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Abstract

A security flaw in the firmware of microcontrollers (MCUs) can lead to devastating con-

sequences. Finding and fixing these bugs before deployment is essential because patching

them in the field is often difficult, expensive, or impossible. However, standard software

testing techniques like fuzzing struggle with embedded firmware due to its tight coup-

ling with specialized hardware, which makes testing slow, inaccurate, and inefficient. This

thesis studies two key design choices: where tests run (emulation, Hardware-in-the-Loop

(HIL), or on-device) and what feedback and inputs they use (control flow vs. data flow;

generic vs. domain-specific). It moves testing from slow emulation to real hardware and re-

places simple code coverage with data-flow guidance to drive bug finding. It also measures

how new hardware features can prevent whole classes of bugs.

The approach is demonstrated through four linked contributions. First, Sizzler solves the

input wasted problem by generating valid, domain-aware tests for Programmable Lo-

gic Controllers (PLCs) by deep learning model, so fuzzing effort is not wasted. Second,

FuzzRDUCC improves feedback by tracking def-use chains, revealing subtle bugs that

edge-based coverage can miss. Third, Hardfuzz brings this data-flow guidance onto real

hardware, using hardware breakpoints for fast, consistent testing. Finally, a differen-

tial testing framework for MicroPython compares builds with and without architectural

memory-safety features from CHERI and shows which bug classes they block.

iii



These results show that firmware testing benefits from hardware-centric, data-flow-guided

methods. These approaches yield smarter, domain-aware inputs; feedback that is more

informative than edge coverage; and fast, consistent testing on real devices. It also provides

clear evidence that architectural memory safety-exemplified by CHERI-can block whole

classes of vulnerabilities. In short, the thesis shifts the goal from only finding bugs to also

preventing them by design.
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Chapter 1

Introduction

The proliferation of Internet-of-Things (IoT) devices, powered by microcontroller units

(MCUs), has reshaped the landscape of modern computing. These small, low-cost systems-

on-chip (SoCs) sit at the heart of embedded systems [1]. Beyond consumer devices such

as thermostats and wearables, MCUs are central to industrial control systems (ICS) and

critical infrastructure. Programmable Logic Controllers (PLCs)-specialized MCU-based

controllers-run automated processes in power grids, water treatment, and smart factories.

While this technological integration drives efficiency, it also introduces severe security

risks. A vulnerability in a consumer device might lead to data leakage, however, a flaw

in a PLC can have far more devastating consequences. A prominent example is the class

of vulnerabilities affecting widely-used PLCs such as the Siemens S7 family. A specific

vulnerability, CVE-2022-38465, could allow attackers to discover the private key of a CPU

product family by an offline attack against a single CPU member of the family1. Attackers

could then use this knowledge to extract confidential configuration data from projects

that are protected by that key or to perform attacks against legacy Programmiergerät/

Personal Computer (PG/PC) and Human-Machine Interface (HMI) communication. The

compromise of such systems can lead to catastrophic outcomes, including widespread

power outages, disruption of essential services, and significant threats to public safety.

1. Further details available at: https://nvd.nist.gov/vuln/detail/CVE-2022-38465

1

https://nvd.nist.gov/vuln/detail/CVE-2022-38465


1. Introduction 2

Because these attacks often exploit firmware bugs, finding and fixing vulnerabilities before

deployment is essential. Post-deployment patching is slow, costly, or infeasible in indus-

trial settings. A notable example of an unpatchable hardware-related flaw is the bootrom

vulnerability in the Nintendo Switch’s SoC, which permanently compromised the system’s

security2. In critical infrastructure, patching may require a complete shutdown and re-

boot of physical systems, leading to high financial and operational costs. Consequently,

it is imperative for developers to identify and remediate firmware bugs at the source-code

level through rigorous in-house testing. To this end, extensive security testing during the

development phase is the most effective strategy to prevent or mitigate such attacks.

Researchers have explored vulnerability detection techniques including remote attesta-

tion [2], compartmentalization [3, 4], and static and dynamic analysis [5, 6, 7]. In prac-

tice, dynamic methods are attractive to practitioners: they reduce false positives, add no

runtime cost to the final product, and can find exploitable bugs before release.

Fuzz testing, or fuzzing [8], has emerged as one of the most successful dynamic analysis

techniques for discovering security flaws. Fuzzing operates by generating a multitude of

test cases to repeatedly execute a target program while monitoring for exceptions, such

as crashes or timeouts, which indicate potential vulnerabilities. A typical fuzzer main-

tains a queue of ”seeds”—inputs known to be interesting—and iteratively mutates them

to generate new test cases. By strategically guiding this process, researchers can discover

vulnerabilities more efficiently. To date, fuzzing has successfully identified thousands of

bugs in a wide range of software, from general-purpose applications [9] and IoT devices [10]

to firmware [11], operating system kernels [12], and database systems [13]. Fuzzing meth-

odologies are broadly categorized as mutation-based, which modifies existing inputs, and

generation-based, which creates new inputs from scratch based on a predefined grammar

or model.

2. Further details available at:https://nvd.nist.gov/vuln/detail/CVE-2024-45200

https://nvd.nist.gov/vuln/detail/CVE-2024-45200
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Algorithm 1: Core Fuzzing Algorithm [14]
Input: initSeedCorpus()

Output: Expanded corpus and accumulated observations
1 Initialization: ;
2 Initialize the seed corpus ;
3 queue← corpus ;
4 observations←∅ ;

5 while ¬timeout do
6 candidate← choose(queue,observations) ;
7 mutated← mutate(candidate,observations) ;
8 observation← eval(mutated) ;
9 if isInteresting(observation,observations) then

10 queue← queue∪{mutated} ;
11 observations← observations∪{observation} ;
12 end
13 end

Algorithm 1 outlines the fundamental workflow of state-of-the-art fuzzing. The process

begins by initializing a queue with a user-supplied set of input, known as the seed corpus.

The fuzzer then enters its main loop, which iteratively performs four key operations:

• Selection: An input, referred to as a candidate, is chosen from the queue.

• Mutation: The fuzzer applies modification strategies to the candidate to generate

a new, mutated input.

• Evaluation: The target program is executed with the mutated input, and the

resulting behaviour (e.g., code coverage) is captured as an observation.

• Update: The outcome is evaluated to see if it is interesting. An observation is

typically considered interesting if it triggers new behaviour, such as exploring a

previously unseen code path or causing a crash. If it is, the mutated input that

produced it is added to the queue for future testing, and the collection of observations

is updated.
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This feedback loop allows the fuzzer to progressively expand its corpus and explore deeper

parts of the target program. The process continues until a stopping condition is met, such

as reaching a time limit or achieving a certain level of coverage. The effectiveness of a

fuzzer is often measured by the number of unique bugs it discovers and the extent of code

coverage it achieves.

1.1 Challenges in Fuzzing Embedded Firmware

Although fuzzing has proven its success in various representations, like source code or

binaries, applying it to embedded firmware presents unique challenges. The root of these

challenges lies in the inherent characteristics of embedded systems, which often involve

tight hardware coupling, real-time constraints, and limited resources, and the limits of

current analysis techniques. We organize the challenges into four connected problems

that we address in this dissertation.

1.1.1 C1. Fidelity & Throughput

The primary obstacle to firmware analysis is the tight coupling between the software and

its specialized hardware. An MCU’s firmware is a monolithic binary designed to run on a

specific hardware configuration, interacting directly with peripherals via Memory-Mapped

I/O (MMIO), Direct Memory Access (DMA), and interrupts [15]. Direct execution on a

host is not possible. Re-hosting [16] emulates the system, but accurate peripheral be-

haviour is hard to model at scale. Abstractions that bypass hardware interactions can

boot more targets but miss driver code. Hardware-in-the-Loop (HiL) forwards I/O to real

devices [17, 18, 19], which improves fidelity but adds synchronization overhead that slows

execution—at odds with high-throughput fuzzing.
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1.1.2 C2. Weak Feedback Coverage

Coverage on basic blocks or edges is often too coarse for firmware with heavy use of inter-

rupts, callbacks, and register-level I/O. Conventional coverage may not reflect whether a

value actually flows from a definition to its uses in driver code. Fuzzing needs feedback

that ties data flow to peripheral-facing code to explore deeper behaviour reliably.

1.1.3 C3. Input Validity under Domain Constraints

Many embedded targets accept structured inputs (e.g., PLC ladder logic encodings, field

protocols, or language scripts). 90% of testcases generated by mutation produce failed

early checks and wasted time [20]. Domain-aware generation or mutation is needed to

keep inputs well-formed and to cross protocol and logic checks more often.

1.1.4 C4. From Finding to Preventing Memory Errors

Even with better testing, C-based stacks remain prone to memory bugs. Where possible,

architectural support such as Capability Hardware Enhanced RISC Instructions (CHERI)

can prevent or trap classes of errors. We need empirical methods to measure such preven-

tion on real embedded software.

These four challenges map to two dimensions in the design space: where we run (emulation,

HiL, on-device) and what feedback and inputs we use (control flow vs. data flow; naive vs.

domain-specific). The contributions in this thesis cohere around these dimensions.
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1.2 High-Level Research Questions

This section introduces research questions that stem directly from the four challenges

discussed in Section 1.1. The questions build upon one another: we first ask how to

improve core fuzzing components like input mutation (RQ1) and feedback (RQ2, RQ3),

and then use these insights to tackle the ultimate challenges of testing complex targets

and evaluating architectural prevention (RQ4).

Research Question 1: Can domain-specific learning improve mutation so

that more inputs pass checks and expose deeper code in PLC workloads?

Hypothesis: Learning mutation sequences with Sequential Generative Adversarial Net-

works (SeqGAN) will increase the share of valid and useful test cases for PLC ladder

logic, which will raise coverage and bug findings compared with generic havoc-style muta-

tion.

Mutation strategies in fuzzing often leverage bitwise operations to target specific issues,

particularly in the American Fuzzy Lop (AFL) [21] through its havoc phase, which ran-

domly applies mutations operators such as bit flips and insertion of significant values. We

propose Sizzler, using SeqGAN to optimize these mutation strategies for the havoc phase,

thereby enhancing the identification of vulnerabilities in PLC firmware of ladder diagrams

through emulation. Sizzler demonstrated its efficiency by swiftly identifying vulnerabilit-

ies, securing a CVE-ID, and comparing against traditional fuzzing techniques using the

Magma and LAVA-M datasets, thereby proving its broader applicability in embedded

systems.
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Research Question 2: Can reconstructed def-use chain coverage provide more

useful feedback for fuzzing binaries than traditional edge coverage?

Hypothesis: Tracking whether values defined at specific sites reach their uses will steer

fuzzing to driver and peripheral code that edge coverage alone misses.

Existing research predominantly relies on code or edge coverage derived from control flow

graphs (CFGs) for feedback, operating under the assumption that exposing more execu-

tion states increases bug detection likelihood. However, the control flow paradigm often

provides only a rudimentary approximation of a program’s behaviour, a limitation evident

in applications where the distinction between control structures and semantic elements is

pronounced. To address this, we introduce FuzzRDUCC, which employs dataflow analysis

instead of control flow to enhance the granularity of code path coverage. FuzzRDUCC

reconstructs the def-use chains through symbolic execution of binaries and implements

instrumentation within the emulation process to monitor code coverage. Results indicate

that while the def-use chain instrumentation introduces significant runtime overhead, it

successfully achieves higher coverage within fixed time budgets.

Research Question 3: Can on-device fuzzing with hardware breakpoints de-

liver high-fidelity execution and strong feedback at practical speed for MCUs?

Hypothesis: Running on the device and using hardware breakpoints to realize def-use feed-

back will improve throughput and fidelity compared with re-hosting or HiL, while keeping

guidance strong.
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The feasibility and potential benefits of implementing fuzzing directly on hardware for

IoT devices are promising. One key advantage is mitigating the performance overhead

typically associated with emulation in binary-only programs. For example, using Quick

Emulator (QEMU) is a standard way to emulate the firmware’s runtime environment,

but the binary-only mode in QEMU introduces a significant tracing overhead, nearly

1300% [20]. To address this, we propose migrating our fuzzing framework, which oper-

ates on dataflow, directly onto hardware. This would enable more efficient evaluation of

crashes in drivers and peripherals. Our framework uses hardware breakpoints, based on

the dataflow graph of the firmwares, to monitor which inputs trigger specific breakpoints.

The key idea is to systematically set breakpoints based on the program’s dataflow graph

and retrieve coverage information by observing which inputs activate these breakpoints.

This information can then guide a feedback-driven fuzzing strategy. Since the number of

hardware breakpoints within a microcontroller is limited, we strategically place them on a

subset of the program’s code blocks and periodically relocate them. This approach allows

us to balance the limitations of hardware resources while still maintaining effective code

coverage and fuzzing performance.

Research Question 4: As firmware complexity grows, traditional fuzzing

struggles with highly structured inputs like language interpreters. How can we

evolve test generation beyond simple mutation to rigorously assess architectural

defences, thereby measuring the shift from vulnerability discovery to prevention?

Hypothesis: For complex, stateful targets like the MicroPython interpreter, naive fuzzing

is ineffective. A combination of LLM-seeded test generation and concrete-syntax-aware

(CST) mutation is required to create valid inputs that can penetrate deep logic and expose

memory-unsafe states. Applying this advanced testing methodology within a differential

framework will empirically demonstrate that an architectural solution like CHERI pre-

vents entire classes of memory errors that a standard build would suffer from.
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We evaluated CHERI’s effectiveness in preventing memory errors using differential testing

on MicroPython, a widely-used embedded interpreter chosen for its complex codebase and

large attack surface. Our method involves running an identical suite of tests on both a

CHERI-enabled build and a standard, non-CHERI build.

To generate relevant and diverse testcases, we seeded a large language model (LLM) with

public bug narratives. We then applied concrete-syntax-tree mutations to these inputs

to ensure they remained well-formed and syntactically correct. By comparing the execu-

tion logs and crash traces from both builds, we could precisely identify memory errors

that CHERI successfully trapped, which would otherwise cause crashes or silent data

corruption in the standard build.

1.3 Thesis Statement

The security of microcontroller firmware can be significantly advanced by adopt-

ing a hardware-centric paradigm that not only improves vulnerability detection

by replacing slow emulation with direct on-chip fuzzing guided by intelligent,

data-flow-driven analysis, but also pioneers vulnerability prevention through ar-

chitectural memory safety enhancements.
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Figure 1.1 ties the thesis to the end-to-end fuzzing loop. At the top, the fuzzing engine

reads a seed from the corpus, applies a mutation strategy, and sends the final input to

the Program Under Test (PUT) executor. The green path shows a run that raises

coverage (first input 0x01 reaches new code across State 1 and State 2). The red path

shows a run that triggers a bug (second input 0x11 reaches a faulting path). The bug

monitor collects signals (coverage deltas, exits, timeouts, crashes), verifies crashes, and

feeds results back to the engine—closing the loop of Algorithm 1.

The bottom row links each contribution to the correct module:

• MicroPython (left, green) —Seed set. This pipeline builds the seed corpus:

it aggregates CVE proofs of concept (PoC) and issue reports, uses an LLM-based

suspicious-input generator, and applies a CST-preserving mutator to keep inputs

valid. We also run the same inputs on non-CHERI and CHERI builds to label seeds

that expose memory issues; the primary output is a high-quality, unified seed set

for the fuzzer. (RQ4, mainly C3; CHERI results inform C4.)

• Sizzler (centre, blue) —Mutation strategy. A SeqGAN learns sequences of

mutation operations that pass PLC checks and open new paths in ladder-logic pro-

grams under emulation. Sizzler plugs into the mutation stage of the engine and

improves how seeds are turned into final inputs. (RQ1, C3.)

• Hardfuzz (right, gray) —Executor. The executor runs on the device. On the

host we keep the mutation engine, coverage map, and a small state machine; we

load a def–use chain and use JTAG to arm hardware breakpoints so the device

itself provides fast, high-fidelity execution and feedback. (RQ2, RQ3, C1–C2.)

• FuzzRDUCC (right, gray, inside Hardfuzz) It is the feedback layer that adds

def–use coverage during emulated execution: QEMU instrumentation records def

and use events and updates the coverage map to guide seed selection (RQ2, C2).

In Hardfuzz, the same idea is realized with hardware breakpoints instead of QEMU

hooks.
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1.3.1 Sizzler

To overcome the wasting of time caused by the randomness of mutation strategies in

fuzzing process, most existing approaches rely on imprecise heuristics or complex and

expensive program analysis (e.g., symbolic execution or taint analysis) techniques to gen-

erate and/or mutate inputs to bypass the sanity checks. For example, MOPT [22] uses a

set of heuristics to optimize the mutation strategies in the havoc phase of AFL. However,

these heuristics are not adaptive and may not work well for all programs. HavocMAB [23]

uses a multi-armed bandit algorithm to learn the best mutation strategies for each pro-

gram. However, this approach requires many iterations to converge to a good strategy

and may not work well for programs with complex input formats.

To address this limitation, we propose Sizzler (Sequential Fuzzing in Ladder Diagrams

for Vulnerability Detection and Discovery in Programmable Logic Controllers), shown

in figure 1.1, a novel approach that employs Sequential Generative Adversarial Networks

(SeqGAN) to optimize mutation strategies for the havoc phase of AFL, thereby enhancing

the identification of vulnerabilities in PLC firmware of ladder diagrams through emulation

and HiL. This work is related to mutation strategy in fuzzing process, shown in blue area.

SeqGAN is utilized to learn the logic of mutation operations within the executed PLC

code, thereby aiding the fuzzing process [24]. The use of SeqGAN increases the number of

test cases that are likely associated with potential PLC code vulnerabilities and enhances

the rate of code path discovery.

Sizzler’s performance is assessed using a practical, vendor-independent emulation test bed

constructed with the OpenPLC [25] framework. In this environment, converted ladder

diagrams are executed as binaries on de facto MCUs, eliminating the need for re-hosting

PLC firmware. This approach promotes a realistic method for accelerating the study of

PLC vulnerability discovery without dependencies on vendor-proprietary PLC code.
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Moreover, the benefits of Sizzler’s mutation strategy are demonstrated beyond PLCs

and within the wider embedded systems context. This is achieved through comparis-

ons with other fuzzing strategies using the LAVA-M [26] and Magma [27] datasets as

benchmarks. Our results indicate that Sizzler outperforms the majority of state-of-the-art

fuzzing schemes.

By leveraging the capabilities of SeqGAN, Sizzler enhances the efficiency and effectiveness

of fuzzing by generating more targeted and diverse test cases. This approach not only im-

proves the detection of vulnerabilities in PLC systems but also offers broader applications

in embedded systems security.

1.3.2 FuzzRDUCC

The core of improvement of fuzzing is determining the fuzzing’s direction, as well as

how and where to mutate the input. Most existing fuzzers rely on code coverage or edge

coverage derived from control flow graphs (CFGs) as feedback to guide the fuzzing pro-

cess, operating under the assumption that exposing more execution states increases the

likelihood of finding bugs. However, this control flow paradigm often provides only a rudi-

mentary approximation of a program’s behaviour, a limitation that becomes particularly

evident in applications where the distinction between control structures and semantic ele-

ments is pronounced. For instance, in firmware with extensive use of interrupts, callbacks,

and register-level I/O, traditional coverage metrics may not accurately reflect whether a

value defined at a specific site actually reaches its uses in driver code. Edge coverage does

not show whether critical values reach their uses in driver code. Firmware heavy with

interrupts and MMIO benefits from feedback that reflects dataflow.
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Hence, we propose FuzzRDUCC (Fuzzing with Reconstructed Def-Use Chain Coverage) to

leverage def-use chains for capturing the dataflow of the target, providing feedback instead

of relying solely on control flow. FuzzRDUCC is designed to enhance the capabilities of

fuzzers through the incorporation of def-use chains, structuring our approach into two

distinct phases: static analysis and fuzzing.

In the static analysis phase, we employ the angr [28] framework to extract def-use chains

from binary code. This involves acquiring precise addresses and the quantity of definitions

and usages for each block translated. The process includes the instrumentation of def-use

chains, which entails recording the number and address of definitions and usages for

every translated block, facilitated through the lightweight code generation capabilities of

QEMU.

Transitioning to the fuzzing phase, our methodology integrates the deployment of an

innovative bitmap specifically designed to precisely monitor the locations of definitions

and usages. This is achieved through instrumentation based on the addresses of definitions

and usages within basic blocks translated from QEMU. Upon execution of a basic block,

the bitmap is updated in comparison with a global map to track the execution state.

This mechanism acts as a directive for the fuzzer, guiding the initiation of a re-mutation

process informed by the analysis of previously evaluated seeds.



1.3. Thesis Statement 15

1.3.3 Hardfuzz

State-of-the-art firmware fuzzing uses rehosting, para-rehosting, hardware-in-the-loop (HiL),

and fully on-device execution, but each approach has practical limits. Rehosting runs firm-

ware in a virtualized target, yet setup is complex and often slow. Para-rehosting lowers

emulation costs via HAL stubs, but does not reach driver code. HiL forwards I/O to real

devices, which preserves fidelity but adds heavy synchronization overhead. Fully on-device

tracing (e.g., Intel PT, ARM ETM) is not widely available across microcontrollers and

boards.

We present Hardfuzz, a hardware-first fuzzing that uses hardware breakpoints as its feed-

back channel. We statically extract definition–use (def-use) chains and place a hardware

breakpoint at each def. When the def fires, we step off the site and re-arm breakpoints

at the corresponding uses, which lets us follow value flows at instruction granularity. The

fuzzer records both def hits and def-use pairs in two coverage maps to guide input selec-

tion. Because microcontrollers expose only a few Flash Patch and Breakpoint (FPB) slots,

we employ a weighted relocation policy: we prioritize defs with more uses and gradually

downweight defs that have already been explored; use breakpoints are inserted as tem-

porary hardware BPs, so a slot frees itself on hit. This design gives precise, low-overhead

guidance while staying fully on hardware.

By combining on-device execution with def-use-driven feedback, Hardfuzz improves path

discovery in driver and embedded code while avoiding rehosting complexity and HiL

synchronization costs. The framework is practical for IoT targets with limited debug

resources and scales with automatic corpus growth and mutation.
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1.3.4 Differential testing of MicroPython under CHERI

Embedded stacks often include high-level interpreters. Our early fuzzing showed that

naive mutation yields many invalid scripts; more importantly, memory-unsafe C inter-

preters remain vulnerable even when fuzzed. We need both better input generation and

architectural support to prevent memory errors.

We study MicroPython, a Python 3 implementation for MCUs. We build a differential

testing framework that runs the same tests on a standard build and a CHERI-enabled

build. The framework uses a Large Language Model with public MicroPython CVE nar-

ratives and bug reports to generate valid starter tests for seed collection, and then apply

syntax-aware mutations on the CST. We compare logs and crash dumps: a crash in the

non-CHERI build that is trapped as a bounds violation in the CHERI build points to a

memory safety issue that CHERI prevents.

The differential framework helps us find more unique core‑interpreter memory‑safety bugs

(excluding libffi), while total unique bugs are higher on non‑CHERI due to libffi presence.

It also helps us find 35 unique bugs on the latest version of MicroPython (MicroPython-

1.27-preview). We also create a dataset of MicroPython memory safety bugs to support

CHERI and embedded security research.

1.4 Contributions

The thesis makes the following original contributions to the field of embedded firmware

security, particularly in the context of fuzz testing for embedded system. Each contribution

addresses specific challenges and research questions outlined earlier.
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1. Domain-aware mutation for PLC workloads (Sizzler). A SeqGAN-based

mutation strategy that increases valid test rate and improves coverage on PLC

ladder logic. We also extend emulation with GPIO/I2C and Modbus/TCP refine-

ments and release a PLC ladder logic program dataset for future security research.

(RQ1, C3).

2. Dataflow-guided fuzzing with def-use coverage (FuzzRDUCC). A binary-

focused method to reconstruct def-use chains and a lightweight QEMU instrument-

ation that tracks def-use events at runtime to guide fuzzing beyond edge coverage.

(RQ2, C2)

3. On-device fuzzing with breakpoint feedback (Hardfuzz). A practical on-

hardware fuzzing framework that realizes def-use guidance via hardware breakpoints

with a weighted relocation policy under tight hardware breakpoint limits, avoiding

re-hosting and HiL overheads. (RQ3, C1, C2)

4. Differential testing of MicroPython under CHERI. A differential testing

framework that combines LLM-seeded, CST-aware test generation with CHERI-

based and non-CHERI execution to expose and prevent memory errors in MicroPy-

thon. We also present a curated dataset of MicroPython memory safety bugs to

support CHERI and embedded security research. (RQ4, C3, C4)

1.5 Publications

This thesis draws on the following publications and preprints. Each item notes the related

research question(s) and challenge(s).

• Sizzler: Sequential Fuzzing in Ladder Diagrams for Vulnerability Detec-

tion and Discovery in Programmable Logic Controllers Addresses RQ1

(C3). Publication: [IEEE Transactions on Information Forensics and Security, DOI:

10.1109/TIFS.2023.3340615].

10.1109/TIFS.2023.3340615
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• FuzzRDUCC: Fuzzing with Reconstructed Def-Use Chain Coverage Ad-

dresses RQ2 (C2). Publication: [Doi:https://doi.org/10.48550/arXiv.2509.

04967].

• Hardfuzz: On-Device Def–Use–Guided Fuzzing with Hardware Break-

points. Addresses RQ3 (C1, C2). Under Review: The 5th International Fuzzing

Workshop (FUZZING) 2026.

• Differential Testing of MicroPython under CHERI. Addresses RQ4 (C3,

C4). Under Review: 2026 European Conference on Object-Oriented Programming

(ECOOP 2026) .

1.6 Summary of Research Artifacts

To facilitate reproducibility and support further research, this thesis is accompanied by

a comprehensive set of research artifacts. These artifacts encompass the source code for

the proposed techniques, experimental datasets, and records of upstream bug reports and

patches. All materials are publicly accessible via the following repositories:

• Sizzler implementation and PLC corpus. The source code for the Sizzler frame-

work, comprising the ladder-logic mutation engine, the PLC emulation harness, and

the automation scripts required to reproduce the experiments in Chapter 3. This

repository also contains the synthetic ladder logic programs and the vulnerability

corpus used for evaluation. https://github.com/MaksimFeng/Sizzler

• FuzzRDUCC prototype. The implementation of the FuzzRDUCC data-flow-

guided fuzzer (Chapter 4). This artifact includes the Angr-based scripts for definition-

use chain reconstruction, the fuzzing workflow, and the configuration files for the

binutils targets. https://github.com/MaksimFeng/qemuafl-dataflow

https://doi.org/10.48550/arXiv.2509.04967
https://doi.org/10.48550/arXiv.2509.04967
https://github.com/MaksimFeng/Sizzler
https://github.com/MaksimFeng/qemuafl-dataflow
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• Hardfuzz prototype. The complete source code for Hardfuzz (Chapter 5), includ-

ing the on-device breakpoint controller, the definition-use selection policy, and the

patched GDBFuzz baseline used for comparison. The repository also includes the

firmware images and harness code for the three MCU targets. https://github.

com/MaksimFeng/Hardfuzz

• MicroPython differential testing framework. The testing framework presented

in Chapter 6, which includes the test generation pipeline (leveraging LLM prompts

and CST-based mutators), the harnesses for executing MicroPython on CHERI

and non-CHERI targets, and the scripts used to collect, classify, and de-duplicate

differential outcomes. https://github.com/MaksimFeng/ML4Secure

• Bug reports, CVEs, and patches. A comprehensive record of confirmed bugs,

and patches resulting from this work (including detailed MicroPython bug reports)

is provided in Appendix B.

1.7 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 1 This chapter introduces the core problem we are tackling. We outline the

main challenges (C1–C4), state our high-level research questions (RQ1–RQ4) that

guide this work, and present the thesis statement and an overview of the following

chapters.

Chapter 2: Background and Related Work This chapter covers the essential back-

ground information needed to understand this thesis. We explain the basics of MCUs

and PLCs, review different software testing approaches, and introduce key concepts

like automated testing, data-flow analysis, and the CHERI secure hardware archi-

tecture.

https://github.com/MaksimFeng/Hardfuzz
https://github.com/MaksimFeng/Hardfuzz
https://github.com/MaksimFeng/ML4Secure
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Chapter 3: Sizzler (RQ1, C3) This chapter presents Sizzler, a new tool we developed

to find bugs in PLCs. We describe how Sizzler automatically creates tests specifically

designed for ladder logic with new mutation strategy, the programming language

used by PLCs. This work directly answers our first research question (RQ1).

Chapter 4: FuzzRDUCC (RQ2, C2) In this chapter, we introduce FuzzRDUCC, a

technique for making automated testing more effective by tracking how data moves

through a program. We explain how we analyse a program’s code to understand

these data flows and use that information to guide our bug-finding efforts. This

chapter addresses our second research question (RQ2).

Chapter 5: Hardfuzz (RQ3, C1–C2) This chapter details Hardfuzz, our approach for

testing software directly on the physical device itself. We describe our technique

for tracking data flow in real-time on the hardware, which is difficult due to its

limited resources. We then show how this on-device method compares to testing in

a simulated environment, addressing our third research question (RQ3).

Chapter 6: Differential Testing of MicroPython under CHERI (RQ4, C3–C4)

This chapter explores the security benefits of modern CHERI hardware. We present

a differential framework that uses LLM and libCST to generate testcases to test the

MicroPython programming language running on CHERI and non-CHERI. The goal

is to measure how well this special hardware prevents common and critical memory

bugs, answering our fourth research question (RQ4).

Chapter 7: Conclusion Summarizes contributions, limitations, and future work.



Chapter 2

Embedded Fuzzing: Challenges and
State of the Art

Embedded systems (such as IoT devices, industrial controllers, medical implants, etc.)

present unique challenges for software testing. Their firmware is tightly coupled to spe-

cialized hardware and peripherals, and they often run on bare metal or a small RTOS, and

targets diverse architectures. Fuzz testing–repeatedly executing a program with mutated

inputs to trigger faults–has proven highly effective at exposing bugs in conventional

software, and is recommended by multiple industry standards.

However, applying fuzzing to embedded firmware is non-trivial. Unlike user-space pro-

grams that can be instrumented and run in a process on a PC, firmware is designed to

run on a specific microcontroller with particular memory-mapped I/O and device drivers.

Simply compiling firmware code as a normal application or fuzzing it in isolation fails to

exercise interactions with the actual hardware. The holistic fuzzing of embedded systems

must cover the firmware and its hardware context. Two fundamental issues make this

difficult: (1) the strong dependence on specific hardware, and (2) the immense heterogen-

eity of architectures and peripherals in the embedded world. These factors lead to a lack

of a ”one-size-fits-all” embedded fuzzing solution. Recent surveys confirm that fuzzing

embedded systems remains an open research problem and no single golden solution exists

yet [29].

21
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2.1 Core Fuzzing Components for Embedded Sys-

tems

No matter the execution environment (real hardware, emulator, or hybrid), an embedded

fuzzer consists of several fundamental components:

1. Seed Selection: How to select initial inputs.

2. Mutation Strategy: How it mutates inputs and schedules test cases

3. Feedback Scheme: What feedback metrics guide it (coverage or other fitness func-

tions).

4. Bug Detection: How it detects and handles faults.

In this section, we discuss how these components are realized or adapted in state-of-the-art

embedded fuzzing systems.

