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Abstract 

Cells respond to their mechanical environment in vivo, which can be separated 

into the stiffness and topography of the environment. It drives the cell phenotype. 

The topography within a range of 100 nm is of special interest because it falls 

within the size range of protein adhesions.  Thus, it is replicated in vitro in 

fabricated biomaterials to study the effect of the mechanical environment. This 

thesis aims to investigate the response of the preosteoblast cell line MC3T3 as a 

well-studied standard cell line to its mechanical environment, with a focus on 

morphological profiling and traction force microscopy. We analyse the phenotype 

based on the morphology of the cells using the Cell Painting method. The cell 

response is dependent on the mechanotransduction pathway. Using activators and 

inhibitors of the mechanotransduction pathway in combination with 100 nm 

diameter nanopits showed a mechanotransduction response over time, from an 

initial Ca2+ signalling to a decrease in intracellular tension and adhesion after four 

days, and ultimately to senescence and commitment to osteogenic 

differentiation, as indicated by decreased filopodia and lamellipodia formation. 

The nanopits have a diameter of 100 nm, a depth of 100 nm, and a centre-to-

centre spacing of 300 nm in both square and hexagonal arrays, with and without 

controlled disorder. We analyse 78 different types of nanopits with varying 

diameters, disorder, and pitch, as well as six gratings with depths of 200 nm and 

widths ranging from 200 nm to 10 µm, to have an in-depth analysis of the 

correlation between phenotype and topography parameters. The gratings cause a 

substantially different cell morphology compared to the nanopits. They need to 

be smaller than 5 µm to influence cell morphology. The disorder has the strongest 

correlation with changes in morphology from the studied topography parameters. 

We aim to combine the nanotopography with the material stiffness of the 

biomaterial in the analysis and study the effect of varying nanotopographies on 

cellular traction forces. However, we are unable to study it due to the challenging 

fabrication of the required hierarchical micropillars with nanopits on top. We 

successfully created polydimethylsiloxane (PDMS) micropillars with a diameter of 

5.93 ± 0.15 µm and a height of 18.61 ± 0.28 µm using a SU-8 master. We measured 

a traction force of 10 nN, which aligns with the traction forces reported in the 

literature for smaller diameter pillars with lower spring constants.   



iii 
 

Acknowledgement 

First of all and foremost, I would like to thank Nikolaj Gadegaard for the 

opportunity to pursue my PhD in his lab and for his kind and helpful supervision. 

It was a joy working under you.  Thank you for always encouraging me to try my 

ideas and pushing me into new directions and fields. I am also grateful for his vast 

network of contacts, which allows us to ask for advice when we run into a dead 

end with our knowledge. 

I want to thank my second supervisor, Professor Laura Machesky, for her idea 

regarding the chemical perturbation library. I would also like to thank Professor 

Thomas Otto for advising me to try the Seurat method and for providing me with 

helpful guidance on data handling. I also must thank Professor Bjørn Sand Jensen 

for the great discussion on how we could analyse the large nanotopography library 

and possibly predict new topographies from it.  

The last years would not have been the same without the people in the lab. Duarte 

and Iliyana, who have been there from the start, helped me feel at home when I 

arrived in Glasgow as part of the BIG group. Badri and Ramesh, with whom I spent 

only a short time in the lab, but had the joy of sharing an office, all the other 

people who joined later, like Maia, Rui, Euan, Nghia, Nicholas, Rakshit, and 

Viltenis, joined our lunches at the GUU and shared a portion of chips. Also, many 

thanks to the technicians who always kept the lab running, even when it 

sometimes felt like the building around it was falling apart. A special thanks there 

to Alysha, Karen, Kasia and Haitham. Not only in the Rankine lab, but I was also 

blessed with great colleagues; all the staff of the James Watt nanofabrication 

centre have been nothing but welcoming and helpful. A special thanks goes to 

Stephen Thoms, who helped me with his incredible knowledge of e-beam 

lithography, and Paul, who was always happy to answer any questions I had about 

e-beam lithography and helped me optimise my jobs to minimise the time they 

took up on the e-beam tool. To Linda, Sarai, and Archie, who took on the challenge 

of creating a negative copy of a photomask and delivered it in a short time. 



iv 
 
I would also like to thank my family and friends for their constant support over 

the last four years. I would not be here without the BaNaNOS from my studies that 

made studying science a joy and always made it feel like coming back home when 

visiting Hamburg. A special thanks also to the Glasgow University handball club, 

with whom we had both less successful and more successful times, such as when 

becoming Scottish university champions. It was always a joy with you, and I know 

that I will miss going to Bank Street on Friday evenings when I come from the lab 

and you come from training. It was always a blast sharing some pints, free pizza, 

and a lot of laughs with you, and getting my head free from any PhD-related stress. 

It was always fun with you, both on and off the court, on adventures to away 

games, such as travels to Dundee, or at BUCS. I am glad that we continue to visit 

Liverpool with current and past players as a yearly reunion, and I hope this new 

tradition will continue for a long time.  

  



v 
 

Author’s Declaration 

I hereby declare that the contents of this thesis are original and my own. The 

fluorescence staining and imaging of a few inhibitor samples in Chapter 4 were 

performed by Viltenis Zilys under my supervision as part of his summer 

studentship. All work performed by colleagues and samples received by others are 

mentioned in the thesis. All the references made to the work of others are cited 

and included in the bibliography.  

Sören Hecht, 2025 

Poster Presentations 

Hecht et al, MC3T3 Cells Morphology Correlates with Mechanotransduction 

Pathways, Osteogenesis, and Nanotopography Response. Poster presentation at: 

BioMedEng 2024 Conference, London, United Kingdom, September 2024. 

Contributions to Publications 

Menezes et al, A membrane’s blueprint: In silico investigation of fluid flow and 

molecular transport as a function of membrane design parameters in organ-on-a-

chip. Chemical Engineering Journal, 2024, 481. 

Menezes et al, Scalable, Transparent, and Micro: 3D-Printed Rapid Tooling for 

Injection Moulded Microfluidics. Advanced Engineering Materials, 2024, 26. 

  



vi 
 

Table of Contents 

ABSTRACT ..................................................................................... ii 

ACKNOWLEDGEMENT ......................................................................... iii 

AUTHOR’S DECLARATION ...................................................................... v 

POSTER PRESENTATIONS ....................................................................... v 

CONTRIBUTIONS TO PUBLICATIONS ........................................................... v 

TABLE OF CONTENTS ......................................................................... vi 

TABLE OF FIGURES .......................................................................... viii 

LIST OF TABLES ................................................................................ x 

GLOSSARY OF ABBREVIATIONS ................................................................ xi 

1. INTRODUCTION .......................................................................... 1 

1.1. MOTIVATION ........................................................................ 1 

1.2. THESIS STRUCTURE ................................................................ 3 

2. LITERATURE REVIEW ..................................................................... 6 

2.1. MECHANOTRANSDUCTION ......................................................... 6 

2.2. MORPHOLOGICAL PROFILING – CELL PAINTING .................................. 13 

2.3. DATA INTEGRATION ............................................................... 17 

2.4. TRACTION FORCE BIOLOGY ...................................................... 23 

2.5. HIERARCHICAL MICRO-/NANOSTRUCTURES ...................................... 28 

3. GENERAL METHODOLOGY: .............................................................. 31 

3.1. CELL CULTURE: ................................................................... 31 

3.2. CELL PAINTING STAINING AND IMAGING .......................................... 31 

3.3. NANOTOPOGRAPHY PREPARATION ............................................... 44 

3.4. SCANNING ELECTRON MICROSCOPY .............................................. 45 

4. VISUALISING MECHANOTRANSDUCTION PATHWAYS DURING DIFFERENTIATION USING 

CELL PAINTING ............................................................................... 47 

4.1. INTRODUCTION: .................................................................. 48 

4.2. METHODOLOGY: .................................................................. 51 

4.2.1. CELL PAINTING: .............................................................. 51 

4.2.2. DATA ANALYSIS: .............................................................. 52 

4.3. RESULTS ........................................................................... 54 

4.3.1. CELLPROFILER PARAMETERS REFLECT CELL MORPHOLOGY CHANGES 

THROUGH PERTURBATIONS ............................................................ 54 

4.3.2. MORPHOLOGY CHANGE DUE TO ACTIVATORS/INHIBITORS IS 

CONCENTRATION DEPENDENT .......................................................... 55 



vii 
 

4.3.3. MORPHOLOGY CHANGES REFLECT FUNCTION OF INHIBITORS AND 

ACTIVATORS ............................................................................. 59 

4.3.4. RESPONSE OF MC3T3 CELLS TO NANOPITS CHANGES OVER TIME .......... 62 

4.3.5. FEATURE ANALYSIS OF CLUSTERING ........................................ 64 

4.4. DISCUSSION ....................................................................... 74 

5. NANOTOPOGRAPHY PREDICTION FROM THE MORPHOME USING A NANOTOPOGRAPHY 

LIBRARY ...................................................................................... 79 

5.1. INTRODUCTION ................................................................... 80 

5.2. METHODOLOGY ................................................................... 84 

5.2.1. NANOTOPOGRAPHY FABRICATION ........................................... 84 

5.2.2. DATA INTEGRATION OF CELL PAINTING DATA ............................... 86 

5.2.3. LINEAR REGRESSION AND CANONICAL CORRELATION ANALYSIS ............ 88 

5.3. BATCH CORRECTION OF NANOTOPOGRAPHY LIBRARY DATA .................... 93 

5.4. LINEAR REGRESSION AND CANONICAL CORRELATION ANALYSIS OF 

NANOTOPOGRAPY LIBRARY DATA ........................................................ 100 

5.5. INFLUENCE OF TOPOGRAPHY PARAMETER ON CELL MORPHOME ............... 106 

5.5.1. NANOPITS OF VARYING DISORDER ......................................... 106 

5.5.2. NANOPITS OF VARYING PITCH .............................................. 108 

5.5.3. NANOPITS OF VARYING DIAMETER ......................................... 110 

5.5.4. GRATINGS OF VARYING WIDTHS ............................................ 112 

5.6. CONCLUSION ..................................................................... 114 

6. CELLULAR TRACTION FORCE DEPENDENCY ON NANOTOPOGRAPHY – THE CHALLENGE 

OF HIERARCHICAL MICRO-/NANOSTRUCTURE FABRICATION .............................. 120 

6.1. INTRODUCTION .................................................................. 121 

6.2. METHODOLOGY .................................................................. 125 

6.2.1. HSQ NANOPILLAR FABRICATION ............................................ 127 

6.2.2. PDMS SOFTLITHOGRAPHY OF MICROPILLARS .............................. 127 

6.3. MICROPILLAR FABRICATION BY ELECTRON BEAM LITHOGRAPHY ............... 128 

6.4. MICROPILLAR FABRICATION BY PHOTOLITHOGRAPHY .......................... 136 

6.5. TRACTION FORCE MICROSCOPY OF MC3T3 CELLS ON 6 µM MICROPILLARS .... 144 

6.5.1. MICROPILLAR PREPARATION FOR TRACTION FORCE MICROSCOPY ........ 144 

6.5.2. PERFORMING PILLAR-BASED TRACTION FORCE MICROSCOPY ............. 147 

6.5.3. RESULTS OF TRACTION FORCE MICROSCOPY OF MC3T3 CELLS ........... 150 

6.6. CONCLUSION ........................................................................ 154 

7. SUMMARY AND OUTLOOK .............................................................. 158 

8. BIBLIOGRAPHY ......................................................................... 164 

9. APPENDIX .............................................................................. 182 



viii 
 
 

Table of Figures 

1.1 Schematic overview of the work performed in the thesis............... 3 
2.1 Overview of the cell response to its mechanical environment......... 9 
2.2 Overview of varying nanotopographies used in cell biology studies... 12 
2.3 Diagram of the Cell Painting process........................................ 15 
2.4 Batch effect correction for Cell Painting datasets........................ 20 
2.5 Representation of the UMAP dimensionality reduction process......... 21 
2.6 Overview of pillar based traction force microscopy....................... 25 
2.7 Traction force dependence on surface energy............................. 27 
2.8 Fabrication process of hierarchical micro-/nanotopographies.......... 29 
2.9 Fabrication of hierarchical micropilars for traction force 

microscopy...................................................................... 
 

30 
3.1 An overview about the cell segmentation using Otsu, minimum cross-

entropy and robust background method.................................... 
 

34 
3.2 CellProfiler Pipeline and examples for the identification of primary, 

secondary and tertiary object................................................ 
 

37 
3.3 A visualisation of Zernicke polynomials up to the 6th order.............. 40 
3.4 Example of binning by MeasureObjectIntensityDistribution module... 42 
3.5 Cell Painting process from cell seeding to image analysis using 

CellProfiler...................................................................... 
 

43 
3.6 A representation of the fabrication of polystyrene 24 well plates with 

nanotopographies.............................................................. 
 

45 
4.1 A schematic representation of the mechanotransduction pathway.... 49 
4.2 A schematic representation of the feature selection process........... 53 
4.3 Images of nanopits and MC3T3 cells after Cell Painting under various 

conditions....................................................................... 
 

55 
4.4 Heat map of the morphological features for all conditions............. 57 
4.5 Assorted examples of the concentration dependency of measured 

featured by CellProfiler....................................................... 
 

58 
4.6 Hierarchical clustering of Nanotopography data.......................... 61 
4.7 UMAP projection of the activators, inhibitors, metabolites, 

nanotopography and osteogenic induction................................. 
 

63 
4.8 A heatmap of the conditions ordered by the clusters identified from 

a UMAP projection............................................................. 
 

67 
4.9 A barplot of selected features that highlights the morphological 

differences between the clusters............................................ 
 

68 
4.10 Entropy weighted k-means clustering for analysis of feature 

importance...................................................................... 
 

71 
4.11 A heatmap of the selected most important features with the highest 

weights in the entropy weighted k-means clustering.................... 
 

72 
4.12 Visualization of the cell response to nanopits over time................ 76 
5.1 SEM images of nanopits in a NSQ pitch array and SQ pitch array......... 90 
5.2 SEM images of polystyrene slides with nanopits with varying diameter 

and gratings......................................................... 
 

91 
5.3 SEM images of nanopits in a square array and hexagonal array with 

varying disorder................................................................ 
 

92 
5.4 UMAP of nanotopography library data without batch correction....... 93 



ix 
 
5.5 UMAP of nanotopography library data with median centred batch 

correction....................................................................... 
 

95 
5.6 UMAP of nanotopography library data after Seurat correction......... 96 
5.7 UMAP of isolated nanotopography library batches........................ 98 
5.8 UMAP of isolated nanotopography library batches with varying 

diameter and gratings......................................................... 
 

99 
5.9 Plot of the different clusters depending on the pitch and disorder..... 100 
5.10 Linear regression calculated by multi variant linear regression for the 

centre-to-centre pitch and disorder of nanopitches...................... 
 

102 
5.11 UMAP of nanotopography data after feature selection for linear 

regression of raw absolute data and relative data......................... 
 

104 
5.12 Canonical correlation analysis (cca) of nanotopography data to 

activator and inhibitor data.................................................. 
 

105 
5.13 Heatmap of the morphome depending on the disorder of nanopits.... 107 
5.14 Heatmap of the morphome depending on the pitch of nanopits........ 109 
5.15 Heatmap of the morphome depending on the diameter of nanopits.... 111 
5.16 The morphome dependence on grating width is plotted in a heatmap 

and shown in fluorescence images........................................... 
 

113 
6.1 Schematic drawing of different fabrication approaches of PDMS 

micropillars with nanopits on top............................................ 
 

126 
6.2 SEM images of PMMA masters for micropillar fabrication and PDMS 

replica........................................................................... 
 

131 
6.3 Schematic diagram of a typical electron beam lithography tool and 

electron scattering in resist.................................................. 
 

133 
6.4 SEM images of large micropillar replication with nanotopography from 

PMMA masters............................................................ 
 

135 
6.5 SEM images of photolithography tests using SPR220 and SU-8.......... 140 
6.6 Micropillar fabrication with a diameter of 5 µm and height of 18 µm 

using SU-8 resist and photolithography...................................... 
 

141 
6.7 Fabrication of large micropillars with nanopits using SU-8 resist and 

photolithography............................................................... 
 

143 
6.8 Contact printing of fluorescent fibronectin-FITC on PDMS 

micropillars..................................................................... 
 

146 
6.9 A schematic representation of the pillar based traction force 

microscopy process............................................................ 
 

149 
6.10 Force traction microscopy of MC3T3 cells on 6 µm diameter and 18 

µm height micropillars........................................................ 
 

152 
A3.1 Example images of the cell segmentation using Otsu, minimum cross-

entropy and robust background methods................................... 
 

182 
A4.1 UMAP projections of median features for each condition with varying 

distance and varying number of neighbours................................ 
 

