A University
of Glasgow

Feng, Kai (2026) Fuzzing techniques for automated vulnerability detection in
loT firmware. PhD thesis.

https://theses.gla.ac.uk/85682/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without
first obtaining permission from the author

The content must not be changed in any way or sold commercially in
any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/
research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/85682/
mailto:research-enlighten@glasgow.ac.uk

Fuzzing Techniques for Automated
Vulnerability Detection in IoT

Firmware

Kai Feng

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE & ENGINEERING

University
of Glasgow

OCTOBER 2025

To my friends,
my parents,
My girilfriend,

My supervisor,

and all my cats

Abstract

A security flaw in the firmware of microcontrollers (MCUs) can lead to devastating con-
sequences. Finding and fixing these bugs before deployment is essential because patching
them in the field is often difficult, expensive, or impossible. However, standard software
testing techniques like fuzzing struggle with embedded firmware due to its tight coup-
ling with specialized hardware, which makes testing slow, inaccurate, and inefficient. This
thesis studies two key design choices: where tests run (emulation, Hardware-in-the-Loop
(HIL), or on-device) and what feedback and inputs they use (control flow vs. data flow;
generic vs. domain-specific). It moves testing from slow emulation to real hardware and re-
places simple code coverage with data-flow guidance to drive bug finding. It also measures

how new hardware features can prevent whole classes of bugs.

The approach is demonstrated through four linked contributions. First, Sizzler solves the
input wasted problem by generating valid, domain-aware tests for Programmable Lo-
gic Controllers (PLCs) by deep learning model, so fuzzing effort is not wasted. Second,
FuzzRDUCC improves feedback by tracking def-use chains, revealing subtle bugs that
edge-based coverage can miss. Third, Hardfuzz brings this data-flow guidance onto real
hardware, using hardware breakpoints for fast, consistent testing. Finally, a differen-
tial testing framework for MicroPython compares builds with and without architectural

memory-safety features from CHERI and shows which bug classes they block.

iii

These results show that firmware testing benefits from hardware-centric, data-flow-guided
methods. These approaches yield smarter, domain-aware inputs; feedback that is more
informative than edge coverage; and fast, consistent testing on real devices. It also provides
clear evidence that architectural memory safety-exemplified by CHERI-can block whole
classes of vulnerabilities. In short, the thesis shifts the goal from only finding bugs to also

preventing them by design.

iv

Contents

Abstract iii
Declaration xii
Abbreviations xiii
1 Introduction 1
1.1 Challenges in Fuzzing Embedded Firmware 4
1.1.1 C1. Fidelity & Throughput 4

1.1.2 C2. Weak Feedback Coverage)

1.1.3 C3. Input Validity under Domain Constraints)

1.1.4 C4. From Finding to Preventing Memory Errors)

1.2 High-Level Research Questions. 6

1.3 Thesis Statement 9
1.3.1 Sizzler 12

1.3.2 FuzzRDUCC 13

1.3.3 Hardfuzz 15

1.3.4 Differential testing of MicroPython under CHERI 16

1.4 Contributions 16

1.5 Publications 17

1.6 Summary of Research Artifacts 18

1.7 Thesis Structure 19

2 Embedded Fuzzing: Challenges and State of the Art 21
2.1 Core Fuzzing Components for Embedded Systems 22
2.2 Hardware-Based Fuzzing on Real Devices 28
2.3 Firmware Re-Hosting 33

2.4 Abstraction-Based and Hybrid Analyses 40

2.5 SUMMATY 42

Sizzler: Sequential Fuzzing in Ladder Diagrams for Vulnerability De-

tection and Discovery in Programmable Logic Controllers 45
3.1 Introduction and Motivation oL 45
3.2 Technical Background 48
3.2.1 PLC Vulnerability Detection 50
3.2.2 Emulation o 50
3.23 Fuzzingo 51
3.3 Sizzler overview 52
3.3.1 Sizzler Overview 52
3.3.2 Vulnerability Composition, 54
3.3.3 Ladder Diagram Conversion to ANSIC 56
3.34 MCU Emulation 57
3.3.5 Sizzler Enhanced Fuzzing 59
3.4 Evaluationo 64
3.4.1 Research Question 64
3.4.2 Evaluation Methodology 64
3.4.3 Unit Test for Emulation 66
3.4.4 PLC code Vulnerability Discovery 67
3.4.5 PLC Vulnerability and CVE Assessment 70
3.4.6 General Vulnerability Detection 71
3.5 Threats to Validity 78
3.6 Limitations & Future directions L. 79
3.7 Conclusion 80

FuzzRDUCC: Fuzzing with Reconstructed Def-Use Chain Coverage 82

4.1 Introduction and Motivation 82
4.1.1 The Fuzzing for Binary 83
4.1.2 Towards Dataflow Coverage 84
4.1.3 Def-use Chain Analysis 86

vi

4.2 FuzzRDUCC Overview it
4.3 Methodology and Implementation
4.3.1 Def-Use Chain Generation
4.3.2 Code Instrumentation 0oL
4.3.3 Optimizing Def-Use Chain Selection
4.3.4 Updating the Coverage Scheme
4.4 Preliminary Evaluation 0L
4.4.1 Evaluation Setup o
4.4.2 Preliminary Results oo
4.4.3 Future Evaluation L oo

4.5 Conclusion s,

Hardfuzz: On-Device Def-Use-Guided Fuzzing with Hardware Break-
points
5.1 Introduction and Motivation Lo Lo
5.2 Hardfuzz Overview
5.3 Def-Use Chain Analysis and Selection
5.3.1 Def-Use Chain Analysis
5.3.2 Breakpoint Strategy oo
5.3.3 Coverage Guidance
5.4 Ewvaluationo
5.4.1 Experimental Setup L
5.4.2 QEMU-Based Emulation Results
5.4.3 On-Device Hardware Results
5.5 Limitations and Future Work

5.6 Conclusion

Differential testing of MicroPython under CHERI

6.1 Introduction and Motivation Lo

6.2 Technical Background oo
6.2.1 The Architectural Foundation of CHERI Memory Protection . . .
6.2.2 Differential Testing

vii

106
106
111
114
114
114
120
122
122
123
125
128
130

131
131
133

. 133

6.2.3 MicroPython 137

6.3 Differential Testing Overview 139
6.4 Methodology 140
6.4.1 Input Generation and Corpus Management 141

6.4.2 Layer 2: Execution and Runtime Observation 150

6.4.3 Layer 3: Differential Analysis and Triage 151

6.5 Evaluation 152
6.5.1 Experiment Setup oo 152

6.5.2 Testcase Generation oL 153

6.5.3 Results. 155

6.5.4 Selected Bug Examples 159

6.6 Limitations and Future Work 00, 165
6.7 Conclusion L 167

7 Conclusions 169
7.1 Summary of Contributionso 169
7.2 Limitations and Future Work oL 172
7.3 Final Remarks. 174
Appendices 175
A Prompt for LLM Testcase Generation 175

B Bug Reports Submitted to the MicroPython Project 180

viii

List of Tables

2.1

3.1

3.2
3.3

3.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5

Comparison of Firmware Rehosting Techniques

Taxonomy of related work. Key: @= Coverage, D= Limited Coverage, O= No
Coverage. The methodology employed in the organization of the columns in
the analysis pertains to the various techniques related to Sizzler.
The result of Unit Test
The code coverage result of ladder diagram for different MCUs executing con-
verted PLC applications.
Bugs found by different fuzzers on LAVA-M dataset.

Feedback per input category. DU guidance provides earlier, better signals.

Basic block coverage on hardware after 24 hours

Vulnerability and Bug Report Classification
Mutation operators implemented in the mutator.
Distribution of testcases across different categories.
The bug distribution o

The unique bug distribution after cleaning up the duplicates.

ible

List of Figures

1.1

2.1

3.1

3.2
3.3
3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1
4.2

End-to-end fuzzing stack and placement of contributions. Top band: seed —
mutation — executor; Bottom (modules): Differential Testing for MicroPy-

thon (left), Sizzler (centre), Hardfuzz (vight)

The trade-off between fidelity and automation/speed in embedded fuzzing ap-

proaches. [61]

Sizzler architecture indicating the enhanced mutation-based fuzzing strategy
using updated sequences resulted by Sequential Generative Adversarial Net-

work (SeqGAN) training.o oo

Emulation approach for assessing Sizzler fuzzing over converted ladder diagrams.

Typical ladder diagram vulnerabilities.
High-level description of the processes associated to capturing data mutations

within the Sizzler havoc process.
Fuzzing results for developed PLC binary applications.
SeqGAN Evaluation in LAVA-M.

Code coverage performance across all fuzzing approaches in the LAVA-M dataset.

Execution speed comparison between Sizzler and other fuzzers on the LAVA-M

Arithmetic mean of the number of bugs found by each fuzzer across ten 24
CAINPAIGIIS e e

Significance of evaluation of fuzzer pairs using p-values from the Mann-Whitney

U-Test. . . .

Structure of FuzzZRDUCC
Change of Edge Coverage (y-axis) within 24 hours (x-axis) for Fuzzing of

Binutils Tools

11

29

52
23
o4

o8

69

71

74

76

7

7

89

4.3
4.4

5.1
5.2

5.3

5.4

2.5

6.1

6.2
6.3

Comparison of Crashes Across Different Targets for Each Fuzzer

Average Execution Speed Over Time for Each Fuzzer

Hardfuzz Overview
Two-bitmaps in shared memory and update flow. A breakpoint hit yields d
(and optionally u). The CoverageManager computes 1dx_def(d) =d & OxFFFF
and 1dx_pair(d,u) = (d ®u) & 0xFFFF, then sets the corresponding bits in
the two bitmaps (NumPy views backed by one shared-memory region of size
2M). Darkness indicates the time for the triggers to activate. Virgin maps flip
from OxFF to 0x00 on first observation and gate corpus updates.
QEMU Emulation Results: Basic block coverage achieved by Hardfuzz and
GDBFuzz over 24 hours across 16 targets. Hardfuzz consistently outperforms
GDBFuzz in most cases, demonstrating the effectiveness of def-use chain guid-
ance in IMProving COVerage.« v v v vttt
Unique basic block coverage over time on QEMU. Hardfuzz consistently discov-
ers more unique blocks than GDBFuzz, demonstrating its superior exploration
capabilities. L
Coverage changes over time on hardware. Hardfuzz consistently discovers more

unique blocks than GDBFuzz, demonstrating its superior exploration capab-

CHERI capability token and address-space view. The token combines an in-
teger Address with metadata slices for Bounds, Architectural Permissions (AP),
Sealed, and Software-Defined Permissions (SDP), plus a 1-bit TAG that re-
cords validity. The shaded region marks the in-bounds range; the solid green
arrow indicates a permitted access, while dashed red arrows indicate out-of-
bounds accesses that trap. Lo
Differential testing framework for MicroPython with CHERI.
The distribution of bugs found on CHERI-build and non-CHERI build.

bl

119

125

Declaration

I declare that, except where explicit reference is made to the contribution of others, that
this dissertation is the result of my own work and has not been submitted for any other

degree at the University of Glasgow or any other institution

Kai Feng, /53]

Xii

Abbreviations

AFL - American Fuzzy Lop

AP - Architectural Permissions

ARM ETM - ARM Embedded Trace Macrocell
CFGs - Control Flow Graphs

CHERTI - Capability Hardware Enhanced RISC Instructions
CST - Concrete Syntax Tree

CVE - Common Vulnerabilities and Exposures
def-use chain - definition-use chain

DDC - Default Data Capability

DMA - DIRECT MEMORY ACCESS

DUT - Device Under Test

EBB - Extended Basic Block

GAN - Generative Adversarial Network

GPIO - General-Purpose Input/Output

HiL - Hardware-in-the-Loop

HMI - Human Machine Interface

ICS - Industrial Control Systems

Intel PT - Intel Processor Trace

IoT - Internet-of-Things

IR - Intermediate Representation

JTAG - Joint Test Action Group

xiii

LD - Ladder Diagram

LLM - Large Language Model

LSTM - Long Short-Term Memory

MCUs - Microcontroller Units

MLE - Maximum Likelihood Estimation

MMIO - Memory-Mapped Input/Output

PC - Program Counter

PCC - Program Counter Capability

PLC - Programmable Logic Controller

PoC - Proof of Concept

PUT - Program Under Test

QEMU - Quick Emulator

RG/PG - Programmiergerit /Personal Computer
SeqGAN - Sequential Generative Adversarial Network
SDP - Software-Defined Permissions

SoCs - System-on-Chips

SUT - System Under Test

SWD - Serial Wire Debug

TBB - Translation Block

Xiv

Chapter 1

Introduction

The proliferation of Internet-of-Things (IoT) devices, powered by microcontroller units
(MCUs), has reshaped the landscape of modern computing. These small, low-cost systems-
on-chip (SoCs) sit at the heart of embedded systems [1]. Beyond consumer devices such
as thermostats and wearables, MCUs are central to industrial control systems (ICS) and
critical infrastructure. Programmable Logic Controllers (PLCs)-specialized MCU-based

controllers-run automated processes in power grids, water treatment, and smart factories.

While this technological integration drives efficiency, it also introduces severe security
risks. A vulnerability in a consumer device might lead to data leakage, however, a flaw
in a PLC can have far more devastating consequences. A prominent example is the class
of vulnerabilities affecting widely-used PLCs such as the Siemens S7 family. A specific
vulnerability, CVE-2022-38465, could allow attackers to discover the private key of a CPU
product family by an offline attack against a single CPU member of the family'. Attackers
could then use this knowledge to extract confidential configuration data from projects
that are protected by that key or to perform attacks against legacy Programmiergerit/
Personal Computer (PG/PC) and Human-Machine Interface (HMI) communication. The
compromise of such systems can lead to catastrophic outcomes, including widespread

power outages, disruption of essential services, and significant threats to public safety.

1. Further details available at: https://nvd.nist.gov/vuln/detail/CVE-2022-38465

1

https://nvd.nist.gov/vuln/detail/CVE-2022-38465

1. Introduction 2
Because these attacks often exploit firmware bugs, finding and fizing vulnerabilities before
deployment is essential. Post-deployment patching is slow, costly, or infeasible in indus-
trial settings. A notable example of an unpatchable hardware-related flaw is the bootrom
vulnerability in the Nintendo Switch’s SoC, which permanently compromised the system’s
security®. In critical infrastructure, patching may require a complete shutdown and re-
boot of physical systems, leading to high financial and operational costs. Consequently,
it is imperative for developers to identify and remediate firmware bugs at the source-code
level through rigorous in-house testing. To this end, extensive security testing during the

development phase is the most effective strategy to prevent or mitigate such attacks.

Researchers have explored vulnerability detection techniques including remote attesta-
tion [2], compartmentalization [3, 4], and static and dynamic analysis [5, 6, 7]. In prac-
tice, dynamic methods are attractive to practitioners: they reduce false positives, add no

runtime cost to the final product, and can find exploitable bugs before release.

Fuzz testing, or fuzzing [8], has emerged as one of the most successful dynamic analysis
techniques for discovering security flaws. Fuzzing operates by generating a multitude of
test cases to repeatedly execute a target program while monitoring for exceptions, such
as crashes or timeouts, which indicate potential vulnerabilities. A typical fuzzer main-
tains a queue of "seeds”—inputs known to be interesting—and iteratively mutates them
to generate new test cases. By strategically guiding this process, researchers can discover
vulnerabilities more efficiently. To date, fuzzing has successfully identified thousands of
bugs in a wide range of software, from general-purpose applications [9] and IoT devices [10)]
to firmware [11], operating system kernels [12], and database systems [13]. Fuzzing meth-
odologies are broadly categorized as mutation-based, which modifies existing inputs, and
generation-based, which creates new inputs from scratch based on a predefined grammar

or model.

2. Further details available at:https://nvd.nist.gov/vuln/detail/CVE-2024-45200

https://nvd.nist.gov/vuln/detail/CVE-2024-45200

=

10

11

12

13

1. Introduction 3

Algorithm 1: Core Fuzzing Algorithm [14]
Input: initSeedCorpus()

Output: Expanded corpus and accumulated observations
Initialization: ;

Initialize the seed corpus ;

queue <— corpus ;

observations < J ;

while —timeout do

candidate < choose(queue,observations) ;

mutated < mutate(candidate,observations) ;

observation < eval(mutated) ;

if isInteresting(observation,observations) then
queue < queue U {mutated} ;

observations < observations U {observation} ;

end

end

Algorithm 1 outlines the fundamental workflow of state-of-the-art fuzzing. The process
begins by initializing a queue with a user-supplied set of input, known as the seed corpus.

The fuzzer then enters its main loop, which iteratively performs four key operations:

e Selection: An input, referred to as a candidate, is chosen from the queue.

o Mutation: The fuzzer applies modification strategies to the candidate to generate
a new, mutated input.

o Evaluation: The target program is executed with the mutated input, and the
resulting behaviour (e.g., code coverage) is captured as an observation.

o Update: The outcome is evaluated to see if it is interesting. An observation is
typically considered interesting if it triggers new behaviour, such as exploring a
previously unseen code path or causing a crash. If it is, the mutated input that
produced it is added to the queue for future testing, and the collection of observations

is updated.

. Introduction 4
This feedback loop allows the fuzzer to progressively expand its corpus and explore deeper
parts of the target program. The process continues until a stopping condition is met, such
as reaching a time limit or achieving a certain level of coverage. The effectiveness of a
fuzzer is often measured by the number of unique bugs it discovers and the extent of code

coverage it achieves.

1.1 Challenges in Fuzzing Embedded Firmware

Although fuzzing has proven its success in various representations, like source code or
binaries, applying it to embedded firmware presents unique challenges. The root of these
challenges lies in the inherent characteristics of embedded systems, which often involve
tight hardware coupling, real-time constraints, and limited resources, and the limits of
current analysis techniques. We organize the challenges into four connected problems

that we address in this dissertation.

1.1.1 C1. Fidelity & Throughput

The primary obstacle to firmware analysis is the tight coupling between the software and
its specialized hardware. An MCU’s firmware is a monolithic binary designed to run on a
specific hardware configuration, interacting directly with peripherals via Memory-Mapped
I/O (MMIO), Direct Memory Access (DMA), and interrupts [15]. Direct execution on a
host is not possible. Re-hosting [16] emulates the system, but accurate peripheral be-
haviour is hard to model at scale. Abstractions that bypass hardware interactions can
boot more targets but miss driver code. Hardware-in-the-Loop (HiL) forwards I/O to real
devices [17, 18, 19], which improves fidelity but adds synchronization overhead that slows

execution—at odds with high-throughput fuzzing.

1.1. Challenges in Fuzzing Embedded Firmware 5

1.1.2 C2. Weak Feedback Coverage

Coverage on basic blocks or edges is often too coarse for firmware with heavy use of inter-
rupts, callbacks, and register-level 1/O. Conventional coverage may not reflect whether a
value actually flows from a definition to its uses in driver code. Fuzzing needs feedback

that ties data flow to peripheral-facing code to explore deeper behaviour reliably.

1.1.3 C3. Input Validity under Domain Constraints

Many embedded targets accept structured inputs (e.g., PLC ladder logic encodings, field
protocols, or language scripts). 90% of testcases generated by mutation produce failed
early checks and wasted time [20]. Domain-aware generation or mutation is needed to

keep inputs well-formed and to cross protocol and logic checks more often.

1.1.4 C4. From Finding to Preventing Memory Errors

Even with better testing, C-based stacks remain prone to memory bugs. Where possible,
architectural support such as Capability Hardware Enhanced RISC Instructions (CHERI)
can prevent or trap classes of errors. We need empirical methods to measure such preven-

tion on real embedded software.

These four challenges map to two dimensions in the design space: where we run (emulation,
HiL, on-device) and what feedback and inputs we use (control flow vs. data flow; naive vs.

domain-specific). The contributions in this thesis cohere around these dimensions.

1.2. High-Level Research Questions 6

1.2 High-Level Research Questions

This section introduces research questions that stem directly from the four challenges
discussed in Section 1.1. The questions build upon one another: we first ask how to
improve core fuzzing components like input mutation (RQ1) and feedback (RQ2, RQ3),
and then use these insights to tackle the ultimate challenges of testing complex targets

and evaluating architectural prevention (RQ4).

Research Question 1: Can domain-specific learning improve mutation so

that more inputs pass checks and expose deeper code in PLC workloads?

Hypothesis: Learning mutation sequences with Sequential Generative Adversarial Net-
works (SeqGAN) will increase the share of valid and useful test cases for PLC ladder
logic, which will raise coverage and bug findings compared with generic havoc-style muta-

tion.

Mutation strategies in fuzzing often leverage bitwise operations to target specific issues,
particularly in the American Fuzzy Lop (AFL) [21] through its havoc phase, which ran-
domly applies mutations operators such as bit flips and insertion of significant values. We
propose Sizzler, using SeqGAN to optimize these mutation strategies for the havoc phase,
thereby enhancing the identification of vulnerabilities in PLC firmware of ladder diagrams
through emulation. Sizzler demonstrated its efficiency by swiftly identifying vulnerabilit-
ies, securing a CVE-ID, and comparing against traditional fuzzing techniques using the
Magma and LAVA-M datasets, thereby proving its broader applicability in embedded

systems.

1.2. High-Level Research Questions 7

Research Question 2: Can reconstructed def-use chain coverage provide more

useful feedback for fuzzing binaries than traditional edge coverage?

Hypothesis: Tracking whether values defined at specific sites reach their uses will steer

fuzzing to driver and peripheral code that edge coverage alone misses.

Existing research predominantly relies on code or edge coverage derived from control flow
graphs (CFGs) for feedback, operating under the assumption that exposing more execu-
tion states increases bug detection likelihood. However, the control flow paradigm often
provides only a rudimentary approximation of a program’s behaviour, a limitation evident
in applications where the distinction between control structures and semantic elements is
pronounced. To address this, we introduce FuzzZRDUCC, which employs dataflow analysis
instead of control flow to enhance the granularity of code path coverage. FuzzRDUCC
reconstructs the def-use chains through symbolic execution of binaries and implements
instrumentation within the emulation process to monitor code coverage. Results indicate
that while the def-use chain instrumentation introduces significant runtime overhead, it

successfully achieves higher coverage within fixed time budgets.

Research Question 3: Can on-device fuzzing with hardware breakpoints de-

liver high-fidelity execution and strong feedback at practical speed for MCUs?

Hypothesis: Running on the device and using hardware breakpoints to realize def-use feed-
back will improve throughput and fidelity compared with re-hosting or HiL,, while keeping

guidance strong.

1.2. High-Level Research Questions 8
The feasibility and potential benefits of implementing fuzzing directly on hardware for
[oT devices are promising. One key advantage is mitigating the performance overhead
typically associated with emulation in binary-only programs. For example, using Quick
Emulator (QEMU) is a standard way to emulate the firmware’s runtime environment,
but the binary-only mode in QEMU introduces a significant tracing overhead, nearly
1300% [20]. To address this, we propose migrating our fuzzing framework, which oper-
ates on dataflow, directly onto hardware. This would enable more efficient evaluation of
crashes in drivers and peripherals. Our framework uses hardware breakpoints, based on
the dataflow graph of the firmwares, to monitor which inputs trigger specific breakpoints.
The key idea is to systematically set breakpoints based on the program’s dataflow graph
and retrieve coverage information by observing which inputs activate these breakpoints.
This information can then guide a feedback-driven fuzzing strategy. Since the number of
hardware breakpoints within a microcontroller is limited, we strategically place them on a
subset of the program’s code blocks and periodically relocate them. This approach allows
us to balance the limitations of hardware resources while still maintaining effective code

coverage and fuzzing performance.

Research Question 4: As firmware complexity grows, traditional fuzzing
struggles with highly structured inputs like language interpreters. How can we
evolve test generation beyond simple mutation to rigorously assess architectural

defences, thereby measuring the shift from vulnerability discovery to prevention?

Hypothesis: For complex, stateful targets like the MicroPython interpreter, naive fuzzing
is ineffective. A combination of LLM-seeded test generation and concrete-syntax-aware
(CST) mutation is required to create valid inputs that can penetrate deep logic and expose
memory-unsafe states. Applying this advanced testing methodology within a differential
framework will empirically demonstrate that an architectural solution like CHERI pre-

vents entire classes of memory errors that a standard build would suffer from.

1.2. High-Level Research Questions 9
We evaluated CHERI's effectiveness in preventing memory errors using differential testing
on MicroPython, a widely-used embedded interpreter chosen for its complex codebase and

large attack surface. Our method involves running an identical suite of tests on both a

CHERI-enabled build and a standard, non-CHERI build.

To generate relevant and diverse testcases, we seeded a large language model (LLM) with
public bug narratives. We then applied concrete-syntax-tree mutations to these inputs
to ensure they remained well-formed and syntactically correct. By comparing the execu-
tion logs and crash traces from both builds, we could precisely identify memory errors
that CHERI successfully trapped, which would otherwise cause crashes or silent data

corruption in the standard build.

1.3 Thesis Statement

The security of microcontroller firmware can be significantly advanced by adopt-
ing a hardware-centric paradigm that not only improves vulnerability detection
by replacing slow emulation with direct on-chip fuzzing guided by intelligent,
data-flow-driven analysis, but also pioneers vulnerability prevention through ar-

chitectural memory safety enhancements.

1.3. Thesis Statement 10
Figure 1.1 ties the thesis to the end-to-end fuzzing loop. At the top, the fuzzing engine
reads a seed from the corpus, applies a mutation strategy, and sends the final input to
the Program Under Test (PUT) executor. The green path shows a run that raises
coverage (first input @X@1 reaches new code across State 1 and State 2). The red path
shows a run that triggers a bug (second input @x11 reaches a faulting path). The bug
monitor collects signals (coverage deltas, exits, timeouts, crashes), verifies crashes, and

feeds results back to the engine—closing the loop of Algorithm 1.

The bottom row links each contribution to the correct module:

e MicroPython (left, green) —Seed set. This pipeline builds the seed corpus:
it aggregates CVE proofs of concept (PoC) and issue reports, uses an LLM-based
suspicious-input generator, and applies a CST-preserving mutator to keep inputs
valid. We also run the same inputs on non-CHERI and CHERI builds to label seeds
that expose memory issues; the primary output is a high-quality, unified seed set
for the fuzzer. (RQ4, mainly C3; CHERI results inform C4.)

o Sizzler (centre, blue) —Mutation strategy. A SeqGAN learns sequences of
mutation operations that pass PLC checks and open new paths in ladder-logic pro-
grams under emulation. Sizzler plugs into the mutation stage of the engine and
improves how seeds are turned into final inputs. (RQ1, C3.)

o Hardfuzz (right, gray) —Executor. The executor runs on the device. On the
host we keep the mutation engine, coverage map, and a small state machine; we
load a def-use chain and use JTAG to arm hardware breakpoints so the device
itself provides fast, high-fidelity execution and feedback. (RQ2, RQ3, C1-C2.)

o FuzzZRDUCC (right, gray, inside Hardfuzz) It is the feedback layer that adds
def-use coverage during emulated execution: QEMU instrumentation records def
and use events and updates the coverage map to guide seed selection (RQ2, C2).
In Hardfuzz, the same idea is realized with hardware breakpoints instead of QEMU

hooks.

1.3. Thesis Statement 11

Code coverage increase / target crash / first input: 0x01 Bug
L Trigger &
First input: 0x01 .
] reporting
Second input: Ox11 module
— Fuzzing engine
Fuzzing engine |
| o
Arithmeti |
| k] - (i x[0] == 0x11) Det?ct
g 2 monitor
o Dl g 4 |
| 7)) c_Eu (Func_any()) (Func_1()) A
w Bug |
| LADEC verification
— strategy L |

- — — —JlL =" S |

- 1

| Host machine
(Debug Module) (Mutation Engine)

Seed & Input Generation Differential Testing
- N |
(non-CHERI)
CHERI Micropython
Capability-enforced

Emulation

Ladder Diagram A=icodelpat
model

Coverage Map) (State Machine) |
——

[|
(Def—use chain FuzzRDUCC

LLM-based suspicious
generator

LibCST mutator
(grammar/CST-preser)

\
|
g T T 79 79 7|
J

Unified Corpus Telemetr | | W @ @ ® © @ |
Y Sequence of Mutation Operations |
— —_— —
Differential Testing of Micropython Sizzler | HardFuzz
— ,—— —,— ,— ,—o—o— — —— ——— —_——] — |

Figure 1.1: End-to-end fuzzing stack and placement of contributions. Top band: seed —
mutation — executor; Bottom (modules): Differential Testing for MicroPython (left),
Sizzler (centre), Hardfuzz (right)

1.3. Thesis Statement 12

1.3.1 Sizzler

To overcome the wasting of time caused by the randomness of mutation strategies in
fuzzing process, most existing approaches rely on imprecise heuristics or complex and
expensive program analysis (e.g., symbolic execution or taint analysis) techniques to gen-
erate and /or mutate inputs to bypass the sanity checks. For example, MOPT [22] uses a
set of heuristics to optimize the mutation strategies in the havoc phase of AFL. However,
these heuristics are not adaptive and may not work well for all programs. HavocMAB [23]
uses a multi-armed bandit algorithm to learn the best mutation strategies for each pro-
gram. However, this approach requires many iterations to converge to a good strategy

and may not work well for programs with complex input formats.

To address this limitation, we propose Sizzler (Sequential Fuzzing in Ladder Diagrams
for Vulnerability Detection and Discovery in Programmable Logic Controllers), shown
in figure 1.1, a novel approach that employs Sequential Generative Adversarial Networks
(SeqGAN) to optimize mutation strategies for the havoc phase of AFL, thereby enhancing
the identification of vulnerabilities in PLC firmware of ladder diagrams through emulation
and HiL. This work is related to mutation strategy in fuzzing process, shown in blue area.
SeqGAN is utilized to learn the logic of mutation operations within the executed PLC
code, thereby aiding the fuzzing process [24]. The use of SeqGAN increases the number of
test cases that are likely associated with potential PLC code vulnerabilities and enhances

the rate of code path discovery.

Sizzler’s performance is assessed using a practical, vendor-independent emulation test bed
constructed with the OpenPLC [25] framework. In this environment, converted ladder
diagrams are executed as binaries on de facto MCUs, eliminating the need for re-hosting
PLC firmware. This approach promotes a realistic method for accelerating the study of

PLC vulnerability discovery without dependencies on vendor-proprietary PLC code.

1.3. Thesis Statement 13
Moreover, the benefits of Sizzler’'s mutation strategy are demonstrated beyond PLCs
and within the wider embedded systems context. This is achieved through comparis-
ons with other fuzzing strategies using the LAVA-M [26] and Magma [27] datasets as
benchmarks. Our results indicate that Sizzler outperforms the majority of state-of-the-art

fuzzing schemes.

By leveraging the capabilities of SeqGAN, Sizzler enhances the efficiency and effectiveness
of fuzzing by generating more targeted and diverse test cases. This approach not only im-
proves the detection of vulnerabilities in PLC systems but also offers broader applications

in embedded systems security.

1.3.2 FuzzRDUCC

The core of improvement of fuzzing is determining the fuzzing’s direction, as well as
how and where to mutate the input. Most existing fuzzers rely on code coverage or edge
coverage derived from control flow graphs (CFGs) as feedback to guide the fuzzing pro-
cess, operating under the assumption that exposing more execution states increases the
likelihood of finding bugs. However, this control flow paradigm often provides only a rudi-
mentary approximation of a program’s behaviour, a limitation that becomes particularly
evident in applications where the distinction between control structures and semantic ele-
ments is pronounced. For instance, in firmware with extensive use of interrupts, callbacks,
and register-level 1/0O, traditional coverage metrics may not accurately reflect whether a
value defined at a specific site actually reaches its uses in driver code. Edge coverage does
not show whether critical values reach their uses in driver code. Firmware heavy with

interrupts and MMIO benefits from feedback that reflects dataflow.

1.3. Thesis Statement 14
Hence, we propose FuzzZRDUCC (Fuzzing with Reconstructed Def-Use Chain Coverage) to
leverage def-use chains for capturing the dataflow of the target, providing feedback instead
of relying solely on control flow. FuzzRDUCC is designed to enhance the capabilities of
fuzzers through the incorporation of def-use chains, structuring our approach into two

distinct phases: static analysis and fuzzing.

In the static analysis phase, we employ the angr [28] framework to extract def-use chains
from binary code. This involves acquiring precise addresses and the quantity of definitions
and usages for each block translated. The process includes the instrumentation of def-use
chains, which entails recording the number and address of definitions and usages for
every translated block, facilitated through the lightweight code generation capabilities of
QEMU.

Transitioning to the fuzzing phase, our methodology integrates the deployment of an
innovative bitmap specifically designed to precisely monitor the locations of definitions
and usages. This is achieved through instrumentation based on the addresses of definitions
and usages within basic blocks translated from QEMU. Upon execution of a basic block,
the bitmap is updated in comparison with a global map to track the execution state.
This mechanism acts as a directive for the fuzzer, guiding the initiation of a re-mutation

process informed by the analysis of previously evaluated seeds.

1.3. Thesis Statement 15

1.3.3 Hardfuzz

State-of-the-art firmware fuzzing uses rehosting, para-rehosting, hardware-in-the-loop (HiL),
and fully on-device execution, but each approach has practical limits. Rehosting runs firm-
ware in a virtualized target, yet setup is complex and often slow. Para-rehosting lowers
emulation costs via HAL stubs, but does not reach driver code. HiL forwards I/O to real
devices, which preserves fidelity but adds heavy synchronization overhead. Fully on-device
tracing (e.g., Intel PT, ARM ETM) is not widely available across microcontrollers and

boards.

We present Hardfuzz, a hardware-first fuzzing that uses hardware breakpoints as its feed-
back channel. We statically extract definition—use (def-use) chains and place a hardware
breakpoint at each def. When the def fires, we step off the site and re-arm breakpoints
at the corresponding uses, which lets us follow value flows at instruction granularity. The
fuzzer records both def hits and def-use pairs in two coverage maps to guide input selec-
tion. Because microcontrollers expose only a few Flash Patch and Breakpoint (FPB) slots,
we employ a weighted relocation policy: we prioritize defs with more uses and gradually
downweight defs that have already been explored; use breakpoints are inserted as tem-
porary hardware BPs, so a slot frees itself on hit. This design gives precise, low-overhead

guidance while staying fully on hardware.

By combining on-device execution with def-use-driven feedback, Hardfuzz improves path
discovery in driver and embedded code while avoiding rehosting complexity and HilL
synchronization costs. The framework is practical for IoT targets with limited debug

resources and scales with automatic corpus growth and mutation.

1.3. Thesis Statement 16

1.3.4 Differential testing of MicroPython under CHERI

Embedded stacks often include high-level interpreters. Our early fuzzing showed that
naive mutation yields many invalid scripts; more importantly, memory-unsafe C inter-
preters remain vulnerable even when fuzzed. We need both better input generation and

architectural support to prevent memory errors.

We study MicroPython, a Python 3 implementation for MCUs. We build a differential
testing framework that runs the same tests on a standard build and a CHERI-enabled
build. The framework uses a Large Language Model with public MicroPython CVE nar-
ratives and bug reports to generate valid starter tests for seed collection, and then apply
syntax-aware mutations on the CST. We compare logs and crash dumps: a crash in the
non-CHERI build that is trapped as a bounds violation in the CHERI build points to a

memory safety issue that CHERI prevents.

The differential framework helps us find more unique core-interpreter memory-safety bugs
(excluding libffi), while total unique bugs are higher on non-CHERI due to libffi presence.
It also helps us find 35 unique bugs on the latest version of MicroPython (MicroPython-
1.27-preview). We also create a dataset of MicroPython memory safety bugs to support

CHERI and embedded security research.

1.4 Contributions

The thesis makes the following original contributions to the field of embedded firmware
security, particularly in the context of fuzz testing for embedded system. Each contribution

addresses specific challenges and research questions outlined earlier.

1.4. Contributions 17
1. Domain-aware mutation for PLC workloads (Sizzler). A SeqGAN-based
mutation strategy that increases valid test rate and improves coverage on PLC
ladder logic. We also extend emulation with GPIO/I2C and Modbus/TCP refine-
ments and release a PLC ladder logic program dataset for future security research.
(RQ1, C3).

2. Dataflow-guided fuzzing with def-use coverage (FuzzRDUCC). A binary-
focused method to reconstruct def-use chains and a lightweight QEMU instrument-
ation that tracks def-use events at runtime to guide fuzzing beyond edge coverage.
(RQ2, C2)

3. On-device fuzzing with breakpoint feedback (Hardfuzz). A practical on-
hardware fuzzing framework that realizes def-use guidance via hardware breakpoints
with a weighted relocation policy under tight hardware breakpoint limits, avoiding
re-hosting and HiL, overheads. (RQ3, C1, C2)

4. Differential testing of MicroPython under CHERI. A differential testing
framework that combines LLM-seeded, CST-aware test generation with CHERI-
based and non-CHERI execution to expose and prevent memory errors in MicroPy-
thon. We also present a curated dataset of MicroPython memory safety bugs to

support CHERI and embedded security research. (RQ4, C3, C/)

1.5 Publications

This thesis draws on the following publications and preprints. Each item notes the related

research question(s) and challenge(s).

o Sizzler: Sequential Fuzzing in Ladder Diagrams for Vulnerability Detec-
tion and Discovery in Programmable Logic Controllers Addresses RQ1
(C3). Publication: [[EEE Transactions on Information Forensics and Security, DOI:
10.1109/TIFS.2023.3340615|.

10.1109/TIFS.2023.3340615

1.5.

Publications 18
FuzzRDUCC: Fuzzing with Reconstructed Def-Use Chain Coverage Ad-
dresses RQ2 (C2). Publication: [Doi:https://doi.org/10.48550/arXiv.2509.
04967].

Hardfuzz: On-Device Def-Use-Guided Fuzzing with Hardware Break-
points. Addresses RQ3 (C1, C2). Under Review: The 5th International Fuzzing
Workshop (FUZZING) 2026.

Differential Testing of MicroPython under CHERI. Addresses RQ4 (C3,
C4). Under Review: 2026 FEuropean Conference on Object-Oriented Programming
(ECOOP 2026) .

1.6 Summary of Research Artifacts

To facilitate reproducibility and support further research, this thesis is accompanied by

a comprehensive set of research artifacts. These artifacts encompass the source code for

the proposed techniques, experimental datasets, and records of upstream bug reports and

patches. All materials are publicly accessible via the following repositories:

o Sizzler implementation and PLC corpus. The source code for the Sizzler frame-

work, comprising the ladder-logic mutation engine, the PLC emulation harness, and
the automation scripts required to reproduce the experiments in Chapter 3. This
repository also contains the synthetic ladder logic programs and the vulnerability
corpus used for evaluation. https://github.com/MaksimFeng/Sizzler

FuzzZRDUCC prototype. The implementation of the FuzzZRDUCC data-flow-
guided fuzzer (Chapter 4). This artifact includes the Angr-based scripts for definition-
use chain reconstruction, the fuzzing workflow, and the configuration files for the

binutils targets. https://github.com/MaksimFeng/gemuafl-dataflow

https://doi.org/10.48550/arXiv.2509.04967
https://doi.org/10.48550/arXiv.2509.04967
https://github.com/MaksimFeng/Sizzler
https://github.com/MaksimFeng/qemuafl-dataflow

1.6. Summary of Research Artifacts 19
« Hardfuzz prototype. The complete source code for Hardfuzz (Chapter 5), includ-
ing the on-device breakpoint controller, the definition-use selection policy, and the
patched GDBFuzz baseline used for comparison. The repository also includes the
firmware images and harness code for the three MCU targets. https://github.
com/MaksimFeng/Hardfuzz
o MicroPython differential testing framework. The testing framework presented
in Chapter 6, which includes the test generation pipeline (leveraging LLM prompts
and CST-based mutators), the harnesses for executing MicroPython on CHERI
and non-CHERI targets, and the scripts used to collect, classify, and de-duplicate
differential outcomes. https://github.com/MaksimFeng/ML4Secure
o Bug reports, CVEs, and patches. A comprehensive record of confirmed bugs,
and patches resulting from this work (including detailed MicroPython bug reports)

is provided in Appendix B.

