A Unaiversity
of Glasgow

Trinh-Thi-Thuy, Duong (2025) Three essays in Bayesian microeconometrics:
embracing causality and heterogeneity. PhD thesis.

https://theses.gla.ac.uk/85674/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without
first obtaining permission from the author

The content must not be changed in any way or sold commercially in
any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/
research-enlighten@glasgow.ac.uk



https://theses.gla.ac.uk/85674/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Three Essays in
Bayesian Microeconometrics:
Embracing Causality and Heterogeneity

A thesis by

Duong Trinh-Thi-Thuy

Submitted in fulfilment of the requirements
for the Degree of Doctor of Philosophy

Unuversity

/ of Glasgow

Adam Smith Business School
College of Social Science

University of Glasgow

June 2025



Abstract

This thesis leverages Bayesian methods to address econometric challenges in microeconomic
settings, with a focus on causality and heterogeneity. The contributions are provided in three

essays.

The first essay (Chapter 2) proposes a novel approach, Bayesian Analogue of Doubly
Robust (BADR) estimation, to estimate unconditional Quantile Treatment Effects (QTEs) in
observational studies. This estimand offers valuable insights into treatment effect heterogeneity
across different outcome ranks. By incorporating Bayesian machine learning techniques, the
framework can effectively handle high-dimensional covariates and nonlinear relationships
to achieve better accuracy and appropriate uncertainty quantification. The simulation results
show that BADR estimators yield a substantial improvement in bias reduction for QTE
estimates compared with popular alternative estimators found in the literature. I revisit the role
of microcredit expansion and loan access on Moroccan household outcomes, demonstrating
how the new method adds value in characterising heterogeneous distributional impacts on
outcomes and detecting changes in overall economic inequality, which is also appealing to

other applied contexts.

The second essay (Chapter 3) introduces a new approach that harnesses network or
spatial data to identify and estimate direct and indirect causal effects in the presence of
selection-on-unobservables and spillovers. The proposed framework nests the Generalised
Roy model to explicitly account for endogenous selection into treatment and goes beyond
to capture spillovers through exposure mapping to neighbours’ treatment. This allows for
heterogeneous effects across individuals and enables exploration of various policy-relevant
treatment effects. I develop Bayesian estimators based on data augmentation methods, offering
efficient computation and proper uncertainty quantification, which is supported by simulation
experiments. I apply the method to evaluate the Opportunity Zones (OZ) program, which
aims to stimulate economic growth in distressed U.S. census tracts through tax incentives. The

results show both direct and indirect positive impacts on housing unit growth in designated



Qualified Opportunity Zones (QOZs), but unselected tracts (non-QOZs) experience no
beneficial spillovers, remaining at a disadvantage. Moreover, the model predicts that offering
investment tax credits to non-QOZs would lead to negative outcomes, making the program’s

expansion to these areas ineffective.

The third essay (Chapter 4) is based on a joint work with Dr Santiago Montoya-Blandon. We
develop a new econometric framework for modelling network interactions with heterogeneous
effects, while addressing the issue of network endogeneity. The proposed Selection-corrected
Heterogeneous Spatial Autoregressive (SCHSAR) model overcomes the limitations inherent
in the standard spatial autoregressive (SAR) specification by achieving these dual objectives.
We incorporate a finite mixture structure to capture rich heterogeneity in network interaction
effects and explicitly model link formation, with latent variables playing a crucial role. For
estimation and inference, our fully Bayesian approach effectively handles the computational
challenges arising from the complex likelihood function and latent structure. We present a
simulation study that validates the proposed approach. In the empirical application to an
innovation network among American firms, we reveal significant positive yet heterogeneous
interaction effects on corporate R&D investments, after accounting for endogenous network
formation. The findings highlight different firm behaviours and reveal notable transmitters and
absorbers in response to exogenous R&D policy shocks. This framework enables quantification
of firm-level direct and spillover effects, thus providing valuable insights for evidence-based

and targeted policy design.

By utilising recent developments in Bayesian econometrics, my research seeks to overcome
the limitations of conventional methods, particularly in handling high-dimensional models,
endogeneity, heterogeneity, and several forms of spillovers. Ultimately, the proposed methods
enable more flexible and robust microdata analysis, contributing to a deeper understanding of
individual and group differences in economic behaviour, as well as causal effects. This, in

turn, can lead to more informed and effective policy decisions.

il
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Chapter 1

Introduction

1.1 General Background

Microeconometrics plays a vital role in developing sophisticated tools and methods that
integrate microdata analysis with microeconomic modelling. At the heart of this field are two

critical aspects: causality and heterogeneity.

Knowledge of causes and effects is profoundly important for decision-making, whether
in government designing policies, firms allocating resources, or individuals making life
choices. Causal inference has transformed our ability to move beyond mere correlation to
establish genuine causal relationships. Within economic contexts, agents often operate in
complex, interdependent systems where multiple factors simultaneously influence outcomes.
Consequently, confounding factors can give rise to endogeneity, which poses a substantial
challenge in identifying and estimating economic quantities of interest. Without proper
attention to causality, applied microeconometric work risks producing misleading guidance
that could lead to ineffective or even counterproductive interventions. Methodological
advancements are thus crucial to equip researchers with rigorous tools for recovering causal
effects. The field of causal inference in econometrics has experienced significant progress,
culminating in the 2021 Nobel Prizes awarded to David Card, Josh Angrist, and Guido
Imbens. As Imbens (2022) reflected in his Nobel Lecture, the field had rapidly evolved
through fruitful dialogue between empirical practice and interdisciplinary research, enhancing
both transparency and relevance. This recognition at the highest academic level underscores

that embracing causality has become a defining feature of modern microeconometrics.

Heterogeneity is another crucial dimension well documented in microeconometrics,
especially since Heckman (2001). He emphasised that “Accounting for heterogeneity
and diversity and its implications for economics and econometrics is ... a main theme”

in the field. This marked a decisive departure from traditional economic models that
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assumed homogeneous responses across individuals or units, a simplification that often
obscured crucial variations in economic behaviour. The empirical reality reveals substantial
heterogeneity: different individuals respond differently to identical policies, treatments,
or economic shocks. This variation is not merely a statistical nuisance to be averaged out
through aggregate measures. Rather, heterogeneity may contain essential information about
the underlying economic processes and mechanisms that drive individual decision-making
and outcomes. Understanding this heterogeneity is of great importance because it determines
who benefits from policies, under what conditions interventions are effective, and how
economic relationships vary across different populations or contexts. A growing focus on
heterogeneous effects has been enabled by the availability of increasingly rich, granular
datasets that allow researchers to examine variation across individuals, firms, regions, and
time periods in unprecedented detail. These data developments necessitate methodological

advancements to enhance the field’s capacity to move beyond “one-size-fits-all” conclusions.

This dual focus on causality and heterogeneity has become a central theme in
microeconometrics, however, creating substantial challenges that demand innovative

methodological solutions.

1.2 Bayesian Inference in a Nutshell

Bayesian inference is a framework for statistical reasoning, where probability represents a
degree of belief that is updated systematically as new data become available. Fundamentally,
this is grounded in Bayes’ theorem, which combines prior beliefs with empirical evidence to
produce a posterior distribution. This posterior quantifies the uncertainty regarding the model
parameters after observing the data in a principled, probabilistic manner. The formal setup is

discussed below.
Likelihood function

The starting point of Bayesian analysis is a model of the data-generating process. Let
0 € © C R? denote the unknown parameter vector and y = [y, .. .,y,] be the observed
data. The conditional probability density (or mass) function of the data given the parameters
is

p(510) = [T (l0).

This is called the likelihood function when viewed as a function of 6 for fixed y: £(0) =
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p(y|@). According to the likelihood principle, all evidence about 6 provided by the data is
contained in £(0). Bayesian inference proceeds by combining this likelihood with a prior

distribution over 6.
Prior specification

The prior distribution p(@) expresses beliefs about the values of 8 before observing any data,
and must be explicitly stated by the researcher. When reliable prior knowledge is available,
such as that from domain expertise, economic theory, or previous studies, informative priors
can be used to incorporate that information. In the absence of such knowledge, diffuse (or
non-informative) priors are often chosen to exert minimal influence on the inference process,

allowing the data to “speak for themselves”.

In complex econometric models, particularly those with heterogeneous agents or high-
dimensional parameter spaces, simple prior choices may prove inadequate. In these settings,
hierarchical priors introduce an additional layer of modelling, where the parameters themselves
are drawn from distributions governed by higher-level (hyper-)parameters. For instance, rather
than specifying a single prior for all parameters, we allow the prior distribution of each
individual or group-specific parameter ¢; to depend on shared hyperparameters ¢/, which are

themselves estimated from the data

0; ~ p(0il), ¥~ p(¥).

By borrowing strength across units, this structure enables partial pooling, a Bayesian
compromise between no pooling (fully individual estimates) and complete pooling
(homogeneous parameters). Another example is a class of shrinkage priors in high-
dimensional settings (many parameters relative to observations). Here, hierarchical priors
underpin modern Bayesian regularisation strategies to induce sparsity and shrinkage towards
zero. These approaches are particularly powerful in microeconometrics, where data per unit

(e.g., individual or firm) may be limited.
Bayes’ theorem

Bayes’ theorem provides the mechanism to update prior beliefs in light of the data, which

translates into posterior beliefs

plyl9)p(0) _  p(yl6) - p(6)
p(y) Je p(y|0) - p(0)d6

p(Oly) =
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The resulting posterior distribution p(@|y) reflects updated uncertainty about 8 given observed
data. The denominator p(y) = [g p(¥|€) - p(8)d0 is the marginal likelihood, which serves as
the normalising constant to ensure that the posterior integrates to one. In this step, we often
use a shortcut and bypass the need to directly compute the integral. Specifically, we can work
with the unnormalised posterior, noting that as a function of 0, the conditional density of 8

given y is proportional to

p(0ly) < p(y|0) - p(8) = L(O]y) - p(0),

which only requires knowing the posterior density up to a normalising constant. This
proportionality is sufficient for most inferential and computational tasks, particularly in

simulation-based approaches.
Posterior summary

A key advantage of Bayesian procedures is their capacity to quantify uncertainty fully in
the form of the entire posterior distribution of the parameters of interest. Researchers are left
to decide which summary statistics to report, potentially on the basis of decision-theoretic
criteria. Common point estimators include the posterior mean (minimising posterior expected
squared loss), median (minimising absolute loss), or mode, known as the Maximum A
Posteriori (MAP) estimator, which minimises the Dirac loss. Notably, with a flat prior density,
the posterior mode coincides with the maximum likelihood estimator (MLE). Regarding
interval estimation, Bayesian credible intervals (e.g., 95% highest posterior density (HPD)
intervals), which directly express the posterior probability that parameters lie within a specific

region, provide a natural interpretation of uncertainty.

Properties of Bayesian procedures in both large and small samples are generally at
least as good as those of maximum likelihood-based procedures. Bayesian analysis, being
conditional on the data, yields exact finite-sample inference, thereby obviating the need for
finite-sample corrections. This is particularly attractive in econometric contexts involving
limited data, weak identification, or complex hierarchical structures, where frequentist
methods may be unreliable. Furthermore, as the sample size increases, the influence of
the prior diminishes and the likelihood component of the posterior becomes dominant.
Consequently, Bayesian estimators tend to align closely with their frequentist counterparts in

large samples. This insight is formalised as the Bernstein-von Mises theorem in the literature
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(see, e.g., Van der Vaart, 2000, chap. 10). Under suitable regularity conditions, the posterior
distribution is asymptotically normal and centred at the MLE with variance equal to the
inverse Fisher information matrix (the asymptotic variance of the MLE). From a frequentist
viewpoint, this result implies that Bayesian methods can produce point estimators that are
asymptotically efficient, as well as confidence intervals that have asymptotically correct
coverage probability. Asymptotically, frequentist and Bayesian inferences rely on the same
limiting multivariate normal distribution. Thus, in regular cases and large samples, there is no

significant discrepancy between the two approaches.
Bayesian computation

The appealing theoretical properties of Bayesian methods have been acknowledged for
many years, but traditionally computational difficulties held back their practical applications.

Bayesian inference fundamentally involves evaluating integrals of the form

Eoy[h(6)] = [ h(0)p(6]y)do.

which typically have no closed-form solution, especially in high-dimensional parameter spaces
common in econometric models. The high dimensionality and intractability of posterior

distributions pose substantial barriers, necessitating numerical approximation techniques.

Computational advances over the past decades — most notably, the advent and refinement
of Markov chain Monte Carlo (MCMC) algorithms — have significantly mitigated earlier
computational challenges. MCMC methods simulate a dependent random sequence, known as
a “Markov chain”, of parameter draws {0(1), ..,08 )} whose stationary distribution matches
the posterior distribution p(8|y). The simulated chain facilitates empirical approximation of

posterior expectations as

By [1(6)] = 5 > h(6¥).

b=1
Metropolis-Hastings (MH) is a versatile and widely-used class of MCMC algorithms
that constructs a Markov chain by iteratively proposing parameter values from a chosen
distribution and correcting potential inaccuracies through acceptance-rejection steps. A
common implementation, the random-walk Metropolis algorithm generates a candidate
parameter draw by sampling from a Gaussian proposal distribution centred at the current

state. Formally, given a current state is 6", a candidate draw 6™ is generated as
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6" ~ N (6", 0°I). The move from 8" to 8™ is accepted with probability

o = min {p(gcand’y)’ 1} ,
p(0*"y)
and rejected (i.e., remaining at 8""") with probability 1 — «. Despite being robust and
broadly applicable, the efficiency of MH depends critically on properly tuning the
proposal distribution. Gibbs sampling, a special case of the Metropolis—Hastings algorithm
with an acceptance probability of one, breaks the curse of dimensionality by exploiting
low-dimensional conditional distributions. The Gibbs sampler cycles sequentially through
parameter blocks, drawing each component from its full conditional posterior distribution
0 ~ p(6,16% . ).

This significantly simplifies the computation when these conditional posteriors have a
convenient analytical form. When facing complex conditional targets, Gibbs sampling
is often combined with the Metropolis-Hastings steps, resulting in a hybrid MH-within-
Gibbs approach utilised efficiently in numerous applications. Notably, efficient Bayesian
computation remains an active interdisciplinary research area, although detailed discussion

exceeds the scope of this overview.

In summary, the computational revolution has made Bayesian inference widely feasible
across econometric settings. There are now few restrictions regarding the choice of priors,
complexity of likelihood functions, or dimensionality of parameter spaces. Consequently,
Bayesian methods have evolved to serve as superior alternatives to classical methods,
delivering innovative computational and modelling solutions to complex econometric
problems. Early examples of significant microeconometric issues, especially related to
causality and heterogeneity, solved using Bayesian methods include: (1) Discrete choice
models and panel data models with individual heterogeneity (e.g., Athey and Imbens,
2007; Chamberlain and Hirano, 1999; McCulloch and Rossi, 1994), and (2) Causal
inference, treatment effects, and selection models (e.g., Chamberlain and Imbens, 2003;
Chib and Jacobi, 2007; Jacobi et al., 2016). This list, of course, is not exhaustive. Bayesian
econometric applications have kept expanding rapidly. In microeconometrics, the Bayesian
approach enables flexible, coherent, and computationally feasible inference in settings where

heterogeneity, dynamics, and complex data structures matter.
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This brief overview can only provide a preliminary map to the major ideas and developments
of Bayesian methods in microeconometrics. For more comprehensive discussions, the reader
is referred to Li and Tobias (2011), Cameron and Trivedi (2005; 2022), Chan et al. (2019), and
Rossi et al. (2024). The merits of the Bayesian approach combined with efficient computational
techniques are manifold. Importantly, there is an ongoing synthesis of Bayesian and frequentist
perspectives, shifting emphasis from philosophical debate toward methodological practicality
regarding what works best for different types of problems. As both approaches have appealing
features, recognising this synergy is beneficial for empirical research. In the golden age of
algorithmic development and the rising popularity of probabilistic programming, Bayesian
methods show great potential to meet the demands of modern microeconometrics and deserve

further exploration.

1.3 Thesis Contribution

In light of the motivation outlined above, this thesis develops methods for three distinct — yet
methodologically interconnected — settings in microeconometrics, with a consistent focus
on both causality and heterogeneity. The common vantage point is a Bayesian inferential

framework for handling the specific technical challenges that arise in each setting.

The first essay addresses the challenges associated with estimating unconditional Quantile
Treatment Effects (QTEs) in observational studies. This causal estimand offers valuable
insights into treatment effect heterogeneity by examining how effects vary across different
ranks of the outcome distribution, moving beyond average treatment effects (ATEs), which
can mask important distributional impacts. However, applied researchers often encounter
a vast set of possible covariates in observed datasets yet remain uncertain about which
specific ones are necessary to control for when recovering treatment effects. Additionally,
the QTE estimation problem involves nuisance parameters, including the entire conditional
cumulative distribution function (CDF) of each potential outcome conditional on potentially
high-dimensional covariates, which increases computational complexity. To circumvent
such obstacles, I propose the Bayesian Analogue of Doubly Robust (BADR) approach
with two key ingredients. First, to effectively accommodate high-dimensional covariates
and nonlinear relationships while achieving proper uncertainty quantification, I incorporate
Bayesian regularisation methods with attractive prediction performance to generate auxiliary

estimators for both the propensity score and conditional outcome distribution. I leverage
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multiple Bayesian quantile regressions augmented with shrinkage priors to address the unique
challenge of quantile estimation. Second, I derive the estimator for target QTEs by solving
an estimating equation built upon an efficient influence function specifically tailored to
quantile functionals. This results in double robustness, ensuring the final estimator remains
consistent if either the treatment assignment model or the outcome regression model is
consistently estimated but not necessarily both. The framework features a highly flexible
Bayesian modelling scheme that showcases favourable frequentist properties in finite samples
for QTEs, which has not been explored before. The simulation results show that BADR
estimators yield a substantial improvement in bias reduction for QTE estimates compared

with popular alternative estimators found in the literature.

While the first essay maintains selection-on-observables — stipulating that treatment is as
good as randomly assigned once we condition on observables — this assumption may not hold
in economic scenarios when unobservable factors simultaneously influence both individual
choices and their outcomes. The second and third essays delve into these more complex
sources of endogeneity in contexts such as noncompliance and network interference, while

continuing to model heterogeneous effects.

The second essay develops a new approach that utilises network or spatial data to identify
and estimate direct and indirect causal effects when both selection-on-unobservables and
spillovers (also known as interference) are present. The endogeneity challenge here is twofold:
unobservable characteristics affect treatment selection, and spillovers create interdependence
among individuals, which violates standard causal inference assumptions. The proposed
framework nests the Generalised Roy model to explicitly account for endogenous selection
into treatment and captures spillovers through exposure mapping to neighbours’ treatment.
Crucially, this allows for heterogeneous effects both across individuals and in terms of how
they respond to neighbours’ treatments, enabling the exploration of various policy-relevant
treatment effects. Given the inherent nature of the setting as a missing data problem, I develop
Bayesian estimators based on data augmentation methods, offering efficient computation and

proper uncertainty quantification.

A natural extension arises when the network structure that shapes the interference pattern
itself is endogenous. This is relevant to models of network interactions, where individual
outcomes depend on their peers in a network, and the network structure itself is endogenously

formed. Specifically, the decision to form links and the outcome of interest may be jointly
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determined by unobservable factors, creating a complex source of endogeneity. This concern
motivates the third essay, which shifts the focus to modelling network interactions with
heterogeneous effects while addressing the issue of network endogeneity. The third essay
introduces Selection-corrected Heterogeneous Spatial Autoregressive (SCHSAR) model, a
new econometric framework that overcomes the limitations inherent in the standard spatial
autoregressive (SAR) specification. We incorporate a finite mixture structure to capture rich
heterogeneity in network interaction effects and explicitly model endogenous link formation,
with latent variables playing a crucial role. The fully Bayesian approach effectively handles the

computational challenges arising from the complex likelihood function and latent structure.

Taken together, each essay demonstrates how flexible Bayesian modelling can overcome
limitations of conventional approaches. Beyond methodological contributions, these essays
provide empirical analyses using proposed methods, yielding policy-relevant insights across
diverse economic contexts. From understanding distributional impacts of financial expansion
(the first essay) to evaluating place-based economic development policies with spillovers
(the second essay), to informing targeted innovation policies based on firm-level network
formation and interaction (the third essay), the findings illustrate how accounting for both

causality and heterogeneity can enhance policy relevance.

The remainder of this thesis is organised as follows. Chapter 2 introduces the first essay,
“Causal Inference on Quantiles in High Dimensions: A Bayesian Approach”. Chapter 3
presents the second essay, “Bayesian Causal Inference in the Presence of Endogenous
Selection into Treatment and Spillovers”. Chapter 4 covers the third essay, “Modelling
Interactions with Heterogeneous Effects and Endogenous Network Formation”. Each essay is
self-contained, providing necessary information for the reader to understand the setting and
rationale underlying the proposed method. Finally, the conclusions summarise the findings
and offer broader implications. The technical details and supplementary results are relegated

to the appendices. Notation is introduced when appropriate.



Chapter 2

Causal Inference on Quantiles in High Dimensions:

A Bayesian Approach

2.1 Introduction

When evaluating the causal effect of policy interventions, the distributional impact appeals
to researchers and policymakers rather than the average impact alone. It helps to gain more
comprehensive and nuanced understanding of the complex effects, ultimately leading to more
effective decision-making. In many instances, uniform policies may benefit certain individuals
while adversely affecting others. If the effects are considerably heterogeneous, the average
treatment effect may not be a sufficient measure, as it likely masks substantial positive and
negative effects. Consequently, it is crucial to determine whether certain individuals are
worse off as a result of the policy. Even if multiple programs generate positive effects for all
individuals, the one that offers the greatest benefits to those at the lower tail of the distribution
of the outcome variable might be the most favourable. To illustrate, consider two job training
programs with identical mean net impact that is positive. The first program, which increases
wages at the bottom of the wage distribution, would be more appreciated than the second
program, which only raises the top of the wage distribution. This necessitates the advancement
of econometric techniques to enable studies on distributional treatment effects in the presence
of heterogeneity. This goal has received special interest and has become increasingly relevant

in economic applications'.

Sets of quantile treatment effects (QTEs) can characterise the heterogeneous impacts of
the treatment on different points of the outcome distribution. With a binary treatment, as

originally defined by Doksum (1974) and Lehmann et al. (1974), QTEs measure the difference

'A variety of relevant applications include, but are not limited to, financial interventions (Callaway and Li,
2019; Meager, 2022), educational subsidies (Duflo et al., 2021), public health policies (Schiele and Schmitz,
2016), and local migration incentives (Bryan et al., 2014; Chetty et al., 2016); all entail social welfare implications
and garner substantial attention in public discourse.

10
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between the unconditional quantiles of the potential outcome distribution under treatment
and the potential outcome distribution under nontreatment. Put differently, this captures any
difference between the two cumulative distribution functions of treated and untreated potential
outcomes. Moreover, the quantile method may be employed, even by those not primarily
interested in distributional consequences, to enhance the robustness of their analysis. This
is particularly relevant in light of the well-established fact that median regression is more
resistant to outliers than mean regression, while many economic data sets involve heavy tails.
One notable example in development economics is household welfare measures, including

consumption and business outcomes.

The difference between these two unconditional distributions of the potential outcomes itself
might be appealing to policymakers. This reflects the change in the distribution function as a
whole when the treatment could be exogenously shifted between two distinct counterfactual
scenarios: universal treatment and no treatment. As the entire distribution function often yields
insights into inequality or social welfare analysis, computing QTEs serves as a convenient way
to summarise noteworthy aspects. For instance, this enables the detection of changes in overall
inequality in the distribution of outcomes, which is a critical concern given the potentially

negative consequences of social and economic inequality in the contemporary world?.

By definition, QTEs can reveal heterogeneity in the causal effects on different quantiles.
However, individual results are only interpretable under a rank preservation assumption on the
underlying treatment effect distribution. This assumption asserts that an observed individual
would maintain their position (rank) in the distribution regardless of their treatment status. As
a result, the set of quantile treatment effects is equivalent to the quantiles of the distribution
of individual treatment effects. Nonetheless, rank preservation is a strong assumption because
it requires the relative value of the potential outcome for a given individual to be unchanged,
whether that individual is treated or untreated. Even when rank preservation is violated,
heterogeneity in the effects across various quantiles shows evidence of heterogeneity in these
individual effects, making QTEs remain a meaningful parameter for policy purposes (see,

e.g., Angrist and Pischke, 2009; Meager, 2022).

In this paper, the primary focus is on unconditional QTEs, which are separate from
conditional QTEs. Although both are standard parameters of interest in the program evaluation

literature, it is important to highlight the distinction between them. An unconditional

2This interest is at the core of the econometric literature strand on distributional counterfactual analysis (see,
e.g., Chernozhukov et al., 2013; Firpo and Pinto, 2016; Rothe, 2010).
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(marginal) quantile function is a one-dimensional function of the quantile level 7 only.
Defined as the difference between the unconditional quantiles of the treated and untreated
potential outcome distributions, unconditional QTEs describe the effects of treatment status
on the overall outcome distribution without conditioning on the covariates. In contrast,
conditional quantile functions are multi-dimensional, depending on not only a chosen quantile
level but also values of the covariates. Conditional QTEs thereby express the effects on
the outcome distribution within sub-populations characterised by covariate values. More
specifically, an individual may rank high in the unconditional distribution of the outcome,
meanwhile possessing a low rank in the conditional distribution of the outcome. This is
possible if that person has values of observed characteristics that are associated with a large
value of outcome overall, yet within the group of people sharing identical values of the
observed characteristics, he or she has a comparatively low outcome®. Conditional QTEs
enable examination of the heterogeneity of the effects with respect to the observables;
however, they might be sensitive to the choice of covariates to be included. Unconditional
QTEs, on the other hand, aggregate the conditional effects across the entire population,
thereby being more easily conveyed to the policymakers and the public, at the cost of not
providing any information about the relationship between the covariates and the outcome.
Further discussion can be found in surveys by Glewwe and Todd (2022) and Frolich and
Melly (2013). The unconditional quantile treatment effects are appropriate estimands to focus
on when the ultimate objective is related to the marginal distribution, for example, the welfare
of the (unconditionally) poor. This unconditional effect has been a central estimand of interest
in the literature on micro-credit expansion and housing outcomes, reinforcing the need for

robust methods suited to recovering and exploring heterogeneity in these effects.

When the target causal estimand is an unconditional quantile treatment effect (QTE),
several identification strategies have been developed in the literature. One common approach
relies on the assumption of exogenous treatment, typically in the form of a randomised
controlled experiment where all participants comply with their treatment assignment. In this
ideal scenario, implementing an unconditional QTE estimator is a straightforward process,
similar to estimating the average treatment effect (ATE) directly from the realised outcomes
of control and treatment groups. However, when such experimental data is unavailable,

inferring causal relationships from observational data poses challenges because the observed

3Consider a simple example involving wages and years of education, the median income of all individuals
with doctoral degrees may be greater than the top quantile for high school dropouts, presuming a strong positive
association between education levels and earnings.



CHAPTER 2. CAUSAL INFERENCE ON QUANTILES IN HIGH DIMENSIONS:
A BAYESIAN APPROACH 13

treatment status is not assigned randomly. This gives rise to the second approach based on the
selection-on-observables assumption, which implies that the treatment is as good as randomly
assigned once we condition on observables. It is worth noting that, although our ultimate
goal is to obtain an unconditional QTE, covariate information serves to correctly identify the

unconditional quantiles and remove selection bias.

In this paper, we maintain the identifying assumption of selection-on-observables, which is
widely applicable to empirical studies in economics. This is due to the fact that randomised
controlled trials (RCTs) are often intricate and expensive, rendering them infeasible in many
cases. In addition, this assumption is justifiable in various contexts, such as when the treatment
is randomly allocated within demographic groups. As elaborated in the subsequent sections,
employing covariates for the sake of identification involves identifying the entire conditional
cumulative distribution function (CDF) of each potential outcome conditional on potentially
high-dimensional covariates. This CDF is then a nuisance function for the identification of
QTEs. More often than not, applied researchers encounter a vast set of possible covariates,
but they are uncertain about which specific ones are necessary to control for when recovering
treatment effects. In addition, the conditional CDF can itself be a complex function. This
necessitates the consideration of high-dimensional models to estimate quantile treatment

effects.

This paper aims to circumvent such obstacles and contribute to the emerging econometric
literature on identification and estimation of QTEs. We propose a novel framework, the
Bayesian Analogue of Doubly Robust (BADR) approach, for estimating QTEs in an
observational study while accounting for the presence of potentially high-dimensional
covariates. Briefly, we employ Bayesian techniques to specify and estimate both the treatment
assignment and the outcome models, obtaining posterior draws that are then plugged
into the doubly robust estimator for QTEs. This estimator is derived as the solution to
efficient influence functions, leading to its double-robustness property. The resulting BADR
framework comprises two ingredients. First, to effectively accommodate high-dimensional
covariates and nonlinear relationships while achieving proper uncertainty quantification, we
incorporate various Bayesian regularisation methods including sparsity-inducing priors and
Bayesian nonparametric methods to generate auxiliary estimators for both the propensity
score and the conditional distribution of the outcome variable. We leverage multiple Bayesian

quantile regressions to address the unique challenge in quantile estimation, which differs
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from previous studies on ATE. Second, our method provides double protection against model
specification by employing posterior predictive distributions of parameters from both the
treatment assignment and outcome models. In the absence of high-dimensional covariates,
this approach collapses to a doubly-robust Bayesian estimator for the QTEs without shrinkage
priors, which itself has not been explored in previous literature. Overall, the proposed strategy
enables us to obtain QTE estimators which showcase highly flexible Bayesian modelling

manner coupled with favourable frequentist properties in finite samples.

The advantages of the proposed estimators are demonstrated in Monte Carlo simulations,
which consider difficult settings such as high-dimensional covariate spaces or complex
nonlinear effects of covariates. Through numerical evidence, we observe substantial gains
in bias reduction for QTE estimates across all scenarios, highlighting the strong estimation
and inferential features of our methodology in comparison with the naive estimator and
popular approaches considered in the literature. The proposed methodology introduces a fresh
perspective to empirical research by offering a novel approach for estimating unconditional
QTEs in microeconomic applications. The new estimator, Bayesian Doubly Robust with
shrinkage prior, allows us to revisit the microcredit experiment originating from the work
of Crépon et al. (2015) and explore the impact of household financial access on household
welfare. Unlike previous studies that strictly rely on the randomisation of microcredit
availability at the village level, we employ a new causal estimand and identification strategy
that utilises observed, non-random borrowing patterns at the household level as well as
observable household characteristics. Our findings indicate an overall positive effect,
with heterogeneous impacts across the different points of each outcome distribution of
interest. It is anticipated that universal financial access will result in an ex-post increase in
economic inequality among households, mostly attributed to the significant improvements
in consumption and business outcomes at the upper quantiles. Notably, there is evidence of
systematic harm in terms of total profit, as a segment of households may experience adverse

effects that extend the left tail of the distribution to the left.

The remainder of this paper is organised as follows. Section 2.2 presents a brief review
of existing studies relevant to our paper and situates the paper within existing literature.
In Section 2.3, we formally define quantile treatment effects in a causal framework along
with key identification assumptions. In Section 2.4, we present the proposed approach for

estimating quantile treatment effects. Next, we evaluate the performance of our methods using



CHAPTER 2. CAUSAL INFERENCE ON QUANTILES IN HIGH DIMENSIONS:
A BAYESIAN APPROACH 15

simulations in Section 2.5 and use the proposed method to examine the causal impact of loan
access on the distribution of household outcomes in Section 2.6. Finally, we conclude the
paper in Section 2.7 with brief final remarks on the method and policy recommendations

based on our results.

2.2 Related Literature

2.2.1 Causal Inference on Quantiles

Firpo (2007) first considered efficient estimation of unconditional quantile treatment effects
(QTEs) and proposed an inverse propensity weighting (IPW) estimator based on propensity
scores estimated using a sieve approach, specifically a logistic power series approximation.
Under strong smoothness conditions, this IPW estimator is v/N-consistent* and achieves
the semiparametric efficiency bound, which is reminiscent of analogous results for the [IPW
estimator for the average treatment effect (ATE) with nonparametrically estimated propensities
(Hirano et al., 2003). Although these purely weighted methods circumvent the estimation
of nuisances that depend on the estimand, their desired behaviour is restricted to certain
nonparametric weight estimators and requires strong smoothness assumptions. Extending the
IPW estimator to high-dimensional settings runs into issues due to the fact that its convergence
rate can be slowed down by that of the propensity score and its error may depend heavily on
the particular method used to learn the propensity score. The properties prohibit the use of
general machine learning methods and potentially leading to unstable estimates. In this sense,

Firpo’s (2007) IPW estimator lacks the double robustness and flexibility of our proposal.

Zhang et al. (2012) developed several nonparametric methods that resemble those used
for ATE and proved that the augmented inverse probability weighted (AIPW) estimator, by
augmenting a term that involves the residuals from the outcome regression model, enhances
the efficiency of the IPW estimator. The AIPW estimator is expected to be locally efficient
and doubly robust under regularity conditions. Diaz (2017) proposed a semiparametric
approach using targeted maximum likelihood estimation (TMLE) for marginal quantiles.
While sharing the same asymptotic properties as the standard AIPW, the TMLE estimator
demonstrates better finite-sample performance when analysing causal effects on the quantiles,
similar to improvements in the mean effect (e.g., Van der Laan et al., 2011). Our proposed

approach relates to both AIPW and TMLE estimators when solving the estimating equation

4N is the sample size.
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derived from the efficient influence function, a core concept for achieving double robustness.
However, Zhang et al.’s (2012) AIPW method assumes strong distributional assumption (e.g.,
a normal linear model after a Box-Cox transformation of the outcome for each treatment),
limiting its application to cases of positive outcomes. In contrast, our Bayesian Analogue of
Doubly Robust estimation framework employs Bayesian data-adaptive estimation to flexibly fit
nuisance functions. Diaz’s (2017) TMLE approach can be considered quite general and closest
to our approach among frequentist methods. While both opt for estimating the conditional
distribution as an important middle step, the distinct feature of our modelling strategy lies
in utilising multiple Bayesian quantile regressions and thus can incorporate regularisation

seamlessly.

Unlike previous studies that did not explicitly consider the case of potentially high-
dimensional covariates, Kallus et al. (2024) proposed Localized Debiased Machine Learning
(LDML) to enable efficient inference on QTEs in this scenario. For ATE estimation, nuisance
functions do not depend on the estimand and can therefore be estimated independently using
flexible, data-driven, machine learning methods and plugged into the estimating equation.
This Debiased Machine Learning (DML) approach is, however, far more challenging for
QTEs estimation, as the efficient influence function involves nuisances that depend on the
estimand of interest. Specifically, DML requires we learn the whole conditional cumulative
distribution function of a real-valued outcome, potentially conditioned on high-dimensional
covariates, evaluated at the quantile of interest. To obviate this cumbersomeness, Kallus et al.
(2024) localise the nuisance estimation step to a single initial rough guess of the estimand,
such as the IPW estimate, thereby enabling the standard use of machine learning methods
in this DML-extended framework. Despite also aiming for a flexible modelling manner, our
paper takes a different approach, estimating the whole continuum of the estimand-dependent
nuisances by discretising a hypothetical continuum of quantile regression estimators. The
rationale for our choice is based on the advantages of Bayesian quantile regression over the

frequentist alternative.

While most studies on unconditional QTEs are based on frequentist methods, Xu et
al. (2018) proposed a Bayesian nonparametric approach (BNP) that utilises a Bayesian
additive regression tree (BART) model to estimate the propensity score, followed by a
Dirichlet process mixture (DPM) of normals model to construct the distribution of potential

outcomes conditional on the estimated propensity score. A key advantage of this approach
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over frequentist methods is the simultaneous estimation of multiple quantiles of interest.
However, it can be regarded as a propensity score analysis which avoids directly modelling the
conditional distribution of potential outcomes given the covariates. In contrast, we propose
Bayesian Analogue of Doubly Robust estimators that can handle a large number of covariates

and are more robust to misspecifications.

2.2.2 Causal Inference in High Dimensions

This paper fits into a broader literature on high-dimensional causal inference with
observational data. High-dimensional settings are becoming increasingly prevalent, presenting
challenges for causal inference. This problem involves either a large number of available
covariates or an outcome model with an infinite or large number of parameters, such as
nonparametric and semiparametric models. regularisation, a popular technique originally
designed to perform prediction in high-dimensional data analysis, has garnered substantial
attention in causal inference. It gives rise to numerous causal machine-learning techniques
which provide high-quality inference on treatment effects (Athey et al., 2018; Belloni et al.,
2014; Chernozhukov et al., 2018; Farrell, 2015). While the majority of studies are frequentist
regularisation-based approaches, there has been growing interest in adopting Bayesian
regularisation-based techniques into causal inference, as Bayesian inference is a natural
probabilistic framework for quantifying uncertainty and learning about model parameters. It
is known that many frequentist penalised likelihood estimators can be considered equivalent
to the posterior modes of Bayesian estimators under certain choices of shrinkage priors such
as spike-and-slab prior (Ishwaran and Rao, 2005; Mitchell and Beauchamp, 1988), Bayesian
Lasso prior (Park and Casella, 2008), and Horseshoe prior (Carvalho et al., 2010, 2009).°
Recent studies have successfully deployed these techniques for confounding adjustment to
estimate average treatment effects in the presence of high-dimensional controls (Antonelli et
al., 2022, 2019; Hahn et al., 2018). Bayesian nonparametric methods are also powerful tools
utilised for regularisation within the Bayesian paradigm. Among them, the Bayesian Additive
Regression Tree (BART) has emerged as a workhorse widely used for causal inference.
Introduced by Chipman, George, and McCulloch (2006; 2012), BART models offer several
advantages over linear models, such as automatic adaptation to nonlinearity. Regarding

implementation, BART is also preferred due to its fast computation, good performance of

>Thorough reviews and well-designed simulations could be found in Korobilis and Shimizu (2022), Van Erp
et al. (2019) and Polson and Sokolov (2019), who advocate the merits of Bayesian sparsity-inducing priors in
comparison to frequentist counterparts.
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default choices of hyperparameters and available software (Linero and Antonelli, 2023).
When there is sufficient covariate overlap, BART has been shown to outperform numerous
Frequentist machine learning methods in prediction problems, including random forests. Hill
(2011) further proposed the use of BART in causal inference and demonstrated its efficacy in
flexibly modelling the response surface. To mitigate the regularisation-induced confounding
issue (Hahn et al., 2018) when using a BART outcome model, Hahn et al. (2020) developed
the Bayesian causal forest model, a BART-based approach that includes a fixed estimate
of the propensity score for additional adjustment in the outcome model. This model yields
excellent performance in estimating heterogeneous treatment effects, making BART a strong
default choice for integrating Bayesian nonparametric methods into causal effect modelling.
Subsequent studies by Spertus and Normand (2018) and Xu et al. (2018) employed BART
models to fit the propensity score in the first stage, enabling the use of Bayesian propensity

score analysis to estimate ATE (with high-dimensional data) and QTEs, respectively.

2.2.3 Double Robustness

This paper also adds to the development of doubly robust estimators, which have gained
extensive use in the causal inference literature (Bang and Robins, 2005; Scharfstein et
al., 1999) owing to their desirable property of providing consistent inference even under
misspecification of either the treatment assignment or outcome regression models (but not
both). For a comprehensive survey of doubly robust estimators and their properties, we refer

interested readers to Daniel (2014).

Doubly robust estimators have been extended to accommodate nonparametric or high-
dimensional settings by enabling data-adaptive estimation of treatment and outcome models.
This includes doubly robust estimators with the group Lasso (Farrell, 2015), double machine
learning estimators (Chernozhukov et al., 2018), doubly robust matching estimators (Antonelli
et al., 2018) and targeted maximum likelihood estimators (Van der Laan et al., 2011),
among others. In these complex settings, doubly robust estimators offer an extra benefit that
parametric convergence rates (v/ V) can be achieved even when each of the propensity score
or outcome regression models converges at slower rates (v/V or faster). Roughly speaking,
this echoes the insights from recent advances in the double machine learning literature
(Chernozhukov et al., 2022). Specifically, penalising either the propensity score model or the
outcome model alone would be insufficient for valid causal inference, but combining the two

as nuisance functions achieves a desirable convergence rate and finite-sample performance in
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high-dimensional causal analyses.

There have been attempts to propose doubly robust Bayesian recipes, however, this area
is still less established than its Frequentist counterpart. This is mainly due to a lack of
consensus on propensity score adjustment in the Bayesian causal modelling framework (L1
et al., 2023; Robins et al., 2015; Robins and Ritov, 1997), despite its central role being
well recognised in the literature (Rosenbaum and Rubin, 1983; Zigler, 2016). Pioneering
work on the Bayesian approach for doubly robust causal inference was done by Saarela
et al. (2016), in which the authors formalised the problem and addressed it by combining
the posterior predictive distribution of parameters with the Bayesian bootstrap. The idea
of utilising posterior predictive distribution was later advanced in the line of work by
Antonelli et al. (2022) and Shin and Antonelli (2023), who aimed to improve inference
for doubly robust estimators for the average treatment effect (ATE) and the conditional
average treatment effect (CATE), respectively. The general strategy involves estimating both
the propensity score and the conditional outcome mean using Bayesian methods. Posterior
draws from their respective posterior predictive distributions are then obtained and plugged
into a doubly robust estimator. While this approach is not fully Bayesian because there is
no joint likelihood for all parameters stated, it effectively integrates Bayesian modelling
techniques and Frequentist inferential procedures for causal analysis with proper uncertainty
quantification. These features are particularly important in high-dimensional scenarios, where
handling large numbers of covariates and quantifying uncertainty can be challenging. Recent
theoretical developments have established Bernstein-von Mises (BvM) results when examining
the asymptotic behaviours of Bayesian inference procedures for causal effects. Ray and Vaart
(2020) attained BvM for ATE using propensity score-adjusted priors, however, that prior
adjustment alone leaves a bias when smoothness is traded off between the propensity score
and the conditional outcome mean functions. Breunig et al. (2025) made this issue explicit and
introduced a posterior correction to eliminate the bias term, yielding a semiparametric BvM
under double-robust smoothness conditions. Additionally, Yiu et al. (2025) demonstrated that
using double robust estimands still requires posterior corrections for valid inference, even
when their conditions for the BvM theorem impose Donsker properties on the propensity
score and the conditional mean functions — a more restrictive assumption than the prior
correction of Ray and Vaart (2020) and particularly, the double robust method of Breunig et
al. (2025). A comparison between the double robust method and semiparametric Bayesian

methods was also provided in Breunig et al. (2024) for average treatment effects on the treated
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(ATT) in the Difference-in-Differences (DiD) context. Both satisfy the BvM, but only the
regularized version achieves it under double robust smoothness conditions. In more regular,
low-dimensional settings, the semiparametric Bayesian approach is very competitive, but its
performance declines with increasing model complexity. These findings serve as an interesting
motivation for doubly robust approaches combined with posterior corrections under more

complex designs.

In spite of the progress made in Bayesian literature, most studies have focused on the
doubly robust estimation of either unconditional or conditional average treatment effect.
Our paper presents a distinctive contribution by concentrating on unconditional quantile
treatment effects (QTE). This causal estimand is of independent interest as it offers a
different and complementary approach to uncover treatment effect heterogeneity. Although the
conditional average treatment effect (CATE) also characterises treatment effect heterogeneity,
the effects vary across individuals or subgroups defined by observed characteristics. In
contrast, unconditional QTE focuses on the effect heterogeneity of the treatment across
different outcome ranks without conditioning on individual characteristics or covariates.
Evaluating the impact on the entire outcome distribution of interest makes this approach
particularly relevant to distributional concerns and inequality, offering valuable insights when
used alongside other estimands, such as CATE, to understand the potential consequences
of treatments and policies. With regard to methodology, we build on the work of Antonelli
et al. (2022), who combined the posterior predictive distribution of nuisance parameters
with the Frequentist doubly robust estimator initially proposed for the ATE. We develop a
Bayesian Analogue of Doubly Robust estimators for the QTE, tackling unique challenges
that arise in the quantile setting. First, we address the need for different doubly robust
estimators for the QTE compared to the ATE setting by solving an estimating equation built
upon an efficient influence function specifically tailored to quantile functionals. Second, the
QTE estimation problem involves new nuisance parameters, including the entire conditional
cumulative distribution function (CDF) of each potential outcome conditional on potentially
high-dimensional covariates, which increases the computational complexity. We overcome
this hurdle by employing multiple Bayesian quantile regressions that incorporate shrinkage
priors. This helps us explicitly estimate the conditional distribution while accounting for
high dimensionality. This approach has not been pursued in previous studies, making our

contribution unique in the literature.
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2.3 Notation and Causal Estimand

2.3.1 Notation

Let 7"and Y be the treatment and outcome of interest, respectively, while X is a p-dimensional
vector of potential controls. Denote P, as the joint distribution of the observed data. Assume
that we observe an independent and identically distributed (i.i.d.) sample Z; = {Y;, T;, X, }
for: = 1,..., N with empirical distribution Py, where we collect all observations into

Z = (Zy,...,Zy).Fort € {0,1}, let
Y be the potential outcome for a generic subject under treatment ¢.

e Fi(y) = P[Y® < 4] be the cumulative distribution function (CDF) of Y'®, and
q(1) = F7'(7) = inf{y | F;(y) > 7} be its 7" quantile, where 7 € (0, 1).

* Fyu(y) = P[Y® <y | T = 1] be the cumulative distribution function (CDF) of Y (¥
givenT =1, and ¢y (7) == Ft|_11(7') = inf{y | Fy1(y) > 7} be its 7" quantile, where
7€ (0,1).
2.3.2 Causal Estimand

Quantile Treatment Effects (QTEs) are defined as the difference between the 7! quantiles
(for a particular value of 7) of the treated potential outcome distribution and the untreated

potential outcome distribution. For 7 € (0, 1),
QTE(T) = Fy (1) = Fy (7)) = a1(7) = qo(7). 2.1)

For identification, a fundamental issue is whether each of the potential outcome
distributions, F(y) and Fy(y), is identified. We therefore make the following assumptions in

our setup:

1. Unconfoundedness (Selection-on-Observables)
YW y©® j 7x, (2.2)

where | denotes statistical independence.
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2. Strong Overlap

BeR: 0<i<PT=1[X]<1-0<1. (2.3)

3. Stable Unit Treatment Value Assumption (SUTVA)

T, = t implies Y =Y, fort € {0,1}. (2.4)

(2

The conditional distributions of potential outcomes are therein identified by determining the
conditional distribution of observed outcomes for individuals within each group, as expressed
by: PY(t) <y | X] =P[Y <y | T = t,X]. Consequently, the marginal distribution of

potential outcomes can be identified and calculated as
Fi(y) = /IP[Y <y|T=tX=x|dFx(x), forte{0,1}, (2.5)

where Fx (x) is the marginal distribution of covariates X in the population of interest.
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Figure 2.1: Illustration of Quantile Treatment Effects (QTEs). The left-hand figure demonstrates
unconditional distributions of Treated and Untreated potential outcomes, which are colored in green
and blue, respectively. The horizontal distance between these two distributions yields QTEs. For
instance, QTE(0.95), QTE(0.5), and QTE(0.05) are represented by three dashed lines in the figure.
QTE:s across all values of quantile levels are plotted in the right-hand figure.
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2.4 Proposed Estimation Approach

2.4.1 Justification

With the primary parameter of interest being Quantile Treatment Effects (QTE), we develop
the Bayesian Analogue of Doubly Robust (BADR) estimation framework for this target causal
estimand. Our approach draws inspiration from the work by Antonelli et al. (2022), originally
proposed for the Average Treatment Effect (ATE), to combine Bayesian modelling methods
for treatment assignment and outcome models with Frequentist doubly robust estimators
using posterior predictive distributions. By tackling extra unique challenges that arise in the
quantile setting, our framework aims to offer enhanced finite-sample performance without

strict reliance on correct model specifications.
The implementation procedure is straightforward as follows:

1. Specify separate Bayesian treatment assignment and outcome models;

2. Draw the propensity score and the conditional distribution of each potential outcome
from their corresponding posterior predictive distributions; and

3. Plug these values into a doubly robust estimator associated with the parameter of

interest.

While our estimation approach is applicable in general, it is particularly useful in handling
high dimensionality, addressing challenges posed by potentially large numbers of controls
and the involvement of the entire conditional potential outcome distribution as a nuisance
parameter. In subsection 2.4.2, we propose a modelling framework in high dimensions that
flexibly incorporates Bayesian regularisation techniques. Before doing so, we first establish a
foundation by defining the doubly robust estimator of QTE. Then, we demonstrate a promising

avenue for estimation and inference within a Bayesian framework.

2.4.1.1 The Doubly Robust Estimator for Quantile Treatment Effects

Let m(X) == P(T = 1 | X; ©O,) be the propensity score (i.e., the probability of receiving
active treatment given covariates X), which is associated with the treatment assignment
model; and G(y | t,X) = P[Y <y | T =t,X;0¢] (fort € {0,1}) be the conditional
distributions of Y given the treatment status and covariates, which is associated with the
outcome model. Let © = O, U O represent the parameters of the treatment assignment

and outcome models. A general QTE estimation problem involves 7(X) and G(y | t, X) as
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nuisance functions. We denote #(X) and G(y | t, X) as estimators of 7(X) and G(y | ¢, X)

(for t € {0, 1}), respectively.

For a chosen quantile level 7 € (0, 1), a doubly robust (DR) estimator of the QTE for binary
treatments is given by

——dr
QTE ()= 4" (1) — 4y (), (2.6)
where for a sample of size NV

 ¢9"(7) is a DR estimator of the 7-quantile of treated potential outcome and can be

derived as the solution to

T; . .
N7 { — []1{}/; <q}—G(q | 1,Xi)} + G(q1 | LXZ-)} =T 2.7
T 7 (X))
e 4d"(7) is a DR estimator of the 7-quantile of untreated potential outcome and can be

derived as the solution to

VS [ < b Gl 0.X)] + 6w [0X0 ) =7 @9

Formal derivation and discussion regarding §"(7) are presented in Appendix A.1, where
(A.14) is equivalent to equation (2.7). Estimating equations (2.7) and (2.8) are built upon
the efficient influence function for quantiles of each potential outcome distribution. The
efficient influence function captures the first-order sensitivity of the target parameter to
small perturbations in the underlying distributions. In our estimation problem, which involves
two nuisance models — treatment assignment and outcome — the efficient influence function
exhibits a double robustness property, resulting in a doubly robust estimator. This estimator
is consistent provided that either the propensity score 7(X) or the conditional outcome

distribution (y | t,X) is consistent, but not necessarily both.

Estimating equations (2.7) and (2.8) are also closely connected to the Neyman orthogonal
moment conditions, which is extensively leveraged in the debiased machine learning literature
(see, e.g., Belloni et al., 2017; Chernozhukov et al., 2018; Kallus et al., 2024). Neyman
orthogonality is a desirable property that ensures the final estimate of the target parameter
remains robust even when there are small errors in the estimation of nuisance parameters.

This property is particularly relevant when regularisation methods are needed to handle
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high-dimensional covariates in estimating the nuisances. In such cases, employing Neyman
orthogonal moment conditions helps correct for the first-order biases that may arise from

plugging in estimates of the nuisance parameters.

2.4.1.2 The Bayesian Analogue of Doubly Robust Estimator

The population parameters O are typically unknown and need to be estimated. In this setting,
we consider a Bayesian framework to estimate the parameters associated to both the treatment
assignment and outcome models. This enables uncertainty in parameter estimation to be

directly captured from the posterior distribution.

Let Pg|z denote the posterior distribution, and {6®1 B be a sequence of B draws obtained
from this posterior distribution. The point estimator A for the estimand of interest A takes a

form of the posterior mean

A = TFez[A(Z,0)] ~ B Y A(Z,00), (2.9)

b
where A(Z, ©®) is evaluated using the observed data Z and parameters ©(*). Therefore, our
point estimator for the QTE at a chosen quantile level 7 € (0, 1) is the average value of the

quantity in (2.6) with respect to the posterior distribution of model parameters.

Regarding inference, our variance of interest corresponds to the variance of the estimator’s

sampling distribution and can be defined as follows

Vz(A) = Vz(Eez[A(Z, ©)]). (2.10)

Variance estimation can be implemented using the nonparametric bootstrap (Tibshirani and
Efron, 1993) to account for uncertainty in all stages of the estimator. Specifically, L multiple
datasets {ZW}} | are created by sampling with replacement from the empirical distribution
of the data. For each resampled dataset, we re-estimate the posterior distribution of © and
then recalculate g z[A(Z, ©)] accordingly. Finally, we compute variance of this quantity
across all bootstrap samples. It is worth noting that there are two main sources of uncertainty
arising throughout our QTE estimation procedure: first, the sampling variability stemming
from the data even if we know the true outcome and treatment assignment models; second,

the variability in parameter estimation for the propensity score and conditional outcome
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distributions. An alternative inference scheme from Antonelli et al. (2022) can be adopted by

targeting these two parts separately

Vz(A) = Vo {Eep[A(ZD,0)]}  + Vez[A(Z,0)] . 2.11)
N———
uncertainty stemming uncertainty in estimation
from the data of nuisance parameters

The first term resembles the true variance, except for the outer moment, which is associated
with a resampled version Z) of the original data Z. The posterior samples of parameters ©
estimated using the original data are maintained, but the point estimator Eg z[A(Z®"), ©)] is
recalculated for each resampled dataset. In this way, it captures only the uncertainty of the
data, not that resulting from parameter estimation. In contrast, the second term accounts for
the latter type of uncertainty based on the variability of the full posterior samples of A(Z, ©)

given the observed data Z.

