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Abstract
Rapid advancements in vehicle automation technology have enabled autonomous vehic-

les (AVs) to move beyond simple, structured highway settings and operate increasingly
within more complex urban environments. As AVs become more prevalent, they will inev-
itably share the road with diverse traffic participants, particularly pedestrians. The high
uncertainty and dynamic nature inherent in human behavior significantly complicate the
AV’s decision-making process. To ensure both safety and efficiency while exhibiting so-
cially acceptable behavior, AVs must make real-time decisions and continuously adapt
their strategies in response to surrounding pedestrian behaviors. This poses a major chal-
lenge to existing AV decision-making systems. Therefore, this study focuses on developing
the decision-making strategies for AVs in urban pedestrian-involved environments, span-
ning scenarios from simple interactions with a single pedestrian to complex cases involving
multiple pedestrians. The core objective is to uncover the underlying interaction dynamics
and to improve the AV’s capability to make decisions that are safe, efficient and socially
acceptable in dynamic, human-centric contexts.

Initially, this study investigates the critical factors influencing the decision-making pro-
cesses of human drivers and pedestrians during vehicle–pedestrian interactions. A series
of controlled experiments were conducted using a virtual reality platform designed to
collect realistic behavioral data. The data analysis mainly focused on kinematic variables
that are easily measurable in real-world deployments. AdaBoost classification and Partial
Dependence Plots were employed to identify and visualize the most influential factors
affecting pedestrian crossing intentions and driver approaching behaviors. The results in-
dicate that longitudinal distance and vehicle acceleration are the most influential factors
in pedestrian decision-making, while pedestrian speed and longitudinal distance also play
a crucial role in determining whether the vehicle yields or not. Based on these insights,
a simplified mathematical model was developed to relate observable kinematic paramet-
ers to pedestrian crossing intentions, providing a practical tool for dynamically inferring
crossing intentions during interactions. Additionally, the study explored driver yielding
patterns under varying degrees of pedestrian intention clarity. These findings support the
development of interpretable and implementable models for real-time decision-making in
vehicle–pedestrian interaction scenarios.

In addition, this study examines the decision-making strategies of the AVs when in-
teracting with a single pedestrian in unsignalized intersections. A novel framework was
proposed that integrates the Partially Observable Markov Decision Process with behavi-
oral game theory to dynamically model interactive behaviors between the AVs and the
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pedestrian. Both agents were modeled as dynamic-belief-induced quantal cognitive hier-
archy models, considering human reasoning limitations and bounded rationality in the
decision-making process. Moreover, a dynamic belief updating mechanism allowed the
AV to update its understanding of the opponent’s rationality degree in real-time based
on observed behaviors and adapt its strategies accordingly. The analysis results indic-
ate that proposed models effectively simulate vehicle-pedestrian interactions and the AV
decision-making approach performs well in safety, efficiency, and smoothness. It captures
key patterns of the driving behavior operated by real human drivers in virtual reality
experiments and even achieves more comfortable navigation compared to our previous
virtual reality experimental data.

Finally, this study investigates the decision-making strategies of the AVs operating in
pedestrian-rich shared spaces. A novel framework was proposed for modeling interactions
between the AV and multiple pedestrians. In this framework, a cognitive process modeling
approach inspired by the Free Energy Principle was integrated into both the AV and ped-
estrian models to simulate more realistic interaction dynamics. Specifically, the proposed
pedestrian Cognitive-Risk Social Force Model adjusts goal-directed and repulsive forces
using a fused measure of cognitive uncertainty and physical risk to produce human-like
trajectories. Meanwhile, the AV leverages this fused risk to construct a dynamic, risk-
aware adjacency matrix for a Graph Convolutional Network within a Soft Actor-Critic
architecture, allowing it to make more reasonable and informed decisions. The qualitative
and quantitative results indicate that the proposed strategy effectively improves safety,
efficiency, and smoothness of AV navigation compared to the state-of-the-art method.

In conclusion, this study addresses key challenges in AV decision-making within human-
centric urban environments, providing valuable insights as well as practical solutions to
support safe, efficient, and socially aware autonomous navigation.
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Chapter 1

Introduction

Autonomous vehicles (AVs) are equipped with advanced sensors, artificial intelligence,
and computing systems, enabling them to navigate and operate independently without
direct human control [1]. The advent of this technology signifies a substantial stride in
the automotive sector, promising a future of transportation in a safer, more efficient, and
more convenient manner. Specifically, self-driving cars are expected to significantly reduce
traffic accidents because they can respond more quickly than human drivers, thereby
reducing the risk of human error. In addition, they can optimize travel routes, avoid
traffic congestion, and shorten travel times. This innovation also enhances accessibility
for individuals unable to drive due to age, disability, or other limitations.

The Society of Automotive Engineering (SAE) has identified six levels of vehicle auto-
mation, varying from no automation to full automation [2]. At level 0, there is no auto-
matic support and the human driver retains full control over the vehicle’s operation and
navigation without any automated assistance. In contrast, the vehicle reduces its reliance
on the human driver and independently performs more driving tasks at higher automation
levels. These levels involve specific tasks such as cruise control and steering, corresponding
to levels 1 and 2, respectively. At levels 3 and 4, the vehicle can manage the majority of
driving tasks under certain conditions but requires human intervention if requested by
the system. The highest-level vehicle is anticipated to be entirely autonomous and can
complete all driving activities without the assistance of a human operator.

The pursuit of achieving full automation in the field of AVs has led numerous research-
ers to focus on multiple aspects of AV technology. This technology encompasses a complex
system involving perception, decision-making, planning, and control [3], allowing vehicles
to navigate and operate without human participation. The perception module collects
data about the vehicle’s surroundings through an array of sensors, enabling the vehicle to
perceive its environment. Once the vehicle has a thorough understanding of its surround-
ings, the algorithm will assess the situation and determine the best course of action. Upon

1



decision-making, the vehicle will devise a safe and efficient navigation route to the des-
tination. Subsequently, the control system, following the produced decision and planned
path, will precisely control the vehicle’s movements by sending signals to the vehicle’s
actuators, which include steering, braking, and acceleration systems. As improvements in
AV technology have facilitated the integration of AVs into practical applications, there
has been a growing deployment of AV in the real world.

In recent years, rapid advancements in vehicle automation technology have enabled
AVs to expand beyond simple, structured highway environments and to be increasingly
deployed in more complex urban environments [4]. They are expected to become a key
component of future urban transportation systems [5]. As AVs become widespread, they
will inevitably share the road with various road users, particularly pedestrians [6], [7].

Unlike vehicles that follow well-defined rules and predictable physical dynamics, ped-
estrians exhibit a high degree of behavioral variability, uncertainty, and unpredictability
[8]. They may change direction abruptly, hesitate at crossings, or even ignore traffic sig-
nals. In addition, pedestrian behavior is often shaped by subjective and context-dependent
factors, such as intent, attention, urgency, or social influence, which are difficult for AVs
to directly perceive or infer.

This challenge is further amplified in urban environments, where interactions between
AVs and pedestrians are frequent, dynamic, and socially embedded. AVs must make real-
time decisions and continuously adapt their strategies in response to surrounding ped-
estrians. Unlike highway driving, urban navigation often involves implicit negotiations,
such as eye contact, body language, or yielding gestures, which are hard to quantify
algorithmically but play a crucial role in ensuring smooth and safe interaction.

(a) (b)

Figure 1.1: Two representative AV pedestrian interaction scenarios investigated in this thesis. (a) Inter-
action between an AV and a single pedestrian at an unsignalized intersection (from [9]). (b) Interaction
between an AV and multiple pedestrians in an urban shared space (from [10]).
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These human-specific traits introduce significant complexity to AV decision-making
and motion planning, as AVs must not only detect pedestrians accurately, but also in-
terpret their intentions and adapt their own actions accordingly. Ensuring safe, efficient,
and socially compliant interactions with pedestrians has become one of the core challenges
in the deployment of AVs in human-centric environments. Therefore, this study focuses
on AV-pedestrian interactions and aims to develop AV decision-making frameworks that
tackle these issues in pedestrian-involved environments. Fig. 1.1 illustrates the two types
of scenarios studied in this work.

1.1 Challenges for AV-Pedestrian Interaction

Despite advances in autonomous navigation, AVs still face several challenges when
interacting with pedestrians in complex urban environments. This section identifies three
major challenges in AV-pedestrian interaction.

Challenge 1: Modeling Dynamic Mutual Interaction Between the AV and
Pedestrians. One of the fundamental challenges in AV-pedestrian interaction lies in con-
structing models that can accurately capture the mutual and dynamic interplay between
autonomous vehicles and pedestrians. This challenge arises from the fact that their inter-
actions are inherently interdependent and tightly coupled. Each agent is required not only
to make its own decisions, but also to adapt its behavior in real time based on the evolving
actions of the other party. For example, pedestrians continuously adjust their behavior,
such as walking speed, trajectory or crossing decisions in response to the perceived mo-
tion and intentions of the AV, while the AV must respond promptly to pedestrians’ often
unpredictable and abrupt behavioral changes. This results in a complex feedback loop
of continuous reciprocal influence, which is far more intricate than static obstacle avoid-
ance or unidirectional interaction scenarios. Developing accurate and adaptive models of
this real-time interaction is crucial for gaining a deeper understanding of AV-pedestrian
interaction mechanisms. Such models can also significantly improve the development of
autonomous navigation strategies, achieving safe and naturalistic AV navigation in com-
plex urban environments.

Challenge 2: Balancing Safety and Efficiency in AV Decision-Making. An-
other critical challenge in AV-pedestrian interaction is achieving an effective balance
between safety and driving efficiency in AV’s decision-making process. AVs are oblig-
ated to ensure pedestrian safety at all times and thus often adopt overly conservative
strategies, such as frequent stops or unnecessary deceleration, or yielding even in ambigu-
ous situations, when approaching or interacting with pedestrians. While these behaviors
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reduce the risk of collision, they may also lead to increased travel time and disrupted traffic
flow. Moreover, excessive caution can result in unnatural or passive behavioral responses
that differ from those of human drivers. Such behaviors may confuse pedestrians or lead
to hesitation during interactions, ultimately impacting public trust and social accept-
ance of AVs. Conversely, prioritizing efficiency without sufficient consideration of safety
may cause high-risk situations with potentially life-threatening consequences. Therefore,
striking the right balance between safety and efficiency remains both technically challen-
ging and essential for real-world deployment, especially in dynamic pedestrian-involved
environments.

Challenge 3: The Interpretability of AV Decision-Making. A third important
challenge is improving the interpretability and transparency of the AV’s decision-making
process. Many state-of-the-art AV decision-making policies rely on deep reinforcement
learning or end-to-end neural architectures, which are often treated as black-box models.
This opaque decision-making mechanism makes it difficult to explain why a particular de-
cision was made�thereby hindering the analysis, debugging, and improvement of the policy.
Moreover, when AVs make decisions that are unnatural, inconsistent, or misaligned with
social expectations, pedestrians may find them unintuitive or difficult to interpret. Such
unintelligent behaviors often stem from an underlying decision-making policy that lacks
transparency, making it difficult for humans to anticipate the vehicle’s actions or engage
in smooth interactions. This can lead to confusion, misunderstanding, or even unsafe inter-
actions, especially in densely populated urban settings. Addressing this challenge requires
the development of decision-making frameworks that incorporate transparent reasoning
processes and socially aligned behavioral patterns, enabling AVs to operate in ways that
are both safe and intuitively understandable to humans.

In response to these challenges, this study proposes decision-making frameworks for
AV-pedestrian interactions, with the goal of enhancing safety, efficiency, and interpretab-
ility in socially interactive scenarios.
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1.2 Research Gap

This study focuses exclusively on the decision-making process of AVs in their interac-
tion with pedestrians, with interactions involving human-driven vehicles beyond its scope.
Although a substantial body of research has examined AV–pedestrian interactions, several
critical knowledge gaps remain. This thesis aims to address these gaps by investigating
vehicle-pedestrian interactive behaviors and incorporating the resulting insights into in-
teraction modelling and decision-making algorithm development. The key research gaps
identified are as follows:

Gap 1: Lack of human-behavior factor analysis suitable for safe AV navig-
ation

Although many existing studies analyze the factors influencing human driver behavior,
their primary aim is behavioral explanation rather than supporting safe AV navigation.
This is because that these studies often rely on internal or unobservable factors, such as
personality traits or emotions, which cannot be measured by an AV in real-world driving
when interacting with pedestrians. Consequently, the findings from such works cannot be
directly used to develop AV decision-making models, which must rely solely on externally
observable and measurable variables. The specific observable factors that influence human
driver decision-making, and that are accessible to an AV in practice, have not been clearly
identified in prior studies.

Gap 2: Limited exploration of AV decision-making in diverse AV-pedestrian
interaction scenarios.

Most existing studies on AV-pedestrian interactions have primarily concentrated on
post-hoc behavioral analyses, such as examining video recordings of real-world interactions
[9] or conducting simulation-based experiments [11] to describe how pedestrians cross and
how vehicles yield. These efforts have provided valuable insights into human behavior and
interaction dynamics in traffic environments. However, they largely remain at the level of
behavioral explanation and seldom translate these findings into algorithmic frameworks
for AV decision-making. As a result, how AVs should act and make decisions across diverse
interaction scenarios, ranging from relatively simple single-pedestrian cases to more com-
plex multi-pedestrian shared-space environments, remains insufficiently explored, leaving
a critical gap between behavioral understanding and algorithmic implementation.

Gap 3: Oversimplified pedestrian models in AV-pedestrian interaction stud-
ies.
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In the AV-pedestrian interaction modeling, existing approaches tend to emphasize the
AV decision-making process while overlooking the role of pedestrian behavior modeling.
As a result, pedestrians are often described using overly simplified representations that
treat them as passive entities (e.g., constant velocity [12], fixed trajectories [13]). Such
simplifications fail to capture the dynamic, adaptive, and bidirectional nature of real-world
interactions, in which pedestrians continuously adjust their behavior in response to AV
actions, and AVs in turn adapt to pedestrians. This lack of realism in pedestrian modeling
reduces the accuracy of interaction and ultimately limits the capability and reliability of
AV decision-making algorithms in complex real-world environments.

Gap 4: Lack of AV decision-making models grounded in human cognition.

AVs are expected to make decisions in a human-like manner, such as reasoning about
their environment, anticipating others’ actions, and producing responses that align with
human behavioral patterns. Yet, most existing AV decision-making methods are developed
within traditional optimization [14] or data-driven paradigms [15], which, although ef-
fective in generating actions, fail to capture the cognitive reasoning processes underlying
human decision-making in interactive scenarios. Incorporating human cognition into AV
decision-making therefore represents a new modeling perspective, which would allow AV
models to more closely mirror human logic and enhance the interpretability of their de-
cisions. Nevertheless, only limited studies have attempted this integration, and the role of
human cognition in AV decision-making remains insufficiently explored, motivating this
study to investigate new approaches for integrating cognitive processes into AV–pedestrian
interaction modeling.

1.3 Research Problems and Objectives

To address the identified research gaps, the primary objective in this work is to improve
the understanding of AV-pedestrian interaction mechanism, to develop interaction models
across diverse scenarios, and to enhance the ability of AVs to make decisions that are safe,
efficient and socially acceptable in dynamic, human-centric environments. Specifically, the
study addresses the following three core research questions (RQs).

RQ1: What are the most critical factors that influence decision-making pro-
cesses of human drivers and pedestrians, respectively, during their interactions
in urban environments and how do these factors shape their behaviors?
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This research question seeks to identify the essential factors that impact human
decision-making processes in urban scenarios. Understanding these factors is a critical
foundation for constructing accurate and human-like models of both the AV and pedes-
trian. A more realistic pedestrian decision model enables the simulation of more authentic
interactions, allowing the AV’s decision-making algorithms to be trained and evaluated
in environments that reflect real human behavior. At the same time, identifying the key
elements of human driver behavior can guide the development of AV policies that mimic
human reasoning and reactions. Together, these insights contribute to more socially ac-
ceptable AV behavior and facilitate a deeper understanding of the dynamic interaction
mechanisms between AVs and pedestrians.

RQ2: In scenarios involving a single pedestrian at unsignalized intersec-
tions, how can an AV accurately interpret pedestrian intentions and make
appropriate decisions in the absence of explicit traffic signals?

In unsignalized interaction scenarios, the priority of right-of-way is often ambigu-
ous due to the absence of traffic signals, leading to potential road conflicts that further
complicate AV’s decision making. Pedestrians typically rely on observable cues to make
crossing decisions, while the AV must accurately perceive the pedestrian’s intention, such
as whether they intend to cross or yield, and respond accordingly to ensure safe and ef-
ficient interactions. Addressing this problem is not only crucial for reliable AV operation
in common urban settings but also for establishing a foundation for handling more com-
plex multi-pedestrian interactions. Investigating the interactions between an AV and a
single pedestrian provides a simplified yet meaningful basis for understanding of the core
mechanisms underlying human-vehicle negotiation.

RQ3: In complex and dynamic urban shared spaces, how can an AV effect-
ively manage interactions with multiple pedestrians while maintaining safety,
efficiency, and social acceptance?

In urban shared space scenarios, AVs are required to simultaneously interact with
multiple pedestrians who may exhibit diverse behaviors, intentions, and trajectories. These
interactions are inherently uncertain and highly dynamic, as each pedestrian may respond
differently to the AV’s actions or to other pedestrians nearby. This complexity poses
significant challenges for AV decision-making, which must account for the interdependence
among agents and react to their possible behaviors in real time. Developing decision-
making strategies that can effectively manage these multi-agent interactions is essential for
the safe operation of AVs in densely populated, human-centric environments. Moreover,
the ability to handle complex interactions with multiple pedestrians is a critical step
toward the practical deployment of AVs in real-world urban settings.
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Each question corresponds to a key aspect of AV decision-making: understanding
human behavior during the decision-making process (RQ1), designing AV responses in
simple scenarios (RQ2), and generalizing to complex multi-agent settings (RQ3). These
problems are investigated with the aim of improving AV performance in human-centric
environments.

Overall, the challenges identified in the previous section point to limitations in existing
research and thereby define the corresponding research gaps, which in turn motivate the
research questions. Challenge 1 demonstrates the need to understand interactive behavior
using information accessible to AVs, leading to Gap 1 and Research Question 1. Challenges
1 and 2 together indicate shortcomings in existing interaction-modeling approaches, giving
rise to Gaps 2-4 and motivating Research Questions 2 and 3. Finally, Challenge 3 highlights
the need for interpretable AV decision-making, underpinning Gap 4 and providing further
motivation for Research Questions 2 and 3.

1.4 Contributions

The research gaps identified in Section 1.2, Chapter 1, motivated the formulation of
the research questions outlined in Section 1.3, Chapter 1. To fill these gaps and address
the corresponding research questions, this thesis makes the following key contributions:

• Virtual reality experiments were conducted to collect detailed interaction data
between the vehicle and a single pedestrian using a state-of-the-art distributed
driving–pedestrian simulator platform. This dataset was then used to investigate the
critical factors influencing the decision-making processes of human drivers and ped-
estrians, respectively. In addition, the analysis explored the underlying relationships
between motion parameters and pedestrian behaviors, as well as the characteristics
of driver-yielding behavior. This contribution directly addresses the first research
question and provides a foundational understanding of real-world interactions at un-
signalized intersections, which is essential for developing AV decision-making models
in complex urban contexts.

• A novel decision-making framework was proposed that integrates the partially ob-
servable markov decision process (POMDP) with behavioral game theory to dynam-
ically model interactions between an AV and a single pedestrian at unsignalized in-
tersections. Both the AV and the pedestrian are modeled as dynamic-belief-induced
quantal cognitive hierarchy (DB-QCH) agents, considering human reasoning limita-
tions and bounded rationality in the decision-making process. Moreover, a dynamic
belief updating mechanism was introduced, allowing the AV to update its under-
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standing of the pedestrian’s rationality level in real-time based on observed behavi-
ors and to adapt its strategies accordingly. This contribution addresses the second
question, and paves the way for the development of explainable and trustworthy AV
decision-making systems in interactive, human-involved environments.

• An innovative framework was proposed to tackle the decision-making challenges
faced by the AV when navigating complex urban environments involving multiple
pedestrians. A cognitive uncertainty modeling approach based on the free energy
principle was introduced to emulate human reasoning and quantify cognitive un-
certainty during social interactions. Building upon this, a novel pedestrian model,
referred to as the Cognitive-Risk Social Force Model (CR-SFM), was developed,
which enables pedestrian agents to autonomously adapt their motions in uncertain
and interactive conditions. This yields more realistic behaviors compared to tradi-
tional models with fixed coefficients, and provides a reliable simulation foundation
for training and evaluating AV decision-making strategies. Furthermore, the AV’s
decision-making policy was trained using the Soft Actor-Critic (SAC) algorithm,
where a risk-encoded interaction graph was integrated by redefining the adjacency
matrix to encode dynamic interaction risks. This allows the policy to better perceive
interactive relationships and potential threats, thereby improving decision-making
performance. This contribution directly supports the third research question and
provides a potential solution for AV navigation in handling complex, dynamic, and
uncertain human-involved scenarios.

1.5 Thesis outline

This thesis is organized into six chapters, each corresponding to a major component
of the research and collectively addressing the three core research questions.

Chapter 1 introduces the background and motivation for the research, highlights the
key challenges in AV–pedestrian interactions, and defines the overall research direction
and scopes. It further identifies the existing research gaps. Based on these gaps, this
chapter formulates the central research questions, summarizes the main contributions,
and presents the structure of the thesis.

Chapter 2 provides a comprehensive review of related work in the field, covering four
main sections: (1) interaction data collection methods, (2) human behavior analysis, (3)
pedestrian behavior modeling, and (4) AV decision-making approaches.
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Chapter 3 addresses the first research question by presenting the design and im-
plementation of VR-based experiments to simulate AV–pedestrian interactions. It also
details the data collection and analysis methods.

Chapter 4 introduces a decision-making framework for the AV interacting with a
single pedestrian at unsignalized intersections, responding to the second research question.

Chapter 5 tackles the third research question, focusing on AV decision-making in
complex urban environments involving multiple pedestrians.

The final chapter concludes the thesis by summarizing the key findings and con-
tributions. It also discusses the limitations of the current work and outlines potential
directions for future research.
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Chapter 2

Literature Review

This chapter provides a comprehensive review of the key technological foundations
that support our research on the AV-pedestrian interaction. Specifically, it focuses on
four critical aspects: human behavior data collection methods, human behavior analysis,
pedestrian behavior modeling and AV decision-making approaches.

Section 2.1 reviews various methods used to collect vehicle and human behavior data,
which serve as an empirical basis for understanding and modeling pedestrian dynamics.
Section 2.2 examines existing research on human behavior, with particular emphasis on
factors that influence driver and pedestrian decision-making processes. Section 2.3 re-
views representative pedestrian behavior models, summarizing key approaches and their
capabilities in simulating pedestrian motion and interactions with the AV. Section 2.4
presents an overview of current AV decision-making techniques, ranging from rule-based
frameworks to data-driven approaches, and discusses the limitations of existing methods
in handling human-aware interaction. Section 2.5 provides a review of relevant work on
human-robot interaction.

Drawing on insights from these domains, this chapter summarizes the current state of
the art, highlights its limitations, and identifies the research gaps that our work seeks to
address in the subsequent chapters.

2.1 Vehicle-Pedestrian Interaction Data

In order to understand complex interaction mechanisms between the vehicle and ped-
estrian in real-world environments, the availability of high-quality empirical data is essen-
tial. As a result, how to effectively collect representative and meaningful data has become
a critical question in this research domain.
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Recent research has explored various techniques, including questionnaires, video re-
cordings, natural driving studies, and virtual reality technology, to investigate the vehicle-
pedestrian interactions.

A questionnaire-based approach was employed in [16], where the survey designed
based on the Theory of Planned Behavior to assess pedestrians’ intentions to cross the
street in particular scenarios and uncover the motivational factors behind these inten-
tions. Study [17] investigated how pedestrians differ in their behavioral responses with
potential vehicle-pedestrian collision situations using a questionnaire-based method.

Moreover, Lalam et al. [18] analyzed video data to extract information about vehicle-
pedestrian interactions. They then used this data to conduct a multiple linear regression
analysis, identifying various factors that impact the severity level of these interactions.
Drone footage was employed to gather information on how private cars and taxis interact
with pedestrians at unsignalized crosswalks [19]. The study found that most human drivers
were willing to yield to pedestrians when sufficient reaction time was available. Vehicle-
pedestrian interaction scenarios at three road intersections in Rome, Italy, were recorded
using video cameras [20]. Through image processing algorithms, a dataset comprising 270
interaction instances was extracted to facilitate the analysis of interaction behaviors.

Furthermore, a study was conducted on the impact of three factors on safety indicators
when a vehicle came across a pedestrian, based on field tests and naturalistic driving
data [21]. Natural driving data gathered from real-life situations were also examined to
understand how drivers behave when passing pedestrians [22]. Based on a large-scale
naturalistic driving dataset, 325 pedestrian crossing scenarios and 23 vehicle non-yielding
cases were extracted [23]. The analysis focused on investigating the relationship between
vehicle acceleration/deceleration patterns and pedestrian crossing behavior.

Questionnaires are generally considered an easy and straightforward method for col-
lecting interactive data from pedestrians and autonomous vehicles [6]. They enable re-
searchers to access participants’ perception, intentions, and attitudes in various traffic
scenarios. However, questionnaires may not be ideal for fully and accurately capturing
actual road user behavior, due to inherent limitations such as potential subjectivity and
recall limitations. For example, when a survey or interview is conducted after an incident
or interaction, participants may subjective interpretations or omit important details when
answering questions, resulting in potentially unreliable data.
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In contrast, video recordings offer the advantage of objectively capturing the actual
vehicle–pedestrian interaction as it unfolds. They allow researchers to repeatedly view the
recorded scenarios and perform detailed frame-by-frame behavioral analysis, thereby re-
ducing the influence of subjective bias. Compared to questionnaires, video-based methods
provide a more faithful representation of observable behaviors. However, video analysis
can be time-consuming and labor-intensive, especially when manual annotation is re-
quired. Moreover, such methods may lack access to precise kinematic information, such
as accurate speed, position, or acceleration, which are crucial for quantitative modeling.

Naturalistic driving data presents a valuable alternative that more accurately reflects
real-world vehicle and pedestrian behavior under spontaneous and unconstrained condi-
tions. This type of data is typically collected from on-board sensors and cameras during
everyday driving, offering rich, high-fidelity information including speed, acceleration, po-
sitional coordinates, and detailed interaction sequences. While naturalistic data provides
a more accurate representation of vehicle and pedestrian behavior, obtaining such in-
formation through real-world experiments can raise significant safety concerns due to the
unpredictable and uncontrollable nature of the process. Researchers cannot anticipate or
manipulate when or how risky interactions occur.

In contrast to these techniques, virtual reality (VR) technology enables the construc-
tion of virtual worlds where data collection would be both secure and affordable [24]. To
gain a deeper understanding of complex pedestrian behavior, VR technology was applied
[25] to investigate pedestrian crossing behavior on narrow roadways in residential areas.
Researchers also observed the behavior of pedestrians crossing the road at intersections in
a virtual reality environment, where an AV was approaching. Their study highlighted the
value of virtual reality as an effective tool to analyze pedestrian behavior [26]. Kai Tian et
al. at University of Leeds utilized VR experiments to examine how implicit signals from
AVs influence pedestrians’ crossing decisions [11]. At Queens University Belfast, a virtual
reality framework was proposed to provide a safe and cost-effective approach for collecting
AV–pedestrian interaction data [27]. A recent study from Delft University of Technology
employed a VR setup to investigate AV interactions with multiple pedestrians in shared
spaces [28]. This work extended prior research by enabling real-time multi-agent inter-
action through an innovative VR system. In [29], the authors utilized VR to investigate
pedestrian behavior during potential collision events with vehicles. By collecting motion
data and analyzing pedestrian walking speeds, they aimed to understand behavioral re-
sponses in the presence of perceived risk. Bingbing Nie and colleagues from Tsinghua
University developed a VR-based framework to explore vehicle–pedestrian conflicts under
emergent traffic conditions [30]. This framework enabled controlled studies of emergency
scenarios that would be unsafe or impractical to examine in real-world experiments.
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VR technology makes it possible for participants to get fully immersed in controlled
experiment scenarios without being exposed to real-world risks, thereby ensuring safety
throughout the process. Unlike naturalistic driving data collection, VR can be used to
simulate rare or hazardous situations, such as potential collision cases, which are difficult
or unsafe to be conducted in real traffic conditions. By simulating realistic traffic en-
vironments and dynamic interactions, VR allows researchers to conveniently manipulate
key variables such as vehicle position, speed or road layout, while capturing participant
responses in real time. Moreover, VR supports the collection of precise behavioral and
motion data, including gaze patterns, walking trajectories, and kinematic information,
which are essential for analyzing decision-making processes during vehicle–pedestrian in-
teractions. Therefore, VR plays a central role in our study to carry out trials by providing
a safe, flexible, and data-rich platform for conducting human-in-the-loop trials in complex
urban interaction environments.