1.7 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 1 This chapter introduces the core problem we are tackling. We outline the
main challenges (C1-C4), state our high-level research questions (RQ1-RQ4) that
guide this work, and present the thesis statement and an overview of the following
chapters.

Chapter 2: Background and Related Work This chapter covers the essential back-
ground information needed to understand this thesis. We explain the basics of MCUs
and PLCs, review different software testing approaches, and introduce key concepts
like automated testing, data-flow analysis, and the CHERI secure hardware archi-

tecture.

https://github.com/MaksimFeng/Hardfuzz
https://github.com/MaksimFeng/Hardfuzz
https://github.com/MaksimFeng/ML4Secure

1.7. Thesis Structure 20

Chapter 3: Sizzler (RQ1, C3) This chapter presents Sizzler, a new tool we developed
to find bugs in PLCs. We describe how Sizzler automatically creates tests specifically
designed for ladder logic with new mutation strategy, the programming language
used by PLCs. This work directly answers our first research question (RQ1).

Chapter 4: FuzzZRDUCC (RQ2, C2) In this chapter, we introduce FuzzZRDUCC, a
technique for making automated testing more effective by tracking how data moves
through a program. We explain how we analyse a program’s code to understand
these data flows and use that information to guide our bug-finding efforts. This
chapter addresses our second research question (RQ2).

Chapter 5: Hardfuzz (RQ3, C1-C2) This chapter details Hardfuzz, our approach for
testing software directly on the physical device itself. We describe our technique
for tracking data flow in real-time on the hardware, which is difficult due to its
limited resources. We then show how this on-device method compares to testing in
a simulated environment, addressing our third research question (RQ3).

Chapter 6: Differential Testing of MicroPython under CHERI (RQ4, C3-C4)
This chapter explores the security benefits of modern CHERI hardware. We present
a differential framework that uses LLM and libCST to generate testcases to test the
MicroPython programming language running on CHERI and non-CHERI. The goal
is to measure how well this special hardware prevents common and critical memory
bugs, answering our fourth research question (RQ4).

Chapter 7: Conclusion Summarizes contributions, limitations, and future work.

Chapter 2

Embedded Fuzzing: Challenges and
State of the Art

Embedded systems (such as IoT devices, industrial controllers; medical implants, etc.)
present unique challenges for software testing. Their firmware is tightly coupled to spe-
cialized hardware and peripherals, and they often run on bare metal or a small RTOS, and
targets diverse architectures. Fuzz testing-repeatedly executing a program with mutated
inputs to trigger faults —has proven highly effective at exposing bugs in conventional

software, and is recommended by multiple industry standards.

However, applying fuzzing to embedded firmware is non-trivial. Unlike user-space pro-
grams that can be instrumented and run in a process on a PC, firmware is designed to
run on a specific microcontroller with particular memory-mapped 1/O and device drivers.
Simply compiling firmware code as a normal application or fuzzing it in isolation fails to
exercise interactions with the actual hardware. The holistic fuzzing of embedded systems
must cover the firmware and its hardware context. Two fundamental issues make this
difficult: (1) the strong dependence on specific hardware, and (2) the immense heterogen-
eity of architectures and peripherals in the embedded world. These factors lead to a lack
of a ”one-size-fits-all” embedded fuzzing solution. Recent surveys confirm that fuzzing
embedded systems remains an open research problem and no single golden solution exists

yet [29].

21

2.1. Core Fuzzing Components for Embedded Systems 22
2.1 Core Fuzzing Components for Embedded Sys-

tems

No matter the execution environment (real hardware, emulator, or hybrid), an embedded

fuzzer consists of several fundamental components:

1. Seed Selection: How to select initial inputs.

2. Mutation Strategy: How it mutates inputs and schedules test cases

3. Feedback Scheme: What feedback metrics guide it (coverage or other fitness func-
tions).

4. Bug Detection: How it detects and handles faults.

In this section, we discuss how these components are realized or adapted in state-of-the-art

embedded fuzzing systems.

Seed generation and input corpus: Like any fuzzing campaign, an embedded fuzz-
ing effort starts with an initial set of test inputs (the seed corpus). For firmware, what
constitutes an "input” can vary widely. It could be a sequence of bytes sent over a com-
munication interface, sensor readings over time, a file loaded from flash memory, or even
a sequence of Ul actions. Selecting good seeds is essential to bootstrap coverage. In some
cases, researchers use recorded real-world inputs, e.g., network traces or sensor logs, as
seeds to ensure the fuzzer begins in a valid state. If the target firmware has an associ-
ated specification (e.g., a network protocol or file format), seeds may be constructed from
known valid examples in that format [30]. Some works have applied grammar-based fuzz-
ing to embedded inputs: for instance, if fuzzing a smart light’s wireless protocol, one can
supply a basic valid packet as a seed, then let the fuzzer mutate its fields [31]. Another
strategy, used in P2IM [6] and others, is to start with a dummy seed (like an empty or
random input) and rely on the firmware’s own initialization to generate a starting state;

the fuzzer then begins mutating whatever input bytes the firmware consumed. In scen-

2.1. Core Fuzzing Components for Embedded Systems 23
arios where the firmware expects a complex sequence (e.g., a command handshake), the
harness often provides a fixed prologue to set up the state, and fuzzing is applied only to
the variable part of the input [32]. This effectively means the seed includes the fixed script
of actions. An example is fuzzing a device that first requires login: the harness can always
send a correct login sequence (not fuzzed) and then fuzz the subsequent payload. As the
corpus evolves, embedded fuzzers also employ seed minimization and interesting test case
selection akin to AFL. That is, when new coverage is found, the input that caused it is ad-
ded to the corpus. Some frameworks, like the one by Zhao et al., specifically consider how
to reduce the size of the input space by splitting firmware into independent components
and fuzzing them separately [33], by doing so, they effectively generate smaller "modular”
seed corpora for each component, rather than one huge corpus for the entire firmware. In
general, seed generation for embedded fuzzers often requires more manual setup than for,
say, fuzzing a file parser on a PC. The harness or test-driver code must feed the input into
the firmware in the correct manner-whether through writing to a memory buffer (in emu-
lation), sending over a serial port, or toggling a General-Purpose Input/Output (GPIO)
pin in hardware. If this is done incorrectly, the firmware might not accept the input at all.
Thus, a thorough understanding of the firmware’s expected inputs (via documentation or

reverse engineering) greatly aids the creation of an effective initial seed set [34].

Mutation strategies and scheduling: Once a corpus of inputs is established, an em-
bedded fuzzer mutates them to generate new tests. Most frameworks simply reuse classic
byte-level mutation operators from tools like AFL [21]: random bit flips, increments/-
decrements, inserting or deleting bytes, swapping chunks, etc. These remain effective for
low-level firmware data (which often lacks complex structure like deeply nested formats).
A few frameworks introduce domain-specific mutations. For example, if fuzzing a sensor
input that is a 16-bit analogue reading, one might mutate it with biases towards bound-

ary values (0x0000, OxFFFF) that could trigger edge conditions in calibration code [35].

2.1. Core Fuzzing Components for Embedded Systems 24
Another example is multi-stage mutation: Yu et al. suggested a multi-stage generation for
[oT protocols, where initial mutations ensure the message remains parseable, and later
mutations target deeper fields. In practice, many embedded fuzzers still use dumb muta-

tions, relying on coverage feedback to eventually favour those that lead to new states [36].

Scheduling refers to which input from the corpus is chosen next to fuzz and how long to
fuzz it (the energy given to an input). AFL’s default power schedule (favouring smaller,
recently fruitful seeds) is often adopted [37]. One peculiarity in embedded fuzzing is the
presence of long-running stateful sequences. If an input is actually a sequence of operations
(e.g., aseries of CAN bus messages), the fuzzer might need to mutate the whole sequence or
parts of it. Some frameworks explicitly maintain stateful sequences and try mutating one
message at a time while keeping the others fixed, which is akin to higher-level scheduling
of sub-inputs [38]. The concept of "fragmentation” of inputs for scheduling was explored
by Amini et al. in the context of protocol fuzzing (Sulley framework)-modern embedded
fuzzers implicitly use similar ideas when they allow, say, one sensor input to vary while

others remain constant for a while, to isolate the effect on coverage [39].

An important aspect of scheduling in hardware fuzzing related to timeouts and resets.
Since firmware may enter a hung state (e.g., waiting forever for a sensor), fuzzers must
detect that and reset the environment to avoid stalling. Many tools implement a global
timeout for each test case. For example, GDBFuzz [40] will reset the device if an input
does not complete execution within a certain time window (which is set empirically for
each specific target). Scheduling also includes deciding when to reset internal state: some
fuzzers reset after every input, others allow a series of inputs to be given in one session if
the protocol is interactive [20]. For instance, to fuzz a device that processes a continuous
stream, RFUZZ proposed by Laeufer [41] feeds a dozen mutated inputs in sequence before
a reset, to simulate ongoing operation-essentially treating each sequence as one compound

test case.

2.1. Core Fuzzing Components for Embedded Systems 25
Coverage and fitness metrics: Coverage-guided fuzzing dominates the landscape of
embedded fuzzing approaches, as evidenced by the fact that nearly all recent works in-
tegrate some coverage measurement [42]. The standard metric is code coverage-usually
edge coverage or basic-block coverage similar to AFL’s notion. In a hardware fuzzer, this
might be approximated (e.g., GDBFuzz’s partial coverage via breakpoints is a coarse-
grained block coverage). In an emulator, it’s straightforward to instrument every basic
block or jump. AFL-style edge coverage (with a global bitmap of edges hit) has been im-
plemented in many firmware fuzzers that run in QEMU or Unicorn engine [43, 44]. Some
works consider additional metrics: for example, if focusing on a vulnerability like memory
corruption, one might treat a detected invalid memory access as a special feedback (not
just a crash but a "red flag” to be reached) [45]. Avatar-based fuzzers introduced the idea
of monitoring for silent memory corruptions in emulated execution-by comparing certain
memory regions between the emulator and hardware to see if corruption occurred without
an immediate crash [46]. This acts as a fitness signal to guide the fuzzer toward inputs
that cause memory inconsistencies (which often indicate latent corruption). Another met-
ric sometimes used is path length or execution depth, to reward inputs that drive the
firmware further (especially useful if the firmware has a long init phase-you want inputs
that survive longer) [47]. Agamotto presented by Wang et al. applied a time-to-execute

metric to guide firmware fuzzing under resource constraints [48].

In general, however, branch coverage remains the primary fitness metric. The surveys note
that while code coverage is an imperfect proxy for bug-finding, it is the easiest and most
generic measure to implement and has correlated well with finding crashes in practice.
Klees and Schloegel. separately argued for using the number of bugs found as the ultimate
metric, but since ground-truth bugs are unavailable for most firmware, coverage is used

as a surrogate [14, 49].

2.1. Core Fuzzing Components for Embedded Systems 26
Crash detection and handling: Determining when a fuzz test triggers a fault in em-
bedded context can be tricky. In native fuzzing, a crash usually manifests as a process
exception (segfault, etc.) [50]. In firmware, there is no process isolation-a fault may simply
reset the device or set an error flag. On real hardware, fuzzers commonly detect a crash
by monitoring the debug interface or a heartbeat [51]. For example, if the device enters
a fault handler (many ARM Cortex-M MCUs have a usage fault or hardfault handler for
exceptions) [52], the fuzzer can detect that via the debugger (e.g., a breakpoint on the
fault handler). Alternatively, a simple liveness check is used: if the device stops respond-
ing (no longer hits the breakpoint or produces output) for a certain time, it’s assumed to
have crashed and is reset. In emulation, crashes can be caught by the emulator (illegal
memory access in QEMU, etc.). Many fuzzers also inject assertions or canaries to detect
memory corruption that doesn’t immediately crash. For instance, some works utilize all
kinds of sanitizers in the emulator to catch out-of-bounds [53, 54, 55], or watchpoints
on key memory regions. The GDBFuzz authors mention the concept of detecting silent
memory corruptions on devices without MMUs by instrumenting an emulator to watch
memory writes. Once a crash is detected, the fuzzer will record the input that caused
it, possibly minimize it, and then continue. Uniqueness of crashes is often determined by
the fault address or signature (as in AFL). One must be careful on hardware because re-
peated occurrences of the same bug might manifest slightly differently if nondeterminism

is involved (e.g., race conditions causing crashes at varying addresses) [56].

Performance optimizations: While not a “component” per se, it’s worth noting how
embedded fuzzers optimize performance. On hardware, concurrency is limited, but one
can still parallelize by using multiple devices. Some projects used an array of development
boards to fuzz in parallel, each assigned different seeds [57]. On multi-core MCUs or SoCs,
one could fuzz multiple instances of a firmware component if isolated (though this is un-
common). In emulation, parallel fuzzing is easier [58]-one can run many emulator instances

on a PC cluster, just as with normal fuzzing. The bottleneck is often the emulator speed

2.1. Core Fuzzing Components for Embedded Systems 27
or the constraint solver speed (for hybrid approaches). Techniques like snapshot /restore
are employed: e.g., Snappy introduced a fast snapshot mechanism for QEMU to quickly
reset firmware state without reloading from scratch [59]. This dramatically increases test

throughput by avoiding full re-initialization of the firmware each time.

Finally, to round out the discussion, evaluation methodology. Klees et al.’s work showed
that fuzzer evaluations can be misleading if not properly controlled [14]. Eisele et al. [40]
echo that the embedded fuzzing field would benefit from standard benchmarks and per-
formance metrics to compare approaches. They suggest adapting baseline fuzzing evalu-
ation principles to firmware: using a diverse suite of firmware programs with known bugs,
measuring bugs found over time, not just coverage. There is not a universally adopted
benchmark like LAVA or DARPA CGC for the embedded domain, though some initial
collections exist (RIOT os test suite, Juliet test cases ported to embedded, etc.). Research-
ers are aware of this gap and are moving towards more rigorous comparisons. Another
bottleneck is throughput. Emulators exploit snapshot /restore to skip init phases (fast re-
boot) and run many instances in parallel [43]. On hardware, frameworks avoid reflashing
by looping a harness in place and only power-cycling on hangs. Hybrid systems proxy only
hard peripherals to real hardware to keep most execution local [19]. Trace-based feedback

reduces in-target work and keeps runs near native speed [20].

In conclusion, the core components of embedded fuzzers are fundamentally similar to
those of traditional fuzzers, but their implementation must be tailored to the constraints
of firmware and devices. Seed selection must account for firmware’s context, mutation
and scheduling must often deal with stateful sequences and slow resets, coverage col-
lection might require innovative use of hardware features, and crash detection can be

non-standard.

2.2. Hardware-Based Fuzzing on Real Devices 28

2.2 Hardware-Based Fuzzing on Real Devices

Over the last few years, a plethora of tools and techniques have emerged to enable fuzz
testing of firmware under various conditions [60]. Researchers have explored approaches
ranging from running the firmware on real hardware with instrumentation, to fully emulat-
ing the hardware in software, to hybrid combinations in between [16]. Each approach must
balance fidelity (how accurately the execution matches a real device) against automation

and speed (how much manual effort or slowdown is incurred), shown in the figure 2.1.

As illustrated in the figure 2.1, running firmware on an actual device yields perfect hard-
ware fidelity (GDBFuzz), but instrumenting or controlling the execution can be complex
and slow. In contrast, pure software emulation allows easier introspection and faster re-
sets, but may suffer from incomplete device models or incorrect peripheral behaviour [40].
In practice, existing tools occupy different points in this design space, and combining their
advantages is an active area of research. We examine all major approaches, from hardware-
in-the-loop setups to full firmware emulation, and discuss their core components (how they
generate inputs, mutate and schedule tests, monitor coverage, and determine fitness or

crashes).

One straightforward way to fuzz firmware is to run it on the actual hardware and treat the
device as the System Under Test (SUT). This avoids the difficult problem of modelling
the device’s behaviour in software-i.e. it achieves the highest fidelity by definition. The
challenge then is how to provide feedback (coverage, fault detection) from the device and
how to drive it with test inputs at scale [62]. Standard coverage-guided fuzzers like AFL
assume they can instrument the target program to collect coverage metrics and reset

it quickly between test cases. In an embedded context, the firmware cannot usually be

2.2. Hardware-Based Fuzzing on Real Devices 29

Memory Fidelity

A Non-existing
Perfect UAFL
SHIFT
i P2IM/DICE
Register GDBFuzz
. Emu
HALucinator
WYCINWYC
Mem. .
Para-Rehosting uzzware
Black Box uEmu Pretender
> Exec.
oo % o € o fidelity
0 O X\ C &
© %\0 \(\)G N Qe,(\

RE

e° %,&9;\0 NS

Figure 2.1: The trade-off between fidelity and automation/speed in embedded fuzzing
approaches. [61]

instrumented or even paused without special support. Moreover, embedded boards often
lack an OS to assist in error handling or 1/O, crashing the firmware may simply hang
the device. Recent work has therefore leveraged hardware features and external debug

interfaces to enable on-device fuzzing of firmware [63, 64].

Hardware instrumentation (via debug interfaces): Many microcontrollers include
a debug port (e.g. ARM CoreSight with SWD/JTAG, or similar on other architectures)
that allows an external debugger to control execution. Tools like pAFL and GDBFuzz
(Eisele et al.,) [40] take advantage of this to perform coverage-guided fuzzing on physical
boards. The basic idea is to use hardware breakpoints to detect when new code is reached
during execution, without needing to instrument the binary. For instance, GDBFuzz con-
figures a limited set of breakpoints at strategic code locations and runs the firmware until
a breakpoint hits; each unique hit corresponds to a new coverage point. By dynamically
managing breakpoints (swapping them in and out) and iteratively feeding inputs via a
harness, these frameworks gather coarse-grained coverage feedback from the device. Eisele

et al. report that GDBFuzz could find known and new bugs on several ARM Cortex-M

2.2. Hardware-Based Fuzzing on Real Devices 30
boards, achieving substantially higher code coverage than black-box testing despite no
firmware instrumentation and only minimal slowdown from the debugger interface [40].
Similarly, AFL uses the on-chip debug module to single-step or break on branches, as-
sembling coverage feedback in a "non-intrusive” way so that even closed-source firmware
can be fuzzed without modifications [65]. These on-device approaches essentially treat
the microcontroller as the execution engine while using a connected PC to run the fuzzer
logic. They must cope with the typically limited throughput of hardware fuzzing-resetting
or flashing a device and waiting for it to run is far slower than in-memory execution. To
mitigate this, hardware fuzzers often keep the device running in a loop to avoid reboots,
and only restart it when a crash or hang is detected. They may also restrict coverage
collection to certain code regions (due to the small number of hardware breakpoints avail-
able). Despite these constraints, the use of real hardware ensures that all peripherals and
timing conditions are accurate, avoiding false positives that might arise in emulation. It
has been demonstrated that such hardware-in-the-loop fuzzers can be "versatile” and re-
quire surprisingly little target-specific customization-any board that GDB can attach to
could, in principle, be fuzzed this way. The downside is scalability: a separate physical
device (or at least a separate debug probe) is needed for each parallel fuzzing instance,
and the execution speed is bounded by the device’s performance and 1/O latency to the

host.

Hardware trace-assisted fuzzing: In cases where setting breakpoints is too intrusive
or limited, another approach uses trace hardware to obtain coverage. Modern processors
often have features like Intel PT (Processor Trace) or ARM ETM (Embedded Trace
Macrocell) that can stream out information about executed branches with minimal over-
head [66]. Although primarily used on high-end systems, researchers have applied these to
fuzzing as well [20]. For example, Nagy et al. showed that Intel PT could be leveraged to
significantly reduce the overhead of coverage collection for fuzzing, essentially running the
target at near native speed while logging coverage externally. In an embedded context, if
a microcontroller provides a trace port, a fuzzer could use it to know which basic blocks

or branches were executed by each input-effectively an off-chip coverage oracle. One can

2.2. Hardware-Based Fuzzing on Real Devices 31
view this as a special case of hardware-in-the-loop fuzzing where the feedback channel is a
high-bandwidth trace stream instead of breakpoints. For instance, POTUS (an academic
prototype for ARM Cortex-M) used the ETM trace unit to capture execution profiles of
firmware under test, enabling on-device coverage-guided fuzzing without modifying the
code (the trace data is parsed on the host to compute coverage) [64]. These trace-based
methods achieve full instruction coverage fidelity with low perturbation of the timing, but
require that the target chip have a supported trace interface and that the fuzzer can pro-
cess the trace data fast enough. As trace ports are not present or accessible on all devices
(and sometimes disabled for security on production units), this approach is powerful but

not universally applicable [67].

Side-channel feedback: An intriguing variant of hardware-based fuzzing is to infer pro-
gram coverage or state by observing physical side channels (such as power consumption
or electromagnetic emanations) rather than digital outputs. Sperl and Bottinger intro-
duced a side-channel-aware fuzzing technique in which an oscilloscope monitors the device’
s power usage to guess which code paths were executed. By correlating segments of the
power trace with known ”fingerprints” of basic blocks or functions (obtained through
offline training), the fuzzer can estimate when a new region of code has been hit. This
provides a feedback signal analogous to coverage, even though the firmware is running
uninstrumented on a real device. In their case study on an 8-bit microcontroller, the
side-channel fuzzing approach successfully guided the fuzzer to cover more code and find
vulnerabilities, with the advantage that it needed no special hardware beyond the power
sensor [68]. The limitation is that distinguishing execution paths via side-channel measure-
ments can be error-prone and device-specific-noise or slight program changes can confuse
the classification. Nonetheless, this idea expands the toolbox for scenarios where standard
debugging interfaces are unavailable, but physical monitoring is possible (e.g., fuzzing a

sealed device by measuring its power draw or timing). Another form of side-channel feed-

2.2. Hardware-Based Fuzzing on Real Devices 32
back could be timing analysis: for example, if a particular input causes a processing loop
to run longer (observed via a simple timing measurement), that might indicate new code
was exercised [69]. While cruder than code coverage, such timing-based feedback can still

guide fuzzing of systems where fine-grained instrumentation is infeasible.

Direct protocol interface fuzzing: Not all embedded fuzzing needs internal coverage
feedback. In practice, many vulnerabilities in embedded devices (especially networked IoT
devices) have been found by classic black-box fuzzing of their communication interfaces-
treating the device as a remote server, for instance, and sending malformed network
packets or peripheral inputs [70]. This approach reuses the device’s existing message in-
terfaces (UART consoles, network sockets, USB endpoints, etc.) to inject test cases, and
monitors for crashes by detecting when the device resets or becomes unresponsive. It re-
quires minimal setup: essentially the fuzzer acts like a rogue client to the device. Tools like
Boofuzz (an open-source network fuzzer) have been widely used in this manner to fuzz
[oT firmware over protocols like HT'TP, Bluetooth, or proprietary command interfaces
[71]. Academic works have augmented this with some domain knowledge; for example,
FirmFuzz (Srivastava et al.,) performs introspection on firmware images to identify po-
tential input vectors (e.g., network message handlers or file parsers in the firmware) and
then generates inputs for those interfaces [72]. The major drawback of black-box interface
fuzzing is the lack of feedback: without coverage information, it may spend a long time
exploring ineffective inputs. Additionally, many embedded protocols require valid stateful
sequences (e.g., an authentication handshake before sending the payload), so the fuzzer
must be aware of protocol semantics or have recorded traffic to replay. Recent research
on stateful fuzzing and targeted fuzzing can help in this regard. For instance, Natella et
al. proposed StateAFL, a greybox fuzzer that is aware of protocol states and can reset
the target to known good states between tests [73]. In embedded scenarios, one might
implement a similar strategy: reset the device or reinvoke a subsystem to a clean state

for each test, possibly via hardware watchdogs or external power cycling if necessary.

2.2. Hardware-Based Fuzzing on Real Devices 33
In summary, hardware-based embedded fuzzing provides the highest realism-the firmware
is exercised on its real platform-and recent advances show that even coverage-guidance is
possible through clever use of debugging and side-channel techniques. These methods shine
in finding bugs that depend on actual hardware behaviour (timing, concurrency, precise
register states) that emulators might miss. However, they face significant scalability and
automation challenges: setting up and controlling physical devices is labour-intensive.
This motivates the complementary line of research: re-hosting firmware in an emulated or

simulated environment, as discussed next.

2.3 Firmware Re-Hosting

A large body of work has looked at ways to run firmware in a controlled software environ-
ment on a host machine-in effect, creating a virtual replica of the embedded system [11,
74, 75]. This is often termed firmware re-hosting, and it enables the use of standard fuzz-
ing techniques (instrumentation, fast restart, etc.) without needing the physical device
for each test case. Re-hosting is appealing because it can dramatically speed up fuzz-
ing (by orders of magnitude, since an emulator can be reset or checkpointed quickly in
memory) and allows deep introspection (e.g., full code coverage measurements, memory
watchpoints, or complex program analyses) that would be hard on the device. The trade-
off, however, is fidelity: how closely does the emulated firmware execution match real
hardware? Wright et al. emphasize that fidelity (both in execution timing and in I/O
data behaviour) is the critical concern in re-hosting, yet is very hard to quantify or guar-
antee [16]. In practice, re-hosting frameworks make various approximations. They may
model only the CPU and some core peripherals, while ignoring or partially simulating
others. This can lead to firmware running but not necessarily doing anything meaningful
if it waits on an unmodeled hardware response. A classic result in this space by Muench

et al highlights that in fuzzing an embedded device, a memory corruption might not cause

2.3. Firmware Re-Hosting 34
an immediate crash in the emulator (due to absent hardware feedback), yet would still
be a serious bug on the real device [76]. Thus, a key goal in emulation-based fuzzing is to
model enough of the hardware to exercise the interesting code paths, without having to

reimplement the entire device.

Full-system emulation: The most direct approach is to use a full-system emulator such
as QEMU to simulate the microcontroller CPU and as many peripherals as possible.
QEMU and similar simulators (e.g., Renode [77], or Simics [78] for high-end targets)
provide a variety of device models and can run unmodified firmware images for certain
platforms. For example, QEMU has definitions for ARM Cortex-M cores and some com-
mon microcontroller boards; a firmware built for one of those boards can be loaded into
QEMU and executed as if on that microcontroller. Coverage instrumentation can be ad-
ded by instrumenting the QEMU translated code (AFL++ and others have QEMU modes
for user-space, extended by [43], and there are patches to get coverage from system-mode
QEMU as well). The benefit of full-system emulation is that, if all required peripherals
are modelled, the firmware sees a complete environment and can potentially run as is.
In practice, though, firmware often interacts with custom or undocumented peripherals
(sensors, radios, timers, etc.) that QEMU does not support out-of-the-box [79]. Early
frameworks like Firmadyne targeted Linux-based IoT firmware by replacing the kernel
and handling syscalls, which works for high-level code but not for bare-metal logic. For
bare-metal firmware, researchers turned to a mix of static analysis and stub implementa-
tion to handle peripherals.[80] One approach is peripheral modelling: creating functional
models for the hardware registers that the firmware interacts with. The models need not
capture full hardware detail; they just must respond in a way that keeps firmware run-
ning. A notable example is P2IM, which automatically classifies memory-mapped I/0O
registers into categories (control, status, data, etc.) by observing firmware’s access pat-
terns, and then supplies generic responses during emulation (e.g., fuzzer-provided random
data for data registers, or dummy status flags). P2IM’s strategy is to let the fuzzer it-

self effectively "model” the peripherals by providing input bytes whenever the firmware

2.3. Firmware Re-Hosting 35
reads from a device register, thereby exploring different hardware behaviours without
an explicit model [6]. This allowed high-throughput fuzzing of many firmware samples,
discovering bugs in USB stacks, sensor handling, etc., although certain complex devices

(DMA controllers, intricate timing-dependent peripherals) were beyond its scope.

Another peripheral modelling approach is HALucinator[81], which targets firmware that
was written against a Hardware Abstraction Layer (HAL) API. Many embedded vendors
provide HAL libraries (for example, a function HAL_UART_Transmit ()to send bytes
over a UART). HALucinator replaces these HAL calls with "emulated” versions that sim-
ulate the hardware’s effect or simply mark the operation as successful. By intercepting
calls at the function level, HALucinator achieves function-level fidelity-it does not execute
the actual low-level driver code, but it ensures the higher-level logic sees expected beha-
viours (like "transmit succeeded”). This works for code that uses the HAL, but not for
firmware that directly pokes hardware registers (the latter requires a lower-level model-
ling like P2IM). A more recent tool, Fuzzware by Scharnowski et al. [82], significantly
improved automatic peripheral modelling by using static analysis on firmware to identify
device register accesses and their usage patterns, and then generating models with appro-
priate semantics (e.g., modelling an ADC peripheral by a simple linear conversion). In
evaluations, Fuzzware achieved higher coverage and found more bugs than P2IM for sev-
eral firmware programs, highlighting the benefit of more precise modelling [82]. Still, no
modelling approach is universal: certain firmware behaviours (like waiting for a hardware
interrupt or relying on precise analogue sensor data) are hard to model and can cause the

emulated firmware to get stuck or diverge from reality.

Hardware-in-the-loop (peripheral proxying): An alternative to modelling a peri-
pheral in software is to forward peripheral accesses to the real hardware device. This
creates a hybrid system: the CPU of the firmware is emulated, but whenever the firm-
ware tries to read or write a memory-mapped device register, the operation is sent over
a link to an actual device or component that performs it and returns a result. In other

words, the emulator "calls out” to real hardware for help. This approach is commonly

2.3. Firmware Re-Hosting 36
called peripheral proxying or hardware-in-the-loop (HIL) emulation. A classic example is
Avatar [19], which orchestrated execution between an emulator (running the core logic of
the firmware) and a physical device (handling specific I/O that the emulator can’t sup-
port). Avatar set breakpoints on I/O instructions in QEMU and diverted those to a proxy
program that communicated with the real device via JTAG. Subsequent frameworks like
Avatar? extended this concept into a flexible platform for dynamic analysis, allowing ana-
lysts to choose which parts of execution run on the host vs. hardware. In fuzzing use-cases,
HIL proxying can enable the fuzz target to run many instructions quickly in the emulator,
but still get accurate responses for critical hardware interactions (e.g., reading an actual
sensor value from the real sensor) [83]. Researchers have demonstrated fuzzing of complex
embedded software by this method: for instance, Ferret combined Avatar?, the PANDA
emulator, and the Boofuzz fuzzer to fuzz a USB firmware, forwarding USB controller re-
gister accesses to a real controller and successfully triggering memory corruptions in the
firmware [84, 85, 74]. Hybrid approaches like this can achieve very high overall fidelity-
since the real hardware is in the loop for peripherals, the emulator no longer needs a
perfect model [86]. Wright et al. note that using real hardware for peripherals effectively
gives perfect data fidelity for those components. The cost is increased complexity and
reduced speed: every interaction incurs communication overhead (e.g., USB or network
latency between emulator and device) [60], and one must have and maintain the physical
hardware for the peripheral. SURROGATES (Koscher et al.,) even inserted an FPGA in
the loop to accelerate the proxying of hardware requests, illustrating the engineering ef-
fort sometimes needed. Nonetheless, peripheral proxying is a powerful technique when full

virtualization fails-it "bolts in” real hardware only for the pieces that resist emulation [87].

Recent research prototypes have refined hybrid re-hosting in various ways. Charm forwar-
ded mobile device driver I/O to real hardware over USB, but required instrumenting the
driver code (limiting it to open-source drivers) [88]. ICSemu/ICS-fuzz by Tychalas et al.
[89] focused on industrial control systems: it ran PLC control logic in an emulator and
intercepted calls to I/O instructions, simulating basic sensors/actuators or allowing inter-

active inputs, thereby enabling fuzzing of PLC programs for logic bugs. Another line of

2.3. Firmware Re-Hosting 37
work, Jetset [90], combines static analysis and symbolic execution to target specific code
regions in firmware that are hard to reach. Jetset can determine what peripheral inputs
are needed to drive execution to a chosen "goal” (like a particular function) and then
essentially guides the fuzzer by providing those inputs, rather than relying purely on ran-
dom exploration. This helps mitigate path explosion in the presence of many peripheral
states. In a similar vein, Zhou et al., presents Emu that mixes concrete and symbolic
execution to handle peripheral inputs: it runs the firmware concretely in an emulator but
on each unknown hardware read, it invokes a concolic execution to solve for an input that
will satisfy the firmware’s subsequent path constraints [91]. In effect, Emu can compute
what device data would exercise a new path, rather than guessing. These advanced tech-
niques improve the "smartness” of peripheral modelling by borrowing ideas from concolic

(hybrid) fuzzing-they reduce the reliance on blind random values for hardware inputs.

Sandboxing and API-level re-hosting: Some fuzzing efforts choose a middle ground in
fidelity by extracting specific components of firmware and running them in isolation on the
host [92]. For example, one might identify a parsing routine in the firmware (for a network
packet or file format) and compile it into a Linux binary, then fuzz it with libFuzzer or
AFL. This requires some adaptation-the function might need dummy replacements for
hardware interactions-but can leverage the full power of user-mode fuzzers. FirmCorn
by Gui et al. [93] is a framework that automates this sandboxing: it uses static analysis
to cut out a firmware function along with its dependencies and builds a Linux-hosted
test harness for it. By sandboxing at function-level, FirmCorn avoids dealing with the
whole OS or device state; it focuses on one algorithmic piece of the firmware (say a
crypto function or a packet parser). The upside is very fast fuzz iteration and easy use of
sanitizer tools (ASAN, etc.) for bug detection. The downside is that many embedded bugs
emerge only when the function is in its real context (e.g., misuse of a hardware buffer, or
sequencing issues between threads). Thus, sandboxing is best for certain classes of logic

bugs that are self-contained. Eisele et al. [40] categorize such approaches under ”"sandbox

2.3. Firmware Re-Hosting

38

emulation” of firmware. They note that while sandboxing can be effective (and several

serious vulnerabilities have been found this way), it inherently ignores some interactions

with hardware and other firmware parts, so its coverage of the whole system behaviour is

partial.
Table 2.1: Comparison of Firmware Rehosting Techniques
Technique Approach Advantages Drawbacks
Rehostin Full system
& W Full control over 1300%+
emulation (e.g., ‘
execution performance
QEMU) . overhead
Debug-friendly)
. Requires
environment hardware-specific
peripheral models
Tight coupling to
target architecture
Poor non-standard
peripheral support
Para-rehostin Partial emulation
& Reduced Cannot fuzz

(shadow layer)

emulation scope
Faster than full
rehosting

middleware
components
Incomplete system
state tracking

Misses
hardware-middleware
interactions

Shadow layer
accuracy dependency

HiL

QEMU + physical
hardware I/0O

Real hardware
peripheral fidelity
Accurate 1/0

Not scalable
(requires device pool)
High synchronization
latency

timing Risk of physical
hardware damage
Limited parallel
execution
On-Device Native hardware
Maximum Prohibitive cost at

execution

execution fidelity
Zero emulation
artifacts

scale

Slow iteration cycles
Limited debugging
capabilities

Device management
complexity

2.3. Firmware Re-Hosting 39
To summarize the landscape: Emulation-based fuzzing has drastically expanded what can
be tested without physical devices. Tools now exist across a spectrum from low-fidelity but
highly automated (e.g., feed everything random data in QEMU) to high-fidelity but more
manual (e.g., connect actual hardware for peripherals), shown in table 2.1. A recurring
theme in the literature is the speed vs. fidelity trade-off. Fully software approaches run
millions of test cases quickly but risk missing bugs due to inaccurate models; hardware-
in-loop approaches ensure real behaviour but run orders of magnitude slower and require
per-target effort. Hybrid techniques and smarter modelling attempt to get better perform-
ance, but there remains no perfect solution [94]. Wright et al.’s survey of re-hosting chal-
lenges identifies 28 distinct challenges ranging from obtaining firmware binaries, through
handling self-modifying code in emulators, to timing synchronization between emulated
components [16]. The current state of research has made impressive progress on many
of these, but some (like precisely emulating timing or complex analogue peripherals) are
still open problems. Nonetheless, the field has matured to the point where integrated
frameworks (such as Avatar2, PANDA, or the Intel-developed MCUemu [95]) can be used
by practitioners to perform security analysis on firmware via re-hosting. As for now, it is
increasingly common for new fuzzers to combine techniques: for example, a fuzzer might
run the CPU in QEMU (for speed and coverage instrumentation), use a partial peripheral
model (for common devices), and fall back to a live device or solver-based input genera-
tion for the trickiest interactions. This multi-modal strategy is likely to continue, as no

single method suffices for the variety of embedded systems in the wild.

2.4. Abstraction-Based and Hybrid Analyses 40

2.4 Abstraction-Based and Hybrid Analyses

Beyond pure fuzzing, researchers have also applied symbolic execution and other program
analysis techniques to embedded firmware, either to augment fuzzing (hybrid fuzzing) or
to systematically explore states that fuzzing alone might miss. These we term abstraction-
based approaches, since they involve analysing the firmware at a higher level of abstraction

than concrete step-by-step execution on hardware or emulator.

Pure symbolic execution: Tools like FIE [96] were early efforts to symbolically execute
firmware code (FIE targeted MSP430 MCU firmware) and detect vulnerabilities like buffer
overflows by exploring all feasible paths. In symbolic execution, input data is treated as
symbolic variables rather than concrete values; the execution generates constraints (path
conditions) and uses an SMT solver to find values that drive alternate branches. FIE
could find certain bugs without any concrete runs, but it suffered from the usual path
explosion and limited scalability-firmware with loops or complex peripheral interactions
can lead to an exponential number of paths or require models for hardware. Inception
(Corteggiani et al., 2018) [17] improved on this by integrating a KLEE-based symbolic
executor with a simplified CPU emulator, and crucially allowing concrete hardware-assist:
when a peripheral register was accessed, Inception could fetch a concrete value from a real
device to avoid over-constraining or guessing the hardware state [97]. This technique of
"hardware access forwarding” during symbolic execution reduced the need to model the
entire hardware symbolically-essentially it runs symbolic execution for the code logic but
queries the physical device for any unknown input, thereby focusing the symbolic effort
on relevant branches [98]. Even so, purely symbolic approaches are limited to relatively
small programs or short execution traces before state-space explodes. They work best as

bug detectors for specific routines.

2.4. Abstraction-Based and Hybrid Analyses 41
Hybrid concolic fuzzing: A more practical approach is to combine fuzzing and symbolic
execution in a complementary way. Concolic (concrete + symbolic) execution runs the
program with concrete inputs (e.g. provided by a fuzzer) and simultaneously gathers
path constraints; periodically, it solves some constraints to generate new inputs that steer
into different paths [99]. This has been popular in general software (e.g., QSYM [100],
Driller [101], etc.), and has been applied to firmware as well. Ai et al. propose a concolic
testing approach for embedded binaries that supports multiple architectures by hooking
into the device’s debug interface: they perform the concrete execution on the real device
and offload the constraint solving to the host [102]. In their setup, the device is run with
a given input until a certain branch is hit; then the device is paused and the execution
trace (or relevant state) is fed to a symbolic engine on the PC which generates a new
input that would flip one of the recently encountered branches. The new input is then
tested on the device. This way, the real device provides accurate execution, and the solver
helps guide exploration. The approach found some deep bugs in wireless sensor network
firmware by exploring tricky checksum conditions that pure fuzzing struggled with [103].
Another recent example is ES-FUZZ [104], which runs concurrently with a firmware fuzzer
and automatically selects sequences of MMIO reads where coverage has stagnated. It
then performs symbolic execution on the selected portions to generate stateful, context-
aware MMIO models. These models are immediately adopted by the fuzzer to guide
exploration of critical peripheral interactions, ultimately reducing the input search space

and significantly improving coverage.