2.4.2 Modelling Framework in High Dimensions

At this juncture, we present the high-dimensional modelling framework we use to provide
scalable estimation algorithms. We employ Bayesian techniques to specify and estimate
the treatment assignment and outcome models separately. To address the challenges posed
by high-dimensional feature spaces, we integrate various Bayesian regularisation methods
into our proposed framework to yield estimators of the nuisance functions corresponding to
the propensity score and the conditional distribution of the outcome, denoted as 7 (X) and
G (y | t, X), respectively. For the treatment assignment model, we adopt Bayesian Additive
Regression Trees (BART) priors, whose merits have been increasingly recognised (see, e.g.,
Chipman et al., 2012; Hahn et al., 2020; Hill, 2011; Linero and Antonelli, 2023). For the
outcome model, we leverage multiple Bayesian quantile regressions combined with shrinkage
priors to explicitly estimate the conditional distribution while accommodating potentially
high-dimensional covariates. This combined strategy allows us to develop a flexible and
doubly-robust Bayesian estimator with desirable finite-sample frequentist properties. To the
best of our knowledge, this modelling framework has not been previously pursued in the

literature, resulting in a novel approach to estimation of heterogeneous treatment effects.
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2.4.2.1 Treatment Assignment Model

We fit a binary Bayesian Additive Regression Trees (BART) model on the observations

{T;, X;}", to model the regression of the treatment assignment on control variables, that is,
T(X:) =P (T, = 1| X,) = H [foarr (X2)] (2.12)

where the link function H is either the CDF of the standard normal distribution for probit
BART or the CDF of the logistic distribution for the logit BART, and

M
feart(X;) = Z fiee (Xi; Ty i) are sum of M Bayesian regression trees.
m=1

Form € {1,..., M}, T, is a tree structure that consists of a set of splitting rules and a set
of terminal nodes; and pt = (1, - - -, flm.p,, ) 1S @ vector of parameters associated with by,
terminal nodes of I',,, such that fiee(Xy; Iy fn) = fimy if X; is corresponding to the [th

terminal node of I',,,.

The modelling choices used to implement the BART specification are presented in
Appendix A.2. Once a sequence of B posterior draws for the underlying BART parameters
has been obtained, B posterior samples of the fitted propensity score {7 (X)}Z_; can be

calculated by

M
(X)) = H [Z Jree (Xi;r;?,ug?)] fori=1,...,Nandb=1,...,B. (2.13)
m=1

2.4.2.2 Outcome Model

In contrast to the literature’s extensive coverage of conditional expectation estimation, data-
adaptive estimation of conditional distributions has received considerably less attention. For
each t € {0, 1}, we estimate the conditional distribution based on fitted conditional quantiles,
employing the sample analogue of the following alternative representation of the conditional

distribution

Fyix(y) = /01 1 {F;‘IX(T) < y} dr = /01 1 {Qyp((T) < y} dr, (2.14)

where Fy|x (-) and Qyx (-) are conditional distribution and conditional quantiles, respectively.
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The corresponding estimator is

Frix(y) = /01 1{Qyx(7) <y} dr
l—e
~ e+/€ 1 {Qy|x(7') < y} dr (2.15)

~ e+ 25215511 {Qypc(Ts) < y} ,
where Qy‘x(Ts) = XTB(TS) can be obtained by estimating S Bayesian quantile regression
model for each {7,}5_, where e < 75 < ... < 7, < 1 — e and the width §; = 7, — 7,_; —
0as S — oo. The second equation is adapted for tail trimming. The third equation aims
to avoid estimating the whole quantile regression process. Our discretisation technique is
similar to some previous studies (Belloni et al., 2017; Chernozhukov et al., 2013; Frolich and
Melly, 2013), however, we use the Bayesian quantile regression model rather than Koenker

and Bassett’s (1978) quantile regression from a frequentist viewpoint.

There are several advantages of this computational approach to the problem of estimating
conditional distributions. First, it enables us to leverage the Bayesian quantile regression
model, which not only suits our overall framework but also offers more flexibility than its
frequentist counterpart. Especially, Bayesian shrinkage priors can be readily applied to this
parametric quantile model with minor modifications, thereby handling better high-dimensional
covariates. This feature is thoroughly reviewed by Korobilis and Shimizu (2022). In addition,
while a very fine grid for values of 7, (i.e., large .5) is often required to gain accuracy, we
can make use of parallel computation because the conditional posteriors are applied in each
quantile level independently. While crossing or non-monotonic estimated quantiles are a valid
concern when the regression for each quantile is estimated separately®, the algorithm presented
above is originally designed for the rearrangement of crossing quantiles. This ensures that
our primary objective of interest, the conditional distribution, remains unaffected by these

potential estimation issues.

Further discussion on the Bayesian shrinkage priors and Bayesian quantile regression can
be found in Appendices A.3 and A.4, respectively. By drawing a sequence of B posterior
draws for the quantile regression parameters, we can obtain B posterior samples of the fitted

conditional outcome distributions {G®)(y | 0,X)}£_, and {G®)(y | 1,X)}£.,.

The estimated conditional quantile functions may be non-monotonic in the sense that 7 > 7 does not
necessarily imply Qyx (7) > Qy x (7).
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2.4.2.3 Algorithms for the Bayesian Analogue of Doubly Robust (BADR) Estimation

Upon acquiring sequences of B posterior draws of the fitted propensity score {7 (X)}2_,
and the fitted conditional outcome distributions {G® (y | t, X)}2_, for t € {0, 1}, we can
compute B values of the corresponding Quantile Treatment Effect (QTE) based on the full
posterior distribution of these nuisance parameters. The BADR point estimate of the QTE used
in this paper is derived as the average of these B values. The details of the implementation
are presented in Algorithm 2.1. Utilising B posterior samples of QTE, variance estimation

can be proceeded according to (2.11).

It is noteworthy that following Algorithm 2.1 requires solving two estimation equations,
(2.7) and (2.8), B times. This step may lead to intensive computations, particularly when
bootstrapping is involved. An alternative approach to combining the posterior distribution of
model parameters and the doubly robust estimator in Algorithm 2.1 would replace the nuisance
parameters m(X) and G(y | ¢, X) with plug-in estimates, such as their posterior means, as
outlined in Algorithm 2.2. This aligns with a frequentist modelling approach where doubly
robust estimators are evaluated using plug-in estimates of the parameters ©. While Algorithm
2.2 uses more compact information, there is a clear computational gain due to the fact that
estimation equations only need to be solved once. The inference procedure is conducted using
the original bootstrap variance estimation in (2.10) for ease of implementation. Furthermore,

our pilot Monte Carlo findings suggest that the alternative estimator yields similar results.
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Algorithm 2.1:
Bayesian Analogue of Doubly Robust (BADR) estimation for QTEs
(Full posterior samples)
Data: {Y;, T;, X;}",,7 € (0,1)
Result: Q/T\EdT(T)
Fit treatment assignment model on {7}, X;}!_; and obtain B posterior samples
{r®(X) 1L
fort =0,1do
Fit outcome model on {Y;, X; };.7,—; and obtain B posterior samples
{GOy | £, X) 1.
end
forb=1,...,Bdo
Solve ¢\” (1), ¢")() based on 7 (X) and G®) (y | t, X). > (2.7) and (2.8)
Calculate QTE® (1) = ¢\" (1) — ¢{? (7). > (2.6)
end
Caleulate A, = QTE" (r) = L X2, QTE®(7). > (2.9)
Algorithm 2.2:
Bayesian Analogue of Doubly Robust (BADR) estimation for QTEs
(Posterior means)
Data: {Y;, T;, X;}",,7 € (0,1)
Result: Q/TTEdT(T)
Fit treatment assignment model on {7}, X;}!_; and obtain B posterior samples
{rO(X)hL,
fort =0,1do
Fit outcome model on {Y;, X; };.7,—; and obtain B posterior samples
{GO% | . X)}L,.
end
Derive posterior mean from B posterior samples
#(X) = XL 7P (X) and Gy | £, X) = £ 2L, GO (y | £, X). > (2.9)
Solve ¢ (), ¢ (7) based on #(X) and G(y | t, X). > (2.7) and (2.8)

~ ——dr
Calculate A, .= QTE (1) = ¢ (1) — i (7). > (2.6)
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2.5 Simulation Study

We assess the finite-sample performance of our proposed approach, Bayesian Analogue of
Doubly Robust (BADR) estimation, in two simulations with details described below. For each
simulation, we specify the distribution of covariates, the treatment assignment mechanism
and the distribution of potential outcomes. The first simulation focuses on a linear setting
with varying covariate dimensionality to sample size ratio (p/N). In the second simulation,
we consider a nonlinear setting and further examine the double robustness of our proposed
estimators. Both of these data designs imply that assignment to the treatment is not completely
random, but satisfies the selection-on-observables assumption. From a theoretical perspective,
estimation of treatment effects that fails to account for the selection problem will inevitably
produce inconsistent estimates. We regard this approach as a benchmark and consider the
Naive estimator, which is an estimator of simple differences between empirical quantiles of

treated and control groups, without any correction for selection bias.

We develop two versions of the estimators which represent our proposed methodology
— Bayesian Doubly Robust estimator (BDR) and an extension that adds shrinkage priors
(BDRS). Specifically, the former employs the original Bayesian Quantile Regression while
the latter incorporates the Adaptive Lasso in order to account for sparsity and uncertainty in
the outcome model. Both estimators fit the propensity score using a logit BART model in
the first step. Furthermore, we also compare our proposed method with existing estimators.
The Bayesian nonparametric counterpart (BNP) is a fully Bayesian approach developed in
Xu et al. (2018), where the propensity score is estimated using a logit BART, then the
conditional distribution of the potential outcome given a BART posterior sample of the
propensity score in each treatment group is estimated separately using a Dirichlet process
mixture of multivariate normals. We additionally compare three frequentist methods — the
Localized Debiased Machine Learning (LDML) method introduced in Kallus et al. (2024),
the Targeted Maximum Likelihood Estimation (TMLE) method proposed in Diaz (2017), and
Firpo’s Inverse Probability Weighted (FIPW) method developed in Firpo (2007). Among
them, LDML and TMLE are two estimators that can leverage a variety of machine learning
methods. Particularly, in our simulation exercise, Random Forest is incorporated into LDML
and Lasso is integrated into TMLE. Implementation details of these methods can be found in

Appendix A.5.1.

In each simulation design, we generate 100 synthetic datasets. For each simulated dataset,
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we calculate quantile causal effects for 5 quantile levels, 7 € {0.10,0.25,0.50,0.75,0.90},
and their 95% credible (or confidence) intervals (CIs). We compare all the different approaches

in terms of average bias, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

2.5.1 Simulation Design 1 (SD1)

We first consider a linear setting in which the mean of potential outcomes is a linear
combination of covariates. We draw 40-dimensional covariates X (p = 40) from
the independent standard normal distributions and allow different sample sizes
N € {100,500,1000} of the dataset. Accordingly, we could evaluate the estimation
procedure across varying feature dimensionality (i.e., p/N ratio). The exact form of the true

model used to generate synthetic data is as follows:

T|X ~ Bern(m(X)),
YO | X~ N (u(X),25),
YW X~ N (14 u(X),3.75%)

(2.16)
Y=TxYD4+1-17)xYO,
where  7(X) = {1 +exp[—(X1 + Xo + X3)]} L,
/L(X) = X1 + XQ + X4 + X5.
1.00
— foly)
0.10- — fily)
g 075
é g 0.50
‘50.05— E
3 g
= .25+
— Fo(y)
0.001 0.004 — R
10 0 10 10 0 10
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Figure 2.2: True marginal densities and marginal distributions of the treated and untreated potential
outcomes in SD1. This design emulates a thought experiment relevant to policy evaluation literature.
Hypothetically assigning the entire population either to treatment or to control induces a change in
both location and shape of the outcome distribution.

Under this specification, the unconditional distribution of potential outcomes are Y (©) ~
N(0,10.25) and YV ~ Af(1,18.0625). Figure 2.2 provides a visual illustration of the

corresponding marginal densities and marginal distributions. As a result, the population
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quantile treatment effects can be computed analytically. In particular, the true 10%, 25%,
50, 75% and 90" QTEs are Ag 9 = (—4.447) — (—4.103) = —0.344, Ago5 = (—1.866) —
(—=2.159) = 0.293, Ags = 1 =0 = 1, Agrs = 3.866 — 2.159 = 1.707, and Aggy =
6.447 — 4.103 = 2.344, respectively.

Table 2.1: Comparison of point estimates for QTEs across 100 replicates (N = 1000, p = 40)

Percentiles
10th 25th 50th 75th 90th
True QTEs -0.34 0.29 1.00 1.71 2.34
-0.37 0.30 0.95 1.64 2.30
BDR
(-1.20, 0.46) (-0.38, 0.97) (0.37, 1.53) (1.00, 2.27) (1.50, 3.11)
-0.34 0.31 0.95 1.65 2.34
BDRS
(-1.16, 0.48) (-0.34, 0.96) (0.38, 1.53) (1.03, 2.27) (1.56, 3.12)
0.92 1.55 2.24 2.93 3.59
BNP
(0.24, 1.58) (1.01, 2.09) (1.74,2.74) (2.39, 3.48) (291, 4.25)
0.29 0.96 1.63 2.35 3.04
LDML
(-0.74, 1.31) (-0.08, 2.01) (0.25, 3.01) (-0.00, 4.70) (-1.74,7.82)
-0.38 0.39 1.07 1.75 2.32
TMLE
(-1.63, 0.86) (-0.44,1.22) (0.36, 1.78) (0.94, 2.56) (1.15, 3.49)
-0.38 0.27 0.92 1.64 2.25
FIPW
(-1.71, 0.96) (-0.93, 1.47) (-0.18, 2.02) (0.43, 2.85) (0.88, 3.63)
) 0.94 1.58 2.25 2.97 3.65
Naive
0.14, 1.74) (0.97,2.19) (1.67,2.84) (2.35, 3.59) (2.86, 4.43)

Notes: 95% Cls in parentheses correspond to 95% confidence intervals in Frequentist approach
or 95% posterior credible intervals in Bayesian approach. To estimate these 95% Cls, LDML and

FIPW use analytical standard errors, whereas others rely on the bootstrap method.

Table 2.1 presents point estimates for the quantile treatment effects, along with the average
lower and upper bounds of the corresponding 95% CIs across 100 simulated datasets. These
computations are based on a sample size of N = 1000 and p = 40. It is clear that the Naive
method exhibits substantial bias in its point estimates. This can be attributed to the absence of
adjustment for confounders in X, resulting in poor performance as expected. In comparison,
all other methods considered in our current setting outperform the Naive method in terms of

both bias and coverage, proving their effectiveness in correcting selection bias to some extent.

Our proposed estimators, BDR and BDRS, yield point estimates closest to the true values of

QTEs. Notably, incorporating a shrinkage prior, as in BDRS, further enhances the performance
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of BDR, particularly when the object of interest is extreme tails (i.e., 10" and 90™ percentiles).

Despite sharing a probabilistic approach, the Bayesian nonparametric estimator, BNP,
demonstrates differences from our proposed estimators. While the nonparametric method
produces point estimates slightly better than Na ive method, they are still far from the truth.
Moreover, the 95% credible intervals associated with BNP fail to cover the true values of
QTEs at any percentile. It aligns with the observation that BNP exhibits the smallest CI widths
among all surveyed methods, posing challenges in achieving satisfactory coverage rates. It
is worth noting that because both BDR and BNP use BART-logit to model the treatment
assignment in the first stage, their distinct performance illustrates the role of modelling the
conditional distribution of potential outcomes given confounders. Intuitively, BNP avoids
directly modelling the conditional distribution of potential outcomes given confounders.
Instead, it is grounded in the balancing property of the propensity score (Rosenbaum and
Rubin, 1983) to model the conditional distribution of the outcome given the propensity
score alone. While this approach involves estimating a less complex distribution due to
having only one binary regressor (i.e., the estimated propensity score) in the second stage,
it becomes skeptical in the case of misspecified treatment assignment. According to Monte
Carlo results in the original paper by Xu et al. (2018), the inclusion of non-confounders in the
treatment assignment equation entails less precise estimations of QTEs, thereby compromising
the performance of the BNP method. Aside from efficiency loss, finite-sample bias is also a
notable drawback of methods targeting a set of variables that best predict treatment assignment
without accounting for how these variables are related to the outcome, as widely discussed in

the context of average treatment effect (Belloni et al., 2014; Zigler and Dominici, 2014, etc.).

Among frequentist approaches, TMLE and F IPW perform reasonably well in terms of bias,
although they do not surpass our proposed estimators. Whilst the bootstrapped standard errors
of TMLE are smaller than the estimated asymptotic standard errors of FIPW’, both methods
provide corresponding 95% confidence intervals that contain the truth at any percentile. In
contrast, LDML yields point estimates that are less favourable compared to TMLE and F IPW.
However, its asymptotically calibrated confidence intervals still effectively capture the true

QTEs, despite having the widest spans across all quantile levels.

Boxplots in Figure 2.3 offer more insight on the sampling distributions of the difference

between the true and estimated quantities which produced by all estimators across 100

Firpo (2007) also recommends bootstrapping as possibly a good alternative to analytical standard errors
estimation in FIPW.
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simulated datasets. When NV = 1000, BDR and BDRS showcase nearly zero median (or mean)
bias as well as small variation, outperforming other methods. Their strong performance
persists even in smaller sample size of NV = 500. Interestingly, the advantage of BDRS, which
is developed by adopting a hierarchical shrinkage prior, becomes prominent when N = 100.
While the performance of BDR exhibits instability in the presence of high-dimensional
covariates, BDRS handles such settings more effectively, as evidenced by the remarkably

reduced box widths observed for all QTEs of interest.

% éﬁﬁﬁ ##ﬁ%%% P T %4}% éﬁ%ﬁ
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Figure 2.3: Sampling distributions of the difference between the true and estimated quantities for 10,
25t 50t 75% and 90™ QTEs across 100 replicates. The dashed line indicates zero difference.

Table 2.2 numerically validates our above findings on the pattern of mean bias. Both BDR
and BDRS alternately secure the top rank, exhibiting the smallest average bias across all
computed percentiles. While the challenge of pronounced average bias is inherent in the
high-dimensional setting (N = 100 and p = 40), as the p/N ratio decreases, the average
bias diminishes relatively fast for QTEs estimated by methods BDR, BDRS, TMLE, and F IPW.
Additionally, LDML also exhibits a declining trend in average bias, albeit at a slower rate. This

phenomenon is not observed with the Naive and BNP estimators.
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Table 2.2: Simulation Results for SD1, Average Bias

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW Naive
1000 -0.022 0.001 1.261 0.63 -0.041 -0.034 1.282

10th 500 0.008 0.153 1.261 0.794 0.121 0.102 1.269
100 -0.659 0.56 1.267 0.928 0.724 0.901 1.398

1000 0.003 0.017 1.261 0.669 0.1 -0.025 1.288

25th 500 0.047 0.103 1.245 0.764 0.266 -0.035 1.237
100 0.265 0.49 1.32 1.03 0.793 0.794 1.296

1000 -0.049 -0.045 1.24 0.632 0.071 -0.08 1.25

50th 500 0.035 0.053 1.209 0.718 0.215 -0.054 1.241
100 0.696 0.595 1.284 1.073 0.85 0.852 1.295
1000 -0.071 -0.057 1.228 0.641 0.045 -0.068 1.266
75th 500 0.022 0.071 1.192 0.743 0.172 -0.111 1.226
100 0.809 0.574 1.24 0.941 0.673 0.822 1.179
1000 -0.039 -0.006 1.247 0.696 -0.024 -0.089 1.302
90th 500 -0.008 0.096 1.21 0.736 0.094 0.07 1.206
100 0.564 0.712 1.293 1.036 0.825 1.093 1.314

Notes: This table displays the average bias across 100 replicates of different estimation methods.

The rows contain results for various percentile levels and for various sample size N.

With respect to the relative Mean Absolute Error (MAE), as presented in Table 2.3,
our proposed approach outperforms all competitors at high percentiles 50, 75%, and 90%.
Meanwhile, BDRS performs better than BDR in the majority of cases, especially in high-
dimensional scenarios. In addition, line plots of raw MAE in Figure 2.4 illustrate a downward

trend for both BDR and BDRS across all quantile levels as the p/N ratio decreases.

In conclusion, BDR and BDRS demonstrate similarly excellent performance in moderate
dimensionality, thereby facilitating robustness checks in practical use. BDRS even provides
extra merit thanks to its adaptation to high-dimensional settings. It is trivial that the Bayesian
Adaptive Lasso in BDRS is only one option among a wide range of shrinkage priors which can
be incorporated into our proposed framework. Thus, the results from this simulation exercise
imply the great potential of our methodology in flexibly handling high dimensions when

estimating quantile treatment effects.
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Table 2.3: Simulation Results for SD1, Relative MAE

Estimation Methods
Percentiles N BDR BDRS BNP LDML TMLE FIPW
1000 1.67 1.645 0.99 1.169 1.741 1.741
10th 500 1.571 1.462 0.964 1.078 1.547 1.634
100 2.449 1.194 0.945 1.123 1.272 1.346

1000 0.999 0.996 0.969 0.862 0.978 1.077

25th 500 1.135 1.117 1.017 0.947 1.07 1.391
100 1.182 0.986 0.93 1 0.992 1.107
1000 0.628 0.628 0.994 0.739 0.64 0.688
50th 500 0.673 0.666 0.976 0.778 0.676 0.694
100 0.876 0.81 0.964 0.943 0.876 1.012

1000 0.477 0.479 0.981 0.704 0.513 0.523

75th 500 0.547 0.56 0.981 0.776 0.592 0.604
100 0.927 0.771 1.004 0.912 0.81 0.992
1000 0.519 0.529 0.979 0.771 0.539 0.534
90th 500 0.572 0.596 1.002 0.819 0.623 0.669
100 1.109 0.822 0.988 0.919 0.851 1.06

Notes: This table displays the relative Mean Absolute Error (MAE) of different
estimation methods across 100 replicates. The rows contain results for various
percentile levels and for various sample size N. The relative MAE is the MAE
in comparison with the Naive method as the benchmark, where MAE =

R'Y"E |4, — ol and R = 100.
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Figure 2.4: Line plots of raw MAE for 10%, 25%, 50t 75" and 90" QTEs estimated based on 100
replicates.
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2.5.2 Simulation Design 2 (SD2)

In this simulation design, we explore a setting with nonlinearities, where the mean of potential
outcomes involves polynomial functions of covariates. We draw covariates X with p = 5
from the independent standard normal distributions. The sample size is fixed at N = 1000 for
the remainder of the exercise given small sample sizes are likely to be inadequate to explore

nonlinearities. The true model for data generation takes the following form:

T | X ~ Bern (m(X)),
YO X ~ NV (n(X), 1)
YO X~ N (14 p(X),1.57)
(2.17)
Y=TxYD4+1-17)xYO:
where m(X) = {1 +exp[(—0.6X; + 0.8X, + 1.2X3)]} 1,

p(X) = —X; 4+ X5 + 1.5X3X, + 1.5X5.

Unlike the first simulation study, the true unconditional density and the true quantiles of
the potential outcomes for this simulation are not analytically achievable. However, the true
unconditional quantiles can be derived approximately from a large sample. At sample size of
107, the approximate values for true 10", 251, 501, 75" and 90" QTEs are Ay ;o = 0.705,
Agos = 0.794, Ags = 1.022, Ag.75 = 1.205, and Ag g9 = 1.205, respectively.

We introduce two simpler variants of our proposed framework in this simulation exercise.
The first variant consists of Bayesian Outcome Modelling without and with shrinkage priors,
represented by BOM and BOMS estimators, respectively. It could be regarded as an outcome-
regression-based approach that omits the treatment assignment model fitted in the initial step
of the BADR framework. Instead, it focuses solely on estimating the conditional distribution
by using multiple Bayesian quantile regressions in the outcome model of each treatment group.
Shrinkage priors, akin to the doubly robust approach, can be readily incorporated. In particular,
the BOMS estimator considers the Adaptive Lasso prior. The second variant is Bayesian
Propensity Score Analysis (BPS2), a treatment-assignment-based approach. Specifically, it
involves fitting the treatment assignment using a logit BART model. Subsequently, it employs
multiple Bayesian quantile regressions to model the conditional distribution of the outcome
given the posterior mean of the propensity score in each treatment group. Further details on

the implementation can be found in Appendix A.5.2.
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We evaluate the performance of the methods with respect to two distinct modelling
strategies: linear and nonlinear specification. For the linear specification, we use 5 raw
covariates Xy, ..., X5. For the nonlinear specification, we expand the covariates X to a
55-dimensional space by incorporating full cubic polynomials along with interaction terms.
BDR, BOM, and BNP are excluded as competitors in the second specification since they are

less suitable for high-dimensional contexts.

SD2a. Linear Specification

Table 2.4 illustrates simulation results when 5-dimensional covariates are employed as control
variables. Overall, BDR and BDRS outperform all competing methods, achieving the smallest
average bias at 25" and 75" percentiles. Frequentist methods including TMLE, LDML, and
FIPW, individually rank first once at 10, 50®, and 90", respectively. However, each of them
is less superior to our proposed estimators in at least three of the five quantile levels of interest.
The Bayesian nonparametric method, BNP, continues to register the lowest rank, offering only

a marginal reduction in bias compared to the benchmark.

Table 2.4: Simulation Results for SD2a, Average Bias and Relative MAE

Bias MAE

10th 25th 50th 75th 90th 10th  25th  50th ~ 75th  90th

Linear specification

BDR  0.055 0.002 -0.032 -0.008 0.016 1349 1.049 0.621 0.597 0.781
BDRS 0.061 0.002 -0.030 -0.006 0.024 1.331 1.056 0.624 0.595 0.790
BOM 0.040 0.092 -0.013 -0.094 -0.053 0.926 0.808 0.505 0.559 0.828
BOMS 0.059 0.102 -0.002 -0.076 -0.025 0.924 0.801 0.507 0.558 0.823
BPSA 0.078 -0.042 -0.044 0.061 0.112 0.752 0945 0.493 0555 0.725

BNP 0335 0368 0343 0328 0.284 1.114 1.005 0.861 0939 1.095
LDML 0.009 0.010 -0.009 0.019 0.163 0.997 0963 0.584 0.620 0.832
TMLE 0.000 -0.005 -0.022 -0.041 0.025 1.284 1.181 0.657 0.683 1.156
FIPW  0.019 -0.039 -0.034 -0.010 0.014 1576 1218 0.671 0.717 1.240

No covariates

Naive 0468 0434 0430 0377 0312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Mean Absolute Error (MAE)
of different estimation methods across 100 replicates. The relative MAE is the MAE in
comparison with the Naive method as the benchmark, where M AE = R~} Zf‘zl |&r — af

and R = 100.

Further investigation can unveil the mechanics of our analogue doubly robust estimators. It
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is essential to note that, by considering only 5 raw covariates X, there is a misspecification in

the functional form of covariates in the outcome equation.

Bayesian Outcome Modelling estimators, BOM and BOMS, inherit the advantages of
Bayesian Quantile Regression and shrinkage priors, as same as our primary approach.
Nonetheless, since these estimators ignore the treatment assignment equation, they exhibit
significantly higher average bias than doubly robust estimators, irrespective of whether
penalisation in covariate space is introduced or not. In contrast, by fitting the propensity
score, doubly robust estimators gain another protective layer against misspecification of
the outcome. A similar rationale applies to the favourable performance of TMLE, which is
originally a doubly robust estimator from frequentist viewpoints. Other methods, LDML and
FIPW, do not utilise both the whole conditional cumulative distribution function and the
propensity score function as inputs in the doubly robust estimation procedure. However, their
reliance on the treatment assignment equation from the outset makes them less affected by the

misspecification of the outcome, resulting in reasonably good performance.

Bayesian Propensity Score Analysis estimator, BP SA, exhibits lower average bias than
both BOM and BOMS when estimating 25" and 75" QTEs. Nevertheless, its performance is
dominated by both BDR and BDRS in terms of average bias across all evaluated quantile
levels. Despite sharing the first stage with doubly robust estimators when fitting the propensity
score by a logit BART model, BP SA then uses posterior samples of propensity score rather
than 5-dimensional covariates as control variables to estimate the conditional distribution of
potential outcomes. Its inferiority compared to BDR underscores the doubly robust approach,
suggesting that using the estimated propensity score alone is less favourable, especially when
the treatment assignment and potential outcome equations contain different sets of control
variables. This observation also aligns with the poor performance of BNP and reinforces our

conclusion from the first simulation exercise.

SD2b. Nonlinear Specification

Table 2.5 presents simulation results when the 55-dimensional expansion of covariates is
utilised as control variables. It can be seen that the performance of BDRS is noticeably
improved, particularly in the extreme tails. BDRS outperforms all frequentist methods in
terms of both average bias and MAE, across most quantile levels except for two instances

when it ranks second after TMLE. This finding again highlights the superiority of BDRS in
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high dimensions. Continuing our previous discussion on the double robustness of BDRS,
when considering this basis expansion of covariates, the treatment assignment equation is
misspecified to some extent. Because the logit link is maintained across Bayesian methods,
the use of high-order polynomials induces a nonlinear functional form of X, whereas the
true model involves only a linear combination of X5, X5, and X3. BPSA produces larger
average bias than BOMS across almost all quantile levels, other than 25" QTEs, and remains

persistently dominated by BDRS.

Table 2.5: Simulation Results for SD2b, Average Bias and Relative MAE

Bias MAE

10th 25th 50th 75th 90th 10th  25th  50th  75th  90th

Nonlinear specification
BDRS -0.014 0.015 0.019 0.027 0.011 0.724 0.859 0.503 0.527 0.550
BOMS 0.041 0.027 0.020 0.015 0.001 0.547 0.709 0.463 0455 0.441
BPSA  0.140 -0.019 -0.029 0.077 0.099 0.744 0913 0494 0562 0.724
LDML 0.111 0.052 0.047 0.062 0.182 0.880 0.922 0.663 0.683 0.820
TMLE -0.020 0.009 0.023 0.023 0.064 0.728 0.863 0.500 0.533 0.667
FIPW  0.034 0.120 0.090 -0.050 -0.051 1577 1290 0.873 0.926 1.298

No covariates

Naive  0.468 0434 0430 0377 0312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Mean Absolute Error (MAE) of
different estimation methods across 100 replicates. The relative MAE is the MAE in comparison

with the Naive method as the benchmark, where M AE = R~! Zf’:l |& — «| and R = 100.

In summary, our proposed doubly robust estimators (BDR and BDRS) consistently surpass
at least one among outcome-regression-based estimators (BOM and BOMS) or treatment-
assignment-based estimator (BPSA) regarding the average bias, when either the outcome
equation or treatment equation is misspecified. By flexibly incorporating shrinkage priors,
BDRS outperforms its Bayesian nonparametric counterpart and all frequentist competitors in
high-dimensional settings. This result demonstrates that our proposed framework features not

only adaptability to complexity but also robustness to misspecification.
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2.6 Empirical Illustration

2.6.1 Overview

To demonstrate the applicability and usefulness of our proposed method, we revisit the
microcredit study by Crépon et al. (2015), which was derived from a randomised experiment
conducted in Morocco. The dataset enables us to examine the potential of our approach in two
distinct contexts. In the first setting, we employ the random treatment assignment available
in the original research to investigate the effect of microcredit availability on household
borrowing activities, such as the total amount of loans. Our second setting deviates from
randomisation — we instead use observational data while assuming selection-on-observables

to evaluate the welfare impact of household loans.

The evaluation was conducted across 162 Moroccan villages that were paired based on their
observable similarities. The intervention was microcredit availability, which was randomly
assigned to one village within each pair. These designated villages constituted the treated
group, whereas the remaining villages formed the control group. In particular, a microfinance
institution was established in the treated villages between 2006 and 2007. In 2009, a follow-up

study surveyed 5551 households in both treated and control villages.

The expansion of microcredit, or access to loans in general, can have potentially
heterogeneous effects on household welfare for several reasons. First, households have
diverse loan take-up behaviours. They may differentially select into borrowing activities
based on their characteristics, leading to varying outcomes. Those who do not take up loans
may end up worse off due to effects on wages or the displacement of informal lending in
a dynamic general equilibrium (Kaboski and Townsend, 2011; Morduch, 1999). Second,
among borrowers, the effects may vary due to differences in the efficiency of loan use and
uneven investment opportunities. Indeed, certain households may not benefit from loans
if the requirements for investment purposes are restrictive or the term to maturity is too
short (Banerjee, 2013). Additionally, multiple microlenders in a community can engage in
exploitative lending practices and “overlending” to households who cannot feasibly repay
the loan (Ahmad, 2003; Schicks, 2013). This can result in high-productivity borrowers
benefiting from the positive impact, whereas the most vulnerable borrowers are systematically
harmed by the saturation of credit markets. In summary, there are potential winners and

losers to financial market expansion. Even if disadvantaged groups are small, social welfare
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consequences could be substantial, particularly if economic inequality across households is

exacerbated (Meager, 2022).

The average treatment effect (ATE), which is most commonly utilised in empirical research,
cannot reveal this heterogeneity. Even though loan access might have no impact on average,
it could still have significant positive or negative effects on different types of households.
This policy implication is particularly critical for developing countries. To gain a more
comprehensive understanding of causal effects, it is worthwhile to estimate unconditional
quantile treatment effects (QTEs), which offer a valid measurement that goes beyond the ATE
for the entire population. Therefore, our proposed framework is well suited for this empirical

context.

In contrast to the original paper and previous studies that typically rely on randomised
controlled trial (RCT) design and ad hoc selection of baseline covariates, our approach
offers more flexible specifications and data-driven estimation. This enables us to conduct new
analyses using either data from randomised experiments or observational data, as demonstrated

in sections 2.6.2 and 2.6.3, respectively.

Specifically, our general strategy is to initially create a large set of covariates by combining
village pair dummies and full cubic polynomials along with interaction terms of household
observed characteristics. Once collinear columns are removed, this set serves as the baseline
specification of X and can be readily integrated into our Bayesian Analogue of Doubly Robust
(BADR) estimation framework. Given the high dimensionality of this empirical issue, we
opt for the Bayesian Doubly Robust estimator with Adaptive Lasso (BDRS) due to its proven
merits in our prior simulation study. To compare our results with the benchmark, we also

include the Naive estimator (Naive) in our analysis.

2.6.2 Impact of Microcredit Availability on Loan Amount

We begin with the context of random treatment assignment, where our objective of interest is
the effect of microcredit availability on the total amount of loans at the household level. To
examine the balance between the treated and control groups, we select pre-treatment covariates
which are observed characteristics for each household, including head age, education of the
head, number of adults, total number of members in a household, indicators for households
doing animal husbandry, doing other non-agricultural activities, and whether household

spouse responded to the survey. Table 2.6 reports the mean values of these covariates in
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addition to the outcome and treatment variables, both for the whole sample and for each of

the treated and control groups.

Table 2.6: Summary Statistics of Households

Treated Control Treated — Control
Treatment: Microcredit Availability (RCT) Mean (sd) Mean (sd) Diff Mean t-statistic
Outcome variable
Total amount of loans (in MAD) 2350.44 (10865.84)  1547.75 (7381.73) 802.69 * 2.54
Baseline covariates
Head age 49.18 (15.83) 48.14 (15.85) 1.05 . 1.95
Head with no education 0.67 (0.47) 0.68 (0.47) -0.01 -0.89
Number of members 5.70 (2.54) 5.64 (2.44) 0.06 0.71
Number of adults 3.81(1.99) 3.76 (1.91) 0.05 0.83
Number of members aged 6-16 1.22 (1.29) 1.25 (1.26) -0.03 -0.72
Declared animal husbandry activities 0.60 (0.49) 0.55 (0.50) 0.05 ** 273
Declared non-agricultural activities 0.17 (0.37) 0.21 (0.41) -0.04 ** 315
Spouse of head responded 0.09 (0.29) 0.07 (0.26) 0.02 * 2.27
Member responded 0.05 (0.22) 0.05 (0.21) 0.00 0.62

Data sources: Moroccan household survey (Crépon et al., 2015).

Although the randomisation of microcredit availability and the absence of confounding
factors leading to self-selection into treatment is plausible, there are slightly imbalances in
covariates across the two groups. Regarding the unconditional means, the households’ total
loan amount for the treated group (2350.44) significantly exceeds that of the control group
(1547.75). The potential heterogeneity of microcredit motivates us to further investigate this

positive average treatment effect using quantile analysis.

The results of Quantile Treatment Effects (QTEs), as estimated by the Naive and BDRS
methods, are depicted in Figure 2.5. According to the findings, microcredit expansion has
a precise zero effect below the 75" percentile of the distribution of total loan amounts, but
exhibits positive effects above this threshold. In particular, at the 90" percentile, the positive
effect is statistically significant (2300), contributing to the decomposition of the average
treatment effect (802.69). Compared with naive estimates, BDRS produces similar results,
only higher at the 90" percentile; however, the difference is insignificant. The result is robust

after adjusting for the influence of covariate imbalance on the outcome.
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Figure 2.5: Quantile Treatment Effects (QTEs) of microcredit availability on households’ total loan
amount. The graph on the left demonstrates Naive estimation results. Red bar plots represent naive
QTEs, which are differentials between empirical quantiles of treated group (in green) and control
group (in blue). Red dashed line indicates naive Average Treatment Effects (ATE), which is simple
mean difference between these two groups. Results obtained using BDRS method, QTE point estimates
and corresponding 95% CI at five quantile levels based on 100 bootstrap replications, are plotted as
error bars in the right-hand graph.

Using the same dataset, findings in Chernozhukov et al. (2017) and Jacob (2021) also
document the heterogeneity of the microcredit availability on total loan amount; however,

their estimand is conditional ATE, different from this paper (QTEs).

2.6.3 Impact of Loan Access on Household Outcomes

Our second objective is to explore the causal impact of access to loans on household welfare,
with a focus on the distribution of consumption and business outcomes, including total
consumption, consumption of temptation goods, total output, and total profit. Unconditional
QTEs provide deeper insights into the potential heterogeneity of causal effects across the
distribution of each outcome interest, as well as the resulting change in household inequality.
The binary treatment we consider is the actual borrowing status recorded at the household
level. Table 2.7 indicates that the difference in mean between two groups of households
(borrowers and non-borrowers) is highly statistically significant regarding consumption, but

not for business outcomes. However, there are two caveats to these naive ATE estimates.
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Table 2.7: Summary Statistics of Household Outcomes.

Borrowers Non-borrowers Borrowers — Non-borrowers
Outcome variables Mean St.Dev. Mean St.Dev. Diff Mean t-statistic
(in MAD)
Total Consumption 3268.62 (2956.01) 2863.49 (1792.97) 405.13  **=* 3.82
Temptation Goods 312.33 (229.91) 270.31 (219.33) 42.01  w** 4.73
Total Output 32672.06 (85071.58) 30885.38 (85939.63) 1786.68 0.54
Total Profit 10081.86  (37986.07) 8409.95 (45277.88) 1671.91 1.07

Data sources: Moroccan household survey (Crépon et al., 2015). Definition: Total Consumption is monthly
total consumption (in MAD); Temptation Goods is monthly expenditure on temptation and entertainement(in
MAD); Total Output is sum of agricultural, livestock, and non-agricultural business production over the 12
months prior to the survey (in MAD); Total Profit is total profit of self-employment activities over the 12

months prior to the survey (in MAD).

Firstly, all outcome variables in this empirical setting exhibit heavy tails and large variability,
as illustrated in histograms in Figure 2.6. This is another motivation for quantile analysis since
estimation results for a set of quantiles would be less susceptible to the influence of outliers

than results for the mean.
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Figure 2.6: Histograms of various consumption and business outcomes of borrowing households (in
green) and nonborrowing households (in blue). These graphs display raw data without any truncation
applied.
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Secondly, the treatment variable — borrowing pattern observed in the dataset — is no
longer randomly assigned among households in the present context. This is confirmed
by the imbalances between these two groups regarding the mean values of the observed
characteristics, as shown in Table 2.8. Specifically, borrowing households tend to have larger
average household sizes. They are also more inclined to engage in non-agricultural self-
employment activities and reside in villages where microcredit is available. The discrepancy
observed is more than what would be expected by pure chance. Therefore, to identify causal
effects using non-experimental data, we pursue the selection-on-observables assumption. That
means, conditional on observed covariates, unmeasured factors that influence household loan

access are independent of household outcomes.

Table 2.8: Covariate Balance between Borrowers and Non-borrowers.

Borrowers Non-borrowers Borrowers — Non-borrowers
Control variables Mean (sd) Mean (sd) Diff Mean t-statistic
Head age 49.01 (15.62) 48.53 (15.93) 0.49 0.79
Head with no education 0.68 (0.47) 0.68 (0.47) 0.00 0.05
Number of members 6.06 (2.46) 5.54 (2.48) 0.52  #** 5.36
Number of adults 4.02 (2.01) 3.71 (1.92) 0.31 %= 3.99
Number of members aged 6-16 1.36 (1.30) 1.19 (1.27) 0.16  ** 3.23
Declared animal husbandry activities 0.59 (0.49) 0.57 (0.50) 0.02 1.23
Declared non-agricultural activities 0.23 (0.42) 0.18 (0.38) 0.05 ** 3.17
Spouse of head responded 0.05 (0.23) 0.09 (0.29) -0.04  kwE -3.96
Member responded 0.05 (0.21) 0.05 (0.22) 0.00 -0.36
Microcredit availability 0.55 (0.50) 0.47 (0.50) 0.07  #*k 3.73

Data sources: Moroccan household survey (Crépon et al., 2015).

Whilst a violation of randomisation may threaten the performance of the naive estimator, the
BDRS estimator serves as a debiasing device, as illustrated in our simulation using synthetic
data. Table 2.9 presents the results for key outcome variables related to household consumption
and business. Unlike the first setting, the BDRS estimates differ considerably from the naive
estimates of QTEs because selection bias is accounted for in our proposed approach. Overall,
the point estimates at extreme tails (10" and 90™ percentiles) are fairly imprecise, as indicated
by large credible intervals compared to the other quantile levels. Interestingly, the causal effect

in the upper tail remains significantly positive in most cases.



CHAPTER 2. CAUSAL INFERENCE ON QUANTILES IN HIGH DIMENSIONS:
A BAYESIAN APPROACH 48

Table 2.9: Quantile Treatment Effects of Loan Access on Household Outcomes.

BDRS Naive
Outcomes Percentiles QTEs Upper bound Lower bound QTEs
10th 20.093 1469.207 -1429.020 232.795
25th 9.242 173.511 -155.027 173.456
Total Consumption 50th 79.949 229.587 -69.690 229.753
75th 132.22 273.974 -9.534 286.680
90th 237.699 543.355 -67.956 685.442
10th -8.69 65.660 -83.040 17.380
25th 13.035 29.871 -3.801 21.725
Temptation Goods 50th 30.415 45.962 14.868 43.450
75th 47.795 79.225 16.365 60.830
90th 78.21 129.145 27.275 78.210
10th 0 13146.948 -13146.948 0.000
25th -330 19.769 -679.769  1093.446
Total Output 50th 50 1385.992 -1285.992 1787.500
75th 1666 6933.205 -3601.205  2771.616
90th 27360 52964.198 1755.802  2744.044
10th -5500 -1183.536 -90816.464  -1142.697
25th -945 158.825 -2048.825 -241.876
Total Profit 50th 561 1117.727 4.273 979.125
75th 1780.769 4273.915 -712.377 549.373
90th 8954.377 16664.233 1244.520  -1086.350

Notes: Upper bound and Lower bound for BDRS method are associated with the

estimates of 95% CI based on 100 bootstrap replications.

Regarding total consumption, although all naive estimates of ATE and QTE are positive,
estimation results obtained using the BDRS method reveal notably lower effects across all
quantile levels. The effects of loan access are most pronounced at the 75" and 90" percentiles
of the consumption distribution; however, they are insignificantly positive. While the naive
method overestimates the effect of loan access compared to the BDRS estimator, the upward
bias suggests a possible selection-on-gain pattern. Households inclined to borrow to support
their consumption are more likely to gain higher total consumption when they have financial

access.

Further examination of the impact of borrowing on femptation consumption shows a similar

upward bias in the Na i ve method relative to the BDRS method. The effect is slightly negative
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at the lowest percentile (10™) yet clearly insignificant. By contrast, significant positive effects
are observed at the median and higher percentiles. This seems inconsistent with other works
that have found a statistically significant reduction in nonessential expenditures. However,

these studies used different treatment variables and designs compared to this paper.

With respect to household business outcomes, there is a statistically significant increase in
total output, concentrated only at the highest quantile level. For the rest of the community,
specifically those below the 90th percentile, no systematic change appears to be taking place.
Consequently, the majority of the total output distribution remains unchanged with or without

universal access to loans.

Interestingly, there is notable evidence of heterogeneous effects on toral profit. The effect
on the median household estimated by the BDRS method is quite close to the naive ATE
estimate, which is moderately positive. In general, access to loans has a favourable impact
on households’ profit by shifting the center of distribution towards the right. However, the
impacts exhibited at extreme tails are more dramatic, with a negative effect at the lowest
percentile (10") and a positive effect at the highest percentile (90™), and both are statistically
significant. If the rank invariance assumption is invoked, the rightward expansion of the upper
tail means that high-profit households gain benefits, while the leftward expansion of the lower
tail means that low-profit households experience loss when loans are accessible to everyone,
compared to the opposite counterfactual scenario. While this assumption might be difficult to
defend given the complexity and nonlinearities inherent to the financial market, interpretations
about the shape change of distribution of household total profit remain valid. There do exist
both winners and losers, even when we cannot identify the specific households that belong to
each group. The outcome distribution disperses wider leading to the exacerbation of inequality

across households.

Taken together, the estimated QTE patterns collectively indicate that broadening financial
access is likely to result in an ex-post rise in economic inequality across households.
Specifically, the increase in total output and consumption at the household level is solely
attributable to the right tail of distributions expanding rightward, suggesting that certain
households are likely to experience an improvement in their economic circumstances without
incurring any systematic losses from others. Further investigation of total profit, however,
reveals a more nuanced picture. While the overall impact of access to loans on total profit

is positive, indicating a shift towards higher profits for many households, there is evidence
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of extreme heterogeneity. The effect is asymmetric as certain households may experience

negative effects on their profits.

Although the treatment variable and identification strategies employed in this setting differ
from those used in Crépon et al. (2015), the findings converge in several respects. In the
original paper, both the reduced-form quantile regressions and instrumental variable (IV)
estimates suggest substantial heterogeneity in the profitability of microfinance investments
and emphasise the detrimental effects on certain households. Specifically, their reduced-form
quantile analysis measures Intention-to-Treat (ITT) effects because the treatment variable is
microcredit availability at the village level rather than actual borrowing at the household level.
Additionally, the IV estimates in this study reveal changes in the unconditional distribution of
total profit for those who take up microcredit (i.e., compliers only). These results are only valid
when randomisation holds. In contrast, the findings of this paper have broader implications for
the understanding of economic inequality, as we focus on the entire population of households

utilising non-experimental data and a selection-on-observables assumption.
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Figure 2.7: Quantile Treatment Effects (QTEs) of loan access on various household outcomes. Graph
on the left demonstrates Naive estimation results. Red bar plots represent naive QTEs, which are
differentials between empirical quantiles among borrowing households (in green) and nonborrowing
households (in blue). Red dashed line indicates naive Average Treatment Effect (ATE), which is simple
mean difference between these two groups. Results obtained using BDRS method, QTE point estimates
and corresponding 95% CI at five quantile levels based on 100 bootstrap replications, are plotted as
error bars in the right-hand graphs.
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2.7 Concluding Remarks

The goal of this paper was to address the challenges associated with estimating unconditional
Quantile Treatment Effects (QTEs) in observational studies and to make a contribution to the
burgeoning econometric literature on QTEs as well as causal machine learning. We introduced
a novel approach, Bayesian Analogue of Doubly Robust (BADR) estimation, which accounts
for potentially high-dimensional covariates. The framework features a highly flexible Bayesian
modelling scheme that showcases favourable frequentist properties in finite samples, even in
the presence of high dimensions or model misspecifications, which has not been explored in
previous literature. This approach, while not fully Bayesian in nature, offers a straightforward
and versatile implementation for integrating probabilistic machine learning techniques into
causal analysis on quantiles, with precise estimation and reliable uncertainty quantification.

These attributes are particularly advantageous in complex, high-dimensional settings.

The performance of the proposed method was assessed through a simulation study in
two different settings. The first simulation focused on a linear setting with varying feature
dimensionality, whereas the second simulation considered a nonlinear setting and examined
the double robustness of the proposed estimators. Through a comparison with both the naive
approach and existing popular estimators, the simulation results consistently indicated a
substantial improvement in bias reduction for QTE estimates when using the new method.
This finding demonstrates that our proposed framework features not only the ability to adapt

to high dimensions and complexity, but also robustness to misspecification.

The empirical illustration of estimating QTEs of financial access on household outcomes
showed the potential benefits of using causal inference on quantiles to help characterise the
heterogeneity or distributional impact of interventions, which is often appealing to researchers
and easily conveyed to policymakers and stakeholders. Our proposed approach makes this
possible even in the absence of experimental data. We found strong evidence for an overall
positive effect yet heterogeneous across different points of outcome distributions. An ex-post
rise in economic inequality among households is likely to occur, primarily driven by significant
improvements in consumption and business outcomes at the top quantiles. However, certain

households may experience adverse effects on their total profit.

An interesting extension of this framework to be explored in the future would be estimating

QTEs when the selection-on-observable assumption is violated, that is, when there exists
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unmeasured confounding that drives endogenous selection into treatment. Another aspect
is improving the bootstrap inference scheme for doubly robust estimators. Although this
objective could be achieved effectively in the BADR framework for average treatment effect,

it is computationally demanding when applied to quantiles.



Chapter 3

Bayesian Causal Inference in the Presence of Endogenous

Selection into Treatment and Spillovers

3.1 Introduction

Spillovers, often referred to as interference, despite being of great significance in economic
settings, complicate conventional approaches in causal inference and have received insufficient
attention. This phenomenon occurs when the outcome of a unit is influenced not only
by its own treatment but also by the treatments applied to other units within a network
or spatial domain (see, e.g., Forastiere et al., 2021; Giffin et al., 2022.). This poses a
challenge to the Stable Unit Treatment Value Assumption (SUTVA), which stipulates that the
potential outcome for any unit remains unaffected by treatment assignments to other units.
Understanding both direct and indirect effects is essential for evaluating programs in situations
where spillovers exist. Direct effects quantify how an individual’s own treatment alters their
outcome, while indirect effects quantify how their peers’ treatments impact their outcome.
Our first motivation comes from the presence of network interference through exogenous
social networks. For example, an After-School Program (ASP) aimed at enhancing personal
or social skills in youth can lead to spillover effects via knowledge sharing or behavioural
influence, given that participants interact with non-program peers. Another important setting
is the presence of spatial interference of place-based policies, such as the Opportunity Zone
(OZ) program, a U.S. tax incentive program designed to stimulate private investment in
economically disadvantaged communities. Spatial interference arises when a census tract
receives the program, possibly affecting non-designated neighbouring tracts. This can occur
through increased property values and economic activity in Opportunity Zones (OZs), which
may spill over into adjacent areas, or by attracting businesses and investors to relocate to
designated OZs, influencing surrounding regions. Policymakers may be concerned about the

potential for indirect effects to counteract the direct effects of such programs.
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In the presence of spillovers, the outcome of an individual is a function of the entire vector
of treatments allocated to the population. Consequently, there are an extremely large number of
possible potential outcomes, hindering the use of the conventional causal inference framework
(Rubin, 1986, 1974). As a result, researchers typically resort to alternative experimental
designs, specific assumptions, or additional information. The existing literature can be divided
into two primary approaches. The first approach relies on the partial interference assumption
which requires that units are a priori partitioned into disjoint treatment clusters, and spillovers
occur only within clusters and not between them (see, e.g., DiTraglia et al., 2023; Hudgens
and Halloran, 2008; Manski, 2013; Sobel, 2006.). Nevertheless, this requirement is only
plausible in limited settings when the data naturally segregates a significant distance. In
other circumstances, such as when bordering counties in two states influence each other,
it may be impractical to apply this assumption. A more recent approach has attempted
to relax the assumption of partial interference, thereby allowing for spillovers of quite
general forms without the notion of cluster. This departure requires extra knowledge of
the interference structure, which is increasingly obtainable from the deluge of network or
spatial data, and formulates exposure mappings' through which interference affects individual
outcomes. Early studies in econometrics and statistics, which employed this methodology,
focused on randomised experiments on social networks, including works by Toulis and Kao
(2013), Aronow and Samii (2017), Leung (2020), Yuan and Altenburger (2022), and others.
Additionally, there is an active line of research in observational studies where the network
is observed by the researcher, with works by Laan and Sofrygin (2017), Forastiere et al.
(2021), Forastiere et al. (2022), Ogburn et al. (2022), Sanchez-Becerra (2022), Leung and
Loupos (2022), among others. To address identification, these studies establish analogs of the
unconfoundedness and support conditions for the applicable settings. Despite the technical
advancements, unconfoundedness states that the treatment would be as good as randomly
assigned once conditioned on observables. This assumption is not always justifiable in real-
world applications, where selection on unobservables is the norm rather than the exception.
However, there has been little exploration of this violation. In the context of After-School
Programs (ASPs), self-selection is a significant issue. As participation is voluntary, young
individuals who enroll in and attend ASPs may differ in numerous ways from those who
do not participate. With respect to the OZ program, endogenous selection into treatment

may occur in the assignment process of the program. The selection of which communities

'For a more comprehensive survey, we refer interested readers to Huber (2023).
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to be designated as Opportunity Zones was based on a combination of factors, including a
recommendation from the governor of the state and the support of the local government. If the
recommendation and support are based on factors related to the economic performance of the
community, such as high levels of economic activity or growth potential, this may result in the
OZ program only being available to the most promising communities, thereby exaggerating

its benefits.