183 
A4.2 Cell Painting images of MC3T3 cells with varying activators/inhibitors 184 
A4.3 Cell Painting images of MC3T3 cells on nanopits after 1, 4, 7 days ..... 185 
A4.4 These are examples that visualize the concentration dependencies of 

the features measured by CellProfiler....................................... 
 

186 
A5.1 UMAP plots of nanotopography library datasets with entropy based 

feature selection............................................................... 
 

187 
A5.2 UMAP plot of Seurat corrected data and 200 selected features by 

entropy........................................................................... 
 

187 
A5.3 Cell Painting images of MC3T3 cells for the disorder array .............. 188 
A5.4 Cell Painting images of MC3T3 cells for the NSQ pitch array.............. 189 



x 
 
A5.5 Cell Painting images of MC3T3 cells for the SQ pitch array................ 190 
A5.6 Cell Painting images of MC3T3 cells for the varying size array........... 191 
A5.3 Heatmap of the morphome depending on the pitch of nanopits in the 

SQ pitch array................................................................... 
 

192 
A5.4 Heatmap of the morphome depending on the pitch of nanopits in the 

NSQ pitch array................................................................. 
 

193 
 

List of Tables 

3.1 Required materials for staining solution for the adjusted Cell Painting 
protocol.......................................................................... 

 
32 

4.1 Concentrations and incubation times of used inhibitors and 
activators........................................................................ 

 
52 

4.2 The differences in clustering between UMAP projection and entropy 
weighted k-means clustering................................................. 

 
70 

4.3 An overview of the feature distribution based on different 
stains/organelles and on the CellProfiler measurements................. 

 
74 

6.1 Spin, development and electron beam lithography conditions for the 
fabrication of micropits in PMMA with varying height..................... 

 
131 

 

  



xi 
 

Glossary of Abbreviations 

BAR protein Bin/amphiphysin/rvs domain protein 

BSA Bovine Serum Albumin 

BSSA BioSurface Structure Array 

CCA Canonical Correlation Analysis  

DESI Desorption Electrospray Ionization 

DMSO Dimethyl Sulfoxide 

DRIE Deep Reactive Ion Etching  

E-beam Electron Beam 

EC Ethylene Carbonate  

ECM Extracellular Matrix 

ER  Endoplasmic Reticulum 

FAK Focal Adhesion Kinase 

FBS Fetal Bovine Serum  

FFT Fast Fourier Transform  

FITC Fluorescein Isothiocyanate 

FOTS Trichloro(1H,1H,2H,2H Perfluorooctyl)silane  

GJ Gap Junctions 

HBSS Hanks’ Balanced Salt Solution 

HEX Nanopits in hexagonal array with standard dimensions of 100 nm 

diameter, 100 nm depth, and 300 nm centre-to-centre spacing 

HMDS Hexamethyldisilazane 

HMS-301 (25-35% Methylhydrosiloxane)-Dimethylsiloxane Copolymer, 

Trimethylsiloxane terminated  

h-PDMS Hard PDMS 

HSQ Hydrogen Silsesquioxane 



xii 
 
IMP Integrated Mechanobiology Platform 

IPA Isopropanol 

LSM Laser Scanning Microscope 

MAD Median Absolute Deviation 

MAPK Mitogen-Activated Kinase 

MARC MultiARChitecture 

MCC 80/20 MicroChem Primer 80/20  

MIBK Methyl Isobutyl Ketone  

MSC Mesenchymal Stromal Cell 

NHEX Nanopits in hexagonal array with a disorder of 50 nm to the ideal HEX 

array  

NIL Nanoimprint Lithography 

NSQ Nanopits in square array with a disorder of 50 nm to the ideal SQ 

array 

NSQP Nanopits in square array with a disorder of 50 nm to the ideal SQ 

array with varying pitch 

OCN Osteocalcin 

PBS Phosphate-Buffered Saline  

PCA Principal Component Analysis 

PDMS Polydimethylsiloxane 

PET Polyethylene Terephthalate  

PM acetate Propylene Glycol Monomethyl Ether Acetate  

PMMA Poly(Methyl Methacrylate) 

poLCA Polytomous Variable Class Analysis  

PS Polystyrene 

RO water Reverse Osmosis Water 

ROCK Rho-Associated Protein Kinase 



xiii 
 
RPCA Reciprocal PCA  

RWC Rank Weighted Colocalization  

scRNA-seq Single-Cell RNA Sequencing 

SEM Scanning Electron Microscopy  

SIP 6831.2 Platinum-divinyltetramethyldisiloxane complex in xylene 

SIT 7900 2,4,6,8-Tetramethyl-2,4,6,8-Tetravinylcyclotetra-Siloxane 

SQ Nanopits in square array with standard dimensions of 100 nm 

diameter, 100 nm depth, and 300 nm centre-to-centre spacing 

SQP Nanopits in square array with standard dimensions of 100 nm 

diameter, 100 nm depth, and varying pitch 

TMAH Tetramethylammonium Hydroxide  

t-SNE t-Distributed Stochastic Neighbour Embedding 

UMAP Uniform Manifold Approximation and Projection 

VDT-731 (7.0-8-0 % Vinylmethylsiloxane)-Dimethylsiloxane Copolymer 

(Trimethysiloxyl Terminated)  

WGA Wheat-Germ Agglutinin  

YAP Yes-Associated Protein 

ZCA Zero-Phase Component Analysis  

 

 



1 
 

1. Introduction 

1.1. Motivation 

In tissue regeneration and stem cell differentiation, the biomechanical 

environment of cells has gained high interest, as it has been shown to influence 

cell behaviour[1-3]. The topography, as well as the mechanical properties, of a 

surface affect the cell response[4, 5]. A special focus has been placed on the 

differentiation of stem cells on nanotopographies, as different topographies can 

direct differentiation in different directions. The biomechanical environment is 

also of high interest in wound healing[6] and cancer migration[7, 8]. Thus, we are 

interested in gaining a better understanding of how the biomechanical 

environment affects the cellular behaviour, with the ultimate goal of contributing 

to the development of more effective tissue regeneration. 

The cellular response to the biomechanical environment is driven by 

mechanosensing and subsequent mechanotransduction, which converts 

mechanical signals into biochemical signals within the cell[9-11]. The study of 

mechanotransduction through nanotopographies has many challenges. 

Conventionally, the response to topography is analysed by omics techniques that 

are expensive and time-consuming[12-14]. In our research, we will introduce a 

novel approach by utilizing the morphological profiling technique, Cell Painting, 

as a high-throughput method that stains the organelles of cells to obtain a 

comprehensive picture of the cell's morphological phenotype[15, 16]. We aim to 

map the morphological response of cells on nanopits, together with activators and 

inhibitors of mechanotransduction pathways, to gain insights into activated 

pathways on these topographies. The Cell Painting method has been widely used; 

however, this is the first study to attempt its application with nanotopographies.  

Another challenge in working with nanotopographies is identifying the ideal 

topography. Different topographies elicit distinct responses from cells and few 

studies of large nanotopography libraries have been conducted so far [17]. Since 

many of the traditional analysis methods are expensive and time-consuming, only 

a limited number of topographies can be tested with them. Thus, most of the 
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time, only large differences in topographies, such as gratings, pits, or pillars, are 

tested, rather than the fine dimensions of the topographies. Only basic 

morphological features or general responses as the expression of differentiation 

markers are studied for the screening of extensive libraries. In our study, we have 

designed a comprehensive research plan that overcomes these limitations. We 

want to test the effects of small differences in nanotopography on cell response 

using a library of nanotopographies with pitch differences in steps of 10 nm and 

disorder in steps of 5 nm, with diameters ranging from 120 nm to 10 µm. We 

believe that small differences in the topographic arrangement have a significant 

influence on cell response. Our main goal is to see if we can use this systematic 

library of nanotopographies with a range of modified parameters to predict new 

topographies that replicate the morphome of a desired cell phenotype. If we have 

a cell with a morphology caused by a perturbation or differentiation, can we 

predict a new topography that will cause the same cell morphology? So far, 

nanotopography libraries have only been used to identify the optimal topography 

for a given application, such as differentiation into a desired cell line. We want to 

take it one step further to create a new topography from the cell's morphome in 

a given state and the nanotopography library used. We will use the high-

throughput Cell Painting method to obtain an in-depth analysis of the cell state, 

combined with custom-made injection-moulded 24-well plates featuring a variety 

of nanopit arrangements and gratings, to ensure a thorough exploration of the 

cellular response to different topographies. 

The cell responds to the topography of its environment and the mechanical 

properties, such as the material stiffness. Both influences have been widely 

studied, but they are most often examined individually rather than in 

combination[18, 19]. We aim to combine both parameters to obtain a complete 

picture of the biomechanical response. It is known that cellular traction forces 

are adhesion-dependent and that nanotopographies decrease the cellular 

adhesion[19]. Thus, we aim to study how different topographies affect the cellular 

traction force on material of varying stiffness. We want to know how the two 

factors of topography and material stiffness interact with each other and if one of 

the factors is dominant in the cell response.  
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1.2. Thesis structure 

Following this introduction, the thesis embarks on a comprehensive literature 

review of the latest advancements in mechanotransduction analysis and 

morphological profiling, with a specific focus on Cell Painting and traction force 

microscopy in Chapter 2. This review, which underscores the importance of 

effective data integration and batch correction, is a crucial foundation for the 

subsequent research. The general methods employed across the various chapters 

are then presented in Chapter 3. Throughout the thesis, we utilize the well-

studied pre-osteoblast cell line MC3T3, known for its robust response to the 

studied nanopits, as it differentiates into mature osteoblasts on said nanopits[20].  

 

 

Figure 1.1: Schematic overview of the work performed in the thesis. The influence of 
nanotopography on the mechanotransduction pathway is studied using morphological 
profiling as well as cellular traction forces. Schematic created in BioRender. 
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In Chapter 4, we aim to predict a mechanotransduction pathway during 

differentiation using the innovative Cell Painting method. We believe that the 

morphological changes observed in MC3T3 cells when perturbed with inhibitors 

and activators of key points in the mechanotransduction pathway will be similar 

to those of MC3T3 cells on nanopits. We aim to utilise these similarities to gain a 

deeper understanding of the differentiation of MC3T3 cells on nanopits over time. 

We successfully mapped the nanotopography responses in relation to a variety of 

activators and inhibitors and found that cell differentiation through nanopits 

undergoes a journey. The first response is dominated by the calcium signalling, 

which is known to increase the expression of the early osteogenic marker Runx2. 

Then, intracellular tension and adhesion decrease, while oxidative glycolysis 

increases during differentiation, until the cell reaches senescence, characterised 

by reduced lamellipodia and filopodia formation. Additionally, we have 

demonstrated, as a proof-of-concept, that Cell Painting can be used to study the 

response to nanopits, even detecting differences in pit arrangement in a square 

lattice, with disorder, and in a hexagonal lattice. Furthermore, we pick up the 

concentration dependencies of activators and inhibitors, as well as their 

similarities and differences in their mechanisms of action. 

In Chapter 5, we expand the morphological profiling to a library of 84 different 

nanotopographies. We have demonstrated that the morphome is dependent on the 

geometry of the nanotopography. Thus, we believe that we can utilise an extensive 

nanotopography library to identify an ideal topography and develop new 

topography designs from it.  

We use nanopits with varying sizes, pitches, and disorder, as well as gratings of 

different sizes. We have noticed that the subtle changes we observe in the 

morphome through changes in topography are much more challenging to identify 

than those resulting from activators and inhibitors. Thus, careful feature selection 

is even more important, as is a good batch correction. We can correct for the 

batch effect using a Seurat method. The prediction of different nanotopographies 

from morphological features is possible using linear regression, as long as only one 

parameter is changed in the dataset. Predicting a new topography using the 

complete set of geometrical parameters remains a challenge.  
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In Chapter 6, we aim to combine the nanopits with the material's mechanical 

properties. We believe that by creating micropillars with nanopits of varying 

arrangements on top, we can study the topography-dependent cellular traction 

force. By varying the micropillar dimensions, we can alter the stiffness and 

investigate the impact of material stiffness on adhesion, thereby examining the 

traction forces associated with different topographies. 

The fabrication of micro-/nanopillars proved to be highly challenging. We 

employed both electron beam lithography and photolithography, utilizing various 

resists and techniques. However, no fabrication method has yet produced reliable 

micropillars with nanopits on top. Operating at the limits of each fabrication 

method in a multi-step process, the fabrication remains extremely challenging. 

Despite these hurdles, we managed to create micropillar arrays of the desired 

dimensions, with a diameter of 6 µm and a height of 18 µm, suitable for traction 

force microscopy with MC3T3 cells; however, the addition of nanopits remains a 

challenge.  
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2. Literature review 

2.1. Mechanotransduction 

The environment surrounding cells, known as the cellular microenvironment, 

strongly affects their behaviour[2, 4, 11, 21-24]. This microenvironment can be 

broadly categorised into the chemical and biophysical environments. The chemical 

environment is described by the chemical composition and the charge of the 

biomaterial, as well as the composition of the media. The biophysical 

environment, on the other hand, describes the mechanical properties and 

topography of the substrate on which the cells grow. This work primarily focuses 

on the effect of the biophysical environment, with a special emphasis on the 

influence on cell differentiation. It has been shown in many studies that the 

mechanical properties of the extracellular matrix (ECM) strongly affect the cell 

fate in vivo and in vitro[1, 2, 22, 25-29]. The mechanical properties of the cell 

environment can be separated into the stiffness of the environment and its 

structure. Especially, the nanotopography, which refers to the surface topography 

at the nanoscale level, has been shown to have a significant impact on the cell 

response[8, 25, 26, 30-32].  

Additionally, the importance of tissue or biomaterial stiffness on cell behaviour 

has been shown in many studies[4, 21, 33]. One example is the work of Engler et 

al., where they showed that matrix elasticity can direct mesenchymal stem cells 

(MSCs) differentiation towards different cell lineages[5]. For instance, collagen-

coated polyacrylamide gels with varying elasticity are used to mimic the elasticity 

of brain tissue (EBrain ~ 0.1-1 kPa), muscle tissue (EMuscle ~ 8-17 kPa), and osteoid 

tissue (EOsteoid ~ 25-40 kPa)[34]. The majority of MSCs commit to the phenotype 

that the matrix elasticity corresponds to. That clearly shows that substrate 

stiffness plays a significant role in stem cell differentiation and must be 

considered when designing biomaterials. Tissue stiffness also plays an important 

role in cell migration as cells tend to move towards stiffer surface. This effect is 

called durotaxis[7, 35, 36]. 
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The cellular mechanotransduction can be separated into three main parts. First, 

biomechanical sensing of the environment occurs, followed by the transduction of 

extracellular conditions into cells, and finally, cellular translation into biological 

responses, including increased and decreased protein expression and adaptation 

of transcription (see Figure 2.1C)[10, 11, 23, 30]. Cells sense their biomechanical 

environment through membrane proteins, where integrins and ion channels are of 

high importance. Integrins are heterodimers that change into an active formation 

when binding to the extracellular matrix[37]. Focal adhesion kinase (FAK) binds 

to the activated integrins to build focal adhesions and transfer the mechanical 

properties of the ECM to the cytoskeleton through the proteins talin, vinculin, and 

paxillin. More proteins are involved in this transfer, but talin, vinculin, and paxilin 

have been identified as essential proteins in transferring the mechanical 

signals[11]. The distribution and number of adhesion proteins, as well as the pull, 

affect further signalling cascades inside the cell. The focal adhesion proteins 

translate the pull to the actin-myosin cytoskeleton, where the forces are further 

transduced into signalling pathways[8, 38-43]. The focal adhesion is a loop, as the 

induced contraction of Actin is again enhancing the FAK activation. The formation 

of focal adhesions and adaptation of cytoskeletal arrangement and tension 

through the ECM activate signalling pathways and nuclear mechanotransduction. 

Yes-associated protein (YAP) is the essential protein in nuclear 

mechanotransduction to translate the cytoskeletal tension to the nucleus to 

activate transcription factors[28, 40, 44-47].  

The transport of YAP into the nucleus is not yet fully understood. Nuclear 

compression can promote nuclear translocation of YAP. The cytoskeleton can 

mediate nuclear compression, translating external factors such as microstructures 

and substrate stiffness. Direct compression of the nucleus by external forces 

increases YAP transport within the nucleus as well[48]. During nuclear 

compression, nuclear pores are stretched to allow YAP transport; however, 

nuclear swelling does not allow the pores to open for YAP transport. Thus, the 

mechanism of YAP nuclear translocation is more complex than a simple membrane 

stretching to open the nuclear pores. The detailed mechanism is still under 

investigation[49].  Another part of the nuclear mechanotransduction is the direct 

deformation of the nucleus due to the cytoskeletal contractions, which results in 
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a rearrangement of chromatin in the nucleus[50]. In this work, we will not focus 

on nuclear mechanotransduction but on signalling pathways around the 

cytoskeletal arrangement and stability.  