2.2 Human Behavior Analysis

2.2.1 Pedestrian Behavior Analysis

Pedestrians considered vulnerable road users, are prone to injury in collisions with
vehicles due to the absence of protective equipment. Studying pedestrian behavior is es-
sential for understanding their decision-making process during interaction with vehicles.
This understanding holds significant implications for the advancements of AV. If a vehicle
is able to interpret a pedestrian’s decision-making process, it can better infer their inten-
tions and respond in an appropriate and timely manner. Such anticipation enables the
AV to adapt its behavior proactively, whether by slowing down, stopping, or adjusting
its trajectory, thereby reducing the probability of traffic accidents and collisions.

Many studies have identified the various factors that influence pedestrian decision-
making, including personal attributes, dynamics factors, traffic characteristics, and phys-
ical context.

Personal Attributes. Pedestrians’ decision-making processes can be influenced by
demographics such as age and gender. Risk perception for road crossing varies with gender,
with women tending to be more cautious and risk-averse compared to men [31]. Elderly
individuals also exhibit a greater likelihood of yielding to approaching vehicles while
crossing the street compared to younger adults [32]. Furthermore, psychological traits
including sensation seeking and social value orientation proved to impact pedestrians’
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decision-making when crossing the road. Kalantari et al. [33] applied a generalized linear
mixed-effects model to investigate the impact of various factors including sensation seeking
and social value orientation on participants’ likelihood to cross the road first. According
to [34], pedestrians who have lower levels of sensation seeking tend to be more cautious
and may miss opportunities to cross the road compared to those with higher levels of
sensation seeking. Besides, pedestrians’ walking trajectories can also be influenced by
their attentiveness [35]. When compared to undistracted walkers, distracted pedestrians,
such as those using mobile phones, frequently alter their walking direction and travel more
slowly.

Dynamics Factors. Gap acceptance, usually measured in time, is considered a critical
dynamic feature for evaluating pedestrian safety during road crossings. This acceptance
is connected to both the vehicle’s speed and the longitudinal distance between the vehicle
and pedestrians, often represented as Time-to-Arrival (TTA) [36]. Pedestrians typically
accept gaps for crossing that range from 3 to 7 seconds. If the gap is less than 3 seconds,
pedestrians generally opt not to cross [37], while gaps exceeding 7 seconds prompt ped-
estrians to cross without hesitation [38]. Alterations in TTA have also been regarded as
effective non-verbal cues between drivers and pedestrians during communication [39]. A
study analyzing various scenarios involving vehicle-pedestrian interactions through nat-
uralistic driving research has shown that vehicle speed and distance are significant factors
influencing these interactions [40]. A more recent study by Tian and Markkul [41] invest-
igated that pedestrians are more likely to cross the street when vehicles drive at higher
speeds, leading to a higher proportion of unsafe crossings. In [11], it was discovered that
the deceleration parameter can serve as a form of communication between humans and
autonomous vehicles. Findings from [42] suggest that pedestrians tend to lose patience
with longer waiting time and are more inclined to accept smaller gap durations for cross-
ing.

Traffic Characteristics. Research highlights the significant impact of traffic volume
on pedestrian decision-making. Studies, such as [43], indicate that higher traffic volumes
reduce the likelihood of people choosing to cross roadways. The traffic volume and ped-
estrian waiting time are positively correlated [44]. Vehicle type and size also have an
impact on pedestrian crossing behavior. Pedestrians exhibit varying acceptable waiting
time based on different vehicle types. For instance, they frequently cross in front of pas-
senger cars at a high speed [45]. In developing countries, heavy vehicles, like trucks, tend
to have a lower yielding rate compared to light vehicles [46] due to their increased risk
associated with longer braking distances [47]. Typically, pedestrians exercise more caution
when crossing in front of larger vehicles [48].
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Physical Context. Pedestrian behavior while crossing roads is shaped by multiple
physical context factors, including road characteristics, weather conditions, and the time
of day. Pedestrians tend to increase their crossing speed on wider roads with more lanes.
However, they exhibit more caution on wide roads and are inclined to accept smaller
gaps on narrower roads [49]. In unsignalized crosswalks, pedestrians were observed to
engage in more frequent traffic checking, move at reduced speeds, and encounter a higher
number of vehicle-pedestrian conflicts [50]. Additionally, inclement weather conditions
prompt pedestrians to adopt a more conservative approach when crossing roads [51]. An
observable trend is the increased number of individuals crossing roads during rush hour
[45].

While pedestrian personal information and mental state indeed affect their decisions,
collecting such information in real-world scenarios remains a significant challenge for AVs.
Unlike observable physical features, individual states such as age or emotion are not dir-
ectly accessible through onboard sensors. This limitation makes it impractical to rely on
such data for real-time inference. Moreover, it has been proposed that personal traits
have been implicitly incorporated into motion cues [39]. For example, pedestrian walk-
ing speed can be influenced by factors such as age, gender, emotions, and social status.
Elderly pedestrians may walk more slowly due to physical limitations, while individuals
experiencing uncertainty or hesitation may exhibit irregular trajectories or frequent stops.
Furthermore, a road crossing experiment conducted in [52] involving twenty participants
highlighted the significance of motion cues influencing pedestrians’ behavior. Similarly,
the findings in [53] demonstrate that pedestrians and drivers rely more on kinematic
cues to make decisions. Kinematic information has also been found to be more important
than psychological characteristics like sensory seeking and social value orientation when
deciding who crosses unmarked intersections first [33].

To better focus on understanding the underlying mechanism of vehicle-pedestrian
interaction, this thesis temporarily sets aside the influence of contextual factors such
as traffic characteristics and physical context. While such factors undoubtedly play a
role in real-world behavior, their complexity and variability introduce considerable noise
that can obscure the core dynamics of interaction. Instead, our thesis concentrates on the
kinematic parameters that affect how pedestrians behave as it represents a more accessible
and practical source of data.
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2.2.2 Human Driver Behavior Analysis

Understanding human driver behavior is fundamental to the development of safe and
intelligent autonomous driving systems, especially in complex interactive scenarios in-
volving pedestrians and other road users. Similar to pedestrian behavior, driver behavior
is also influenced by a wide range of factors, which can be categorized into individual,
kinematic and environmental dimensions [54].

Individual characteristics, such as age, gender, driving experience, and personality, can
shape a driver’s perception of risk and decision-making tendencies [55]. Kinematic factors,
such as vehicle speed, pedestrian walking speed and inter-agent distance, play a crucial
role in shaping driver behavior during interactions with pedestrians. Study [40], which ex-
amined real-world interaction cases of using Logistic regression analysis, identified vehicle
speed and the distance to pedestrians as key predictors of drivers’ behavioral responses.
Moreover, the study [21] employed naturalistic driving data to investigate drivers’ over-
taking behavior on rural roads. The results showed that drivers tend to maintain smaller
lateral gaps and adopt lower overtaking speeds when pedestrians are walking in the op-
posite direction, positioned near the edge of the lane, or when there are oncoming vehicles.
Environmental factors, including road layout, visibility, and weather conditions, can have
a direct impact on driving behavior [56]. For example, the authors in [57] analyzed real-
world driving data to quantify the impact of environmental conditions on driver behavior.
Their findings revealed that rainy weather significantly alter driving patterns, as drivers
tend to adapt their actions to maintain safety under adverse weather.

While factors such as age, driving experience, and personality contribute to variability
in individual driving styles, this thesis aims to characterize a representative behavioral
model rather than account for person-specific distinctions. Therefore, the focus is placed
on understanding how kinematic variables influence driver behavior during interactions
with pedestrians. These variables are directly observable and provide a foundation for de-
veloping reliable, real-time decision-making frameworks for AVs in complex urban settings,
particularly at unsignalized intersections and within shared spaces where such interactions
are frequent.

Beyond identifying the factors that influence human drivers’ decisions, cognition mod-
els were developed to describe and predict driver behavior. One widely studied approach is
the risk field model [58], which represents the surrounding environment as a dynamic field
of potential risks, with drivers assumed to select actions that minimize their perceived
risk. Kolekar et al. [59] introduced a driver risk field model, which represented the driver’s
perceived risk as a subjective probability field combined with potential consequences, and
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demonstrated that this framework can reproduce human-like driving behaviors across di-
verse scenarios. In [60], a driver risk field model was proposed to simulate car-following
behavior, where driver strategies are derived from the evaluation of potential risks in
the surrounding environment. Another category of driver models is the perception-based
model, which employs perceptual cues (e.g., vehicle speed, distance, gap acceptance, and
visual looming.) to describe drivers’ internal decision processes [61]. For instance, study
[62] proposed an evidence accumulation framework based on visual looming to account for
braking decisions in rear-end collision scenarios. Similarly, study [63] introduced an evid-
ence accumulation model for gap acceptance in left-turn situations, demonstrating that
dynamic evidence accumulation underlies human drivers’ decisions to accept or reject a
turning gap. These models provide valuable insights into human driver behavior and offer
strong interpretability. However, they cannot be directly applied as AV decision models,
since they are primarily designed to explain human behavior rather than to guarantee safe
navigation. Moreover, AV-pedestrian interactions are characterized by high levels of un-
certainty and unpredictability, which makes it difficult for such models to capture the full
variability of real-world behavior. In contrast, data-driven approaches [64], which lever-
age large amounts of driving data to learn behavioral patterns, are well suited to handle
dynamic and uncertain environments, but often suffer from a lack of interpretability. An-
other important class of cognition models is Bayesian inference models, which describe
how humans infer others’ intentions through belief updates based on observed behavior.
Study [65] developed a Bayesian decision-making model for AV lane-changing scenarios,
where the lane-change decision is continually updated through Bayesian inference and
executed once the inferred decision variable exceeds a predefined threshold. Likewise, a
Bayesian driver agent model was developed for AV system to interpret the surrounding
environment and make decisions in a manner inspired by the human cognitive psychology
[66]. While these Bayesian models are more interpretable through explicit inference and
belief update modules, they do not account for risk perception or translate perceived risk
into behavioral responses. Therefore, this study aims to integrate risk-based and cognitive
modeling principles into data-driven frameworks, enabling models that can both handle
uncertainty in complex traffic scenarios and provide enhanced interpretability.

2.3 Pedestrian Behavior Modeling

Pedestrians are dynamic agents with complex and often unpredictable trajectories,
requiring AVs to continuously account for their movements during decision-making pro-
cesses. Consequently, pedestrian behavior modeling plays a critical role in the develop-
ment of AV decision-making algorithms in human-involved environments. By capturing
the behavioral characteristics and decision-making patterns of pedestrians, AVs can better
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interpret and adapt to human actions, enabling more timely and appropriate responses
during interactions. Accurate pedestrian models serve as the foundation for realistic inter-
action simulation, providing meaningful feedback that allows AV policies to be developed
and evaluated in environments that closely reflect real-world complexity. This contributes
to more robust and generalizable decision-making strategies. In recent years, a wide range
of pedestrian modeling approaches have been proposed to facilitate the simulation and
analysis of human-vehicle interactions. This section presents a review of representative
pedestrian behavior modeling approaches, with a focus on their assumptions, modeling
techniques, and applications in supporting AV decision-making in interactive contexts.

Early approaches often rely on simplified pedestrian models with ideal behavioral as-
sumptions that significantly deviated from real-world scenarios. For instance, [12] modeled
pedestrians as moving at a constant velocity and fixed direction without reacting to sur-
rounding dynamics. The Cellular Automaton (CA) model, first introduced in [67], dis-
cretized the current space into a grid of cells, where each cell can accommodate at most
one pedestrian. Pedestrian movements were governed by simple, rule-based transitions
between adjacent cells, considering factors such as desired direction, occupancy of neigh-
boring cells, and local interactions. This model simulates pedestrian dynamics in discrete
situations, lacking the ability to represent the continuous motion.

Pedestrian reactive models, such as the Velocity Obstacle (VO) model, the Optimal
Reciprocal Collision Avoidance (ORCA) or Social Force Model (SFM), incorporate agent
interactions and collision avoidance capabilities to simulate pedestrian motion in dynamic
environments. The VO model [68] defined a set of forbidden velocities that would lead to a
future collision with moving obstacles. By avoiding these velocity regions, an agent could
select a motion that approximates its desired speed toward the destination. Despite its
simplicity, intuitiveness, and computational efficiency, the VO model typically assumes
that other agents maintain a constant velocity over time without considering their po-
tential reactions or avoidance behaviors. Compared to the VO model, ORCA [69], [70]
formulated a reciprocal collision avoidance strategy, where each agent was responsible
for adjusting its velocity to avoid collisions cooperatively with others. The ORCA model
performs well and captures reactive behavior among agents, but it still depends on as-
sumptions that other agents will reciprocate collision avoidance efforts in a cooperative
manner and prioritizes obstacle avoidance over goal-directed intentions. Another widely
adopted approach is the SFM, originally proposed by Helbing and Molnar [71]. In this
model, pedestrians were treated as particles influenced by a set of social forces that guide
their motion [72], [73]. These includes a driving force that propels the pedestrian toward a
desired destination and repulsive forces to maintain distance from other pedestrians and
obstacles. The resulting motion emerged from the continuous summation of these forces,
allowing for simulations of pedestrian behavior in various environments. However, the
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SFM primarily focuses on spatial proximity when modeling interactions, assuming that
pedestrian behavior is solely influenced by distance-based factors. In reality, pedestrian
decision-making is affected a broader range of factors beyond physical distance, such as
relative velocity.

Data-driven methods learn pedestrian behavior patterns directly from empirical data
without relying on hand-crafted interaction rules or pre-defined force models. These meth-
ods leverage large-scale trajectory datasets to capture complex and context-dependent mo-
tion dynamics that may be difficult to express analytically. For instance, recurrent neural
networks (RNNs) [74] and their variants such as Long Short-Term Memory (LSTM) [75],
[76] and Gated Recurrent Unit (GRU) [77], [78] networks have been widely applied to pre-
dict pedestrian trajectories by modeling temporal dependencies in movement sequences.
Recent studies [79], [80] further incorporate social context by encoding surrounding agents’
behaviors as inputs to the network, enabling the model to account for implicit interaction
patterns among pedestrians. Transformer-based architectures [81], [82] have also been ex-
plored to improve long-range dependency modeling and better capture subtle behavioral
cues.

These data-driven methods provide greater flexibility in modeling pedestrian beha-
vior, making them well-suited for capturing diverse motion patterns and decision-making
dynamics. However, their performance heavily relies on the quality and diversity of the
training data. In addition, these models often operate as black boxes, lacking interpretab-
ility and transparency in how behavioral predictions are generated. Currently, most data-
driven models are primarily integrated into AV systems as trajectory predictors, providing
forecasts of pedestrian movements to inform AV decision-making, rather than serving as
independent pedestrian agents in interactive simulations. Although a data-driven pedes-
trian predictor was employed as a pedestrian model for AV-pedestrian interaction sim-
ulations in [83], it was trained solely on pedestrian trajectory datasets and thus learned
pedestrian-pedestrian interactions. Due to the absence of vehicle information during train-
ing, the model failed to account for pedestrian reactions to AV maneuvers.

In addition to general pedestrian motion models, some studies have specifically focused
on modeling pedestrian crossing decisions. A common approach treats crossing behavior
as a gap acceptance process, where the pedestrian decides whether to cross based on the
perceived gap between themselves and approaching vehicles. For instance, [84] proposed
a crossing decision model based on the distance and velocity of oncoming vehicles, while
[85] adopted the minimum Time-to-Collision (TTC) as a threshold to determine cross-
ing safety. However, such models often lack a solid psychological foundation and tend to
oversimplify human decision-making by relying solely on physical variables. To address
this limitation, researchers have introduced psychophysically inspired models that incor-
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porate perceptual cues. Domeyer et al. [61] introduced a pedestrian model that relied on
visual angle, its derivative (looming), time-to-arrival, and bearing angle to characterize
how pedestrians perceived approaching vehicles and made crossing decisions, with model
parameters calibrated using naturalistic driving data. [41] presented a gap acceptance
model that employed visual looming information together with binary logistic regression
to infer crossing intentions. More recently, [86] developed a crossing decision model driven
by perceptual variables such as the rate of change of visual angle and the ratio τ (visual
angle to its rate of change), and showed through simulations that it can reproduce ped-
estrian crossing patterns across different vehicle kinematics. The evidence accumulation
model [87], inspired by cognitive psychology, assumed that crossing decisions resulted
from a gradual accumulation of perceptual evidence over time, with a decision triggered
once an internal threshold was reached. Despite their contributions, most of these models
simplify pedestrian behavior to discrete decisions, such as whether or when to cross, rather
than predicting continuous motion trajectories or capturing dynamic, real-time interac-
tions. Moreover, they are typically designed for structured traffic scenarios (e.g., marked
crosswalks or unsignalized intersections). Their applicability to more complex or unstruc-
tured environments remains limited, where pedestrian behavior is inherently continuous,
and not constrained to binary crossing choices.

In contrast to the aforementioned pedestrian models, study [13] used recorded ped-
estrian trajectories, which inherently captured human-human interactions, to train AV
policies. While these trajectories provide realistic motion patterns, they remain static
during simulation and do not adapt to the AV’s behavior in real time.

In summary, existing pedestrian models have laid the groundwork for simulating hu-
man behavior in traffic environments. However, most remain limited in their ability to
support real-time, bidirectional interactions with autonomous vehicles. In contrast, the
pedestrian models proposed in this study are specifically designed to enable dynamic and
continuous interaction with the AV during simulations. More importantly, they incorpor-
ate cognitive modeling to reflect how pedestrians perceive, reason about, and adapt to
surrounding agents. These models not only facilitate more realistic and responsive inter-
actions but also enhance interpretability in understanding how specific behaviors emerge.
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2.4 AV Decision-Making Approach

Numerous decision-making algorithms have been proposed to enable AV to navig-
ate complex urban environments and interact safely with surrounding agents. These
algorithms are critical for translating perception inputs into executable actions, ensur-
ing that the AV can operate efficiently and safely under diverse scenarios. Existing AV
decision-making approaches can be classified into three categories: rule-based methods,
which rely on manually defined heuristics and traffic norms; utility-based methods, which
optimize predefined cost or reward functions to select the most beneficial action; and
learning-based methods, which employ machine learning, particularly deep reinforcement
learning, to learn policies directly from data or simulation. This section delves into a
detailed description of these approaches.

2.4.1 Rule-Based Method

Rule-based methods rely on a database of predefined rules derived from traffic legisla-
tion, expert driving experience, and automotive knowledge. The AV continuously gathers
real-time information regarding its surrounding environment and matches it with the em-
pirical knowledge of the behavior rule database, thus making a reasonable decision for the
next moment [88]. A typical representative of this approach is the finite state machine
(FSM), a mathematical model consisting of a set of states and transfer relationships among
them. Figure 2.1 illustrates a simple finite state machine model of AV lane changing [89].
According to the logical structural relationship between states, FSM models are classified
into series [90], parallel [91], and hybrid types [92], which have been widely applied in AVs
[89]. For example, Stanford University’s AV, known as Junior, utilized a parallel finite
state machine model for behavioral decision-making during the 2007 Defense Advanced
Research Projects Agency (DARPA) competition. This FSM model involved transitions
between 13 states, such as driving forward and passing through the intersection [93]. Fuzzy
logic represents an extension of traditional rule-based approach. Although it still remains
rule-driven, fuzzy logic enables more flexible reasoning by allowing partial truth values
and soft boundaries in rule definitions. For example, study [94] proposed a hierarchical
fuzzy rule-based system to determine the appropriate passing speed when navigating in-
tersections in the presence of human-driven vehicle. In addition, model predictive control
(MPC) has been widely adopted in autonomous driving as a rule-based method. Its core
idea is to use a predictive model of vehicle dynamics to forecast the evolution of the system
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over a finite horizon and then solve an optimization problem that minimizes a predefined
cost function subject to safety and physical constraints [95]. Typical applications include
nonlinear MPC for trajectory tracking and obstacle avoidance [96], and stochastic MPC
for lane changing [97].

Figure 2.1: A simple finite state machine model of AV overtaking maneuver.

Rule-based decision-making methods are simple, easy to implement, highly inter-
pretable, and perform better in simple scenarios. However, these methods are less success-
ful in real-world urban driving scenarios [98] due to dynamic and complex road conditions.
This is because it is difficult for a finite set of rules to cover all possible scenarios, es-
pecially in complicated and uncertain traffic environments, where these rules may have
limitations. For example, when a vehicle navigates in a busy urban intersection, a rule-
based approach may struggle to handle the changing traffic circumstances and uncertain
human activities, making it challenging to guarantee both the safety and efficiency of
traveling simultaneously.

2.4.2 Learning-Based Method

Learning-based methods have emerged as powerful tools for AV decision-making, en-
abling systems to learn optimal policies directly from data and interaction with the envir-
onment. Unlike rule-based approaches that rely on manually designed rules, learning-based
techniques offer greater flexibility and adaptability, especially in dynamic and uncertain
traffic scenarios. This section reviews the learning-based methods, which can be categor-
ized into two major groups: imitation learning, and reinforcement learning.
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2.4.2.1 Imitation Learning

Imitation learning (IL), a supervised machine learning paradigm, learns optimal beha-
vior by observing and mimicking expert demonstrations [99]. In the field of AV, imitation
learning typically involves collecting a dataset of human driver behaviors, including steer-
ing, acceleration, and braking in various traffic scenarios. This collected operational data
is then used to train the self-driving system, enabling it to mimic and learn from these
expert behaviors for safe and stable driving [100]. Unlike reinforcement learning, it does
not rely on trial-and-error exploration to optimize performance; instead, it assumes that
expert behavior provides a near-optimal solution.

Behavioral cloning (BC) and inverse reinforcement learning (IRL) are typical rep-
resentative methods within imitation learning. Behavioral cloning directly maps sensor
inputs to control actions by learning from expert demonstrations [101]. One of the earliest
implementations of behavioral cloning in AV was proposed by Pomerleau et al. [102], who
employed a simple three-layer neural network to map raw images captured from a camera
to steering commands, laying the foundation for later end-to-end driving approaches. A
well-known example is the work of Bojarski et al. [103] at NVIDIA, where a convolutional
neural network (CNN) was trained to learn a direct mapping from raw front-facing cam-
era images to steering control outputs. This end-to-end system allowed the AV to drive
on both regular roads and highways without requiring intermediate modules such as lane
detection, path planning, or control logic.

Later extensions introduced richer inputs and temporal reasoning. Hecker et al. [104]
developed a system equipped with eight cameras to capture a 360-degree view around
the vehicle. The visual inputs from four selected cameras were processed through a net-
work consisting of multiple CNN and LSTM modules, and a final fully-connected layer
fused information from all camera views along with map data to predict future speed
and steering. This significantly improved performance by leveraging richer contextual in-
formation. Similarly, the authors [105] combined CNNs with recurrent layers to train an
AV in urban environments. This study found that incorporating temporal information
through the recurrent structure significantly improved the model’s performance. Another
study [106] proposed a CNN-LSTM model that used the past 1.5 seconds of image and
state history to predict a 3-second collision-free trajectory, including both speed and po-
sition. Recent advances have also explored integrating Transformer encoders with CNNs
to improve spatial-temporal modeling for predicting steering and velocity [107].
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To enhance task-specific control, Codevilla et al. [108] proposed Conditional Imita-
tion Learning (CIL), which introduces high-level navigation commands (e.g., turn left, go
straight, turn right and continue) as additional conditional inputs, as shown in Fig. 2.2.
The model employs a branched architecture where each branch corresponds to a specific
command, and the appropriate branch is activated at inference time, allowing the system
to adapt its behavior to different driving tasks.

Figure 2.2: CIL architecture (from [108]).

Although BC has been successfully applied to certain driving situations due to its
simple implementation and training efficiency, it is crucial to acknowledge several limit-
ations. A substantial volume of supervised data is required to be provided for learning
[107], which is costly and time-consuming to collect. Another critical limitation is its
strong dependence on the quality and coverage of expert demonstrations [109]. If specific
scenarios are not available in the training data, the model may fail to generalize and
perform reliably in unfamiliar situations. Moreover, BC suffers from the covariate shift
problem [110]: once the model deviates from the expert trajectory during inference, the
resulting errors may accumulate over time and lead to significant failures.

In contrast, IRL aims to deduce the potential reward function behind the human
driver’s behavior [111]. By observing a set of expert behaviors, IRL algorithms estimate
a reward function under which the demonstrated behavior would be considered optimal.
This inferred reward is then used to train a policy through reinforcement learning, allowing
the agent to adapt its behavior even in novel or slightly different situations.

The study [112] was the first to formally define the IRL problem. It proposed a linear
programming-based approach to recover a reward function from expert demonstrations,
ensuring that the expert’s behavior appears optimal under the inferred reward. This
foundational work established the theoretical basis for IRL by shifting the focus from
learning direct policies to uncovering the underlying motivations that guide expert ac-
tions. Ziebart et al. [113] proposed Maximum Entropy IRL, to address the ambiguity
and overconfidence often observed in traditional IRL methods when modeling driving be-
haviors. By introducing the maximum entropy principle, this method inferred a reward
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function that explained expert behavior while preserving the stochasticity of real-world
decision-making. This allows the model to better capture the variability and uncertainty
present in expert demonstrations. Building on this foundation, Wulfmeier et al. [114] ex-
tended the Maximum Entropy IRL framework by integrating deep neural networks to
learn reward functions directly from high-dimensional sensory inputs . This approach was
subsequently applied to complex path planning tasks in urban roads [115], [116].

Ho and Ermon later proposed Generative Adversarial Imitation Learning (GAIL) [117],
which combines the principles of IRL and Generative Adversarial Network (GAN). Rather
than explicitly learning a reward function, GAIL trained a discriminator to distinguish
expert behaviors from those generated by the learned policy, enabling the policy to imitate
expert behavior directly. By leveraging the adversarial learning paradigm, GAIL effectively
mitigated the issue of state distribution drift arising from limited demonstration data
[118]. Based on GAIL, Li et al. proposed the InfoGAIL framework [119], which introduces
latent variables to capture and disentangle distinct driving styles. This framework allows
for the explicit modeling of diverse behavior patterns within expert demonstrations.

IRL provides strong generalization capabilities and high interpretability by recovering
reward functions that reflect the underlying motivations of expert behavior. However, it
is computationally intensive due to its reliance on nested reinforcement learning, which
becomes especially costly in high-dimensional and continuous state spaces. Moreover, sim-
ilar to behavioral cloning, IRL is highly sensitive to the quality of expert demonstrations.
Biased or suboptimal behavior can lead to incorrect reward inference and ultimately de-
graded policy performance.

2.4.2.2 Reinforcement Learning

Reinforcement learning (RL) typically employs the Markov Decision Process (MDP)
framework [120] to model the interaction between an agent and its environment. In this
framework, the agent observes the current state, select an action based on a policy, and
transitions to a new state while receiving a corresponding reward, as shown in Fig. 2.3.
Through this continuous trial-and-error process, the agent seeks to learn an optimal policy
that maximizes the expected cumulative reward over time. In the domain of autonom-
ous driving, reinforcement learning provides a promising framework for learning complex
decision-making behaviors in dynamic and uncertain environments. The AV acts as the
agent, while the environment includes surrounding pedestrians, other vehicles and road
infrastructure. The agent makes sequential decisions based on information about the sur-
rounding environment from the vehicle’s sensors as well as the rewards from the previous
action. Reinforcement learning has received significant attention for its application in the
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Figure 2.3: Single-agent reinforcement learning framework for autonomous driving

autonomous driving decision-making. Existing methods can be classified into value-based,
policy-based, and actor-critic approaches. Value-based methods focus on estimating the
expected return of taking an action in a given state and selecting actions greedily based
on these value estimates. A Q-learning algorithm was proposed in [121] to enable an AV to
maneuver through roundabout scenarios. This method was verified through simulations
in the CARLA simulation environment, demonstrating that the AV equipped with this
algorithm could navigate roundabouts safely and effectively. A deep Q-learning (DQN)
model with a discretized action space was employed in [122] to train an AV to perform
lane-keeping while maintaining a safe distance from leading vehicles in a simulated urban
driving environment. However, the original DQN suffers from an overestimation bias in
Q-values [123], caused by using the same network for both action selection and evalu-
ation. To mitigate this issue, Double Deep Q-Learning (DDQN) was introduced, which
decoupled these two processes by using the online network to select the action and the tar-
get network to evaluate its value. Experimental results in driving simulators have shown
that DDQN outperforms DQN in terms of learning stability and decision-making effect-
iveness [124]. While effective in discrete action spaces, value-based methods often struggle
with high-dimensional or continuous action domains due to the difficulty of accurately
estimating the value function over large or infinite action sets. In such settings, discret-
izing continuous actions can be computationally expensive or even intractable, and often
leads to suboptimal performance, especially in tasks with continuous action spaces, such
as autonomous driving.