In this paper, we provide methods that use observational network or spatial data to identify
and estimate direct and indirect causal effects in the presence of both endogenous selection
into treatment and spillovers. This scenario causes the violation of the unconfoundedness and
SUTVA assumption. We propose a new econometric framework that nests the Generalised
Roy model and accommodates spillovers in a form of neighbourhood treatment (exposure
mapping). In this way, we explicitly model endogenous selection into treatment and allow for
heterogeneous effects across individuals, making it economically interpretable. For estimation
and inference, we develop further Bayesian Data Augmentation algorithms that enable more
efficient computation when models involve latent data structures and the maximization of the
likelihood function is challenging numerically. We suggest an extension of our method using

a Bayesian semiparametric approach that relaxes distributional assumptions.

To assess the performance of our proposed approach in finite samples, we conduct
simulations using synthetic data and an empirical Monte Carlo study that utilised friendship
networks and covariates from the National Longitudinal Study of Adolescent Health (Add
Health). The Bayesian estimators demonstrate strong performance in terms of bias, root
mean squared error (RMSE), and coverage rate. Furthermore, the inclusion of neighbourhood
treatment terms is found to be plausible, regardless of the presence of interference in the true
data-generating process. In contrast, neglecting neighbourhood treatment leads to a larger bias

and a lower coverage rate, even when the causal estimand is the direct treatment effect.

Finally, in a realistic setting, we apply the framework to evaluate the effects of the
Opportunity Zones (OZ) program, a place-based policy offering tax incentives to promote
economic development in distressed communities in the United States. We model the selection
process of Qualified Opportunity Zones (QOZs) by state governors and estimate the program’s
impact on housing unit growth in census tracts. Endogenous selection into treatment is
present. Our findings reveal a selection-on-gains pattern, where treatment effects vary

across unmeasured tract heterogeneity. Governors tend to designate census tracts based
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on characteristics that drive expected future growth, such as the level of prior investment
or development. Although these factors are unobservable in the data, governors appear to
obtain this information from their local political networks. In fact, the results also indicate
that governors are more likely to choose tracts represented by members of their political
party, which supports our use of political affiliation as an instrumental variable. With regard
to targeted areas, both direct and indirect effects on the treated tracts (QOZs) are positive.
However, eligible but unselected tracts (non-QOZs) remain a disadvantaged group that does
not experience any positive spillover effects. Additionally, unobserved differences between
QOZs and non-QOZs make it unlikely that positive treatment effects on QOZs would be
replicated if non-QOZs were granted investment tax credit. In fact, the strongly negative
average direct treatment effect on the untreated (ADTUT) even predicts that non-QOZs would
likely suffer adverse consequences in that case. Consequently, extending the OZ program to

communities that do not currently receive tax credit would not be effective.

Beyond the related literature on violation of the SUTVA, which has been mentioned earlier,
our paper also broadly fits the econometrics literature on estimation of treatment-response and
selection models under non-random treatment assignment. The proposed framework is closely
connected to the canonical Generalised Roy Model (GRM) and its extensions (see, e.g.,
Abbring and Heckman, 2007; Eisenhauer et al., 2015; Heckman and Vytlacil, 2007, 2005),
which form a cornerstone of the literature in econometric causality and structural policy
analysis?. Specifically, our model inherits GRM’s key advantages in modelling heterogeneity
and self-selection into treatment based on unobserved gains from treatment, enabling a richer
characterisation of causal estimands beyond mean treatment effects. In terms of identification
and estimation, the full covariance structure of disturbance terms plays a pivotal yet technically
challenging role. First, correlations of unobservables in selection and outcome equations
need to be considered to tackle selection bias. It is well known that the variance of the
disturbance term in the selection equation is unidentified and therefore requires normalization.
Second, when jointly modeling multiple potential outcomes—which is essential for learning
distributions of treatment effects—the cross-regime correlation between treated and untreated
outcomes becomes another unidentified parameter, since each individual is observed in only
one regime. To address these challenges, our Bayesian estimation strategy builds on the
previous approaches to Gaussian selection model Poirier and Tobias (2003), which place an

Inverse Wishart prior over the full covariance matrix. Our approach, however, differs in how

2See Heckman and Pinto (2022; 2024) for recent comprehensive discussions.
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we handle the unidentified variance of the selection-equation disturbance, which complicates
posterior sampling. Rather than fixing this parameter throughout-as suggested in Nobile
(2000)-we employ parameter expansion techniques to construct efficient Gibbs samplers that
accommodate the normalization constraint while improving convergence rates. In this regard,
our paper also connects to the line of work on Bayesian approaches to sample selection and
latent-index models (Ding, 2014; Dogan and Tagpinar, 2018; Imai and Van Dyk, 2005; Jiao
and Dyk, 2015). Nevertheless, to our knowledge, no existing studies in this body of research

jointly model endogenous selection and spillovers, which is the central contribution of this
paper.

The remainder of this paper is structured as follows. In Section 3.2, we formally present
a causal framework in the presence of endogenous selection into treatment and spillovers
and define causal estimands of interest along with key identification assumptions. In Section
3.3, we propose Bayesian Data Augmentation algorithms to estimate the model and conduct
inference. Next, we evaluate the performance of our method using simulations in Section 3.4
and use the proposed approach to investigate the causal impact of the American Opportunity
Zones (OZ) program on economic outcomes in Section 3.5. Finally, we conclude the paper in
Section 3.6 with brief final remarks on the method and policy recommendations based on our

results.

3.2 Causal Framework in the Presence of Endogenous Selection into

Treatment and Spillovers

3.2.1 General Model Setup

We consider a general setting for n agents (¢ = 1,...,n) which involves treatment and

outcome processes.
Treatment process

* Let D; be the observed binary treatment decision, which takes the value of 1 if the unit
receives the treatment and 0 otherwise. This could be regarded as individual treatment.
From a choice-theoretical perspective, this selection process can be expressed as an
individual decision-making problem relied on cost-benefit assessment. Denote D}
the net benefit to the individual of enrolling the program (/the net desire for receipt

of treatment), which depends on observable characteristics (Z;,.X;) and unobservable
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factors (U;). Z; represents the availability of some exclusion restriction in choice
equation that does not appear in outcome equations.
D; = w(Zi, X;) — Ui

(3.1
D; =1if D > 0; D; = 0 otherwise.

Here, U; is assumed to be a continuous random variable with a strictly increasing
distribution function Fy. Define V; = Fy;(Uj;), then it has uniformly distribution and
indicates different quantile level of U;. Let v(Z;, X;) = Fy(u(Z;, X)), which is the

mean scale utility function in discrete choice theory, we can thereby rewriting:

Since V; enters the selection equation with a negative sign, it embodies characteristics
that make individuals less likely to receive treatment yet being unmeasurable by the
researcher. Put differently, V; can be interpreted as the unobservable resistance to the

treatment.

* To capture spillovers, for each agent ¢, we formulate a neighbourhood treatment term
Dy, which is a summary measure of the treatment status of all agent j other than i.
It is possible to calculate Dy, based on the knowledge of wj;, which represents the
connection between units ¢ and j. We can exploit this information from an available
adjacency matrix, which defines spillovers structure in the case of either spatial

interference or network interference.

DNZ' = Z wiij, Z Wi; = 1. (33)

J=Lj# J=Lj#i

Outcome process

. Yi(l) and Y;(O) are treated and untreated potential outcomes, respectively. In particular,

Y;(l) is the potential outcome when agent ¢ enrolls the program while Y;(O) is the
potential outcome when agent ¢ does not. In both cases, potential outcome depends
on individual characteristics X; and an idiosyncratic component (egl) or ego)). We also

extend the standard formula of potential outcomes to allow for possible impact of the
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neighbourhood treatment term Dy

7

V" = i (D X;) + el and 5
Yi(o) = o (DM, Xi) + Q(U)a |

where 11 (D./\/iaXi) =E [Yz’(l) | DM,X@'] and 1o (DM',Xz‘) =E Pfi(O) | DM',XZ}

are mean response functions.

* Y, is the revealed outcome, which equals treated potential outcome when ¢ is treated
(D; = 1) and equals untreated potential outcome when 1 is untreated (D; = 0)

Y; = DYV 4+ (1= D)y, (3.5)

)

Taken together, we present a full model specification as follows

D; =1{v(Z;, X;) > V;},
Dyi = i w Dy, Y wy =1,
=it j=Lii
v = (DNi7 Xi) +el, G0
Y = o (Do Xi) + €,
Y, = DY + (1 - D).

Example 1. (Causal Inference in the presence of endogenous selection into treatment and

spatial interference of place-based policies)

In the context of the Opportunity Zone (OZ) program, there are n census tracts, indexed by
t=1,...,n. D; denotes the participation indicator in the OZ program, while Y; represents
the housing price or new development as the outcome variable. X is a vector of exogenous
covariates, such as poverty rate, median earnings, and employment rate, among others. Z; is a
vector of instrumental variables that directly determine D; but only indirectly affect Y; through
D;. For instance, political alignment between the census tract and the state governor is likely to
be correlated with treatment decisions. The unobservable cost V; would reflects factors such as
the level of economic growth potential of the community. For d € {0, 1}, Yi(d) represents the

(d)

potential outcome when D; = d, and ¢; ~ is the corresponding unobservable determinant of

Y;(d). We may suspect the presence of endogeneity in the OZ program assignment process since
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(0)

the unobservable component V; and (egl), e; ') may share factors related to local economic
performance. It is plausible to imagine that when the OZ program is introduced in community
1, the surrounding areas that are not designated as OZs may also be affected due to spatial
interference (spillovers). For instance, this program may lead to the displacement of low-
income residents and unskilled workers as property values, living costs, and job requirements
increase in the designated zone. Since displaced people may have to seek employment
opportunities in other areas, the effects on the local economic outcome Y in census tract i’s
neighbouring areas j may be considerable. To measure the neighbourhood treatment term

D, we could employ w;; from a spatial weights matrix.

Example 2. (Causal Inference in the presence of endogenous selection into treatment and

network interference via a known exogenous social network)

In the case of the After-School Program (ASP), there are n students, labeledasi = 1,...,n.
Individual treatment D; is an index of participation in the program, while Y; measures a
desired outcome, such as academic performance, social-emotional learning (SEL)-related
outcomes, and involvement in juvenile crime and violence. The exogenous variables X;
consist of individual characteristics including gender, grade, and race, among others. The
instrumental variable Z; could be in the form of cost-shifters, for example, the distance to the
program location, which varies from living directly next to the program to living far away. As
participation in the program is voluntary, unmeasured resistance to treatment V; is likely to be

©)

1

correlated with unobservable components (65”, ¢; ') in the outcome equations. To account
for network interference (spillovers) resulting from peer effects on students’ outcomes, we
compute the neighbourhood treatment D,; as the proportion of the number of treated friends
among all friends. Information on network link w;; can be extracted using the adjacency

matrix of the students’ friendship network.

3.2.2 Identification and Causal Estimands
3.2.2.1 Assumptions

For identification, we make the following assumptions in our setting.
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Assumption 1. {Y;, D;}"_, is generated according to a parametric model specified below

D; = 1{Zio + X;8P) 4+ P > 0},

Dy = Z wiija Z wi; =1,

J=1j# J=1,j#i

Y = 500D, + X, 1 e,

(2

(3.7)

Y = 0Dy + X80 + €,

Y; = DYV + (1 — D)y,
This specification implies the linearity (in parameters) of mean response functions
41 (DNz‘,Xi), o (DM, XZ), and v(Z;, X;). It also allows the outcome Y; to depend on
the (binary) individual treatment D;, (multi-valued) neighbourhood treatment D i, and their

interaction.?

7 i

Assumption 2. (EED), 6(1), 6(0)) 1 (X5, Z;), where L denotes statistical independence.

This is a stronger independence assumption compared to exclusion restriction in
conventional IV literature, which requires Z to be exogenous with respect to the outcome
processes after conditioning on observed covariates X . An increasing number of empirical
studies adopt this assumption in order to overcome the limitations associated with instrumental

variation (see, e.g., Brinch et al., 2017; Carneiro et al., 2011; Cornelissen et al., 2018).

Assumption 3. For:=1,... n
P
ind @
&= eV | S TN (0,5) (3.8)
)
G 1 01D,y 0O0D,g
where Z Tg=1; X4 = gig 0104
g=1

2
90,9

The variance parameter of the disturbance term in the selection equation for the binary

3In this way, it connects to Correlated Random Coefficients (CRC) Model for potential outcome functions

)

i

)/i(Div DNz') =vD; + 51'[)/\/1‘ + Th‘Dz‘DJ\/i +e€
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treatment indicator D is normalised to unity: 0%. = 1; because it is only identified up to
scale. Without this condition, multiple values for the model parameters give rise to the same

value for the likelihood function (see, e.g., Dogan and Taspinar, 2018).

Assumption4.For:=1,... n

Y (dy) L Dyi | Xi Vdy € [0,1], 1o
o ) (3.9)
Y% (dy) L Dasi | Xi Vdy € 0,1].

This assumption is crucial for identifying the causal indirect effects; it could be regarded
as weak unconfoundedness for the continuous exposure, analogous to continuous-treatment
settings, with conditional independence being required to hold for each value of the treatment
(Hirano and Imbens, 2004). Unconfoundedness of neighbourhood treatment rules out the

presence of unmeasured confounding variables.*

(1) E(D)) and Oop =

R )

Cov (e(o), e(D)>. Then, parameters 61, 6, 31 3©) &, oqp are identified.

Proposition 1. Suppose Assumptions 1 — 4 hold. Denote o,p = Cov (e

Proof. See Appendix B.1.

Remark. The proposed model nests the Generalised Roy model (Heckman and Vytlacil,
2005) by maintaining its latent-index selection and correlated potential outcomes, but extends
the framework to allow outcomes to depend on the neighbours’ treatments through D; with
potentially different slopes when treated versus untreated, 5*) and §(%). Our resulting model
thereby captures both endogenous selection into treatment and network/spatial interference.
When neighbourhood exposures are absent (Dy; = 0 Vi) or exert no effects 50 = §(1) = 0,
the model collapses to the canonical Generalised Roy framework. The identification of
the parameters (o1p, oop) in Proposition 1 follows a same principle as in the Heckman
selection models (Heckman, 1979): the exclusion of Z; from the outcome equation and the
joint distributional assumption on (EED), egl), e§°)) imply that the conditional expectations of
outcome errors vary with the inverse Mills ratio derived from the selection index v (X}, Z;).

Our model, however, first partials out the neighbourhood exposure D s; before applying this

logic, thus unifying selection correction and spillover identification under Assumptions 1 — 4.

“This assumption implicitly requires that units’ enrolling decision { D}, are independent.
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3.2.2.2 Causal Estimands

Our object of interest includes the direct and indirect causal effects of the binary treatment D.

Indirect Causal Effects

Average Indirect Effect (AIE) is the average effect of exogenously increasing an individual’s
neighbourhood treatment Dy; from dy to dy + A while holding the individual’s own
treatment status D; fixed at d. In particular, this results in two types of Average Indirect

Effects (spillover effects) - either on the treated or on the untreated as follows

ATED (dy, A) =B [V (dy + A) = ¥V (dy)] ; (3.10)

ATEO (dy, A) = B [V, (dy + A) = ¥ (dy)] .

[ T T

Suppose assumptions Al1-A4 hold, we can identify Average Partial Indirect Effects (APIE),
which measure the average partial effects of changing the neighbourhood treatment D on

the treated and on the untreated

APIE® = §M and APIE® = 5O, (3.11)

Direct Causal Effects

Average Direct Treatment Effect (ADTE), is the average effect of exogenously changing an
individual’s own treatment D; from 0 to 1 while holding their neighbourhood treatment fixed

at CZN
ADTE(dy) == E [Y;") =V, | Dy: = dy, X, , (3.12)

where the expectation is taken over all individuals in the population. According to assumptions

A1-A4, we obtain
ADTE (dy) = (6@ = 6©) dy + (89 = 8©) E[Xi]. (3.13)

Evaluated at mean values of the covariates X, ADTE would exhibit heterogeneity in treatment
effects due to d if 6 — §(9 £ 0. Furthermore, 6 — §(%) implies the patterns of interaction

effects between individual treatment and neighbourhood treatment: Positive interaction (6(1) —
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5 > 0) means the treatment is more valuable when more of neighbours are treated. In
contrast, negative interaction (6) — §(°) < 0) means the treatment is more valuable when

less of neighbours are treated.

Figure 3.1 illustrates a hypothetical example of Opportunity Zone (OZ) program, where
outcome variable Y indicates new development in census tract. Both average potential
outcomes have positive slopes (5Y > 0 and §Y > 0), corresponds to positive average
partial indirect effects defined in (3.11). This means that new development in a census tract
increases if more of its neighbouring areas are designated as OZs. As §!) > §(), the spillover
is even more beneficial if the census tract is treated, implying a positive interaction effect of
the policy. The average direct treatment effect defined in (3.13) and represented by the gap
between two lines is positive for all dy and increases as d, does: Receiving investment tax

incentive is more valuable to a census tract when more of its neighbouring areas obtain them.

Marginal Direct Treatment Effect (MDTE), is the average direct causal effect of D on Y
for individuals with unobserved heterogeneity V' = v and observed neighbourhood treatment

Dy = dy

1

MDTE (dy,v) = E [V =Y | Dy = dy, Vi = v, X3 . (3.14)

Evaluated at mean values of the covariates X, MDTE is a function of not only JN but
also unmeasured resistance to the treatment v. This goes beyond average direct treatment
effect to uncover direct treatment effects at different points in the distribution of unobserved
heterogeneity, providing insights into how effects vary among agents who are marginally

indifferent to receiving the treatment. According to assumptions A1-A4,

MDTE (cZN, v)
_ (5<1> - 5<0>) dy + E [e‘.” — v = v] + (6(” — 6(0)) IE [X] (.15)

= (5<1> _ 5<0>) dy + E [650 e

Without loss of generality, we consider [£ [61(1) ] egD) = 5]. From (3.8), we know that
(D) G
€ ind 0 1 O1D,g
€ = 6(1) ~ z_: TN , ,
i g=1 01D,g 0'179
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Hence, €/ ~ N(0, 1) and

%

W | (D) S (S I
]E[ei | € ze}:Zngf(g)]Eg[ei | € :é‘}
g=1
_ iﬂ- @O_ID*]E _ iﬂ_ U _ (316)
g=1 g¢(€) \/I g=1 971D

Therefore,

G _
MDTE (dy,v) = (6 = 6©) dy — 3 wg(’w’gﬁ%D’gcb—l(v) +(BV - BV E[X)].
=1
’ (3.17)

In a special case when G = 1 (i.e. trivariate normal distribution), the function becomes

MDTE (dy,v) = (6 — 6©) dy + UID\;;ODél(v) + (80 - BOVEIX]. (.18)
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E[Y" | Dyi = dy]

0 dy
Figure 3.1: [llustration of average potential outcome when being treated (the top line) and when being
untreated (the bottom line), as functions of the neighbourhood treatment term ds. The corresponding

slopes, (1) and 6(?), are the average partial indirect effect when being treated and when being untreated,
respectively. The gap between the two lines is the average direct treatment effect.
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Figure 3.2: Illustration of Marginal Direct Treatment Effects with respect to unmeasured resistance to
the treatment v and neighbourhood treatment d . The slope of MDTE curves reveals the patterns of
selection into treatment: a rising MDTE curve which exhibits an upward sloping shape (o1p—ogp > 0)
indicates a pattern of reverse selection on gains in unobserved characteristics; a falling MDTE curve
which exhibits a downward sloping shape (01p — og9p < 0) indicates a pattern of positive selection
on gains in unobserved characteristics; a flat MDTE curve (01p = ogp) implies there is no selection
based on unobserved gains. The dispersion of MDTE curves characterises the patterns of interaction
effects, reflecting in ) — §(9 similar to ADTE.



CHAPTER 3. BAYESIAN CAUSAL INFERENCE IN THE PRESENCE OF ENDOGENOUS SELECTION
INTO TREATMENT AND SPILLOVERS 68

3.3 Bayesian Estimation and Inference

3.3.1 Bayesian Data Augmentation

In this section, we develop Bayesian estimation methods for the model parameters
M 50 30 O 5 5 and ogp, followed by the causal estimands in Section 3.2.2. Inference
about these causal estimands is based on their respective posterior distributions, which

accounts for the uncertainty in parameter estimation.

_ T T

Rewrite P; = [Z;, Xi|", Q; = [Dys, Xi| T, v = [, 8] , sy = [6M, 8], and
T

Ko = [6(0), I5; (0)} . Then, the model (3.7) can be more compactly written as the following

standard form of Generalised Roy model:

D; =Py +e?,
Y;(l) =Q/r1+ e,

i

Y9 = Ql ko +¢”

i

(3.19)

D; = 1{D; > 0},

Y; = D,V + (1 - D,)Y,".

)

As a starting point, we consider a fully parametric approach by imposing the trivariate

normal distribution assumption on the error terms

T .
&=[” M (O TN(0,3) (3.20)
oh=1 oip oop L pipor popoo
Y= o2 op| = ot p100100
ol a3

where p1o = corr(ey, &), p1p = corr(ey, €p), pop = corr(eg, €p).

A challenge posed in model (3.19) is that the latent utility (D)) and the potential outcomes
(Yi(l) and Y;-(O)), fori =1,...,n, are unobserved. Instead, we can only observe the treatment
status D; and the revealed outcome Y; of each individual. These missing data perspectives

necessitate suitable techniques to estimate all model parameters. We therefore consider
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the Bayesian data augmentation approach which involves two main stages implemented
iteratively: In imputation stage, we augment the posterior with the latent utility (D;) and
the missing potential outcome (Y;**%), for i = 1,...,n. In posterior stage, conditional on
these unobserved latent quantities, the regression coefficients and covariance matrix can be

sampled in a straightforward manner.

To work with augmented outcome data, for each individual 7 = 1, ..., n, we let
Dy D3 P/ 01k, Oixk,
L* Y;(l) — DZY; + (1 _ DZ)Y;mlss , Rz — lekp QZT lekq , (321)
YO Dy 4 (1 - Dy)Y; Ok, Oixk, QF

where k, and k, denote the numbers of column vectors in P and Q, respectively.

We also stack each equation independently

b D’ P Onxk, Onxk, 35
sx1 = | YO = DoY + (1-D)o Y55 | Ranwk = Onxk, Q  Opun, | €= | @
Y© DoY™= 4+ (1-D)oY Onxky  Onxk,  Q €0

(3.22)

where k = k, + 2k,.

Denote = (v, 3/, )". Then

L;":RZH—{—Q fori=1,...7n;
(3.23)
L*=Rf+¢ and E[e'd=Q=X®IL,

Likelihood function

The augmented likelihood (also known as complete-data likelihood), which includes latent

quantities, factorises as

p(Y,D,L* |6,%) =p(Y,D | 6,%,L*) - p(L* | 6, %), (3.24)

where the first term encapsulates the observed data given latent variables and the second term

represents how latent variables relate to parameters in our structural model.
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The second term is straightforwardly derived from the representation of latent variables in

(3.23) and the multivariate normal assumption (3.20)

p(L*]6,%) = (2m) " [ x exp {—;(L* RO — Re)}
. ) (3.25)
— (20) 7" |52 x [[ exp {_2<L: _R0)TE L — Rﬂ)} ,
1=1

Since knowing (Yi(l), Y;(O)) and the sign of D} perfectly determines the value of D; and Y,

we can derive the first term in (3.24) as follows

p(Y,D | 6,%,1")
= ﬁ {IL(D: > 0)1(D 1)1(}/ Y( )) + ]l(D* < O)R(D 0>1(K _ )/i(o))} '

=1

= I p(¥".0;>0) II »(¥".D; <0)

{i:D;=1} {i:D;=0}
- ] / (v, p;)ap; ] / (i, D;) dD;
{i:D;=1} {i:D;=0}
ST [0 ) (v an; T [ (0117 (1) an;
{i:D;=1} {i:D;=0}
up; + ,OlDulz ) 1 up;i + PopUo; 1
= D s | —O(un) [1 - o <>] —¢(uoi),
{i: ;_[—1} <( —pip) ) o {i;[l):[—o} (L= p5p)12) ] o9
(3.26)
where )
BT _ vV -qQls _ Y —qQlk
Up; = P,L v, Uy = ——— Uy = ————.
01 (o))

Prior specification

To carry out full Bayesian inference, a suitable prior specification is necessary. Let p(6, 3)
be the joint prior distribution function of regression coefficients § and the covariance matrix

32. We consider a multivariate Normal prior for the regression coefficients

0 ~ Nkp+2kq (Heo, Veo)- (3.27)

Placing a prior over the full covariance matrix 3 mitigate the issue of unidentified

correlation parameters between two potential outcomes’. In addition, because the (1,1)™®

Unidentified cross-regime correlation parameter satisfies Pio < P10 < Pios where p, 0 =P 0(p1 D, PoD) =

pippop — [(1 = pip)(1 = p§p))*/? and b1y = Pio(p1p, pop) = piopon + [(1— pip) (1 — pfp)I'/? (Liet
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element 31, equals to unity, a natural choice of prior for the covariance matrix X is the Inverse

Wishart prior along with this normalisation constraint
E ~ W_l(\I’O,Vo)I]-(Eu:l)- (328)

However, this restriction makes it difficult to sample X from its posterior distribution directly®.
We therefore facilitate the computation by employing the parameter expansion technique.
Specifically, we reparameterize the model by introducing an expansion parameter to improve
the convergence rate of the resulting Markov chains. A general two-step procedure can
be described as follows. First, the model is transformed by the expansion parameter in
such a way that the transformed model has an unconstrained covariance matrix and the
computational complications are circumvented for the posterior analysis. Second, an Inverse
Wishart distribution is assigned as a prior to the unconstrained covariance matrix. At this
step, the priors for the expansion parameter and the constrained covariance matrix are also

determined to complete a Gibbs sampler.
To begin, we let a positive scalar parameter 7 be the expansion parameter and define
7 00

&=10 1 0] x (Lj —Ry0). (3.29)
00 1

Given the normality assumption, we have €* | 6, >~ N (03><37 2), where ¥ is the

unconstrained covariance matrix of (ep;, €y, eOi)T as follows

700 700 T pipTO1  P1pTOg
Siz =0 1 0] XxZ3x3% |0 1 0| = |pipTor 02 poioo| - (3:30)
0 01 0 01 P1DTOp pP100100 O'g

al., 2004).
®Covariance matrix 2: £ | O_5, Y, D ~ W1 (M + ¥, n + v, ) Iys,,=13, with

EBED 6561 6560
_|.T T T . T . _ (@ . _ ~(0
M= |ejep € €1 € €|; €ep=D"—Pry El—Y()leil, eon()—Qno.
€0€D €€1 €€
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Then, the Inverse Wishart distribution can be assigned as a prior for X
Y~ WP, ), (3.31)

which implies the following prior for 72 and X

149 2 2 9 -1

p(7'2 1S o K + plOPlD/OOf_ /;10 Pip — Pop X%uo+4) ’ (3.32)
P10

1 1 — piy

p(z)oc\zy<“o+4>/2exp{— - } (3.33)

272 " 142 P — Pp —
T P1o0P1DPOD — Plo — Pip — Pob

Details of the derivations for (3.32) and (3.33) can be found in Appendix B.2.1. The
advantage of this approach is documented in the literature on sample selection models (Ding,
2014; Dogan and Tagpinar, 2018), suggesting that the algorithm improves the convergence
rate of resulting Markov chains. Alternatively, we also adopt the marginal data augmentation
technique similar to Imai and Van Dyk (2005) for the multinomial probit model, which
incorporates the expansion parameter differently. We present our corresponding algorithm
in Appendix B.2.2. In the Gaussian Generalised Roy setting, the original approach by Li
et al. (2004) and Poirier and Tobias (2003) is fixing the unidentified parameter during the
posterior analysis, as per Nobile’s (2000) suggestion. Among these algorithms, we found the
first approach achieved the best performance during initial simulation exercises, while others
might encounter numerical issues. The rest of this paper focuses on the first algorithm to
discuss posterior analysis, Monte Carlo experiments with synthetic data, and the empirical

application.

3.3.2 Computation

The augmented join posterior including latent quantities L* can be expressed as

p(0,2,L"|Y,D) xp0,%) -p(L* | 0,%)-p(Y,D |0, %, L"). (3.34)

Accordingly, we can compute conditional posterior distribution for latent quantities and

model parameters as detailed below.

First, we can impute the latent quantities based on their conditional posterior distribution

given the observed data and the parameters.

"There is a correction in Jiao and Dyk (2015).
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(a) Missing potential outcome Y58

}/imiss | @_Yimiss7Y7 D ifz/d ((1 — Di),uh- + Di,U/Oi7 (1 — DZ)VM + Dz‘/gz) s (335)

where

010 — O'ODUID]
)

« 020117 — 01000D
/Lli_QiT/fl‘i‘(Di_Piny)[o 2 2 +(Y;_QiT/§O) 2 2
o5 — 04p 00 — O9op

2 - —_—
Qo+ (D} = P[9) [(’1"” ‘W“’] + (Y- Q) [Wl |

Hoi =
0% — ol 01 — Oip
,  Oip0d —201000p01D + 0% oy Oip0i —201000p01D + 03
‘/li - 01 - 2 2 ) ‘/OZ - 00 - 2 P .
04 — 04p 01 — 0ip
(b) Latent utility D*
TN,+00)(1tDi, Vi) if D; =1 (3.36)

D;|©_p:. Y,D% ,
TN —oo0)(tb0i, Vpi)  if D; =0

where 7N denotes a truncated normal distribution and

2
is 0001D — 01000D
wpi =Pl + [DYi + (1- DY, S—Q?m}[o 2 3 1
0104 — O1p

2
0100D _01001D‘|
b

‘ T
+ [Diy;mzss + (1 — Dz)}/z — Qz HO} [ 5 9 3
0100 — 010
2 2 2 2
B 01p0s — 201000p01D + 010G
Vpi=1-— 55 5 .
0105 — 010

After imputing the missing data, we can infer the posterior distribution of remaining

parameters, conditioning on the complete data.

(c) Regression coefficients

0 | @_9, Y, D~ N(M@, Vg), (337)
where
Mo = V@[RTQ_IL* + VQ_OI/LQO,
Vo=R' Q'R+ V']

(d) Parameter expansion entails conjugate posterior distributions to estimate covariance
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matrix %

Conditional posterior of 3 is of the form

p(f] | 0,€, L*,Y,D) X ’2‘_(V0+4)/2 exp{—;tr('lfoi—l)} X |2 - 2eXp {—;éTQ_lg}
o |3 T exp {—itr(\l’ofl_l)} X |3 e exp {—;tr(Mi_l)},
(3.38)
with
2T T T

T €p€p TEpEL TEpRE
\ / . —_ * . _ . —_ .
M = TEITED (—:lTel elTeo ; ep=D"=Py; e1=Y1—Qr1; € =Yo— Qko;

TEJED 6361 6(—)r60

thus,

Y0, LY, D~ WM+ ¥, n+r,).
To marginalize over 72, we draw X from W~ (M + ¥, n + 1,) and set 72 = ;.

To recover X3, we set

1/ 0 0 1/r 0 0
=10 10/ xEx|0 1 o]. (3.39)
0 01 0 01

The details of the implementation are presented in Algorithm 3.1.
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Algorithm 3.1: Markov chain Monte Carlo (MCMC) Sampler I

Procedure
Step 0: Initialize parameters s = 0, /%), 2% for MCMC-chains
while s < S do
Step 1: Impute L*E* via p(L* | Y, D, 6, 2l
sampling Y™ as in (3.35) and D* as in (3.36),
setting L**+U = (D* Y y(O]T,
Step 2: Update 60! from p(6 | Y, D, L*l*+1 30) as in (3.37).
Step 3: Update Xl+! via p(X | Y, D, gl Lrls+1) by
(a) sampling (72)* from p(72 | 2L)

s| [s s s S S =
2y ~ | (200000000 = (p10)® = (pin) = (op)* |
T ) ~ X(Vo+4) )

1— (pid)?

(b) calculating (€*)* via the transformation,
(c) sampling 3* from p(X | Y, D, 951 LA+ (¢)*) as in (3.38),
(d) setting (72)* = 3%,
(e) recovering > s+ according to (3.39).

return L*[H1 gls+1] sls+1]

s s+1

end while
end procedure

3.4 Simulation Study

To evaluate the performance of the proposed framework and Bayesian estimation algorithms,
we design a simulation study with details described below. We focus on the primary setting in
which both selection-on-unobservables and spillovers are present, as well as several scenarios
with misspecifications. In addition to synthetic data, we also conduct an empirical Monte

Carlo study which employs the Add Health friendship network data in Appendix B.4.

3.4.1 Data Generating Processes

We draw 5 exogenous variables X, (k=1,...,5) independently from the standard normal
distribution and set X = {LZ, X T}T. The instrumental variable Z is also generated from
the same distribution. Regarding network/spatial structure, we design the weight matrix
W based on the interaction scenario described in Liu and Lee (2010). W is a block
diagonal matrices where each block represents the interaction structure of a group. Let

the total sample involve G = 30 groups where the g™ group has the groups size m,. We
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allow my to vary across GG groups by randomly assigning a value from the set of integers
{In/G] —2,|n/G] —1,...,|n/G| + 3} to each group size and adjust m¢ such that
Eg;:l mg = n. The weight matrix W, for the g™ group is generated in two steps. First, for
the i row of W, (i = 1,...,m,), an integer value 7;, is uniformly drawn from the set of
integer values {1,2,3,4}. Then, if i 4+ 7;, < my,, we set the (i + 1)™, ..., (7,; + 1)™ elements
of the i™ of T, to be ones and the rest elements in that row to be zeros; otherwise, the
first (7,4 + ¢ — m,) entries of the ™ row are set to ones and the rest elements in that row
are set to zeros. Finally, we set W = diag(W," + W,..., I/VgT + W,) and transform to a

row-normalised or doubly stochastic matrix.

The general data generating process (DGP) is based on model (3.7), which corresponds to®:

D; = 1{Zio+ X;fP) + P > 0}, fori=1,...,n
Dy = WD,
YW = 50Dy + X80 4 W), (3.40)
YO Z 50D, 1+ x50 4 (O

Y=DoYWY4+(1-D)oY®,

where the associated regression coefficients of covariates X in the selection equation and two
potential outcome equations are 3(P) = [O,ngf, Bl = [2,3&)5]T, BO) = [I,BEOX)S,]T.
Throughout, true values of the intercepts are fixed in all three equations, and other coefficients
are generated from the independent uniform distributions |_; ;j. The coefficient a = 1.5
controls the strength of the instrument Z. The presence of spillovers is implied by §(!) =

1.5 and 6 = 0.5. We specify a multivariate normal distribution of the error term ¢; =

-
el(-D), el(-l), 65‘”} forv =1,...,n as below
1 09 0.7
€ = [GED),EEI),EEO)} zi(jl./\/'((),EL Y= 1 06];
1

ie., 0% = 02 =02 = 1 and (p1p, pop, p10) = (0.9,0.7,0.6), which accommodates positive

correlation of unobservables.

We allow different sample sizes n € {500; 1,000; 5,000} of the dataset. For each of

8The operator o denotes the Hadamard product (also known as the element-wise product).
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the generated data sets, we specify two versions of models to be estimated by using the
proposed Bayesian MCMC sampler - Algorithm 3.1. First, Gaussian Generalised Roy model
without spillovers (GGRM-noST) serves as the benchmark model, without neighbourhood
term (D) and with a normal distribution of the error term. Second, Gaussian Generalised
Roy model with spillovers (GGRM-ST) is the full model with neighbourhood term (D ) and
a normal distribution of the error term. We run each MCMC algorithm for 11, 000 iterations,
with the first 1,000 draws are discarded as a burn-in period. Throughout our simulation
study, the parameters for the prior distributions are chosen as follows: pg, = 021; Vy, =

102 * Ipywo1; ¥, = I3x3; v, = 4. The number of independent replicates is R = 1, 000.

3.4.2 Simulation Results

For each simulated dataset, given the posterior distribution of each model parameter resulted
from MCMC draws, we derive the posterior mean for a point estimate and compute the
corresponding 95% credible interval. We thereby calculate across the 1,000 replicates the
average bias and the root mean square error (RMSE) of the point estimates, followed by the
coverage rate of the 95% credible intervals. The simulation results are presented in Table 3.1,

where the true values of the DGP parameters are also listed.

Table 3.1: Simulation Results for Model Parameters

Quantities of Interest Other Parameters
Model Metric n 5 6@ s 50 55 —oop a B “39) ﬁfu) o? o2 i Pop P10
True Value 1500 0.500  1.000 0200 1500 0.000 2.000 1.000 1.000 1.000 0900 0.700 0.600
500 -1500 -0.500 -1.000  -0.035 0.073 -0.016 0762 0243 0.134 0015 -0.093 -0.012 0.113
Bias 1,000 1500 -0500 -1.000  -0.021  0.033 -0.008 0756 0248 0.129 0016 -0.075 -0.009 0.123
5000  -1.500 -0.500 -1.000  -0.004 0005 -0.001 0751 0250 0.127 0.016 -0.055 -0.005 0.138
500 1500 0500  1.000 0134  0.157 0079 0768 0259 0.176 0.00 0.106 0086 0.132
GGRMmoSL pyvisE 1,000 1500 0500 1.000 0093 0099 0056 0759 0256 0.151 0.076 0084 0062 0.134
5000 1500 0500  1.000 0044 0037 0024 0752 0252 0131 0036 0058 0029 0.148
500 0000 0.000  0.000 0947 0881 0942 0000 0221 0807 0956 0.660 0957 0.987
Coverage 1,000  0.000 0.000  0.000 0947 0901 0945 0000 0030 0.649 0934 0487 0967 0.984
5000 0000 0.000  0.000 0947 0934 0957 0000 0000 0.050 0914 0052 0944 0.847
500  -0.001 -0.024  0.023 20050 0074 -0.024 0022 0004 0.004 0002 -0.053 -0.004 0.105
Bias 1,000 0.000 0007 -0.007  -0.028 0035 -0013 0011 -0.006 0.003 0.002 -0.028 -0.001 0.110
5000 0000 0000  0.000 0006 0005 -0.002 0.002 0000 0002 0.003 -0.005 0000 0.112
500 0226 0244 0334 0133  0.54 0080 0138 0150 0.102 0.099 0067 0086 0.128
GGRM-SI  pMSE 1,000  0.144 0171 0225 0089 0097 0056 0089 0.106 0068 0.073 0039 0061 0.124
5000 0066 0077  0.100 0040 0035 0024 0041 0048 0020 0032 0014 0029 0.119
500 0954 0946 0954 0934 0870 0946 0955 0958 0968 0954 0904 0951 0.973
Coverage 1,000 0968 0950  0.953 0947 0903 0946 0961 0951 0975 0941 0940 0958 0.960
5000 0960 0951  0.960 0957 0927 0950 0963 0954 0972 0954 0956 0944 0.879

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across R = 1, 000 replicates; where
Bias = R~! Z[’;l(d,. —a), RMSE = /R! Zle(d, — )2, and Coverage = R~! Z,R:l I{a € 670 95} The rows contain results for models with/without

spatial interference and for various sample size n.
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It can be seen that under the correct specification, estimating Gaussian Generalised Roy
model with spillovers (GGRM-ST) using our proposed Bayesian Data Augmentation algorithm
can successfully recover the true parameter values. Average bias and RMSE decrease as
n increases; the empirical coverage rate is always close to the nominal level (95%). On
the other hand, when the existing spillover phenomenon is not taken into consideration
(i.e., estimating GGRM—-noSTI model which does not include neighbourhood treatment term
D), not only 6 and § are clearly ignored but estimates of other relevant parameters
(BW, 8O 62 52 pip, pop) are also considerably affected — with larger average bias and

RMSE, in addition to a lower coverage rate on average.

n=500 n=1000 n=5000

Bias
(=]
o
:

0.4 4
0.3
0.2+

RMSE

0.14
0.0+

1.0

0.8+
0.5+
0.2
0.0+

Coverage

ot o o? ok 0% 0® ol o® o2 oM o o2 ok 0P 0% o o? 0 o) 0% o® ok o of ol o o2

dy (neighborhood treatment)

GGRM-noSI GGRM-SI

Figure 3.3: Plots of average bias, RMSE, and coverage rate of the estimation for average direct
treatment effects. Models without and with spillovers are shown in red and in green, respectively.

Furthermore, we investigate the consequence of neglecting spillovers even when the
causal estimand of interest is the direct effect of the treatment. Table 3.2 and Figure 3.3
report the performance of the estimators for Average Direct Treatment Effects, ADTE(d,y),
with different levels of the neighbourhood treatment dy € {0.1,0.2,...,0.9}. Estimating
GGRM-ST model again achieves good frequentist performance, which is consistent with the
relation between ADTE(d,) and the model parameters in equation (3.13). On the contrary,
estimating GGRM-noST leads to a higher magnitude of bias which persists even in the case
of a large sample (n = 5, 000). It is due to the omission of the term (5(1) — 6(0>) dx when
we ignore spillovers. The coverage rate also deteriorates substantially, especially for extreme

values of the neighbourhood treatment d,. Similar issues is observed for the Marginal Direct
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Treatment Effects, MDTE(d, v). Table 3.3 displays simulation results for this estimand of
interest at a fixed value of dy = 0.5 and different values of the unmeasured resistance level

v e {0.1,0.2,...,0.9}.

Table 3.2: Simulation Results for Average Direct Treatment Effects

n =500 n = 1,000 n = 5,000

Model Grid Bias RMSE  Coverage Bias RMSE  Coverage Bias RMSE  Coverage

0.1 0.419 0.437 0.098 0.408 0.418 0.007 0.401 0.403 0.000
0.2 0.319 0.343 0.302 0.308 0.321 0.083 0.301 0.303 0.000
0.3 0.219 0.252 0.605 0.208 0.227 0.377 0.201 0.204 0.001
0.4 0.119 0.173 0.880 0.108 0.141 0.776 0.101 0.108 0.284
GGRM-noSI 0.5 0.019 0.127 0.948 0.008 0.091 0.949 0.001 0.038 0.961
0.6  -0.081 0.149 0.905 -0.092  0.129 0.813 -0.099  0.106 0.291
0.7  -0.181 0.220 0.712 -0.192  0.212 0.451 -0.199  0.203 0.002
0.8  -0.281 0.308 0.423 -0.292  0.306 0.099 -0.299  0.302 0.000
09  -0.381 0.401 0.132 -0.392  0.402 0.007 -0.399  0.401 0.000

0.1 0.020 0.178 0.959 0.016 0.121 0.954 0.002 0.054 0.960
0.2 0.023 0.155 0.956 0.015 0.105 0.954 0.002 0.047 0.957
0.3 0.025 0.136 0.952 0.014 0.093 0.957 0.002 0.041 0.960
0.4 0.027 0.124 0.944 0.014 0.084 0.957 0.002 0.037 0.963
GGRM-SI 0.5 0.029 0.120 0.944 0.013 0.082 0.962 0.002 0.036 0.961
0.6 0.032 0.125 0.952 0.012 0.085 0.963 0.002 0.037 0.966
0.7 0.034 0.138 0.958 0.011 0.094 0.954 0.002 0.040 0.966
0.8 0.036 0.158 0.956 0.011 0.107 0.955 0.002 0.046 0.963
0.9 0.039 0.181 0.952 0.010 0.122 0.958 0.002 0.053 0.965

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage)
across R = 1, 000 replicates. The rows contain results for models with/without spatial interference across various sample
size n.

Table 3.3: Simulation Results for Marginal Direct Treatment Effects

n =500 n = 1,000 n = 5,000

Model Grid Bias RMSE  Coverage Bias RMSE  Coverage Bias RMSE  Coverage

0.1 -0.026  0.225 0.330 -0.019  0.160 0.100 -0.004  0.073 0.000
02  -0.011 0.180 0.616 -0.009  0.128 0.404 -0.002  0.057 0.005
0.3 0.000 0.152 0.823 -0.003  0.109 0.653 -0.001  0.048 0.141
0.4 0.010 0.135 0.929 0.003 0.097 0.877 0.000 0.042 0.625
GGRM-noSI 0.5 0.019 0.127 0.948 0.008 0.091 0.949 0.001 0.038 0.961
0.6 0.028 0.127 0.939 0.014 0.091 0.930 0.002 0.038 0.657
0.7 0.037 0.137 0.870 0.019 0.098 0.712 0.003 0.042 0.121
0.8 0.049 0.159 0.734 0.026 0.112 0.484 0.004 0.049 0.003
0.9 0.064 0.200 0.439 0.035 0.140 0.108 0.006 0.063 0.000

0.1 -0.035  0.220 0.956 -0.023  0.153 0.955 -0.005  0.070 0.957
02 -0.013 0.174 0.952 -0.011  0.122 0.955 -0.003  0.055 0.962
0.3 0.003 0.146 0.950 -0.002  0.102 0.956 -0.001  0.046 0.961
0.4 0.017 0.128 0.942 0.006 0.089 0.960 0.001 0.039 0.963
GGRM-SI 0.5 0.029 0.120 0.944 0.013 0.082 0.962 0.002 0.036 0.961
0.6 0.042 0.121 0.946 0.020 0.080 0.959 0.004 0.034 0.967
0.7 0.056 0.131 0.952 0.028 0.085 0.961 0.005 0.036 0.969
0.8 0.072 0.154 0.955 0.036 0.098 0.955 0.007 0.042 0.965
0.9 0.094 0.196 0.954 0.049 0.125 0.954 0.009 0.054 0.963

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage)
across R = 1, 000 replicates. The rows contain results for models with/without spatial interference across various sample
size n.
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3.4.3 Other Scenarios

In this section, we slightly depart from the original design by considering other scenarios

which include: (¢) no spillover; or (i) non-normality.
Scenario (i). No spillover () = ¢ =0

We use the same model specification (3.40) except for 6(1) = §(©) = 0 to simulate datasets.
Table 3.4 indicates that using our proposed Bayesian Data Augmentation algorithm to estimate
the Gaussian Generalised Roy model with spillovers (GGRM—-ST) can recover the true values
of model parameters successfully, as well as the quantities of interest. As sample size n
increase, the average bias vanishes, the RMSE declines, and the coverage rate of 95%
credible interval remains close to the nominal coverage. Compared to the original design
in Table 3.1, estimation for the elements of covariance matrix is almost unaffected. These
findings suggest the validity of tests for indirect (spillover) effects, patterns of interaction and
endogenous selection into treatment, as outlined in Section 3.2. In summary, the inclusion of
neighbourhood treatment term to capture potential spillover is plausible, regardless of whether

this phenomenon is present in the true data generating process.

Table 3.4: Simulation Results for Scenario (i)

Quantities of Interest Other Parameters

Metric n 060 5050 gip—0yp o P BV BP0 R pp pp P
True Value 0.000 0.000  0.000 0200  1.500 0.000 2.000 1.000 1.000 1.000 0.900 0.700 0.600

500 0.000 -0.024  0.023 -0.050  0.075 -0.024 0.022 0.004 0.004 0.002 -0.053 -0.004 0.106

Bias 1,000 0.000 0.007  -0.007 -0.028  0.034 -0.013 0011 -0.006 0.003 0.002 -0.028 -0.001 0.109
5,000  0.000 0.000  0.000 -0.006  0.005 -0.002 0.002 0.000 0.002 0.003 -0.005 0.000 0.111

500 0.227 0244 0335 0.132  0.154 0.080 0.139 0.150 0.101 0.099 0.067 0.086 0.129

RMSE 1,000  0.144 0.171  0.226 0.089  0.098 0.056 0.089 0.106 0.069 0.073 0.039 0.061 0.123
5000  0.066 0.077  0.100 0.040  0.035 0.024 0.041 0.048 0.029 0032 0.014 0029 0.118

500 0952 0944  0.955 0937  0.868 0942 0958 0956 00968 0954 0908 0955 0.977

Coverage 4099 0970 0.951 0.951 0.946  0.891 0944 0962 0947 0968 0940 0931 0958 0.969
5000 0957 0951  0.956 0953 0934 0948 0962 0952 0973 0952 0958 00946 0.894

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across R = 1,000
replicates; where Bias = R~ 2 (4, — «), RMSE = \/R-' & (4, — a)?, and Coverage = R™ 2 1{a € Clys,}. The rows contain

results for various sample size n.

Scenario (ii). Non-normality

Although the assumption of joint normality of the error terms is computationally convenient,

it may be inadequate to describe data in some cases. We consider below a finite mixture
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of Gaussian distributions of the error terms and examine the influence of this small model

misspecification on performance of the proposed approach.

T in 1 2
€ = |:61(D)7 61(1)7 61(0) Nd g (07 21) + gN (07 22) )
where
7.50 6.75 5.25 0.75 0.675 0.525
X = 7.50 4.50 and Xy = 0.75 0.45
7.50 0.75

It can be seen from Table 3.5 that estimation for parameters related to error terms are
affected, which is evident by upward biases and lower coverage rates compared to the original
design with joint normality. Estimation for other parameters of interest including 6", §(,
and 61 — 5 still exhibits good coverage, although we do observe a slight increase in the
RMSE and the bias. This confirms the robustness of the Bayesian estimation approach, which
generally exhibits very good frequentist properties. Furthermore, we can introduce greater
flexibility into the proposed approach by explicitly consider a finite mixture of normals, with

details can be found in Appendix B.3.

Table 3.5: Simulation Results for Scenario (ii)

Quantities of Interest Other Parameters

Metric n s 5@ M — 5O 55— oop @ B ﬂg) ﬂin) a? o3 piD Pop Pio
True Value 1.500 0.500  1.000 0.200 1.500 0.000 2.000 1.000 1.000 1.000 0.617 0.480 0.600
500 0.008 0.000  0.008 -0.012  -0.009 -0.005 -0.038 0.037 0.039 0.035 0.031 0.045 -0.003

Bias 1,000 -0.002 -0.001  -0.002 0.005  -0.039 0.001 -0.037 0.035 0.022 0022 0.057 0.052 0.033
5000  0.000 0.002  -0.002 0.025  -0.068 0.002 -0.048 0.032 0.025 0.017 0.076 0.055 0.080

500 0238 0264 0352 0.190  0.150 0.076 0.157 0.173 0.196 0.192 0.103 0.142 0.118

RMSE 1,000 0.175 0.188  0.260 0.135  0.112 0059 0.120 0.124 0.133 0.138 0.092 0.108 0.102
5000  0.076 0.081  0.110 0.072 0084 0.024 0.068 0.062 0062 0058 0.084 0.072 0.126

500 0967 0956  0.965 0949 0915 0961 0959 0950 0.715 0.726 0.954 0.928 0.999

Coverage 1 4 0.945 0937  0.938 0.945 0.896 0939 0925 0938 0.733 0.699 0.888 0.903 0.999
5000 0962 00958  0.960 0904 0611 0960 0.843 0.904 0.707 0719 0.429 0.741 0.939

Notes: This table displays the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across R = 1,000
replicates; where Bias = R~ Y. (4, — o), RMSE = {/R-1 % (4, — a)?, and Coverage = R"'>%  1{a € (770‘95,,}. The rows contain

results for various sample size n.
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3.5 Empirical Application

To demonstrate the applicability and usefulness of the proposed method, we investigate the
effects of the Opportunity Zones (OZ) program, America’s largest new place-based policy.
This program offers investment tax incentives to a limited number of designated census
tracts nationwide to promote economic development in distressed communities. In contrast to
previous federal place-based tax policies, which required the U.S. government to determine
eligible areas through an application process, state governors held primary authority and
significant discretion in selecting their respective states’ qualifying zones for the Opportunity
Zone program. As the program aimed to encourage investment in low-income and high-
poverty neighbourhoods, eligibility for OZ designation was based on the 5-year 2011-2015
American Community Survey (ACS), requiring tracts with poverty rates above 20% or median
family incomes below 80% of the area median income. Approximately 40% of the U.S. census
tracts, totaling 31,866, were eligible for OZ designation. State governors then had 90-120 days
after the law’s passage, until March 21, 2018, to nominate a quarter of their eligible tracts for
OZ designation. On July 9, 2018, the Treasury (Internal Revenue Service) released a list of
8,764 approved census tracts, hereafter referred to as Qualified Opportunity Zones (QOZs),
which included 8,534 low-income communities and 230 contiguous tracts. Figure 3.4 depicts

a map of the zones on the U.S. mainland.

@ Eligible, not selected
Ineligible
@ Selected

Figure 3.4: Illustration of the treatment assignment under the context of the U.S. Opportunity Zone
program. This figure maps the census tracts governors selected as Opportunity Zones (red), as well as
the eligible tracts not selected (blue).