Seed generation and input corpus: Like any fuzzing campaign, an embedded fuzz-

ing effort starts with an initial set of test inputs (the seed corpus). For firmware, what

constitutes an ”input” can vary widely. It could be a sequence of bytes sent over a com-

munication interface, sensor readings over time, a file loaded from flash memory, or even

a sequence of UI actions. Selecting good seeds is essential to bootstrap coverage. In some

cases, researchers use recorded real-world inputs, e.g., network traces or sensor logs, as

seeds to ensure the fuzzer begins in a valid state. If the target firmware has an associ-

ated specification (e.g., a network protocol or file format), seeds may be constructed from

known valid examples in that format [30]. Some works have applied grammar-based fuzz-

ing to embedded inputs: for instance, if fuzzing a smart light’s wireless protocol, one can

supply a basic valid packet as a seed, then let the fuzzer mutate its fields [31]. Another

strategy, used in P2IM [6] and others, is to start with a dummy seed (like an empty or

random input) and rely on the firmware’s own initialization to generate a starting state;

the fuzzer then begins mutating whatever input bytes the firmware consumed. In scen-
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arios where the firmware expects a complex sequence (e.g., a command handshake), the

harness often provides a fixed prologue to set up the state, and fuzzing is applied only to

the variable part of the input [32]. This effectively means the seed includes the fixed script

of actions. An example is fuzzing a device that first requires login: the harness can always

send a correct login sequence (not fuzzed) and then fuzz the subsequent payload. As the

corpus evolves, embedded fuzzers also employ seed minimization and interesting test case

selection akin to AFL. That is, when new coverage is found, the input that caused it is ad-

ded to the corpus. Some frameworks, like the one by Zhao et al., specifically consider how

to reduce the size of the input space by splitting firmware into independent components

and fuzzing them separately [33], by doing so, they effectively generate smaller ”modular”

seed corpora for each component, rather than one huge corpus for the entire firmware. In

general, seed generation for embedded fuzzers often requires more manual setup than for,

say, fuzzing a file parser on a PC. The harness or test-driver code must feed the input into

the firmware in the correct manner-whether through writing to a memory buffer (in emu-

lation), sending over a serial port, or toggling a General-Purpose Input/Output (GPIO)

pin in hardware. If this is done incorrectly, the firmware might not accept the input at all.

Thus, a thorough understanding of the firmware’s expected inputs (via documentation or

reverse engineering) greatly aids the creation of an effective initial seed set [34].

Mutation strategies and scheduling: Once a corpus of inputs is established, an em-

bedded fuzzer mutates them to generate new tests. Most frameworks simply reuse classic

byte-level mutation operators from tools like AFL [21]: random bit flips, increments/-

decrements, inserting or deleting bytes, swapping chunks, etc. These remain effective for

low-level firmware data (which often lacks complex structure like deeply nested formats).

A few frameworks introduce domain-specific mutations. For example, if fuzzing a sensor

input that is a 16-bit analogue reading, one might mutate it with biases towards bound-

ary values (0x0000, 0xFFFF) that could trigger edge conditions in calibration code [35].
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Another example is multi-stage mutation: Yu et al. suggested a multi-stage generation for

IoT protocols, where initial mutations ensure the message remains parseable, and later

mutations target deeper fields. In practice, many embedded fuzzers still use dumb muta-

tions, relying on coverage feedback to eventually favour those that lead to new states [36].

Scheduling refers to which input from the corpus is chosen next to fuzz and how long to

fuzz it (the energy given to an input). AFL’s default power schedule (favouring smaller,

recently fruitful seeds) is often adopted [37]. One peculiarity in embedded fuzzing is the

presence of long-running stateful sequences. If an input is actually a sequence of operations

(e.g., a series of CAN bus messages), the fuzzer might need to mutate the whole sequence or

parts of it. Some frameworks explicitly maintain stateful sequences and try mutating one

message at a time while keeping the others fixed, which is akin to higher-level scheduling

of sub-inputs [38]. The concept of ”fragmentation” of inputs for scheduling was explored

by Amini et al. in the context of protocol fuzzing (Sulley framework)-modern embedded

fuzzers implicitly use similar ideas when they allow, say, one sensor input to vary while

others remain constant for a while, to isolate the effect on coverage [39].

An important aspect of scheduling in hardware fuzzing related to timeouts and resets.

Since firmware may enter a hung state (e.g., waiting forever for a sensor), fuzzers must

detect that and reset the environment to avoid stalling. Many tools implement a global

timeout for each test case. For example, GDBFuzz [40] will reset the device if an input

does not complete execution within a certain time window (which is set empirically for

each specific target). Scheduling also includes deciding when to reset internal state: some

fuzzers reset after every input, others allow a series of inputs to be given in one session if

the protocol is interactive [20]. For instance, to fuzz a device that processes a continuous

stream, RFUZZ proposed by Laeufer [41] feeds a dozen mutated inputs in sequence before

a reset, to simulate ongoing operation-essentially treating each sequence as one compound

test case.
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Coverage and fitness metrics: Coverage-guided fuzzing dominates the landscape of

embedded fuzzing approaches, as evidenced by the fact that nearly all recent works in-

tegrate some coverage measurement [42]. The standard metric is code coverage-usually

edge coverage or basic-block coverage similar to AFL’s notion. In a hardware fuzzer, this

might be approximated (e.g., GDBFuzz’s partial coverage via breakpoints is a coarse-

grained block coverage). In an emulator, it’s straightforward to instrument every basic

block or jump. AFL-style edge coverage (with a global bitmap of edges hit) has been im-

plemented in many firmware fuzzers that run in QEMU or Unicorn engine [43, 44]. Some

works consider additional metrics: for example, if focusing on a vulnerability like memory

corruption, one might treat a detected invalid memory access as a special feedback (not

just a crash but a ”red flag” to be reached) [45]. Avatar-based fuzzers introduced the idea

of monitoring for silent memory corruptions in emulated execution-by comparing certain

memory regions between the emulator and hardware to see if corruption occurred without

an immediate crash [46]. This acts as a fitness signal to guide the fuzzer toward inputs

that cause memory inconsistencies (which often indicate latent corruption). Another met-

ric sometimes used is path length or execution depth, to reward inputs that drive the

firmware further (especially useful if the firmware has a long init phase-you want inputs

that survive longer) [47]. Agamotto presented by Wang et al. applied a time-to-execute

metric to guide firmware fuzzing under resource constraints [48].

In general, however, branch coverage remains the primary fitness metric. The surveys note

that while code coverage is an imperfect proxy for bug-finding, it is the easiest and most

generic measure to implement and has correlated well with finding crashes in practice.

Klees and Schloegel. separately argued for using the number of bugs found as the ultimate

metric, but since ground-truth bugs are unavailable for most firmware, coverage is used

as a surrogate [14, 49].
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Crash detection and handling: Determining when a fuzz test triggers a fault in em-

bedded context can be tricky. In native fuzzing, a crash usually manifests as a process

exception (segfault, etc.) [50]. In firmware, there is no process isolation-a fault may simply

reset the device or set an error flag. On real hardware, fuzzers commonly detect a crash

by monitoring the debug interface or a heartbeat [51]. For example, if the device enters

a fault handler (many ARM Cortex-M MCUs have a usage fault or hardfault handler for

exceptions) [52], the fuzzer can detect that via the debugger (e.g., a breakpoint on the

fault handler). Alternatively, a simple liveness check is used: if the device stops respond-

ing (no longer hits the breakpoint or produces output) for a certain time, it’s assumed to

have crashed and is reset. In emulation, crashes can be caught by the emulator (illegal

memory access in QEMU, etc.). Many fuzzers also inject assertions or canaries to detect

memory corruption that doesn’t immediately crash. For instance, some works utilize all

kinds of sanitizers in the emulator to catch out-of-bounds [53, 54, 55], or watchpoints

on key memory regions. The GDBFuzz authors mention the concept of detecting silent

memory corruptions on devices without MMUs by instrumenting an emulator to watch

memory writes. Once a crash is detected, the fuzzer will record the input that caused

it, possibly minimize it, and then continue. Uniqueness of crashes is often determined by

the fault address or signature (as in AFL). One must be careful on hardware because re-

peated occurrences of the same bug might manifest slightly differently if nondeterminism

is involved (e.g., race conditions causing crashes at varying addresses) [56].

Performance optimizations: While not a ”component” per se, it’s worth noting how

embedded fuzzers optimize performance. On hardware, concurrency is limited, but one

can still parallelize by using multiple devices. Some projects used an array of development

boards to fuzz in parallel, each assigned different seeds [57]. On multi-core MCUs or SoCs,

one could fuzz multiple instances of a firmware component if isolated (though this is un-

common). In emulation, parallel fuzzing is easier [58]-one can run many emulator instances

on a PC cluster, just as with normal fuzzing. The bottleneck is often the emulator speed
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or the constraint solver speed (for hybrid approaches). Techniques like snapshot/restore

are employed: e.g., Snappy introduced a fast snapshot mechanism for QEMU to quickly

reset firmware state without reloading from scratch [59]. This dramatically increases test

throughput by avoiding full re-initialization of the firmware each time.

Finally, to round out the discussion, evaluation methodology. Klees et al.’s work showed

that fuzzer evaluations can be misleading if not properly controlled [14]. Eisele et al. [40]

echo that the embedded fuzzing field would benefit from standard benchmarks and per-

formance metrics to compare approaches. They suggest adapting baseline fuzzing evalu-

ation principles to firmware: using a diverse suite of firmware programs with known bugs,

measuring bugs found over time, not just coverage. There is not a universally adopted

benchmark like LAVA or DARPA CGC for the embedded domain, though some initial

collections exist (RIOT os test suite, Juliet test cases ported to embedded, etc.). Research-

ers are aware of this gap and are moving towards more rigorous comparisons. Another

bottleneck is throughput. Emulators exploit snapshot/restore to skip init phases (fast re-

boot) and run many instances in parallel [43]. On hardware, frameworks avoid reflashing

by looping a harness in place and only power-cycling on hangs. Hybrid systems proxy only

hard peripherals to real hardware to keep most execution local [19]. Trace-based feedback

reduces in-target work and keeps runs near native speed [20].

In conclusion, the core components of embedded fuzzers are fundamentally similar to

those of traditional fuzzers, but their implementation must be tailored to the constraints

of firmware and devices. Seed selection must account for firmware’s context, mutation

and scheduling must often deal with stateful sequences and slow resets, coverage col-

lection might require innovative use of hardware features, and crash detection can be

non-standard.
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2.2 Hardware-Based Fuzzing on Real Devices

Over the last few years, a plethora of tools and techniques have emerged to enable fuzz

testing of firmware under various conditions [60]. Researchers have explored approaches

ranging from running the firmware on real hardware with instrumentation, to fully emulat-

ing the hardware in software, to hybrid combinations in between [16]. Each approach must

balance fidelity (how accurately the execution matches a real device) against automation

and speed (how much manual effort or slowdown is incurred), shown in the figure 2.1.

As illustrated in the figure 2.1, running firmware on an actual device yields perfect hard-

ware fidelity (GDBFuzz), but instrumenting or controlling the execution can be complex

and slow. In contrast, pure software emulation allows easier introspection and faster re-

sets, but may suffer from incomplete device models or incorrect peripheral behaviour [40].

In practice, existing tools occupy different points in this design space, and combining their

advantages is an active area of research. We examine all major approaches, from hardware-

in-the-loop setups to full firmware emulation, and discuss their core components (how they

generate inputs, mutate and schedule tests, monitor coverage, and determine fitness or

crashes).

One straightforward way to fuzz firmware is to run it on the actual hardware and treat the

device as the System Under Test (SUT). This avoids the difficult problem of modelling

the device’s behaviour in software-i.e. it achieves the highest fidelity by definition. The

challenge then is how to provide feedback (coverage, fault detection) from the device and

how to drive it with test inputs at scale [62]. Standard coverage-guided fuzzers like AFL

assume they can instrument the target program to collect coverage metrics and reset

it quickly between test cases. In an embedded context, the firmware cannot usually be
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Figure 2.1: The trade-off between fidelity and automation/speed in embedded fuzzing
approaches. [61]

instrumented or even paused without special support. Moreover, embedded boards often

lack an OS to assist in error handling or I/O, crashing the firmware may simply hang

the device. Recent work has therefore leveraged hardware features and external debug

interfaces to enable on-device fuzzing of firmware [63, 64].

Hardware instrumentation (via debug interfaces): Many microcontrollers include

a debug port (e.g. ARM CoreSight with SWD/JTAG, or similar on other architectures)

that allows an external debugger to control execution. Tools like µAFL and GDBFuzz

(Eisele et al.,) [40] take advantage of this to perform coverage-guided fuzzing on physical

boards. The basic idea is to use hardware breakpoints to detect when new code is reached

during execution, without needing to instrument the binary. For instance, GDBFuzz con-

figures a limited set of breakpoints at strategic code locations and runs the firmware until

a breakpoint hits; each unique hit corresponds to a new coverage point. By dynamically

managing breakpoints (swapping them in and out) and iteratively feeding inputs via a

harness, these frameworks gather coarse-grained coverage feedback from the device. Eisele

et al. report that GDBFuzz could find known and new bugs on several ARM Cortex-M
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boards, achieving substantially higher code coverage than black-box testing despite no

firmware instrumentation and only minimal slowdown from the debugger interface [40].

Similarly, �AFL uses the on-chip debug module to single-step or break on branches, as-

sembling coverage feedback in a ”non-intrusive” way so that even closed-source firmware

can be fuzzed without modifications [65]. These on-device approaches essentially treat

the microcontroller as the execution engine while using a connected PC to run the fuzzer

logic. They must cope with the typically limited throughput of hardware fuzzing-resetting

or flashing a device and waiting for it to run is far slower than in-memory execution. To

mitigate this, hardware fuzzers often keep the device running in a loop to avoid reboots,

and only restart it when a crash or hang is detected. They may also restrict coverage

collection to certain code regions (due to the small number of hardware breakpoints avail-

able). Despite these constraints, the use of real hardware ensures that all peripherals and

timing conditions are accurate, avoiding false positives that might arise in emulation. It

has been demonstrated that such hardware-in-the-loop fuzzers can be ”versatile” and re-

quire surprisingly little target-specific customization-any board that GDB can attach to

could, in principle, be fuzzed this way. The downside is scalability: a separate physical

device (or at least a separate debug probe) is needed for each parallel fuzzing instance,

and the execution speed is bounded by the device’s performance and I/O latency to the

host.

Hardware trace-assisted fuzzing: In cases where setting breakpoints is too intrusive

or limited, another approach uses trace hardware to obtain coverage. Modern processors

often have features like Intel PT (Processor Trace) or ARM ETM (Embedded Trace

Macrocell) that can stream out information about executed branches with minimal over-

head [66]. Although primarily used on high-end systems, researchers have applied these to

fuzzing as well [20]. For example, Nagy et al. showed that Intel PT could be leveraged to

significantly reduce the overhead of coverage collection for fuzzing, essentially running the

target at near native speed while logging coverage externally. In an embedded context, if

a microcontroller provides a trace port, a fuzzer could use it to know which basic blocks

or branches were executed by each input-effectively an off-chip coverage oracle. One can
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view this as a special case of hardware-in-the-loop fuzzing where the feedback channel is a

high-bandwidth trace stream instead of breakpoints. For instance, POTUS (an academic

prototype for ARM Cortex-M) used the ETM trace unit to capture execution profiles of

firmware under test, enabling on-device coverage-guided fuzzing without modifying the

code (the trace data is parsed on the host to compute coverage) [64]. These trace-based

methods achieve full instruction coverage fidelity with low perturbation of the timing, but

require that the target chip have a supported trace interface and that the fuzzer can pro-

cess the trace data fast enough. As trace ports are not present or accessible on all devices

(and sometimes disabled for security on production units), this approach is powerful but

not universally applicable [67].

Side-channel feedback: An intriguing variant of hardware-based fuzzing is to infer pro-

gram coverage or state by observing physical side channels (such as power consumption

or electromagnetic emanations) rather than digital outputs. Sperl and Böttinger intro-

duced a side-channel-aware fuzzing technique in which an oscilloscope monitors the device’

s power usage to guess which code paths were executed. By correlating segments of the

power trace with known ”fingerprints” of basic blocks or functions (obtained through

offline training), the fuzzer can estimate when a new region of code has been hit. This

provides a feedback signal analogous to coverage, even though the firmware is running

uninstrumented on a real device. In their case study on an 8-bit microcontroller, the

side-channel fuzzing approach successfully guided the fuzzer to cover more code and find

vulnerabilities, with the advantage that it needed no special hardware beyond the power

sensor [68]. The limitation is that distinguishing execution paths via side-channel measure-

ments can be error-prone and device-specific-noise or slight program changes can confuse

the classification. Nonetheless, this idea expands the toolbox for scenarios where standard

debugging interfaces are unavailable, but physical monitoring is possible (e.g., fuzzing a

sealed device by measuring its power draw or timing). Another form of side-channel feed-
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back could be timing analysis: for example, if a particular input causes a processing loop

to run longer (observed via a simple timing measurement), that might indicate new code

was exercised [69]. While cruder than code coverage, such timing-based feedback can still

guide fuzzing of systems where fine-grained instrumentation is infeasible.

Direct protocol interface fuzzing: Not all embedded fuzzing needs internal coverage

feedback. In practice, many vulnerabilities in embedded devices (especially networked IoT

devices) have been found by classic black-box fuzzing of their communication interfaces-

treating the device as a remote server, for instance, and sending malformed network

packets or peripheral inputs [70]. This approach reuses the device’s existing message in-

terfaces (UART consoles, network sockets, USB endpoints, etc.) to inject test cases, and

monitors for crashes by detecting when the device resets or becomes unresponsive. It re-

quires minimal setup: essentially the fuzzer acts like a rogue client to the device. Tools like

Boofuzz (an open-source network fuzzer) have been widely used in this manner to fuzz

IoT firmware over protocols like HTTP, Bluetooth, or proprietary command interfaces

[71]. Academic works have augmented this with some domain knowledge; for example,

FirmFuzz (Srivastava et al.,) performs introspection on firmware images to identify po-

tential input vectors (e.g., network message handlers or file parsers in the firmware) and

then generates inputs for those interfaces [72]. The major drawback of black-box interface

fuzzing is the lack of feedback: without coverage information, it may spend a long time

exploring ineffective inputs. Additionally, many embedded protocols require valid stateful

sequences (e.g., an authentication handshake before sending the payload), so the fuzzer

must be aware of protocol semantics or have recorded traffic to replay. Recent research

on stateful fuzzing and targeted fuzzing can help in this regard. For instance, Natella et

al. proposed StateAFL, a greybox fuzzer that is aware of protocol states and can reset

the target to known good states between tests [73]. In embedded scenarios, one might

implement a similar strategy: reset the device or reinvoke a subsystem to a clean state

for each test, possibly via hardware watchdogs or external power cycling if necessary.
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In summary, hardware-based embedded fuzzing provides the highest realism-the firmware

is exercised on its real platform-and recent advances show that even coverage-guidance is

possible through clever use of debugging and side-channel techniques. These methods shine

in finding bugs that depend on actual hardware behaviour (timing, concurrency, precise

register states) that emulators might miss. However, they face significant scalability and

automation challenges: setting up and controlling physical devices is labour-intensive.

This motivates the complementary line of research: re-hosting firmware in an emulated or

simulated environment, as discussed next.

2.3 Firmware Re-Hosting

A large body of work has looked at ways to run firmware in a controlled software environ-

ment on a host machine-in effect, creating a virtual replica of the embedded system [11,

74, 75]. This is often termed firmware re-hosting, and it enables the use of standard fuzz-

ing techniques (instrumentation, fast restart, etc.) without needing the physical device

for each test case. Re-hosting is appealing because it can dramatically speed up fuzz-

ing (by orders of magnitude, since an emulator can be reset or checkpointed quickly in

memory) and allows deep introspection (e.g., full code coverage measurements, memory

watchpoints, or complex program analyses) that would be hard on the device. The trade-

off, however, is fidelity: how closely does the emulated firmware execution match real

hardware? Wright et al. emphasize that fidelity (both in execution timing and in I/O

data behaviour) is the critical concern in re-hosting, yet is very hard to quantify or guar-

antee [16]. In practice, re-hosting frameworks make various approximations. They may

model only the CPU and some core peripherals, while ignoring or partially simulating

others. This can lead to firmware running but not necessarily doing anything meaningful

if it waits on an unmodeled hardware response. A classic result in this space by Muench

et al highlights that in fuzzing an embedded device, a memory corruption might not cause
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an immediate crash in the emulator (due to absent hardware feedback), yet would still

be a serious bug on the real device [76]. Thus, a key goal in emulation-based fuzzing is to

model enough of the hardware to exercise the interesting code paths, without having to

reimplement the entire device.

Full-system emulation: The most direct approach is to use a full-system emulator such

as QEMU to simulate the microcontroller CPU and as many peripherals as possible.

QEMU and similar simulators (e.g., Renode [77], or Simics [78] for high-end targets)

provide a variety of device models and can run unmodified firmware images for certain

platforms. For example, QEMU has definitions for ARM Cortex-M cores and some com-

mon microcontroller boards; a firmware built for one of those boards can be loaded into

QEMU and executed as if on that microcontroller. Coverage instrumentation can be ad-

ded by instrumenting the QEMU translated code (AFL++ and others have QEMU modes

for user-space, extended by [43], and there are patches to get coverage from system-mode

QEMU as well). The benefit of full-system emulation is that, if all required peripherals

are modelled, the firmware sees a complete environment and can potentially run as is.

In practice, though, firmware often interacts with custom or undocumented peripherals

(sensors, radios, timers, etc.) that QEMU does not support out-of-the-box [79]. Early

frameworks like Firmadyne targeted Linux-based IoT firmware by replacing the kernel

and handling syscalls, which works for high-level code but not for bare-metal logic. For

bare-metal firmware, researchers turned to a mix of static analysis and stub implementa-

tion to handle peripherals.[80] One approach is peripheral modelling: creating functional

models for the hardware registers that the firmware interacts with. The models need not

capture full hardware detail; they just must respond in a way that keeps firmware run-

ning. A notable example is P2IM, which automatically classifies memory-mapped I/O

registers into categories (control, status, data, etc.) by observing firmware’s access pat-

terns, and then supplies generic responses during emulation (e.g., fuzzer-provided random

data for data registers, or dummy status flags). P2IM’s strategy is to let the fuzzer it-

self effectively ”model” the peripherals by providing input bytes whenever the firmware
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reads from a device register, thereby exploring different hardware behaviours without

an explicit model [6]. This allowed high-throughput fuzzing of many firmware samples,

discovering bugs in USB stacks, sensor handling, etc., although certain complex devices

(DMA controllers, intricate timing-dependent peripherals) were beyond its scope.

Another peripheral modelling approach is HALucinator[81], which targets firmware that

was written against a Hardware Abstraction Layer (HAL) API. Many embedded vendors

provide HAL libraries (for example, a function HAL_UART_Transmit()to send bytes

over a UART). HALucinator replaces these HAL calls with ”emulated” versions that sim-

ulate the hardware’s effect or simply mark the operation as successful. By intercepting

calls at the function level, HALucinator achieves function-level fidelity-it does not execute

the actual low-level driver code, but it ensures the higher-level logic sees expected beha-

viours (like ”transmit succeeded”). This works for code that uses the HAL, but not for

firmware that directly pokes hardware registers (the latter requires a lower-level model-

ling like P2IM). A more recent tool, Fuzzware by Scharnowski et al. [82], significantly

improved automatic peripheral modelling by using static analysis on firmware to identify

device register accesses and their usage patterns, and then generating models with appro-

priate semantics (e.g., modelling an ADC peripheral by a simple linear conversion). In

evaluations, Fuzzware achieved higher coverage and found more bugs than P2IM for sev-

eral firmware programs, highlighting the benefit of more precise modelling [82]. Still, no

modelling approach is universal: certain firmware behaviours (like waiting for a hardware

interrupt or relying on precise analogue sensor data) are hard to model and can cause the

emulated firmware to get stuck or diverge from reality.

Hardware-in-the-loop (peripheral proxying): An alternative to modelling a peri-

pheral in software is to forward peripheral accesses to the real hardware device. This

creates a hybrid system: the CPU of the firmware is emulated, but whenever the firm-

ware tries to read or write a memory-mapped device register, the operation is sent over

a link to an actual device or component that performs it and returns a result. In other

words, the emulator ”calls out” to real hardware for help. This approach is commonly
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called peripheral proxying or hardware-in-the-loop (HIL) emulation. A classic example is

Avatar [19], which orchestrated execution between an emulator (running the core logic of

the firmware) and a physical device (handling specific I/O that the emulator can’t sup-

port). Avatar set breakpoints on I/O instructions in QEMU and diverted those to a proxy

program that communicated with the real device via JTAG. Subsequent frameworks like

Avatar2 extended this concept into a flexible platform for dynamic analysis, allowing ana-

lysts to choose which parts of execution run on the host vs. hardware. In fuzzing use-cases,

HIL proxying can enable the fuzz target to run many instructions quickly in the emulator,

but still get accurate responses for critical hardware interactions (e.g., reading an actual

sensor value from the real sensor) [83]. Researchers have demonstrated fuzzing of complex

embedded software by this method: for instance, Ferret combined Avatar2, the PANDA

emulator, and the Boofuzz fuzzer to fuzz a USB firmware, forwarding USB controller re-

gister accesses to a real controller and successfully triggering memory corruptions in the

firmware [84, 85, 74]. Hybrid approaches like this can achieve very high overall fidelity-

since the real hardware is in the loop for peripherals, the emulator no longer needs a

perfect model [86]. Wright et al. note that using real hardware for peripherals effectively

gives perfect data fidelity for those components. The cost is increased complexity and

reduced speed: every interaction incurs communication overhead (e.g., USB or network

latency between emulator and device) [60], and one must have and maintain the physical

hardware for the peripheral. SURROGATES (Koscher et al.,) even inserted an FPGA in

the loop to accelerate the proxying of hardware requests, illustrating the engineering ef-

fort sometimes needed. Nonetheless, peripheral proxying is a powerful technique when full

virtualization fails-it ”bolts in” real hardware only for the pieces that resist emulation [87].

Recent research prototypes have refined hybrid re-hosting in various ways. Charm forwar-

ded mobile device driver I/O to real hardware over USB, but required instrumenting the

driver code (limiting it to open-source drivers) [88]. ICSemu/ICS-fuzz by Tychalas et al.

[89] focused on industrial control systems: it ran PLC control logic in an emulator and

intercepted calls to I/O instructions, simulating basic sensors/actuators or allowing inter-

active inputs, thereby enabling fuzzing of PLC programs for logic bugs. Another line of
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work, Jetset [90], combines static analysis and symbolic execution to target specific code

regions in firmware that are hard to reach. Jetset can determine what peripheral inputs

are needed to drive execution to a chosen ”goal” (like a particular function) and then

essentially guides the fuzzer by providing those inputs, rather than relying purely on ran-

dom exploration. This helps mitigate path explosion in the presence of many peripheral

states. In a similar vein, Zhou et al., presents �Emu that mixes concrete and symbolic

execution to handle peripheral inputs: it runs the firmware concretely in an emulator but

on each unknown hardware read, it invokes a concolic execution to solve for an input that

will satisfy the firmware’s subsequent path constraints [91]. In effect, �Emu can compute

what device data would exercise a new path, rather than guessing. These advanced tech-

niques improve the ”smartness” of peripheral modelling by borrowing ideas from concolic

(hybrid) fuzzing-they reduce the reliance on blind random values for hardware inputs.

Sandboxing and API-level re-hosting: Some fuzzing efforts choose a middle ground in

fidelity by extracting specific components of firmware and running them in isolation on the

host [92]. For example, one might identify a parsing routine in the firmware (for a network

packet or file format) and compile it into a Linux binary, then fuzz it with libFuzzer or

AFL. This requires some adaptation-the function might need dummy replacements for

hardware interactions-but can leverage the full power of user-mode fuzzers. FirmCorn

by Gui et al. [93] is a framework that automates this sandboxing: it uses static analysis

to cut out a firmware function along with its dependencies and builds a Linux-hosted

test harness for it. By sandboxing at function-level, FirmCorn avoids dealing with the

whole OS or device state; it focuses on one algorithmic piece of the firmware (say a

crypto function or a packet parser). The upside is very fast fuzz iteration and easy use of

sanitizer tools (ASAN, etc.) for bug detection. The downside is that many embedded bugs

emerge only when the function is in its real context (e.g., misuse of a hardware buffer, or

sequencing issues between threads). Thus, sandboxing is best for certain classes of logic

bugs that are self-contained. Eisele et al. [40] categorize such approaches under ”sandbox
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emulation” of firmware. They note that while sandboxing can be effective (and several

serious vulnerabilities have been found this way), it inherently ignores some interactions

with hardware and other firmware parts, so its coverage of the whole system behaviour is

partial.

Table 2.1: Comparison of Firmware Rehosting Techniques

Technique Approach Advantages Drawbacks

Rehosting Full system
emulation (e.g.,
QEMU)

• Full control over
execution

• Debug-friendly
environment

• 1300%+
performance
overhead

• Requires
hardware-specific
peripheral models

• Tight coupling to
target architecture

• Poor non-standard
peripheral support

Para-rehosting Partial emulation
(shadow layer) • Reduced

emulation scope
• Faster than full

rehosting

• Cannot fuzz
middleware
components

• Incomplete system
state tracking

• Misses
hardware-middleware
interactions

• Shadow layer
accuracy dependency

HiL QEMU + physical
hardware I/O • Real hardware

peripheral fidelity
• Accurate I/O

timing

• Not scalable
(requires device pool)

• High synchronization
latency

• Risk of physical
hardware damage

• Limited parallel
execution

On-Device Native hardware
execution • Maximum

execution fidelity
• Zero emulation

artifacts

• Prohibitive cost at
scale

• Slow iteration cycles
• Limited debugging

capabilities
• Device management

complexity
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To summarize the landscape: Emulation-based fuzzing has drastically expanded what can

be tested without physical devices. Tools now exist across a spectrum from low-fidelity but

highly automated (e.g., feed everything random data in QEMU) to high-fidelity but more

manual (e.g., connect actual hardware for peripherals), shown in table 2.1. A recurring

theme in the literature is the speed vs. fidelity trade-off. Fully software approaches run

millions of test cases quickly but risk missing bugs due to inaccurate models; hardware-

in-loop approaches ensure real behaviour but run orders of magnitude slower and require

per-target effort. Hybrid techniques and smarter modelling attempt to get better perform-

ance, but there remains no perfect solution [94]. Wright et al.’s survey of re-hosting chal-

lenges identifies 28 distinct challenges ranging from obtaining firmware binaries, through

handling self-modifying code in emulators, to timing synchronization between emulated

components [16]. The current state of research has made impressive progress on many

of these, but some (like precisely emulating timing or complex analogue peripherals) are

still open problems. Nonetheless, the field has matured to the point where integrated

frameworks (such as Avatar2, PANDA, or the Intel-developed MCUemu [95]) can be used

by practitioners to perform security analysis on firmware via re-hosting. As for now, it is

increasingly common for new fuzzers to combine techniques: for example, a fuzzer might

run the CPU in QEMU (for speed and coverage instrumentation), use a partial peripheral

model (for common devices), and fall back to a live device or solver-based input genera-

tion for the trickiest interactions. This multi-modal strategy is likely to continue, as no

single method suffices for the variety of embedded systems in the wild.
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2.4 Abstraction-Based and Hybrid Analyses

Beyond pure fuzzing, researchers have also applied symbolic execution and other program

analysis techniques to embedded firmware, either to augment fuzzing (hybrid fuzzing) or

to systematically explore states that fuzzing alone might miss. These we term abstraction-

based approaches, since they involve analysing the firmware at a higher level of abstraction

than concrete step-by-step execution on hardware or emulator.