Different from value-based methods, policy-based methods directly optimize the para-
meterized policy without relying on value function estimation, which are better suitable
for environments with continuous action spaces. The REINFORCE algorithm, introduced
by Williams [125], is one of the earliest Monte Carlo policy gradient methods. It dir-
ectly updates a policy by estimating the gradient of the expected return from sampled
trajectories. Despite its simplicity, REINFORCE suffers from high variance and poor
sample efficiency [126], as it relies solely on Monte Carlo returns and does not incorpor-
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ate any form of value function estimation. These limitations motivated the development
of more advanced policy optimization techniques, particularly those based on the actor-
critic framework, which introduces a learned value function to serve as a baseline, thereby
reducing variance and improving the stability of policy updates.

The actor-critic framework combines the strengths of both value-based and policy-
based approaches [127]. In this architecture, the actor is responsible for learning a policy,
while the critic estimates a value function to evaluate the quality of the actor’s decisions
and provide informative feedback to guide policy updates. By integrating policy learning
and value estimation, actor-critic methods achieve more stable and sample-efficient train-
ing, making them particularly well-suited for autonomous driving. For example, the study
[128] first implemented the Deep Deterministic Policy Gradients (DDPG) algorithm in a
lane following scenario. As a model-free, off-policy actor-critic method, DDPG is specific-
ally designed for learning deterministic policies in continuous action spaces. It employed
a single critic network to estimate Q values, guiding the actor network in producing
continuous actions including vehicle speed and steering angle. The Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm was employed in [129] for training an AV
for navigating T-shaped intersections. As an improvement over DDPG, TD3 incorpor-
ated two independent critic networks and uses the minimum of two Q values estimates to
mitigate overestimation bias. This adjustment thus enhanced learning stability and train-
ing performance. The Soft Actor-Critic (SAC) algorithm was adopted to train an AV for
lane changing on highways [130]. SAC was an off-policy actor-critic algorithm that also
utilized two critic networks to improve the reliability of value estimates. This approach
also introduced maximum entropy framework, which encouraged the agent to explore a
diverse range of behaviors by maximizing both the expected return and the policy en-
tropy. This characteristic enabled the AV to learn flexible lane-changing strategies. The
authors in [131] utilized the Proximal Policy Optimization (PPO) algorithm, a widely
used on policy method, to address the AV on-ramp merging task. PPO introduced a
clipped surrogate objective to restrict policy updates within a trust region, which ef-
fectively improved training stability and prevented performance collapse due to overly
aggressive updates. Maramotti et al. [132] used Asynchronous Advantage Actor-Critic
(A3C) algorithm to develop an end-to-end driving policy directly from raw image inputs.
By distributing multiple agents across separate environment instances, the framework
enabled asynchronous policy and value updates to a shared global model. This design
not only accelerated the learning process but also mitigated sample correlation, thereby
removing the reliance on experience replay buffer.
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In complex urban driving environments, conventional RL architectures that often
based on simple multilayer perceptrons (MLPs), may struggle to capture the intricate
spatial and temporal patterns inherent to the task. To address this limitation, recent
research has integrated advanced representation learning modules into RL frameworks,
such as Graph Neural Networks (GNNs) for structured interaction modeling, RNNs for
temporal sequence processing, and attention-based models like Transformers for capturing
long-range contextual information.

For example, the authors in [133] augmented the DQN framework with Graph Con-
volutional Network (GCN) to explicitly model interactions among multiple agents during
highway ramp merging. By representing the traffic scene as a graph, where nodes de-
note vehicles and edges encode their spatial relationships, this model can better reason
about complex inter-agent dynamics and make more informed decisions. Similarly, [134]
integrated both GCN and Graph Attention Network (GAT) into the PPO framework
to capture spatial relationships among surrounding agents more effectively. Given that
decision-making in autonomous driving is inherently sequential, RNNs such as LSTM
and GRU have been adopted to model temporal dependencies in decision-making. LSTM
was utilized in [135] to support lane-changing behavior on highways, while GRU was ap-
plied in [136] for navigating complex urban intersections. These recurrent structures allow
the policy network to retain and leverage past observations, leading to more temporally
consistent driving behavior. In addition, the Transformer architecture was incorporated
into the SAC framework in [137] to encode high-level scene representations and extract
structured contextual cues, thereby enhancing the policy’s decision-making capability.
Furthermore, [138] proposed an attention-enhanced DQN for highway driving scenarios,
where the attention mechanism enables the agent to prioritize critical environmental fea-
tures, such as nearby vehicles or hazardous regions, thus improving situational awareness
and decision-making accuracy.

Uncertainty quantification has emerged as an important topic in learning-based ap-
proaches for autonomous driving. Two types of uncertainty are considered: aleatoric and
epistemic uncertainty [139]. Aleatoric uncertainty originates from the inherent randomness
of the environment or data, such as sudden changes in pedestrian motion or measurement
noise from sensors [140]. Epistemic uncertainty, in contrast, arises from the limited know-
ledge or expressiveness of the model, which leads to poor performance in situations that
were not sufficiently represented in the training data [140]. To quantify these uncertain-
ties, a variety of methods have been developed, including Bayesian neural networks [141],
Monte Carlo dropout [142], deep ensembles [143], and distributional reinforcement learn-
ing [144]. These techniques allow learning-based models to generate predictions alongside
confidence estimates, which is critical for ensuring safety and more reliable autonomous
driving decision-making systems.
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In contrast to the aforementioned single-agent RL approaches, where only the AV
is trained as an agent and other road users are modeled with fixed trajectories or rule-
based behavior models, MARL treats all interactive entities, such as surrounding vehicles
and pedestrians, as learning agents, as shown in Fig. 2.4. In this framework, each agent
simultaneously learns its own policy while interacting with others in a shared environment.
Unlike single-agent RL, where an agent often focuses solely on maximizing its own reward,
potentially leading to locally optimal behaviors or even degraded global performance,
MARL enables the optimization of system-level performance or the balancing of individual
objectives among agents.

Figure 2.4: Multi-agent reinforcement learning framework for autonomous driving

To support efficient coordination and learning among agents in MARL, different train-
ing and execution paradigms have been explored. Centralized Training Centralized Exe-
cution (CTCE) [145] provides full observability during both training and execution but
is often impractical due to the unrealistic assumption of global information availability
during execution. On the other hand, Decentralized Training Decentralized Execution
(DTDE) [146] fully reflects real-world constraints by relying solely on local observations,
yet it often leads to poor sample efficiency and limited coordination. In contrast, Cent-
ralized Training Decentralized Execution (CTDE) [147] framework has emerged as the
dominant paradigm in MARL. Under this framework, agents are trained using global
information, while during execution, each agent selects actions based solely on its own
local observations, as shown in Figure 2.5. This approach balances training efficiency with
deployment feasibility.
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Several representative algorithms are developed within the CTDE framework. For in-
stance, the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm was
adopted to model interactions between an AV and a human-driven vehicle [148]. Dur-
ing training, a centralized critic leveraged the full joint state and action information
of all agents to better capture the coupled dynamics between them. The Multi-Agent
Proximal Policy Optimization (MAPPO) extended the single-agent PPO algorithm to
multi-agent settings by introducing a centralized value function [149]. MAPPO enabled
each agent to learn a dedicated policy while relying on centralized value estimation. The
Multi-Agent Soft Actor-Critic (MASAC) built on the SAC architecture with a shared
entropy-regularized critic, promoting diverse yet coordinated behavior to enhance high-
way traffic throughput [150]. By allowing agents to adapt to one another, multi-agent
reinforcement learning (MARL) facilitates the emergence of more socially compliant and
cooperative behaviors. However, despite its advantages, MARL still faces several key chal-
lenges. One major issue is the non-stationarity of the environment [151], as each agent’s
learning process continuously alters the dynamics perceived by others. Additionally, the
explosion in the joint state-action space further complicates training and hampers scalab-
ility, especially in complex real-world driving scenarios.

As this thesis mainly focuses on AV–pedestrian interactions, recent advances in learning-
based methods to AV decision-making in urban settings involving pedestrians are sub-
sequently examined. Study [152] employed a maximum entropy IRL method to recover
the underlying reward function from real-world driving data involving vehicle–pedestrian
crossing events. This demonstration-driven approach enabled the construction of an in-
terpretable and data-driven model of AV behavior in human-involved environments. A
risk-aware RL framework was proposed in [153], in which a risk prediction module was in-
tegrated into the decision-making process. This integration allowed the AV to adopt safer
strategies in pedestrian interactions. Although the AV’s action space was discretized into a
set of predefined maneuvers, the model exhibited improved robustness under uncertainty.
In [15], a DQN algorithm was used to train the AV policy in scenarios involving distracted
pedestrians. Pedestrian behavior was defined by a handcrafted rule-based model, while
the AV learned to adapt its responses to balance safety and efficiency. A hybrid decision-
making architecture was developed in [154], combining rule-based logic and RL. The AV
determined its final action by evaluating the confidence of each policy and selecting the
one deemed more reliable, thus enhancing safety in uncertain pedestrian interactions. The
SAC algorithm was extended by incorporating Social Value Orientation (SVO), a concept
from psychology that quantified an agent’s preference between self-interest and prosocial
behavior [155]. This augmentation allowed the AV to adjust its behavior based on the so-
cial context, with pedestrian behavior simulated using the Social Force Model. To model
mutual adaptation between AVs and pedestrians, study [156] formulated the interaction
as a MARL problem using a DQN-based framework, where both agents were treated as
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learning agents. Similarly, [157] employed the MADDPG algorithm, using a CTDE setup
to jointly train the AV and pedestrian. This approach allowed the AV to develop cooper-
ative crossing behaviors by accounting for the evolving pedestrian strategy. While most of
the aforementioned works focused on single-pedestrian scenarios, [13] addressed the more
complex case of AV interactions with multiple pedestrians in urban shared spaces. Real
pedestrian trajectory data were used to simulate the environment, and the AV policy was
trained via the PPO algorithm with a reward function designed to ensure both safety and
efficiency in dense crowds.

Figure 2.5: An illustrative diagram of the CTDE framework in MARL.

While learning-based approaches can effectively model how an agent interacts with
dynamic and complex environments to make decisions accordingly, safety requirements
demand absolute accuracy of the AV in real-world situations, which contradicts the ”trial-
and-error” of the training process [98]. In addition, deep reinforcement learning algorithms
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are susceptible to a lack of interpretability [158], making it difficult to understand or verify
the learned decision-making process. Moreover, the performance of these algorithms is
highly sensitive to the design of the reward function [159]. An unsuitable reward function
may hinder the agent from learning an optimal policy.

2.4.3 Utility-Based Method

Utility-based methods aim to guide an agent’s decision-making process by selecting
actions that maximize its expected utility, which is typically formulated through reward
or cost functions. A representative class of utility-based approaches is game theory.

Game theory, originally developed by Von Neumann and Morgenstern [160], provides
a powerful mathematical framework for modeling and analyzing decision-making in scen-
arios involving conflicting interests among multiple individuals or agents. It centers on
the study of strategic interactions, where each rational player aims to select the action
that maximizes their own utility while considering the potential decisions of others [161].
Conventional game theory relies on the assumption of complete information, meaning
that all participants are fully informed about the structure of the game [162]. This in-
cludes knowledge of the number of players involved, the set of available strategies for each
player, and the payoff or utility outcomes associated with every possible combination of
actions. Moreover, it presumes that all players are perfectly rational. They are capable of
performing optimal reasoning based on this information and will always act to maximize
their own utility. In this model, participants iteratively adjust their choices and beliefs
until they reach a Nash equilibrium, which is the fundamental principle of traditional
game theory [163]. A Nash equilibrium represents a steady state of a game where each
player is reluctant to unilaterally change their strategy because such a change would not
result in a more favorable outcome.

While game theory was initially applied in the field of economics, it is now being
gradually introduced to the study of vehicle-vehicle or vehicle-pedestrian interactions in
the context of AVs. A Zebra Crossing Game was introduced to explore the interaction
between cyclists and vehicles in Norway, and the findings demonstrated that the real
crossing behavior was consistent with the solution derived from game theory [164]. A
game theory model, called the ‘sequential chicken’ model was proposed to simulate space
competition between a vehicle and a pedestrian at an unsigned intersection [165]. This
model also was extended in [166] by employing empirical data and the Gaussian Process
to fit the model’s parameters.
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A static game model with complete information was proposed to resolve conflicts
between AVs at the road intersection, aiming to help the vehicles pass through this area
efficiently. This static model assumed that all involved vehicles are making decisions sim-
ultaneously [167]. On the other hand, a recent study developed a Stackelberg game model
due to the belief that players usually make sequential decisions in the form of actions
and responses rather than simultaneously during road conflicts [168]. This is a dynamic
game model under the assumption that the vehicle and the pedestrian act as leaders,
respectively. The leader initiates the decision, after which the follower selects an action
to maximize its utility concerning the leader’s strategy. Similar applications of the Stack-
elberg game model for simulating the interaction between vehicles and pedestrians are
observed in references [169] and [14]. Figure 2.6 illustrates a representative example of
this dynamic game framework, showing the sequential decision-making process between
the vehicle (leader) and the pedestrian (follower).

Figure 2.6: An illustrative example of a Stackelberg game with payoffs in an AV–pedestrian interaction
scenario. The AV, represented as Player 1 in blue, acts as the leader and first decides whether to yield or
cross. The pedestrian, shown as Player 2 in red, follows by observing the AV’s action and subsequently
selecting whether to cross or wait. The terminal nodes display the respective utilities for both agents,
with blue indicating the AV’s outcome and red reflecting the pedestrian’s payoff.

The approaches mentioned earlier are all based on the conventional game theory model
with players’ complete rationality assumption. However, human behavior does not always
conform to the predictions of the Nash equilibrium [170] in real-world situations due to
bounded rationality and cognitive limitation [171]. To relax the assumption of complete
rationality, Chen et al. [172] combined evolutionary game theory with cumulative prospect
theory to formulate an interactive decision model at uncontrolled mid-block crosswalks.
This method can simulate different behaviors within a pedestrian group but requires
numerous parameters to complete the model fitting.
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In contrast to classical game theory, behavioral game theory stands as a more accurate
predictor of human behavior in real-world scenarios [173]. The findings of a comparison
with four game theoretical models revealed that the behavioral game theoretical model
outperforms the conventional model in forecasting interaction outcomes [174]. The re-
searchers proposed that Nash equilibrium, normally with complete information may not
sufficiently reflect the unpredictable actions of pedestrians at crosswalks. To simulate
the joint behavior of pedestrians and vehicles, they provided a game theoretical frame-
work, namely logit quantal response equilibrium [175], [176] with incomplete information,
replacing Nash equilibrium. Moreover, level-k reasoning softened the perfect rationality
assumption of Nash equilibrium by assuming that agents had different levels of reason-
ing [177]. The reasoning levels started at level 0, with k representing the depth of the
agent’s reasoning ability. An agent being at level k assumed that its opponent performed
at level-(k-1) and made predictions based on this assumption. Level-k reasoning is fre-
quently implemented in vehicle-vehicle interaction models in diverse scenarios, such as
roundabout situations [178], lane changes [179], and intersections [180]. However, if the
opponent’s cognitive hierarchy is not at level-(k-1), the level-k model will not perform
well in predicting its behavior. The study in [181] considered another game theoretical
framework, known as the ’cognitive hierarchy’ framework. This framework holds similar-
ities to level-k but possesses special features for modeling vehicle-vehicle interaction. It
allows the AV to interact with opponents of varying cognitive hierarchies, rather than
being restricted to those only one level below it.

In conclusion, game theory can be a valuable framework for helping investigate the
interactions between AVs and pedestrians. Compared to the rule-based approach, it is
adept at handling more complicated and dynamic scenarios. Moreover, game theoretical
models present better interpretability than learning-based approaches, as they explicitly
model the strategic reasoning process of each agent. However, traditional game-theoretic
frameworks often rely on strong assumptions of perfect rationality and complete inform-
ation, which may not fully capture human behavior in real-world environments. Recent
developments such as level-k reasoning and cognitive hierarchy models have been proposed
to better approximate bounded rationality and improve the realism of decision-making
models.
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2.5 Human-Robot Interaction

Due to the limited research on AV navigation in dense pedestrian environments, many
insights have been drawn from crowd navigation studies on mobile robots, whose interac-
tion modeling techniques can offer useful inspiration for AV systems. Prior work in this
domain falls into two categories: prediction-based planning or learning-based approaches.

Prediction-based planning methods include decoupled and coupled approaches. De-
coupled methods first predict the surrounding agents’ trajectories and then plan a collision-
free path in the remaining free space [182]. However, they often lead to conservative be-
havior or freezing, as the predicted area may become overly occupied with no feasible
path [183]. Coupled methods jointly plan trajectories for all agents by considering mu-
tual interactions [184], but they require frequent updates when agents deviate from their
planned paths, resulting in high computational cost and limited real-time applications
[185]. Moreover, all prediction-based methods depend heavily on accurate pedestrian tra-
jectory forecasts, which are often unreliable due to the unpredictability of human behavior.

Learning-based methods, particularly those based on deep reinforcement learning
(DRL), have emerged as promising alternatives due to their ability to capture complex
social interactions and support efficient online inference. To improve interaction modeling,
many DRL frameworks for robot navigation have integrated advanced network architec-
tures such as RNN [186], [187], [188], GNN [189], [190], [191], and attention mechanisms
[192], [193], [194]. For example, [188] incorporated Long Short-Term Memory into DRL to
encode observations from a variable number of surrounding agents into a fixed-length vec-
tor. A heterogeneous relational DRL framework was introduced to explicitly model diverse
interaction types using a customized GNN [190]. In [193], a spatial graph was combined
with an attention module to highlight the relative importance of nearby agents. While
these approaches enhance interaction modeling, they often neglect the subjective uncer-
tainty inherent in human cognition, such as prediction errors or biases that may arise
when an agent attempts to infer pedestrian intentions or behaviors.

2.6 Chapter Conclusion

Through the discussion of relevant work in this chapter, it becomes evident that
while autonomous driving has been extensively studied, most research on AV decision-
making predominantly focuses on interactions with human-driven vehicles. In contrast,
AV-pedestrian interactions remain relatively underexplored. This research gap persists
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across both simplified scenarios involving a single pedestrian and more complex shared
spaces where AVs need to navigate through crowds. Moreover, in existing AV–pedestrian
interaction frameworks, pedestrian behavior is typically modeled in a pre-defined or react-
ive manner. Such approaches fail to capture the inherently interactive nature of real-world
scenarios, where pedestrians continuously perceive, interpret, and respond to the AV’s be-
havior in a bidirectional loop. This lack of adaptability and flexibility limits the realism
and effectiveness of interaction models, especially in dynamic, uncertain environments.
These limitations underscore the need for pedestrian models and AV decision-making
frameworks that enable realistic interaction with pedestrians in dynamic and complex
urban environments. These insights form the basis for the investigations presented in the
following chapters.
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Chapter 3

Virtual Reality Experiment Study
for Vehicle-Pedestrian Interaction

3.1 Background

This chapter explores the critical factors influencing the decision-making processes
of human drivers and pedestrians respectively by using virtual reality technology. The
goal is to gain deeper insights into how these road users make interactive decisions in
traffic scenarios, particularly in situations involving potential conflicts such as pedestrian
crossings.

A review of the literature reveals numerous studies that investigate interactive beha-
viors between human drivers and pedestrians and create models for predicting pedestrian
crossing intentions [195], [196]. However, most studies have primarily focused on identify-
ing variables that explain pedestrian crossing behavior rather than predicting pedestrian
crossing intention. These parameters may not be obtained prior to making a decision.
For example, frequently used indicators such as waiting time are usually measured after a
decision has been made [39]. Moreover, decision-making models in these studies often rely
on certain factors that may not be readily available in real-world situations. These factors
such as age [32], sensation seeking [33], and social value orientation [34] are typically
gathered through post-experiment questionnaires or interviews and are often inaccessible
or impractical for real-time use in autonomous vehicle systems.

To address these limitations, interactive vehicle-pedestrian experiments were conduc-
ted using virtual reality technology, and behavior analysis was performed with an exclusive
focus on the kinematic perspective, since the kinematic variables are easily accessible prior
to AVs’ decision-making in real-world scenarios. Specifically, virtual reality trials were car-
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ried out to collect data based on the state-of-the-art distributed driving-pedestrian sim-
ulator platform, investigating the most important factors impacting human drivers’ and
pedestrians’ decision-making processes, and analyzing the inherent relationships between
motion parameters and pedestrians’ behavior as well as driver-yielding behavior.

Figure 3.1: The theoretical framework of the virtual reality study.

Fig. 3.1 shows the theoretical framework of our study. The virtual reality platform
can create an immersive virtual environment where vehicles and pedestrians can interact.
A driving simulator, equipped with a steering wheel and a screen, is used to emulate the
driving experience for a human participant acting as the vehicle driver. The screen renders
the visual feedback of the virtual environment, while the steering wheel captures driving
commands, such as acceleration, braking, and steering inputs. These commands are then
transmitted to the virtual environment to control the behavior of the simulated vehicle.
Simultaneously, a real human pedestrian participant is situated in the same environment,
equipped with a VR headset and a motion capture system. The headset provides an im-
mersive view of the shared virtual space, while the motion capture system records body
posture and walking behavior. This information is used to animate the movement of the
virtual pedestrian within the simulation, ensuring that their actions accurately reflect
natural human motion. During experiments, the data collection module records all relev-
ant data for subsequent analysis. On the right side of the framework, the data analysis
pipeline is depicted. This phase involves the application of machine learning techniques,
specifically the AdaBoost algorithm, to interpret behavioral patterns extracted from the
collected data. To enhance interpretability, Partial Dependence Plots are employed to
visualize the influence of individual features on model predictions. The combined analyt-
ical approach supports detailed investigation of AV-pedestrian interaction.
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3.2 Methodology

3.2.1 AdaBoost

AdaBoost, short for Adaptive Boosting, stands as a potent ensemble learning tech-
nique employed in classification tasks. The core principle of this approach involves ag-
gregating weak learners to form a robust learner, a fundamental aspect of the broader
’Boosting’ methodology within ensemble learning [197]. Despite these weak learners only
slightly outperforming random guessing in terms of prediction accuracy, their learning
potential is pooled to create a more trustworthy model. Unlike bagging methods that
train base learners in parallel [198], AdaBoost employs a sequential strategy in which the
performance of each learner informs the training of the next, specifically by reweighting
the training samples to emphasize those that were previously misclassified.

In the AdaBoost algorithm, the process commences by creating a weak classifier, where
the weights assigned to the training samples are identical. Formally, for a training set of
N samples, the initial weight distribution is defined as:

D1(i) =
1
N
, ∀i ∈ {1, . . . ,N} (3.1)

where D1(i) denotes the initial weight assigned to the i-th training sample. Subsequently,
these sample weights are adjusted based on the performance of the proceeding weak clas-
sifier, a crucial step for the successive classifier and its progress [199]. This leads to an
amplification in the weight of samples that were erroneously classified and a reduction in
correctly classified samples. The classification error of the current weak learner is com-
puted as the weighted sum of the misclassified instances [199]:

εt =
N

∑
i=1

Dt(i) · I[ht(xi) ̸= yi] (3.2)

where εt is the weight error of the weak classifier ht at iteration t, Dt(i) is the current
weight of sample i, xi is the input, yi ∈ {−1,1} is the true label, and I[·] is the indicator
function that returns 1 if the prediction is incorrect, and 0 otherwise. The importance of
each weak classifier is quantified by a weight assigned to it based on its accuracy, defined
as:

αt =
1
2

ln
(

1− εt

εt

)
(3.3)
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where αt indicates the contribution of the t-th weak classifier to the final ensemble. A
smaller εt results in a larger αt , giving the corresponding weak classifier more influence
in the final prediction. Using the updated sample weights, another weak classifier is con-
structed. The new weights are computed according to:

Dt+1(i) =
Dt(i) · e−αtyiht(xi)

Zt
(3.4)

where Zt is a normalization factor to ensure that the updated weights form a valid prob-
ability distribution:

N

∑
i=1

Dt+1(i) = 1 (3.5)

If a sample xi is correctly classified, the exponential factor in the weight update becomes
e−αt , resulting in a decrease in ints weight. Conversely, if the sample is misclassified,
leading to a higher weight. As the process iterates, subsequent weak classifiers prioritize
samples that were previously misclassified, progressively refining the model’s performance.
Finally, a strong learner is produced by combining these sequentially weak classifiers. The
overall prediction is given by a weighted majority vote:

H(x) = sign
(

T

∑
t=1

αtht(x)

)
(3.6)

where H(x) is the final output of the AdaBoost classifier and the sign function determ-
ines the final class label by aggregating the weighted votes of all weak learners. The
determination of each weak classifier’s contribution to the strong learner hinges on its
classification accuracy, assigning greater weights to more accurate classifiers. AdaBoost
algorithm efficiently utilizes the collective insights from these weak classifiers, leveraging
their combined strength and optimizing the model’s predictive capabilities through the
cascading impact of these weak classifiers [200]. The detailed procedure of the AdaBoost
algorithm is presented in Algorithm 1.

AdaBoost has demonstrated exceptional effectiveness and versatility in various applic-
ations, whose adaptability, capacity to handle intricate datasets, and ability to improve
predictive accuracy make it a popular choice in the machine-learning community. In this
study, we adopt the AdaBoost algorithm to analyze behavioral data collected from virtual
reality experiments involving human drivers and pedestrians. AdaBoost is particularly
well suited to this analysis for several reasons. First, it provides explicit and interpretable
feature-importance measures, enabling a transparent understanding of the relative contri-
butions of different factors to interaction outcomes. Second, AdaBoost performs reliably
on relatively small datasets, such as our VR-based dataset. Finally, its ensemble structure
combing multiple weak learners enables AdaBoost to achieve stable and robust perform-
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Algorithm 1: AdaBoost Algorithm
Input: Training data {(xi,yi)}N

i=1, number of iterations T
Output: Strong classifier H(x)
Initialize sample weights D1(i) = 1

N , ∀i ∈ {1, . . . ,N};
for iteration t = 1 to T do

Train weak classifier ht(x) using weighted distribution Dt ;
Compute error εt = ∑N

i=1 Dt(i) · I[ht(xi) ̸= yi];
Compute classifier weight αt =

1
2 ln
(

1−εt
εt

)
;

Update sample weights:
Dt+1(i) =

Dt(i)·e−αt yiht (xi)

Zt
, where Zt is a normalization factor;

Combine weak learners into final strong classifier:
H(x) = sign

(
∑T

t=1 αtht(x)
)
;

return H(x);

ance in the presence of variability and noise in human-centered data. These characteristics
make it an appropriate and effective choice for our task. By applying AdaBoost to clas-
sify behavioral outcomes and rank feature importance, we aim to identify the key factors
influencing decision-making under interaction scenarios.

3.2.2 Partial Dependence Plot

The Partial Dependence Plots (PDPs), introduced by Friedman [201], effectively illus-
trate the marginal impact of one or two features on the predicted outcomes of a machine
learning model. These plots showcase the functional relationship between a feature vari-
able and the model’s prediction results. This relationship is determined by applying a set
of data to the machine learning model, altering the value of the feature of interest while
keeping supplementary features constant, and then analyzing the resulting model output.
This analysis helps ascertain whether the relationship is roughly linear, monotonic, or
more complex [202]. PDPs offer valuable advantages, as they provide clear and under-
standable insights into the features’ influences. To further elaborate, a partial dependence
function is defined as follows [203]:

fS (XS) = EXS f (XS,XC) (3.7)

where XS is a subset of the target feature, and XC is a subset of all features excluding the
feature of interest. f (·) denotes the predictive function of the machine learning model, and
EXC represents the marginal expectation over the distribution of the remaining featrues
XC. The function fS(XS) thus captures the average predicted response as a function of XS,
holding all other featrues marginalized.
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Normally, XS consists of one or two attributes. The PDP takes a one-dimensional form
when XS contains a single feature, effectively illustrating the impact of that specific feature
on the expected output. However, when XS contains two features, the PDP transforms
into a two-dimensional representation. This version not only showcases the influence of a
single feature on the predicted output but also reveals the interactive relationship between
the two features and its impact on the predicted results [204]. All training data can be
averaged to estimate the partial dependence function as [203]:

f̄S (XS) =
1
N

N

∑
i=1

f (XS,xiC) (3.8)

where N is the number of samples in the training dataset, and xiC denotes the true observed
values of the complementary feature set XC for the ith training instance.