Overall, abstraction-based techniques like symbolic execution are powerful for systematic
coverage of certain code segments (especially where the input space is structured or has
checksums, magic bytes, etc.), but they require significant computational resources and/or
manual modelling of environment, which limits their standalone use in large firmware. In
the context of fuzzing, they are increasingly used as boosters-e.g., when a fuzzer plateaus,
a symbolic analysis might generate a breakthrough input. However, even hybrid fuzzers

ultimately face similar challenges as pure fuzzers in the embedded realm, because they

2.4. Abstraction-Based and Hybrid Analyses 42
rely on concrete execution traces and thus on a working execution environment. If the
firmware cannot run far without proper hardware inputs, concolic methods also stall.
Thus, these methods usually assume they have at least a partially functioning re-hosted

or hardware-assisted setup to work with.

Finally, we note an orthogonal dimension of abstraction: some works abstract the hard-
ware itself. For instance, Trippel et al. describe fuzzing actual hardware designs (Verilog
circuits) like software [105], though that is beyond the scope of firmware fuzzing and
more related to hardware security testing. In the firmware context, "hardware abstrac-
tion” typically refers to using layers like HAL or OS APIs as interception points, which

we discussed (HALucinator, etc.).

In summary, abstraction-based approaches enrich embedded fuzzing by enabling deeper
insight into program logic (through solvers) and by compensating, to some extent, for blind
spots in brute-force fuzzing. The combination of fuzzing and symbolic execution-hybrid
fuzzing-has shown promise in multiple 2023 works for firmware, and we expect future
fuzzers to increasingly integrate lightweight concolic components that operate seamlessly
with the main fuzz loop. Still, these techniques are no silver bullet; they must be carefully
applied to avoid state explosion, possibly focusing on specific subsystems of the firmware

where they add the most value.

2.5 Summary

This chapter surveyed the state of embedded firmware fuzzing across four themes: core

fuzzer components, on-device (hardware) fuzzing, firmware re-hosting, and abstraction-

based / hybrid methods.

2.5. Summary 43
For core fuzzer components. We reviewed how seed selection, mutation, scheduling,
feedback, and crash handling must be adapted to embedded contexts. Seeds can be pack-
ets, sensor traces, files, or action scripts; good harnesses are key to feed inputs in the
right way. Most systems keep AFL-style mutations and scheduling but must handle long,
stateful sequences and reliable resets. Coverage remains the main fitness signal (edge or
basic-block coverage), with add-ons such as memory-error signals and path-length heur-
istics. Crash detection uses device faults, liveness checks, emulator traps, and sanitizers.
Snapshot /restore and parallelism in emulators raise throughput; on hardware, loops and
watchdogs help avoid re-flashing. The field still lacks shared benchmarks and agreed eval-

uation rules, which makes cross-paper comparison hard.

On-device fuzzing. Using real hardware gives perfect device behaviour but makes scale
and automation harder. Recent systems exploit debug ports (e.g., SWD/JTAG) and hard-
ware breakpoints to recover coarse coverage without binary changes; trace hardware (e.g.,
ARM ETM) can yield near-native coverage with low overhead; and side-channel signals
(power, EM, timing) can stand in when debug access is closed. Black-box interface fuzzing
(e.g., network/USB/UART) remains useful but lacks feedback. Figure 2.1 shows the cent-

ral trade-off: higher fidelity on the right comes at the cost of lower speed and automation.

Firmware re-hosting. Re-hosting runs firmware on a host system to gain speed, cov-
erage instrumentation, and deep introspection. Full-system emulation (e.g., QEMU/Ren-
ode) works when device models exist; otherwise, peripheral modelling fills gaps. We
covered generic MMIO modelling (e.g., P2IM), HAL-level stubs (HALucinator), and
static-analysis-driven models (Fuzzware). When software models fall short, hybrid "peri-
pheral proxying” routes MMIO to real hardware (e.g., Avatar/Avatar2), trading speed for
accuracy. Function-level sandboxing (e.g., FirmCorn) enables very fast fuzzing of isolated
routines but misses whole-system effects. Table 2.1compares these choices by approach,

pros, and cons.

2.5. Summary 44
Abstraction-based and hybrid methods. Symbolic and concolic execution can over-
come plateaus by solving path constraints in checksums, handshakes, and state machines.
Pure symbolic execution struggles with path explosion and device modelling; practical
systems mix concrete execution with selective solving (e.g., on device via debug links, or
only for chosen MMIO reads), and feed the results back to the fuzzer. These hybrids help

reach deep code but still depend on a workable execution setup.

Embedded fuzzing tries to balance between fidelity, speed, and coverage. On-device meth-
ods find bugs tied to real timing and peripherals but do not scale well. Re-hosting unlocks
speed and visibility but risks model errors. Hybrids bridge the gap by mixing emulation,
real hardware, and solver-based guidance. The field needs shared benchmarks, clearer
metrics (bugs found over time, not only coverage), and better support for precise timing

and complex peripherals.

Chapter 3

Sizzler: Sequential Fuzzing in Ladder
Diagrams for Vulnerability Detection
and Discovery in Programmable

Logic Controllers

3.1 Introduction and Motivation

Research Question 1: Can domain-specific learning improve mutation so

that more inputs pass checks and expose deeper code in PLC workloads?

Industrial Control Systems (ICS) underpin critical infrastructure across energy, water,
transport, and defence. Historically isolated, ICS are now connected to standard IT net-
works and use commodity software and hardware. This shift increases efficiency but also
broadens the attack surface. At the core of many ICS deployments are Programmable
Logic Controllers (PLCs), which drive real-time control with strict latency bounds. Re-
cent reports show that PLCs are frequent targets in zero-day campaigns and continue to

attract research attention [106].

45

3.1. Introduction and Motivation 46
Most commercial PLCs compile application logic—often expressed as ladder diagrams—
into proprietary firmware using vendor-defined instruction sets. Prior work has shown that
typical vendor toolchains lack basic safety checks at compile time [107], leaving systems
exposed to issues such as timer races, unreachable code, and hidden jumps [108]. Studying
these flaws is hard in practice. File formats and firmware are proprietary, and even models
from the same vendor can require different memory maps for on-chip peripherals. As a
result, a generic hardware abstraction layer that supports multi-vendor emulation remains

an open problem and slows progress on systematic vulnerability analysis [89].

Fuzzing is a dynamic testing method that drives a target with unexpected inputs to trigger
faults and explore new paths. It has a strong track record at finding runtime bugs without
prior knowledge of specific flaws. However, direct fuzzing of PLC firmware is difficult: code
is closed-source, vendor-specific, and tightly coupled to hardware. Emulation is a practical
alternative, but it must be faithful enough to capture the behaviour of ladder logic and

the I/O events that drive it.

As outlined in Challenge C3, generic mutation strategies such as AFL’s havoc produce
many invalid inputs for specialized targets like ladder logic. These inputs fail domain
checks or violate stateful constraints, causing shallow exploration and wasted compute.
This motivates RQ1: learning mutations that respect domain rules so more tests pass

checks and reach deeper control logic.

3.1. Introduction and Motivation 47
This chapter answers RQ1 by introducing Sizzler! (Sequentlal fuZZing in LaddER. dia-
grams), a fuzzer that learns effective, domain-specific mutation sequences for PLC work-
loads. Rather than apply random edits, Sizzler records sequences of mutation operations
that lead to new paths, trains a SeqGAN [109] to model those sequences, and then uses
the model to propose likely-successful mutations at the relevant input bytes. The aim
is simple: generate more valid test cases that cross checks, maintain state, and expose

deeper code.

To enable realistic execution without vendor lock-in, we build a vendor-independent emu-
lation testbed. Ladder diagrams are authored and compiled with LDmicro?, then run
as binaries on commodity MCUs within an OpenPLC-based environment?. We extend
QEMU to improve GPIO and I12C handling and implement Modbus over TCP to broaden
peripheral coverage. This setup avoids firmware re-hosting while preserving the execution

semantics of ladder logic and the I/O patterns seen in the field.

We evaluate Sizzler on a suite of ladder programs compiled to firmware and executed
in our emulation testbed. To test generality beyond PLCs, we also run Sizzler on the
LAVA-M and Magma benchmarks and compare against established fuzzers. Results show
that Sizzler increases the rate of valid inputs and the depth of path exploration, leading
to higher coverage and more bugs found. In one case, a previously unknown flaw found

by Sizzler was assigned a CVE, highlighting practical impact.

This chapter contributes:

o A domain-specific mutation strategy that learns sequences of edits with SeqGAN

to generate valid, high-yield test cases for ladder logic.

1. Sizzler framework: https://github.com/7linux-0/Sizzler
2. LDmicro: ladder diagram editing, simulation, and compilation to native firmware. https://cq.cx/

ladder.pl
3. OpenPLC: open-source PLC runtime and emulator. https://openplcproject.com

https://github.com/7linux-0/Sizzler
https://cq.cx/ladder.pl
https://cq.cx/ladder.pl
https://openplcproject.com

3.1. Introduction and Motivation 48

« A practical, vendor-independent emulation workflow for PLC applications, includ-
ing QEMU refinements for GPIO/12C and Modbus/TCP support to better cover
peripherals.

o A public dataset of synthetic ladder-diagram vulnerabilities to support repeatable
research and fair comparison'.

o Evidence that the approach generalises: on LAVA-M and Magma, Sizzler achieves
higher coverage than strong baselines.

o A real vulnerability discovered by Sizzler that received a CVE identifier, demon-

strating real-world relevance.

We first describe Sizzler’s architecture and learning pipeline, then detail the emulation
testbed and datasets. We present evaluation results on PLC workloads and general bench-
marks, analyse why the learned mutations help, discuss limitations, and outline future

work.

3.2 Technical Background

In this section, we systematically categorize existing state-of-the-art fuzzing approaches
to emphasize the novelty of Sizzler. Table 3.1 summarizes these previous fuzzing stud-
ies, separating the core functionality into three categories: PLC wvulnerability detection,

emulation, and fuzzing.

3.2. Technical Background 49

Table 3.1: Taxonomy of related work. Key: @= Coverage, D= Limited Coverage, O= No
Coverage. The methodology employed in the organization of the columns in the analysis
pertains to the various techniques related to Sizzler.

Vulnerability detection Emulation Fuzzing

Approach

uSBS [110]
ICSFuzz [89]
VETPLC
[108]
SymPLC
[111]
P2IM [6]
DICE [15]
Fuzzware [82]
HALucinator
[81]
Avatar? [7]
GANFUZZ
[112]
RapidFuzz
[113]
Fasterfuzzing
[114]
MOPT [22]
Havocy AB
23]

Sizzler

® O O PLC target
® | O| @ Binary instrumentation
® O Y| Symbolic execution

® 0 v 0 g9 O O.OFU_ZZing
® O O OO0 O | O |0O]Q|| GAN based

|10 O] O| O |@® O 000 @

ol O O] O | O C |QO @ |[QOI0O © O | Q| Q|| Abstraction replacement

® |0 O] O| C|® O @00 | ¢ |00 HIL
Ol O |0l O| O| O |0 @ O|l®@® O | O |Ol0| Data replaying
® ® & O | O | O |0 O 00O O] O |0Ol0| Havoc

of © |0l O O| O |@ O 000 O

® O O O | O

3.2. Technical Background 50

3.2.1 PLC Vulnerability Detection

Several studies have focused on the analysis of PLC security, with many using fuzzing
as a method for vulnerability testing. For instance, uSBS [110] presents a static binary
analysis technique to detect illegal accesses to firmware memory addresses. Moreover, 1C-
SFuzz [89] rapidly identifies vulnerabilities in PLC programs generated using the Codesys
development environment. VETPLC [108] verifies real-world PLC programs to detect code
safety violations through the use of static and dynamic analysis. SymPLC [111] employs
symbolic execution to test both single-task and multi-task PLC programs. These studies
emphasize the importance of code-level analysis in uncovering vulnerabilities and demon-
strate the effectiveness of fuzzing in achieving this goal. In comparison, Sizzler supports a
wider range of architectures through the use of LDmicro and OpenPLC [115] to provide
internal feedback from the PLC’s runtime. Additionally, we have designed Sizzler specific-
ally for PLC Ladder Logic Diagram (LD) since is the most widely used PLC programming

language [116], while other studies mainly focus on structured text language.

3.2.2 Emulation

Emulation and re-hosting techniques are pivotal in identifying and mitigating vulner-
abilities within embedded system firmware. Noteworthy frameworks like P2IM [6] and
pEmu [91] leverage this approach to record peripheral inputs without affecting firmware
operations. Fuzzware [82] integrates an instruction set emulator with a fuzzer, supplying
inputs for hardware accesses at the Memory-Mapped 1/O (MMIO) registers. HALucin-
ator [81] employs abstraction replacement using Avatar? [7] and QEMU [117] to substi-
tute hardware abstraction layer calls with customized implementations. Hardware-in-the-
Loop (HIL) further adds a layer of fidelity validation by simulating real-time interactions

between controllers and peripherals. Specifically, HIL creates real-time virtual environ-

3.2. Technical Background 51
ment that mimics the actual physical system. When the controller sends signals to peri-
pherals, HIL generates and returns simulated values, replicating what would occur if the
controller were interfacing with real devices. Sizzler uniquely utilizes HIL in conjunction

with Avatar? [7] to emulate Modbus, an industry-standard network protocol.

3.2.3 Fuzzing

Fuzzing stands as a widely employed automated testing methodology utilized for the
purpose of vulnerability discovery. Generative Adversarial Networks (GANs) represent
generative models primarily designed to produce new samples that replicate a learned
distribution from a training dataset [118]. Various adaptations of GANs have been im-
plemented in the context of automated testcase generation for fuzzing. For instance,
GANFUZZ [112] utilizes GANSs to learn protocol grammars for testcase generation, while
RapidFuzz [113] leverages WGAN-GP to optimize the seed distribution, thereby enhan-
cing code coverage. Nichols et al. also propose the use of GANs for augmenting the seed
pool, introducing a notable mutation strategy [114]. It is worth noting, however, that

GANSs often face challenges when dealing with sequence data.

The current GAN-based fuzzer concentrates on the generation process. In contrast, Sizz-
ler focuses on the mutation strategy within fuzzing, building upon the foundation of
American Fuzzy Lop (AFL) [21]. Specifically, Sizzler employs havoc scheduling, a highly
stochastic process, which introduces alterations to the target code through a suite of op-
erators. These operators encompass bit flips, byte flips, arithmetic operations, and value
replacements. Test cases are generated by stacking multiple operators, with the number
of stacks determined randomly (AFL originally sets the maximum operator stack size
to 128). This objective is motivated by the varying efficiencies observed in mutation op-
erations, as exemplified by MOPT [22], which employs particle swarm optimization to
enhance fuzzing efficiency. Additionally, HavocyAB [23] adopts algorithmic approaches

for operation selection. Sizzler distinguishes itself by uniquely employing SeqGAN to learn

3.2. Technical Background 52

- T T T
ISeeds -|- | Eéédﬁv
0000

* New code path TestBed + *

Deterministic D G
Trainf *

=== | *

| a2 g d f fe |
u Havoc |"| T T TITIT
- K b d a \ f c e ,

Sequence of Mutation Operations
““: means the mutation operations used in havoc stage, e.g., bitflip, bytedelete...

Figure 3.1: Sizzler architecture indicating the enhanced mutation-based fuzzing strategy
using updated sequences resulted by SeqGAN training.

the optimal sequence of operators, thus improving the generation of efficient test cases.
SeqGAN employs a Long Short-Term Memory (LSTM) neural network as its generative
model (G) and incorporates a discriminative model (D) to differentiate between authentic

and generated data.

3.3 Sizzler overview

3.3.1 Sizzler Overview

As illustrated in figure 3.1, Sizzler is engineered to generate a diverse set of test-cases aimed
at identifying vulnerabilities within PLC application code, executed over emulated MCU
firmware. This process is further detailed in figure 3.2. Sizzler records the input/output of
the PLC program, capturing both the ability to execute the target code for each test input
and any associated order-related operators. When the input produces deeper code paths

or uncover new ones, the relevant combination of operations is recorded as a new dataset.

3.3. Sizzler overview 53

' —N\ — — — —
| ; [] TCP

| Timer USART SPI GPIO 12C stack [| Modbus

® | Ladd 7 § 7 — A _J

[-2]

2 D'aa raerrn | "“ X y'y X X Ethernet| «
e | lag | Registers : 'Interrupts Peripheral Bus g MAC E‘:
Interrpt e =
| | Processor IS RAM P o 2 <
Firmware) Controller Controller K

Figure 3.2: Emulation approach for assessing Sizzler fuzzing over converted ladder dia-
grams.

Sizzler employs the effector map to document the position of the related bits in testcases.
Subsequently, SeqGAN formulation is trained using the logged inputs and the order of the
recorded operations. Our implementation consists of a generator that generates sequences
of operations, and a discriminator to distinguish between real and generated data, whereby
the SeqGAN model is continuously updated through incremental learning. Subsequent to
the training process, sequences of operations are generated to dictate the generation of new

testcase inputs of converted PLC application binaries over the emulated MCU firmware.

Given the strict limitations of emulating proprietary PLC firmware, and in order to ad-
equately evaluate Sizzler, we convert LD code into ANSI C code and customize Avatar?
and QEMU to emulate PLC functionality. As illustrated in figure 3.2, our implementa-
tion enables refined GPIO and 12C interfaces, such as I/O modules and communication
interfaces, with commonly unsupported peripherals by QEMU. Furthermore, we utilize
Avatar? to emulate an HTTP server and provide Modbus /TCP communication. Thus, we
provide support for PLC control applications to run on various MCU architectures (such

as ARM Cortex-M and AVR ATmega) used during the evaluation phase.

3.3. Sizzler overview 54

vl
,,,,,,, [EEm— Yl ¥new

x
D
o
3
s
o
E
4
=
=

new 1 0 >=]
0004 --7--=-] [--=-=q-=e=eems ()------1 oo I) ---- 1]----

1 0 A
0002 - omccmom oo l 0002 1T) 0002|--

2|------ (3 e 2 ------ [END]--=-====mmmmmmmmmm oo z —————— [END]--=-==-===== ===]

(a) Hidden jumper (b) Object repeat refer- (c¢) Comparator hardcode (d) Race condition com-
ence petition

Figure 3.3: Typical ladder diagram vulnerabilities.

3.3.2 Vulnerability Composition

Ladder logic is a visual programming language that was originally designed to resemble
electrical relay diagrams. A ladder program is drawn as two vertical rungs with one ho-
rizontal rung. Each rung is a small rule: it reads a set of inputs (contacts) and updates
outputs (coils). Contacts behave like switches that can be open or closed, and coils rep-

resent actuators or internal bits [119].

At run time, the PLC repeatedly scans the program from top to bottom. In each scan cycle
it evaluates the rungs from left to right, using current sensor readings and internal memory,
and then writes the results back to outputs. This scan-based execution model makes
ladder logic behave like a synchronous, cyclic program: values are sampled, processed,
and applied in discrete steps. Timers, counters, and latches extend this model with simple
stateful elements, but the underlying representation remains a graph of rungs rather than
conventional control-flow constructs such as loops and functions. These differences matter
for Sizzler, because they affect both what counts as a valid test input and how faults in

PLC applications manifest during execution.

Current PLC LD compilers do not have the capability to detect vulnerabilities or intricate
logic errors caused by logic injection as seen in real incidents [120]. We leverage such
missing capabilities to construct 30 PLC binary applications. Each PLC application is
deliberately generated with various types of vulnerabilities present in the LD program.

We compose the following vulnerabilities within the LD programs:

3.3.

Sizzler overview 55
Race condition competition: occurs when two processes concurrently request the
same resource. In the context of LD programs, two logical operands are executed
simultaneously and race against each other, resulting in an unexpected output even
though the input is the same. As shown in figure 3.3d, the output value of y,e, is
changed from 0 to 1 within two cycles, even though the inputs are fixed.

Missing certain coils or outputs: A rung missing a specific output coil, such as
Output Energise (OTE), latches or sets, unlatches, etc., can lead to a dependency
issue where other tag(s) are impacted.

Infinite loop: The main PLC application execution process is a continuous cycle.
If the LD contains infinite loop, it can consume excessive CPU resources to cause
PLC to crash.

Hard-coded logical comparator: embedded into the application, which can con-
sequently be accessed by attackers. Such hard-coded instructions and values can be
obtained from the PLC through reverse engineering and then modified to manip-
ulate the operation of the PLC program. As illustrated in figure 3.3c, var can be
changed thus the whole application will be affected.

Missing jumps and links: Jumps and links may not be executed following the
control flow. An attacker could identify these memory addresses and utilize the
spaces to insert malicious code.

Hidden jumpers: can utilize the jump mechanism in PLC to skip some elements,
shown as figure 3.3a. If the jumper is coded to bypass a single element within a
given rung, it is possible that more than one element or even a whole branch will
be abandoned.

Object repeat reference: This can occur when one output may be controlled by
different inputs. In LD, some operands, for OTE, timers, and counters, could have
different results that depend on the scanning of different rungs with similar logic.
From example, the y1 output coil in figure 3.3b is duplicated within the LD, and
will be de-energised depending on which rung is executed, resulting in an undesired

output.

3.3. Sizzler overview 56
o Unused objects: It is possible that some variables remain unused, especially in
large-scale PLC programs, which will not be detected by the compiler. Open and
pre-instantiated entry points present a potential vulnerability in the system. This
vulnerability arises from the ease with which an attacker can insert malicious code

into the system.

The vulnerabilities we implement may cause severe damage to a real ICS setup. For in-
stance, attackers can gain root authority and implant backdoors to monitor and control
PLC behaviour. Moreover, gaining access to hard-coded PLC applications can allow at-
tackers to obtain sensitive information, such as temperature and pressure values within a

variety of critical industries, resulting in unpredictable consequences [121].

3.3.3 Ladder Diagram Conversion to ANSI C

We construct our emulation testbed by embedding the vulnerabilities discussed earlier into
LD projects. The challenge relates to the conversion of projects into executable binaries
in order to emulate their application-level characteristics. We therefore utilize the open-
source LDmicro compiler and OpenPLC to transform the projects into C programs that
could be compiled and executed as binaries. The compilers for OpenPLC and LDmicro
are capable of defining values and addresses used by PLC pins. The OpenPLC can also
map the Modbus address space directly to the physical I/O. The process of generating C

code comprises three stages:

1. Lexical and syntax checks of a LD;

2. Compiler generates symbol tables such as globally declared functions, Program Or-
ganization Units (POUs), and identifiers declared for enumerated types;

3. Analysis of the executed control flow and data type to annotate the abstract syntax

tree and generate C code.

3.3. Sizzler overview 57
The generated C file outlines the PLC runtime, initiated by establishing an array of
communication-related functions in accordance with the memory map. This array encom-
passes both peripheral and inter-process functions, which are instantiated as threads. The
LD is subsequently loaded during runtime where the instructions are then executed. The
I/O modules defined in the memory map play a crucial role in receiving both analogue
and digital signals, and serve as a medium for fuzzing to generate inputs for the PLC

program.

3.3.4 MCU Emulation

As already mentioned, the QEMU open-source and cross-ISA emulation platform was used
to address security testing challenges pertaining to control binaries. QEMU can emulate
several CPUs, for example x86, PowerPC, and ARM, through the dynamic binary trans-
lation technique. However, QEMU does not support all the peripherals for different types
of targets, such as I/O modules, which means our PLC binary files can not be native
emulated by QEMU. We substitute low-level 1/O interactions with high-level implement-
ations to enable external interaction and emulation of PLC firmware over five different
MCUs. We achieve this by customising and mapping crucial board-level communication

protocols of QEMU, such as GPIO and 12C, over specific MCU memory address regions.

We emulate the GPIO controller to capture varying sensor signals represented within
the underlying physical process controlled by the PLC; for instance, switch closures and
button presses. GPIO is a type of digital signal pin that is integrated into the circuit
and can be set as an input or output. By default, GPIO ports often have no pre-defined
task, however the pins can be customized and controlled by software to achieve desired
functions. In our work, the PLC’s I/O interfaces receive sensor signals and relay them
to the GPIO interface. The GPIO then stores the received data in its memory-mapped

space. By means of a specialized function, we retrieve data from the GPIO device file

3.3. Sizzler overview 58
. . Interesting Insert Dictionary
Bitfilp Arthmetic values Tokens effector map
e v o
- T ~-0100101--
Bitfilp Arthmetic Interesting Insert Dictionary
values Tokens +-0100]0I0 1--
‘L_ - — — — _— = = ¢
Yy 2] I
Bitfil Arthmetic Interesting Insert Dictionary 01qo0l01
P values Tokens ~-0100/T1170 01--
b —_—— -———— e e . . =
— T 4 ++0100/0000011 -
Bitfilp Arthmetic nteresting nsertoictionary - [
values Tokens

Figure 3.4: High-level description of the processes associated to capturing data mutations
within the Sizzler havoc process.

through a read system call and transfer it to the memory space of the control process.
This operation is carried out by a thread that is created alongside the control process and
employs a write system call to transmit the input data. The sequence of events is repeated

at a frequency determined by the QEMU scan cycle length of the control application.

A PLC uses 12C functions to interface with peripheral devices, such as sensors and actuat-
ors. We use 12C to connect to the GPIO, emulating PL.C board-level communication. The
[2C communication protocol requires the SCL (Serial Clock Line) and the SDA (Serial
Data Line) wires to communicate between the runtime and the GPIO. The microcontrol-

ler acts as the 12C master, managing the signals as well as sending and receiving data

over the SDA line.

The emulation of GPIO and I2C is programmed on the interface layer and is based on
the same logic where a driver is created for each interface. Since we use firmware based
on three different programming boards, different datasheets are required to record all
registers for the GPIO and I2C. The different drivers are then mapped into memory
areas, which initialise the device and I/O ports and select the register to be written or
read according to the offset from the device’s address. For example, to emulation logic of
GPIO for ARM STM32F40X, where its memory region is 0z3FF. We define every register’s
status and trace from 0240020000 to 0x40022c00. The trace change of GPIO is stored in
log files to identify which register is being accessed, assisting with the monitoring of the

emulation process. To successfully configure alternative MCUs, the GPIO drive address

3.3. Sizzler overview 59
in the memory map and the range of addresses of registers need to be adjusted according
to the datasheets. The initialisation process for I2C communication on MCUs is similar to
GPIO. Notably, the main difference from GPIO is that I2C opens log files and performs
a read system call to emulate an SDA line, thus moving input data to its own memory

space.

The Modbus protocol is extensively utilized to enable Master /Slave industrial communica-
tion between PLCs and other ICS components. In our refined implementation, the remote
master initiates read and write requests to the OpenPLC slave sending Modbus frames
over the network (Modbus/TCP). Emulation of Modbus via the TCP stack is performed
using the QEMU emulator that we have refined within this work, while communication is
achieved through Avatar? and is tailored for different MCU boards. However, the binary
application generated by OpenPLC can only act as a slave. During operation, the runtime
leverages the TCP stack to translate messages to Ethernet frames, which are subsequently

dispatched via the physical Ethernet port using an Ethernet library, such as tuxeip.

3.3.5 Sizzler Enhanced Fuzzing

Sizzler builds upon the original AFL fuzzing approach, and by contrast, implements a
mutation approach that is sensitive on code branches to discover deeper code paths related
to a vulnerability. The mutation strategy employed in Sizzler, presented in algorithm 1,
uses a customized havoc approach as seen in AFL. We enhance our approach by using
SeqGAN to increase the number of useful test cases to be used during the fuzzing process
and optimize the havoc stack process. Specifically, the sequence of strategies enable an
increased amount of edges and solves the context-insensitive problem. In the first fuzzing

cycle, we collect the dataset by recording sequences of operations that find new code paths.

N

'y

9

10

11

12

13

14

15

16

17

3.3. Sizzler overview 60

Algorithm 2: Sizzler fuzzing

Input: seed; fuzz_one(); fuzz_time counter t < 0
Select a seed input;
Initialise a queue of inputs to be processed;
Execute mutation strategies on queue;
if save if interesting(seed) then
if Is_Havoc() then
Push the series of strategies into data reader() when fuzzing is executing
havoc();
Choose the matebyte in effector map;

end

end

while mod 10 =0 do

Initialise the generator and discriminator;
Train the Seq_ Gan() model;

Update the generator based on reward;

Generate new strategies;

t<t+1;
end

common__fuzz_stuf f(): Execute new strategies on interesting seed and matebytes;

The dataset is then forwarded to the SeqGAN model to generate new strategies. figure 3.4
illustrates how different operations would match with each other. For example, “Bit flip —
Havoc — Insert Dictionary Token — Interesting values” represents how to formulate the

execution path through different operations.

On the right part of figure 3.4, a list of binary patterns illustrates how input values are
permuted by different operators. The list of operations that could trigger a new execution
path is stored in the query. Meanwhile, the position of related bytes is recorded in the
effector map. The effector map serves as a guide for the havoc process whereas bytes
causing different code paths are called matebytes. In general, we observe that in the
context of the inherently data-intensive AFL, bytes originating from the same section of

the input data frequently induce identical code paths during execution. Thus, in Sizzler,

3.3. Sizzler overview 61
a byte is designated as a matebyte only if its alteration results in an execution path that
is distinct from the paths generated by modifying adjacent bytes. Because we observed
that bytes originating from the same section tend to lead to the same code paths. During
the execution of the havoc process, the matebytes encoded in the effector map are subject
to modifications by the operators. In the subsequent cycle, Sizzler employs SeqGAN to
simultaneously train both a generative model and a discriminative model. These models

utilize the values stored within the effector map to generate new testcases.

The generative model continuously refines its strategies based on the rewards it receives,
enabling it to iterate effectively on mutation attempts. Consequently, even if initial muta-
tion attempts are unsuccessful on a new seed, the model remains capable of discovering
effective mutations in subsequent iterations. It’s noteworthy that SeqGGAN is not limited
to a single mutation strategy; rather, it possesses the capability to synthesize a diverse
portfolio of strategies. This diversification significantly enhances the likelihood that at
least some of these strategies will prove effective when applied to new seeds. A salient
attribute of SeqGAN lies in its ability to dynamically adapt and optimize its mutation
strategies over time, facilitated by its integrated reward mechanisms. The process of train-

ing SeqGAN contains the following steps:

1.Training Data Capture and Pre-processing: The sequence of operators that induce
variations in the code path are captured as effective data points for training, recorded as
x = (x1,%2,X3,...X,). The maximum stack size for mutators in the AFL framework is set at
128, which is the rationale for selecting 128 as our batch size. To standardize the training
process, certain efficient sequences of operations are appended with specialized characters.
For filling gaps in the sequence, the most frequently occurring operators within the current
data are used. Subsequently, Min-Max scaling is employed to normalize these sequences,

converting them into standard decimal data with temporal features.

3.3. Sizzler overview 62
2. Model Construction, Training and Validation: In our architecture, the generator
and discriminator are defined with four layers. The generator receives a 100-dimensional
noise vector (y1,y2,y3,...yn), sampled from a Gaussian distribution, as its input. The ar-
chitecture includes two LSTM layers, each consisting of 128 units, followed by a Dropout
layer implemented with a rate of 0.3 to mitigate the risk of overfitting. The generator’s
learning rate is meticulously calibrated at 0.001 for optimization purposes. Subsequently,
the discriminator is trained on data generated by the Generator. Comprising three lay-
ers, the discriminator’s primary objective is to differentiate between real and generated

sequences, as demonstrated in equation 3.1.

minmaxV (D,G) =E,,__..[logD(x)]+
G b (3.1)

Ezp.[log(1 = D(G(2)))]

The output of the discriminator serves as a reward signal for each generated sequence, and
policy gradient methods are deployed to update the generator based on these estimated
rewards, as defined in equation 3.2. Here, J(6¢) is the expected reward for the generator,
O; are the parameters of the generator network, p(x | 8¢) is the probability of a sequence
x given the generator’s parameters, and R(x) is the reward for sequence x. The generative
model is then updated based on the reward to improve the quality of the generated
data. To monitor the model’s performance, we employ a validation set. Early stopping is

triggered if no improvement in the loss metric is observed over a span of 100 epochs.

VoI (06) = Exwpxjas)[Vog log p(x | 66)R(x)]
(3.2)

T
Epr(x\ec)[Vec logp x‘ eG Z '}/ 'r
=1

~

3.3. Sizzler overview 63
As shown in algorithm 1, the AFL is firstly executed to record the different combination
of strategies that trigger new code paths in the havoc process. We then utilize the Se-
qGAN model to capture the logic from different sequences of strategies. Similar series of
operations are then generated to mutate the seed set in the subsequent fuzzing cycles.
The new test cases are generated to feed into the GPIO’s port to test the security of PLC
application binaries. The strategies are recorded throughout 10 cycles. Subsequently, the
dataset is then erased and recollected through the mutation steps in order to retrain the

model.

Grammar based fuzzers are highly effective when the target input language is stable
and well specified, as a formal grammar can enforce syntactic validity by construction.
However, for PLC ladder logic, this approach is impractical. Ladder programs are typic-
ally authored in vendor specific languages and compiled into proprietary binary formats.
Even within the OpenPLC framework, the translation from ladder diagrams to C code,
and subsequently to firmware, relies on toolchains that evolve over time. Consequently, a
general grammar for ladder logic firmware would need to model not only the visual lan-
guage structure but also compiler translations, vendor specific extensions, and the stateful
behaviour of timers, counters, and inter-rung interactions. Developing and maintaining
such a grammar would entail significant manual effort and inevitably tie the system to

specific vendors-undermining our goal of a vendor, neutral PLC fuzzing framework.

Instead, Sizzler employs a strategy that learns to mutate existing ladder based testcases,
ensuring they remain valid while exploring deeper control logic. SeqGAN is particularly
well-suited to this objective: it treats mutation steps as a discrete series of actions and
utilizes sequence modelling to capture long-range dependencies between edits. In contrast
to simpler baselines, such as fixed mutation schedules or n-gram models, SeqGAN can
adapt its mutation policy based on observed reward signals (such as coverage and bug

discovery) without requiring prior knowledge of the underlying grammar. SeqGAN can

3.3. Sizzler overview 64
also learn the dependence between different mutator operators instead of generating a
single mutation strategy directly. Adopting a sequence of mutation operators can help
generate more valid testcases based on interesting seeds even when the precise structure

of the ladder firmware is unknown or only partially observable.

3.4 Evaluation

3.4.1 Research Question

Research Question 1: Can domain-specific learning improve mutation so

that more inputs pass checks and expose deeper code in PLC workloads?

This evaluation focuses on two primary aspects: (i) assessing whether Sizzler can generate
valid testcases and achieve high code coverage on PLC ladder diagram applications; and
(ii) determining whether it demonstrates improved coverage and bug detection capabilities

compared to baseline fuzzers on general benchmarks.

3.4.2 Evaluation Methodology

Testbed and Datasets: Our evaluation was conducted over a server equipped with an
AMD Ryzen Threadripper 3960X 24-Core Processor with 64GB of RAM and Geforce
RTX 3050 graphics card, running Ubuntu 18.04. We constructed 30 vulnerable PL.C con-
trol binaries generated through the conversion of LDs. Each binary was programmed to

perform different control system functions such as time measurement and traffic light con-

3.4. Evaluation 65
trol, which are then implemented on five MCUs*. The LDs were originally acquired from
GitHub and several projects were tasked with utilizing them in real-world production en-
vironments®. The diagrams underwent secondary development, which involved integrating

various vulnerabilities into the binary code, as defined in Section 3.3.2.

To demonstrate how generalisable Sizzler is to non-ICS specific environments, we also
evaluate using the Large Volume Automated Testing (LAVA-M) dataset, which comprises
of four GNU coreutils programs (uniq, base64, md5sum, and who) [122]. Moreover, the
LAVA-M dataset has been widely used as a benchmark for other fuzzing evaluations [26,
123] to evaluate their performance, enabling us to compare with state-of-the-art ap-
proaches. The LAVA technique was employed to create a ground-truth baseline by in-
cluding a substantial number of realistic bugs within the binary source code. Each bug
was assigned a unique identification number displayed upon activation. Additionally, we
conducted a comparative analysis of Sizzler’s performance against other prevalent fuzz-
ing tools, utilizing Magma version 1.2 as the testbed [27]. Magma serves as an expansive
repository of targets modeled on real-world computing environments. It comprises seven
distinct libraries and 16 executable binaries. Contrary to LAVA-M, which relies solely on
artificially synthesized bugs and magic byte comparisons, Magma offers a diverse range
of vulnerabilities that are categorically aligned with the Common Weakness Enumeration
(CWE) framework. In total, Magma encompasses 138 identifiable bugs, consisting of 15
integer errors, six of which manifest as divide-by-zero errors, as well as 58 memory over-
flow issues. The remaining bugs span various types, including use-after-free, double-free,
and null-pointer dereference vulnerabilities. We conduct the fuzzing benchmark on two

dataset for 24 hours and repeat ten times.

4. In particular the PIC1616F628, PIC1616F88, Atmel AVR ATmega 2560, Atmel AVR ATmega 128,
and St ARM STM32F40X MCUs.
5. https://github.com/BongPeav/LdMicro

https://github.com/BongPeav/LdMicro

3.4. Evaluation 66
Table 3.2: The result of Unit Test

Peripheral | F103 Arduino | F103 RIOT | SAMS3 Arduino | SAN3 RIOT

‘ p2im ‘ HUEmu ‘ Sizzler ‘ p2im ‘ HUEmu ‘ Sizzler ‘ p2im ‘ UEmu ‘ Sizzler ‘ p2im ‘ pUEmu ‘ Sizzler

ADC v v vV INA| N/A | NA | X v v v v v
DAC | N/A| N/A | NJA | N/JA| N/A | N/A | X v v v v v
GPIO X | v v X |V v v v v X | v v
PWM X v X |INJA| N/A | NA | X v X v v X
12C X | X V. INJA|N/A|NA| X | X v | NJA| N/A N/A
UART | X v vV. INJA|N/A | NA | V v v v v v

The symbol v signifies that the emulator has successfully passed the unit test, while the symbol Xindicates that
the emulator has failed the unit test. The notation "N/A” is employed to denote scenarios where the combination
of the MCU and associated libraries is not adequately supported by real devices.

3.4.3 Unit Test for Emulation

We conducted the same unit-test experiment as was done in P2IM to ensure a head-to-
head comparison, using an identical set of 44 firmware samples. These samples encompass
eight MCU peripherals, and two distinct MCU chips: the STM32 F103RB, and the At-
mel SAM3X8E. Each unit-test sample embodies a unique yet feasible combination of
peripheral configurations. The firmware executes rudimentary operations associated with

these peripherals.

A comparative analysis was conducted among Sizzler, P2IM, and ypEmu. P2IM identifies
processor-peripheral interfaces and provides applicable input data via these interfaces
on behalf of the peripherals. Conversely, uEmu leverages symbolic execution to discern
appropriate values for peripheral access and dynamically responds to read operations

initiated by peripherals.

As illustrated in Table 3.2, Sizzler attained a passing rate of 82.3%, markedly surpass-
ing P2IM’s 41.1%. uEmu recorded the highest efficacy with a passing rate of 88.2%. A
significant impediment to the success of unit tests within P2IM is the misclassification
of peripheral registers, a consequence of categorizing these registers according to their

access patterns. Such misclassifications lead to an inability for P2IM to meet the firm-

3.4. Evaluation 67
ware’s expectations, leading to stalled execution. Sizzler’s suboptimal performance, when
compared to gEmu, can be attributed to its inability to synchronize effectively with the
emulator, resulting in firmware halts. Interestingly, both gEmu and P2IM fail to emulate
binary files embedded with LD, and are deficient in detecting infinite loops. Specifically,
uEmu’s detection is hampered when registers within the loop possess concrete values,
and is effective only when the processor context incorporates one or more symbolic val-

ues. Additionally, P2IM is ill-equipped to manage non-generic peripherals such as GPIO.