The Rho family proteins play a crucial role in the mechanotransduction pathways 

and cytoskeletal arrangement and stability[51-56]. We will focus on the most well-

known proteins Cdc42, Rac, and RhoA. RhoA activates Rho-associated protein 

kinase (ROCK). ROCK is known to activate myosin II, a motor protein essential for 

actin contraction and the formation of stress fibres together with f-actin. Stress 

fibres are bundles of F-actin and myosin II that propagate the forces of the focal 

adhesions through the cell[57]. Thus, it has been shown in many studies that the 

ROCK signalling pathway plays a key role in mechanotransduction[58]. Rac is 

known to promote the formation of lamellipodia and is therefore essential for cell 

migration. Cdc42 promotes the formation of filopodia, which sense the 

extracellular environment. Cdc42 also activates Rac[54]. The effect of Cdc42, Rac 

and Rho on the actin organization is shown in Figure 2.1B. 
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Figure 2.1: Overview of the cell response to its mechanical environment. Cellular 
functions depend on environmental influences of the biomaterials, and external forces 
(A). (B) shows a schematic representation how the Rho-GTPases RhoA, Rac1 and Cdc42 
affect the actin structure organization. RhoA is responsible for stress fibre formation, 
Rac1 for lamellipodia formation, and Cdc42 for filopodia formation. [54] (C) shows a 
diagram of the interaction between the different mechanosensing and 
mechanotransduction pathways in osteogenesis. FA are the focal adhesions, GJs are gap 
junctions, piezo-ppp3ca and ERK-MAPK are Ca2+ dependent signalling pathways, and YAP 
and TAZ are transcriptional regulators. [59] The images are reprinted with permission of 
Goetzke et al.(A),[22] Samuel et al.(B),[54] and Liu et al.(C)[59]  

A B 

C 
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The cells respond to nanotopographies through focal adhesion arrangements and 

localised changes in membrane curvature. On soft materials, the focal adhesions 

are scarce, and the topography is sensed by curved adhesions[60]. In particular, 

nanostructures protruding from the surface induce strong membrane 

deformations[61]. The BAR domain (bin/amphiphysin/rvs) proteins are essential 

for membrane curvature sensing and generation[62, 63]. The BAR proteins have a 

curvature that is either concave at the membrane-binding site for BAR and F-BAR 

proteins and convex for I-BAR proteins. The F-BAR protein family is known to play 

a crucial role in sensing nanotopographies and translating membrane curvature 

into the mechanotransduction pathway via the Rho GTPases. FBP17, a curvature-

sensing protein of the F-BAR family, is active when it is bound to the membrane 

and induces cytoskeleton remodelling through the Rho GTPase regulation[64]. Lou 

et al.[61] showed that high aspect ratio nanopillars with a diameter below 400 nm 

promote the formation of branched F-actin and reduce the formation of stress 

fibres and mature focal adhesions. The promotion of the branched F-actin is 

regulated by N-WASP, Arp2/3 and Toca-1, which in turn interact with Cdc42 that 

is essential for the actin cytoskeleton organisation as described above[65]. Zhang 

et al.[60] showed that the F-BAR domain of FCHo2 forms curved adhesions in 

combination with the integrin ITGB5 on soft nanostructures, where few focal 

adhesions are found. Curved adhesion transduces mechanical stimuli to the 

cytoskeleton via talin-1.  

Ion channels are another key factor in mechanosensing[66, 67]. In particular, the 

force-activated PIEZO channels sense differences in the ECM, such as its stiffness, 

structure, and chemical composition. The PIEZO family includes the PIEZO1 and 

PIEZO2 channels. They are mechanosensitive Ca-ion channels that are activated 

by tension on the cell membrane. In a closed state, the channel is in a curved 

formation. Tension on the membrane flattens the channel and opens it[68, 69]. 

Thus, the PIEZO ion channels sense surface stiffness through the difference in 

membrane tension. The activation also depends on the focal adhesion 

organisation, as shown by Ellefsen et al.[70], who identified the most PIEZO1-

dependent Ca2+ flickers in areas of high traction force. Cells were seeded with 

local constraints by plating them on square fibronectin islands. They noted the 

most flicker events at the corner of the squares, where the most focal adhesions 
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are also localised and the traction force is the highest. The intracellular Ca-ion 

concentration plays a crucial role in mechanotransduction, as it affects signalling 

pathways similar to those influenced by focal adhesions. It has been shown that 

an increase in intracellular Ca2+ concentration activates the ROCK pathway, 

stabilises the actin cytoskeleton and promotes focal adhesions. It is also essential 

for the mitogen-activated kinase (MAPK) pathway, an important pathway in 

osteogenic differentiation[59]. 

Depending on cell type and application, different nanotopographies are used to 

achieve the desired effect[71-73]. The desired effect can, for example, be 

differentiation into a specific cell lineage. It is well known that the ECM's 

properties are crucial for the state and behaviour of cells in vivo. Therefore, 

nanomaterial designs often mimic the ECM's in vivo properties to create a 

biomimetic substrate. Topographies can be created in a controlled manner, for 

example, by electron beam lithography[74, 75], ion beam lithography[76], UV 

lithography[77], or molecular self assembly[78, 79]. The nanotopographies can 

also be fabricated in a random manner, for example, using electrospinning[80], 

carbon nanotubes[81] or surface roughness[82] (Figure 2.2 A-H). The fabrication 

techniques can be divided into bottom-up and top-down techniques[83-85]. 

Bottom-up techniques work on guided self-assembly. The nanostructures are built 

from smaller building blocks, as in electrospinning[80], carbon nanotubes[81], 

colloidal self-assembly[78] or DNA origami[86]. Top-down methods are lithography 

techniques that write a pattern into a material. The methods are often based 

around a beam writing the desired structure into a resist. Some examples include 

the above-mentioned electron beam lithography[74, 75], focused ion beam 

lithography[76], photolithography[87], and x-ray lithography[88]. Dry[89] and wet 

etch techniques[90], which can be used to create controlled surface roughness, 

are another option for top-down lithography techniques. 

The nanotopography features shown in Figure 2.2 span a wide size range, from 50-

60 nm for the carbon nanotube bundles, to surface roughness in the 100 nm to 

micrometre range, to electrospun fibres with a diameter of around 500 nm. 

Depending on the fabrication technique, feature sizes can be tuned from as small 

as 50 nm to microfeatures. One example of nanotopographies are nanogratings 

that are often used to support the elongated shape of neuron cells[91, 92]. 
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Gratings are also used to align cells along the gratings. Nanopillars and nanopits 

are used in many varying applications in slightly different formations. The 

nanotopographies guide the formation of integrin clusters[57]. Depending on the 

size and distance of features, the cells can build integrin clusters. To build the 

integrin clusters, they require sufficient space to attach. That can be a continuous 

surface or a surface with a small enough gap. The number, size and distribution 

of integrin clusters dictate the cell response (Figure 2.2 I). 
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(caption for figure on previous page) Figure 2.2: Overview of varying nanotopographies 
used in cell biology studies. SEM images of ordered nanopillars (A), nanogratings (B), 
nanopits in square (C) and near-square (D) formation, electro-spun nanofibers (E), carbon 
nanotubes (F), random nanopillars (G), and surface roughness (H). (I) shows a schematic 
representation how integrin clusters form due to topography to form focal adhesions 
that translate the forces into the cell through the actin cytoskeleton and ROCK signalling 
pathway. The images are reprinted with permission from Viela et al.(A)[93], Yim et 
al.(B)[94], Dalby et al.(C,D)[95], Chua et al.(E)[80], Tay et al.(F)[81], Sjöström et 
al.(G)[96], Ogino et al.(H)[82], and Seo et al.(I)[57]. 

This work focuses on the nanotopography-induced osteogenic differentiation, as 

it has been widely studied with a range of nanotopographies, but the search for 

the optimal topography remains a challenge[27, 59, 97]. Mesenchymal stem cells 

and osteoprogenitor cells differentiate into mature osteoblasts on nanopillars and 

nanopits. Nanopillars of varying heights of 15, 55, and 100 nm[96, 98, 99], as well 

as nanopits of 120 nm diameter, 300 nm centre-to-centre spacing, and 100 nm 

depth, with varying geometrical arrangements, showed an increase in osteogenic 

differentiation[20, 25, 31, 100]. For the nanopillars, a height of 15 nm showed the 

highest increase of the early osteogenic marker Runx2 after 2 days and of 

osteocalcin (OCN) after 21 days. The focal adhesions increased in size with an 

increased height of nanopillars. The geometrical arrangement of nanopits affects 

the osteogenic differentiation by directing the focal adhesion arrangements. The 

nanopits are arranged in a square (SQ), hexagonal (HEX) and near-square lattice 

(NSQ50), where the pits are randomly displaced by 50 nm from an ideal square 

lattice. The NSQ50 topography shows the strongest expression of Runx2, osterix 

and OCN in the cells. The disorder produces areas that are large enough to form 

focal adhesions, while other areas are not big enough for the formation. It has 

been shown that focal adhesions need at least 70 nm to form[101, 102].  

2.2. Morphological profiling – cell painting 

Mechanotransduction pathways are analysed using many different methods. 

Often, omics techniques[12-14, 103-105] are used, which are time-consuming and 

expensive, limiting the number of experimental conditions that can be tested. The 

influence of different parts of the mechanotransduction pathway is not only 

analysed by omics techniques, but also by activation or inhibition of parts of the 

mechanotransduction pathway and study of the effect on cell functions, such as 

migration[106, 107], cellular traction forces[70, 108, 109], or protein 
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localisation[48, 60]. The expression of differentiation markers is not only analysed 

by omics techniques but also by fluorescence labelling of the markers[110].  

Morphological profiling can be used as an alternative to omics techniques, offering 

a fast and cost-efficient approach that does not require specialised equipment 

beyond a basic fluorescence microscope[15, 16, 111-116]. In contrast to staining 

for differentiation markers or focal adhesions, morphological profiling provides 

general information about the state of the cell, similar to, for example, genomics 

or proteomics. Additionally, one of the key advantages of morphological profiling 

is its relatively unbiased approach, which provides a vast collection of features 

that are not selected based on known interactions. This open approach holds the 

potential for novel discoveries and relationships. In addition to image-based 

profiling, other profiling methods such as metabolomic[117-120], proteomic[119, 

121-123], and gene expression[124, 125] profiling exist, with only gene expression 

profiling being truly high-throughput. While these techniques lack single-cell 

resolution, they are all aggregation methods, thus failing to report the 

heterogeneity in cell populations. However, current advances in classic omic 

techniques enable single-cell resolution, as demonstrated by two key examples: 

desorption electrospray ionisation (DESI) mass spectrometry[126-128] and single-

cell RNA sequencing (scRNA-seq)[129-131]. Image-based profiling can be used in 

addition to omics techniques, as it can predict properties and provide new 

information, making it a valuable complementary tool. Image-based profiling has 

been used in conjunction with gene expression data, protein profiling, and 

proteome analyses[16, 113]. 

A special case of morphological profiling is Cell Painting, developed by the 

Carpenter lab[15], a renowned research group in the field of cell biology. Figure 

2.3 visualizes the Cell Painting process. The Cell Painting method stains the F-

actin cytoskeleton (phalloidin/Alexa Fluor 568 conjugate), endoplasmic reticulum 

(ER) (concanavalin A/Alexa Fluor 488 conjugate), Golgi and plasma membrane 

(wheat-germ agglutinin/Alexa Fluor 555 conjugate), mitochondria (MitoTracker 

Deep Red), nucleus (HOECHST 33342), and RNA (SYTO 14 green fluorescent stain) 

to visualise a wide range of organelles and, thus, cell functions. Depending on the 

experiment, adjustments are made to the used dyes to stain different relevant 

cell features. A major benefit of the chosen staining methods is the easy one-step 



15 
 
staining protocol, without the need for additional specific antibodies. This 

significantly speeds up the experimental process, reducing it from a full day to 

less than 2 hours. The stains are also chosen to paint a general picture of the cell 

state rather than an experiment-specific stain, as, for example, focal adhesions 

in the study of nanotopographies. The Carpenter lab's pioneering work in 

developing Cell Painting has significantly advanced the field of morphological 

profiling, providing researchers with a powerful and versatile tool for studying cell 

biology and disease mechanisms.  

 

Figure 2.3: Diagram of the Cell Painting process. First, the cells are seeded, and 
perturbations are performed. Next, the Cells are stained and imaged by fluorescence 
microscopy (A). The obtained images are the mitochondria (B), actin cytoskeleton, Golgi 
and plasma membrane (C), nucleolar and cytoplasmic RNA (D), endoplasmic reticulum 
(E), DNA (F). A merged image is shown in (G). The information from the different 
organelle staining is analysed in CellProfiler, where per cell features are obtained. Those 
are then aggregated (H). Reprinted with permission of Seal et al.(A,H),[16] and Cimini 
et al.(C-G)[132]  

The state of a cell is reflected in its morphology, and many different types of 

perturbations to cells were used, as well as many different mechanisms of action 

analysed. The recent review by Seal et al.[16] about a decade of Cell Painting 

gives a detailed overview of the advancement and potential of morphological 

profiling and, especially, Cell Painting as the most used high-throughput image-
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based profiling technique. It is used for a wide variety of perturbations and 

applications[133-136]. It is most commonly used with small-molecule compounds, 

as well as with CRISPR perturbations and gene or protein overexpression through 

open reading frames. An outstanding case of Cell Painting is the JUMP 

dataset[137], which consists of 116,750 different small-molecule compounds, 

over-expression of 12,602 genes and knockout of 7,975 genes in U2OS cells, which 

are human osteosarcoma cells. This dataset provides the barcode for all 

perturbations, enabling comparisons with drug treatments for purposes such as 

toxicity or phenotype identification. The JUMP dataset is a significant resource in 

the field of Cell Painting, providing a comprehensive library of perturbations for 

researchers to compare and analyse.  

The applications of Cell Painting vary a lot. It is used for phenotypic profiling, 

compound toxicity, mechanism-of-action prediction, and to deepen the 

understanding of diseases. Its most common use is the prediction of the 

mechanisms of action of drugs or diseases[138]. It is used to analyse disruptions 

in the cytoskeleton, ion channels, metabolism, protein synthesis, oxidative stress, 

and more. The wide variety of mechanisms highlights the versatility of Cell 

Painting to identify not only a direct change in organelles, but also changes in 

protein expression, metabolism and the cell cycle[16]. It is also used to identify 

the morphological profiles of cancer cells to study the drug response and identify 

cancerous cells. Furthermore, it is used for the prediction of virus-infected cells 

and fibroblasts from patients with sporadic Parkinson's disease lines. A new 

connection between signalling pathways of tumour initiation and progression of 

U2OS cells was discovered by Rohban et al.[135] using Cell Painting. It has also 

shown its potential in predictive toxicology by correctly predicting the toxicity of 

compounds in vivo with an accuracy of 68%.  

The pipeline for the Cell Painting assay consists of several steps. After cell 

fixation, staining and imaging, the image analysis starts with the cell segmentation 

and feature extraction. The image analysis is conventionally done in the powerful 

image analysis software CellProfiler. The extracted single-cell features are then 

aggregated, and feature selection and integration are performed. The feature 

selection is an important step, as not all features are informative depending on 

perturbation and cell type. Furthermore, one will find many redundant features, 



17 
 
which need to be deleted to avoid skewing the data in the wrong direction. Finally, 

a dimensionality reduction using t-SNE (t-distributed stochastic neighbour 

embedding) or UMAP (uniform manifold approximation and projection) is 

performed to visualise the findings. Hierarchical clustering is also often used to 

identify similarities between phenotypes/perturbations[16]. 

 

2.3. Data integration 

One of the most daunting tasks in morphological profiling is the integration of data 

and the selection of features. This process, while crucial for extracting meaningful 

insights from a dataset, presents a significant challenge. Various approaches to 

data normalisation and feature selection are documented in the literature. A brief 

overview of these methods is provided below. When conducting experiments in 

different batches, it is essential to correct for batch effects without sacrificing 

the biological information. Arevalo et al. have extensively explored batch 

correction methods with Cell Painting, applying different methods to the JUMP 

dataset[139]. The results of their work will be discussed in more detail later. 

After the image analysis of a Cell Painting image set, one is left with over 2000 

features per cell. The high number of features makes the analysis computationally 

expensive, and many features lack significant information due to high noise, 

redundancy, or lack of correlation between different cell types/perturbations. 