3.3 Experiment

3.3.1 Participants

This study recruited a total of 32 participants, including 16 drivers and 16 pedestri-
ans, from various genders and age groups to participate in our simulation experiment. The
choice of 32 participants was made with considerations of feasibility and the anticipated
effects in our experimental design. All participants were either students or teachers, who
were randomly divided into 16 groups, each consisting of both a driver and a pedestrian.
To ensure the effectiveness of the experiment, participants were required to meet certain
criteria. They were in good health with no vision or motion impairments. Additionally,
all drivers possessed a valid UK driving license with a minimum of 3 years of driving
experience. Prior to their involvement in the experiment, participants were given a com-
prehensive briefing on the experimental procedures, familiarized with the experimental
equipment, and requested to provide informed consent.

3.3.2 Appartus

Due to the costly and time-consuming data collection in real-world physical exper-
iments, virtual reality technology was applied in our investigation to gather data on
vehicle-pedestrian interactions.
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(a) (b)

Figure 3.2: A driver-pedestrian simulator platform. (a) Driving simulator integrated external devices. (b)
Pedestrian simulator.

Our driving-pedestrian simulator was developed using Unreal Engine (UE), a highly
advanced and versatile 3D creative tool compatible with various external devices, includ-
ing virtual reality headsets, steering wheels, and motion capture systems. Initially, we
designed a synthetic urban environment using Unreal Engine 4.26 to facilitate real-time
interactions between drivers and pedestrians. The simulator integrated several key com-
ponents, including the Logitech G920 steering wheel, VIVE Pro 2 headset, and Perception
Neuron Motion Capture System, alongside other sensors and external devices (see Fig.
3.2). Upon full setup of the simulation system, the driver seated in front of the driving
simulator was presented with a realistic view of the interior of the vehicle on a 49-inch
curved screen (see Fig. 3.3). The Logitech G920 steering wheel effectively captured the
driver’s inputs for steering, throttle, and braking, which was then transmitted to control
the virtual vehicle developed using Python. The Python script captures driving commands
and updates the vehicle’s kinematic information within the Unreal Engine 4.26.

Meanwhile, the motion capture system and VR headset afforded pedestrians a vir-
tual perspective within the simulated environment, enabling the capture of posture data.
The motion capture system transmits posture information to the UE, and concurrently,
the UE sends the view of the virtual pedestrian back to the VR headset. For the Per-
ception Neuron Motion Capture System, a software named Axis Neuron is employed
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Figure 3.3: Realistic view of the interior of the vehicle on a 49-inch curved screen

to handle data from motion capture sensors, which can be configured through USB in
single-performer mode or Ethernet in multi-performer mode. In our project, we utilize
Ethernet for data transformation. Axis Neuron also enables real-time capture, record-
ing, and streaming into Unreal Engine. The appearance of the pedestrian in the virtual
reality environment of the real-time capture in Axis Neuron and data live streaming in
UE are depicted in Fig. 3.4. Indeed, both motion capture sensors and VR headsets can
offer precise position and orientation data for the pedestrian’s head. Yet, the VR headset
can introduce interference with the motion capture unit worn on the head. As a result,
we prioritize relying on the position and orientation data provided by the VR headset
to accurately map the pedestrian within the virtual environment. The motion capture
system is specifically employed for animating the avatar’s body posture. This data was
subsequently translated into virtual pedestrian movements, allowing for the seamless in-
tegration of real-time interactions between drivers and pedestrians.

3.3.3 Data Collection

To capture real-time driver-pedestrian interactions, we designed a single-lane road
spanning 3.65 meters wide within a virtual environment. It’s important to emphasize
that all the elements in the virtual environment, such as pedestrians, vehicles, buildings,
and trees, are precisely adjusted to a 1:1 scale with the real world. This adjustment holds
significant importance as it profoundly influences the perception of speed for both the
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(a)

(b)

Figure 3.4: The appearance of the pedestrian in the virtual reality environment. (a) Real-time capture in
Axis Neuron. (b) Data live streaming in the Unreal Engine.

driver and pedestrians, as depicted in Fig. 3.5. The benefit of designing a loop-shaped
road is that it allows the driver to maintain continuous driving without the need to
restart the simulation at each episode. In this scenario, drivers navigated continuously
along a circular road at random speeds, reacting to pedestrians appearing in their field of
vision by either yielding or continuing their course. Pedestrians were randomly spawned
on the opposite side of the circular road and decided whether to cross the road when a
car approached. In cases where pedestrians opt not to yield, they proceed to cross the
road directly. The pedestrian was also unaware of when the car would appear. Fig. 3.6
and Fig. 3.7 illustrate one of the interactive scenarios in the real world and virtual reality,
respectively. The fact that unpredictability of when pedestrians would appear introduced
a significant level of uncertainty, fostering more genuine and lifelike driver responses.
Our study focused on the interactions between a single pedestrian and a single driver,
with a total of 32 participants, encompassing diverse ages and genders, grouped into 16
pairs. These experiments were intentionally designed as a scenario between a single vehicle
and a single pedestrian to allow a controlled investigation of the key behavioral factors
influencing pedestrian and human driver decision-making. A more complex multi-agent
setup would introduce multiple interacting variables and confounding effects, making it
difficult to isolate the fundamental mechanisms of vehicle-pedestrian interaction. Each
pair will conduct the experiment for an hour, with a 20-minute break every half-hour.
Consequently, we recorded one hour of data for each group. However, as some instances
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lacked meaningful interaction between pedestrians and vehicles, our study developed a
program to detect and filter out these invalid data based on factors such as the positions
of pedestrians and vehicles, as well as their relative distances. Each pair, on average,
contributed 30 minutes of driver-pedestrian interaction effective data recorded after the
removal of invalid data. In total, we amassed a total of 8 hours’ worth of driver-pedestrian
trajectory data for analysis. Specifically, we gathered kinematic data pertaining to driver-
pedestrian interactions, mainly including the absolute position of both the vehicle and
the pedestrian, the vehicle’s speed, and the driver’s inputs related to steering, throttle,
and braking inputs at each time step. It is noted that the motion capture system and
VR headset have their own reference coordinate system respectively. Consequently, it is
necessary to map their data into the world coordinate in the UE.

3.4 Results and Discussion

In this section, we conducted an analysis of drivers’ approaching behavior, pedestrians’
crossing behavior, as well as their interactions and drivers’ yielding behavior within specific
ranges using collected data.

3.4.1 Drivers’ Approaching Behavior

This part delves into the critical factors influencing drivers’ decision-making process
when encountering pedestrians. Table 4.2 provides an overview of specific variables con-
sidered, primarily focusing on vehicle dynamics. In this analysis, the crossing point is
defined as the juncture where the vehicle and pedestrian trajectories intersect [205], as
shown in Fig. 3.8. The initial time is defined as the moment a pedestrian enters a driver’s
field of vision. Previous research has demonstrated that a driver’s decision time initiates
upon first visual contact with the pedestrian and ends when they either engage the pedal
or manipulate the steering wheel [206]. Consequently, this study posits that when a driver
yields to a pedestrian, the driver’s decision time corresponds to when to hit the brake or
release the accelerator pedal. Conversely, if the driver crosses the crossing point before
the pedestrian, the decisive moment centers on when to depress the accelerator pedal or
release the brake pedal.

AdaBoost, which provides accurate results without the risk of overfitting [197], is used
to analyze the factors influencing a driver’s decision-making process. The output of the
AdaBoost model is whether the driver yields to the pedestrian or not. To quantify the
driver’s decision-making, we categorize the scenario where the driver crosses the crossing
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(a)

(b)

Figure 3.5: The virtual urban environment. (a) Overview of the virtual environment. (b) 3.65m single
lane road.
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(a)

(b)

Figure 3.6: Data collection with driving-pedestrian simulators in the real world
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(c)

Figure 3.6: (Continued) Data collection with driving-pedestrian simulators in the real world

Figure 3.7: One of the vehicle-pedestrian interactive scenarios in virtual reality
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Figure 3.8: Illustration of vehicle-pedestrian crossing point.

Variable Description Unit
init_TTA The initial time to arrival, representing the time for the

vehicle to reach the crossing point when a pedestrian
enters a driver’s field of vision

s

init_v_veh The vehicle speed when a pedestrian enters a driver’s
field of vision

m/s

init_d_longi The distance for the vehicle to the crossing point when
a pedestrian enters a driver’s field of vision

m

init_d_lat The distance for the pedestrian to the crossing point
when a pedestrian enters a driver’s field of vision

m

TTA The time to arrival, representing the time for the vehicle
to reach the crossing point when a driver is at his de-
cision time

s

v_veh The vehicle’s speed when a driver is at his decision time m/s
a_veh The vehicle’s acceleration when a driver is at his decision

time
m/s2

d_longi The distance for the vehicle to the crossing point when
a driver is at his decision time

m

d_lat The distance for the pedestrian to the crossing point
when a driver is at his decision time

m

v_ped The pedestrian’s speed when a driver is at his decision
time

m/s

Table 3.1: Variables used for analyzing drivers’ approaching behavior.
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Figure 3.9: Feature importance in driver’s decision-making process.

point first as the decision not to yield. Conversely, if the pedestrian crosses the road first,
we interpret it as the driver choosing to yield to the pedestrian. The model was trained
on a total of 479 samples. Among these, 241 samples correspond to scenarios where the
driver yielded, while 238 samples represent instances where the driver proceeded without
yielding. To develop the model, 80% of the dataset is randomly selected for training
purposes, while the remaining 20% is reserved for evaluating the model’s performance.
The optimal parameters of the model (max-depth=2, n-estimators=12, learning-rate=0.5)
are determined through a five-fold cross-validation process. The model’s accuracy on the
test set is 0.927, accompanied by an f1-score of 0.932.

In Fig. 3.9, the importance of variables in drivers’ decision-making is displayed. The
more significant a variable is, the greater its impact on the driver’s decision-making pro-
cess. It can be seen from Fig. 3.9 that the most crucial factor is the pedestrian’s speed,
followed by the distance between the vehicle and the crossing point at the moment the
driver makes their decision. Moreover, it is evident from observations that specific factors
exert a substantial yet non-linear impact on a driver’s decision-making process. It is also
worth noting that variables at the decision moment hold more significance than those at
the initial moment. Thus, the analysis will mainly focus on the relevant parameters at
the drivers’ decision-making moment.
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The PDP effectively illustrates how one or two variables affect the machine learning
model’s prediction results. It can reveal a linear, monotonic, or more intricate relationship
between variables and predictions [207]. PDPs make it easy to observe the impact of
the independent variable on the drivers’ decision-making process. The PDPs for relative
variables in drivers’ decision time are presented in Fig. 3.10, Fig. 3.11 and Fig. 3.12.

It is imperative to emphasize that increasing pedestrian walking speed from 0 to 0.5
m/s sharply elevates the probability of vehicles yielding to them. This occurs because
changes in pedestrian speed indicate their intention to cross the road, prompting the
driver to decide to yield. The partial dependence value also escalates during this speed
range before stabilizing, signifying that 0.5 m/s is the threshold at which the driver’s
probability of yielding improves if the pedestrian walks more quickly, beyond this point,
its effectiveness diminishes. Therefore, pedestrian speed plays an indispensable role in a
driver’s decision-making process.

As the TTA extends from 2 to 6 seconds, there is a notable increase in the likelihood
of drivers yielding to pedestrians. When the TTA exceeds 6 seconds, the probability of
drivers yielding is approximately 0.9. Similarly, the distance from the vehicle to the cross-
ing point follows a comparable pattern with TTA. Moreover, TTA and the longitudinal
distance have positive partial dependence values, indicating that their increasing effects
on the driver’s yielding are favorable. As the TTA and the longitudinal distance continue
to increase, pedestrians’ tendency to cross the road becomes more prominent, facilitat-
ing drivers in perceiving their intentions and consequently amplifying the probability of
drivers yielding to pedestrians. These findings align with previous research on the topic
[26, 37].

Although the likelihood of the driver yielding increases with higher vehicle speed, the
partial dependence plot shows a weak relationship between speed and the driver’s decision-
making process. Furthermore, if a vehicle decelerates at a rate of exceeding 0.75 m/s2,
the driver is more likely to yield. However, if the vehicle is accelerating, the probability
of the driver’s yielding decreases significantly. Similarly, the driver’s yielding probability
drops as the pedestrian is farther away from the crossing point. This is because when the
distance between the pedestrian and the intersection is greater, the pedestrian requires
more time to cross the road, resulting in a higher probability of not crossing. Consequently,
the driver is less likely to yield. Additionally, the partial dependence values for increased
vehicle acceleration and lateral distance are negative, indicating that increases in these
factors have a detrimental effect on the driver’s ability to yield.
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(a) Pedestrian’s speed

(b) Longitudinal distance

Figure 3.10: PDPs for the pedestrian’s speed and the longitudinal distance in the driver’s decision-making
process.
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(a) Vehicle’s acceleration

(b) Lateral distance

Figure 3.11: PDPs for the vehicle’s acceleration and the lateral distance in the driver’s decision-making
process.
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(a) Vehicle’s speed

(b) TTA

Figure 3.12: PDPs for the vehicle’s speed and the TTA in the driver’s decision-making process.
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3.4.2 Pedestrians’ Crossing Behavior

This part explores the factors influencing a pedestrian’s decision to cross the road in
the presence of an approaching vehicle. The explanatory variables under consideration
are outlined in Table 3.2. The initial moment is triggered when the pedestrian spots the
approaching vehicle for the first time. Additionally, this study posits that if a pedestrian
chooses to cross the road, their decision-making time is when their rate of speed change
exceeds 1 m/s2. Conversely, if the pedestrian decides to yield to the vehicle, their decision-
making time is averaged based on the decision-making times for road crossing.

Our study also applies the AdaBoost approach to analyze the diverse factors that
influence pedestrians when crossing the road. During the model development stage, we
randomly select 80% of the dataset to train the model, reserving the remaining 20% of
the data for model evaluation. Through a five-fold cross-validation process, we establish
the optimal parameters of the model (max-depth=4, n-estimators=61, learning-rate=0.3).
The model achieves an accuracy of 0.935 and an f1-score of 0.935 on the test set.

Fig. 3.13 illustrates the significance of variables in influencing pedestrian crossing
decisions, with the impact increasing in proportion to the variable’s importance. The
figure highlights that the distance between the vehicle and the crossing point when a
pedestrian is making a decision holds the utmost significance, followed by the vehicle’s
acceleration. On the contrary, the initial vehicle speed and initial TTA are relatively less
critical. Notably, it is observed that the factors with the greatest impact exhibit a non-
linear influence on the decision-making process of pedestrians. This study will also provide
a detailed analysis through the partial dependence plots.
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Figure 3.13: Feature importance in the pedestrian’s decision-making process.

Variable Description Unit
init_TTA The initial time to arrival, representing the time for the

vehicle to reach the crossing point when a vehicle enters
the pedestrian’s field of vision

s

init_v_veh The vehicle speed when a vehicle enters the pedestrian’s
field of vision

m/s

init_d_longi The distance for the vehicle to the crossing point when
a vehicle enters the pedestrian’s field of vision

m

init_d_lat The distance for the pedestrian to the crossing point
when a vehicle enters the pedestrian’s field of vision

m

TTA The time to arrival, representing the time for the vehicle
to reach the crossing point when the pedestrian is mak-
ing a decision

s

v_veh The vehicle’s speed when the pedestrian is making a
decision

m/s

a_veh The vehicle’s acceleration when the pedestrian is making
a decision

m/s2

d_longi The distance for the vehicle to the crossing point when
the pedestrian is making a decision

m

d_lat The distance for the pedestrian to the crossing point
when the pedestrian is making a decision

m

Table 3.2: Variables used for analyzing pedestrian crossing behavior.
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The information presented in Fig. 3.14, Fig. 3.15 and Fig. 3.16 demonstrates the im-
pact of relevant variables on pedestrians’ decision to cross the road. It is revealed that the
longer distance for the vehicle to the crossing point exhibits an increasing crossing prob-
ability trend. Longer longitudinal distances encourage pedestrians to cross before vehicles
approach. The partial dependence plot suggests that the probability of pedestrians cross-
ing the road remains relatively steady when d_longi is under 20 meters. However, beyond
this point, positive values that accompany the increase in distance strongly suggest a
positive correlation between distance and propensity for pedestrian crossings. Conversely,
as the lateral distance increases, the pedestrian crossing probability drops, as evidenced
by the negative partial dependence values. This could possibly be attributed to the longer
time required for pedestrians to cross the road with the larger lateral distance, thereby
reducing the probability of crossing. Moreover, TTA is likely to have a similar effect as
d_longi on pedestrian crossing decisions.

According to the partial dependence plot, it is evident that an increase in vehicle
speed has an adverse effect on pedestrians who are crossing the road. However, the pre-
dicted probability shows fluctuations with rising vehicle speed. The probability initially
decreases, but then it rises again. Notably, if the vehicle speed exceeds 12 m/s, the pre-
dicted probability of pedestrians crossing the street surpasses 0.5. Further investigation
revealed that this phenomenon is linked to the experimental setup, where higher speeds
typically coincide with longer longitudinal distances. Pedestrians are more inclined to
cross the road with a larger longitudinal distance. It’s important to emphasize that this
PDP diagram solely represents the marginal effect of the vehicle speed variable on pedes-
trian crossing decisions and does not account for the interplay between vehicle speed and
longitudinal distance. Another aspect unveiled by the partial dependence plot is that an
increase in acceleration generally reduces the likelihood of pedestrians crossing the road.
Pedestrians are more likely to cross when the vehicle acceleration is lower than -1 m/s2.

Based on the analysis above, it becomes evident that pedestrians’ decision to cross the
road is influenced not only by a single variable but also by the interaction of two or more
variables. Fig. 3.17 illustrates the interactive effects of vehicle speed and longitudinal dis-
tance, as well as vehicle acceleration and longitudinal distance. In Fig. 3.17a, a discernible
correlation is observed between the likelihood of pedestrians crossing the road and both
the longitudinal distance and vehicle speed. With a longitudinal distance lower than 35
meters, the vehicle’s speed primarily affects pedestrian crossing behavior. However, for
longer longitudinal distances, both the distance and the vehicle’s speed play a role in
shaping pedestrian behavior. Specifically, an increase in distance and speed amplifies the
likelihood of pedestrian crossings, whereas a decrease in distance and speed diminishes
this probability. Similarly, in Fig. 3.17b, a rise in both longitudinal distance and vehicle
acceleration corresponds to an increased probability of pedestrian road crossings. Con-
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(a) Longitudinal distance

(b) Vehicle’s acceleration

Figure 3.14: PDPs for the longitudinal distance and the vehicle’s acceleration in the pedestrian’s decision-
making process.
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(a) Lateral distance

(b) TTA

Figure 3.15: PDPs for the lateral distance and the TTA in the pedestrian’s decision-making process.
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(a) Vehicle’s speed

Figure 3.16: PDPs for the vehicle’s speed in the pedestrian’s decision-making process.

versely, when the vehicle decelerates slightly with a smaller longitudinal distance, the
likelihood of pedestrians crossing the road reaches its lowest. This is attributed to the
behavior of some drivers (27%) who lightly engage the brake pedal upon spotting the
pedestrian. Consequently, pedestrians may perceive the safety risk of crossing the road as
too high with a short longitudinal distance, prompting them to yield to the approaching
vehicle.

3.4.3 Driver-Pedestrian Interaction

Since pedestrians’ speed and longitudinal distance are the most significant variables
impacting driver and pedestrian decision-making respectively, we have formulated the
following definitions to further explore the relationship between these parameters and the
decision-making process:

tanα =
vveh
vped

(3.9)

tanβ =
dlongi
dlat

(3.10)
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(a) (b)

Figure 3.17: The mutual impact between longitudinal distance and vehicle speed as well as vehicle accel-
eration respectively.

On the one hand, in situations where a pedestrian tends to yield, Fig. 3.18 illustrates
the relationship between α and β . The graph distinctly shows a continuous trend where
α remains consistently greater than β if a pedestrian allows a vehicle to proceed first.
Fig. 3.18 also provides two illustrative examples. It is evident, particularly in Fig. 3.18a,
that the pedestrians’ speed stays essentially constant, hovering around 0. As the ratio of
vehicle speed to pedestrian speed tends to infinity when the pedestrian speed approaches
zero, α approaches a value indefinitely close to π/2. Given that the longitudinal distance
decreases while the lateral distance remains constant and the arctan function becomes
monotonically growing, the value of β drops.
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(a)

(b)

(c)

Figure 3.18: The relationships between α and β when the pedestrians yield. (a) A normal case of the
relationships between α and β . (b) A special case of the relationships between α and β . (c) Overview of
the relationships between α and β in all cases.
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(a)

(b)

Figure 3.19: Two examples of relationships between α and β when the vehicle yields.

In contrast, Fig. 3.18b presents a special scenario where α is not always greater than
β . This situation arises because the pedestrian does not make a one-time decision and may
modify it during the interaction process. Specifically, in this scenario, although α initially
holds a higher value than β , the pedestrian begins to accelerate, causing α to decline at
a longitudinal distance of 77 m. The value of α equalizes with β when the pedestrian’s
speed reaches 0.35 m/s. Subsequently, α consistently maintains a lower than β . The
pedestrian’s speed peaks at 0.92 m/s when the longitudinal distance is 66.8m. However,
post this peak, the pedestrian’s speed begins to decline. At a longitudinal distance of
63.3m, the pedestrian’s speed reduces to 0.35 m/s, aligning α equal to β again before
gradually exceeding β . This observation implies that the pedestrian initially intends to
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cross the road while the longitudinal distance falls within the range of 63.3 m to 77 m.
However, the pedestrian ultimately changes his decision, opting to yield to the vehicle
instead. Therefore, we can infer that the pedestrian yields to the vehicle when α exceeds
β .

On the other hand, Fig. 3.19 presents two instances depicting the relationship between
α and β in scenarios where the pedestrian opts to cross the road. Both figures clearly
indicate that if the pedestrian eventually crosses the road before the vehicle, the value of
α is initially greater than β and then decreases to be lower than β . Specifically, in Fig.
3.19a, where the pedestrian’s speed is nearly 0 and remains stable, the pedestrian is likely
in the decision-making process, showing no definitive inclination to cross. During this
period, α exceeds β , aligning with our earlier conclusion. However, when the longitudinal
distance reaches 68.3 m, the pedestrian’s speed begins to notably increase, indicating the
decision to cross. Although the vehicle’s speed continues to rise, the change in pedestrian
speed significantly influences the value of α , causing α to decrease and eventually become
smaller than β .

Similarly, Fig. 3.19b demonstrates a scenario where the pedestrian initially moves at
a slow pace as the longitudinal distance decreases from 75 to 27 meters. The pedestrian
accelerates when the distance falls below 27 meters. Due to the close longitudinal distance,
when the driver perceives that the pedestrian is about to cross the road, he engages the
brake pedal. Consequently, the value of α drops below β , rapidly approaching zero. Hence,
it can be inferred that if α is less than β , the pedestrian chooses to cross the road.

In summary, we can draw the conclusion that if α exceeds β , the pedestrian is likely to
yield to the vehicle. Conversely, if α is less than β , the pedestrian is inclined to cross the
road before the approaching vehicle. This finding holds significant value in dynamically
predicting pedestrian decisions using easily accessible variables.
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(a)

(b)

Figure 3.20: The proportion of drivers’ behavior under different TTA conditions.

3.4.4 Driver’s Yielding Behavior Analysis

This part investigates the actual drivers’ behavior when yielding to pedestrians. As
indicated in the preceding section, when the value of α exceeds β in all scenarios where
vehicles yield to pedestrians, the pedestrian exhibits no obvious intention to cross the
road. Conversely, when α is less than β , the pedestrian displays a clear intention to
cross. Therefore, this study aims to investigate the driver’s behavior in all vehicle-yielding
situations when the pedestrian’s intention to cross the road is either ambiguous or evident.
The primary focus of this study is on driver behavior when the TTA ranges between 2
and 8 seconds. Using cluster analysis [208], [209], the driver behavior is categorized into
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four groups based on vehicle acceleration data: non-deceleration (greater than 0), light
deceleration (0, -1.90 m/s2), moderate deceleration (-1.90 m/s2, -5.26 m/s2), and heavy
deceleration (-5.30 m/s2, -10.15 m/s2). Fig. 3.20 illustrates observed driver behaviors in
the yielding scenarios.

Fig. 3.20a displays driver behavior when α exceeds β under varying TTA conditions.
In instances where the TTA ranges from 2s to 3s, most drivers tend to lightly brake when
they are uncertain about the pedestrian’s intention. Approximately 20% of drivers do
not engage in any braking, while an equivalent percentage opts for moderate braking.
The minority of drivers opt for heavy braking. However, when the TTA exceeds 3s, no
driver chooses to brake heavily. The proportion of moderate braking similarly drops to
2% at the TTA from 5s to 6s and remains relatively constant thereafter. The percentage
of drivers who do not decelerate increases, reaching its peak at 66% between 7s and 8s. In
contrast to scenarios where there is no deceleration, light deceleration exhibits a slightly
diminishing trend.

In Fig. 3.20b, the driving behavior of drivers is observed when α is less than β across
various TTA scenarios. When the TTA ranges from 2s to 3s, the majority of drivers opted
for moderate braking upon understanding the pedestrian’s intent to cross, followed by
heavy braking(25%) and light braking(12.5%) respectively. Notably, none of the drivers
chose to accelerate through the crossing point. The percentages of moderate and heavy
braking, however, decline as the TTA rises. There is no instance of significant braking
observed between 7s and 8s. Instead, an increase in the proportion of no deceleration
and light braking is witnessed. Specifically, the proportion of light braking rises rapidly
during the period from 2s to 4s and remains the highest throughout. Concurrently, the
proportion of no deceleration gradually increases, surpassing that of heavy and moderate
deceleration, reaching the second highest and accounting for 30% eventually.

Based on the aforementioned analysis, we can draw the following conclusions: Firstly,
when a pedestrian is within the driver’s line of sight but their intentions are uncertain,
and the TTA falls between 2 and 5 seconds, most drivers tend to slightly reduce their
speed. However, if the TTA spans 5 and 8 seconds, over half of the drivers do not slow
down. Secondly, when the driver notices that the pedestrian intends to cross the street,
they usually brake moderately or heavily when the TTA ranges from 2 and 3 seconds. In
cases where the TTA surpasses 3 seconds, more than half of drivers tend to only slightly
decrease their speed.
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3.5 Chapter Conclusion

This chapter begins by highlighting limitations in existing research on interactive
behaviors between human drivers and pedestrians. First, many prior studies focus on
identifying variables that explain pedestrian crossing behavior rather than predicting ped-
estrian crossing intention. Second, the variables often employed to model human decision-
making are difficult to obtain or estimate in real-world scenarios, limiting their applicabil-
ity in practical decision-making models. To address these gaps, this study investigates the
vehicle-pedestrian interaction at unsignalized intersections using the AdaBoost method in
a virtual reality environment. In contrast to existing research, our study focuses solely on
kinematic parameters in the analysis of interactions and has conducted a comprehensive
analysis of all kinematic parameters, providing valuable insights into vehicle-pedestrian
interaction dynamics at unsignalized intersections. The analysis demonstrates that a ped-
estrian’s decision is primarily influenced by the longitudinal distance and the vehicle’s
acceleration, while the pedestrian’s own speed and longitudinal distance also significantly
impact whether the approaching vehicle will yield. Based on these findings, a simple
mathematical relationship between kinematic parameters and pedestrian intentions was
established, providing a practical tool for dynamically inferring crossing intentions during
interactions.

In exploring scenarios where vehicles yield to pedestrians, the analysis uncovers in-
teresting patterns, which contribute insights to our understanding of real-world interac-
tions at unsignalized intersections and lay a foundation for improving the development
of autonomous vehicle technology. When it is uncertain whether a pedestrian intends to
cross, the majority of drivers only slightly reduce their speed even in lower TTA cases.
Surprisingly, over half of the drivers do not decelerate at all with higher TTA. Conversely,
when the pedestrian’s crossing intention is clear, a substantial proportion of drivers opt for
moderate or heavy deceleration, particularly in low TTA situations. If the TTA exceeds
5 seconds, light deceleration becomes the most common choice.

Studying the human driver-pedestrian interaction allows a deeper understand of how
human drivers make decisions, which in turn informs the development of a human-like
AV decision-making model. By emulating human drivers’ decision patterns, the AV can
behave in ways that pedestrians can readily interpret and predict, thereby enhancing its
social acceptance. In the following chapters, a decision-making model for AV-pedestrian
interaction is developed using the insights gained from this analysis. Specifically, the
significant factors influencing driver decision-making are integrated into the AV model
through the design of the reward function and the selection of state variables, while the
key determinants of pedestrian decision-making are incorporated into the construction
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of the pedestrian behavior model. The next chapter focuses on an interaction scenario
between a single AV and a single pedestrian, while the subsequent chapter extends the
scenario to address more complex situations involving multiple pedestrians. These models
aim to enable the AV to plan and control its movements in a natural and human-like
manner when navigating complex urban areas.