3.4.4 PLC code Vulnerability Discovery

To evaluate how effective Sizzler performs at identifying vulnerabilities in PLC LDs, we
utilize the 30 vulnerable binary control applications compiled from LDs. The refined
SeqGAN model collects data from the havoc stage in the first cycle and subsequently uses
this data to train and generate sequences of operators to guide fuzzing in the following
cycle. Each binary is subjected to fuzzing for ten cycles in order to record the entire
process. The SeqGAN model is then retrained for the next cycle. Table 3.3 presents the
results of these experiments, demonstrating the code coverage and the time consumption

for ten cycles.

Evidently, Sizzler demonstrates execution times that typically exceed 40 minutes. We
can attribute this to the simplicity of the LD logic, as well as the inclusion of hardware
abstraction functions for MCUs within the PLC binaries. The control programs which use
the Modbus protocol to read/write registers were exclusively developed using real PLC
models (Ethernet libraries) to compile a set of applications containing vulnerabilities in

order to evaluate the fuzzing capabilities of Sizzler.

3.4. Evaluation

68

Table 3.3: The code coverage result of ladder diagram for different MCUs executing con-
verted PLC applications.

MCU Program Vulnerability Crash Time(min) Coverage(%)
Function Basic-block FEdge
o test-i2c RC Y 64 93.8 78.1 69.5
§ test-water UT Y 49 85.7 77.3 66.7
© test-electric IL Y 61 76.3 66.4 51.1
% test-i2¢-led MJL Y 57 88.7 77.4 71.6
= test-leds IL+UO+MJL N 41 72.5 60.0 44.1
test-pwm UT+CH+ORR Y 60 94.1 81.4 77.1
test-spi ORR Y 55 91.6 77.4 64.8
S test-uart 1[0 Y 49 93.7 71.1 58.5
E test-timer RC+UT Y 43 91.6 67.7 51.7
5 test-var-timer UO+CH Y 31 91.9 61.1 33.7
o test-coil RC+IL Y 52 87.5 78.8 67.4
test-masterrelay RC+UO Y 67 94.5 81.4 71.9
§ test-switch MJL Y 50 96.3 88.9 84.4
C:‘S seg-display CH Y 53 97.1 88.4 76.5
& asm-demo IL+UT Y 41 89.8 73.4 51.1
= fest-blink UO+ORR Y 50 89.6 647 401
; test-lift RC+HJ Y 67 97.6 88.7 80.7
<>: test-alarm UO-+IL Y 66 93.7 81.6 74.4
& test-traffic HJ Y 63 91.8 81.1 76.0
g test-train RC+IL+HJ Y 63 99.6 89.6 84.6
qé test-polution UT+IL+ORR Y 61 99.7 81.1 75.9
> test-counter | RC+MJL+UO | Y 31 97.4 76.7 61.2
e test-pressure UT+IL+HJ Y 44 82.4 71.1 61.7
= test-control | CH+RC+HJ | Y 49 88.1 63.5 59.4
s test-clamb IL Y 57 87.1 71.4 66.6
= | test-intustion RC+ORR Y 51 94.6 89.7 78.5
g test-modbusl UT+CH Y 61 81.6 74.4 71.7
g test-modbus2 RC+CH Y 48 83.1 76.5 64.0
= test-tem UT+CH+ORR Y 55 88.0 80.0 74.3
gg test-mov RC+CH-+HJ Y 43 91.8 82.9 74.6

Vulnerability: Race condition competition (RC), Unconditional transfer (UT), Infinite loop (IL),
Comparator hardcoded (CH), Missing jumps and links (MJL), Hidden jumpers (HJ),

Object repeat reference(ORR), Unused objects (UO)

Furthermore, Sizzler demonstrates a high function coverage rate with nearly every function

in the 30 LD programs and MCU libraries being detected under each of the five MCU

architectures. Achieving an average function coverage rate of 88.4% indicates that the

majority of binary functionality has been exercised. Moreover, the average basic block

and edge coverage rates of 71.29% and 61.4%, respectively, provide further insight into

3.4. Evaluation 69

Crash_number o 0 @ 4 8 2@ 6@ 20
(AR N EEEEN X XN X EN RN REN NENENENE RN NN

7-14 o900 000600000 ¢ 06000000600 °0000°*0
14-21 0000 ¢ 090 000 20002000 000OCGKY 0
21-28 000 000O O o [X 00 00 O

= 28-35 @0 0000 @ L R O O
E
(]
$ 3542 000 ® (YY) LYoty X
=
42-49 @ © 0 000 O L 2
49-56 @ © *® 00 © 00
56-63 ®® *® 000000 0000000 @}
63-70 ® @ L a 20 & % X X X X X J 00000OGOOS e}
O =0T ®W BE S LS= >Cc >0x & OcCccSovFaoc—N >
..‘3982U§%m°’QOQUQEE:‘——TgE'aOQSEEowwgo
e G o237 EES 0SS 00 E 3 SSESE5EREGE 337
N 0P850 2005353830383
S— T —
T LPSEG 20 ES Lo 5 BEEEL
2 L 000 R LLT 2B L0l 55
(0] “— L OO (%2 "-‘d)-o-lw.._..‘_.
h v ET 0 QL =" B0
. =T e =00
Q

Figure 3.5: Fuzzing results for developed PLC binary applications.

the executed code paths. Sizzler detects crashes in 29 out of the 30 PLC LD programs, with
the exception of test—1leds. Sizzler also did not perform optimal basic block and edge
coverage for the PIC1616F628 and PIC1616F88 architectures, which can be attributed to
the less sophisticated emulation of PIC that halts if non-emulated peripherals are accessed,

significantly restricting firmware execution.

The results presented in figure 3.5 indicate that the application of Sizzler to PLC LDs
yields a higher number of vulnerabilities than expected. Specifically, the analysis revealed
more than 20 vulnerabilities, despite that the 30 programs were initially implemented
with only one or two known vulnerabilities. One reason for this is that Sizzler uses public
libraries that provide basic functionality for firmware, such as timers and UARTSs. These
libraries often lack appropriate access controls and fail to properly manage memory, lead-
ing to buffer overflow or other vulnerabilities. For example, the MCU library does not
properly validate the input size or check for heap overflows when it converts parallel data

from a microprocessor into serial data. Sizzler sets the data buffer to a high value, causing

3.4. Evaluation 70
the application to crash. From the perspective of an attacker, these types of overflow vul-
nerabilities can be exploited by allocating a large amount of memory onto the heap and
then writing beyond the end of the buffer, hence resulting in the execution of arbitrary

code and unauthorized access to the device.

3.4.5 PLC Vulnerability and CVE Assessment

In order to assess our findings regarding PLC vulnerabilities discovered by Sizzler, we
leverage the OpenPLC project to construct a cost-effective PLC based on both Arduino
and STM32 platforms. We conduct this analysis to re-run the detected vulnerabilities
and verify Sizzler’s generic practicality. The discovered vulnerabilities are incorporated
into proof-of-concept projects over an emulated PLC instantiated through openPLC. We

select two exemplar bugs that are the most frequently detected by Sizzler.

Timer integer overflow. Sizzler successfully identified an integer overflow vulnerability
that could potentially lead to an infinite loop in the executed program. The vulnerability
is associated with the Ladder Diagram (LD) timer function in the code under analysis.
This integer overflow is triggered when Sizzler assigns an abnormally large value to the
input parameter. Consequently, the program running within the OpenPLC environment

becomes ensnared in an infinite loop.

Cycle integer overflow. The Ui_ Ccycle variable is used to control the behaviour of three
different output coils based on whether the cycle count is within certain ranges. In each
rung, if the cycle count is within the appropriate range, then the corresponding output
coil is turned on; otherwise, it is turned off. Sizzler sets Ui Ccycle to be incremented to
its maximum, and it will thus wrap around 0 causing the program in openPLC to continue

executing indefinitely.

3.4. Evaluation 71

1.6 Discriminator
0.91 1.4 Generator
>0.81 1.21
® £ 1.01
> o
o7 ~ 0.8
base64 0.6
who
0.6 mdsum5 0.44
T T T T T unlqv 0.2 1 T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Steps/Rounds(9 epochs per round) Steps/Rounds(9 epochs per round)
(a) Accuracy Performance (b) Generator/Discriminator Loss

Figure 3.6: SeqGAN Evaluation in LAVA-M.

Vulnerability verified by CVE. Additionally, one vulnerability identified by Sizzler has
been officially recognized by the Common Vulnerabilities and Exposures (CVE) system,
under the identifier CVE-2023-431845. This vulnerability pertains to a buffer overflow
issue in the OpenPLC runtime. It enables attackers to inject malicious code via the
slave device attributes, thereby escalating to higher root privileges and inducing a server
crash when the Programmable Logic Controller (PLC) establishes connections with other
equipment via the Modbus protocol. An additional vulnerability was detected by Sizzler
and has been substantiated in [124], CVE-2018-20818. Specifically, a buffer named in_ -
memory is declared in the glue generator.cpp file. This buffer is also invoked in the
modbus.cpp file and is susceptible to being overwritten beyond its 1024th position, thereby

interrupting the loop and causing the runtime to halt.

3.4.6 General Vulnerability Detection

SeqGAN assessment: We evaluate the ability of Sizzler to perform vulnerability dis-
covery using the LAVA-M dataset as seen in various studies, by firstly assessing the Se-
qGAN performance. SeqGAN comprises two phases: Pre-training and Adversarial Train-

ing. During the pre-training phase, the model employs the Maximum Likelihood Estima-

6. https://packetstormsecurity.com/files/174582/0penPLC-Webserver-3-Denial-
0f-Service-Buffer-Overflow.html

https://packetstormsecurity.com/files/174582/OpenPLC-Webserver-3-Denial-Of-Service-Buffer-Overflow.html
https://packetstormsecurity.com/files/174582/OpenPLC-Webserver-3-Denial-Of-Service-Buffer-Overflow.html

3.4. Evaluation 72
tion (MLE) approach to train the generator to produce a negative sample. The pre-training
phase consists of 120 steps and 120 epochs. The discriminator is then pre-trained for 50
steps, with each step comprising of three epochs. Subsequently, the generator and dis-
criminator are adversarially trained consisting of 180 rounds, where each round comprises

three steps, and each step includes three epochs, in order to obtain accurate data.

Accuracy: The results presented in figure 3.6 demonstrate that Sizzler achieved high
performance for establishing the path of mutation operators. As depicted in figure 3.6a,
high accuracy is achieved when generating data with base64 and uniq, exceeding 90%,
and model performance becomes stable after the 250th epoch. Further analysis reveals
that the model achieves 80% accuracy on md5sum datasets, which is likely due to the
datasets containing a high degree of redundancy, resulting in an imbalanced distribution

of the data.

Loss: We observed a consistent decrease in loss after the 250th epoch, which demonstrates
the stability of Sizzler. The change in loss for the SeqGAN model during the training
phase can be seen in figure 3.6b. Moreover, the generator loss drops rapidly during the
first ten epochs and experiences a second drop between the 140th and 150th epochs.
Subsequently, both the generator and discriminator losses remain below 0.5, indicating
that both are well-trained and capable of establishing sequences of operators for fuzzing.
The low loss provided by the generator implies that it is effectively producing sequences
that the discriminator assigns a high probability of being real. Conversely, the low loss of

the discriminator suggests that it is accurately classifying sequences as real or fake.

Vulnerability discovery comparison: We compare the performance of Sizzler with
state-of-art fuzzers, including AFL [21], AFL++ [43], MOPT [22], Angora [26], and
NEUZZ [123]. AFL++ is an upgraded version of AFL, which uses intermediate feedback-
driven fuzzing and experimental fuzzing strategies to generate testcases. MOPT use the

Particle Swarm Optimization algorithm to search the mutation operators and accelerate

3.4. Evaluation 73
Table 3.4: Bugs found by different fuzzers on LAVA-M dataset.

Fuzzer Base64 Md5sum uniq who
Dataset Baseline 44 Y 28 2136
AFL 0 0 2 1

AFL+4+ 3 1 19 772
MOPT 2 3 N/A N/A
Angora 48 57 26 1531
NEUZZ 46 55 27 1562
Sizzler 44 46 18 981
Sizzler+Angora 48 57 28 1711

the speed of generating testcase. Angora uses dynamic taint analysis to track the data
flow of inputs through the program and detect bugs in real-time. Angora is therefore able
to quickly identify problematic inputs and focus the fuzzing process on those inputs. Con-
versely, NEUZZ uses a surrogate neural network for branch behaviour approximation of
a target program and implements the gradient-guided technique to generate test inputs.
Here we measure the amount of source code or assembly instructions that are executed,
where the higher the code coverage, the greater the likelihood of identifying bugs within
the code. The code coverage is collected by using afl—cov [125]. Afl—cov analyses the
coverage of programs by instrumenting the binary and collecting data on which lines of
code were executed to generate instrumentation codes and graphic displays to present the

code coverage rate information.

The results obtained from the LAVA-M dataset were computed over a 24-hour period
based on ten independent iterations of the experiment and are tabulated in Table 3.4. The
results indicate that Sizzler achieves superior performance and discovers a higher number
of code bugs that relate to vulnerabilities as compared to AFL, MOPT, and AFL++.
However, it was noted that NEUZZ and Angora achieved higher bug identification when
using the LAVA-M dataset. As the LAVA bug injection technique only injects a single
bug type, for example, an out-of-bounds memory access triggered by a "magic value”
comparison, some magic bytes are not copied from the input directly but rather are

computed from the input. NEUZZ employs a feed-forward neural network approach to

3.4. Evaluation 74

Sizzler Sizzler+Angora AFL++ Angora NEUZZ MOPT
800
500
8 400 600
N
[
3 300 400
o
% 200
kel 200
W 100
0 0
0 5 10 15 20 25 0 5 10 15 20 25
Time(hours) Time(hours)
(a) base64 (b) mdsumb
125
600
100
75 400
50
200
25
0 0
0 5 10 15 20 25 0 5 10 15 20 25
Time(hours) Time(hours)
(¢) uniq (d) who

Figure 3.7: Code coverage performance across all fuzzing approaches in the LAVA-M
dataset.

identify potential bytes within the proximity of a designated "magic value”. Conversely,
Angora uses a context-sensitive approach, wherein it tracks the input byte offsets that lead
to a specific predicate and subsequently modifies these offsets through gradient descent,
as opposed to relying solely on the concept of "magic bytes”. Hence, we propose a novel
strategy that combines our mutation technique implemented in Sizzler with Angora to
facilitate the identification of magic values. The performance of this hybrid approach can
be seen in Table 3.4, which illustrates that the Angora-Sizzler strategy achieves the highest
performance among the five fuzzers evaluated where 129 additional bugs were identified

in the target program compared to the performance achieved by the NEUZZ fuzzer.

The results presented in figure 3.7 provide a comprehensive evaluation of the edge cov-
erage trends for the approaches under investigation over a 24-hour period of execution
using various benchmarks. A thorough analysis of the data reveals that the combination

of Angora and Sizzler demonstrates a superior performance, surpassing both the original

3.4. Evaluation 75
Angora and other state-of-the-art fuzzers in the LAVA-M dataset. In addition, the per-
formance of Sizzler improves over time, likely due to the completion of the deterministic
process stage and transfer to the havoc stage, which enhances the efficiency of the fuzzer.
Furthermore, using SeqGAN to learn the sequence of stacked strategies and generate more

efficient testcases also contributes to the improved performance of Sizzler.

Figure 3.8 demonstrates the computational performance of Sizzler by presenting the av-
erage execution speed over a 24-hour period while performing fuzzing over the LAVA-M
dataset. Sizzler achieved a fuzzing throughput ranging from 0-3500 executions per second,
which represents a significant increase in performance compared to other state-of-the-art
fuzzers. Specifically, the range of the average throughput for other fuzzing approaches
was observed to be between 0-600 executions per second. One potential reason for the
significant increase in computational performance is through the use of emulation tech-
niques, where the binary files are executed on their native architecture rather than the
host architecture. In addition, the emulation process also assists in reducing the time
spent on initialisation and setup tasks between test cases. Furthermore, Sizzler places a
greater emphasis on the havoc stage, which results in the generation of a larger number
of test cases, thereby contributing to an overall increase in the throughput of the fuzzing

process.

The performance of Sizzler on the Magma dataset, shown in figure 3.9, is measured
through the arithmetic mean of discovered bugs per trial per day. On average, Sizzler
identified 39 bugs, while AFL++, Angora, NEUZZ, and MOPT detected 19, 17, 15, and
37 bugs, respectively. Notably, Sizzler and MOPT exhibit comparable performance met-
rics on the Magma dataset. However, Sizzler outperforms MOPT on libraries such as
libxml2, OpenSSL, and Poppler, while MOPT shows superior performance on libpng,
libtiff, PHP, and SQLite3.

3.4. Evaluation 76

2500 Sizzler NEUZZ MOPT
AFL++ Angora

2000 -~
©
C

S 1500 -
(]
2]
c
©
5
(9]
]
X

w1000 A

500 A

0 -

0 5 10 15 20 25
Time/hours

Figure 3.8: Execution speed comparison between Sizzler and other fuzzers on the LAVA-M
dataset.

Though Angora demonstrates high performance on the LAVA-M dataset, it falls short
of expectations on the Magma dataset. This discrepancy can be attributed to Angora’s
underlying assumption that target functions are continuous, thereby utilizing gradient
descent for optimization. In contrast, program inputs are often characterized by byte val-
ues that are both bounded and discrete. For instance, the vulnerability PNG001 (CVE-
2018-13785) in libpng is a divide-by-zero bug, triggered when the 'width’ value is set to
0x55555555 and the number of channels is 3. When Angora mutates the value in proxim-
ity to 0xb5555555, it is likely to calculate an erroneous gradient, thus impeding correct
progress. Additionally, owing to the vulnerability of the metric to outlier influence, the
capacity for drawing robust conclusions about fuzzer performance is restricted. To ad-

dress this limitation, we employed a statistical significance test on the collated sample-set

3.4. Evaluation 77

10
mmm Sizzler
m AFL++
s Angero
s NEUZZ
8 s MOPT
3 6
[9]
D
2
=
n
g
m 4
libpng libtiff libxml2 openssl sqlite3 poppler

Figure 3.9: Arithmetic mean of the number of bugs found by each fuzzer across ten 24
campaigns

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
8 5 1 ¢ N & 5 1 2N & g 1 ¢ N & 5 1 ¢ NE & % 2RNE 5 i g8 NE

Figure 3.10: Significance of evaluation of fuzzer pairs using p-values from the Mann-
Whitney U-Test.

pairs, leveraging the Mann-Whitney U-test to ascertain p-values. These p-values function
as quantitative indicators for assessing the degree of dissimilarity between pairs of sample
sets, as well as for evaluating the statistical significance of these disparities. Figure 3.10
presents the outcomes of this statistical significance analysis. We selected a threshold of
p < 0.05 to evaluate the results. The analysis reveals that AFL++, Angora, and NEUZZ
exhibit analogous performance against the majority of targets, notwithstanding minor
variations in the arithmetic mean of discovered bugs. In contrast, both Sizzler and MOPT
manifest a statistically significant enhancement in performance, outperforming all other

fuzzers across seven distinct targets.

3.5. Threats to Validity 78

3.5 Threats to Validity

Internal Validity. One key factor affecting internal validity pertains to the reliability of
our evaluation results, which may potentially be affected by random variation. To address
this concern, we adhered to the methodology outlined by Klees et al. [14] on LAVA-M and
Magma dataset, aiming to mitigate the influence of randomness during the assessment
of fuzzers. As for the target PLC applications, we ran only a single fuzzing campaign on
the corresponding MCU. Each campaign is stochastic: AFL’s mutation scheduling and
seed selection are randomized, and the emulation of MCU peripherals introduces further
timing variation. Because we did not repeat these campaigns, the reported coverage and
vulnerability findings for table 3.3 should be interpreted as a single sample rather than
a stable average. We partially mitigate this by using a fixed random seed and identical
configurations across targets, but we do not control for all sources of randomness in the
hardware and emulation stack. A stronger design would repeat the entire fuzzing process
ten times per target and report mean and variance. Since there is no baseline which
supports emulation of the PLC firmware, we acknowledge that the PLC on MCU results

may not be exactly reproducible, so we treat them as indicative rather than definitive.

Another concern arises during the application of the SeqGAN model for sequence gen-
eration, wherein we employ the weighted binary cross-entropy loss function to address
the issue of class imbalance. Additionally, we incorporate early stopping mechanisms to

monitor the validation loss and mitigate the risk of overfitting.

3.5. Threats to Validity 79
External Validity. In order to enhance external validity, the primary concerns revolve
around the selection of subjects and benchmarks. In response to these potential threats,
we have undertaken a deliberate approach. Specifically, we have chosen four well-regarded
hybrid fuzzers and two recently published emulators from esteemed software engineering
and system security conferences. Furthermore, in our evaluation process, we have incor-
porated both the Magma dataset and the LAVA-M datasets. These measures have been

implemented to bolster the external validity of our study.

Validity Construction. The question of construct validity in this research primarily
hinges on the utilization of edge coverage as a surrogate for code coverage. To mitig-
ate this concern, we've adhered to a rigorous methodology. Specifically, we’ve employed
afl-cov, an integrated tool within the AFL framework, for systematic edge coverage data
collection, in line with best practices established in the fuzzing community [26, 123]. Addi-
tionally, to provide a comprehensive evaluation of fuzzing effectiveness, we have incorpor-
ated the metric of unique crash counts. These methodological choices aim to strengthen

the construct validity of our study.

3.6 Limitations & Future directions

Regardless of the promising outcomes proposed through Sizzler, we argue that vulner-
ability discovery in PLCs, as well as embedded systems more generally, remains a huge
challenge. We provide two main limitations of the proposed solution and briefly discuss

potential future avenues for research:

1. Sizzler is intended for analysing PLC binary applications. However, such applica-
tions are created in diverse formats that are vendor-specific. Moreover, the program-
ming languages for PLCs are tailored to meet specific requests of different vendors.

Hence, a dynamic analysis of these binaries is contingent on a case-by-case approach,

3.6. Limitations & Future directions 80
precluding the possibility of a universal approach. Even OpenPLC project provides
access to source code for PLC binary application. The vulnerabilities triggered by
Sizzler for PLC can not be triggered in commercial PLC. Additionally, there have
been specialized efforts to employ fuzzing techniques targeted at PLC equipment,
notable among them being ICSFuzz and VETPLC. It should be noted, however,
that these tools are vendor-specific and do not offer a comprehensive benchmark.
Consequently, a broader performance comparison of commercial PLC for Sizzler
is currently unavailable. Overcoming this limitation through further advancements
would broaden the applicability of Sizzler for analysing PLC binary applications.

2. Our approach to firmware emulation is subjected to a significant challenge as vendors
often restrict access to technical datasheets required to establish a suitable devel-
opment environment. In addition, testing embedded firmware in real-time, whether
on target devices or through emulation, is a time-consuming process. Furthermore,
the AFL testing framework embedded within Sizzler is hindered by substantial tra-
cing overhead, which leads to a significant performance impact of nearly 1300% for
binary-only programs when operating in QEMU mode, as reported in [20]. Future
work efforts can be directed towards improving the overhead of fuzzing techniques
whilst targeting full-stack testing with high fidelity for PLCs and other embedded

systems.

3.7 Conclusion

PLCs are core building blocks for numerous mission-critical ICS however they are not
equipped yet with adequate mechanisms focusing on vulnerability assessment nor discov-
ery. By contrast with wider embedded systems or MCUs, PLCs have not been extensively
studied due to the intrinsic restrictions related to emulation of their firmware and propriet-
ary application-level properties. In this chapter, we introduce Sizzler; a PLC vulnerability

discovery framework underpinned by a novel mutation-based fuzzing strategy instrumented

3.7. Conclusion 81
over SeqGAN and PLC firmware emulation setup approach. Sizzler is the first to achieve
the translation of PLC LDs into C code, which execute on representative MCUs such as to
emulate as realistically as possible a variety of PLC firmware environments across 30 PLC
applications. Moreover, the optimal synergy of a SeqGAN formulation with a havoc-based
mutation strategy for fuzzing through Sizzler demonstrates high efficiency on detecting
new and deeper code paths that relate to an increase of discovering otherwise unseen
PLC code vulnerabilities. In parallel, Sizzler is also successfully deployed and assessed
within a wider embedded systems dataset associated to non-PLC applications indicating

its superiority over commonly used fuzzing schemes.

Chapter 4

FuzzRDUCC: Fuzzing with
Reconstructed Def-Use Chain

Coverage

4.1 Introduction and Motivation

Research Question 2: Can reconstructed def-use chain coverage provide more

useful feedback for fuzzing binaries than traditional edge coverage?

In the previous chapter we improved mutation (RQ1) so that more inputs pass checks and
reach deeper code. The guidance, however, still relied on control flow coverage (edges/b-
locks). For firmware and drivers this signal can be too coarse: it shows which blocks

execute, but not whether important values flow to the places that matter.

82

4.1. Introduction and Motivation 83
RQ2 asks whether dataflow feedback can guide fuzzing better. Dataflow coverage tracks
definition — use (def-use) pairs: it records when a value written at one site reaches its
uses elsewhere. This aligns the feedback with program semantics rather than only control
structure, and can steer inputs toward driver and peripheral code that edge coverage alone

may miss.

We present FuzzZRDUCC, a binary-only dataflow coverage mechanism. It reconstructs def-
use chains from binaries with Angr and instruments QEMU’s TCG to update a def-use
bitmap at runtime. FuzzRDUCC integrates with AFL++ without changing the rest of
the pipeline, so we can compare dataflow coverage against standard edge coverage under

the same conditions.

We evaluate three aspects of RQ2: feasibility (can we extract and track def-use on bin-
aries), cost (runtime overhead versus edge coverage), and effectiveness (new paths and
bugs found). We report the cases where dataflow feedback helps and the trade-offs when

overhead limits throughput.

To address RQ2, we introduce a methodology that emphasizes dataflow tracking in binar-
ies without debug symbols. We use the Angr [126] framework to extract and select def-use
chains according to a simple heuristic, and we integrate this feedback into execution to

provide precise guidance to the fuzzer.

4.1.1 The Fuzzing for Binary

American Fuzzy Lop (AFL) [21] and AFL++ [43] have gained widespread recognition
within the research community as a quality baseline for fuzzing research. Numerous stud-
ies have developed their methodologies based on AFL’s capabilities. AFL is a grey-box

fuzzer that generates test cases using a variety of mutation strategies tailored to achieve

3

4.1. Introduction and Motivation 84
comprehensive code coverage. For binary fuzzing, AFL incorporates QEMU [117], a gen-
eric and open-source machine emulator and virtualizer, to emulate the execution of bin-
aries. This emulation facilitates the addition of instrumentation, enabling AFL to obtain
feedback from the binary’s execution to obtain the binary’s control flow. When new code
coverage is discovered, AFL adapts its mutation strategy based on the test case associated

with this coverage.

4.1.2 Towards Dataflow Coverage

/x If the first 4 bytes are 0x01f401f4 (udp src and dst port =
500) we most likely have UDP (isakmp) traffic x/
if (tvb_get_ntohl(tvb, @) == 0x01f401f4) {

protocol = TCP_ENCAP_P_UDP;
} else {
protocol = TCP_ENCAP_P_ESP;
I
if (g_ascii_strcasecmp(header_name, "Content-Length") == 0) {

// Process Content-Length
} else if (g_ascii_strcasecmp(header_name, "Transfer—-Encoding") ==
0) {

/x Process Transfer—-Encoding header and other headers x/

Listing 4.1: simple Code Example

4.1. Introduction and Motivation 85
While code coverage is a powerful tool in fuzzing, it has shortcomings when dealing with
data-intensive program constructs. In Listing 4.1, an 1T statement from Wireshark checks
whether the first four bytes of a packet match the specific magic number 0x01df4014,
indicating UDP traffic (specifically ISAKMP). Code coverage can only indicate if this
condition is true or false. However, when the condition fails, code coverage does not
reflect how close the input is to the target value. Without proper guidance, the fuzzer

must blindly guess the correct value, facing a probability of success of 1 in 232[127].

Two common strategies to address such branches are concolic execution [100][128] and

intelligent branch solving [129][130][26].

Concolic execution models constraints as symbolic expressions, allowing solvers like SM'T
solvers to find solutions[131]. By treating input bytes as sequences of 8-bit vectors, we
update their symbolic representations during execution. However, constraint solvers often
struggle with simple string comparisons. Although concolic execution can systematically
explore program paths to solve these constraints, it cannot differentiate between mean-
ingful and superficial path differences. For instance, the function g_ascii_strcase-
cmp performs case-insensitive comparisons. Different headers like Content-Length and
Transfer—-Encoding result in distinct paths, even when header order changes, leading

to path explosion and resource exhaustion.

Intelligent branch solving struggles with this issue without manual intervention. Since
comparing a single character can easily succeed, the branch is quickly marked as solved,
and further analysis is skipped. As a result, constraints for the remaining characters
never reach the solver. Modern fuzzers attempt to mitigate this with program specific
optimizations. For example, AFL++ uses CmpLog instrumentation to record operands
of failed comparisons and applies heuristics to solve them [132]. Instead of instrumenting
branches in a general way, it relies on a hard coded list of comparison functions, treating

each call as an abstract branch clearly non scalable approach.

4.1. Introduction and Motivation 86
To improve these methods, dataflow coverage provides a more precise approximation of
program behaviour by focusing on how variables are assigned and used, rather than just
the sequence of executed operations. This approach considers more complex structures
instead of solving constraints, like lookup tables, binary trees, and directed graphs, offering
deeper insights into program execution. By shifting from a control flow to a dataflow

perspective, fuzzing techniques can be made more effective [133].

4.1.3 Def-use Chain Analysis

A def-use chain links a specific variable definition to all subsequent uses that it can reach
without being overwritten by an intervening definition. These chains make data dependen-
cies within a program explicit, concretely representing how a value assigned to a variable
propagates to later execution points. The utility of these relationships was recognized
early in compiler design. Kildall’s work introduced a unified iterative framework for data-
flow problems, laying the groundwork for systematically computing reaching definitions
using lattice theoretic fixpoint algorithms [134]. By the mid 1980s, standard texts such
as the “Dragon Book” had formalized def-use chains as a central concept in static ana-
lysis, providing algorithms to compute them for various compiler transformations [135].
This foundational research established that, while determining exact dynamic def-use re-
lations in arbitrary programs is undecidable, a conservative static approximation of all
possible pairs can be computed via iterative analysis. In practice, compilers safely over-
approximate these chains to capture every potential dependency, a requirement for sound

optimization.

Def-use chains have also played a significant role in software testing, particularly in the
development of dataflow coverage criteria. Rapps and Weyuker introduced criteria that
require test cases to cover specific def-use pairs within a program [136]. The underlying
intuition is that standard control flow coverage may miss faults that manifest only through

specific computations or data interactions. By ensuring that, for each variable definition, at

4.1. Introduction and Motivation 87
least one test drives execution along a path to one of its uses, testers increase the likelihood
of exposing erroneous computations. For example, the all-uses criterion mandates that
for every definition of every variable, the test suite must include at least one path where
that definition reaches each of its possible use sites. This ensures that the flow of values
from definitions to consumers is explicitly executed and verified. Empirical studies have
demonstrated that dataflow testing can be more effective at detecting certain classes of
bugs than pure control flow coverage, as it forces the exercise of value propagation rather
than mere branch traversal. Modern testing tools and static analysers continue to rely
on computing def-use chains via static analysis similar to that of a compiler to identify
critical pairs, slice programs for impact analysis, and detect anomalies such as uninitialized

variables [137].

The evolution of def-use analysis is directly reflected in modern compiler infrastructures.
Production compilers, such as GCC and LLVM, incorporate decades of research on data-
flow analysis, making def-use relationships an integral part of their intermediate repres-
entations. LLVM, for instance, represents programs in Static Single Assignment (SSA)
form [138] and provides APIs to efficiently traverse use-def chains for any given value.
Each LLVM IR Value object maintains a list of its uses, a design that reflects the ne-
cessity of fast def-use queries, as many compiler passes frequently need to identify the
consumers or definitions of a value to perform transformations. Optimizations such as
common subexpression elimination, register allocation, and vectorization all benefit from
these rapid lookups [139]. Furthermore, the explicit def-use links in SSA simplify alias
and dependency analysis. When reasoning about memory accesses, compilers construct
def-use chains not only for registers but also for memory locations, abstracted via memory

SSA or alias graphs to represent memory dependencies [140].

Recently, the integration of dataflow information has enriched the traditional coverage
guided fuzzing paradigm. Classic fuzzers, such as AFL, focus primarily on control flow
coverage (e.g., discovering new basic blocks or edges). However, edge coverage does not

directly indicate whether a fuzzing input has exercised a critical data dependency, for

4.1. Introduction and Motivation 88
instance, whether a value produced at one point successfully influences a later check.
Research has begun to incorporate def-use chains as a feedback metric to address this
limitation. Mantovani et al. [141], for example, introduced a technique that tracks data
dependency coverage, effectively measuring the number of unique data flows exercised
by generated inputs. By instrumenting the program to record when a definition is used
downstream, their fuzzer rewards inputs that cover new def-use chains rather than just new
control flow edges. This approach guides exploration toward states that require satisfying
specific data conditions. Similarly, hybrid fuzzers like Angora [26] and TaintScope [142]
utilize dynamic taint analysis. While they do not explicitly construct static def-use chains,
they share a similar goal: tracing how input bytes flow to affect key program points (such

as branch conditions) to solve constraints.

FuzzRDUCC is designed to apply these principles to binary only firmware, drivers, and
libraries. Unlike previous approaches that insert instrumentation at compile time, we re-
construct def-use chains from disassembled binaries and use angr to resolve definition and
use sites. We then hook QEMU’s dynamic translation to emit coverage events whenever
a selected definition reaches its corresponding use at runtime. This design allows dataflow
guided fuzzing to be applied even when only stripped binaries are available, exploiting
the key advantage of dataflow coverage: rewarding test cases that propagate critical data
toward security sensitive operations, even when those operations lie along already covered

control flow paths.

4.2. FuzzZRDUCC Overview 89

Shared bitmap
Static Analysis by Angr 0o

) . - 0o
Binary [VEX |R]—> D(e:;: L.Jse H Json / oo afl_fuzz()
L ain B0
r'y Global bitmap
Match(Address): *
def-use chain)
(Program CounterJ Helper_function()
Interpreter L3
Trace(QEMU): (Process_def_use_chain)
Translated Block f
\ 4

tcg_cpu_ exec()

gemu-init() binary dynamic translation
QEMU (tcg gen_code() J(get intermedia code())

Figure 4.1: Structure of FuzzZRDUCC

4.2 FuzzRDUCC Overview

Our approach enhances fuzzer effectiveness by incorporating def-use chains, structured
into two main phases: static analysis and fuzzing (see Figure 4.1). In the static analysis
phase, we use the Angr framework to extract def-use chains from the binary, obtaining
precise addresses and counts of defs and uses for each translated block. This involves
instrumenting the code to record the addresses and numbers of defs and uses, leveraging

QEMU’s lightweight code generation.

In the fuzzing phase, we repurpose the AFL++ bitmap (previously used as a proxy for
edge coverage) to monitor the coverage of def-use chains accurately. As each basic block
executes, we update the local AFL++ bitmap against a global map to track changes in
execution state. This mechanism guides the fuzzer to re-mutate inputs based on analysis
of previous seeds, aiming to significantly improve fuzzing efficiency by combining static

analysis with dynamic fuzzing.

4.3. Methodology and Implementation 90

4.3 Methodology and Implementation

4.3.1 Def-Use Chain Generation

We extract def-use chains from binaries through symbolic execution using the Angr frame-
work, departing from traditional methods that rely on Static Single Assignment (SSA)
form. Angr loads the binary components, including library dependencies, and uses VEX
Intermediate Representation (IR) to reconstruct the control flow graph and dataflow
graph directly from machine code. This process maps out the program’s execution flow
and provides a representation of all possible execution paths, enabling comprehensive

analysis of the binary’s execution semantics [143].

Our method incorporates reaching definition analysis [144] to determine where variables
(definitions) are assigned values and where these values are used across different ba-
sic blocks. This analysis reveals relationships between definitions and uses in the code,
identifying uses reachable from definitions that have not been overwritten, using an over-
approximation strategy. While this may sacrifice some soundness, it offers increased speed
in analysing binaries, which we consider acceptable for achieving sufficient precision in

binary-level analysis.

By storing the def-use chains in a JSON file, we facilitate their integration into QEMU’s
code generation process during dynamic binary translation. By systematically identifying
and analysing def-use chains in binaries, we lay the groundwork for more effective fuzz-
ing strategies by enhancing our ability to uncover vulnerabilities through understanding

dataflow. This methodology outlines potential pathways through which definitions affect

4.3. Methodology and Implementation 91
uses, providing a solid foundation for tracking interrelations and dependencies within the
code. By enabling a focused exploration of the software’s execution space, it enhances the
precision and efficiency of fuzzing processes, thereby improving vulnerability detection

through a thorough understanding of the software’s internal mechanisms.

4.3.2 Code Instrumentation

After reconstructing the def-use chains, we integrate them into the execution of the binary
managed by QEMU, which decomposes the binary into basic blocks. Each block is trans-
lated into a host-specific block through QEMU’s Tiny Code Generator (TCG), converting
each instruction into micro-operations within the translated block. During dynamic bin-
ary translation, these instructions are transformed into host instructions tailored to the

specific architecture.

We adapt QEMU to utilize its tracing capabilities to obtain information about trans-
lated blocks, specifically retrieving the Program Counter (PC) value for each executed
block. The TCG functions as a just-in-time compiler, translating guest instructions into
executable code for the host architecture. By retaining the guest PC for each block and
employing a hash table to associate it with the host PC of the translated block, we achieve

precise tracking of control flow and dataflow.

The translation process in QEMU is divided into a frontend and a backend. The frontend
lifts target instructions into TCG Intermediate Representation (IR), which is stored in a
list. We focus on tracing the current execution of translated blocks (TBs), particularly
utilizing the cache list to identify the current TB and obtain its PC. We then correlate
the PC with the def-use chains stored in the JSON file generated by Angr, mapping the

def-use chain within each translated block.

4.3. Methodology and Implementation 92
With the def-use information for the binary, we apply precise instrumentation to monitor
identified definitions and uses within these blocks. After acquiring the def-use chain for
each translated block, the backend converts the TCG IR into host machine code. TCG IR
registers are categorized into various types: global, local temporary, normal temporary,
fixed, constant, and extended basic block (ebb). Our objective is to encapsulate definitions
and uses within TCG registers, generating corresponding IR to embed into the translated

block for recording purposes.

We utilize helper functions to pass parameters to registers and execute jumps to specific
addresses. These helper functions can also access the CPU environment, enhancing our

ability to manipulate and track the execution flow.

This approach mirrors the afl _maybe_log function used in AFL++4, which inserts IR
into the translated block to monitor execution. However, our instrumentation focuses on
usages rather than recording every definition and usage, recognizing that in statically
compiled binaries, some definitions may not be utilized or analysed correctly. Focusing on

usages is critical for understanding data manipulation.

By integrating def-use chain information with QEMU’s execution trace, we gain deeper
insights into execution patterns, facilitating more targeted fuzzing to uncover vulnerab-
ilities. This dynamic tracking of data and control flow enables precise identification and
analysis of critical execution paths and enhances our ability to detect and assess the

impact of definitions and uses throughout the software’s operation.

4.3. Methodology and Implementation 93

4.3.3 Optimizing Def-Use Chain Selection

Instrumenting all def-use chains in translated blocks introduces significant time and space
overhead during fuzzing. For example, in the binutils dataset, one binary’s translated block
size increased fivefold after instrumentation [133]. To mitigate this overhead, we propose a
heuristic algorithm that selectively targets addresses of common external library functions

and optimizes the def-use chain selection process.

