
(
σ−1

(τ)

)r0,(τ)+1
exp

{
−s0,(τ)σ

−1
(τ)

}
; (A.45)

for i = 1, . . . , n and j = 1, . . . , p.

The conditional posteriors (Alhamzawi et al., 2012) are of the form

zi,(τ) | • ∼ GIG
(1

2 , ai,(τ), bi,(τ)

)
∝ z

− 1
2

i,(τ) exp
{
−1

2
(
ai,(τ)zi,(τ) + bi,(τ)z

−1
i,(τ)

)}
, (A.46)

βj,(τ) | • ∼ N
(
µβj ,(τ),Σβj ,(τ)

)
, (A.47)

vj,(τ) | • ∼ GIG

1
2 ,

σ−1
(τ)

λ2
j,(τ)

, β2
j,(τ)

 ∝ v
− 1

2
j,(τ) exp

−1
2

 σ−1
(τ)

λ2
j,(τ)

vj,(τ) + β2
j,(τ)v

−1
j,(τ)

 ,
(A.48)

σ(τ) | • ∼ IG
(
rσ,(τ), sσ,(τ)

)
∝
(
σ−1

(τ)

)rσ,(τ)+1
exp

{
−sσ,(τ)σ

−1
(τ)

}
, (A.49)

λ2
j,(τ) | • ∼ IG

(
c0,(τ) + 1, d0,(τ) + σ−1

(τ)vj,(τ)/2
)

; (A.50)

where

ai,(τ) = 1
σ(τ)

2 +
θ2

(τ)

κ2
(τ)

 and bi,(τ) =

(
Yi −Xiβ(τ)

)2

σ(τ)κ2
(τ)

,

Σβj ,(τ) =
[(
σκ2

(τ)

)−1 n∑
i=1

x2
ijz

−1
i,(τ) + v−1

j,(τ)

]−1

,

µβj ,(τ) = Σβj ,(τ)
(
σκ2

(τ)

)−1 n∑
i=1

Yi − θ(τ)zi,(τ) −
p∑

k=1,k ̸=j
xijβj,(τ)

x2
ijz

−1
i,(τ),
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rσ,(τ) = r0,(τ)+
3n
2 +p and sσ,(τ) = s0,(τ)+

n∑
i=1

(
Yi −Xiβ(τ) − θ(τ)zi,(τ)

)2

2κ2
(τ)zi,(τ)

+
n∑
i=1

zi,(τ)+
p∑
j=1

vj,(τ)

2λ2
j

;

for i = 1, . . . , n and j = 1, . . . , p.

A.4.3 On Implementation

The bayesQR R package (Benoit and Van den Poel, 2017) provides the implementation

of efficient Gibbs sampler for both Bayesian Quantile Regression and Bayesian Quantile

Regression with the Adaptive Lasso outlined above. In addition, the core procedure is

programmed in Fortran to speed up the computational time. Therefore, this package can

be utilised straightforward to estimate multiple conditional quantiles, which then be used

to approximate the condistional distributions of potential outcomes in our proposed BADR

framework.

Alternatively, Variational Inference algorithm could be used for Bayesian quantile regression

with/without the regularisation (Guo, 2019; Lim et al., 2020), which helps improving the

speed of Gibbs sampling while maintaining a comparable accuracy in terms of MSE.
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A.5 Implementation of Other Estimators in Simulation Study

A.5.1 Existing Approaches

Firpo’s Inverse Probability Weighted method (FIPW)

Firpo’s Inverse Probability Weighted (FIPW) method (Firpo, 2007) involves a two-step

estimator. First, the propensity score is estimated nonparametrically as a logistic power series

whose degree increases with sample size. In the second step, the quantiles are estimated by

minimising an inverse probability weighted check loss function. These weights reflect the fact

that the distribution of the covariates differs in the two groups.

Algorithm A.1: FIPW Approach to Estimate QTEs
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
Result: Q̂TE(τ)

1 Step(1). Estimate propensity score π̂(x) = expit (HK(x)′p̂K) where

p̂K := argmax
p∈RK

1
N

N∑
i=1
{Ti·log (expit (HK(Xi)′p))+(1− Ti)·log (1− expit (HK(Xi)′p))}

2 Step(2). Derive q̂1(τ) and q̂0(τ) as the solution to

q̂1(τ) := argmin
q

N∑
i=1

Ti
N · π̂(Xi)

ρτ (Yi−q) and q̂0(τ) := argmin
q

N∑
i=1

1− Ti
N · (1− π̂(Xi))

ρτ (Yi−q)

where ρτ (a) = a · (τ − 1{a ≤ 0}) is the check function.
3 Calculate Q̂TE(τ) = q̂1(τ)− q̂0(τ).

Targeted Maximum Likelihood Estimation method (TMLE)

The estimation procedure of Targeted Maximum Likelihood Estimation (TMLE) method

(Díaz, 2017) includes three steps. First, the propensity score and the conditional distribution

of the outcome are estimated; second, the quantiles are estimated based on the current cdf

of the outcome; and third, the conditional distribution of the outcome is updated based on

an exponential submodel for the density of the outcome. The last two steps are iterated until

convergence.
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Algorithm A.2: TMLE Approach to Estimate QTEs
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
Result: Q̂TE(τ)

1 Step (1). Initialize: Obtain initial estimates π̂ and Ĝ of π0 and G0.
2 Step (2). Compute q̂1(τ): For the current estimate Ĝ, compute

F̂ (y) = 1
n

n∑
i=1

Ĝ(y | 1, Xi) and q̂1(τ) = inf{y : F̂ (y) ≥ τ}

3 Step (3). Update Ĝ: Let ĝ denote the density associated to Ĝ.
4 (a) Consider the exponential submodel:

ĝϵ(y | 0, x) = c(ϵ, ĝ) exp{ϵĤη̂,θ̂(z)}ĝ(y | 0, x)

where c(ϵ, ĝ) is a normalizing constant and

Ĥη̂,θ̂(z) := 1
π̂(X){1(−∞,θ̂](y)− Ĝ(θ̂ | 0, x)}

is the score of the model.
5 (b) Estimate ϵ

ϵ̂ = argmax
n∑
i=1

(1− Ti) log ĝϵ(Yi | 0, Xi)

6 (c) Calculate ĝϵ(Yi | 0, Xi) as the updated estimator of g
7 Step (4). Iterate: Let ĝ = ĝϵ and iterate steps 2-3 until convergence.
8 Derive q̂0(τ) similarly.

9 Calculate Q̂TE(τ) = q̂1(τ)− q̂0(τ).

Localized Debiased Machine Learning method (LDML)

The Localized Debiased Machine Learning (LDML) method (Kallus et al., 2024) is also

motivated by the efficient estimation equation, but Inverse Probability Weighted (IPW)

estimates are used as rough initial guessed values for q̂1 and q̂0. Then, these values are

used to localize the estimation of conditional distributions Ĝ(y | 0,X) and Ĝ(y | 1,X),

respectively. This approach aims to refine the IPW estimate while obviating the need to

estimate a continuum of continuum nuisances. The main algorithm includes two parts: three-

way-cross-fold nuisance estimation and solving the estimating equation.
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Algorithm A.3: LDML Approach to Estimate QTEs
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)

1 Part(1). Three-way-cross-fold nuisance estimation
22 Fix integers K ≥ 3 and 1 ≤ K ′ ≤ K − 2.
33 Randomly permute the data indices and let Dk be a random even K-fold split of the

data.
4 for k = 1, . . . , K do
5 (a) SetHk,1 = {1, . . . , K ′ + 1[k ≤ K ′]} \ {k} and

Hk,2 = {K ′ + 1[k ≤ K ′] + 1, . . . , K} \ {k}.
6 (b) Use only the data in DC,1k = {Xi : i ∈ ⋃k′∈Hk,1} to construct q̂(k)

1,init.

7 (c) Use only the data in DC,2k = {Xi : i ∈ ⋃k′∈Hk,2} to construct Ĝ(k)
1 (·, q̂(k)

1,init).
8 (d) Use DC,1k ∩ D

C,2
k to construct estimator π̂(k).

end
9 Part(2). Solving the average of the estimate in each fold to obtain q̂1(τ)

1
N

K∑
k=1

∑
i∈Dk

ψ
(
Xi; q, Ĝ(k)

1 (Xi, q̂
(k)
1,init), π̂(k)(Xi)

)
= 0

10 Derive q̂0(τ) using two-part procedure similarly.

11 Calculate Q̂TE(τ) = q̂1(τ)− q̂0(τ).

Bayesian nonparametric method (BNP)

Bayesian nonparametric (BNP) method (Xu et al., 2018) is a fully Bayesian nonparametric

(BNP) approach to estimate QTEs. The estimation procedure includes three steps. First, the

propensity score is estimated using a logit BART model. Then, the conditional distribution of

the potential outcome given a BART posterior sample of the PS in each treatment group is

modelled separately using a Dirichlet process mixture (DPM) of multivariate normals model.

Finally, marginalizing the estimated conditional distribution over the population distribution

of the confounders using Bayesian bootstrap (Rubin, 1981). Details of implementation using

BNPqte R package can be found in Luo and Daniels (2021).
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Algorithm A.4: BNP Approach to Estimate QTEs
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)

1 Fit a binary BART model on {Ti, Xi}ni=1 and obtain B posterior samples

{H−1(π{b}
i )}n,Bi,b=1.

2 Create a set of grid points of Y values: (q1, . . . , qS).
3 for b = 1, . . . , B do
4 for t = 0, 1 do
5 Fit a DPM of bivariate normals on {Yi, H−1(π{b}

i )}i:Ti=t.
6 Use Blocked Gibbs sampler to obtain L posterior samples.
7 Calculate {F {bl}(qs | H−1(πbi ), T = t)}n,S,Li,s,l=1.

end
8 Sample

(
ub1, . . . , u

b
n

)
from Dir(1, . . . , 1)

9 for l = 1, . . . , L do
10 Calculate the CDF of Y (t) as follows:

SF bl
t (qs) =

n∑
i=1

ubiF
kl(qs | H−1(πbi ), T = t), where 1 ≤ s ≤ S and t ∈ {0, 1}

11 Find a grid point qblt (τ) such that F kl
t (qblt (τ)) = τ for t ∈ {0, 1}.

12 The τ th quantile from the CDF F bl
t (.) is qblt,τ for the group T = t.

end
end

13 Derive q̂1(τ) and q̂0(τ) as follows

q̂1(τ) = 1
BL

B∑
b

L∑
l=1

qbl1 (τ) and q̂0(τ) = 1
BL

B∑
b

L∑
l=1

qbl0 (τ)

14 Calculate Q̂TE(τ) = q̂1(τ)− q̂0(τ).

A.5.2 Variants of the Proposed Approach

Bayesian Outcome Modelling (BOM)

Bayesian Outcome Modelling (BOM) is an outcome-regression-based approach that omits

the treatment assignment model. Instead, it solely focuses on estimating the conditional

distribution through multiple Bayesian quantile regressions in the outcome model of each

treatment group. Shrinkage priors, akin to the doubly-robust approach, can be readily

incorporated.
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Algorithm A.5: Bayesian Outcome Modelling to estimate QTE
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
Result: Q̂TE

om
(τ)

1 for t = 0, 1 do
2 Fit outcome model on {Yi,Xi}i:Ti=t and obtain B posterior samples

{G(b)(y | t,X)}Bb=1.
3 Derive posterior mean Ĝ(y | t,X) = 1

B

∑B
b=1 G

(b)(y | t,X).
end

4 Derive q̂om1 (τ) and q̂om0 (τ) as the solutions to

1
n

n∑
i=1

Ĝ(q1 | 1,X) = τ and
1
n

n∑
i=1

Ĝ(q0 | 0,X) = τ

5 Calculate ∆̂τ := Q̂TE
om

(τ) = q̂om1 (τ)− q̂om0 (τ).