Pure symbolic execution: Tools like FIE [96] were early efforts to symbolically execute

firmware code (FIE targeted MSP430 MCU firmware) and detect vulnerabilities like buffer

overflows by exploring all feasible paths. In symbolic execution, input data is treated as

symbolic variables rather than concrete values; the execution generates constraints (path

conditions) and uses an SMT solver to find values that drive alternate branches. FIE

could find certain bugs without any concrete runs, but it suffered from the usual path

explosion and limited scalability-firmware with loops or complex peripheral interactions

can lead to an exponential number of paths or require models for hardware. Inception

(Corteggiani et al., 2018) [17] improved on this by integrating a KLEE-based symbolic

executor with a simplified CPU emulator, and crucially allowing concrete hardware-assist:

when a peripheral register was accessed, Inception could fetch a concrete value from a real

device to avoid over-constraining or guessing the hardware state [97]. This technique of

”hardware access forwarding” during symbolic execution reduced the need to model the

entire hardware symbolically-essentially it runs symbolic execution for the code logic but

queries the physical device for any unknown input, thereby focusing the symbolic effort

on relevant branches [98]. Even so, purely symbolic approaches are limited to relatively

small programs or short execution traces before state-space explodes. They work best as

bug detectors for specific routines.
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Hybrid concolic fuzzing: A more practical approach is to combine fuzzing and symbolic

execution in a complementary way. Concolic (concrete + symbolic) execution runs the

program with concrete inputs (e.g. provided by a fuzzer) and simultaneously gathers

path constraints; periodically, it solves some constraints to generate new inputs that steer

into different paths [99]. This has been popular in general software (e.g., QSYM [100],

Driller [101], etc.), and has been applied to firmware as well. Ai et al. propose a concolic

testing approach for embedded binaries that supports multiple architectures by hooking

into the device’s debug interface: they perform the concrete execution on the real device

and offload the constraint solving to the host [102]. In their setup, the device is run with

a given input until a certain branch is hit; then the device is paused and the execution

trace (or relevant state) is fed to a symbolic engine on the PC which generates a new

input that would flip one of the recently encountered branches. The new input is then

tested on the device. This way, the real device provides accurate execution, and the solver

helps guide exploration. The approach found some deep bugs in wireless sensor network

firmware by exploring tricky checksum conditions that pure fuzzing struggled with [103].

Another recent example is ES-FUZZ [104], which runs concurrently with a firmware fuzzer

and automatically selects sequences of MMIO reads where coverage has stagnated. It

then performs symbolic execution on the selected portions to generate stateful, context-

aware MMIO models. These models are immediately adopted by the fuzzer to guide

exploration of critical peripheral interactions, ultimately reducing the input search space

and significantly improving coverage.

Overall, abstraction-based techniques like symbolic execution are powerful for systematic

coverage of certain code segments (especially where the input space is structured or has

checksums, magic bytes, etc.), but they require significant computational resources and/or

manual modelling of environment, which limits their standalone use in large firmware. In

the context of fuzzing, they are increasingly used as boosters-e.g., when a fuzzer plateaus,

a symbolic analysis might generate a breakthrough input. However, even hybrid fuzzers

ultimately face similar challenges as pure fuzzers in the embedded realm, because they
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rely on concrete execution traces and thus on a working execution environment. If the

firmware cannot run far without proper hardware inputs, concolic methods also stall.

Thus, these methods usually assume they have at least a partially functioning re-hosted

or hardware-assisted setup to work with.

Finally, we note an orthogonal dimension of abstraction: some works abstract the hard-

ware itself. For instance, Trippel et al. describe fuzzing actual hardware designs (Verilog

circuits) like software [105], though that is beyond the scope of firmware fuzzing and

more related to hardware security testing. In the firmware context, ”hardware abstrac-

tion” typically refers to using layers like HAL or OS APIs as interception points, which

we discussed (HALucinator, etc.).

In summary, abstraction-based approaches enrich embedded fuzzing by enabling deeper

insight into program logic (through solvers) and by compensating, to some extent, for blind

spots in brute-force fuzzing. The combination of fuzzing and symbolic execution-hybrid

fuzzing-has shown promise in multiple 2023 works for firmware, and we expect future

fuzzers to increasingly integrate lightweight concolic components that operate seamlessly

with the main fuzz loop. Still, these techniques are no silver bullet; they must be carefully

applied to avoid state explosion, possibly focusing on specific subsystems of the firmware

where they add the most value.

2.5 Summary

This chapter surveyed the state of embedded firmware fuzzing across four themes: core

fuzzer components, on-device (hardware) fuzzing, firmware re-hosting, and abstraction-

based / hybrid methods.
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For core fuzzer components. We reviewed how seed selection, mutation, scheduling,

feedback, and crash handling must be adapted to embedded contexts. Seeds can be pack-

ets, sensor traces, files, or action scripts; good harnesses are key to feed inputs in the

right way. Most systems keep AFL-style mutations and scheduling but must handle long,

stateful sequences and reliable resets. Coverage remains the main fitness signal (edge or

basic-block coverage), with add-ons such as memory-error signals and path-length heur-

istics. Crash detection uses device faults, liveness checks, emulator traps, and sanitizers.

Snapshot/restore and parallelism in emulators raise throughput; on hardware, loops and

watchdogs help avoid re-flashing. The field still lacks shared benchmarks and agreed eval-

uation rules, which makes cross-paper comparison hard.

On-device fuzzing. Using real hardware gives perfect device behaviour but makes scale

and automation harder. Recent systems exploit debug ports (e.g., SWD/JTAG) and hard-

ware breakpoints to recover coarse coverage without binary changes; trace hardware (e.g.,

ARM ETM) can yield near-native coverage with low overhead; and side-channel signals

(power, EM, timing) can stand in when debug access is closed. Black-box interface fuzzing

(e.g., network/USB/UART) remains useful but lacks feedback. Figure 2.1 shows the cent-

ral trade-off: higher fidelity on the right comes at the cost of lower speed and automation.

Firmware re-hosting. Re-hosting runs firmware on a host system to gain speed, cov-

erage instrumentation, and deep introspection. Full-system emulation (e.g., QEMU/Ren-

ode) works when device models exist; otherwise, peripheral modelling fills gaps. We

covered generic MMIO modelling (e.g., P2IM), HAL-level stubs (HALucinator), and

static-analysis-driven models (Fuzzware). When software models fall short, hybrid ”peri-

pheral proxying” routes MMIO to real hardware (e.g., Avatar/Avatar2), trading speed for

accuracy. Function-level sandboxing (e.g., FirmCorn) enables very fast fuzzing of isolated

routines but misses whole-system effects. Table 2.1compares these choices by approach,

pros, and cons.
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Abstraction-based and hybrid methods. Symbolic and concolic execution can over-

come plateaus by solving path constraints in checksums, handshakes, and state machines.

Pure symbolic execution struggles with path explosion and device modelling; practical

systems mix concrete execution with selective solving (e.g., on device via debug links, or

only for chosen MMIO reads), and feed the results back to the fuzzer. These hybrids help

reach deep code but still depend on a workable execution setup.

Embedded fuzzing tries to balance between fidelity, speed, and coverage. On-device meth-

ods find bugs tied to real timing and peripherals but do not scale well. Re-hosting unlocks

speed and visibility but risks model errors. Hybrids bridge the gap by mixing emulation,

real hardware, and solver-based guidance. The field needs shared benchmarks, clearer

metrics (bugs found over time, not only coverage), and better support for precise timing

and complex peripherals.



Chapter 3

Sizzler: Sequential Fuzzing in Ladder
Diagrams for Vulnerability Detection

and Discovery in Programmable
Logic Controllers

3.1 Introduction and Motivation

Research Question 1: Can domain-specific learning improve mutation so

that more inputs pass checks and expose deeper code in PLC workloads?

Industrial Control Systems (ICS) underpin critical infrastructure across energy, water,

transport, and defence. Historically isolated, ICS are now connected to standard IT net-

works and use commodity software and hardware. This shift increases efficiency but also

broadens the attack surface. At the core of many ICS deployments are Programmable

Logic Controllers (PLCs), which drive real-time control with strict latency bounds. Re-

cent reports show that PLCs are frequent targets in zero-day campaigns and continue to

attract research attention [106].

45
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Most commercial PLCs compile application logic—often expressed as ladder diagrams—

into proprietary firmware using vendor-defined instruction sets. Prior work has shown that

typical vendor toolchains lack basic safety checks at compile time [107], leaving systems

exposed to issues such as timer races, unreachable code, and hidden jumps [108]. Studying

these flaws is hard in practice. File formats and firmware are proprietary, and even models

from the same vendor can require different memory maps for on-chip peripherals. As a

result, a generic hardware abstraction layer that supports multi-vendor emulation remains

an open problem and slows progress on systematic vulnerability analysis [89].

Fuzzing is a dynamic testing method that drives a target with unexpected inputs to trigger

faults and explore new paths. It has a strong track record at finding runtime bugs without

prior knowledge of specific flaws. However, direct fuzzing of PLC firmware is difficult: code

is closed-source, vendor-specific, and tightly coupled to hardware. Emulation is a practical

alternative, but it must be faithful enough to capture the behaviour of ladder logic and

the I/O events that drive it.

As outlined in Challenge C3, generic mutation strategies such as AFL’s havoc produce

many invalid inputs for specialized targets like ladder logic. These inputs fail domain

checks or violate stateful constraints, causing shallow exploration and wasted compute.

This motivates RQ1: learning mutations that respect domain rules so more tests pass

checks and reach deeper control logic.
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This chapter answers RQ1 by introducing Sizzler1 (SequentIal fuZZing in LaddER dia-

grams), a fuzzer that learns effective, domain-specific mutation sequences for PLC work-

loads. Rather than apply random edits, Sizzler records sequences of mutation operations

that lead to new paths, trains a SeqGAN [109] to model those sequences, and then uses

the model to propose likely-successful mutations at the relevant input bytes. The aim

is simple: generate more valid test cases that cross checks, maintain state, and expose

deeper code.

To enable realistic execution without vendor lock-in, we build a vendor-independent emu-

lation testbed. Ladder diagrams are authored and compiled with LDmicro2, then run

as binaries on commodity MCUs within an OpenPLC-based environment3. We extend

QEMU to improve GPIO and I2C handling and implement Modbus over TCP to broaden

peripheral coverage. This setup avoids firmware re-hosting while preserving the execution

semantics of ladder logic and the I/O patterns seen in the field.

We evaluate Sizzler on a suite of ladder programs compiled to firmware and executed

in our emulation testbed. To test generality beyond PLCs, we also run Sizzler on the

LAVA-M and Magma benchmarks and compare against established fuzzers. Results show

that Sizzler increases the rate of valid inputs and the depth of path exploration, leading

to higher coverage and more bugs found. In one case, a previously unknown flaw found

by Sizzler was assigned a CVE, highlighting practical impact.

This chapter contributes:

• A domain-specific mutation strategy that learns sequences of edits with SeqGAN

to generate valid, high-yield test cases for ladder logic.

1. Sizzler framework: https://github.com/7linux-0/Sizzler
2. LDmicro: ladder diagram editing, simulation, and compilation to native firmware. https://cq.cx/
ladder.pl
3. OpenPLC: open-source PLC runtime and emulator. https://openplcproject.com

https://github.com/7linux-0/Sizzler
https://cq.cx/ladder.pl
https://cq.cx/ladder.pl
https://openplcproject.com
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• A practical, vendor-independent emulation workflow for PLC applications, includ-

ing QEMU refinements for GPIO/I2C and Modbus/TCP support to better cover

peripherals.

• A public dataset of synthetic ladder-diagram vulnerabilities to support repeatable

research and fair comparison1.

• Evidence that the approach generalises: on LAVA-M and Magma, Sizzler achieves

higher coverage than strong baselines.

• A real vulnerability discovered by Sizzler that received a CVE identifier, demon-

strating real-world relevance.

We first describe Sizzler’s architecture and learning pipeline, then detail the emulation

testbed and datasets. We present evaluation results on PLC workloads and general bench-

marks, analyse why the learned mutations help, discuss limitations, and outline future

work.

3.2 Technical Background

In this section, we systematically categorize existing state-of-the-art fuzzing approaches

to emphasize the novelty of Sizzler. Table 3.1 summarizes these previous fuzzing stud-

ies, separating the core functionality into three categories: PLC vulnerability detection,

emulation, and fuzzing.
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Table 3.1: Taxonomy of related work. Key: l= Coverage, w= Limited Coverage, m= No
Coverage. The methodology employed in the organization of the columns in the analysis
pertains to the various techniques related to Sizzler.
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3.2.1 PLC Vulnerability Detection

Several studies have focused on the analysis of PLC security, with many using fuzzing

as a method for vulnerability testing. For instance, µSBS [110] presents a static binary

analysis technique to detect illegal accesses to firmware memory addresses. Moreover, IC-

SFuzz [89] rapidly identifies vulnerabilities in PLC programs generated using the Codesys

development environment. VETPLC [108] verifies real-world PLC programs to detect code

safety violations through the use of static and dynamic analysis. SymPLC [111] employs

symbolic execution to test both single-task and multi-task PLC programs. These studies

emphasize the importance of code-level analysis in uncovering vulnerabilities and demon-

strate the effectiveness of fuzzing in achieving this goal. In comparison, Sizzler supports a

wider range of architectures through the use of LDmicro and OpenPLC [115] to provide

internal feedback from the PLC’s runtime. Additionally, we have designed Sizzler specific-

ally for PLC Ladder Logic Diagram (LD) since is the most widely used PLC programming

language [116], while other studies mainly focus on structured text language.

3.2.2 Emulation

Emulation and re-hosting techniques are pivotal in identifying and mitigating vulner-

abilities within embedded system firmware. Noteworthy frameworks like P2IM [6] and

µEmu [91] leverage this approach to record peripheral inputs without affecting firmware

operations. Fuzzware [82] integrates an instruction set emulator with a fuzzer, supplying

inputs for hardware accesses at the Memory-Mapped I/O (MMIO) registers. HALucin-

ator [81] employs abstraction replacement using Avatar2 [7] and QEMU [117] to substi-

tute hardware abstraction layer calls with customized implementations. Hardware-in-the-

Loop (HIL) further adds a layer of fidelity validation by simulating real-time interactions

between controllers and peripherals. Specifically, HIL creates real-time virtual environ-
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ment that mimics the actual physical system. When the controller sends signals to peri-

pherals, HIL generates and returns simulated values, replicating what would occur if the

controller were interfacing with real devices. Sizzler uniquely utilizes HIL in conjunction

with Avatar2 [7] to emulate Modbus, an industry-standard network protocol.

3.2.3 Fuzzing

Fuzzing stands as a widely employed automated testing methodology utilized for the

purpose of vulnerability discovery. Generative Adversarial Networks (GANs) represent

generative models primarily designed to produce new samples that replicate a learned

distribution from a training dataset [118]. Various adaptations of GANs have been im-

plemented in the context of automated testcase generation for fuzzing. For instance,

GANFUZZ [112] utilizes GANs to learn protocol grammars for testcase generation, while

RapidFuzz [113] leverages WGAN-GP to optimize the seed distribution, thereby enhan-

cing code coverage. Nichols et al. also propose the use of GANs for augmenting the seed

pool, introducing a notable mutation strategy [114]. It is worth noting, however, that

GANs often face challenges when dealing with sequence data.

The current GAN-based fuzzer concentrates on the generation process. In contrast, Sizz-

ler focuses on the mutation strategy within fuzzing, building upon the foundation of

American Fuzzy Lop (AFL) [21]. Specifically, Sizzler employs havoc scheduling, a highly

stochastic process, which introduces alterations to the target code through a suite of op-

erators. These operators encompass bit flips, byte flips, arithmetic operations, and value

replacements. Test cases are generated by stacking multiple operators, with the number

of stacks determined randomly (AFL originally sets the maximum operator stack size

to 128). This objective is motivated by the varying efficiencies observed in mutation op-

erations, as exemplified by MOPT [22], which employs particle swarm optimization to

enhance fuzzing efficiency. Additionally, HavocMAB [23] adopts algorithmic approaches

for operation selection. Sizzler distinguishes itself by uniquely employing SeqGAN to learn
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Figure 3.1: Sizzler architecture indicating the enhanced mutation-based fuzzing strategy
using updated sequences resulted by SeqGAN training.

the optimal sequence of operators, thus improving the generation of efficient test cases.

SeqGAN employs a Long Short-Term Memory (LSTM) neural network as its generative

model (G) and incorporates a discriminative model (D) to differentiate between authentic

and generated data.

3.3 Sizzler overview

3.3.1 Sizzler Overview

As illustrated in figure 3.1, Sizzler is engineered to generate a diverse set of test-cases aimed

at identifying vulnerabilities within PLC application code, executed over emulated MCU

firmware. This process is further detailed in figure 3.2. Sizzler records the input/output of

the PLC program, capturing both the ability to execute the target code for each test input

and any associated order-related operators. When the input produces deeper code paths

or uncover new ones, the relevant combination of operations is recorded as a new dataset.
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Figure 3.2: Emulation approach for assessing Sizzler fuzzing over converted ladder dia-
grams.

Sizzler employs the effector map to document the position of the related bits in testcases.

Subsequently, SeqGAN formulation is trained using the logged inputs and the order of the

recorded operations. Our implementation consists of a generator that generates sequences

of operations, and a discriminator to distinguish between real and generated data, whereby

the SeqGAN model is continuously updated through incremental learning. Subsequent to

the training process, sequences of operations are generated to dictate the generation of new

testcase inputs of converted PLC application binaries over the emulated MCU firmware.

Given the strict limitations of emulating proprietary PLC firmware, and in order to ad-

equately evaluate Sizzler, we convert LD code into ANSI C code and customize Avatar2

and QEMU to emulate PLC functionality. As illustrated in figure 3.2, our implementa-

tion enables refined GPIO and I2C interfaces, such as I/O modules and communication

interfaces, with commonly unsupported peripherals by QEMU. Furthermore, we utilize

Avatar2 to emulate an HTTP server and provide Modbus/TCP communication. Thus, we

provide support for PLC control applications to run on various MCU architectures (such

as ARM Cortex-M and AVR ATmega) used during the evaluation phase.
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(a) Hidden jumper (b) Object repeat refer-
ence

(c) Comparator hardcode (d) Race condition com-
petition

Figure 3.3: Typical ladder diagram vulnerabilities.

3.3.2 Vulnerability Composition

Ladder logic is a visual programming language that was originally designed to resemble

electrical relay diagrams. A ladder program is drawn as two vertical rungs with one ho-

rizontal rung. Each rung is a small rule: it reads a set of inputs (contacts) and updates

outputs (coils). Contacts behave like switches that can be open or closed, and coils rep-

resent actuators or internal bits [119].

At run time, the PLC repeatedly scans the program from top to bottom. In each scan cycle

it evaluates the rungs from left to right, using current sensor readings and internal memory,

and then writes the results back to outputs. This scan-based execution model makes

ladder logic behave like a synchronous, cyclic program: values are sampled, processed,

and applied in discrete steps. Timers, counters, and latches extend this model with simple

stateful elements, but the underlying representation remains a graph of rungs rather than

conventional control-flow constructs such as loops and functions. These differences matter

for Sizzler, because they affect both what counts as a valid test input and how faults in

PLC applications manifest during execution.

Current PLC LD compilers do not have the capability to detect vulnerabilities or intricate

logic errors caused by logic injection as seen in real incidents [120]. We leverage such

missing capabilities to construct 30 PLC binary applications. Each PLC application is

deliberately generated with various types of vulnerabilities present in the LD program.

We compose the following vulnerabilities within the LD programs:
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• Race condition competition: occurs when two processes concurrently request the

same resource. In the context of LD programs, two logical operands are executed

simultaneously and race against each other, resulting in an unexpected output even

though the input is the same. As shown in figure 3.3d, the output value of ynew is

changed from 0 to 1 within two cycles, even though the inputs are fixed.

• Missing certain coils or outputs: A rung missing a specific output coil, such as

Output Energise (OTE), latches or sets, unlatches, etc., can lead to a dependency

issue where other tag(s) are impacted.

• Infinite loop: The main PLC application execution process is a continuous cycle.

If the LD contains infinite loop, it can consume excessive CPU resources to cause

PLC to crash.

• Hard-coded logical comparator: embedded into the application, which can con-

sequently be accessed by attackers. Such hard-coded instructions and values can be

obtained from the PLC through reverse engineering and then modified to manip-

ulate the operation of the PLC program. As illustrated in figure 3.3c, var can be

changed thus the whole application will be affected.

• Missing jumps and links: Jumps and links may not be executed following the

control flow. An attacker could identify these memory addresses and utilize the

spaces to insert malicious code.

• Hidden jumpers: can utilize the jump mechanism in PLC to skip some elements,

shown as figure 3.3a. If the jumper is coded to bypass a single element within a

given rung, it is possible that more than one element or even a whole branch will

be abandoned.

• Object repeat reference: This can occur when one output may be controlled by

different inputs. In LD, some operands, for OTE, timers, and counters, could have

different results that depend on the scanning of different rungs with similar logic.

From example, the y1 output coil in figure 3.3b is duplicated within the LD, and

will be de-energised depending on which rung is executed, resulting in an undesired

output.
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• Unused objects: It is possible that some variables remain unused, especially in

large-scale PLC programs, which will not be detected by the compiler. Open and

pre-instantiated entry points present a potential vulnerability in the system. This

vulnerability arises from the ease with which an attacker can insert malicious code

into the system.

The vulnerabilities we implement may cause severe damage to a real ICS setup. For in-

stance, attackers can gain root authority and implant backdoors to monitor and control

PLC behaviour. Moreover, gaining access to hard-coded PLC applications can allow at-

tackers to obtain sensitive information, such as temperature and pressure values within a

variety of critical industries, resulting in unpredictable consequences [121].

3.3.3 Ladder Diagram Conversion to ANSI C

We construct our emulation testbed by embedding the vulnerabilities discussed earlier into

LD projects. The challenge relates to the conversion of projects into executable binaries

in order to emulate their application-level characteristics. We therefore utilize the open-

source LDmicro compiler and OpenPLC to transform the projects into C programs that

could be compiled and executed as binaries. The compilers for OpenPLC and LDmicro

are capable of defining values and addresses used by PLC pins. The OpenPLC can also

map the Modbus address space directly to the physical I/O. The process of generating C

code comprises three stages:

1. Lexical and syntax checks of a LD;

2. Compiler generates symbol tables such as globally declared functions, Program Or-

ganization Units (POUs), and identifiers declared for enumerated types;

3. Analysis of the executed control flow and data type to annotate the abstract syntax

tree and generate C code.
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The generated C file outlines the PLC runtime, initiated by establishing an array of

communication-related functions in accordance with the memory map. This array encom-

passes both peripheral and inter-process functions, which are instantiated as threads. The

LD is subsequently loaded during runtime where the instructions are then executed. The

I/O modules defined in the memory map play a crucial role in receiving both analogue

and digital signals, and serve as a medium for fuzzing to generate inputs for the PLC

program.

3.3.4 MCU Emulation

As already mentioned, the QEMU open-source and cross-ISA emulation platform was used

to address security testing challenges pertaining to control binaries. QEMU can emulate

several CPUs, for example x86, PowerPC, and ARM, through the dynamic binary trans-

lation technique. However, QEMU does not support all the peripherals for different types

of targets, such as I/O modules, which means our PLC binary files can not be native

emulated by QEMU. We substitute low-level I/O interactions with high-level implement-

ations to enable external interaction and emulation of PLC firmware over five different

MCUs. We achieve this by customising and mapping crucial board-level communication

protocols of QEMU, such as GPIO and I2C, over specific MCU memory address regions.

We emulate the GPIO controller to capture varying sensor signals represented within

the underlying physical process controlled by the PLC; for instance, switch closures and

button presses. GPIO is a type of digital signal pin that is integrated into the circuit

and can be set as an input or output. By default, GPIO ports often have no pre-defined

task, however the pins can be customized and controlled by software to achieve desired

functions. In our work, the PLC’s I/O interfaces receive sensor signals and relay them

to the GPIO interface. The GPIO then stores the received data in its memory-mapped

space. By means of a specialized function, we retrieve data from the GPIO device file
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Figure 3.4: High-level description of the processes associated to capturing data mutations
within the Sizzler havoc process.

through a read system call and transfer it to the memory space of the control process.

This operation is carried out by a thread that is created alongside the control process and

employs a write system call to transmit the input data. The sequence of events is repeated

at a frequency determined by the QEMU scan cycle length of the control application.

A PLC uses I2C functions to interface with peripheral devices, such as sensors and actuat-

ors. We use I2C to connect to the GPIO, emulating PLC board-level communication. The

I2C communication protocol requires the SCL (Serial Clock Line) and the SDA (Serial

Data Line) wires to communicate between the runtime and the GPIO. The microcontrol-

ler acts as the I2C master, managing the signals as well as sending and receiving data

over the SDA line.

The emulation of GPIO and I2C is programmed on the interface layer and is based on

the same logic where a driver is created for each interface. Since we use firmware based

on three different programming boards, different datasheets are required to record all

registers for the GPIO and I2C. The different drivers are then mapped into memory

areas, which initialise the device and I/O ports and select the register to be written or

read according to the offset from the device’s address. For example, to emulation logic of

GPIO for ARM STM32F40X, where its memory region is 0x3FF. We define every register’s

status and trace from 0x40020000 to 0x40022c00. The trace change of GPIO is stored in

log files to identify which register is being accessed, assisting with the monitoring of the

emulation process. To successfully configure alternative MCUs, the GPIO drive address
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in the memory map and the range of addresses of registers need to be adjusted according

to the datasheets. The initialisation process for I2C communication on MCUs is similar to

GPIO. Notably, the main difference from GPIO is that I2C opens log files and performs

a read system call to emulate an SDA line, thus moving input data to its own memory

space.

The Modbus protocol is extensively utilized to enable Master/Slave industrial communica-

tion between PLCs and other ICS components. In our refined implementation, the remote

master initiates read and write requests to the OpenPLC slave sending Modbus frames

over the network (Modbus/TCP). Emulation of Modbus via the TCP stack is performed

using the QEMU emulator that we have refined within this work, while communication is

achieved through Avatar2 and is tailored for different MCU boards. However, the binary

application generated by OpenPLC can only act as a slave. During operation, the runtime

leverages the TCP stack to translate messages to Ethernet frames, which are subsequently

dispatched via the physical Ethernet port using an Ethernet library, such as tuxeip.

3.3.5 Sizzler Enhanced Fuzzing

Sizzler builds upon the original AFL fuzzing approach, and by contrast, implements a

mutation approach that is sensitive on code branches to discover deeper code paths related

to a vulnerability. The mutation strategy employed in Sizzler, presented in algorithm 1,

uses a customized havoc approach as seen in AFL. We enhance our approach by using

SeqGAN to increase the number of useful test cases to be used during the fuzzing process

and optimize the havoc stack process. Specifically, the sequence of strategies enable an

increased amount of edges and solves the context-insensitive problem. In the first fuzzing

cycle, we collect the dataset by recording sequences of operations that find new code paths.
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Algorithm 2: Sizzler fuzzing
Input: seed; f uzz_one(); f uzz_time_counter t← 0

1 Select a seed input;
2 Initialise a queue of inputs to be processed;
3 Execute mutation strategies on queue;
4 if save_if_interesting(seed) then
5 if Is_Havoc() then
6 Push the series of strategies into data_reader() when fuzzing is executing

havoc();
7 Choose the matebyte in effector map;
8 end
9 end

10 while t mod 10 = 0 do
11 Initialise the generator and discriminator;
12 Train the Seq_Gan() model;
13 Update the generator based on reward;
14 Generate new strategies;
15 t← t +1;
16 end
17 common_ f uzz_stu f f (): Execute new strategies on interesting seed and matebytes;

The dataset is then forwarded to the SeqGAN model to generate new strategies. figure 3.4

illustrates how different operations would match with each other. For example, “Bit f lip→

Havoc→ Insert Dictionary Token→ Interesting values” represents how to formulate the

execution path through different operations.

On the right part of figure 3.4, a list of binary patterns illustrates how input values are

permuted by different operators. The list of operations that could trigger a new execution

path is stored in the query. Meanwhile, the position of related bytes is recorded in the

effector map. The effector map serves as a guide for the havoc process whereas bytes

causing different code paths are called matebytes. In general, we observe that in the

context of the inherently data-intensive AFL, bytes originating from the same section of

the input data frequently induce identical code paths during execution. Thus, in Sizzler,
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a byte is designated as a matebyte only if its alteration results in an execution path that

is distinct from the paths generated by modifying adjacent bytes. Because we observed

that bytes originating from the same section tend to lead to the same code paths. During

the execution of the havoc process, the matebytes encoded in the effector map are subject

to modifications by the operators. In the subsequent cycle, Sizzler employs SeqGAN to

simultaneously train both a generative model and a discriminative model. These models

utilize the values stored within the effector map to generate new testcases.

The generative model continuously refines its strategies based on the rewards it receives,

enabling it to iterate effectively on mutation attempts. Consequently, even if initial muta-

tion attempts are unsuccessful on a new seed, the model remains capable of discovering

effective mutations in subsequent iterations. It’s noteworthy that SeqGAN is not limited

to a single mutation strategy; rather, it possesses the capability to synthesize a diverse

portfolio of strategies. This diversification significantly enhances the likelihood that at

least some of these strategies will prove effective when applied to new seeds. A salient

attribute of SeqGAN lies in its ability to dynamically adapt and optimize its mutation

strategies over time, facilitated by its integrated reward mechanisms. The process of train-

ing SeqGAN contains the following steps:

1.Training Data Capture and Pre-processing: The sequence of operators that induce

variations in the code path are captured as effective data points for training, recorded as

x = (x1,x2,x3, ...xn). The maximum stack size for mutators in the AFL framework is set at

128, which is the rationale for selecting 128 as our batch size. To standardize the training

process, certain efficient sequences of operations are appended with specialized characters.

For filling gaps in the sequence, the most frequently occurring operators within the current

data are used. Subsequently, Min-Max scaling is employed to normalize these sequences,

converting them into standard decimal data with temporal features.
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2. Model Construction, Training and Validation: In our architecture, the generator

and discriminator are defined with four layers. The generator receives a 100-dimensional

noise vector (y1,y2,y3, ...yn), sampled from a Gaussian distribution, as its input. The ar-

chitecture includes two LSTM layers, each consisting of 128 units, followed by a Dropout

layer implemented with a rate of 0.3 to mitigate the risk of overfitting. The generator’s

learning rate is meticulously calibrated at 0.001 for optimization purposes. Subsequently,

the discriminator is trained on data generated by the Generator. Comprising three lay-

ers, the discriminator’s primary objective is to differentiate between real and generated

sequences, as demonstrated in equation 3.1.

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)]+

Ez∼pz [log(1−D(G(z)))]
(3.1)

The output of the discriminator serves as a reward signal for each generated sequence, and

policy gradient methods are deployed to update the generator based on these estimated

rewards, as defined in equation 3.2. Here, J(θG) is the expected reward for the generator,

θG are the parameters of the generator network, p(x | θG) is the probability of a sequence

x given the generator’s parameters, and R(x) is the reward for sequence x. The generative

model is then updated based on the reward to improve the quality of the generated

data. To monitor the model’s performance, we employ a validation set. Early stopping is

triggered if no improvement in the loss metric is observed over a span of 100 epochs.

∇θGJ(θG) = Ex∼p(x|θG)[∇θG log p(x | θG)R(x)]

= Ex∼p(x|θG)[∇θG log p(x | θG)
T

∑
t=1

γ t−1rt ]
(3.2)



3.3. Sizzler overview 63

As shown in algorithm 1, the AFL is firstly executed to record the different combination

of strategies that trigger new code paths in the havoc process. We then utilize the Se-

qGAN model to capture the logic from different sequences of strategies. Similar series of

operations are then generated to mutate the seed set in the subsequent fuzzing cycles.

The new test cases are generated to feed into the GPIO’s port to test the security of PLC

application binaries. The strategies are recorded throughout 10 cycles. Subsequently, the

dataset is then erased and recollected through the mutation steps in order to retrain the

model.

Grammar based fuzzers are highly effective when the target input language is stable

and well specified, as a formal grammar can enforce syntactic validity by construction.

However, for PLC ladder logic, this approach is impractical. Ladder programs are typic-

ally authored in vendor specific languages and compiled into proprietary binary formats.

Even within the OpenPLC framework, the translation from ladder diagrams to C code,

and subsequently to firmware, relies on toolchains that evolve over time. Consequently, a

general grammar for ladder logic firmware would need to model not only the visual lan-

guage structure but also compiler translations, vendor specific extensions, and the stateful

behaviour of timers, counters, and inter-rung interactions. Developing and maintaining

such a grammar would entail significant manual effort and inevitably tie the system to

specific vendors-undermining our goal of a vendor, neutral PLC fuzzing framework.