The standard feature selection process involves removing redundant features that 

correlate with other features by more than a set threshold. The commonly used 

threshold is 0.9. Additionally, features with a low variance across the different 

conditions are deleted. Some studies are doing further feature selection or 

dimensionality reduction afterwards. Some do a principal component analysis 

(PCA) for dimensionality reduction, others try to pick the data with the most 

information. Rohban et al. use a regression that starts with essential features, and 

then each feature is added to the set, and the feature that adds the most 

information to it is kept[135]. The replicate correlation measures the 

contribution. This process is repeated until the replicate correlation of the residue 

drops to less than 0.3. The use of the replicate correlation is commonly used in 
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feature selection. The Carpenter lab developed the Cytominer package for image 

data processing[140]. It also includes the option to analyse the feature importance 

by its contribution to the reduction of data entropy. Caicedo et al. wrote a review 

about the data analysis in 2017, where they mention further methods for feature 

selection[141]. They mention the minimum redundancy–maximum relevance 

method, and a method where a vector machine is used to give specific weights to 

the features that represent its usefulness. Then, the feature with the lowest 

weight is iteratively removed until the classification drops. Recently, progress was 

made with using machine learning for dimensionality reduction. Siegismund et al. 

were able to select only 20-30 features that were enough for a successful 

classification[142].  

Correcting for batch effects requires a delicate balance between removing the 

batch effect and preserving the biological variance. Sphering is the most 

commonly used method for batch correction of Cell Painting data, as it is part of 

the Cytominer package. The sphering batch correction transforms the negative 

control of each batch with the assumption that variation between them is purely 

technical noise. A sphering transformation, which does the transformation, is also 

called whitening. It is a linear method that converts the initial vector in such a 

way that the new covariance matrix is the identity matrix. That means that the 

data is decorrelated. Usually, a zero-phase component analysis (ZCA) 

transformation is done to perform the sphering with Cell Painting data. The unique 

feature of the ZCA sphering transformation is that the resulting whitening matrix 

is symmetric. After obtaining the whitening matrix for the negative controls, this 

whitening matrix is used to correct the profile of the whole data set and remove 

the batch effect[143].  

Arevalo et al. compared the sphering method with 10 other batch correction 

methods across different levels of batch effect, using the JUMP dataset. This 

dataset was chosen as it was collected in a variety of labs, resulting in a significant 

batch effect. The comparison was conducted in five different scenarios, ranging 

from single-laboratory, single-microscope data to data from multiple laboratories 

and multiple microscope types. Across these scenarios, the Seurat correction and 

Harmony correction consistently performed best in batch correction and 
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preservation of biological variance. An overview of their work is shown in Figure 

2.4. 

The Satija lab developed the Seurat method for the batch correction of scRNA-

Seq data[144, 145]. It is a method based on nearest neighbour matching. 

Therefore, it does not require a negative control as an input, but it requires 

information about the batches. It first identifies anchors for the integration. Those 

are pairs of mutual nearest neighbours in a low-dimensional space across batches. 

Arevalo et al. tested the Seurat method with canonical correlation analysis (CCA) 

and reciprocal principal component analysis (RPCA). Both methods got similar 

scores in batch correction and retention of biological information. RPCA is faster 

than CCA and therefore preferable for massive datasets. It also supports greater 

heterogeneity between the datasets. The pairs are used to correct for the batch 

effect based on differences between them.  
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Figure 2.4: Batch effect correction for Cell Painting datasets. Arevalo et al. evaluated 
batch correction methods for the Cell Painting method, by evaluating a varied of 
scenarios of increasing complexity from the JUMP dataset (A). They performed a standard 
Cell Painting feature extraction and then used different batch correction methods and 
evaluated them for their effectiveness in batch correction and biological preservation 
(B). Scenario 5 shows the highest effectiveness in batch correction and biological 
preservation (Bio metrics) for the Seurat methods and Scanorama (C). Reprinted with 
permission of Arevalo et al.[139]. 

Even after feature selection, the resulting dataset often contains more than 200 

dimensions. To extract valuable insights from the data, further processing is 

necessary. This typically involves hierarchical clustering to identify similarities 

between different perturbations. Dimensionality reduction methods are then used 

to visualise the data in 2D and 3D space. The most commonly used reduction 

methods are t-distributed stochastic neighbour embedding (t-SNE)[146] and 

uniform manifold approximation and projection (UMAP)[147]. While principal 

component analysis (PCA) is the most well-known and historically most used 

method, the newer non-linear dimensional reduction methods, t-SNE and UMAP, 
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outperform it in separating clusters in a low-dimensional space. PCA preserves the 

global distances, while t-SNE and UMAP focus on a preservation of the local 

distances over the global distance. In a comparison between t-SNE and UMAP, 

UMAP is faster and preserves more of the global structure[148].  

 

Figure 2.5: Representation of the UMAP dimensionality reduction process. The uniform 
manifold approximation and projection (UMAP) works by first building a topological 
representation of the high-dimensional data. This representation is then used to find a 
low-dimensional representation with similar topological properties. Reprinted with 
permission of Healy et al.[149]. 

PCA can reduce the dimensions of a dataset by computing principal components, 

which are new, uncorrelated variables. The new principal components are used as 

dimensions for the dimensionality reduction, where the first principal component 

carries the most information, the second principal component carries the second 

most information and so on. Thus, the first two principal components can be 

plotted in a 2D scatter plot that contains most of the variation of the high-

dimensional dataset[150].  

T-SNE works by attracting and repulsing the nearest neighbours in a 2D space. For 

that, each data point is first plotted randomly in a 2D space and the attraction by 

similarity to the nearest neighbour is calculated. Based on this similarity, the data 

points are either attracted or repelled from each other. A Gaussian kernel 

calculates the similarity between data points. The perplexity defines its width. 

The perplexity is an important parameter for a good t-SNE plot. Since the initial 

placement in a 2D space is random, the final position of the clusters relative to 

each other is also arbitrary. It does not visualise the global geometry of the 

data[151]. 
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UMAP works similarly to t-SNE, projecting high-dimensional data into a 2D space 

and adjusting the positions of individual data points based on their high-

dimensional similarity. It first creates a fuzzy high-dimensional graph by 

calculating the probability that two data points are connected. If two data points 

are connected, is determined by checking if they are within a defined radius of 

each other. This radius is an important parameter for the UMAP construction, 

which is defined by the distance to the nth nearest neighbour of each point. A 

low-dimensional graph is constructed from it by finding a representation that 

shows the highest similarity to the high-dimensional graph (Figure 2.5). While t-

SNE has one critical parameter, the perplexity, UMAP uses two parameters: the n-

nearest neighbours and the minimum distance. The n-nearest neighbours 

parameter says how many neighbours each data point has. This parameter is 

adjusted to find a balance between the local and global structure. The global 

structure is more represented in high values, while low values focus on the fine 

details in the local structure. The minimum distance is important for the 

visualisation in a low-dimensional space. A high value results in broadly distributed 

data points in a cluster, while a low value results in tightly packed clusters. While 

UMAP provides a better representation of the global structure, it is not to be fully 

trusted either, as the distance between clusters lacks meaningful 

interpretation[148].  

UMAP and t-SNE are stochastic methods and, therefore, one must keep in mind 

that each run with the same parameters gives different graphs. Furthermore, the 

range of the parameters can be guessed from the datasets nature. However, 

different sets of parameters need to be tested to gain a comprehensive 

understanding of the data. One also must be cautious with the interpretation of 

clusters, as the algorithm forces clusters; false clustering is possible and can be 

random noise. Thus, when interpreting the results of a UMAP projection, it is 

always advised to test multiple runs over a variety of parameters to obtain a good 

picture of the true nature of the data. 
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2.4. Traction Force Biology 

The above-described mechanotransduction is well understood to influence cellular 

traction forces, as these forces are closely linked to key steps in the 

mechanotransduction pathway that respond to nanotopography. Cellular traction 

forces are determined by factors such as adhesion[19], cytoskeletal 

contractility[152], and nuclear displacement[153]. The motor protein myosin II 

plays a crucial role in generating these traction forces by facilitating intracellular 

contractions[152, 154]. Furthermore, nuclear mechanotransduction alters 

chromatin structure in response to different nanotopographies[9, 44, 46], which, 

in turn, affects traction forces based on the localisation of the nucleus and the 

arrangement of chromatin. Additionally, the stiffness of materials influences cell 

responses through similar pathways[155-157]. Therefore, analysing traction forces 

in relation to nanotopography and material stiffness is essential for gaining a 

comprehensive understanding of how cells respond to their biomechanical 

environment.     

The cellular traction forces can be analysed by measuring the forces that a cell 

exerts on its surroundings, as this is an indicator of the cell state[158, 159]. 

Different approaches exist for measuring traction forces. The most used methods 

are based on elastomeric micropillars and polyacrylamide gels with fluorescent 

beads. The traction force can be measured by microscopically tracking the 

displacement of the beads when the cells apply forces to the gel and deform the 

gel[160, 161]. Micropillars are analysed similarly. The movement of the top of the 

pillars is tracked by a microscope when the cells bend the pillars due to their 

traction force (Figure 2.6)[156, 162-164]. 

This work focuses on micropillars, which were introduced for force tracking 

biology in 2003 by Tan et al. and are widely used[165]. An advantage of the 

micropillar platform is its compatibility with a broad range of cell types, as well 

as the possibility of additional measurements, such as fluorescent staining of the 

cells[166, 167]. The micropillars can mimic a wide range of pillar stiffness from 1-

200 nN/µm. Another advantage is the localised analysis of traction forces, as each 

deflection of a pillar comes only from the force on that pillar. The stiffness of the 
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pillars depends on the geometry and arrangement of the pillars(Figure 2.6C); 

therefore, topographies with varying stiffness but the same adhesion area and 

chemical and mechanical material properties are possible[156, 157]. This way, the 

traction force, depending on substrate stiffness, can be measured without another 

effect like a different adhesion area or strength due to chemical differences in 

the substrate affecting the forces.  

The mechanical properties of the micropillars can be adjusted by changing height, 

diameter and centre-to-centre spacing according to the equation for the shear 

modulus G of micropillars (equation 1) with the bulk young modulus EBulk, the 

diameter D, the height H, the centre-to-centre spacing L, and the fill factor f[156, 

168, 169].  

𝐺 =
3
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 (
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𝑓𝐸Bulk           (1) 
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𝐷

2
)
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𝐹 = 𝑘 ∆𝑥        (3) 

The traction force F (equation 3) can be calculated from the pillar deflection from 

equation (3) with the pillar displacement Δx and the spring constant k shown 

below in equation 4. 

𝑘 =
3

64
𝜋𝐸Bulk

𝐷4

𝐻3
             (4) 

PDMS with a bulk Young's modulus of 1-3 MPa is mainly used for micropillars, as it 

is biocompatible, flexible, transparent and easy to handle in soft lithography. The 

parameters of a micropillar array must be carefully designed. Limiting factors 

include the aspect ratio, cell adherence space, and gap between the pillars. If the 

aspect ratio is too high (often clearly more than 1:3 diameter:height ratio), the 

soft pillars tend to collapse. The centre-to-centre spacing needs to be chosen in 

a way that leaves a gap that is big enough that the pillars do not collapse due to 

attractive forces between the pillars, but close enough that the cells stay on top 

of the pillars and do not attach to the side of the pillars[170]. The size of the 
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studied cell type is of high importance for those design choices. Furthermore, the 

pillar diameter needs to be sufficiently large for the cells to adhere well to the 

pillars, allowing them to pull on them. Common pillar dimensions are a diameter 

of 1-5 µm and a height of 3-12 µm[162]. The centre-to-centre spacing is most often 

chosen between double and triple of the pillar diameter.   
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(caption for figure on previous page) Figure 2.6: Overview of pillar based traction force 
microscopy. Finite element model of pillar deflection of pillars with varying heights 
under a horizontal traction force of 20 nN (A). The deflection of the pillar is plotted 
against the applied force, where a higher change in deflection is visible at larger pillars 
(B). The spring constant k calculated by the Euler-Bernoulli beam theory (yellow curve) 
follows the calculated spring constants from finite element modelling (C). Scanning 
electron microscopy image (D) and fluorescent image of cells on micropillars. The arrows 
visualize the deflection of the pillars due to cellular traction force. The scale bars 
represent 10 µm. Reprinted with permission of Fu et al.(A-C),[157] and Tan et 
al.(D,E)[165] (Copyright (2003) National academy of Sciences). 

The micropillar fabrication process is often a multi-step process, where a master 

mould is fabricated by photolithography or photolithography plus deep reactive 

ion etching (DRIE). This mould is then directly used for soft-lithography with PDMS 

or to make a PDMS master mould, which is then used to create the final PDMS 

micropillars. A silanisation step is necessary for every master to ensure a good 

demoulding of the PDMS micropillars from the pits. For good micropillars, a master 

with straight sidewalls is essential to avoid the pillars being stuck in the 

master[162].  

For an accurate readout of the traction force, the cells must attach only to the 

top of the pillars and not the sidewalls. PDMS, being a hydrophobic and soft 

substrate, is not preferred by cells for attachment. To enhance adhesion, the 

surface is coated with fibronectin. A common technique is fibronectin contact 

printing, where a stamp is coated with fibronectin and then pressed against the 

top of the pillar. This ensures that the cells only attach to the top of the pillars. 

This process can be further optimised by coating the rest of the substrate with 

Pluronic[171] or bovine serum albumin (BSA)[169] to passivate the surface and 

inhibit cell binding in the areas without fibronectin.  

Traction force microscopy with micropillars has a wide range of applications. It is 

especially interesting for contracting cells or migrating cells like muscle cells, 

cardiomyocytes, and cancer cells[158, 162, 164, 169, 172-174]. The cellular 

traction force depends on the stiffness of the substrate, cell-cell signalling, and 

adhesion strength. It has been shown in multiple studies that the cellular traction 

force is greater at higher pillar stiffness[157, 172]. Liu et al. showed that the focal 

adhesion force depends on the cell-cell adherence force[175]. It has further been 

shown that the cell-cell communication is an important factor for the single cell 

focal adhesion forces, as the main forces are visible at the edge of cell assemblies. 
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Cheng et al. created micropillars with different surface coatings to study the 

dependence of traction forces of MC3T3 cells on the cell-surface adhesion(Figure 

2.7)[19]. The top of the pillars was coated with silicon oxide, titanium oxide or 

nanopillars, which are 500 nm tall and have a diameter of 280 nm. The silicon and 

titanium oxide surface coatings are hydrophilic, while the nanopillars are 

hydrophobic. The cells on hydrophilic surfaces exhibited a smaller normalised 

traction force, slower migration speed, and fewer filopodia compared to those on 

micropillars. Thus, they could conclude that the surface energy correlates with 

the migration speed and cellular traction forces. 
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(caption for figure on previous page) Figure 2.7: Traction force dependence on surface 
energy. Nanopillars on top of micropillars lead to an increased cellular traction force of 
MC3T3 cells in leading, middle and trailing position of the cell (A).  The nanopillars also 
increase the number of filopodia/cell (D) and long protrusions/cell (E), as also shown in 
scanning electron images of MC3T3 cells on flat micropillars (B) and micropillars with 
nanopillars atop (C). Reprinted with permission of Cheng et al.[19].  

2.5. Hierarchical micro-/nanostructures 

Microtopographies and nanotopographies have unique properties and effects on 

biological organisms. To study how different nanotopographies affect cellular 

traction forces, as well as how the mechanical properties of a substrate affect the 

cellular response to nanotopographies hierarchical micro-/nanostructures are 

needed. Several attempts have been made to create topographies like this, that 

incorporate both microscale and nanoscale features[176]. The fabrication of 

ordered nanofeatures with microfeatures is a complex task, requiring the 

interplay of various nanolithography techniques. Most of these hierarchical 

features consist of nanotopographies atop micro-sized features. Alameda et 

al.[177] are an exception as they created topographies with the nanofeatures 

between the microfeatures, as well as on top of the features, through a 

combination of maskless photolithography, nanoimprint lithography (NIL), and 

photolithography. The fabrication process is illustrated in Figure 2.8. First, a layer 

of nanostructures is printed at the bottom of the substrate using NIL. Next, a 

positive photoresist is spin-coated on the nanostructures, and another layer of 

nanostructures is imprinted on top of the photoresist. Then, the photoresist is 

exposed by maskless photolithography and developed. Maskless photolithography 

is using a laser instead of a mask to write the desired pattern into the photoresist. 

The micro-/nanostructure is then replicated in a PDMS mould. The mould can be 

used for further replications as a stamp for the NIL. That way, a higher level of 

hierarchy can be achieved. This approach enabled the creation of hierarchical 

micropillars with nanocones on four different levels. Specifically, 2x2 µm pillars 

were placed on top of 15x20 µm pillars with nanocones located between and on 

top of each level. These hierarchical materials were used to have a substrate that 

is bactericidal due to the nanocones, as well as favourable for cell proliferation 

and differentiation[18]. 
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Figure 2.8: Fabrication process of hierarchical micro-/nanotopographies by subsequent 
NIL of nanocones and maskless photolithography of microposts. The final structure can 
be replicated by soft lithography(A). SEM images of the final structure show nanocones 
on 4 different levels. In between the microposts and on top of large microposts and on 
top of smaller microposts that are on top the large posts (B). Reprinted with permission 
of Alameda et al.[177]. 