To reduce overhead, we exclude definitions and uses within the same block or function,
thereby reducing the size of the translated blocks. We also disregard definitions that are
not used or not detected by Angr, streamlining the analysis process. By calculating the
distance between definitions and their related uses, we focus on definitions and uses that
span across different functions, utilizing interprocedural analysis to efficiently identify the

necessary def-use chains.

Angr’s simulation involves instruction emulation and symbolic execution for branch de-
cisions, maintaining stacks of states with register values and memory addresses. State
duplication can lead to explosion, especially in loops dependent on user input, causing
delays in vulnerability detection. To optimize analysis, we use Angr to identify addresses of
common libc functions such as malloc, calloc, and free, avoiding detailed examina-
tion of external library functions. We employ Angr’s SimProcedures to replace third-party
library functions with custom implementations that simulate behaviour, which is import-

ant for statically compiled targets where analysing external libraries is resource-intensive.

4.3. Methodology and Implementation 94
We designed custom hook functions (handle_malloc, handle_calloc, handle_-
free) for SimProcedures to simulate memory management effects on the analysis state.
For example, if malloc is at address @x400900 in the binary, Angr hooks this address
with its SimProcedure for malloc. When execution reaches 9x400900, the SimProced-
ure is invoked instead of the actual malloc, allowing efficient reaching definition analysis

on specific addresses while focusing resources on primary binary analysis.

This heuristic captures "interesting” def-use chains, increasing the likelihood of discovering
new crashes and exploring more code paths. It enhances the efficiency of our instrument-

ation and improves the overall effectiveness of our fuzzing strategy.

After identifying def-use chains within a target binary, we introduce an alternative cov-
erage bitmap to track changes in these def-use chains. This bitmap records runtime rela-

tionships between definitions and uses, logging any changes observed.

When a modification in this bitmap indicates a change in dataflow coverage, we initiate
a strategic re-mutation of the seed. This re-mutation aims to explore unexplored code
paths, broadening coverage and deepening the fuzzing process. This method ensures a
nuanced and dynamic examination of the binary’s behaviour, enhancing the potential for

identifying vulnerabilities.

4.3.4 Updating the Coverage Scheme

AFL+4+ uses QEMU’s TCG IR to insert instrumentation code that computes a hash for
each edge during execution. An "edge” represents a transition between code blocks (e.g.,
from block A to block B). For each transition, AFL++ generates a unique identifier i

by hashing the addresses of both source (A) and destination (B) blocks, with the source

4.3. Methodology and Implementation 95
address right-shifted:

i + addressof(B) @ (addressof(A) > 1). (4.1)

This hash i indexes into the edge coverage bitmap, where each index represents a potential
execution edge. When an edge is traversed, AFL++ increments the value at that index,

enabling it to monitor executed edges and prioritize inputs that explore new paths.

We adapt AFL++’s tracking to capture the relationship between definitions and uses.
At code generation time, we use precomputed def-use chains (from Angr's JSON files)

for each translated block and employ a helper function to embed def-use instrumentation

into the TCG IR.

Since every block has definitions, inserting IR into every block can slow translation. There-
fore, we focus on usages, tracing them to identify related definitions. We document def-use
edges according to the def-use chains. Our revised hash function for the coverage bitmap

index uses the addresses of the definition and use sites:

i + addressof(def) @ addressof(use). (4.2)

Using these addresses as hash values generates a unique i, reducing collision risk. This
approach allows tracing multiple definitions and uses within a single block, providing
nuanced and sensitive coverage feedback. It enhances analysis granularity and improves

fuzzing efficiency by focusing on critical dataflow aspects of program execution.

4.4. Preliminary Evaluation 96

4.4 Preliminary Evaluation

Research Question 2: Can reconstructed def-use chain coverage provide more

useful feedback for fuzzing binaries than traditional edge coverage?

To answer RQ2 we study three aspects: (i) feasibility, i.e., whether we can reconstruct def-
use chains and instrument binaries at scale; (ii) cost, i.e., how the additional instrumenta-
tion affects fuzzing throughput; and (iii) effectiveness, i.e., whether def-use guided fuzzing

improves coverage and crash discovery compared with edge coverage guided fuzzers.

= UAFuzz == ZAFL = FuzzRDUCC AFL++ DDFuzz
6000 8000
3000 4000
2500 5000 7000
- -— 6000
—
2000 " 4000 - 3000 g— I A
P 5000 —
—— -
:
1500 / /,,.--"‘-—‘ 3000 / 2000 [4000
a 8 —" 3000
1000 i’ 2000 e P "
A " L - 1000 . 2000/ / e
500 2 1000 |, o7 "] 1000 / T
W —
—
0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Relative Time (hours) for addr2line Relative Time (hours) for as Relative Time (hours) for gprof Relative Time (hours) for nm
3000 7000 gm—m TR
6000 P —— 8000 A 6000
— 2500 7
4000 6000 L 5000
2000 §
4000
1
2000 e 4000 , 500 / 3000
—— ——n——nil [
) | I R 1000 2000
-
0 2000 —
[500 1000
-2000 ¢ 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Relative Time (hours) for objcopy Relative Time (hours) for readelf Relative Time (hours) for size Relative Time (hours) for strip

Figure 4.2: Change of Edge Coverage (y-axis) within 24 hours (x-axis) for Fuzzing of
Binutils Tools

4.4.1 Evaluation Setup

Baseline: In this study, we compare our proposed framework with several established
fuzzing tools, including AFL++, DDfuzz [141], uafuzz [145], and ZAFL [146]. Our analysis
focuses on their design principles and operational efficiencies, particularly in relation to

dataflow analysis. AFL++ serves as the baseline for fuzzing comparisons, building upon

4.4. Preliminary Evaluation 97
features from AFLfast, Mopt [22], and other advancements in AFL-based tools. DDfuzz
introduces a dataflow-driven feedback mechanism that extends beyond control flow edge
discovery by guiding fuzzing based on a data dependency graph, although it only supports
source code. Our work complements DDfuzz by providing similar dataflow-based feedback
for binary only targets. FuzzZRDUCC reconstructs def-use chains from stripped executables
and instruments QEMU, so it can be applied when source code and recompilation are not
available, which is common for firmware and third-party libraries. uafuzz specializes in
binary-directed fuzzing to detect use-after-free vulnerabilities, using novel seed metrics to
select appropriate seeds for mutation. ZAFL, on the other hand, enhances binary-only
fuzzing through binary rewriting to achieve compiler-quality instrumentation. Notably,
except for ZAFL, all the mentioned fuzzers utilize the QEMU model, a common framework

for emulation-based fuzzing.

Dataset: To comprehensively assess the effectiveness of the fuzzing frameworks, we use
a diverse set of binaries, with a focus on GNU Binutils—a widely used suite of binary
tools. The selection of Binutils is driven by its critical role within the Linux ecosystem,
making it a well-established benchmark for fuzzing evaluations. We test 8 binaries from

the Binutils collection to evaluate the fuzzers under consideration.

Fvaluation Metric

o The Change of Edge Coverage: The effectiveness of a fuzzer is measured by its
ability to increase edge coverage, which provides valuable insights into the program’s
execution paths. Edge coverage acts as a feedback mechanism, helping the fuzzer
explore uncharted execution paths and uncover potential vulnerabilities. This metric
is pivotal in gauging how thoroughly a fuzzer explores the program’s execution space.

e Number of Crashes: Crashes are a key indicator of a fuzzer’s efficacy, as they
signal the discovery of potential vulnerabilities or software defects. A higher number
of crashes directly correlates with the fuzzer’s ability to uncover significant issues

in the target software, making crash detection a vital evaluation criterion.

4.4. Preliminary Evaluation 98
o Execution Speed: When fuzzing binary targets, particularly with QEMU-based
fuzzers, there are inevitable performance overheads. It is important to balance
between maximizing edge coverage and minimizing performance degradation. As-
sessing this trade-off is crucial to determine a fuzzer’s effectiveness in binary ana-
lysis, as maintaining efficiency while reducing overhead is key to successful fuzzing

operations.

4.4.2 Preliminary Results

Question 1: Assessing the Feasibility of Implementing Coverage-

Based Fuzzing through Dataflow Analysis

To address the first question, we analyse the evolution of edge coverage shown in Fig-
ure 4.2. A substantial increase in edge coverage typically correlates with a fuzzer’s ability
to discover new execution paths. On the majority of the benchmarks, the baseline fuzzers
(AFL++ and DDfuzz) demonstrate superior performance: on seven of the eight Binutils
tools (excluding strip), one or both of these tools achieve the highest coverage. Their
curves rise rapidly within the first few hours and stabilise near the top of each plot.
In contrast, FuzzZRDUCC generally accumulates coverage more slowly than these top-
performing baselines, though it consistently outperforms UAFuzz and ZAFL over the

24-hour duration.

4.4. Preliminary Evaluation 99
This performance hierarchy reflects the inherent trade-off between feedback precision and
execution cost. FuzzRDUCC’s instrumentation tracks selected def-use chains and updates
a secondary bitmap for every translated block. While this yields richer feedback, it imposes
a throughput penalty; as illustrated in Figure 4.4, FuzzZRDUCC averages approximately
150 executions per second, whereas AFL++ and DDfuzz maintain speeds between 300 and
400 executions per second. Consequently, FuzzZRDUCC explores fewer test cases within

the fixed time budget.

However, the strip benchmark presents a notable exception. For this target, the edge
coverage of all baseline fuzzers remains negligible (near zero), whereas FuzzZRDUCC rap-
idly ascends to approximately 7,000 edges and sustains incremental progress. This devi-
ation indicates that dataflow guided feedback is decisive when code exploration requires
satisfying structured value flows, such as those found in the relocation handling logic of

strip, which probabilistic mutations alone fail to penetrate.

Question 2: Benchmarking the Bug Discovery Capabilities of

Dataflow Coverage-Based Fuzzing

Figure 4.3 compares the total number of crashes discovered per target. AFL++ proves to
be the most prolific bug finder on standard targets, recording the highest crash counts on
five of the eight tools (addr2line, as, gprof, nm, and size). DDfuzz also performs
strongly, securing the highest crash counts on objcopy and readelf. Our prototype,
FuzzRDUCC, does not surpass these mature tools in terms of raw bug counts on general
targets. This result is consistent with the throughput disparity noted above: with roughly
half the execution speed of the baselines, FuzzZRDUCC has fewer opportunities to trigger
faults. Furthermore, its feedback mechanism favours inputs that exercise specific def-use

chains, which may not always align with the shortest path to a crash.

4.4. Preliminary Evaluation 100

250 Fuzzer
mmm UAFuzz
mm ZAFL
mmm FuzzRDUCC
e AFL++
200 DDFuzz
0
2 150
(7))
@
| -
@)
©
s
— 100

5

o

Al ||‘|| |‘||l I |

addr2line as gprof nm objcopy readelf size strip

Figure 4.3: Comparison of Crashes Across Different Targets for Each Fuzzer

4.4. Preliminary Evaluation 101

Fuzzer
800 — UAFuzz
— ZAFL
— FuzzRDUCC
700 AFL++
DDFuzz
600
500

40

o
N
-
-
=
_'

— =

Average Executions per Second
w
o
o

200

100
0 5 10 15 20 25
Time (hours)

Figure 4.4: Average Execution Speed Over Time for Each Fuzzer

Nevertheless, the results for st rip again highlight the specific utility of dataflow coverage.
FuzzRDUCC is the only fuzzer to discover crashes on this target, while all others report
zero. The def-use chain analysis enables the fuzzer to preserve and mutate inputs that
successfully reach the relocation-handling code, even if they are initially rejected by earlier
validity checks. Specifically, FuzzRDUCC learns to manipulate relocation entries such that
a pointer used within copy_relocations_in_section becomes invalid. When the
program subsequently iterates over these entries, it dereferences the null pointer, triggering

a segmentation fault. Fuzzers relying primarily on edge coverage (like AFL++) fail to

4.4. Preliminary Evaluation 102
negotiate the initial validation required to reach this logic, explaining their inability to
expose the bug. These findings demonstrate that while binary dataflow coverage may not
maximise crash counts on simpler targets, it is capable of uncovering deep, data dependent

vulnerabilities that remain invisible to edge based approaches.

Question 3: the Runtime Overhead for Dataflow-Based Fuzzing

Compared to Control Flow Fuzzing

Figure 4.4 details the average execution speed over the 24-hour period. ZAFL achieves
the highest throughput (approximately 800 executions per second) due to its use of static
binary rewriting with lightweight instrumentation. AFL++ and DDfuzz follow, reaching
roughly 300-400 executions per second. By comparison, FuzzRDUCC sustains about 150
executions per second. This performance is achieved after applying our def-use selection
heuristic; prior to this optimisation, the prototype averaged only 50 executions per second.
Despite the three-fold speedup, the overhead of tracking def-use chains in QEMU remains
significant. Each executed block incurs costs for def-use table lookups and bitmap updates.
This reduced throughput is a primary factor contributing to FuzzRDUCC’s lower total

edge coverage and crash counts on general targets, as seen in Figures 4.2 and 4.3.

In summary, the results for coverage, crash discovery, and throughput provide a nuanced
answer to these questions. FuzzZRDUCC demonstrates that dataflow coverage fuzzing for
binary is practically viable and capable of revealing faults. However, the experiments also
expose clear limitations: the current implementation significantly lags behind AFL4+
and DDfuzz in execution speed, which translates to fewer discovered crashes on standard

benchmarks.

4.4. Preliminary Evaluation 103

4.4.3 Future Evaluation

Building on our preliminary evaluation, we plan to conduct the following in-depth exper-

iments:

1. Reducing Overhead via Selective Def-Use Chain Implementa-

tion

We aim to significantly reduce binary analysis overhead by selectively implementing def-
use chains. By analysing and categorizing each def-use chain using various static analysis
algorithms, we will identify the most impactful chains affecting memory changes, striving
for a balance between soundness and completeness. We will also simplify def-use chains
related to heap memory and optimize the size of translated blocks in QEMU to further

decrease emulation overhead.

2. Enhancing Fuzzing Performance with Def-Use Chain Guidance

We hypothesize that def-use chain-guided fuzzing will outperform traditional methods
in triggering crashes and detecting vulnerabilities. By focusing fuzzing efforts on specific
def-use chains that represent critical paths potentially harbouring vulnerabilities, we aim
to increase efficiency and uncover flaws that broader methods may miss. This approach

also involves identifying unique vulnerabilities among the detected crashes.

4.4. Preliminary Evaluation 104

3. Developing Dataflow Coverage Metrics

To better understand the impact of def-use chains, we plan to propose a new metric
for dataflow coverage. Since existing fuzzers primarily use bitmaps to track control flow
coverage—insufficient for representing dataflow trends—introducing a dataflow coverage
metric will help us assess coverage more accurately. This metric will also assist in selecting

appropriate hash functions for computing def-use chains, thereby reducing hash collisions.

4. Applying the Framework to Real-World Scenarios

To validate our hypotheses, we are conducting baseline evaluations with GNU Binutils.
We will extend our tests to other datasets, such as Magma [27] and Fuzzbench [147],
and plan to experiment with real-world IoT firmware using datasets from [6, 81]. These
experiments will demonstrate our framework’s adaptability and effectiveness across diverse

environments.

4.5 Conclusion

We have established the feasibility of using reconstructed def-use chains as feedback
to drive the fuzzing process. We have developed a framework designed to recover def-
use chains from binary code, thereby providing a new coverage mechanism for grey-box

fuzzers. Preliminary results on binutils suggest that our framework successfully identifies

4.5. Conclusion 105
some unique crashes, although it incurs relatively high overhead. Future work in chapter 5
will focus on reducing this runtime overhead and conducting more comprehensive eval-
uations. We also provide source code required to replicate the experiments presented in

this chapter.!

1. https://github.com/MaksimFeng/AFLplusplus

https://github.com/MaksimFeng/AFLplusplus

Chapter 5

Hardfuzz: On-Device
Def-Use-Guided Fuzzing with

Hardware Breakpoints

5.1 Introduction and Motivation

Research Question 3: Can on-device fuzzing with hardware breakpoints de-

liver high-fidelity execution and strong feedback at practical speed for MCUs?

The first part is to achieve high fidelity execution. Testing on Microcontroller Units
(MCUs) presents unique difficulties, although firmware is often compact in terms of lines
of code, the primary challenges stem from the complex interaction between the code and
its hardware environment rather than code size alone. First, MCU programs are tightly
coupled to sensors and actuators through memory-mapped 1/O. Inputs arrive as GPIO
levels, ADC readings, timer events, or messages on serial buses, and firmware frequently
polls or reacts to these signals at precise intervals. To exercise these execution paths, a test
harness must either control the physical peripherals or emulate them with high fidelity,

both of which are labour intensive and fragile tasks.

106

5.1. Introduction and Motivation 107
Second, MCUs operate under strict resource constraints. The limited RAM and flash
memory, small stack sizes, and absence of a full operating system make it difficult to
deploy heavy instrumentation or monitoring tools. Many standard testing techniques as-
sume process isolation, virtual memory, or rich debugging interfaces, none of which are
typically available on microcontrollers. Finally, concurrency and timing play a central
role: interrupts, DMA transfers, and low-power modes interact with application code in
ways that are difficult to reproduce deterministically. Small variations in interrupt timing
can lead to divergent control flows, complicating both test design and the interpretation

of results.

Rehosting techniques, such as full-system emulation, para-rehosting, and hardware-in-the-
loop (HiT) approaches, have been proposed to run firmware in controlled environments.
specifically designed for firmware analysis. However, achieving high fidelity execution re-
mains a significant hurdle. Rehosting involves decoupling firmware from its underlying
hardware to enable execution in a virtual environment; yet, this process is highly complex
as firmware is typically compiled for a specific System on Chip (SoC) and interacts with
a fixed set of peripherals. It is often impossible to perfectly model all hardware com-
ponents, leading to semantic discrepancies between the emulated environment and the
actual hardware. Furthermore, performance overhead remains a major drawback, with
rehosting in QEMU incurring slowdowns of up to 1300% [20]. In contrast, fully on-device
execution offers an alternative by utilizing hardware tracing mechanisms, such as Intel
Processor Trace (PT) and ARM Embedded Trace Macrocell (ETM), to capture execution
flow. However, these methods are not universally applicable, as many embedded devices
lack the necessary built-in tracing capabilities, thereby limiting their adoption in practical

scenarios.

5.1. Introduction and Motivation 108
The second part is to achieve rich feedback in fuzzing process, particularly for MCUs.
Traditional coverage-guided fuzzing relies on software instrumentation to monitor code
execution. However, this approach is not suitable for the resource-constrained nature of
MCUs [87, 148]. The instrumentation overhead increases firmware size, often exceeding
the limited memory available. It also slows down execution, which reduces the overall

efficiency and throughput of the fuzzing process.

Furthermore, the feedback from control-flow coverage, which is typically gathered at the
basic block or edge level, lacks the granularity needed to guide a fuzzer toward deep or
complex vulnerabilities. For example, in the function shown in Listing 5.1, a fuzzer guided
by CFG coverage can easily generate inputs to pass the initial boundary checks, such as
if (n < 8). However, it struggles with the subsequent checks that depend on specific
computed values, like if ((((token >> 8) + len) % 29u) != 7u). Once the basic
blocks for these checks are covered, the CFG-guided fuzzer receives no further guidance.
It cannot distinguish between an input that produces a result of 6 and one that produces
20, even though the former is much closer to the target value of 7. The fuzzer has no
information about which part of the input—the header bytes in[@] and in[1] or the
payload—is responsible for the values of token and len. Consequently, a CFG-based
fuzzer must rely on random mutations to solve these conditions and may expend a vast

amount of time without ever reaching the vulnerable memcpy operation.

In contrast, data-flow-based fuzzing not only tracks which paths are executed but also
monitors how data values are defined and used throughout the program. This approach
provides a much richer feedback mechanism. For instance, in Listing 5.1, a data-flow fuzzer
can identify that the definition of len (D1) is directly used in the memcpy function (U3)
and that the definition of token (D2) is used in two conditional checks (Ul and U2). By
tracking these definition-use (def-use) pairs, the fuzzer gains granular insight, allowing it
to correlate specific input bytes with their effects on program state and more effectively

navigate complex conditional logic.

. static uint32_t crc32_like(const uint8_t xp, size_t n) {

5.1. Introduction and Motivation 109

2 uint32_t h = 0x811C9DC5u;
for (size_t i =0; i < n; ++i) { h ~= pl[il; h x= 16777619u; }

return h;

. int process_packet(const uint8_t in, size_t n) {

if (n < 8) return -1;

9 uint16_t len = (uint16_t)((in[@] << 8) | in[1]); //
10 if (len > n - 4) return -2; //simple bound
check

11 const uint8_t payload = in + 4;

12 uint32_t token = crc32_like(payload, len) ~ @x5A5A5A5AA; //(D2

)

13 if (((token ~ @xA5A5A5A5A) & 0x3u) !'= 0) // (U1
)

14 return 0;

15 if ((((token >> 8) + len) % 29u) != 7u) // (U2
)

16 return 0;

17 uint8_t buf[128];

18 memcpy (buf, payload, len); //(
u3)

19 return 1;

20 | }

Listing 5.1: Example where def-use guidance provides earlier signals than basic-block

coverage. Marks (D1,D2) are definitions; (U1,U2,U3) are uses.

Listing 5.1 exposes three def-use pairs:

o (D1 — U3): the definition of len is used as the length in memcpy.

« (D2 — U1): the definition of token is used in the first gate.

5.1. Introduction and Motivation 110

Case CFG coverage signal DU coverage signal
Input reaches Ul only none new pair (D2—U1)
Input reaches Ul and U2 none new pairs (D2—U1), (D2—U2)
Input reaches U3 new block new pair (D1—-U3)

Table 5.1: Feedback per input category. DU guidance provides earlier, better signals.

« (D2 — U2): the same token is used again in the second gate.

A control flow based fuzzer records new blocks. After it first reaches the blocks that
implement Ul and U2, reaching them again with different values provides no new control
flow signal. Inputs that almost satisfy the gates (e.g., reaching Ul but narrowly failing
the condition) are not rewarded and are often discarded. The deep path behind both Ul
and U2, along with the large len required at U3, may remain undiscovered because the

fuzzer receives no intermediate gain in CFG coverage to guide its mutations.

Def-use chain guidance rewards value flows rather than just new control-flow blocks.
When execution reaches Ul and reads the value defined at D2, the fuzzer records the pair
(D2—U1), even if the branch itself is not taken. This provides an intermediate signal,
encouraging the fuzzer to retain the input in its corpus and to concentrate mutations
on the bytes that influenced this dataflow. Later, when execution reaches U2, the fuzzer
records the additional pair (D2—U2). Finally, when the program reaches the memcpy,
it records (D1—U3). The distinct feedback generated at each stage is summarized in
Table 5.1. These incremental signals form a gradient of progress, guiding the fuzzer more

effectively toward the deep path compared with control-flow coverage alone.

In practice, these intermediate def-use signals help preserve and improve the right seeds
—those that set token and len to values that are closer to satisfying the required
conditions. As a result, a fuzzer with def-use guidance reaches the deep path in significantly

fewer iterations than one guided by control flow coverage alone.

5.1. Introduction and Motivation 111
To address this research question RQ3, achieving high-fidelity execution and strong feed-
back, we propose Hardfuzz, an on-device fuzzing framework that guides exploration using
definition-use (def-use) chains in the program. A def-use chain links a program point
where a variable is defined with subsequent points that use that value. By targeting def-
use chains, Hardfuzz goes beyond basic-block coverage to drive the fuzzer toward inputs
that not only reach new code locations but also cause specific data-flow interactions to

occur.

Hardfuzz operates directly on the device under test (DUT), using the debug unit’s lim-
ited hardware breakpoint registers to catch executions of selected def-use chain points.
It integrates with a feedback-driven input generator, monitoring def-hit and def-use hit
events as coverage signals. The overall goal is to discover subtle states in the program
(e.g., a sequence of variable assignments and uses leading to a bug) that pure control-flow

coverage might miss.

5.2 Hardfuzz Overview

Hardfuzz combines an offline static analysis stage with an online fuzzing loop to sys-
tematically cover def-use chains on an embedded device. Figure 5.1 illustrates the overall
architecture of Hardfuzz, which can be divided into three main phases: (1) Static Analysis

& setup, (2) Def-use-guided fuzz loop, and (3) Coverage-driven input generation.

1. Static Analysis & Setup: Before fuzzing, we analyse the target program’s binary
to extract all def-use chains. This yields a set of definition addresses each paired
with one or more use addresses. The Hardfuzz runner loads this information and
initializes its components: the GDB controller, serial connection, metrics logger,
and input generator. The GDB controller attaches to the device or emulator and

performs an initial reset/halt, inserting a breakpoint at main and running to that

5.2. Hardfuzz Overview 112

v . I

Debug Module P Mutation Engine P Coverage Map State Machine
HOST | : - 7y
v
Def-use [‘ ‘ ‘ ‘ ‘ ‘

chain CYOK) ® ®

I 1 I 1
USB INTERFACE GPIO PINS SPI/12C BUSES IE\ITTHEERRF'ZEE

BOARD
M : Definition has been triggered : Definition ©:Use @: Use has been triggered

Figure 5.1: Hardfuzz Overview

point. The serial connection thread is started to handle input/output with the
target. The input generator is seeded either with user-provided seed inputs or a
default seed; it maintains the corpus of interesting inputs discovered. At this stage,
Hardfuzz also precomputes some helper structures from the def-use list, such as a
mapping of each def address to the basic block containing it (and likewise for uses).
It also computes a weighting for each def (for fuzzing schedule) based on the number
of uses it has.

2. Def-Use-Guided Fuzz Loop: Hardfuzz then enters the main fuzzing loop, which runs
infinite rounds of test generation and execution. In each round, an input is selected
and mutated, then used to execute a series of def-use chain trials. Unlike a pure
coverage fuzzer that would run one input and simply note which new blocks were
hit, Hardfuzz actively guides each input run towards a specific def-use target. It
works as follows: it selects a subset of def addresses (up to the hardware breakpoint
limit, e.g. 6) that have not yet been fully covered, and sets hardware breakpoints
at those definition addresses (marked as Def-BPs). Then it releases the target to
run the test input from the beginning. If none of those definitions executes (no
breakpoint hit), the input did not trigger those targets; Hardfuzz will then try a
different set of def addresses (or a new input in the next round). If one of the
def breakpoints hits, the execution stops at that definition point. At this moment,
Hardfuzz identifies which def was hit and retrieves its list of corresponding use

addresses. It then immediately arms a second set of breakpoints for those uses

5.2. Hardfuzz Overview 113
(marking them Use-BPs) and resumes execution. The original def breakpoint, being
temporary, is auto-removed upon hit to free a slot. Now the target continues running
the same input, but with breakpoints set at the uses of the just-hit definition. If any
of those uses executes, the program will halt again at the use site (indicating the
def-use chain was successfully realized at runtime). Hardfuzz logs this as a def-use
pair covered and removes the use breakpoint. It allows the program to continue,
potentially catching multiple uses in one execution if the input triggers more than
one use of the definition’s value. Once the program completes (or a timeout/crash
occurs), Hardfuzz cleans up any remaining breakpoints and resets the target if
needed before the next round.

3. Coverage-Driven Input Generation: After each test execution, Hardfuzz updates its
coverage bitmap to reflect any newly covered def or def-use pair. It uses two 64kB
bitmaps in shared memory: one for def coverage (indexed by def address bits) and
one for def-use coverage (indexed by a hash of def and use addresses). Any time a
definition is hit or a def-use pair is completed, the corresponding bits are set. At
the end of a round, Hardfuzz checks if any new bits were set compared to the global
"virgin” coverage map. If new coverage was found, the input that achieved it is saved
to the corpus and considered for fuzzing again in the future. The fuzzer then chooses
a new baseline input for mutation-it may choose the latest high-value input or cycle
through the corpus to keep diversity. Hardfuzz employs a mutation engine based on
libFuzzer’s mutator: by linking against the LLVM libFuzzer mutation library, it can
generate mutated variants of an input efficiently. In each round, one or more new
candidate inputs are produced this way. If a round produced no new coverage (no
def-use hit and no new def hit), Hardfuzz can retry with a different def target or
eventually switch to a fresh mutated input. This coverage-driven strategy ensures

that Hardfuzz concentrates on inputs that expand the def-use coverage frontier.

5.3. Def-Use Chain Analysis and Selection 114

5.3 Def-Use Chain Analysis and Selection

5.3.1 Def-Use Chain Analysis

We extract definition-use (def-use) chains from MCU’s firmware binaries to guide test
generation and breakpoint placement. A definition site (def) is an instruction that writes
a program value (a register or a memory location). A use site (use) is an instruction
that reads that value. A def-use chain is a directed edge from a def instruction to a
use instruction along some feasible path in the data dependence graph (DDG). We use
these chains to (i) measure dataflow coverage and (ii) prioritize fuzzing inputs that reach

definitions with many uses.

Our analysis runs in three phases. First, We load the target ELF with angr and build
a context-sensitive data dependence graph (DDG). For each discovered function, we run
ReachingDefinitions based on angr’s intermediate represent (VEX IR) to compute
the set of definitions that may reach each program point. For each definition we found,
we enumerate its uses with instruction address and check for reachability in the DDG and
CFG. If there exists a path from the def to the use, we add an edge a; — a, to the def-use
graph. The graph also contains chains that cross function boundaries (e.g., def in caller,

use in callee). The details show in Algorithm 3.

5.3.2 Breakpoint Strategy

After extracting the def-use chains, we prioritize definitions to guide the fuzzer’s explora-
tion. The goal is to focus on definitions that influence many uses, as they are more likely
to lead to diverse program behaviours and potential vulnerabilities. We also consider the

history of selections to avoid over-focusing on a few definitions. We assign each definition

© 000 N O ok W=

[y
o

11

5.3. Def-Use Chain Analysis and Selection 115

Algorithm 3: Def-Use Chain Extraction (per function)
Input: Function F, Data Dependence Graph G
Output: Set & of pairs (def addr,use__addr)

E D
RD <« ReachingDefinitions(F)
foreach d € RD.all_definitions do
ng < Node(G,d.ins__addr)
if n; = 1 then continue
foreach u € GetUses(RD,d) do

n, < Node(G,u.ins__addr)

if n, = 1 then continue

if Reachable(G,ng,n,) then

L &+ &U{(d.ins_addr,u.ins_addr)}

return &

a base weight equal to the minimum the number of distinct uses it has, so definitions
with many uses are considered more "interesting” by default. During fuzzing process, we
also adjust weights based on how often a def has been tried locally in the current round
and globally across all rounds. Intuitively, if a particular def has already been hit several
times (globally) or if we have attempted it repeatedly in the current round, its probability

is reduced to avoid too much repetition. The exact formula is described below.

For a definition address a; with use set U(ay), the scheduler samples with

1 1

1+4(ag) 2
1+ aa) - (14 g(aa))
local penalty v

w(ayg) zinax(l, U (aq)])

base weight
global penalty

where £(ay) is the local count of selections of ay in the current generator and g(ay) is the
global hit/selection count accumulated across rounds. Definitions are drawn by roulette-

wheel sampling proportional to w(ay).

5.3. Def-Use Chain Analysis and Selection 116
Once a def a; triggers, we order its uses by address proximity and enable up to K hardware

breakpoints (with K =6 on ARM Cortex-M3):

ordery(ay) = argsort }au—ad|, S(ay) = first K of ordery(ay).
ay€U(ay)

The intuition is that uses close to the def are more likely to be executed soon after the
def, increasing the chance of hitting a use in the same run. If a def has more than K
uses, we will not be able to cover them all in one execution. However, since we sample
defs multiple times across rounds, we will eventually cover all uses over time. Once one
breakpoint hits, we will consider the basic block containing it as covered and remove the
breakpoint to free a slot for the next use breakpoint. In this way, we can potentially catch

multiple defs in one execution if the input triggers one basic block.

In each fuzzing round, hardfuzz draws up to n definition targets from this weighted gen-
erator (with N set to the hardware breakpoint limit) to form a batch. The reason for
batching is efficiency: setting breakpoints is slow, and it is wasteful to run on input per
breakpoint if we can enable multiple breakpoints at once. Batching also allows one input
to potentially cover multiple defs if they happen to be hit in the same execution. The
batch is constructed and all breakpoints for that batch are inserted before running the test
input. If none of breakpoints in the batch are hit by the time the input finished, it implies
the input does not execute any of those defs. In that case, Hardfuzz will fetch the next
batch of defs (if any remain untried for this input) and rerun the same input on a fresh
instance of the program. This approach gives each input multiple opportunities to demon-
strate coverage on different def targets. If an input completely fails to hit any new def after
exhausting all batches, Hardfuzz will conclude that the input is "stuck” coverage-wise and
move to the next input. In our implementation, we set a limit (e.g., NO_TRIGGER_-
THRESHOLD=8) on consecutive attempts with no new hits before abandoning an input

to avoid infinite loops.

5.3. Def-Use Chain Analysis and Selection 117

Algorithm 4: Hardware Breakpoint Strategy (Def—Use under comparator budget
K)
Input: Test input x; batch of definitions DefsBatch C Z; use map U(-); HW

breakpoint limit K
Output: HitDef € Z2U{None}; sct HitPairs C {(d,u)}

Primitives: HaltThenDeleteAll(), SetHWBP (a, temporary), ContinueAndFeed(x),
WaitStop(), RemoveBP(a), RestartIfCrashedOrTimedOut/()

2 HitDef <~ None, HitPairs«+ o
3 HaltThenDeleteAll()

© 00 N o

10
11
12

13

14
15

16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

32

33

34
35

foreach d € DefsBatch (distinct), up to K do // arm up to K defs as
hardware & temporary BPs
| SetHWBP(d,temporary =True)

ContinueAndFeed (x)

(reason,payload) < WaitStop()

if reason s “breakpoint hit” and payload is a def BP then

| HitDef « a*

else if reason e { “timed out”, “crashed”, “exited”} then
RestartIfCrashedOrTimedOut()

L return (HitDef HitPairs)

Halt ThenDeleteAll() // clean breakpoint before use phase

if HitDef =None then
L return (HitDef ,HitPairs)

// Use phase: sweep uses of d* in chunks of size K

UsesSorted « uses in U(d*) sorted by |u—d*| (ascending)

while untried uses remain do

take next chunk UChunk of < K addresses from UsesSorted

Halt ThenDeleteAll()

foreach u € UChunk do // arm hardware BPs for uses
| SetHWBP(u, temporary = False)

ContinueAndFeed(x)

(reason,payload) < WaitStop()

if reason is “breakpoint hit” and payload is a use BP then
let u* be the hit use
HitPairs < HitPairsu{(d*,u*)}
RemoveBP (u*) // free comparator; others remain armed
continue

else if reason e { “timed out”, “crashed”, “exited”} then

| RestartIfCrashedOrTimedOut(); break

else
Lcontinue // no use hit; move to next chunk

HaltThenDeleteAll()
return (HitDef HitPairs)

5.3. Def-Use Chain Analysis and Selection 118
The workflow of the breakpoint strategy is summarized in Algorithm 4. Managing the lim-
ited hardware breakpoints is a core part of Hardfuzz’s design. We implement a lightweight
GDB controller that communicates with the target device via GDB’s machine interface
(MI). The controller provides primitives to set and remove breakpoints, continue execu-
tion, wait for stops, and handle crashes or timeouts. These primitives are used in the

breakpoint strategy to orchestrate the def-use guided execution.

When a def breakpoint triggers, the GDB stop reason comes as "breakpoint-hit” with an
associated breakpoint number. We determine whether this was one of our def breakpoints
by looking it up in the batch mapping. If so, we record the hit and prepare to switch
to use breakpoints. To be noticed is that on Arm Cortex-M: when a breakpoint hits
at an instruction in flash, the processor actually replaces that instruction with a BKPT
instruction internally. If we immediately removed the breakpoint and continued, we risk re-
executing the BKPT instead of the original instruction. To avoid this, Hardfuzz performs
a single-step operation to execute the instruction and move past it before inserting new
breakpoints. This ensures the def instruction completes and the PC advances, preventing
any "flash breakpoint deadlock” where the same breakpoint would re-trigger or corrupt
execution. Our BreakpointManager handles this: upon detecting a def breakpoint number,
it executes one instruction step, then clears all existing use breakpoints from any previous
def, and finally removes the def breakpoint itself to free the slot. After that, Hardfuzz

proceeds to install the use breakpoints for the triggered def.

After each batch (or after a def-use sequence completes), Hardfuzz issues a blanket —
break—-delete command to clear any leftover breakpoints before moving on. This is
important to prevent stray breakpoints from persisting into the next input’s execution,
which could cause false coverage signals or unintended halts. We found that after heavy

churn of breakpoints, it was sometimes necessary to stabilize the GDB connection. In

5.3. Def-Use Chain Analysis and Selection 119

GDB stop event
(breakpoint hit/ timeout)

idx_pair(d,u) = (d®@u)

def triggered (d) &OxFFFF
use triggered (d, u) Hidx_def(d) =d & OxFFFF)
/
Shared Memory Shargd Memory

Il H =
] -
]] >

\ I / \\ I / \. I / \\ I /

trace_bits_defs trace_bits pairs trace_bits_defs trace_bits_pairs

Figure 5.2: Two-bitmaps in shared memory and update flow. A breakpoint hit yields
d (and optionally u). The CoverageManager computes 1dx_def(d) = d & OxFFFF and
idx_pair(d,u) = (d ®u) & 0xFFFF, then sets the corresponding bits in the two bitmaps
(NumPy views backed by one shared-memory region of size 2M). Darkness indicates the
time for the triggers to activate. Virgin maps flip from OxFF to 0x00 on first observation
and gate corpus updates.

extreme cases (e.g., if the target becomes unresponsive or GDB misbehaves), Hardfuzz
will restart the GDB session by killing the old GDB and launching a new one, then re-
attaching to the target. This "GDB rejuvenation” is triggered after certain timeouts or

errors to maintain a robust fuzzing run.

5.3. Def-Use Chain Analysis and Selection 120

5.3.3 Coverage Guidance

Hardfuzz needs a light-weight signal that can run on the device, without binary rewriting,
and that still shows progress on data flow. We therefore record two events: (i) a definition
is executed; and (ii) a definition-use pair is executed. We turn these events into coverage

using two compact bitmaps stored in one shared-memory block (see Figure 5.2).

We allocate a single shared-memory region of size 2M bytes and split it into two non-
overlapping slices:

trace_bits_defs[0.M—1] and trace_bits_pairs[M.2M—1].

In our implementation M = 65,536. Each slice is a byte array used as a bitmap (0 or 1
per slot). This design lets the fuzzer and the coverage code communicate without copying
and keeps the memory footprint fixed.

We map events to indices as follows.

o Definition coverage. When a def at address d executes,

idx_def(d) = d & OxFFFF,

and we set trace_bits_defs[idx_def(d)] + I.
e Def-use coverage. When a use at address u executes after the matching def at d

in the same input run,

idx_pair(d,u) = (d ®u)& OxFFFF,

and we set trace_bits_pairs[idx_pair(d,u)] « 1.

5.3. Def-Use Chain Analysis and Selection 121
The XOR gives a constant-time hash from a pair of addresses to one slot. Collisions can
happen but are rare at this scale; they may reduce granularity but do not break the

guidance.

The figure shows three states of the same shared-memory block.

Before: both bitmaps reflect the current round before the new stop event.— After a def
hit: one cell in trace_bits_defs[0,M) is set to 1 — After a def then use hit: one cell
in trace_bits_pairs[M,2M) is also set to 1 — Placing both slices inside the same
box and labelling [0,M) and [M,2M) makes clear that the bitmaps share memory but do

not overlap.

If the execution passes through a basic block without stopping inside it, we conservatively
mark: (i) every def located in that block as covered; and (ii) every (d,u) pair whose use
lies in that block as covered. We do this using a precomputed lookup from each block to
its defs and to the (d,u) pairs whose u is in that block. This avoids setting a breakpoint

at every use site while still rewarding progress once the block executes.