Instead, Sizzler employs a strategy that learns to mutate existing ladder based testcases,

ensuring they remain valid while exploring deeper control logic. SeqGAN is particularly

well-suited to this objective: it treats mutation steps as a discrete series of actions and

utilizes sequence modelling to capture long-range dependencies between edits. In contrast

to simpler baselines, such as fixed mutation schedules or n-gram models, SeqGAN can

adapt its mutation policy based on observed reward signals (such as coverage and bug

discovery) without requiring prior knowledge of the underlying grammar. SeqGAN can
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also learn the dependence between different mutator operators instead of generating a

single mutation strategy directly. Adopting a sequence of mutation operators can help

generate more valid testcases based on interesting seeds even when the precise structure

of the ladder firmware is unknown or only partially observable.

3.4 Evaluation

3.4.1 Research Question

Research Question 1: Can domain-specific learning improve mutation so

that more inputs pass checks and expose deeper code in PLC workloads?

This evaluation focuses on two primary aspects: (i) assessing whether Sizzler can generate

valid testcases and achieve high code coverage on PLC ladder diagram applications; and

(ii) determining whether it demonstrates improved coverage and bug detection capabilities

compared to baseline fuzzers on general benchmarks.

3.4.2 Evaluation Methodology

Testbed and Datasets: Our evaluation was conducted over a server equipped with an

AMD Ryzen Threadripper 3960X 24-Core Processor with 64GB of RAM and Geforce

RTX 3050 graphics card, running Ubuntu 18.04. We constructed 30 vulnerable PLC con-

trol binaries generated through the conversion of LDs. Each binary was programmed to

perform different control system functions such as time measurement and traffic light con-
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trol, which are then implemented on five MCUs4. The LDs were originally acquired from

GitHub and several projects were tasked with utilizing them in real-world production en-

vironments5. The diagrams underwent secondary development, which involved integrating

various vulnerabilities into the binary code, as defined in Section 3.3.2.

To demonstrate how generalisable Sizzler is to non-ICS specific environments, we also

evaluate using the Large Volume Automated Testing (LAVA-M) dataset, which comprises

of four GNU coreutils programs (uniq, base64, md5sum, and who) [122]. Moreover, the

LAVA-M dataset has been widely used as a benchmark for other fuzzing evaluations [26,

123] to evaluate their performance, enabling us to compare with state-of-the-art ap-

proaches. The LAVA technique was employed to create a ground-truth baseline by in-

cluding a substantial number of realistic bugs within the binary source code. Each bug

was assigned a unique identification number displayed upon activation. Additionally, we

conducted a comparative analysis of Sizzler’s performance against other prevalent fuzz-

ing tools, utilizing Magma version 1.2 as the testbed [27]. Magma serves as an expansive

repository of targets modeled on real-world computing environments. It comprises seven

distinct libraries and 16 executable binaries. Contrary to LAVA-M, which relies solely on

artificially synthesized bugs and magic byte comparisons, Magma offers a diverse range

of vulnerabilities that are categorically aligned with the Common Weakness Enumeration

(CWE) framework. In total, Magma encompasses 138 identifiable bugs, consisting of 15

integer errors, six of which manifest as divide-by-zero errors, as well as 58 memory over-

flow issues. The remaining bugs span various types, including use-after-free, double-free,

and null-pointer dereference vulnerabilities. We conduct the fuzzing benchmark on two

dataset for 24 hours and repeat ten times.

4. In particular the PIC1616F628, PIC1616F88, Atmel AVR ATmega 2560, Atmel AVR ATmega 128,
and St ARM STM32F40X MCUs.
5. https://github.com/BongPeav/LdMicro

https://github.com/BongPeav/LdMicro
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Table 3.2: The result of Unit Test

Peripheral F103 Arduino F103 RIOT SAM3 Arduino SAN3 RIOT

p2im µEmu Sizzler p2im µEmu Sizzler p2im µEmu Sizzler p2im µEmu Sizzler

ADC ! ! ! N/A N/A N/A % ! ! ! ! !

DAC N/A N/A N/A N/A N/A N/A % ! ! ! ! !

GPIO % ! ! % ! ! ! ! ! % ! !

PWM % ! % N/A N/A N/A % ! % ! ! %

I2C % % ! N/A N/A N/A % % ! N/A N/A N/A
UART % ! ! N/A N/A N/A ! ! ! ! ! !

The symbol !signifies that the emulator has successfully passed the unit test, while the symbol %indicates that
the emulator has failed the unit test. The notation ”N/A” is employed to denote scenarios where the combination
of the MCU and associated libraries is not adequately supported by real devices.

3.4.3 Unit Test for Emulation

We conducted the same unit-test experiment as was done in P2IM to ensure a head-to-

head comparison, using an identical set of 44 firmware samples. These samples encompass

eight MCU peripherals, and two distinct MCU chips: the STM32 F103RB, and the At-

mel SAM3X8E. Each unit-test sample embodies a unique yet feasible combination of

peripheral configurations. The firmware executes rudimentary operations associated with

these peripherals.

A comparative analysis was conducted among Sizzler, P2IM, and µEmu. P2IM identifies

processor-peripheral interfaces and provides applicable input data via these interfaces

on behalf of the peripherals. Conversely, µEmu leverages symbolic execution to discern

appropriate values for peripheral access and dynamically responds to read operations

initiated by peripherals.

As illustrated in Table 3.2, Sizzler attained a passing rate of 82.3%, markedly surpass-

ing P2IM’s 41.1%. µEmu recorded the highest efficacy with a passing rate of 88.2%. A

significant impediment to the success of unit tests within P2IM is the misclassification

of peripheral registers, a consequence of categorizing these registers according to their

access patterns. Such misclassifications lead to an inability for P2IM to meet the firm-
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ware’s expectations, leading to stalled execution. Sizzler’s suboptimal performance, when

compared to µEmu, can be attributed to its inability to synchronize effectively with the

emulator, resulting in firmware halts. Interestingly, both µEmu and P2IM fail to emulate

binary files embedded with LD, and are deficient in detecting infinite loops. Specifically,

µEmu’s detection is hampered when registers within the loop possess concrete values,

and is effective only when the processor context incorporates one or more symbolic val-

ues. Additionally, P2IM is ill-equipped to manage non-generic peripherals such as GPIO.

3.4.4 PLC code Vulnerability Discovery

To evaluate how effective Sizzler performs at identifying vulnerabilities in PLC LDs, we

utilize the 30 vulnerable binary control applications compiled from LDs. The refined

SeqGAN model collects data from the havoc stage in the first cycle and subsequently uses

this data to train and generate sequences of operators to guide fuzzing in the following

cycle. Each binary is subjected to fuzzing for ten cycles in order to record the entire

process. The SeqGAN model is then retrained for the next cycle. Table 3.3 presents the

results of these experiments, demonstrating the code coverage and the time consumption

for ten cycles.

Evidently, Sizzler demonstrates execution times that typically exceed 40 minutes. We

can attribute this to the simplicity of the LD logic, as well as the inclusion of hardware

abstraction functions for MCUs within the PLC binaries. The control programs which use

the Modbus protocol to read/write registers were exclusively developed using real PLC

models (Ethernet libraries) to compile a set of applications containing vulnerabilities in

order to evaluate the fuzzing capabilities of Sizzler.
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Table 3.3: The code coverage result of ladder diagram for different MCUs executing con-
verted PLC applications.

MCU Program Vulnerability Crash Time(min) Coverage(%)

Function Basic-block Edge

PI
C

16
16

F6
28

test-i2c RC Y 64 93.8 78.1 69.5
test-water UT Y 49 85.7 77.3 66.7

test-electric IL Y 61 76.3 66.4 51.1
test-i2c-lcd MJL Y 57 88.7 77.4 71.6

test-leds IL+UO+MJL N 41 72.5 60.0 44.1
test-pwm UT+CH+ORR Y 60 94.1 81.4 77.1

PI
C

16
16

F8
8

test-spi ORR Y 55 91.6 77.4 64.8
test-uart UO Y 49 93.7 71.1 58.5
test-timer RC+UT Y 43 91.6 67.7 51.7

test-var-timer UO+CH Y 31 91.9 61.1 33.7
test-coil RC+IL Y 52 87.5 78.8 67.4

test-masterrelay RC+UO Y 67 94.5 81.4 71.9

AV
R

AT
m

eg
a

25
60 test-switch MJL Y 50 96.3 88.9 84.4

seg-display CH Y 53 97.1 88.4 76.5
asm-demo IL+UT Y 41 89.8 73.4 51.1
test-blink UO+ORR Y 50 89.6 64.7 40.1
test-lift RC+HJ Y 67 97.6 88.7 80.7

test-alarm UO+IL Y 66 93.7 81.6 74.4

AV
R

AT
m

eg
a

12
8 test-traffic HJ Y 63 91.8 81.1 76.0

test-train RC+IL+HJ Y 63 99.6 89.6 84.6
test-polution UT+IL+ORR Y 61 99.7 81.1 75.9
test-counter RC+MJL+UO Y 31 97.4 76.7 61.2
test-pressure UT+IL+HJ Y 44 82.4 71.1 61.7
test-control CH+RC+HJ Y 49 88.1 63.5 59.4

A
R

M
ST

M
32

F4
0X test-clamb IL Y 57 87.1 71.4 66.6

test-intustion RC+ORR Y 51 94.6 89.7 78.5
test-modbus1 UT+CH Y 61 81.6 74.4 71.7
test-modbus2 RC+CH Y 48 83.1 76.5 64.0

test-tem UT+CH+ORR Y 55 88.0 80.0 74.3
test-mov RC+CH+HJ Y 43 91.8 82.9 74.6

Vulnerability: Race condition competition (RC), Unconditional transfer (UT), Infinite loop (IL),
Comparator hardcoded (CH), Missing jumps and links (MJL), Hidden jumpers (HJ),
Object repeat reference(ORR), Unused objects (UO)

Furthermore, Sizzler demonstrates a high function coverage rate with nearly every function

in the 30 LD programs and MCU libraries being detected under each of the five MCU

architectures. Achieving an average function coverage rate of 88.4% indicates that the

majority of binary functionality has been exercised. Moreover, the average basic block

and edge coverage rates of 71.29% and 61.4%, respectively, provide further insight into



3.4. Evaluation 69

Figure 3.5: Fuzzing results for developed PLC binary applications.

the executed code paths. Sizzler detects crashes in 29 out of the 30 PLC LD programs, with

the exception of test-leds. Sizzler also did not perform optimal basic block and edge

coverage for the PIC1616F628 and PIC1616F88 architectures, which can be attributed to

the less sophisticated emulation of PIC that halts if non-emulated peripherals are accessed,

significantly restricting firmware execution.

The results presented in figure 3.5 indicate that the application of Sizzler to PLC LDs

yields a higher number of vulnerabilities than expected. Specifically, the analysis revealed

more than 20 vulnerabilities, despite that the 30 programs were initially implemented

with only one or two known vulnerabilities. One reason for this is that Sizzler uses public

libraries that provide basic functionality for firmware, such as timers and UARTs. These

libraries often lack appropriate access controls and fail to properly manage memory, lead-

ing to buffer overflow or other vulnerabilities. For example, the MCU library does not

properly validate the input size or check for heap overflows when it converts parallel data

from a microprocessor into serial data. Sizzler sets the data buffer to a high value, causing
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the application to crash. From the perspective of an attacker, these types of overflow vul-

nerabilities can be exploited by allocating a large amount of memory onto the heap and

then writing beyond the end of the buffer, hence resulting in the execution of arbitrary

code and unauthorized access to the device.

3.4.5 PLC Vulnerability and CVE Assessment

In order to assess our findings regarding PLC vulnerabilities discovered by Sizzler, we

leverage the OpenPLC project to construct a cost-effective PLC based on both Arduino

and STM32 platforms. We conduct this analysis to re-run the detected vulnerabilities

and verify Sizzler’s generic practicality. The discovered vulnerabilities are incorporated

into proof-of-concept projects over an emulated PLC instantiated through openPLC. We

select two exemplar bugs that are the most frequently detected by Sizzler.

Timer integer overflow. Sizzler successfully identified an integer overflow vulnerability

that could potentially lead to an infinite loop in the executed program. The vulnerability

is associated with the Ladder Diagram (LD) timer function in the code under analysis.

This integer overflow is triggered when Sizzler assigns an abnormally large value to the

input parameter. Consequently, the program running within the OpenPLC environment

becomes ensnared in an infinite loop.

Cycle integer overflow. The Ui_Ccycle variable is used to control the behaviour of three

different output coils based on whether the cycle count is within certain ranges. In each

rung, if the cycle count is within the appropriate range, then the corresponding output

coil is turned on; otherwise, it is turned off. Sizzler sets Ui_Ccycle to be incremented to

its maximum, and it will thus wrap around 0 causing the program in openPLC to continue

executing indefinitely.
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Figure 3.6: SeqGAN Evaluation in LAVA-M.

Vulnerability verified by CVE. Additionally, one vulnerability identified by Sizzler has

been officially recognized by the Common Vulnerabilities and Exposures (CVE) system,

under the identifier CVE-2023-431846. This vulnerability pertains to a buffer overflow

issue in the OpenPLC runtime. It enables attackers to inject malicious code via the

slave_device attributes, thereby escalating to higher root privileges and inducing a server

crash when the Programmable Logic Controller (PLC) establishes connections with other

equipment via the Modbus protocol. An additional vulnerability was detected by Sizzler

and has been substantiated in [124], CVE-2018-20818. Specifically, a buffer named in_-

memory is declared in the glue_generator.cpp file. This buffer is also invoked in the

modbus.cpp file and is susceptible to being overwritten beyond its 1024th position, thereby

interrupting the loop and causing the runtime to halt.

3.4.6 General Vulnerability Detection

SeqGAN assessment: We evaluate the ability of Sizzler to perform vulnerability dis-

covery using the LAVA-M dataset as seen in various studies, by firstly assessing the Se-

qGAN performance. SeqGAN comprises two phases: Pre-training and Adversarial Train-

ing. During the pre-training phase, the model employs the Maximum Likelihood Estima-

6. https://packetstormsecurity.com/files/174582/OpenPLC-Webserver-3-Denial-
Of-Service-Buffer-Overflow.html

https://packetstormsecurity.com/files/174582/OpenPLC-Webserver-3-Denial-Of-Service-Buffer-Overflow.html
https://packetstormsecurity.com/files/174582/OpenPLC-Webserver-3-Denial-Of-Service-Buffer-Overflow.html
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tion (MLE) approach to train the generator to produce a negative sample. The pre-training

phase consists of 120 steps and 120 epochs. The discriminator is then pre-trained for 50

steps, with each step comprising of three epochs. Subsequently, the generator and dis-

criminator are adversarially trained consisting of 180 rounds, where each round comprises

three steps, and each step includes three epochs, in order to obtain accurate data.

Accuracy: The results presented in figure 3.6 demonstrate that Sizzler achieved high

performance for establishing the path of mutation operators. As depicted in figure 3.6a,

high accuracy is achieved when generating data with base64 and uniq, exceeding 90%,

and model performance becomes stable after the 250th epoch. Further analysis reveals

that the model achieves 80% accuracy on md5sum datasets, which is likely due to the

datasets containing a high degree of redundancy, resulting in an imbalanced distribution

of the data.

Loss: We observed a consistent decrease in loss after the 250th epoch, which demonstrates

the stability of Sizzler. The change in loss for the SeqGAN model during the training

phase can be seen in figure 3.6b. Moreover, the generator loss drops rapidly during the

first ten epochs and experiences a second drop between the 140th and 150th epochs.

Subsequently, both the generator and discriminator losses remain below 0.5, indicating

that both are well-trained and capable of establishing sequences of operators for fuzzing.

The low loss provided by the generator implies that it is effectively producing sequences

that the discriminator assigns a high probability of being real. Conversely, the low loss of

the discriminator suggests that it is accurately classifying sequences as real or fake.

Vulnerability discovery comparison: We compare the performance of Sizzler with

state-of-art fuzzers, including AFL [21], AFL++ [43], MOPT [22], Angora [26], and

NEUZZ [123]. AFL++ is an upgraded version of AFL, which uses intermediate feedback-

driven fuzzing and experimental fuzzing strategies to generate testcases. MOPT use the

Particle Swarm Optimization algorithm to search the mutation operators and accelerate
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Table 3.4: Bugs found by different fuzzers on LAVA-M dataset.

Fuzzer Base64 Md5sum uniq who
Dataset Baseline 44 57 28 2136
AFL 0 0 2 1
AFL++ 3 1 19 772
MOPT 2 3 N/A N/A
Angora 48 57 26 1531
NEUZZ 46 55 27 1562
Sizzler 44 46 18 981
Sizzler+Angora 48 57 28 1711

the speed of generating testcase. Angora uses dynamic taint analysis to track the data

flow of inputs through the program and detect bugs in real-time. Angora is therefore able

to quickly identify problematic inputs and focus the fuzzing process on those inputs. Con-

versely, NEUZZ uses a surrogate neural network for branch behaviour approximation of

a target program and implements the gradient-guided technique to generate test inputs.

Here we measure the amount of source code or assembly instructions that are executed,

where the higher the code coverage, the greater the likelihood of identifying bugs within

the code. The code coverage is collected by using afl-cov [125]. Afl-cov analyses the

coverage of programs by instrumenting the binary and collecting data on which lines of

code were executed to generate instrumentation codes and graphic displays to present the

code coverage rate information.

The results obtained from the LAVA-M dataset were computed over a 24-hour period

based on ten independent iterations of the experiment and are tabulated in Table 3.4. The

results indicate that Sizzler achieves superior performance and discovers a higher number

of code bugs that relate to vulnerabilities as compared to AFL, MOPT, and AFL++.

However, it was noted that NEUZZ and Angora achieved higher bug identification when

using the LAVA-M dataset. As the LAVA bug injection technique only injects a single

bug type, for example, an out-of-bounds memory access triggered by a ”magic value”

comparison, some magic bytes are not copied from the input directly but rather are

computed from the input. NEUZZ employs a feed-forward neural network approach to
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Figure 3.7: Code coverage performance across all fuzzing approaches in the LAVA-M
dataset.

identify potential bytes within the proximity of a designated ”magic value”. Conversely,

Angora uses a context-sensitive approach, wherein it tracks the input byte offsets that lead

to a specific predicate and subsequently modifies these offsets through gradient descent,

as opposed to relying solely on the concept of ”magic bytes”. Hence, we propose a novel

strategy that combines our mutation technique implemented in Sizzler with Angora to

facilitate the identification of magic values. The performance of this hybrid approach can

be seen in Table 3.4, which illustrates that the Angora-Sizzler strategy achieves the highest

performance among the five fuzzers evaluated where 129 additional bugs were identified

in the target program compared to the performance achieved by the NEUZZ fuzzer.

The results presented in figure 3.7 provide a comprehensive evaluation of the edge cov-

erage trends for the approaches under investigation over a 24-hour period of execution

using various benchmarks. A thorough analysis of the data reveals that the combination

of Angora and Sizzler demonstrates a superior performance, surpassing both the original
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Angora and other state-of-the-art fuzzers in the LAVA-M dataset. In addition, the per-

formance of Sizzler improves over time, likely due to the completion of the deterministic

process stage and transfer to the havoc stage, which enhances the efficiency of the fuzzer.

Furthermore, using SeqGAN to learn the sequence of stacked strategies and generate more

efficient testcases also contributes to the improved performance of Sizzler.

Figure 3.8 demonstrates the computational performance of Sizzler by presenting the av-

erage execution speed over a 24-hour period while performing fuzzing over the LAVA-M

dataset. Sizzler achieved a fuzzing throughput ranging from 0-3500 executions per second,

which represents a significant increase in performance compared to other state-of-the-art

fuzzers. Specifically, the range of the average throughput for other fuzzing approaches

was observed to be between 0-600 executions per second. One potential reason for the

significant increase in computational performance is through the use of emulation tech-

niques, where the binary files are executed on their native architecture rather than the

host architecture. In addition, the emulation process also assists in reducing the time

spent on initialisation and setup tasks between test cases. Furthermore, Sizzler places a

greater emphasis on the havoc stage, which results in the generation of a larger number

of test cases, thereby contributing to an overall increase in the throughput of the fuzzing

process.

The performance of Sizzler on the Magma dataset, shown in figure 3.9, is measured

through the arithmetic mean of discovered bugs per trial per day. On average, Sizzler

identified 39 bugs, while AFL++, Angora, NEUZZ, and MOPT detected 19, 17, 15, and

37 bugs, respectively. Notably, Sizzler and MOPT exhibit comparable performance met-

rics on the Magma dataset. However, Sizzler outperforms MOPT on libraries such as

libxml2, OpenSSL, and Poppler, while MOPT shows superior performance on libpng,

libtiff, PHP, and SQLite3.
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Figure 3.8: Execution speed comparison between Sizzler and other fuzzers on the LAVA-M
dataset.

Though Angora demonstrates high performance on the LAVA-M dataset, it falls short

of expectations on the Magma dataset. This discrepancy can be attributed to Angora’s

underlying assumption that target functions are continuous, thereby utilizing gradient

descent for optimization. In contrast, program inputs are often characterized by byte val-

ues that are both bounded and discrete. For instance, the vulnerability PNG001 (CVE-

2018-13785) in libpng is a divide-by-zero bug, triggered when the ’width’ value is set to

0x55555555 and the number of channels is 3. When Angora mutates the value in proxim-

ity to 0x55555555, it is likely to calculate an erroneous gradient, thus impeding correct

progress. Additionally, owing to the vulnerability of the metric to outlier influence, the

capacity for drawing robust conclusions about fuzzer performance is restricted. To ad-

dress this limitation, we employed a statistical significance test on the collated sample-set
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Figure 3.9: Arithmetic mean of the number of bugs found by each fuzzer across ten 24
campaigns
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Figure 3.10: Significance of evaluation of fuzzer pairs using p-values from the Mann-
Whitney U-Test.

pairs, leveraging the Mann-Whitney U-test to ascertain p-values. These p-values function

as quantitative indicators for assessing the degree of dissimilarity between pairs of sample

sets, as well as for evaluating the statistical significance of these disparities. Figure 3.10

presents the outcomes of this statistical significance analysis. We selected a threshold of

p < 0.05 to evaluate the results. The analysis reveals that AFL++, Angora, and NEUZZ

exhibit analogous performance against the majority of targets, notwithstanding minor

variations in the arithmetic mean of discovered bugs. In contrast, both Sizzler and MOPT

manifest a statistically significant enhancement in performance, outperforming all other

fuzzers across seven distinct targets.
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3.5 Threats to Validity

Internal Validity. One key factor affecting internal validity pertains to the reliability of

our evaluation results, which may potentially be affected by random variation. To address

this concern, we adhered to the methodology outlined by Klees et al. [14] on LAVA-M and

Magma dataset, aiming to mitigate the influence of randomness during the assessment

of fuzzers. As for the target PLC applications, we ran only a single fuzzing campaign on

the corresponding MCU. Each campaign is stochastic: AFL’s mutation scheduling and

seed selection are randomized, and the emulation of MCU peripherals introduces further

timing variation. Because we did not repeat these campaigns, the reported coverage and

vulnerability findings for table 3.3 should be interpreted as a single sample rather than

a stable average. We partially mitigate this by using a fixed random seed and identical

configurations across targets, but we do not control for all sources of randomness in the

hardware and emulation stack. A stronger design would repeat the entire fuzzing process

ten times per target and report mean and variance. Since there is no baseline which

supports emulation of the PLC firmware, we acknowledge that the PLC on MCU results

may not be exactly reproducible, so we treat them as indicative rather than definitive.

Another concern arises during the application of the SeqGAN model for sequence gen-

eration, wherein we employ the weighted binary cross-entropy loss function to address

the issue of class imbalance. Additionally, we incorporate early stopping mechanisms to

monitor the validation loss and mitigate the risk of overfitting.
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External Validity. In order to enhance external validity, the primary concerns revolve

around the selection of subjects and benchmarks. In response to these potential threats,

we have undertaken a deliberate approach. Specifically, we have chosen four well-regarded

hybrid fuzzers and two recently published emulators from esteemed software engineering

and system security conferences. Furthermore, in our evaluation process, we have incor-

porated both the Magma dataset and the LAVA-M datasets. These measures have been

implemented to bolster the external validity of our study.

Validity Construction. The question of construct validity in this research primarily

hinges on the utilization of edge coverage as a surrogate for code coverage. To mitig-

ate this concern, we’ve adhered to a rigorous methodology. Specifically, we’ve employed

afl-cov, an integrated tool within the AFL framework, for systematic edge coverage data

collection, in line with best practices established in the fuzzing community [26, 123]. Addi-

tionally, to provide a comprehensive evaluation of fuzzing effectiveness, we have incorpor-

ated the metric of unique crash counts. These methodological choices aim to strengthen

the construct validity of our study.

3.6 Limitations & Future directions

Regardless of the promising outcomes proposed through Sizzler, we argue that vulner-

ability discovery in PLCs, as well as embedded systems more generally, remains a huge

challenge. We provide two main limitations of the proposed solution and briefly discuss

potential future avenues for research:

1. Sizzler is intended for analysing PLC binary applications. However, such applica-

tions are created in diverse formats that are vendor-specific. Moreover, the program-

ming languages for PLCs are tailored to meet specific requests of different vendors.

Hence, a dynamic analysis of these binaries is contingent on a case-by-case approach,
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precluding the possibility of a universal approach. Even OpenPLC project provides

access to source code for PLC binary application. The vulnerabilities triggered by

Sizzler for PLC can not be triggered in commercial PLC. Additionally, there have

been specialized efforts to employ fuzzing techniques targeted at PLC equipment,

notable among them being ICSFuzz and VETPLC. It should be noted, however,

that these tools are vendor-specific and do not offer a comprehensive benchmark.

Consequently, a broader performance comparison of commercial PLC for Sizzler

is currently unavailable. Overcoming this limitation through further advancements

would broaden the applicability of Sizzler for analysing PLC binary applications.

2. Our approach to firmware emulation is subjected to a significant challenge as vendors

often restrict access to technical datasheets required to establish a suitable devel-

opment environment. In addition, testing embedded firmware in real-time, whether

on target devices or through emulation, is a time-consuming process. Furthermore,

the AFL testing framework embedded within Sizzler is hindered by substantial tra-

cing overhead, which leads to a significant performance impact of nearly 1300% for

binary-only programs when operating in QEMU mode, as reported in [20]. Future

work efforts can be directed towards improving the overhead of fuzzing techniques

whilst targeting full-stack testing with high fidelity for PLCs and other embedded

systems.

3.7 Conclusion

PLCs are core building blocks for numerous mission-critical ICS however they are not

equipped yet with adequate mechanisms focusing on vulnerability assessment nor discov-

ery. By contrast with wider embedded systems or MCUs, PLCs have not been extensively

studied due to the intrinsic restrictions related to emulation of their firmware and propriet-

ary application-level properties. In this chapter, we introduce Sizzler; a PLC vulnerability

discovery framework underpinned by a novel mutation-based fuzzing strategy instrumented
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over SeqGAN and PLC firmware emulation setup approach. Sizzler is the first to achieve

the translation of PLC LDs into C code, which execute on representative MCUs such as to

emulate as realistically as possible a variety of PLC firmware environments across 30 PLC

applications. Moreover, the optimal synergy of a SeqGAN formulation with a havoc-based

mutation strategy for fuzzing through Sizzler demonstrates high efficiency on detecting

new and deeper code paths that relate to an increase of discovering otherwise unseen

PLC code vulnerabilities. In parallel, Sizzler is also successfully deployed and assessed

within a wider embedded systems dataset associated to non-PLC applications indicating

its superiority over commonly used fuzzing schemes.



Chapter 4

FuzzRDUCC: Fuzzing with
Reconstructed Def-Use Chain

Coverage

4.1 Introduction and Motivation

Research Question 2: Can reconstructed def-use chain coverage provide more

useful feedback for fuzzing binaries than traditional edge coverage?

In the previous chapter we improved mutation (RQ1) so that more inputs pass checks and

reach deeper code. The guidance, however, still relied on control flow coverage (edges/b-

locks). For firmware and drivers this signal can be too coarse: it shows which blocks

execute, but not whether important values flow to the places that matter.

82
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RQ2 asks whether dataflow feedback can guide fuzzing better. Dataflow coverage tracks

definition–use (def-use) pairs: it records when a value written at one site reaches its

uses elsewhere. This aligns the feedback with program semantics rather than only control

structure, and can steer inputs toward driver and peripheral code that edge coverage alone

may miss.

We present FuzzRDUCC, a binary-only dataflow coverage mechanism. It reconstructs def-

use chains from binaries with Angr and instruments QEMU’s TCG to update a def-use

bitmap at runtime. FuzzRDUCC integrates with AFL++ without changing the rest of

the pipeline, so we can compare dataflow coverage against standard edge coverage under

the same conditions.

We evaluate three aspects of RQ2: feasibility (can we extract and track def-use on bin-

aries), cost (runtime overhead versus edge coverage), and effectiveness (new paths and

bugs found). We report the cases where dataflow feedback helps and the trade-offs when

overhead limits throughput.

To address RQ2, we introduce a methodology that emphasizes dataflow tracking in binar-

ies without debug symbols. We use the Angr [126] framework to extract and select def-use

chains according to a simple heuristic, and we integrate this feedback into execution to

provide precise guidance to the fuzzer.

4.1.1 The Fuzzing for Binary

American Fuzzy Lop (AFL) [21] and AFL++ [43] have gained widespread recognition

within the research community as a quality baseline for fuzzing research. Numerous stud-

ies have developed their methodologies based on AFL’s capabilities. AFL is a grey-box

fuzzer that generates test cases using a variety of mutation strategies tailored to achieve
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comprehensive code coverage. For binary fuzzing, AFL incorporates QEMU [117], a gen-

eric and open-source machine emulator and virtualizer, to emulate the execution of bin-

aries. This emulation facilitates the addition of instrumentation, enabling AFL to obtain

feedback from the binary’s execution to obtain the binary’s control flow. When new code

coverage is discovered, AFL adapts its mutation strategy based on the test case associated

with this coverage.

4.1.2 Towards Dataflow Coverage

1 /∗ If the first 4 bytes are 0x01f401f4 (udp src and dst port =

500) we most likely have UDP (isakmp) traffic ∗/

2 if (tvb_get_ntohl(tvb, 0) == 0x01f401f4) {

3 protocol = TCP_ENCAP_P_UDP;

4 } else {

5 protocol = TCP_ENCAP_P_ESP;

6 }

7 if (g_ascii_strcasecmp(header_name, "Content−Length") == 0) {

8 // Process Content−Length

9 } else if (g_ascii_strcasecmp(header_name, "Transfer−Encoding") ==

0) {

10 /∗ Process Transfer−Encoding header and other headers ∗/

11 }

Listing 4.1: simple Code Example
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While code coverage is a powerful tool in fuzzing, it has shortcomings when dealing with

data-intensive program constructs. In Listing 4.1, an if statement from Wireshark checks

whether the first four bytes of a packet match the specific magic number 0x01df401f4,

indicating UDP traffic (specifically ISAKMP). Code coverage can only indicate if this

condition is true or false. However, when the condition fails, code coverage does not

reflect how close the input is to the target value. Without proper guidance, the fuzzer

must blindly guess the correct value, facing a probability of success of 1 in 232[127].

Two common strategies to address such branches are concolic execution [100][128] and

intelligent branch solving [129][130][26].

Concolic execution models constraints as symbolic expressions, allowing solvers like SMT

solvers to find solutions[131]. By treating input bytes as sequences of 8-bit vectors, we

update their symbolic representations during execution. However, constraint solvers often

struggle with simple string comparisons. Although concolic execution can systematically

explore program paths to solve these constraints, it cannot differentiate between mean-

ingful and superficial path differences. For instance, the function g_ascii_strcase-

cmp performs case-insensitive comparisons. Different headers like Content-Length and

Transfer-Encoding result in distinct paths, even when header order changes, leading

to path explosion and resource exhaustion.