Another example of hierarchical micro-/nanotopographies is the work mentioned 

previously by Cheng et al.[19] which aimed to study the effect of cellular traction 

forces depending on cellular adhesion to nanopillars(Figure 2.9). They fabricated 

2.7 µm diameter and 12 µm height micropillars by nanoimprinting, 

photolithography, reactive ion etching, and soft lithography. First, a thin layer of 

SU-8 is spun onto a silicon wafer, and nanopillars with a diameter of 280 nm and a 

height of 500 nm are nanoimprinted. Next, a 4 µm thick layer of photoresist was 

spin-coated on top of the nanopillars. The micropillars are created by 

photolithography. The micropillars are etched by reactive ion etching, and the 

remaining photoresist is removed, leaving silicon micropillars with SU-8 

nanopillars on top. The nanopillars are then etched into the top of the micropillars 

by reactive ion etching, and a double cast of PDMS creates the PDMS micropillars. 

The master for the soft-lithography process is coated with Trichloro(1H,1H,2H,2H 

perfluorooctyl)silane (FOTS) to ensure good demoulding.  

A B 
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Figure 2.9: Fabrication of micropillars with a diameter of 2.7 µm and a height of 12 µm 
by nanoimprinting of nanopillars (A), photolithography of micropillars (B), and two 
etching steps for the final micro- and nanopillars (C-E). The final PDMS micropillars are 
achieved by a double casting of PDMS (F-J). The scanning electron images show flat PDMS 
micropillars (K), Nanopillars (L), and micropillars with nanopillars on top (M). Reprinted 
with permission of Cheng et al.[19]. 
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3. General methodology: 

This chapter describes the used methodologies across the chapters. Variations and 

additional methods are described in detail in the corresponding chapters.  

3.1. Cell culture: 

We use the osteogenic progenitor cell line mouse MC3T3 (ATCC) in all cell 

experiments as a well-studied cell line with a strong known response to 

nanotopographies. The MC3T3 cells are cultivated in a growth medium of MEM α 

(no ascorbic acid, with nucleotides, Gibco A10490) with 10 % fetal bovine serum 

(FBS) and 1 % penicillin/streptomycin. They are incubated in an incubator at 37° 

C, 5% CO2 and 95 % humidity. 

3.2. Cell Painting staining and imaging 

The fluorescence imaging follows the cell paint protocol with some minor 

adjustments. We adjust the protocol to our imaging setup and the MC3T3 cells. 

We use the Image-iT™ Cell Painting Kit (Thermo Fisher, I63000). We stain the actin 

cytoskeleton with phalloidin - Alexa Fluor 568 [5 µl/ml], the DNA with HOECHST 

33342 [1 µg/ml], the ER with concanavalin A – Alexa Fluor 488 [15 µg/ml], and the 

Golgi and plasma membrane with wheat-germ agglutinin (WGA) – Alexa Fluor 555 

[1.5 µg/ml]. We exclude the RNA stain because it struggles to stain the cell 

branches of the MC3T3 cells and overlaps with the fluorescence of the ER stain. 

Thus, we exclude the RNA stain for sharper ER staining. The focus of the 

mitochondria stain is inconsistent in our confocal laser scanning microscope and 

is therefore excluded. The live staining period of the mitochondria also gives cells 

enough time to recover from the prior perturbations by inhibitors and activators. 

We also increase the concentration of the phalloidin actin stain from 8.25 nM to 

33 nM because the initial concentration gave a weak actin staining next to the 

background of the plasma membrane staining by WGA. The actin cytoskeleton is 

an essential part of the mechanotransduction pathway, and, therefore, we want 

to have a strong staining of it to see the actin stress fibres in the staining. We do 

not include additional stains for focal adhesions or osteogenic expression in place 
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of the discarded mitochondria and RNA stain because we want to keep the staining 

process as simple as possible, using a one-step staining process to enable 

processing across many different conditions. The focal adhesions are also a direct 

response to the nanotopography feature arrangement and will therefore replicate 

the architecture of the different topographies well. However, we are more 

interested in the overall cell state and the cell's indirect response to different 

nanotopographies.  

Table 3.1: Required materials for the staining solution of the adjusted Cell Painting 
protocol. 

 

The staining is done by cell fixation with 4% paraformaldehyde for 20 minutes at 

room temperature without a previous wash to avoid washing cells off. Next, the 

cells are washed twice with 1x HBSS (Hanks’ Balanced Salt Solution) and the cells 

are incubated in the staining solution for 30 minutes in the dark at room 

temperature. The staining solution consists of phalloidin - Alexa Fluor 568 [5 

µl/ml], HOECHST 33342 [1 µg/ml], WGA – Alexa Fluor 555 [1.5 µg/ml], 

concanavalin A – Alexa Fluor 488 [15 µg/ml], 1% bovine serum albumin (BSA), and 

0.1% Triton X-100 in 1x HBSS. WGA is centrifuged for 30s at 10 000g before addition 

to the staining solution to avoid taking protein aggregates. The amount of stains 

required to make up 10 mL of the staining solution is shown in Table 3.1. It also 

 Phalloidin Concanavalin A Hoechst WGA 
Triton

X-100 
BSA HBSS 

Solvent Methanol 
0.1 M sodium 

bicarbonate 

RO 

water 

RO 

water 
   

Stock 6.6 µM 2 mg/mL 
1 

mg/mL 

0.15 

mg/mL 
   

Desired 

Concen-

tration 

33 nM/ 

5 µl/mL 
0.005 mg/mL 1 µg/mL 

1.5 

µg/mL 
0.1 % 1 %  

10 mL 

staining 

solution 

50 µL 25 µL 10 µL 100 µL 10 µL 100 mg 9.805 mL 



33 
 
specifies the stock concentrations and solvents. After staining, the cells are 

washed twice with 1x HBSS and kept in HBSS for imaging. 

The imaging is done on a ZEISS LSM 800 confocal fluorescence laser scanning 

microscope (LSM). All imaging parameters are kept constant across samples. The 

fluorescence is imaged in three tracks. The first track excites the WGA and 

phalloidin at 561 nm. It detects the emission of WGA between 410 and 580 nm, 

and of phalloidin between 593 and 700 nm. The second track excites concanavalin 

A at 488 nm and detects the emission between 450 and 550 nm. The third track 

excites HOECHST 33342 at 405 nm and detects the emission between 410 and 546 

nm. A 10x objective (Zeiss, EC Plan-Neofluar 10x/0.3 Ph1) is used, and 20 images 

are collected per replica with a pixel size of 291x291 nm. Three biological replicas 

are collected per condition. This accumulates to around 300 cells per condition 

with 5 cells per image. The imaging takes around 4.5 minutes per image.  

The fluorescence images are analysed in CellProfiler[178] after image acquisition. 

The analysis is done in computer cluster with over 100 cores. The whole analysis 

of a dataset of 60 image sets takes around 60 to 90 minutes until the spreadsheet 

of the CellProfiler analysis is created. As a first step, the images are transformed 

into grayscale images and saved as those for the further measurements. We 

measure the granularity, area shape, intensity, intensity distribution, 

colocalization, texture, and image quality of the whole cell, nucleus and 

cytoplasm. CellProfiler is a powerful image analysis tool developed by the 

Carpenter lab[179, 180]. As a first step, the nucleus is segmented into the primary 

object and the cell as the secondary object. The segmentation process and used 

CellProfiler modules are shown in Figure 3.2. The Golgi and plasma membrane are 

used for cell segmentation since it stains the whole cell. Usually, the RNA stain is 

used for segmentation, but it struggles to stain the cell protrusions. We test the 

three different thresholding methods Otsu, minimum cross-entropy and robust 

background for its performance in cell segmentation. 
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(caption for figure on previous page) Figure 3.1: An overview about the cell 
segmentation using Otsu, minimum cross-entropy and robust background method. The 
thresholding based on the intensity histograms is shown on arbitrary histograms of 
intensity distributions. The three class Otsu thresholding divides the histogram in three 
classes based on variance (A). The minimum cross-entropy method separates the 
histogram in two classes based on entropy between the classes (B). The robust 
background method calculates the mean of the intensity distribution and sets the 
threshold value as the mean plus N times the standard deviation (C). Example images of 
the cell segmentation for the three methods are shown below (D: Otsu, E: Minimum 
cross-entropy, F: Robust background). The cells are example images of MC3T3 cells after 
one hour incubation in 50 nM jasplakinolide, which is an actin stabiliser. The dimensions 
are given in pixels at the side of the images. One pixel unit is 291x291 nm. The 
colocalization of the cell segmentation using the Otsu method compared with the 
minimum cross-entropy and robust background method is shown in G. The true 
positive/negative rate, the false positive/negative rate and the F-factor is plotted. The 
F-factor is calculated by 2*(precision*recall)/(precision + recall), with the precision being 
the number of true positive pixels/(number of true positive pixels +number of false 
positive pixels) and the recall being the number of true positive pixels/(number of true 
positive + number of false negative pixels). 

The Otsu method calculates a histogram of intensities of the image and divides it 

into three classes (background, mid-level and foreground) for the used three class 

method(Figure 3.1A). The classes are defined by finding the minimizing the intra-

class variance and maximizing the variance between the classes. The minimum 

cross-entropy method separates the intensity distribution in two classes, the 

foreground and the background(Figure 3.1B). The two classes are defined by 

calculating the cross-entropy between the two classes for every possible 

thresholding value. The value with the lowest cross-entropy is chosen for the 

thresholding. The robust background method calculates the thresholding value in 

a different way than the Otsu and the minimum cross-entropy method and works 

well for data that is mostly background and does not have two intensity peaks in 

the histogram that need to be separated but only one peak at low intensities 

(Figure 3.1C). It first removes the outliers of very high and low intensities and 

calculated the mean of the background intensities and its variance. The 

thresholding value is set as N times the standard deviation from the mean 

intensity.     

We use the Otsu method because it yields the most consistent segmentation among 

the available methods, as shown in Figure 3.1. It is also recommended to use with 

image sets with a varying percentage of foreground coverage between images like 

we have with varying number of cells in the images. The rate of true and false 

positive and negative pixel rates between the Otsu method, the minimum cross-
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entropy, and the robust background method is analysed to find the best 

segmentation method. Additionally, the F-factor is calculated following equation 

5 with NTPos as the number of true positive pixels, NFPos as the number of false 

positive pixels, and NFNeg as the number of false negative pixels. 

F-factor = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
             (5) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑇Po𝑠

𝑁𝑇𝑃𝑜𝑠+𝑁𝐹𝑃𝑜𝑠
          (6) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑇Po𝑠

𝑁𝑇𝑃𝑜𝑠+𝑁𝐹𝑁𝑒𝑔
      (7) 

The minimum cross-entropy method tends to overestimate the cell size, while the 

robust background method tends to underestimate it. We adjusted the cell 

segmentation parameters so that they can segment the extreme case of cells with 

6 µM cytochalasin D as well as less extreme conditions. The Otsu method gave the 

best consistency across the different methods. We included a quality control 

measure, as the segmentation only tends to largely overestimate the cell size 

when it has a false segmentation. Thus, we exclude huge cells from the analysis 

since we expect them to be falsely segmented. Additionally, we are only 

interested in single cells. If we have more than 20 cells in one image, we exclude 

it because the cells are too crowded, which strongly affects the cell morphology. 
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Figure 3.2: CellProfiler Pipeline and examples for the identification of primary, 
secondary and tertiary object. The dimensions are given in pixels at the side of the 
images. One pixel unit is 291x291 nm. The image analysis in CellProfiler starts with the 
cell segmentation and creation of masks for the ImageQuality measurements. 
Afterwards, the object measurements are performed and finally, the results exported to 
a spreadsheet.  

The optimisation of the primary object identification is first done by setting the 

size of the object to be identified. All sizes given in CellProfiles are in pixels, as 

it cannot convert the pixel units into SI units. We select a size range of 30 to 160 

pixels, which excludes small particles like protein aggregates that are stained or 

large dirt particles. We also discard objects that touch the border of the image 

because we are only interested in complete cells. A global threshold strategy is 

employed because it provides even illumination with a low background. Therefore, 

a slower adaptive threshold strategy that calculates the threshold based on the 

local surroundings is not needed. The image quality of the nucleus staining is so 

high that little optimisation is needed. A minimum cross-entropy thresholding 

method is used, as it has shown good thresholding performance in tests. A slight 

smoothing with the factor 2 is beneficial since the LSM images have jagged edges. 

The most important parameters for the threshold are the lower and upper bounds. 

They provide a range of intensities for the object. To define the lower bound, 

example images are opened in CellProfiler, and by hovering over the image, one 



38 
 
can read the intensity in the location. The intensity of the background can be used 

to define the lower bound so that no background is detected as the object. This 

is necessary, even with strong fluorescence, as observed in the nucleus. Without 

a lower bound set to a reasonable value, the program will threshold random 

effects in the background if no cell is present in the image. When two nuclei are 

close together, we want to declump them by their shape since a nucleus always 

has a round shape and is therefore a good measure for the declumping. Finally, 

holes should be filled in the object because a nucleus does not have holes. 

The thresholding of the cells, which are the secondary objects, is performed next. 

The plasma membrane staining that we use for the cell segmentation is not as 

strong as the nucleus staining and has a higher background. Thus, a good 

segmentation is more challenging, and additional adjustments are needed. The 

cell is defined around the nucleus by the propagation method, which finds the 

lines between clumped objects by identifying a brighter or darker line between 

them. The thresholding method is identified as described above by testing various 

methods under extreme conditions and determining which method yields the most 

consistent thresholding. The thresholding is smoothed with a factor of 7 because 

an LSM image is not smooth at the edges due to the line scanning method. 

Smoother edges are easier to threshold, and, therefore, we use a strong 

smoothing. The minimum and maximum bound is defined as above. A key 

difference in identifying the secondary object compared to the primary object is 

the application of a log transformation before thresholding. The log 

transformation increases the difference between the brighter objects and the 

background, which helps with thresholding. The holes in the identified object are 

filled again. The optimisation of both thresholding steps is an iterative process by 

changing the parameters with a focus on the lower and upper bounds until a good 

segmentation is achieved. 

Next, the tertiary object is defined as the cytoplasm by subtracting the nucleus 

from the whole cell. Afterwards, the measurements for the quality control of the 

thresholding are performed. We measure the size and shape of the nuclei and cells 

with the MeasureObjectSizeShape module. This module measures size, 

orientation, and eccentricity. Those measurements include different types of 

minimum, maximum and average diameters, different measurements for the 
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shape and solidity of the cell. The Zernike features in the object are also 

calculated. The Zernike features calculate the Zernike polynomials, which are 

polynomials of sine and cosine that have an increased number of maxima with 

increased indices[181, 182]. The Zernike polynomials up to the sixth radial order 

are shown in Figure 3.3. A feature has an even distribution across the object, while 

a feature has a maximum on one side of the object and a minimum on the other 

side. With increasing radial order, the distribution is getting increasingly complex; 

thus, it is recommended to compute them only to an order of 9 because high 

orders provide little information. The Zernike features are a measure of the 

detailed intensity distribution across an object; as the order increases, the 

complexity increases, and it is important to ensure that enough pixels are analysed 

to reproduce the number of Zernike polynomial peaks. Therefore, one should be 

cautious when analysing smaller objects, such as the nucleus, if sufficient 

resolution is provided. In our case, the nucleus has a diameter of more than 50 

pixels, which is sufficient to reproduce the Zernike features up to a high order. 

However, one should still be cautious when interpreting high-order Zernike 

features, as they may not be biologically relevant. The low-order Zernike features 

are to be considered more insightful.  

The advanced features that calculate additional statistics for object moments and 

inertia tensors are not calculated as they add many columns, and we do not 

believe that they add significant additional information. The maximum diameter 

calculated by the module is used to flag images with bad thresholding. Due to the 

high background in some images, the cell size is largely overestimated. We exclude 

images where this happens by excluding any images that have cells with a 

maximum radius larger than 150 pixels. This value was tested to work well in only 

excluding faulty thresholding and not large cells. 

In the next step, we measure the image quality, but only in the areas of the cells. 

Thus, we do not obtain per object, but per image measurements. As preparation 

for the measurement, we mask the images of each channel with the identified 

cell objects. Thus, we have per image measurements but only fluorescence in the 

cell and ignore the background fluorescence. The image quality measurement is 

interesting to us as it calculates the blur metrics in a range of 5, 10, 20 and 40 

pixels, as well as on a global scale. The blur metrics calculate a focus score that 
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measures the intensity variance and the correlation of each pixel to the 

neighbouring pixel in the given scale. A blurred image has a high correlation, and 

a sharp image has a low correlation. That means that a well-defined actin stress 

fibre has a low correlation. In contrast, the lack of actin stress fibres results in a 

more even intensity distribution and a higher pixel correlation. The saturation is 

also computed and provides the percentage of the minimum and maximum pixel 

intensities. 