Bayesian Propensity Score Analysis (BPSA)

Bayesian Propensity Score Analysis (BPSA) is a treatment-assignment-based approach,

which involves fitting the treatment assignment and then employs multiple Bayesian quantile

regressions to model the conditional distribution of the outcome given the posterior mean of

the propensity score in each treatment group.

Algorithm A.6: Bayesian Outcome Modelling to estimate QTE
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
Result: Q̂TE

ps
(τ)

1 Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples
{π(b)(X)}Bb=1.

2 Derive posterior mean from B posterior samples π̂(X) = 1
B

∑B
b=1 π

(b)(X).
3 for t = 0, 1 do
4 Fit outcome model on {Yi, π̂(Xi)}i:Ti=t and obtain B posterior samples

{G(b)(y | t, π̂(X))}Bb=1.
5 Derive posterior mean Ĝ(y | t,X) = 1

B

∑B
b=1 G

(b)(y | t, π̂(X)).
end

6 Derive q̂ps1 (τ) and q̂ps0 (τ) as the solutions to

1
n

n∑
i=1

Ĝ(q1 | 1,X) = τ and
1
n

n∑
i=1

Ĝ(q0 | 0,X) = τ

7 Calculate ∆̂τ := Q̂TE
ps

(τ) = q̂ps1 (τ)− q̂ps0 (τ).
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A.6 Additional Simulation Results

Table A.1: Simulation Results for SD1, Relative RMSE

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW

1000 1.71 1.689 0.991 1.234 1.771 1.789

500 1.623 1.54 0.946 1.124 1.658 1.77410th

100 2.459 1.226 0.963 1.193 1.332 1.529

1000 1.052 1.044 0.978 0.852 1.022 1.136

500 1.139 1.117 1.007 0.92 1.052 1.46825th

100 1.188 0.977 0.916 0.995 1.001 1.169

1000 0.598 0.599 0.99 0.744 0.623 0.659

500 0.663 0.657 0.978 0.776 0.669 0.71250th

100 0.916 0.819 0.971 0.944 0.886 1.114

1000 0.521 0.525 0.979 0.758 0.568 0.577

500 0.586 0.598 0.983 0.821 0.634 0.6575th

100 0.99 0.799 0.986 0.92 0.835 1.032

1000 0.583 0.593 0.98 0.803 0.605 0.606

500 0.635 0.663 0.991 0.86 0.691 0.72890th

100 1.233 0.853 0.974 0.928 0.897 1.055

Notes: This table displays the relative Root Mean Squared Error

(RMSE) of different estimation methods across 100 replicates. The

rows contain results for various percentile levels and for various sample

size N . The relative RMSE is the RMSE in comparison with the Naive

method as the benchmark, where RMSE =
√
R−1∑R

r=1(α̂r − α)2

and R = 100.

Figure A.1: Line plots of raw RMSE for 10th, 25th, 50th, 75th, and 90th QTEs based on 100 replications.
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Table A.2: Simulation Results for SD2a, Average Bias and Relative RMSE

Bias RMSE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Linear

BDR 0.055 0.002 -0.032 -0.008 0.016 2.036 1.098 0.673 0.637 0.839

BDRS 0.061 0.002 -0.030 -0.006 0.024 2.028 1.098 0.678 0.638 0.846

BOM 0.040 0.092 -0.013 -0.094 -0.053 0.928 0.921 0.562 0.620 0.814

BOMS 0.059 0.102 -0.002 -0.076 -0.025 0.913 0.904 0.554 0.619 0.812

BPSA 0.078 -0.042 -0.044 0.061 0.112 0.735 0.980 0.523 0.595 0.719

BNP 0.335 0.368 0.343 0.328 0.284 1.025 1.042 0.917 0.966 1.038

LDML 0.009 0.010 -0.009 0.019 0.163 0.985 1.029 0.616 0.696 0.819

TMLE 0.000 -0.005 -0.022 -0.041 0.025 1.224 1.229 0.694 0.752 1.180

FIPW 0.019 -0.039 -0.034 -0.010 0.014 1.845 1.286 0.710 0.761 1.285

No covariates

Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Root Mean Squared Error (RMSE) of

different estimation methods across 100 replicates. The relative RMSE is the RMSE in comparison

with the Naive method as the benchmark, where RMSE =
√
R−1∑R

r=1(α̂r − α)2 and R = 100.

Table A.3: Simulation Results for SD2b, Average Bias and Relative RMSE

Bias RMSE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Nonlinear

BDRS -0.014 0.015 0.019 0.027 0.011 0.680 0.878 0.520 0.570 0.543

BOMS 0.041 0.027 0.020 0.015 0.001 0.519 0.727 0.470 0.490 0.425

BPSA 0.140 -0.019 -0.029 0.077 0.099 0.715 0.955 0.538 0.604 0.705

LDML 0.111 0.052 0.047 0.062 0.182 0.852 1.006 0.722 0.730 0.831

TMLE -0.020 0.009 0.023 0.023 0.064 0.694 0.898 0.522 0.578 0.669

FIPW 0.034 0.120 0.090 -0.050 -0.051 2.180 2.066 1.981 2.056 1.678

No covariates

Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Root Mean Squared Error (RMSE) of

different estimation methods across 100 replicates. The relative RMSE is the RMSE in comparison

with the Naive method as the benchmark, where RMSE =
√
R−1∑R

r=1(α̂r − α)2 and R = 100.
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A.7 Additional Graphs in Empirical Illustration

Figure A.2: Histogram of total amount of loans at household level in treated villages and control
villages.



Appendix B

Appendix for Chapter 3

B.1 On Identification - Proposition 1

We use the following results in the proof of Proposition 1.

Lemma 1. Let ϵ ∼ N (0, 1) and D = 1{ν + ϵ > 0}. Then

E[ϵ | D = 1] = λ(ν) := ϕ(ν)
Φ(ν) ,

E[ϵ | D = 0] = −λ(−ν) := − ϕ(ν)
1− Φ(ν) .

where ϕ and Φ are the standard normal pdf and cdf. The function λ(.) is called the inverse

Mills ratio.

Lemma 2. Under Assumption 3, for each mixture component g,

E[ε(1)
i | ε

(D)
i = ϵ, g] = σ1D,gϵ and E[ε(0)

i | ε
(D)
i = ϵ, g] = σ0D,gϵ.

Thus, marginalise over g using the law of total expectation,

E[ε(1)
i | ε

(D)
i = ϵ] = σ1Dϵ and E[ε(0)

i | ε
(D)
i = ϵ] = σ0Dϵ,

where σ1D =
G∑
g=1

πgσ1D,g and σ0D =
G∑
g=1

πgσ0D,g.

Proof of Proposition 1

(i) Identification of (δ(1), β(1)) and (δ(0), β(0))

198
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Condition on treatment status, for Di = 1,

E[Yi | Di = 1, D̄N i, Xi] = E[Y (1)
i | Di = 1, D̄N i, Xi]

= δ(1)D̄N i +Xiβ
(1) + E[ε(1)

i | Di = 1, D̄N i, Xi].

By Assumption 4 and Assumption 2, E[ε(1)
i | Di = 1, D̄N i, Xi] does not depend on D̄N i, so

the slope in D̄N i equals δ(1), and variation in (D̄N i, Xi) identifies (δ(1), β(1)). Analogously,

for Di = 0 we obtain identification of (δ(0), β(0)).

(ii) Identification of (σ1D, σ0D)

By Lemma 1, E[ε(1)
i | ε(D)

i = ϵ] = σ1Dϵ E[ε(0)
i | ε(D)

i = ϵ] = σ0Dϵ. Using Di =

1{ν(Xi, Zi) + ε
(D)
i > 0} and Lemma 2,

E[ε(1)
i | Di = 1, Xi, Zi] = σ1D λ

(
ν(Xi, Zi)

)
,

E[ε(0)
i | Di = 0, Xi, Zi] = −σ0D λ

(
− ν(Xi, Zi)

)
.

From (i), we already have the population identification of (δ(1), β(1)) and (δ(0), β(0)). Form

within-arm residuals by netting out the identified linear parts

R
(1)
i := Yi − δ(1)D̄N i −Xiβ

(1) (for Di = 1),

R
(0)
i := Yi − δ(0)D̄N i −Xiβ

(0) (for Di = 0). Then,

E[R(1)
i | Di = 1, Xi, Zi] = σ1D λ

(
ν(Xi, Zi)

)
,

E[R(0)
i | Di = 0, Xi, Zi] = −σ0D λ

(
− ν(Xi, Zi)

)
.

By Assumption 1 (exclusion of Zi from outcomes) and Assumption 2 (independence from

disturbances), variation in Zi moves the selection index ν(Xi, Zi) and hence the inverse

Mills ratio λ(ν) without directly affecting the outcome equations. With the normalisation

Var(ε(D)
i ) = 1 in Assumption 3, the inverse Mills ratio is a known function of ν. Therefore,

the slopes of the population regressions of R(1)
i on λ(ν(Xi, Zi)) (within Di = 1) and R(0)

i on

−λ(−ν(Xi, Zi)) (within Di = 0) identify σ1D and σ0D, respectively.

This completes the proof.
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B.2 Details of Computational Algorithms

B.2.1 Derivations for Algorithm 3.1

Let Σij and Σ̃ij denote the (i, j)th element of Σ and Σ̃, respectively. The Jacobian matrix of

the transformation (Σ, τ 2)→ Σ̃ is given by

J =
∂
(
Σ̃11, Σ̃12, Σ̃13, Σ̃22, Σ̃23, Σ̃33

)
∂ (Σ12,Σ13,Σ22,Σ23,Σ33, τ2) =



0 0 0 0 0 1

τ 0 0 0 0 (1/2)ρ1Dσ1τ
−1

0 τ 0 0 0 (1/2)ρ0Dσ0τ
−1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


.

If we assign the Inverse Wishart priorW−1(I3, νo) for Σ̃ with density

p(Σ̃) ∝ |Σ̃|−(ν0+4)/2 exp
{
−1

2 tr
(
I3Σ̃−1

)}
,

which is equivalent to the following joint prior for (Σ, τ 2)

p(Σ, τ 2) ∝ (τ 2)−(νo+4)/2|Σ|−(νo+4)/2exp
{

1− ρ2
10

−2τ 2 (1 + 2ρ10ρ1Dρ0D − ρ2
10 − ρ2

1D − ρ2
0D)

}

× exp
{

1− ρ2
0D

−2σ2
1 (1 + 2ρ10ρ1Dρ0D − ρ2

10 − ρ2
1D − ρ2

0D)

}

× exp
{

1− ρ2
1D

−2σ2
0 (1 + 2ρ10ρ1Dρ0D − ρ2

10 − ρ2
1D − ρ2

0D)

}
× |J |

∝ (τ 2)−( νo+4
2 +1)|Σ|−(νo+4)/2exp

{
1− ρ2

10
−2τ 2(1 + 2ρ10ρ1Dρ0D − ρ2

10 − ρ2
1D − ρ2

0D)

}
(B.1)

From the joint density of (Σ, τ 2), the prior for τ 2 given Σ is

p(τ 2 | Σ) ∼
[(

1 + 2ρ10ρ1Dρ0D − ρ2
10 − ρ2

1D − ρ2
0D

1− ρ2
10

)
χ2

(νo+4)

]−1

, (B.2)

and the prior for Σ is

p(Σ) ∝ |Σ|−(νo+4)/2exp
{
− 1

2τ 2 ×
1− ρ2

10
1 + 2ρ10ρ1Dρ0D − ρ2

10 − ρ2
1D − ρ2

0D

}
. (B.3)
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B.2.2 Alternative Algorithm

This approach is based on the marginal data augmentation method for the multinomial probit

model (Imai and Van Dyk, 2005; Jiao and Dyk, 2015). To illustrate the idea, we denote

y, θ, and z as generic observed data, unknown parameter of interest, and latent variables,

respectively. Marginal data augmentation (MDA) algorithm (Meng and Van Dyk, 1999)

introduces τ into the augmented-data model p(z, y|θ). A MCMC sampler is implemented

for the expanded model
∫
p(z̃, y|θ, τ) which is designed to maintain p(y|θ) as its marginal

distribution: ∫
p(z̃, y|θ, τ)dz̃ = p(y|θ)

where z̃ = Fτ (z), for any given τ, is a one-to-one mapping and ∃τ0 : Fτ0(z) = z. The MDA

algorithm iterates

(z̃[s+1], τ ⋆) ∼ p(z̃, τ | θ[s], y),

(θ[s+1], τ [s+1]) ∼ p(θ, τ | z̃[s+1], y).