It is imperative for policymakers to have a thorough understanding of the impact of

interventions on targeted areas, as well as any potential spillover effects, such as beneficial
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externalities or reallocations, on neighbouring communities. The economic outcome of
interest we examine is the growth of housing units in census tracts, which is closely linked to
overall economic growth. Predictions regarding the impacts of the OZ program are diverse’.
On the one hand, providing tax incentives to investors can make investing in the housing
market more financially attractive, thus encouraging the development of new housing projects
in OZ areas. This could lead to an increase in housing unit growth. On the other hand, it
may be challenging to promote new developments in certain underprivileged communities,
particularly those with limited resources and infrastructure. There is also a concern that the
OZ status of one location may affect potential outcomes of another, inducing spillovers beyond
the direct effects. One possibility is that OZ designations could crowd housing investment
into surrounding neighbourhoods through beneficial externalities. Another possibility is that
it could reduce housing investment in nearby areas through investors reallocating projects

towards tax-advantaged OZs.

3.5.1 Model Specification and Data Source

We consider the following specification that aligns with the proposed framework

K
k=1

Q0Z;= Y wyQOZ; Y wy=1

J=Lj#i J=1,5#1

sMQOZ, + Bél) + 22{21 B,il)DemographicM + 62(»1), if QOZ;=1

%AHousing; = (3.41)
00Q0Z, + B + X1, BY Demographicy; + ¢, if QOZ =0
EED) 1 o1p oop
€ 1) 1,,7\le N 0, O‘% J10

a5

Under this model specification, individual treatment ((QO %) is an indicator variable equal to
one if the tract was selected as an Opportunity Zone from the pool of eligible tracts and zero
otherwise. Opportunity Zone details are provided by the Urban Institute, including whether a
tract belongs to the 31, 866 eligible tracts and the selected 8, 762 tracts. The neighbourhood

treatment (QOZ) is computed as the proportion of treated neighbours using the spatial

A range of empirical evidences include, but are not limited to, studies by Corinth and Feldman (2024),
Freedman et al. (2023), Chen et al. (2023), and Wheeler (2022).
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adjacency matrix. Spatial-related information is retrieved from 2010 census tract locations

and shapes, available in Census TIGER 2018 shapefiles.

Demographic characteristics (Demographic) are incorporated into the selection process
to capture criteria that specify eligible census tracts. Some key variables include the poverty
rate, median earnings, and employment rate. These variables also potentially affect tract
outcomes, thereby being included in outcome equations. We measure them using the American

Community Survey (ACS) 2013-2017 5-year estimates.

We employ political affiliation (Political) as the instrumental variable in this setting'’.
Regarding the selection process, the governor’s party-affiliated census tracts have a higher
likelihood of designation as an Opportunity Zone (see, e.g., Alm et al., 2021; Eldar and
Garber, 2022; Frank et al., 2022). This can be attributed to two reasons. First, a governor’s
local political network can provide better information about localities that will benefit the
most from the policy, which can influence the selection decision. Second, governors may
choose to lend support to politically aligned representatives and constituencies as a means of
bolstering their political standing. We measure political affiliation using an indicator equal to
one if representative to the state’s lower house state of a census tract and the state’s governor
are members of the same political party. We obtain these data published the month preceding
the first Opportunity Zone selection (i.e., on March 1, 2018) from ballotpedia.com and assign
the state representatives to each tract using the 2016 State Legislative Block Equivalency Files

from the U.S. Census Bureau.

We restrict our analysis to the state of California because of its availability of comprehensive
data sources. Our final California data include 3, 699 eligible census tracts, which consist of
727 selected tracts (QOZs) and 2, 972 eligible albeit not selected tracts (Non-QOZs). Details
of variable definition, data sources, and a map of Opportunity Zone status of California census
tracts are shown in Appendix B.5. Summary statistics and covariate balancing tests between
the two subpopulations are reported in Table 3.6. It can be seen that compared to the control
group, the selected OZs are less wealthy, less employed, less likely to attain higher education,

have more rental units, and are less populated.

19That means, political affiliation is the excluded variable which enters the selection equation but does not
appear in outcome (housing unit growth) equations. To test this supposition, we incorporated this political
affiliation to the outcome equations. We found that it played negligible role in those equations, and its inclusion
had little to no effect on the estimates of the remaining parameters.
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Table 3.6: Summary Statistics and Balancing Tests

All tracts (n=3699) QOZs (n=727) Non-QOZs (n=2972) QOZs — Non-QOZs
Variables Mean (std) Mean (std) Mean (std) Diff. Mean t-statistic
Outcome
Housing Unit Growth 0.03 (0.17) 0.04 (0.14) 0.03 (0.17) 0.02 * 2.57

Observed Characteristics

Political Affiliation 0.79 (0.41) 0.82 (0.38) 0.78 (0.42) 004 * 272
Poverty Rate 0.19 (0.09) 0.27 (0.09) 0.17 (0.08) 0.09 #2464
Median Earnings 10.17 (0.31) 10.01 (0.26) 10.21 (0.30) 021  #% _18.60
Employment Rate 0.29 (0.07) 0.26 (0.07) 0.29 (0.07) 0.04 #x 1287
% White 0.56 (0.21) 0.53 (0.20) 0.56 (0.21) 0.04 #x 435
% Native 0.90 (0.04) 0.89 (0.04) 0.91 (0.04) 20.02  #% 905
% Higher ed. 0.15 (0.09) 0.11 (0.07) 0.16 (0.09) 2005 e 11523
% Rent 0.57 (0.21) 0.67 (0.19) 0.54 (0.21) 0.13 %% 1647
Population 4509.55 (1613.93)  4305.31 (1476.18)  4559.51 (1642.24) 25420  FRE4.07

Notes: This table presents summary statistics at the census tract level in California. All tracts refer to the entire sample of
eligible census tracts for Opportunity Zones, which consist of selected tracts (QOZs) and eligible, non-selected tracts (Non-
QOZs). Two-sample t-statistics of tests for differences in mean values between two subsamples are reported. The asterisks *,

*% and *** indicate statistical significance at the 10%, 5%, and 1%, respectively.

3.5.2 Estimation Results

Our model (3.41) is estimated using the Bayesian Data Augmentation algorithm discussed
in previous sections. The estimation results are reported in Table 3.7. With respect to the
treatment decision equation, the coefficient estimates are consistent with our expectations.
Governors tend to select even more distressed communities, characterised by higher poverty
rates and lower median earnings, from the pool of already low-income tracts. Additionally,
the instrument appears to play an important role in the selection process, as governors are
more likely to choose tracts represented by members of the same political party. Regarding
the outcome equations, non-QOZs with lower poverty rates, larger median earnings, and
higher employment rates tend to experience greater changes in total housing units on average.
These effects are statistically significant at the 5% level. In contrast, for selected census tracts
(QOZs), higher poverty rates are associated with more significant changes in total housing

units.
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Table 3.7: Estimation Results

(I) No Controls (IT) Additional Controls
Mean Std LB UB Mean Std LB UB
Treatment Decision Equation
Political Af filiation () 0.119 0043  0.034 0.203 0.116 0053  0.017 0.221
Intercept (B{)) 0.823 0042 0907  -0.742 1184 1141  -1.077 3.410
Poverty Rate (82)) - - - - 4951 0334 4307 5612
Median Income (85") - - - - 0317  0.113 0538  -0.095
Employment Rate (8{") - - - - 0530 0459  -0.350 1.423

Outcome Equation for QOZs
Neighbourhood Treatment (6(1)) 0.034 0.016 0.002 0.066 0.033 0.017 0.001 0.067

Intercept (85") 20223 0028 0269  -0.158  -0573 0295  -1.164 0.001
Poverty Rate (3") - - - - 0.857  0.101  0.667 1.054
Median Income (85") - - - - 0017 0030  -0.041 0.074
Employment Rate (8{") - - - - 0.057 0.109  -0.153 0.270

Outcome Equation for Non-QOZs
Neighbourhood Treatment (§) 0.016 0.013 -0.010 0.042 0.025 0.014 -0.003 0.052

Intercept (8") -0.025  0.004  -0.033 -0.017 0718  0.152  -1.016 -0.420
Poverty Rate (") - - - - 0308  0.050  -0408  -0212
Median Income (85) - - - - 0.080 0015  0.050 0.109
Employment Rate (ﬁém) - - - - -0.200 0.059 -0.315 -0.084
Correlations and Variances
o? 0.049 0.007 0.035 0.062 0.041 0.005 0.033 0.051
o2 0.038 0.001 0.036 0.041 0.035 0.001 0.033 0.038
piD 0.892 0.046 0.808 0.929 0.868 0.024 0815 0.907
poD -0.841 0011  -0.861 -0.819 -0.811 0.014  -0.835 -0.782
p10 -0.752  0.043  -0.800 -0.668 -0.707  0.032  -0.765 -0.640
Criteria
Log likelihood -894.939 43593 -977.288 -801.430 -514.188 41.854 -597.910 -433.570
AICM 1948.754 - - - 1102.365 - - -
Observations 3699.000 - - - 3699.000 - - -
Quantities of Interest
oW 0.034 0.016 0.002 0.066 0.033 0.017 0.001 0.067
5© 0.016 0.013  -0.010 0.042 0.025 0.014  -0.003 0.052
Asay_s0) 0.018 0.021 -0.023 0.058 0.008 0.022  -0.035 0.051
Aoy p—oop 0.362 0.021 0.321 0.396 0.329 0.015 0.301 0.358

Notes: This table presents estimation results from Gaussian Generalised Roy model with spillovers. Posterior means, standard deviations,
as well as upper bounds and lower bounds of 95% credible intervals are reported. Baseline specification (I) employs no control variables.
Specification (II), which uses demographic characteristics as controls, provides robust results of quantities of interest and gains better Log

marginal likelihood and Akaike’s Information Criterion Monte Carlo (AICM, Raftery (2007)).

Recall that the coefficients of neighbourhood treatment, namely 6(!) and 6(), represent
the average partial indirect effects when treated and when untreated, respectively. Although
we estimate a significantly positive average indirect effect for treated census tracts, with a
point estimate of &y = 0.033 and a credible interval of [0.001, 0.067], this effect becomes
statistically insignificant for untreated counterparts, with a point estimate of do = 0.025 and a

credible interval of [—0.003, 0.052]). This suggests that, on average, a greater proportion of
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neighbouring census tracts designated as QOZs is typically associated with a higher increase
in the growth of housing units in selected tracts. However, the spillover effect is negligible

when these tracts are not selected.

Using these estimates, we can also reconstruct corresponding treated and untreated average
potential outcome functions, as illustrated in Figure 3.5. We report the average functions as
bold lines, which show a moderately upward trend across increasing values of neighbourhood
treatment because of the positive estimated slopes. The corresponding (pointwise) 95%

credible intervals represented by dashed curves are derived from the posterior samples.

Treated Potential Outcome Untreated Potential Outcome

0.1 0.1

0.0 0.0

g
|

dn

d
Dy =d,

Dy =4,
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Cl = [-0.0026,0.0523]

A
§,=0.0332

01 Cl = [0.0011,0.0671]
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dy (neighborhood treatment) dn (neighborhood treatment)

Figure 3.5: The average potential outcome when being treated and when being untreated (right-hand
side panel), as a function of the neighbourhood treatment ds. The dashed curves represent 95%
credible intervals derived from posterior samples. Ticks in the rug plot on the horizontal axis represent
empirical distribution of dr based on the real network. Estimation results for specification (II) with
control variables are used.

The differential between these two average potential outcomes recovers the average direct
treatment effects evaluated at various neighbourhood treatment levels, as depicted in Figure
3.6. The nearly flat curve, of which the estimated slope (A(;(l)_(;(o)) is positive albeit not
statistically significant, reveals that the direct effect of being selected for OZ program on
census tracts’ housing unit growth is almost unaffected by the neighbourhood treatment. Put
differently, no significant interaction effect is found. This pattern is consistent with numerical
results in Table 3.8. It worth noting that computed 95% credible interval bounds below zero
in all cases, implying that the average direct treatment effects of OZ program for a census
tract picked at random from the whole population of eligible census tracts are significantly
negative. Although there no evidence that these estimated average direct treatment effects are
heterogeneous relative to various levels of neighbourhood treatment, the average results may

mask positive and negative effects for different subpopulations of census tracts characterised
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by other dimensions.

Average Direct Treatment Effects

0.1

00] T
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Figure 3.6: The average direct treatment effect as a function of the neighbourhood treatment d . The
dashed curves represent 95% credible intervals derived from posterior samples. Ticks in the rug plot
on the horizontal axis represent empirical distribution of d based on the real network. Estimation
results for specification (II) with control variables are used.

Marginal Direct Treatment Effects
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Figure 3.7: The marginal direct treatment effect as a function of the neighbourhood treatment d s
and the unmeasured resistance level v, at average values of the covariates. Ticks in the rug plot on
the horizontal axis represent empirical distribution of v, obtained from posterior samples. Estimation
results for specification (II) with control variables are used.
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Table 3.8: Average Direct Treatment Effects Table 3.9: Marginal Direct Treatment Effects

d N Mean (std) CI95 v Mean (std) CI95

0.1 -0.1970 (0.0223) [-0.2413, -0.1546] 0.1 0.2258 (0.0127)  [0.2010, 0.2506]
0.2 -0.1962 (0.0219) [-0.2394, -0.1546] 0.2 0.0809 (0.0137) [0.0538, 0.1075]
0.3 -0.1954 (0.0218) [-0.2377,-0.1544] 0.3 -0.0235(0.0162) [-0.0554, 0.0071]
0.4 -0.1945(0.0218) [-0.2373,-0.1538] 04 -0.1127 (0.0190) [-0.1502, -0.0766]
0.5 -0.1937 (0.0221) [-0.2373, -0.1532] 0.5 -0.1961 (0.0219) [-0.2393, -0.1546]
0.6 -0.1929 (0.0225) [-0.2373,-0.1514] 0.6 -0.2796 (0.0251) [-0.3288, -0.2320]
0.7 -0.1921 (0.0232) [-0.2379, -0.1493] 0.7 -0.3688 (0.0286) [-0.4247,-0.3151]
0.8 -0.1913 (0.0241) [-0.2387,-0.1471] 0.8 -0.4732(0.0329) [-0.5376,-0.4115]
0.9 -0.1905 (0.0251) [-0.2406, -0.1441] 0.9 -0.6181(0.0391) [-0.6945, -0.5451]

Notes: This table presents estimation results
for Average Direct Treatment Effects,
evaluated at nine grid values of the
neighbourhood treatment dy- and average
values of the covariates in our sample.
Posterior means, standard deviations, as well
as 95% credible intervals for specification (IT)

with control variables are reported.

Notes: This table presents estimation results
for Marginal Direct Treatment Effects,
evaluated at nine grid values of the
unmeasured resistance level v and average
values of the neighbourhood treatment d s as
well as the covariates in our sample. Posterior
means, standard deviations, as well as 95%

credible intervals for specification (II) with

control variables are reported.

Table 3.10: Summary of Direct Treatment Effects

ADTE ADTT ADTUT

Mean (std) CI95 Mean (std) CI95 Mean (std) CI95

-0.196 (0.022) [-0.239,-0.155] 0.041 (0.015) [0.012,0.069] -0.298 (0.026) [-0.349, -0.249]

Notes: This table presents estimation results for the average direct treatment effect (ADTE), the average
direct treatment effect on the treated (ADTT) and on the untreated (ADTUT) from Gaussian Generalised
Roy model with spillovers. Posterior means, standard deviations, as well as 95% credible intervals for

specification (II) with control variables are reported.
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From estimation results for the elements of covariance matrix in Table 3.7, it is evident
that the correlations (p;p and pyp) between unobserved component in treatment decision
equation and each of two potential outcome equations are significantly different from zero.
This reveals endogenous selection into treatment, which should be taken into account to

accurately characterise the causal effects of the OZ program.

Rewrite (3.41) using V; = —® (el(-D)) Then, V; represents unobserved heterogeneity of
census tracts, which contributes to the selection process. Because higher values of V; imply a
lower propensity for treatment, V; can be interpreted as an unmeasured resistance to treatment.
Examining further marginal direct treatment effects (MDTE) allows for the estimation of
treatment effects at different points in the distribution of unobserved heterogeneity V;,
providing insights into how treatment effects vary among census tracts that are marginally

indifferent to receiving the treatment.

Figure 3.7 depicts MDTE curves evaluated at mean values of covariates X in our sample.
Because of the null interaction effect documented above, these curves corresponding to various
values of d are nearly identical. However, the MDTE curves decrease with increasing values
of the unmeasured resistance to treatment v, revealing a pattern of selection-on-gains. This
indicates that “low-resistance” tracts (i.e., very low v), which are most likely to be selected by
governors, appear to benefit the most from tax credit. This selection-on-gains pattern, implied

by the positive slope of the MDTE curve (A ), is statistically significant at the 5%

01D—00D
level. The figure referenced in 3.7 depicts mean value curves of MDTE evaluated at different
values of d, - These curves, which represent the null interaction effect, are nearly identical.
However, the MDTE curves decrease with increasing values of the unmeasured treatment
resistance v, revealing a selection-on-gains pattern. This indicates that “low-resistance” tracts,
which are most likely to be selected by governors and have very low v, benefit the most from

tax credits. The slope of the MDTE curve (A ) implies this selection-on-gains pattern

01D—00D

and is statistically significant at the 5% level.

Interestingly, estimation results from Table 3.9 further suggest that for the 20 percent of
census tracts most likely to be selected (v < 0.2), the direct effects are positively significant.
In contrast, high-resistance census tracts that are less likely to be selected by governors exhibit
negatively significant direct effects. These tracts constitute 60 percent of the entire eligible
population (v > 0.4). With a realized treatment rate in our data of approximately 20 percent,

our further interest is examining the treatment effects on the treated and untreated. By deriving
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proper weights and aggregating over the MDTE curve, a range of causal estimands can be
computed, as summarized in Table 3.10. The average direct treatment effect (ADTE) suggests
that OZ tax credit reduces the growth of housing units by 19.6 percentage points. Although
this result is statistically significant, it is generally insufficient for policy analysis and obscures
important treatment effect heterogeneity. Specifically, the average direct treatment effect on
the treated (ADTT), which places most weight on low-v communities, shows a substantial
increase of 4.1 percentage points in housing unit growth for tracts that are ultimately selected
as QOZs on average. On the other hand, the average direct treatment effect on the untreated
(ADTUT), which places most weight on high-v communities, shows a substantial decrease
of 29.8 percentage points for the non-QOZs on average. These findings provide insights
into the OZ program’s selection mechanism and effectiveness. Selection-on-gains appears
to be an empirically significant phenomenon that influences the governor’s designation
process. Governors prioritize census tracts with characteristics that have potential for ex-post
gains, which could generate a positive impact. This goal seems to have been achieved, as
indicated by the positive direct treatment effect on the treated tracts (QOZs). Additionally,
these findings can be reconciled with our previous discussion on the role of political affiliation
in governors’ choices. One possible explanation for this is the information advantage that local
political networks provide governors, enabling them to better understand which communities
will benefit the most from the policy. However, eligible but unselected tracts (non-QOZs)
remain a disadvantaged group. Although there is no evidence to support the initial concern
about a displacement effect, there are no beneficial externality spillovers into non-QOZs
either. Additionally, because of unobserved differences between QOZs and non-QOZs, it
is unlikely that positive treatment effects on QOZs would be replicated if non-QOZs were
granted investment tax credit. In fact, the strongly negative ADTUT even predicts an adverse
impact on non-QOZs in this hypothetical scenario. Therefore, expanding the OZ program to

communities that currently do not receive tax credit would not be effective.

These findings have important implications for the design of an optimal policy. Considering
the diverse impacts of the OZ program, it is vital to assess its overall efficacy and determine
whether its benefits are fairly distributed among communities. Given the role of unmeasured
tract heterogeneity in determining the OZ program’s effectiveness, an optimal design should
adopt a more refined approach to selection mechanisms. In order to address the disadvantages
faced by non-QOZs, policymakers should explore alternative strategies to support these

communities, rather than relying solely on tax incentives.
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3.6 Concluding Remarks

In this paper, we developed methods that use observational network or spatial data to identify
and estimate direct and indirect causal effects in the presence of endogenous selection into
treatment and spillovers. This scenario arises due to the violation of the unconfoundedness
and SUTVA assumptions, which are commonly assumed in the causal inference literature
yet implausible in many economic contexts. Our proposed framework nests the Generalised
Roy model and captures spillovers in the form of exposure to neighbours’ treatment. The
advantages of this approach are explicitly modelling selection process and allowing for
heterogeneous effects across individuals. Although the model is not fully structural, it is
economically interpretable. For estimation and inference, we improved the Bayesian data
augmentation algorithms to enable more efficient computation and greater flexibility. All
sources of variability are accounted for in the posterior distribution of the target causal
estimands. Both the simulation with synthetic data and an empirical Monte Carlo study that
uses friendship networks and covariates from Add Health data indicate that our Bayesian

estimators perform well in terms of bias, RMSE, and coverage rate.

We also applied the proposed method to evaluate the Opportunity Zones (OZ) program,
which offers tax incentives to boost economic development in distressed U.S. communities.
We modeled the selection mechanism of designating QOZs by state governors and estimated
the program’s impact on housing unit growth in census tracts, accounting for endogenous
selection into treatment. Our findings indicate a selection-on-gains pattern, where treatment
effects vary with unmeasured tract heterogeneity. Both the direct and indirect effects on
treated tracts (QOZs) are positive, while unselected tracts (non-QOZs) remain disadvantaged
without positive spillover effects. The unobserved differences between QOZs and non-
QOZs suggest that replicating positive treatment effects in non-QOZs is unlikely. Moreover,
our model predicts adverse outcomes for non-QOZs if they were granted investment tax
credits. Therefore, extending the OZ program to currently uncredited communities would be

ineffective.

Extending the methods discussed earlier, a Bayesian semiparametric approach can be
implemented to incorporate heterogeneous indirect effects and relax the distributional
assumption for disturbance terms. We outline an extension that adopts a finite mixture model
in Appendix B.3. A more general approach could be built on the work of Conley et al. (2008),

which utilises the Dirichlet process (DP) to enable parameters to be observation-specific
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and generated from a common distribution. We leave this direction for future research.
Furthermore, variable selection techniques based on spike and slab priors could be employed
in our Bayesian estimation procedure to account for uncertainty regarding control variables in
both potential outcome equations and the selection equation or to account for uncertainty
regarding the structure of the adjacency matrix that represents the network or spatial

connection.



Chapter 4

Modelling Interactions with Heterogeneous Effects and

Endogenous Network Formation

4.1 Introduction

Modelling network interactions is a significant topic in economics to understand how
individuals’ actions are shaped by those of their peers, with applications ranging from
education and labour markets to industrial organisation and beyond. With the growing
availability of detailed data that document connections among individuals, the spatial
autoregression model (SAR) has been extensively used to empirically analyse these

interactions and estimate peer effects in networks.

The foundational theoretical aspects related to identifying and estimating the standard SAR
model as a network interaction model were established by Bramoull€ et al. (2009), as well as
by Lee et al. (2010), and Lin (2010). These studies are predicated on the assumption that the
network is exogenous. Nonetheless, this assumption has been challenged, as unobservable
characteristics often simultaneously influence individual activity outcomes and the formation
of networks, thereby introducing selection bias into the estimates of interaction effects. This
recognition has led to a new wave of research focusing on integrating models of network
interaction and formation to structurally address the endogeneity issue. Notable contributions
in this domain include subsequent studies by Goldsmith-Pinkham and Imbens (2013), Hsieh
and Lee (2016), Qu and Lee (2015), Johnsson and Moon (2021), and Auerbach (2022), which
employ various estimation techniques. These developments are naturally linked to evolving
literature on the econometrics of network formation (see, e.g., Chandrasekhar, 2016; Graham,
2015), and researchers are increasingly leveraging recent insights from this literature to expand

the SAR framework to account for network endogeneity.

Despite these advancements, the literature is still missing due to an implicit assumption

94
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embedded in the conventional specification of SAR. This typically imposes strict homogeneity
in the interaction effects, requiring that all individuals are influenced in exactly the same way
by the average outcome of their peers. This assumption is implausible in many context when
some individuals are clearly more susceptible to peers or exert greater influence than others.
Recent surveys (see, e.g., Bramoullé et al., 2020; Kline and Tamer, 2020) have acknowledged
the importance of accounting for individual heterogeneity in endogenous interaction effects.
Although the economic theory in these cases is well-examined (Jackson and Zenou, 2015),
econometric models addressing heterogeneous interaction effects remain underdeveloped. A
few exceptions have attempted to incorporate certain degree of pre-stipulated heterogeneity,
such as (Arduini et al., 2020a, 2020b), who generalised the standard model to allow for two
specific types with between and within-type interactions. Building upon this framework,
Beugnot et al. (2019) investigate the gender-heterogeneous peer effects on performance
within social networks. Their study reveals that men and women experience distinct peer
effects, and individuals may also be influenced differently by male and female peers. Rather
than pre-specifying heterogeneity based on observable characteristics of individuals, Masten
(2018) introduces the heterogeneity by studying identification for the linear-in-means model
with random coefficients. This model accommodates pair-specific interaction effects that
purely random and not driven by observable factors. The author proves that the marginal
distributions of the coefficients are point identified, provided there exists an instrument
with continuous variation over a large support. In a similar vein, Peng (2019) extends SAR
model by assuming varying rates of influence among individuals and imposed sparsity on
the number of influential individuals. Nonetheless, all of these studies essentially require the
network to be exogenously given, which compromises the efforts made in research addressing
endogenous network formation. This assumption is subject to considerable skepticism among
economists, raising the question of whether relaxing it has major implications for estimates
of heterogeneous network interaction effects in these studies. To the best of our knowledge,
simultaneously accommodating heterogeneous network interaction effects and accounting for
endogenous network formation is a gap in the literature of network/social interactions due to

the intertwined challenges.

This paper contributes to the literature by proposing a new framework that extends standard
SAR model to incorporate both heterogeneous network interaction effects and endogenous
network formation. We develop the Selection-corrected Heterogeneous Spatial Autoregressive

(hereafter referred to as SCHSAR) model, a unified framework to achieve these two objectives.
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At its core, the SCHSAR model features a mixture structure in which individuals belong
to finite latent types, each governed by distinct parameters when they interact with peers
in a network. This specification captures rich heterogeneity in network interaction effects,
allowing individual outcomes to vary in both the magnitude and direction of peer influence. To
address the endogeneity inherent in network formation, we explicitly model dyadic links as the
realisation of decision-making processes influenced by observable attributes and unobservable
individual-specific factors. By jointly incorporating these unobserved traits as latent variables
into the network formation and individual outcome equations, which resemble a two-stage
game, the SCHSAR framework corrects for potential selection bias arising from endogenous
links. The estimation is performed using a Bayesian data augmentation method, which enables
efficient computation and inference despite complex latent structures. Overall, SCHSAR
offers a flexible and robust approach to draw credible conclusions about network interaction

effects in settings where both individual heterogeneity and network endogeneity are present.

Our methodology builds on two strands of the literature in econometrics, and our

contributions are two-fold.

First, our strategy to correct selection bias stemming from endogenous network formation
follows the seminal works of Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee
(2016). These studies introduce Bayesian joint modelling approach that uses latent variables
to control for unobserved factors influencing both network formation and outcome. Our
SCHSAR framework goes beyond these foundational contributions in several ways. Most
notably, we relax the assumption of homogeneous peer effects by incorporating a finite
mixture structure that enables heterogeneous responses to peers. Broadly speaking, our
model nests Goldsmith-Pinkham and Imbens (2013) as a special case when the number of
mixture components is reduced to one. Additionally, unlike prior work that focuses solely on
unobserved homophily, our framework also allows unobserved degree heterogeneity to drive
network formation. This again provides a richer form of individual heterogeneity, facilitating
a more robust analysis. Lastly, we adopt a probit instead of logit link function for modelling
network formation via introducing normally distributed dyadic shocks. We gain another
latent-variable representation that integrates naturally into the hierarchical Bayesian structure

of our model, thereby simplifying posterior computation and improving convergence.

Second, to accommodate the heterogeneity in the network interaction effects, our model

draws inspiration from Cornwall and Parent (2017), who introduce a finite mixture approach
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to spatial econometric modelling. Their Spatial Autoregressive Mixture (henceforth, SAR-M)
model marks an innovative step toward integrating spatial dependence and heterogeneity,
and connects to a broader literature on heterogeneous spatial models (e.g., Aquaro et al.,
2021; LeSage and Chih, 2018, 2016). However, SAR-M and related models share a common
and significant limitation: the assumption that the spatial weights matrix (spatial version of
the network adjacency matrix) is exogenously given and fixed. This restricts their empirical
applicability, particularly in settings where spatial weights are constructed from economic
or behavioural variables (for example, GDP, income, or trade flows). In such cases, the
endogeneity of the spatial weights matrix becomes a first-order concern, as emphasised in
critical works (see Han and Lee, 2016; Kelejian and Piras, 2014; Qu and Lee, 2015). Our
SCHSAR framework addresses this limitation by endogenizing the network formation process,
allowing the adjacency (or spatial weight) matrix to be driven by unobserved factors. In doing
so, our model advances Cornwall and Parent’s (2017) SAR-M model in a cross-sectional
setup, and the insights may be extended to heterogeneous models utilising panel data, such as

in LeSage and Chih (2018).

By bridging recent advancements in two distinct lines of research, SCHSAR provides a
unified and flexible framework that can be readily applied to both social networks and spatial

data contexts.

To estimate the SCHSAR model, we develop a Bayesian Markov chain Monte Carlo
(MCMC) algorithm that offers several methodological and practical advantages. First, we
leverage the Bayesian data augmentation technique to sample parameters alongside latent
variables from the joint posterior distribution. This approach provides a tractable solution to
the computational challenges typically faced in maximum likelihood estimation, particularly
those involving high-dimensional integrals arising from latent structures. Second, the proposed
algorithm simultaneously addresses heterogeneity and endogeneity, the two central features of
the SCHSAR framework, by utilising latent variables in a unified model. It also enables the
seamless integration of model constraints. This unified Bayesian approach facilitates one-step
inference across all unknown quantities, providing principled uncertainty quantification.
Third, the algorithm yields posterior predictive distributions for the individual-level latent
variables, including the unobserved random effects and latent type indicators. These posterior
draws allow for a data-driven probabilistic assignment of individuals to latent types, enabling

the model to uncover clusters of heterogeneous interaction effects through a finite mixture



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 98

structure. Moreover, this facilitates an examination of how latent heterogeneity correlates with
observable characteristics, enriching the interpretability of the model. Finally, the Bayesian
framework naturally allows for inference on policy-relevant quantities, such as total spillin
and spillout effects, which are highly nonlinear functions of the model parameters. These
effects can be computed directly from posterior samples as a by-product of estimation. The
computational tractability and convergence of our Bayesian estimation method is supported by
simulation evidence. The simulation study also demonstrates favourable frequentist properties,
showing that the SCHSAR model delivers valid inference and improved performance relative
to more naive approaches that either ignore endogenous network formation or assume

homogeneous interaction effects.

Having developed valid tools for estimation, we apply the proposed SCHSAR framework
to study the formation of a technological collaboration network among U.S. firms and
heterogeneous interaction effects on firm performance, with a focus on their R&D efforts. The
empirical analysis confirms significant positive, yet heterogeneous, network interaction effects
on corporate R&D investments, even after controlling for selection bias due to endogenous
network formation. We find substantial heterogeneity in firm behaviour and uncover notable
transmitters and absorbers in response to exogenous R&D policy shocks. This framework
facilitates the quantification of firm-level direct, spillin, and spillout effects, thereby offering

valuable insights for the design of evidence-based and targeted policy interventions.

The remainder of this paper is organised as follows. In Section 4.2, we formally present the
Selection-corrected Heterogeneous Spatial Autoregressive (SCHSAR) framework, accounting
for heterogeneous interaction effects and endogenous network formation. In Section 4.3, we
develop Bayesian MCMC algorithms to estimate the model and conduct inferences. Next,
we evaluate the performance of our method using simulations in Section 4.4 and apply the
proposed approach to study U.S. firms’ technological collaboration network in Section 4.5.
Finally, we conclude the paper in Section 4.6 with brief remarks on the method and policy

recommendations based on our results.
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4.2 Selection-corrected Heterogeneous Spatial Autoregressive Model

4.2.1 Network Interaction with Heterogeneous Effects
Suppose there are /V individuals, indexed by ¢ € {1,..., N} in a network.

Let W = [w;;] be an N x N adjacency matrix that characterises the network, where w;;
equals one if individuals 7 and j are connected, and zero otherwise. The diagonal entries in

W are always zero.

LetY = [Yy,...,Yy]" be an N-dimensional vector of the outcomes of interest, defined for
all individuals. Let X be an N x K matrix of exogenous covariates that represents individual

characteristics, with k-th column denoted as X*.

The standard spatial autoregressive (SAR) model for studying interactions in networks is
specified as

N
Y =AY wyY; + XoB + u; @.1)

j=1
where \ captures the endogenous peer effect (a.k.a. network interaction effect), where an
individual’s choice of activity level (outcome) may depend on those of their peers; J =
(B, ..., BK]T captures the influence from the individuals’ exogenous characteristics on the
T

outcome; and u = [uyg,...,uy| " is a vector of stochastic errors whose elements are i.i.d. with

zero mean and constant variance o2,

The network interaction model (4.1) has been widely studied (Bramoull€ et al., 2009; Lee et
al., 2010; Lin, 2010, among many others) and is also referred to as the linear-in-means network
model. Despite many available variants in the literature, these models typically assume that
the interaction effect parameter )\ is constant and common to all individuals. This means
that all individuals are influenced in the same way by a summary of their peers’ outcomes.
However, assuming homogeneous effects is restrictive when some individuals may be highly

susceptible to peer effects, while others remain relatively independent in their behaviours.

To accommodate this heterogeneity, we assume that our sample is representative of a
population composed of a finite number of latent types of individuals, indexed by g € G =
{1,...,G}. Each type g is characterised by its own set of parameters {),, (3, o2, }, which
are similar for all individuals of the same type but vary across types. The type is assigned

independently among individuals, following a multinomial distribution with probability
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™ = [m,..., 7], where 0 < 7, < 1 and Zle my = 1. We denote z;, as the individual-
type indicators, where z;;, = 1 means 7 belongs to type g, and z;, = 0 otherwise. Combine
2 = |21, %9, - - - , Zig] and stack them in an N x G matrix of allocation, z == [2] ..., z}]"
These indicators are stochastic and unobserved, and the probability that the latent type of 7 is g
is P(z, = 1) = m,. We denote Z,, as the set of type-¢g individuals and NN, as the corresponding
cardinality. 7y, . . ., Z are thus sets that partition {1,..., N}, and Zngl Ny, = N. In this way,

all parameters in the original model (4.1) become type-specific as follows

N

7j=1
for each individual 7 € Z,.

Collect type-specific parameters into G-dimensional vectors and define N-dimensional

vectors of individual-specific parameters listed below

v ~

A= [)\17--'7)‘G]T7 A= ZS\’

Bk::[6f7"‘?/62]—|—’ Bk::ZBk7 k:17"'7K;

2 2 9T =2 . %2
o, =05, .., 0ua] s 0, =270,

Accordingly, we obtain a heterogeneous version of the spatial autoregressive model (HSAR)
~ N ~
Y =N wiV+ Xfi 4w u ~ N(0,62,); (4.3)
j=1

where 5\1-, Bi, and 52,1‘ are individual-specific parameters for individual 7, which depend on

what type he/she is assigned and parameters of that type.

Remark 1. The HSAR specification offers greater flexibility in modelling network interaction
effects than the standard SAR. This relaxes the assumption that peer effects must be uniformly
positive or negative across all individuals. Some may be positively influenced, adopting
behaviours or attitudes from their peers, whereas others may react negatively. Furthermore,
the HSAR specification accounts for varying intensities of peer influence, as represented by the
magnitude of ]5\1- |. It is important to note that, when introducing various latent types, the model
permits unrestricted interactions both within and between types in the network. Individuals
who tend to share the same type, by definition, exhibit similar “receiving rates,” but this is

not strictly tied to their network positions or any predetermined characteristics (ex-ante).
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We will demonstrate later that, by placing priors for both type indicators (z) and assignment
probabilities (7r), their updated posteriors produces a data-driven probabilistic assignment of
individuals to types (groups). For now, we note how our setup with latent types directly leads to
a finite mixture approach. Define ?(i) = Zév:l w;;Y; and Y, =Y, — 5\2-?(1-), fori=1,...,N.
Knowing the latent individual-type indicator z;, = 1 informs us: Y, ~ N (X,ﬂg, Jgg). Hence,

marginalising over the type indicator z;, we obtain the mixture distribution

G G
P (Yi | Xi, {)\g: By aig, Tg}ngl) o Y meN (X, 5, Jig), where Y 7, = 1. 4.4)
g=1

g=1

Let £ = diag(j\) be an N x N diagonal matrix of which each diagonal element i = Ag if
individual ¢ belongs to g-type group. Given that the outcomes for all individuals ¢ =1,..., N
obey equations analogous to (4.3), the system of equations can be more compactly written in
matrix notation as

K
Y =LWY +Y B"oX'+u, (4.5)

k=1
where o denotes the Hadamard (element-wise) multiplication. This can be further expressed

in the reduced form below

K
Y = [Iy— LW] (Z GF o XF 4 u> . (4.6)
k=1

By definition, Y = Iy — LW]Y. Conditional on all individual-type indicators, we get the

joint density

I
—
—a

Il
o
IO
= —_
S

p (? | 2, W, X, {)y, By, 012Lg7 7Tg}gczl) [9(XiBy, Uig)]zig

_ N Zi (Y/z - X3 )2
39) Ng/2exp {Z_ g g }’

2
= 20ug

@
Il
—

Q

Q
Il
—

4.7)

where N, = SN Zig, by definition, represents the number of type-g individuals.

Conditional on (W, X), the augmented likelihood function for the model parameters is

associated with the joint distribution of the observed outcome and latent type indicators (Y, z)
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and of the form

p (sz ’ W7X7 {)‘976970-12@771-9}5:1)

=p (Y2 W, X, {\, 35,02, )5, ) p(z | m) (4.8)
G N v 2
- 2i(Yi — AgY (i) — XifBy)
= Iy — LWV]| 1_[1(27raig) No/2exp {z:l - 9205) J }W;Vg.
g= 1= ug

Remark 2. For simplicity, we present here a local-aggregate model specification (i.e., the
adjacency matrix W is not row-normalised), but the HSAR is also applicable to a local-
average model (i.e., the matrix W is row-normalised such that each row sums to unity).' A
pertinent issue concerns the constraints on {/\g}?:1 in order that Iy — LW is invertible. In
accordance with the suggestion by Kelejian and Prucha (2010), we restrict the value of all )\,

to the interval (—1/7*,1/7*), where 7* = min{ max Y1 [wi], max S5, |wzj|} When

1<i<nN —I=1 1<j<N
W is a row-normalised matrix, the condition |\,| < 1 forall g = 1,...,G is sufficient. We

impose this assumption throughout the paper and on the estimation procedure for \,.

In the spatial econometrics context, Cornwall and Parent (2017) introduces a similar
modelling approach, known as the spatial autoregressive mixture (SAR-M) model. They show
that the true parameters )\, can be recovered well. However, the spatial weight matrix in
their paper is treated as strictly exogenous, a common yet strong assumption that is unlikely
to hold within our network interaction framework. Indeed, if unobserved factors influence
both the network links used to construct w;; and individual outcomes Yj, this introduces
endogeneity into the matrix W in (4.5). We let a; be a scalar random variable capturing
such unobservables which determine the outcome Y}, and collect a := [ay, ..., ay] . If the
generation of W also involves a, it would be important to model network formation more
explicitly to avoid potential endogeneity. In the following subsection, we examine W through
the lens of a network formation process, which naturally frames our setup as a two-stage
game: networks are formed in the first stage, and actions (outcomes) are determined in the
second stage given the network structure. Afterward, we will return to the HSAR model to

address challenges arising from the potential endogeneity issue.

' Aggregate and average models differ in terms of their behavioural foundations, which entails different
interpretations for the interaction effect parameter A (Liu et al., 2014).
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4.2.2 Strategic Network Formation

Network formation is modelled through a strategic choice framework, where individuals
decide to form a link based on perceived utility gain. We consider each dyad (7, j) composed
of individuals i and j, with 4 # j. The respective marginal utilities” individuals 7 and j receive

from forming a link are
Uij (E:j) = wij + EZ- and Uﬂ<€;) = wji + G;i, (49)

where 1);; and v);; are score functions that depend on individual attributes of ¢ and j, and
(€7, €;:) is a pair of idiosyncratic shocks that captures the uncertainty in their connection
decision.

We assume the score function to be symmetric and deterministic across dyads. In addition,

while each dyad can fully observe their characteristics when making decisions, there exists a

component unobservable to the researcher. Specifically,
i = by = Cyyy + flai, ay). (4.10)

In equation (4.10), C;; is an L-dimensional vector of dyad-specific regressors derived from
the observed exogenous characteristics of individuals ¢ and j. For example, C}; = |c} — ]
reflects homophily in observables, one of the key features in the network formation literature
to acknowledge that individuals prefer linking to similar others. Furthermore, the unobserved
component, f(a;,a;), is a function of individual unobserved characteristics. Here, we have
introduced a; as a scalar summary of individual 7’s unobserved characteristics, which is also
regarded as an individual random effect. We assume a; are independent across individuals
with a commonly used parametric distribution p(a;|6,). The specification of f(a;, a;) depends
on how a; drives link preferences, and thus could be in the form of either unobserved degree

heterogeneity or unobserved homophily. The choice is determined by which feature is more

likely to be predominant.

When unobserved homophily is exhibited, the larger the difference in unobservables
between individuals 7 and j, the less likely they are to connect. To capture homophily on

unobserved dyad attributes, we use the conventional specification in the literature (see, e.g.,

2That is, the difference in utility between two options, linking or not.
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Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016).
f(al-,aj) = —\ai—aj|. (411)

Apart from homophily, Graham (2017) highlighted that individual heterogeneity in the number
of links (a.k.a. degree), is another common feature of social networks. This is due to the
fact that, the degree varies among individuals in many social networks — a few individuals
serve as prominent “hubs” with numerous links, whereas others only own a few links. In
addressing unobserved degree heterogeneity, we build on studies that accommodate this
feature in network formation models (e.g., Ding et al., 2023; Dzemski, 2019) and incorporate

individual-specific heterogeneity in an additive manner
f(al-,aj) :al-—i—aj. (412)

The unobserved individual characteristic a; can be interpreted as social capital, which
enhances the likelihood of forming a link. Depending on the context, these characteristics may
include trustworthiness, socioeconomic status, or charisma. These intangible factors also tend
to affect individual activity outcomes, as evidenced in previous studies combining network
formation and interaction (Han et al., 2021; Johnsson and Moon, 2021; Weng and Parent,

2023, among others).

Remark 3. To facilitate the discussion of the identification and estimation procedure that
will be addressed later, we assume a; ~ N(0,02) in the context of unobserved degree

heterogeneity, and a; ~ Bern(p) when considering unobserved homophily.

A link between individuals 7 and j is formed if and only if it improves the average utility of

¢ and 7 given by
Ui‘ 6:» +Uz 62
wij:: 3(3)2 J(]):wzj‘i‘

£ 4 ex
€is 5 i >, (4.13)

Thus, binary link indicators representing the network are realisations of these latent average
utilities

1 ifw; >0,
wij = wj; = ’ fori=1,...,N;j=1,...,i—1. (4.14)

0 ifwj; <O0.
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* *
E"+5ji

By defining the average of dyad-level shocks €;; := —“5-2*, we can write the network formation

model succinctly as follows

wi = Cly + fla, a;) + €,
’ o (4.15)
wi; = wj; = Wwj; >0), fori=1,... . N;j=1,...,i—1;

where 1(-) is the indicator function.

Define A;; = f(a;,a;) fori=1,...,Nand j =1,..., N with ¢ # j. Substituting into the

*

representation of latent dyadic utilities w;;, we obtain

Following the ways the elements of the adjacency matrix W = [w;;] are indexed, we can

stack across row ¢ for a given j as detailed below
wij:C_j’Y—FA_j—i‘G_j, jzl,...,N; (417)

where w* ., A_;, and € are (N — 1)-dimensional vectors, C_; is a (N — 1) x L? matrix

j’

_ L _ . _ - _ -
wlj Clj Alj €15
* T . . . .
N W;_q,; Cj—l,j Aj1 €j—1,5
w*j: 707]': . 7A*j — 767]-:
*
Wit Cii1g Aj €j+1,j
* T
_wNj_ _CNj_ _ANj_ _eNj_

We can then stack across the index j to obtain

w'=Cvy+ A +¢, (4.18)

where w*, A, and € are N(/N — 1)-dimensional vectors and C is a N(N — 1) x L matrix
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As the uncertainty in the linking decision comes solely through ¢;; in (4.15), we lastly
assume that this idiosyncratic error is i.1.d across dyads with a standard normal distribution

such that

p(e) = [T T] o(eiy), (4.19)

i=1j<i
where ¢(-) denotes the standard normal density. This assumption is equivalent to setting the
distributions of the original €;; as N (0, 2) independently across dyads. Fixing the variance of
shocks, which is unity due to our normalisation, can be seen as an identifying restriction. This
is standard in models with binary dependent variables (see, e.g., Cameron and Trivedi, 2005;
Chan et al., 2019). Indeed, as we only observe whether a specific link was formed or not, all
scalings of the idiosyncratic shocks will be observationally equivalent. Furthermore, while
the distribution of ¢;; is often specified as logistic in the network formation literature, the
advantages of (4.19) are demonstrated in Ding et al. (2023). They advocate that this assumption
leads to a normal likelihood for the latent variables, which facilitates the incorporation of

other elements into their sampling scheme in a Bayesian context.

Conditional on (C, a), the augmented likelihood® function for parameters in the network
formation model in (4.15) is associated with the joint distribution of the observed network

and latent link utilities (W, w*) and can be expressed as

p(W,w* | C,a, 7)
=p(W | w")-p(w" | C.a,7) (4.20)

= TTIT [1}; = 0)L(wi; = 1) + 2(w]; < 0)1(wy; = 0)] $(w]; | 5, 1),

i=1j<i

where gb(w;*j | i, 1) = gb(w;‘j — Chy — flai, aj)).
This expression immediately implies that the conditional posterior distributions of preference

parameters () will only depend on the networks through values of w*.

3Without introducing w as latent data, the likelihood of observing network W is given by: p(W | C,a,~) =
Hilil [T - D(1h;5)]' =i [®(1);5)]“*9. When used in a Bayesian setting, it does not yield conjugate full
conditionals, making sampling from the posterior distribution of parameters computationally expensive and less
efficient.
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4.2.3 SCHSAR - A Joint Modelling Approach
4.2.3.1 Potential Endogeneity

We now reconsider the HSAR model in (4.2), accounting for individual unobserved
heterogeneity, represented as a = [aj,...,ay]". To expand this idea, we assume that a
results from a component of individual characteristics in X that is unobservable to the

researcher. Isolating a from X yields the following version of the model

N
Y; = )\g Z ’IUUY} -+ Xzﬂg -+ a;Rg -+ Ug s U; ~ N(O, O'Zg), (421)

j=1
for each individual i € Z,, where g = 1, ..., G. Similar to 3%, k, is a type-specific coefficient

that captures the magnitude and direction of the effect of a; on the individual outcome. We

define x := [ky,...,kg]" and & = zk.

If one ignores the unobserved factor a, the simplified model to be estimated becomes

N
V=X Y wyY;+ Xifly + v, fori €Iy, (4.22)

j=1
where the error term v; mistakenly includes the omitted variable a;: v; = a;x4+u;. Along with
the network formation in equation (4.15), this misspecification induces correlation between
the peer outcome Y(;) = Zévzl w;;Y; and the error term, thus creating omitted variable bias
(selection bias), even when observations are correctly classified into type groups. If x, were
all zero, a; and v; would be uncorrelated. In this situation, the influences of the endogeneity
of W on outcomes would be absent and the HSAR model can be estimated by treating W as

exogenously given. Otherwise, the selection bias issue should be addressed.

Therefore, we propose the Selection-corrected Heterogeneous Spatial Autoregressive
(SCHSAR) specification which takes into account potential endogenous selection within
a network

K
Y=LWY+Y fFoX"+ioa+u, (4.23)
k=1

By explicitly introducing a, the SCHSAR outcome equation in (4.23) is a further generalisation
of the HSAR outcome equation in (4.5). Conditional on (W, X a), the augmented likelihood
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function for parameters in the outcome equation becomes

p (YJ z | W7 X7 a7 {>\g7 597 "ig7 0-397 71-g}?:l)

2 N (V= AT — X8, — aik,)?
:|IN_»CW|H(Qﬂ'o'ig)_Ng/zeXp{Z—zg( gt (i) By (llig) }W;Vg.

2
= 20ug

g=1

(4.24)

Putting everything together, the complete-data likelihood function for all model parameters is
associated with the joint distribution of observed and latent data (W, w*, Y, z, a) and can be

written as

p <W7 W*a Y7 Za a | Cv X7 Qav 77 {Aga 65]7 ’%97 O-gga 7Tg}?:l)
=p <W7 W*a Y7 Z | C7 X7 a, e {Aga 697 "Qg7 Jig? 711(}}?:1) P (a | Qa) (425)
=p(W,w"' | C.a,9)p(Y.2| W.X,a,{\, By g, 02, 73 }51 ) (@] ),

The likelihood function factorises into a part associated with (W, w*, Y, z) conditional on
a, and another part where a conditional on the parameters. The first part further factorises
into separate contributions from the network and the outcome, as derived in (4.20) and
(4.24), respectively. To obtain the marginal likelihood function in terms of the observed data
(W,Y)* we need to integrate out all latent variables (w*, z,a) from the joint likelihood
in (4.25). Maximum likelihood estimation of this likelihood is impeded by the challenges
associated with high-dimensional integration. Instead, we employ the Bayesian approach for
estimation and inference, which is particularly advantageous in this setting. First, Bayesian
data augmentation technique (Albert and Chib, 1993; Tanner and Wong, 1987) can be adopted
to sample parameters together with latent variables from the joint posterior distribution. This
circumvents the need to work with the marginal posterior distribution that lacks a closed-
form expression. Second, the full Bayesian framework facilitates inference without relying
on asymptotic approximations. By utilising the posterior sample, we can directly perform
inference on various functions of the model parameters, such as direct and indirect effects.
It is noteworthy that these effects are computed as own- and cross-partial derivatives for the
response of outcome Y to changes in the explanatory variable X*, which exhibit a nonlinear

relationship with the model parameters.

Remark 4. Our Bayesian joint modelling approach to correct for selection on unobservables

4That is, the observed-data likelihood.
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aligns with the classical control function method based on correlated unobservables (see, i.e,
Heckman, 1979; Heckman and Robb Jr, 1985; Navarro, 2010), which has been extended to
broader settings of social interaction models (see Blume et al., 2015; Johnsson and Moon,
2021 for recent treatments). The key mechanism of the control function approach is to identify
and recover a proxy or function of the unobserved variable that drives endogeneity, using its
statistical relationship with observed data. This allows us to condition on this function — termed
a “control function” — to eliminate bias from omitted variables. In our context, the source of
network endogeneity is unobserved individual heterogeneity, a;, which concurrently influences
both the network formation process and the individual outcomes. If a; were observed, it would
be straightforward to include it directly in the estimation and resolve the endogeneity issue.
Since a; is unobserved, we instead specify a joint Bayesian model where a; enters explicitly as
a latent variable in both the network formation equation and the outcome equation. Through
this structure, the posterior distribution of a; is updated based on the observed links and
outcomes, effectively recovering a probabilistic representation of the latent heterogeneity.
By incorporating a; into the system, we convert a structural endogeneity problem into one
of missing data, solvable through the complete-data likelihood. Model parameters can thus
be estimated properly within a coherent inferential framework. Notably, this approach does
not require external instruments — especially valuable when valid instruments are weak or
unavailable. Moreover, the Bayesian approach is particularly advantageous in our setting,
where heterogeneous network interaction effects are modelled via latent types in a finite
mixture structure, further complicating the applicability of traditional instrumental variable
methods. Broadly speaking, our SCHSAR approach inherits the Bayesian recipe by Goldsmith-
Pinkham and Imbens (2013) and Hsieh and Lee (2016), but nests their models as a special

case when the number of mixture components G is set to one.

4.2.3.2 Identification

We briefly outline our identification strategy for the proposed model as follows. First,
the network model is semiparametrically identified, i.e., parameters in the deterministic
components as well as distributions of disturbances (including individual unobserved
heterogeneity, a, and the idiosyncratic error, €) are identified. The network formation equation

in (4.15) implies a single-index equation

E(w;;|C) = P(wi; = 1{C) = P(Cyy + f(ai, a;) + €5 > 0|C) =1 — F, (=&;), (4.26)
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where ;; := C;;7 represents the deterministic component and 7;; == f (aj, a;j) + €;; represents
the stochastic component which has the distribution function F,,(-). Ichimura (1993) shows
that, even when F,, (-) is unknown, parameters in the linear index &;; are identified up to
a scale. With further parametric assumptions and constraints on 7);;, parameters in &;; are
identified, and hence &;; can be determined. As &;; is identified, the distribution function
F},,;(+) can also be identified (estimated) from the data by a nonparametric kernel regression
with ;; as the regressor. Given that 7);; is continuous, if we assume &;; can take values that
cover the support of the probability density function f,, (-), the moments of 7;; can also be
estimated from the data. Accordingly, we can obtain p(a|f,) in both cases of unobserved

degree heterogeneity” and unobserved homophily.®

Concerning the identification of unknown parameters in the SCHSAR outcome equation in

(4.23), we consider first G = 1.
Y = A\WY + X3 +ax +u. (4.27)
Deriving an expectation conditional on W of both sides, we obtain
E(Y|W) = AE(WY|W) + E(X|W)3 + E(a|W)x, (4.28)

where E(Y|W), E(WY|W). and E(X|W) can be identified from the data’. Although a is

unobserved, we can identify

a)p(Wla)

E(a|W) = /aap(a\W)da = /aap( (W) da, (4.29)

provided that (i) p(W) and parameters in p(W|a) are identifiable from the network
data; and (ii) p(a) is specified. Noting that p(W|a) is invariant between 1 and 0 under
unobserved homophily, we restrict x to be positive in this case for identification. Now,
we let Q@ = [E(WY|W), E(X|W),E(a|W)]. The necessary condition that Q272 has a
full rank will identify the parameters in (4.28), including «. Hence, there is no rotational
indeterminacy issue on a and ~. This identification strategy suggests the possibility of a

two-step estimation approach similar to Heckman’s (1979) correction for sample selection.