 

Figure 3.3: A visualisation of Zernicke polynomials up to the 6th order. Reprinted with 
permission of Niu et al.[182].  

Next, the colocalization measurement measures the correlation between the 

different channels. The correlation is measured by computing the Manders, Costes 

and Rank Weighted Colocalization (RWC) coefficients, as well as the overall 

correlation by Pearson correlation[183]. The correlation is measured between all 

channels in the cells, nuclei and cytoplasm. The only parameter that needs to be 

modified is the threshold for the intensity to be considered in the calculation. One 

wants to compare the staining of the different channels, not the background, 

between the channels. Therefore, only pixels with an intensity of at least 20 % of 

the maximum intensity are considered. The correlation is only measured within 
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objects and not across the whole image. Faster is selected as the Costes 

thresholding method to speed up the computation. 

Afterwards, the MeasureGranularity module is used, which measures how big the 

granules in the image are. Granularity measurement involves defining a size for 

the granules, and any granules larger than this size are removed. The 

measurement reports the percentage of signal that is lost due to the removal. This 

process is repeated with increasing granule sizes to gain information about the 

granule sizes in the image. The measurement is performed in all four channels and 

in the cells, cytoplasm and nuclei. The subsampling factors are left at the default 

value of 0.25 to speed up the computation, as we have high-resolution images and 

the resolution is higher than needed for the granularity measurement. The radius 

of the structuring element is defined as 5, which corresponds to a feature size 

with a radius of 20 pixels with the subsampling factor of 0.25. The range of 

granular spectrum is determined in an iterative process with example images. The 

range starts at a high value like 50, and one checks until which value we observe 

measurements, and when they all turn to 0. This information is used to select a 

granular spectrum range that includes all information in the picture without doing 

unnecessary calculations without information.  

Additionally, the intensity and intensity distribution are measured. The 

MeasureObjectIntensity module measures the intensities at the edge of the 

objects and the whole object. The mean, maximum, minimum, and standard 

deviation intensity across the object are measured. No adjustment of parameters 

is made in this module. The intensity is measured across all channels in cells, 

cytoplasm and nuclei. The distribution of intensities across the object is analysed 

mainly by the Zernike features in the MeasureObjectIntensityDistribution module. 

The magnitude and phase of the Zernike features are measured up to a Zernike 

moment of 9. The object is defined in 4 bins, and the Zernike magnitude and 

moment, as well as the total and mean intensity of each ring, are calculated. The 

cell is fractured into 4 bins with the centre of the nucleus as the centre for the 

binning. For the binning in the cytoplasm and nuclei, the centre of the 

corresponding object is taken as the centre for the binning. An example of the 

binning with the mean fraction intensities for each channel is shown in Figure 3.4. 
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Figure 3.4: Example of binning by MeasureObjectIntensityDistribution module. Four bins 
are created with the centre of the nucleus as the centre of the binning. In each bin the 
mean intensity across the bin is visualised in a heatmap with a darker blue indicating 
higher intensity and lighter blue a smaller mean intensity. The fracturing is performed 
in all four channels of the Cell Painting assay. The fluorescence images of the 
corresponding MC3T3 cells after 30 minutes in 6 µM cytochalasin D are shown above (A-
D). The dimensions are given in pixels at the side of the images. One pixel unit is 291x291 
nm. 

The neighbour measurements report how many neighbours each cell has, their 

distance, and if they are touching. A cell is considered a neighbour if they are 

within 10 pixels of the neighbouring cell. During and immediately after mitosis, 

the nuclei of the cells are closely packed together. This is defined by measuring if 

the nuclei are 5 pixels close to each other. The number of touching cells is also 

determined by checking if they are adjacent, which means that they have 

adjacent boundary pixels. The texture of an object is measured by computing the 

Haralick features that are calculated from a grey-level co-occurrence matrix that 

describes how the image intensities of pixels occur in relation to each other. 

CellProfiler compares pixel values to determine intensity variations over a user-

specified number of pixels to the right[184, 185]. Each measurement is taken in 

four directions: horizontally, vertically, and in two diagonal directions, NW-SE and 

NE-SW. It measures the contrast, variance, homogeneity, entropy and information 

in the specified region of pixels in the image. The maximum of grey levels is 

measured with 256 grey levels on a scale of 3 pixels. The small scale is used to 

observe localised patterns of texture. The measurements are performed in all four 

channels in the cells, cytoplasm, and nuclei.  
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The measurements are exported in a CSV file for further analysis. During the 

export, all measurements that include coordinates of the cells or object numbers 

are excluded because it does not carry any useful information. All the exported 

data is further analysed in R. The CellProfiler analysis produces 2246 different 

features for each cell, which are then further reduced by feature selection 

methods. The feature selection methods vary between the chapters and are 

further explained in the corresponding chapters. Before feature selection, the 

images that are flagged for faulty thresholding are deleted from the dataset. An 

error in the export can occur, so that not all the features are exported. Thus, it is 

checked that the same measurements are used. Next, the data is checked for 

images that have more than 20 cells. Those images are considered too crowded, 

with the cells tightly packed, which strongly affects cell morphology. Thus, they 

are excluded from further analysis. Next, the median and standard errors are 

calculated for each measurement and condition. An overview of the whole 

described Cell Painting process is shown in Figure 3.5. 

 

Figure 3.5: Cell Painting process from cell seeding to image analysis using CellProfiler. 
First, MC3T3 cells are seeded into a well plate and after overnight incubation they are 
perturbated with an activator or inhibitor for 0.5 to 1 hour. Next, the cells are fixed 
with 4% PFA, stained with the Cell Painting staining solution and imaged with a ZEISS LSM 
800 confocal laser microscope. The images are analysed in CellProfiler. Schematic 
created in BioRender. 
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3.3. Nanotopography preparation 

The nanotopographies are prepared in self-made polystyrene (PS) well plates that 

have the size of a quarter of 96 well plates. This means that the well plates have 

24 wells, where each well is the same size as a conventional 96-well plate. Figure 

3.6 shows the fabrication process of the well plates with nanopatterns. The 

nanopatterns are injection moulded into a PS slide from nickel shims as previously 

reported[186]. The nickel shims are available in the lab and were previously 

fabricated by electron beam lithography of a 100 nm thin poly(methyl 

methacrylate) (PMMA) resist on a silicon wafer that was electroplated with nickel 

by Temicon (Germany). The nickel was removed from the silicon wafer by a lift-

off process and cut into shape as a nickel shim with nanopillars. The injection 

moulding was performed on an Engel Victory 28 (ENGEL GmbH, Austria) injection 

moulding tool by Alysha Hunter. The injection moulded PS slides are ultrasonically 

welded onto the self-made 24-well plates by Dr Duarte Menezes using a Rinco 

Ultrasonics AG Standard 3000 (Rinco Ultrasonics AG, Switzerland) ultrasonic 

welding tool. The standard nanotopographies used are nanopits with a diameter 

of 120 nm, depth of 100 nm and centre-to-centre spacing of 300 nm. They are 

arranged in a square (SQ), hexagonal (HEX) and near-square (NSQ) array. In the 

NSQ array, each pit is randomly displaced by 50 nm from the ideal square lattice. 

More variations of the nanotopographies used in Chapter 4 are explained in the 

chapter. Before cell seeding, the well plates are treated for 30 seconds with 

oxygen plasma at 60 W to activate the surface for good cell adhesion. After plasma 

activation, the well plates are sterilised in a biological safety cabinet by UV light 

for 20 minutes and 10 minutes in 70 % ethanol. After Ethanol treatment, the wells 

are washed at least three times with phosphate-buffered saline (PBS).  
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Figure 3.6: A representation of the fabrication of polystyrene 24 well plates with 
nanotopographies. A nickel shim or EVG foil is used as a master for an injection moulding 
process. The injection moulded nanopatterned PS slides are ultrasonically welded to self-
made PS 24 well plates to have custom made well plates with nanotopographies.   

3.4. Scanning electron microscopy 

All scanning electron microscopy (SEM) images are taken on a scanning electron 

microscope of the Hitachi SU8200 series (Hitachi, Japan). The samples are sputter-

coated before imaging to ensure high-quality imaging and to prevent damage to 

the sample. A charging effect on the samples was best avoided by clamping the 

samples on specimen holders with metal clamps, rather than using adhesive and 

conducting carbon taps from Agar Scientific (UK). The sputter coating was 

performed depending on the sample type. Large features are sputter-coated with 

an Agar auto sputter coater (Agar Scientific, UK) with an 80/20 Au/Pd target. The 

sputter coating is performed at 20 mA for 40 seconds, which gives an Au/Pd layer 

of 6 nm. The sputter coating is relatively coarse, and, therefore, an even Pt 

sputter coating is performed for nanofeatures. The Pt sputtering is done on a 

Quorum Q300TT Plus (Quorum, UK) with a Pt target. An even layer of Pt is 

deposited by sputter coating the sample at 2 mA for 114 seconds. This produces a 

2 nm thin layer of Pt with low grain size, enabling high-quality SEM images of small 
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features. A working distance of 8 mm is used as a standard while imaging. A shorter 

working distance below 4 mm with a small voltage of 2 kV or smaller and a probe 

current below 2 nA is also helping in obtaining high-quality, high-resolution images 

with a good contrast. 
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4. Visualising mechanotransduction pathways during 

differentiation using Cell Painting 
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4.1. Introduction: 

Differentiation pathways are often studied using omics techniques[12-14, 103-

105], cell migration studies[106, 107], cellular traction forces[70, 108, 109], or 

protein localization[48, 60]. The omics methods are time extensive, need large 

cell numbers, and fail to report heterogeneity in the cell populations as they do 

not offer single-cell spatial resolution. There are current advances in DESI mass 

spectrometry[126-128] and other omic techniques like scRNA-seq and spatial 

transcriptomics [187-191] to achieve single cell resolution in isolated cells and 

tissue. We propose an alternative to the classic ways of pathway analysis by 

studying the cell morphology changes due to perturbations through drugs, 

inhibitors, activators, metabolites, and nanotopography using Cell Painting. In 

contrast to omics techniques, which need 105 cells, this approach only needs a 

few hundred cells per experiment and one hour of experimental preparation, as 

no time-consuming and error-prone lysing step is needed. 

The phenotype of a cell is reflected in its morphology. Cell Painting [15, 138] has 

become a highly efficient method where simple reagents fluorescently stain the 

organelles of cells for morphological profiling. This versatile technique has been 

widely applied in various conditions, such as drug discovery[192-194], genetic 

modifications[133, 135], and diseases[134, 135, 195, 196]. It is a valuable tool for 

drug testing and for creating genetic and chemical perturbation libraries[133, 

137]. Its ability to identify the mechanism of action of these perturbations 

and group them based on similar mechanisms of action makes it a versatile and 

powerful method in cell biology research. 

In this work, we apply Cell Painting to elucidate relevant pathways relevant to the 

interactions of biomaterials. As an example, we focus on the mechanotransduction 

pathway of osteogenic differentiation. The Gadegaard group has shown in a 

previous work that the cell morphome of MC3T3 cells on nanopits correlates with 

osteogenic gene expression[20]. By using different inhibitors and activators of key 

parts along the mechanosensitive differentiation pathways, we can correlate the 

cell response to the response to nanotopographies. Figure 4.1 shows an overview 

of the used activators and inhibitors in the mechanotransduction pathway. Each 
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drug is used at three concentrations to demonstrate that Cell Painting is sensible 

enough to pick up concentration-dependent responses and to see if the pathways 

have a binary on/off state or if they can be modulated by the concentration.  

 

Figure 4.1:  A schematic representation of the mechanotransduction pathway and the 
influence of the used activators (green) and inhibitors(red) on the different parts of the 
pathway. Schematic created in BioRender. 

As cells undergo differentiation, different pathways are activated, depending on 

the signals that induce the differentiation process[11, 30]. The ROCK pathway, an 

important early stage in the mechanotransduction pathway, has been shown to 

affect the actin cytoskeleton and myosin-II activity. Actin polymerisation and 

organisation are crucial for cell morphology and play an important role in the 

differentiation process. The Ras/Rac transformation and Cdc42 also affect the 

cytoskeleton arrangement by promoting lamellipodia and membrane protrusion 

formations. Thus, we are using inhibitors and activators for those pathways[10, 

22, 32]. 

Calcium signalling, a key player in osteogenic differentiation, plays an important 

role. It has been shown that nanotopographies affect the activity of calcium 

channels as the L-type calcium channel activity depends on the cytoskeletal 

arrangement[197]. On the other hand, calcium signalling is also essential for the 
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cytoskeletal arrangement[66].  Therefore, we also inhibit and activate the L-type 

Calcium channel. As an alternative, one could use the Piezo1 activator Yoda1[198] 

and Piezo1 inhibitors such as GsMTx4 or Dooku1[199]. Both Calcium channels are 

known to be active in MC3T3 cells. Piezo1 functions as a mechanosensor[200] and 

is involved in the osteogenesis process[201, 202]. The L-type Calcium channel in 

MC3T3 is partially inhibited by microgravity[203] and is regulated by the actin 

cytoskeleton[197]. Furthermore, the L-type Calcium channel promotes filopodia 

stability in cancer cells[66]. Since both Calcium channels play an important role, 

and we have L-type Calcium channel activators and inhibitors available, we choose 

those activators and inhibitors. Additionally, we use the Golgi inhibitor brefeldin 

A, which inhibits the build-up of the Golgi apparatus. This results in an aggregation 

of unfolded proteins at the ER that induces cell stress and the depletion of 

intracellular calcium storage[204].  

We are comparing the differentiation induced by nanopits with chemical induction 

through dexamethasone, ascorbic acid and β-glycerophosphate. Dexamethasone 

induces osteogenic differentiation via the MAPK and Wnt signalling pathway[205, 

206]. Benidipine, cytochalasin D, and Y-27632 are also known to induce osteogenic 

differentiation. While those conditions induce osteogenesis, they do not 

necessarily wholly represent the cell response to nanotopographies, as they focus 

on one part of a pathway, and we expect the response to nanopits to be more 

complex than that.  

Nanopits used in this work are arranged in square, hexagonal and near-square 

arrangements as they are well-characterised and known to induce the osteogenic 

differentiation of MC3T3 cells[20, 25, 95]. It has also recently been discovered 

that the intracellular tension and adhesion of MSCs on nanopits can be replicated 

by a metabolite mix consisting of niacinamide, adenine, citrate, and L-glutamic 

acid. This metabolite mix, which mimics the cellular response to nanopits, plays 

a crucial role in our research as it can be used as a model system for validation to 

ensure our findings' accuracy[207].  

Here, we use morphological profiling by Cell Painting to analyse the 

mechanotransduction pathway of the progenitor osteoblast MC3T3 cells on 

nanopits. We prove that it is a viable high-throughput alternative to classic omics 
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techniques pathway analysis. The UMAP projection, a powerful tool for visualising 

high-dimensional data, replicates known relationships and pathways of the 

activators and inhibitors, thereby validating our approach (Figure 4.7). We, 

furthermore, highlight the importance of calcium signalling in the early stages of 

topography-driven osteogenesis. Thus, morphological profiling shows excellent 

potential for better understanding the effect of different nanotopographies on 

cells as a fast and efficient method. 

4.2. Methodology: 

4.2.1. Cell Painting: 

We use the osteogenic progenitor cell line MC3T3 in this work. Different inhibitors 

and activators perturbate the cells before fixation and staining for fluorescence 

imaging. The different inhibitors and activators with their corresponding 

concentrations and incubation times are listed in table 4.1. Control images are 

taken after 1 and 3 days, and with 0.5 and 1 % dimethyl sulfoxide (DMSO) as the 

carrier of some of the used drugs. Extending the control to longer times is 

impossible because no single cells can be identified after longer incubation times. 

Longer incubation times are possible for nanopits, osteogenic induction, and 

metabolite mix since they decrease the proliferation rate. 

The osteogenic induction media comprises the growth media with 10 nM 

dexamethasone, 10 mM β-glycerophosphate, and 50 µg/ml ascorbic acid[208]. The 

induced MC3T3 cells are imaged after 1, 3, 5, 7, 9, and 14 days. The effect of the 

SQ, HEX and NSQ nanopits is imaged after 1, 4, and 7 days.  