Within the context of our model summarized in (3.23), we introduce a positive scalar

parameter τ which serves as the expansion parameter

τL∗ = R(τθ) + τϵ⇔ L̃∗ = Rθ̃ + ϵ̃

where L̃∗ := τL∗, θ̃ := τθ, and ϵ̃ := τϵ. The covariance of ϵ̃ is Ω̃ = τ 2Ω = τ 2Σ⊗ In.

The new unconstrained covariance matrix is Σ̃ = τ 2Σ. Then, the Inverse Wishart

distribution can be assigned as a prior for Σ̃

Σ̃ ∼ W−1(Ψo, νo),
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which implies the following joint prior density1

p(Σ, τ 2) ∝ (τ 2)−(νo+4)/2|Σ|−(νo+4)/2exp
{
− 1

2τ 2 tr(ΨoΣ−1)
}
× |J |

∝ (τ 2)−(3νo/2+1)|Σ|−(νo+4)/2exp
{
− 1

2τ 2 tr(ΨoΣ−1)
}
,

i.e., p(Σ) ∝ |Σ|−(νo+4)/2 × [tr(ΨoΣ−1)]−νo and τ 2 | Σ ∼ tr(ΨoΣ−1)/χ2
3νo
.

The expansion parameter τ 2 should be sample along with θ̃ and Σ̃ to recover θ and Σ

during the sampling process.

Sampling steps for θ

(i) Sample θ̃ and τ 2 from

p(θ̃, τ 2 | Σ, L̃∗,Y,D) = p(θ̃ | τ 2,Σ, L̃∗,Y,D)× p(τ 2 | Σ, L̃∗,Y,D).

To accomplish this, we obtain a draw of τ 2 from p(τ 2 | Σ, λ, L̃∗,Y,D) and then use

that draw to sample θ̃ from p(θ̃ | τ 2,Σ, L̃∗,Y,D).

(ii) To marginalize out τ , set θ = θ̃/τ 2.

Sampling steps for Σ

(i) Sample Σ̃ from p(Σ̃ | τ 2, θ̃, λ, L̃∗, Y,D).

(ii) To marginalize τ , set Σ = 1
Σ11
× Σ̃.

Completing posterior analysis, we provide the detailed implementation of the MCMC sampling

scheme in Algorithm B.1.

1Note that the Jacobian matrix of the transformation τ2Σ = Σ̃ is given by

J =
∂
(
Σ̃11, Σ̃12, Σ̃13, Σ̃22, Σ̃23, Σ̃33

)
∂ (Σ12,Σ13,Σ22,Σ23,Σ33, τ2) =


0 0 0 0 0 1
τ2 0 0 0 0 σ1D

0 τ2 0 0 0 σ0D

0 0 τ2 0 0 σ2
1

0 0 0 τ2 0 σ10
0 0 0 0 τ2 σ2

0

 .
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Algorithm B.1: Markov chain Monte Carlo (MCMC) Sampler II

Procedure
1 Step 0: Initialize parameters s = 0, θ[0],Σ[0] for MCMC-chains
2 while s < S do
3 Step 1: Update

(
(τ2)⋆, (L̃∗)⋆

)
via p(τ2, L̃∗ | Y,D, θ[s],Σ[s]) by

4 (a) sampling (τ2)⋆ from p(τ2 | Σ[s]): (τ2)⋆ ∼ tr(ΨoΣ[s]−1)/χ2
3νo

.
5 (b) sampling (L̃∗)⋆ from p(L̃∗ | Y,D, (τ2)⋆, θ[s]),Σ[s]):
6 sampling Ymiss as in (1) and D∗ as in (2);
7 setting (L̃∗)⋆ = τ⋆L∗, where L∗ = [D∗ Y1 Y0]⊤.

8 Step 2: Update
(
(τ2)⋆, θ[s+1]

)
via p(τ2, θ | Y,D, (L̃∗)⋆,Σ[s]) by

9 (a) sampling (τ2)⋆ from p(τ2 | Y,D, (L̃∗)⋆,Σ[s])

(τ2)⋆ ∼
[(L̃∗)⋆ −Rθgls]⊤Ω−1[(L̃∗)⋆ −Rθgls] + θ⊤

gls[Vθo + (R⊤Ω−1R)−1]−1θgls + tr(ΨoΣ[s]−1)
χ2

3(n+νo)

where θgls = (R⊤Ω−1R)−1R⊤Ω−1(L̃∗)⋆.
10 (b) sampling θ̃⋆ from p(θ̃ | Y,D, (L̃∗)⋆, (τ2)⋆,Σ[s]):

θ̃⋆ ∼ N
(
µθo , (τ2)⋆(V−1

θo
+ R⊤Ω−1R)

)
,

where µθ = (V−1
θo

+ R⊤Ω−1R)R⊤Ω−1(L̃∗)⋆;
11 (c) setting θ[s+1] = θ̃⋆/τ⋆.

12 Step 3: Update
(
(τ2)[s+1],Σ[s+1]

)
via p(τ2,Σ | Y,D, (L̃∗)⋆, θ[s+1]) by

13 (a) sampling Σ̃⋆ from p(Σ̃ | Y,D, (L̃∗)⋆, θ[s+1], τ⋆): Σ̃⋆ ∼ W−1
(
M̃ + Ψo, n+ νo

)
,

where

M̃ =


ϵ̃⊤D ϵ̃D ϵ̃⊤D ϵ̃1 ϵ̃⊤D ϵ̃0

ϵ̃⊤1 ϵ̃D ϵ̃⊤1 ϵ̃1 ϵ̃⊤1 ϵ̃0

ϵ̃⊤0 ϵ̃D ϵ̃⊤0 ϵ̃1 ϵ̃⊤0 ϵ̃0

 ;

ϵ̃D = (D̃∗)⋆ −Pτ⋆γ[s+1]; ϵ̃1 = (Ỹ1)⋆ −Qτ⋆κ[s+1]
1 ; ϵ̃0 = (Ỹ0)⋆ −Qτ⋆κ[s+1]

0 ;

and the first diagonal element of Σ̃⋆ must satisfy the following constraint{
P⊤
i γ

[s+1]Σ̃⋆
11 + ϵ̃Di > 0 if Di = 1

P⊤
i γ

[s+1]Σ̃⋆
11 + ϵ̃Di ≤ 0 if Di = 0

for i = 1, . . . , n

14 (b) setting τ [s+1] = Σ̃⋆
11,Σ[s+1] = Σ̃⋆/

(
τ [s+1]

)2
; L∗[s+1] =

(
ϵ̃+ τ [s+1]Rθ[s+1]

)
/τ [s+1].

15 return L∗[s+1], θ[s+1],Σ[s+1]

16 s← s+ 1
17 end while

end procedure
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B.3 Beyond Normality - Bayesian Semiparametric Approach

A possible extension of the methods described above would be to use a Bayesian

semiparametric approach that can accommodate heterogeneous indirect effects and relax the

distributional assumption imposed on disturbance terms. We consider a finite mixture of

normals

Di = 1{Ziαc̃i
+Xiβ

(D)
c̃i

+ ϵ
(D)
i > 0},

D̄N i =
n∑

j=1,j ̸=i
wijDj,

∑
j=1,j ̸=i

wij = 1,

Y
(1)
i = δ

(1)
c̃i
D̄N i +Xiβ

(1)
c̃i

+ ϵ
(1)
i ,

Y
(0)
i = δ

(0)
c̃i
D̄N i +Xiβ

(0)
c̃i

+ ϵ
(0)
i ,

Yi = DiY
(1)
i + (1−Di)Y (0)

i .

(B.4)

where

ϵi :=


ϵ

(D)
i

ϵ
(1)
i

ϵ
(0)
i


ind∼ N




0

0

0

 ,

1 σ1D,c̃i

σ0D,c̃i

σ2
1,c̃i

σ10,c̃i

σ2
0,c̃i



 (B.5)

and Pr(c̃i = g) = πg, for g = 1, . . . , G and
∑G
g=1 πg = 1.

Augmenting the model with a set of component label vector, {ci}Ni=1, where ci :=

[ci1, . . . , ciG], and cig := 1{c̃i = g}; i.e., cig = 1 implies that the ith observation is drawn from

the gth component of the mixture, and 0 otherwise. Denote c := [c⊤
1 , . . . , c

⊤
N ]⊤.

By transformation, we obtain the equivalent version of (3.23)

L∗
i = Riθc̃i

+ ϵi for i = 1, . . . , n;

L∗ = Rθc̃i
+ ϵ; and E[ϵ⊤ϵ] = Ω = Σ⊗ In.

(B.6)

We augment the parameter space with a set of component indicators (labels) {cgi}ni=1

p(L∗
i | c,Θ) =

n∏
i=1

[ϕ(L∗
i ; Riθ

1,Σ1)]c1i . . . [ϕ(L∗
i ; Riθ

G,ΣG)]cGi . (B.7)
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We specify the following priors for component indicators {ci}ni=1 and component

probabilities π = [π1, . . . , πG]⊤

ci | π
iid∼ Mult(1,π)⇒ p(c | π) =

n∏
i=1

p(ci | π) =
n∏
i=1

G∏
g=1

πcgi
g , (B.8)

π ∼ Dir(ω1o, . . . , ωGo)⇒ p(π) ∝ πω1o−1
1 . . . πωGo−1

G . (B.9)

Their conditional posteriors are of the form

ci | Θ−Σ,Y,D
ind∼ Mult

1,
[

π1ϕ(L∗
i ; Riθ

1,Σ1)∑G
g=1 πgϕ(L∗

i ; Riθg,Σg)
. . .

πGϕ(L∗
i ; Riθ

G,ΣG)∑G
g=1 πgϕ(L∗

i ; Riθg,Σg)

]⊤
 ,

(B.10)

π | Θ−π,Y,D ∼ Dir(n1 + ω1o, . . . , nG + ωGo). (B.11)

B.4 Empirical Simulation Study with Friendship Network Data

In this section, we design empirical Monte Carlo experiments to illustrate how the proposed

framework may be applied and to investigate the finite-sample performance of our Bayesian

MCMC algorithms. The aim of an empirical Monte Carlo study is to approximate a real

application in economic policy evaluation by taking as many components of the DGP as

possible from real data. This simulation study relies on arguably realistic data generation

processes (DGPs) based on semi-synthetic data. Specifically, an actual network structure

defines the spillover patterns, and real covariates play a role as observed characteristics in

both the treatment assignment equation and the outcome equation. However, to analyse the

performance of the estimation procedures in different scenarios, we create a hypothetical

treatment and generate the rest of the model. In particular, we make use of the Add Health

friendship network data and mimic an evaluation of Social-Emotional Learning (SEL)-

Focused After-School Programs on youth development.

B.4.1 Add Health Friendship Network Data

We employ in-school friendship network data obtained through a nationally representative

longitudinal study of adolescents in grades 7–12 in the US between September 1994 and

April 1995. We limit our analysis to the largest community (n = 2, 534) of 84 surveyed areas.
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Figure B.1: Friendship network data is demonstrated in a directed node-link graph. Each node
represents a student, and network links are measured using student nomination data in the survey (i.e.,
their best friends, up to five females and up to five males). The network is seperated into two quite
distinct clusters, where the within-cluster connections are dense and between-cluster connections are
more sparse.