To decide if an input should be kept, we maintain two "virgin” arrays in process memory,
fresh_defs[0.M—1] and fresh_pairs[0..M—1], initialized to OxFF. After running

an input we scan the two shared bitmaps. For each index k:

trace_bits_defs[k] #0 A fresh_defs[k]| = 0xFF = fresh_defs[k] «+ 0x00,

trace_bits_pairs[k]#0 A fresh_pairs[k] =0xFF = fresh_pairs[k] < 0x00.

If at least one byte flips from OxFF to 0x00, the input exposed new coverage. We then add
the input to the corpus and optionally pick it (or a mutated child) as the next baseline.
The shared bitmaps are cleared for the next input, while the virgin arrays keep the lifetime

view of what has already been discovered.

5.3. Def-Use Chain Analysis and Selection 122
Basic-block coverage rewards only new control flow. Our two-bitmap scheme adds a data-
flow signal. The def bitmap rewards reaching a definition; the pair bitmap rewards reaching
a use of that definition. These intermediate signals give the fuzzer a gradient toward the

deep path even when no new basic block is covered.

5.4 Evaluation

Research Question 3: Can on-device fuzzing with hardware breakpoints de-

liver high-fidelity execution and strong feedback at practical speed for MCUs?

We therefore compare Hardfuzz against GDBFuzz in two settings: (i) QEMU-based emula-
tion, where both fuzzers run on the same emulated targets, and (ii) on device execution on
real microcontrollers. In both cases we measure coverage growth and basic blocks reached

to understand when the breakpoint based def-use feedback improves over baseline.

5.4.1 Experimental Setup

We evaluated Hardfuzz against GDBFuzz on two platforms: (1) an emulated environment
using QEMU to simulate an ARM Cortex-M3 firmware, and (2) a real hardware setup
using an Arduino Due board (SAM3X8E MCU) connected via a J-Link debug probe.
The fuzzing campaigns were run for a fixed time budget on each platform. For GDBFuzz,
which does not natively track def-use chains, we consider only basic block coverage for
comparison. All experiments used the same initial seed corpus and were allocated identical

time for fairness.

5.4. Evaluation 123

5.4.2 QEMU-Based Emulation Results

In the QEMU emulation, both fuzzers can execute inputs relatively quickly (no physical
device latency). In this way, we could compare the two different breakpoint assignment
strategies (Hardfuzz’s def-use guided vs. GDBFuzz’s Dominator-based) under same con-
ditions. We ran each fuzzer for 24 hours in this environment for three repetitions. The
target programs we choose are from Google Fuzzbench [147], a well-known benchmark
suite for fuzzing research. We selected 16 targets that are compatible with QEMU and

also been tested in original GDBFuzz [40]. The results are shown in Figure 5.3.

boringssl libssh re2 freetype2
2,000 1,000
' 1,500
3,000
-
[1,000 2000
1,000 500 '
500 1,000
% 6 12 18 2 % 6 12 18 2 % 6 12 18 2 % 6 12 18 24
guetzli harfbuzz json lcms
600
2,000 2,000
400
[%2]
% 1,000 1,000
@ 200
o
E=] 0
o 12 18 24 (] 6 12 18 24
< ibarchive b pe libpn libxml
] 1,500 IPeg 9
S 400 1,000
o 600
£ 1,000
< 400 /
@ 200 500 ‘
| 500 | 200
[|
% 6 12 18 2 % 6 12 18 2 % 6 12 18 2 % 6 12 18 24
openssl proj4 sqlite vorbis
4,000 1,500
1,000
2,000
——— GDBFuzz
Hardfuzz
12 18 24

T|me (hours)

Figure 5.3: QEMU Emulation Results: Basic block coverage achieved by Hardfuzz and
GDBFuzz over 24 hours across 16 targets. Hardfuzz consistently outperforms GDBFuzz
in most cases, demonstrating the effectiveness of def-use chain guidance in improving
coverage.

Figure 5.3 plots basic block coverage over time for the sixteen Magma binaries under
QEMU. In all targets the Hardfuzz (pink) curve lies above the GDBFuzz (purple) curve
after the first few hours, and the gap either remains stable or widens over the 24 hour

campaign. For example, in freetype2 and lcms Hardfuzz continues to discover new

5.4. Evaluation 124
blocks throughout the whole run, while GDBFuzz reaches a clear plateau after roughly
6-8 hours. The continued upward trend for Hardfuzz indicates that def-use guidance keeps
proposing inputs that exercise additional data-flow chains, whereas the dominator based
strategy in GDBFuzz quickly exhausts easy to reach control flow edges and then spends

most of its time revisiting already covered regions.

Across graphics and parsing heavy libraries such as guetzli, harfbuzz, libpng,
and Libxml, Hardfuzz attains noticeably higher final coverage, suggesting that tracking
how values are defined and later used is particularly helpful in code with long computa-
tions and layered transformations. In contrast, for simpler utilities such as boringsst,
libssh, and re2, both fuzzers saturate quickly and the distance between the curves is
smaller: once the relatively shallow control flow has been explored, there are fewer hard
to reach def-use chains for Hardfuzz to exploit. There are also programs where GDBFuzz
comes close to Hardfuzz at the 24 hour mark (for example freetype2 and sqlite),
which suggests that in some code bases the dominator-based heuristic happens to align
reasonably well with the underlying data flow and therefore narrows the advantage of ex-
plicit def-use guidance. Overall, however, the aggregated trend over all sixteen binaries is
that Hardfuzz both reaches higher coverage and maintains non-zero coverage growth for
longer, supporting the claim that dataflow feedback provides a richer exploration signal

than control flow structure alone.

The unique basic block results in bar Figure 5.4 further reinforce Hardfuzz’s advantage.
Over the 24-hour period, Hardfuzz consistently discovers more unique blocks than GDB-
Fuzz, indicating that its def-use chain guidance effectively drives exploration into new
areas of the codebase. The GDBFuzz can achieve the similar results in only two targets
(freetype2 and sqlite). This suggests that while dominator-based selection can be effective

in certain scenarios, it generally lacks the nuanced direction provided by def-use analysis.

5.4. Evaluation 125

Unique Basic Blocks (multiple runs)

6,000
. Overlap

B gdbfuzz unique
e hardfuzz unique
5,000

1,397

4,000

1,815
1,57
1‘022
3,000 524
113
2,000 40‘3
421
658
1,000
310
. Il n ll
o

o\ AN 12 92 N\ Y 'L
‘\(\gs i ‘e N ‘?}z\ o 69 \06\ c‘\\\‘ \0\Q \QOQ \\‘0"‘“\(\,(3“6 Q‘O\ ‘\\\ o9 o

Basic blocks

Figure 5.4: Unique basic block coverage over time on QEMU. Hardfuzz consistently dis-
covers more unique blocks than GDBFuzz, demonstrating its superior exploration capab-
ilities.

The ability to target specific data-flow interactions allows Hardfuzz to uncover paths that
may be overlooked when focusing solely on control-flow structures. The results highlight
the importance of considering both control and data flow in fuzzing strategies to maximize

coverage and discovery potential.

5.4.3 On-Device Hardware Results

We also evaluated Hardfuzz on a real device: an Arduino Due (SAM3XS8E) connected
through a J-Link. Running on physical hardware adds latency from the debug link and
the lower clock speed of the MCU, but it gives us ground-truth signals (hardware faults
and precise stop points). We ran both Hardfuzz and GDBFuzz for 24 hours of three
repetitions on this setup. The firmware targets are the same types used in our GDBFuzz
experiments, and each contains a small, known bug so we can measure detection and

deduplication. The three targets are:

5.4. Evaluation 126

Table 5.2: Basic block coverage on hardware after 24 hours

Basic Blocks Covered

Target

GDBFuzz Hardfuzz
buggycode 62/249 88/249
HTTP server 373/1504 524/1504
JSON parser 664,/1071 758/1071

1. buggycode (stack overflow). A minimal UART harness that looks for the four-
byte gate "bug!" and then copies the received payload into a fixed 20-byte stack
buffer without bounds checks. Any input longer than 20 bytes triggers a determin-
istic overflow.

2. HTTP server (state-machine bug). A small ESP-IDF HTTP service with an
endpoint that mixes fixed-length responses with chunked sends in the same request.
This violates the servers send path and produces a reproducible failure under load,
modelling common handler mistakes in embedded web servers.

3. JSON parser (length-triggered hang). A serial JSON parser built with Ardu-
inoJson that reads a 32-bit length prefix. If the length exceeds the configured buffer
size, the firmware enters a persistent wait state. This gives us a clean timeout class

distinct from crashes.

Table 5.2 presents the final basic block coverage achieved on hardware after a 24 hour cam-
paign. Hardfuzz outperforms GDBFuzz across all three firmware targets. On the buggy—
code harness, coverage increases from 62 to 88 blocks. A similar relative improvement is
observed for the HT'TP server, where coverage rises from 373 to 524 blocks. This suggests
that Hardfuzz is more effective at navigating the state machine and exercising diverse
request-handling paths. The JSON parser exhibits a smaller but distinct gain, improv-
ing from 664 to 758 blocks. These results demonstrate that def-use guidance successfully
exposes additional behaviours even in small codebases like buggycode, with benefits
that become increasingly evident as control logic complexity grows, as seen in the HT'TP

server.

5.4. Evaluation 127
Figure 5.5 provides the mean coverage over three repetitions with shaded regions repres-
enting one standard deviation. For buggycode, both fuzzers saturate quickly, reaching
a plateau within the first hour. While Hardfuzz converges to a higher final value than

GDBFuzz, the standard deviation bands overlap significantly.

In contrast, the HT'TP server displays a more distinct pattern. Hardfuzz accelerates cov-
erage discovery early in the campaign and maintains a substantial lead throughout the 24
hour period. The separation between the mean curves is pronounced, with only marginal
overlap in the uncertainty bands, indicating that this performance advantage is system-
atic rather than the result of stochastic variance in a single run. For the JSON parser,

Hardfuzz consistently maintains a lead over GDBFuzz.

Ideally, differences in fuzzer performance, such as final coverage or the area under the
curve, should be validated using non-parametric two-sample tests (e.g., the Mann-Whitney
U test), as recommended by standard evaluation guidelines [14]. However, given the re-
source constraints of hardware in the loop testing, our dataset is limited to three repe-
titions per configuration. With such a small sample size, statistical tests lack sufficient
power and yield unstable p values. Consequently, we prefer descriptive analysis rather
than formal hypothesis testing; we rely on mean trajectories and variance bands to assess
the magnitude and consistency of the observed differences. Future work involving larger
scale campaigns could supplement this qualitative assessment with rigorous statistical

validation.

5.4. Evaluation 128

—— GDBFuzz Hardfuzz

~
w
o

~

Basic Block Addresses
3
o

2501] //f
% 5 10 15 20 0 5 10 15 20 0 5 10 15 20
buggycode HTTP server JSON parser
Time (hours)

Figure 5.5: Coverage changes over time on hardware. Hardfuzz consistently discovers more
unique blocks than GDBFuzz, demonstrating its superior exploration capabilities.

To be noticed is that Hardfuzz’s higher coverage does not come from extra online analysis.
We extract def-use chains with angr offline before fuzzing, so this step adds no runtime
cost. By contrast, GDBFuzz updates control-flow information during fuzzing when it finds
new coverage, which adds some overhead. Both systems rely on GDB stop reasons for
crash detection; halts, breakpoint churn, and occasional re-attach process also cost time
on real hardware. Despite these costs, Hardfuzz’s richer signals yield better exploration

and explain the observed coverage gains.

5.5 Limitations and Future Work

Hardfuzz improves fidelity and feedback on MCUs, but it does not replace emulation or
rehosting. These approaches are complementary. Emulation scales and is easy to automate
across many targets. On-device fuzzing gives ground truth behaviour but pays for 1/0

latency and debug overheads and is tied to specific boards.

5.5. Limitations and Future Work 129
Cortex-M parts expose only a small number of hardware comparators (e.g., six on Cortex-
M3 for breakpoints). Arming and rearming breakpoints through GDB adds latency, and
some devices lack trace mechanisms entirely. This limits the number of def/use pairs we
can watch at once and caps per second executions. We plan to combine flash breakpoint
with watchpoints, use RAM software breakpoints, amortize re-programming with persist-
ent execution loops on the target, and opportunistically use trace (ETM/ITM/ETB) or

RTT mailboxes when available to cut halt/resume cycles [149].

Semihosting, SWD/JTAG, and serial handshakes add delay. Our current design halts to
set breakpoints and to step past breakpoints, which reduces cycles per second. Future
work could design a persistent harness that processes many testcases per boot, a small

on-target control loop to arm next breakpoints via a memory-mapped index table without

global halt.

We build def-use chains from binaries. Optimized builds, inlining and register allocation
can blur the mapping from IR to concrete addresses and drop some uses. Stripped binar-
ies reduce function recovery quality. The future work includes: (1) fall back to dynamic
analysis ;(2) add a lightweight dynamic taint or value-flow sampler to validate and refine
static pairs; (3) consume optional symbols or minimal debug info when present; and (4)

model common library idioms to cut false pairs.

As shown in Figure 5.3 and Figure 5.4, the code coverage growth eventually slows down
and plateaus. This happens because both fuzzers use libfuzzer’s mutation strategy, which
relies on a random combination of simple changes like bit flips, byte flips, and arithmetic
operations. While this method is effective for exploring a broad range of inputs initially,
it often struggles to generate the specific inputs needed to bypass complex checks and

reach deep program states. As a result, the fuzzer reaches a point of saturation, after

5.5. Limitations and Future Work 130
which finding new code paths becomes rare, and coverage growth is negligible. Therefore,
instead of running the fuzzer for a fixed, long duration like 24 hours, it is more practical
to analyse this saturation point to determine an efficient time budget for the fuzzing

campaign [150, 151].

On hardware we used three focused targets with known faults; in emulation we used a
larger corpus. This is useful for controlled comparisons, but broader external validity needs
more firmware, more boards, and blind bugs. Future work contains scale to community

firmware, report time-to-first-crash and deduped bug counts.

5.6 Conclusion

This chapter proposes Hardfuzz, a on-device dataflow guided fuzzer for embedded systems.
Hardfuzz use hardware breakpoints to monitor the change of the def-use chains, providing
precise and efficient feedback to guide the fuzzing process. The evaluation results show that
Hardfuzz outperforms the state-of-the-art GDBFuzz in both emulated and real hardware
environments, achieving higher code coverage and discovering more unique basic blocks.
This demonstrates the effectiveness of def-use chain guidance in improving the exploration
capabilities of fuzzers for embedded systems. The source code of Hardfuzz is available

online! for further research and development in this area.

1. https://github.com/MaksimFeng/Hardfuzz

https://github.com/MaksimFeng/Hardfuzz

Chapter 6

Differential testing of MicroPython
under CHERI

6.1 Introduction and Motivation

Research Question 4: As firmware complexity grows, traditional fuzzing
struggles with highly structured inputs like language interpreters. How can we
evolve test generation beyond simple mutation to rigorously assess architectural

defences, thereby measuring the shift from vulnerability discovery to prevention?

This chapter addresses RQ4 by exploring the application of differential testing to evaluate
the security benefits of architectural memory safety mechanisms, specifically CHERI, in
the context of embedded language interpreters. As embedded systems increasingly incor-
porate complex software components like interpreters, they become more susceptible to
memory safety vulnerabilities. Traditional fuzzing techniques often fall short in effectively

testing such structured inputs, necessitating more sophisticated approaches.

131

6.1. Introduction and Motivation 132
In this chapter our main contribution is a differential testing framework that uses a
CHERI-enabled interpreter as a hardware backed test oracle for memory safety. The key
idea is to execute the same, syntactically valid MicroPython program on two binaries that
share the same source code but differ in their hardware protection model: a conventional
baseline and a CHERI build. Whenever the baseline terminates normally or crashes while
the CHERI build raises a capability violation, we treat the CHERI outcome as the refer-
ence behaviour of a memory safe execution and flag the input as exposing a bug in the

unprotected configuration.

Microcontroller firmware frequently embeds a high-level interpreter to speed up devel-
opment and to keep device firmware small and flexible. MicroPython is a widely used
Python 3 implementation for resource-constrained systems. Fuzzing such interpreters is
attractive but difficult: naive mutation produces many syntactically invalid programs and
often fails to expose the memory hazards that matter most in the interpreter’s underlying
C core. At the same time, new hardware architectures like CHERI can enforce bounds,
permissions, and provenance on pointers at runtime, turning latent memory errors into

precise user-space traps.

Concretely, we instantiate this framework on MicroPython as follows. We build an initial
seed corpus from public bug issues and CVE reports for CPython and MicroPython, and
then use a prompt guided large language model to synthesise additional well formed pro-
grams that resemble these seeds. A concrete syntax tree (CST) mutator based on LibCST!
applies structure preserving edits (such as inserting statements, wrapping expressions, or
changing literal values) to expand the corpus while keeping programs parsable and type-
correct. A dual-lane harness executes each test under identical resource limits on both
the non-CHERI and CHERI builds and records normal outputs, exceptions, signals, and

capability violations. The differential comparator then acts as the oracle: it reports a

1. https://libcst.readthedocs.io/en/latest/index.html

https://libcst.readthedocs.io/en/latest/index.html

6.1. Introduction and Motivation 133
potential memory safety bug whenever the non-CHERI run crashes, hangs, or produces
an inconsistent result, while the CHERI run stops with a precise capability fault. The
following sections detail the technical background, architecture, and evaluation of this

CHERI-based oracle.

6.2 Technical Background

6.2.1 The Architectural Foundation of CHERI Memory Protec-

tion

Capability Hardware Enhanced RISC Instructions (CHERI) is an ISA extension that
augments conventional processors with architectural capabilities to deliver fine-grained
memory safety and scalable compartmentalization. Rather than adding checks around
unsafe code, CHERI changes the fundamental contract between software and memory
by replacing raw integer pointers with hardware-enforced, unforgeable capabilities. This
targets the root causes of memory-safety bugs that have long dominated systems software
(roughly 70% of modern security issues are memory errors) [152]. As we will show, this

design is the driver of the divergent behaviours observed under differential testing [153].

A CHERI capability is an atomic token that combines: (i) an integer address, (ii) metadata,
describing authority, and (iii) a 1-bit validity tag. For example, on a 64-bit architecture
a conventional 64-bit pointer is replaced by a token holding a 64-bit address, circa 64-bit

metadata, and a 1-bit tag, shown in figure 6.1. The metadata encodes:

e Bounds The range of the authorized buffer;
o Architectural permissions (AP) Operations such as read, write, execute, and

capability load/store.

6.2. Technical Background 134

pul Upper bound
. /
Atomic I
Capability Bounds AP Sealed SDP II
Token R Current capability base
Address
2N
N
Pro---o-mo-mooy Lower bound

Figure 6.1: CHERI capability token and address-space view. The token combines an in-
teger Address with metadata slices for Bounds, Architectural Permissions (AP), Sealed,
and Software-Defined Permissions (SDP), plus a 1-bit TAG that records validity. The
shaded region marks the in-bounds range; the solid green arrow indicates a permitted
access, while dashed red arrows indicate out-of-bounds accesses that trap.

« A sealing bit Making a capability immutable and non-dereferenceable until expli-
citly unsealed;
» Software-defined permissions (SDP) Configuration of implementation or OS

specific policy.

The tag records capability integrity. Tags are maintained by hardware: software can read
them but cannot set them directly. Using an untagged capability (e.g., one corrupted by

non-capability writes) triggers a hardware exception.

CHERI enforces three key properties on capabilities:

e Provenance: Every capability must be derived from an existing valid capability
through sanctioned operations;

o Monotonicity: Derivation can only reduce or preserve rights or bounds, authority
cannot increase;

o Integrity: Forged or corrupted capabilities cannot be dereferenced.

6.2. Technical Background 135
Sealing further strengthens control flow and encapsulation: sealed capabilities are immut-
able and non-dereferenceable until unsealed with the matching authority. For example,
CHERI designs employ sealed entry capabilities for return addresses and function pointers

so that code capabilities cannot be freely modified or misused.

At reset, the program counter capability (PCC) and default data capability (DDC) begin
with wide bounds and broad permissions. The boot loader and OS then reduce these
authorities: the OS receives a memory capability and tightens PCC/DDC; user processes
are created with derived, restricted capabilities for their address spaces and objects. This
staged restriction embodies provenance and monotonicity: all application capabilities des-

cend from a small set of boot-time roots and become strictly less powerful over time.

CHERI reifies pointer correctness in hardware. Three common classes of misuse trigger

precise traps [154]:

Bounds violation: Access falls outside the capability’s lower /upper bounds.
Permission violation: An operation (e.g., write or execute) is not permitted by the
capability’s permission bits.

Tag violation: The operation attempts to use an untagged capability.

On a CHERI system these conditions fault at the exact offending instruction, preventing
memory corruption from ever occurring. On a conventional system, the same bug might
silently corrupt state and only crash much later (or not at all). This difference produces
early, unambiguous signals in our experiments: CHERI typically traps deterministically
at the point of error, while the baseline may exhibit delayed or non-deterministic failures.

This is precisely the divergence our differential testing is designed to surface [153].

6.2. Technical Background 136

6.2.2 Differential Testing

Differential testing (also known as back-to-back testing) is a software testing technique
designed to detect semantic or logical bugs by providing identical inputs to two or more
different implementations of the same specification and comparing their outputs [155]. Its
primary strength lies in uncovering discrepancies that do not necessarily lead to obvious
failures like crashes or assertion failures [156]. In many testing scenarios, defining a single
correct output for a complex input can be prohibitively difficult-a challenge known as
the test oracle problem [157]. Differential testing sidesteps this issue by designing oracles
for each other. The fundamental assumption is that while implementations may differ

internally, they should produce externally equivalent behaviour for the same inputs [158].

In the context of our work, the term "output” is defined broadly to include not only
a program’s standard output stream, but also its exit status, error messages printed
to standard error, signals received from the operating system, and even whether a core
dump file is produced. Any divergence in this comprehensive set of observable behaviours
between the CHERI and non-CHERI executions is treated as a significant result, pointing

directly to architectural differences between the two platforms.

Our use of differential testing for MicroPython on CHERI adapts the methodology for a
unique purpose. The non-CHERI system serves as the baseline, which is a control group
representing the standard, insecure behaviour of a C-based interpreter on conventional
hardware. The behaviours observed on this baseline (including crashes, silent data corrup-
tions, and other unpredictable outcomes) are essentially the “expected” results in a world
without hardware-enforced memory safety. The CHERI-enabled system, running the same
MicroPython interpreter compiled for the CHERI ABI, is the new implementation under

test.

6.2. Technical Background 137
This framing fundamentally shifts the objective of the differential comparison. In a typ-
ical differential test, any discrepancy between two implementations would indicate a bug
in at least one of them. In our scenario, however, divergent behaviour is intentional and
desired. The CHERI architecture is explicitly designed to behave differently when con-
fronted with a memory safety violation. A test case that causes silent memory corruption
on the non-CHERI platform is expected to trigger a deterministic hardware trap on
the CHERI platform. Therefore, the primary goal of our differential tests is not to find
bugs in the MicroPython interpreter itself, but rather to empirically verify, characterize,
and demonstrate the security advantages of the CHERI architecture. For example, if the
CHERI build produces a SIGPROT (protection violation signal) where the non-CHERI
build produces a SIGSEGV (segmentation fault) or, worse, completes execution while si-
lently corrupting memory, that outcome is considered a successful validation of CHERI’s
safety guarantees. In this way, the experiment is transformed from a bug-finding exercise
into a scientific validation of a new security paradigm, using the conventional system as
a baseline illustration of the very problems CHERI is intended to solve. In operational
terms, the CHERI-enabled build therefore serves as our test oracle: whenever its execu-
tion diverges from the baseline in the form of a precise capability fault, we interpret the
CHERI outcome as the correct memory-safe behaviour and judge the conventional build

against it.

6.2.3 MicroPython

The choice of MicroPython as the software under test is particularly strategic [159]. As
a high-level, dynamically-typed language, Python is designed to be memory-safe from
the programmer’s perspective. However, the MicroPython interpreter, which executes the

Python code, is itself a complex program written primarily in C. This creates a ideal test

6.2. Technical Background 138
case: a widely-used piece of software whose high-level safety guarantees depend entirely
on the low-level memory integrity of its C implementation. Subjecting this interpreter to
differential testing provides a clear view into how CHERI’s protections can harden critical

runtime systems.

MicroPython consists of a compiler that translates Python source code into bytecode and
a virtual machine that interprets and executes that bytecode. This entire toolchain-the
parser, compiler, object system, garbage collector, and the implementations of all built-in
functions and modules-is written in C. Consequently, despite the memory safety of the
Python language itself, the interpreter is vulnerable to the full spectrum of memory errors
endemic to C programming, including buffer overflows, use-after-free vulnerabilities, and

invalid pointer manipulations.

The MicroPython has been migrated to CHERI [160], making it an excellent candidate for
our differential testing framework. The interpreter’s complexity and its reliance on C for
core functionality mean that it is likely to contain latent memory safety issues that CHERI
can help mitigate. By running the same Python scripts on both the CHERI-enabled and
non-CHERI builds of MicroPython, we can directly observe how CHERI’s architectural
features influence the interpreter’s behaviour in the presence of memory errors. This setup
allows us to not only identify potential vulnerabilities in the interpreter but also to demon-
strate how CHERI can transform these vulnerabilities from silent, exploitable flaws into

well-defined, manageable exceptions [161].

At the same time, MicroPython should be viewed as a representative example rather than
the ultimate target of our contribution. Our goal is not to design MicroPython-specific
defences, but to evaluate how a CHERI-enabled build can act as a general oracle for

memory safety in C-based interpreters and runtimes. In principle, any similar interpreter

6.2. Technical Background 139
that can be compiled for CHERI could be dropped into the same differential-testing
harness with minimal changes, the core methodology and oracle logic would remain the

same. For instance, the recent CHERI port of CRuby could be directly integrated into

our differential testing framework [153].

6.3 Differential Testing Overview

Figure 6.2 provides a high-level overview of our differential testing framework, which is
organized into three layers. The first layer produces a corpus of valid programs. It starts
from curated scripts aligned with known CVEs in CPython and MicroPython and public
bug reports. Then, a test-case generator (guided by prompts encoding patterns known to
be risky in MicroPython) synthesizes new seed programs that remain within the subset
of Python features supported by our target platform. A mutator built on LibCST next
applies structure-preserving transformations to broaden the input space. Each candidate
input is validated, de-duplicated, and added to a unified corpus that feeds both execution

lanes.

Feedback Detection Seed & Input Generation Layer

CVE PoCs & Bug scripts ||
(curated & verified)
+

¥
LLM-based
suspicious generators

LibCST mutator

(grammar /CST-preserving)

dedup/minimize/validate

Unified Corpus

| (seeds + generations + mutants)

¥

‘ Monitoring & Detection ‘

Execution & Runtime Observation Layer

Harness A
(sandbox, timeout, env)

‘ MicroPython (non-CHERI) ‘

]

Telemetry A
exit code, stdout/err, signals, crashes

.

Harness B |
(Morello Board)
CHERI MicroPython

capability-enforced

Telemetry B
capability faults (bounds/tag/perm), logs

J

Differential Analysis, b[inimizatio»,&%eedback Layer

< e
Differential Comparator
normalize outputs & classify deltas

shrink failing
inputs

classify: CHERI fault
= suspect mem bug

| Reducer/Minimizer ‘

‘ Root-cause & Triage ‘
L | (ddmin, delta-debugging)

Figure 6.2: Differential testing framework for MicroPython with CHERI.

6.3. Differential Testing Overview 140
The second layer runs each test program on two builds of MicroPython. The left lane uses a
normal (non-CHERI) build of MicroPython, executed inside a sandbox on a conventional
system with strict time and memory limits. The right lane uses a CHERI-enabled build
running on hardware that supports capability enforcement, the ARM Morello prototype
board. The harness on each side captures the program’s output, exit code, and any signals
or crashes; on the CHERI side it also logs any capability fault details (such as bounds,
tag, or permission violations). To enable a fair comparison, the harness normalizes non-
deterministic aspects of outputs (e.g. memory addresses in error logs or ephemeral file

names in tracebacks).

The third layer compares the two runs. It classifies the pair into one of several categories.
The category that matters most for memory safety is the one where the baseline crashes
or exhibits undefined behaviour while the CHERI build reports a capability violation or
exits normally. The comparator assigns a stable signature to each discrepancy using a
small set of fields drawn from the termination state and from a normalized summary of
the top frames. A reducer then shrinks the input. The result feeds back into the corpus

and into the prompt context for the generator so that future runs start from richer seeds.

6.4 Methodology

The implementation of our framework follows the three-layer structure described above.
In particular, the methodology is divided into input generation (layerl), execution and

monitoring (layer2), and differential analysis plus bug triage (layer3).

6.4. Methodology 141
Table 6.1: Vulnerability and Bug Report Classification

Category Verified Bug Reports CVEs
Raw memory, buffer protocol & view lifetime 16 19
Binary conversions & bigint corners 4 14
FFI / native emitters 1 5
Parsers, codecs & compressors in C 68 15
Filesystem, VFS & Race Conditions 12 19
MMIO & peripherals (embedded targets) 0 10
Interpreter internals, exceptions & GC 38 18
Total 139 100

6.4.1 Input Generation and Corpus Management

Our approach to generating test inputs consists of three stages: (A) seeding the process
with a collection of real-world bug scripts and CVE proofs-of-concept, (B) using an LLM-
based generator to produce new candidate programs, and (C) applying a LibCST-based

mutator to systematically introduce variations. We describe each stage in turn.

A:The collection of CVE PoCs and Bug Reports

Our methodology begins with a curated corpus of proof-of-concept (PoC) scripts derived
from known CVEs and bug reports affecting both CPython and MicroPython. This ini-
tial set provides a solid foundation grounded in real-world vulnerabilities. By analysing
these reports, we identify common bug patterns and high-risk programming constructs,
particularly those relevant to the resource-constrained environment of the MicroPython
interpreter. These seed scripts serve as the basis for further generation and mutation,

allowing us to explore novel security issues beyond the known vulnerability landscape.

6.4. Methodology 142
The results of this classification are summarized in Table 6.1. The analysis reveals several
key areas of concern. The most prolific category in terms of implementation errors is
Parsers, codecs & compressors in C, with 68 verified bug reports. This is unsurprising,
as these components must safely handle a wide variety of complex and often untrusted
data formats, making them a frequent source of crashes or unexpected behaviur when

processing malformed input.

From a security perspective, the Raw memory, buffer protocol & view lifetime category is
particularly critical, accounting for 19 CVEs and 16 bug reports. This category covers dir-
ect memory manipulation, where objects like memoryview can point to another object’s
memory (e.g., a bytearray) without copying data. Such a view can become a dangling
pointer if the underlying object is modified or deallocated, leading to high-impact vulner-
abilities like buffer overflows and use-after-free, which can often be exploited for arbitrary

code execution.

Additionally, the Interpreter internals, exceptions & GC category is also significant, with
38 bugs and 18 CVEs. These issues relate to the most complex and interdependent parts
of the interpreter. This category tests the core functionality of the interpreter, and vul-

nerabilities here can destabilize the entire system, leading to crashes or memory leaks.

Other important categories include:

o Binary conversions & bigint corners: This category focuses on vulnerabilities in the
conversion between Python integers and byte sequences, which can lead to size
calculation errors, integer overflows, and misaligned memory access when handling
binary data.

o FFI / native emitters: This category covers vulnerabilities related to the interaction
between Python and C libraries, where mismatches in function prototypes, misuse
of variable arguments, or unsafe pointer arithmetic can lead to crashes and memory

corruption.

6.4. Methodology 143

o Filesystem, VFS & Race Conditions: This category includes vulnerabilities in file

I/O operations, such as length mismatches in buffer operations, use-after-close er-
rors, and race conditions that can lead to data corruption or security bypasses.

o MMIO & peripherals (embedded targets): This category is specific to embedded

systems and deals with vulnerabilities related to direct hardware access, where ar-

bitrary memory access or misalignment can cause system instability or crashes.

B:LLM-Based Generators

The initial seed corpus is expanded using two distinct techniques: (B) an LLM-based
generator and (C) a LibCST-based mutator. The LLM-based generator produces new test
cases that respect Python syntax and semantics while exploring edge cases and complex
constructs that may trigger vulnerabilities in the MicroPython interpreter. We do not
perform any additional model training, instead, we rely on in-context prompting, which

leverages the model’s prior knowledge of Python acquired during pre-training.

Specifically, we guide generation by providing an instruction prefix to OpenAl GPT-5.
This prefix includes:

1. a concise description of MicroPython and its execution model,
2. a compilation of risky code patterns observed in the seed corpus; and

3. selected CVE proofs of concept and bug-report scripts that exemplify these patterns.

The prompt further instructs the model to assign each generated test to one of the categor-
ies. The category information follow the pattern in Table 6.1. it also imposes constraints
to ensure the outputs remain within the subset of Python features supported by Mi-
croPython. This process excludes constructs that are either known to be safe or deemed
irrelevant for our research objectives. The prompt was iteratively refined based on the
quality and relevance of the generated scripts, a process intended to maximize diversity

and potential impact. Complete prompt templates are provided in Appendix A.

6.4. Methodology 144
C:LibCST Mutator

After generating new testcases using the LLM, we further expand our corpus through
designing a context-aware, type-aware Python code mutator built on LibCST. Library of
Concrete Syntax Tree (LibCST) is a Python parsing and rewriting toolkit that preserves
formatting details such as whitespace and comments, ensuring that mutated code remains
syntactically valid and stylistically consistent with the original source. We define a serial
of mutation rules to introduce subtle variations into the programs while respecting con-
textual constraints (e.g. scope and syntax) and optional type constraints [162]. The goal
is to generate a diverse set of program variants for testing without breaking syntax or

introducing glaring type inconsistencies.

Key design goals of the mutator include:

(i) Preserve syntactic validity and formatting. By leveraging LibCST’s CST, all
transformations maintain valid Python syntax and preserve layout, comments, and
formatting of unmodified parts of the code. This prevents trivial syntax errors and
keeps mutations semantically readable.

(ii) Context-aware replacements. The mutator uses scope-sensitive context pools
of CST nodes to guide replacements. Any code fragment selected for replacement
is substituted with another fragment of a compatible category (expression, state-
ment, etc.), drawn either from elsewhere in the program or from a template library.
This ensures that replacements respect the surrounding context (for example, an
expression is only replaced with another valid expression of an appropriate type or

structure).

6.4. Methodology 145

(iii) Multi-pass mutation pipeline. Instead of applying a single mutation in isola-
tion, the mutator supports executing multiple passes of different mutation operator
families (structural, peephole, chaotic, etc.) sequentially in one run. This multi-pass
approach allows both coarse-grained structural changes and fine-grained tweaks to
be introduced, increasing the chance of complex interactions. Undesired mutation
steps can be rolled back or skipped (with type-check gating, as described below) to
maintain overall correctness.

(iv) Type-budget enforcement. To keep mutations semantically plausible, an op-
tional type-checking gate (using MyPyQ) enforces a "type budget.” Before any muta-
tions, we record the original program’s type errors as a baseline. Each candidate
mutated program is only accepted if it does not increase the number of type errors
beyond that baseline. This prevents the mutator from introducing obvious type vi-
olations (such as arity mismatches in function calls or incompatible assignments),
thereby preserving a baseline level of semantic consistency.

(v) Runtime anomaly scoring. The mutator can optionally execute the final mutated
program under MicroPython interpreter with timeout, in order to detect crashes,
assertion failures, or infinite loops (hangs). A scoring mechanism assigns higher
scores to mutations that trigger abnormal behaviour (non-zero exit status, crashes,
timeouts), which is useful for prioritizing interesting or bug-inducing mutants in a
fuzzing campaign.

(vi) Deterministic, reproducible generation. All randomness in the mutator is
driven by a single master seed. Given the same seed and configuration, the mutator
will produce the same sequence of mutations every time. This determinism greatly

aids debugging and evaluation by ensuring that experiments are repeatable.

The mutation workflow is summarized in Algorithm 5. At a high level, the mutator takes
an input source code S and a configuration cfg specifying the mutation parameters (such
as which operator to apply, how many mutations, whether to enforce type safety, etc.). It

then proceeds in four main stages:

2. https://github.com/python/mypy

https://github.com/python/mypy

6.4. Methodology 146
(i) Parsing and indexing: The source S is parsed into a LibCST CST with metadata, and
a ContextIndex is built. The ContextIndex collects nodes from the CST categorized
by syntactic type (expressions, statements, control-flow blocks like 1f/for/while/try,
function and class definitions, etc.), and records scoping information (using LibCST’s
ScopeProvider metadata). This indexing provides pools of candidate nodes available
for context-aware replacements or insertions. For example, all expression nodes in the tree
might form a pool from which a new random expression can be drawn to replace some

target expression, if such an operator is applied.

(ii) Pipeline assembly: Based on the specified mutation operation and profile, a sequence
of transformation passes II is constructed (BuildPipeline in Algorithm 5). Each pass

corresponds to a certain family of mutation operators.

(iii) Multi-pass mutation with type gating: The mutator iterates through each pass p € Il
and applies it to the current version of the code S* (initially S* =). Within a pass,
the transformer will select one or more target nodes (guided by the context index and
the mutation strategy) and apply the specific mutation operator to produce a modified
CST M (Algorithm 5, line 6). For example, a StructurePass in replace mode will
randomly choose a statement in the code and replace it with another statement drawn
from the context pool or a generative template. After each pass produces a candidate
M, the Accept function checks if the mutated code should be accepted or rolled back.
If type-checking is enabled (cfg.type_safe is true), then Accept runs MyPy on M
and compares the number of errors to the baseline B. If the candidate M introduces new
type errors beyond the allowed budget, it is rejected and the mutation is rolled back
(the original S* is retained for the next pass). This ensures that type-safe mode yields
a series of transformations that, at each step, do not accumulate type inconsistencies.
If the candidate is accepted (or if type gating is off), $* is updated to M and the next
pass continues from this new state. This design, combined with a retry mechanism, allows
the mutator to attempt multiple alternatives if a particular mutation site leads to a type

error, thereby increasing the chance of finding a valid mutation.

g O ook ®w N

0]

10

11

6.4. Methodology 147

Algorithm 5: Context- and Type-Aware Mutator

Input: Source S, configuration cfg

Output: Mutated source S*

T,W,I < ParseAndIndex(S) // LibCST + metadata; build ContextIndex

IT < BuildPipeline(cfg) // €e.g.,
Swap/Chaos/Structure/Peephole/Noise

B <+ TypeBaseline(S,cfg) §* « S

for peIldo
M + p.apply(S*,1,cfg) // context- and template-guided
if cfg.type_safe and —Accept(M,B) then
| continue // reject and rollback to S§*
S M

if cfg.score_runtime then
L RuntimeScore(S*, cfg)

Emit(S*,cfg) return S*

(iv) Runtime evaluation and output: After all passes have been applied, the final mutated
code S* can optionally be run in a sandbox or a different Python interpreter (as specified
by cfg.runtimecmd, we choose MicroPython for our differential testing). The function
RuntimeScore in Algorithm 5 executes the code with a time limit. If the program crashes
(segmentation fault, interpreter panic) or times out, this is recorded (and a high score is
assigned to that mutant, signaling a potentially interesting find). If it exits normally or

with a benign error, a lower or zero score is assigned.

As shown in Algorithm 5, each transformation pass focuses on a certain operator family
and uses the context index or templates to guide the mutation in a meaningful way. If a
particular mutation is not valid under the type rules, the system does not terminate or
fail; it simply skips that mutation and tries the next opportunity or next pass, which is

important for robustness in an automated fuzzing setting.

6.4. Methodology 148
The mutator provides four families of operators that act on CST while preserving syntactic
validity (Table 6.2). Structural /Block operators rewrite statements or blocks to explore
larger control and data-flow changes. Peephole/Op operators make local edits to operat-
ors, literals, and small expressions. Semantic/Path operators rewrite boolean logic and
path conditions using common equivalences to steer execution. Aggressive/Inflation

operators stress parser and runtime limits without breaking syntax. Some operators are

only enabled when supported by the target (e.g., WALRUS_INSERT).