Intelligent branch solving struggles with this issue without manual intervention. Since

comparing a single character can easily succeed, the branch is quickly marked as solved,

and further analysis is skipped. As a result, constraints for the remaining characters

never reach the solver. Modern fuzzers attempt to mitigate this with program specific

optimizations. For example, AFL++ uses CmpLog instrumentation to record operands

of failed comparisons and applies heuristics to solve them [132]. Instead of instrumenting

branches in a general way, it relies on a hard coded list of comparison functions, treating

each call as an abstract branch clearly non scalable approach.



4.1. Introduction and Motivation 86

To improve these methods, dataflow coverage provides a more precise approximation of

program behaviour by focusing on how variables are assigned and used, rather than just

the sequence of executed operations. This approach considers more complex structures

instead of solving constraints, like lookup tables, binary trees, and directed graphs, offering

deeper insights into program execution. By shifting from a control flow to a dataflow

perspective, fuzzing techniques can be made more effective [133].

4.1.3 Def-use Chain Analysis

A def-use chain links a specific variable definition to all subsequent uses that it can reach

without being overwritten by an intervening definition. These chains make data dependen-

cies within a program explicit, concretely representing how a value assigned to a variable

propagates to later execution points. The utility of these relationships was recognized

early in compiler design. Kildall’s work introduced a unified iterative framework for data-

flow problems, laying the groundwork for systematically computing reaching definitions

using lattice theoretic fixpoint algorithms [134]. By the mid 1980s, standard texts such

as the “Dragon Book” had formalized def-use chains as a central concept in static ana-

lysis, providing algorithms to compute them for various compiler transformations [135].

This foundational research established that, while determining exact dynamic def-use re-

lations in arbitrary programs is undecidable, a conservative static approximation of all

possible pairs can be computed via iterative analysis. In practice, compilers safely over-

approximate these chains to capture every potential dependency, a requirement for sound

optimization.

Def-use chains have also played a significant role in software testing, particularly in the

development of dataflow coverage criteria. Rapps and Weyuker introduced criteria that

require test cases to cover specific def-use pairs within a program [136]. The underlying

intuition is that standard control flow coverage may miss faults that manifest only through

specific computations or data interactions. By ensuring that, for each variable definition, at
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least one test drives execution along a path to one of its uses, testers increase the likelihood

of exposing erroneous computations. For example, the all-uses criterion mandates that

for every definition of every variable, the test suite must include at least one path where

that definition reaches each of its possible use sites. This ensures that the flow of values

from definitions to consumers is explicitly executed and verified. Empirical studies have

demonstrated that dataflow testing can be more effective at detecting certain classes of

bugs than pure control flow coverage, as it forces the exercise of value propagation rather

than mere branch traversal. Modern testing tools and static analysers continue to rely

on computing def-use chains via static analysis similar to that of a compiler to identify

critical pairs, slice programs for impact analysis, and detect anomalies such as uninitialized

variables [137].

The evolution of def-use analysis is directly reflected in modern compiler infrastructures.

Production compilers, such as GCC and LLVM, incorporate decades of research on data-

flow analysis, making def-use relationships an integral part of their intermediate repres-

entations. LLVM, for instance, represents programs in Static Single Assignment (SSA)

form [138] and provides APIs to efficiently traverse use-def chains for any given value.

Each LLVM IR Value object maintains a list of its uses, a design that reflects the ne-

cessity of fast def-use queries, as many compiler passes frequently need to identify the

consumers or definitions of a value to perform transformations. Optimizations such as

common subexpression elimination, register allocation, and vectorization all benefit from

these rapid lookups [139]. Furthermore, the explicit def-use links in SSA simplify alias

and dependency analysis. When reasoning about memory accesses, compilers construct

def-use chains not only for registers but also for memory locations, abstracted via memory

SSA or alias graphs to represent memory dependencies [140].

Recently, the integration of dataflow information has enriched the traditional coverage

guided fuzzing paradigm. Classic fuzzers, such as AFL, focus primarily on control flow

coverage (e.g., discovering new basic blocks or edges). However, edge coverage does not

directly indicate whether a fuzzing input has exercised a critical data dependency, for



4.1. Introduction and Motivation 88

instance, whether a value produced at one point successfully influences a later check.

Research has begun to incorporate def-use chains as a feedback metric to address this

limitation. Mantovani et al. [141], for example, introduced a technique that tracks data

dependency coverage, effectively measuring the number of unique data flows exercised

by generated inputs. By instrumenting the program to record when a definition is used

downstream, their fuzzer rewards inputs that cover new def-use chains rather than just new

control flow edges. This approach guides exploration toward states that require satisfying

specific data conditions. Similarly, hybrid fuzzers like Angora [26] and TaintScope [142]

utilize dynamic taint analysis. While they do not explicitly construct static def-use chains,

they share a similar goal: tracing how input bytes flow to affect key program points (such

as branch conditions) to solve constraints.

FuzzRDUCC is designed to apply these principles to binary only firmware, drivers, and

libraries. Unlike previous approaches that insert instrumentation at compile time, we re-

construct def-use chains from disassembled binaries and use angr to resolve definition and

use sites. We then hook QEMU’s dynamic translation to emit coverage events whenever

a selected definition reaches its corresponding use at runtime. This design allows dataflow

guided fuzzing to be applied even when only stripped binaries are available, exploiting

the key advantage of dataflow coverage: rewarding test cases that propagate critical data

toward security sensitive operations, even when those operations lie along already covered

control flow paths.
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Figure 4.1: Structure of FuzzRDUCC

4.2 FuzzRDUCC Overview

Our approach enhances fuzzer effectiveness by incorporating def-use chains, structured

into two main phases: static analysis and fuzzing (see Figure 4.1). In the static analysis

phase, we use the Angr framework to extract def-use chains from the binary, obtaining

precise addresses and counts of defs and uses for each translated block. This involves

instrumenting the code to record the addresses and numbers of defs and uses, leveraging

QEMU’s lightweight code generation.

In the fuzzing phase, we repurpose the AFL++ bitmap (previously used as a proxy for

edge coverage) to monitor the coverage of def-use chains accurately. As each basic block

executes, we update the local AFL++ bitmap against a global map to track changes in

execution state. This mechanism guides the fuzzer to re-mutate inputs based on analysis

of previous seeds, aiming to significantly improve fuzzing efficiency by combining static

analysis with dynamic fuzzing.
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4.3 Methodology and Implementation

4.3.1 Def-Use Chain Generation

We extract def-use chains from binaries through symbolic execution using the Angr frame-

work, departing from traditional methods that rely on Static Single Assignment (SSA)

form. Angr loads the binary components, including library dependencies, and uses VEX

Intermediate Representation (IR) to reconstruct the control flow graph and dataflow

graph directly from machine code. This process maps out the program’s execution flow

and provides a representation of all possible execution paths, enabling comprehensive

analysis of the binary’s execution semantics [143].

Our method incorporates reaching definition analysis [144] to determine where variables

(definitions) are assigned values and where these values are used across different ba-

sic blocks. This analysis reveals relationships between definitions and uses in the code,

identifying uses reachable from definitions that have not been overwritten, using an over-

approximation strategy. While this may sacrifice some soundness, it offers increased speed

in analysing binaries, which we consider acceptable for achieving sufficient precision in

binary-level analysis.

By storing the def-use chains in a JSON file, we facilitate their integration into QEMU’s

code generation process during dynamic binary translation. By systematically identifying

and analysing def-use chains in binaries, we lay the groundwork for more effective fuzz-

ing strategies by enhancing our ability to uncover vulnerabilities through understanding

dataflow. This methodology outlines potential pathways through which definitions affect
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uses, providing a solid foundation for tracking interrelations and dependencies within the

code. By enabling a focused exploration of the software’s execution space, it enhances the

precision and efficiency of fuzzing processes, thereby improving vulnerability detection

through a thorough understanding of the software’s internal mechanisms.

4.3.2 Code Instrumentation

After reconstructing the def-use chains, we integrate them into the execution of the binary

managed by QEMU, which decomposes the binary into basic blocks. Each block is trans-

lated into a host-specific block through QEMU’s Tiny Code Generator (TCG), converting

each instruction into micro-operations within the translated block. During dynamic bin-

ary translation, these instructions are transformed into host instructions tailored to the

specific architecture.

We adapt QEMU to utilize its tracing capabilities to obtain information about trans-

lated blocks, specifically retrieving the Program Counter (PC) value for each executed

block. The TCG functions as a just-in-time compiler, translating guest instructions into

executable code for the host architecture. By retaining the guest PC for each block and

employing a hash table to associate it with the host PC of the translated block, we achieve

precise tracking of control flow and dataflow.

The translation process in QEMU is divided into a frontend and a backend. The frontend

lifts target instructions into TCG Intermediate Representation (IR), which is stored in a

list. We focus on tracing the current execution of translated blocks (TBs), particularly

utilizing the cache list to identify the current TB and obtain its PC. We then correlate

the PC with the def-use chains stored in the JSON file generated by Angr, mapping the

def-use chain within each translated block.
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With the def-use information for the binary, we apply precise instrumentation to monitor

identified definitions and uses within these blocks. After acquiring the def-use chain for

each translated block, the backend converts the TCG IR into host machine code. TCG IR

registers are categorized into various types: global, local temporary, normal temporary,

fixed, constant, and extended basic block (ebb). Our objective is to encapsulate definitions

and uses within TCG registers, generating corresponding IR to embed into the translated

block for recording purposes.

We utilize helper functions to pass parameters to registers and execute jumps to specific

addresses. These helper functions can also access the CPU environment, enhancing our

ability to manipulate and track the execution flow.

This approach mirrors the afl_maybe_log function used in AFL++, which inserts IR

into the translated block to monitor execution. However, our instrumentation focuses on

usages rather than recording every definition and usage, recognizing that in statically

compiled binaries, some definitions may not be utilized or analysed correctly. Focusing on

usages is critical for understanding data manipulation.

By integrating def-use chain information with QEMU’s execution trace, we gain deeper

insights into execution patterns, facilitating more targeted fuzzing to uncover vulnerab-

ilities. This dynamic tracking of data and control flow enables precise identification and

analysis of critical execution paths and enhances our ability to detect and assess the

impact of definitions and uses throughout the software’s operation.



4.3. Methodology and Implementation 93

4.3.3 Optimizing Def-Use Chain Selection

Instrumenting all def-use chains in translated blocks introduces significant time and space

overhead during fuzzing. For example, in the binutils dataset, one binary’s translated block

size increased fivefold after instrumentation [133]. To mitigate this overhead, we propose a

heuristic algorithm that selectively targets addresses of common external library functions

and optimizes the def-use chain selection process.

To reduce overhead, we exclude definitions and uses within the same block or function,

thereby reducing the size of the translated blocks. We also disregard definitions that are

not used or not detected by Angr, streamlining the analysis process. By calculating the

distance between definitions and their related uses, we focus on definitions and uses that

span across different functions, utilizing interprocedural analysis to efficiently identify the

necessary def-use chains.

Angr’s simulation involves instruction emulation and symbolic execution for branch de-

cisions, maintaining stacks of states with register values and memory addresses. State

duplication can lead to explosion, especially in loops dependent on user input, causing

delays in vulnerability detection. To optimize analysis, we use Angr to identify addresses of

common libc functions such as malloc, calloc, and free, avoiding detailed examina-

tion of external library functions. We employ Angr’s SimProcedures to replace third-party

library functions with custom implementations that simulate behaviour, which is import-

ant for statically compiled targets where analysing external libraries is resource-intensive.
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We designed custom hook functions (handle_malloc, handle_calloc, handle_-

free) for SimProcedures to simulate memory management effects on the analysis state.

For example, if malloc is at address 0x400900 in the binary, Angr hooks this address

with its SimProcedure for malloc. When execution reaches 0x400900, the SimProced-

ure is invoked instead of the actual malloc, allowing efficient reaching definition analysis

on specific addresses while focusing resources on primary binary analysis.

This heuristic captures ”interesting” def-use chains, increasing the likelihood of discovering

new crashes and exploring more code paths. It enhances the efficiency of our instrument-

ation and improves the overall effectiveness of our fuzzing strategy.

After identifying def-use chains within a target binary, we introduce an alternative cov-

erage bitmap to track changes in these def-use chains. This bitmap records runtime rela-

tionships between definitions and uses, logging any changes observed.

When a modification in this bitmap indicates a change in dataflow coverage, we initiate

a strategic re-mutation of the seed. This re-mutation aims to explore unexplored code

paths, broadening coverage and deepening the fuzzing process. This method ensures a

nuanced and dynamic examination of the binary’s behaviour, enhancing the potential for

identifying vulnerabilities.

4.3.4 Updating the Coverage Scheme

AFL++ uses QEMU’s TCG IR to insert instrumentation code that computes a hash for

each edge during execution. An ”edge” represents a transition between code blocks (e.g.,

from block A to block B). For each transition, AFL++ generates a unique identifier i

by hashing the addresses of both source (A) and destination (B) blocks, with the source
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address right-shifted:

i← addressof(B)⊕ (addressof(A)≫ 1). (4.1)

This hash i indexes into the edge coverage bitmap, where each index represents a potential

execution edge. When an edge is traversed, AFL++ increments the value at that index,

enabling it to monitor executed edges and prioritize inputs that explore new paths.

We adapt AFL++’s tracking to capture the relationship between definitions and uses.

At code generation time, we use precomputed def-use chains (from Angr’s JSON files)

for each translated block and employ a helper function to embed def-use instrumentation

into the TCG IR.

Since every block has definitions, inserting IR into every block can slow translation. There-

fore, we focus on usages, tracing them to identify related definitions. We document def-use

edges according to the def-use chains. Our revised hash function for the coverage bitmap

index uses the addresses of the definition and use sites:

i← addressof(def )⊕ addressof(use). (4.2)

Using these addresses as hash values generates a unique i, reducing collision risk. This

approach allows tracing multiple definitions and uses within a single block, providing

nuanced and sensitive coverage feedback. It enhances analysis granularity and improves

fuzzing efficiency by focusing on critical dataflow aspects of program execution.
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4.4 Preliminary Evaluation

Research Question 2: Can reconstructed def-use chain coverage provide more

useful feedback for fuzzing binaries than traditional edge coverage?

To answer RQ2 we study three aspects: (i) feasibility, i.e., whether we can reconstruct def-

use chains and instrument binaries at scale; (ii) cost, i.e., how the additional instrumenta-

tion affects fuzzing throughput; and (iii) effectiveness, i.e., whether def-use guided fuzzing

improves coverage and crash discovery compared with edge coverage guided fuzzers.
UAFuzz ZAFL FuzzRDUCC AFL++ DDFuzz

Figure 4.2: Change of Edge Coverage (y-axis) within 24 hours (x-axis) for Fuzzing of
Binutils Tools

4.4.1 Evaluation Setup

Baseline: In this study, we compare our proposed framework with several established

fuzzing tools, including AFL++, DDfuzz [141], uafuzz [145], and ZAFL [146]. Our analysis

focuses on their design principles and operational efficiencies, particularly in relation to

dataflow analysis. AFL++ serves as the baseline for fuzzing comparisons, building upon
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features from AFLfast, Mopt [22], and other advancements in AFL-based tools. DDfuzz

introduces a dataflow-driven feedback mechanism that extends beyond control flow edge

discovery by guiding fuzzing based on a data dependency graph, although it only supports

source code. Our work complements DDfuzz by providing similar dataflow-based feedback

for binary only targets. FuzzRDUCC reconstructs def-use chains from stripped executables

and instruments QEMU, so it can be applied when source code and recompilation are not

available, which is common for firmware and third-party libraries. uafuzz specializes in

binary-directed fuzzing to detect use-after-free vulnerabilities, using novel seed metrics to

select appropriate seeds for mutation. ZAFL, on the other hand, enhances binary-only

fuzzing through binary rewriting to achieve compiler-quality instrumentation. Notably,

except for ZAFL, all the mentioned fuzzers utilize the QEMU model, a common framework

for emulation-based fuzzing.

Dataset: To comprehensively assess the effectiveness of the fuzzing frameworks, we use

a diverse set of binaries, with a focus on GNU Binutils—a widely used suite of binary

tools. The selection of Binutils is driven by its critical role within the Linux ecosystem,

making it a well-established benchmark for fuzzing evaluations. We test 8 binaries from

the Binutils collection to evaluate the fuzzers under consideration.

Evaluation Metric

• The Change of Edge Coverage: The effectiveness of a fuzzer is measured by its

ability to increase edge coverage, which provides valuable insights into the program’s

execution paths. Edge coverage acts as a feedback mechanism, helping the fuzzer

explore uncharted execution paths and uncover potential vulnerabilities. This metric

is pivotal in gauging how thoroughly a fuzzer explores the program’s execution space.

• Number of Crashes: Crashes are a key indicator of a fuzzer’s efficacy, as they

signal the discovery of potential vulnerabilities or software defects. A higher number

of crashes directly correlates with the fuzzer’s ability to uncover significant issues

in the target software, making crash detection a vital evaluation criterion.
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• Execution Speed: When fuzzing binary targets, particularly with QEMU-based

fuzzers, there are inevitable performance overheads. It is important to balance

between maximizing edge coverage and minimizing performance degradation. As-

sessing this trade-off is crucial to determine a fuzzer’s effectiveness in binary ana-

lysis, as maintaining efficiency while reducing overhead is key to successful fuzzing

operations.

4.4.2 Preliminary Results

Question 1: Assessing the Feasibility of Implementing Coverage-

Based Fuzzing through Dataflow Analysis

To address the first question, we analyse the evolution of edge coverage shown in Fig-

ure 4.2. A substantial increase in edge coverage typically correlates with a fuzzer’s ability

to discover new execution paths. On the majority of the benchmarks, the baseline fuzzers

(AFL++ and DDfuzz) demonstrate superior performance: on seven of the eight Binutils

tools (excluding strip), one or both of these tools achieve the highest coverage. Their

curves rise rapidly within the first few hours and stabilise near the top of each plot.

In contrast, FuzzRDUCC generally accumulates coverage more slowly than these top-

performing baselines, though it consistently outperforms UAFuzz and ZAFL over the

24-hour duration.
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This performance hierarchy reflects the inherent trade-off between feedback precision and

execution cost. FuzzRDUCC’s instrumentation tracks selected def-use chains and updates

a secondary bitmap for every translated block. While this yields richer feedback, it imposes

a throughput penalty; as illustrated in Figure 4.4, FuzzRDUCC averages approximately

150 executions per second, whereas AFL++ and DDfuzz maintain speeds between 300 and

400 executions per second. Consequently, FuzzRDUCC explores fewer test cases within

the fixed time budget.

However, the strip benchmark presents a notable exception. For this target, the edge

coverage of all baseline fuzzers remains negligible (near zero), whereas FuzzRDUCC rap-

idly ascends to approximately 7,000 edges and sustains incremental progress. This devi-

ation indicates that dataflow guided feedback is decisive when code exploration requires

satisfying structured value flows, such as those found in the relocation handling logic of

strip, which probabilistic mutations alone fail to penetrate.

Question 2: Benchmarking the Bug Discovery Capabilities of

Dataflow Coverage-Based Fuzzing

Figure 4.3 compares the total number of crashes discovered per target. AFL++ proves to

be the most prolific bug finder on standard targets, recording the highest crash counts on

five of the eight tools (addr2line, as, gprof, nm, and size). DDfuzz also performs

strongly, securing the highest crash counts on objcopy and readelf. Our prototype,

FuzzRDUCC, does not surpass these mature tools in terms of raw bug counts on general

targets. This result is consistent with the throughput disparity noted above: with roughly

half the execution speed of the baselines, FuzzRDUCC has fewer opportunities to trigger

faults. Furthermore, its feedback mechanism favours inputs that exercise specific def-use

chains, which may not always align with the shortest path to a crash.
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Figure 4.3: Comparison of Crashes Across Different Targets for Each Fuzzer
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Figure 4.4: Average Execution Speed Over Time for Each Fuzzer

Nevertheless, the results for strip again highlight the specific utility of dataflow coverage.

FuzzRDUCC is the only fuzzer to discover crashes on this target, while all others report

zero. The def-use chain analysis enables the fuzzer to preserve and mutate inputs that

successfully reach the relocation-handling code, even if they are initially rejected by earlier

validity checks. Specifically, FuzzRDUCC learns to manipulate relocation entries such that

a pointer used within copy_relocations_in_section becomes invalid. When the

program subsequently iterates over these entries, it dereferences the null pointer, triggering

a segmentation fault. Fuzzers relying primarily on edge coverage (like AFL++) fail to
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negotiate the initial validation required to reach this logic, explaining their inability to

expose the bug. These findings demonstrate that while binary dataflow coverage may not

maximise crash counts on simpler targets, it is capable of uncovering deep, data dependent

vulnerabilities that remain invisible to edge based approaches.

Question 3: the Runtime Overhead for Dataflow-Based Fuzzing

Compared to Control Flow Fuzzing

Figure 4.4 details the average execution speed over the 24-hour period. ZAFL achieves

the highest throughput (approximately 800 executions per second) due to its use of static

binary rewriting with lightweight instrumentation. AFL++ and DDfuzz follow, reaching

roughly 300-400 executions per second. By comparison, FuzzRDUCC sustains about 150

executions per second. This performance is achieved after applying our def-use selection

heuristic; prior to this optimisation, the prototype averaged only 50 executions per second.

Despite the three-fold speedup, the overhead of tracking def-use chains in QEMU remains

significant. Each executed block incurs costs for def-use table lookups and bitmap updates.

This reduced throughput is a primary factor contributing to FuzzRDUCC’s lower total

edge coverage and crash counts on general targets, as seen in Figures 4.2 and 4.3.

In summary, the results for coverage, crash discovery, and throughput provide a nuanced

answer to these questions. FuzzRDUCC demonstrates that dataflow coverage fuzzing for

binary is practically viable and capable of revealing faults. However, the experiments also

expose clear limitations: the current implementation significantly lags behind AFL++

and DDfuzz in execution speed, which translates to fewer discovered crashes on standard

benchmarks.



4.4. Preliminary Evaluation 103

4.4.3 Future Evaluation

Building on our preliminary evaluation, we plan to conduct the following in-depth exper-

iments:

1. Reducing Overhead via Selective Def-Use Chain Implementa-

tion

We aim to significantly reduce binary analysis overhead by selectively implementing def-

use chains. By analysing and categorizing each def-use chain using various static analysis

algorithms, we will identify the most impactful chains affecting memory changes, striving

for a balance between soundness and completeness. We will also simplify def-use chains

related to heap memory and optimize the size of translated blocks in QEMU to further

decrease emulation overhead.

2. Enhancing Fuzzing Performance with Def-Use Chain Guidance

We hypothesize that def-use chain-guided fuzzing will outperform traditional methods

in triggering crashes and detecting vulnerabilities. By focusing fuzzing efforts on specific

def-use chains that represent critical paths potentially harbouring vulnerabilities, we aim

to increase efficiency and uncover flaws that broader methods may miss. This approach

also involves identifying unique vulnerabilities among the detected crashes.
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3. Developing Dataflow Coverage Metrics

To better understand the impact of def-use chains, we plan to propose a new metric

for dataflow coverage. Since existing fuzzers primarily use bitmaps to track control flow

coverage—insufficient for representing dataflow trends—introducing a dataflow coverage

metric will help us assess coverage more accurately. This metric will also assist in selecting

appropriate hash functions for computing def-use chains, thereby reducing hash collisions.

4. Applying the Framework to Real-World Scenarios

To validate our hypotheses, we are conducting baseline evaluations with GNU Binutils.

We will extend our tests to other datasets, such as Magma [27] and Fuzzbench [147],

and plan to experiment with real-world IoT firmware using datasets from [6, 81]. These

experiments will demonstrate our framework’s adaptability and effectiveness across diverse

environments.

4.5 Conclusion

We have established the feasibility of using reconstructed def-use chains as feedback

to drive the fuzzing process. We have developed a framework designed to recover def-

use chains from binary code, thereby providing a new coverage mechanism for grey-box

fuzzers. Preliminary results on binutils suggest that our framework successfully identifies
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some unique crashes, although it incurs relatively high overhead. Future work in chapter 5

will focus on reducing this runtime overhead and conducting more comprehensive eval-

uations. We also provide source code required to replicate the experiments presented in

this chapter.1

1. https://github.com/MaksimFeng/AFLplusplus

https://github.com/MaksimFeng/AFLplusplus


Chapter 5

Hardfuzz: On-Device
Def-Use-Guided Fuzzing with

Hardware Breakpoints

5.1 Introduction and Motivation

Research Question 3: Can on-device fuzzing with hardware breakpoints de-

liver high-fidelity execution and strong feedback at practical speed for MCUs?

The first part is to achieve high fidelity execution. Testing on Microcontroller Units

(MCUs) presents unique difficulties, although firmware is often compact in terms of lines

of code, the primary challenges stem from the complex interaction between the code and

its hardware environment rather than code size alone. First, MCU programs are tightly

coupled to sensors and actuators through memory-mapped I/O. Inputs arrive as GPIO

levels, ADC readings, timer events, or messages on serial buses, and firmware frequently

polls or reacts to these signals at precise intervals. To exercise these execution paths, a test

harness must either control the physical peripherals or emulate them with high fidelity,

both of which are labour intensive and fragile tasks.

106
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Second, MCUs operate under strict resource constraints. The limited RAM and flash

memory, small stack sizes, and absence of a full operating system make it difficult to

deploy heavy instrumentation or monitoring tools. Many standard testing techniques as-

sume process isolation, virtual memory, or rich debugging interfaces, none of which are

typically available on microcontrollers. Finally, concurrency and timing play a central

role: interrupts, DMA transfers, and low-power modes interact with application code in

ways that are difficult to reproduce deterministically. Small variations in interrupt timing

can lead to divergent control flows, complicating both test design and the interpretation

of results.

Rehosting techniques, such as full-system emulation, para-rehosting, and hardware-in-the-

loop (HiT) approaches, have been proposed to run firmware in controlled environments.

specifically designed for firmware analysis. However, achieving high fidelity execution re-

mains a significant hurdle. Rehosting involves decoupling firmware from its underlying

hardware to enable execution in a virtual environment; yet, this process is highly complex

as firmware is typically compiled for a specific System on Chip (SoC) and interacts with

a fixed set of peripherals. It is often impossible to perfectly model all hardware com-

ponents, leading to semantic discrepancies between the emulated environment and the

actual hardware. Furthermore, performance overhead remains a major drawback, with

rehosting in QEMU incurring slowdowns of up to 1300% [20]. In contrast, fully on-device

execution offers an alternative by utilizing hardware tracing mechanisms, such as Intel

Processor Trace (PT) and ARM Embedded Trace Macrocell (ETM), to capture execution

flow. However, these methods are not universally applicable, as many embedded devices

lack the necessary built-in tracing capabilities, thereby limiting their adoption in practical

scenarios.
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The second part is to achieve rich feedback in fuzzing process, particularly for MCUs.

Traditional coverage-guided fuzzing relies on software instrumentation to monitor code

execution. However, this approach is not suitable for the resource-constrained nature of

MCUs [87, 148]. The instrumentation overhead increases firmware size, often exceeding

the limited memory available. It also slows down execution, which reduces the overall

efficiency and throughput of the fuzzing process.

Furthermore, the feedback from control-flow coverage, which is typically gathered at the

basic block or edge level, lacks the granularity needed to guide a fuzzer toward deep or

complex vulnerabilities. For example, in the function shown in Listing 5.1, a fuzzer guided

by CFG coverage can easily generate inputs to pass the initial boundary checks, such as

if (n < 8). However, it struggles with the subsequent checks that depend on specific

computed values, like if ((((token >> 8) + len) % 29u) != 7u). Once the basic

blocks for these checks are covered, the CFG-guided fuzzer receives no further guidance.

It cannot distinguish between an input that produces a result of 6 and one that produces

20, even though the former is much closer to the target value of 7. The fuzzer has no

information about which part of the input—the header bytes in[0] and in[1] or the

payload—is responsible for the values of token and len. Consequently, a CFG-based

fuzzer must rely on random mutations to solve these conditions and may expend a vast

amount of time without ever reaching the vulnerable memcpy operation.

In contrast, data-flow-based fuzzing not only tracks which paths are executed but also

monitors how data values are defined and used throughout the program. This approach

provides a much richer feedback mechanism. For instance, in Listing 5.1, a data-flow fuzzer

can identify that the definition of len (D1) is directly used in the memcpy function (U3)

and that the definition of token (D2) is used in two conditional checks (U1 and U2). By

tracking these definition-use (def-use) pairs, the fuzzer gains granular insight, allowing it

to correlate specific input bytes with their effects on program state and more effectively

navigate complex conditional logic.

1 static uint32_t crc32_like(const uint8_t ∗p, size_t n) {
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2 uint32_t h = 0x811C9DC5u;

3 for (size_t i = 0; i < n; ++i) { h ^= p[i]; h ∗= 16777619u; }

4 return h;

5 }

6

7 int process_packet(const uint8_t in, size_t n) {

8 if (n < 8) return −1;

9 uint16_t len = (uint16_t)((in[0] << 8) | in[1]); //

10 if (len > n − 4) return −2; //simple bound

check

11 const uint8_t payload = in + 4;

12 uint32_t token = crc32_like(payload, len) ^ 0x5A5A5A5AA; //(D2

)

13 if (((token ^ 0xA5A5A5A5A) & 0x3u) != 0) //(U1

)

14 return 0;

15 if ((((token >> 8) + len) % 29u) != 7u) //(U2

)

16 return 0;

17 uint8_t buf[128];

18 memcpy(buf, payload, len); //(

U3)

19 return 1;

20 }

Listing 5.1: Example where def-use guidance provides earlier signals than basic-block

coverage. Marks (D1,D2) are definitions; (U1,U2,U3) are uses.

Listing 5.1 exposes three def-use pairs:

• (D1 → U3): the definition of len is used as the length in memcpy.

• (D2 → U1): the definition of token is used in the first gate.
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Case CFG coverage signal DU coverage signal

Input reaches U1 only none new pair (D2→U1)
Input reaches U1 and U2 none new pairs (D2→U1), (D2→U2)
Input reaches U3 new block new pair (D1→U3)

Table 5.1: Feedback per input category. DU guidance provides earlier, better signals.

• (D2 → U2): the same token is used again in the second gate.

A control flow based fuzzer records new blocks. After it first reaches the blocks that

implement U1 and U2, reaching them again with different values provides no new control

flow signal. Inputs that almost satisfy the gates (e.g., reaching U1 but narrowly failing

the condition) are not rewarded and are often discarded. The deep path behind both U1

and U2, along with the large len required at U3, may remain undiscovered because the

fuzzer receives no intermediate gain in CFG coverage to guide its mutations.

Def-use chain guidance rewards value flows rather than just new control-flow blocks.

When execution reaches U1 and reads the value defined at D2, the fuzzer records the pair

(D2→U1), even if the branch itself is not taken. This provides an intermediate signal,

encouraging the fuzzer to retain the input in its corpus and to concentrate mutations

on the bytes that influenced this dataflow. Later, when execution reaches U2, the fuzzer

records the additional pair (D2→U2). Finally, when the program reaches the memcpy,

it records (D1→U3). The distinct feedback generated at each stage is summarized in

Table 5.1. These incremental signals form a gradient of progress, guiding the fuzzer more

effectively toward the deep path compared with control-flow coverage alone.

In practice, these intermediate def-use signals help preserve and improve the right seeds

—those that set token and len to values that are closer to satisfying the required

conditions. As a result, a fuzzer with def-use guidance reaches the deep path in significantly

fewer iterations than one guided by control flow coverage alone.