5771']' =a; + a; + €ij, where a; ~ N(O, 0'(21); thllS, W(nlj) = W(al) + W(aj) + W(eij) = 20'(21 + 1.

“mij = —lai — a;| + €5, where a; ~ Bern(p); thus, V(n;;) = V(|a; — aj]) + V(eyy) = [2p(1 —p) —
4p°(1 = p)*] + 1.

"Exclusion restriction condition for the selection models: in our specification the dyad-specific regressors in
the network formation model are naturally excluded from the outcome model (Hsieh and Lee, 2016).
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However, this two-step procedure might be difficult to implement in practice, because the
calculation of [E(a|W) involves a high-dimensional integration. A standard method to replace
integration in [E(a|W) is to use the sampling average of a from the target density p(a|W) via
simulation. As mentioned earlier, our Bayesian approach coupled with posterior simulators

offer computational tractability and straightforward inference.

To extend our identification arguments to the proposed framework when the number
of latent groups G > 1, we could build on insight from Frithwirth-Schnatter (2006) on
mixtures of Gaussian regression models. A trivial identification issue can occur due to the
invariability of the likelihood to permutations of the labels. We avoid these problems by
assuming that all types have pairwise different sizes and restricting the feasible parameter

space: 1 >, > 7wy >0foralll <g<g¢ <G.

4.3 Bayesian Estimation

We implement Bayesian inference to simultaneously handle two key elements of the proposed
SCHSAR framework — heterogeneity and endogeneity — with latent variables playing a
crucial role, while allowing for seamless incorporation of model constraints. The procedure
begins with a prior probabilistic belief about unknown parameters, collected into €, and
systematically updates this belief using observed sample data, denoted by D. Formally, Bayes’

rule gives us the posterior distribution as follows
p(0 | D) x p(D | 0) x p(0),

where p(D | 0) is the likelihood function, and p(@) is the prior distribution.

Throughout, we define 6 to encompass all model parameters — {\y, 3y, kg, 0 ;. Tg 151
7, 62 — augmented with latent variables comprising individual random effects a, latent
individual-type indicators z, and latent network link utilities w*. The observed outcomes,
network data, and exogenous characteristics are compiled into D = (W,Y, C, X). This
unified Bayesian approach is computational tractability and enables one-step inference across

all unknown quantities, offering principled uncertainty quantification.

Having specified the likelihood function characterising our econometric model in (4.25),
we proceed with providing a prior specification for posterior inference. For the ease of

exposition, we initially focus on the case involving unobserved degree heterogeneity, where
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the individual random effects influence network formation according to the linear additive
form f(a;, a;) = a; + a;. Unobserved homophily, characterised by f(a;, a;) = —|a; —a;|, can
be accommodated similarly within our Bayesian framework, albeit with minor modifications.

This extension is elaborated at the end of this section.

4.3.1 Prior Specification

We specify prior distributions for all unknown quantities in our model. For computational

convenience, we employ the conjugate priors commonly used in the Bayesian literature.

Regarding the individual random effect a;, we assume a normal distribution with prior mean
of zero and the variance o2, where the variance itself follows an Inverse Gamma distribution.

This hyperparameter will be updated during our estimation procedure

a; | o HN(0,07), (4.30)
72~ TG (sar1a) 0 p02) = [ (00 e (—;> . (4.31)

For the network formation equation, we consider a multivariate normal prior for parameters ~y

v NL(£7727)‘ (4.32)

For the outcome equation, we assume standard priors independently for 3,, x4, and agg.

Specifically, foreach g = 1,...,G,

Bg NNK(ZﬁaE,@)7 (433)
kg ~ N (v, Z), (4.34)
2 2 Tu' 9\ (5,41 Ly
ng ~ Ig(§u’fu) g p(o-ug) X F(ﬁu) (gug> (e )exp <_Jgg> . (435)
We also assume Ay, ..., A\ are independent a priori. The prior for each parameter )\, is

assumed to follow a Beta distribution centered on zero, B(d, d), which is introduced by

LeSage and Parent (2007) to represent an alternative to the uniform prior on the interval

(—1,1).

1 (1 + )‘g)d_l(l B )‘g>d_1

>\9 ~ B<da d) Ang p()\g) = Beta(d, d) 22d71 ’

(4.36)
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where Beta(d,d) = Jjt¢*(1 — t)?*'dt is the Beta function. Specifically, values for
hyperparameter d,, close to unity induce a relatively uninformative prior that places zero prior
weight on end points of the interval for A,. In our setting, we initialize d = 1.01. Recall that
in our model setup, the individual type indicator vector z; follows a Multinomial distribution
that depends on a vector of assignment probabilities T = [r1,...,7¢]". We complete by

assigning a Dirichlet prior on the distribution of 7®

N N N G
5 |7 % Mult(l,7) & plz | ) = [[ plz | ) = [ T] =, (4.37)
i=1 i=1g=1
7 ~ Dir(a;, as,...,aq) < p(m) x pi g2t .W%G_l. (4.38)

In our implementation for the simulation study and the empirical application in subsequent
sections, we set the prior hyperparameters to standard non-informative values as follows:

v, =05, X

2% = 1O4IL7 Hf)’ - OKy Eﬁ - 104IK7 H}{ - 07 2/@ - ]-04’ za - §a ~ 0’

r,=s8,~0,anda; =... = a5 =1/G.

4.3.2 Posterior Analysis
From Bayes’ theorem, the augmented joint posterior density of interest can be expressed as

p(e | D) X p(W7 W*7 Ya z,a | Ca X7 Oa, 7, {/\gv Bga /{ga Ui,ga 7T9}5(7;:1) : p()‘7 B) K, 0-57 ™, 7, 0'2).
(4.39)

The first term on the right-hand side is the likelihood function defined previously in (4.25),

which factorises further into

p(W,W* | C,a,v) -p(Y,z | W, X, a, {)\g,ﬁg,mg,aig,ﬂg}f:l) -p(a | JZ)
= p(W | w*) - p(w" | C,a,v) ~p(Y |z, W, X, 04,7, {)\g,ﬁg,ﬁg,(fi,g,ﬂ'g)'p(z | 7r) ~p(a | 02),
(4.40)

8We requires an explicit specification regarding the number of types (i.e., G, the number of mixture
components). This could be done by employing model selection criteria along with diagnostic plots.
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and the second term in (4.39) gives the joint prior of the model parameters and factorises into

independent priors as follows
PN Bk, 0, 7,7y, 05) = p(A) - p(B) - p(k) - p(o) - p(m) - p(7) - p(0). (4.41)

With this representation, we estimate the model using the data-augmented Markov chain
Monte Carlo (MCMC) approach. Specifically, our MCMC scheme treats latent variables
(w*,z,a) as parameters to be estimated, and samples unknowns from the joint posterior
distribution by cycling through three blocks of conditional distributions. The first block of
conditionals is used for updating the individual random effects {a;}¥, and their variance o2.
The second block of conditionals is for other parameters and latent network utilities associated
with the network formation equation. The third block of conditionals is for those associated

with the outcome equation, including latent mixture indicators. These blocks respectively are

2 2 G .
a7 Ua | §aa£aa W*»% Za {)\ga 697 Klga ng7 ﬂ-g}g:DIDa
W*uf)/ | Z«”Z’y,a,p; (442)

2 G
z, {)\ga Bgu "ig7 ng? 71-g}gzl | d? Eﬁ7zﬁ7zn72ﬁa§u7tuu q, D.

For notational simplicity, let 8_,, denote the set of all parameters (including latent variables)
in @ excluding the component 6.
4.3.2.1 Conditional posteriors for a, o2, w*, v (random-effect and network blocks)

To facilitate efficient sampling, we introduce the following quantities relevant to the network

formation equation

W = [U}—l_—l, ce ,ij]T, W—; = [U}lj,. ey W15, Wig1,5, - ,U)Nj]T, ] = 1,. . ,J,
F=[F,. . Fnx, F_j:[elT,...,eijl,ejTH,...,eE]T, j=1,...,J;
E=1Iy®n_;

H=F+E,

where ® denotes the Kronecker product. Then, we can rewrite A = Ha and replace into
equation (4.15)
w*=Cvy+Ha+e. (4.43)
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Consequently, the full conditional posterior distributions for parameters and latent variables

in the random-effects and network formation blocks can be written explicitly as follows

al0 ., D~N(7,%), (4.44)
02 0_y2,D ~IG(S4,T0), (4.45)
W | 0_y+, D ~ TMNs (Cy+ Ha, Iyv-1)) (4.46)
1 0_,D~N(7,,5,), (4.47)

Here, T M Ns denotes a multivariate normal distribution truncated to the region S implied
by the binary adjacency vector w above.’. The posterior hyperparameters governing other

conditional distributions are defined as

.= [0, Ty + HH + 7' o diag(6,%)]

K
Ty = % [HT<W* —Cy)+ ko, %0 (Y P oﬁkﬂ ,
k=1

Sg = 8, + —,
2

aTa

To =10,+ 5

T =[gtvcic]

=2, [Z;lgw +CT(w* — Ha)} :

4.3.2.2 Conditional posteriors for z, {\;, 3,, 1, aﬁg, ﬂg}gzl (outcome block)

At each iteration, given the latent group assignments z, the data are partitioned into G mixture
components. For each group g = 1...,G, let Z, index observations assigned to group g
and N, := ZfL 2;4 denote the group size. We define Yfg = {ﬁ}iezg, Xy = {Xi}iez, and
ag = {a;}iez,. The conditional posteriors of group-specific parameters including Ay, 3,,
kg, and aig, can be characterised accordingly. Conversely, conditional on the parameters
of the mixture, allocation z; follows an independent Multinomial distribution with the
classification weights (i.e., the probability that each observation ¢ belongs to a given group

g) can be calculated from the predictive densities. Finally, the conditional posterior for the

G-dimensional vector of component probability 7 follows a Dirichlet distribution.

9Specifically, the truncated region is [0, +oc) for elements corresponding to observed network links (w;; =
1), and (—o0, 0) otherwise (w;; = 0). Sampling from this truncated multivariate normal distribution can be
implemented efficiently using the algorithm proposed by Botev (2017).
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The full conditional posteriors for the parameters are given as follows

p(Ag | 0-5,, D) x p(N) - [Iy — LW - (2ma,)No/? (4.48)

xnexp{

Y X8y — agmg)T(}Z—Xgﬁg—agﬁg)}7 g=1,...,G,

U!]

which is the only one that does not belong to a known class of distributions, whereas the

conditional posteriors for other parameters follow standard conjugate results

B, | e,ﬁg,DNNK(vgg,iﬁg), g=1,...,G, (4.49)
kg | 0y D~ N (7rg Sng), 9=1,...,G, (4.50)
02,10 2., D ~TG(5ug,Tug), 9=1,...,G, (4.51)
Zi | H_Zi,’DN./\/lult(l,[wil,wig,...,wig]), izl,...,N7 (452)
7|60 _, D~ Dir(a,qs,...,ag), (4.53)

with posterior hyperparameters (for: =1,..., Nandg=1,...,G) are

1

Spe = (85" + 0 X X,)

Ty = Sy [5'vs + 00l X, (Y, — aghy)]

See = (Z5" +ousagag) 3

Vig = if-ig {Z; Vi t+ay (Y/g - Xgﬁg)} )

Ny

177

Tug =Ty + ) (Y/g — XgB — ag"’fy>—r (Y/g — XgBy — ag’fg) )
Wig = Pr(zig =1 O_Zig,’D> = %,

(Vi AT — Xif, — >} ,

gug =8, t

1

2
203,

Qig = (2W03g)_1/2 exp {—

g = a, + Ny.

4.3.3 Markov Chain Monte Carlo (MCMC) Algorithm

As in the preceding posterior analysis, with conjugate priors, {a;}, {w};}, 7, {zig}, {8y}
{rg}, {02y}, {my} can be sampled straightforwardly via Gibbs sampling. By contrast, the

conditional posterior distribution of {\,;} shown in (4.48) does not conform to a standard
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form. To address this issue, a Metropolis-Hastings (M-H) step with an important twist is
incorporated into the procedure, resulting in Metropolis-within-Gibbs sampling. Specifically,
at the s-th iteration, for each group g = 1,..., G, sampling A, from p(A, | 6_,,, D) involves

two main steps:

First, we generate a candidate value for A, by perturbing the current value using a proposal
distribution:
Propose \} = )\ s=b + N(0, 7,), where the scaling parameter (i.e., proposal increment
shape) 7, is tuned according to Adaptive Scaling Metropolis (ASM) algorithm (Andrieu and
Thoms, 2008; Vihola, 2022), with details can be found in Appendix C.1.1. Compared with
the standard random-walk Metropolis sampler, the key idea is to implement an automatic
adjustment of 7, based on monitoring the acceptance rates and stepsizes during the MCMC
sampling procedure. As a result, this adaptation can learn from the historical MCMC draws
(accepted draws) to make the proposal distribution better suited to the target distribution,

thereby improving the efficiency and convergence of the algorithm.

Second, we compute the acceptance rate using the ratio of the posterior densities at the

proposed and current values:

Let £}, = diag (z[Al,...,Ag,l,A;,AgH,.. ) [ }Yozg,and
£V = diag (z[M\r, . A1, AS™D, A, Ae]T) Yg D= [IN —L5TIW] Yoz,
Also,

ul, = ?* — X,By — ayky

u(\g Y(S ) Xy — aghig

Then, recall that p()\g) is the density function of the Beta prior distribution defined in (4.36),
with the acceptance rate

()\* A(S 1)

9’9

e )
[Ty — LYW | exp [—u.ﬂ; 2 ufy V(202 pOGTY)
(4.54)

update )\gs) = A}, else set )\és) = )\Ef*l).

The full implementation of MCMC sampling scheme for the SCHSAR model with

unobserved degree heterogeneity is outlined in Algorithm 4.1.
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Algorithm 4.1: MCMC Sampler for SCHSAR Model
(Unobserved Degree Heterogeneity)

Procedure
1 Set initial values for all model parameters (augmented with latent variables) in 6.
2 Step 1: Update individual random effects a by sampling

3 (al)afrom N(va, ia), given 0_,, D; > (4.44)

4 (a2) 0% from ZG(5,,T,), given a. > (4.45)

5 Step 2: Conditional on a, update parameters in the network formation equation by
sampling

6 (bl)w* from TMNs ((37 + Ha, IN(N—I)), given O_,-, D; > (4.46)

7 (b2) 7 from Ny (7, %,), given 6_.,, D. > (4.47)

8 Step 3: Conditional on a and the allocations z, update parameters in the outcome
equation by sampling

9 (cl) m from Dir(ay, ds, ..., qq), given 8_,. D; > (4.53)
10 (c2)each By, forg=1,...,G, from Nx (ﬁﬁg, igg), given 6_z,, D; > (4.49)
n (c3)each rg, for g = 1,..., G, from N vy, Sy ), given 6, D; > (4.50)
12 (c4)each agg, forg=1,...,G, fromZG (Eug,?ug), given O_Ugg,D; > (4.51)
13 (cS)each A\, forg =1,...,G, via ASM algorithm, given 6_, , D. > (4.48)
14 Step 4: Foreach: = 1,..., N, sample the allocation z; from

Mult (1, [wir, wiz, - . . ,wic)), given 8 _., D. > (4.52)

15 Repeat Steps 1-4 using the most recently updated values until convergence.
end procedure

4.3.4 Extension

We develop Bayesian estimation for the SCHSAR framework in the case of unobserved
homophily, where the individual random effects influence network formation via the function
f(ai,a;) = —|a; — a;|. In this setting, we assume that the unobserved types a; are binary,

modelled as independent Bernoulli random variables with mean p
ai%Be’r’n(p) i=1,...,N. (4.55)

Due to the absolute difference structure |a; — a; |, the signs of k4 are not fully identified, as the
likelihood is invariant under the transformations between r,a; and (—,)(—a;). Therefore,
we restrict k4 to be nonnegative for estimation, which can be achieved seamlessly within the
MCMC sampling procedure. A careful initialisation for a based on community detection

algorithms described in Appendix C.1.2 further improves computational efficiency.
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The conditional posterior for each a; is
a; | 0_4,, D~ Bern(p), i=1,..., N, (4.56)
where
Py
b= P+ Py’
G v 2 * 2
25i(Yi = NY (o) — XifBy — K (wh — Cijy + 11 — q4))
Po,ii—pxexp{—z g( g (2)2 g g) _Z J 12 J ’
g=1 g i
Pl,i :

(1-p) x exp {— AR N o U e, 1 w}
- 202 :
g=1 g

J#i 2
The conditional posterior distributions for the other parameters remain the same as derived

previously, with adjustments required specifically for w*, v, 4. Explicitly, their conditional
posteriors become

W | O_y, D ~ TMNs (07 — Ale(Nfl))

(4.57)
v 0_, D~ N(vv,iv), (4.58)
Kg | 07&97‘D ~ 7-~/\/‘[0,—i-oo) (vngai g)7 (4.59)

where TN ;o) denotes a truncated normal distribution constrained to x, > 0, and
— -1
¥, =2 +C’C|
v, =X, [Z_ v, + C'(w" + A] :
%=5

Y

> +CTC} ,

Uy = Xy {Z;lzn—ka;(f@—){gﬁg)}, g=1,...,G.

The full implementation of MCMC sampling scheme for the SCHSAR model with unobserved
homophily is outlined in Algorithm 4.2.
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Algorithm 4.2: MCMC Sampler for SCHSAR Model (Unobserved Homophily)
Procedure

1 Set initial values for all model parameters (augmented with latent variables) in 6.
2 Step 1: Sample unobserved component a by sampling
(al)each a;, fori =1,..., N, from Bern (p), given 6_,,, D. > (4.56)
Step 2: Conditional on a, sample parameters in the network formation equation by
sampling
(b1) w* from TMNs (07 — A, IN(N_U), given 0_,., D; > (4.57)
(b2) v from Ny (v, %), given 6_., D. > (4.58)
Step 3: Conditional on a and the allocations z, sample parameters in the outcome
equation by sampling
(cl) 7 from Dir(ay, as, . .., ag), given 8_,, D; > (4.53)
(c2) each f,, forg =1,...,G, from N (ﬁﬁg, igg), given 6_z_, D; > (4.49)
(c3) each iy, for g = 1,..., G, from TNy ;) (ﬁ,ig, iﬂg), given 0_, ,D; > (4.59)
(c4)each o), forg=1,...,G, from IG (Eug,?ug), given 0_,2 , D; > (4.51)
(c5)each \j, forg =1,...,G, via ASM algorithm, given 6_, , D. > (4.48)
13 Step 4: Foreach: =1, ..., N, sample the allocation z; from
Mult (1, [wir, wiz, - . . ,wic]), given 8 _., D. > (4.52)

14 Repeat Steps 1-4 using the most recent values until convergence.

end procedure
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4.4 Simulation Study

We conduct a Monte Carlo simulation study to analyse the finite sample performance of the
proposed Bayesian MCMC algorithm for estimating the joint SCHSAR model of the network
formation equation in (4.15) and the outcome equation in (4.23). The simulation exercise also
enables us to examine the extent of estimation bias in the network interaction effect parameter
A that arises when network endogeneity is ignored. Additionally, we evaluate the convergence
and mixing behaviour of the Markov chain by inspecting diagnostics from representative

simulation replications (see Appendix C.2.1).

4.4.1 Simulation Design

The general data-generating process (DGP) is based on the SCHSAR framework in Section

4.2, with the following key elements.
Generation of the individual random effects

Each individual : = 1, ..., N is assigned an unobserved individual-specific factor a;, which
plays a central role in both the network formation and outcome equations. The form and

distribution of a; vary across simulation settings (detailed below).

Generation of the network data {w;; }1;_,

We generate observed dyad-specific exogenous variable {C;; ij:l by first drawing two
random variables, v; and vy, from the uniform distribution U (0, 1). We then set Ci; = 1if
both v; and vy are below 0.3 or above 0.7, and set C;; = 0 otherwise. The corresponding
coefficient of Cj; is set to v = 1.5. We simulate each entry of the adjacency matrix W based

on latent utilities following the network formation equation
wij = wj; = {Cyy + flas,aj) +e; >0}, fori=1,... ., N;j=1,...,i—1, (4.60)

with idiosyncratic shock ¢;; drawn either from a standard normal or logistic distribution,

depending on the specification.'”

Generation of the outcome data {Y;} Y,

Individuals are randomly assigned to one of three latent types (i.e., G = 3) in each

1%In other words, the conditional probability of each wy; is P(wi; = 1| -) = H [C};y + f(ai, a;)], where
‘H is the link function, either probit or logit, to be specified later.
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simulation with fixed probabilities = = [0.45, 0.35, 0.2]. Each individual is endowed with two
observed covariates, { X} }¥, and { X?},, both from A/ (0, 4), whereas their corresponding
coefficients are type-specific and set to 4* = [—0.5,0.5, —1.0] " and 3? = [-0.75,0.8,1.2]".
The effect of unobserved individual-specific factor a; is associated with x = [0.8,0.6,0.25] .
The type-specific peer effect parameter of interest is A = [—0.15,0.15,0.3] ". The error term
u; is normally distributed with variance scaled across types by 02 = ¢, x [1,0.75,0.5], where

¢, controls the desired signal-to-noise ratio. Combining all components, the outcome variable

is generated from the reduced form of the SCHSAR model'!

K
Y = [Iy — LW] ™! (ZBkOXk+Roa+u>, (4.61)
k=1

where 5% = z3*(k € {1,2}), and & = zr, with z being the matrix of latent type indicators.

The sample size is kept constant across the simulations and is reflective of a large sample,
where N = 1000. Meanwhile, the specification of a;, €;;, and ¢, are varied in the simulation

study to account for different scenarios:

1. The form of the unobserved component in the network formation equation (source
of network endogeneity): In the large literature on economic and social network
analysis, the latent part associated with the endogeneity between network formation and
individual outcomes could present as unobserved degree heterogeneity or unobserved
homophily, depending on specific application contexts. Thus, we examine both cases

separately.

f(a;,a;) = a; + aj, where a; ~ N'(0,02) and 02 = 2; (4.62)
1
or f(a;,a;) = —|a; — a;|, where a; ~ Bern (2> ) (4.63)

2. Possibility of misspecification of the link function: We switch the dyad-shock
distribution from standard normal (probit link) to logistic (logit link) to explore the

robustness of the estimator under misspecification.

3. The signal-to-noise ratio (SNR) in the outcome equation: We set ¢, € {0.01,0.1,1}

which represents high, medium, and low levels of signal, respectively.

"'We employ the row-normalised version of W in this outcome equation to ensure compatibility with
interpretations in the empirical application. This can be implemented without loss of generality within our
SCHSAR framework.
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For each DGP, we generate Ng;,, = 100 independent replications. For each generated dataset,

we estimate the following two models:

1. Heterogeneous Spatial Autoregressive (HSAR) Model: This benchmark model ignores
the endogeneity of network structure by treating W as exogenous. It is conceptually
aligned with the SAR-M model introduced by (Cornwall and Parent, 2017), which

allows for heterogeneous interaction effects but assumes a fixed spatial weight matrix.

2. Selection-Corrected Heterogeneous Spatial Autoregressive (SCHSAR) Model: This
is the fully flexible model we propose, which jointly models network formation
and outcomes while accounting for heterogeneity in network interaction effects and

endogeneity in network links through the inclusion of latent variables.

Each MCMC estimation is run for 5, 500 iterations, with the first 500 iterations discarded as

burn-in.

4.4.2 Simulation Results

For every simulated dataset, given the posterior distribution of each model parameter resulting
from MCMC draws, we derive the posterior mean for a point estimate and compute the
corresponding equal-tailed 95% credible interval. We aggregate the results over 100 Monte
Carlo replications and evaluate performance through the average bias and the root mean
squared error (RMSE) of the point estimates, followed by the coverage rate of the 95%
credible intervals. The simulation results are presented in Table 4.1-4.4, where the true values

of the DGP parameters of interest are also listed in each table for ease of comparison.

Overall, across all data-generating processes (DGP I-1V) the proposed SCHSAR estimators
produce near-unbiasedness and nominal coverage. When the signal-to-noise ratio (SNR) is
high or medium, the true parameters are recovered very well as posterior means cluster tightly
around the truth. Precision falls in low-signal setting as expected, yet coverage remains close
to 0.95, indicating that intervals widen appropriately. By contrast, the benchmark HSAR
estimator, which ignores endogenous network formation, displays severe upward or downward
bias and virtually zero coverage for all peer-effect coefficients A. Failing to model the link
formation process when the peer effect parameter is of interest, therefore, renders the statistical

inference unreliable.

When the latent component is unobserved degree heterogeneity (DGP I and II), SCHSAR



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 124

estimators achieve negligible bias for the peer effects ()\) even at low SNR. The variance of
the individual random effects, o2, is recovered quite accurately, indicating that the continuous
latent heterogeneity is effectively captured leads to the desirable performance of SCHSAR.
In contrast, under unobserved homophily (DGP III and IV), the latent mechanism penalises
dissimilar types. SCHSAR estimators perform well but both bias and variability of the peer-
effect estimates increase, particularly under low signal. A similar pattern arises for the loadings

Kk, suggesting additional challenges added when capturing latent variables in this scenario.

DGP II and IV purposely replace the probit link assumed in estimation with a logit
link in the true model. The performance of SCHSAR degrades gracefully: RMSE of the
peer-effect estimates (\) roughly increases relative to correctly specified cases but remains
modest. SCHSAR estimators also maintain decent coverage, with a slight drop in the case
of unobserved homophily yet stay above 0.85. Notably, while estimation for the network-
covariate coefficient y becomes fragile under misspecification, this does not propagate to peer
effects, our primary quantities of interest. In short, link-function misspecification is tolerable

for peer-effect estimation, indicating SCHSAR is reasonably robust.

In terms of other parameters, SCHSAR estimators for exogenous slope parameters (5 and
group shares w exhibit virtually zero bias and coverage between 0.93 and 0.97 across all
designs. These results bolster confidence that the mixture structure and covariate effects are

recovered faithfully alongside endogenous peer effect parameters.

In summary, the Monte Carlo findings collectively demonstrate that the SCHSAR

framework delivers reliable estimation and inference.
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Table 4.1: DGP I: N = 1000, Unobserved Degree Heterogeneity
SCHSAR HSAR
SNR Parameter  True Value  Mean Std Bias RMSE Coverage  Mean Std Bias RMSE  Coverage
A1 -0.15 -0.151  0.010 -0.001 0.011 0.92 -0.881  0.101  -0.731 0.738 0.00
A2 0.15 0.149  0.009 -0.001 0.010 0.94 -0.502  0.157 -0.652 0.670 0.00
A3 0.30 0.298 0.019 -0.002 0.019 0.96 0.026 0.070 -0.274 0.283 0.00
w1 0.45 0.452  0.015 0.002 0.015 0.98 0.451 0.020  0.001 0.020 0.98
w2 0.35 0349 0.016 -0.001 0.016 0.99 0.350  0.020 0.000  0.020 0.99
w3 0.20 0.199 0.015 -0.001 0.015 0.93 0.199 0.017 -0.001 0.017 0.91
B11 -0.50 -0.500  0.003 0.000 0.003 0.93 -0.502  0.029 -0.002 0.029 0.92
B2 0.50 0.498 0.017 -0.002 0.017 0.86 0.496 0.026 -0.004 0.026 0.92
High B3 -1.00 -0.966 0332 0.034 0333 0.98 -1.000  0.014  0.000  0.014 0.97
Ba1 -0.75 -0.750  0.003 0.000 0.003 0.93 -0.749  0.027  0.001 0.027 0.95
B2z 0.80 0.800  0.004  0.000 0.004 0.95 0.801 0.021 0.002 0.021 0.96
B23 1.20 1.158  0.404  -0.042 0.406 0.95 1.201 0.013 0.001 0.013 0.97
K1 0.80 0.798  0.005 -0.002 0.005 0.90 - - - - -
K2 0.60 0.598 0.007 -0.002 0.007 0.99 - - - - -
K3 0.25 0.227  0.227 -0.023 0.228 0.94 - - - - -
¥ 1.50 1.501 0.010  0.001 0.010 0.80 - - - - -
O'Z 2.00 2.001 0.083 0.001 0.083 0.99 - - - - -
A1 -0.15 -0.153  0.033  -0.003  0.033 0.93 -0.876  0.105 -0.726  0.734 0.00
A2 0.15 0.148  0.029 -0.002 0.029 0.95 -0.502  0.162  -0.652 0.672 0.00
A3 0.30 0.300  0.031 0.000 0.031 0.96 0.028 0.081 -0.272 0.284 0.01
w1 0.45 0.452  0.015 0.002 0.016 0.97 0.451 0.020  0.001 0.020 0.97
w2 0.35 0.348  0.016 -0.002 0.016 0.98 0.349  0.021 -0.001 0.021 0.98
w3 0.20 0.200  0.014  0.000 0.014 0.94 0.200 0.017  0.000 0.017 0.92
B11 -0.50 -0.501  0.009 -0.001 0.009 0.91 -0.503  0.030 -0.003 0.030 0.94
B2 0.50 0.500  0.010  0.000 0.010 0.90 0.496 0.028 -0.004 0.028 0.93
Medium B13 -1.00 -0.999  0.008  0.002 0.008 0.97 -0.998  0.017  0.002 0.017 0.96
Ba1 -0.75 -0.750  0.008  0.000  0.008 0.94 -0.749  0.029  0.001 0.029 0.94
Ba2 0.80 0.800  0.008  0.000 0.008 0.95 0.801 0.023 0.001 0.023 0.96
B23 1.20 1.200  0.011 0.000 0.011 0.95 1.202  0.016  0.002 0.016 0.96
K1 0.80 0.798  0.013  -0.002 0.013 0.95 - - - - -
K2 0.60 0.598 0.013 -0.002 0.013 0.95 - - - - -
K3 0.25 0.249  0.014 -0.001 0.014 0.96 - - - - -
¥ 1.50 1.501 0.010  0.001 0.010 0.80 - - - - -
O‘?l 2.00 2.002  0.083 0.002 0.083 0.99 - - - - -
A1 -0.15 -0.158  0.116  -0.008 0.117 0.95 -0.828  0.133  -0.678 0.691 0.00
A2 0.15 0.135 0117 -0.015 0.117 0.93 -0492 0203 -0.642 0.673 0.02
A3 0.30 0.293  0.132 -0.007 0.132 0.95 0.011 0.175  -0.289 0.338 0.50
w1 0.45 0.450 0.018  0.000 0.018 0.97 0.449  0.022 -0.001 0.022 0.99
w2 0.35 0.348  0.022  -0.002 0.022 0.96 0.346  0.026 -0.004 0.027 0.98
w3 0.20 0.203  0.018  0.003 0.018 0.95 0.205  0.022  0.005 0.023 0.93
Bi1 -0.50 -0.496  0.101 0.004 0.101 0.91 -0.487 0.141 0.013 0.141 0.95
Bi2 0.50 0.491 0.109  -0.009 0.110 0.91 0.468 0.194 -0.032 0.197 0.94
Low B3 -1.00 -0.990  0.033 0.010 0.035 0.96 -0.977  0.137  0.024 0.139 0.95
B21 -0.75 -0.735  0.154  0.015 0.155 0.94 -0.720  0.216  0.030 0.218 0.93
Ba2 0.80 0.784  0.153 -0.016 0.154 0.95 0.771 0.230  -0.029 0.232 0.92
B23 1.20 1.202  0.037  0.002 0.037 0.92 1.194  0.076  -0.006 0.076 0.94
K1 0.80 0.798  0.048 -0.002 0.048 0.95 - - - - -
K2 0.60 0.597 0.051 -0.003 0.051 0.94 - - - - -
K3 0.25 0.246  0.062 -0.004  0.062 0.97 - - - - -
¥ 1.50 1.501 0.010  0.001 0.010 0.80 - - - - -
O’g 2.00 2.002  0.083 0.002 0.083 0.98 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R~1 Zle (& —

a), RMSE = \/Pfl Zle(dr — )2, and Coverage = R™! Ele 1{a € 6\10_95,7«}.
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Table 4.2: DGP II: N = 1000, Unobserved Degree Heterogeneity, Link Misspecification
SCHSAR HSAR
SNR Parameter  True Value  Mean Std Bias RMSE Coverage  Mean Std Bias RMSE  Coverage
A1 -0.15 -0.150  0.014  0.000 0.014 0.94 -0.878 0.110  -0.728 0.736 0.00
A2 0.15 0.151 0.013 0.001 0.013 0.96 -0.590 0.217  -0.740 0.771 0.00
A3 0.30 0.300 0.012  0.000 0.012 0.98 -0.021  0.114 -0.321 0.341 0.01
w1 0.45 0.452  0.015 0.002 0.015 0.98 0.450  0.020  0.000 0.020 0.98
w2 0.35 0349  0.015 -0.001  0.015 0.98 0350  0.021  0.000  0.021 0.99
w3 0.20 0.200 0.014  0.000 0.014 0.91 0.200 0.017  0.000 0.017 0.93
B11 -0.50 -0.500  0.003 0.000 0.003 0.97 -0.502  0.031 -0.002 0.031 0.94
B2 0.50 0.500  0.003 0.000 0.004 0.81 0.495 0.028  -0.005 0.028 0.92
High B3 -1.00 -1.000  0.002  0.000  0.002 0.98 -0.999  0.017  0.001 0.017 0.98
Ba1 -0.75 -0.750  0.003 0.000 0.003 0.96 -0.749  0.028  0.001 0.028 0.96
B2z 0.80 0.800  0.003 0.000 0.003 0.96 0.802  0.023 0.002 0.023 0.97
B23 1.20 1.200  0.003 0.000 0.003 0.91 1.198  0.035 -0.002 0.035 0.98
K1 0.80 1.387  0.000  0.587 0.587 0.00 - - - - -
K2 0.60 1.041 0.000 0.441 0.441 0.00 - - - - -
K3 0.25 0.434 0.006 0.184 0.184 0.00 - - - - -
¥ 1.50 0.864  0.000 -0.636 0.636 0.00 - - - - -
O'Z 2.00 0.661 0.023  -1.339 1.339 0.00 - - - - -
A1 -0.15 -0.153  0.042 -0.003  0.042 0.94 -0.872 0115 -0.722  0.731 0.00
A2 0.15 0.150 0.037  0.000 0.037 0.96 -0.588  0.217  -0.738 0.769 0.00
A3 0.30 0.300 0.039  0.000 0.039 0.97 -0.019  0.128 -0.319 0.344 0.03
w1 0.45 0.452 0.016 0.002 0.016 0.98 0.451 0.020  0.001 0.020 0.99
w2 0.35 0.348  0.016 -0.002 0.016 0.97 0.349  0.021 -0.001 0.021 0.98
w3 0.20 0.200  0.014  0.000 0.014 0.96 0.200 0.018  0.000 0.018 0.94
B11 -0.50 -0.501  0.009 -0.001 0.009 0.90 -0.503  0.031 -0.003 0.032 0.94
B2 0.50 0.500 0.010  0.000 0.010 0.86 0.496  0.029 -0.004 0.029 0.94
Medium B13 -1.00 -0.999  0.008  0.002 0.008 0.96 -0.998  0.017  0.002 0.017 0.97
B21 -0.75 -0.750  0.008  0.000  0.008 0.95 -0.749  0.030  0.001 0.030 0.94
Ba2 0.80 0.799  0.008 -0.001 0.008 0.95 0.801 0.025 0.001 0.025 0.96
B23 1.20 1.200  0.009  0.000 0.010 0.94 1.202  0.017  0.002 0.017 0.96
K1 0.80 1.390 0.024  0.590 0.591 0.00 - - - - -
K2 0.60 1.042  0.019 0442 0442 0.00 - - - - -
K3 0.25 0433 0.024 0.183 0.185 0.00 - - - - -
¥ 1.50 0.864  0.000 -0.636 0.636 0.00 - - - - -
O‘?l 2.00 0.660 0.023  -1.340 1.340 0.00 - - - - -
A1 -0.15 -0.160  0.148  -0.011 0.148 0.95 -0.816  0.144  -0.666 0.681 0.00
A2 0.15 0.136  0.147 -0.014 0.147 0.92 -0.554 0.237  -0.704 0.743 0.05
A3 0.30 0.281 0.171  -0.019 0.172 0.94 -0.040 0226  -0.340 0.408 0.58
w1 0.45 0.450 0.018  0.000 0.018 0.99 0.449  0.022 -0.001 0.022 0.99
w2 0.35 0.348  0.022  -0.002 0.022 0.97 0.346  0.027 -0.004 0.027 0.98
w3 0.20 0.202  0.018 0.002  0.018 0.95 0.205  0.022  0.005 0.023 0.92
Bi1 -0.50 -0.496  0.101 0.004 0.101 0.91 -0.486  0.141 0.014 0.142 0.95
Bi2 0.50 0.491 0.109  -0.009 0.110 0.90 0.481 0.155 -0.019 0.156 0.95
Low B3 -1.00 -0.989  0.033 0.011 0.035 0.96 -0.988 0.042 0.012 0.044 0.94
B21 -0.75 -0.735  0.154  0.015 0.155 0.94 -0.720  0.216  0.030 0.218 0.93
Ba2 0.80 0.784  0.153 -0.016 0.154 0.95 0.768  0.227 -0.032 0.229 0.93
B23 1.20 1.200  0.039  0.000 0.039 0.93 1.201 0.039  0.001 0.039 0.96
K1 0.80 1.391 0.082  0.591 0.596 0.00 - - - - -
K2 0.60 1.041 0.084  0.441 0.449 0.00 - - - - -
K3 0.25 0.427  0.105 0.177 0.206 0.59 - - - - -
¥ 1.50 0.864  0.000 -0.636 0.636 0.00 - - - - -
O’g 2.00 0.660 0.023  -1.340 1.341 0.00 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R~1 Zle (& —

a), RMSE = \/Pfl Zle(dr — )2, and Coverage = R™! Ele 1{a € 6\10_95,7«}.
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Table 4.3: DGP III: N = 1000, Unobserved Homophily
SCHSAR HSAR
SNR Parameter  True Value  Mean Std Bias RMSE Coverage  Mean Std Bias RMSE  Coverage
A1 -0.15 -0.102  0.228  0.048 0.232 0.91 0.973  0.055 1.123 1.124 0.00
A2 0.15 0.184¢  0.170  0.034 0.172 0.92 0983 0.030 0.833 0.834 0.00
A3 0.30 0.318 0.108 0.018 0.109 0.90 0.744  0.166  0.444 0.474 0.00
w1 0.45 0.452  0.015 0.002 0.015 0.97 0.454  0.020 0.004 0.020 0.94
w2 0.35 0.348  0.015 -0.002 0.015 0.99 0.347 0.018 -0.003 0.018 0.97
w3 0.20 0.199 0.013 -0.001 0.013 0.94 0.199 0.014 -0.001 0.014 0.94
B11 -0.50 -0.500  0.003 0.000 0.003 0.95 -0.490 0.071 0.010 0.071 0.92
. B2 0.50 0.500 0.002  0.000 0.002 0.97 0.480 0.142  -0.020 0.142 0.94
High B3 -1.00 -1.000  0.002  0.000  0.002 0.96 -0.991  0.071  0.009 0.071 0.92
Ba1 -0.75 -0.750  0.003 0.000 0.003 0.94 -0.716 0236  0.034 0.238 0.94
B2z 0.80 0.800  0.002  0.000 0.002 0.96 0.769  0.218 -0.031 0.219 0.97
B23 1.20 1.201 0.003 0.001 0.003 0.93 1.162  0.275 -0.038 0.276 0.91
K1 0.80 0.753  0.224  -0.047 0.228 0.89 - - - - -
K2 0.60 0.567 0.166 -0.034 0.168 0.91 - - - - -
K3 0.25 0.235 0.079 -0.015 0.080 0.88 - - - - -
¥ 1.50 1.501 0.005 0.001 0.005 0.81 - - - - -
A1 -0.15 -0.105  0.251 0.045 0.254 0.91 0.966  0.052 1.116 1.117 0.00
A2 0.15 0.182  0.195 0.032 0.197 0.94 0970 0.033  0.820  0.821 0.00
A3 0.30 0.311 0.156  0.011 0.155 0.92 0.736  0.088  0.436 0.444 0.00
w1 0.45 0452 0.016 0.002 0.016 0.97 0.453 0.018 0.003 0.018 0.97
w2 0.35 0.349  0.017 -0.001 0.017 1.00 0.348  0.017 -0.002 0.017 0.98
w3 0.20 0.199  0.015 -0.001 0.015 0.92 0.198  0.015 -0.002 0.015 0.94
B11 -0.50 -0.500  0.008  0.000 0.008 0.96 -0.500 0.012  0.000 0.012 0.93
. Bi2 0.50 0.498 0.014 -0.002 0.014 0.96 0.499 0.013 -0.001 0.013 0.96
Medium B13 -1.00 -0.999  0.013 0.001 0.013 0.95 -0.999 0.018  0.001 0.018 0.97
B21 -0.75 -0.750  0.008  0.000 0.008 0.95 -0.749  0.011 0.001 0.011 0.95
B22 0.80 0.800  0.009  0.000  0.009 0.96 0.800 0.010 0.000  0.010 0.97
B23 1.20 1.197  0.043  -0.003 0.043 0.92 1.199  0.031 -0.001 0.031 0.92
K1 0.80 0.754  0.232  -0.046 0.235 0.89 - - - - -
K2 0.60 0.568 0.171  -0.032 0.173 0.94 - - - - -
K3 0.25 0.237  0.098 -0.013  0.098 0.92 - - - - -
¥ 1.50 1.501 0.005 0.001 0.005 0.82 - - - - -
A1 -0.15 -0.111 0308  0.039 0.309 0.95 0.879  0.059 1.029 1.031 0.00
A2 0.15 0.096 0326 -0.054 0.329 0.94 0.864  0.067 0.714 0.717 0.00
A3 0.30 0.142  0.289  -0.158 0.328 0.94 0.612 0.128  0.312 0.337 0.59
w1 0.45 0.451  0.020  0.001 0.020 0.99 0452  0.021  0.002 0.021 0.97
w2 0.35 0.347  0.022 -0.003 0.022 0.98 0.347  0.023  -0.003 0.023 0.99
w3 0.20 0.202  0.019 0.002 0.019 0.96 0.201 0.019  0.001 0.019 0.98
B11 -0.50 -0.488  0.099 0.012 0.100 0.96 -0.498  0.030  0.002 0.030 0.96
Low B2 0.50 0.489  0.104 -0.011  0.104 0.94 0.500  0.030  0.000  0.030 0.95
B13 -1.00 -1.000  0.032  0.000 0.032 0.97 -1.000  0.033 0.000 0.033 0.98
Ba1 -0.75 -0.735  0.159  0.015 0.159 0.92 -0.749  0.029  0.001 0.028 0.93
B22 0.80 0.782  0.157 -0.018 0.157 0.92 0.797  0.031 -0.003 0.031 0.92
B23 1.20 1.206  0.033 0.006 0.034 0.95 1.206  0.033 0.006 0.034 0.94
K1 0.80 0.754  0.230 -0.046 0.233 0.95 - - - - -
K2 0.60 0.610 0.210 0.010 0.209 0.95 - - - - -
K3 0.25 0.308 0.173 0.058 0.182 0.92 - - - - -
¥ 1.50 1.501 0.005 0.001 0.005 0.84 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R Zle (&r —

a), RMSE = \V/R*1 Zf:1(d7' — a)?, and Coverage = R~ Z:il 1{a € 6’\]()‘95.r}.
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Table 4.4: DGP IV: N = 1000, Unobserved Homophily, Link Misspecification
SCHSAR HSAR
SNR Parameter  True Value  Mean Std Bias RMSE Coverage  Mean Std Bias RMSE  Coverage
A1 -0.15 -0.066  0.294  0.084 0.305 0.89 0.961 0.067 1.111 1.113 0.00
A2 0.15 0.208  0.220  0.059 0.226 0.89 0974 0.044 0.824 0.825 0.00
A3 0.30 0.335  0.141 0.035 0.145 0.89 0.723 0216 0423 0.474 0.00
w1 0.45 0452  0.015 0.002 0.015 0.98 0.454  0.021 0.004 0.022 0.95
w2 0.35 0349 0.016 -0.001 0.016 0.98 0348 0.017 -0.002  0.017 0.99
w3 0.20 0.198  0.015 -0.002 0.015 0.93 0.198  0.017 -0.002 0.017 0.93
B11 -0.50 -0.500  0.003  0.000 0.003 0.93 -0.475  0.112  0.025 0.114 0.86
. B2 0.50 0.498 0.021 -0.002 0.021 0.97 0.451 0.219  -0.049 0.224 0.91
High B13 -1.00 -1.000  0.002  0.000  0.002 0.97 -0.978  0.102  0.022  0.103 0.89
Ba1 -0.75 -0.750  0.003  0.000 0.003 0.95 -0.663  0.375  0.087 0.383 091
P22 0.80 0.800  0.007  0.000 0.007 0.94 0.722  0.340 -0.078 0.347 0.94
B23 1.20 1.201 0.003  0.001 0.003 0.93 1.112 0.397  -0.088 0.405 0.90
K1 0.80 0.717 0302 -0.083 0.312 0.85 - - - - -
K2 0.60 0.539  0.224  -0.061 0.231 0.89 - - - - -
K3 0.25 0.236  0.184 -0.014 0.184 0.87 - - - - -
o 1.50 1.144  0.005 -0.356 0.356 0.00 - - - - -
A1 -0.15 -0.080 0.287  0.070 0.294 0.88 0.956  0.060 1.106 1.107 0.00
A2 0.15 0.194 0224 0.044  0.227 0.91 0962 0.039 0812 0813 0.00
A3 0.30 0.324  0.158  0.024 0.160 091 0.731 0.095 0431 0.441 0.00
w1 0.45 0452  0.016  0.002 0.016 0.97 0.453  0.018  0.003 0.018 0.97
w2 0.35 0.349  0.017 -0.001 0.017 1.00 0.348  0.017 -0.002 0.017 0.97
w3 0.20 0.199  0.015 -0.001 0.015 0.92 0.199  0.015 -0.001 0.015 0.93
B11 -0.50 -0.500  0.008  0.000 0.008 0.95 -0.500  0.013  0.000 0.013 0.94
. Bi2 0.50 0.498  0.013  -0.002 0.013 0.94 0.500  0.011 0.000 0.011 0.96
Medium B13 -1.00 -0.998  0.013  0.002 0.013 0.96 -1.001  0.009 -0.001 0.009 0.96
B21 -0.75 -0.750  0.008  0.000 0.008 0.95 -0.749  0.011 0.001 0.011 0.97
B22 0.80 0.800  0.009  0.000  0.008 0.94 0.800 0.010 0.000  0.010 0.97
B23 1.20 1.195  0.041 -0.005 0.041 0.92 1.202  0.010  0.002 0.010 0.93
K1 0.80 0.726  0.292 -0.074  0.299 0.88 - - - - -
K2 0.60 0.550 0.213  -0.050 0.218 0.92 - - - - -
K3 0.25 0.225  0.112  -0.025 0.114 0.90 - - - - -
¥ 1.50 1.144  0.005 -0.356 0.356 0.00 - - - - -
A1 -0.15 -0.053  0.375  0.097 0.385 0.89 0.865  0.064 1.015 1.017 0.00
A2 0.15 0.136  0.365 -0.014  0.364 0.88 0.846  0.076  0.696 0.700 0.00
A3 0.30 0.192 0300 -0.108 0.318 0.89 0.598 0.135  0.298 0.327 0.66
w1 0.45 0.451  0.020  0.001 0.020 0.98 0452 0.022 0.002  0.022 0.97
w2 0.35 0.347  0.022 -0.003 0.022 0.98 0.347  0.023  -0.003 0.023 1.00
w3 0.20 0.202  0.019  0.002 0.019 0.97 0.201 0.019  0.001 0.019 0.97
B11 -0.50 -0.488 0.100 0.012 0.100 0.95 -0.498  0.031 0.002 0.031 0.96
Low B2 0.50 0.489  0.104 -0.011  0.104 0.93 0.500  0.030  0.000  0.030 0.96
B13 -1.00 -1.000  0.032  0.000 0.032 0.97 -0.999  0.034  0.001 0.034 0.97
B21 -0.75 -0.735  0.158  0.015 0.158 0.92 -0.749  0.029  0.001 0.029 0.94
B22 0.80 0.782  0.157 -0.018 0.158 0.92 0.797 0.032 -0.002 0.032 0.93
B23 1.20 1.206  0.034  0.006 0.034 0.95 1.204  0.037  0.004 0.037 0.95
K1 0.80 0.691 0.340  -0.109 0.356 0.88 - - - - -
K2 0.60 0.565  0.261 -0.035 0.262 0.88 - - - - -
K3 0.25 0.269  0.187  0.019 0.187 0.89 - - - - -
¥ 1.50 1.144  0.005 -0.356 0.356 0.00 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point estimates; the

average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where Bias = R Zle (&r —

a), RMSE = \V/R*1 Zf:1(d7' — a)?, and Coverage = R~ Z:il 1{a € 6’\]()‘95.r}.
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4.5 Empirical Analysis

In this section, we apply the proposed methodology in the context of market-for-technology
network formation and corporate research and development (R&D) investments in the United

States.

4.5.1 Data Summary

We first construct a firm-level panel dataset for the period 1980-2014 using multiple sources,
which combines accounting data from US Compustat, patent trades between firms from
the USPTO Patent Assignment Dataset (PAD), and R&D tax credit information. More
specifically, we utilise the Link Compustat — USPTO Patent Assignment Dataset (PAD)'?,
shared publicly by Arqué-Castells and Spulber (2022). These authors effectively matched
assignor/assignee names in the PAD to Compustat GVKEYs, almost directly producing
a match between Compustat and patent transactions that took place from 1980 to 2014.
Information on companies corresponding to these GVKEYs and their annual balance sheets
from the S&P North America Annual Compustat is available through Wharton Research Data
Services (WRDS). Federal tax information required to build the tax price of R&D is also
acquired from Arqué-Castells and Spulber (2022) and linked to firms by year'?. The broadest
possible sample resulting from merging all the data sources includes 3, 896 Compustat firms
that interact in the market for technology with at least one other firm in the sample and for

which the deal has a known execution date.

To create a firm-level technology-collaboration network of interest, which is essential for
our analysis, we apply further filters. We keep innovating firms that have both adopter and
provider roles and invest in R&D during the sample periods in which they are available, with
non-missing information on relevant variables such as sales, capital, and employment. We
create undirected links among firms, represented by the binary variable w;; which indicates
the presence or absence of at least one transaction in the technology market between firms ¢
and 7. To maintain a manageable sample size, we exploit only the cross-sectional variation
between firm dyads and treat the network as time-invariant network. This approach allows

for a more stable analysis of relationships between firms during the study period. Firms that

12Data source: https://zenodo.org/record/6352358. DISCERN2 provides updated data covering 1980-2021.

13To calculate the federal component of the firm-specific tax price of R&D, they take advantage of the dataset
produced by Wilson (2009), who calculates the user cost of R&D faced by a representative firm conducting
R&D within a given state.


https://zenodo.org/record/6352358
https://zenodo.org/records/13619821
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are not connected to the network are excluded to ensure that all entities in the final sample
have meaningful technological collaborations. The resulting dataset comprises 1, 150 firms
with a total of 5, 576 links, providing a substantial network for examining the formation of
technology collaboration and its impact on firm performance and innovation. Figure 4.1
illustrates the network of interactions in the market for technology. Groups 2 (computers and
communications) and 3 (drugs and medical) in the National Bureau of Economic Research
Patent Data Project (NBER PDP) six-group aggregation of technology fields (see Hall et al.,
2001) — on the left and right extremes of the network, respectively, dominate the market for
technology. In between, there is a gradation of smaller technology clusters: chemical (Group
1), electrical and electronic (Group 4), mechanical (Group 5), and others (Group 6). The fact
that firms heavily cluster by technology field suggests that technological proximity plays an

important role in shaping the market-for-technology network.

Computers & Communications
Electrical & Electronic

Drugs & Medical

Chemical

Mechanical

Others

Figure 4.1: Network of interactions by technological fields. This figure includes 1,150 Compustat
firms that play both roles as adopters and providers in the market-for-technology network (patent
transactions). All these firms are connected to the network through 5,576 links that accumulated
from 1980 to 2014. Each node represents a firm, with node size being proportional to the number
of connections of the firm). Nodes are arranged following the Fruchterman-Reingold force-directed
algorithm, and coloured by technology class (six groups in the NBER PDP classification: 1 (chemical),
2 (computers and communications), 3 (drugs and medical), 4 (electrical and electronic), 5 (mechanical),
and 6 (others). The main technology class of a firm is defined as the modal class of the patents of the
firm.