Figure B.2: Two clusters fit a middle school and a high school in the community. The grade is also
a telling factor in friendship formation among students. While 9th grade is relatively distinct at the
bottom of the graph, 10th, 11th, and 12th graders are harder to distinguish.

Figure B.3: Gender and race do not play a major role in friendship formation. There is a mixing
of gender in all grade levels. Among race groups, White is dominant, however, there is not a clear
segregation in friendship according to race.
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B.4.2 Data Generating Process

Suppose that our objective is estimating the effect of a social and emotional learning (SEL)-

focused after-school program on youth’s prosocial development. The treatment assignment

mechanism is non-random since participation is inevitably on a voluntary basis. If participants

in the program are inherently different from non-participants in ways that are related to the

outcomes being measured, it can be difficult to determine whether the program is responsible

for any observed changes. Additionally, there is possible spillovers because joining the SEL-

focused after-school program may improve youth prosocial behavior for enrolled-students,

which in turn can promote prosocial behavior of their friends. The spillovers (positive

contagion effects) can occur through several mechanisms. One of them is observational

learning, where students may be more likely to exhibit prosocial behaviors by observing

their friends’ behaviors. Students who participate in the after-school program may develop

emotional intelligence, which can improve their ability to understand and regulate emotions

in friendship, leading to more positive interactions with their peers. Furthermore, enrolled

students may tend to model prosocial behaviors they have learned and demonstrate them in

their interactions with their peers. As a result, whether a student enrolls in the program or

not, they may still indirectly benefit when there are more people in their friendship network

who participate. Moreover, social norms may also play a role, as when students participate in

the SEL after-school program, they may develop new social norms that promote prosocial

behavior, such as empathy and kindness. These norms may be reinforced among participants

who are friends. This indirect effect may favour enrolled students in comparison with those

who do not enroll. Taking into account such potential indirect effects would allow for a more

accurate estimate of the overall impact of the program on youth prosocial behavior.

Therefore, it is plausible for us to consider the general data generating process according

to the model (3.7) proposed in Section 3.2 as follows:

• Let the individual treatment variable Di be an index of participation in the After-School

Program, and let Yi be a measurement of prosocial behavior. We generate the individual

treatment Di by stylizing enrollment process based on individual choice mechanism.

We thereby compute the neighbourhood treatment D̄Ni as the proportion of treated

neighbours, the number of “treated” friends among all friends, by using the adjacency

matrix of the Add Health friendship network.

• X =
[
ι⊤n , Xgender, Xgrade, Xrace

]⊤
with Xgender, Xgrade, Xrace are three exogenous
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variables standardized from three individual characteristics in Add Health data:

gender, grade, and race. The corresponding regression coefficients in the selection

equation and two potential outcome equations are β(D) = [0,−0.2,−1, 1]⊤,

β(1) = [2,−0.5, 0.3, 0.2]⊤, β(0) = [1, 0.3,−0.4, 0.1]⊤. Here, true values of the

intercepts are fixed in all three equations.

• Z is an instrumental variable generated from N (0, 1) and the regression coefficient

α controls the strength of the instrument: α = 1.5. In a realistic setting, Z could be

cost-shifters (e.g., the distance to the program location and assume that it varies from

living directly next to the program location to living very far from the program location).

• We specify both a normal and a finite mixture of normal distribution of the error term

ϵi =
[
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

]⊤
. Throughout, we set that

E[ϵ(D)
i ] = E[ϵ(1)

i ] = E[ϵ(0)
i ] = 0; for i = 1, . . . , n

In summary,

Di = 1{1.5Zi − 0.2Xgender,i −Xgrade,i +Xrace,i + ϵ
(D)
i > 0}

D̄i =
∑

j=1,j ̸=i
wijDj;

∑
j=1,j ̸=i

wij = 1

Y
(1)
i = δ(1)D̄i + 2− 0.5Xgender,i + 0.3Xgrade,i + 0.2Xrace,i + ϵ

(1)
i ,

Y
(0)
i = δ(1)D̄i + 1 + 0.3Xgender,i − 0.4Xgrade,i + 0.1Xrace,i + ϵ

(0)
i ,

Yi = DiY
(1)
i + (1−Di)Y (0)

i

(B.12)

The simulation study consists of (2×2) scenarios, which are characterized by two following

factors

1. The presence of spillovers

• without spillovers: δ(1) = δ(0) = 0

• with spillovers: δ(1) = 1.5; δ(0) = 0.5

2. The distribution of the error term

• a normal distribution - for i = 1, . . . , n
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ϵi =
[
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

]⊤ ind∼ N (0,Σ) ; Σ =


1 0.9 0.7

1 0.6

1



i.e. σ2
D = σ2

1 = σ2
0 = 1; ρ1D = 0.9; ρ0D = 0.7; ρ10 = 0.6.

• a finite mixture of normal distribution - for i = 1, . . . , n

ϵi =
[
ϵ

(D)
i , ϵ

(1)
i , ϵ

(0)
i

]⊤
ind∼ 1

3N (0,Σ1) + 2
3N (0,Σ2)

where

Σ1 =


1 1.5435 1.2005

2.9412 1.7647

2.9412

 and Σ2 =


1 0.1543 0.1200

0.0294 0.0176

0.0294


i.e. σ2

D = σ2
1 = σ2

0 = 1; ρ1D = 0.6174; ρ0D = 0.6; ρ10 = 0.4802.

For each of the generated data sets, we specify two versions of models to be estimated

by using the proposed Bayesian MCMC algorithm. First, Gaussian Generalised Roy model

without spillovers (GGRM-noSI) serves as the benchmark model, without neighbourhood

treatment term (D̄N ) and with a normal distribution of the error term. Second, Gaussian

Generalised Roy model with spillovers (GGRM-SI) is the full model with neighbourhood

treatment term (D̄N ) and a normal distribution of the error term. We run each MCMC

algorithm for 11, 000 iterations, with the first 1, 000 draws are discarded as a burn-in period.

Throughout our simulation study, the parameters for the prior distributions are chosen as

follows:
µθo = 015; Vθo = 102 ∗ I15×15;

Ψo = I3×3; νo = 4;

The number of replicates in this study is R = 100.
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Figure B.4: Illustration of the treatment assignment under the context of the after-school program.
The node colour represents the individual treatment and the node size represents the neighbourhood
treatment (e.g. the proportion of friends who are treated). Students select themselves into the program:
half of them enroll while half of them do not. If the friendship network does not matter, students
are only exposed to the program via their own treatment status, as demonstrated in the left graph. In
contrast, if potential spillovers are considered seriously, neighbourhood treatment acts as an indirect
channel through which, the student is also exposed to the program, as shown in the left graph.

B.4.3 Simulation Results

In each replication, we use the posterior mean of MCMC draws as the point estimate for each

parameter of interest. We thereby compute across the 100 replicates the average bias and the

root mean square error of the point estimates, followed by the coverage rate and the average

length of the 95% credible intervals. The simulation results are presented in tables B.1-B.4.

The true values of the DGP parameters are also listed in each table. The main findings

are summarized as follows: First, by estimating the true DGP models, we can successfully

recover the true parameter values from our Bayesian MCMC samplers with both Algorithms

3.1 and B.1. Those methods perform well in terms of average bias, root mean square error

(RMSE) and coverage rate (close to the nominal level). Second, the performance of estimators

shows different degrees of deterioration when estimating the misspecified models. When

existing spillover phenomenon is not taken into account (i.e., the estimator does not include

neighbourhood treatment term D̄N ), not only δ(1) and δ(0) are clearly ignored but estimating

other relevant parameters (β(1), β(0), σ2
1, σ

2
0, ρ1D, ρ0D) is also considerably affected - with an

increase in both the absolute bias and the RMSE, in addition to a wider yet permissive 95%

credible interval on average. In contrast, including neighbourhood treatment term when it

is not needed is not harmful in general. The performance metrics are almost plausible and

insensitive to the inclusion of neighbourhood treatment term no matter whether spillovers are

present in the true data generating process or not, especially when Algorithm 3.1 is used. The

coverage remains close to the nominal level for all parameters we are interested.
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Table B.1: DGP I: without Spillovers, Normal Distribution

Model(Alg) Metric α β(D) δ(1) δ(0) β
(1)
1 β

(0)
1 σ2

1 σ2
0 ρ1D ρ0D ρ10

True Value 1.500 0.000 1.500 0.500 2.000 1.000 1.000 1.000 0.900 0.700 0.600

Mean 1.514 -0.009 0.000 0.000 2.003 0.997 1.002 0.997 0.889 0.698 0.710
Std 0.053 0.034 0.000 0.000 0.039 0.040 0.042 0.045 0.018 0.042 0.048
Bias 0.014 -0.009 0.000 0.000 0.003 -0.003 0.002 -0.003 -0.011 -0.002 0.110

RMSE 0.055 0.035 0.000 0.000 0.039 0.040 0.042 0.045 0.021 0.042 0.120
GGRM-noSI(1)

Coverage 0.910 0.940 1.000 1.000 0.940 0.950 0.970 0.940 0.950 0.940 0.950

Mean 1.514 -0.008 -0.004 0.009 2.004 0.993 1.002 0.997 0.890 0.699 0.705
Std 0.053 0.034 0.086 0.095 0.055 0.060 0.042 0.045 0.018 0.042 0.048
Bias 0.014 -0.008 -0.004 0.009 0.004 -0.007 0.002 -0.003 -0.010 -0.002 0.105

RMSE 0.055 0.035 0.086 0.096 0.055 0.061 0.042 0.045 0.021 0.042 0.115
GGRM-SI(1)

Coverage 0.900 0.940 0.930 0.940 0.920 0.960 0.960 0.940 0.950 0.940 0.970

Mean 1.538 -0.012 0.000 0.000 2.047 0.956 0.958 0.981 0.829 0.607 0.288
Std 0.060 0.037 0.000 0.000 0.065 0.057 0.048 0.057 0.079 0.102 0.332
Bias 0.038 -0.012 0.000 0.000 0.047 -0.044 -0.043 -0.019 -0.071 -0.093 -0.312

RMSE 0.071 0.039 0.000 0.000 0.081 0.072 0.064 0.060 0.106 0.138 0.456
GGRM-noSI(2)

Coverage 1.000 0.980 1.000 1.000 1.000 1.000 0.990 0.990 0.950 0.930 0.660

Mean 1.564 -0.019 -0.001 0.013 2.120 0.943 0.939 0.983 0.730 0.554 0.131
Std 0.074 0.040 0.090 0.096 0.155 0.104 0.068 0.069 0.208 0.128 0.479
Bias 0.064 -0.019 -0.001 0.013 0.120 -0.057 -0.061 -0.017 -0.170 -0.146 -0.469

RMSE 0.097 0.044 0.090 0.097 0.196 0.118 0.092 0.071 0.268 0.194 0.670
GGRM-SI(2)

Coverage 1.000 0.980 0.910 0.930 0.950 0.990 0.970 0.970 0.810 0.820 0.370

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R−1∑R

r=1(α̂r − α), RMSE =
√

R−1
∑R

r=1(α̂r − α)2, and Coverage = R−1∑R

r=1 1{α ∈ ĈI0.95,r}.