5.1. Introduction and Motivation 111

To address this research question RQ3, achieving high-fidelity execution and strong feed-

back, we propose Hardfuzz, an on-device fuzzing framework that guides exploration using

definition-use (def-use) chains in the program. A def-use chain links a program point

where a variable is defined with subsequent points that use that value. By targeting def-

use chains, Hardfuzz goes beyond basic-block coverage to drive the fuzzer toward inputs

that not only reach new code locations but also cause specific data-flow interactions to

occur.

Hardfuzz operates directly on the device under test (DUT), using the debug unit’s lim-

ited hardware breakpoint registers to catch executions of selected def-use chain points.

It integrates with a feedback-driven input generator, monitoring def-hit and def-use hit

events as coverage signals. The overall goal is to discover subtle states in the program

(e.g., a sequence of variable assignments and uses leading to a bug) that pure control-flow

coverage might miss.

5.2 Hardfuzz Overview

Hardfuzz combines an offline static analysis stage with an online fuzzing loop to sys-

tematically cover def-use chains on an embedded device. Figure 5.1 illustrates the overall

architecture of Hardfuzz, which can be divided into three main phases: (1) Static Analysis

& setup, (2) Def-use-guided fuzz loop, and (3) Coverage-driven input generation.

1. Static Analysis & Setup: Before fuzzing, we analyse the target program’s binary

to extract all def-use chains. This yields a set of definition addresses each paired

with one or more use addresses. The Hardfuzz runner loads this information and

initializes its components: the GDB controller, serial connection, metrics logger,

and input generator. The GDB controller attaches to the device or emulator and

performs an initial reset/halt, inserting a breakpoint at main and running to that
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Figure 5.1: Hardfuzz Overview

point. The serial connection thread is started to handle input/output with the

target. The input generator is seeded either with user-provided seed inputs or a

default seed; it maintains the corpus of interesting inputs discovered. At this stage,

Hardfuzz also precomputes some helper structures from the def-use list, such as a

mapping of each def address to the basic block containing it (and likewise for uses).

It also computes a weighting for each def (for fuzzing schedule) based on the number

of uses it has.

2. Def-Use-Guided Fuzz Loop: Hardfuzz then enters the main fuzzing loop, which runs

infinite rounds of test generation and execution. In each round, an input is selected

and mutated, then used to execute a series of def-use chain trials. Unlike a pure

coverage fuzzer that would run one input and simply note which new blocks were

hit, Hardfuzz actively guides each input run towards a specific def-use target. It

works as follows: it selects a subset of def addresses (up to the hardware breakpoint

limit, e.g. 6) that have not yet been fully covered, and sets hardware breakpoints

at those definition addresses (marked as Def-BPs). Then it releases the target to

run the test input from the beginning. If none of those definitions executes (no

breakpoint hit), the input did not trigger those targets; Hardfuzz will then try a

different set of def addresses (or a new input in the next round). If one of the

def breakpoints hits, the execution stops at that definition point. At this moment,

Hardfuzz identifies which def was hit and retrieves its list of corresponding use

addresses. It then immediately arms a second set of breakpoints for those uses
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(marking them Use-BPs) and resumes execution. The original def breakpoint, being

temporary, is auto-removed upon hit to free a slot. Now the target continues running

the same input, but with breakpoints set at the uses of the just-hit definition. If any

of those uses executes, the program will halt again at the use site (indicating the

def-use chain was successfully realized at runtime). Hardfuzz logs this as a def-use

pair covered and removes the use breakpoint. It allows the program to continue,

potentially catching multiple uses in one execution if the input triggers more than

one use of the definition’s value. Once the program completes (or a timeout/crash

occurs), Hardfuzz cleans up any remaining breakpoints and resets the target if

needed before the next round.

3. Coverage-Driven Input Generation: After each test execution, Hardfuzz updates its

coverage bitmap to reflect any newly covered def or def-use pair. It uses two 64kB

bitmaps in shared memory: one for def coverage (indexed by def address bits) and

one for def-use coverage (indexed by a hash of def and use addresses). Any time a

definition is hit or a def-use pair is completed, the corresponding bits are set. At

the end of a round, Hardfuzz checks if any new bits were set compared to the global

”virgin” coverage map. If new coverage was found, the input that achieved it is saved

to the corpus and considered for fuzzing again in the future. The fuzzer then chooses

a new baseline input for mutation-it may choose the latest high-value input or cycle

through the corpus to keep diversity. Hardfuzz employs a mutation engine based on

libFuzzer’s mutator: by linking against the LLVM libFuzzer mutation library, it can

generate mutated variants of an input efficiently. In each round, one or more new

candidate inputs are produced this way. If a round produced no new coverage (no

def-use hit and no new def hit), Hardfuzz can retry with a different def target or

eventually switch to a fresh mutated input. This coverage-driven strategy ensures

that Hardfuzz concentrates on inputs that expand the def-use coverage frontier.
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5.3 Def-Use Chain Analysis and Selection

5.3.1 Def-Use Chain Analysis

We extract definition-use (def-use) chains from MCU’s firmware binaries to guide test

generation and breakpoint placement. A definition site (def) is an instruction that writes

a program value (a register or a memory location). A use site (use) is an instruction

that reads that value. A def-use chain is a directed edge from a def instruction to a

use instruction along some feasible path in the data dependence graph (DDG). We use

these chains to (i) measure dataflow coverage and (ii) prioritize fuzzing inputs that reach

definitions with many uses.

Our analysis runs in three phases. First, We load the target ELF with angr and build

a context-sensitive data dependence graph (DDG). For each discovered function, we run

ReachingDefinitions based on angr’s intermediate represent (VEX IR) to compute

the set of definitions that may reach each program point. For each definition we found,

we enumerate its uses with instruction address and check for reachability in the DDG and

CFG. If there exists a path from the def to the use, we add an edge ad→ au to the def-use

graph. The graph also contains chains that cross function boundaries (e.g., def in caller,

use in callee). The details show in Algorithm 3.

5.3.2 Breakpoint Strategy

After extracting the def-use chains, we prioritize definitions to guide the fuzzer’s explora-

tion. The goal is to focus on definitions that influence many uses, as they are more likely

to lead to diverse program behaviours and potential vulnerabilities. We also consider the

history of selections to avoid over-focusing on a few definitions. We assign each definition
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Algorithm 3: Def-Use Chain Extraction (per function)
Input: Function F , Data Dependence Graph G
Output: Set E of pairs (def_addr,use_addr)

1 E ←∅
2 RD← ReachingDefinitions(F)
3 foreach d ∈ RD.all_definitions do
4 nd ← Node(G,d.ins_addr)
5 if nd =⊥ then continue
6 foreach u ∈GetUses(RD,d) do
7 nu← Node(G,u.ins_addr)
8 if nu =⊥ then continue
9 if Reachable(G,nd,nu) then

10 E ← E ∪{(d.ins_addr, u.ins_addr)}

11 return E

a base weight equal to the minimum the number of distinct uses it has, so definitions

with many uses are considered more ”interesting” by default. During fuzzing process, we

also adjust weights based on how often a def has been tried locally in the current round

and globally across all rounds. Intuitively, if a particular def has already been hit several

times (globally) or if we have attempted it repeatedly in the current round, its probability

is reduced to avoid too much repetition. The exact formula is described below.

For a definition address ad with use set U(ad), the scheduler samples with

w(ad) = max
(
1, |U(ad)|

)︸ ︷︷ ︸
base weight

· 1
1+ ℓ(ad)︸ ︷︷ ︸

local penalty

· 1(
1+g(ad)

)1/2︸ ︷︷ ︸
global penalty

.

where ℓ(ad) is the local count of selections of ad in the current generator and g(ad) is the

global hit/selection count accumulated across rounds. Definitions are drawn by roulette-

wheel sampling proportional to w(ad).
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Once a def ad triggers, we order its uses by address proximity and enable up to K hardware

breakpoints (with K = 6 on ARM Cortex-M3):

orderU(ad) = argsort
au∈U(ad)

∣∣au−ad
∣∣, S(ad) = first K of orderU(ad).

The intuition is that uses close to the def are more likely to be executed soon after the

def, increasing the chance of hitting a use in the same run. If a def has more than K

uses, we will not be able to cover them all in one execution. However, since we sample

defs multiple times across rounds, we will eventually cover all uses over time. Once one

breakpoint hits, we will consider the basic block containing it as covered and remove the

breakpoint to free a slot for the next use breakpoint. In this way, we can potentially catch

multiple defs in one execution if the input triggers one basic block.

In each fuzzing round, hardfuzz draws up to n definition targets from this weighted gen-

erator (with N set to the hardware breakpoint limit) to form a batch. The reason for

batching is efficiency: setting breakpoints is slow, and it is wasteful to run on input per

breakpoint if we can enable multiple breakpoints at once. Batching also allows one input

to potentially cover multiple defs if they happen to be hit in the same execution. The

batch is constructed and all breakpoints for that batch are inserted before running the test

input. If none of breakpoints in the batch are hit by the time the input finished, it implies

the input does not execute any of those defs. In that case, Hardfuzz will fetch the next

batch of defs (if any remain untried for this input) and rerun the same input on a fresh

instance of the program. This approach gives each input multiple opportunities to demon-

strate coverage on different def targets. If an input completely fails to hit any new def after

exhausting all batches, Hardfuzz will conclude that the input is ”stuck” coverage-wise and

move to the next input. In our implementation, we set a limit (e.g., NO_TRIGGER_-

THRESHOLD=8) on consecutive attempts with no new hits before abandoning an input

to avoid infinite loops.
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Algorithm 4: Hardware Breakpoint Strategy (Def→Use under comparator budget
K)
Input: Test input x; batch of definitions DefsBatch⊆D ; use map U(·); HW

breakpoint limit K
Output: HitDef ∈D ∪{None}; set HitPairs⊆ {(d,u)}

1 Primitives: HaltThenDeleteAll(), SetHWBP(a,temporary), ContinueAndFeed(x),
WaitStop(), RemoveBP(a), RestartIfCrashedOrTimedOut()

2 HitDef← None, HitPairs←∅
3 HaltThenDeleteAll()
4 foreach d ∈ DefsBatch (distinct), up to K do // arm up to K defs as

hardware & temporary BPs
5 SetHWBP(d,temporary= True)
6 ContinueAndFeed(x)
7 (reason,payload)←WaitStop()
8 if reason is “breakpoint hit” and payload is a def BP then
9 HitDef← d⋆

10 else if reason ∈ {“timed out”,“crashed”,“exited”} then
11 RestartIfCrashedOrTimedOut()
12 return (HitDef,HitPairs)
13 HaltThenDeleteAll() // clean breakpoint before use phase
14 if HitDef= None then
15 return (HitDef,HitPairs)
16 // Use phase: sweep uses of d⋆ in chunks of size K
17 UsesSorted← uses in U(d⋆) sorted by |u−d⋆| (ascending)
18 while untried uses remain do
19 take next chunk UChunk of ≤ K addresses from UsesSorted
20 HaltThenDeleteAll()
21 foreach u ∈ UChunk do // arm hardware BPs for uses
22 SetHWBP(u,temporary= False)
23 ContinueAndFeed(x)
24 (reason,payload)←WaitStop()
25 if reason is “breakpoint hit” and payload is a use BP then
26 let u⋆ be the hit use
27 HitPairs← HitPairs∪{(d⋆,u⋆)}
28 RemoveBP(u⋆) // free comparator; others remain armed
29 continue
30 else if reason ∈ {“timed out”,“crashed”,“exited”} then
31 RestartIfCrashedOrTimedOut(); break
32 else
33 continue // no use hit; move to next chunk

34 HaltThenDeleteAll()
35 return (HitDef,HitPairs)
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The workflow of the breakpoint strategy is summarized in Algorithm 4. Managing the lim-

ited hardware breakpoints is a core part of Hardfuzz’s design. We implement a lightweight

GDB controller that communicates with the target device via GDB’s machine interface

(MI). The controller provides primitives to set and remove breakpoints, continue execu-

tion, wait for stops, and handle crashes or timeouts. These primitives are used in the

breakpoint strategy to orchestrate the def-use guided execution.

When a def breakpoint triggers, the GDB stop reason comes as ”breakpoint-hit” with an

associated breakpoint number. We determine whether this was one of our def breakpoints

by looking it up in the batch mapping. If so, we record the hit and prepare to switch

to use breakpoints. To be noticed is that on Arm Cortex-M: when a breakpoint hits

at an instruction in flash, the processor actually replaces that instruction with a BKPT

instruction internally. If we immediately removed the breakpoint and continued, we risk re-

executing the BKPT instead of the original instruction. To avoid this, Hardfuzz performs

a single-step operation to execute the instruction and move past it before inserting new

breakpoints. This ensures the def instruction completes and the PC advances, preventing

any ”flash breakpoint deadlock” where the same breakpoint would re-trigger or corrupt

execution. Our BreakpointManager handles this: upon detecting a def breakpoint number,

it executes one instruction step, then clears all existing use breakpoints from any previous

def, and finally removes the def breakpoint itself to free the slot. After that, Hardfuzz

proceeds to install the use breakpoints for the triggered def.

After each batch (or after a def-use sequence completes), Hardfuzz issues a blanket -

break-delete command to clear any leftover breakpoints before moving on. This is

important to prevent stray breakpoints from persisting into the next input’s execution,

which could cause false coverage signals or unintended halts. We found that after heavy

churn of breakpoints, it was sometimes necessary to stabilize the GDB connection. In
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Shared Memory Shared Memory

GDB stop event
(breakpoint hit/ timeout)

def triggered (d)

use triggered (d, u)

idx_pair(d,u) = (d⊕u) 
&0xFFFF

idx_def(d) = d & 0xFFFF

trace_bits_defs trace_bits_pairs trace_bits_defs trace_bits_pairs

Figure 5.2: Two-bitmaps in shared memory and update flow. A breakpoint hit yields
d (and optionally u). The CoverageManager computes idx_def(d) = d & 0xFFFF and
idx_pair(d,u) = (d⊕u) & 0xFFFF, then sets the corresponding bits in the two bitmaps
(NumPy views backed by one shared-memory region of size 2M). Darkness indicates the
time for the triggers to activate. Virgin maps flip from 0xFF to 0x00 on first observation
and gate corpus updates.

extreme cases (e.g., if the target becomes unresponsive or GDB misbehaves), Hardfuzz

will restart the GDB session by killing the old GDB and launching a new one, then re-

attaching to the target. This ”GDB rejuvenation” is triggered after certain timeouts or

errors to maintain a robust fuzzing run.



5.3. Def-Use Chain Analysis and Selection 120

5.3.3 Coverage Guidance

Hardfuzz needs a light-weight signal that can run on the device, without binary rewriting,

and that still shows progress on data flow. We therefore record two events: (i) a definition

is executed; and (ii) a definition-use pair is executed. We turn these events into coverage

using two compact bitmaps stored in one shared-memory block (see Figure 5.2).

We allocate a single shared-memory region of size 2M bytes and split it into two non-

overlapping slices:

trace_bits_defs[0..M−1] and trace_bits_pairs[M..2M−1].

In our implementation M = 65,536. Each slice is a byte array used as a bitmap (0 or 1

per slot). This design lets the fuzzer and the coverage code communicate without copying

and keeps the memory footprint fixed.

We map events to indices as follows.

• Definition coverage. When a def at address d executes,

idx_def(d) = d &0xFFFF,

and we set trace_bits_defs[idx_def(d)]← 1.

• Def-use coverage. When a use at address u executes after the matching def at d

in the same input run,

idx_pair(d,u) = (d⊕u)&0xFFFF,

and we set trace_bits_pairs[idx_pair(d,u)]← 1.
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The XOR gives a constant-time hash from a pair of addresses to one slot. Collisions can

happen but are rare at this scale; they may reduce granularity but do not break the

guidance.

The figure shows three states of the same shared-memory block.

Before: both bitmaps reflect the current round before the new stop event.→ After a def

hit: one cell in trace_bits_defs [0,M) is set to 1 → After a def then use hit: one cell

in trace_bits_pairs [M,2M) is also set to 1 → Placing both slices inside the same

box and labelling [0,M) and [M,2M) makes clear that the bitmaps share memory but do

not overlap.

If the execution passes through a basic block without stopping inside it, we conservatively

mark: (i) every def located in that block as covered; and (ii) every (d,u) pair whose use

lies in that block as covered. We do this using a precomputed lookup from each block to

its defs and to the (d,u) pairs whose u is in that block. This avoids setting a breakpoint

at every use site while still rewarding progress once the block executes.

To decide if an input should be kept, we maintain two ”virgin” arrays in process memory,

fresh_defs[0..M−1] and fresh_pairs[0..M−1], initialized to 0xFF. After running

an input we scan the two shared bitmaps. For each index k:

trace_bits_defs[k] ̸= 0 ∧ fresh_defs[k] = 0xFF ⇒ fresh_defs[k]← 0x00,

trace_bits_pairs[k] ̸= 0 ∧ fresh_pairs[k] = 0xFF ⇒ fresh_pairs[k]← 0x00.

If at least one byte flips from 0xFF to 0x00, the input exposed new coverage. We then add

the input to the corpus and optionally pick it (or a mutated child) as the next baseline.

The shared bitmaps are cleared for the next input, while the virgin arrays keep the lifetime

view of what has already been discovered.
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Basic-block coverage rewards only new control flow. Our two-bitmap scheme adds a data-

flow signal. The def bitmap rewards reaching a definition; the pair bitmap rewards reaching

a use of that definition. These intermediate signals give the fuzzer a gradient toward the

deep path even when no new basic block is covered.

5.4 Evaluation

Research Question 3: Can on-device fuzzing with hardware breakpoints de-

liver high-fidelity execution and strong feedback at practical speed for MCUs?

We therefore compare Hardfuzz against GDBFuzz in two settings: (i) QEMU-based emula-

tion, where both fuzzers run on the same emulated targets, and (ii) on device execution on

real microcontrollers. In both cases we measure coverage growth and basic blocks reached

to understand when the breakpoint based def-use feedback improves over baseline.

5.4.1 Experimental Setup

We evaluated Hardfuzz against GDBFuzz on two platforms: (1) an emulated environment

using QEMU to simulate an ARM Cortex-M3 firmware, and (2) a real hardware setup

using an Arduino Due board (SAM3X8E MCU) connected via a J-Link debug probe.

The fuzzing campaigns were run for a fixed time budget on each platform. For GDBFuzz,

which does not natively track def-use chains, we consider only basic block coverage for

comparison. All experiments used the same initial seed corpus and were allocated identical

time for fairness.
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5.4.2 QEMU-Based Emulation Results

In the QEMU emulation, both fuzzers can execute inputs relatively quickly (no physical

device latency). In this way, we could compare the two different breakpoint assignment

strategies (Hardfuzz’s def-use guided vs. GDBFuzz’s Dominator-based) under same con-

ditions. We ran each fuzzer for 24 hours in this environment for three repetitions. The

target programs we choose are from Google Fuzzbench [147], a well-known benchmark

suite for fuzzing research. We selected 16 targets that are compatible with QEMU and

also been tested in original GDBFuzz [40]. The results are shown in Figure 5.3.
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Figure 5.3: QEMU Emulation Results: Basic block coverage achieved by Hardfuzz and
GDBFuzz over 24 hours across 16 targets. Hardfuzz consistently outperforms GDBFuzz
in most cases, demonstrating the effectiveness of def-use chain guidance in improving
coverage.

Figure 5.3 plots basic block coverage over time for the sixteen Magma binaries under

QEMU. In all targets the Hardfuzz (pink) curve lies above the GDBFuzz (purple) curve

after the first few hours, and the gap either remains stable or widens over the 24 hour

campaign. For example, in freetype2 and lcms Hardfuzz continues to discover new



5.4. Evaluation 124

blocks throughout the whole run, while GDBFuzz reaches a clear plateau after roughly

6-8 hours. The continued upward trend for Hardfuzz indicates that def-use guidance keeps

proposing inputs that exercise additional data-flow chains, whereas the dominator based

strategy in GDBFuzz quickly exhausts easy to reach control flow edges and then spends

most of its time revisiting already covered regions.

Across graphics and parsing heavy libraries such as guetzli, harfbuzz, libpng,

and libxml, Hardfuzz attains noticeably higher final coverage, suggesting that tracking

how values are defined and later used is particularly helpful in code with long computa-

tions and layered transformations. In contrast, for simpler utilities such as boringssl,

libssh, and re2, both fuzzers saturate quickly and the distance between the curves is

smaller: once the relatively shallow control flow has been explored, there are fewer hard

to reach def-use chains for Hardfuzz to exploit. There are also programs where GDBFuzz

comes close to Hardfuzz at the 24 hour mark (for example freetype2 and sqlite),

which suggests that in some code bases the dominator-based heuristic happens to align

reasonably well with the underlying data flow and therefore narrows the advantage of ex-

plicit def-use guidance. Overall, however, the aggregated trend over all sixteen binaries is

that Hardfuzz both reaches higher coverage and maintains non-zero coverage growth for

longer, supporting the claim that dataflow feedback provides a richer exploration signal

than control flow structure alone.

The unique basic block results in bar Figure 5.4 further reinforce Hardfuzz’s advantage.

Over the 24-hour period, Hardfuzz consistently discovers more unique blocks than GDB-

Fuzz, indicating that its def-use chain guidance effectively drives exploration into new

areas of the codebase. The GDBFuzz can achieve the similar results in only two targets

(freetype2 and sqlite). This suggests that while dominator-based selection can be effective

in certain scenarios, it generally lacks the nuanced direction provided by def-use analysis.
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Figure 5.4: Unique basic block coverage over time on QEMU. Hardfuzz consistently dis-
covers more unique blocks than GDBFuzz, demonstrating its superior exploration capab-
ilities.

The ability to target specific data-flow interactions allows Hardfuzz to uncover paths that

may be overlooked when focusing solely on control-flow structures. The results highlight

the importance of considering both control and data flow in fuzzing strategies to maximize

coverage and discovery potential.

5.4.3 On-Device Hardware Results

We also evaluated Hardfuzz on a real device: an Arduino Due (SAM3X8E) connected

through a J-Link. Running on physical hardware adds latency from the debug link and

the lower clock speed of the MCU, but it gives us ground-truth signals (hardware faults

and precise stop points). We ran both Hardfuzz and GDBFuzz for 24 hours of three

repetitions on this setup. The firmware targets are the same types used in our GDBFuzz

experiments, and each contains a small, known bug so we can measure detection and

deduplication. The three targets are:
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Table 5.2: Basic block coverage on hardware after 24 hours

Target Basic Blocks Covered

GDBFuzz Hardfuzz

buggycode 62/249 88/249
HTTP server 373/1504 524/1504
JSON parser 664/1071 758/1071

1. buggycode (stack overflow). A minimal UART harness that looks for the four-

byte gate "bug!" and then copies the received payload into a fixed 20-byte stack

buffer without bounds checks. Any input longer than 20 bytes triggers a determin-

istic overflow.

2. HTTP server (state-machine bug). A small ESP-IDF HTTP service with an

endpoint that mixes fixed-length responses with chunked sends in the same request.

This violates the servers send path and produces a reproducible failure under load,

modelling common handler mistakes in embedded web servers.

3. JSON parser (length-triggered hang). A serial JSON parser built with Ardu-

inoJson that reads a 32-bit length prefix. If the length exceeds the configured buffer

size, the firmware enters a persistent wait state. This gives us a clean timeout class

distinct from crashes.

Table 5.2 presents the final basic block coverage achieved on hardware after a 24 hour cam-

paign. Hardfuzz outperforms GDBFuzz across all three firmware targets. On the buggy-

code harness, coverage increases from 62 to 88 blocks. A similar relative improvement is

observed for the HTTP server, where coverage rises from 373 to 524 blocks. This suggests

that Hardfuzz is more effective at navigating the state machine and exercising diverse

request-handling paths. The JSON parser exhibits a smaller but distinct gain, improv-

ing from 664 to 758 blocks. These results demonstrate that def-use guidance successfully

exposes additional behaviours even in small codebases like buggycode, with benefits

that become increasingly evident as control logic complexity grows, as seen in the HTTP

server.
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Figure 5.5 provides the mean coverage over three repetitions with shaded regions repres-

enting one standard deviation. For buggycode, both fuzzers saturate quickly, reaching

a plateau within the first hour. While Hardfuzz converges to a higher final value than

GDBFuzz, the standard deviation bands overlap significantly.

In contrast, the HTTP server displays a more distinct pattern. Hardfuzz accelerates cov-

erage discovery early in the campaign and maintains a substantial lead throughout the 24

hour period. The separation between the mean curves is pronounced, with only marginal

overlap in the uncertainty bands, indicating that this performance advantage is system-

atic rather than the result of stochastic variance in a single run. For the JSON parser,

Hardfuzz consistently maintains a lead over GDBFuzz.

Ideally, differences in fuzzer performance, such as final coverage or the area under the

curve, should be validated using non-parametric two-sample tests (e.g., the Mann-Whitney

U test), as recommended by standard evaluation guidelines [14]. However, given the re-

source constraints of hardware in the loop testing, our dataset is limited to three repe-

titions per configuration. With such a small sample size, statistical tests lack sufficient

power and yield unstable p values. Consequently, we prefer descriptive analysis rather

than formal hypothesis testing; we rely on mean trajectories and variance bands to assess

the magnitude and consistency of the observed differences. Future work involving larger

scale campaigns could supplement this qualitative assessment with rigorous statistical

validation.
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Figure 5.5: Coverage changes over time on hardware. Hardfuzz consistently discovers more
unique blocks than GDBFuzz, demonstrating its superior exploration capabilities.

To be noticed is that Hardfuzz’s higher coverage does not come from extra online analysis.

We extract def-use chains with angr offline before fuzzing, so this step adds no runtime

cost. By contrast, GDBFuzz updates control-flow information during fuzzing when it finds

new coverage, which adds some overhead. Both systems rely on GDB stop reasons for

crash detection; halts, breakpoint churn, and occasional re-attach process also cost time

on real hardware. Despite these costs, Hardfuzz’s richer signals yield better exploration

and explain the observed coverage gains.

5.5 Limitations and Future Work

Hardfuzz improves fidelity and feedback on MCUs, but it does not replace emulation or

rehosting. These approaches are complementary. Emulation scales and is easy to automate

across many targets. On-device fuzzing gives ground truth behaviour but pays for I/O

latency and debug overheads and is tied to specific boards.
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Cortex-M parts expose only a small number of hardware comparators (e.g., six on Cortex-

M3 for breakpoints ). Arming and rearming breakpoints through GDB adds latency, and

some devices lack trace mechanisms entirely. This limits the number of def/use pairs we

can watch at once and caps per second executions. We plan to combine flash breakpoint

with watchpoints, use RAM software breakpoints, amortize re-programming with persist-

ent execution loops on the target, and opportunistically use trace (ETM/ITM/ETB) or

RTT mailboxes when available to cut halt/resume cycles [149].

Semihosting, SWD/JTAG, and serial handshakes add delay. Our current design halts to

set breakpoints and to step past breakpoints, which reduces cycles per second. Future

work could design a persistent harness that processes many testcases per boot, a small

on-target control loop to arm next breakpoints via a memory-mapped index table without

global halt.

We build def-use chains from binaries. Optimized builds, inlining and register allocation

can blur the mapping from IR to concrete addresses and drop some uses. Stripped binar-

ies reduce function recovery quality. The future work includes: (1) fall back to dynamic

analysis ;(2) add a lightweight dynamic taint or value-flow sampler to validate and refine

static pairs; (3) consume optional symbols or minimal debug info when present; and (4)

model common library idioms to cut false pairs.

As shown in Figure 5.3 and Figure 5.4, the code coverage growth eventually slows down

and plateaus. This happens because both fuzzers use libfuzzer’s mutation strategy, which

relies on a random combination of simple changes like bit flips, byte flips, and arithmetic

operations. While this method is effective for exploring a broad range of inputs initially,

it often struggles to generate the specific inputs needed to bypass complex checks and

reach deep program states. As a result, the fuzzer reaches a point of saturation, after
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which finding new code paths becomes rare, and coverage growth is negligible. Therefore,

instead of running the fuzzer for a fixed, long duration like 24 hours, it is more practical

to analyse this saturation point to determine an efficient time budget for the fuzzing

campaign [150, 151].

On hardware we used three focused targets with known faults; in emulation we used a

larger corpus. This is useful for controlled comparisons, but broader external validity needs

more firmware, more boards, and blind bugs. Future work contains scale to community

firmware, report time-to-first-crash and deduped bug counts.

5.6 Conclusion

This chapter proposes Hardfuzz, a on-device dataflow guided fuzzer for embedded systems.

Hardfuzz use hardware breakpoints to monitor the change of the def-use chains, providing

precise and efficient feedback to guide the fuzzing process. The evaluation results show that

Hardfuzz outperforms the state-of-the-art GDBFuzz in both emulated and real hardware

environments, achieving higher code coverage and discovering more unique basic blocks.

This demonstrates the effectiveness of def-use chain guidance in improving the exploration

capabilities of fuzzers for embedded systems. The source code of Hardfuzz is available

online1 for further research and development in this area.

1. https://github.com/MaksimFeng/Hardfuzz

https://github.com/MaksimFeng/Hardfuzz


Chapter 6

Differential testing of MicroPython
under CHERI

6.1 Introduction and Motivation

Research Question 4: As firmware complexity grows, traditional fuzzing

struggles with highly structured inputs like language interpreters. How can we

evolve test generation beyond simple mutation to rigorously assess architectural

defences, thereby measuring the shift from vulnerability discovery to prevention?

This chapter addresses RQ4 by exploring the application of differential testing to evaluate

the security benefits of architectural memory safety mechanisms, specifically CHERI, in

the context of embedded language interpreters. As embedded systems increasingly incor-

porate complex software components like interpreters, they become more susceptible to

memory safety vulnerabilities. Traditional fuzzing techniques often fall short in effectively

testing such structured inputs, necessitating more sophisticated approaches.

131
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In this chapter our main contribution is a differential testing framework that uses a

CHERI-enabled interpreter as a hardware backed test oracle for memory safety. The key

idea is to execute the same, syntactically valid MicroPython program on two binaries that

share the same source code but differ in their hardware protection model: a conventional

baseline and a CHERI build. Whenever the baseline terminates normally or crashes while

the CHERI build raises a capability violation, we treat the CHERI outcome as the refer-

ence behaviour of a memory safe execution and flag the input as exposing a bug in the

unprotected configuration.

Microcontroller firmware frequently embeds a high-level interpreter to speed up devel-

opment and to keep device firmware small and flexible. MicroPython is a widely used

Python 3 implementation for resource-constrained systems. Fuzzing such interpreters is

attractive but difficult: naive mutation produces many syntactically invalid programs and

often fails to expose the memory hazards that matter most in the interpreter’s underlying

C core. At the same time, new hardware architectures like CHERI can enforce bounds,

permissions, and provenance on pointers at runtime, turning latent memory errors into

precise user-space traps.

Concretely, we instantiate this framework on MicroPython as follows. We build an initial

seed corpus from public bug issues and CVE reports for CPython and MicroPython, and

then use a prompt guided large language model to synthesise additional well formed pro-

grams that resemble these seeds. A concrete syntax tree (CST) mutator based on LibCST1

applies structure preserving edits (such as inserting statements, wrapping expressions, or

changing literal values) to expand the corpus while keeping programs parsable and type-

correct. A dual-lane harness executes each test under identical resource limits on both

the non-CHERI and CHERI builds and records normal outputs, exceptions, signals, and

capability violations. The differential comparator then acts as the oracle: it reports a

1. https://libcst.readthedocs.io/en/latest/index.html

https://libcst.readthedocs.io/en/latest/index.html
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potential memory safety bug whenever the non-CHERI run crashes, hangs, or produces

an inconsistent result, while the CHERI run stops with a precise capability fault. The

following sections detail the technical background, architecture, and evaluation of this

CHERI-based oracle.