Although this work studies human-driven vehicle and pedestrian behavior patterns
to provide insights for AV-pedestrian interaction modeling. However, pedestrians may
respond differently when interacting with AVs compared to human-driven vehicles. There-
fore, using pedestrian behavior observed in human-driver scenarios to model AV-pedestrian
interactions may introduce biases, which is acknowledged as a limitation of the current
study. As a potential extension, future work could incorporate dedicated AV-pedestrian
interaction datasets to more explicitly and accurately capture the pedestrian’s behavior.
In addition, the current VR experiment is restricted to interactions with a single pedes-
trian due to the limitations of the experimental equipment. Future work will incorporate
multi-pedestrian scenarios to capture more diverse and realistic interaction patterns.
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Chapter 4

Dynamic Game-Theoretical
Decision-Making Framework for AV
in Single-Pedestrian Interactions at

Unsignalized Intersections

4.1 Background

This chapter focuses on AV decision-making in pedestrian interaction scenarios at
unsignalized intersections, where potential conflicts may occur, as shown in Fig. 1.1a.
The objective is to model the dynamics of AV-pedestrian interactions during crossing
situations and to develop an explainable and trustworthy decision-making framework for
AVs operating in such environments.

Previous studies have investigated vehicle-pedestrian interactions, often relying on
statistical methods [11], [176] or describing interactions as one-time events [210]. However,
pedestrian behavior, characterized by unpredictability and dynamism, presents challenges
for such approaches. Their movements can quickly change [211], introducing uncertainty
into interactions that traditional methods struggle to capture. By considering uncertainty
and dynamic interactions, the POMDP framework [212] provides a modeling approach
for decision-making challenges that closely mirror real-world conditions. In the context
of self-driving decision problems, POMDP is commonly employed to capture the incom-
plete observability and uncertainty in the AV’s surrounding environment. The study [213]
regarded pedestrians’ target position as an unobservable variable in the POMDP model
to capture the decision-making and planning behavior of autonomous vehicles navigating
among many pedestrians. Similarly, an AV-pedestrian interaction model was proposed in
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[214] to address complex decision-making challenges arising from the uncertain crossing
intention of pedestrians in urban environments by leveraging the POMDP framework.
Although a few studies have applied the POMDP framework to vehicle-pedestrian inter-
actions, its potential in this domain remains underexplored.

Game theory is frequently used to model the interaction between vehicles and pedes-
trians. However, most studies assume that all players follow the Nash equilibrium [215],
[216], possessing unlimited computational reasoning ability to compute optimal actions
and perfect rationality to execute them, thus maximizing their utility function in decision-
making. In reality, individuals often deviate from the Nash equilibrium due to cognitive
limitations [217]. Constrained by limited time and computational resources, they struggle
to engage in extensive or complex reasoning, thereby failing to consistently calculate op-
timal actions or avoid errors in challenging scenarios. Hence, considering human reasoning
levels and bounded rationality is essential to develop more accurate models of real-world
behaviors.

To address these limitations, our study proposes a novel framework that combines
POMDP and behavioral game theory to tackle the AV decision-making problem within
complex and dynamic environments. Fig. 4.1 shows our proposed framework for AV-
pedestrian interaction at an unsignalized intersection. In this work, we employ the POMDP
framework to dynamically model the decision-making process of the AV in an environ-
ment with incomplete information and uncertainty. Furthermore, we use a behavioral
game theory model to describe AV-pedestrian interaction, both the AV and pedestrian
modeled as DB-QCH models. At each time step, the AV model updates its beliefs about
its opponent’s reasoning level and rationality based on extended Bayesian Estimation. A
trained neural network calculates the predicted optimal action, which is then translated
to an action space using a Gaussian distribution function. An iterative reasoning model
is established to deduce the optimal strategies for both oneself and the opponent at each
level, computed via the Monte Carlo Tree Search (MCTS) method. While the pedestrian
model is also constructed as a DB-QCH model, their action space remains fixed over time,
which differs from the AV model.

To enhance humans’ understanding of the interaction process and resolve intersection
conflicts in a human-involved interactive environment, this work makes the following main
contributions: 1). The POMDP framework and behavioral game theory are integrated to
address the uncertainty and dynamic interaction between the AV and the pedestrian. 2).
To accurately capture the decision-making processes, both the AV and pedestrian are
modeled as DB-QCH models. This modeling approach provides a comprehensive under-
standing of interaction dynamics and facilitates more realistic simulations. 3). A trained
neural network based on data from our previous experiments is developed to guide MCTS
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Figure 4.1: The proposed framework of AV-pedestrian interaction at the unsignalized intersection. Sub-
parts (a) and (e) represent the belief update process, adjusting reasoning levels and rationality; Subparts
(b) and (f) illustrate the action space generation; Subparts (c) and (g) depict the reasoning mechanisms
of predicting and adapting to the opponent’s strategies for decision optimization; Subparts (d) and (h)
show the Monte Carlo Tree Search for action evaluation through reward calculations.

in exploring the continuous action space of AV, thereby facilitating effective and efficient
decision-making. 4). This work introduces variables to quantify human bounded ration-
ality and is the first to propose a dynamic updating mechanism for rational values based
on the observed environment, enabling adaptive decision-making by AVs in real-time.
These concentrated efforts pave the way for an explainable and trustworthy AV decision-
making system, leading to safer and more efficient navigation of AVs in such an interactive
environment where humans are involved.

4.2 Problem Formulation

This work focuses on addressing the challenge posed by conflicts arising at the unsig-
nalized intersection, where both the pedestrian and the AV intend to cross simultaneously.
Specifically, it aims to develop continuous decision-making strategies for AVs navigating
safely and efficiently through such a scenario. As the AV lacks knowledge about the op-
ponent’s intelligence level and rationality in a dynamic and interactive environment, we
model the interaction between the AV and the pedestrian using a POMDP framework.
The model is defined by the tuple:

⟨N,S,A,T,O,J,B⟩

• N = {0,1}: Represents the two players, where 0 denotes the AV and 1 denotes the
pedestrian.
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• S: A finite set of states, where st ∈ S signifies the state of the environment at discrete
time step t. The state st includes the position and velocity of both the AV and the
pedestrian, as well as the acceleration of the AV.

• A = {A0,A1}: Defines the action space, with A0 representing the AV’s actions and
A1 denoting the pedestrian’s actions.

• T : The state transition dynamics, expressed as st+1 = T (st ,a0
t ,a

1
t ) for an action pair

(a0,a1)∈ A. This function describes how the environment transitions from one state
to another based on the actions of both players.

• O= {O0,O1}: Represents the partially observable state. We assume that each agent’s
action can be observed, along with certain physical information (e.g., speed, acceler-
ation, distance), while implicit information (e.g., reasoning level, rationality degree)
remain unobservable.

• J = {J0,J1}: The utility function for each agent. The utility Ji
t = Ji(st ,a0

t ,a
1
t ), i ∈ N,

depends on both the agent’s action and the opponent’s action.
• B = {B0,B1}: The belief in the opponent’s intelligence level and rationality, with

b0
t ∈ B0 and b1

t ∈ B1.

For the AV model, the goal is to determine a sequence of optimal actions. The optim-
ization problem can thus be formulated as follows:

maximize
π

E

[
∞

∑
t=0

γtJ0
t (st ,a0

t ,a
1
t ,b

0
t ) | a0

t ∼ π

]
subject to st+1 = T (st ,a0

t ,a
1
t ),

b0
t+1 = ρ(b0

t ,o
0
t ),

a0
t ∈ A0,a1

t ∈ A1,

o0
t ∈ O0,b0

t ∈ B0

(4.1)

where γ represents the discount factor within the range of (0,1], while ρ denotes the belief
update function. And st represents the state of the environment at the time step t, while
a0

t and a1
t represents the actions of AV and pedestrian at time t, respectively.

4.3 Methodology

This section provides a detailed description of the approaches we use to model the
interaction between the AV and the pedestrian at the unsignalized intersection and solve
the above problem.
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4.3.1 Action Space Generation

Consider a scenario where both a pedestrian and an AV are moving toward an inter-
section. To avoid collision, they have to select an appropriate action. For example, the
pedestrian can choose to cross the road or wait, while the AV can either slow down or
maintain its speed. To make an informed decision, each agent model first defines its own
action space.

For our AV model, the dynamic decision-making process aims to produce a sequence
of expected accelerations. However, in actual scenarios, the AV’s acceleration range exists
in a continuous space, posing challenges for methods like MCTS, which typically excel in
discrete action spaces. To address this, we employ a pre-trained neural network model to
guide MCTS through the continuous action space of AVs in Fig. 4.1f.

We have opted for the LSTM network as our neural network model. LSTM, a subtype
of RNN, is good at processing and predicting time series data, adeptly capturing temporal
dependencies [218]. Unlike traditional RNNs, LSTM overcomes long-term dependency is-
sues through its gate mechanisms(including input gate, forget gate, and output gate),
effectively retaining and leveraging long-term information [219]. This gives LSTM a sig-
nificant advantage in handling complex time series data in autonomous driving scenarios.

Acceleration prediction in autonomous driving presents a highly temporal problem, as
a vehicle’s acceleration depends not only on its current state but also on past states and
actions. Traditional RNNs often encounter problems like gradient vanishing or exploding
when dealing with long-term dependencies [220], making it difficult to effectively capture
long-term dependency information. LSTM, with its unique gating mechanism, can main-
tain and transmit key information across lengthy time series, avoiding these shortcomings
of traditional RNNs [221].

Given the temporal dynamics and complexity of acceleration prediction tasks, we
choose LSTM as our preferred model for anticipating AV acceleration. Its ability to use
historical data enhances prediction accuracy and stability, providing robust support for
our decision-making system.

75



Training data for the LSTM model is sourced from our prior vehicle-pedestrian in-
teraction experiments [222], conducted using VR technology. This experiment yielded
dynamic interaction data, including the absolute positions of pedestrians and vehicles,
vehicle speeds, and driver inputs like steering, throttle, and brakes. Through data pro-
cessing, we extracted relevant variables such as vehicle speed, acceleration, relative dis-
tances, time-to-arrivals, pedestrian speeds, and vehicle yielding status at each time step
for every scenario.

This data underwent training in the LSTM model, which, post-training, can ingest
state information at each time step and output the corresponding anticipated acceler-
ation. This acceleration is treated as the mean of a Gaussian distribution, from which
N accelerations are sampled, yielding N +1 possible accelerations. Subsequently, MCTS
is employed to explore these N +1 actions, leveraging this neural network model’s out-
put as an initial guide to enhance MCTS’s efficiency in navigating the continuous action
space. Through this integration of the neural network and MCTS methods, we can im-
prove the decision-making ability of autonomous vehicles in complex dynamic interactive
environments.

In contrast, within the pedestrian model, the action space pertains to the pedestrian’s
speed. Since pedestrian speed can change rapidly, using a neural network model with
Gaussian distribution sampling for action spaces, as used in the AV model, is less effective.
Instead, we adopt a discrete action selection space to simplify our model in order to
improve computational efficiency, as shown in Fig. 4.1b. Starting from 0 m/s, we discretize
the speed at 0.1 m/s intervals. This method is simpler than the one used for the AV model
and adequately meets our needs. Unlike the AV model, where elements in the action space
dynamically change, the pedestrian’s action space remains fixed at each time step.

4.3.2 Dynamic-belief-induced Quantal Cognitive Hierarchy Model

4.3.2.1 Quantal Cognitive Hierarchy model

The Quantal Cognitive Hierarchy model is a behavioral game theory model used to
describe the behavior of bounded rational individuals in games. It integrates the quantal
response (QR) model into the traditional cognitive hierarchy (CH) model.

In the CH model, agents are characterized by different cognitive levels, each asso-
ciated with varying degrees of reasoning abilities and consideration of others’ behavior.
Higher levels indicate greater reasoning capabilities and more consideration of opponents’
actions. At each level, agents simulate their opponents’ behavior under the assumption
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that opponents operate at lower levels. Each agent’s cognitive level is denoted by k (where
k = 0,1,2). Level-0 agents are regarded as non-strategic, generating their strategies inde-
pendently and without considering opponents’ behavior, often through uniform random
selection or simple heuristic methods. Conversely, strategic agents at level-k (where k > 0)
engage in a more sophisticated decision-making process. They assume their opponents op-
erate at level- j, where j < k, and respond accordingly with optimal strategies. As human
cognition generally operates at levels-0, 1 or 2, with level-3 or higher rarely observed [223],
this paper considers the maximum value of level-k to be 2 in order to capture realistic
interactions and reduce computational complexity.

The QR model introduces the concept of bounded rationality, where agents do not
always choose the optimal strategy but select strategies with certain probabilities based on
expected payoffs when making decisions. In this model, bounded rationality is represented
by the parameter λ (where λ ∈ [0, ∞)), which measures the degree of rationality. A higher
λ indicates more rational behavior, while a lower value reflects greater randomness in
decision-making. The probability P(ai) that an agent i chooses a particular strategy ai

given the opponent’s action is described by the quantal response function:

P(ai) =
eλQ(ai,a−i)

∑a′i∈A eλQ(a′i,a−i)
(4.2)

where Qi(ai,a−i) is the expected payoff for agent i when choosing strategy a.

Equation 4.2 shows that the probability of selecting a strategy increases with its
expected payoff, meaning individuals are more likely to select a strategy with a higher
expected payoff but may also opt for those with lower returns. As λ approaches infinity,
the model approximates perfect rationality, where the highest payoff strategy is always
chosen. Conversely, when λ is close to zero, the choice of strategy becomes completely
random.

By combining ideas from the CH model and QR model, the QCH model offers insights
into how individuals probabilistically select strategies at different cognitive levels, thereby
enhancing our understanding of bounded rational behavior. In our study, we adopt the
QCH model to represent the decision-making process for both the AV and the pedestrian.
This model captures the varying levels of intelligence k and rationality λ of each opponent,
which are unobservable to each other. Table 4.1 summarizes these two key parameters.
Here, we detailed the decision-making process specifically using the AV QCH model as
an example.
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Table 4.1: Summary of the two key parameters.

Parameter Notation Operationalization Interpretation

Reasoning
level

k k = 0,1,2, . . . introduces recursive reason-
ing to allow agents to consider others’
behavior, where higher levels account for
more sophisticated reasoning.

Simulates the reasoning process
behind behavioral complexity,
enabling the agent model to pre-
dict and adapt to opponents’
strategies.

Bounded
rationality

λ λ ∈ [0,∞), introduces randomness to
cause the agent to deviate from optim-
ality, with lower values indicating more
randomness in decision-making.

Models deviations from purely
optimal behavior, making the
agent model more realistic.

At each level-k, the AV evaluates its potential actions by calculating the expected
payoff Q for each action given the current state st . This evaluation also considers the
pedestrian’s policy from the preceding level-(k− 1). The AV then makes a quantal best
response to the pedestrian’s level-(k− 1) policy. In addition, the AV model reasons the
potential actions available to the pedestrian at this level, preparing for subsequent policy
computations. As illustrated in subparts (c) and (g) of Fig. 4.1, the policy at each level
for the AV and its opponent is developed through a sequential and iterative process,
starting from level-0 to higher levels. For example, if a level-0 pedestrian decides to cross
the road, a level-1 AV will consider the pedestrian’s action and choose to yield. In turn,
a level-2 pedestrian will observe the level-1 AV’s yielding behavior and choose to cross
the road. Similarly, if a level-0 AV chooses to cross the road, a level-1 pedestrian will
yield after considering the AV’s action, and a level-2 AV will then choose to cross the
road based on the pedestrian’s yielding behavior. In our study, we assume that the level-0
agent lacks understanding of pedestrian intentions or higher-level policies, and instead
treats pedestrians as stationary obstacles to compute its actions. In contrast, the level-k
(where k > 1) agent regards its opponents as level-(k−1) agents. Specifically, the quantal
response function is used to compute the policy:

π i,k,λ i
(ai

j) =
eλ iQk(st ,ai

j,π
−i,k−1,λ−i

)

∑a′∈Ai eλ iQk(st ,a′,π−i,k−1,λ−i
)

(4.3)

After computing strategies for all levels, we can derive the optimal strategy using initial
beliefs. Finally, we can determine the optimal action for the AV, selecting the action
associated with the highest mixed strategy value. The algorithm for this process is shown
in Algorithm 4.

Introducing the QCH model provides the advantage of simultaneously accounting for
the agent’s limited rationality and reasoning level, thus making the model more realistic.
Through this approach, we can more accurately simulate the decision-making behaviors
of real-world agents and gain insights into the interactions between AVs and pedestrians.

78



Algorithm 2: QCH Model Iterative Reasoning to Compute Optimal Action.
Input: N: Player set, A: Possible action set, st : Current state, π i,0: The level-0

policy for agent i, K: Maximum cognitive level, bk: Belief about the
opponent’s level, λ : Rationality degree

Output: Optimal action
Initialize agent_policy← [];
Initialize mix_policy← [];
Append π i,0 to agent_policy;
for k = 1 to K do

for each player i ∈ N do
for each action ai

j ∈ Ai do
Compute the payoff Qi,k(st ,ai

j,π−i,k−1,λ−i
);

Compute the policy π i,k,λ i
(ai

j) =
e

λ iQi,k(st ,ai
j ,π
−i,k−1,λ−i

)

∑a′∈Ai eλ iQi,k(st ,a′,π−i,k−1,λ−i
)
;

Append π i,k,λ i to agent_policy;

for k = 1 to K do
mix_policy← mix_policy+bk[k−1] ·agent_policy[k];

optimal_index← argmax(mix_policy);
optimal_action← A[optimal_index];
return optimal_action;

4.3.2.2 Dynamic Belief Update

For AVs, the opponent’s reasoning level-k and rationality degree λ are not directly
observable. Pedestrian behavior is dynamic and may constantly change. If AVs always
use fixed values of pedestrian’s cognitive states for best response calculation during inter-
actions with pedestrians, they will be unable to effectively identify and adapt to changes
in pedestrian behavior. This would make AVs appear less intelligent and human-like, as
humans can quickly recognize and respond to sudden behaviors. The Bayesian approach
allows AVs to continuously learn and update their beliefs about pedestrians’ reasoning
level-k and rationality λ during interactions(Fig. 4.1a, Fig. 4.1e).

At time step t = 0, the agent i establishes an initial belief bk,0 about the pedestrian’s
reasoning level, according to the initial environmental state and our prior experimental
data on human-vehicle interactions. Throughout the game reasoning process, its QCH
model iteratively predicts the expected utility of the opponent’s potential actions across
each reasoning level k for the next state st+1, alongside computing the associated probab-
ility P(st+1,a−i

t+1|k), where st+1 ∈ S,a−i
t+1 ∈ A−i,k ∈ N for each action. Upon observing the

opponent’s latest action a−i
t+1 at time step t +1, the agent model identifies the probability

value of the action that is closest to the actual observed action at each reasoning level k.
Subsequently, followed by normalizing the probabilities to ensure coherence, it updates its
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belief bk,t+1 concerning its opponent’s reasoning level across all levels using the Bayesian
equation:

P(k|st+1,a−i
t+1) =

P(st+1,a−i
t+1|k)bk,t(k)

∑k′∈Θ P(st+1,a−i
t+1|k′)bk,t(k′)

(4.4)

where P(k|st+1,a−i
t+1) ∈ bk,t+1, and Θ represents all possible values for the reasoning level.

Our model differs from others by dynamically updating the belief about the oppon-
ent’s rationality degree λ , rather than relying on constant values. The Bayesian approach
is employed to capture changes in the agent i’s understanding of its opponent in this
parameter. Initially, agent i has prior knowledge regarding the distribution of λ , denoted
as ft(λ ), indicating its estimation of the opponent j’s rationality at the current time step
t. Since λ ∈ [0, ∞), it is treated as a continuous variable. Therefore, we use a Bayesian
updating method suitable for continuous variables [224]:

ft+1(λ |a j
t ) =

P(a j
t |λ ) ft(λ )∫ ∞

0 P(a j
t |λ ′)| ft(λ ′)dλ ′

(4.5)

Considering the varying reasoning level of agent j, the actions it takes will corres-
pond to its specific reasoning level. Consequently, we can extend the Bayesian formula
accordingly:

ft+1(λ |a j
t ,k) =

P(a j
t |k,λ ) ft(λ )∫ ∞

0 P(a j
t |k,λ ′)| ft(λ ′)dλ ′

(4.6)

Since it involves integrating the function value over an infinite interval, it is challenging
to compute Equation 4.6 after multiple iterations. The conjugate prior distribution proves
highly effective in addressing this issue [225]. In Bayesian methodology, if the posterior
distribution belongs to the same family as the prior distribution, the prior distribution
is referred to as a conjugate prior distribution. The benefit of using a conjugate prior
lies in its ability to simplify the Bayesian update process, requiring only the adjustment
of parameters within the conjugate prior distribution to complete the Bayesian inference
update. Our work considers the following family of distributions [226]:

f (λ ;Q,n0,n1, . . . ,nK) =
eλQ/∏K

k=0(∑
m
l=1 eλQal,k )nk∫ ∞

0 eλ ′Q/∏K
k=0(∑

m
l=1 eλ ′Qal,k )nkdλ ′

(4.7)

where nk ∈ N,∀k = 0,1,2, . . . ,K, representing the number of occurrence agent j’s reas-
oning level corresponds to k. f (λ ;Q,n0,n1, . . . ,nK) is a probability density function as∫ ∞

0 f (λ ;Q,n0,n1, . . . ,nK)dλ = 1.
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At each time step t, through game reasoning, agent i calculates the expected utility
Qa j,k for each action that their opponent may take at each level and predicts the reasoning
level k of agent j. By using the prior distribution f (λ ;Q,n0,n1, . . . ,nK) and the observed
action a j taken by its opponent, agent i can then update the distribution of λ , f (λ ;Q+

Qa j,k ,n0,n1, . . . ,nk + 1, . . . ,nK), and use it as the prior distribution at the next time step
t +1. It is known that when employing Equation 4.7 as the prior distribution, updating
the parameters Q and nk to obtain the posterior distribution f (λ ;Q+Qa j,k ,n0,n1, . . . ,nk +

1, . . . ,nK) can be directly achieved without the need for intricate integral calculations.

Theorem 1: Given the prior distribution ft(λ ;Q,n0,n1, . . . ,nK), upon observing the
action a j taken by the opponent at time step t + 1, agent i can update the belief as
ft+1(λ ;Q+Qa j,k ,n0,n1, . . . ,nk +1, . . . ,nK).

Proof:

f (λ |a j,k) =
P(a j,k|λ ) f (λ ;Q,n0,n1, . . . ,nK)∫ ∞

0 P(a j,k|λ ′) f (λ ′;Q,n0,n1, . . . ,nK)dλ ′

=

e
λQa j,k

∑m
l=1 e

λQa j,k
· eλQ·g(Q,n)

∏K
k=0(∑

m
l=1 e

λQal,k )nk∫ ∞
0

e
λ ′Qa j,k

∑m
l=1 e

λ ′Qa j,k
· eλ ′Q·g(Q,n)

∏K
k=0(∑

m
l=1 e

λ ′Qal,k )nk
dλ ′

=

e
λ (Qa j,k+Q)·g(Q,n)

K
∏

i=0
i ̸=k

(∑m
l=1 e

λQal,k )nk ·(∑m
l=1 e

λQal,k )nk+1

∫ ∞
0

e
λ ′(Qa j,k+Q)·g(Q,n)

K
∏

i=0
i ̸=k

(∑m
l=1 e

λ ′Qal,k )nk ·(∑m
l=1 e

λ ′Qal,k )nk+1
dλ ′

= f (λ ;Q+Qa j,k ,n0,n1, . . . ,nk +1, . . . ,nK)

where we denote 1∫ ∞
0 eλ ′Q/∏K

k=0(∑
m
l=1 e

λ ′Qal,k )nk dλ ′
as g(Q,n) for simplicity.

When the distribution of the continuous variable λ at the next time step st+1 is ob-
tained, the expectation of rationality degree can be calculated using the following equa-
tion:

E(λ ) =
∫ ∞

0
λ f (λ ;Q+Qa j,k ,n0,n1, . . . ,nk +1, . . . ,nK)dλ (4.8)

The above describes how to update the knowledge of the opponent’s reasoning level k

and rationality degree λ at each time step. Algorithm 5 provides a clearer understanding
of the process.
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Through dynamic belief updates, AVs can more accurately predict pedestrian beha-
vior and adjust their strategies based on the latest beliefs. For example, the AV initially
regards its opponent as a level-1 pedestrian and maintains its speed accordingly based on
this expectation. However, when it observes the pedestrian proceeding to cross the road,
the AV increases the probability of the pedestrian being level-0 while reducing the ra-
tionality value. This dynamic update mechanism enables AVs to better adapt to changing
environments, thereby behaving more intelligently and human-like.

Algorithm 3: Belief Update
Input: st : Current state, a j: Observed opponent’s action, Qa j,k : Opponent’s action

a j’s expected utility for each level k, bk,t : Prior belief about reasoning level,
P(st+1,a j|k): Probability for a j at each level k, f (λ ;Q,n0,n1, . . . ,nK): Prior
distribution about rationality

Output: Updated belief bk,t+1, bλ ,t+1
for k = 0 to K−1 do

P(k|st+1,a j,t+1) =
P(st+1,a j,t+1|k)bk,t(k)

∑k′∈Θ P(st+1,a j,t+1|k′)bk,t(k′)

bk,t+1(k)← P(k|st+1,a j,t+1);
k← argmax(bk,t+1);
E(λ )←

∫ ∞
0 λ f (λ ;Q+Qa j,k ,n0, . . . ,nk +1, . . . ,nK)dλ ;

bλ ,t+1← E(λ );
return bk,t+1, bλ ,t+1;

4.3.3 Monte Carlo Tree Search

Monte Carlo Tree Search is a heuristic search algorithm widely used for sequential
decision-making problems, particularly in environments characterized by uncertainty and
complex interactions. It predicts potential future outcomes by running numerous simu-
lations and guides the selection of optimal actions based on accumulated rewards. The
algorithm proceeds through four main phases: selection, expansion, simulation, and back-
propagation [227]. In our study, MCTS is employed as the core mechanism to evaluate
the expected utility of each candidate action for both the AV and pedestrian agents at
each cognitive reasoning level for each time step (Fig. 4.1d, Fig. 4.1h). MCTS is selec-
ted because it provides forward-looking planning under uncertainty, enabling the agent
to simulate and evaluate multiple possible future interaction trajectories arising from its
opponent’s stochastic behavior. By simulating possible future interaction trajectories and
propagating the resulting outcomes through a decision tree, MCTS allows each agent
to iteratively refine its strategy and identify the action that offers the highest expected
return.
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At each decision step, the MCTS algorithm is initialized from the current environment
state st . During the selection phase, the algorithm traverses the existing search tree by
selecting child nodes that maximize the Upper Confidence Bound for Trees (UCT) score,
which balances exploitation of high-reward nodes and exploration of less-visited ones. The
UCT score for each node is calculated using the following formula [228]:

UCT(s,a) = Q̄a +C

√
lnNs

Na
(4.9)

where Q̄a is the average utility of action a at state st , Ns is the total number of visits
to the state s, Na is the number of times action a was chosen, and C is a constant that
balances exploration and exploitation.

In the expansion phase, new decision nodes are generated for unexplored actions avail-
able to the AV and pedestrian, reflecting different trajectories the agents might follow from
the current state. The simulation step starts from the newly expanded node, where the
actions of the agent and its opponent are randomly simulated in turn until reaching the
terminal state or the maximum search depth. In this stage, a random strategy is used
to select actions and simulate the opponent’s strategies, estimating the potential value
of the node. Notably, when calculating the optimal strategy for the agent at level-k, its
opponent follows the policy of level-k−1; for level-0 agents, their opponents are regarded
as static obstacles. Upon simulation completion, the observed reward is propagated back
up the tree during the backpropagation phase. Each visited node updates its visit count
and cumulative reward statistics accordingly. Repeating this process over many iterations
leads to a well-populated decision tree, where each node stores reliable estimates of future
utility.

Through this process, MCTS evaluates the potential effects of different actions through
extensive simulations without relying on specific domain knowledge, enabling AV to make
efficient and safe decisions in complex and uncertain environments.

4.3.4 Reward Function Design

In the expansion stage of MCTS, each newly expanded node represents a specific
state-action pair, and its value is estimated by simulating the resulting trajectory and
accumulating the rewards obtained along the way. This reward plays a central role in
evaluating the utility of each simulated path and is therefore crucial for guiding the
search process.
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In our framework, the reward function is explicitly designed to reflect the AV’s decision-
making priorities in pedestrian-involved environments. It encourages goal-directed beha-
vior while penalizing unsafe, inefficient, or uncomfortable actions. The detailed reward
formulation is as follows:

r = w1 · rgoal +w2 · rcollision +w3 · refficiency +w4 · rcomfort (4.10)

where, w1, w2, w3, w4 are weights that determine the relative importance of each reward
component. The detailed explanation of each reward is presented below.