Structural operators include REPLACE/ADD /DELETE /SWAP for coarse edits, REUSE/IN-
JECT/COMBINE for controlled code reuse, and TRY_WRAP for adding exception contexts;
INLINE_TEMP/EXTRACT_TEMP perform simple refactorings. Peephole operators adjust
arithmetic and boolean atoms (ARITHMETIC_FLIP, LOGICAL_NEGATE, BOUNDARY_-
OFF_BY_ONE), toggle decorators, and tweak default parameters. Semantic operators re-
write standard idioms (SEMANTIC_AWARE), flip conditions (PATH_CONDITION, DE-
MORGAN), and optionally insert the assignment expression (WALRUS_INSERT) when
available. The CHAOS operator inflates literals, collections, and expression depth to probe

resource limits while keeping the program valid.

Table 6.2: Mutation operators implemented in the mutator.

Family Operator Effect
Structural / REPLACE Replace node using template or context
Block pool.
ADD Insert simple statements to blocks
(diversity).
DELETE Remove node; keep pass if block
empties.
SWAP Swap sibling statements (module or

nested blocks).

Continued on next page

6.4. Methodology

149

Table 6.2 — continued from previous page

Family Operator Effect

REUSE Replace with deep-clone from in-file
pool.

INJECT Replace with deep-clone from
secondary file.

COMBINE Combine templates/subtrees
(conservative).

TRY_WRAP Wrap stmt/CF in try/except
Exception: pass.

INLINE_- Basic temp var rewrites (peephole-ish).

TEMP/EXTRACT_TEMP

Peephole / Op

ARITHMETIC_FLIP
LOGICAL_NEGATE

BOUNDARY_OFF_BY_ -
ONE

DECORATOR_TOGGLE

PARAM_DEFAULT -
MUTATE

Swap +<>—, x> //, etc.
Insert/remove N0t around boolean

exprs.

+1 tweaks of integer comparators.

Cycle staticmethod —

classmethod — property.

Nudge parameter default values

(int/string).

Semantic /

Path

SEMANTIC_AWARE

PATH_CONDITION

DEMORGAN

len(x)==0+ not x; is

None +» == None; identity arith.
In tests only: flip and/or, flip
relations, +1 thresholds.

Apply De Morgan’s laws with safe

parentheses.

Continued on next page

6.4. Methodology 150

Table 6.2 — continued from previous page

Family Operator Effect
WALRUS_INSERT Insert := in if/while/boolean sub-exprs
(CPython).
Aggressive / CHAOS Huge ints/strings/bytes, grow
Inflation collections, deepen expr, add blocks.

Overall, the context- and type-aware mutator provides a robust methodology for generat-
ing program variants. It balances exploration (through aggressive and chaotic mutations
that can uncover edge cases) with soundness (through context awareness and optional

type checking to keep mutants valid and interpretable).

6.4.2 Layer 2: Execution and Runtime Observation

The second layer executes each program from the corpus on both the baseline and CHERI-

enabled builds of MicroPython and records detailed, normalized telemetry.

Each interpreter process is launched in a strict sandbox that enforces resource limits using
setrlimit on CPU time, address space, and file writes. This prevents non-terminating
programs from stalling the framework and contains side effects. The harness captures the
process exit code, any terminating signal number, and the complete stdout and stderr
streams. In addition, the CHERI harness logs detailed information about any capability

faults (such as bounds, tag, or permission violations) that occur during execution.

6.4. Methodology 151

6.4.3 Layer 3: Differential Analysis and Triage

The final layer analyses the paired execution records to find meaningful discrepancies,

shrinks the inputs that cause them, and feeds the results back into the system.

6.4.3.1 Differential Oracle Logic

The comparator implements a state machine to classify each pair of outcomes. The
primary classification of interest is a Memory-Safety Differential. This is triggered

under two main conditions:

1. Crash vs. Fault: The baseline builds crashes with a generic memory signal (e.g.,
SIGSEGV, SIGBUS, while the CHERI build terminates cleanly with a specific cap-
ability fault signal. This indicates a memory error that CHERI precisely identifies.

2. Success vs. Fault (Latent Bug): The baseline build runs to completion (exit code
0) and produces some output, while the CHERI build terminates with a capability
fault. This is a highly valuable finding, as it uncovers a latent memory safety viol-
ation that does not cause a crash in a conventional environment but is nonetheless

a serious bug.

The other categories include: benign, semantic differential, timeout, and unknown. Benign
cases are those where both builds exit cleanly with the same code and similar output.
Semantic differentials occur when both builds complete but produce different outputs
or error codes, indicating a logic bug rather than a memory safety issue. Timeouts are
cases where one or both builds exceed the time limit, and unknown cases cover any other

discrepancies not fitting the above categories.

6.5. Evaluation 152

6.5 FEvaluation

Research Question 4: As firmware complexity grows, traditional fuzzing
struggles with highly structured inputs like language interpreters. How can we
evolve test generation beyond simple mutation to rigorously assess architectural

defences, thereby measuring the shift from vulnerability discovery to prevention?

Concretely, we assess whether our test generation framework, which employs Large Lan-
guage Models and Concrete Syntax Trees, combined with differential execution across
CHERI and conventional MicroPython architectures, allows us to (1) uncover vulnerabil-
ities related to memory safety within the interpreter and (2) demonstrate instances where

CHERI mitigates crashes that manifest in the baseline build.

6.5.1 Experiment Setup

Our experimental design uses differential testing to evaluate the impact of the CHERI
architecture on the MicroPython interpreter. To achieve this, we established two paral-
lel execution environments. The first is a control environment, which runs a standard,
non-CHERI build of MicroPython on a conventional Linux system. This setup provides a
baseline for the interpreter’s expected behaviour without hardware-based memory safety
enhancements. The second is the experimental environment, where MicroPython is com-
piled for and executed on the CHERI-enabled Morello platform. This allows us to assess
how CHERI’s hardware-enforced memory safety influences the interpreter’s behaviour

under identical test conditions.

6.5. Evaluation 153
Our testing methodology accounts for several key variables. Since the CHERI build of
MicroPython does not support the libffi module, we conduct separate test runs on the
baseline system both with and without this module. This ensures that our comparisons
accurately isolate the effects of the CHERI architecture. In addition, we run all test
cases against the latest official version of MicroPython (1.27-preview) to help distinguish
between pre-existing bugs in the core project and unique issues discovered during our

analysis.

A custom harness is deployed in both environments to automate test execution and data
collection. Each harness is responsible for running the same unified set of test scripts, en-
forcing resource limits like timeouts and memory usage, and capturing detailed telemetry.
The data collected includes standard output and error streams, exit codes, and operating
system signals. For the CHERI environment, the harness also records specific informa-
tion about any capability violations, offering direct insight into hardware-level memory

protection events.

6.5.2 Testcase Generation

The testcase generation process is a critical component of our evaluation framework,
designed to produce a diverse and comprehensive set of test scripts that effectively probe
the MicroPython interpreter for memory safety issues. This process begins with a curated
corpus of seed scripts, which are derived from known vulnerabilities, bug reports, and

common programming patterns that are likely to trigger memory-related errors.

6.5. Evaluation 154
The generation process employs a combination of techniques to expand this initial corpus.
First, we use the LLM model to learn the structure and characteristics of the seed scripts,
enabling it to generate new scripts that are syntactically valid and semantically relevant.
The LLM is prefix-tuned to focus on constructs that are particularly pertinent to memory

safety, such as pointer manipulations, buffer operations, and dynamic memory allocations.

Additionally, we leverage a context-aware mutator built on LibCST, as described in Sec-
tion 6.4.1. This mutator applies a series of sophisticated mutations that respect the syn-
tactic and semantic context of the code, ensuring that the generated scripts remain valid
Python programs. The mutator can operate in both type-safe and non-type-safe modes,
allowing us to explore a wide range of potential memory safety issues, including those

that may arise from type inconsistencies.

The final corpus of test scripts is a blend of the original seed scripts and the newly
generated variants. Each script is designed to be executed in both the baseline and CHERI-
enabled environments, allowing for direct comparison of their behaviour. The diversity of
the corpus is crucial, as it increases the likelihood of uncovering subtle memory safety

violations that may not be apparent in more straightforward test cases.

We generated a total of 3800 testcases using the methods described above. These testcases
were derived from an initial corpus seed, which were expanded through a combination of
rule-based transformations and context-aware mutations. The resulting corpus encom-
passes a wide range of programming constructs and patterns, designed to thoroughly

exercise the MicroPython interpreter’s memory management capabilities.

We categorize the generated testcases into the same categories as the collection of CVE
PoC and bug reports, shown in table 6.1. The categories include: raw memory, buffer
protocol & view lifetime; binary conversions & biginit conners, ffi & native emitters, pars-

ers, codecs & compressors in C, Filesystem, VFS& Race conditions, MMIO& peripherals,

6.5. Evaluation 155

Table 6.3: Distribution of testcases across different categories.

Category Generated testcases
Raw memory, buffer protocol & view lifetime 702
Binary conversions & bigint corners 783
FFI / native emitters 401
Parsers, codecs & compressors in C 638
Filesystem, VFS & Race Conditions 682
MMIO & peripherals (embedded targets) 170
Interpreter internals, exceptions & GC 590
Total 3800

and interpreter internal, exceptions & GC. These caterories cover a broad spectrum of
memory safety issues, ensuring that our evaluation is comprehensive and targets the most
relevant areas of the interpreter’s functionality. The distribution of testcases across these

categories is shown in table 6.3.

6.5.3 Results

After generating the testcases, we executed the testcases on these three distinct tar-
gets: the baseline non-CHERI build of MicroPython v1.20, the CHERI-enabled build of
MicroPython v1.20, and the latest development version of MicroPython (1.27-preview).
This section details the findings, beginning with the raw crash counts, followed by our de-

duplication methodology, and concluding with an analysis of the unique bugs identified.

6.5. Evaluation 156
Table 6.4: The bug distribution

Category MicroPythoiMicropPthoiMicroPython
v1.20 on v1.20 on newest
non- CHERI version
CHERI
Raw memory, buffer protocol & view lifetime 222 232 191
Binary conversions & bigint corners 115 165 99
FFI / native emitters 107 0 80
Parsers, codecs & compressors in C 15 11 4
Filesystem, VFS & Race Conditions 17 17 4
MMIO & peripherals 0 36 1
Interpreter internals, exceptions & GC 10 18 11
Total 486 479 390

6.5.3.1 Initial Crash Analysis

The initial execution of the test suite produced a large number of crashes across all targets.
As summarized in table 6.4, we initially recorded 486 crashes on the non-CHERI build,
479 on the CHERI-enabled build, and 390 on the newest version of MicroPython. The
"FFI / native emitters” category highlights a key difference, as the CHERI build lacks
libffi support and thus produced no crashes in this area. Conversely, the CHERI build
detected a significant number of bugs in categories sensitive to memory layout, such as
"Binary conversions & bigint corners” (165 vs. 115) and "MMIO & peripherals” (36 vs.
0).

6.5.3.2 Crash De-duplication Analysis

These initial crash counts are inflated by duplicate testcases. The generative and muta-
tional nature of our fuzzer often produces many slight variations of a test case that all
trigger the same underlying bug. To obtain an accurate count of unique vulnerabilities,

we implemented an automated crash de-duplication pipeline.

6.5. Evaluation 157

The pipeline process each crash as follows:

1. Filter for Crashes: Only test runs resulting in a crash (defined by non-zero and
non-one exit codes) are retained for analysis.

2. Extract Stack Trace: The GDB debugger is used to generate a backtrace for each
crash.

3. Generate Crash Signature: We parse the backtrace to create a unique "crash signa-
ture.” By default, this signature is defined by the top-most function call within the
MicroPython source code (e.g., mp__obj_subscr @ obj.c:538). Frames from external
libraries, such as libc, are ignored to ensure the signature is specific to the project’s

code.

All test cases that produce the same crash signature are grouped together and counted

as a single, unique bug.

6.5.3.3 Unique Bug Analysis

Applying this de-duplication process reveals a more precise landscape of bugs discovered,
as shown in table 6.5. In total, we identified 47 unique bugs on the non-CHERI build (35
non-libffi, 12 libffi-related) and 43 unique bugs on the CHERI build. The newest version
of MicroPython contained 35 unique bugs (24 non-libffi, 11 libffi-related).

When comparing the core interpreter (excluding libffi), the CHERI-enabled build exposed
more unique memory safety bugs than the baseline non-CHERI build. This result is con-
sistent with CHERI’s design, as its hardware enforced capability bounds and permissions
transform latent memory errors, which may not cause a crash on a conventional architec-

ture, into observable faults.

6.5. Evaluation 158

Table 6.5: The unique bug distribution after cleaning up the duplicates.

Target bug-non libfi bug-on libffi Total
MicroPython v1.20 on non-CHERI 35 12 47
MicroPython v1.20 on CHERI 43 0 43
MicroPython v1.27 preview 24 11 35

Additionally, there are also differences in the number of testcases that trigger each unique
bug, which also proves the CHERI’s capability to catch more memory safety bugs. Fig-
ure 6.3 illustrates this by comparing trigger counts for the top 10 bugs identified on the
CHERI build. For several bugs related to memory access, the detection gap is stark. For
instance, a bug in array_subscr() was triggered by 64 testcases on CHERI but was never
detected on the non-CHERI build. Similarly, a bug in machine__mem__subscr() was found

by 32 testcases on CHERI and none on the baseline.

Non-CHERI CHERI

gstr_compute_hash() 104 129
mp_binary_set_val_array_from_int() 104 118

set_aligned()

array_subscr()

machine_mem_subscr()

mp_iternext_allow_raise()

get_aligned()

mp_get_stream()

mp_get_stream_raise()

mp_obj_class_lookup()

100 50 0 50 100 150
Crash Count

Figure 6.3: The distribution of bugs found on CHERI-build and non-CHERI build.

6.5. Evaluation 159
The differences between the CHERI-build and non-CHERI-build bugs are shown in table 6.5.
It proves the CHERI-build can find more unique bugs. Even for the same bugs, there are
more testcases can be detected on the CHERI-build and missed on the non-CHERI-build.
It shows on figure 6.3. We select the top 10 bugs that we have found on CHERI-build
MicroPython. The pink bars show the number of testcases that can trigger the bugs on
non-CHERI build, and the purple boards show the number of testcases that can trigger
the bugs on CHERI-build.

In these examples, CHERI-build produces almost twice as many triggering testcases over-
all. The largest gaps occur in paths that perform bounds, alignment, or pointer-derived ac-
cess (e.g., array subscripts and aligned loads/stores). On CHERI, these operations fail fast
at the exact misuse site (capability bounds or alignment checks), while the non-CHERI

build only crashes if the corruption later propagates into illegal access.

Even when a bug is detectable on both platforms, the CHERI build consistently identifies
it more frequently. For example, a bug in set_aligned() was triggered by 68 testcases
on CHERI compared to only 13 on the non-CHERI build. This increased detection rate
occurs because CHERI fails fast at the precise point of misuse, like a capability bounds
or alignment check. In contrast, the non-CHERI build only crashes if and when the initial

memory corruption later propagates to cause a segmentation fault or other fatal error.

6.5.4 Selected Bug Examples

MicroPython provides low-level primitives such as uctypes, the buffer protocol, and VFS
block drivers that allow direct memory access in Python. In a conventional non-CHERI
build, common bugs like out-of-bounds (OOB) accesses or the use of stale pointers often
lead to silent memory corruption. The program may continue to execute, only to fail un-

predictably at a later time, or in some cases, not fail at all, producing incorrect results. In

6.5. Evaluation 160
contrast, CHERI enforces pointer bounds and permissions in hardware, providing robust
spatial and temporal memory safety. When code attempts to use a pointer outside its
designated range or after the memory it references has been deallocated (a stale pointer),
CHERI immediately raises a precise fault at the point of the illegal access. This section
presents concrete examples in MicroPython where CHERI reports bugs deterministically,

while the non-CHERI Unix port typically does not.

6.5.4.1 Bug Example on CHERI-build MicroPython

The following examples demonstrate memory safety violations that are instantly caught

by the CHERI architecture.

. import uctypes

. owner = bytearray(b"hello")

s base = uctypes.addressof(owner)

. try:

Create an alias that is 8 bytes longer than the owner buffer

6 raw = uctypes.bytearray_at(base, len(owner)+8)

7 # Write into the memory beyond the owner's true boundary

8 raw[len(owner):] = b"X"%8

0 print("CRASH_SIG")
1 except Exception as e2:

1 ok("passed", ty pe(e2).name)

Listing 6.1: Writing beyond the buffer via an overlong alias

In Listing 6.1, a raw memory alias is created that extends beyond the true boundary of the
owner buffer. On the CHERI build, the first attempt to write past the end of the owner
buffer raises a capability bounds fault, immediately terminating the illegal operation. On
the non-CHERI build, this writes proceeds silently, corrupting adjacent heap memory and

allowing the program to continue in an undefined state.

N

6.5. Evaluation 161

import uctypes as u

owner = bytearray(16)

base = u.addressof(owner)

#Create an alias starting 1 byte before the owner
a = u.bytearray_at(base - 1, 8)

alo] =1

print("DONE")

Listing 6.2: Writing before the buffer via an underflow alias

Listing 6.2 demonstrates a spatial memory violation where an alias is created starting just
before the allocated buffer. The CHERI build faults on the write to a[0], as it is outside
the valid bounds of the owner capability. Conversely, the non-CHERI build executes this
write, corrupting memory preceding the buffer, and the program continues, ignores the

error.

In Listing 6.3, a writable memoryview is created for a bytearray. The bytearray is then
extended, a process that often requires reallocating its memory buffer to a new, larger

location. This relocation invalidates the original memoryview.

import os

path = "tmp.bin"

with open(path, "wb") as f:
f.write(bytes(range(16)))

ba = bytearray(b'abcdefgh") # 8 bytes

mv = memoryview(ba) # Create a writable view
ba.extend(b"Z" x 4096)
with open(path, "rb") as f:

n = f.readinto(mv) # Attempt to write data via stale view
print("READ", n)

0s.remove(path)

1

6.5. Evaluation

Listing 6.3: Stale memoryview used as a target for readinto

The CHERI build MicroPython detects that muv is a stale capability pointing to dealloc-
ated memory and faults when f.readinto(mv) is called. However, the non-CHERI build
completes the readinto call successfully, writing data into a freed heap chunk that may

have since been reallocated for another purpose, leading to silent heap corruption.

6.5.4.2 Bugs Examples on Latest MicroPython

This section shows four crash examples reproduced on the latest standard MicroPython
Unix port. The first three reveal runtime defects in how MicroPython manages the lifetime
of memoryview objects and handles reentrancy in list.sort(). The fourth example is a
negative control, a Viper-compiled store to an unmapped memory address, which serves

to validate our fault analysis methodology. All results in this section were obtained on a

non-CHERI build.

#Keep writable views to a small bytearray, then grow it so its

storage moves.

#Writes through the old views corrupt unrelated runtime data.

import uctypes, gc

ba = bytearray(b"abcdefghij") # 10 bytes
old = uctypes.addressof(ba)

views = [memoryview(ba) for _ in range(4)]

#Growth likely moves the backing buffer.

bal:]1 = ba + b"X"x256

new = uctypes.addressof(ba)

print("MOVED?", old '= new, hex(old), "->", hex(new))

gc.collect()

#Writes through stale views (still pointing at the old storage).

1

1

6.5. Evaluation 163
s for mv in views:

| mv[0:1] = b"Y"
5 print("DONE")

Listing 6.4: Persistent writable views cause a crash after owner growth

The program typically prints MOVED? True, indicating the buffer was reallocated, and
then crashes at a later, unrelated point in its execution. The backtrace often shows a fault
during an indirect call within the virtual machine (e.g., in mp_load_method_maybe),
which is consistent with the corruption of an object’s type information or method table.
MicroPython does not invalidate or prevent the use of existing writable memoryview ob-
jects when their underlying buffer is reallocated. When the bytearray grows, its storage
moves, but the views retain a stale pointer to the old, now-freed memory location. Sub-
sequent writes through these stale views corrupt whichever object has since been allocated

in that memory space.

import uctypes, os

path = "t.bin"
with open(path, "wb") as f:
6 f.write(bytes(range(16)))

< a=array('Il', [0]x4) # 4 x 4B = 16 bytes

o old = uctypes.addressof(a)

v mv = memoryview(a) # Writable view

1 a.extend([1]x2048) # Likely moves storage

> new = uctypes.addressof(a)

s print("MOVED?", old '= new, hex(old), "->", hex(new))

> with open(path, "rb") as f:
6 n = f.readinto(mv) # 0S writes into stale address

7 print("READ", n)

6.5. Evaluation 164

s 0S.remove(path)

Listing 6.5: Typed array view kept across growth; readinto writes via stale view

A crash typically occurs when the program exits the with block. The backtrace points to a
fault within mp__stream__close() while trying to read the type field of what it assumes is a
valid stream object, indicating that the object’s metadata has been corrupted. A writable
memoryview of a typed array persists after the array’s storage is moved. This stale view
is then used as the destination buffer for readinto, which writes data to the deallocated

memory region, corrupting heap objects that now occupy that space.

. import gc
> class Evil:

def init(self, arr_ref):

self.arr_ref = arr_ref

def 1t(self, other):
6 self.arr_ref.clear() # Mutates the container being sorted
7 gc.collect() # Encourages immediate reuse of freed

space

8 return True
o a =[]
v a.extend(Evil(a) for _ in range(5))

1 a.sort()

Listing 6.6: Comparator clears the list during sort operation

The virtual machine crashes with a segmentation fault inside mp_ binary op() while ex-
ecuting the quicksort algorithm. The GDB backtrace reveals that the program attempts to
dereference a NULL pointer (rdi == 0) when trying to retrieve an object’s type, indicating
that the sort algorithm is operating on an invalid list element.The list.sort() implement-

ation is not reentrant-safe. It does not protect against scenarios where the comparison

6.5. Evaluation 165
function (1t) modifies the list being sorted. In this example, the comparator clears
the list, deallocating its elements. The sort function, unaware of this change, proceeds to
use its now-invalidated pointers to these elements, resulting in a NULL pointer derefer-

ence.

> @micropython.viper
def pokehi():
p = ptr8(1 << 31) # 0x80000000
plo] =1 # Store to unmapped address
s pokehi()

Listing 6.7: Viper writes to 0x80000000 (unmapped on Linux)

The program receives a SIGSEGV signal precisely at the instruction attempting to store
a byte to the high memory address 0x80000000. This behaviour is expected on a Linux

system where this address is part of an unmapped memory region.

6.6 Limitations and Future Work

Our differential testing framework has shown promising results in uncovering memory
safety issues in the MicroPython interpreter. We also prove that CHERI’s hardware-
enforced memory safety can catch more latent bugs that do not cause crashes on conven-
tional architectures. However, there are several limitations and areas for future improve-

ment:

6.6. Limitations and Future Work 166
A: Testcase Diversity and Coverage. Although our testcase generation methods produce
a wide range of inputs, there are still lots of similar testcases that trigger the same
bugs. Ensuring diverse programs that exercise truly distinct code paths remains an open
challenge [163]. Generating complex valid testcases for MicroPython is non-trivial. Other
program generators like Csmith [164] and RustSmith [165] use careful rules to produce
diverse, semantics-respecting programs. Adopting such rules from these generators could
help improve the quality of the generated testcases. In the context of MicroPython, a
more sophisticated generator could exercise rarely-used built-in types, error handlers, or
interpreter internals that our current seeds and mutators might miss. Using code from

real-world scripts or diverse libraries could further increase coverage of edge cases.

B: The more advanced generation technique. Our use of a prompt-guided large language
model (LLM) proved effective for synthesizing valid Python programs, but there is room
for more powerful generation approaches. Recent research suggests that LLMs can be
harnessed as intelligent fuzzing agents-not only generating code, but also mutating and
steering tests towards suspicious patterns. Future work could explore fine-tuning an LLM
on MicroPython’s grammar or known bug patterns to create an even more targeted gen-
erator. Another direction is to integrate semantic feedback into generation: for example,
using the interpreter’s own parser or a static analyser to guide the LLM to problematic
constructs (e.g. deep recursion, large nested data structures, risky use of the C API).
This could mitigate the risk of the model producing many syntactically different but se-
mantically similar tests. Furthermore, an autonomous LLM-based agent might iteratively
generate and refine tests by observing the differential outcomes-a form of Al-driven closed-
loop fuzzing. Leveraging such generative Al techniques, which are starting to emerge in
software testing research, could significantly enhance the breadth and depth of our test

corpus.

6.6. Limitations and Future Work 167
C: Semantic Analysis and Dynamic Instrumentation. Our current differential oracle simply
compares final outcomes (crash vs. capability fault vs. normal output). A deeper semantic
analysis of execution could uncover subtle discrepancies and guide test generation. In
future work, we envision integrating dynamic instrumentation tools like DynamoRIO [166]
to trace memory accesses, pointer metadata, and control-flow coverage in detail during
each test run. For example, logging every memory allocation and deallocation in the
interpreter could help detect temporal safety issues even if they do not immediately lead

to a crash.

D: Broader Target Support. Our initial study focused on MicroPython within a Unix-like
environment and on the ARM Morello board. To assess the broader applicability of our
approach, we intend to deploy our differential testing framework on other microcontroller
boards. Moreover, our methodology could be extended to evaluate alternate embedded

interpreters, such as CircuitPython, Cruby.

6.7 Conclusion

This chapter presented a novel differential testing framework that combines smart test
generation with hardware-assisted checking to evaluate memory safety in MicroPython.
We addressed RQ4 by showing how to evolve fuzz testing beyond blind mutation in or-
der to rigorously assess an architectural defence (the CHERI capability system). Our ap-
proach leveraged an LLM-based generator and a LibCST mutator to produce semantically
valid, high-risk Python programs, overcoming the limitations of naive fuzzers that often
generate invalid code. We then ran each program on two builds-one standard and one
CHERI-enhanced-under a unified harness that captures and normalizes their behaviour.
By treating the CHERI-enabled interpreter as a variant implementation, we turned di-
vergent outcomes into a powerful oracle for memory errors. Crucially, the CHERI build’s

precise traps transformed many elusive bugs into deterministic faults, providing immedi-

6.7. Conclusion 168
ate evidence of out-of-bounds accesses, use-after-free, and other unsafe actions that would
otherwise go undetected. The experimental results demonstrate the effectiveness of this
approach. The differential fuzzer discovered huge gaps in detecting memory safety bugs
between CHERI and non-CHERI builds. Additionally, we also uncovered 35 unique bugs
in the latest version of MicroPython. All the code and discovered bugs have been respons-
ibly disclosed to the MicroPython team, shown in Appendix B. We also provide the source

code for differential framework and MicroPython bug database to the community.?

3. https://github.com/MaksimFeng/ML4Secure/tree/evolve

https://github.com/MaksimFeng/ML4Secure/tree/evolve

Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis advances automated vulnerability discovery in IoT firmware by designing and
evaluating four complementary fuzzing techniques, each addressing a core challenge high-
lighted in chapter 1. Taken together, the results show that domain-aware strategies, richer
feedback signals, hardware-assisted execution, and structured test generation can mater-
ially improve the effectiveness of fuzzing for embedded systems. The evaluations span
industrial control systems, general-purpose firmware, and a memory-safe architecture,
and show that a hardware-centric approach can both increase the rate at which bugs are

found and support the assessment of preventative security mechanisms.

Sizzler introduces a domain-specific, learning-based fuzzer for ladder logic in program-
mable logic controllers (PLCs). It uses a SeqGAN model to learn mutation policies from
the fuzzing process so that generated inputs bypass PLC-specific checks and reach deeper
logic. Sizzler emulates ladder diagrams across diverse microcontroller platforms using a
refined QEMU backend. In practice, Sizzler uncovered a critical buffer overflow in the
OpenPLC runtime (CVE-2023-43184) that allowed crafted ladder code to inject pay-

loads via PLC slave attributes and crash the controller. Across our dataset, Sizzler found

169

7.1. Summary of Contributions 170
multiple PLC logic issues and achieved higher coverage on standard embedded bench-
marks (Magma and LAVA-M) than baseline fuzzers. These findings answer RQ1: domain-
specific learning improves mutation effectiveness, enabling inputs that pass PLC-specific
filters and expose deeper code paths that general-purpose fuzzers miss. Sizzler’s success
on closed-source PLC binaries underscores the value of combining domain knowledge with

learning-based mutation for IoT firmware.

FuzzRDUCC contributes a data-flow guided feedback mechanism for binary fuzzing,
answering RQ2 by directly comparing def-use coverage with classic control-flow (edge)
coverage in firmware and driver contexts. Integrated into QEMU at the translation level,
FuzzRDUCC instruments binaries to record where values are defined and where they are
later used, not only which basic blocks execute. Our evaluation shows that def-use cover-
age provides stronger guidance to solve hard conditional checks and magicbyte comparis-
ons. Over 24-hour campaigns on real binaries (e.g., GNU Binutils utilities), FuzzZRDUCC
achieved faster coverage growth than AFL++ and several state-of-the-art binary-only
fuzzers, including UAFuzz and ZAFL, thereby exploring paths that edge coverage alone
did not reach. Notably, it revealed a unique null-pointer dereference in the strip utility’s
relocation-handling logic (within copy_relocations__in__section) by manipulating specific
relocation entries, whereas AFL++"s generic mutations failed to pass initial format checks
and missed this code region entirely. While total crash counts did not always scale with
coverage—AFL~++ still found certain bugs faster—the quality of coverage from FuzzR-
DUCC exposed new bug classes (e.g., pointer misuse in strip) that edge-based fuzzers
overlooked. These results support the claim that enriching feedback with data-flow inform-
ation can guide test generation more effectively than standard edge coverage, especially

for firmware with complex, input-dependent logic.

Hardfuzz answers RQ3 by showing that on-device fuzzing with hardware breakpoints
can deliver high-fidelity execution and effective feedback at practical speed on micro-
controllers. The framework runs target firmware on real hardware and uses the built-in

debug interface to gather feedback, avoiding the uncertainties of emulation. Hardfuzz

7.1. Summary of Contributions 171
guides fuzzing with def-use insights (as in FuzzRDUCC) while operating under the con-
straint of a small number of hardware breakpoints. Inspired by recent “debugger-driven”
fuzzing techniques that use GDB and on-chip debug hardware [40], we show that even
4-6 breakpoints on typical Cortex-M MCUs are sufficient for coverage-guided, on-device
fuzzing. By placing breakpoints along high-value def-use chains and relocating them it-
eratively, Hardfuzz explores new code while executing each test at native MCU speed
(avoiding the >10x slowdowns common in full emulation). The approach is fast, accur-
ate, and non-intrusive: all peripheral interactions and timing behaviour occur as on the
actual device, and any crash is a true device crash. In our evaluation, Hardfuzz achieved
higher coverage and more unique basic blocks than GDBFuzz under QEMU emulation,
indicating that our breakpoint assignment strategy is efficient. For the real MCUs, Hard-
fuzz outperformed GDBFuzz in coverage finding, demonstrating that on-device fuzzing
with data-flow guidance is both practical and effective. These outcomes confirm RQ3:
fuzzing on real hardware via debug breakpoints is practical and can match or exceed

emulation-based approaches in both coverage and bug finding.

Finally, MicroPython differential fuzzing addresses RQ4 by moving beyond pure
bug hunting to the structured evaluation of defensive mechanisms. We present a differen-
tial fuzzing framework for MicroPython that generates valid, structured test cases using
LLMs and CST mutations. We then run the same tests in two environments: (i) a CHERI-
capability-enabled MicroPython interpreter on a CHERI system and (ii) a baseline inter-
preter on a conventional CPU. By comparing outcomes (e.g., crashes, exceptions, silent
execution), we measure how many memory errors are prevented by CHERI. Many inputs
produced divergent behaviour: heap overflows and use-after-free errors that caused silent
memory corruption on the baseline were safely trapped on CHERI as bounds violations.
In several cases, the CHERI-enabled interpreter halted latent memory safety bugs that
had not been observable on conventional hardware until fuzzing uncovered them. CHERI
detected 8 unique memory safety violations which can not be detected on the baseline

system.Thus, RQ4 is answered: when systems include strong architectural safety features,

7.1. Summary of Contributions 172
fuzzing can and should be used to assess these preventative measures. With LLM-assisted,
high-structure test generation, we achieved broad interpreter coverage and showed how
architectural memory safety (CHERI capabilities) can eliminate entire classes of vulner-

abilities that remain exploitable on traditional architectures.

7.2 Limitations and Future Work

While these contributions advance automated [oT firmware testing, several limitations

affect generality and scalability of our techniques.

Vendor specificity in PLCs. Sizzler currently targets ladder logic from open-source
PLC environments, yet most industrial PLC binaries use proprietary formats. There is
no universal emulator or intermediate representation for all PLC equipment, vendors
differ in memory maps, instruction sets, and binary layouts. Although Sizzler shows the
value of domain-specific learning for PLCs, broad adoption will require adaptation to
diverse vendor ecosystems. Future work includes developing cross-vendor intermediate
representations, applying automated reverse engineering to infer semantics, and building

lifting pipelines that reduce per-vendor engineering effort.

Performance and overhead. Instrumentation-heavy techniques incur runtime costs.
FuzzZRDUCC’s data-flow instrumentation introduces overhead in QEMU. We mitigate
this with heuristics that select high-value def-use chains, but the prototype still runs
slower than native execution. Sizzler’s use of AFL-++ on QEMU also adds overhead, full
tracing in QEMU can introduce slowdowns on the order of 13x. Hardfuzz executes tests
at device speed, but serial I/O and frequent breakpoint handling add latency, and the
small number of hardware breakpoints limits simultaneous instrumentation. The stop—

restart cycle for on-device testing lowers throughput relative to in-memory fuzzing. In

7.2. Limitations and Future Work 173
short, richer feedback improves guidance but reduces executions per second, which can
hinder scalability for very large firmware that require millions of test runs. Future optim-
izations include selective and adaptive instrumentation, use of hardware tracing features,
parallelization across device farms, and hybrid fuzzing that switches between emulation

and hardware based on feedback value.

LLM-generated structured inputs. Our CHERI+MicroPython pipeline depends on
the quality and diversity of the underlying language model and prompts. While coverage
was strong, we cannot claim complete exercise of all interpreter paths, especially rare edge
cases. Moreover, our study focused on a single interpreter and one architectural mechan-
ism (CHERI). Future work should extend to other interpreters and runtimes, and com-
pare multiple safety mechanisms (e.g., memory tagging or sanitisation-based defences).
Improvements to input generation—such as constraint-guided CST edits, semantic or
type-aware mutations, and feedback that rewards specification conformance—could fur-

ther increase depth and breadth of exercised behaviours.

In summary, the four systems deliver clear gains but involve trade-offs: limited generality
for PLC fuzzing, runtime overhead for instrumentation, hardware resource constraints for
on-device fuzzing, and reliance on external models for structured inputs. Addressing these
constraints points toward a unified, scalable framework that (i) abstracts vendor-specific
details, (ii) adapts instrumentation to maximise feedback per unit time, (iii) leverages
device farms and hardware tracing to close the throughput gap, and (iv) uses semantics-

aware generators that better align with target specifications.

7.3. Final Remarks 174

7.3 Final Remarks

This thesis shows that fuzzing for IoT and embedded systems is strengthened by domain-
specific knowledge, richer feedback, hardware-in-the-loop integration, and structured in-
put generation. We frame the contributions along two axes: where the target runs (real
MCUs, rehosting, emulation) and what guides exploration (data-flow and semantic feed-
back paired with grammar and model guided generators). Our results (new PLC vulnerab-
ilities, previously unseen firmware bugs, and empirical evidence that architectural safety
features such as CHERI can block whole classes of memory-safety errors) demonstrate
significant security impact. The remaining gaps point to next steps: make the techniques
more general across platforms, faster at scale, and easier to deploy. The broader goal
is an automated, end-to-end fuzzing ecosystem that not only finds vulnerabilities across
the diverse IoT landscape but also informs the design and evaluation of safer firmware
and hardware, enabling a paradigm shift in the field from discovery to prevention of

vulnerabilities.

Appendices

A Prompt for LLM Testcase Generation

This section provides the exact prompt we used for generating MicroPython testcases.
The prompt is designed to guide the LLM to produce concise, syntactically valid, and
semantically meaningful Python code snippets that can be executed in a MicroPython

environment.

You are an expert MicroPython vulnerability hunter. Generate standalone .py tests for the
MicroPython Unix port. Each test must be a single file that runs fast, is self-validating,
and prints a result. Focus on finding memory-safety bugs (bounds violations, UAF, stale
views, unchecked pointer use, corruptions) and hard VM failures (segfault/abort), not

just ValueError/MemoryError.

Environment & constraints (must follow)
o Target: MicroPython Unix build.

« memoryview step must be 1 (use contiguous slices only).

. bytearray.clear() is absent — use del bal:].

175

A. Prompt for LLM Testcase Generation 176

o bytearray x= N is absent — grow with extend or slice-assign ba[:] = ba +
big_bytes.

« Prefer open() over 0s.open; fsync/truncate may not exist.

o If a feature/module is missing, print SKIP: <reason> and exit cleanly.

Categories & tactics (generate N tests per category; default N=40)

A) Raw memory, buffer protocol & view lifetime

o Aggressively exercise:

— uctypes.bytes_at(addr, len) and bytearray_at(addr, len) with neg-
ative/NULL /huge addresses.

— uctypes.struct(base, desc) with misaligned fields, fields crossing buffer
end, and negative base offsets.

— addressof () on immutable str/bytes, then write via bytearray_at and
observe consequences (e.g., content/CRC drift).

— Stale view patterns: hold memoryview/uctypes alias; perform byte-
array.extend(huge), bal:]1 = ba + big, del bal:] (clear), or ar—
ray('B').extend(...); then write via the old view/alias.

— Overlapped aliasing: multiple bytearray_at to overlapping ranges; write in-
terleaved after owner growth.

e Oracles:

— A crash (rc # 0) or "strange success” like writing through a view after owner
moved.

— Post-write invariants: if you mutate bytes/str via raw writes, check ubinas—

Cii.crc32/prefix/equality changed unexpectedly.

B) Binary conversions & bigint corners

o Push ustruct/struct:

A. Prompt for LLM Testcase Generation 177
— pack_into/unpack_from with giant/negative offsets, misaligned offsets
into memoryview(array('H'/'I')).
— Huge repeat counts ("'999999x" "1000000s") and composite formats with
many fields (check integer overflow in size maths).
« int.to_bytes/from_bytes:
— Extreme lengths (0, 1, huge), signed/unsigned mismatch; pipe into *_into to
write past end of a small view.
« Oracles: crash; silent buffer corruption (verify guard bytes); diverging behaviour vs

expected bounds checks.

D) Parsers, codecs & UTF-8

¢ ujson: deeply nested, massive numbers, invalid escapes, recursive structures to trigger
edge walkers.

« ubinascii: hexlify/unhexlify with injected invalids mid-stream; large CRC32
on unaligned memoryviews.

« ure: catastrophic backtracking patterns that also manipulate big buffers nearby (look
for mis-sized memcpy).

o Utf-8: overlong/invalid continuations in bulk.

e Oracles: crash or inconsistent results after heavy decode loops.

E) Filesystem & VFS edges

« readinto into typed memoryviews (array('H"'/'I")) with lengths not multiples
of element size; chain partial reads into overlapping slices of the same buffer.

o Use the same memoryview interleaved with multiple file objects; rename/remove
file between reads.

« After readinto, drop or clear the owner (del bal:], reassign buf = byte-
array(1)), then attempt view write.

e Oracles: crash, stale view write success, data torn in overlapped regions.