The primary firm outcome of interest in our application is the corporate R&D efforts,
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measured by the R&D expenditure-to-sales ratio, often referred to as R&D intensity. The

natural logarithm of R&D intensity among firms, as depicted in Figure 4.2, reveals a notable

multimodal distribution. Table 4.5 presents the definitions and descriptive statistics for

essential variables in our final sample, including various firm-level characteristics and the

federal component of the firm-specific tax price of R&D. The latter represents a supply-side

shock to corporate R&D induced by government policy.

Log R&D Intensity

Very High
High
Medium
Low

Very Low

=5

o 5

Figure 4.2: Distribution of Research & Development intensity among firms (post transformation)
exhibits visible multimodality.

Table 4.5: Data Statistics and Definitions (N = 1, 150)

Variable Mean Med Std Min Max  Description

RDintensity 3.075 0.113 63.804 0.000 1939.069 R&D intensity

RDexpense 252.891 31.579 764.907 0.095 7684.677  Annual R&D investment

Sales 5381.282 304.322 18627.362 0.005 230887.253  Sales

Capital 321.358 13.515 1333.668 0.007 15503.994  Capital expenditure

Employment 14.606 1.244 41.260 0.004 526.483  Employment

EBIT 468.475 16.656 1663.241  -380.792 21915.117  Earnings before interest and taxes
Revenue 4505.899  256.781  15820.807 0.004 197726303 Revenue

Size 5616.906 359.009 21191.756 0.266  380628.074  Total assets

TaxPrice 0.910 0.910 0.040 0.820 1.019  Federal component of R&D tax price

Notes: This table presents summary statistics for the firm-level dataset, which includes 1, 150 firms in total with no

missing data. The values of RDexpense, Sales, Capital, Revenue, and Size are in millions of 2010 dollars.
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4.5.2 Model Specification

We employ the general SCHSAR framework to jointly model the formation of a firm

collaboration network and their R&D efforts in two sequential stages as follows.
Network Formation: Endogenous Formation of Technological Linkages

In the first stage, the network among N firms is formed with links determined by
Wi = wj; = ]l{w;-“j >0} fori=1,...,N;j=1,...,1—1; (4.64)

where w;; indicates whether firms ¢ and j have at least one transaction in the market of
technology, and w;; measures the utility that each of the firms ¢ and j gains from forming a

link

w;; = Yo + 71 - sameSIC;; + 7o - sameAAclass;; + a; + a; + €;;, where €;; ud N(0,1).
(4.65)

In particular, the utility depends on predetermined dyad-specific regressors that include:
Homophily measures such as whether the two firms are in the same industry (sameSIC;;),
whether they are in the same technology class (sameAAclass;;), etc. 7y is the fixed cost of
maintaining links. a; and a; represent firm-specific unobserved degree heterogeneity which is

concurrent with their ability to create linkages.
Network Interaction: Potential Heterogeneous Effects

Once the network is formed in the first stage, in the second stage, firms choose their actions
(e.g., R&D efforts or other firm outcomes) taking the network structure as given. To maximise
their quadratic payoff function, a firm’s activity intensity follows a best-response function
accounting for the choices of the others. Denote Y; as firm ¢’s logged R&D intensity, which
is measured by the natural logarithm of R&D expenditure-Sales ratio. Let X be the k-th
observed firm-specific characteristic. The degree heterogeneity a; can also affect Y; through
the unobserved part, making the N x N network adjacency matrix W = [w;;] potentially

endogenous.

In accordance with the SCHSAR framework, the outcome equation for firm ¢ can be
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expressed as

N K
V=N D wyYj+ > XEBY + kga; +u; wi ~N(0,00 ) (4.66)
j=1 k=1
for i belongs to cluster g (g € {1,...,G}). {\;}5_, represents the network interaction effect

and {F}., captures the own influence of the k-th observed firm-specific characteristic.
This finite mixture structure flexibly allows for heterogeneity as it nests both the standard
SAR (G = 1) and the heterogeneous coefficients SAR (G = N) specification as special
cases. Furthermore, this specification explicitly incorporates x4a; as a control function to
model the endogeneity between network formation and firm outcomes, thereby correcting the

selection bias in the estimation of endogenous network effect A\ . Using similar notations and

derivations to Section 4.2, we can obtain the reduced form below

K
Y = [Iy - LW] (ZﬁkoXk+/%oa+u>. (4.67)

k=1
This specification not only enables the heterogeneous network interaction effects (), but
also leads to a much richer interpretation of the effects of explanatory variables on the

outcome. Specifically, the marginal effects of a change in the k-th variable vector, X* =

-
X¥F ..., X%| ,are given by the following matrix of partial derivatives
vy ovi . oy |
oxF  oxk axk
oy, v, oy;
o axzf 8X2§ axfkV
OXkT
)
|oXk  oxk oxX¥% |
= (Iy — LW) ™" x diag (") (4.68)
r. —- _1 - _
AN 0O - 0 5{6 0O --- 0
0 A --- O 0 B ... 0
=|Ww—| . W x| =l
0 0 Av] [0 0 By

The direct effects show how changes in a firm’s own k-th characteristic influence its own
outcomes. Conversely, spillin effects represent the cumulative impact of changes in the k-th

characteristic of peer firms on a firm’s outcomes, while spillout effects demonstrate how



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION 134

changes in a firm’s k-th characteristic affect peers’ outcomes. The latter two effects are also

known as indirect effects.

We note that, G = 1 results in homogeneous models, allowing us to derive standard
summaries of the effects at the aggregate level. As defined by LeSage and Pace (2009), the
direct effect (D E) is quantified by averaging the diagonal elements of the matrix of partial
derivatives, and the indirect effect (/ /) is determined by averaging the cumulative sums of

off-diagonal row or column-elements. The total effect is simply given by: TE = DE + [ E.

When G > 1, the models become heterogeneous because of the mixture structure. Unlike
homogeneous models where scalar summary measures are used, in heterogeneous models,
these effects of interest are reported at the observation level for each firm in the sample to
capture the parameter heterogeneity. In particular, because of the heterogeneity of A and
3%, the N-dimensional vectors of firm-level spillin and spillout effects are not equal even
when using a doubly-stochastic weight matrix, necessitating the calculation of both types
of indirect effects. In particular, they are computed as the cumulative sum of off-diagonal
elements in each row and in each column of the matrix of the partial derivatives, respectively.
Furthermore, both quantities depend not only on the individual group type but also on the
network position. From spatial perspective, a detailed discussion on the interpretation of such
heterogeneous models can be found in LeSage and Chih (2016) and Cornwall (2017), which

pertains to our proposed framework.

4.5.3 Estimation Results

We estimate the model parameters using the MCMC procedure described in Section 4.3. We
run the MCMC algorithm for 50, 491 iterations and drop the first 500 draws for burnin and
keep every 10th of the remaining draws to conduct the posterior analysis, that is, we compute

the posterior mean (as a point estimate) and posterior variance for each parameter.

4.5.3.1 Homogeneous Models

We begin with homogeneous models for comparison. That is the case when the number of
mixture components in the outcome equation reduces to G = 1, implying homogeneous

network interaction effect.
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Table 4.6: Parameter Estimates for the HSAR and SCHSAR Models (when G = 1)

SAR SCSAR
Mean (std) CI95 Mean (std) CI95

Network Interaction

Interaction Effect A 0.190 (0.017) [0.156, 0.223] 0.157 (0.016) [0.125, 0.189]

Intercept B 1.236 (0.196) [0.861, 1.623] 2.664 (0.221) [2.228, 3.098]

logTaxPrice B2 -8332(0.610) [-9.527,-7.147] -8.063 (0.581) [-9.210, -6.915]

logCapitalExpense B3 0.616 (0.038) [0.543,0.691] 0.540 (0.036) [0.469, 0.611]

EBIT Bs  0.071(0.018) [0.035, 0.108] 0.042 (0.018) [0.008, 0.075]

logEmployment Bs -0.025(0.049) [-0.120,0.071] -0.073 (0.045) [-0.162,0.015]

logRevenue Bs -0.983(0.040) [-1.061,-0.905] -0.962(0.038) [-1.038,-0.887]

Correlation K - - 0.802 (0.067) [0.671, 0.933]

Unobserved Heterogeneity o2 - - 3.092 (0.130) [2.841, 3.358]
Network Formation

SIC homophily ot - - 0.722 (0.017) [0.689, 0.755]

Tech homophily Y2 - 0.691 (0.010) [0.671,0.711]
Criteria

Log likelihood -1484.935 (2.023) -45471.583 (7812.020)

AICM 2978.054 (0.279) 122146268.899 (2862451.223)

Observations 1150 1150

Notes: This table presents the estimation results for the homogeneous SAR and SCSAR models. MCMC
sampling runs a total of 50, 491 iterations, where the first 500 iterations are discarded as burn-in and every 10th
draw is retained, yielding 5, 000 effective draws. Posterior means, standard deviations, and 95% equal-tailed

intervals (ETI) are computed using MCMC draws.

Table 4.6 reports the estimation results of the homogeneous SAR and SCSAR models.
Parameter estimates for the standard SAR specification, presented in the first panel, suggests
that a majority of firm-specific characteristics are significant determinants of private R&D
efforts. Furthermore, the network interaction effect () is positive and statistically significant,
confirming the theoretical conjecture that corporate R&D efforts are positively influenced by
their collaborators. Concerning the endogenous adjacent matrix inherent in this benchmark
model, the SCSAR model in the second panel takes into account the network formation process
among the firms. It can be seen that the homophily indeed matters for firm collaboration
in the market for technology, where firms are more likely to form links with those from
the same industry or technology cluster. Controlling for firms’ unobserved heterogeneity in
both network formation and economic outcome corrects for selection bias. In particular, the

network interaction effect (\) decreases considerably from 0.190 to 0.156 when introducing
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unobserved heterogeneity. This positive effect remains statistically significant, as evidenced

by the corresponding 95% credible intervals.
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Figure 4.3: Posterior mean of the firms’ unobserved degree heterogeneity.

It is worth exploring deeper insight into the role of firms’ unobserved heterogeneity,
a;, in the SCSAR model. This serves as the random effect of each firm: = 1,..., N on
both network formation and interaction stages. Figure 4.3 presents the posterior summary
of {a;}Y . The distribution of posterior mean estimates is depicted in the histogram and
kernel density, characterising latent heterogeneity across firms. In the firm network graph,
each node 7 is coloured according to the associated posterior mean of a;. Clearly, firms who
possess unobserved degree heterogeneity with higher values (darker colours) tend to gain
more connections in the network, scattering surround the central area. This finding is also
validated numerically in Table C.5 and Figure C.33, which shows strong positive correlation
between the a; and common network centrality measures including degree, betweenness,
closeness, and eigenvector centrality. More importantly, a; is also positively correlated with
R&D efforts, as captured by a significant estimate of its coefficient (k) in the R&D intensity
equation. Put differently, unmeasured confounding exists in the form of firm-specific latent
advantages that make firms become popular and exert greater R&D efforts simultaneously.
To avoid inaccurate inferences, it is essential to adequately model and estimate unobserved

heterogeneity that could affect both network formation and outcome.
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Table 4.7: Direct, Indirect and Total Effects from Explanatory Variables

SAR SCSAR
Direct Indirect Total Direct Indirect Total
-8.564 -1.723 -10.287 -8.216 -1.354 -9.570
logTaxPrice (0.621) (0.197) (0.749) (0.589) (0.171) (0.693)
[-9.79,-7.35] [-2.13,-1.35] [-11.73,-8.84] [-9.37,-7.05] [-1.71,-1.03] [-10.92,-8.19]
0.633 0.127 0.760 0.550 0.091 0.641
logCapitalExpense (0.039) (0.014) (0.047) (0.037) (0.011) (0.044)
[0.56, 0.71] [0.10, 0.16] [0.67, 0.86] [0.48, 0.62] [0.07,0.11] [0.56, 0.73]
0.073 0.015 0.088 0.042 0.007 0.049
EBIT (0.019) (0.004) (0.023) (0.018) (0.003) (0.021)
(0.04,0.11] [0.01, 0.02] [0.04, 0.13] (0.01, 0.08] [0.00, 0.01] [0.01, 0.09]
-0.026 -0.005 -0.031 -0.074 -0.012 -0.086
logEmployment (0.050) (0.010) (0.060) (0.046) (0.008) (0.054)
[-0.12, 0.07] [-0.03, 0.01] [-0.15, 0.09] [-0.16, 0.02] [-0.03, 0.00] [-0.19, 0.02]
-1.011 -0.203 -1.214 -0.980 -0.162 -1.142
logRevenue (0.041) (0.021) (0.054) (0.039) (0.019) (0.049)
[-1.09,-0.93]  [-0.25,-0.16] [-1.32,-1.11]  [-1.06,-091] [-0.20,-0.13]  [-1.24,-1.05]

Notes: This table presents the posterior means, standard deviations, and 95% credible intervals for each effect across firms.

The derivation of each effect is based on posterior samples of each parameter.

In addition to the change in the estimated network interaction effect parameter \, we
can further examine how other estimated coefficients of the explanatory variables and their
interactions with \ are adjusted by the selection-corrected approach. Owing to the structure
of the SAR and SCSAR models, a change of any given explanatory variable in an individual
will affect not only the dependent variable of its own (direct effect), but also the dependent
variables of the others (indirect effects). Table 4.7 summarizes the average of direct, indirect
and total effects for the explanatory variables derived from the estimates of the SAR and
SCSAR models. Because a firm’s R&D intensity is positively influenced by its peers’ R&D
efforts through network interaction effects, the government R&D tax price for a specific firm
directly affects the firm itself and its peer firms indirectly. On average, both direct and indirect
effects are significantly negative, contributing to the average total impact of 1% increase in
the tax price the :—th firm receives on firms’ R&D intensity is significantly negative, with
10.29% and 9.57% declines in the SAR and SCSAR models, respectively. In other words, the
peer effect on corporate R&D policies generates a multiplier, defined as the ratio of the total
effect to the direct effect. By accounting for the endogenous network structure, the SCSAR

model avoids overestimating A, thereby providing robust evidence for the multiplier although
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the magnitude of the ratio is slightly reduced compared to the SAR model.

4.5.3.2 Heterogeneous Models

Table 4.8 presents estimation results of the HSAR and SCHSAR models with two component
distributions (i.e., G = 2). Under a three-component model (i.e., G = 3), the parameter
estimates for the third type, including the assignment probability and network effect parameter,

are not significantly distinguishable from zero (see Table C.6).

Comparing the SCHSAR model with the homogeneous SCSAR, the estimates for
parameters in the network formation equation are almost preserved up to two decimals, as well
as those for the random effect variance. Visualising firms’ unobserved degree heterogeneity
{a;}}¥, and computing relevant statistics also give us similar pattern as in the previous case.
This aligns with our modelling approach when the first stage (network formation) is specified
for the entire population and does not depend on G. In terms of the network interaction
equation, the correlation coefficient x remains positive in both types and is significant in
the first type. The two groups are ordered based on their weights to the sample population,
with the smaller group recording larger network interaction effect (A2 ~ 1.7)1) and lower
regression coefficient of logTaxPrice (322 ~ 4.28@21). This interesting distinction indicates
that some firms are highly responsive to their peer R&D activities but less susceptible to
direct R&D tax price intervention from the government, and vice versa. Perhaps the latter
type includes more “self-reliant” innovators (and network peer effects are less important to
these firms), while firms of the former type are more influenced by what others are doing
(and hence less directly responsive to their own tax changes). For simplicity, we refer to these
groups as high-\ (more peer-driven) and low-\ (more self-driven) types. The group labels
themselves have no direct interpretation'#, but some attributes of each group provide further

insight into the underlying mechanisms driving the heterogeneity.

14See Geweke (2007) and Friihwirth-Schnatter (2006) for full discussion.



CHAPTER 4. MODELLING INTERACTIONS WITH HETEROGENEOUS EFFECTS AND
ENDOGENOUS NETWORK FORMATION

Table 4.8: Parameter Estimates for the HSAR and SCHSAR Models (when G = 2)

HSAR SCHSAR
1% Type 2" Type 1% Type 2" Type
Network Interaction
. » 0.588 (0.043) 0.412(0.043)  0.660 (0.041)  0.340 (0.041)
Assignment Probability s
[0.50, 0.67] [0.33, 0.50] [0.58, 0.74] [0.26, 0.42)
. 0.150 (0.026) 0.226 (0.035)  0.127 (0.024)  0.215 (0.038)
Interaction Effect A
[0.10, 0.20] [0.16, 0.29] [0.08, 0.17] [0.14, 0.29]
1.315(0.277)  -3.171 (0.464)  3.153 (0.340) -3.077 (0.632)
Intercept B1
[0.77, 1.86] [-4.08, -2.23] [2.54,3.79] [-4.23,-1.87]
. -10.637 (1.035)  -2.428 (0.853)  -9.525(0.930) -2.223 (1.041)
logTaxPrice B2
[-12.66, -8.65] [-4.08,-0.77]  [-11.28,-7.76]  [-4.23,-0.29]
. 0.685 (0.058) 0.292 (0.069)  0.589 (0.054)  0.263 (0.076)
logCapitalExpense B3
[0.57, 0.80] [0.16, 0.43] [0.48, 0.69] [0.12, 0.42)
0.059 (0.025) 0.052 (0.027)  0.045(0.021)  0.058 (0.037)
EBIT fa
[0.01, 0.11] [-0.00, 0.11] [0.00, 0.09] [-0.01, 0.13]
-0.102 (0.081)  -0.617 (0.084) -0.086 (0.070) -0.639 (0.097)
logEmployment Bs
[-0.27, 0.05] [-0.79, -0.45] [-0.22, 0.05] [-0.82, -0.45]
-1.099 (0.051)  0.109 (0.094)  -1.080 (0.055) 0.135(0.112)
logRevenue Be
[-1.20, -1.00] [-0.08, 0.29] [-1.17,-0.99] [-0.07, 0.33]
. 0.933 (0.108)  0.083 (0.131)
Correlation K - -
[0.72, 1.15] [-0.17, 0.34]
. 2 3.093 (0.131)
Unobserved Heterogeneity o, - -
[2.85,3.37]
Network Formation
. 0.724 (0.017)
SIC homophily T - -
[0.69, 0.76]
. 0.692 (0.010)
Tech homophily Y2 - -
[0.67,0.71]
Criteria
Log likelihood -1958.68 (20.94) -44949.63 (9729.57)
AICM 4794.66 (20.68) 189418920.84 (4440159.24)
Observations 1150 1150

Notes: This table presents the estimation results for the HSAR and SCHSAR models with G = 2. MCMC

sampling runs a total of 50, 491 iterations, where the first 500 iterations discarded as burn-in and every 10th

draw is retained, yielding 5, 000 effective draws. Posterior means, standard deviations, and 95% equal-tailed

intervals (ETI) are computed using these MCMC draws.

In Table 4.9, we present regression results of the probability that firm ¢ belongs to

the high-\ type on multiple firm characteristics. For the linear specification, we use a
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continuous dependent variable obtained from the posterior means of z; in (4.52). For the logit
specification, we use the binary type indicators derived from posterior median of of z;. The
findings consistently suggest that the larger firm size (measured by total assets), the higher
the probability that it belongs to the high-\ type. Technological class also plays a role in

determining the latent types.

Table 4.9: Regressions of Posterior Probability of Inclusion on Firm Characteristics

Dependent Variables Probability Binary
(Regresion) (Linear) (Logistic)
ey 2) 3) “)
logTotal Asset 0.016™" 0.013"* 0.150"" 0.129"
(0.003) (0.003) (0.033) (0.040)
Computers & Communications 0.210"* 0.205"* 1.109" 1.077°
(0.021) (0.021) (0.273) (0.275)
Drugs & Medical 0.065"" 0.059"" 0.682" 0.643™
(0.022) (0.022) (0.292) (0.295)
Electrical & Electronic 0.191"* 0.189"* 1.177° 1.156™"
(0.025) (0.025) (0.303) (0.304)
Mechanical 0.135™ 0.140™" 0.862™ 0.887"""
(0.029) (0.029) (0.340) (0.341)
Others 0.035 0.039 0.506 0.527
(0.030) (0.030) (0.372) (0.373)
Degree Centrality 0.981" 4.751
(0.501) (5.061)
Intercept 0.115™ 0.132™ -2.955™ -2.843™
(0.027) (0.028) (0.350) (0.367)
Observations 1150 1150 1150 1150
Adjusted R? 0.138 0.140
AIC 1228.424 1229.540

Notes: Standard errors are reported in parentheses. Coefficients marked with ¥ and T are significant at the 10%, 5%,

and 1% levels, respectively.

Turning to the response of corporate R&D efforts in the firm-level network to government
tax incentives for R&D, as mentioned earlier in the case of heterogeneous model, our
focus of inference are the direct and indirect (spillin and spillout) effect estimates at
individual/observational levels (i.e., one value for each firm). For: = 1,..., N, the direct
effect shows the elasticity response of i-th firm’s R&D intensity to its own R&D tax price,

given the fact that we employ the logarithm transformation for both quantities. The indirect
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spillin effect estimate represents the cumulative impact of changes in peer firms’ R&D tax
prices on ¢-th firm’s R&D intensity, whereas the indirect spillout effect estimate represents
the cumulative impact of changes in R&D tax prices of ¢-th firm on its peers’ R&D intensity.
These quantities provide fine-grained heterogeneity across firms, thus enabling a more

effective targeted policy.

In a policy scenario in which the government seeks to encourage corporate R&D
investments by lowering the costs incurred by firms, we assess the effects of a 1% reduction
in firm-specific R&D tax prices using estimation results from the SCHSAR model. To
summarize the observational-level effects of interest succinctly, we employ a combination of
coloured graphs and histograms to visualise these quantities. Specifically, the histograms
depict the empirical frequency of the posterior mean estimates across 1, 150 firms. We then
categorize these values into five quintiles and map corresponding colours to the firms in the
network graph. Additionally, we rank the firms and highlight those with the highest effects,
along with several of their characteristics. The results reveal a rich pattern of firm-level
heterogeneity in the estimates. Overall, all firms display values significantly different from

zero, as indicated by 95% credible intervals derived from the MCMC draws.

The direct effect estimates presented in Figure 4.4 and Table 4.10 align with the previous
analysis, revealing a bimodal distribution that supports the predictions of the two-component
mixture SCHSAR model. This bimodality is indicative of mixture-driven heterogeneity rather
than sampling noise, with most values being significantly positive and falling between 2
and 10. The distribution suggests two distinct firm types with varying levels of tax price
elasticity and dependence on peer network effects for innovation output. More specifically,
firms exhibiting the highest direct effects predominantly belong to the low-\ type which has
high tax price elasticity (large 3»). This implies that these firms are less reliant on peer network
effects and more responsive to their own R&D incentives. Notably, firms in the Drugs &
Medical and Chemical classes are heavily represented in this group. Interestingly, the analysis
reveals that a firm’s centrality or size in the network negatively correlate with its direct effects.
For instance, despite its low size percentile, Cellcy Pharmaceuticals exhibits very high direct
effects, highlighting that even smaller or less-connected firms can demonstrate substantial

R&D responsiveness to tax incentives.

Figure 4.5 and Table 4.11 represent the indirect spillin effects across firms due to a 1%

reduction in peers’ R&D tax prices. The density plot reveals a less polarized distribution
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centred around 1.0-1.3, indicating that most firms experience positive spillin effects, albeit at
a lower magnitude than direct effects. This suggests that while peer effects exist and firms
benefit from their peers’ R&D becoming cheaper, these indirect effects are generally smaller
than the firm-specific responses. Large standard deviations relative to the effect size indicate
greater estimation uncertainty. This is consistent with the fact that these effects depend on

the matrix inverse (Iy — LW) ™'

, which propagate uncertainty from both A\ and W. The
empirical findings illustrate that a firm’s network position and network interaction elasticity
() are pivotal in determining its responsiveness to peer-based incentives. Firms exhibiting
high spillin effects predominantly belong to high-)\ type, emphasising the importance of
network interaction effects in shaping spillin patterns. From a theoretical standpoint, we refer
to these firms as “responsive absorbers” to distinguish them from “self-reliant innovators,”
who exhibit strong direct effects. In contrast to self-reliant innovators, responsive absorbers
are more reliant on external innovations, such as partnerships, and consequently display
greater peer dependency and weaker direct responses. Our data indicates that these top-ranked
firms span various technology classes, including Chemical, Drugs & Medical, Mechanical,
and Computers & Communications, indicating a broader mix compared to the direct effects.
Additionally, larger firm size and degree centrality are slightly linked to higher spillin effects.
Nonetheless, firms that are not highly central can still be significantly exposed to peer
innovation, as demonstrated by firms such as Fmc Corp and Seclone Pharmaceuticals, which
exhibit high spillins despite relatively low centrality. The top responsive absorbers, highlighted
in blue nodes, are also dispersed throughout the network graph rather than being heavily

clustered.

Figure 4.6 and Table 4.12 illustrate the indirect spillout effects from each firm to its peers
resulting from a 1% reduction in the firm’s own R&D tax price. When firms experience a
1% decrease in their R&D tax prices, their peers’ R&D intensities increase significantly, as
evidenced by all 95% intervals lying entirely above zero. However, these indirect effects have
wider credible intervals than direct effects, indicating greater uncertainty in their estimation.
While top spillin firms often belong to the high-\ type, most spillout leaders are classified
in the low-\ type. These low-)\ firms are more sensitive to direct firm-level R&D incentives
(large (), confirming that their own influence prevails even when their connected peers
are less elastic. Beyond network interaction effects A, the calculation for spillouts involve
firms’ own price elasticity and network position, which enhance firms’ ability to transmit

cost shocks outward through collaboration and co-patenting links. Top spillout firms (in
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blue) are prominently centralised in the network graph, highlighting their potential as central
hubs capable of significantly affecting broader network activities. In accordance with theory,
we refer to them as “influential transmitters,” who can magnify strategic complementarities
(Bulow et al., 1985; Cooper and John, 1988) by virtue of their extensive linkages, serving as
critical “gatekeepers” or “bridges” (Katz and Shapiro, 1986) and transferring technological
shocks to many connected firms simultaneously. Firm size complements network centrality
in amplifying spillout effects; nearly all top spillout firms are in the 90"~100" percentile of
total asset. This joint condition — being large and central — defines the profile of influential
transmitters in the network. Additionally, sector concentration is evident, with the Computers
& Communications sector accounting for 13 out of the top 20 spillout firms, indicating that

technology-intensive classes drive network-wide R&D diffusion.

The empirical patterns observed across all three sets of results provide strong support
for the SCHSAR framework, demonstrating its ability to capture the intended network
mechanisms. Although direct incentives exhibit stronger effects, the significance of indirect
effects is noteworthy. These indirect effects are inherently more complex because of their
dependence on heterogeneous network interaction effect A and network structure W, resulting
in larger standard deviations and wider credible intervals than direct effects. Furthermore,
our empirical findings distinguish firms that rank high in either indirect spillin or spillout
effects, characterising responsive absorbers and influential transmitters based on their specific
values of A, 3, and W. This observation aligns with the technical distinction made in the
SCHSAR framework, highlighting its flexibility and robustness in modelling complex network

interactions.

Taken together, these results underscore the importance of considering both firm-level
direct and indirect effects when evaluating the efficacy of government R&D tax incentives.
Ignoring the indirect effects inherent in the collaboration network can lead to a significant
underestimation of a policy’s true impact. The rich heterogeneity observed across firms
reveals various R&D behaviours within the market-for-technology network, enabling the
identification of self-reliant innovators, responsive absorbers, and influential transmitters,
among others. Measuring firm-level total effects — the sums of direct and indirect spillin
or spillout effects above — offers the most comprehensive basis for designing policies that

generate balanced and synergistic innovation outcomes.

The total spillin effect captures the cumulative impact of a 1% reduction in the R&D
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tax price of every firm in the network on a given firm’s R&D intensity. This measure is
especially relevant under a uniform tax policy in which all firms receive the same marginal
incentive from the government. This fully reflects both the firm’s own direct responsiveness
and the accumulated influence of peer firms’ incentive-driven R&D responses. Firms with
the highest (or lowest) total spillin effects are therefore best (or least) positioned to benefit
from such broad-based policy interventions. The empirical evidence presented in Figure 4.7
and Table 4.13 suggest that own-price elasticity () plays a more dominant role than network
elasticity () in determining top beneficiaries. In other words, firms that rank highest on total
spillin effect are often self-reliant innovators with strong internal responsiveness, rather than
responsive absorbers primarily driven by peer R&D behaviours. Many of these firms are

found in the Drugs & Medical and Chemical sectors.

The total spillout effect, on the contrary, captures the cumulative increase in network-wide
R&D intensity resulting from a 1% reduction in a single firm’s R&D tax price. This measure
is the most informative for designing cost-effective, high-impact policies, especially when
the government operates under a constrained budget and must selectively target a subset
of firms. It combines both the firm’s own R&D response and its downstream influence on
peers through the network. High-spillout firms act as policy multipliers; thus, subsidising
them can propagate innovation widely across the network at a relatively low cost. Figure 4.8
and Table 4.14 confirm that the top total spillout firms tend to be innovation initiators and
influencers, combining strong direct effects with extensive network reach. They are typically
highly central in the firm network and are often found in the Computers & Communications,
Chemical, or Drugs & Medical sectors. While some are large, capitalized industrial leaders
(e.g., GE, Apple, P&G), interestingly, well-connected but much smaller firms also appear on
the list. Conditional on sector and centrality, smaller firmsize tends to generate higher total
spillout effects. To maximise systemic diffusion from limited resources, policymakers should

strategically prioritize firms with high total spillout effects.
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Direct Effects for each firm due to a 1% reduction in the firm’s own R&D tax price
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Figure 4.4: Direct effects of a 1% reduction in a firm’s own R&D tax price. The histogram shows the
distribution of the effects of interest across firms. In the network graph, firms are represented as nodes
colored by the effect magnitude.

Table 4.10: The Top 20 Firms with the Highest Direct Effects

Direct Effects
Rank  Firm Field Centrality  Size Type Mean (std) CI95
1 Norsk Hydro Asa Chemical 57 93 Low A 9.770 (0.941)  [7.950, 11.571]
2 Solectron Corp Computers & Communications 80 82 Low A 9.744 (0.927)  [7.930, 11.544]
3 Cellegy Pharmaceuticals -Old Drugs & Medical 37 5 Low A 9.743(0.925) [7.949, 11.535]
4 Synvista Therapeutics Inc Drugs & Medical 37 12 Low A 9.742 (0.927) [7.938, 11.568]
5 Ballard Power Systems Inc Electrical & Electronic 68 52 Low A 9.741 (0.979)  [7.926, 11.548]
6 Neurogen Corp Drugs & Medical 57 26 Low A 9.741 (0.929)  [7.946, 11.543]
7 Cti Biopharma Corp Drugs & Medical 48 30 Low A 9.737(0.923) [7.946, 11.571]
8 Bj Services Co Others 37 76 Low A 9.737(0.952) [7.919, 11.572]
9 Salem Corp Others 8 21 Low A 9.730(0.923)  [7.925, 11.553]
10 Genelabs Technologies Inc Drugs & Medical 78 11 Low A 9.730(0.922) [7.942, 11.536]
11 Linde Plc Others 83 89 Low A 9.730(0.930) [7.931, 11.538]
12 Windtree Therapeutics Inc Drugs & Medical 24 11 Low A 9.730(0.922) [7.928, 11.528]
13 Church & Dwight Inc Chemical 68 68 Low A 9.729 (0.998)  [7.905, 11.548]
14 Protein Polymer Technologies Chemical 37 0 Low A 9.729(0.926) [7.944,11.531]
15 Aradigm Corp Drugs & Medical 48 19 Low A 9.728 (0.995) [7.907, 11.559]
16 Respirerx Pharmaceuticals Drugs & Medical 37 1 Low A 9.717 (0.981) [7.896, 11.541]
17 Immunogen Inc Drugs & Medical 84 27 Low A 9.717 (0.946)  [7.905, 11.529]
18 Sonus Pharmaceuticals Inc Drugs & Medical 63 11 Low A 9.717 (0.954) [7.902, 11.519]
19 Hanson Plc Chemical 24 93 Low A 9.716 (0.966)  [7.899, 11.549]
20 Carpenter Technology Corp Mechanical 57 68 Low A 9.714 (1.036) [7.869, 11.564]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents high/low

network interaction effect ().
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Indirect Spillin Effects to each firm from its peers due to a 1% reduction in peers’ R&D tax

price.

Indirect Spillin Effects
® \Very High
@ High
Medium
Low
Very Low

M

s
NORDSON
% o

L1 sUF
- ALEXION h'{ »

[, dees W
el

MILACRON |

L 3
» o'y TRIPOS 22

e
.s «" DEERE oo MERCK igul” .
AMAZON.EOM - e m ;"'
P T AN >
X v o ,‘" SCICLONE
B e > a0 .
i)’ ! . ) )

0.5

1o

2.0

Figure 4.5: Indirect Spillin Effects to each firm from a 1% reduction in peers’ R&D tax price. The
histogram shows the distribution of the effects of interest across firms. In the network graph, firms are

represented as nodes colored by the effect magnitude.

Table 4.11: The Top 20 Firms with the Highest Indirect Spillin Effects

Indirect Spillin Effects

Rank  Firm Field Centrality  Size Type Mean (std) CI95

1 Fmc Corp Chemical 24 80  HighA 1.914(0.568) [0.898,3.009]
2 Sciclone Pharmaceuticals Inc Drugs & Medical 24 23 High A 1.910 (0.596)  [0.952, 3.104]
3 Alexion Pharmaceuticals Inc Drugs & Medical 48 63 High A\ 1.854 (0.612)  [0.885, 3.110]
4 Milacron Inc Mechanical 8 64  High A 1.848(0.606) [0.831,3.029]
5 Amazon.com Inc Computers & Communications 63 89 High A 1.842(0.584) [0.675, 3.007]
6 Nordson Corp Chemical 24 59 High A 1.833 (0.639)  [0.764,3.111]
7 Merck Drugs & Medical 98 97 High A 1.829(0.584) [0.864, 3.009]
8 Surmodics Inc Drugs & Medical 68 29 High A 1.822(0.587) [0.867, 3.000]
9 Deere & Co Others 63 94 High A 1.810(0.719)  [0.287, 3.007]
10 Tripos Inc Computers & Communications 75 18 High A 1.799 (0.604)  [0.712, 2.960]
11 Tsi Corp Drugs & Medical 8 10 High A 1.794(0.590) [0.854,2.992]
12 Astrazeneca Drugs & Medical 96 95 High A 1.792 (0.586)  [0.857, 2.993]
13 Lifecore Biomedical Inc Drugs & Medical 24 15 High A 1.791 (0.594)  [0.889, 3.013]
14 Visteon Corp Mechanical 71 87  High A 1.783(0.584) [0.868,2.962]
15 Mattson Technology Inc Electrical & Electronic 8 37 High A 1.782(0.656)  [0.541, 3.041]
16 Dot Hill Systems Corp Computers & Communications 24 31 High A 1.776 (0.589)  [0.860, 2.979]
17 Johnson Controls Intl Plc Others 71 89 High A 1.769 (0.592)  [0.861, 2.954]
18 Ici-Imperial Chem Inds Plc Chemical 88 92 High A 1.762 (0.516)  [0.823, 2.803]
19 Rohm And Haas Co Chemical 84 84 High A 1.761 (0.588)  [0.842, 2.966]
20 Parlex Corp Electrical & Electronic 24 19 High A 1.758 (0.613)  [0.667,2.955]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents high/low

network interaction effect (A).
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Indirect Spillout Effects from each firm to its peers due to a 1% reduction in the firm’s own

R&D tax price.
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Figure 4.6: Indirect Spillout Effects from each firm to its peers due to a 1% reduction in the firm’s
own R&D tax price. The histogram shows the distribution of the effects of interest across firms. In the
network graph, firms are represented as nodes colored by the effect magnitude.

Table 4.12: The Top 20 Firms with the Highest Indirect Spillout Effects

Indirect Spillout Effects

Rank  Firm Field Centrality ~ Size Type Mean (std) CI95
1 Ibm Computers & Communications 100 99 High A 6.490 (4.719)  [0.642, 15.169]
2 Motorola Computers & Communications 100 93 Low A 5.144 (2.298) [0.735, 8.860]
3 Oracle Computers & Communications 99 94 Low A 4.980 (2.762) [0.670, 9.781]
4 Ge Electrical & Electronic 99 100 Low A 4.734 (1.197) [1.534, 6.972]
5 Abbott Drugs & Medical 98 94 Low A 4.512(2.805) [0.464,8.951]
6 Microsoft Computers & Communications 99 98 Low A 4.399(2.928) [0.435,9.913]
7 Digitaleq Computers & Communications 95 88 Low A 3.897 (1.961) [0.430, 7.288]
8 Pfizer Drugs & Medical 100 98 High A 3.836 (2.916) [0.356, 9.307]
9 At&T Corp Computers & Communications 95 99 Low A\ 3.463 (2.016) [0.410, 7.165]
10 Solectron Corp Computers & Communications 80 82 Low A\ 3.318 (0.864) [1.813,5.272]
11 Hp Computers & Communications 100 97 High A 3.310(2.727)  [0.356, 9.346]
12 Intel Computers & Communications 100 96 Low A 3.226 (2.106)  [0.297, 7.068]
13 Endo International Plc Drugs & Medical 68 79 Low A 3.126(1.016)  [0.531, 4.859]
14 Apple Computers & Communications 97 95 Low A 3.070 (0.849) [1.630, 5.054]
15 Alcatel Computers & Communications 99 97 Low A 3.051 (1.503) [0.442, 5.612]
16 Emc Computers & Communications 97 90 Low A 3.033 (1.898) [0.304, 6.247]
17 Basf Chemical 98 98 Low A 3.024(0.723)  [1.809, 4.639]
18 Verisign Inc Computers & Communications 80 80 Low A 2.763 (1.308) [0.367, 5.271]
19 Illinois Tw Mechanical 92 86 Low A 2.727(1.010)  [0.478, 4.859]
20 Schering Drugs & Medical 97 87 Low A 2.722(0.977)  [0.468, 4.239]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents

high/low network interaction effect (\).
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Figure 4.7: Total Spillin Effects on each firm due to a 1% reduction in the R&D tax price for all firms.
The histogram shows the distribution of the effects of interest across firms. In the network graph, firms
are represented as nodes colored by the effect magnitude.

Table 4.13: The Top 20 Firms with the Highest Total Spillin Effects

Total Spillin Effects
Rank  Firm Field Centrality  Size Type Mean (std) CI95
1 Cygnus Inc Drugs & Medical 78 16 Low A 10.921(1.026) [8.911, 12.930]
2 Total Se Chemical 87 99 Low A 10.921 (1.026)  [8.911, 12.929]
3 Sulphco Inc Chemical 8 2 Low A 10.920(1.026) [8.911, 12.929]
4 Agenus Inc Drugs & Medical 48 23 Low A 10.920(1.025) [8.911, 12.930]
5 Conocophillips Chemical 24 98 Low A 10.920(1.025) [8.911, 12.922]
6 Genaera Corp Drugs & Medical 37 10 Low A 10.920(1.024) [8.911, 12.922]
7 Lyondellbasell Industries Nv Chemical 24 95 Low A 10.919 (1.027) [8.905, 12.929]
8 Chevron Corp Chemical 75 99 Low A 10.918 (1.025) [8.909, 12.925]
9 Valence Technology Inc Electrical & Electronic 37 18 Low A 10918 (1.027) [8.908, 12.922]
10 Macrochem Corp/De Drugs & Medical 63 2 Low A 10916 (1.032)  [8.903, 12.922]
11 Emisphere Technologies Inc Drugs & Medical 68 14 Low A 10.915(1.035)  [8.902, 12.919]
12 Abeona Therapeutics Inc Drugs & Medical 37 2 Low A 10913 (1.021)  [8.903, 12.909]
13 Archer-Daniels-Midland Co Drugs & Medical 78 92 Low A 10913 (1.025) [8.908, 12.916]
14 Corixa Corp Drugs & Medical 81 38 Low A\ 10913 (1.041)  [8.898, 12.930]
15 Orbital Atk Inc Chemical 71 75 Low A 10.913 (1.047)  [8.898, 12.922]
16 Bp Plc Chemical 90 99 Low A\ 10.913 (1.023)  [8.908, 12.913]
17 Crop Genetics Intl Corp Others 24 9 Low A\ 10.912 (1.027) [8.902, 12.919]
18 Mobil Corp Chemical 48 97 Low A 10911 (1.042) [8.898, 12.913]
19 Colgate-Palmolive Co Chemical 57 86 Low A 10.910(1.040) [8.893, 12.915]
20 Atrix Laboratories Inc Drugs & Medical 68 21 Low A 10.910(1.031)  [8.899, 12.908]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents

high/low network interaction effect (\).
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Figure 4.8: Total Spillout Effects from each firm due to a 1% reduction in the firm’s own R&D tax
price. The histogram shows the distribution of the effects of interest across firms. In the network graph,
firms are represented as nodes colored by the effect magnitude.

Table 4.14: The Top 20 Firms with the Highest Total Spillout Effects

Total Spillout Effects
Rank  Firm Field Centrality  Size Type Mean (std) CI95
1 Ge Electrical & Electronic 99 100 Low A 14.167 (2.588) [4.660, 17.978]
2 Motorola Computers & Communications 100 93 Low A 13.158 (5.375) [2.025, 19.635]
3 Solectron Corp Computers & Communications 80 82 Low A 13.061 (1.504) [10.315, 16.257]
4 Apple Computers & Communications 97 95 Low A 12.743 (1.692) [9.954, 15.976]
5 Basf Chemical 98 98 Low A 12.665(1.486)  [9.989, 15.585]
6 Cell Genesys Inc Drugs & Medical 85 46 Low A 12.400 (1.362) [9.870, 15.055]
7 Engelhard Corp Chemical 71 75 Low A 12.254(1.598)  [9.653, 14.978]
8 Calgene Inc Drugs & Medical 80 26 Low A 12.202 (1.429) [9.733, 14.831]
9 Exxon Mobil Corp Chemical 87 100 Low A  12.185(1.346)  [9.723, 15.029]
10 Endo International Plc Drugs & Medical 68 79 Low A 12.167 (3.096) [2.273, 15.714]
11 Xoma Corp Drugs & Medical 81 25 Low A\ 12.163 (1.445) [9.612, 15.080]
12 Oracle Computers & Communications 99 94 Low A 12.094 (6.259) [1.682, 20.562]
13 Usg Corp Others 24 79 Low A 12.071(1.290)  [9.621, 14.605]
14 Soligenix Inc Chemical 24 2 Low A 12.059(1.334)  [9.612, 14.676]
15 Ciba Chemical 95 87 Low A 11.974(1.339)  [9.674, 14.316]
16 Ionis Pharma Chemical 92 47 Low A 11.914(2.148)  [3.727, 14.760]
17 P&G Chemical 96 98 Low A 11.843(2.470)  [3.035, 14.976]
18 Bemis Co Inc Others 57 73 Low A 11.837 (1.599) [9.108, 14.579]
19 Texaco Inc Chemical 84 96 Low A 11.796 (1.269)  [9.453, 14.456]
20 Ibm Computers & Communications 100 99 High A 11.793 (8.407) [1.206, 25.793]

Notes: Centrality is the percentile ranking of degree centrality; Size is the percentile ranking of a firm’s total asset; Type represents high/low

network interaction effect (\).
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For comparison with the homogeneous models in the previous section, we again summarize
the average direct, indirect, and total effects of 1% reduction in the R&D tax price for all firms.
As shown in Table 4.15, one consequence of averaging indirect effects over all observations
(firms) is that the average of the row- and column- sums of the derivative matrix are inevitably
the same. In fact, this equality is a result of uniform weighting, which is meaningful only for
a policy experiment in which every firm receives exactly the same 1% tax-price shock. In
other words, this can speak only to a “one-size-fits-all” counterfactual — a critical limitation
of homogeneous models (SAR/SCSAR). Compared to the homogeneous benchmarks in Table
4.7,"5 the magnitude of the estimated effects shrinks once latent types are introduced to
capture firm heterogeneity (via a mixture structure). The reduction is not a loss of explanatory
power but a correction for over-aggregation. Once heterogeneity and endogenous network
selection are properly modelled under the SCHSAR framework, the inflated indirect effects
of the homogeneous SAR collapse to more credible values while remaining statistically and
economically significant. Furthermore, by relaxing the homogeneity restriction, SCHSAR
yields firm-specific effect estimates and delivers richer interpretations for targeted policy

designs.

Table 4.15: Direct, Indirect and Total Effects from R&D Tax Price.

HSAR SCHSAR
Mean (std) CI95 Mean (std) CI95
Direct 7.275(0.613)  [6.052,8.482] 7.168 (0.601) [5.971, 8.296]

Indirect Splillin 1.320(0.188)  [0.981,1.707]  1.157 (0.154) [0.871, 1.473]
Indirect Splillout  1.320 (0.188)  [0.981, 1.707]  1.157 (0.154)  [0.871, 1.473]
Total Splillin 8.595(0.730) [7.171,10.053] 8.325(0.699) [6.945, 9.654]
Total Splillout 8.595(0.730) [7.171,10.053] 8.325(0.699) [6.945,9.654]

Notes: This table presents the posterior means, standard deviations, and 95% credible
intervals for each effect across firms. The derivation of each effect is based on posterior

samples of each parameter.

I5The first row reports the effects of 1% increase in the tax price and therefore carries the opposite sign.
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4.6 Concluding Remarks

This paper introduces the Selection-corrected Heterogeneous Spatial Autoregressive
(SCHSAR) framework to address two critical challenges in network interaction models:
heterogeneous effects and endogenous network formation. The proposed approach extends the
standard SAR model by incorporating a finite mixture structure to capture rich heterogeneity
in network interaction effects, while simultaneously modelling the network formation
process to correct for potential selection bias. Three types of latent variables are integrated
into the framework: individual-type indicators associated with mixture components in the
outcome equation, dyadic utilities governing link formation in the network equation, and
individual-specific random effects accounting for endogeneity. This hierarchical structure,
while posing a challenge to the maximum likelihood estimators, is efficiently handled by our

Bayesian algorithm based on data augmentation techniques.

The simulation study validates our fully Bayesian approach. It is computationally tractable
and able to deliver reliable inference for the SCHSAR model across various data-generating
processes. The proposed estimators exhibit near-unbiasedness and nominal coverage,
especially when the signal level is favourable and endogenous network formation is mainly
driven by unobserved degree heterogeneity. In contrast, reliance on either exogeneity
or homogeneity results in significant bias and unreliable inference for interaction effect

coefficients when these assumptions are violated.

Our empirical application to a technological collaboration network among U.S. firms
provides several key insights. First, technological homophily significantly shapes the
network structure, complemented by firm-specific latent advantages that affect both linkage
ability and R&D intensity. Second, positive network interaction effects on corporate R&D
investments persist after correcting for selection bias due to endogenous network formation.
Our heterogeneous model reveals two distinct types of firms, with varying levels of network
peer effects and tax price responsiveness. Third, we find substantial firm-level heterogeneity
in both the direct and indirect (spillin and spillout) effects of R&D tax incentives. Different
firm behaviours are revealed: “self-reliant innovators” with strong direct effects, “responsive
absorbers” with high spillin effects, and “influential transmitters” with significant spillout
effects. This highlights the role of network position and firm attributes, such as firm size,
in driving innovation dynamics. Finally, evaluating firm-level total effects facilitates the

design of targeted policy interventions. For example, prioritising firms with high total spillout
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effects could be a cost-effective strategy to maximise systemic innovation diffusion across the

network.

The SCHSAR framework provides a flexible and robust approach to drawing credible
conclusions about network interaction effects by effectively accommodating both
heterogeneity and endogeneity. Future research directions include extending the framework
to dynamic panel settings, automatically selecting the number of mixture components, and
improving unobserved homophily handling. Although we focus on the analysis of firm

network data, a wide range of potential applications can be explored using this method.



Chapter 5

Conclusion

5.1 Summary & Implications

This thesis leverages Bayesian techniques to develop methods that tackle challenges in three

microeconometric settings with a focus on causality and heterogeneity.

As consistently demonstrated in the three essays, the Bayesian modelling approach, in
combination with efficient computational methods, showcases numerous advantages. First,
it provides flexible data-driven solutions to high-dimensional problems, nonlinearities,
endogeneity, and heterogeneity through sophisticated hierarchical priors. For example, high-
dimensional covariates are tackled by introducing regularisation through shrinkage priors (as
in quantile regressions), or unmeasured confounding is captured via latent variables (as in the
modelling of endogenous treatment selection and network formation). This flexibility allows
for effective and simultaneous handling of all key elements within a unified framework, even
in settings where traditional methods fail or are computationally infeasible. Second, it enables
principled uncertainty quantification through a probabilistic framework that incorporates all
sources of variability within the posterior distribution, including parameters, latent variables,
and missing data. This property is particularly valuable for drawing credible inferences in small
samples and enabling direct inference on nonlinear/nonstandard causal estimands or policy-
relevant quantities that would be difficult to obtain through traditional approaches. Ultimately,
the Bayesian approach not only provides computational tractability but also fundamental
improvements in handling complexity, addressing uncertainty, and enhancing interpretability
in modern microeconometric analysis. Across all three essays, proposed methods deliver
more accurate inference and substantial bias reduction compared to naive or misspecified

approaches.

Apart from methodological insights, the three essays in this thesis provide strong evidence

that accounting for both causality and heterogeneity is not merely an academic exercise but a
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policy imperative. Without proper causal identification, policies risk being based on spurious
relationships that lead to ineffective or harmful interventions. Without heterogeneity analysis,
policies miss opportunities for optimisation and may produce unintended distributional
consequences. In the first essay, quantile treatment effect (QTE) estimation reveals how
universal financial access affects different segments of the outcome distribution, highlighting
that while some households benefit substantially, others may experience negative impacts.
These distributional insights, which are hidden by average treatment effects, underscore the
importance of designing financial interventions that consider potential inequality-amplifying
consequences. The second essay shows that accounting for both endogenous selection and
spillovers is essential when evaluating place-based policies like the Opportunity Zone (OZ)
program. The findings indicate that benefits are concentrated among the selected zones,
driven by unobserved tract characteristics, whereas neighbouring areas do not experience
positive spillovers, suggesting that simply expanding the program may not yield similar
returns. Ignoring this heterogeneity could lead to misguided scaling of such policies. The third
essay demonstrates that firms’ responses to R&D tax incentives vary significantly with their
network positions and latent attributes. Identifying distinct types of firms, such as “influential
transmitters”, enables more targeted and cost-effective innovation policies, maximising the

total benefits across the network.

5.2 Avenues for Future Research

This thesis opens up several promising directions for future research, particularly at the
intersection of Bayesian methods and microeconometric analysis. In the first essay, future
work could improve bootstrap-based inference for QTE estimators or develop scalable fully
Bayesian inference procedures, especially for large datasets. Efficient implementation could
also facilitate the examination of the performance of the method with various choices
of priors. Additionally, establishing more rigorous theoretical results, such as deriving
Bernstein-von Mises theorems for Bayesian estimators of quantile treatment effects in
high-dimensional settings, would significantly contribute to the literature. The second and
third essays collaboratively demonstrate the capacity of the Bayesian approach to address
unmeasured confounding and capture heterogeneity in complex settings. As these essays target
different sources of endogeneity, namely endogenous selection into treatment and endogenous
network formation, an important extension would be to develop a unified framework that

jointly handles multiple causal challenges in the presence of networks. Although the proposed
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methods are grounded in parametric assumptions to ensure interpretability and computational
feasibility, future research could relax these assumptions to introduce greater flexibility.
Altogether, these directions highlight a rich research agenda in Bayesian microeconometrics,
which will be crucial for advancing empirical research in economics, especially in contexts

where classical tools fall short.
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Appendix A

Appendix for Chapter 2

A.1 Doubly Robust Estimator

To derive the doubly robust estimator for potential quantiles ¢; (¢ = 0, 1) as proposed in
section 2.4 in the paper, we adopt the general strategy outlined by Kennedy (2024) and Hines
et al. (2022). Without loss of generality, the following discussion focuses on the 7-quantile of
treated potential outcome, denoted by ¢, (7). Let ¢ (P,) represent this estimand of interest,
where P, is the true joint distribution of observed data Z; = {Y;, T;, X;}. The procedure first
requires calculation of the estimand’s efficient influence function'. Next, an estimator based
on the efficient influence function is constructed. Finally, the asymptotic properties of the

doubly robust estimator are briefly verified.

A.1.1 Deriving Influence Functions

Definition 1. For a given functional ¢(.), the influence function for ¢ is the function ¢
satisfying R
V(P +€e(P—"P))
Oe

= [ P)a) )z (A1)

and [ ¢(2; P)p(z)dz = 0 for any distribution 7 and P with densities p and j. The left-hand
side measures the sensitivity of ¢)(P) to small changes (slight perturbations) in the underlying
distribution P, in the direction of a fixed, deterministic distribution P. This quantity is known

as the Gateaux derivative (Serfling, 2009).