Niacinamide and a metabolite mix are used as controls for the nanopits as they 

show a similar cell response[207]. The cells are incubated with 10 mM niacinamide 

for 3 days and then for an additional 3 days with the metabolite mix. The mix is 

made up of 2.5 mM adenine, 2.5 mM citrate, 2.5 mM L-glutamic acid, and 5 mM 

niacinamide. The cells are imaged after 3 days with niacinamide and after 3+3 

days niacinamide with following metabolite mix. Each condition is performed in 

three biological replicas. A detailed list of all used activators and inhibitors with 
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their corresponding incubation time, solvent and concentrations is shown in table 

4.1. 

Table 4.1: Concentrations and incubation times of used inhibitors and activators. 

Inhibitor/Activator 
Incubation 

time 
Concentration Solvent Inhibition 

Y-27632 1 h 5, 10, 20 µM DMSO ROCK inhibitor 

Narciclasine 1 h 25, 50, 100 nM DMSO ROCK activator 

Blebbistatin 1 h 12.5, 25, 50 µM DMSO Myosin II inhibitor 

Calyculin A 1 h 0.25, 0.5, 1 nM DMSO Myosin II activator 

Cytochalasin D 30 min. 1.5, 3, 6 µM DMSO Actin inhibitor 

Jasplakinolide 1 h 12.5, 25, 50 nM DMSO Actin activator/stabiliser 

ML141 1 h 2.5, 5, 10 µM DMSO Cdc42 inhibitor 

SCH51344 1 h 12.5, 25, 50 µM DMSO Ras/Rac inhibitor 

Benidipine 1 h 25, 50, 100 µM DMSO 
L-type calcium channel 

inhibitor 

BAY K 8644 1 h 0.25, 0.5, 1 µM DMSO 
L- type calcium channel 

activator 

Brefeldin A 30 min. 17.5, 35, 70 µM Methanol Golgi inhibitor 

 

4.2.2. Data analysis: 

The fluorescence images are analysed in CellProfiler after image acquisition. We 

measure the granularity, area shape, intensity, intensity distribution, 

colocalisation, texture, image quality, and neighbours of the whole cell, nucleus 

and cytoplasm. All the data analysis is performed in R. The CellProfiler analysis 

produces 2246 different features for each cell, which are reduced to 112 features 

for the final analysis of the data (Figure 4.2). The data reduction is done by 

identifying significant data first. Any feature where two times the mean of the 
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standard error is larger than the difference between the highest and lowest mean 

value is considered noise and is excluded. In the next step, we exclude all features 

with a fold change smaller than 75 % between the maximum and minimum value 

to include all data with a clear change. Afterwards, the data is reduced by Pearson 

correlation. Redundant data is removed with a cutoff value of 0.95, and all 

features with an absolute correlation of less than 0.15 are excluded. The final 

data is projected into a 2D space by a UMAP projection with nine neighbours and 

a minimum distance of 0.1. An overview of varying parameters for the UMAP 

projection is shown in the appendix (Figure A4.1). All sensible parameters show 

the same trends and prominent clustering of perturbations. We chose the final 

parameters since those separate the clusters enough from each other to quickly 

identify the different groups while maintaining a proper global structure. 

 

 

Figure 4.2: A schematic representation of the feature selection process. The CellProfiler 
features are first reduced by their significance, secondly only the features with a large 
enough between the conditions are picked. Lastly the features without any correlation 
between the conditions and redundant features are excluded. 
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4.3. Results 

4.3.1. CellProfiler parameters reflect cell morphology changes 

through perturbations 

The fluorescence imaging of MC3T3 cells clearly shows the impact of the different 

perturbations (Figure 4.3B and Figure A4.2+A4.3). Surprisingly, WGA is also staining 

the nucleus of the cells. This is a staining artifact and not due a response of the 

Golgi to the perturbations. Blebbistatin and cytochalasin D have the most 

substantial impact on cell morphology, which can be easily observed by the eye. 

Blebbistatin induces the dissolution of actin stress fibres, which results in the cells 

blebbing[209, 210]. Cytochalasin D inhibits the actin polymerisation, which results 

in the replacement of actin filaments by local aggregates[211, 212]. As the cell 

loses its actin cytoskeleton, it also loses its typical shape.  

The Golgi inhibitor brefeldin A mostly affects the Golgi's morphology. While the 

Golgi is visibly bright and sharp next to the nucleus in the other condition, we 

observe only a weak fluorescence with 20 µg/ml brefeldin A. The Golgi also looks 

less sharp than in the other conditions.   

The metabolite mix and nanopits after 4 days are both producing a more elongated 

cell shape. This is expected as the metabolite mix recreates the intracellular 

tension and cell adhesion on those nanotopographies[207]. Therefore, the overall 

cell shape is expected to be similar between those two conditions. The metabolite 

mix is also showing a weaker fluorescence of the ER. Even though both conditions 

promote osteogenesis, the cells look very different after 9 days of osteogenic 

induction. The forming of many long cell protrusions dominates the morphology of 

the mature osteoblasts, which is represented in the solidity measurement of the 

cell shape. The solidity measures the amount of pixels of the convex hull in the 

object. A low solidity is an indicator for many protrusions, and MC3T3 cells after 

9 days of induction have a solidity of 0.567±0.009; the control got a solidity of 

0.669±0.009 and the nanotopography after 4 days of 0.697±0.01.  
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Those differences are clearly visible, but a fluorescence image offers much more 

data than one can see at first glance. Image processing software like CellProfiler 

can extract all the information a fluorescence image has to offer. A thorough 

analysis of the image parameters, such as shape, granularity, texture, intensity, 

and intensity distribution, quantifies image data to reveal the changes in the 

organelles under varying conditions. 

 

Figure 4.3: Images of nanopits and MC3T3 cells after Cell Painting under various 
conditions. A: Scanning electron microscope (SEM) images of polystyrene slides with 120 
nm diameter nanopits in a square (SQ), hexagonal (HEX), and near-square (NSQ) 
arrangement. B: Cell Painting images of MC3T3 cells stained for the Nucleus with 
HOECHST 33342 (blue), Endoplasmic reticulum with concanavalin A – Alexa Fluor 488 
(green), actin cytoskeleton with phalloidin - Alexa Fluor 568 (red), and the Golgi and 
plasma membrane with wheat-germ agglutinin (WGA) – Alexa Fluor 555 (orange). An 
overview of conditions with a control after 1 incubation day, L-type calcium channel 
activator Bay K8644, Golgi inhibitor brefeldin A, actin inhibitor cytochalasin D, Ras/Rac 
inhibitor SCH51344, the metabolite mix after 3+3 days, near-square nanopits after 4 
days, and the osteogenic induction after 9 days. 

4.3.2. Morphology change due to activators/inhibitors is 

concentration dependent 

After a detailed analysis of the image features with CellProfiler and a data 

reduction to the relevant and unique features, one can see in the heatmap in 

Figure 4.4 that all organelles, as well as the cell shape, contribute to the 

morphological identity of the cell phenotype. The total amount that each 

organelle represents must be interpreted with caution. When removing redundant 

features, we remove 258 of 370 features, and we are left with only 112 features. 

1   
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Those removed measurements give helpful information for the classification of 

the conditions, but they give the same information as other measurements. The 

decision on which measurement of several redundant measurements is kept is not 

closely monitored. It does not matter for the further analysis which measurement 

is kept. However, when we, for example, have four redundant measurements, 

where one is from the Actin and the three other measurements are from the Golgi. 

We keep the measurement of the Actin, and it does not correctly represent the 

importance of the organelle for the cell classifications. However, we can 

confidently say that each organelle contributes unique features that help identify 

the phenotypes.  

The heatmap not only visualises a first impression of similarities between 

conditions but also shows that the readout is not binary. The cell morphology 

shows the effect of the perturbation and its strength. We can see the 

concentration dependency of the cell response. Some features are selected as an 

example in Figure 4.5. The features show high variability, which makes the 

observed trends insignificant. However, even though the features exhibit 

substantial variation, concentration-dependent trends are observable in the 

heatmap in Figure 4.4. Thus, the observed trends can only be considered 

potential, since the data uncertainty does not yield a significant difference in the 

measured features across varying concentrations.  
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(caption for figure on previous page) Figure 4.4: Heatmap of the morphological features 
for all conditions after feature reduction by Pearson correlation and removal of 
redundant and non-significant data. The features are grouped by the cell shape and the 
organelles actin, DNA, endoplasmic reticulum, and the Golgi and plasma membrane. The 
features are normalized by bringing the data to a 0 to 1 scale by subtracting the minimum 
value and dividing by the maximum. Afterwards, the data is standardized to the control 
by subtracting each value by the control. 

 

Figure 4.5: Assorted examples of the concentration dependency of measured featured 
by CellProfiler. The different concentration of the activators and inhibitors are grouped 
into low, medium and high concentration for simplification. An increase in brefeldin A as 
well as ML141 results in a decreased Golgi intensity as the Golgi build up is inhibited (A). 
An increase in cytochalasin D concentration increases the Zernike00 Magnitude of Actin 
as the intensity distribution gets more evenly distributed when the actin filaments are 
destabilised. In the same sense decreases the Zernike00 Magnitude with increasing 
jasplakinolide concentration (B). The change of MC3T3 cell morphology with increasing 
cytochalasin D concentration from 1.5 µM to 6 µM is shown in (C).  

The Zernike Magnitude is a measure of the intensity distribution across an area. A 

high Zernike00 Magnitude represents a uniform intensity distribution. This is a good 

measure of actin stability. A cell with prominent and stable actin fibres has an 
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uneven intensity distribution since it has high-intensity values where the fibres 

are and low values between the actin fibres. Thus, it has a low Zernike00 

Magnitude. We can pick up this concentration-dependent effect. The highest 

concentration of jasplakinolide, which stabilises the actin filaments and can result 

in a patchy appearance of cortical actin, has the lowest Zernike00 Magnitude.  The 

F-actin inhibitor cytochalasin D has the highest Zernike00 Magnitude, as it disrupts 

the actin filaments, and no fibres are visible anymore. Thus, one has a much more 

uniform intensity distribution across the cells with local actin aggregates.   

The intensity of the Golgi decreases with increasing brefeldin A concentration as 

the Golgi build-up is blocked off more and more. A very similar effect can be 

observed for the Cdc42 inhibitor ML141. It has been shown before that ML141 can 

also induce changes to the Golgi structure[213]. The lung epithelial cells BEAS-2B 

observed more dispersed staining of the Golgi apparatus under 20 µM ML141.  

4.3.3. Morphology changes reflect function of inhibitors and 

activators 

When reducing the dimensions of the high-dimensional feature map to 2D using a 

UMAP projection, one can identify different groups that cluster together. Those 

groups follow the known mechanisms of action of the perturbation. The cell 

morphology change on nanopits over time gives us insight into the underlying 

intracellular signals by fitting the morphology into the map of perturbations. 

Based on the UMAP projection in Figure 4.7, one can divide the perturbations into 

four groups.  

The first group are the Actin, Myosin-II and ROCK inhibitors cytochalasin D, 

blebbistatin and Y-27632. Those inhibitors are all on the same pathway, which 

results in an actin destabilisation. Blebbistatin and cytochalasin D have the most 

potent effect on the overall cell shape and morphology disruption. The cell loses 

its typical shape under both conditions. While blebbistatin disintegrates actin 

stress fibres, which results in a blebbing of cells, cytochalasin D completely 

disrupts the actin cytoskeleton, resulting in a complete loss of shape and just 

small patches of actin. ROCK is known to stabilise actin filaments. Thus, the 

inhibition of ROCK by Y-27632 also destabilises the actin cytoskeleton[53]. This 
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results in more elongated cells with neurite-like elongations. The collapse of the 

cell shape under cytochalasin D leaves elongations similar to this morphology. 

The second group consists of jasplakinolide, calyculin A, and narciclasine, which 

are the corresponding activators for actin, myosin-II, and ROCK. The actin 

stabiliser jasplakinolide and the Myosin II activator calyculin A induce actin 

aggregates while having a prominent actin cytoskeleton[214-217]. The ROCK 

activator narciclasine also promotes the stabilisation of F-actin through the ROCK 

pathway and promotes actin stress fibres[218, 219]. The Golgi inhibitor brefeldin 

A not only prevents the build-up of the Golgi apparatus but also affects the F-actin 

distribution as a consequence[220]. This can lead to actin patches. Jasplakinolide 

also affects the Golgi by fragmenting it[221]. The normal controls lay in this group, 

too, as those morphology changes are not as drastic as those due to the other 

perturbations. 

The third group comprises the L-type Calcium channel activator BAY K 8644 and 

the Calcium channel inhibitor benidipine. Little is known about the morphology 

changes induced by those. Curiously, the inhibitor and activator of the same 

channel lie together. A disruption in calcium signalling mainly triggers the 

intracellular control mechanisms, which involve similar pathways regardless of 

whether they must counteract an increase or decrease of calcium ions through the 

L-type calcium channel.  

The fourth cluster includes the Cdc42 inhibitor ML141 and the Ras/Rac inhibitor 

SCH51344. Both inhibitors affect the cytoskeleton's organisation[54]. ML141 

inhibits filopodia formation[222], and SCH51344 inhibits lamellipodia formation 

and blocks membrane ruffling[223]. Thus, both inhibitors create relatively static 

cells without cell elongations.  
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Figure 4.6: Hierarchical clustering of Nanotopography data. The different time points 
cluster together and a higher similarity between SQ and HEX topographies is found. NSQ 
topographies separate from them following previously found osteogenic marker 
expression profiles. 

The impact of nanotopographies on cell morphology and differentiation is a 

significant finding in our research. The fluorescence images of the Cell Painting 

on the different topographies is shown in Figure A4.3. Over time, cells react to 

the topography, and this reaction is clearly visible. The different nanopit 

arrangements in SQ, NSQ, and HEX play a crucial role. Cutiongco et al.[20] 

demonstrated that an NSQ arrangement has the most prominent effect, with 

MC3T3 cells showing the highest expression of the early osteogenic markers RUNX2 

and SP7 on it. The SQ and HEX arrangements, on the other hand, have a smaller 

and similar expression to each other. This grouping is also evident in our data 

through hierarchical clustering, with distances calculated using a normalised 

Euclidean method (Figure 4.6). For one, four, and seven days, the SQ and HEX 

nanopits cluster closer together than the NSQ nanopits, indicating the correctness 

of our morphological clustering. Thus, the morphology of cells on SQ and HEX 

shows more similarities between each other than to cells on NSQ nanopits, 

underscoring the significance of our research in understanding cell behaviour. 

However, all types of nanotopographies are known to induce osteogenesis and have 

a similar effect on MC3T3 cells, with reduced tension and decreased proliferation 

over time. The NSQ nanopits are known to have the most prominent effect and 

are therefore separating from the other nanopit arrays. All nanopits still produce 

a similar morphology in comparison to the drastic changes through the activators 

and inhibitors.  
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4.3.4. Response of MC3T3 cells to nanopits changes over time 

When adding the cell response to SQ, NSQ, and HEX nanopits over time into the 

UMAP projection of the inhibitors and activators, we can see how the cell changes 

over time and how the corresponding influences on the cells change over time 

(Figure 4.7). The control lies with the above-noted second group of ROCK, Myosin-

II and Actin activators since they have the smallest effect on the cell morphology 

and are, therefore, most similar to the control. After 1 day on the nanopits, the 

morphology is similar to the morphology change through the L-type calcium 

channel inhibitor and activator. This hints at an important role of calcium 

signalling in the early stages of differentiation, which aligns with current research. 

The mechanosensitive calcium channel piezo 1/2 regulates osteoblasts 

differentiation by increasing the early osteogenic marker Runx2[224], which is 

known to have an increased expression nanopits. Therefore, one can expect the 

calcium signalling to drive the early stages of osteogenesis on nanotopographies. 

After 7 days on SQ, NSQ, and HEX nanopits, the MC3T3 cells show a substantial 

increase in the osteogenic markers RUNX2, SP7, BGLAP, and SPP1 expression[20]. 

At this stage, the cells group with the Cdc42 and Ras/Rac inhibition, highlighting 

that the cells are more static. We expect the cells to be less mobile as they have 

been sitting on the nanopits for 7 days. The filopodia formation decreases during 

differentiation into osteoblasts due decreased motility and increased intracellular 

tension. It is well known that nanopits and, especially, NSQ nanopits increase the 

cellular tension by the formation of integrin clusters[26, 207]. The increase in 

cellular tension decreases the lamellipodia formation[225, 226]. 
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Figure 4.7: UMAP projection of the activators, inhibitors, metabolites, nanotopography 
and osteogenic induction. Each data points represents the median features of each 
concentration or condition. The UMAP projection is performed with 9 neighbours and a 
minimum distance of 0.1. The arrows show the journey of the cell response to nanopits 
over time as the morphology clusters with the L-type calcium channel inhibition and 
activation. After 4 days on nanopits they cluster with the niacinamide and metabolite 
mix, which replicate the intracellular tension and adhesion of the nanopits. Finally, they 
are with the Ras/Rac and ML141 inhibitors that inhibit the filopodia and lamellipodia 
formation. The osteogenic induction through dexamethasone, β-glycerophosphate, and 
ascorbic acid form their own group. The inhibitors of the actin cytoskeleton (cytochalasin 
D), myosin II (blebbistatin), and ROCK (Y-27632) cluster together just like their 
activators. 