F) MMIO (optional, skip if machine missing)

A. Prompt for LLM Testcase Generation 178
o Misaligned mem8/16/32 accesses and addresses that cross 4 KiB windows.

« Oracles: bound/permission faults (on CHERI builds) or crashes on permissive ports.

G) Interpreter internals & GC interactions

o Finalizers that resurrect objects and allocate during GC; chained generators whose
close() allocates in finally.

 Sorting with comparators that mutate/lengthen the list; schedule many callbacks that
raise, interleaving gc.collect().

« micropython.heap_lock() misuse: attempt allocations while locked (expect clean
error, not crash).

e Oracles: crash or corrupted interpreter state.

FFI / C extensions / native emitters Targets

e Unix port: Tfi/ffilib (dlopen/dlsym + calls)
e @micropython.viper / @micropython.native (where available)

e Inline asm on MCU ports (e.g., asm_thumb)

Test structure & output (strict)

o Fach file must:
— Import only what it needs.
— Wrap the core in try/except and log("OK"/"EXC", ...).
— Avoid unsupported APIs per constraints above.
— Prefer short, deterministic sequences over loops; add thrash() judiciously to
shake lifetime bugs.
— Print exactly one final line that starts with one of:
x OK, EXC <Type>, SKIP <reason>, or a brief custom tag like CRASH_SIG
if you detect inconsistency.

e Aim for crash or deterministic invalid write.

A. Prompt for LLM Testcase Generation 179

Seed patterns to instantiate across tests (cover systematically)

o Addresses: [—2% .. -1], [0], [1, 2, 16, 4096, 23!] (clamped to platform).

« Sizes: [0, 1, 3, 7, 15, 31, 63, 127, 255, 4096, 1000000].

» Offsets into pack/unpack: [—109, -1,0,1, 2,3, 4,7, 15, 31].

« Element widths: 1/2/4; owners: bytearray, array('B'), array('H'), ar-
ray('I").

« Owner growth ops: extend(big), bal:] = ba + big, del bal:].

« GC cadence: call thrash() before/after a potentially stale deref.

Deliverable

o Produce N=40 tests per category (A,B,D,E.G; F only if machine exists).

« Each file name starts with test_<categorycode><case#>_<brief>.py.

Example code you can follow

import gc
class Evil:
def __init__(self, arr_ref):

self.arr_ref = arr_ref

def __1t_ (self, other):

self.arr_ref.clear()
gc.collect()
return True

a =[]

evil_objs = [Evil(a) for _ in range(5)]

a.extend(evil_objs)

print(len(a))

a.sort()

print(len(a))
print(len(evil_objs))

A. Prompt for LLM Testcase Generation 180

#

import gc
b = bytearray(b"ABCD")
mv = memoryview(b)
try:

b[:] = b""
except Exception as e:

print("shrink blocked:", type(e).__name__, e)

for _ in range(2000):
_ = bytearray(64)
gc.collect()
try:
print("mv_head=", bytes(mv[:1]))
except Exception as e:

print("mv read exc:", type(e).__name__, e)

B Bug Reports Submitted to the MicroPython Pro-

ject

The following GitHub issues were opened as part of outcome of differential testing frame-

work for MicroPython.

Issue #18172

[ssue #18171

Issue #18170

[ssue #18169

[ssue #18168

https://github.com/micropython/micropython/issues/18172
https://github.com/micropython/micropython/issues/18171
https://github.com/micropython/micropython/issues/18170
https://github.com/micropython/micropython/issues/18169
https://github.com/micropython/micropython/issues/18168

B. Bug Reports Submitted to the MicroPython Project 181
o Issue #18167
o Issue #18166
o Issue #17941

https://github.com/micropython/micropython/issues/18167
https://github.com/micropython/micropython/issues/18166
https://github.com/micropython/micropython/issues/17941

Bibliography

Binbin Zhao et al. ‘A large-scale empirical analysis of the vulnerabilities introduced
by third-party components in IoT firmware’. In: Proceedings of the 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis. 2022, pp. 442—
454.

Zhichuang Sun et al. ‘OAT: Attesting operation integrity of embedded devices’. In:
2020 IEEE Symposium on Security and Privacy (SP). IEEE. 2020, pp. 1433-1449.
Taylor Hardin et al. ‘Application memory isolation on ultra-Low-powerMCUs’. In:
2018 USENIX Annual Technical Conference (USENIX ATC 18). 2018, pp. 127—
132.

Alejandro Mera et al. ‘D-box: DMA-enabled compartmentalization for embedded
applications’. In: arXiv preprint arXiv:2201.05199 (2022).

LLVM Project. Clang Static Analyzer. Accessed: 26 August 2025. 2025. url: https:
//clang—analyzer.1llvm.org/.

Bo Feng, Alejandro Mera and Long Lu. ‘P2IM: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling’. In: 29th USENIX
Security Symposium (USENIX Security 20). 2020, pp. 1237-1254.

Marius Muench et al. ‘Avatar 2: A multi-target orchestration platform’. In: Proc.
Workshop Binary Anal. Res.(Colocated NDSS Symp.) Vol. 18. 2018, pp. 1-11.
Barton P Miller, Lars Fredriksen and Bryan So. ‘An empirical study of the reli-
ability of UNIX utilities’. In: Communications of the ACM 33.12 (1990), pp. 32—
44.

182

https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/

BIBLIOGRAPHY 183
[9] Oliver Chang et al. ‘OSS-Fuzz: Continuous fuzzing for open source software’. In:
URL: https://github. com/google/ossfuzz (2016).

[10] Jiongyi Chen et al. ‘loTFuzzer: Discovering memory corruptions in IoT through
app-based fuzzing.” In: NDSS. 2018, pp. 1-15.

[11] Yaowen Zheng et al. ‘FIRM-AFL:High-Throughput greybox fuzzing of IoT firm-
ware via augmented process emulation’. In: 28th USENIX Security Symposium
(USENIX Security 19). 2019, pp. 1099-1114.

[12] Meng Xu et al. ‘Krace: Data race fuzzing for kernel file systems’. In: 2020 IEEE
Symposium on Security and Privacy (SP). IEEE. 2020, pp. 1643-1660.

[13] Zu-Ming Jiang, Jia-Ju Bai and Zhendong Su. ‘DynSQL: Stateful fuzzing for data-
base management systems with complex and valid SQL query generation’. In: 32nd
USENIX Security Symposium (USENIX Security 23). 2023, pp. 4949-4965.

[14] George Klees et al. ‘Evaluating fuzz testing’ In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security. 2018, pp. 2123—
2138.

[15] Alejandro Mera et al. ‘DICE: Automatic emulation of DMA input channels for
dynamic firmware analysis’. In: 2021 IEEE Symposium on Security and Privacy
(SP). IEEE. 2021, pp. 1938-1954.

[16] Christopher Wright et al. ‘Challenges in firmware re-hosting, emulation, and ana-
lysis’ In: ACM Computing Surveys (CSUR) 54.1 (2021), pp. 1-36.

[17] Nassim Corteggiani, Giovanni Camurati and Aurélien Francillon. ‘Inception:System-
Wide security testing of Real-World embedded systems software’. In: 27th USENIX
security symposium (USENIX security 18). 2018, pp. 309-326.

[18] Karl Koscher, Tadayoshi Kohno and David Molnar. ‘SURROGATES: Enabling
Near-Real-Time dynamic analyses of embedded systems’. In: 9th USENIX Work-
shop on Offensive Technologies (WOOT 15). 2015.

[19] Jonas Zaddach et al. ‘AVATAR: A Framework to Support Dynamic Security Ana-
lysis of Embedded Systems’ Firmwares.” In: NDSS. Vol. 14. 2014. 2014, pp. 1-
16.

BIBLIOGRAPHY 184

[20] Stefan Nagy and Matthew Hicks. ‘Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing’. In: 2019 IEEE Symposium on Security and Pri-
vacy (SP). IEEE. 2019, pp. 787-802.

[21] Michal Zalewski. American Fuzzy Lop. [Online]. Available: https://lcamtuf.coredump.cx/afl
2017.

[22] Chenyang Lyu et al. ‘MOPT: Optimized mutation scheduling for fuzzers’. In: 28th
USENIX security symposium (USENIX security 19). 2019, pp. 1949-1966.

(23] Mingyuan Wu et al. ‘One fuzzing strategy to rule them all’. In: Proceedings of the
44th International Conference on Software Engineering. 2022, pp. 1634-1645.

[24] Yan Wang et al. ‘A systematic review of fuzzing based on machine learning tech-
niques’. In: PloS one 15.8 (2020), e0237749.

[25] Thiago Rodrigues Alves et al. ‘OpenPLC: An open source alternative to automa-
tion”. In: IEEE Global Humanitarian Technology Conference (GHTC 2014). IEEE.
2014, pp. 585-589.

[26] Peng Chen and Hao Chen. ‘Angora: Efficient fuzzing by principled search’. In: 2018
IEEE Symposium on Security and Privacy (SP). IEEE. 2018, pp. 711-725.

[27] Ahmad Hazimeh, Adrian Herrera and Mathias Payer. ‘Magma: A ground-truth
fuzzing benchmark’. In: Proceedings of the ACM on Measurement and Analysis of
Computing Systems 4.3 (2020), pp. 1-29.

28] Jonathan H Turner. ‘Self, emotions, and extreme violence: Extending symbolic
interactionist theorizing”. In: Symbolic Interaction 30.4 (2007), pp. 501-530.

[29] Ayushi Sharma et al. ‘Rust for embedded systems: current state and open prob-
lems’. In: Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security. 2024, pp. 2296-2310.

[30] Van-Thuan Pham, Marcel Béhme and Abhik Roychoudhury. ‘Aflnet: A greybox
fuzzer for network protocols’. In: 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). IEEE. 2020, pp. 460-465.

[31] Jincheng Wang, Le Yu and Xiapu Luo. ‘Llmif: Augmented large language model
for fuzzing iot devices’ In: 2024 IEEE Symposium on Security and Privacy (SP).
[EEE. 2024, pp. 881-896.

BIBLIOGRAPHY 185

[32] Paul Fiterau-Brostean et al. ‘Analysis of DTLS implementations using protocol
state fuzzing’. In: 29th USENIX Security Symposium (USENIX Security 20). 2020,
pp. 2523-2540.

[33] Vaggelis Atlidakis, Patrice Godefroid and Marina Polishchuk. ‘Restler: Stateful
rest api fuzzing’. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE. 2019, pp. 748-758.

[34] Xiaotao Feng et al. ‘Detecting vulnerability on IoT device firmware: A survey’. In:
IEEE/CAA Journal of Automatica Sinica 10.1 (2022), pp. 25-41.

[35] Alexander Bulekov et al. ‘Morphuzz: Bending (input) space to fuzz virtual devices’.
In: 31st USENIX Security Symposium (USENIX Security 22). 2022, pp. 1221-1238.

[36] Bo Yu et al. ‘Poster: Fuzzing iot firmware via multi-stage message generation’. In:
Proceedings of the 2019 ACM SIGSAC conference on computer and communica-
tions security. 2019, pp. 2525-2527.

[37] Zhenhao Luo et al. ‘VulHawk: Cross-architecture vulnerability detection with entropy-
based binary code search.” In: NDSS. 2023.

[38] Roberto Natella. ‘StateAFL: Greybox Fuzzing for Stateful Network Servers’. In:
Empirical Software Engineering 27.191 (2022).

[39] Pedram Amini and Aaron Portnoy. Sulley Fuzzing Framework. https://github.
com/0penRCE/sulley. 2010.

[40] Max Eisele et al. ‘Fuzzing embedded systems using debug interfaces’. In: Proceed-
ings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis. 2023, pp. 1031-1042.

[41] Kevin Lacufer et al. ‘RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs’. In:
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE. 2018, pp. 1-8.

[42] Yanhao Wang et al. ‘Not All Coverage Measurements Are Equal: Fuzzing by Cov-
erage Accounting for Input Prioritization.” In: NDSS. 2020.

[43] Andrea Fioraldi et al. ‘AFL-++ combining incremental steps of fuzzing research’.
In: Proceedings of the 14th USENIX Conference on Offensive Technologies. 2020,
pp- 10-10.

https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley

BIBLIOGRAPHY 186

[44]

[45]

[48]

[49]

[50]

[51]

Joobeom Yun et al. ‘Fuzzing of embedded systems: A survey’. In: ACM Computing
Surveys 55.7 (2022), pp. 1-33.

Gen Zhang et al. ‘Mobfuzz: Adaptive multi-objective optimization in gray-box
fuzzing’. In: arXiv preprint arXiv:2401.15956 (2024).

Yaowen Zheng et al. ‘Efficient greybox fuzzing of applications in Linux-based IoT
devices via enhanced user-mode emulation’. In: Proceedings of the 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis. 2022, pp. 417
428.

Xiaotao Feng et al. ‘Snipuzz: Black-box fuzzing of iot firmware via message snippet
inference’. In: Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security. 2021, pp. 337-350.

Dokyung Song et al. ‘Agamotto: Accelerating kernel driver fuzzing with lightweight
virtual machine checkpoints’. In: 29th USENIX Security Symposium (USENIX
Security 20). 2020, pp. 2541-2557.

Moritz Schloegel et al. ‘Sok: Prudent evaluation practices for fuzzing’ In: 202/
IEEE Symposium on Security and Privacy (SP). IEEE. 2024, pp. 1974-1993.

Jun Li, Bodong Zhao and Chao Zhang. ‘Fuzzing: a survey’ In: Cybersecurity 1.1
(2018), p. 6.

Maialen Eceiza, Jose Luis Flores and Mikel Iturbe. ‘Fuzzing the internet of things:
A review on the techniques and challenges for efficient vulnerability discovery in
embedded systems’. In: IEEFE Internet of Things Journal 8.13 (2021), pp. 10390
10411.

Lukas Seidel, Dominik Christian Maier and Marius Muench. ‘Forming Faster Firm-
ware Fuzzers.” In: USENIX Security Symposium. 2023, pp. 2903-2920.

Sebastian Osterlund et al. ‘ParmeSan: Sanitizer-guided greybox fuzzing’. In: 29th
USENIX Security Symposium (USENIX Security 20). 2020, pp. 2289-2306.
Yuseok Jeon et al. ‘FuZZan: Efficient sanitizer metadata design for fuzzing’ In:
2020 USENIX Annual Technical Conference (USENIX ATC 20). 2020, pp. 249—
263.

BIBLIOGRAPHY 187

[55]

[58]

[59]

[62]

[63]

[64]

[65]

Joschua Schilling et al. ‘A binary-level thread sanitizer or why sanitizing on the
binary level is hard’. In: 33rd USENIX Security Symposium (USENIX Security 24).
2024, pp. 1903-1920.

Dae R Jeong et al. ‘Razzer: Finding kernel race bugs through fuzzing’ In: 2019
IEEFE Symposium on Security and Privacy (SP). IEEE. 2019, pp. 754-768.
Dokyung Song et al. ‘Periscope: An effective probing and fuzzing framework for
the hardware-os boundary’. In: 2019 Network and Distributed Systems Security
Symposium (NDSS). Internet Society. 2019, pp. 1-15.

Qiang Liu et al. ‘Videzzo: Dependency-aware virtual device fuzzing’. In: 2023 IEEFE
Symposium on security and privacy (SP). IEEE. 2023, pp. 3228-3245.

Elia Geretto et al. ‘Snappy: Efficient fuzzing with adaptive and mutable snapshots’.
In: Proceedings of the 38th annual computer security applications conference. 2022,
pp. 375—-387.

Max Eisele et al. ‘Embedded fuzzing: a review of challenges, tools, and solutions’.
In: Cybersecurity 5.1 (2022), p. 18.

Alejandro Mera et al. ‘SHiFT: Semi-hosted Fuzz Testing for Embedded Applica-
tions’. In: 33rd USENIX Security Symposium (USENIX Security 24). 2024, pp. 5323—
5340.

Ren Ding et al. ‘Hardware support to improve fuzzing performance and precision’.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security. 2021, pp. 2214-2228.

Romain Malmain, Andrea Fioraldi and Aurélien Francillon. ‘LibAFL QEMU: A
library for fuzzing-oriented emulation’. In: BAR 2024, Workshop on Binary Ana-
lysis Research, colocated with NDSS 2024. 2024.

Zhongwen Feng and Junyan Ma. “TWFuzz: Fuzzing embedded systems with three
wires’. In: Proceedings of the 25th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, and Tools for Embedded Systems. 2024, pp. 107—
118.

Wengiang Li et al. ‘4 AFL: non-intrusive feedback-driven fuzzing for microcontrol-
ler firmware’. In: Proceedings of the 44th International Conference on Software

Engineering. 2022, pp. 1-12.

BIBLIOGRAPHY 188

[66]

[67]

[70]

[71]

[76]

Tai Yue et al. ‘Armor: Protecting software against hardware tracing techniques’.
In: IEEE Transactions on Information Forensics and Security 19 (2024), pp. 4247—
4262.

James Patrick-Evans, Lorenzo Cavallaro and Johannes Kinder. ‘POTUS: Prob-
ing Off-The-ShelfUSB Drivers with Symbolic Fault Injection’ In: 11th USENIX
Workshop on Offensive Technologies (WOOT 17). 2017.

Philip Sperl and Konstantin Bottinger. ‘Side-channel aware fuzzing’. In: Furopean
Symposium on Research in Computer Security. Springer. 2019, pp. 259-278.
Pallavi Borkar et al. ‘WhisperFuzz:White-Box Fuzzing for Detecting and Locat-
ing Timing Vulnerabilities in Processors’. In: 33rd USENIX Security Symposium
(USENIX Security 24). 2024, pp. 5377-5394.

Hangtian Liu et al. ‘Labrador: Response guided directed fuzzing for black-box iot
devices’. In: 2024 IEEE Symposium on Security and Privacy (SP). IEEE. 2024,
pp. 1920-1938.

Yu Zhang et al. ‘SRFuzzer: An automatic fuzzing framework for physical SOHO
router devices to discover multi-type vulnerabilities’ In: Proceedings of the 35th
annual computer security applications conference. 2019, pp. 544-556.

Prashast Srivastava et al. ‘Firmfuzz: Automated iot firmware introspection and
analysis’. In: Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things. 2019, pp. 15-21.

Roberto Natella. ‘Stateafl: Greybox fuzzing for stateful network servers’ In: Em-
pirical Software Engineering 27.7 (2022), p. 191.

Hui Peng and Mathias Payer. ‘USBFuzz: A framework for fuzzing USB drivers by
device emulation’. In: 29th USENIX Security Symposium (USENIX Security 20).
2020, pp. 2559-2575.

Kaiming Fang and Guanhua Yan. ‘Emulation-instrumented fuzz testing of 4g/lte
android mobile devices guided by reinforcement learning’. In: European Symposium
on Research in Computer Security. Springer. 2018, pp. 20—40.

Marius Muench et al. ‘What You Corrupt Is Not What You Crash: Challenges in
Fuzzing Embedded Devices.” In: NDSS. 2018.

BIBLIOGRAPHY 189

[77]

(78]

[80]

[81]

[83]

[84]

Ferenc Speiser, Istvan Szalay and Dénes Fodor. ‘Embedded System Simulation
Using Renode’. In: Engineering Proceedings 79.1 (2024), p. 52.

Peter S Magnusson et al. ‘Simics: A full system simulation platform’. In: Computer
35.2 (2002), pp. 50-58.

Dominik Maier, Benedikt Radtke and Bastian Harren. ‘Unicorefuzz: On the viab-
ility of emulation for kernelspace fuzzing’. In: 15th USENIX workshop on offensive
technologies (WOOT 19). 2019.

Mingeun Kim et al. ‘Firmae: Towards large-scale emulation of iot firmware for dy-
namic analysis’. In: Proceedings of the 36th Annual Computer Security Applications
Conference. 2020, pp. 733-745.

Abraham A Clements et al. ‘HALucinator: Firmware re-hosting through abstrac-
tion layer emulation’. In: 29th USENIX Security Symposium (USENIX Security
20). 2020, pp. 1201-1218.

Tobias Scharnowski et al. ‘Fuzzware: Using Precise MMIO Modeling for Effective
Firmware Fuzzing’. In: 31st USENIX Security Symposium (USENIX Security 22).
2022, pp. 1239-1256.

Dennis Kengo Oka, Toshiyuki Fujikura and Ryo Kurachi. ‘Shift left: Fuzzing earlier
in the automotive software development lifecycle using hil systems’. In: Proc. 16th
ESCAR FEurope (2018), pp. 1-13.

Jounghyuk Suh et al. ‘Programmable analog device array (PANDA): A methodo-
logy for transistor-level analog emulation’. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 60.6 (2013), pp. 1369-1380.

Hangwei Zhang et al. ‘SloTFuzzer: fuzzing web interface in IoT firmware via state-
ful message generation’. In: Applied Sciences 11.7 (2021), p. 3120.

Patrick Cousineau and Brian Lachine. ‘Enhancing boofuzz process monitoring for
closed-source SCADA system fuzzing’. In: 2023 IEEFE International Systems Con-
ference (SysCon). IEEE. 2023, pp. 1-8.

Kai Su et al. ‘Fuzz Wars: The Voltage Awakens—Voltage-Guided Blackbox Fuzzing
on FPGAs’. In: 2024 IEEFE 42nd VLSI Test Symposium (VTS). IEEE. 2024, pp. 1-
7.

BIBLIOGRAPHY 190

[38]

[89]

[90]

[91]

(93]

[94]

[95]

[96]

Seyed Mohammadjavad Seyed Talebi et al. ‘Charm: Facilitating dynamic ana-
lysis of device drivers of mobile systems’. In: 27th USENIX Security Symposium
(USENIX Security 18). 2018, pp. 291-307.

Dimitrios Tychalas, Hadjer Benkraouda and Michail Maniatakos. ‘ICSFuzz: Ma-
nipulating I/Os and repurposing binary code to enable instrumented fuzzing in
ICS control applications’. In: 30th USENIX Security Symposium (USENIX Secur-
ity 21). 2021, pp. 2847-2862.

Evan Johnson et al. ‘Jetset: Targeted Firmware Rehosting for Embedded Systems.’
In: USENIX Security Symposium. 2021, pp. 321-338.

Wei Zhou et al. ‘Automatic firmware emulation through invalidity-guided know-
ledge inference’. In: 30th USENIX Security Symposium (USENIX Security 21).
2021, pp. 2007-2024.

Patrice Godefroid, Bo-Yuan Huang and Marina Polishchuk. ‘Intelligent REST API
data fuzzing’. In: Proceedings of the 28th ACM joint meeting on Furopean software
engineering conference and symposium on the foundations of software engineering.
2020, pp. 725-736.

Zhijie Gui et al. ‘Firmcorn: Vulnerability-oriented fuzzing of iot firmware via op-
timized virtual execution’. In: leee Access 8 (2020), pp. 29826-29841.

Andrew Fasano et al. ‘Sok: Enabling security analyses of embedded systems via
rehosting’. In: Proceedings of the 2021 ACM Asia conference on computer and
communications security. 2021, pp. 687-701.

Wei Zhou et al. ‘Automatic Firmware Emulation through Invalidity-guided Know-
ledge Inference’. In: 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, 2021.

Drew Davidson et al. ‘FIE on firmware: Finding vulnerabilities in embedded sys-
tems using symbolic execution’. In: 22nd USENIX Security Symposium (USENIX
Security 13). 2013, pp. 463—478.

Cristian Cadar, Daniel Dunbar, Dawson R Engler et al. ‘Klee: unassisted and
automatic generation of high-coverage tests for complex systems programs.” In:

OSDI. Vol. 8. 2008, pp. 209-224.

BIBLIOGRAPHY 191

(98]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

107]

108

Yao Yao et al. ‘Identifying privilege separation vulnerabilities in IoT firmware with
symbolic execution’. In: Furopean Symposium on Research in Computer Security.
Springer. 2019, pp. 638-657.

Changming Liu et al. ‘CO3: Concolic Co-execution for Firmware’. In: 33rd USENIX
Security Symposium (USENIX Security 24). 2024, pp. 5591-5608.

Insu Yun et al. ‘QSYM: A practical concolic execution engine tailored for hy-
brid fuzzing’. In: 27th USENIX Security Symposium (USENIX Security 18). 2018,
pp. 745-761.

Nick Stephens et al. ‘Driller: Augmenting fuzzing through selective symbolic exe-
cution.” In: NDSS. Vol. 16. 2016. 2016, pp. 1-16.

Hongliang Liang et al. ‘A Practical Concolic Execution Technique for Large Scale
Software Systems’. In: Proceedings of the 24th International Conference on Eval-
uation and Assessment in Software Engineering. 2020, pp. 312-317.

Jingxuan He et al. ‘Learning to explore paths for symbolic execution’. In: Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 2021, pp. 2526-2540.

Wei-Lun Huang and Kang G Shin. ‘ES-FUZZ: Improving the Coverage of Firm-
ware Fuzzing with Stateful and Adaptable MMIO Models’. In: arXiv preprint
arXiv:2403.06281 (2024).

Timothy Trippel. ‘Developing Trustworthy Hardware with Security-Driven Design
and Verification’. PhD thesis. 2021.

Sushma Kalle et al. ‘CLIK on PLCs! Attacking control logic with decompilation
and virtual PLC". In: Binary Analysis Research (BAR) Workshop, Network and
Distributed System Security Symposium (NDSS). 2019, pp. 1-12.

Ruimin Sun et al. ‘SoK: Attacks on industrial control logic and formal verification-
based defenses’. In: 2021 IEEE Furopean Symposium on Security and Privacy
(EuroS&P). IEEE. 2021, pp. 385-402.

Mu Zhang et al. ‘Towards automated safety vetting of PLC code in real-world
plants’ In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019,
pp- H22-538.

BIBLIOGRAPHY 192

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Lantao Yu et al. ‘Seqgan: Sequence generative adversarial nets with policy gradi-
ent’. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 31. 1.
2017, pp. 4681-4690.

Majid Salehi, Danny Hughes and Bruno Crispo. ‘uSBS: Static binary sanitization
of bare-metal embedded devices for fault observability’. In: Proceedings of the 23rd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2020). USENIX Association. 2020, pp. 381-395.

Shengjian Guo, Meng Wu and Chao Wang. ‘Symbolic execution of programmable
logic controller code’. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. 2017, pp. 326-336.

Zhicheng Hu et al. ‘GANFuzz: a GAN-based industrial network protocol fuzzing
framework’. In: Proceedings of the 15th ACM International Conference on Com-
puting Frontiers. 2018, pp. 138-145.

Aoshuang Ye et al. ‘Rapidfuzz: Accelerating fuzzing via generative adversarial net-
works’. In: Neurocomputing 460 (2021), pp. 195-204.

Nicole Nichols et al. ‘Faster fuzzing: Reinitialization with deep neural models’. In:
arXiv preprint arXiv:1711.02807 (2017).

Shintaro Fujita et al. ‘OpenPLC based control system testbed for PL.C whitelisting
system’. In: Artificial Life and Robotics 26 (2021), pp. 149-154.

Naman Govil, Anand Agrawal and Nils Ole Tippenhauer. ‘On ladder logic bombs
in industrial control systems’. In: Computer Security: ESORICS 2017 International
Workshops, CyberICPS 2017 and SECPRE 2017, Oslo, Norway, September 14-15,
2017, Revised Selected Papers 3. Springer. 2018, pp. 110-126.

Fabrice Bellard. ‘QEMU, a fast and portable dynamic translator.” In: USENIX
annual technical conference, FREENIX Track. Vol. 41. 46. Califor-nia, USA. 2005,
pp. 10-5555.

Antonia Creswell et al. ‘Generative adversarial networks: An overview’. In: IEEE
signal processing magazine 35.1 (2018), pp. 53-65.

DW Pessen. ‘Ladder-diagram design for programmable controllers’. In: Automatica

25.3 (1989), pp. 407-412.

BIBLIOGRAPHY 193

[120] Jin-woo Myung and Sunghyuck Hong. ‘ICS malware Triton attack and coun-
termeasures’. In: International Journal of Emerging Multidisciplinary Research
(IJEMR) 3.2 (2019), pp. 13-17.

[121] Zachary H Basnight. ‘Firmware Counterfeiting and Modification Attacks on Pro-
grammable Logic Controllers’. MA thesis. Graduate School of Engineering and
Management, Air Force Institute of Technology, Ohio, 2013.

[122] Brendan Dolan-Gavitt et al. ‘Lava: Large-scale automated vulnerability addition’.
In: 2016 IEEE symposium on security and privacy (SP). IEEE. 2016, pp. 110-121.

[123] Dongdong She et al. ‘Neuzz: Efficient fuzzing with neural program smoothing’. In:
2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019, pp. 803-817.

[124] Eyasu Getahun Chekole et al. ‘Taming the War in Memory: A Resilient Mitigation
Strategy Against Memory Safety Attacks in CPS’. In: arXiv preprint arXiv:1809.07477
(2018).

[125] Yuwei Li et al. ‘UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for
Evaluating Fuzzers.” In: USENIX Security Symposium. 2021, pp. 2777-2794.

[126] Yan Shoshitaishvili et al. ‘SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis’ In: IEEE Symposium on Security and Privacy. 2016.

[127] Mingzhe Wang et al. ‘Data Coverage for Guided Fuzzing’ In: 33rd USENIX Se-
curity Symposium (USENIX Security 24). 2024, pp. 2511-2526.

[128] Luca Borzacchiello, Emilio Coppa and Camil Demetrescu. ‘FUZZOLIC: Mixing
fuzzing and concolic execution’. In: Computers & Security 108 (2021), p. 102368.

[129] Sanoop Mallissery and Yu-Sung Wu. ‘Demystify the fuzzing methods: A compre-
hensive survey’. In: ACM Computing Surveys 56.3 (2023), pp. 1-38.

[130] Qiuping Yi, Yifan Yu and Guowei Yang. ‘Compatible Branch Coverage Driven
Symbolic Execution for Efficient Bug Finding’ In: Proceedings of the ACM on
Programming Languages 8. PLDI (2024), pp. 1633-1655.

[131] Paolo Felli et al. ‘Data-aware conformance checking with SMT". In: Information
Systems 117 (2023), p. 102230.

[132] Cornelius Aschermann et al. ‘REDQUEEN: Fuzzing with Input-to-State Corres-
pondence.” In: NDSS. Vol. 19. 2019, pp. 1-15.

BIBLIOGRAPHY 194

[133]

134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Adrian Herrera, Mathias Payer and Antony L Hosking. ‘DatAFLow: Toward a
data-flow-guided fuzzer’. In: ACM Transactions on Software Engineering and Meth-
odology 32.5 (2023), pp. 1-31.

Gary A Kildall. ‘A unified approach to global program optimization’. In: Pro-
ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. 1973, pp. 194-206.

V Aho Alfred, S Lam Monica and D Ullman Jeffrey. Compilers principles, tech-
niques € tools. pearson Education, 2007.

Sandra Rapps and Elaine J. Weyuker. ‘Selecting software test data using data flow
information’. In: IEEE transactions on software engineering 4 (1985), pp. 367-375.
Gerard Holzmann et al. ‘Static source code checking for user-defined properties’.
In: Proc. IDPT. Vol. 2. 2002.

Ron Cytron et al. ‘Efficiently computing static single assignment form and the
control dependence graph’. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 13.4 (1991), pp. 451-490.

Keith D Cooper and Linda Torczon. Engineering a compiler. Morgan Kaufmann,
2022.

Diego Novillo. ‘Tree SSA a new optimization infrastructure for GCC". In: Proceed-
ings of the 2003 gCC' developers summit. 2003, pp. 181-193.

Alessandro Mantovani, Andrea Fioraldi and Davide Balzarotti. ‘Fuzzing with data
dependency information’ In: 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P). IEEE. 2022, pp. 286-302.

Tielei Wang et al. ‘TaintScope: A checksum-aware directed fuzzing tool for auto-
matic software vulnerability detection’. In: 2010 IEEE Symposium on Security and
Privacy. IEEE. 2010, pp. 497-512.

Soomin Kim et al. ‘Testing intermediate representations for binary analysis’ In:
2017 32nd IEEE/ACM International Conference on Automated Software Engin-
eering (ASE). IEEE. 2017, pp. 353-364.

Thomas Reps, Susan Horwitz and Mooly Sagiv. ‘Precise interprocedural data-
flow analysis via graph reachability’. In: Proceedings of the 22nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 1995, pp. 49-61.

BIBLIOGRAPHY 195

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Manh-Dung Nguyen et al. ‘Binary-level directed fuzzing for use-after-free vulner-
abilities’. In: 23rd International Symposium on Research in Attacks, Intrusions and
Defences (RAID 2020). 2020, pp. 47-62.

Stefan Nagy et al. ‘Breaking through binaries: Compiler-quality instrumentation
for better binary-only fuzzing’. In: 30th USENIX Security Symposium (USENIX
Security 21). 2021, pp. 1683-1700.

Jonathan Metzman et al. ‘Fuzzbench: an open fuzzer benchmarking platform and
service’. In: Proceedings of the 29th ACM joint meeting on European software
engineering conference and symposium on the foundations of software engineering.
2021, pp. 1393-1403.

Jiashun Wang et al. ‘FeedbackFuzz: Fuzzing Processors via Intricate Program Gen-
eration with Feedback Engine’ In: ICASSP 2025-2025 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2025, pp. 1—-
D.

Matthew Edwin Weingarten, Nora Hossle and Timothy Roscoe. ‘High throughput
hardware accelerated coresight trace decoding’. In: 2024 Design, Automation &
Test in Europe Conference & Ezhibition (DATE). IEEE. 2024, pp. 1-6.

Neil Walkinshaw et al. ‘Bounding random test set size with computational learn-
ing theory’. In: Proceedings of the ACM on Software Engineering 1.FSE (2024),
pp. 2538-2560.

Porfirio Tramontana et al. ‘Developing and evaluating objective termination cri-
teria for random testing’. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 28.3 (2019), pp. 1-52.

‘Trends and Challenges in the Vulnerability Mitigation Landscape’. In: Santa Clara,
CA: USENIX Association, Aug. 2019.

Hanhaotian Liu and Tomoharu Ugawa. ‘Porting System Software to CHERI: Les-
sons from Porting CRuby’. In: HA Y 7 b7 = 7R2ESE 42 AR 2 il .
Proceedings of the 42nd Annual Conference of the Japan Society for Software Sci-
ence and Technology (JSSST 2025). Unrefereed proceedings. Tokyo, Japan, 3rd—
5th Sept. 2025.

BIBLIOGRAPHY 196

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

163

164]

Robert NM Watson et al. Capability hardware enhanced RISC instructions: CHERI
instruction-set architecture (version 7). Tech. rep. University of Cambridge, Com-
puter Laboratory, 2019.

William M McKeeman. ‘Differential testing for software’ In: Digital Technical
Journal 10.1 (1998), pp. 100-107.

Yuting Chen, Ting Su and Zhendong Su. ‘Deep differential testing of JVM im-
plementations’. In: 2019 IEEE/ACM j1st International Conference on Software
Engineering (ICSE). IEEE. 2019, pp. 1257-1268.

Earl T Barr et al. ‘The oracle problem in software testing: A survey’ In: I[FEE
transactions on software engineering 41.5 (2014), pp. 507-525.

Yuting Chen et al. ‘Coverage-directed differential testing of JVM implementations’.
In: proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 2016, pp. 85-99.

Nicholas H Tollervey. Programming with MicroPython: embedded programming with
microcontrollers and Python. ” O’Reilly Media, Inc.”, 2017.

Duncan Lowther et al. ‘Secure Scripting with CHERIoT MicroPython’. In: Pro-
ceedings of the 34th ACM SIGPLAN International Conference on Compiler Con-
struction. 2025, pp. 180-191.

Duncan Lowther, Dejice Jacob and Jeremy Singer. ‘Morello MicroPython: a python
interpreter for CHERI'. In: Proceedings of the 20th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes. 2023, pp. 62-69.
Andrew G Clark, Neil Walkinshaw and Robert M Hierons. ‘Test case generation for
agent-based models: A systematic literature review’. In: Information and Software
Technology 135 (2021), p. 106567.

Michaél Marcozzi et al. ‘Compiler fuzzing: How much does it matter?’ In: Proceed-
ings of the ACM on Programming Languages 3.00PSLA (2019), pp. 1-29.
Xuejun Yang et al. ‘Finding and understanding bugs in C compilers’. In: Proceed-
ings of the 32nd ACM SIGPLAN conference on Programming language design and
implementation. 2011, pp. 283-294.

BIBLIOGRAPHY 197

[165]

[166]

Mayank Sharma, Pingshi Yu and Alastair F' Donaldson. ‘Rustsmith: Random dif-
ferential compiler testing for rust’ In: Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 2023, pp. 1483-1486.
Andrew R Bernat and Barton P Miller. ‘Anywhere, any-time binary instrumenta-
tion’. In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools. 2011, pp. 9-16.

	fengThesis cover sheet 2
	FengPhD
	Abstract
	Declaration
	Abbreviations
	Introduction
	Challenges in Fuzzing Embedded Firmware
	C1. Fidelity & Throughput
	C2. Weak Feedback Coverage
	C3. Input Validity under Domain Constraints
	C4. From Finding to Preventing Memory Errors

	High-Level Research Questions
	Thesis Statement
	Sizzler
	FuzzRDUCC
	Hardfuzz
	Differential testing of MicroPython under CHERI

	Contributions
	Publications
	Summary of Research Artifacts
	Thesis Structure

	Embedded Fuzzing: Challenges and State of the Art
	Core Fuzzing Components for Embedded Systems
	Hardware-Based Fuzzing on Real Devices
	Firmware Re-Hosting
	Abstraction-Based and Hybrid Analyses
	Summary

	Sizzler: Sequential Fuzzing in Ladder Diagrams for Vulnerability Detection and Discovery in Programmable Logic Controllers
	Introduction and Motivation
	Technical Background
	PLC Vulnerability Detection
	Emulation
	Fuzzing

	Sizzler overview
	Sizzler Overview
	Vulnerability Composition
	Ladder Diagram Conversion to ANSI C
	MCU Emulation
	Sizzler Enhanced Fuzzing

	Evaluation
	Research Question
	Evaluation Methodology
	Unit Test for Emulation
	PLC code Vulnerability Discovery
	PLC Vulnerability and CVE Assessment
	General Vulnerability Detection

	Threats to Validity
	Limitations & Future directions
	Conclusion

	FuzzRDUCC: Fuzzing with Reconstructed Def-Use Chain Coverage
	Introduction and Motivation
	The Fuzzing for Binary
	Towards Dataflow Coverage
	Def-use Chain Analysis

	FuzzRDUCC Overview
	Methodology and Implementation
	Def-Use Chain Generation
	Code Instrumentation
	Optimizing Def-Use Chain Selection
	Updating the Coverage Scheme

	Preliminary Evaluation
	Evaluation Setup
	Preliminary Results
	Future Evaluation

	Conclusion

	Hardfuzz: On-Device Def-Use-Guided Fuzzing with Hardware Breakpoints
	Introduction and Motivation
	Hardfuzz Overview
	Def-Use Chain Analysis and Selection
	Def-Use Chain Analysis
	Breakpoint Strategy
	Coverage Guidance

	Evaluation
	Experimental Setup
	QEMU-Based Emulation Results
	On-Device Hardware Results

	Limitations and Future Work
	Conclusion

	Differential testing of MicroPython under CHERI
	Introduction and Motivation
	Technical Background
	The Architectural Foundation of CHERI Memory Protection
	Differential Testing
	MicroPython

	Differential Testing Overview
	Methodology
	Input Generation and Corpus Management
	Layer 2: Execution and Runtime Observation
	Layer 3: Differential Analysis and Triage

	Evaluation
	Experiment Setup
	Testcase Generation
	Results
	Selected Bug Examples

	Limitations and Future Work
	Conclusion

	Conclusions
	Summary of Contributions
	Limitations and Future Work
	Final Remarks

	Appendices
	Prompt for LLM Testcase Generation
	Bug Reports Submitted to the MicroPython Project