6.2 Technical Background

6.2.1 The Architectural Foundation of CHERI Memory Protec-

tion

Capability Hardware Enhanced RISC Instructions (CHERI) is an ISA extension that

augments conventional processors with architectural capabilities to deliver fine-grained

memory safety and scalable compartmentalization. Rather than adding checks around

unsafe code, CHERI changes the fundamental contract between software and memory

by replacing raw integer pointers with hardware-enforced, unforgeable capabilities. This

targets the root causes of memory-safety bugs that have long dominated systems software

(roughly 70% of modern security issues are memory errors) [152]. As we will show, this

design is the driver of the divergent behaviours observed under differential testing [153].

A CHERI capability is an atomic token that combines: (i) an integer address, (ii) metadata

describing authority, and (iii) a 1-bit validity tag. For example, on a 64-bit architecture

a conventional 64-bit pointer is replaced by a token holding a 64-bit address, circa 64-bit

metadata, and a 1-bit tag, shown in figure 6.1. The metadata encodes:

• Bounds The range of the authorized buffer;

• Architectural permissions (AP) Operations such as read, write, execute, and

capability load/store.
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Figure 6.1: CHERI capability token and address-space view. The token combines an in-
teger Address with metadata slices for Bounds, Architectural Permissions (AP), Sealed,
and Software-Defined Permissions (SDP), plus a 1-bit TAG that records validity. The
shaded region marks the in-bounds range; the solid green arrow indicates a permitted
access, while dashed red arrows indicate out-of-bounds accesses that trap.

• A sealing bit Making a capability immutable and non-dereferenceable until expli-

citly unsealed;

• Software-defined permissions (SDP) Configuration of implementation or OS

specific policy.

The tag records capability integrity. Tags are maintained by hardware: software can read

them but cannot set them directly. Using an untagged capability (e.g., one corrupted by

non-capability writes) triggers a hardware exception.

CHERI enforces three key properties on capabilities:

• Provenance: Every capability must be derived from an existing valid capability

through sanctioned operations;

• Monotonicity: Derivation can only reduce or preserve rights or bounds, authority

cannot increase;

• Integrity: Forged or corrupted capabilities cannot be dereferenced.
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Sealing further strengthens control flow and encapsulation: sealed capabilities are immut-

able and non-dereferenceable until unsealed with the matching authority. For example,

CHERI designs employ sealed entry capabilities for return addresses and function pointers

so that code capabilities cannot be freely modified or misused.

At reset, the program counter capability (PCC) and default data capability (DDC) begin

with wide bounds and broad permissions. The boot loader and OS then reduce these

authorities: the OS receives a memory capability and tightens PCC/DDC; user processes

are created with derived, restricted capabilities for their address spaces and objects. This

staged restriction embodies provenance and monotonicity: all application capabilities des-

cend from a small set of boot-time roots and become strictly less powerful over time.

CHERI reifies pointer correctness in hardware. Three common classes of misuse trigger

precise traps [154]:

Bounds violation: Access falls outside the capability’s lower/upper bounds.

Permission violation: An operation (e.g., write or execute) is not permitted by the

capability’s permission bits.

Tag violation: The operation attempts to use an untagged capability.

On a CHERI system these conditions fault at the exact offending instruction, preventing

memory corruption from ever occurring. On a conventional system, the same bug might

silently corrupt state and only crash much later (or not at all). This difference produces

early, unambiguous signals in our experiments: CHERI typically traps deterministically

at the point of error, while the baseline may exhibit delayed or non-deterministic failures.

This is precisely the divergence our differential testing is designed to surface [153].
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6.2.2 Differential Testing

Differential testing (also known as back-to-back testing) is a software testing technique

designed to detect semantic or logical bugs by providing identical inputs to two or more

different implementations of the same specification and comparing their outputs [155]. Its

primary strength lies in uncovering discrepancies that do not necessarily lead to obvious

failures like crashes or assertion failures [156]. In many testing scenarios, defining a single

correct output for a complex input can be prohibitively difficult-a challenge known as

the test oracle problem [157]. Differential testing sidesteps this issue by designing oracles

for each other. The fundamental assumption is that while implementations may differ

internally, they should produce externally equivalent behaviour for the same inputs [158].

In the context of our work, the term ”output” is defined broadly to include not only

a program’s standard output stream, but also its exit status, error messages printed

to standard error, signals received from the operating system, and even whether a core

dump file is produced. Any divergence in this comprehensive set of observable behaviours

between the CHERI and non-CHERI executions is treated as a significant result, pointing

directly to architectural differences between the two platforms.

Our use of differential testing for MicroPython on CHERI adapts the methodology for a

unique purpose. The non-CHERI system serves as the baseline, which is a control group

representing the standard, insecure behaviour of a C-based interpreter on conventional

hardware. The behaviours observed on this baseline (including crashes, silent data corrup-

tions, and other unpredictable outcomes) are essentially the ”expected” results in a world

without hardware-enforced memory safety. The CHERI-enabled system, running the same

MicroPython interpreter compiled for the CHERI ABI, is the new implementation under

test.
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This framing fundamentally shifts the objective of the differential comparison. In a typ-

ical differential test, any discrepancy between two implementations would indicate a bug

in at least one of them. In our scenario, however, divergent behaviour is intentional and

desired. The CHERI architecture is explicitly designed to behave differently when con-

fronted with a memory safety violation. A test case that causes silent memory corruption

on the non-CHERI platform is expected to trigger a deterministic hardware trap on

the CHERI platform. Therefore, the primary goal of our differential tests is not to find

bugs in the MicroPython interpreter itself, but rather to empirically verify, characterize,

and demonstrate the security advantages of the CHERI architecture. For example, if the

CHERI build produces a SIGPROT (protection violation signal) where the non-CHERI

build produces a SIGSEGV (segmentation fault) or, worse, completes execution while si-

lently corrupting memory, that outcome is considered a successful validation of CHERI’s

safety guarantees. In this way, the experiment is transformed from a bug-finding exercise

into a scientific validation of a new security paradigm, using the conventional system as

a baseline illustration of the very problems CHERI is intended to solve. In operational

terms, the CHERI-enabled build therefore serves as our test oracle: whenever its execu-

tion diverges from the baseline in the form of a precise capability fault, we interpret the

CHERI outcome as the correct memory-safe behaviour and judge the conventional build

against it.

6.2.3 MicroPython

The choice of MicroPython as the software under test is particularly strategic [159]. As

a high-level, dynamically-typed language, Python is designed to be memory-safe from

the programmer’s perspective. However, the MicroPython interpreter, which executes the

Python code, is itself a complex program written primarily in C. This creates a ideal test
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case: a widely-used piece of software whose high-level safety guarantees depend entirely

on the low-level memory integrity of its C implementation. Subjecting this interpreter to

differential testing provides a clear view into how CHERI’s protections can harden critical

runtime systems.  

MicroPython consists of a compiler that translates Python source code into bytecode and

a virtual machine that interprets and executes that bytecode. This entire toolchain-the

parser, compiler, object system, garbage collector, and the implementations of all built-in

functions and modules-is written in C. Consequently, despite the memory safety of the

Python language itself, the interpreter is vulnerable to the full spectrum of memory errors

endemic to C programming, including buffer overflows, use-after-free vulnerabilities, and

invalid pointer manipulations.  

The MicroPython has been migrated to CHERI [160], making it an excellent candidate for

our differential testing framework. The interpreter’s complexity and its reliance on C for

core functionality mean that it is likely to contain latent memory safety issues that CHERI

can help mitigate. By running the same Python scripts on both the CHERI-enabled and

non-CHERI builds of MicroPython, we can directly observe how CHERI’s architectural

features influence the interpreter’s behaviour in the presence of memory errors. This setup

allows us to not only identify potential vulnerabilities in the interpreter but also to demon-

strate how CHERI can transform these vulnerabilities from silent, exploitable flaws into

well-defined, manageable exceptions [161].

At the same time, MicroPython should be viewed as a representative example rather than

the ultimate target of our contribution. Our goal is not to design MicroPython-specific

defences, but to evaluate how a CHERI-enabled build can act as a general oracle for

memory safety in C-based interpreters and runtimes. In principle, any similar interpreter
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that can be compiled for CHERI could be dropped into the same differential-testing

harness with minimal changes, the core methodology and oracle logic would remain the

same. For instance, the recent CHERI port of CRuby could be directly integrated into

our differential testing framework [153].

6.3 Differential Testing Overview

Figure 6.2 provides a high-level overview of our differential testing framework, which is

organized into three layers. The first layer produces a corpus of valid programs. It starts

from curated scripts aligned with known CVEs in CPython and MicroPython and public

bug reports. Then, a test-case generator (guided by prompts encoding patterns known to

be risky in MicroPython) synthesizes new seed programs that remain within the subset

of Python features supported by our target platform. A mutator built on LibCST next

applies structure-preserving transformations to broaden the input space. Each candidate

input is validated, de-duplicated, and added to a unified corpus that feeds both execution

lanes.
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Figure 6.2: Differential testing framework for MicroPython with CHERI.
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The second layer runs each test program on two builds of MicroPython. The left lane uses a

normal (non-CHERI) build of MicroPython, executed inside a sandbox on a conventional

system with strict time and memory limits. The right lane uses a CHERI-enabled build

running on hardware that supports capability enforcement, the ARM Morello prototype

board. The harness on each side captures the program’s output, exit code, and any signals

or crashes; on the CHERI side it also logs any capability fault details (such as bounds,

tag, or permission violations). To enable a fair comparison, the harness normalizes non-

deterministic aspects of outputs (e.g. memory addresses in error logs or ephemeral file

names in tracebacks).

The third layer compares the two runs. It classifies the pair into one of several categories.

The category that matters most for memory safety is the one where the baseline crashes

or exhibits undefined behaviour while the CHERI build reports a capability violation or

exits normally. The comparator assigns a stable signature to each discrepancy using a

small set of fields drawn from the termination state and from a normalized summary of

the top frames. A reducer then shrinks the input. The result feeds back into the corpus

and into the prompt context for the generator so that future runs start from richer seeds.

6.4 Methodology

The implementation of our framework follows the three-layer structure described above.

In particular, the methodology is divided into input generation (layer1), execution and

monitoring (layer2), and differential analysis plus bug triage (layer3).
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Table 6.1: Vulnerability and Bug Report Classification

Category Verified Bug Reports CVEs

Raw memory, buffer protocol & view lifetime 16 19
Binary conversions & bigint corners 4 14
FFI / native emitters 1 5
Parsers, codecs & compressors in C 68 15
Filesystem, VFS & Race Conditions 12 19
MMIO & peripherals (embedded targets) 0 10
Interpreter internals, exceptions & GC 38 18

Total 139 100

6.4.1 Input Generation and Corpus Management

Our approach to generating test inputs consists of three stages: (A) seeding the process

with a collection of real-world bug scripts and CVE proofs-of-concept, (B) using an LLM-

based generator to produce new candidate programs, and (C) applying a LibCST-based

mutator to systematically introduce variations. We describe each stage in turn.

A:The collection of CVE PoCs and Bug Reports

Our methodology begins with a curated corpus of proof-of-concept (PoC) scripts derived

from known CVEs and bug reports affecting both CPython and MicroPython. This ini-

tial set provides a solid foundation grounded in real-world vulnerabilities. By analysing

these reports, we identify common bug patterns and high-risk programming constructs,

particularly those relevant to the resource-constrained environment of the MicroPython

interpreter. These seed scripts serve as the basis for further generation and mutation,

allowing us to explore novel security issues beyond the known vulnerability landscape.
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The results of this classification are summarized in Table 6.1. The analysis reveals several

key areas of concern. The most prolific category in terms of implementation errors is

Parsers, codecs & compressors in C, with 68 verified bug reports. This is unsurprising,

as these components must safely handle a wide variety of complex and often untrusted

data formats, making them a frequent source of crashes or unexpected behaviur when

processing malformed input.

From a security perspective, the Raw memory, buffer protocol & view lifetime category is

particularly critical, accounting for 19 CVEs and 16 bug reports. This category covers dir-

ect memory manipulation, where objects like memoryview can point to another object’s

memory (e.g., a bytearray) without copying data. Such a view can become a dangling

pointer if the underlying object is modified or deallocated, leading to high-impact vulner-

abilities like buffer overflows and use-after-free, which can often be exploited for arbitrary

code execution.

Additionally, the Interpreter internals, exceptions & GC category is also significant, with

38 bugs and 18 CVEs. These issues relate to the most complex and interdependent parts

of the interpreter. This category tests the core functionality of the interpreter, and vul-

nerabilities here can destabilize the entire system, leading to crashes or memory leaks.

Other important categories include:

• Binary conversions & bigint corners: This category focuses on vulnerabilities in the

conversion between Python integers and byte sequences, which can lead to size

calculation errors, integer overflows, and misaligned memory access when handling

binary data.

• FFI / native emitters: This category covers vulnerabilities related to the interaction

between Python and C libraries, where mismatches in function prototypes, misuse

of variable arguments, or unsafe pointer arithmetic can lead to crashes and memory

corruption.
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• Filesystem, VFS & Race Conditions: This category includes vulnerabilities in file

I/O operations, such as length mismatches in buffer operations, use-after-close er-

rors, and race conditions that can lead to data corruption or security bypasses.

• MMIO & peripherals (embedded targets): This category is specific to embedded

systems and deals with vulnerabilities related to direct hardware access, where ar-

bitrary memory access or misalignment can cause system instability or crashes.

B:LLM-Based Generators

The initial seed corpus is expanded using two distinct techniques: (B) an LLM-based

generator and (C) a LibCST-based mutator. The LLM-based generator produces new test

cases that respect Python syntax and semantics while exploring edge cases and complex

constructs that may trigger vulnerabilities in the MicroPython interpreter. We do not

perform any additional model training, instead, we rely on in-context prompting, which

leverages the model’s prior knowledge of Python acquired during pre-training.

Specifically, we guide generation by providing an instruction prefix to OpenAI GPT-5.

This prefix includes:

1. a concise description of MicroPython and its execution model;

2. a compilation of risky code patterns observed in the seed corpus; and

3. selected CVE proofs of concept and bug-report scripts that exemplify these patterns.

The prompt further instructs the model to assign each generated test to one of the categor-

ies. The category information follow the pattern in Table 6.1. it also imposes constraints

to ensure the outputs remain within the subset of Python features supported by Mi-

croPython. This process excludes constructs that are either known to be safe or deemed

irrelevant for our research objectives. The prompt was iteratively refined based on the

quality and relevance of the generated scripts, a process intended to maximize diversity

and potential impact. Complete prompt templates are provided in Appendix A.
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C:LibCST Mutator

After generating new testcases using the LLM, we further expand our corpus through

designing a context-aware, type-aware Python code mutator built on LibCST. Library of

Concrete Syntax Tree (LibCST) is a Python parsing and rewriting toolkit that preserves

formatting details such as whitespace and comments, ensuring that mutated code remains

syntactically valid and stylistically consistent with the original source. We define a serial

of mutation rules to introduce subtle variations into the programs while respecting con-

textual constraints (e.g. scope and syntax) and optional type constraints [162]. The goal

is to generate a diverse set of program variants for testing without breaking syntax or

introducing glaring type inconsistencies.

Key design goals of the mutator include:

(i) Preserve syntactic validity and formatting. By leveraging LibCST’s CST, all

transformations maintain valid Python syntax and preserve layout, comments, and

formatting of unmodified parts of the code. This prevents trivial syntax errors and

keeps mutations semantically readable.

(ii) Context-aware replacements. The mutator uses scope-sensitive context pools

of CST nodes to guide replacements. Any code fragment selected for replacement

is substituted with another fragment of a compatible category (expression, state-

ment, etc.), drawn either from elsewhere in the program or from a template library.

This ensures that replacements respect the surrounding context (for example, an

expression is only replaced with another valid expression of an appropriate type or

structure).
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(iii) Multi-pass mutation pipeline. Instead of applying a single mutation in isola-

tion, the mutator supports executing multiple passes of different mutation operator

families (structural, peephole, chaotic, etc.) sequentially in one run. This multi-pass

approach allows both coarse-grained structural changes and fine-grained tweaks to

be introduced, increasing the chance of complex interactions. Undesired mutation

steps can be rolled back or skipped (with type-check gating, as described below) to

maintain overall correctness.

(iv) Type-budget enforcement. To keep mutations semantically plausible, an op-

tional type-checking gate (using MyPy2) enforces a ”type budget.” Before any muta-

tions, we record the original program’s type errors as a baseline. Each candidate

mutated program is only accepted if it does not increase the number of type errors

beyond that baseline. This prevents the mutator from introducing obvious type vi-

olations (such as arity mismatches in function calls or incompatible assignments),

thereby preserving a baseline level of semantic consistency.

(v) Runtime anomaly scoring. The mutator can optionally execute the final mutated

program under MicroPython interpreter with timeout, in order to detect crashes,

assertion failures, or infinite loops (hangs). A scoring mechanism assigns higher

scores to mutations that trigger abnormal behaviour (non-zero exit status, crashes,

timeouts), which is useful for prioritizing interesting or bug-inducing mutants in a

fuzzing campaign.

(vi) Deterministic, reproducible generation. All randomness in the mutator is

driven by a single master seed. Given the same seed and configuration, the mutator

will produce the same sequence of mutations every time. This determinism greatly

aids debugging and evaluation by ensuring that experiments are repeatable.

The mutation workflow is summarized in Algorithm 5. At a high level, the mutator takes

an input source code S and a configuration cfg specifying the mutation parameters (such

as which operator to apply, how many mutations, whether to enforce type safety, etc.). It

then proceeds in four main stages:

2. https://github.com/python/mypy

https://github.com/python/mypy
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(i) Parsing and indexing: The source S is parsed into a LibCST CST with metadata, and

a ContextIndex is built. The ContextIndex collects nodes from the CST categorized

by syntactic type (expressions, statements, control-flow blocks like if/for/while/try,

function and class definitions, etc.), and records scoping information (using LibCST’s

ScopeProvider metadata). This indexing provides pools of candidate nodes available

for context-aware replacements or insertions. For example, all expression nodes in the tree

might form a pool from which a new random expression can be drawn to replace some

target expression, if such an operator is applied.

(ii) Pipeline assembly: Based on the specified mutation operation and profile, a sequence

of transformation passes Π is constructed (BuildPipeline in Algorithm 5). Each pass

corresponds to a certain family of mutation operators.

(iii) Multi-pass mutation with type gating: The mutator iterates through each pass p ∈Π

and applies it to the current version of the code S⋆ (initially S⋆ = S). Within a pass,

the transformer will select one or more target nodes (guided by the context index and

the mutation strategy) and apply the specific mutation operator to produce a modified

CST M (Algorithm 5, line 6). For example, a StructurePass in replace mode will

randomly choose a statement in the code and replace it with another statement drawn

from the context pool or a generative template. After each pass produces a candidate

M, the Accept function checks if the mutated code should be accepted or rolled back.

If type-checking is enabled (cfg.type_safe is true), then Accept runs MyPy on M

and compares the number of errors to the baseline B. If the candidate M introduces new

type errors beyond the allowed budget, it is rejected and the mutation is rolled back

(the original S⋆ is retained for the next pass). This ensures that type-safe mode yields

a series of transformations that, at each step, do not accumulate type inconsistencies.

If the candidate is accepted (or if type gating is off), S⋆ is updated to M and the next

pass continues from this new state. This design, combined with a retry mechanism, allows

the mutator to attempt multiple alternatives if a particular mutation site leads to a type

error, thereby increasing the chance of finding a valid mutation.
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Algorithm 5: Context- and Type-Aware Mutator
Input: Source S, configuration cfg
Output: Mutated source S⋆

1 T,W, I← ParseAndIndex(S) // LibCST + metadata; build ContextIndex
2 Π← BuildPipeline(cfg) // e.g.,

Swap/Chaos/Structure/Peephole/Noise
3 B← TypeBaseline(S,cfg) S⋆← S
4 for p ∈Π do
5 M← p.apply(S⋆, I,cfg) // context- and template-guided
6 if cfg.type_safe and ¬Accept(M,B) then
7 continue // reject and rollback to S⋆

8 S⋆←M

9 if cfg.score_runtime then
10 RuntimeScore(S⋆,cfg)
11 Emit(S⋆,cfg) return S⋆

(iv) Runtime evaluation and output: After all passes have been applied, the final mutated

code S⋆ can optionally be run in a sandbox or a different Python interpreter (as specified

by cfg.runtimecmd, we choose MicroPython for our differential testing). The function

RuntimeScore in Algorithm 5 executes the code with a time limit. If the program crashes

(segmentation fault, interpreter panic) or times out, this is recorded (and a high score is

assigned to that mutant, signaling a potentially interesting find). If it exits normally or

with a benign error, a lower or zero score is assigned.

As shown in Algorithm 5, each transformation pass focuses on a certain operator family

and uses the context index or templates to guide the mutation in a meaningful way. If a

particular mutation is not valid under the type rules, the system does not terminate or

fail; it simply skips that mutation and tries the next opportunity or next pass, which is

important for robustness in an automated fuzzing setting.
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The mutator provides four families of operators that act on CST while preserving syntactic

validity (Table 6.2). Structural/Block operators rewrite statements or blocks to explore

larger control and data-flow changes. Peephole/Op operators make local edits to operat-

ors, literals, and small expressions. Semantic/Path operators rewrite boolean logic and

path conditions using common equivalences to steer execution. Aggressive/Inflation

operators stress parser and runtime limits without breaking syntax. Some operators are

only enabled when supported by the target (e.g., WALRUS_INSERT).

Structural operators include REPLACE/ADD/DELETE/SWAP for coarse edits, REUSE/IN-

JECT/COMBINE for controlled code reuse, and TRY_WRAP for adding exception contexts;

INLINE_TEMP/EXTRACT_TEMP perform simple refactorings. Peephole operators adjust

arithmetic and boolean atoms (ARITHMETIC_FLIP, LOGICAL_NEGATE, BOUNDARY_-

OFF_BY_ONE), toggle decorators, and tweak default parameters. Semantic operators re-

write standard idioms (SEMANTIC_AWARE), flip conditions (PATH_CONDITION, DE-

MORGAN), and optionally insert the assignment expression (WALRUS_INSERT) when

available. The CHAOS operator inflates literals, collections, and expression depth to probe

resource limits while keeping the program valid.

Table 6.2: Mutation operators implemented in the mutator.

Family Operator Effect

Structural /

Block

REPLACE Replace node using template or context

pool.

ADD Insert simple statements to blocks

(diversity).

DELETE Remove node; keep pass if block

empties.

SWAP Swap sibling statements (module or

nested blocks).

Continued on next page
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Table 6.2 – continued from previous page

Family Operator Effect

REUSE Replace with deep‐clone from in‐file

pool.

INJECT Replace with deep‐clone from

secondary file.

COMBINE Combine templates/subtrees

(conservative).

TRY_WRAP Wrap stmt/CF in try/except

Exception: pass.

INLINE_-

TEMP/EXTRACT_TEMP

Basic temp var rewrites (peephole-ish).

Peephole / Op ARITHMETIC_FLIP Swap +↔-, *↔//, etc.

LOGICAL_NEGATE Insert/remove not around boolean

exprs.

BOUNDARY_OFF_BY_-

ONE

±1 tweaks of integer comparators.

DECORATOR_TOGGLE Cycle staticmethod →

classmethod → property.

PARAM_DEFAULT_-

MUTATE

Nudge parameter default values

(int/string).

Semantic /

Path

SEMANTIC_AWARE len(x)==0↔not x; is

None↔== None; identity arith.

PATH_CONDITION In tests only: flip and/or, flip

relations, ±1 thresholds.

DEMORGAN Apply De Morgan’s laws with safe

parentheses.

Continued on next page
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Table 6.2 – continued from previous page

Family Operator Effect

WALRUS_INSERT Insert := in if/while/boolean sub‑exprs

(CPython).

Aggressive /

Inflation

CHAOS Huge ints/strings/bytes, grow

collections, deepen expr, add blocks.

Overall, the context- and type-aware mutator provides a robust methodology for generat-

ing program variants. It balances exploration (through aggressive and chaotic mutations

that can uncover edge cases) with soundness (through context awareness and optional

type checking to keep mutants valid and interpretable).

6.4.2 Layer 2: Execution and Runtime Observation

The second layer executes each program from the corpus on both the baseline and CHERI-

enabled builds of MicroPython and records detailed, normalized telemetry.

Each interpreter process is launched in a strict sandbox that enforces resource limits using

setrlimit on CPU time, address space, and file writes. This prevents non-terminating

programs from stalling the framework and contains side effects. The harness captures the

process exit code, any terminating signal number, and the complete stdout and stderr

streams. In addition, the CHERI harness logs detailed information about any capability

faults (such as bounds, tag, or permission violations) that occur during execution.



6.4. Methodology 151

6.4.3 Layer 3: Differential Analysis and Triage

The final layer analyses the paired execution records to find meaningful discrepancies,

shrinks the inputs that cause them, and feeds the results back into the system.

6.4.3.1 Differential Oracle Logic

The comparator implements a state machine to classify each pair of outcomes. The

primary classification of interest is a Memory-Safety Differential. This is triggered

under two main conditions:

1. Crash vs. Fault: The baseline builds crashes with a generic memory signal (e.g.,

SIGSEGV, SIGBUS, while the CHERI build terminates cleanly with a specific cap-

ability fault signal. This indicates a memory error that CHERI precisely identifies.

2. Success vs. Fault (Latent Bug): The baseline build runs to completion (exit code

0) and produces some output, while the CHERI build terminates with a capability

fault. This is a highly valuable finding, as it uncovers a latent memory safety viol-

ation that does not cause a crash in a conventional environment but is nonetheless

a serious bug.

The other categories include: benign, semantic differential, timeout, and unknown. Benign

cases are those where both builds exit cleanly with the same code and similar output.

Semantic differentials occur when both builds complete but produce different outputs

or error codes, indicating a logic bug rather than a memory safety issue. Timeouts are

cases where one or both builds exceed the time limit, and unknown cases cover any other

discrepancies not fitting the above categories.
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6.5 Evaluation

Research Question 4: As firmware complexity grows, traditional fuzzing

struggles with highly structured inputs like language interpreters. How can we

evolve test generation beyond simple mutation to rigorously assess architectural

defences, thereby measuring the shift from vulnerability discovery to prevention?

Concretely, we assess whether our test generation framework, which employs Large Lan-

guage Models and Concrete Syntax Trees, combined with differential execution across

CHERI and conventional MicroPython architectures, allows us to (1) uncover vulnerabil-

ities related to memory safety within the interpreter and (2) demonstrate instances where

CHERI mitigates crashes that manifest in the baseline build.

6.5.1 Experiment Setup

Our experimental design uses differential testing to evaluate the impact of the CHERI

architecture on the MicroPython interpreter. To achieve this, we established two paral-

lel execution environments. The first is a control environment, which runs a standard,

non-CHERI build of MicroPython on a conventional Linux system. This setup provides a

baseline for the interpreter’s expected behaviour without hardware-based memory safety

enhancements. The second is the experimental environment, where MicroPython is com-

piled for and executed on the CHERI-enabled Morello platform. This allows us to assess

how CHERI’s hardware-enforced memory safety influences the interpreter’s behaviour

under identical test conditions.
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Our testing methodology accounts for several key variables. Since the CHERI build of

MicroPython does not support the libffi module, we conduct separate test runs on the

baseline system both with and without this module. This ensures that our comparisons

accurately isolate the effects of the CHERI architecture. In addition, we run all test

cases against the latest official version of MicroPython (1.27-preview) to help distinguish

between pre-existing bugs in the core project and unique issues discovered during our

analysis.

A custom harness is deployed in both environments to automate test execution and data

collection. Each harness is responsible for running the same unified set of test scripts, en-

forcing resource limits like timeouts and memory usage, and capturing detailed telemetry.

The data collected includes standard output and error streams, exit codes, and operating

system signals. For the CHERI environment, the harness also records specific informa-

tion about any capability violations, offering direct insight into hardware-level memory

protection events.

6.5.2 Testcase Generation

The testcase generation process is a critical component of our evaluation framework,

designed to produce a diverse and comprehensive set of test scripts that effectively probe

the MicroPython interpreter for memory safety issues. This process begins with a curated

corpus of seed scripts, which are derived from known vulnerabilities, bug reports, and

common programming patterns that are likely to trigger memory-related errors.
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The generation process employs a combination of techniques to expand this initial corpus.

First, we use the LLM model to learn the structure and characteristics of the seed scripts,

enabling it to generate new scripts that are syntactically valid and semantically relevant.

The LLM is prefix-tuned to focus on constructs that are particularly pertinent to memory

safety, such as pointer manipulations, buffer operations, and dynamic memory allocations.

Additionally, we leverage a context-aware mutator built on LibCST, as described in Sec-

tion 6.4.1. This mutator applies a series of sophisticated mutations that respect the syn-

tactic and semantic context of the code, ensuring that the generated scripts remain valid

Python programs. The mutator can operate in both type-safe and non-type-safe modes,

allowing us to explore a wide range of potential memory safety issues, including those

that may arise from type inconsistencies.

The final corpus of test scripts is a blend of the original seed scripts and the newly

generated variants. Each script is designed to be executed in both the baseline and CHERI-

enabled environments, allowing for direct comparison of their behaviour. The diversity of

the corpus is crucial, as it increases the likelihood of uncovering subtle memory safety

violations that may not be apparent in more straightforward test cases.

We generated a total of 3800 testcases using the methods described above. These testcases

were derived from an initial corpus seed, which were expanded through a combination of

rule-based transformations and context-aware mutations. The resulting corpus encom-

passes a wide range of programming constructs and patterns, designed to thoroughly

exercise the MicroPython interpreter’s memory management capabilities.

We categorize the generated testcases into the same categories as the collection of CVE

PoC and bug reports, shown in table 6.1. The categories include: raw memory, buffer

protocol & view lifetime; binary conversions & biginit conners, ffi & native emitters, pars-

ers, codecs & compressors in C, Filesystem, VFS& Race conditions, MMIO& peripherals,
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Table 6.3: Distribution of testcases across different categories.

Category Generated testcases

Raw memory, buffer protocol & view lifetime 702
Binary conversions & bigint corners 783
FFI / native emitters 401
Parsers, codecs & compressors in C 638
Filesystem, VFS & Race Conditions 682
MMIO & peripherals (embedded targets) 170
Interpreter internals, exceptions & GC 590

Total 3800

and interpreter internal, exceptions & GC. These caterories cover a broad spectrum of

memory safety issues, ensuring that our evaluation is comprehensive and targets the most

relevant areas of the interpreter’s functionality. The distribution of testcases across these

categories is shown in table 6.3.

6.5.3 Results

After generating the testcases, we executed the testcases on these three distinct tar-

gets: the baseline non-CHERI build of MicroPython v1.20, the CHERI-enabled build of

MicroPython v1.20, and the latest development version of MicroPython (1.27-preview).

This section details the findings, beginning with the raw crash counts, followed by our de-

duplication methodology, and concluding with an analysis of the unique bugs identified.
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Table 6.4: The bug distribution

Category MicroPython
v1.20 on

non-
CHERI

MicropPthon
v1.20 on
CHERI

MicroPython
newest
version

Raw memory, buffer protocol & view lifetime 222 232 191
Binary conversions & bigint corners 115 165 99
FFI / native emitters 107 0 80
Parsers, codecs & compressors in C 15 11 4
Filesystem, VFS & Race Conditions 17 17 4
MMIO & peripherals 0 36 1
Interpreter internals, exceptions & GC 10 18 11

Total 486 479 390

6.5.3.1 Initial Crash Analysis

The initial execution of the test suite produced a large number of crashes across all targets.

As summarized in table 6.4, we initially recorded 486 crashes on the non-CHERI build,

479 on the CHERI-enabled build, and 390 on the newest version of MicroPython. The

”FFI / native emitters” category highlights a key difference, as the CHERI build lacks

libffi support and thus produced no crashes in this area. Conversely, the CHERI build

detected a significant number of bugs in categories sensitive to memory layout, such as

”Binary conversions & bigint corners” (165 vs. 115) and ”MMIO & peripherals” (36 vs.

0).