Table B.2: DGP II: with Spillovers, Normal Distribution

Model(Alg) Metric α β(D) δ(1) δ(0) β
(1)
1 β

(0)
1 σ2

1 σ2
0 ρ1D ρ0D ρ10

True Value 1.500 0.000 1.500 0.500 2.000 1.000 1.000 1.000 0.900 0.700 0.600

Mean 1.512 -0.005 0.000 0.000 2.659 1.219 1.182 1.015 0.826 0.691 0.741
Std 0.056 0.034 0.000 0.000 0.050 0.042 0.051 0.045 0.025 0.042 0.044
Bias 0.012 -0.005 -1.500 -0.500 0.659 0.219 0.182 0.015 -0.074 -0.009 0.141

RMSE 0.057 0.034 1.500 0.500 0.661 0.223 0.189 0.048 0.078 0.043 0.147
GGRM-noSI(1)

Coverage 0.930 0.950 0.000 0.000 0.000 0.000 0.050 0.930 0.150 0.940 0.950

Mean 1.514 -0.009 1.496 0.510 2.005 0.994 1.002 0.997 0.889 0.699 0.707
Std 0.053 0.034 0.085 0.095 0.054 0.060 0.042 0.045 0.018 0.042 0.050
Bias 0.014 -0.009 -0.004 0.010 0.005 -0.006 0.002 -0.003 -0.011 -0.001 0.107

RMSE 0.055 0.035 0.085 0.095 0.054 0.060 0.042 0.045 0.021 0.042 0.118
GGRM-SI(1)

Coverage 0.920 0.940 0.940 0.940 0.930 0.960 0.980 0.950 0.960 0.940 0.960

Mean 1.523 -0.009 0.000 0.000 2.714 1.204 1.155 1.026 0.746 0.628 0.280
Std 0.062 0.036 0.000 0.000 0.127 0.074 0.070 0.189 0.157 0.085 0.404
Bias 0.023 -0.009 -1.500 -0.500 0.714 0.204 0.155 0.026 -0.154 -0.072 -0.320

RMSE 0.066 0.037 1.500 0.500 0.725 0.217 0.170 0.191 0.220 0.112 0.515
GGRM-noSI(2)

Coverage 1.000 0.990 0.000 0.000 0.000 0.560 0.530 1.000 0.230 0.940 0.690

Mean 1.546 -0.022 1.509 0.549 2.136 0.945 0.977 10.462 0.666 0.518 -0.098
Std 0.094 0.040 0.103 0.229 0.172 0.695 0.104 35.229 0.240 0.106 0.364
Bias 0.046 -0.022 0.009 0.049 0.136 -0.055 -0.024 9.462 -0.234 -0.182 -0.698

RMSE 0.105 0.046 0.104 0.234 0.219 0.697 0.107 36.478 0.335 0.211 0.787
GGRM-SI(2)

Coverage 1.000 1.000 0.970 0.970 0.920 1.000 0.990 1.000 0.770 0.820 0.250

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R−1∑R

r=1(α̂r − α), RMSE =
√

R−1
∑R

r=1(α̂r − α)2, and Coverage = R−1∑R

r=1 1{α ∈ ĈI0.95,r}.
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Table B.3: DGP III: without Spillovers, Mixture of Normal Distributions

Model(Alg) Metric α β(D) δ(1) δ(0) β
(1)
1 β

(0)
1 σ2

1 σ2
0 ρ1D ρ0D ρ10

True Value 1.500 0.000 1.500 0.500 2.000 1.000 1.000 1.000 0.900 0.700 0.600

Mean 1.441 -0.002 0.000 0.000 1.959 1.034 1.021 1.006 0.674 0.540 0.671
Std 0.076 0.033 0.000 0.000 0.039 0.045 0.082 0.081 0.042 0.061 0.082
Bias -0.059 -0.002 0.000 0.000 -0.041 0.034 0.021 0.006 0.056 0.060 0.071

RMSE 0.097 0.033 0.000 0.000 0.056 0.057 0.085 0.081 0.071 0.086 0.108
GGRM-noSI(1)

Coverage 0.750 0.980 1.000 1.000 0.890 0.890 0.720 0.720 0.820 0.850 1.000

Mean 1.441 -0.002 -0.023 0.002 1.969 1.032 1.021 1.006 0.674 0.539 0.681
Std 0.076 0.033 0.074 0.091 0.049 0.061 0.083 0.080 0.042 0.061 0.079
Bias -0.059 -0.002 -0.023 0.002 -0.031 0.032 0.021 0.006 0.056 0.058 0.081

RMSE 0.096 0.033 0.078 0.091 0.058 0.069 0.085 0.080 0.070 0.085 0.114
GGRM-SI(1)

Coverage 0.790 0.980 0.970 0.960 0.970 0.940 0.700 0.710 0.830 0.850 0.990

Mean 1.454 -0.004 0.000 0.000 1.998 1.022 1.005 1.002 0.609 0.498 0.215
Std 0.081 0.034 0.000 0.000 0.084 0.057 0.083 0.081 0.122 0.086 0.499
Bias -0.046 -0.004 0.000 0.000 -0.002 0.022 0.005 0.002 -0.009 0.018 -0.385

RMSE 0.093 0.034 0.000 0.000 0.084 0.061 0.084 0.081 0.122 0.088 0.630
GGRM-noSI(2)

Coverage 0.910 0.980 1.000 1.000 0.980 0.980 0.860 0.880 0.960 0.930 0.650

Mean 1.468 -0.005 -0.021 0.000 2.098 1.034 1.027 1.016 0.491 0.468 -0.006
Std 0.094 0.034 0.078 0.098 0.198 0.112 0.161 0.108 0.234 0.106 0.625
Bias -0.032 -0.005 -0.021 0.000 0.098 0.034 0.027 0.016 -0.127 -0.013 -0.606

RMSE 0.099 0.035 0.081 0.098 0.221 0.117 0.163 0.109 0.266 0.107 0.871
GGRM-SI(2)

Coverage 0.950 0.990 0.960 0.940 0.970 0.980 0.900 0.880 0.960 0.950 0.470

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R−1∑R

r=1(α̂r − α), RMSE =
√

R−1
∑R

r=1(α̂r − α)2, and Coverage = R−1∑R

r=1 1{α ∈ ĈI0.95,r}.

Table B.4: DGP IV: with Spillovers, Mixture of Normal Distributions

Model(Alg) Metric α β(D) δ(1) δ(0) β
(1)
1 β

(0)
1 σ2

1 σ2
0 ρ1D ρ0D ρ10

True Value 1.500 0.000 1.500 0.500 2.000 1.000 1.000 1.000 0.900 0.700 0.600

Mean 1.462 -0.004 0.000 0.000 2.636 1.249 1.186 1.021 0.601 0.527 0.699
Std 0.074 0.033 0.000 0.000 0.046 0.045 0.084 0.082 0.052 0.059 0.101
Bias -0.038 -0.004 -1.500 -0.500 0.636 0.249 0.186 0.021 -0.016 0.047 0.098

RMSE 0.084 0.033 1.500 0.500 0.638 0.253 0.204 0.084 0.054 0.076 0.141
GGRM-noSI(1)

Coverage 0.820 0.980 0.000 0.000 0.000 0.000 0.150 0.700 0.960 0.890 0.950

Mean 1.441 -0.002 1.477 0.502 1.970 1.033 1.020 1.006 0.673 0.540 0.659
Std 0.076 0.033 0.074 0.091 0.050 0.061 0.083 0.080 0.043 0.061 0.092
Bias -0.059 -0.002 -0.023 0.002 -0.030 0.033 0.020 0.006 0.056 0.060 0.059

RMSE 0.096 0.033 0.078 0.091 0.058 0.069 0.085 0.081 0.070 0.085 0.110
GGRM-SI(1)

Coverage 0.750 0.980 0.970 0.950 0.970 0.940 0.710 0.710 0.860 0.850 0.990

Mean 1.473 -0.006 0.000 0.000 2.697 1.239 1.180 1.016 0.511 0.479 0.027
Std 0.070 0.034 0.000 0.000 0.113 0.059 0.099 0.082 0.144 0.072 0.454
Bias -0.027 -0.006 -1.500 -0.500 0.697 0.239 0.180 0.016 -0.106 -0.001 -0.573

RMSE 0.075 0.034 1.500 0.500 0.706 0.246 0.205 0.084 0.179 0.072 0.731
GGRM-noSI(2)

Coverage 0.960 0.990 0.000 0.000 0.000 0.420 0.360 0.890 0.960 0.980 0.720

Mean 1.466 -0.005 1.501 0.530 2.103 1.036 1.036 1.020 0.467 0.468 -0.144
Std 0.091 0.034 0.093 0.103 0.179 0.112 0.161 0.117 0.230 0.096 0.532
Bias -0.034 -0.005 0.001 0.030 0.103 0.036 0.036 0.020 -0.150 -0.012 -0.744

RMSE 0.098 0.034 0.093 0.107 0.206 0.117 0.166 0.118 0.275 0.097 0.915
GGRM-SI(2)

Coverage 0.940 0.990 0.990 0.980 0.990 1.000 0.950 0.920 0.960 0.970 0.460

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R−1∑R

r=1(α̂r − α), RMSE =
√

R−1
∑R

r=1(α̂r − α)2, and Coverage = R−1∑R

r=1 1{α ∈ ĈI0.95,r}.
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B.4.4 Causal Effects

Building on estimation results for model parameters, we can implement estimation and

inference on causal effects of interest. Two empirical questions of interest arise in the context

of SEL-focused after-school programs: First, the presence of direct treatment effects: whether

enrolling the After-School Program impacts prosocial behavior of participants? Furthermore,

whether there exists heterogeneity on the direct treatment effects? Second, the presence of

indirect (spillover) effects: whether the participation of closed friends in the After-School

Program impacts prosocial behavior of students. The following section demonstrates how

the proposed procedure in previous session help us to answer empirical questions using

observational data. In both illustrative scenario, estimates are compatible with true DGP.

Given an arbitrary generated dataset from the first scenario (DGP1) - with no spillovers

and a normal distribution of the error term, we can obtain estimates of Average Partial Indirect

Effects, Average Direct Treatment Effect, and Marginal Direct Treatment Effect as depicted

in Figures B.5 and B.6: First, Null Indirect (Spillover) Effects: Two flat curves in Figure B.5

reveals that the participation of peers from friendship network in the After-School Program

has an insignificantly positive impact on prosocial behavior of students, no matter whether

they enroll the program or not. Second, Null Interaction: The flat curve in Figure B.6(a) shows

that increasing neighbourhood treatment doesn’t enhance the average direct treatment effect

of ASP. Third, Selection on Gain: Figure B.6(b) indicates that the direct effects are higher for

individuals with values of unobservables that make them more likely to attend the ASP.

Given an arbitrary generated dataset from the second scenario (DGP2) - with the presence

of spillovers and a normal distribution of the error term, we can obtain estimates of Average

Partial Indirect Effects, Average Direct Treatment Effect, and Marginal Direct Treatment

Effect as depicted in Figures B.7 and B.8: First, Positive Indirect (Spillover) Effects: Two

upward curves in Figure B.7 reveals that the participation of peers from friendship network in

the After-School Program significantly improve the prosocial behavior of students, no matter

whether they enroll the program or not (which is consistent with Observational-Learning

explanation). Second, Positive Interaction: The upward curves in Figure B.8(a) implies that

increasing neighbourhood treatment magnifies the average direct treatment effect of ASP

(which is consistent with Social-Norm explanation). Third, Selection on Gain: Figure B.8(b)

indicates that the direct effects are higher for individuals with values of unobservables that

make them more likely to attend the ASP.
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Figure B.5: The average potential outcome when being treated (left-hand side panel) and when being
untreated (right-hand side panel), as a function of the neighbourhood treatment d̄N . The dashed
curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug plot on the
horizontal axis represent empirical distribution of d̄N based on the real network.

Figure B.6: (a) The average direct treatment effect as a function of the neighbourhood treatment d̄N .
The dashed curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug
plot on the horizontal axis represent empirical distribution of d̄N based on the real network. (b) The
marginal direct treatment effect as a function of the neighbourhood treatment d̄N and the unmeasured
resistance level v. Ticks in the rug plot on the horizontal axis represent empirical distribution of v,
obtained from posterior samples.
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Figure B.7: The average potential outcome when being treated (left-hand side panel) and when being
untreated (right-hand side panel), as a function of the neighbourhood treatment d̄N . The dashed
curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug plot on the
horizontal axis represent empirical distribution of d̄N based on the real network.