Goal reward rgoal: A positive reward of 10 is given when the AV reaches the goal
region:

rgoal =

10, if goal reached

0, otherwise
(4.11)

Collision penalty rcollision: If a collision occurs, the AV receives a strong penalty of
-20, with an additional penalty proportional to its current speed, thereby discouraging
high-speed collisions.

rcollision =

−20−1 · vt , if collision with pedestrians

0, otherwise
(4.12)

Efficiency penalty refficiency: This term encourages the AV to maintain a reasonable
and efficient speed while avoiding unnecessary stops. The reward is defined as:

refficiency =

−5, if v = 0

−d/v, otherwise
(4.13)

where v denotes the AV’s current speed, and d represents the distance to the goal.

Comfort penalty rcomfort: To encourage smooth driving, the large changes in acceler-
ation between time steps is introduced:

rcomfort =−1 · |at−at−1| (4.14)
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By jointly considering safety, efficiency, and comfort in the reward formulation, the
AV is guided to make well-balanced decisions that prioritize collision avoidance, maintain
smooth and efficient motion, and ensure passenger comfort.

4.4 Experiments and Results

4.4.1 Experiment Setup

We conducted a series of simulation experiments for verification to evaluate the ef-
fectiveness of the AV model and decision-making algorithm we developed. We built a
simulation scenario where the AV interacts with a pedestrian crossing the road. The
AV is 5 m long and 2 m wide, driving on a single-lane road that is 3.65 m wide. The
pedestrian’s goal is to cross the road to reach the opposite side.

We previously conducted experiments on real human drivers and pedestrians interact-
ing in a VR environment. During these experiments, the driver continuously drove along
the road at a random initial speed and interacted with the pedestrian crossing the road.
Since VR technology providing reliable and essential data has been widely applied in the
interactive research and testing of AVs [24], [229], we are expected to validate and eval-
uate our model by comparing our simulation data with the VR experimental data. This
experimental data includes the position and speed for both the vehicle and the pedestrian,
as well as acceleration for the vehicle only. We randomly selected 100 scenarios from these
experimental data for this simulation experiment. The initial conditions of each scenario
were input into our model for simulation, and each scenario was simulated 100 times to
ensure the reliability and statistical significance of the results.

The initial data included the initial positions of the vehicle and the pedestrian, the
vehicle’s initial velocity and acceleration, and the pedestrian’s velocity. In our models, we
assume that the AV and pedestrian follow a straight line with only longitudinal move-
ments. The acceleration range of the AV is set to [-5, 5] m/s2, and the speed range of
the pedestrian is [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2] m/s. We assume
that the maximum reasoning ability of the agent is k_max= 2, with an initial rational-
ity degree value of E(λ ) = 10. The level-0 policy is non-strategic, which believes that the
agent calculates its optimal strategy based on the assumption that its opponents are static
obstacles. Our experiments were conducted on an Intel i7 processor without GPU accel-
eration. Through multiple tests, we observed that the average decision-making time was
slightly below 0.8 seconds, and therefore selected 0.8 s as the time step. While the empir-
ical runtime on our CPU-based setup results in a 0.8 s decision interval, the computational
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load is dominated by the MCTS component, whose cost grows with rollout numbers and
search depth. The belief-update and quantal-response computations remain lightweight.
In practice, the decision cycle can be accelerated through optimization strategies such as
reducing rollout counts or tree depth, or by employing faster hardware.

4.4.2 Results

This section will verify and evaluate our proposed model’s performance through qual-
itative, quantitative analysis, as well as sensitive analysis of the initial bounded rationality
value.

4.4.2.1 Qualitative Analysis

Three simulation examples will be given to clearly and intuitively demonstrate how
our AV model operates under different scenarios.

Case 1: This case illustrates an AV yielding to a pedestrian, randomly selected from
a set of 100 scenarios. Initially, the AV is 46.309 m away from the pedestrian, traveling
at a speed of 9.348 m/s with an acceleration of -0.11 m/s2 towards the pedestrian. The
pedestrian is located 2.564 m laterally from the AV on the road. Fig. 4.2 shows the
interaction process, combining visual snapshots of their positions with detailed speed
data. Information about the state evolution of the pedestrian and vehicle is provided in
Fig. 4.3.

Under these initial conditions, the AV calculates a higher probability that the ped-
estrian is a level-0 agent, indicating that the pedestrian is more likely to cross the road.
Therefore, the AV decides to decelerate to avoid collision. When the AV observes the
pedestrian stepping into the lane at a speed of 1.2 m/s, it executes a more pronounced
deceleration. At the same time, the AV updates its assessment of the pedestrian’s ration-
ality based on their actions, concluding that the pedestrian remains in a rational state.

As the pedestrian continues to cross and approach its destination, the AV gradually
reduces its deceleration and eventually transitions back to acceleration. Notably, the AV
does not come to a complete stop but maintains a reduced speed while the pedestrian
crosses. This entire process demonstrates the AV’s ability to yield to pedestrians by mak-
ing real-time decisions, ensuring both safety and efficiency.
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Figure 4.2: Simulation of interaction process in case 1. (a) State: t = 0 s, vped = 0.03 m/s, vAV = 9.348
m/s, aAV = -0.11 m/s2. (b) State: t = 1.6 s, vped = 1.2 m/s, vAV = 8.31 m/s, aAV = -1.397 m/s2. (c)
State: t = 3.2 s, vped = 1.2 m/s, vAV = 6.72 m/s, aAV = -0.111 m/s2. (d) State: t = 4.8 s, vped = 0.7
m/s, vAV = 6.57 m/s, aAV = -0.283 m/s2.

Figure 4.3: State evolution in the simulation of case 1.
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Case 2: This case illustrates a scenario where a pedestrian yields to an AV. Compared
to case 1, the initial longitudinal distance between the AV and the pedestrian is updated
to 34 m with other conditions remaining the same. The interaction process and detailed
evolution states are shown in Fig. 4.4 and Fig. 4.5.

At the first time step, the AV is 34 m away, moving at a speed of 9.348 m/s, and an
acceleration of -0.11 m/s2. The pedestrian is positioned on the road at a lateral distance
of 2.564 m from the AV. Unlike case 1, the AV determines that the pedestrian poses a
lower probability of crossing and designates the pedestrian as a level-1 agent, signifying
that the pedestrian will not recklessly enter the lane and yield to AV.

As a result, the AV opts to maintain a slight deceleration in case the pedestrian
suddenly changes his mind and steps into the lane. However, after observing that the
pedestrian does not appear in the lane, the AV confirms that the pedestrian will indeed
not cross and perceives its behavior as rational. At this point, the AV sustains a slight
deceleration to ensure the pedestrian’s safety and maintain smooth operation without
significant speed adjustments.

Figure 4.4: Simulation of interaction process in case 2. (a) State: t = 0 s, vped = 0.03 m/s, vAV = 9.348
m/s, aAV = -0.11 m/s2. (b) State: t = 0.8 s, vped = 0 m/s, vAV = 9.26 m/s, aAV = -0.33 m/s2. (c) State:
t = 2.4 s, vped = 0 m/s, vAV = 8.83 m/s, aAV = -0.216 m/s2. (d) State: t = 3.2 s, vped = 0.1 m/s, vAV
= 8.62 m/s, aAV = -0.175 m/s2.
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Figure 4.5: State evolution in the simulation of case 2.

Case 3: This case primarily aims to validate the AV’s ability to identify irrational
pedestrian behavior. In the initial conditions of Case 2, the AV deemed the pedestrian’s
decision to yield as rational, and the pedestrian model indeed waited for the AV to pass
before crossing the road. In this case, we maintain the same initial conditions as in Case
2, with the only difference being the replacement of the pedestrian model with custom-
design action for the pedestrian. Specifically, we program the pedestrian to cross the road
under these conditions at a speed of 1.2 m/s.

As depicted in Fig. 4.7, the AV, similar to Case 2, initially assumes a low likelihood
of pedestrians crossing the road and thus only slows down slightly. However, when the
pedestrian begins moving, the AV updates its estimation of the pedestrian being a level-0
agent based on their actions. At the same time, a marked drop in the pedestrian’s ration-
ality value indicates that the AV deems it irrational for the pedestrian to cross the road
under the current circumstance. According to these judgments, the AV decelerates more
sharply than in Case 2, resulting in a rapid decrease in vehicle speed. This indicates that
the proposed AV model can effectively update its understanding of pedestrian rationality
based on real-time behaviors and appropriately adjust its acceleration to prevent potential
collisions.

In conclusion, the AV’s ability to dynamically adjust its perception of pedestrian
behavior and response with suitable deceleration shows a good performance of the AV
model in various pedestrian interaction scenarios.
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Figure 4.6: Simulation of interaction process in case 3. (a) State: t = 0 s, vped = 0.03 m/s, vAV = 9.348
m/s, aAV = -0.11 m/s2. (b) State: t = 1.6 s, vped = 1.2 m/s, vAV = 8.99 m/s, aAV = -3.081 m/s2. (c)
State: t = 3.2 s, vped = 1.2 m/s, vAV = 4.83 m/s, aAV = -1.646 m/s2. (d) State: t = 4.8 s, vped = 1.2
m/s, vAV = 2.05 m/s, aAV = -1.641 m/s2.

Figure 4.7: State evolution in the simulation of case 3.
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4.4.2.2 Quantitative Analysis

Following the analysis method in the work [230], we will conduct the quantitative
evaluation from three aspects: safety, efficiency, and smoothness. Due to the mismatch
in required input variables between our framework and existing datasets, baseline models
cannot be meaningfully applied. Therefore, real human behavior from the VR experiment
is used as the primary reference for evaluating the proposed approach. We input 100
scenarios into our model for simulation, with each scenario being simulated 100 times.
Results in Table 4.2 show the comparison between our proposed method with VR ex-
periment driving data. For safety, our driver model has a slightly higher collision rate
compared to the VR experiment data. The collision rate is not zero because the proposed
framework introduces stochasticity both in the agents’ decision-making process and in the
planning procedure. Probabilistic action selection in the quantal response model, together
with stochastic sampling in the Monte Carlo simulation, may occasionally produce rare
combinations of actions that result in collisions. Therefore, the observed 0.15% collision
rate reflects the system’s behavior under uncertainty.

Table 4.2: Statistic results of our proposed approach compared with VR experiments.

Method VR experiment Ours
Safety Collision rate / 0.15%

Efficiency Yielding rate 51% 75.03%
Average vehicle speed (m/s) 9.468 9.600

Smoothness Average vehicle jerk 0.897 0.843
Average maximum absolute acceleration/deceleration (m/s2) 2.228 1.867

To evaluate driving efficiency, the vehicle yielding rate and average vehicle speed are
considered. The yielding rate observed in the simulation (75.03%) is higher than in the VR
experiment (51%). This suggests that the algorithm is more cautious, which may slightly
affect the average speed. However, the average speed in the simulation (9.600 m/s) is
slightly faster compared to the experiment (9.468 m/s), indicating that our approach
can maintain efficiency even with a greater yielding rate. Fig. 4.8a compares the average
vehicle speed across 100 different scenarios. The VR experimental driving data and the
simulation data follow similar trends, with peaks and valleys appearing in roughly the
same places. Although specific speed values fluctuate in individual scenarios, the average
speeds in both the VR experiment and the simulation remain around similar values.

Two parameters, jerk and maximum absolute acceleration/deceleration, are used to
evaluate smoothness. The lower average jerk value and average maximum absolute ac-
celeration/deceleration value in Table 4.2 indicate that our proposed method can achieve
smoother and more comfortable driving behavior. Fig. 4.8b and Fig. 4.8c compare the
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average jerk and maximum absolute acceleration/deceleration of VR experimental data
and simulation data across different scenarios. In general, the simulation data shows less
fluctuation and lower values, showing more stable acceleration/deceleration control. The
overall trends and average values suggest that our approach performs better than the
experimental data in driving smoothness.

In summary, the quantitative analysis shows that the proposed AV decision-making
algorithm performs well in safety, efficiency, and smoothness. The similar average vehicle
speed values between VR experimental data and simulation data indicate that our al-
gorithm successfully captures key aspects of the driving behavior exhibited by human
drivers. Additionally, the lower jerk values and maximum absolute acceleration/deceleration
values in our simulations suggest that our method achieves smoother driving compared
to the experimental data.

4.4.2.3 Sensitive Analysis

We conducted a sensitive analysis on the model’s initial bounded rationality value, a
key parameter in our dynamic updating mechanism for rationality. It is noted that the
bounded rationality is characterized by the parameter λ , which is not a fixed value but
follows a probability distribution that reflects the uncertainty about the opponent’s ra-
tionality degree. In our analysis, the value of the bounded rationality therefore specifically
refers to the expectation value of the lambda based on this distribution. Using the default
initial value of E(λ ) as 10, we also trained and evaluated the model with values that were
1/10 and 10 times the default (see Table 4.3).

Table 4.3: Sensitive analysis of initial bounded rationality.

Initial bounded rationality Collision rate Yielding rate Average vehicle speed (m/s) Average vehicle jerk Average maximum absolute
acceleration/deceleration (m/s2)

1 2.76% 72.52% 9.259 0.928 2.022
10 0.15% 75.03% 9.600 0.843 1.867
100 0.08% 74.57% 9.935 0.748 1.717

When the AV estimates the pedestrian’s initial rationality value as low (E(λ ) =1), it
shows the lowest average vehicle speed, the highest jerk, and the largest maximum abso-
lute acceleration/deceleration, along with a significantly higher collision rate. This occurs
because the AV perceives the pedestrian’s behavior as more random and unpredictable
under this assumption, prompting it to adopt a conservative strategy, such as reducing
or maintaining its speed, to minimize collision risk. However, this unpredictability re-
quires more frequent and significant deceleration adjustments to handle potential sudden
changes, resulting in increased jerk and acceleration/deceleration values. Additionally, the
difficulty in accurately predicting pedestrian behavior further increases the likelihood of
misjudgment, contributing to the elevated collision rate.
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(a)

(b)

Figure 4.8: Comparison across different scenarios from average vehicle speed, average vehicle jerk and
maximum absolute vehicle acceleration/deceleration between the VR experiment and simulation data.

93



(c)

Figure 4.8: (Continued) Comparison across different scenarios from average vehicle speed, average vehicle
jerk and maximum absolute vehicle acceleration/deceleration between the VR experiment and simulation
data.

In contrast, the highest initial rationality value in Table 4.3 results in a safer, more
efficient and smoother motion. This belief enables the AV to better predict pedestrian
behavior and execute its planning strategy with greater confidence. Consequently, the AV
operates fewer frequent or abrupt trajectory adjustments, leading to smoother acceleration
and deceleration patterns that significantly reduce jerk and acceleration values. Moreover,
the enhanced ability to predict pedestrian behavior allows the AV to act more decisively,
optimizing navigation efficiency while further minimizing collision risks.

Overall, the set of the initial rationality value can influence the AV’s strategy selection
and adjustment capabilities. While this value is dynamically updated during continuous
interactions, such adjustments require time and multiple observations to become signific-
ant. In shorter interaction scenarios, the impact of the initial value may persist throughout
the process, with limited room for dynamic updates.
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Although assuming an initial rationality value of 100 achieves the best performance,
an excessively high value can make the AV overly confident in predicting pedestrian
behavior, thereby limiting its dynamic adjustment capability in real environments. In
reality, pedestrian behavior in practice often involves uncertainty. A lower initial value
(10) provides the AV with greater flexibility for dynamic adjustments, allowing it to better
adapt to such uncertainties. Therefore, we ultimately chose 10 as the initial rationality
value to balance performance and adaptability.

4.5 Chapter Conclusion

This chapter first identified the limitations in current studies on AV–pedestrian inter-
actions. Many previous studies rely on statistical methods or treat interactions as one-time
events, which fail to capture the dynamic and unpredictable nature of pedestrian behaviors
and are unable to represent behavioral uncertainty effectively. Meanwhile, game-theoretic
approaches, often assume that all agents are fully rational and always act according to
Nash equilibrium. Such idealized assumptions diverge from real-world conditions, where
human decision-making is influenced by cognitive limitations, resulting in inaccurate be-
havior modeling. To address these gaps, this study proposes an innovative framework to
address the decision-making challenges AVs face when interacting with pedestrians at the
unsignalized intersection. First, we integrate the POMDP with behavioral game theory
to model these interactions, capturing the uncertainty and dynamism of pedestrian beha-
vior. Second, both the AV and pedestrian are modeled as DB-QCH models, accounting
for human reasoning limitations and bounded rationality, thus enabling more realistic
interaction simulations compared to traditional game theory approaches. Moreover, the
dynamic updating mechanism for the opponent’s rationality degree is introduced, which
allows the AV to adjust its strategies based on real-time observations. Finally, a trained
neural network is developed to guide MCTS within the AV’s continuous action space,
improving decision-making efficiency and effectiveness.

Simulation results demonstrate that our method excels in safety, efficiency, and smooth-
ness, closely capturing the key features of the driving behavior operated by real human
drivers in VR experiments. One limitation of this work is that the reward function incor-
porates scenario-specific weight parameters and may require re-calibration when deployed
in new environments. Future work should investigate more generalizable or automatic-
ally optimized reward designs to enhance applicability across diverse scenarios. Moreover,
this work does not conduct a sensitivity analysis of the weight parameters in the reward
function. Future work should include a systematic sensitivity analysis of the weights to
further assess model generalizability and robustness. Although our model performs well,
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the current research is limited to a simple scenario of a single AV and a single pedes-
trian interaction. In the next chapter, we will expand our scope to include the interaction
between a single AV and multiple pedestrians, allowing the proposed AV decision-making
algorithm to handle more complex scenarios. Our work will explore the AV’s decision-
making in multi-pedestrian interactions, addressing challenges such as increased computa-
tional demands and behavioral uncertainty through multi-agent methods and uncertainty
modeling.
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Chapter 5

Free Energy-Inspired Cognitive Risk
Integration for AV Navigation in

Pedestrian-Rich Environments

5.1 Background

This chapter focuses on the decision-making problem of AVs interacting with multiple
pedestrians in shared spaces, as shown in Fig. 1.1b, aiming to develop a safe and effi-
cient decision-making model capable of handling multi-agent interactions and complex
environmental uncertainties.

While numerous studies have explored crowd navigation for small-scale mobile robots
[231], [232], relatively few have focused on AVs operating in similar pedestrian-rich envir-
onments. Although AVs represent a specialized class of robotic systems, their navigation
differs from that of smaller robots. Unlike service robots, AVs have larger physical foot-
prints, operate at higher speeds, and are subject to more complex kinematic and safety
constraints [233]. For example, a collision involving a service robot might cause minor
disruption, whereas an AV-pedestrian collision could have life-threatening consequences.
These distinctions make it impractical to directly apply robot navigation strategies to
AVs. As urban environments increasingly require AVs to coexist with pedestrian crowds,
there is a growing need for decision-making frameworks that support safe and efficient
navigation in such complex settings.

Accurate pedestrian modeling plays a critical role in enabling realistic and adaptive AV
decision-making in interactive environments. Many studies have adopted overly simpli-
fied pedestrian models with fixed behavior patterns, such as constant velocity assumptions
[12] or pre-recorded real-world trajectories [13], [234]. These approaches commonly treat
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pedestrians as passive agents who are unable to dynamically respond to the AV’s beha-
vior during simulation. Consequently, they fail to capture the bidirectional adjustment
mechanisms essential for realistic interaction modeling. Consider, for example, a scenario
where an AV and a pedestrian approach a potential conflict point simultaneously. The
AV might yield, expecting the pedestrian to proceed. However, if the pedestrian follows a
predefined path without perceiving or reacting to the AV’s action, they may also hesitate
or stop, leading to unnatural and unrealistic interaction outcomes. This limitation weak-
ens the ability to model dynamic adaptive behaviors, which are essential for capturing
the nature of human-vehicle interactions in shared environments.

To address these limitations, our work proposes a graph-enhanced deep reinforcement
learning framework for modeling interactions between an AV and multiple pedestrians.
Fig. 5.1 illustrates the overall architecture of our proposed framework in urban shared
spaces. In this work, we adopt the SAC algorithm to train the AV’s decision-making policy.
Specifically, a GCN module is integrated into both the actor and critic networks to capture
structured multi-agent interactions. The GCN operates on a dynamically constructed in-
teraction graph, whose adjacency matrix encodes the interaction intensity between agents.
The edge weights are computed using a combined risk metric that integrates physical risk
and cognitive uncertainty, with the latter derived from the Free Energy Principle. Further-
more, pedestrians are modeled as intelligent agents with both interactive capabilities and
cognitive awareness. Their behavior is generated through the proposed CR-SFM, which
employs the same integrated risk signal used in the GCN to modulate the contribution of
the goal-directed and repulsive forces. By incorporating both physical and cognitive risk
into the force computation, pedestrian trajectories can be adaptively adjusted in response
to surrounding dynamics, yielding more realistic and human-like behaviors in complex
environments.

Figure 5.1: The proposed framework of AV-pedestrian interaction in the urban shared space.
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In order to better understand the interactions and resolve navigation challenges in
crowded environments, the main contributions of this work are as follows: 1). A cog-
nitive uncertainty modeling approach based on the free energy principle is introduced
to characterize subjective human prediction biases and the iterative adjustment process
when reasoning about the behaviors of other agents. 2). A pedestrian model called the
Cognitive-Risk Social Force Model is proposed, which dynamically adjusts the weights
of goal-directed and repulsive forces based on a fused risk measure. This enables pedes-
trian models to autonomously adapt their motions in uncertain and interactive scenarios,
achieving more realistic behavior than conventional models with fixed coefficients. 3).
A risk-encoded interaction graph is constructed to improve AV decision-making within
a reinforcement learning framework. The combined risk is used to define the adjacency
matrix of a GCN, which is embedded in both the actor and critic networks of the SAC
framework. This integration allows the policy to better perceive interactive relationships
and potential threats, thus improving decision-making performance.

5.2 Problem Formulation

This work focuses on the AV navigation problem in environments with multiple ped-
estrians. The objective is to develop a continuous decision-making strategy that ensures
safe and efficient operation amid dynamic human interactions.

We model this problem as a MDP, defined by the tuple: ⟨S ,A ,P,R,γ⟩. The state
space S captures the dynamic state of the environment at each time step t, denoted by
st ∈S . We assign index 0 to the AV and indices 1 to n to the surrounding pedestrians. The
AV’s state s0

t includes its current position (x,y), heading angle θ , velocity v, acceleration
α , goal position (xgoal,ygoal), distance to the goal position dgoal, and angular deviation
from the goal direction ∆θgoal. Each pedestrian’s state si

t , for i = 1, . . . ,n, consists of their
position, heading angle, and walking velocity. The whole environment state at time t is
defined as st : (s0

t ,s
1
t , . . . ,s

n
t ). The action space A represents the set of possible actions

available to the AV. Each action at ∈A , is defined as a tuple at = [α,∆θ ], where α denotes
the acceleration and ∆θ denotes the change in heading direction. The state transition
probability P(st+1|st ,at) defines how the environment evolves from the current state st to
next state st+1 given the action taken by the AV. Following the transition, the AV receives
a reward rt ∈R, indicating the immediate utility of its chosen action.
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The AV model aims to learn a policy π(at |st) that produces a sequence of optimal
actions to maximize the expected cumulative discounted reward over time, where the
process terminates upon reaching the destination. This decision-making problem can thus
be defined as follows:

max
π

E

[
∞

∑
t=0

γ trt(st ,at) | at ∼ π

]
subject to st+1 ∼P(st+1 | st ,at),

at ∈A ,st ∈S ,

rt ∈R,∀t ∈ N

(5.1)

where γ ∈ [0,1] is the discount factor that determines the relative importance of future
rewards.

5.3 Methodology

This section describes the methodology for modeling AV-pedestrian interactions in
crowded environments and addressing the previously formulated problem.

5.3.1 Vehicle Dynamics

In this work, the AV is modeled using a point-mass kinematic model to represent its
motion dynamics. The control inputs to this model are the acceleration at and the change
in heading angle ∆θt , both of which are directly produced by the AV’s decision-making
system. The following equations define the vehicle’s state transition over time:

xt+1 = xt + vt · cos(θt) ·∆t +
1
2
·at · (∆t)2 · cos(θt)

yt+1 = yt + vt · sin(θt) ·∆t +
1
2
·at · (∆t)2 · sin(θt)

vt+1 = vt +at ·∆t

θt+1 = θt +∆θt

(5.2)

Despite its simplicity, this discrete-time model provides sufficient flexibility for plan-
ning and learning in pedestrian-rich environments, where low-speed maneuverability and
responsive navigation are prioritized. By omitting mechanical constraints such as steering
geometry, it maintains computational efficiency while still capturing the key behavior
required for high-level decision-making and safe interaction.

100



5.3.2 Cognitive Uncertainty Modeling

One of the core computational tasks of the human brain is to infer latent world states
and predict future behaviors of others or the environment based on sensory inputs and
prior knowledge, especially in uncertain and dynamic conditions [235]. In this process,
individuals often experience a lack of full confidence in their predictions. This subjective
uncertainty, referred to as cognitive uncertainty [236], reflects how confident an individual
is about expected outcomes [237]. When predictions deviate from actual observations,
the resulting errors drive belief adjustments and expectation updates, leading to more
rational decisions. For example, a pedestrian intending to cross the road may expect an
approaching vehicle to slow down and yield. If the pedestrian lacks confidence in this
expectation, it reflects a high level of cognitive uncertainty. If the vehicle accelerates
instead, the mismatch prompts the pedestrian to re-evaluate and adjust their behavior.
Capturing such cognitive processes is vital for modeling human decision-making under
uncertainty. Integrating this cognitive mechanism into intelligent agent models allows for
more human-like and interpretable behavior, thereby enhancing the realism of human–
machine interaction.

The Free Energy Principle (FEP) provides a unifying theoretical framework for de-
scribing this cognitive process [238], [239]. It suggests that agents continuously generate
predictions and revise internal beliefs based on sensory feedback in order to minimize “sur-
prise” and maintain cognitive stability and behavioral adaptability. In Bayesian Inference,
“surprise” is typically formalized as the negative log marginal likelihood, − logP(o). Since
the marginal likelihood P(o) =

∫
p(x,o)dx is generally intractable, direct minimization is

impractical. To overcome this, the FEP introduces variational free energy as an optimiz-
able upper bound [240]:

F(Q) = DKL(Q(x)∥P(x|o))− logP(o) (5.3)

where Q(x) denotes the agent’s approximate posterior belief, and P(x|o) is the true pos-
terior given the observation o. The Kullback-Leibler (KL) divergence quantifies the dis-
crepancy between the two distributions. Since the KL divergence is always non-negative,
minimizing free energy pushes the internal belief distribution toward the true posterior.
This process provides a mathematical foundation for cognitive modeling.

In practical scenarios, cognitive uncertainty, as a subjective mental state, is inher-
ently difficult to observe or measure directly. Individuals often lack confidence in their
judgments when exposed to limited information or complex environments. In order to
quantify this uncertainty, we propose the following modeling assumptions: when the dis-
crepancy between predicted and observed outcomes is large, the individual’s confidence in
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their prediction is low, indicating higher cognitive uncertainty. Accordingly, we adopt the
KL divergence between the predicted and the observed distributions as a proxy measure
of epistemic uncertainty, capturing the agent’s confidence level in forecasting the future
behavior of others.

In this work, we use velocity as the target variable and implement a closed-loop cog-
nitive model based on the predict–observe–update process, grounded in the Free Energy
Principle and Bayesian Inference. Each agent’s prediction of others’ velocities is assumed
to follow a Gaussian distribution. At each time step t, the ego agent, whether an AV or
a pedestrian, generates a velocity prediction v̂t for surrounding agents, and combines it
with the posterior from the previous step t−1 to obtain the current prior:

pt(v) = N (µp,σ2
p) (5.4)

Upon observing the actual velocity vt , an observation distribution is constructed with the
observed value as its mean µo and a fixed variance σ2

o :

ot(v) = N (µo,σ2
o ) (5.5)

The cognitive uncertainty is approximated by computing the KL divergence between the
predicted and observed distributions, expressed as:

ut = DKL(pt(v)||ot(v)) (5.6)

A larger KL value indicates a greater deviation, implying lower confidence in the prediction
and higher epistemic uncertainty. The ego agent then performs Bayesian updating to
obtain the posterior [241]:

1
σ2

post
=

1
σ2

p
+

1
σ2

o
(5.7)

µpost = σ2
post

(
µp

σ2
p
+

µo

σ2
o

)
(5.8)

This posterior represents the agent’s revised belief about others’ behavior at the current
time step and serves as the prior for the next prediction, thus forming a recursive cognitive
inference process. The complete procedure is presented in Algorithm 4.
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Algorithm 4: Human cognitive process modeling with cognitive uncertainty quanti-
fication
Input: Surrounding agents set N, time horizon T , internal prediction model
Output: Cognitive uncertainty
for each time step t ∈ T do

for each surrounding agent i ∈ N do
Use internal prediction model to predict velocity v̂i

t ;
Obtain prior distribution pi

t(v) based on predicted velocity v̂i
t and posterior

pi
post,t−1(v);

Observe true velocity vi
t and construct observation distribution oi

t(v);
Compute cognitive uncertainty ui

t ;
Compute posterior distribution pi

post,t(v) using Bayesian update;
Store the updated posterior pi

post,t(v);

5.3.3 Pedestrian Cognitive-Risk Social Force Model

The social force model [71] describes pedestrian movement as the result of a combin-
ation of virtual social forces, including a goal force that drives individuals toward their
destinations, and repulsive forces from other agents or obstacles to avoid collisions. These
forces are represented as vectors and superimposed to determine the pedestrian’s overall
motion, enabling modeling and simulation of pedestrian behavior. In the AV–pedestrians
interaction considered in this study, each pedestrian is influenced by three primary forces:
a goal force guiding movement toward the destination, a vehicle-induced repulsive force
from the AV, and repulsive forces from surrounding pedestrians.