To simplify the calculation of the efficient influence function, we follow the “point mass
contamination” strategy. In particular, we can isolate ¢(z; P) by setting P equal to a point

mass at single observation Z, denoted by 1:(z). Equation (A.1) reduces to

IEfficiency refers to locally minimax semiparametric efficiency.
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OY(P +€(1; —P))
Oe

= o(%P). (A2)

e=0

It should be noted that we focus here on perturbations in the direction parameterised via the

one-dimensional mixture model

P.=el:+(1—€)P, ec]0,1], (A.3)

which is called a parametric submodel. Hence, the efficient influence function at observation

Z1s

©(%P) = : (A4)

Building on this general definition, we can calculate the efficient influence function in the

context of estimating quantiles of treated potential outcome.

Theorem 1. (Efficient Influence Function)
Denote by v, = 1(P,) the T-quantile of treated potential outcome under the true joint

distribution of observed data. The efficient influence function of 1), is equal to

oy L [uT=1) ) | s
o) = - (T ey <o) Gwo1,x,7>0>]+G<wo1,X,7>0>(A5)},

WhCI'Cﬂ'(X;'PO) :P(T: 1 | X;Po) aIldG(d} | 1aX;7D0) :P<Y§¢ | T= 1,X;73’O)are

the propensity score and the conditional distribution of treated potential outcome, respectively.
Proof of Theorem 1.

By definition, ¢ = 1 (P,) satisfies

J[ 1y <wd £ o) fo @) dyde = 7 (A6)

Denote

Qo) = [[ 1y < v} 1y | 1,2) f (&) dyder — 7, (A7)

which results in @ (¢, €) = 0 and @ (¢,,0) = 0.
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Also
P
Q.= [ fdy—r. (A8)
hence
8@]
WA = f (%) - (A9)
[&D (90,0 o)

By the Implicit Function Theorem

8] ] e
By the Chain Rule
QG| =i M |
://ﬂ(yg%){f:((,))dfe wra| @Jf(fic{ DLy (1.0) -
N W }dydx
- [[rw=w) y’t’x)f (B - e ) e
_ (56?(2)[ (< ) — G (o | LE P + G (o | 1,5 P) — 7
(A.11)
Hence
o (% P,) dw;?) ‘O
_ ‘f(im {Wélx(g) 15 <) — G (o | 1,5 Po)] + G (| 1,5 P,) — T}-

(A.12)

A.1.2 Efficient Influence Function-Based Estimator

Let P, denote the empirical distribution from a sample of size n. Denote h,(X,v) = G(¢ |
1, X;P,); and 7,(X) = 7(X;P,). Then, h,(X, 1) and 7,(X) are function-valued nuisance
parameters of the estimation problem for the 7-quantile of treated potential outcome, which is

our target parameter denoted by v, = ¥(P,).
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The moment condition associated with the efficient influence function in (A.5) to identify

the target parameter value 1), is

E I:(IO(Z7 hO(X7 ¢O)’ WO(X))’ 77Z}O:| = 07 (A13)

in which the moment has zero derivative with respect to nuisances at ¢,, h, and 7,. Intuitively,
this moment condition satisfies Neyman orthogonality, that is the first-order insensitivity
of target parameter value to local perturbations of the values of nuisance parameters. This
property is desirable because it helps ensure that the estimation of the parameter of interest
remains robust even when there are small errors or uncertainties in the estimation of nuisance
parameters. When regularization methods are needed to handle high-dimensional covariates
or nonlinearities when estimating nuisance parameters, the use of Neyman orthogonal moment
conditions help eliminate the first-order biases stemming from these plugging-in estimators

(see e.g., Belloni et al., 2017; Chernozhukov et al., 2018; Kallus et al., 2024).

Therefore, the efficient influence function-based estimator for ¢)(P,) is defined as a solution

to the estimating equation

T = 1) . . (A.14)

Denote by %" the resulting estimator from (A.14). We will show that ¢»%" is a doubly robust
estimator, which is consistent provided that either one of the nuisance estimators — hor# —is

consistent, but not necessarily both.

Lemma 1. (Double Robustness of Efficient Influence Function)

Let n* = (h*, m*) with either h* = h, or 7* = 7,. Then Ep, [p(n*, ¢,) = 0].
Sketch of Proof for Lemma 1.

* By the law of iterated expectation

B (0 )] = 5B | 2 (R = 3) + 1 = ]

_ _f(lwﬂapo (22 =1) (o = B3) + o = 7]
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* When either 7* = 7, or h* = h,, substituting ¢ with v, leads to Ep, [p(n*,¥,)] = 0,

and the lemma follows.

Theorem 2. (Consistency of the Point Estimator)
Under Identifying Assumptions 2.2-2.4 and additional Regularity Conditions below, deT 1s

consistent if either nuisance estimator A or 7 is consistent:

1. The cumulative distribution function F' has compact support [a,b] C R and is

continuously differentiable on its support with strictly positive derivative f.

2. The class function {¢(n, 1) : [ —1,| < 6, ||hy —hj|| < 6, [|my — || < §} is Donsker
for some ¢ > 0 and such that P,{¢(n, 1) — o(n*,¥,)}> — 0as (n,¢) = (1", 1,).

Sketch of Proof for Theorem 2.

« By construction of " in (A.14) we have Ep, (), %) = 0, where /) = (h(X, %), 7).
« By Lemma 1 we have Ep, [p(1*,1,)] = 0.
« An application of Theorem 5.9 of Van der Vaart (2000) yields 1% = 1, 4+ op(1),

thereby @Ed’" is consistent. This completes the proof.

A.1.3 Bernstein—-von Mises (BvM) Theorem
Definition 2. (Asymptotic efficiency)

A sequence of regular estimators @/}n wn( ") is said to be asymptotically efficient at P, if

V(s = 0(Po)) = o(Zi; Po) + op, (1), (A.15)

f Z
where p(Z;P,) is the efficient influence function in accordance with (A.5). We define the
variance V, .= Ep, [¢*(Z;; P,)].

Definition 3. (Semiparametric BvM)

Let EH(\/ﬁ (¢(P) - 7,/;71) | Z (”)) denote the posterior law of /n (@/)(73) — zﬁn), where ),
is any sequence of estimators satisfying (A.15). The posterior satisfies the semiparametric

Bernstein—von Mises (BvM) theorem if

dor (Lr(Vr($(P) =) | 207), N(0,V,)) — 0.

o

where dpy, is the bounded Lipschitz distance. In simpler terms, we can say that the posterior
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law of \/n (1/1(73) - 1/;,1) “converges weakly to N/ (0, VO) in probability” (Yiu et al., 2025).
Assumption A1l. (Nuisance convergence rate and complexity)

There exists a sequence of measurable sets (H,,),, of P satisfying II(P € H,, | Z™) 1

o

such that:

(a) (Rates of convergence of  and h) There exist numbers p,,, €, — 0 such that

Sup HW - 7TOH'PO S Pn; sup ||h' - hoHPo < Ens and \/ﬁpn En — 0.

n E n
where || - ||p, denote Lo(P,) norm.
(b) (Uniform bound) Overlap and tail bounds hold uniformly on H,,.
(c) (Donsker class) The sequences of sets {7 : P € H,} and {h : P € H,} are both
eventually contained in fixed P,—Donsker classes.
Theorem 3. (BvM for BADR quantiles)
Under Identifying Assumptions 2.2-2.4 and Assumption Al, the posterior induced by the
Bayesian analogue of doubly robust procedure for ) := ¢;(7) (shown in Algorithm 2.1)
satisfies the semiparametric Bernstein—von Mises theorem:

b (£ = ) | 700) A1) o 0

o

where @/A)dr is any efficient DR estimator solving (A.14).
Discussion

* The semiparametric BvM result implies that the constructed posterior for 1) is
asymptotically normal, centered at an efficient estimator, and with the variance
equal to the semiparametric efficiency bound. This also provides guarantees that
the point estimator (posterior mean/median) derived from the proposed procedure is

semiparametrically efficient.

» Rate double robustness property: By orthogonality, the first-order sensitivity to nuisance

error vanishes. The second-order remainder for ﬁ‘” (or any plug-in posterior draw 1(*))
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has a cross-term structure in terms of 7 and h:
lm — ol [1h = holl + |l —moll* + [|h — holl?,

that allows a faster rate of convergence for one nuisance parameter to compensate for
a slower rate for the other. Assumption Al(a) states that 7 and / must both converge
uniformly on H,, to their respective truths in Lo, and their combined rate of convergence
must be faster than n~/2 to ensure o(n~'/2) remainder and deliver the BvM limit. For
instance, in a symmetric case, both nuisances (or their posteriors) contract faster than

n~1/4 would be sufficient.

* Misspecification of priors for the nuisances: Let (7*, h*) denote the pseudo-true limits
of the nuisance posteriors under misspecified priors. Evaluating the efficient influence

function mean at vy gives

Bp,{o(Z:n" W, 00)] = 7B, [(:8‘3 - 1) (o (X) h;o<X>)] ,

which is zero if either 7™ = w, or h* = h, (i.e. double robustness regarding the
misspecification of one nuisance), but is generally nonzero if both nuisance posteriors
contract to pseudo-truths 7* # m, and h* # h,. In that case, the posterior concentrates
at a pseudo-true quantile 1" # 1), solving the biased moment, and a BvM may still hold

but centered at 1/ rather than 1),, yielding asymptotically biased inference.
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A.2 Bayesian Additive Regression Tree (BART)

A.2.1 BART Model Specifications

BART is a nonparametric modelling technique that translates decision tree-based ensemble
methods to a Bayesian framework. Chipman et al. (2012) present a comprehensive overview
of the method. In essence, BART is a sum-of-trees model with prior distributions are placed
over the parameters including tree depth, splitting variables, splitting values, and terminal

node estimates.

Consider the regression problem that predicts a continuous Y; using a p-dimensional vector

of predictors X; = (Xi1,...,Xip) (1 =1,..., N), BART model can be expressed as

g M
Y, = fBART(Xi> + €, € “ (0702), fBART(Xz‘) = Z ftree(Xi; Fmaum)7 (A.16)
m=1

where fiee(Xi; I, ttn ) is @ Bayesian single regression tree; [, is a tree structure that consists
of a set of splitting rules and a set of terminal nodes; and /& = ({41, - - - ; fm.p,, ) 1S @ Vector of
parameters associated with b,,, terminal nodes of I',,,, such that fiee(Xi; Iy frn) = tlmy if X

is corresponding to the /** terminal node of I,,,.
The prior of BART is specified for three components:

1. The ensemble structure {I",,}M_,
Independent regularization prior is placed on I',,. It consists of a Bernoulli distribution

with probability
Pr(split | d) = a(1+d)™?, a€(0,1), B¢€(0,00), (A.17)

for splitting a node at tree depth d (d = {0, 1, . ..) into two child nodes and two discrete
uniform distributions for selecting a split variable and a split value given the selected
split variable. This regularization prior helps prevent individuals from becoming too

influential, thereby enhancing the overall fit and mitigating the risk of overfitting.

2. The parameters {u,, }*_, associated with the terminal nodes given {T',,, }}/_,

fms N (0,0) (A.18)
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3. The error variance o2 that is independent with the former two

o? ~IG (r,s) (A.19)

The process of sampling the posterior distribution is carried out using a Metropolis-within-
Gibbs MCMC sampler, which can also be regarded as a special case of (generalised) Bayesian
backfitting algorithm (Hastie and Tibshirani, 2000), to update each tree iteratively. Estimated

outcome is achieved by averaging the posterior samples of fgarr(X;) after a burn-in period.

For binary outcome, the continuous BART model above has been extended to probit BART

and logit BART, which are specified as follows
P(Y; =1]X;) = H|feart(X)], (A.20)

where fpart(X;) is the sum-of-trees function in (A.16) and H is the link function with the
probit link for probit BART and the logit link for logit BART. Both of the models maintain
the same prior assigned to the ensemble structure and the parameters of the terminal nodes,

i.e. {Ton, i }M_,, but 02 is fixed for for the sake of identifiability.

Probit BART employs data augmentation of Albert and Chib (1993) to adapt the Bayesian
backfitting sampler used in continuous BART. This involves introducing a latent variable Y*
such that Y; = 1{Y;* > 0} for each response variable Y;. At each iteration of the MCMC
algorithm, Y;* is imputed by sampling from the full conditional distribution of Y;* given Y;
and other parameters, which is essentially a truncated normal distribution. The imputed Y;*’s
are then modelled using the continuous BART model with o2 set to 1, enabling the completion
of the MCMC algorithm by performing the Bayesian backfitting algorithm of the continuous
BART model on the imputed Y;*’s.

Logit BART also introduces latent variable Y;* that is instead assumed to follow a logistic
distribution, which has a heavier tail than a normal distribution, thus improving estimation
for extreme instances of P (Y; = 1 | Xj). These latent Y;*’s are sampled using the method
described by Gramacy and Polson (2012). Conditional on the imputed Y;*’s, the continuous
BART model with given heteroskedastic variance ¢?’s are fitted on Y;*’s, where ¢2’s are

obtained through the technique outlined by Robert (1995).
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A.2.2 On Implementation

Computational details and implementation using BART R package can be found in Sparapani
et al. (2021). The actual sampling and computation are carried out in C++ code to maximize
computational efficiency. Both options for Probit BART and Logit BART are available in this
package, which can be utilised directly to fit the treatment assignment model in our proposed

BADR framework.
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A.3 Bayesian Shrinkage Priors

A.3.1 Hierarchical Bayes for Linear Regression

Consider the linear regression model
Y, =XiB+e, a2l NO,0?) (A.21)

Assuming that interest lies in learning about the regression coefficients [, then a simple

hierarchical specification takes the form

Yi | B,0* ~ N(XiB,0%),i=1....n
Bi| 0% ~N(0,0°7%),i=1....p
(A.22)
7% ~ F(a,b)

9 1
0"~ —
o2

where F'(a, b) denotes some distribution function with hyper-parameters a, b. Due to the fact
that choice of 72 is so crucial for the posterior outcome of /3;, the idea behind this hierarchical
specification is to treat the hyper-parameter 72 as a random variable and learn about it via

Bayes Theorem.

A.3.2 Bayesian Shrinkage Priors

The major goal of shrinkage priors is to shrink small coefficients to zero while maintaining
true large coefficients, especially in high-dimensional settings. The possible variation in
shrinkage amounts among those priors depends on their specific designs. In particular, the
sharper the peak is around zero, the stronger shrinkage for small coefficients. Also, the heavier

the tail, the lighter the shrinkage for large coefficients.

Bayesian Lasso

The Bayesian counterpart of the Lasso penalty is Laplace prior, which was first proposed by
Park and Casella (2008). The Bayesian Lasso can be obtained as a scale mixture of a Normal

density with an Exponential density as below:
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)\2
sz ] )\Qrvé'a:p(z) ,forj=1,...,p,
(A.23)

A ~ half-Cauchy(0, 1),

9 1
0"~ —.
o2

Integrating TJ-Q out leads to Double-exponential’> or Laplace priors on the regression

coefficients, i.e.,
Bj | A, o ~ Double-exponential <0, i) yforg=1,...,p (A.24)

Although this version of Bayesian Lasso is the most popular form in literature so far; there
are also some alternative formulations suggested by Hans (2009), Mallick and Yi (2014) and
Alhamzawi and Taha Mohammad Ali (2020).

In addition to the overall shrinkage parameter A, the Lasso prior has an additional predictor-
specific shrinkage parameter 7;. Therefore, the Lasso prior is more flexible than the Ridge

prior, which only relies on the overall shrinkage parameter.

Horseshoe prior

A novel shrinkage prior in the Bayesian literature is the horseshoe prior Carvalho et al.

(2010)>. This prior is particularly attractive for sparse signal recovery.

B; | T]-Z ~N (O,Tf)
7; | A ~ half-Cauchy (0, \), forj =1,...,p (A.25)

A | o ~ half-Cauchy(0, o)

?Mathematical representation:

52
) _ 2
[ o E o PR SO
0 27TU28j 2 ! 2 02

3Note that Carvalho et al. (2010) explicitly include the half-Cauchy prior for \ in their specification, thereby
implying a full Bayes approach. This formulation results in a horseshoe prior that is automatically scaled by the
error standard deviation o.



APPENDIX A. APPENDIX FOR CHAPTER 2 184

The half-Cauchy prior can be written as a mixture of Inverse Gamma densities* (Makalic and
Schmidt, 2015), so that the horseshoe prior in Equation (A.25) can be equivalently specified

as:

€l
D ~——

(A.26)

Q
no
N———

N—— N

N N~ N =N

An expression for the marginal prior of the regression coefficients 3; is not analytically

tractable, but a tight lower bound Carvalho et al. (2010) can be used instead.

272
—logp(B; | A) > —loglog (1 + 52> (A.27)
J

The key features for the appealing performance of horseshoe prior are its Cauchy-like tails
and an asymptote at origin (unique advantage), which make horseshoe adaptive to sparsity

and robust to large signals so outperform other shrinkage priors we have discussed.

In the search for intuitive reasons, we consider a common framework of shrinkage rules. Define
tj = 1/(1 4 77), then r; is a random shrinkage coefficient in [0, 1]. Under a multivariate
normal scale mixture prior (i.e. the general form of all shrinkage priors we are discussing),

the posterior mean can be written as a linear function of the observation:

E[B; | V)] = {1 = Elxi | Y}]}Y; (A.28)

Hence, E [; | Y;] implies the amount of weight that the posterior mean for 3; places on 0
once the data have been observed. A shrinkage coefficient x; that is close to zero leads to
virtually no shrinkage, thus describes signals. A shrinkage coefficient ; that is close to one
leads to nearly-total shrinkage, thus describes noises. Intuitively speaking, the behavior of
a priori p(k;) near x; = 1 will control the robustness of signal at tail, while near x; = 0

will control the shrinkage of noise toward 0. Because of difference choice of p(7;), each type

Mfa? | 2 ~2G(1/2,1/z) and 2z ~ZG (1/2,1/a?) thenz ~ CT(0, )
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of shrinkage prior has distinct p(x;) reflecting its attempt to separate signal and noise. For
horseshoe prior, the attempt is even implied in its name, which arises from the fact that for
fixed values A = o = 1, p(k;) is similar to a horseshoe-shaped Beta (1/2,1/2). This prior is
symmetric and unbounded at both 0 and 1; thereby, small coefficients (noises) are heavily
shrunken towards zero while substantial coefficients (signals) remain large. None of these
common shrinkage priors above shares this characteristic. For instance, the Laplace prior,
where p(r;) is bounded at both 0 and 1, tends to over-shrink strong signals yet under-shrink
noises. Carvalho et al. (2009), Carvalho et al. (2010) provide more explanation for other

priors.

In fact, unlike local shrinkage priors above, the horseshoe prior is a member of a wider class
of global-local shrinkage priors (Bhadra et al., 2019; Polson and Scott, 2010) because it
enables a clear separation between global and local shrinkage effects. Put another way, this
class of priors adapt to sparsity by a global shrinkage parameter and recover signals by a local

shrinkage parameter.
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A.4 Bayesian Quantile Regression (BQR)

A.4.1 Bayesian Quantile Regression

Consider the linear quantile regression model (Koenker and Bassett, 1978) at a given quantile
level 7 € (0,1)
Q- (Y [ X) = Xfm, (A.29)

The quantile specific coefficient 3(;) can be consistently estimated by

A

Biry = arg;nin > (Vi — XiB), (A.30)

=1

where p,(u) = u (7 — 1{u < 0}) is the quantile loss function. As this functional form is
an asymmetric L, loss function proportional to the negative log density of the asymmetric
Laplace distribution (ALD), the connection allows researcher to recast the quantile regression
as a maximum likelihood problem of the linear model Y; = X;3,) + €; () where ¢; () ~

ALD (T, 0, 0(7))5. The working likelihood is of the form

(1 B T) { ,O‘r sz Xzﬁ)}
F(Y X, By 0y 7) = L (A31)
(Y 1 X, B¢, 00:7) o Z o

The asymmetric Laplace distribution is known to be expressible as a scale mixture of normals

(Kotz et al., 2012), we thus can rewrite €; () as follows
. 11—
€i(r) = Q(T)Z’i7(T) -+ K(r)\/O (1) Zi,(r) Wi with 9(7-) = 77_(1 — 7_) and ’{(7—) = 77_(1 — 7_),
where z; (-) = 0(-) () With (; () ~ Ezp(1), and u; ~ N(0, 1).

As a result, the Bayesian quantile regression model has the following representation

Y = XiBr) + 0 2i () + K(r)\ /O Zi(rtis, fori=1,... n. (A.32)

561'7(7-) follows asymmetric Laplace distribution with density

T7(1—7)

faco () = exp{—pr (€(r) /o) } -

T
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This leads to the following likelihood function:

n Y'Z_XZ . _97 i (r 2 n 1
f(Y | X76(7)70(7)7Z(7—)77—) X eXp{— g ( ﬁ( ) (1) Zi,( )) }
=1

pa 2¢O () Zi(r) “1 VO
(A.33)
We assume the priors as below (Kozumi and Kobayashi, 2011)
By ~ N (0,0, » (A.34)
Ziry ~ Exp (U(T)> x a(_Tﬁ exp {—0(_521-7(7)} YVi=1,...,n, (A.35)
_1\Tom+1 _
o ~IG (7‘07@, SOV(T)) ox (0(5) oo exp {—307@0(5}; (A.36)
where for simplicity, 3y () = D)y () = A X I, where A is fixed and known for all 7.
The conditional posteriors are of the form
By | o~ N; (15,671, B ) (A.37)
Zi(r) | * ~ GIG 1 @i (), bi ocz_% ex ! (a- Zi () + bi (12 ) (A.38)
1,(T) 2’ i,(7)> Vi,(1) () p 2 1,(7) <4,(7) 1,(T) ,(7) ) :
_ TO', T +1 —
O (1) | o~ ZQ (7’07(7), 807(7)> XX <0(T§) @ exXp {—Sg’(T)O(T%}; (A.39)

where
Ty7-1 1\ ! Ty1—1
h.r) = (X U 'X + 20,(7)) and j15(r) = Xgm X XU (Y - emzm) :

U= (O‘(T)FL%T)) X diag (Z(T)) y  L(r) = (217(7), ce ,ZnV(T))T ,

2
1 027- Yz - Xzﬁ T
Qi(r) = — (2 + ( )) and b@(T) = ( ( )>

o(T) H?T)

n (Y; = XiBr) — 9(7)21"“))2

2K/%T) Zi?(T)

+ Z Zi(1)3

3n
Tor) = To(r) + & and sor) = o) +
=1

fore=1,...,n.
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A.4.2 Bayesian Quantile Regression with the Adaptive Lasso

Bayesian Quantile Regression with the Adaptive Lasso is a Bayesian hierarchical model given

by

Y = XiBr) + Oy 2i(r) + () \/O () Zi (7) Ui (A.40)
w; ~ N(0,1), (A41)
Ziry ~ Exp (O’(T)> x O'(:_% exp {—a@%ziﬁ(ﬂ} (A.42)

Bixir)s Vi) | 0y, X3y ~ { 6](7)} %) exp{_a(;%v-()} (A.43)
I\T)r ZI\T T)) (T 2 2 7, (T 3 .
Nezoms (r) 205,y ) 2 () 275

co (ry+1
A do,r)
o~ ZG (cor don)) o T expi—y5 . (Ad)
3(7)

7,(7)
T (.,.)—‘rl _
~ ZG (ro,(7), So,(r ) ( (T)) " exp {—So,(T)U(T%} ; (A45)
fortr=1,...,nandj=1,...,p.
The conditional posteriors (Alhamzawi et al., 2012) are of the form

1

1 _1 1
Zi (r) | e ~ GIG (2,ai,(7),bi7(7)) X zi’(i) exp{ 3 (al (" Zi(r) + bi ()i )>} (A.46)

Biiry | o ~ N (g, 25]. ) (A47)
—1
_1 1 g
() 2 -1
35(T) | e gIg ( 2 : ) ( )eXp { ( 2 j,(T) + ﬁ',(T)U',(T)) } )
2" Xy 2\ X n
(A.48)
a,(r)F1 _
7@ | *~ TG (101> 500) (7)) ™7 exp { =50} (A.49)
Moy | o~ ZG (com + 1 dor) + 0 0in/2) (A.50)
where

1" p
1, = S0 (060 > (Yi — 0z — D xz’jﬂjm) T3 (r);

k=1,k#j
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n (Yi — Xifr) — 9(7)22'47))

i=1 2“?7)21}(7)

Uj(7) .
2/\§ ’

2
n p
+Z Z%("’)—i_z
i=1 =1

3n
Toy(r) = 7"0,(T)+7+p and sg (7) = So,(r)+

forr=1,...,nandj=1,...,p.

A.4.3 On Implementation

The bayesQR R package (Benoit and Van den Poel, 2017) provides the implementation
of efficient Gibbs sampler for both Bayesian Quantile Regression and Bayesian Quantile
Regression with the Adaptive Lasso outlined above. In addition, the core procedure is
programmed in Fortran to speed up the computational time. Therefore, this package can
be utilised straightforward to estimate multiple conditional quantiles, which then be used
to approximate the condistional distributions of potential outcomes in our proposed BADR

framework.

Alternatively, Variational Inference algorithm could be used for Bayesian quantile regression
with/without the regularisation (Guo, 2019; Lim et al., 2020), which helps improving the

speed of Gibbs sampling while maintaining a comparable accuracy in terms of MSE.
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A.5 Implementation of Other Estimators in Simulation Study

A.5.1 Existing Approaches
Firpo’s Inverse Probability Weighted method (FIPW)

Firpo’s Inverse Probability Weighted (FIPW) method (Firpo, 2007) involves a two-step
estimator. First, the propensity score is estimated nonparametrically as a logistic power series
whose degree increases with sample size. In the second step, the quantiles are estimated by
minimising an inverse probability weighted check loss function. These weights reflect the fact

that the distribution of the covariates differs in the two groups.

Algorithm A.1: FIPW Approach to Estimate QTEs
Data: {Y;, T;, X;},, 7 € (0,1)
Result: Q/TTE (1)
1 Step(1). Estimate propensity score 7 (z) = expit (Hg (x)'px) where

Pr = argmaxjif > {T;-log (expit (Hx (X;)'p))+(1 — T;)-log (1 — expit (Hk (X:)'p))}

peRK i=1

2 Step(2). Derive ¢;(7) and §o(7) as the solution to

X LT R Y 1-T,
¢i(7) = argmin ) | A Pr(Yima) and Go(7) = argmin » Yi—q)
=1 =1

e TN R/(X) ; _N-(l—fr(Xi))’OT(

where p.(a) = a - (7 — 1{a < 0}) is the check function.
3 Calculate QT E(7) = ¢1(7) — Go(7).

Targeted Maximum Likelihood Estimation method (TMLE)

The estimation procedure of Targeted Maximum Likelihood Estimation (TMLE) method
(Diaz, 2017) includes three steps. First, the propensity score and the conditional distribution
of the outcome are estimated; second, the quantiles are estimated based on the current cdf
of the outcome; and third, the conditional distribution of the outcome is updated based on
an exponential submodel for the density of the outcome. The last two steps are iterated until

convergence.
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Algorithm A.2: TMLE Approach to Estimate QTEs

Data: {Y;, T;, X;},,7 € (0,1)

Result: Q/TTE (1)

Step (1). Initialize: Obtain initial estimates 7 and G of my and Gy,
Step (2). Compute ¢, (7): For the current estimate G, compute

1 _ .
=S Gy |1,X;) and Gi(1) = inf{y : F(y) > 7}
=1

3

Step (3). Update G: Let g denote the density associated to G.
(a) Consider the exponential submodel:

ge(y ’ 07 'Z') = 0(67 g) eXp{Eﬁﬁ,é(z)}g<y | Oa $)
where (¢, §) is a normalizing constant and

. 1 o
Hy 0 = m{ﬂ(_m,é](y) —G(0]0,2)}

is the score of the model.
(b) Estimate ¢
argmaxz 1 —T;)log g.(Y: | 0, X;)
=1

(c) Calculate g.(Y; | 0, X;) as the updated estimator of g
Step (4). Iterate: Let § = §. and iterate steps 2-3 until convergence.
Derive Go(7) similarly.
Calculate @(7) = G1(1) — Go(7).

Localized Debiased Machine Learning method (LDML)

The Localized Debiased Machine Learning (LDML) method (Kallus et al., 2024) is also
motivated by the efficient estimation equation, but Inverse Probability Weighted (IPW)
estimates are used as rough initial guessed values for ¢; and §y. Then, these values are
used to localize the estimation of conditional distributions G(y | 0,X) and G(y | 1,X),
respectively. This approach aims to refine the IPW estimate while obviating the need to
estimate a continuum of continuum nuisances. The main algorithm includes two parts: three-

way-cross-fold nuisance estimation and solving the estimating equation.
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Algorithm A.3: LDML Approach to Estimate QTEs

Data: {Y;, T;, X;},,7 € (0,1)
1 Part(1). Three-way-cross-fold nuisance estimation
2 Fixintegers K > 3and 1 < K' < K — 2.
3 Randomly permute the data indices and let Dj, be a random even K -fold split of the
data.
4 fork=1,...,Kdo
5 (@) Set Hyp, ={1,...,K'+ 1[k < K']} \ {k} and
Hio={K'+ 1k < K'|+1,...,K}\ {k}.
6 (b) Use only the data in ch’l ={X;:i¢€ Uk/eyk_’l} to construct cﬁkl),m
7 (c) Use only the data in D.? = {X, : i € Uwen,, + to construct ng)(-, (ﬁkl)mt)
8 (d) Use D,?’l N D,?Q to construct estimator 7 (%),

end

9 Part(2). Solving the average of the estimate in each fold to obtain ¢, (7)

1 & A . R
¥ 2 ¢ (X 6 (X i), 70 (X0)) = 0

k=14€Dy,

10 Derive §y(7) using two-part procedure similarly.
u Calculate CjT\E(T) = q1(1) — Go(7).

Bayesian nonparametric method (BNP)

Bayesian nonparametric (BNP) method (Xu et al., 2018) is a fully Bayesian nonparametric
(BNP) approach to estimate QTEs. The estimation procedure includes three steps. First, the
propensity score is estimated using a logit BART model. Then, the conditional distribution of
the potential outcome given a BART posterior sample of the PS in each treatment group is
modelled separately using a Dirichlet process mixture (DPM) of multivariate normals model.
Finally, marginalizing the estimated conditional distribution over the population distribution
of the confounders using Bayesian bootstrap (Rubin, 1981). Details of implementation using

BNPqte R package can be found in Luo and Daniels (2021).
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Algorithm A.4: BNP Approach to Estimate QTEs

Data: {Y;, T;, X;},,7 € (0,1)
Fit a binary BART model on {7}, X;}?_, and obtain B posterior samples
{H ()i

(2

Create a set of grid points of Y values: (¢, .. ., qs).
foro=1,...,Bdo
fort =0,1do

Fit a DPM of bivariate normals on {Y;, ! (W;{b})}i:Ti:t.
Use Blocked Gibbs sampler to obtain L posterior samples.
Calculate { F11 (¢, | H-Y(x?), T = ¢)}5

i,8,l=1"
end
Sample (u’{, . ,u’;) from Dir(1,...,1)

fori=1,...,Ldo
Calculate the CDF of Y'® as follows:

SF'(gs) =Y ubF*(qy | H (7)), T =t), where 1 < s < Sandt € {0,1}
i=1
Find a grid point ¢? () such that F'(¢? (7)) = 7 for t € {0,1}.
The 7' quantile from the CDF F}!(.) is ¢}', for the group T" = t.
end

end
Derive ¢ (7) and Go(7) as follows

Calculate Q/T\E(T) = q1(7) — Go(7).

A.5.2 Variants of the Proposed Approach
Bayesian Outcome Modelling (BOM)

Bayesian Outcome Modelling (BOM) is an outcome-regression-based approach that omits
the treatment assignment model. Instead, it solely focuses on estimating the conditional
distribution through multiple Bayesian quantile regressions in the outcome model of each
treatment group. Shrinkage priors, akin to the doubly-robust approach, can be readily

incorporated.
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Algorithm A.5: Bayesian Outcome Modelling to estimate QTE

Data: {Y;, T;, X;},,7 € (0,1)
Result: Q/TTEWL(T)
fort =0,1do
Fit outcome model on {Y;, X; };.7,—; and obtain B posterior samples
(CO XD
Derive posterior mean G(y | t,X) = + 3.7, GO (y | ¢, X).
end
Derive ¢{™(7) and ¢§™(7) as the solutions to

1 n

12 G(q1 | 1,X) =7 and —Z (@ ]0,X)=r1
=1

3
3

Calculate A, = Q/T\EOW(T) =" (1) — qg"™ (7).

Bayesian Propensity Score Analysis (BPSA)

Bayesian Propensity Score Analysis (BPSA) is a treatment-assignment-based approach,
which involves fitting the treatment assignment and then employs multiple Bayesian quantile
regressions to model the conditional distribution of the outcome given the posterior mean of

the propensity score in each treatment group.

Algorithm A.6: Bayesian Outcome Modelling to estimate QTE

Data: {Y;, T;, X;}",,7 € (0,1)
Result: Q/TTEPS(T)
Fit treatment assignment model on {7}, X;}!_, and obtain B posterior samples
{r® X)L
Derive posterior mean from B posterior samples #(X) = L 37, 7" (X).
fort =0,1do
Fit outcome model on {Y;, 7(X;) };.1,—+ and obtain B posterior samples
(GO | 640
Derive posterior mean G(y | t,X) = £ 37, GP(y | ¢, #(X)).
end
Derive ¢7*(7) and @5’ (7) as the solutions to
1 n
—Z (1 |1,X)=7and — Zqu|OX)—T
i=1

=1

3

Calculate A, = Q/T\Eps( ) =417 (1) = 45 (7).
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A.6 Additional Simulation Results

Table A.1: Simulation Results for SD1, Relative RMSE

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW

1000 1.71 1.689 0991 1.234 1.771 1.789
10th 500  1.623 1.54 0946 1.124 1.658 1.774
100 2459 1226 0963 1.193 1.332  1.529

1000 1.052 1.044 0978  0.852 1.022  1.136
25th 500 1.139 1.117  1.007 0.92 1.052  1.468
100 1.188 0977 0916  0.995 1.001 1.169

1000 0.598 0.599  0.99 0.744 0.623  0.659
50th 500 0.663 0.657 0978 0.776 0.669  0.712
100 0916 0.819 0971 0944 0.886 1.114

1000 0521 0525 0979 0.758 0.568  0.577
75th 500 0.586 0.598 0983 0.821 0.634 0.65
100 099 0.799 0.986 0.92 0.835 1.032

1000 0.583 0.593  0.98 0.803 0.605  0.606
90th 500  0.635 0.663 0.991 0.86 0.691  0.728
100 1.233  0.853 0974  0.928 0.897  1.055

Notes: This table displays the relative Root Mean Squared Error
(RMSE) of different estimation methods across 100 replicates. The
rows contain results for various percentile levels and for various sample
size N. The relative RMSE is the RMSE in comparison with the Naive
method as the benchmark, where RM SE = \/ R-1 Zle (G — a)?
and R = 100.

10th 25th 50th 75th 90th

RMSE

e R NP5 S N8 S Ne O e e
¥OX Y ¥ Y Y Y Y Y Y YE
—— BDR —— BNP —— TMLE —— Naive
—— BDRS —— LDML —— FIPW

Figure A.1: Line plots of raw RMSE for 10", 251, 501, 75% and 90" QTEs based on 100 replications.
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Table A.2: Simulation Results for SD2a, Average Bias and Relative RMSE

196

Bias RMSE
10th  25th 50th 75th 90th 10th  25th  50th ~ 75th  90th
Linear

BDR 0.055 0.002 -0.032 -0.008 0.016 2036 1.098 0.673 0.637 0.839
BDRS 0.061 0.002 -0.030 -0.006 0.024 2.028 1.098 0.678 0.638 0.846
BOM 0.040 0.092 -0.013 -0.094 -0.053 0928 0921 0.562 0.620 0.814
BOMS 0.059 0.102 -0.002 -0.076 -0.025 0913 0.904 0.554 0.619 0.812
BPSA 0.078 -0.042 -0.044 0.061 0.112 0.735 0980 0.523 0.595 0.719
BNP 0335 0368 0.343 0328 0284 1.025 1.042 0917 0966 1.038
LDML 0.009 0.010 -0.009 0.019 0.163 0985 1.029 0.616 0.696 0.819
TMLE 0.000 -0.005 -0.022 -0.041 0.025 1.224 1.229 0.694 0.752 1.180
FIPW 0.019 -0.039 -0.034 -0.010 0.014 1.845 1.286 0.710 0.761 1.285

No covariates
Naive 0468 0434 0430 0377 0312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Root Mean Squared Error (RMSE) of

different estimation methods across 100 replicates. The relative RMSE is the RMSE in comparison

with the Naive method as the benchmark, where RM SE = \/ R-1YR (4, —a)?and R = 100.

Table A.3: Simulation Results for SD2b, Average Bias and Relative RMSE

Bias RMSE
10th 25th 50th 75th 90th 10th  25th  50th  75th  90th
Nonlinear
BDRS -0.014 0.015 0.019 0.027 0.011 0.680 0.878 0.520 0.570 0.543
BOMS 0.041 0.027 0.020 0.015 0.001 0.519 0.727 0470 0.490 0.425
BPSA  0.140 -0.019 -0.029 0.077 0.099 0.715 0955 0.538 0.604 0.705
LDML 0.111 0.052 0.047 0.062 0.182 0.852 1.006 0.722 0.730 0.831
TMLE -0.020 0.009 0.023 0.023 0.064 0.694 0.898 0.522 0.578 0.669
FIPW  0.034 0.120 0.090 -0.050 -0.051 2.180 2.066 1.981 2.056 1.678
No covariates
Naive 0468 0434 0430 0377 0312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Root Mean Squared Error (RMSE) of

different estimation methods across 100 replicates. The relative RMSE is the RMSE in comparison

with the Naive method as the benchmark, where RM SE = \/ R (&, —a)?and R = 100.
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A.7 Additional Graphs in Empirical Illustration

Total Amount of Loans

[:] Control
D Treated

1000 4

count
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-

0

T v T T
50000 100000 150000 200000

Figure A.2: Histogram of total amount of loans at household level in treated villages and control
villages.



Appendix B

Appendix for Chapter 3

B.1 On Identification - Proposition 1

We use the following results in the proof of Proposition 1.

Lemma 1. Let e ~ AV(0,1) and D = 1{v + ¢ > 0}. Then

Ele| D =1] = \p) = 20

Ele | D =0] = =A(—v) := oo

where ¢ and ® are the standard normal pdf and cdf. The function A(.) is called the inverse

Mills ratio.

Lemma 2. Under Assumption 3, for each mixture component g,

(D)

]E[e’:‘(l) ‘ e = €,9] = o1pge and E[gz@ | & = €.g] = oop4€.

Thus, marginalise over g using the law of total expectation,
E[g(l) ‘ 5(.D) = 6] = 01p€ and E[z":Z(O) | g(D) = 6] = OoDE,

G G
where o1p = > myo1pgand ogp = Y. Te00p 4.
g=1 g=1

Proof of Proposition 1

(i) Identification of (5, 31)) and (§©, 3(©)

198
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Condition on treatment status, for D; = 1,

E[Y; | D; = 1, Dy, X;) = B[,V | D; = 1, Dy, XJ]

= 6" Dy + X;80 + Elel” | D; = 1, D, Xi].

By Assumption 4 and Assumption 2, E[ail) | D; = 1, Da;, X;] does not depend on D y;, so
the slope in D ; equals 61V, and variation in (D,;, X;) identifies (5, 3). Analogously,
for D; = 0 we obtain identification of (§(?), 5(0)).

(i) Identification of (o1p, oop)

By Lemma 1, E[z!" | 5§D) = ¢ = oype B | eD) = €] = oope. Using D; =

Hv(X;, Z;) + eP) > 0} and Lemma 2,

%

E[gz(l) | D; =1,X;,Z;] = o1p )\(V(Xi,ZiD,

E[gg()) | D’L = O)XHZZ} = —0oD )\< - V(X“ZZ))

From (i), we already have the population identification of (6§, ) and (§(®, 3(»)). Form

within-arm residuals by netting out the identified linear parts

RY =Y, — §WDy; — X;8Y  (for D; = 1),

RY =Y, - §ODy; — X;89 (for D; = 0). Then,
B[R | D; =1,X;, Z] = 01p A(v(Xi, 1)),

B[R | D; =0, X, Zi] = —oop M — v(X;, Z,)).

By Assumption 1 (exclusion of Z; from outcomes) and Assumption 2 (independence from
disturbances), variation in Z; moves the selection index v(X;, Z;) and hence the inverse
Mills ratio A(v) without directly affecting the outcome equations. With the normalisation
Var(sgD)) = 1 in Assumption 3, the inverse Mills ratio is a known function of v. Therefore,
the slopes of the population regressions of R\" on Av(X;, Z;)) (within D; = 1) and R on
—\—v(X;, Z;)) (within D; = 0) identify oy and op, respectively.

This completes the proof.
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B.2 Details of Computational Algorithms

B.2.1 Derivations for Algorithm 3.1

Let >;; and iij denote the (i, 7)th element of 3 and 3>, respectively. The Jacobian matrix of

the transformation (X, 7%) — X is given by

0 00 0O 1
00 0 0 (1/2)piporr!
7 0 (i‘n, 12, S13, D2, Las, i33) 0 7 0 0 0 (1/2)pypoor™*
C0(Z12, %13, 522,823,833, 72) g 0 1 0 0 0
0 00 10 0
_0 0 0 0 1 0 |
If we assign the Inverse Wishart prior W~ (I3, 1,) for ¥ with density
- ~ 1 -
p(X) o |X|7 0/ 2 exp {—2 tr (1321)} :
which is equivalent to the following joint prior for (X, 72)
p(Z, 7_2) x (72)(”"+4)/2\2|(”"H)/zexp{ 1- P%o }
—272 (14 2p1op1npop — Plo — Pip — Pop)

1—p2
X exp { 2 2 1 - 2 2 2 }
=207 (1 + 2p1op1ppop — plo — Pip — POD)

1—pip }
X exp x | T
{ —203 (1 + 2p10p1ppop — plo — Pip — Pip)
2
o< (7‘2)(Doz+4+1)|z|—(uo+4)/26Xp{ - 1 — piy . . . }
—272(1 + 2p10p1ppop — Plo — Pip — Pop)
(B.1)
From the joint density of (X, 72), the prior for 72 given X is
-1
1+ 2p10p1ppon — plo — Pip — Po
oo 12~ | pofostio=tio)y [ ®2)
10

and the prior for X is

B 1 - P%o
p(2) o [ S| 2ex {_ v : (B.3)
(2) oc 2] p 272 1+ 2p1opippop — Plo — Pip — Pép
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B.2.2 Alternative Algorithm

This approach is based on the marginal data augmentation method for the multinomial probit
model (Imai and Van Dyk, 2005; Jiao and Dyk, 2015). To illustrate the idea, we denote
y, 0, and z as generic observed data, unknown parameter of interest, and latent variables,
respectively. Marginal data augmentation (MDA) algorithm (Meng and Van Dyk, 1999)
introduces 7 into the augmented-data model p(z, y|6). A MCMC sampler is implemented
for the expanded model [ p(Z, y|0, 7) which is designed to maintain p(y|¢) as its marginal

distribution:
[ .16, 7)dz = p(ylo)
where Z = F,(z), for any given 7, is a one-to-one mapping and 37, : F,,(z) = z. The MDA

algorithm iterates

() ~ p(z,7 | 09 y),

(e[erl}’ 7_[erl]) ~ p<0,7_ ’ 2[s+1]’ y>.

Within the context of our model summarized in (3.23), we introduce a positive scalar

parameter 7 which serves as the expansion parameter
TL* =R(10) + e & L* =RA + ¢

where L* := 7L*, § := 76, and ¢ := T¢. The covariance of €is 2 = 72Q = 722 @ I,,.

The new unconstrained covariance matrix is ¥ = 72X. Then, the Inverse Wishart

distribution can be assigned as a prior for 3

S~ W (W, 1),
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which implies the following joint prior density!

1
p(E,TZ) O( (7_2)*(1/0+4)/2|2’*(uo+4)/2exp {—22“‘(‘11021)} % ‘j|
T

—(3v, —(v. 1 —
x (7_2) 3 o/2+1)|2‘ ( O+4)/2€Xp{—27_2t1'(\1102 1)}7

ie., p(X) o [B7Ce D2 x [tr(P,E)] " and 72 | E ~ tr(¥,X7) /13,

The expansion parameter 72 should be sample along with § and 3 to recover 6 and X

during the sampling process.
Sampling steps for 0

(i) Sample 0 and 72 from
p(6,7* | =, L7, Y,D) = p(f | 7,2, 1", Y, D) x p(r* | 3,1, Y, D).

To accomplish this, we obtain a draw of 72 from p(72 | £, A, L*, Y, D) and then use
that draw to sample 6 from p(f | 72,3, L*, Y, D).

(i) To marginalize out 7, set § = 0 / 72.
Sampling steps for 32

(i) Sample X from p(X | 72,6, \, L*, Y, D).

(i) To marginalize 7, set 3 = 2%1 x 3.
Completing posterior analysis, we provide the detailed implementation of the MCMC sampling

scheme in Algorithm B.1.

"Note that the Jacobian matrix of the transformation 72X = X is given by

0 0 0 0 O 1
e e e e ™ 0 0 0 0 omp
0 (%11,209, %13, 899,803, 833) [0 72 0 0 0 oop
© 0(S12, 513,822, 503, 883,72) |0 0 72 0 0 of
0 0 0 7'2 0 J10

0 0 0 0 72 o2
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Algorithm B.1: Markov chain Monte Carlo (MCMC) Sampler II

Procedure
Step 0: Initialize parameters s = 0, 0%, 33[% for MCMC-chains

while s < S do
Step 1: Update ((72)*, (i*)*) viap(72, L* | Y, D, 015, ©l)) by
(a) sampling (72)* from p(72 | 2[5}): (T2)* ~ tr(\pog[S]’l)/ngo
(b) sampling (L*)* from p(L* | Y, D, (72)*, ,9[5])7 2[8]);
sampling Y ™55 a5 in (1) and D* as in (2);
setting (L*)* = 7*L*, where L* = [D* Y, Y, .
Step 2: Update ((7‘2)*, 0[5+1]> viap(72,60 | Y, D, (L*)*, 2l by
(a) sampling (72)* from p(72 | Y, D, (L*)*, )
N (U D ML (el L ngs[veo + (RTQTR) Gy, + tr(T,50 )
XS(n—l—uo)
where 0, = (RTQ™'R)'RTQ1(L*)*.
(b) sampling 0* from p(0~ |Y,D, (f_,*)*, (72)*, 2[8]);
é* ~N (:U’Goa (7—2)*(V¢9_01 + RTQ—lR)) 7
where g = (V9_01 +RTQ'R)RTQ (L)%
(c) setting Ols+1 = §* /7*.
Step 3: Update ((7-2)[5“],2[5“]) via p(r%, 2 | Y, D, (L)%, 05+ by
(a) sampling 3* from p(ﬁ |Y,D, (]:*)*, gls+1] T): DIR UV (1\7[ +W¥,,n+ 1/0),
where
ELép EhE €&
M= |&lep &e el
Eép && &é
ép = (D) —Praltll & = (V)" — Qb & = (Vo) — Qg
and the first diagonal element of >* must satisfy the following constraint
T[S 4 = : o
P’L ’}/ ?11 + EDZ > 0 lf DZ ]. for Z _ 1, ”)’L
Py HIS +ép; <0 if D;=0
(b) setting 719 = 1, Slo+1) = St/ (71010) Lol = (e plor IRl 7l
return L*[SH], gls+1] sls+1
s+—s+1
end while

end procedure
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B.3 Beyond Normality - Bayesian Semiparametric Approach

A possible extension of the methods described above would be to use a Bayesian
semiparametric approach that can accommodate heterogeneous indirect effects and relax the

distributional assumption imposed on disturbance terms. We consider a finite mixture of

normals
Di = ﬂ{ZiOégi + XZBéZD) + GZ(D) > 0},
Dyi= > wiyDj, > wy=1,
J=Lg# =1
_ B.4
Y = 4 D+ X80+ e, ®4
v = 59[)/\/@‘ + Xiﬁé?) +e”,
Y; = DY,V + (1 - D)y, .
where
EED) 0| |1 oipg Oope
¢ = | eV YN o], Ols  Ola (B.5)
6(0) O 2

and Pr(¢;, =g) =m,, forg=1,...,G and 25:1779 = 1.

Augmenting the model with a set of component label vector, {c;}¥,, where ¢; =

i1, .-, cicl, and ¢;y == 1{¢; = g}, i.., ¢;; = 1 implies that the i™ observation is drawn from
the g™ component of the mixture, and 0 otherwise. Denote ¢ == [c] , ..., c\]".

By transformation, we obtain the equivalent version of (3.23)

L?:Riggi—FEi fOfizl,...,Tl;
(B.6)
L*=Rf; +¢ and E[e'(=Q=Xx1I,.

We augment the parameter space with a set of component indicators (labels) {cy; }7,
n

p(L; | ¢,0) = [[[o(L5; R0, B ... [p(L; R0¢, X))o (B.7)

=1
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We specify the following priors for component indicators {¢;}?; and component

probabilities 7w = [my, ..., 7g]"
id n n G
¢ |~ Mult(l,m) = ple | 7)) = [[ple | ) =[] [] 75, (B.3)
i=1 i=1g=1
7~ Dir(Wie, - - -, Wao) = p(m) oc T wece (B.9)
Their conditional posteriors are of the form
in L*: Riel 21 L*RZHG EG T
¢ |0 5, Y, D™ Mult |1, G”b( GROLY) ZG¢< sRG7, 20 ,
Zg:l ngb(L:a RiHQJ 29) Zg:l ngb(L;ka Ri097 29)
(B.10)
7| O ., Y,D~ Dir(n; +wie-..,na + Wao)- (B.11)

B.4 Empirical Simulation Study with Friendship Network Data

In this section, we design empirical Monte Carlo experiments to illustrate how the proposed
framework may be applied and to investigate the finite-sample performance of our Bayesian
MCMC algorithms. The aim of an empirical Monte Carlo study is to approximate a real
application in economic policy evaluation by taking as many components of the DGP as
possible from real data. This simulation study relies on arguably realistic data generation
processes (DGPs) based on semi-synthetic data. Specifically, an actual network structure
defines the spillover patterns, and real covariates play a role as observed characteristics in
both the treatment assignment equation and the outcome equation. However, to analyse the
performance of the estimation procedures in different scenarios, we create a hypothetical
treatment and generate the rest of the model. In particular, we make use of the Add Health
friendship network data and mimic an evaluation of Social-Emotional Learning (SEL)-

Focused After-School Programs on youth development.

B.4.1 Add Health Friendship Network Data

We employ in-school friendship network data obtained through a nationally representative
longitudinal study of adolescents in grades 7—12 in the US between September 1994 and

April 1995. We limit our analysis to the largest community (n = 2, 534) of 84 surveyed areas.
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Figure B.1: Friendship network data is demonstrated in a directed node-link graph. Each node
represents a student, and network links are measured using student nomination data in the survey (i.e.,
their best friends, up to five females and up to five males). The network is seperated into two quite

distinct clusters, where the within-cluster connections are dense and between-cluster connections are
more sparse.

Grade
* Tt
.« 8h
* St
< A0t
+ 11th
< A2t

School
st ¢
2nd

Figure B.2: Two clusters fit a middle school and a high school in the community. The grade is also
a telling factor in friendship formation among students. While 9th grade is relatively distinct at the
bottom of the graph, 10th, 11th, and 12th graders are harder to distinguish.

Race
= white
- black

- Gender

*  male

*  latinx
+ female . ‘
o = asian

= mixed

Figure B.3: Gender and race do not play a major role in friendship formation. There is a mixing
of gender in all grade levels. Among race groups, White is dominant, however, there is not a clear
segregation in friendship according to race.
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B.4.2 Data Generating Process

Suppose that our objective is estimating the effect of a social and emotional learning (SEL)-
focused after-school program on youth’s prosocial development. The treatment assignment
mechanism is non-random since participation is inevitably on a voluntary basis. If participants
in the program are inherently different from non-participants in ways that are related to the
outcomes being measured, it can be difficult to determine whether the program is responsible
for any observed changes. Additionally, there is possible spillovers because joining the SEL-
focused after-school program may improve youth prosocial behavior for enrolled-students,
which in turn can promote prosocial behavior of their friends. The spillovers (positive
contagion effects) can occur through several mechanisms. One of them is observational
learning, where students may be more likely to exhibit prosocial behaviors by observing
their friends’ behaviors. Students who participate in the after-school program may develop
emotional intelligence, which can improve their ability to understand and regulate emotions
in friendship, leading to more positive interactions with their peers. Furthermore, enrolled
students may tend to model prosocial behaviors they have learned and demonstrate them in
their interactions with their peers. As a result, whether a student enrolls in the program or
not, they may still indirectly benefit when there are more people in their friendship network
who participate. Moreover, social norms may also play a role, as when students participate in
the SEL after-school program, they may develop new social norms that promote prosocial
behavior, such as empathy and kindness. These norms may be reinforced among participants
who are friends. This indirect effect may favour enrolled students in comparison with those
who do not enroll. Taking into account such potential indirect effects would allow for a more

accurate estimate of the overall impact of the program on youth prosocial behavior.