6.5.3.2 Crash De-duplication Analysis

These initial crash counts are inflated by duplicate testcases. The generative and muta-

tional nature of our fuzzer often produces many slight variations of a test case that all

trigger the same underlying bug. To obtain an accurate count of unique vulnerabilities,

we implemented an automated crash de-duplication pipeline.
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The pipeline process each crash as follows:

1. Filter for Crashes: Only test runs resulting in a crash (defined by non-zero and

non-one exit codes) are retained for analysis.

2. Extract Stack Trace: The GDB debugger is used to generate a backtrace for each

crash.

3. Generate Crash Signature: We parse the backtrace to create a unique ”crash signa-

ture.” By default, this signature is defined by the top-most function call within the

MicroPython source code (e.g., mp_obj_subscr @ obj.c:538). Frames from external

libraries, such as libc, are ignored to ensure the signature is specific to the project’s

code.

All test cases that produce the same crash signature are grouped together and counted

as a single, unique bug.

6.5.3.3 Unique Bug Analysis

Applying this de-duplication process reveals a more precise landscape of bugs discovered,

as shown in table 6.5. In total, we identified 47 unique bugs on the non-CHERI build (35

non-libffi, 12 libffi-related) and 43 unique bugs on the CHERI build. The newest version

of MicroPython contained 35 unique bugs (24 non-libffi, 11 libffi-related).

When comparing the core interpreter (excluding libffi), the CHERI-enabled build exposed

more unique memory safety bugs than the baseline non-CHERI build. This result is con-

sistent with CHERI’s design, as its hardware enforced capability bounds and permissions

transform latent memory errors, which may not cause a crash on a conventional architec-

ture, into observable faults.
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Table 6.5: The unique bug distribution after cleaning up the duplicates.

Target bug-non libffi bug-on libffi Total

MicroPython v1.20 on non-CHERI 35 12 47
MicroPython v1.20 on CHERI 43 0 43
MicroPython v1.27 preview 24 11 35

Additionally, there are also differences in the number of testcases that trigger each unique

bug, which also proves the CHERI’s capability to catch more memory safety bugs. Fig-

ure 6.3 illustrates this by comparing trigger counts for the top 10 bugs identified on the

CHERI build. For several bugs related to memory access, the detection gap is stark. For

instance, a bug in array_subscr() was triggered by 64 testcases on CHERI but was never

detected on the non-CHERI build. Similarly, a bug in machine_mem_subscr() was found

by 32 testcases on CHERI and none on the baseline.
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Figure 6.3: The distribution of bugs found on CHERI-build and non-CHERI build.
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The differences between the CHERI-build and non-CHERI-build bugs are shown in table 6.5.

It proves the CHERI-build can find more unique bugs. Even for the same bugs, there are

more testcases can be detected on the CHERI-build and missed on the non-CHERI-build.

It shows on figure 6.3. We select the top 10 bugs that we have found on CHERI-build

MicroPython. The pink bars show the number of testcases that can trigger the bugs on

non-CHERI build, and the purple boards show the number of testcases that can trigger

the bugs on CHERI-build.

In these examples, CHERI-build produces almost twice as many triggering testcases over-

all. The largest gaps occur in paths that perform bounds, alignment, or pointer‑derived ac-

cess (e.g., array subscripts and aligned loads/stores). On CHERI, these operations fail fast

at the exact misuse site (capability bounds or alignment checks), while the non‑CHERI

build only crashes if the corruption later propagates into illegal access.

Even when a bug is detectable on both platforms, the CHERI build consistently identifies

it more frequently. For example, a bug in set_aligned() was triggered by 68 testcases

on CHERI compared to only 13 on the non-CHERI build. This increased detection rate

occurs because CHERI fails fast at the precise point of misuse, like a capability bounds

or alignment check. In contrast, the non-CHERI build only crashes if and when the initial

memory corruption later propagates to cause a segmentation fault or other fatal error.

6.5.4 Selected Bug Examples

MicroPython provides low-level primitives such as uctypes, the buffer protocol, and VFS

block drivers that allow direct memory access in Python. In a conventional non-CHERI

build, common bugs like out-of-bounds (OOB) accesses or the use of stale pointers often

lead to silent memory corruption. The program may continue to execute, only to fail un-

predictably at a later time, or in some cases, not fail at all, producing incorrect results. In
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contrast, CHERI enforces pointer bounds and permissions in hardware, providing robust

spatial and temporal memory safety. When code attempts to use a pointer outside its

designated range or after the memory it references has been deallocated (a stale pointer),

CHERI immediately raises a precise fault at the point of the illegal access. This section

presents concrete examples in MicroPython where CHERI reports bugs deterministically,

while the non-CHERI Unix port typically does not.

6.5.4.1 Bug Example on CHERI-build MicroPython

The following examples demonstrate memory safety violations that are instantly caught

by the CHERI architecture.

1 import uctypes

2 owner = bytearray(b"hello")

3 base = uctypes.addressof(owner)

4 try:

5 # Create an alias that is 8 bytes longer than the owner buffer

6 raw = uctypes.bytearray_at(base, len(owner)+8)

7 # Write into the memory beyond the owner's true boundary

8 raw[len(owner):] = b"X"∗8

9 print("CRASH_SIG")

10 except Exception as e2:

11 ok("passed", ty pe(e2).name)

Listing 6.1: Writing beyond the buffer via an overlong alias

In Listing 6.1, a raw memory alias is created that extends beyond the true boundary of the

owner buffer. On the CHERI build, the first attempt to write past the end of the owner

buffer raises a capability bounds fault, immediately terminating the illegal operation. On

the non-CHERI build, this writes proceeds silently, corrupting adjacent heap memory and

allowing the program to continue in an undefined state.
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1 import uctypes as u

2 owner = bytearray(16)

3 base = u.addressof(owner)

4 #Create an alias starting 1 byte before the owner

5 a = u.bytearray_at(base − 1, 8)

6 a[0] = 1

7 print("DONE")

Listing 6.2: Writing before the buffer via an underflow alias

Listing 6.2 demonstrates a spatial memory violation where an alias is created starting just

before the allocated buffer. The CHERI build faults on the write to a[0], as it is outside

the valid bounds of the owner capability. Conversely, the non-CHERI build executes this

write, corrupting memory preceding the buffer, and the program continues, ignores the

error.

In Listing 6.3, a writable memoryview is created for a bytearray. The bytearray is then

extended, a process that often requires reallocating its memory buffer to a new, larger

location. This relocation invalidates the original memoryview.

1 import os

2 path = "tmp.bin"

3 with open(path, "wb") as f:

4 f.write(bytes(range(16)))

5 ba = bytearray(b"abcdefgh") # 8 bytes

6 mv = memoryview(ba) # Create a writable view

7 ba.extend(b"Z" ∗ 4096)

8 with open(path, "rb") as f:

9 n = f.readinto(mv) # Attempt to write data via stale view

10 print("READ", n)

11 os.remove(path)
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Listing 6.3: Stale memoryview used as a target for readinto

The CHERI build MicroPython detects that mv is a stale capability pointing to dealloc-

ated memory and faults when f.readinto(mv) is called. However, the non-CHERI build

completes the readinto call successfully, writing data into a freed heap chunk that may

have since been reallocated for another purpose, leading to silent heap corruption.

6.5.4.2 Bugs Examples on Latest MicroPython

This section shows four crash examples reproduced on the latest standard MicroPython

Unix port. The first three reveal runtime defects in how MicroPython manages the lifetime

of memoryview objects and handles reentrancy in list.sort(). The fourth example is a

negative control, a Viper-compiled store to an unmapped memory address, which serves

to validate our fault analysis methodology. All results in this section were obtained on a

non-CHERI build.

1 #Keep writable views to a small bytearray, then grow it so its

storage moves.

2 #Writes through the old views corrupt unrelated runtime data.

3 import uctypes, gc

4 ba = bytearray(b"abcdefghij") # 10 bytes

5 old = uctypes.addressof(ba)

6 views = [memoryview(ba) for _ in range(4)]

7 #Growth likely moves the backing buffer.

8 ba[:] = ba + b"X"∗256

9 new = uctypes.addressof(ba)

10 print("MOVED?", old != new, hex(old), "−>", hex(new))

11 gc.collect()

12 #Writes through stale views (still pointing at the old storage).
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13 for mv in views:

14 mv[0:1] = b"Y"

15 print("DONE")

Listing 6.4: Persistent writable views cause a crash after owner growth

The program typically prints MOVED? True, indicating the buffer was reallocated, and

then crashes at a later, unrelated point in its execution. The backtrace often shows a fault

during an indirect call within the virtual machine (e.g., in mp_load_method_maybe),

which is consistent with the corruption of an object’s type information or method table.

MicroPython does not invalidate or prevent the use of existing writable memoryview ob-

jects when their underlying buffer is reallocated. When the bytearray grows, its storage

moves, but the views retain a stale pointer to the old, now-freed memory location. Sub-

sequent writes through these stale views corrupt whichever object has since been allocated

in that memory space.

1

2 import uctypes, os

3

4 path = "t.bin"

5 with open(path, "wb") as f:

6 f.write(bytes(range(16)))

7

8 a = array('I', [0]∗4) # 4 ∗ 4B = 16 bytes

9 old = uctypes.addressof(a)

10 mv = memoryview(a) # Writable view

11 a.extend([1]∗2048) # Likely moves storage

12 new = uctypes.addressof(a)

13 print("MOVED?", old != new, hex(old), "−>", hex(new))

14

15 with open(path, "rb") as f:

16 n = f.readinto(mv) # OS writes into stale address

17 print("READ", n)
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18 os.remove(path)

Listing 6.5: Typed array view kept across growth; readinto writes via stale view

A crash typically occurs when the program exits the with block. The backtrace points to a

fault within mp_stream_close() while trying to read the type field of what it assumes is a

valid stream object, indicating that the object’s metadata has been corrupted. A writable

memoryview of a typed array persists after the array’s storage is moved. This stale view

is then used as the destination buffer for readinto, which writes data to the deallocated

memory region, corrupting heap objects that now occupy that space.

1 import gc

2 class Evil:

3 def init(self, arr_ref):

4 self.arr_ref = arr_ref

5 def lt(self, other):

6 self.arr_ref.clear() # Mutates the container being sorted

7 gc.collect() # Encourages immediate reuse of freed

space

8 return True

9 a = []

10 a.extend(Evil(a) for _ in range(5))

11 a.sort()

Listing 6.6: Comparator clears the list during sort operation

The virtual machine crashes with a segmentation fault inside mp_binary_op() while ex-

ecuting the quicksort algorithm. The GDB backtrace reveals that the program attempts to

dereference a NULL pointer (rdi == 0) when trying to retrieve an object’s type, indicating

that the sort algorithm is operating on an invalid list element.The list.sort() implement-

ation is not reentrant-safe. It does not protect against scenarios where the comparison
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function (__lt__) modifies the list being sorted. In this example, the comparator clears

the list, deallocating its elements. The sort function, unaware of this change, proceeds to

use its now-invalidated pointers to these elements, resulting in a NULL pointer derefer-

ence.

1

2 @micropython.viper

3 def pokehi():

4 p = ptr8(1 << 31) # 0x80000000

5 p[0] = 1 # Store to unmapped address

6 pokehi()

Listing 6.7: Viper writes to 0x80000000 (unmapped on Linux)

The program receives a SIGSEGV signal precisely at the instruction attempting to store

a byte to the high memory address 0x80000000. This behaviour is expected on a Linux

system where this address is part of an unmapped memory region.

6.6 Limitations and Future Work

Our differential testing framework has shown promising results in uncovering memory

safety issues in the MicroPython interpreter. We also prove that CHERI’s hardware-

enforced memory safety can catch more latent bugs that do not cause crashes on conven-

tional architectures. However, there are several limitations and areas for future improve-

ment:
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A: Testcase Diversity and Coverage. Although our testcase generation methods produce

a wide range of inputs, there are still lots of similar testcases that trigger the same

bugs. Ensuring diverse programs that exercise truly distinct code paths remains an open

challenge [163]. Generating complex valid testcases for MicroPython is non-trivial. Other

program generators like Csmith [164] and RustSmith [165] use careful rules to produce

diverse, semantics-respecting programs. Adopting such rules from these generators could

help improve the quality of the generated testcases. In the context of MicroPython, a

more sophisticated generator could exercise rarely-used built-in types, error handlers, or

interpreter internals that our current seeds and mutators might miss. Using code from

real-world scripts or diverse libraries could further increase coverage of edge cases.

B: The more advanced generation technique. Our use of a prompt-guided large language

model (LLM) proved effective for synthesizing valid Python programs, but there is room

for more powerful generation approaches. Recent research suggests that LLMs can be

harnessed as intelligent fuzzing agents-not only generating code, but also mutating and

steering tests towards suspicious patterns. Future work could explore fine-tuning an LLM

on MicroPython’s grammar or known bug patterns to create an even more targeted gen-

erator. Another direction is to integrate semantic feedback into generation: for example,

using the interpreter’s own parser or a static analyser to guide the LLM to problematic

constructs (e.g. deep recursion, large nested data structures, risky use of the C API).

This could mitigate the risk of the model producing many syntactically different but se-

mantically similar tests. Furthermore, an autonomous LLM-based agent might iteratively

generate and refine tests by observing the differential outcomes-a form of AI-driven closed-

loop fuzzing. Leveraging such generative AI techniques, which are starting to emerge in

software testing research, could significantly enhance the breadth and depth of our test

corpus.
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C: Semantic Analysis and Dynamic Instrumentation. Our current differential oracle simply

compares final outcomes (crash vs. capability fault vs. normal output). A deeper semantic

analysis of execution could uncover subtle discrepancies and guide test generation. In

future work, we envision integrating dynamic instrumentation tools like DynamoRIO [166]

to trace memory accesses, pointer metadata, and control-flow coverage in detail during

each test run. For example, logging every memory allocation and deallocation in the

interpreter could help detect temporal safety issues even if they do not immediately lead

to a crash.

D: Broader Target Support. Our initial study focused on MicroPython within a Unix-like

environment and on the ARM Morello board. To assess the broader applicability of our

approach, we intend to deploy our differential testing framework on other microcontroller

boards. Moreover, our methodology could be extended to evaluate alternate embedded

interpreters, such as CircuitPython, Cruby.

6.7 Conclusion

This chapter presented a novel differential testing framework that combines smart test

generation with hardware-assisted checking to evaluate memory safety in MicroPython.

We addressed RQ4 by showing how to evolve fuzz testing beyond blind mutation in or-

der to rigorously assess an architectural defence (the CHERI capability system). Our ap-

proach leveraged an LLM-based generator and a LibCST mutator to produce semantically

valid, high-risk Python programs, overcoming the limitations of naive fuzzers that often

generate invalid code. We then ran each program on two builds-one standard and one

CHERI-enhanced-under a unified harness that captures and normalizes their behaviour.

By treating the CHERI-enabled interpreter as a variant implementation, we turned di-

vergent outcomes into a powerful oracle for memory errors. Crucially, the CHERI build’s

precise traps transformed many elusive bugs into deterministic faults, providing immedi-
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ate evidence of out-of-bounds accesses, use-after-free, and other unsafe actions that would

otherwise go undetected. The experimental results demonstrate the effectiveness of this

approach. The differential fuzzer discovered huge gaps in detecting memory safety bugs

between CHERI and non-CHERI builds. Additionally, we also uncovered 35 unique bugs

in the latest version of MicroPython. All the code and discovered bugs have been respons-

ibly disclosed to the MicroPython team, shown in Appendix B. We also provide the source

code for differential framework and MicroPython bug database to the community.3

3. https://github.com/MaksimFeng/ML4Secure/tree/evolve

https://github.com/MaksimFeng/ML4Secure/tree/evolve


Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis advances automated vulnerability discovery in IoT firmware by designing and

evaluating four complementary fuzzing techniques, each addressing a core challenge high-

lighted in chapter 1. Taken together, the results show that domain-aware strategies, richer

feedback signals, hardware-assisted execution, and structured test generation can mater-

ially improve the effectiveness of fuzzing for embedded systems. The evaluations span

industrial control systems, general-purpose firmware, and a memory-safe architecture,

and show that a hardware-centric approach can both increase the rate at which bugs are

found and support the assessment of preventative security mechanisms.

Sizzler introduces a domain-specific, learning-based fuzzer for ladder logic in program-

mable logic controllers (PLCs). It uses a SeqGAN model to learn mutation policies from

the fuzzing process so that generated inputs bypass PLC-specific checks and reach deeper

logic. Sizzler emulates ladder diagrams across diverse microcontroller platforms using a

refined QEMU backend. In practice, Sizzler uncovered a critical buffer overflow in the

OpenPLC runtime (CVE-2023-43184) that allowed crafted ladder code to inject pay-

loads via PLC slave attributes and crash the controller. Across our dataset, Sizzler found

169
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multiple PLC logic issues and achieved higher coverage on standard embedded bench-

marks (Magma and LAVA-M) than baseline fuzzers. These findings answer RQ1: domain-

specific learning improves mutation effectiveness, enabling inputs that pass PLC-specific

filters and expose deeper code paths that general-purpose fuzzers miss. Sizzler’s success

on closed-source PLC binaries underscores the value of combining domain knowledge with

learning-based mutation for IoT firmware.

FuzzRDUCC contributes a data-flow guided feedback mechanism for binary fuzzing,

answering RQ2 by directly comparing def-use coverage with classic control-flow (edge)

coverage in firmware and driver contexts. Integrated into QEMU at the translation level,

FuzzRDUCC instruments binaries to record where values are defined and where they are

later used, not only which basic blocks execute. Our evaluation shows that def-use cover-

age provides stronger guidance to solve hard conditional checks and magicbyte comparis-

ons. Over 24-hour campaigns on real binaries (e.g., GNU Binutils utilities), FuzzRDUCC

achieved faster coverage growth than AFL++ and several state-of-the-art binary-only

fuzzers, including UAFuzz and ZAFL, thereby exploring paths that edge coverage alone

did not reach. Notably, it revealed a unique null-pointer dereference in the strip utility’s

relocation-handling logic (within copy_relocations_in_section) by manipulating specific

relocation entries, whereas AFL++’s generic mutations failed to pass initial format checks

and missed this code region entirely. While total crash counts did not always scale with

coverage—AFL++ still found certain bugs faster—the quality of coverage from FuzzR-

DUCC exposed new bug classes (e.g., pointer misuse in strip) that edge-based fuzzers

overlooked. These results support the claim that enriching feedback with data-flow inform-

ation can guide test generation more effectively than standard edge coverage, especially

for firmware with complex, input-dependent logic.

Hardfuzz answers RQ3 by showing that on-device fuzzing with hardware breakpoints

can deliver high-fidelity execution and effective feedback at practical speed on micro-

controllers. The framework runs target firmware on real hardware and uses the built-in

debug interface to gather feedback, avoiding the uncertainties of emulation. Hardfuzz
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guides fuzzing with def-use insights (as in FuzzRDUCC) while operating under the con-

straint of a small number of hardware breakpoints. Inspired by recent “debugger-driven”

fuzzing techniques that use GDB and on-chip debug hardware [40], we show that even

4–6 breakpoints on typical Cortex-M MCUs are sufficient for coverage-guided, on-device

fuzzing. By placing breakpoints along high-value def-use chains and relocating them it-

eratively, Hardfuzz explores new code while executing each test at native MCU speed

(avoiding the >10× slowdowns common in full emulation). The approach is fast, accur-

ate, and non-intrusive: all peripheral interactions and timing behaviour occur as on the

actual device, and any crash is a true device crash. In our evaluation, Hardfuzz achieved

higher coverage and more unique basic blocks than GDBFuzz under QEMU emulation,

indicating that our breakpoint assignment strategy is efficient. For the real MCUs, Hard-

fuzz outperformed GDBFuzz in coverage finding, demonstrating that on-device fuzzing

with data-flow guidance is both practical and effective. These outcomes confirm RQ3:

fuzzing on real hardware via debug breakpoints is practical and can match or exceed

emulation-based approaches in both coverage and bug finding.

Finally, MicroPython differential fuzzing addresses RQ4 by moving beyond pure

bug hunting to the structured evaluation of defensive mechanisms. We present a differen-

tial fuzzing framework for MicroPython that generates valid, structured test cases using

LLMs and CST mutations. We then run the same tests in two environments: (i) a CHERI-

capability-enabled MicroPython interpreter on a CHERI system and (ii) a baseline inter-

preter on a conventional CPU. By comparing outcomes (e.g., crashes, exceptions, silent

execution), we measure how many memory errors are prevented by CHERI. Many inputs

produced divergent behaviour: heap overflows and use-after-free errors that caused silent

memory corruption on the baseline were safely trapped on CHERI as bounds violations.

In several cases, the CHERI-enabled interpreter halted latent memory safety bugs that

had not been observable on conventional hardware until fuzzing uncovered them. CHERI

detected 8 unique memory safety violations which can not be detected on the baseline

system.Thus, RQ4 is answered: when systems include strong architectural safety features,
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fuzzing can and should be used to assess these preventative measures. With LLM-assisted,

high-structure test generation, we achieved broad interpreter coverage and showed how

architectural memory safety (CHERI capabilities) can eliminate entire classes of vulner-

abilities that remain exploitable on traditional architectures.

7.2 Limitations and Future Work

While these contributions advance automated IoT firmware testing, several limitations

affect generality and scalability of our techniques.

Vendor specificity in PLCs. Sizzler currently targets ladder logic from open-source

PLC environments, yet most industrial PLC binaries use proprietary formats. There is

no universal emulator or intermediate representation for all PLC equipment, vendors

differ in memory maps, instruction sets, and binary layouts. Although Sizzler shows the

value of domain-specific learning for PLCs, broad adoption will require adaptation to

diverse vendor ecosystems. Future work includes developing cross-vendor intermediate

representations, applying automated reverse engineering to infer semantics, and building

lifting pipelines that reduce per-vendor engineering effort.

Performance and overhead. Instrumentation-heavy techniques incur runtime costs.

FuzzRDUCC’s data-flow instrumentation introduces overhead in QEMU. We mitigate

this with heuristics that select high-value def-use chains, but the prototype still runs

slower than native execution. Sizzler’s use of AFL++ on QEMU also adds overhead, full

tracing in QEMU can introduce slowdowns on the order of �13×. Hardfuzz executes tests

at device speed, but serial I/O and frequent breakpoint handling add latency, and the

small number of hardware breakpoints limits simultaneous instrumentation. The stop–

restart cycle for on-device testing lowers throughput relative to in-memory fuzzing. In
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short, richer feedback improves guidance but reduces executions per second, which can

hinder scalability for very large firmware that require millions of test runs. Future optim-

izations include selective and adaptive instrumentation, use of hardware tracing features,

parallelization across device farms, and hybrid fuzzing that switches between emulation

and hardware based on feedback value.

LLM-generated structured inputs. Our CHERI+MicroPython pipeline depends on

the quality and diversity of the underlying language model and prompts. While coverage

was strong, we cannot claim complete exercise of all interpreter paths, especially rare edge

cases. Moreover, our study focused on a single interpreter and one architectural mechan-

ism (CHERI). Future work should extend to other interpreters and runtimes, and com-

pare multiple safety mechanisms (e.g., memory tagging or sanitisation-based defences).

Improvements to input generation—such as constraint-guided CST edits, semantic or

type-aware mutations, and feedback that rewards specification conformance—could fur-

ther increase depth and breadth of exercised behaviours.

In summary, the four systems deliver clear gains but involve trade-offs: limited generality

for PLC fuzzing, runtime overhead for instrumentation, hardware resource constraints for

on-device fuzzing, and reliance on external models for structured inputs. Addressing these

constraints points toward a unified, scalable framework that (i) abstracts vendor-specific

details, (ii) adapts instrumentation to maximise feedback per unit time, (iii) leverages

device farms and hardware tracing to close the throughput gap, and (iv) uses semantics-

aware generators that better align with target specifications.
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7.3 Final Remarks

This thesis shows that fuzzing for IoT and embedded systems is strengthened by domain-

specific knowledge, richer feedback, hardware-in-the-loop integration, and structured in-

put generation. We frame the contributions along two axes: where the target runs (real

MCUs, rehosting, emulation) and what guides exploration (data-flow and semantic feed-

back paired with grammar and model guided generators). Our results (new PLC vulnerab-

ilities, previously unseen firmware bugs, and empirical evidence that architectural safety

features such as CHERI can block whole classes of memory-safety errors) demonstrate

significant security impact. The remaining gaps point to next steps: make the techniques

more general across platforms, faster at scale, and easier to deploy. The broader goal

is an automated, end-to-end fuzzing ecosystem that not only finds vulnerabilities across

the diverse IoT landscape but also informs the design and evaluation of safer firmware

and hardware, enabling a paradigm shift in the field from discovery to prevention of

vulnerabilities.



Appendices

A Prompt for LLM Testcase Generation

This section provides the exact prompt we used for generating MicroPython testcases.

The prompt is designed to guide the LLM to produce concise, syntactically valid, and

semantically meaningful Python code snippets that can be executed in a MicroPython

environment.

You are an expert MicroPython vulnerability hunter. Generate standalone .py tests for the

MicroPython Unix port. Each test must be a single file that runs fast, is self-validating,

and prints a result. Focus on finding memory-safety bugs (bounds violations, UAF, stale

views, unchecked pointer use, corruptions) and hard VM failures (segfault/abort), not

just ValueError/MemoryError.

Environment & constraints (must follow)

• Target: MicroPython Unix build.

• memoryview step must be 1 (use contiguous slices only).

• bytearray.clear() is absent → use del ba[:].

175



A. Prompt for LLM Testcase Generation 176

• bytearray *= N is absent → grow with extend or slice-assign ba[:] = ba +

big_bytes.

• Prefer open() over os.open; fsync/truncate may not exist.

• If a feature/module is missing, print SKIP: <reason> and exit cleanly.

Categories & tactics (generate N tests per category; default N=40)

A) Raw memory, buffer protocol & view lifetime

• Aggressively exercise:

– uctypes.bytes_at(addr,len) and bytearray_at(addr,len) with neg-

ative/NULL/huge addresses.

– uctypes.struct(base, desc) with misaligned fields, fields crossing buffer

end, and negative base offsets.

– addressof() on immutable str/bytes, then write via bytearray_at and

observe consequences (e.g., content/CRC drift).

– Stale view patterns: hold memoryview/uctypes alias; perform byte-

array.extend(huge), ba[:] = ba + big, del ba[:] (clear), or ar-

ray('B').extend(...); then write via the old view/alias.

– Overlapped aliasing: multiple bytearray_at to overlapping ranges; write in-

terleaved after owner growth.

• Oracles:

– A crash (rc ̸= 0) or ”strange success” like writing through a view after owner

moved.

– Post-write invariants: if you mutate bytes/str via raw writes, check ubinas-

cii.crc32/prefix/equality changed unexpectedly.

B) Binary conversions & bigint corners

• Push ustruct/struct:
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– pack_into/unpack_from with giant/negative offsets, misaligned offsets

into memoryview(array('H'/'I')).

– Huge repeat counts ("999999x", "1000000s") and composite formats with

many fields (check integer overflow in size maths).

• int.to_bytes/from_bytes:

– Extreme lengths (0, 1, huge), signed/unsigned mismatch; pipe into *_into to

write past end of a small view.

• Oracles: crash; silent buffer corruption (verify guard bytes); diverging behaviour vs

expected bounds checks.

D) Parsers, codecs & UTF-8

• ujson: deeply nested, massive numbers, invalid escapes, recursive structures to trigger

edge walkers.

• ubinascii: hexlify/unhexlify with injected invalids mid-stream; large CRC32

on unaligned memoryviews.

• ure: catastrophic backtracking patterns that also manipulate big buffers nearby (look

for mis-sized memcpy).

• utf-8: overlong/invalid continuations in bulk.

• Oracles: crash or inconsistent results after heavy decode loops.

E) Filesystem & VFS edges

• readinto into typed memoryviews (array('H'/'I')) with lengths not multiples

of element size; chain partial reads into overlapping slices of the same buffer.

• Use the same memoryview interleaved with multiple file objects; rename/remove

file between reads.

• After readinto, drop or clear the owner (del ba[:], reassign buf = byte-

array(1)), then attempt view write.

• Oracles: crash, stale view write success, data torn in overlapped regions.

F) MMIO (optional, skip if machine missing)
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• Misaligned mem8/16/32 accesses and addresses that cross 4 KiB windows.

• Oracles: bound/permission faults (on CHERI builds) or crashes on permissive ports.

G) Interpreter internals & GC interactions

• Finalizers that resurrect objects and allocate during GC; chained generators whose

close() allocates in finally.

• Sorting with comparators that mutate/lengthen the list; schedule many callbacks that

raise, interleaving gc.collect().

• micropython.heap_lock() misuse: attempt allocations while locked (expect clean

error, not crash).

• Oracles: crash or corrupted interpreter state.

FFI / C extensions / native emitters Targets

• Unix port: ffi/ffilib (dlopen/dlsym + calls)

• @micropython.viper / @micropython.native (where available)

• Inline asm on MCU ports (e.g., asm_thumb)

Test structure & output (strict)

• Each file must:

– Import only what it needs.

– Wrap the core in try/except and log("OK"/"EXC", ...).

– Avoid unsupported APIs per constraints above.

– Prefer short, deterministic sequences over loops; add thrash() judiciously to

shake lifetime bugs.

– Print exactly one final line that starts with one of:

∗ OK, EXC <Type>, SKIP <reason>, or a brief custom tag like CRASH_SIG

if you detect inconsistency.

• Aim for crash or deterministic invalid write.
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Seed patterns to instantiate across tests (cover systematically)

• Addresses: [−263 .. -1], [0], [1, 2, 16, 4096, 231] (clamped to platform).

• Sizes: [0, 1, 3, 7, 15, 31, 63, 127, 255, 4096, 1000000].

• Offsets into pack/unpack: [−109, -1, 0, 1, 2, 3, 4, 7, 15, 31].

• Element widths: 1/2/4; owners: bytearray, array('B'), array('H'), ar-

ray('I').

• Owner growth ops: extend(big), ba[:] = ba + big, del ba[:].

• GC cadence: call thrash() before/after a potentially stale deref.

Deliverable

• Produce N=40 tests per category (A,B,D,E,G; F only if machine exists).

• Each file name starts with test_<categorycode><case#>_<brief>.py.

Example code you can follow

1 import gc

2 class Evil:

3 def __init__(self, arr_ref):

4 self.arr_ref = arr_ref

5

6 def __lt__(self, other):

7 self.arr_ref.clear()

8 gc.collect()

9 return True

10 a = []

11 evil_objs = [Evil(a) for _ in range(5)]

12 a.extend(evil_objs)

13 print(len(a))

14 a.sort()

15 print(len(a))

16 print(len(evil_objs))
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17 #−−−−−−−−−−−−−−−−−−−−−−−−−−−

18 import gc

19 b = bytearray(b"ABCD")

20 mv = memoryview(b)

21 try:

22 b[:] = b""

23 except Exception as e:

24 print("shrink blocked:", type(e).__name__, e)

25

26 for _ in range(2000):

27 _ = bytearray(64)

28 gc.collect()

29 try:

30 print("mv_head=", bytes(mv[:1]))

31 except Exception as e:

32 print("mv read exc:", type(e).__name__, e)

B Bug Reports Submitted to the MicroPython Pro-

ject

The following GitHub issues were opened as part of outcome of differential testing frame-

work for MicroPython.

• Issue #18172

• Issue #18171

• Issue #18170

• Issue #18169

• Issue #18168

https://github.com/micropython/micropython/issues/18172
https://github.com/micropython/micropython/issues/18171
https://github.com/micropython/micropython/issues/18170
https://github.com/micropython/micropython/issues/18169
https://github.com/micropython/micropython/issues/18168
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• Issue #18167

• Issue #18166

• Issue #17941

https://github.com/micropython/micropython/issues/18167
https://github.com/micropython/micropython/issues/18166
https://github.com/micropython/micropython/issues/17941
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