To model efficient goal-oriented movement, the goal force for pedestrian i is defined
as:

Fgoal
i =

v0
i e⃗i− v⃗i

τi
(5.9)

where v0
i is the desired speed, e⃗i is the unit vector pointing toward the destination, v⃗i is

the current velocity of pedestrian i, and τi is the relaxation time representing how quickly
the pedestrian adapts to the desired velocity. The repulsive interactions are modeled as
exponentially decaying functions of distance. The repulsive force from the AV is given by:

Fveh
i = Aveh · exp

(
ri,veh−di,veh

Bveh

)
· n⃗i,veh (5.10)

and the repulsive force from another pedestrian j is computed as:

Fped
i j = Ai j · exp

(
ri j−di j

Bi j

)
· n⃗i j (5.11)
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In both equations, A and B are constants; d is the Euclidean distance between agents; r

is the sum of physical radii; and n⃗ is the unit vector pointing from the interacting agent
to pedestrian i. These forces are combined to yield the resultant force acting on each
pedestrian. For pedestrian i, the total force can be formulated as [155]:

Fi = Fgoal
i +Fveh

i + ∑
j∈G
j ̸=i

Fped
i j (5.12)

where G denotes the set of all pedestrians in the current scene.

While the social force model has been widely applied in pedestrian behavior modeling,
it still shows certain limitations in complex human-vehicle interaction scenarios. On the
one hand, the magnitude of repulsive forces is usually fixed and based solely on spatial dis-
tance, without accounting for the velocity and motion direction of interacting agents. For
instance, an AV may be physically close to a pedestrian but moving away; in such cases,
the risk is negligible. However, the traditional model would still exert a strong repulsive
force purely due to proximity, leading to unrealistic or overly cautious avoidance behavi-
ors. On the other hand, the model lacks a representation of human cognitive processes.
In real-world interactions, pedestrians continuously perceive, anticipate, and update their
beliefs about others’ behaviors. This “perception–prediction–observation–update” loop is
fundamental to human decision-making in dynamic, uncertain environments. But it is
absent in the traditional social force model.

To overcome these limitations, we propose the pedestrian Cognitive-Risk Social Force
Model. The core idea is to introduce risk weight coefficients that dynamically modulate
the intensity of each force, allowing pedestrian behaviors to adapt responsively to evolving
interaction contexts. Fig. 5.2 provides a schematic comparison between the SFM and CR-
SFM, showing the difference in resultant force under the same interaction scenario. The
revised resultant force acting on pedestrian i is formulated as:

Fi = wgoal
i ·Fgoal

i +wveh
i ·Fveh

i + ∑
j∈G
j ̸=i

wped
i j ·F

ped
i j (5.13)

where wgoal
i , wveh

i and wped
i j represent the risk-based weights for the goal force, vehicle re-

pulsion, and pedestrian repulsion, respectively. These weights are computed by combining
physical risk and cognitive uncertainty.
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(a) (b)

Figure 5.2: Comparison of the SFM and CR-SFM in pedestrian-vehicle interactions. These figures show
the force composition acting on the ego pedestrian under the SFM (a) and CR-SFM (b). In the SFM,
all repulsive forces are distance-based with fixed weights. Pedestrian 1 (the rightmost pedestrian in
the figure), being closest, produces the strongest repulsion, shifting the total force toward the AV and
increasing collision risk. In CR-SFM, force weights are adjusted based on physical features (e.g., distance,
velocity, direction) and cognitive uncertainty. Although pedestrian 1 is nearest, his motion away leads to
low perceived risk and a weaker force. The approaching AV contributes more strongly, shifting the total
force toward a safer direction.

In dynamic interaction scenarios, risk assessment methods based solely on geometric
distance often fail to accurately capture the actual level of threat, as they overlook the
critical influence of relative motion on risk perception. For example, at the same distance,
an agent approaching at high speed poses a greater danger than one moving slowly or
moving away. To better reflect this perceptual difference, we introduce a risk modeling
approach based on virtual distance. By incorporating dynamic motion features such as
velocity, acceleration, and direction [222] to modulate the actual distance, the resulting
virtual distance is then used to replace the original geometric distance for physical risk
computation. The physical risk ψ is defined as:

dvirtual = dactual · (1+ tanh(γ1 · k · (v · |cosφ|+ |a|))) (5.14)

k =

1, if the agent is moving away

−1, if the agent is approaching
(5.15)

ψ =
1

1+ γ2 ·dvirtual
(5.16)
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where dactual is the actual physical distance between the pedestrian and the interacting
agent, v and a are the velocity and acceleration of the interacting agent, φ is the angle
between the agent’s velocity vector and the vector pointing from the agent to pedestrian i,
and γ1 and γ2 are hyperparameters. These formulations imply that risk increases when an
approaching agent moves towards the pedestrian with higher speed or greater acceleration.

Cognitive uncertainty captures the pedestrian’s subjective confidence in predicting
others’ future behaviors. Rather than being modeled as an independent risk component,
it is treated as a modulatory factor that amplifies physical risk under uncertain situations.
For example, when physical risk is low, but the pedestrian is unsure of the AV’s future be-
havior, a higher cognitive uncertainty increases perceived risk, enhancing repulsive forces
and encouraging earlier avoidance. The risk weight coefficients are calculated as follows:

wveh
i = ψveh

i ·
(

1+λ1 ·uveh
i

)
(5.17)

wped
i j = ψped

i j ·
(

1+λ2 ·uped
i j

)
(5.18)

wgoal
i = exp

(
−λ3 ·max

(
wveh

i , max
j∈G , j ̸=i

wped
i j

))
(5.19)

where uveh
i and uped

i j denote cognitive uncertainties by the AV and by surrounding pedestri-
ans, respectively. λ1, λ2, λ3 are scaling hyperparameters. Notably, the goal force weight is
modeled using an exponential decay function to reduce goal-oriented behavior when per-
ceived interaction risk is high, allowing the pedestrian to prioritize avoidance over forward
motion.

In summary, by introducing a dynamic weighting mechanism that integrates both
physical and cognitive factors, the CR-SFM can make the pedestrian to modify their
approach and avoidance strategies based on perceived risk and uncertainty, more closely
aligning with real human decision-making processes.

5.3.4 Graph-Enhanced DRL for AV Decision-Making

In this study, we adopt the SAC as a basic reinforcement learning framework to guide
the AV decision-making strategies in complex, pedestrian-rich environments. SAC is em-
ployed due to its suitability for uncertain and interactive AV-pedestrian environments.
Its entropy-regularized objective enables effective exploration, and its clipped double-Q
structure reduces Q-value overestimation, improving training stability. As an off-policy
algorithm, SAC is also more sample-efficient than on-policy alternatives. In contrast,
DDPG’s deterministic policy limits exploration, and PPO suffers from lower sample ef-
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ficiency, making them less suitable for this task. The SAC is grounded in the Maximum
Entropy Reinforcement Learning theory. While optimizing the expected cumulative re-
turn, it explicitly introduces a policy entropy term to encourage greater stochasticity and
exploration under uncertainty. The objective is to maximize the following expression [242]:

J(π) = ∑
t
E(st ,at)∼π [r(st ,at)+ηH (π(·|st))] (5.20)

where H (π(·|st)) is the entropy of the policy at state st , and η is a temperature coefficient
balancing reward and entropy.

The SAC follows an actor-critic architecture consisting of a policy network (actor), two
Q-value networks (critics), and their corresponding target networks. The actor outputs a
Gaussian distribution over actions given a state st , from which an action at is sampled.
The Q-networks estimate the value of the state-action pair (st ,at). Using samples from a
replay buffer, the networks are updated iteratively to approximate optimal behavior. To
mitigate Q-value overestimation, SAC employs a double Q-network structure, where the
minimum of the two Q-values is used to compute the target value. The critic is trained
to minimize the following loss:

Lcritic = E(st ,at ,rt ,st+1)∼D

[
1
2
(Q(st ,at)− yt)

2
]

(5.21)

with the target value yt defined as:

yt = rt + γ min
i=1,2

Q′i(st+1,at+1)−η logπ(at+1 | st+1) (5.22)

The target Q-networks are updated softly via:

θ ′← τθ +(1− τ)θ ′ (5.23)

where τ ∈ (0,1) is a small soft update coefficient, θ denotes the parameters of the current
critic network, and θ ′ denotes the parameters of the target critic network. The actor is
trained to maximize the expected Q-value while maintaining high entropy:

Lactor = Est∼D [η logπ(at |st)−Q(st ,at)] (5.24)

Through this maximum entropy optimization framework, the SAC enables stable and
continuous policy learning in complex environments, allowing the AV to develop strategies
that are both efficient and exploratory in dynamic multi-agent interactions.
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However, the standard SAC architecture does not explicitly model dynamic interac-
tions among multiple agents, which is critical in autonomous driving scenarios involving
dense pedestrian. To address this, we incorporate a GCN into the SAC framework to
extract interaction-aware state representations from the multi-agent graph.

At each time step, the AV and surrounding pedestrians are modeled as graph nodes,
with the adjacency matrix encoding their interactions. Given a graph Gt = (V t ,At), where
V t is a set of all agents at time t, At is the adjacency matrix, H(l) ∈ RN×d represents the
node feature at layer l, and the GCN propagation rule is expressed as [243]:

H(l+1) = σ
(

D̃
−1/2

ÃD̃
−1/2

H(l)W (l)
)

(5.25)

where Ã = A+ I is the adjacency matrix adding self-connection, D̃ is the degree matrix,
W (l) is the learnable weight matrix, and σ is the nonlinear activation function. This op-
eration aggregates each agent’s state with information from its neighbors, capturing local
structural relationships and interaction patterns. The resulting high-order representations
serve as enhanced state features for downstream policy learning and value estimation.

However, the adjacency matrix in conventional GCNs is often constructed using static
graph topology, making it insufficient for modeling dynamic and asymmetric interaction
patterns over time. In real-world multi-agent interactions, humans do not pay equal at-
tention to all agents, but instead focus on potentially high-risk individuals that are closer,
faster, or have unpredictable behaviors.

Inspired by this, we propose a risk encoded interaction graph, where physical risk and
cognitive uncertainty are combined into a unified risk score. This value directly determines
the attention weights in the adjacency matrix, allowing the model to focus more effect-
ively on high-risk interactions during information aggregation. Specifically, we construct
a dynamic adjacency matrix At at each time step, where each element At(i, j) represents
the influence of agent j on agent i:

At(i, j) = ψt(i, j) · (1+λ ·ut(i, j)) (5.26)

where ψt(i, j) denotes the physical risk based on agent j’s relative position, speed, and
direction with respect to agent i, while ut(i, j) quantifies agent i’s uncertainty about agent
j’s behavior, computed using the free-energy-based method described in Algorithm 4. λ
is a hyperparameter controlling the influence of uncertainty.
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Algorithm 5: SAC for AV Decision-Making with Cognitive Process.
Initialize critic networks Q1, Q2, actor network π, target networks Q′1, Q′2, and replay
buffer D ;

for episode i ∈M do
Observe initial state s0;
for each time step t ∈ T do

Compute cognitive uncertainty ut using Algorithm 4;
Execute an action at , receive a reward rt , and observe the next state st+1;
Store the transition (st ,at ,rt ,st+1,ut) in replay buffer D ;
Update st ← st+1;
Sample a minibatch of transitions from D ;
Compute target Q-value yt ;
Update critics Q1 and Q2 by minimizing loss Lcritic;
Update actor network π;
Soft update target critic networks Q′1 and Q′2;

This dynamic adjacency matrix guides GCN propagation to focus on high-risk inter-
actions, enabling the model to emphasize critical agents and filter out irrelevant ones.
Compared to traditional graph modeling, our approach jointly encodes physical struc-
ture and cognitive cues, providing the policy network with more decision-relevant state
representations. This enhances the policy’s ability to identify key interactions and make
robust decisions in complex, multi-agent environments. The overall training process is
summarized in Algorithm 5.

5.3.5 Reward Function Formulation

The design of the reward function is a critical component of RL algorithms, as it
directly guides the agent’s behavior during training. To encourage the AV to exhibit safe,
efficient, and socially compliant behaviors in pedestrian-rich environments, we construct
a composite reward function that integrates multiple objectives. At each timestep, the
total reward rtotal is computed as a weighted sum of several components, each capturing
a distinct aspect of the AV’s driving performance:

rtotal = rsuccess + rcollision + refficiency + rdirection + rspeed + rcomfort + rstep (5.27)

A goal achievement reward rsuccess is assigned to encourage task completion. A positive
reward is given when the AV reaches its predefined destination:

rsuccess =

30, if goal reached

0, otherwise
(5.28)
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To penalize unsafe behavior, a collision penalty rcollision is imposed if the AV collides with
any pedestrian:

rcollision =

−30, if collision with pedestrians

0, otherwise
(5.29)

To guide the AV toward the goal efficiently and along a correct heading, we design a
goal-directed efficiency reward. This component rewards reductions in distance to the
destination, modulated by a direction alignment factor:

refficiency = 2 · (dt−1
goal−dt

goal) ·max
(

0,1− ∆θdev
0.1

)
(5.30)

where dt−1
goal and dt

goal represent the distance from the agent’s previous and current positions
to the goal position, respectively. ∆θdev denotes the directional deviation between the AV’s
current velocity vector and the vector pointing towards the goal. In addition, a direction
penalty is applied to discourage large angular deviations from the goal trajectory:

rdirection =−2 ·∆θdev (5.31)

During training, the agent often encounters the freezing problem, a common form of local
optimum in which the agent chooses to remain stationary in response to nearby risks.
While this behavior may reduce immediate danger, it can lead to long-term inefficiency
and goal failure, as the agent continues to stay immobile even after the risk has subsided.
To mitigate such overly conservative behavior, a speed penalty is introduced when the
AV’s velocity drops below a predefined threshold of 0.6 m/s. This penalty encourages the
agent to maintain a minimal level of motion, thereby avoiding stagnation and fostering
more proactive and goal-directed behavior. The corresponding reward rspeed is defined as:

rspeed =−3 ·max
(

0,1− vt

0.6

)
(5.32)

Passenger comfort is considered by penalizing abrupt acceleration changes, encouraging
smooth driving:

rcomfort =−0.5 · |at−at−1| (5.33)

A small constant step penalty rstep (-0.5) is added at every timestep to motivate the AV
to complete the task in fewer steps. Together, these reward terms provide dense feedback
across safety, efficiency, and comfort dimensions, supporting the AV in learning robust
driving strategies.
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5.4 Experiment

5.4.1 Experimental Setup

To evaluate the effectiveness of the proposed pedestrian CR-SFM and the AV decision-
making model, we conducted a series of simulation experiments in a shared-space inter-
action scenario.

We adopted the real-world Hamburg Bergedorf Station (HBS) dataset [10], which
captures a typical shared-space street environment in Hamburg, Germany. This dataset
contains rich interactions between low-speed vehicles and multiple crossing pedestrians
in unconstrained urban settings. From the HBS dataset, we extracted 78 representative
interaction scenarios, each involving a single AV and three pedestrians. These scenarios
were divided into a training set (77%) and test set (23%) to support model learning and
performance evaluation, respectively. Each simulation was initialized using the recorded
initial positions and velocities of all agents. During the interaction process, the AV gen-
erated its actions based on the learned policy, while pedestrian behaviors were governed
by our proposed CR-SFM. A simulated episode terminated when the AV reached its goal,
collided with a pedestrian, or the maximum time horizon was exceeded.

All experiments were conducted on a high-performance laptop equipped with an In-
tel i9 processor and an NVIDIA RTX 4090 GPU. Model training and simulation were
implemented using PyTorch in a custom-built environment. Due to computational limit-
ations on local hardware, we restricted our simulation setup to include three pedestrians
interacting with an AV. This configuration balances training feasibility and interaction
complexity, while still capturing key social dynamics observed in shared-space environ-
ments. In the simulation, the AV’s maximum speed was set to 6 m/s, with acceleration
constrained to the range of [-2, 2] m/s2. Pedestrians were limited to a maximum walking
speed of 2 m/s. The simulation operated with a discrete time step of 0.5 seconds. The
detailed hyperparameter configuration of the SAC framework is provided in Table 5.1.
Particularly, the actor and critic networks share the same architecture, comprising one
GCN layer (with hidden dimension 16) and three MLP layers (each with 256 hidden units).
The temperature coefficient for entropy regularization is automatically tuned, initialized
at 0.2.
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Table 5.1: Hyperparameter settings of the SAC framework.

Parameter Description Value

Buffer capacity Maximum number of transitions stored 100000
Batch size Number of samples per update 256
Discount factor γ Future reward discount 0.99
Soft update rate τ Target network update rate 0.005
Learning rate (actor) Learning rate for actor network 5×10−5

Learning rate (critic) Learning rate for critic network 5×10−5

Learning rate (entropy temperature) Learning rate for entropy temperature coefficient 1×10−5

Initial entropy coefficient η Initial value for entropy temperature parameter 0.2
Target entropy Desired target entropy value −2
Max steps per episode Maximum time steps per episode 50
Update interval Policy update interval in steps 32

5.4.2 Comparative Models and Evaluation Metrics

This section describes the comparative models as well as evaluation indicators used
for both the pedestrian model and the AV decision-making model.

For the pedestrian model, in order to assess the performance of our proposed pedes-
trian CR-SFM, we conducted comparative experiments with two baseline models and one
ablation variant. The compared models are detailed as follows:

Constant Velocity Model (CV) [12]: In this model, the pedestrian maintains a
constant initial velocity toward the predefined goal throughout the entire episode. The
motion is purely goal-driven and remains unaffected by the presence or behavior of sur-
rounding agents.

Social Force Model (SFM) [155]: This classical model serves as the primary baseline.
It describes the pedestrian’s motion as the result of three interacting forces, as defined in
Equation 5.12. In the standard formulation, the magnitudes of these forces are uniformly
weighted using fixed coefficients (set to 1), without any dynamic modulation in response
to changes in interaction context.

Risk-aware Social Force Model (RA-SFM): This variant serves as an ablation
model to evaluate the specific contribution of cognitive uncertainty. It extends the stand-
ard SFM by introducing physical risk as a modulation factor for social force magnitudes.
Specifically, the strengths of the goal force, vehicle repulsion force, and pedestrian repul-
sion force are dynamically adjusted based on the estimated physical risk from surrounding
agents.
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Cognitive-Risk Social Force Model (CR-SFM): This is our proposed model.
Building upon the RA-SFM, CR-SFM incorporates both physical risk and cognitive un-
certainty into the modulation of force magnitudes.

To ensure a fair comparison, all models are calibrated using the same set of real-
world pedestrian trajectories extracted from the training dataset. Bayesian Optimization
is employed to fit the model parameters, aiming to best replicate the real pedestrian
behaviors. All models are operated under the same experimental conditions, using the
following three metrics for trajectory evaluation:

Average Displacement Error (ADE): ADE measures the average deviation between
the simulated trajectory and the ground truth trajectory across all time steps. For each
episode, we compute the mean Euclidean distance between simulated and actual posi-
tions across every time step. The final ADE is obtained by averaging these values over all
episodes [244]:

ADE =
1
M

M

∑
m=1

(
1
T

T

∑
t=1
∥x̂t− xt∥

)
(5.34)

where M is the total number of test episodes, T is the number of time steps in each
episode, x̂t denotes the simulated position of at time step t, and xt is the corresponding
ground-truth position.

Final Displacement Error (FDE): FDE evaluates the final-point accuracy by
measuring the Euclidean distance between the simulated final position and the true final
position [244]:

FDE =
1
M

M

∑
m=1
∥x̂T − xT∥ (5.35)

Collision Rate (CR): CR is defined as the proportion of simulation episodes in
which the simulated pedestrian model collides with other agents. It is calculated as the
ratio of collision cases to the total number of episodes. A lower CR value indicates better
collision avoidance performance.

To evaluated our AV decision-making model, we compare it with one strong baseline
and two ablation variants:
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Uncertainty-Aware Polar Collision Grid (UAW-PCG) [13]: This state-of-the-
art DRL framework integrates pedestrian trajectory prediction uncertainty into AV nav-
igation in crowded environments. It employs a Polar Collision Grid predictor to estimate
future pedestrian positions along with their associated uncertainty. These predictions
are then incorporated into both the input state and the design of the reward function.
The AV decision-making policy is optimized using Proximal Policy Optimization (PPO)
algorithm.

Standard SAC (S-SAC): This baseline uses a standard SAC framework, where both
the actor and critic networks consist only of multilayer perceptron without GCN modules.
It does not explicitly capture interactions between the AV and surrounding agents, and
serves to evaluate the benefit of introducing graph-based structures.

Graph-enhanced SAC without cognitive modeling (G-SAC-NoCog): This
ablation model adopts the GCN module into the SAC framework to enhance the percep-
tion of multi-agent interactions. However, it uses a static adjacency matrix with uniform
weights between all agent pairs, ignoring both physical risk and cognitive uncertainty.
This model is designed to isolate the contribution of our proposed risk-encoded interac-
tion representation.

Graph-enhanced SAC with cognitive modeling (G-SAC-Cog): This is our
proposed model. It integrates a GCN module to capture structured multi-agent interac-
tions, with the adjacency matrix dynamically constructed based on a fused risk signal
that combines physical risk and cognitive uncertainty.

Following the evaluation protocol used in [13], [245], we assess each model from the
perspectives of safety, efficiency and smoothness. Specifically, safety is quantified using
three indicators: the success rate (the proportion of episodes in which the AV reaches
its destination without any collisions), the collision rate (the frequency of collisions with
surrounding agents), and the timeout rate, which accounts for episodes where the AV fails
to reach the goal within the maximum allowed time despite avoiding collisions. Efficiency
is evaluated based on the average vehicle speed, which reflects the efficiency of the AV’s
navigation performance. Lastly, smoothness is measured by the average jerk and average
maximum absolute acceleration/deceleration, capturing the stability and comfort of the
AV’s motion during navigation.
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5.5 Results and Discussion

This section presents the qualitative and quantitative validation results of both the
proposed pedestrian CR-SFM and AV decision-making model.

5.5.1 Pedestrian Cognitive-Risk Social Force Model

5.5.1.1 Qualitative Analysis

To demonstrate how the proposed pedestrian model performs under different interac-
tion conditions, three representative examples are presented in Fig. 5.3.

Fig. 5.3a illustrates a normal case in which the AV follows its ground-truth trajectory,
while pedestrians are simulated using the proposed CR-SFM. As shown in the figure,
all pedestrians safely reach their respective destinations without any collisions. The sim-
ulated trajectories (blue triangles) show high similarity to the ground-truth pedestrian
trajectories (purple crosses), with only minor deviations. This confirms that the model’s
ability to generate safe and goal-directed motion in interactive scenarios.

Fig. 5.3b provides a scenario involving an explicit collision risk between the simulated
pedestrian and a nearby agent. In this case, the AV and two pedestrians follow their
ground-truth trajectories, while the third pedestrian’s trajectories are simulated by the
SFM, RA-SFM, and CR-SFM. The zoomed-in subfigure reveals that the SFM-generated
trajectory leads to a collision with another pedestrian, with collision point marked by a
red cross. In contrast, both the RA-SFM and CR-SFM successfully avoid the hazard by
slightly deviating the pedestrian’s path away from the surrounding agent, toward the right-
hand side of the scene. This behavioral divergence highlights the benefit of adaptive social
force modulation in RA-SFM and CR-SFM, enabling the agent to respond effectively to
immediate physical threats. Notably, the trajectory generated by the CR-SFM displays a
more pronounced shift toward the safer region, indicating a higher sensitivity to dynamic
interaction contexts.

Fig. 5.3c further investigates the model’s behavior under ambiguous or latent risk
conditions. Although no immediate physical danger is apparent, both the SFM and RA-
SFM trajectories continue directly toward the goal and result in collisions, as shown in the
zoomed-in area. In contrast, the CR-SFM trajectory shows a markedly different pattern:
the pedestrian perceives elevated risk in the goal direction, detours toward a low-risk zone,
and resumes goal-directed motion only after the uncertain agent has passed.
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(a)

(b)

Figure 5.3: Qualitative examples of pedestrian trajectory simulation under different interaction scenarios.
(a) A normal case in which all pedestrian trajectories are simulated by the proposed CR-SFM. (b) A
comparison of three trajectories generated by the SFM, RA-SFM, and CR-SFM. The trajectory generated
by the SFM results in a collision, while the RA-SFM and CR-SFM avoid the nearby agent.
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(c)

Figure 5.3: (Continued) Qualitative examples of pedestrian trajectory simulation under different inter-
action scenarios. (c) The SFM and RA-SFM fail to trigger avoidance behavior, whereas the CR-SFM
proactively detours before reaching the goal.

These behavioral differences stem from the models’ risk perception capabilities. The
SFM relies on fixed interaction strengths based purely on distance, and thus cannot adapt
to changing risk profiles. RA-SFM improves on this by adjusting repulsive forces according
to observable physical cues such as proximity and velocity. However, when these cues
remain below a critical threshold, the model fails to trigger sufficient repulsion, and the
pedestrian proceeds along a collision-prone path without taking an evasive action.

In contrast, the CR-SFM introduces cognitive uncertainty modeling, allowing the ped-
estrian to account not only for physical risk but also for uncertainty in the predicted
behaviors of nearby agents. By quantifying the discrepancy between the expected and
observed motion, CR-SFM captures the subjective uncertainty and then integrates it into
the overall risk assessment. This allows the model to detect latent threats that are not
evident through physical cues alone. Consequently, even when the physical risk is low, the
elevated uncertainty can amplify the perceived danger and increase the total risk. When
this combined risk becomes significant, the pedestrian proactively adjusts its trajectory,
even temporarily moving away from the destination to avoid potential collisions. Once the
perceived risk diminishes, the pedestrian returns to the original path and safely reaches
the goal. This behavior illustrates the unique advantage of cognitive uncertainty mod-
eling in CR-SFM. By integrating internal uncertainty estimation with external physical
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observations, the model is able to anticipate possible conflicts and make more informed
decisions. As a result, CR-SFM generates more flexible, cautious, and human-like beha-
vior in complex multi-agent environments, significantly enhancing both trajectory safety
and realism.

In conclusion, the CR-SFM demonstrates strong performance for realistic pedestrian
simulation, enabling reliable behavior modeling under diverse and challenging conditions.

5.5.1.2 Quantitative Analysis

Table 5.2 summarizes the quantitative performance of various pedestrian models in
terms of ADE, FDE, and CR. The CV model yields the poorest performance, with an
ADE of 1.5262 and an FDE of 2.8738, indicating large deviations from the ground-truth
trajectories. It also records the highest collision rate, which is expected given that the
CV model neglects goals, interactions, or environmental dynamics. In contrast, the SFM
introduces interactive forces and goal attraction, significantly lowering the ADE and FED
to 0.8310 and 0.6151, respectively. However, it still suffers from a non-negligible collision
rate (3.7%), highlighting its limitation in complex interactions due to its reliance on fixed
interaction parameters.

Table 5.2: Statistic results of our pedestrian model compared with other approaches.

Pedestrian Model ADE FDE CR

CV [12] 1.5262 2.8738 0.0926
SFM [155] 0.8310 0.6151 0.0370
RA-SFM 0.8139 0.5247 0.0370
CR-SFM (Ours) 0.7842 0.4416 0.0

The RA-SFM enhances the traditional SFM by making the repulsive force adaptive
to kinematic features such as distance, velocity and direction. This results in a slight im-
provement in the simulation accuracy, but the collision rate remains unchanged. Although
RA-SFM allows for more adaptive motion generation, it still lacks the capacity to account
for uncertainty in agent behaviors.By comparison, the proposed CR-SFM outperforms all
baselines across all metrics. It obtains the lowest ADE (0.7842) and FDE (0.4416), re-
flecting its superior trajectory simulation accuracy. Notably, it achieves a zero collision
rate, successfully avoiding all collisions in the evaluation scenarios. This performance is
primarily attributed to the integration of cognitive risk modeling, which enables the ped-
estrian to not only react to visible physical cues but also anticipate potential conflicts
arising from uncertainty in others’ behaviors.
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In summary, the quantitative results demonstrate that the CR-SFM achieves reli-
able performance in both accuracy and safety. Compared to other methods, it reduces
displacement errors while enhancing collision avoidance. These findings indicate that com-
bining cognitive risk reasoning with adaptive social forces enables more flexible and robust
generation of pedestrian behavior in dynamic and interactive environments.