Therefore, it is plausible for us to consider the general data generating process according

to the model (3.7) proposed in Section 3.2 as follows:

* Let the individual treatment variable D; be an index of participation in the After-School
Program, and let Y; be a measurement of prosocial behavior. We generate the individual
treatment D; by stylizing enrollment process based on individual choice mechanism.
We thereby compute the neighbourhood treatment Dy, as the proportion of treated
neighbours, the number of “treated” friends among all friends, by using the adjacency

matrix of the Add Health friendship network.

T
_ T ;
e X = [b Xgender7 Xgrade; Xrace] with Xgender; Xgrade> Xrace are three €xogenous

n?
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variables standardized from three individual characteristics in Add Health data:
gender, grade, and race. The corresponding regression coefficients in the selection
equation and two potential outcome equations are 3P) = [0,—0.2,—1,1]T,
AU = [2,-0.5,0.3,0.2]", 3O = [1,0.3,—0.4,0.1]". Here, true values of the

intercepts are fixed in all three equations.

* Z is an instrumental variable generated from N (0, 1) and the regression coefficient
a controls the strength of the instrument: o = 1.5. In a realistic setting, Z could be
cost-shifters (e.g., the distance to the program location and assume that it varies from

living directly next to the program location to living very far from the program location).

* We specify both a normal and a finite mixture of normal distribution of the error term

-
€ = [EED) e 6(0)} . Throughout, we set that

A A )

El”] = B[] =E[q”] = 0; fori=1,...,n

)

In summary,

Di = 1{1521 - 0'2Xgender,i - Xg’r‘ade,i + Xrace,i + EgD) > 0}
Di= Y wyDi Y wy=1
J=1g#1 j=1,j7#i

Y.V = 50D, +2 — 05X yender + 0.3X gradei + 0.2 X aces + €2, (B.12)

Y = 0D, +1 4 0.3X genderi — 04X gragess + 0.1 X pgeei + €,

Y; = DY,V + (1 - D)y,

7

The simulation study consists of (2 x 2) scenarios, which are characterized by two following

factors
1. The presence of spillovers

« without spillovers: 6 = §(© =0
« with spillovers: 61 = 1.5:6(® = 0.5

2. The distribution of the error term

e anormal distribution - for: =1,...,n
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1 09 0.7
T .
€ = [EZ(D),Q(D,EZ(O)] %d./\/(O,E); Y= 1 0.6
1
ie. 0% =0l =02=1;p1p=0.9; pop =0.7; p1o = 0.6.
* a finite mixture of normal distribution - for: =1,...,n
(o v @] mel 2
€ = Ei ’Ei 7€i ~ gN (O, 21) —+ gN (O, 22)
where
1 1.5435 1.2005 1 0.1543 0.1200
= 2.9412 1.7647| and 3y = 0.0294 0.0176
2.9412 0.0294

ie.02 =02=0%=1;pp = 0.6174; pop = 0.6; pyo = 0.4802.

For each of the generated data sets, we specify two versions of models to be estimated
by using the proposed Bayesian MCMC algorithm. First, Gaussian Generalised Roy model
without spillovers (GGRM-noST) serves as the benchmark model, without neighbourhood
treatment term (D) and with a normal distribution of the error term. Second, Gaussian
Generalised Roy model with spillovers (GGRM-ST) is the full model with neighbourhood
treatment term (D) and a normal distribution of the error term. We run each MCMC
algorithm for 11, 000 iterations, with the first 1, 000 draws are discarded as a burn-in period.
Throughout our simulation study, the parameters for the prior distributions are chosen as

follows:
o, = 015, Vg, = 10% % Lj515;

\I’o:I3><3; Vo:4;

The number of replicates in this study is 2 = 100.
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3 ‘\(ﬂ_‘ 5

Individual Treatment treated untreated

Individual Treatment treated untreated Neighborhood Treatment 0.00 025 0.50 0.75 1.00

Figure B.4: Illustration of the treatment assignment under the context of the after-school program.
The node colour represents the individual treatment and the node size represents the neighbourhood
treatment (e.g. the proportion of friends who are treated). Students select themselves into the program:
half of them enroll while half of them do not. If the friendship network does not matter, students
are only exposed to the program via their own treatment status, as demonstrated in the left graph. In
contrast, if potential spillovers are considered seriously, neighbourhood treatment acts as an indirect
channel through which, the student is also exposed to the program, as shown in the left graph.

B.4.3 Simulation Results

In each replication, we use the posterior mean of MCMC draws as the point estimate for each
parameter of interest. We thereby compute across the 100 replicates the average bias and the
root mean square error of the point estimates, followed by the coverage rate and the average
length of the 95% credible intervals. The simulation results are presented in tables B.1-B.4.
The true values of the DGP parameters are also listed in each table. The main findings
are summarized as follows: First, by estimating the true DGP models, we can successfully
recover the true parameter values from our Bayesian MCMC samplers with both Algorithms
3.1 and B.1. Those methods perform well in terms of average bias, root mean square error
(RMSE) and coverage rate (close to the nominal level). Second, the performance of estimators
shows different degrees of deterioration when estimating the misspecified models. When
existing spillover phenomenon is not taken into account (i.e., the estimator does not include
neighbourhood treatment term D), not only 5 and §(9) are clearly ignored but estimating
other relevant parameters (3™, 3 02 02, p1p, pop) is also considerably affected - with an
increase in both the absolute bias and the RMSE, in addition to a wider yet permissive 95%
credible interval on average. In contrast, including neighbourhood treatment term when it
is not needed is not harmful in general. The performance metrics are almost plausible and
insensitive to the inclusion of neighbourhood treatment term no matter whether spillovers are
present in the true data generating process or not, especially when Algorithm 3.1 is used. The

coverage remains close to the nominal level for all parameters we are interested.
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Table B.1: DGP I: without Spillovers, Normal Distribution

Model(Alg) Metric @ gD M 5© ﬁil) ﬁo) o3 ol pP1D poD P10

True Value 1.500 0.000 1.500 0.500 2.000 1.000 1.000 1.000 0.900 0.700  0.600

Mean 1.514 -0.009 0.000 0.000 2.003 0997 1.002 0997 0.889 0.698 0.710

Std 0.053 0.034 0.000 0.000 0.039 0040 0.042 0.045 0.018 0.042 0.048

GGRM-noSI(1) Bias 0.014 -0.009 0.000 0.000 0.003 -0.003 0.002 -0.003 -0.011 -0.002 0.110
RMSE 0.055 0.035 0.000 0.000 0.039 0.040 0.042 0.045 0.021 0.042 0.120

Coverage 0910 0940 1.000 1.000 0.940 0950 0970 0940 0950 0940 0.950

Mean 1.514 -0.008 -0.004 0.009 2.004 0.993 1.002 0997 0.890 0.699  0.705

Std 0.053 0.034 0.086 0.095 0.055 0.060 0.042 0.045 0.018 0.042 0.048

GGRM-SI(1) Bias 0.014 -0.008 -0.004 0.009 0.004 -0.007 0.002 -0.003 -0.010 -0.002 0.105
RMSE 0.055 0.035 0.086 0.09 0.055 0.061 0.042 0.045 0.021 0.042 0.115

Coverage  0.900 0.940 0930 0940 0920 0960 0960 0940 0950 0.940 0.970

Mean 1.538 -0.012 0.000 0.000 2.047 0956 0958 0981 0.829 0.607  0.288

Std 0.060 0.037 0.000 0.000 0.065 0.057 0.048 0057 0.079 0.102  0.332

GGRM-noSI(2) Bias 0.038 -0.012 0.000 0.000 0.047 -0.044 -0.043 -0.019 -0.071 -0.093 -0.312
RMSE 0.071 0.039  0.000 0.000 0.081 0.072 0.064 0.060 0.106 0.138  0.456

Coverage  1.000 0980 1.000 1.000 1.000 1.000 0990 0.990 0950 0.930 0.660

Mean 1.564 -0.019 -0.001 0.013 2.120 0943 0939 0983 0.730 0.554 0.131

Std 0.074 0.040 0.090 0.096 0.155 0.104 0.068 0.069 0.208 0.128  0.479

GGRM-SI(2) Bias 0.064 -0.019 -0.001 0.013 0.120 -0.057 -0.061 -0.017 -0.170 -0.146 -0.469
RMSE 0.097 0.044 0.090 0.097 0.196 0.118 0.092 0.071 0.268 0.194 0.670

Coverage  1.000 0.980 0910 0930 0950 0990 0970 0970 0.810 0.820 0.370

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R~} Zf;l(ér —a), RMSE = /Rt Zf’zl(dr — )2, and Coverage = R™* Zf’zl {a € 6/70‘95,7«}.

Table B.2: DGP II: with Spillovers, Normal Distribution

Model(Alg) Metric a gL 5 s@ g gO o2 o2 pp pop P10

True Value 1.500 0.000 1.500 0.500 2.000 1.000  1.000 1.000  0.900 0.700  0.600

Mean 1.512  -0.005 0.000 0.000 2.659 1.219 1.182 1.015 0826 0.691 0.741

Std 0.056  0.034 0.000 0.000 0.050 0.042 0.051 0.045 0.025 0.042 0.044

GGRM-noSI(1) Bias 0.012 -0.005 -1.500 -0.500 0.659 0.219 0.182 0.015 -0.074 -0.009 0.141
RMSE 0.057 0.034 1500 0.500 0.661 0223 0.189 0.048 0.078 0.043  0.147

Coverage 0930 0.950 0.000 0.000 0.000 0.000 0.050 0930 0.150 0940  0.950

Mean 1.514 -0.009 1.496 0510 2.005 0994 1.002 0997 0.889 0.699 0.707

Std 0.053 0.034 0.085 0.095 0.054 0.060 0.042 0.045 0.018 0.042 0.050

GGRM-SI(1) Bias 0.014 -0.009 -0.004 0.010 0.005 -0.006 0.002 -0.003 -0.011 -0.001 0.107
RMSE 0.055 0.035 0.085 0.095 0.054 0.060 0.042 0045 0.021 0.042 0.118

Coverage 0920 0.940 0940 0940 0930 0960 0980 0950 0960 0940  0.960

Mean 1.523  -0.009 0.000 0.000 2.714 1.204 1.155 1.026  0.746  0.628  0.280

Std 0.062 0.036 0.000 0.000 0.127 0.074 0.070 0.189  0.157 0.085  0.404

GGRM-noSI(2) Bias 0.023 -0.009 -1.500 -0.500 0.714 0.204 0.155 0.026 -0.154 -0.072 -0.320
RMSE 0.066 0.037 1500 0500 0.725 0.217 0.170  0.191 0.220  0.112  0.515

Coverage  1.000 0.990 0.000 0.000 0.000 0.560  0.530 1.000 0230 0940  0.690

Mean 1.546 -0.022 1509 0549 2.136 0945 0977 10462 0.666 0518 -0.098

Std 0.094 0.040 0.103 0.229 0.172 0.695 0.104 35229 0.240 0.106  0.364

GGRM-SI(2) Bias 0.046 -0.022 0.009 0.049 0.136 -0.055 -0.024 9462 -0.234 -0.182 -0.698
RMSE 0.105 0.046 0.104 0234 0219 0.697 0.107 36478 0335 0211 0.787

Coverage  1.000 1.000 0970 0970 0920 1.000  0.990 1.000  0.770  0.820  0.250

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias= R ' 3% (& —a), RMSE = /R-13°F (4, — )2, and Coverage = R~ Zle 1{a € CTo.05,}.
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Table B.3: DGP III: without Spillovers, Mixture of Normal Distributions

Model(Alg) Metric « ﬂ(D) §m 5O 5{1) Bﬁo) o? ol pP1D PoOD P10

True Value 1.500 0.000 1.500 0.500 2.000 1.000 1.000 1.000 0.900 0.700  0.600

Mean 1.441 -0.002 0.000 0.000 1.959 1.034 1.021 1.006 0.674 0540 0.671

Std 0.076  0.033  0.000 0.000 0.039 0.045 0.082 0.081 0.042 0.061 0.082

GGRM-noSI(1) Bias -0.059 -0.002 0.000 0.000 -0.041 0.034 0.021 0.006 0.056 0.060 0.071
RMSE 0.097 0.033 0.000 0.000 0.056 0.057 0.085 0.081 0.071 0.086 0.108

Coverage  0.750 0980 1.000 1.000 0.890 0.890 0.720 0.720 0.820  0.850  1.000

Mean 1.441 -0.002 -0.023 0.002 1.969 1.032 1.021 1.006 0.674 0539 0.681

Std 0.076  0.033 0.074 0.091 0.049 0.061 0.083 0.080 0.042 0.061 0.079

GGRM-SI(1) Bias -0.059 -0.002 -0.023 0.002 -0.031 0.032 0.021 0.006 0.056 0.058 0.081
RMSE 0.096 0.033 0.078 0.091 0.058 0.069 0.085 0.080 0.070 0.085 0.114

Coverage 0.790 0980 0970 0960 0970 0940 0.700 0.710 0.830 0.850  0.990

Mean 1.454  -0.004 0.000 0.000 1.998 1.022 1.005 1.002 0.609 0498 0.215

Std 0.081 0.034 0.000 0.000 0.084 0.057 0.083 0.081 0.122 0.086 0.499

GGRM-noSI(2) Bias -0.046  -0.004 0.000 0.000 -0.002 0.022 0.005 0.002 -0.009 0.018 -0.385
RMSE 0.093 0.034 0.000 0.000 0.084 0.061 0.084 0.081 0.122 0.088  0.630

Coverage 0910 0980 1.000 1.000 0980 0980 0.860 0.880 0960 0.930  0.650

Mean 1.468 -0.005 -0.021 0.000 2.098 1.034 1.027 1.016 0491 0468 -0.006

Std 0.094 0.034 0.078 0.098 0.198 0.112 0.161 0.108 0.234  0.106  0.625

GGRM-SI(2) Bias -0.032  -0.005 -0.021 0.000 0.098 0.034 0.027 0.016 -0.127 -0.013 -0.606
RMSE 0.099 0.035 0.081 0.098 0.221 0.117 0.163 0.109 0.266 0.107 0.871

Coverage  0.950 0990 0960 0940 0970 0980 0.900 0.880 0960 0.950 0.470

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R' 32" (& —a), RMSE = {/R-'3°% (&, — )2, and Coverage = R™' " 1{a € Clo.5,}.

Table B.4: DGP IV: with Spillovers, Mixture of Normal Distributions

Model(Alg) Metric « ﬂ(D) 5 5 61(1) BI(O) o? ol 1295 PoD P10

True Value 1.500 0.000 1.500 0.500 2.000 1.000 1.000 1.000 0.900 0.700  0.600

Mean 1462 -0.004 0.000 0.000 2.636 1249 1.186 1.021 0.601 0.527  0.699
Std 0.074 0.033  0.000 0.000 0.046 0.045 0.084 0.082 0.052 0.059 0.101
GGRM-noSI(1) Bias -0.038  -0.004 -1.500 -0.500 0.636 0.249 0.186 0.021 -0.016 0.047  0.098

RMSE 0.084 0.033 1.500 0.500 0.638 0253 0204 0.084 0.054 0.076 0.141
Coverage  0.820 0980  0.000 0.000 0.000 0.000 0.150 0.700 0960 0.890 0.950

Mean 1.441 -0.002 1477 0502 1970 1.033 1.020 1.006 0.673 0.540 0.659

Std 0.076  0.033 0.074 0.091 0.050 0.061 0.083 0.080 0.043 0.061 0.092

GGRM-SI(1) Bias -0.059 -0.002 -0.023 0.002 -0.030 0.033 0.020 0.006 0.056 0.060  0.059
RMSE 0.096 0.033 0.078 0.091 0.058 0.069 0.085 0.081 0070 0.085 0.110

Coverage  0.750 0980 0970 0950 0970 0940 0.710 0.710 0.860 0.850  0.990

Mean 1.473  -0.006 0.000 0.000 2697 1239 1.180 1.016 0.511 0479 0.027

Std 0.070  0.034 0.000 0.000 0.113 0.059 0.099 0.082 0.144 0.072 0454

GGRM-noSI(2) Bias -0.027 -0.006 -1.500 -0.500 0.697 0.239 0.180 0.016 -0.106 -0.001 -0.573
RMSE 0.075 0.034 1500 0.500 0.706 0246 0205 0.084 0.179 0.072 0.731

Coverage 0960 0990 0.000 0.000 0.000 0420 0360 0.890 0960 0980 0.720

Mean 1.466 -0.005 1.501 0.530 2.103 1.036 1.036 1.020 0.467 0.468 -0.144

Std 0.091 0.034 0.093 0.103 0.179 0.112 0.161 0.117 0230 0.096 0.532

GGRM-SI(2) Bias -0.034 -0.005 0.001 0.030 0.103 0.036 0.036 0.020 -0.150 -0.012 -0.744
RMSE 0.098 0.034 0.093 0.107 0.206 0.117 0.166 0.118 0275 0.097 00915

Coverage 0.940 0990 0.990 0980 0.990 1.000 0.950 0.920 0960 0970  0.460

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point
estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

Bias = R™! Zil (&r —a), RMSE = 4/ R~1 Zle (& — )2, and Coverage = R™* Zle {a € C/’\Io_gg),p}.
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B.4.4 Causal Effects

Building on estimation results for model parameters, we can implement estimation and
inference on causal effects of interest. Two empirical questions of interest arise in the context
of SEL-focused after-school programs: First, the presence of direct treatment effects: whether
enrolling the After-School Program impacts prosocial behavior of participants? Furthermore,
whether there exists heterogeneity on the direct treatment effects? Second, the presence of
indirect (spillover) effects: whether the participation of closed friends in the After-School
Program impacts prosocial behavior of students. The following section demonstrates how
the proposed procedure in previous session help us to answer empirical questions using

observational data. In both illustrative scenario, estimates are compatible with true DGP.

Given an arbitrary generated dataset from the first scenario (DGP1) - with no spillovers
and a normal distribution of the error term, we can obtain estimates of Average Partial Indirect
Effects, Average Direct Treatment Effect, and Marginal Direct Treatment Effect as depicted
in Figures B.5 and B.6: First, Null Indirect (Spillover) Effects: Two flat curves in Figure B.5
reveals that the participation of peers from friendship network in the After-School Program
has an insignificantly positive impact on prosocial behavior of students, no matter whether
they enroll the program or not. Second, Null Interaction: The flat curve in Figure B.6(a) shows
that increasing neighbourhood treatment doesn’t enhance the average direct treatment effect
of ASP. Third, Selection on Gain: Figure B.6(b) indicates that the direct effects are higher for

individuals with values of unobservables that make them more likely to attend the ASP.

Given an arbitrary generated dataset from the second scenario (DGP2) - with the presence
of spillovers and a normal distribution of the error term, we can obtain estimates of Average
Partial Indirect Effects, Average Direct Treatment Effect, and Marginal Direct Treatment
Effect as depicted in Figures B.7 and B.8: First, Positive Indirect (Spillover) Effects: Two
upward curves in Figure B.7 reveals that the participation of peers from friendship network in
the After-School Program significantly improve the prosocial behavior of students, no matter
whether they enroll the program or not (which is consistent with Observational-Learning
explanation). Second, Positive Interaction: The upward curves in Figure B.8(a) implies that
increasing neighbourhood treatment magnifies the average direct treatment effect of ASP
(which is consistent with Social-Norm explanation). Third, Selection on Gain: Figure B.8(b)
indicates that the direct effects are higher for individuals with values of unobservables that

make them more likely to attend the ASP.
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Figure B.5: The average potential outcome when being treated (left-hand side panel) and when being
untreated (right-hand side panel), as a function of the neighbourhood treatment dy-. The dashed
curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug plot on the
horizontal axis represent empirical distribution of ds based on the real network.
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Figure B.6: (a) The average direct treatment effect as a function of the neighbourhood treatment d .
The dashed curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug
plot on the horizontal axis represent empirical distribution of dr based on the real network. (b) The
marginal direct treatment effect as a function of the neighbourhood treatment d s and the unmeasured
resistance level v. Ticks in the rug plot on the horizontal axis represent empirical distribution of v,

obtained from posterior samples.
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Figure B.7: The average potential outcome when being treated (left-hand side panel) and when being
untreated (right-hand side panel), as a function of the neighbourhood treatment dxr. The dashed
curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug plot on the
horizontal axis represent empirical distribution of d s based on the real network.
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Figure B.8: (a) The average direct treatment effect as a function of the neighbourhood treatment d .
The dashed curves represent 95% confidence intervals derived from posterior samples. Ticks in the rug
plot on the horizontal axis represent empirical distribution of dr based on the real network. (b) The
marginal direct treatment effect as a function of the neighbourhood treatment d s and the unmeasured
resistance level v. Ticks in the rug plot on the horizontal axis represent empirical distribution of v,

obtained from posterior samples.
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B.5 On Empirical Application

Table B.5: Variable Description

Variable

Description

Housing Unit Growth
Q0Z

Political Affiliation

Poverty Rate
Median Earnings
Employment Rate

% White

% Native hc covered
% Higher ed.

% Rent

Population

Growth of total housing units between 2017-2022

An indicator equal to one if an eligible tract was selected as an Opportunity Zone, or zero otherwise.
An indicator equal to one if a tract’s representative to the state’s lower house is of the same political
party as the state’s governor, and zero otherwise.

The proportion of residents in a tract whose ratio of income to the poverty threshold is less than or
equal to 0.99, scaled by the number of residents.

Logarithm of the median earnings in a tract.

The number of individuals in the labor force in a tract that are working, either in civilian or

Armed Forces, scaled by the total labor force of the tract.

The proportion of non-Hispanic white residents in a tract.

The proportion of native-born individuals covered by health insurance in a tract.

The proportion of the population in a tract with at least a high school education.

The proportion of rental unit in a tract.

The total population in a tract from the 2010 Census.

Table B.6: Data Sources

Source

URL

IRS (Internal Revenue Service)

List of Qualified Opportunity Zones

Urban Institute’s data
American Community Survey (
5-Year Data (2009-2022)
California State Legislature
TIGER Geographic Shapefiles
SLDU and SLDL Blocks Splits

data: https://www.irs.gov/credits-deductions/businesses/opportunity-zones
https://www.urban.org/policy-centers/metropolitan-housing-and-communities-policy-center/projects/opportunity-zones
ACS) https://www.census.gov/data/developers/data-sets/acs-Syear.html
https://ballotpedia.org/California_State_Legislature
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/2018/dec/rdo/2018-state-legislative-bef.html
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Figure B.9: Map of Opportunity Zone status of census tracts in California.
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Appendix C

Appendix for Chapter 4

C.1 Details of Computational Algorithms

C.1.1 Adaptation of Random-Walk Metropolis

Adaptation of random-walk Metropolis algorithm (Andrieu and Thoms, 2008; Atchadé
and Rosenthal, 2005; Roberts and Rosenthal, 2009; Vihola, 2022) is designed to improve
the efficiency of standard random-walk Metropolis algorithm, by automatically tuning the
proposal distribution during the simulation based on historical MCMC samples. The goal is

to achieve better convergence and mixing without requiring manual calibration.

Formally, let # € © C R¢ be the parameter of interest with target probability density 7(f).
Our goal is to generate a dependent random sequence {60! ... 01}, called a chain, whose
stationary density matches 7. At iteration s, the standard algorithm uses a normal random
walk proposal N/ (9[5], T[S}E[@s]), where 61 is the current state, 7* is a scalar scaling factor
(i.e., how far the proposal jumps in the parameter space), and ng] is an empirical estimate of
the covariance matrix of the target 7. The acceptance probability of a candidate draw 6* is
a = min{l, s (9*) /T (0[8})} . The shape of the proposal distribution has a substantial effect
on the algorithm’s mixing behaviour!, while choosing 7 and ¥4 in each iteration by trial
and error is both time-consuming and problem-specific. To overcome this tuning challenge,

adaptation allows the sampler learn 7 and >y on-the-fly using past draws. The core idea is to

adaptively update these parameters to target a prespecified “optimal” acceptance rate (Qvyp).

Among several variants, we present in Algorithm C.1 the Adaptive Metropolis algorithm
with global adaptive scaling (Atchadé and Rosenthal, 2005). We note that, for the adaptation

step, equation (C.1) aims to keep the asymptotic acceptance rate of the algorithm close

Untuitively, if 7L*! Eg;] is either too large in some directions or too small in all directions the algorithm has
either a very small or a very large acceptance probability, which results in a very poor exploration of the target
distribution as the algorithm mix poorly.

217
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to an optimal value a,,;. Commonly, &,,; = 0.234 for a multivariate target (d > 1) and
Opt = 0.44 when d = 1. The (recommended) adaptation stepsize is a decreasing sequence
v+l = (541)~%/3. This approach is backed by Robbins-Monro recursive and more generally,
the stochastic approximation framework (Benveniste et al., 2012), and aims to optimize the
efficiency of the MCMC sampler by monitoring the acceptance rate toward a theoretically
optimal region. The updates are designed to vanish over time (i.e., v/ — 0) to ensure the

ergodicity and convergence of the chain.

Algorithm C.1: Adaptive Scaling Metropolis (ASM) algorithm - General case

Procedure
1 Step 0: initialise s = 0, §1%, /4,0] =9l Zéo], 7101,
2 while s < S do
3 Step 1 (Proposal step):
4 Sample a new candidate 6* ~ N (9[5], r[slz[;])
5 Accept 0* with probability « (9*, 9[31). If accepted, 6,1 = 6*; otherwise,
6[3—&-1} — e[s}.
Step 2 (Adaptation step):

=)

7 Update the scaling
log (T[S—H]) = log (T[S]) + plstl {oz (9*, 0[51) — &Opt} , (C.1)
8 Update the empirical covariance

#[;H} _ :U“[Qs} 1 lstl {9[5—}—1] . Mﬂ :
s s s s\ T s (Cz)
St = sl 4yl [(0[8“1 — ) (00— ) - qu .

9 return g1 et sl ol
10 s<s+1
11 end while

end procedure

For our sampling problem for network interaction effects A\, (¢ = 1,..., &) in Section 4.3,
we apply a univariate version of Algorithm C.1. Specifically, we employ Algorithm C.2 which
corresponds to d = 1 and the optimal acceptance rate a,,; = 0.44. In practice, whenever
Q@ (9*, 6’[3]) falls below &, for most transition attempts, the log-scale update helps increase
the scaling parameter 7!*/, and vice versa. This automatic feedback allows the sampler to
recover quickly from poor initialisation, enabling an efficient exploration of the posteriors of

interest. We embed this Adaptive Scaling Metropolis sampling step for each ), into our main
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MCMC samplers for the SCHSAR model (Algorithms 4.1 and 4.2).

Algorithm C.2: Adaptive Scaling Metropolis (ASM) algorithm - Univariate case

Procedure
1 Step 0: initialise s = 0, 6%, 710,
2 while s < S do
3 Step 1 (Proposal step):
4 Sample a new candidate 6* ~ N (Q[S]’ 7—[8])

5 Accept 0* with probability « (0*, 0[3]>. If accepted, 6,1 = 0*; otherwise,
gls+1 — glsl.

=)

Step 2 (Adaptation step): Update the scaling
log (T[s+1]) = log (T[S]> + plstl [04 ((9*, 9[8}) - o_zopt} .

7 return A5t st
8 S+ s+1
9 end while

end procedure

C.1.2 Community Detection Algorithms

When unobserved homophily is present (see Subsection 4.3.4), obtaining a reliable
initialisation for the latent individual heterogeneity {a;}}¥, can significantly improve
the MCMC convergence. A practical strategy is to apply available community detection
algorithms to the observed network, using the N x N adjacency matrix W = [wij] to
uncover two latent clusters corresponding to the binary types of a; (“high” vs. “low”). Below
we adopt two spectral-clustering variants that exploit the eigenstructure of graph matrices
to reveal communities. In both algorithms C.3 and C.4, we extract the top 71" eigenvectors
of a chosen matrix (e.g., the Laplacian or modularity matrix), embed the /N nodes into a
T-dimensional spectral subspace, and then apply a standard /-means method to partition

them into communities (with labels {a;})).
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Algorithm C.3: Modularity-Matrix Spectral Clustering algorithm

Data: Adjacency matrix W € RV*¥_ # of clusters K, # of top eigenvectors T (set
T=K=2).

Result: Community assignments {a; } ¥, .

Compute degree vector d € RY where d; := Y_; w;; and total edges m = £ YV, d;.

Form the modularity matrix

dd’
M=W- —.
2m
Compute 7" eigenvectors { vy, ..., vy} of M with largest positive eigenvalues.
Stack these eigenvectors into V := [vy,...,vp] € RV*T,

Apply K-means clustering to the rows of V, yielding labels {a;}% ;.

Algorithm C.4: Normalized-Laplacian Spectral Clustering algorithm

Data: Adjacency matrix W € RN*N # of clusters K, # of top eigenvectors 7' (set
T=K=2).

Result: Community assignments {a; } ;.

Compute degree matrix D := diag(dy, ..., dy) with d; == >, w;.

Form the normalized Laplacian matrix
Luom =1 - D WD 2.

Compute 7" eigenvectors { vy, ..., vy} of Ly, with smallest nonzero eigenvalues.
Stack these eigenvectors into V := [vy, ..., vy ] € RVN*T,

Row-normalize V

_ V.

Vi, = . ¢=1,...,N.
[Vi:ll2

Apply K-means clustering to the rows of V, yielding labels {a;} ;.

By projecting nodes into a low-dimensional spectral subspace (I' < N) instead of
clustering directly in the original node space, these approaches effectively capture global
connectivity and reveal nodes that are ‘“structurally similar” in the same community.
Alternative algorithms are also available in the MATLAB toolbox for community detection by
Kehagias (2018). In Monte Carlo experiments, we found that perfect clustering is unnecessary
for our proposed MCMC sampler in Algorithm 4.2. Moderate misclassification in the starting
values is corrected throughout the MCMC procedure, which refines a; using both network

and outcome information.
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C.2 On Simulation Study

C.2.1 Diagnostic Plots

DGP I(a): N = 1000, unobserved degree heterogeneity, high SNR
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Figure C.2: M-H acceptance rate of A\, (SCHSAR-left and HSAR-right).
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Figure C.3: Draws for 3, (SCHSAR-left and HSAR-right).
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DGP I(b): N = 1000, unobserved degree heterogeneity, medium SNR
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Figure C.7: Draws for \; (SCHSAR-left and HSAR-right).

DGP I(c): N = 1000, unobserved degree heterogeneity, low SNR
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DGP II(a): N = 1000, unobserved degree heterogeneity, link misspecification, high SNR
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DGP II(b). N = 1000, unobserved degree heterogeneity, link misspecification, medium SNR
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Figure C.15: Draws for \; (SCHSAR-left and HSAR-right).

DGP II(c). N = 1000, unobserved degree heterogeneity, link misspecification, low SNR
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Figure C.16: Draws for \;, (SCHSAR-left and HSAR-right).
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DGP III(a). N = 1000, unobserved homophily, high SNR
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Figure C.18: M-H acceptance rate of A\, (SCHSAR-left and HSAR-right).
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Figure C.20: Draws for w, (SCHSAR-left and HSAR-right).
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DGP III(b).

DGP III(c).

N = 1000, unobserved homophily, medium SNR
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Figure C.23: Draws for \; (SCHSAR-left and HSAR-right).

N = 1000, unobserved homophily, low SNR
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Figure C.24: Draws for \; (SCHSAR-left and HSAR-right).
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DGP IV(a). N = 1000, unobserved homophily, link misspecification, high SNR
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Figure C.25: Draws for \; (SCHSAR-left and HSAR-right).
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Figure C.26: M-H acceptance rate of A\, (SCHSAR-left and HSAR-right).
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Figure C.27: Draws for 3, (SCHSAR-left and HSAR-right).
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Figure C.28: Draws for w, (SCHSAR-left and HSAR-right).
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Figure C.30: Draws for v (SCHSAR only).
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DGP IV(b). N = 1000, unobserved homophily, link misspecification, medium SNR
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Figure C.31: Draws for \; (SCHSAR-left and HSAR-right).

DGP IV(c). N = 1000, unobserved homophily, link misspecification, low SNR

draws. draws

Group 1: true = -0.15, est = 0.023

rue values —— == estimmates] [

Ty

B
Tk N
= =
= =
"0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
i Group 2: true = 0.15, est = -0.162 vw_mwwwwﬂn.“.‘””TNWW'N ,
& = 7 i 2 i ’
[ L ¥ ¥ TR - " Los
>lD 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 00 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Group 3: true = 0.3, est = 0.489 N — Group3: true = 0.3, est = 0765

A, (5= 3)

[ A (g=1) X (6=2) s (g=3) —— - true alues]
1
0.8
O.GJ’ 0.8 )i‘
0.4 #lll 06
0.2 1[Il
< 04 < 04
02
-0.4 o2r
06 o
0.8
o 1000 2000 . 3000 4000 5000 02, 1000 2000 . 3000 4000 5000
iter iter

Figure C.32: Draws for \; (SCHSAR-left and HSAR-right).
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C.2.2 Additional Monte Carlo Experiments

C.2.2.1 Results for small sample size

Table C.1: DGP V: N= 200, Unobserved Degree Heterogeneity
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SCHSAR HSAR
SNR  Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage
A1 -0.15 -0.146  0.074 0.004  0.074 0.88 -0.710 0.205 -0.560 0.596 0.14
A2 0.15 0.136  0.067 -0.014  0.068 0.92 -0.446  0.265 -0.596  0.652 0.20
A3 0.30 0.301 0.034 0.001 0.034 0.97 0.022 0.206 -0.278 0.346 0.42
w1 0.45 0.454 0.033 0.004 0.033 0.99 0452 0.037 0.002 0.037 1.00
wa 0.35 0.345 0.032 -0.005 0.032 0.98 0.345 0.037 -0.005 0.037 0.99
w3 0.20 0.200 0.026  0.000 0.026 0.97 0.203  0.031 0.003 0.031 0.98
B -0.50 -0.460 0.195 0.040  0.199 0.89 -0.419 0.288 0.081  0.299 0.84
B2 0.50 0.443 0.243 -0.057 0.250 0.89 0.404 0.298 -0.096 0.313 0.88
High B3 -1.00 -0.986 0.150 0.014  0.151 0.95 -1.001 0.034 -0.001 0.034 0.97
Ba1 -0.75 -0.688 0.304 0.062 0.311 0.90 -0.617 0443  0.133  0.463 0.88
B22 0.80 0.741 0306 -0.059 0.312 0.91 0.654 0.443 -0.146  0.467 0.86
Bas 1.20 1.195 0.042 -0.005 0.042 0.95 1.198 0.034 -0.002 0.034 0.93
K1 0.80 0.777 0.040 -0.023 0.046 0.81 - - - - -
Ko 0.60 0.595 0.055 -0.005 0.055 0.86 - - - - -
K3 0.25 0.252 0.035 0.002 0.035 0.97 - - - - -
¥ 1.50 1.514 0.042 0.014 0.044 0.86 - - - - -
a2 2.00 2.038 0.239 0.038 0.242 0.91 - - - - -
A1 -0.15 -0.153  0.229 -0.003  0.229 0.97 -0.587 0.236 -0.437  0.497 0.49
A2 0.15 0.054 0.251 -0.096 0.269 0.94 -0.362  0.297 -0.512  0.592 0.62
A3 0.30 0212 0.272 -0.088 0.286 0.97 0.000 0.295 -0.300 0.420 0.93
w1 0.45 0.452 0.040 0.002 0.040 0.99 0453 0.043 0.003 0.043 0.99
wa 0.35 0.341 0.039 -0.009 0.040 0.99 0.337 0.040 -0.013 0.042 1.00
w3 0.20 0.207 0.037 0.007  0.037 0.99 0.210 0.039 0.010 0.040 0.99
B -0.50 -0.394 0322 0.106  0.339 0.82 -0.330 0.396 0.170  0.431 0.78
Bz 0.50 0.321 0.408 -0.179  0.446 0.82 0.207 0.477 -0.293  0.560 0.78
Low B13 -1.00 -0.934  0.306 0.066 0.313 0.93 -0.881 0.359 0.119  0.379 0.87
Ba21 -0.75 -0.568 0.486 0.182  0.519 0.83 -0.471 0.576 0279  0.640 0.80
B2 0.80 0.643 0.481 -0.157 0.506 0.84 0.541 0598 -0.259 0.651 0.75
Bas 1.20 1.127  0.290 -0.073  0.299 0.93 1.118 0.274 -0.082 0.286 0.91
K1 0.80 0.747 0.125 -0.053 0.136 0.92 - - - - -
K2 0.60 0.581 0.145 -0.019 0.146 0.91 - - - - -
K3 0.25 0254 0.274 0.004 0.274 0.96 - - - - -
y 1.50 1.514 0.044 0.014 0.046 0.84 - - - - -
a2 2.00 2.045 0.242 0.045 0.246 0.90 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point

estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

R-1 Zf‘zl(dr —a)?, and Coverage = R™! Zf’zl 1{a € CA'IO,%,,.}.

Bias = R~! Y% | (4, — a), RMSE =
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Table C.2: DGP VI: N= 200, Unobserved Degree Heterogeneity, Link Misspecification

SCHSAR HSAR
SNR Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage
AL -0.15 -0.138  0.082 0.012  0.083 0.93 -0.673 0.217 -0.523  0.566 0.27
A2 0.15 0.131  0.080 -0.019 0.082 0.90 -0.448 0.286 -0.598  0.663 0.34
A3 0.30 0.301 0.044 0.001 0.044 0.98 0.002 0.257 -0.298 0.393 0.59
w1 0.45 0.454 0.033 0.004 0.033 0.98 0.453 0.038 0.003 0.038 0.99
wo 0.35 0.344  0.031 -0.006 0.032 0.99 0.344 0.037 -0.006 0.038 0.99
w3 0.20 0.201  0.027 0.001  0.027 0.96 0.203  0.031 0.003  0.031 0.98
B -0.50 -0451 0.217 0.049 0.223 0.91 -0.428 0.276  0.072  0.285 0.85
Bz 0.50 0.449 0.217 -0.051 0.223 0.94 0.413  0.283 -0.087 0.296 0.89
High B3 -1.00 -1.001 0.008 -0.001  0.009 0.94 -1.002  0.036 -0.002 0.036 0.97
B21 -0.75 -0.672  0.338 0.078  0.347 0.88 -0.633 0417 0.117 0433 0.91
B2 0.80 0.721 0.337 -0.079 0.346 0.89 0.667 0.421 -0.133 0.442 0.86
B3 1.20 1.199 0.007 -0.001 0.007 0.96 1.199 0.036 -0.001 0.036 0.93
K1 0.80 1.345 0.076  0.545  0.550 0.00 - - - - -
Ko 0.60 1.039 0.076 0439  0.446 0.00 - - - - -
K3 0.25 0.431 0.024 0.181 0.182 0.00 - - - - -
v 1.50 0.872 0.034 -0.628 0.629 0.00 - - - - -
o2 2.00 0.675 0.078 -1.325 1.327 0.00 - - - - -
A1 -0.15 -0.153  0.252 -0.003  0.252 0.97 -0.526  0.275 -0.376  0.466 0.68
A2 0.15 0.065 0.257 -0.085 0.271 0.97 -0.329  0.303 -0.479  0.567 0.75
A3 0.30 0.179 0.286 -0.121 0.310 0.97 -0.018 0.309 -0.318 0.444 0.93
w1 0.45 0.453 0.040 0.003 0.041 1.00 0.452  0.044 0.002 0.044 1.00
wo 0.35 0.341  0.039 -0.009 0.040 0.99 0.337 0.040 -0.013 0.042 1.00
w3 0.20 0.206  0.037 0.006 0.038 0.97 0211 0.043 0.011 0.044 0.99
B -0.50 -0.388 0.330 0.112  0.349 0.82 -0.310 0419 0.190  0.460 0.74
B2 0.50 0.328 0.390 -0.172 0.426 0.83 0.193 0474 -0.307 0.565 0.78
Low B13 -1.00 -0.942  0.284 0.058  0.290 0.92 -0.886  0.333 0.114 0.352 0.87
B21 -0.75 -0.573 0484 0.177 0.515 0.84 -0432  0.616 0318  0.693 0.77
B2 0.80 0.630 0495 -0.170 0.524 0.83 0511 0.611 -0.289 0.676 0.74
Bas 1.20 1.165 0.126 -0.035 0.131 0.94 1.103  0.303 -0.097 0.318 0.89
K1 0.80 1.299 0.204 0499 0.539 0.28 - - - - -
Ko 0.60 1.026  0.233 0426 0.486 0.44 - - - - -
K3 0.25 0.478 0310 0.228  0.385 0.90 - - - - -
y 1.50 0.872 0.039 -0.628 0.629 0.00 - - - - -
a2 2.00 0.674 0.081 -1.325 1.328 0.00 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of the point

estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across replicates; where

R (4, — )2, and Coverage = R-' 2% 1{a € Clogs,}.

Bias = R~' Y% | (4, — ), RMSE =
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C.2.2.2 Results for exogenous network formation
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Table C.3: DGP VII: N = 1000, Unobserved Degree Heterogeneity, Exogenous Network Formation

SCHSAR HSAR
Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

A1 -0.15 -0.157 0.047 -0.007  0.048 0.93 -0.158 0.044 -0.008  0.045 0.94
A2 0.15 0.153 0.044 0.003 0.044 0.94 0.153 0.042 0.003 0.042 0.95
Az 0.30 0.308 0.046 0.008 0.047 0.99 0.310 0.046 0.010 0.047 0.98
w1 0.45 0.452  0.015 0.002 0.015 0.95 0.453 0.015 0.003 0.015 0.99
wo 0.35 0.348 0.015 -0.002 0.015 0.97 0.348 0.015 -0.002 0.015 0.98
w3 0.20 0.199 0.013 -0.001 0.013 0.93 0.199 0.013 -0.001 0.013 0.96
Bi1 -0.50 -0.500 0.003 0.000 0.003 0.93 -0.500 0.003 0.000 0.003 0.92
B2 0.50 0.499 0.011 -0.001 0.011 0.85 0.500 0.003 0.000 0.003 0.85
B3 -1.00 -0.999 0.011  0.002 0.011 0.96 -1.000 0.002  0.000  0.002 0.96
Ba1 -0.75 -0.750  0.003  0.000  0.003 0.94 -0.750  0.003  0.000  0.003 0.95
Ba2 0.80 0.798 0.017 -0.002 0.017 0.93 0.800 0.002 0.000 0.002 0.94
B3 1.20 1.200  0.004 0.000 0.004 0.96 1.200  0.003 0.000  0.003 0.96
K1 0.00 0.001  0.004 0.001  0.004 0.94 - - - - -
K2 0.00 0.000 0.003 0.000 0.003 0.96 - - - - -
K3 0.00 0.000 0.004 0.000 0.004 0.96 - - - - -

¥ 1.50 1.501 0.010 0.001 0.010 0.79 - - - - -
o2 2.00 2.002 0.009 0.002 0.010 0.99 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of

the point estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across

replicates. We consider a model misspecification scenario where the network structure is exogenous rather than endogenous.

Estimating the SCHSAR model is able to identify zero correlation and still recover true values of the parameters, similar to a

correctly-specified HSAR model.



APPENDIX C. APPENDIX FOR CHAPTER 4

C.2.2.3 Results for homogeneous network effects
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Table C.4: DGP VIII: N = 1000, Unobserved Degree Heterogeneity, Homogeneous Network Effects

SCHSAR HSAR
Parameter True Value Mean Std Bias RMSE Coverage Mean Std Bias RMSE Coverage

A1 0.15 0.149  0.010 -0.001  0.010 0.92 -0.585 0.192 -0.735 0.759 0.00
A2 0.15 0.149  0.008 -0.001  0.008 0.96 -0.424 0.154 -0.574 0.594 0.00
Az 0.15 0.150  0.008 0.000 0.008 0.98 -0.090 0.070 -0.240  0.250 0.00
w1 0.45 0.452 0.014 0.002 0.015 0.99 0.451 0.020 0.001  0.020 0.98
wo 0.35 0.348 0.015 -0.002 0.015 0.97 0.350 0.021 0.000  0.021 0.99
ws 0.20 0.200 0.013 0.000 0.013 0.92 0.199 0.016 -0.001 0.016 0.92
Bi1 -0.50 -0.500 0.003 0.000 0.003 0.92 -0.493  0.090 0.007 0.091 0.92
B2 0.50 0.500 0.003 0.000 0.003 0.86 0.487 0.098 -0.013 0.098 0.90
B3 -1.00 -1.000 0.002  0.000  0.002 0.99 -1.000 0.015 0.000 0.015 0.96
Ba1 -0.75 -0.750  0.003  0.000  0.003 0.95 -0.732  0.158 0.018  0.159 0.91
Ba2 0.80 0.800 0.003 0.000 0.003 0.93 0.786 0.160 -0.014 0.160 0.96
B3 1.20 1.200  0.003 0.000 0.003 0.96 1.198  0.042 -0.002 0.042 0.97
K1 0.80 0.798 0.004 -0.002 0.005 0.90 - - - - -
K2 0.60 0.598 0.004 -0.002 0.004 0.97 - - - - -
K3 0.25 0.249 0.004 -0.001 0.004 0.96 - - - - -

¥ 1.50 1.501 0.010 0.001 0.010 0.77 - - - - -
o2 2.00 2.000 0.010 0.000 0.010 0.99 - - - - -

Notes: This table displays results based on R = 100 replicates. The values include the average and standard deviation of

the point estimates; the average bias (Bias), the Root Mean Squared Error (RMSE), and the coverage rate (Coverage) across

replicates. We consider a model misspecification scenario where network interaction effect is homogeneous rather than

heterogeneous. Estimating the SCHSAR model is able to recover true values of the parameters without generating spurious

heterogeneous effects if these parterns are indeed non-existent in the real data.
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C.3 On Empirical Application

C.3.1 Unobserved Heterogeneity
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Figure C.33: Positive correlation between unobserved heterogeneity and centrality measures.

Table C.5: The Top 20 Firms with the Highest Unobserved Heterogeneity

Rank  Firm SIC Field Size  Degree Between Close Eigen  UDH
1 Ibm 7370  Computers & Communications 99 0.181 0.118 0.46 0.238 0.38
2 Hp 3570  Computers & Communications 97 0.145 0.104 0477 0229  0.203
3 Ge 3724 Electrical & Electronic 100 0.087 0.07 0.464 0.131 -0.016
4 Du Pont 2820 Chemical 97 0.086 0.061 0.438  0.077 -0.027
5 Siemens 9997  Computers & Communications 99 0.102 0.064 0457 0.173  -0.045
6 Dupont De Nemours Inc 2820 Chemical 96 0.081 0.05 0416 0.057 -0.066
7 Motorola 3663  Computers & Communications 93 0.103 0.066 0.449 0.184 -0.07
8 Toshiba 3600 Electrical & Electronic 97 0.079 0.03 0426  0.156 -0.078
9 Pfizer 2834 Drugs & Medical 98 0.107 0.061 0422 0.072 -0.079
10 Intel 3674  Computers & Communications 96 0.109 0.045 0427 0.181  -0.096
11 Microsoft 7372 Computers & Communications 98 0.097 0.041 0.429 0.18 -0.179
12 Ti 3674 Electrical & Electronic 89 0.075 0.014 0.405 0.157 -0.202
13 Bayer 2800 Chemical 98 0.064 0.028 0422 0.065 -0.212
14 Hitachi 9997  Computers & Communications 99 0.078 0.036 0437 0.155 -0.218
15 J&J 2834 Drugs & Medical 97 0.086 0.047 0.413  0.055 -0.226
16 Basf 2800 Chemical 98 0.062 0.026 0422  0.056 -0.262
17 Oracle 7372 Computers & Communications 94 0.087 0.027 0422 0.166  -0.263
18 Eastman 3861 Chemical 91 0.057 0.029 0.432 0.103  -0.28
19 Danaher 3826 Electrical & Electronic 87 0.054 0.029 0421 0.106 -0.315
20 Alcatel 3661  Computers & Communications 97 0.07 0.016 0403 0.132  -0.327

Notes: A node’s centrality measures include degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality; Size is

the percentile ranking of a firm’s total asset; SIC is the primary four-digit SIC code according to Compustat U.S. fundamentals database.
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C.3.2 Choice of the Number of Latent Types (G)
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Table C.6: Parameter Estimates for the HSAR and SCHSAR Models (when G=3)

HSAR SCHSAR
15 Type 2M Type 3 Type 1% Type 2nd Type 3 Type
Network Interaction
0.416 0.412 0.185 0.541 0.321 0.138
Assignment Probability m (0.272) (0.043) (0.274) (0.100) (0.046) (0.098)
[0.00, 0.68] [0.33,0.50] [0.00, 0.66] [0.36,0.72] [0.23,0.41] [0.00, 0.30]
0.174 0.226 -0.012 0.146 0.189 0.217
Interaction Effect A (0.371) (0.035) (0.461) (0.053) (0.055) (0.220)
[-0.58, 0.97] [0.16, 0.29] [-0.77,0.92] [0.07,0.27] [0.06, 0.28] [-0.17,0.74]
-0.022 -3.171 -2.026 2.735 -1.462 1.740
Intercept B1 (4.452) (0.464) (8.383) (1.161) (2.395) (5.928)
[-11.07, 5.35] [-4.08,-2.23]  [-18.89, 15.08] [-0.35, 4.09] [-4.08, 3.29] [-13.41, 14.74]
-8.289 -2.428 -3.012 -9.322 -3.383 -2.268
logTaxPrice B2 (6.356) (0.853) (9.137) (1.855) (3.066) (6.727)
[-12.88,7.83] [-4.08,-0.77]  [-18.84,14.52]  [-12.30, -4.62] [-12.25, 1.49] [-14.18, 12.51]
-0.727 0.292 1.340 0.540 0.354 0.186
logCapitalExpense B3 (4.625) (0.069) (7.158) (0.134) (0.231) (4.410)
[-13.56, 10.60] [0.16, 0.43] [-13.78, 17.34] [0.19, 0.73] [0.06, 0.86] [-11.53,10.16]
-0.792 0.052 2.006 0.037 0.102 0.670
EBIT Ba (3.744) (0.027) (8.052) (0.044) (0.151) (4.645)
[-9.53,7.47] [-0.00, 0.11] [-16.05, 17.77) [-0.04, 0.13] [-0.04, 0.56] [-9.87, 14.41]
-2.932 -0.617 -0.525 -0.112 -0.514 -0.460
logEmployment Bs (8.046) (0.084) (7.022) (0.145) (0.234) (4.594)
[-25.44,3.95] [-0.79,-0.45]  [-16.96, 16.20] [-0.46, 0.13] [-0.82, 0.10] [-12.37,11.30]
-1.459 0.109 0.059 -0.966 -0.178 -0.457
logRevenue Be (6.745) (0.094) (8.619) (0.283) (0.529) (3.974)
[-13.64, 15.18] [-0.08, 0.29] [-13.60, 19.21] [-1.24,-0.22] [-1.25,0.34] [-8.10, 12.77]
0.977 0.261 0.977
Correlation K - - - (0.206) (0.259) (0.206)
[0.53, 1.36] [-0.15, 0.85] [0.53, 1.36]
3.102
Unobserved Heterogeneity o2 - - - (0.132)
[2.85,3.37)
Network Formation
0.725
SIC homophily T - - - (0.017)
[0.69, 0.76]
0.692
Tech homophily Y2 - - - (0.010)
[0.67,0.71]
Criteria
- -1958.68 -44949.63
Log likelihood (20.94) (9729.57)
4794.66 189418920.84
AICM (20.68) (4440159.24)
Observations 1150 1150

Notes: This table presents the estimation results for the HSAR and SCHSAR models with G = 3. MCMC sampling runs a total of 50,491
iterations, where the first 500 iterations discarded as burn-in and every 10th draw is retained, yielding 5, 000 effective draws. Posterior means,
standard deviations, and 95% equal-tailed intervals (ETI) are computed using these MCMC draws.
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Figure C.34: Network of interactions by latent types defined from SCHSAR (G=2) estimation results.

C.3.3 Direct, Indirect, and Total Effects

Table C.7: Regressions of Effects of Interest on Firm Characteristics

Direct Indirect  Indirect Total Total
Effects Spillin Spillout Spillin Spillout
M @ 3) (C)) ()
logTotal Asset —0.092""  0.010™  0.017"  —0.082"" —0.075"
(0.025) (0.004) (0.007) (0.024) (0.030)
Computers & Communications —1.511""  —0.027 —0.105" —1.539"" —1.616""
(0.158) (0.025) (0.044) (0.148) (0.185)
Drugs & Medical —0.438""  0.041 —0.021 -0.397"  —0.458"
(0.167) (0.026) (0.047) (0.156) (0.195)
Electrical & Electronic —1.388"  —0.023 —0.089" —1.411"" —1.477"
(0.183) (0.029) (0.052) (0.171) (0.215)
Mechanical —1.026™" —0.011  —0.041 —1.037"" —1.067""
(0.214) (0.034) (0.060) (0.200) (0.251)
Others —0.292 0.002 —0.003 —0.290 —0.295
(0.222) (0.035) (0.063) (0.208) (0.260)
Degree Centrality —6.974" 1.084"  25.125""  —5.890"  18.151"""
(3.722) (0.591) (1.048) (3.478) (4.352)
Intercept 8.685™  1.090""  0.896"" 9.775™" 9.581™"
(0.209) (0.033) (0.059) (0.195) (0.244)
Observations 1150 1150 1150 1150 1150
Adjusted R? 0.137 0.021 0.447 0.157 0.105

Notes: Standard errors are reported in parentheses. Coefficients marked with

and 1% levels, respectively.

s

and

*** are significant at the 10%, 5%,
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