Figure B.8: (a) The average direct treatment effect as a function of the neighbourhood treatment d̄N .
The dashed curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug
plot on the horizontal axis represent empirical distribution of d̄N based on the real network. (b) The
marginal direct treatment effect as a function of the neighbourhood treatment d̄N and the unmeasured
resistance level v. Ticks in the rug plot on the horizontal axis represent empirical distribution of v,
obtained from posterior samples.
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B.5 On Empirical Application

Table B.5: Variable Description

Variable Description

Housing Unit Growth Growth of total housing units between 2017-2022
QOZ An indicator equal to one if an eligible tract was selected as an Opportunity Zone, or zero otherwise.

Political Affiliation
An indicator equal to one if a tract’s representative to the state’s lower house is of the same political
party as the state’s governor, and zero otherwise.

Poverty Rate
The proportion of residents in a tract whose ratio of income to the poverty threshold is less than or
equal to 0.99, scaled by the number of residents.

Median Earnings Logarithm of the median earnings in a tract.

Employment Rate
The number of individuals in the labor force in a tract that are working, either in civilian or
Armed Forces, scaled by the total labor force of the tract.

% White The proportion of non-Hispanic white residents in a tract.
% Native hc covered The proportion of native-born individuals covered by health insurance in a tract.
% Higher ed. The proportion of the population in a tract with at least a high school education.
% Rent The proportion of rental unit in a tract.
Population The total population in a tract from the 2010 Census.

Table B.6: Data Sources

Source URL

IRS (Internal Revenue Service) data:
List of Qualified Opportunity Zones https://www.irs.gov/credits-deductions/businesses/opportunity-zones

Urban Institute’s data https://www.urban.org/policy-centers/metropolitan-housing-and-communities-policy-center/projects/opportunity-zones
American Community Survey (ACS)
5-Year Data (2009-2022) https://www.census.gov/data/developers/data-sets/acs-5year.html

California State Legislature https://ballotpedia.org/California_State_Legislature
TIGER Geographic Shapefiles https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
SLDU and SLDL Blocks Splits https://www.census.gov/geographies/mapping-files/2018/dec/rdo/2018-state-legislative-bef.html

Figure B.9: Map of Opportunity Zone status of census tracts in California.

https://www.irs.gov/credits-deductions/businesses/opportunity-zones
https://www.urban.org/policy-centers/metropolitan-housing-and-communities-policy-center/projects/opportunity-zones
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://ballotpedia.org/California_State_Legislature
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/2018/dec/rdo/2018-state-legislative-bef.html
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Appendix for Chapter 4

C.1 Details of Computational Algorithms

C.1.1 Adaptation of Random-Walk Metropolis

Adaptation of random-walk Metropolis algorithm (Andrieu and Thoms, 2008; Atchadé

and Rosenthal, 2005; Roberts and Rosenthal, 2009; Vihola, 2022) is designed to improve

the efficiency of standard random-walk Metropolis algorithm, by automatically tuning the

proposal distribution during the simulation based on historical MCMC samples. The goal is

to achieve better convergence and mixing without requiring manual calibration.

Formally, let θ ∈ Θ ⊂ Rd be the parameter of interest with target probability density π(θ).

Our goal is to generate a dependent random sequence {θ[0], . . . , θ[S]}, called a chain, whose

stationary density matches π. At iteration s, the standard algorithm uses a normal random

walk proposal N
(
θ[s], τ [s]Σ[s]

θ

)
, where θ[s] is the current state, τ [s] is a scalar scaling factor

(i.e., how far the proposal jumps in the parameter space), and Σ[s]
θ is an empirical estimate of

the covariance matrix of the target π. The acceptance probability of a candidate draw θ⋆ is

α = min
{
1, π

(
θ⋆
)
/π
(
θ[s]
)}

. The shape of the proposal distribution has a substantial effect

on the algorithm’s mixing behaviour1, while choosing τ and Σθ in each iteration by trial

and error is both time-consuming and problem-specific. To overcome this tuning challenge,

adaptation allows the sampler learn τ and Σθ on-the-fly using past draws. The core idea is to

adaptively update these parameters to target a prespecified “optimal” acceptance rate (ᾱopt).

Among several variants, we present in Algorithm C.1 the Adaptive Metropolis algorithm

with global adaptive scaling (Atchadé and Rosenthal, 2005). We note that, for the adaptation

step, equation (C.1) aims to keep the asymptotic acceptance rate of the algorithm close

1Intuitively, if τ [s]Σ[s]
θ is either too large in some directions or too small in all directions the algorithm has

either a very small or a very large acceptance probability, which results in a very poor exploration of the target
distribution as the algorithm mix poorly.

217



APPENDIX C. APPENDIX FOR CHAPTER 4 218

to an optimal value ᾱopt. Commonly, ᾱopt = 0.234 for a multivariate target (d > 1) and

ᾱopt = 0.44 when d = 1. The (recommended) adaptation stepsize is a decreasing sequence

ν [s+1] = (s+1)−2/3. This approach is backed by Robbins-Monro recursive and more generally,

the stochastic approximation framework (Benveniste et al., 2012), and aims to optimize the

efficiency of the MCMC sampler by monitoring the acceptance rate toward a theoretically

optimal region. The updates are designed to vanish over time (i.e., ν [s] → 0) to ensure the

ergodicity and convergence of the chain.

Algorithm C.1: Adaptive Scaling Metropolis (ASM) algorithm - General case

Procedure
1 Step 0: initialise s = 0, θ[0], µ

[0]
θ = θ[0],Σ[0]

θ , τ
[0].

2 while s < S do
3 Step 1 (Proposal step):

4 Sample a new candidate θ⋆ ∼ N
(
θ[s], τ [s]Σ[s]

θ

)
5 Accept θ⋆ with probability α

(
θ⋆, θ[s]

)
. If accepted, θs+1 = θ⋆; otherwise,

θ[s+1] = θ[s].
6 Step 2 (Adaptation step):
7 Update the scaling

log
(
τ [s+1]

)
= log

(
τ [s]
)

+ ν [s+1]
[
α
(
θ⋆, θ[s]

)
− ᾱopt

]
, (C.1)

8 Update the empirical covariance

µ
[s+1]
θ = µ

[s]
θ + ν [s+1]

[
θ[s+1] − µ[s]

θ

]
,

Σ[s+1]
θ = Σ[s]

θ + ν [s+1]
[(
θ[s+1] − µ[s]

θ

) (
θ[s+1] − µ[s]

θ

)⊤
− Σ[s]

θ

]
.

(C.2)

9 return θ[s+1], µ
[s+1]
θ ,Σ[s+1]

θ , τ [s+1]

10 s← s+ 1
11 end while

end procedure

For our sampling problem for network interaction effects λg (g = 1, . . . , G) in Section 4.3,

we apply a univariate version of Algorithm C.1. Specifically, we employ Algorithm C.2 which

corresponds to d = 1 and the optimal acceptance rate αopt = 0.44. In practice, whenever

α
(
θ⋆, θ[s]

)
falls below ᾱopt for most transition attempts, the log-scale update helps increase

the scaling parameter τ [s], and vice versa. This automatic feedback allows the sampler to

recover quickly from poor initialisation, enabling an efficient exploration of the posteriors of

interest. We embed this Adaptive Scaling Metropolis sampling step for each λg into our main
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MCMC samplers for the SCHSAR model (Algorithms 4.1 and 4.2).

Algorithm C.2: Adaptive Scaling Metropolis (ASM) algorithm - Univariate case

Procedure
1 Step 0: initialise s = 0, θ[0], τ [0].
2 while s < S do
3 Step 1 (Proposal step):
4 Sample a new candidate θ⋆ ∼ N

(
θ[s], τ [s]

)
5 Accept θ⋆ with probability α

(
θ⋆, θ[s]

)
. If accepted, θs+1 = θ⋆; otherwise,

θ[s+1] = θ[s].
6 Step 2 (Adaptation step): Update the scaling

log
(
τ [s+1]

)
= log

(
τ [s]
)

+ ν [s+1]
[
α
(
θ⋆, θ[s]

)
− ᾱopt

]
.

7 return θ[s+1], τ [s+1]

8 s← s+ 1
9 end while

end procedure

C.1.2 Community Detection Algorithms

When unobserved homophily is present (see Subsection 4.3.4), obtaining a reliable

initialisation for the latent individual heterogeneity {ai}Ni=1 can significantly improve

the MCMC convergence. A practical strategy is to apply available community detection

algorithms to the observed network, using the N × N adjacency matrix W = [wij] to

uncover two latent clusters corresponding to the binary types of ai (“high” vs. “low”). Below

we adopt two spectral-clustering variants that exploit the eigenstructure of graph matrices

to reveal communities. In both algorithms C.3 and C.4, we extract the top T eigenvectors

of a chosen matrix (e.g., the Laplacian or modularity matrix), embed the N nodes into a

T -dimensional spectral subspace, and then apply a standard K-means method to partition

them into communities (with labels {ãi}Ni=1).



APPENDIX C. APPENDIX FOR CHAPTER 4 220

Algorithm C.3: Modularity-Matrix Spectral Clustering algorithm

Data: Adjacency matrix W ∈ RN×N , # of clusters K, # of top eigenvectors T (set
T = K = 2).

Result: Community assignments {ãi}Ni=1.
1 Compute degree vector d ∈ RN where di := ∑

j wij and total edges m = 1
2
∑N
i=1 di.

2 Form the modularity matrix

M := W− dd⊤

2m .

3 Compute T eigenvectors {v1, . . . ,vT} of M with largest positive eigenvalues.
4 Stack these eigenvectors into V := [ v1, . . . ,vT ] ∈ RN×T .
5 Apply K-means clustering to the rows of V, yielding labels {ãi}Ni=1.

Algorithm C.4: Normalized-Laplacian Spectral Clustering algorithm

Data: Adjacency matrix W ∈ RN×N , # of clusters K, # of top eigenvectors T (set
T = K = 2).

Result: Community assignments {ãi}Ni=1.
1 Compute degree matrix D := diag(d1, . . . , dN) with di := ∑

j wij .
2 Form the normalized Laplacian matrix

Lnorm := I−D− 1
2 WD− 1

2 .

3 Compute T eigenvectors {v1, . . . ,vT} of Lnorm with smallest nonzero eigenvalues.
4 Stack these eigenvectors into V := [ v1, . . . ,vT ] ∈ RN×T .
5 Row-normalize V

Ṽi,: := Vi,:
∥Vi,:∥2

, i = 1, . . . , N.

6 Apply K-means clustering to the rows of Ṽ, yielding labels {ãi}Ni=1.

By projecting nodes into a low-dimensional spectral subspace (T ≪ N ) instead of

clustering directly in the original node space, these approaches effectively capture global

connectivity and reveal nodes that are “structurally similar” in the same community.

Alternative algorithms are also available in the MATLAB toolbox for community detection by

Kehagias (2018). In Monte Carlo experiments, we found that perfect clustering is unnecessary

for our proposed MCMC sampler in Algorithm 4.2. Moderate misclassification in the starting

values is corrected throughout the MCMC procedure, which refines ai using both network

and outcome information.
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C.2 On Simulation Study

C.2.1 Diagnostic Plots

DGP I(a): N = 1000, unobserved degree heterogeneity, high SNR

Figure C.1: Draws for λg (SCHSAR-left and HSAR-right).

Figure C.2: M-H acceptance rate of λg (SCHSAR-left and HSAR-right).
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Figure C.3: Draws for βg (SCHSAR-left and HSAR-right).

Figure C.4: Draws for ωg (SCHSAR-left and HSAR-right).

Figure C.5: Draws for κg (SCHSAR only).

Figure C.6: Draws for γ and σ2
a (SCHSAR only).



APPENDIX C. APPENDIX FOR CHAPTER 4 223

DGP I(b): N = 1000, unobserved degree heterogeneity, medium SNR

Figure C.7: Draws for λg (SCHSAR-left and HSAR-right).

DGP I(c): N = 1000, unobserved degree heterogeneity, low SNR

Figure C.8: Draws for λg (SCHSAR-left and HSAR-right).
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DGP II(a): N = 1000, unobserved degree heterogeneity, link misspecification, high SNR

Figure C.9: Draws for λg (SCHSAR-left and HSAR-right).