5.5.2 AV Decision-Making Model

5.5.2.1 Qualitative Analysis

To clearly demonstrate how our AV decision-making model operates across different
scenarios, three representative cases are presented below.

Case 1: provides an example where both the AV and the human driver decelerate
early to avoid collisions with nearby pedestrians, as shown in Fig. 5.4. At the beginning of
the episode (Fig. 5.4a and Fig. 5.4b, top-left), the AV is at its initial position with three
pedestrians distributed across the scene. Pedestrian 1 stands particularly close to the AV’s
planned path, indicating a higher potential collision risk. In the simulation (Fig. 5.4a),
the AV gradually decelerates in response to the pedestrians’ anticipated behavior, slowing
sufficiently to safely pass behind Pedestrians 1 and 2 before smoothly accelerating again
once the path is clear. During the interaction with Pedestrian 3 (Fig. 5.4a, bottom-left),
the AV maintains a low, steady acceleration without significant speed reduction, reflecting
its assessment of minimal risk and resulting in a smooth and continuous motion strategy.
Finally, the AV successfully navigates through all pedestrians and reaches its goal without
abrupt stops or collisions.
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(a)

(1) (2)

(3) (4)

(b)

Figure 5.4: Comparison of the interaction process and dynamic state evolution between the proposed
model and real driving data for Case 1. (a) Interaction simulation using the proposed model. (1) State
at t = 0 s: vAV = 3.981 m/s, θ = -2.635 rad, aAV = 0 m/s2 (2) State at t = 3.5 s: vAV = 3.144 m/s, θ =
-2.630 rad, aAV = -0.057 m/s2 (3) State at t = 9 s: vAV = 5.455 m/s, θ = -2.619 rad, aAV = 0.265 m/s2

(4) State at t = 13.5 s: vAV = 6.0 m/s, θ = -2.601 rad, aAV = 0 m/s2. (b) Interaction process captured
from real driving data. (1) State at t = 0 s: vveh = 3.981 m/s, θ = -2.635 rad, aveh = 0 m/s². (2) State
at t = 3.5 s: vveh = 3.578 m/s, θ = -2.601 rad, aveh = -0.903 m/s2. (3) State at t = 9 s: vveh = 0.266
m/s, θ = -2.597 rad, aveh = -0.281 m/s2. (4) State at t = 27 s: vveh = 5.838 m/s, θ = -2.599 rad, aveh
= 0 m/s2.
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(c)

(d)

Figure 5.4: (Continued) Comparison of the interaction process and dynamic state evolution between the
proposed model and real driving data for Case 1. (c) Evolution of AV states predicted by the proposed
model. (d) Evolution of vehicle states recorded from real driving data.

The pedestrian trajectories in the simulation (Fig. 5.4a) are generated by our previ-
ously proposed pedestrian CR-SFM model, whereas those in Fig. 5.4b are recorded from
actual pedestrian movements. In the real-world scenario, although Pedestrian 1 chooses
to stop and yield, the human driver also decelerates to a full stop, waiting until the ped-
estrian has completely crossed before resuming movement. After passing Pedestrians 1
and 2, the driver again reduces speed significantly to yield when approaching Pedestrian
3. These conservative actions lead to marked fluctuations in the vehicle’s speed and ac-
celeration profiles, as illustrated in Fig. 5.4d. In contrast, our proposed model achieves
smoother and more stable driving behavior by applying sufficient deceleration without
unnecessary stops.

Case 2: illustrates a situation in which both the AV and the driver maintain their
speed to yield to pedestrians initially positioned at a greater distance, as shown in Fig.
5.5. Early in this episode, both the AV and the human driver perceive that the pedestrians
will enter their intended path. However, given the sufficient distance, they evaluate the
situation as low-risk and opt to maintain a speed of approximately 3.5 m/s without
significant braking. This behavior contrasts with Case 1, where the closer proximity of
pedestrians required early deceleration to ensure safety.
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Once the pedestrians have safely crossed and the potential risk is eliminated, the
human driver continues at a steady speed of around 4 m/s, whereas the AV accelerates
smoothly to its maximum velocity to efficiently reach its goal. Throughout the interaction,
both the AV and the driver exhibit similar decision-making patterns, with consistent
trends observed in their acceleration profiles and heading angle adjustments (Fig. 5.5c and
Fig. 5.5d). These results suggest that the overall behavior of the proposed model closely
mirrors that of the human driver, while showing smoother and more stable heading angle
transitions.

Case 3: illustrates a scenario in which both the AV and a human driver exhibit sig-
nificant deceleration to yield to pedestrians, as illustrated in Fig. 5.6. At the beginning
of the episode, the nearest pedestrian is situated approximately 26 meters away from the
vehicle. Despite this relatively safe distance, the AV initiates a strong braking response,
corresponding to the highest deceleration observed throughout the entire trajectory. This
contrasts with the behavior in Case 1, where the distance from the pedestrian is com-
parable, yet the AV adopts a more moderate deceleration strategy. The underlying cause
of this difference lies in the initial speed: in this case, the AV starts at a higher velo-
city, thereby requiring a more forceful reduction in speed to ensure safety. In particular,
the peak deceleration reaches −1.458 m/s² in Case 3, whereas in Case 1 it only drops
to −0.826 m/s². Following the initial braking, the AV maintains a conservative speed of
around 2 m/s for several seconds, allowing it to continuously reassess its surroundings
and avoid potential conflicts. Once pedestrians 1 and 3 have moved sufficiently away from
its intended path and pedestrian 2 has already passed, the AV detects a lower risk level
and smoothly accelerates to proceed through the environment.

A similar pattern is observed in the behavior of the human driver under the same
scenario. The human-operated vehicle also performs an early and substantial deceleration,
followed by a sustained period of cautious driving until the nearby pedestrian influence
diminishes. As shown in Fig. 5.6c and Fig. 5.6d, the velocity profiles of both the AV
and the human-driven vehicle exhibit consistent trends: a sharp initial drop to approxim-
ately 2 m/s, followed by a gradual acceleration once the interaction zone is deemed safe.
This behavioral consistency highlights the AV’s ability to learn and reproduce human-like
decision patterns in multi-agent settings.

In conclusion, the above results demonstrate that our proposed AV decision-making
model can effectively select appropriate strategies based on the current scenario and state,
adjusting its behavior accordingly to achieve safe yet efficient navigation during interac-
tions with pedestrians.
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Figure 5.5: Comparison of the interaction process and dynamic state evolution between the proposed
model and real driving data for Case 2. (a) Interaction simulation using the proposed model. (1) State
at t = 0 s: vAV = 2.796 m/s, θ = 0.778 rad, aAV = 0 m/s2 (2) State at t = 6.5 s: vAV = 3.708 m/s, θ
= 0.591 rad, aAV = -0.097 m/s2 (3) State at t = 11 s: vAV = 6.0 m/s, θ = 0.544 rad, aAV = 0 m/s2 (4)
State at t = 15 s: vAV = 5.958 m/s, θ = 0.536 rad, aAV = -0.083 m/s2. (b) Interaction process captured
from real driving data. (1) State at t = 0 s: vveh = 2.796 m/s, θ = 0.778 rad, aveh = 0 m/s2. (2) State
at t = 6.5 s: vveh = 3.802 m/s, θ = 0.564 rad, aveh = -0.024 m/s2. (3) State at t = 11 s: vveh = 4.454
m/s, θ = 0.531 rad, aveh = -0.317 m/s2. (4) State at t = 17.5 s: vveh = 3.972 m/s, θ = 0.557 rad, aveh
= 0.181 m/s2.
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(d)

Figure 5.5: (Continued) Comparison of the interaction process and dynamic state evolution between the
proposed model and real driving data for Case 2. (c) Evolution of AV states predicted by the proposed
model. (d) Evolution of vehicle states recorded from real driving data.

Table 5.3: Quantitative comparison results of our proposed AV model against other approaches and
human driving data.

Model Success Collision Time out Average vehicle speed (m/s) Average vehicle jerk (m/s3) Average maximum absolute
acceleration/deceleration (m/s2)

UAW-PCG [13] 0.83 0.17 0 4.137 1.249 3.737
G-SAC-NoCog 0.83 0.11 0.06 4.035 0.544 1.664

S-SAC 0.78 0.22 0 4.312 0.448 1.560
G-SAC-Cog(Ours) 0.94 0.06 0 4.470 0.524 1.621

Human driver 1 0 0 2.924 0.609 4.240

5.5.2.2 Quantitative Analysis

Table 5.3 summarizes the quantitative performance of our proposed model (G-SAC-
Cog) compared to the state-of-the-art method (UAW-PCG), two ablation variants (S-SAC
and G-SAC-NoCog) and human driving data. Overall, our method achieves a success rate
of 0.94, which is significantly higher than the comparative models (0.78–0.83). Moreover,
it attains the lowest collision rate among the AV models at 0.06, indicating that our
approach effectively enhances safety in pedestrian-rich environments.
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Figure 5.6: Comparison of the interaction process and dynamic state evolution between the proposed
model and real driving data for Case 3. (a) Interaction simulation using the proposed model. (1) State
at t = 0 s: vAV = 4.889 m/s, θ = -2.629 rad, aAV = 0 m/s2 (2) State at t = 6.5 s: vAV = 2.063 m/s, θ
= -2.613 rad, aAV = -0.033 m/s2 (3) State at t = 12 s: vAV = 3.634 m/s, θ = -2.613 rad, aAV = -0.212
m/s2 (4) State at t = 16.5 s: vAV = 4.664 m/s, θ = -2.614 rad, aAV = 0.999 m/s2. (b) Interaction process
captured from real driving data. (1) State at t = 0 s: vveh = 4.889 m/s, θ = -2.629 rad, aveh = 0 m/s2.
(2) State at t = 6.5 s: vveh = 2.332 m/s, θ = -2.659 rad, aveh = -0.101 m/s2. (3) State at t = 12 s: vveh
= 2.676 m/s, θ = -2.634 rad, aveh = 0.909 m/s2. (4) State at t = 16.5 s: vveh = 5.975 m/s, θ = -2.549
rad, aveh = 0.0 m/s2.
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Figure 5.6: (Continued) Comparison of the interaction process and dynamic state evolution between the
proposed model and real driving data for Case 3. (c) Evolution of AV states predicted by the proposed
model. (d) Evolution of vehicle states recorded from real driving data.

In terms of driving efficiency, our model achieves an average speed of 4.470 m/s, out-
performing all comparative models and greatly exceeding that of the human driver (2.924
m/s). This superior efficiency can be attributed to the reinforcement learning framework
applied in training AV models, which, under the given reward structure, incentivizes
learned policies to maximize accumulated reward. Consequently, the AV maintains high
speeds whenever no immediate collision risk is detected, enabling it to achieve higher
efficiency without compromising safety, as evidenced by its low collision rate.

Regarding driving comfort, S-SAC attains the smoothest performance with the min-
imal average vehicle jerk (0.448 m/s3). However, this comes with a high collision rate
(0.22), suggesting that S-SAC tends to maintain speed even in close proximity to ped-
estrians, resulting in smoother but riskier behavior. Conversely, UAW-PCG shows the
most erratic driving style, with an average vehicle jerk of 1.249 m/s3. This instability
likely stems from directly controlling vehicle speed, which forces the vehicle to make sud-
den and large acceleration or deceleration adjustments to match target speeds, resulting in
frequent and abrupt speed variations. Our proposed model, which employs acceleration as
the control action, achieves a well-balanced performance. Although its average jerk (0.524
m/s3) is not the lowest, it reflects necessary adjustments for effective pedestrian avoid-
ance and remains lower than that of the human driver (0.609 m/s3), successfully balancing
safety and comfort. When considering maximum absolute acceleration or deceleration, all
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AV models display substantially lower peaks compared to the human driver (4.240 m/s2),
indicating smoother control policies acquired through reinforcement learning. Notably,
UAW-PCG shows a significantly elevated average maximum acceleration (3.737 m/s2),
again reflecting instability from using velocity as the direct action variable.

In conclusion, these findings demonstrate that our proposed model achieves a superior
balance between efficiency, safety, and driving comfort compared to existing methods.

5.6 Chapter Conclusion

This chapter begins by identifying two key limitations in current research on AV
decision-making in urban shared environments. First, many existing approaches to AV-
pedestrian interactions employ overly simplified pedestrian models with fixed behavioral
patterns, which fail to capture the inherently bidirectional and adaptive nature of human
interactions. Second, although robot navigation in crowd settings has been extensively
studied, the subjective uncertainty underlying human cognition has received insufficient
attention. To address these gaps, this study presents an innovative framework to address
AV decision-making challenges in shared urban spaces with multiple pedestrians. A cog-
nitive uncertainty modeling approach inspired by the Free Energy Principle is introduced
to emulate human reasoning and quantify cognitive uncertainty during social interactions.
This cognitive modeling is integrated into the pedestrian social force model, enabling ad-
aptive adjustment of goal-directed and repulsive forces by combining cognitive uncertainty
with physical risk, which leads to more realistic pedestrian trajectories. Additionally, the
same cognitive process guides the AV’s decision-making, where the fused measure of cog-
nitive uncertainty and physical risk defines a dynamic, risk-aware adjacency matrix for the
GCN within the SAC architecture, allowing the AV to perceive complex social dynamics
and make human-like decisions.

Simulation results demonstrate that the proposed framework significantly improves
AV performance compared to the existing method, achieving safer, more efficient, and
smoother behavior during interactions with pedestrians. Although the model shows prom-
ising results, the current research is limited to scenarios with a fixed number of pedestri-
ans, which may not fully capture the variability of real-world urban environments. In the
future, we plan to extend our framework to handle scenarios with dynamically changing
numbers of pedestrians, enabling the AV to adapt its strategy in real time as pedestrians
enter or leave the scene. Moreover, this work focuses on a simplified interaction scenario,
so certain real-world factors, such as road structures, weather conditions, and the presence
of additional vulnerable road users, are not considered. Future work should incorporate
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these elements to improve the generalizability and applicability of the proposed models.
Although the RL demonstrates good performance in this work, it still faces several lim-
itations. RL algorithms are highly sensitive to the design of the reward function, and
inappropriate shaping can lead to undesired behaviors. In addition, training may suffer
from instability due to exploration-exploitation trade-offs and approximation errors. Fu-
ture work should investigate more principled reward-design strategies and stabilization
techniques tailored to the specific task.
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Chapter 6

Conclusion

6.1 Summary of Research

This thesis is dedicated solely to AV-pedestrian interactions, spanning scenarios from
simple single-pedestrian to complex multi-pedestrian situations. The primary objective is
to gain a deeper understanding of the interaction mechanisms and to develop decision-
making frameworks that ensure navigation strategies which are safe, efficient, and socially
acceptable in human-centric environments. The study is structured around three main
components: interaction data analysis, AV decision-making in single-pedestrian interac-
tions, and AV decision-making in multi-pedestrian interactions.

Interaction Data Analysis. This study investigates the critical factors influencing
the decision-making processes of both human drivers and pedestrians. A series of vehicle–
pedestrian interaction experiments using the VR platform were conducted, enabling the
acquisition of controlled yet realistic behavioral data. The analysis primarily focused on
kinematic variables, as they are easily measurable during real-world interactions. Using
the collected data, the AdaBoost algorithm was applied to identify the most influential
factors affecting pedestrian crossing decisions and driver approaching behaviors. Further-
more, PDPs were utilized to visualize and interpret the impact of each factor, illustrating
how variations in these variables affect decision-making outcomes. The analysis revealed
that pedestrian crossing intentions are mainly influenced by longitudinal distance and
vehicle acceleration, while driver yielding behavior is strongly affected by pedestrian speed
and their longitudinal distance to the vehicle. Specifically, longer longitudinal distances
encourage pedestrians to cross before vehicles approach, with crossing probability in-
creasing as distance grows. By contrast, higher vehicle acceleration reduces the likelihood
of pedestrians crossing, and pedestrians are particularly more likely to cross when the
vehicle’s acceleration is below –1 m/s². For drivers, the probability of yielding increases
with higher pedestrian walking speed and also rises with longer longitudinal distances. In
addition, this work investigates drivers’ yielding patterns. The results indicated that when
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a pedestrian’s intention to cross is ambiguous, most drivers slightly reduce their speed,
even under low TTA conditions and more than half of the drivers do not decelerate at all
under high TTA scenarios. Conversely, when a pedestrian’s intention is clearly expressed,
a significant proportion of drivers adopt moderate or heavy deceleration, particularly in
low TTA situations. For TTA values greater than 5 seconds, light deceleration becomes
the dominant behavior. These findings emphasized the critical role of kinematic cues in
shaping both pedestrian and driver decision-making during interactions.

AV decision-making in single-pedestrian interactions. This study examines the
decision-making strategies of the AV when interacting with a single pedestrian in unsig-
nalized intersections, with a particular focus on incorporating human bounded rationality.
A dynamic, real-time decision-making framework was proposed for AV navigation in un-
signalized environments. The proposed framework integrated POMDP with behavioral
game theory to capture continuous and interactive decision-making between AVs and
pedestrians. Both the AV and pedestrian behaviors were represented using a DB-QCH
model, which consists of three core modules: belief update, action generation, and optimal
action derivation. To better simulate human decision-making, two cognitive parameters,
the reasoning level k and the bounded rationality λ , are incorporated and dynamically
updated based on the observed environment. This adaptive mechanism enables the AV
to continuously refine its strategies and respond appropriately in real-time.

The proposed model was validated through both qualitative and quantitative ana-
lyses. Qualitative evaluations include three representative scenarios illustrating how the
AV adapts its behavior under varying pedestrian interactions. Visualizations of AV and
pedestrian states, such as position and velocity profiles, showed the AV’s ability to an-
ticipate pedestrian intentions and apply appropriate deceleration, demonstrating robust
decision-making across diverse interaction contexts. Quantitative evaluations compared
the model’s performance against data from VR experiments, focusing on safety, efficiency,
and smoothness. The results confirmed that the algorithm performs strongly across all
three metrics. Specifically, the model achieved a very low collision rate of 0.15%. The
close alignment between simulated and observed vehicle speeds indicated that the model
captures key features of human driving behavior, while its average speed reached 9.60
m/s, slightly higher than the 9.47 m/s observed in VR experiments, reflecting improved
efficiency. Furthermore, compared with the VR experiment, the average vehicle jerk de-
creased by 0.054 m/s3, and the average maximum absolute acceleration/deceleration was
reduced by 0.361 m/s2. The reductions demonstrated the strategy’s ability to generate
smoother, more comfortable driving trajectories than those observed in human-operated
data.
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AV decision-making in multi-pedestrian interactions. This study investigates
the decision-making strategies of the AV operating in pedestrian-rich shared spaces, with
a particular emphasis on modeling cognitive uncertainty. A cognitively-informed and risk-
aware decision-making framework for the AV navigating dynamic pedestrian environments
was presented. Inspired by the Free Energy Principle, a cognitive uncertainty modeling
approach was proposed to simulate human reasoning processes and quantify uncertainty
in agents’ predictions. By computing the KL divergence between predicted and observed
state distributions, the model enables agents to iteratively update their beliefs about oth-
ers’ behaviors and gain a better understanding of their surroundings. Building on this
foundation, a novel pedestrian behavior model, called Cognitive-Risk Social Force Model
was introduced. This model dynamically adjusts the weights of goal-directed and repulsive
forces based on a fused measure of physical risk and cognitive uncertainty, allowing ped-
estrians to autonomously adapt their trajectories in uncertain and interactive scenarios
and resulting in more realistic, human-like behavior. To support AV decision-making, the
fused risk signal was further integrated into a graph-based reinforcement learning archi-
tecture. A risk-encoded interaction graph was constructed and embedded into both the
actor and critic networks of a SAC agent. This structure enables the AV to more effect-
ively perceive interaction dynamics and respond to potential threats, thereby improving
decision quality.

The effectiveness of the proposed pedestrian CR-SFM and AV decision-making model
was thoroughly evaluated through a series of qualitative and quantitative experiments.
For the pedestrian CR-SFM, three representative case studies were conducted to visual-
ize and compare its simulated trajectories with those generated by the traditional SFM
and its variant (RA-SFM). These qualitative comparisons demonstrated that CR-SFM
produces more adaptive and reliable motion patterns under diverse and challenging con-
ditions. To further assess its performance, a quantitative evaluation was carried out using
three widely adopted metrics: ADE, FDE, and CR. Across all metrics, CR-SFM consist-
ently outperformed the baselines, achieving lower positional errors and fewer collisions. In
particularly, relative to the CV model, ADE and FDE were reduced by 48.6% and 84.6%,
respectively. Compared with both the SFM and RA-SFM, CR-SFM further lowered ADE
(by up to 5.6%) and FDE (by up to 28.2%). For all comparison models, the collision rate of
CR-SFM dropped to zero. These results highlighted its improved capability to accurately
capture pedestrian behaviors and adapt effectively to dynamic, multi-agent environments.
The AV decision-making model was also validated through three case-based comparisons
with real-world human driving data. Each case examined the AV’s behavior in terms of
trajectory, velocity, heading angle, and acceleration profile, capturing a range of driving
scenarios involving varying degrees of risk and interaction complexity. The qualitative ana-
lysis revealed that the AV demonstrated human-like decision-making, including proactive
yielding, smooth acceleration, and adaptive braking in response to pedestrian movement.
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Beyond these illustrative examples, a quantitative evaluation was conducted by validate
the proposed AV model against a state-of-the-art baseline and two ablated versions. The
assessment employed three key performance dimensions, including safety, efficiency, and
comfort, to capture the overall driving quality. Results showed that the proposed frame-
work achieved lowest collision rates, highest average speeds, and reduced vehicle jerk.
In particular, compared with the state-of-the-art model, the proposed approach achieved
a 13.2% increase in success rate and an 8% improvement in average speed, while the
average jerk decreased by 58% and the maximum absolute acceleration/deceleration by
56.6%. Moreover, relative to human drivers, it demonstrated greater efficiency through
higher average speed and delivered smoother driving with lower jerk and reduced max-
imum acceleration/deceleration. These outcomes confirm that the model can dynamically
select context-appropriate strategies and make adjustments to its behavior in response to
environmental changes.

In summary, this study contributes to the field of AV-pedestrian interaction by identi-
fying the key factors that influence the decision-making processes of both human drivers
and pedestrians, developing an interactive model for unsignalized intersections involving
an AV and a single pedestrian, and extending this framework to urban shared spaces
with multiple pedestrians to capture more complex interaction dynamics. These contri-
butions effectively address the three research questions outlined in this thesis and provide
valuable insights as well as practical solutions to the challenges of AV decision-making in
human-involved urban environments.

6.2 Limitations and Future Work

While this work has made notable progress in modeling AV–pedestrian interactions
and developing decision-making frameworks, several limitations remain due to the assump-
tions and scope of the current study. These limitations provide opportunities for future
research aimed at further improving the overall performance of the proposed models. The
key limitations and potential directions for future work are summarized as follows:

Integrating non-verbal cues in AV decision-making: Although the proposed AV
models can make high-level decisions, such as determining whether to cross or yield to
pedestrians, they currently rely exclusively on fundamental kinematic factors, including
pedestrian positions and velocities. These parameters form a solid foundation for modeling
interactions. However, in real-world scenarios, pedestrian intentions are often conveyed
not only through motion patterns but also through subtle non-verbal signals, such as
gaze direction, head orientation, hand gestures, and subtle body movements, which often
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provide additional context regarding a pedestrian’s willingness or hesitation to cross. For
instance, direct eye contact or a forward-leaning posture toward an approaching vehicle
often indicates a strong willingness to cross, while avoiding eye contact or stepping back
typically signals hesitation or a decision to yield.

Future work could focus on augmenting the AV’s decision-making model by integrating
such non-verbal cues with existing kinematic information, enabling the AV to form a more
comprehensive understanding of pedestrian behavior. By combining these complementary
data sources, the AV could better anticipate pedestrian actions and react more appro-
priately, particularly in ambiguous or high-risk interaction scenarios. Furthermore, lever-
aging advanced perception techniques, such as gaze tracking or gesture recognition, could
enhance both the interpretability and social awareness of AV decision-making, thereby
improving trust, safety, and overall performance in complex urban environments.

Scalability to dynamic and group pedestrian interactions: The AV–pedestrian
interaction framework proposed in this thesis is currently restricted to scenarios involving
an AV and three pedestrians, primarily due to computational limitations on local hard-
ware. In real-world urban settings, however, the number of pedestrians can easily exceed
three and often varies dynamically. For example, five pedestrians may be observed at one
moment, increasing to eight or more in the next. Such fluctuations introduce additional
complexity in decision-making, which the current model does not fully capture. Moreover,
our existing approach models pedestrians as independent agents, while in reality, pedes-
trians often move in groups. Intra-group dynamics, such as leader–follower behaviors, co-
ordinated movements, and collective decision-making can significantly influence the over-
all interaction patterns. These group behaviors can affect factors like crossing decisions,
yielding patterns, and perceived risks, making individual-based modeling insufficient in
some situations.

Future work could focus on extending the current framework to accommodate dy-
namically varying pedestrian populations and group-level behaviors. This may involve
developing scalable graph-based interaction models that can dynamically adapt to chan-
ging pedestrian populations, as well as introducing group features that capture shared
intentions and coordinated movement patterns. Such extensions would enable AVs to op-
erate safely and effectively in more realistic, crowded, and socially complex environments.

Interaction modeling with diverse road users: This thesis focuses primarily on
AV–pedestrian interactions, while in real-world traffic scenarios, AV must account for a
broader range of road users. In addition to pedestrians, human-driven vehicles and other
vulnerable road users, such as cyclists, motorcyclists, wheelchair users, frequently share
the same road space with AVs, introducing additional complexity to decision-making.

133



These road users differ not only in their kinematic characteristics, such as moving speed,
acceleration, and braking distance, but also in their behavioral patterns and responses
to AV actions. For instance, cyclists may perform sudden lateral lane changes to avoid
obstacles or maintain balance, human-driven vehicles may exhibit unpredictable behaviors
such as abrupt acceleration or delayed braking, and wheelchair users generally move at
lower speeds with limited turning radii, requiring the AV to adopt more conservative
predictions and maintain larger safety buffers.

Future work could extend the current decision-making framework to explicitly address
interactions with multiple types of road users. This may involve developing multi-agent
models that capture heterogeneous dynamics and diverse behavioral patterns, thereby
improving the AV’s ability to make decisions and adapt to complex and uncertain in-
teractions. Such modeling would enhance the robustness and social compliance of AV
decision-making in mixed-traffic urban environments and accelerate the deployment of
AV technologies in real-world scenarios.

Generalization ability across various environments: This thesis mainly invest-
igates interactions between the AV and pedestrians in specific environments, such as
unsignalized intersections and urban shared spaces. While the proposed models perform
effectively in these settings, they are primarily tailored to address individual scenario
types rather than being adaptable across diverse traffic conditions. However, real-world
driving involves navigating a wide variety of environments, ranging from highways and
rural roads to densely populated city centers. During a single driving journey, an AV may
encounter multiple environment types, each with unique dynamics and challenges. Seam-
lessly adapting to these diverse and evolving scenarios remains a significant challenge for
the current framework.

Future work could focus on enhancing the adaptability and generalization capabil-
ity of AV decision-making models to handle diverse real-world conditions. This may in-
volve developing a more versatile decision-making framework that dynamically adjusts
its strategies in response to contextual factors such as traffic density, road geometry, and
the presence of various road users. Achieving this generalization would represent a critical
step toward deploying AVs that can ensure safe and efficient navigation across all types
of real-world traffic environments.

Real-world experiment validation: The AV decision-making algorithms developed
in this thesis have been thoroughly evaluated and validated within a self-constructed sim-
ulation environment. While these models have demonstrated strong performance across
a range of qualitative and quantitative metrics, simulation-based evaluations inevitably
have limitations in replicating the full complexity of real-world conditions. Elements such
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as sensor perception errors, natural variability in human behavior, and environmental
factors (e.g., weather or road conditions) are often simplified during simulation. For ex-
ample, our experiments assume complete and accurate access to pedestrian positions and
velocities, whereas real-world sensors may introduce subtle inaccuracies, and pedestrian
behaviors may deviate from those represented in the interaction models. Therefore, con-
ducting real-world experiments would be a valuable complement, offering further evidence
of the proposed models’ reliability and adaptability under actual operational conditions.
Future work could focus on integrating these decision-making models into real AV plat-
forms and performing field tests in dynamic urban environments. This would provide a
more comprehensive evaluation of the models’ robustness, safety, and ability to handle
dynamic and complex real-world scenarios.
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