Figure C.10: M-H acceptance rate of λg (SCHSAR-left and HSAR-right).

Figure C.11: Draws for βg (SCHSAR-left and HSAR-right).
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Figure C.12: Draws for ωg (SCHSAR-left and HSAR-right).

Figure C.13: Draws for κg (SCHSAR only).

Figure C.14: Draws for γ and σ2
a (SCHSAR only).
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DGP II(b). N = 1000, unobserved degree heterogeneity, link misspecification, medium SNR

Figure C.15: Draws for λg (SCHSAR-left and HSAR-right).

DGP II(c). N = 1000, unobserved degree heterogeneity, link misspecification, low SNR

Figure C.16: Draws for λg (SCHSAR-left and HSAR-right).
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DGP III(a). N = 1000, unobserved homophily, high SNR

Figure C.17: Draws for λg (SCHSAR-left and HSAR-right).

Figure C.18: M-H acceptance rate of λg (SCHSAR-left and HSAR-right).

Figure C.19: Draws for βg (SCHSAR-left and HSAR-right).
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Figure C.20: Draws for ωg (SCHSAR-left and HSAR-right).

Figure C.21: Draws for κg (SCHSAR only).

Figure C.22: Draws for γ (SCHSAR only).
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DGP III(b). N = 1000, unobserved homophily, medium SNR

Figure C.23: Draws for λg (SCHSAR-left and HSAR-right).

DGP III(c). N = 1000, unobserved homophily, low SNR

Figure C.24: Draws for λg (SCHSAR-left and HSAR-right).
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DGP IV(a). N = 1000, unobserved homophily, link misspecification, high SNR

Figure C.25: Draws for λg (SCHSAR-left and HSAR-right).

Figure C.26: M-H acceptance rate of λg (SCHSAR-left and HSAR-right).

Figure C.27: Draws for βg (SCHSAR-left and HSAR-right).



APPENDIX C. APPENDIX FOR CHAPTER 4 231

Figure C.28: Draws for ωg (SCHSAR-left and HSAR-right).

Figure C.29: Draws for κg (SCHSAR only).

Figure C.30: Draws for γ (SCHSAR only).
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DGP IV(b). N = 1000, unobserved homophily, link misspecification, medium SNR

Figure C.31: Draws for λg (SCHSAR-left and HSAR-right).

DGP IV(c). N = 1000, unobserved homophily, link misspecification, low SNR

Figure C.32: Draws for λg (SCHSAR-left and HSAR-right).
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C.2.2 Additional Monte Carlo Experiments

C.2.2.1 Results for small sample size

Table C.1: DGP V: N= 200, Unobserved Degree Heterogeneity

SCHSAR HSAR

SNR Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 -0.15 -0.146 0.074 0.004 0.074 0.88 -0.710 0.205 -0.560 0.596 0.14

λ2 0.15 0.136 0.067 -0.014 0.068 0.92 -0.446 0.265 -0.596 0.652 0.20

λ3 0.30 0.301 0.034 0.001 0.034 0.97 0.022 0.206 -0.278 0.346 0.42

ω1 0.45 0.454 0.033 0.004 0.033 0.99 0.452 0.037 0.002 0.037 1.00

ω2 0.35 0.345 0.032 -0.005 0.032 0.98 0.345 0.037 -0.005 0.037 0.99

ω3 0.20 0.200 0.026 0.000 0.026 0.97 0.203 0.031 0.003 0.031 0.98

β11 -0.50 -0.460 0.195 0.040 0.199 0.89 -0.419 0.288 0.081 0.299 0.84

β12 0.50 0.443 0.243 -0.057 0.250 0.89 0.404 0.298 -0.096 0.313 0.88

β13 -1.00 -0.986 0.150 0.014 0.151 0.95 -1.001 0.034 -0.001 0.034 0.97

β21 -0.75 -0.688 0.304 0.062 0.311 0.90 -0.617 0.443 0.133 0.463 0.88

β22 0.80 0.741 0.306 -0.059 0.312 0.91 0.654 0.443 -0.146 0.467 0.86

β23 1.20 1.195 0.042 -0.005 0.042 0.95 1.198 0.034 -0.002 0.034 0.93

κ1 0.80 0.777 0.040 -0.023 0.046 0.81 – – – – –

κ2 0.60 0.595 0.055 -0.005 0.055 0.86 – – – – –

κ3 0.25 0.252 0.035 0.002 0.035 0.97 – – – – –

γ 1.50 1.514 0.042 0.014 0.044 0.86 – – – – –

High

σ2
a 2.00 2.038 0.239 0.038 0.242 0.91 – – – – –

λ1 -0.15 -0.153 0.229 -0.003 0.229 0.97 -0.587 0.236 -0.437 0.497 0.49

λ2 0.15 0.054 0.251 -0.096 0.269 0.94 -0.362 0.297 -0.512 0.592 0.62

λ3 0.30 0.212 0.272 -0.088 0.286 0.97 0.000 0.295 -0.300 0.420 0.93

ω1 0.45 0.452 0.040 0.002 0.040 0.99 0.453 0.043 0.003 0.043 0.99

ω2 0.35 0.341 0.039 -0.009 0.040 0.99 0.337 0.040 -0.013 0.042 1.00

ω3 0.20 0.207 0.037 0.007 0.037 0.99 0.210 0.039 0.010 0.040 0.99

β11 -0.50 -0.394 0.322 0.106 0.339 0.82 -0.330 0.396 0.170 0.431 0.78

β12 0.50 0.321 0.408 -0.179 0.446 0.82 0.207 0.477 -0.293 0.560 0.78

β13 -1.00 -0.934 0.306 0.066 0.313 0.93 -0.881 0.359 0.119 0.379 0.87

β21 -0.75 -0.568 0.486 0.182 0.519 0.83 -0.471 0.576 0.279 0.640 0.80

β22 0.80 0.643 0.481 -0.157 0.506 0.84 0.541 0.598 -0.259 0.651 0.75

β23 1.20 1.127 0.290 -0.073 0.299 0.93 1.118 0.274 -0.082 0.286 0.91

κ1 0.80 0.747 0.125 -0.053 0.136 0.92 – – – – –

κ2 0.60 0.581 0.145 -0.019 0.146 0.91 – – – – –

κ3 0.25 0.254 0.274 0.004 0.274 0.96 – – – – –

γ 1.50 1.514 0.044 0.014 0.046 0.84 – – – – –

Low

σ2
a 2.00 2.045 0.242 0.045 0.246 0.90 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point

estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R−1∑R
r=1(α̂r − α), RMSE =

√
R−1∑R

r=1(α̂r − α)2, and Coverage = R−1∑R
r=1 1{α ∈ ĈI0.95,r}.
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Table C.2: DGP VI: N= 200, Unobserved Degree Heterogeneity, Link Misspecification

SCHSAR HSAR

SNR Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 -0.15 -0.138 0.082 0.012 0.083 0.93 -0.673 0.217 -0.523 0.566 0.27

λ2 0.15 0.131 0.080 -0.019 0.082 0.90 -0.448 0.286 -0.598 0.663 0.34

λ3 0.30 0.301 0.044 0.001 0.044 0.98 0.002 0.257 -0.298 0.393 0.59

ω1 0.45 0.454 0.033 0.004 0.033 0.98 0.453 0.038 0.003 0.038 0.99

ω2 0.35 0.344 0.031 -0.006 0.032 0.99 0.344 0.037 -0.006 0.038 0.99

ω3 0.20 0.201 0.027 0.001 0.027 0.96 0.203 0.031 0.003 0.031 0.98

β11 -0.50 -0.451 0.217 0.049 0.223 0.91 -0.428 0.276 0.072 0.285 0.85

β12 0.50 0.449 0.217 -0.051 0.223 0.94 0.413 0.283 -0.087 0.296 0.89

β13 -1.00 -1.001 0.008 -0.001 0.009 0.94 -1.002 0.036 -0.002 0.036 0.97

β21 -0.75 -0.672 0.338 0.078 0.347 0.88 -0.633 0.417 0.117 0.433 0.91

β22 0.80 0.721 0.337 -0.079 0.346 0.89 0.667 0.421 -0.133 0.442 0.86

β23 1.20 1.199 0.007 -0.001 0.007 0.96 1.199 0.036 -0.001 0.036 0.93

κ1 0.80 1.345 0.076 0.545 0.550 0.00 – – – – –

κ2 0.60 1.039 0.076 0.439 0.446 0.00 – – – – –

κ3 0.25 0.431 0.024 0.181 0.182 0.00 – – – – –

γ 1.50 0.872 0.034 -0.628 0.629 0.00 – – – – –

High

σ2
a 2.00 0.675 0.078 -1.325 1.327 0.00 – – – – –

λ1 -0.15 -0.153 0.252 -0.003 0.252 0.97 -0.526 0.275 -0.376 0.466 0.68

λ2 0.15 0.065 0.257 -0.085 0.271 0.97 -0.329 0.303 -0.479 0.567 0.75

λ3 0.30 0.179 0.286 -0.121 0.310 0.97 -0.018 0.309 -0.318 0.444 0.93

ω1 0.45 0.453 0.040 0.003 0.041 1.00 0.452 0.044 0.002 0.044 1.00

ω2 0.35 0.341 0.039 -0.009 0.040 0.99 0.337 0.040 -0.013 0.042 1.00

ω3 0.20 0.206 0.037 0.006 0.038 0.97 0.211 0.043 0.011 0.044 0.99

β11 -0.50 -0.388 0.330 0.112 0.349 0.82 -0.310 0.419 0.190 0.460 0.74

β12 0.50 0.328 0.390 -0.172 0.426 0.83 0.193 0.474 -0.307 0.565 0.78

β13 -1.00 -0.942 0.284 0.058 0.290 0.92 -0.886 0.333 0.114 0.352 0.87

β21 -0.75 -0.573 0.484 0.177 0.515 0.84 -0.432 0.616 0.318 0.693 0.77

β22 0.80 0.630 0.495 -0.170 0.524 0.83 0.511 0.611 -0.289 0.676 0.74

β23 1.20 1.165 0.126 -0.035 0.131 0.94 1.103 0.303 -0.097 0.318 0.89

κ1 0.80 1.299 0.204 0.499 0.539 0.28 – – – – –

κ2 0.60 1.026 0.233 0.426 0.486 0.44 – – – – –

κ3 0.25 0.478 0.310 0.228 0.385 0.90 – – – – –

γ 1.50 0.872 0.039 -0.628 0.629 0.00 – – – – –

Low

σ2
a 2.00 0.674 0.081 -1.325 1.328 0.00 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point

estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R−1∑R
r=1(α̂r − α), RMSE =

√
R−1∑R

r=1(α̂r − α)2, and Coverage = R−1∑R
r=1 1{α ∈ ĈI0.95,r}.
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C.2.2.2 Results for exogenous network formation

Table C.3: DGP VII: N = 1000, Unobserved Degree Heterogeneity, Exogenous Network Formation

SCHSAR HSAR

Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 -0.15 -0.157 0.047 -0.007 0.048 0.93 -0.158 0.044 -0.008 0.045 0.94

λ2 0.15 0.153 0.044 0.003 0.044 0.94 0.153 0.042 0.003 0.042 0.95

λ3 0.30 0.308 0.046 0.008 0.047 0.99 0.310 0.046 0.010 0.047 0.98

ω1 0.45 0.452 0.015 0.002 0.015 0.95 0.453 0.015 0.003 0.015 0.99

ω2 0.35 0.348 0.015 -0.002 0.015 0.97 0.348 0.015 -0.002 0.015 0.98

ω3 0.20 0.199 0.013 -0.001 0.013 0.93 0.199 0.013 -0.001 0.013 0.96

β11 -0.50 -0.500 0.003 0.000 0.003 0.93 -0.500 0.003 0.000 0.003 0.92

β12 0.50 0.499 0.011 -0.001 0.011 0.85 0.500 0.003 0.000 0.003 0.85

β13 -1.00 -0.999 0.011 0.002 0.011 0.96 -1.000 0.002 0.000 0.002 0.96

β21 -0.75 -0.750 0.003 0.000 0.003 0.94 -0.750 0.003 0.000 0.003 0.95

β22 0.80 0.798 0.017 -0.002 0.017 0.93 0.800 0.002 0.000 0.002 0.94

β23 1.20 1.200 0.004 0.000 0.004 0.96 1.200 0.003 0.000 0.003 0.96

κ1 0.00 0.001 0.004 0.001 0.004 0.94 – – – – –

κ2 0.00 0.000 0.003 0.000 0.003 0.96 – – – – –

κ3 0.00 0.000 0.004 0.000 0.004 0.96 – – – – –

γ 1.50 1.501 0.010 0.001 0.010 0.79 – – – – –

σ2
a 2.00 2.002 0.009 0.002 0.010 0.99 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of

the point estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across

replicates. We consider a model misspecification scenario where the network structure is exogenous rather than endogenous.

Estimating the SCHSAR model is able to identify zero correlation and still recover true values of the parameters, similar to a

correctly-specified HSAR model.



APPENDIX C. APPENDIX FOR CHAPTER 4 236

C.2.2.3 Results for homogeneous network effects

Table C.4: DGP VIII: N = 1000, Unobserved Degree Heterogeneity, Homogeneous Network Effects

SCHSAR HSAR

Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

λ1 0.15 0.149 0.010 -0.001 0.010 0.92 -0.585 0.192 -0.735 0.759 0.00

λ2 0.15 0.149 0.008 -0.001 0.008 0.96 -0.424 0.154 -0.574 0.594 0.00

λ3 0.15 0.150 0.008 0.000 0.008 0.98 -0.090 0.070 -0.240 0.250 0.00

ω1 0.45 0.452 0.014 0.002 0.015 0.99 0.451 0.020 0.001 0.020 0.98

ω2 0.35 0.348 0.015 -0.002 0.015 0.97 0.350 0.021 0.000 0.021 0.99

ω3 0.20 0.200 0.013 0.000 0.013 0.92 0.199 0.016 -0.001 0.016 0.92

β11 -0.50 -0.500 0.003 0.000 0.003 0.92 -0.493 0.090 0.007 0.091 0.92

β12 0.50 0.500 0.003 0.000 0.003 0.86 0.487 0.098 -0.013 0.098 0.90

β13 -1.00 -1.000 0.002 0.000 0.002 0.99 -1.000 0.015 0.000 0.015 0.96

β21 -0.75 -0.750 0.003 0.000 0.003 0.95 -0.732 0.158 0.018 0.159 0.91

β22 0.80 0.800 0.003 0.000 0.003 0.93 0.786 0.160 -0.014 0.160 0.96

β23 1.20 1.200 0.003 0.000 0.003 0.96 1.198 0.042 -0.002 0.042 0.97

κ1 0.80 0.798 0.004 -0.002 0.005 0.90 – – – – –

κ2 0.60 0.598 0.004 -0.002 0.004 0.97 – – – – –

κ3 0.25 0.249 0.004 -0.001 0.004 0.96 – – – – –

γ 1.50 1.501 0.010 0.001 0.010 0.77 – – – – –

σ2
a 2.00 2.000 0.010 0.000 0.010 0.99 – – – – –

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of

the point estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across

replicates. We consider a model misspecification scenario where network interaction effect is homogeneous rather than

heterogeneous. Estimating the SCHSAR model is able to recover true values of the parameters without generating spurious

heterogeneous effects if these parterns are indeed non-existent in the real data.
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C.3 On Empirical Application

C.3.1 Unobserved Heterogeneity

Figure C.33: Positive correlation between unobserved heterogeneity and centrality measures.

Table C.5: The Top 20 Firms with the Highest Unobserved Heterogeneity

Rank Firm SIC Field Size Degree Between Close Eigen UDH

1 Ibm 7370 Computers & Communications 99 0.181 0.118 0.46 0.238 0.38

2 Hp 3570 Computers & Communications 97 0.145 0.104 0.477 0.229 0.203

3 Ge 3724 Electrical & Electronic 100 0.087 0.07 0.464 0.131 -0.016

4 Du Pont 2820 Chemical 97 0.086 0.061 0.438 0.077 -0.027

5 Siemens 9997 Computers & Communications 99 0.102 0.064 0.457 0.173 -0.045

6 Dupont De Nemours Inc 2820 Chemical 96 0.081 0.05 0.416 0.057 -0.066

7 Motorola 3663 Computers & Communications 93 0.103 0.066 0.449 0.184 -0.07

8 Toshiba 3600 Electrical & Electronic 97 0.079 0.03 0.426 0.156 -0.078

9 Pfizer 2834 Drugs & Medical 98 0.107 0.061 0.422 0.072 -0.079

10 Intel 3674 Computers & Communications 96 0.109 0.045 0.427 0.181 -0.096

11 Microsoft 7372 Computers & Communications 98 0.097 0.041 0.429 0.18 -0.179

12 Ti 3674 Electrical & Electronic 89 0.075 0.014 0.405 0.157 -0.202

13 Bayer 2800 Chemical 98 0.064 0.028 0.422 0.065 -0.212

14 Hitachi 9997 Computers & Communications 99 0.078 0.036 0.437 0.155 -0.218

15 J&J 2834 Drugs & Medical 97 0.086 0.047 0.413 0.055 -0.226

16 Basf 2800 Chemical 98 0.062 0.026 0.422 0.056 -0.262

17 Oracle 7372 Computers & Communications 94 0.087 0.027 0.422 0.166 -0.263

18 Eastman 3861 Chemical 91 0.057 0.029 0.432 0.103 -0.28

19 Danaher 3826 Electrical & Electronic 87 0.054 0.029 0.421 0.106 -0.315

20 Alcatel 3661 Computers & Communications 97 0.07 0.016 0.403 0.132 -0.327

Notes: A node’s centrality measures include degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality; Size is

the percentile ranking of a firm’s total asset; SIC is the primary four-digit SIC code according to Compustat U.S. fundamentals database.
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C.3.2 Choice of the Number of Latent Types (G)

Table C.6: Parameter Estimates for the HSAR and SCHSAR Models (when G=3)

HSAR SCHSAR

1st Type 2nd Type 3rd Type 1st Type 2nd Type 3rd Type

Network Interaction

Assignment Probability π
0.416

(0.272)
[0.00, 0.68]

0.412
(0.043)

[0.33, 0.50]

0.185
(0.274)

[0.00, 0.66]

0.541
(0.100)

[0.36, 0.72]

0.321
(0.046)

[0.23, 0.41]

0.138
(0.098)

[0.00, 0.30]

Interaction Effect λ
0.174

(0.371)
[-0.58, 0.97]

0.226
(0.035)

[0.16, 0.29]

-0.012
(0.461)

[-0.77, 0.92]

0.146
(0.053)

[0.07, 0.27]

0.189
(0.055)

[0.06, 0.28]

0.217
(0.220)

[-0.17, 0.74]

Intercept β1

-0.022
(4.452)

[-11.07, 5.35]

-3.171
(0.464)

[-4.08, -2.23]

-2.026
(8.383)

[-18.89, 15.08]

2.735
(1.161)

[-0.35, 4.09]

-1.462
(2.395)

[-4.08, 3.29]

1.740
(5.928)

[-13.41, 14.74]

logTaxPrice β2

-8.289
(6.356)

[-12.88, 7.83]

-2.428
(0.853)

[-4.08, -0.77]

-3.012
(9.137)

[-18.84, 14.52]

-9.322
(1.855)

[-12.30, -4.62]

-3.383
(3.066)

[-12.25, 1.49]

-2.268
(6.727)

[-14.18, 12.51]

logCapitalExpense β3

-0.727
(4.625)

[-13.56, 10.60]

0.292
(0.069)

[0.16, 0.43]

1.340
(7.158)

[-13.78, 17.34]

0.540
(0.134)

[0.19, 0.73]

0.354
(0.231)

[0.06, 0.86]

0.186
(4.410)

[-11.53, 10.16]

EBIT β4

-0.792
(3.744)

[-9.53, 7.47]

0.052
(0.027)

[-0.00, 0.11]

2.006
(8.052)

[-16.05, 17.77]

0.037
(0.044)

[-0.04, 0.13]

0.102
(0.151)

[-0.04, 0.56]

0.670
(4.645)

[-9.87, 14.41]

logEmployment β5

-2.932
(8.046)

[-25.44, 3.95]

-0.617
(0.084)

[-0.79, -0.45]

-0.525
(7.022)

[-16.96, 16.20]

-0.112
(0.145)

[-0.46, 0.13]

-0.514
(0.234)

[-0.82, 0.10]

-0.460
(4.594)

[-12.37, 11.30]

logRevenue β6

-1.459
(6.745)

[-13.64, 15.18]

0.109
(0.094)

[-0.08, 0.29]

0.059
(8.619)

[-13.60, 19.21]

-0.966
(0.283)

[-1.24, -0.22]

-0.178
(0.529)

[-1.25, 0.34]

-0.457
(3.974)

[-8.10, 12.77]

Correlation κ – – –
0.977

(0.206)
[0.53, 1.36]

0.261
(0.259)

[-0.15, 0.85]

0.977
(0.206)

[0.53, 1.36]

Unobserved Heterogeneity σ2
a – – –

3.102
(0.132)

[2.85, 3.37]
Network Formation

SIC homophily γ1 – – –
0.725

(0.017)
[0.69, 0.76]

Tech homophily γ2 – – –
0.692

(0.010)
[0.67, 0.71]

Criteria

Log likelihood
-1958.68
(20.94)

-44949.63
(9729.57)

AICM
4794.66
(20.68)

189418920.84
(4440159.24)

Observations 1150 1150

Notes: This table presents the estimation results for the HSAR and SCHSAR models with G = 3. MCMC sampling runs a total of 50, 491
iterations, where the first 500 iterations discarded as burn-in and every 10th draw is retained, yielding 5, 000 effective draws. Posterior means,
standard deviations, and 95% equal-tailed intervals (ETI) are computed using these MCMC draws.
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Figure C.34: Network of interactions by latent types defined from SCHSAR (G=2) estimation results.

C.3.3 Direct, Indirect, and Total Effects

Table C.7: Regressions of Effects of Interest on Firm Characteristics

Direct Indirect Indirect Total Total

Effects Spillin Spillout Spillin Spillout

(1) (2) (3) (4) (5)

logTotalAsset −0.092*** 0.010** 0.017** −0.082*** −0.075**

(0.025) (0.004) (0.007) (0.024) (0.030)

Computers & Communications −1.511*** −0.027 −0.105** −1.539*** −1.616***

(0.158) (0.025) (0.044) (0.148) (0.185)

Drugs & Medical −0.438*** 0.041 −0.021 −0.397** −0.458**

(0.167) (0.026) (0.047) (0.156) (0.195)

Electrical & Electronic −1.388*** −0.023 −0.089* −1.411*** −1.477***

(0.183) (0.029) (0.052) (0.171) (0.215)

Mechanical −1.026*** −0.011 −0.041 −1.037*** −1.067***

(0.214) (0.034) (0.060) (0.200) (0.251)

Others −0.292 0.002 −0.003 −0.290 −0.295
(0.222) (0.035) (0.063) (0.208) (0.260)

Degree Centrality −6.974* 1.084* 25.125*** −5.890* 18.151***

(3.722) (0.591) (1.048) (3.478) (4.352)

Intercept 8.685*** 1.090*** 0.896*** 9.775*** 9.581***

(0.209) (0.033) (0.059) (0.195) (0.244)

Observations 1150 1150 1150 1150 1150

Adjusted R2 0.137 0.021 0.447 0.157 0.105

Notes: Standard errors are reported in parentheses. Coefficients marked with *, **, and *** are significant at the 10%, 5%,

and 1% levels, respectively.
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