The metabolite mix verifies the grouping in the UMAP projection. Niacinamide and 

the metabolite mix increase the oxidative glycolysis and, as a result, the 

intracellular actin cytoskeleton tension and cell adhesion decreases. The same 

effect is observed on the NSQ, SQ and HEX nanopits. The cells on nanopits after 

4 days group together with the niacinamide and the metabolite mix in the UMAP 

projection as expected. The control after 3 days clusters in the same group, which 

shows the strong effect the culturing time has on cell morphology.  

The osteogenic induction through the induction media does not group up perfectly 

with the other conditions but forms its group. The osteogenic induction shows 
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many similarities as well as some differences in its gene array compared to the 

induction through nanopits[95]. Therefore, it can be expected that we can also 

see a difference in morphology during nanotpography-driven differentiation and  

benidipine[227], cytochalasin D[212], and Y-27632[53] promote the osteogenic 

differentiation of MC3T3 cells. None of those perturbations cluster together with 

the osteogenic induction. The chosen perturbations are involved in the 

mechanotransductional differentiation pathway, which differs from the 

differentiation through the drugs dexamethasone and glycerophosphate. 

Therefore, the mature osteoblasts on the nanopits also cluster with the inhibitors 

and not the mature osteoblasts through osteogenic induction. Many different 

pathways can lead to osteogenic differentiation. The cell morphology changes 

accordingly depending on the dominant pathways triggered by drugs or 

topography.   

4.3.5. Feature analysis of clustering 

A UMAP projection, a powerful tool in high-dimensional data analysis, effectively 

visualises similarities in cell morphology data. However, it does not provide 

information about the formation of the 2D representation, or which features are 

primarily responsible for the small distance between the different conditions 

within one group. The different groups in Figure 4.7 can be grouped into six 

clusters. The four previously discussed clusters are highlighted in the UMAP plot. 

Additionally, in addition to those four clusters, two more clusters are formed: 

osteogenic induction through the differentiation media and inhibitors of Actin, 

Myosin, and ROCK. The clusters are numbered as follows: The first cluster consists 

of cells in the initial state with minimal morphological changes. It consists of 

controls after one day, as well as the activators jasplakinolide, narciclasine, and 

calyculin A, along with the Golgi inhibitor brefeldin A. The second cluster 

represents the first response to the nanopits after one day, as well as the response 

to Calcium channel activators and inhibitors. The third cluster is the response to 

nanopits after four days, and the metabolites. The fourth cluster represents the 

response to nanopits after seven days, as well as the inhibition of Cdc42 and 

Ras/Rac. The fifth cluster consists of inhibitors that produce the strongest 
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morphology changes, particularly with ROCK, Actin, and Myosin inhibitors. The 

sixth cluster are the cells after osteogenic induction.  

A heatmap plot ordered by the different clusters reveals clear differences 

between them (Figure 4.8). Clusters two and three exhibit many similarities, 

indicating that the cell's initial response to the nanopits changes relatively slowly 

until the morphology undergoes significant changes after 7 days, revealing 

apparent differences from the other clusters. Cluster five, which consists of the 

cytoskeleton inhibitors that have the strongest impact on the cell morphology, is 

also clearly separated from the other clusters. To gain a better understanding of 

the morphological differences between the clusters, we manually reviewed the 

features. We selected those with clear and understandable meanings from the 

entire heatmap, which provides insight into the morphological differences 

between the clusters (Figure 4.9). 

The area shape measurements are the easiest to understand and give an overview 

of the general cell shape. After feature selection, we are left with the form factor 

and solidity as measures of cell shape. The form factor is a measure of the 

roundness of the cell and is calculated as 4*π*Area/Perimeter2, where a value of 

one is a perfectly round cell. The solidity calculates how much of the object is 

also in the convex hull. The convex hull is created by connecting the outer points 

of the object. One can imagine it as a band that is stretched around the object. A 

round cell without many protrusions has a high solidity, while a cell with many 

protrusions, such as filopodia, has a lower solidity. The form factor decreases as 

the time on the nanopits increases. This reflects the observed increase in cell 

elongation over time as the cells settle on the nanopits and cease forming 

lamellipodia and filopodia in different directions to sense the substrate. 

Surprisingly, the solidity also decreases over time, as we would expect it to 

increase with the presence of missing filopodia. The differences in solidity 

between the clusters are relatively small, so that the decrease might have an 

unknown cause (Figure 4.9).  

The location of the nucleus in the cell and the chromatin organisation are 

measures of the cell state. Those factors can be calculated from the radial 

distribution of DNA staining intensity in the nucleus as well as in the whole cell. 
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The granularity and radial distribution measurement FracAtD, which measures the 

fraction of total staining from the inner area 1 to the outer area 4 in the nucleus. 

It measures the chromatin distribution in the nucleus. A difference is visible 

primarily for clusters two and three compared to the other clusters. The Zernike 

magnitude of the DNA in the whole cell measures the amount of intensity in 

different parts of the cell and is therefore a measure of the localisation of the 

nucleus inside the cell. We observe a high error in each cluster, indicating that the 

nucleus localisation varies within a cluster and is likely not a reliable measure to 

highlight the differences between the clusters. 

The Golgi and plasma membrane staining can provide significantly different 

information, as they stain distinct organelles. That makes it harder to interpret, 

too. The Golgi has a higher intensity than the membrane; thus, bright dots in the 

cells are the Golgi and can be identified by granularity measurements. The 

granularity changes between clusters two and three, whereas clusters 1, 4, 5, and 

6 have a similar level of granularity. The integrated intensity can be a measure of 

how strong the Golgi staining is, as well as how bright the intensity of the Golgi 

staining is, and also how large the cell is. We observe significant differences in 

Golgi and membrane intensity across the different clusters, with clusters two and 

three having the lowest intensity. In contrast, the other clusters have a higher 

integrated intensity, with cluster one exhibiting the highest intensity.  

Correlation measurements with Golgi and plasma membrane, as well as actin, can 

also be seen as an indicator of how much of the cell is filled out by the organelle, 

since their staining fills out most of the cell. The correlation between the ER and 

the organelle changes between the clusters, with the smallest correlation 

observed in cluster three for the metabolites and nanopits after four days. The 

other clusters are in a more similar range. The integrated ER intensity at the edge 

of the cytosol is clearly the highest in cluster four of the Cdc42 and Ras/Rac 

inhibitor, as well as the nanopits, after seven days. As the cell settles with 

decreased filopodia and lamellipodia formation, the cell body gets narrower and 

smaller, and the ER reaches the edge of the cell. Thus, the fluorescence intensity 

of the cell increases. 
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Figure 4.8: A heatmap of all the analysed conditions ordered by the clusters identified 
from the UMAP in Figure 4.7. The features replicate the found clusters. The clusters 
number 2 and 3 are relatively similar to each other as well as the clusters number 4 and 
5. The separation between the other clusters is clearly visible from the heatmap. 
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Figure 4.9: A barplot of selected features that highlights the morphological differences 
between the clusters. It shows that the clusters clearly differ for some features like the 
integrated intensity of the Golgi and membrane or the FormFactor, which shows smaller 
values for cluster 5 then for the rest. Other features as the DNA Granularity of 2 or the 
solidity show a more even distribution. A ‘1’ behind the measurement means that the 
measurement is in the cytosol. A ‘2’ means that the measurement is in the nucleus. 

The above-mentioned features provide an overview of the morphological changes 

between the clusters. However, we do not know the importance of these features 

in distinguishing the conditions within the observed clusters. To obtain an idea of 

feature importance, we have employed an entropy-weighted k-means clustering 

(wskm package in R)[228]. It works by assigning a weight to each feature for each 

cluster and adjusting those weights until it converges to obtain a clustering into a 

specified number of clusters. We chose six clusters based on our observations in 

the UMAP projection and attempted to select parameters for the weighted k-

means clustering in a way that would replicate our initial clusters as closely as 

possible. The clustering is plotted in a 2D PCA space in figure 4.10A. The change 

in clusters for the different conditions is shown in table 4.2. While there are some 

differences in the clustering, the most important clusters for the change in cell 

morphology over time in response to the nanopits are very similar to those from 

the UMAP projection. The nanopits, after four days, cluster with the metabolites, 

and the nanopits, after seven days, cluster with the Ras/Rac and Cdc42 inhibitor. 
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The nanopits after one day do not fully cluster with the calcium channel activator 

and inhibitor. Only the SQ nanopits are in one cluster with it, and the NSQ and HEX 

nanopits form their own clusters after one day. The difference in clustering cannot 

be fully explained. We expect that the SQ, NSQ, and HEX nanopits have slightly 

different morphologies, as NSQ nanopits have the strongest positive impact among 

those topographies on osteogenic differentiation. However, all nanopits promote 

osteogenic differentiation of MC3T3 cells. The weighted k-means clustering starts 

by randomly assigning weights to the features, making the method stochastic. We 

chose weights that produce a similar clustering to the UMAP clustering in Figure 

4.7. While we achieve a good agreement between the clustering methods, a 

perfect overlap of clusters is not possible. The most important findings of the 

UMAP clustering are also shown in the weighted k-means clustering as discussed 

above. 

We collected the features with the highest weight for each cluster and plotted 

them in a heatmap in Figure 4.10B. Cluster 5, with cells on nanopits after seven 

days, ML141, and SCH 51344, clearly has the highest weight for the radial 

distribution of actin. However, no apparent differences from other conditions are 

visible in the raw data. Cluster 1, with the nanopits after 4 days and metabolites, 

has the highest weight for a texture measure of the ER. This feature has relatively 

low values for the conditions in these clusters. The conditions with stronger 

cytoskeletal disruptions have a higher value in this feature. Cluster 6, with calcium 

activator and inhibitor, and SQ nanoparticles, after one day, has the highest weight 

for the correlation of DNA and ER, as well as the percentage of maximum intensity 

in Golgi and membrane staining. There is also no clear difference visible in the 

raw data that supports these features for clustering within the observed groups. 

Generally, the differences in weight are minimal between the features, with a few 

exceptions. Thus, the overall picture formed by the different features is more 

important than any single feature for clustering. The heatmap of the selected 

features displays clear blocks of similar measurements within the different groups, 

which support this barcode mechanism (Figure 4.11). The cytoskeletal inhibitors 

cytochalasin D, blebbistatin, and Y-27632 generally exhibit high feature values in 

the heatmap (red) and can be clearly distinguished by their similar morphological 

profiles. 
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Table 4.2: The differences in clustering between UMAP projection and entropy weighted 
k-means clustering. The clustering shows a lot of similarities with only some minor 
differences. The main clustering by function is represented in the UMAP as well as 
entropy weighted k-means clusters. 

Condition UMAP Cluster 
Entropy weighted 

k-means cluster 

Control 1 day 1/1 1/3 

Brefeldin A 5/10/20 µg/ml 1/1/1 3/1/1 

Jasplakinolide 12.5/25/50 nM 1/1/1 5/5/5 

Narciclasine 25/50/100 nM 1/1/1 5/3/3 

Calyculin A 0.25/0.5/1nM 1/1/1 3/3/3 

Bay K 0.25/0.5/1 µM 2/2/2 6/6/6 

Benidipine 25/50/100 µM 2/2/2 6/6/6 

Nanotopography 1 day SQ/NSQ/HEX 2/2/2 6/4/4 

Control 3 days 3/3/3 1/1/1 

Nanotopography 4 days SQ/NSQ/HEX 3/3/3 1/1/1 

Niacinamide 3 days 10 mM 3/3 1/1 

Metabolites 3+3 days 3 1 

SCH 51344 12.5/25/50 µM 4/4/4 5/5/5 

ML141 2.5/5/10 µM 4/4/4 5/5/5 

Nanotopography 7 days SQ/NSQ/HEX 4/4/4 5/5/5 

Blebbistatin 12.5/25/50 µM 5/5/5 2/2/2 

Cytochalasin D 1.5/3/6 µM 5/5/5 3/2/2 

Y-27632 5/10/20 µM 5/5/5 3/5/3 

Control DMSO 0.5/1 % 6/6 1/1 

Osteogenic induction 1/3/5/7/9/14 6/6/6/6/6/6 5/5/5/5/5/5 
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Figure 4.10: Entropy weighted k-means clustering for analysis of feature importance. 
The clustering visualized in a 2D PCA projection using the first 2 dimensions visualizes 
the formed clusters (A). Similar to the UMAP clustering in Figure 4.7, the activators and 
inhibitors cluster together by their function. The weight of the handpicked most 
important features for the formation of each cluster is plotted in a heatmap with pink 
being the high values and blue the low values (B). The clusters are ordered according to 
a hierarchical clustering to enhance the visibility of differences between the clusters. 
Most weights are in a similar range with a few outliers of high importance for the 
clustering as the Zernike50Phase for Actin, the SumVariance texture measurement of the 
ER or the Correlation of DNA and ER. 

  i                          i         
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Figure 4.11: A heatmap of the selected most important features with the highest 
weights in the entropy weighted k-means clustering. The conditions are ordered by the 
clustering done by the UMAP projection. This clustering is also visible in the blocks of 
similar morphology by the selected features. It shows a similar picture as the large 
heatmap in Figure 4.8 with all features, however the selection of the most important 
features enables a visualization of the changes in single features, which is not possible 
with too many features. 

The 103 features selected from the complete data set are distributed across all 

four channels/organelles (Table 4.3). The Golgi and plasma membrane stand out 

with 55 features that are selected from that channel. When selecting the top 

features in the weighted k-means clustering, we observe an unexpectedly strong 

drop in actin features, with only one feature remaining. One would typically 

expect that the actin cytoskeleton is more important for the morphological 
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profiling of cells in the mechanotransduction pathway, which is very focused on 

cytoskeleton organisation. On the other hand, it highlights the potential and 

importance of the cell painting method for morphological profiling. In the complex 

process of mechanotransduction, it is essential not only to examine the known cell 

compartments involved but also to take a comprehensive view of the cell to 

capture its morphological phenotype fully.  

All CellProfiler measurement categories are also well represented in the full 

dataset. Most features are from the intensity distribution and correlation 

measurements. The selected features from the entropy-weighted k-means 

clustering are also distributed across all measurements, except for the granularity. 

That highlights that, similar to the different stains, all measurements also provide 

helpful information for identifying the morphological phenotypes. When 

interpreting those numbers, especially the importance of single measurements, 

one must be cautious not to overestimate the significance of the feature. Many 

features are excluded from the final analysis due to high correlation with other 

features. Thus, many features that represent different morphological changes give 

the same information about the grouping of the different conditions. 
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Table 4.3: An overview of the feature distribution based on different stains/organelles 
and on the CellProfiler measurements. The full dataset consists of the 103 selected 
features by our feature selection method. Those features are compared with the 
selected features from the entropy weighted k-means clustering. 

Organelle 
Full 

dataset 

Weighted 

k-means: 

Selected 

Features 

 
CellProfiler 

Measurement 

Full 

dataset 

Weighted 

k-means: 

Selected 

Features 

Actin 26 1  Correlation 29 5 

Golgi & plasma 

membrane 
55 10  Granularity 7 0 

Endoplasmic 

Reticulum 
32 11  Image Quality 9 3 

DNA 23 3  Intensity 16 4 

    
Intensity 

distribution 
34 3 

    Shape 2 2 

    Texture 18 5 

 

4.4. Discussion 

We successfully imaged MC3T3 cells with 11 different inhibitors and activators and 

three concentrations each, as well as SQ, NSQ, and HEX nanopits after 1, 4, and 7 

days. We also incubated them with metabolite mix after 3 days and osteogenic 

induction media for 1, 3, 5, 7, 9, and 14 days. This accumulates to 53 different 

conditions and more than 3200 fluorescence images. An image has an average of 

5 cells, which means that we have more than 16000 cells. An imaging time of 4.5 

minutes per image means a constant imaging time of 240 hours. This highlights 

the magnitude of data collected and analysed.  
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Our research has revealed that cell morphology is a powerful tool for studying the 

mechanotransduction pathway of MC3T3 cells on SQ, NSQ and HEX nanopit 

surfaces. By employing Cell Painting with activators and inhibitors of the pathway, 

we have been able to demonstrate a UMAP projection that clusters inhibitors and 

activators based on their function. Notably, inhibitors and activators of the ROCK-

Myosin II pathway cluster in their respective groups, providing a significant insight 

into the mechanotransduction process. Additionally, we can also pick up the 

different strengths in cell response to the different nanopits arrangements in SQ, 

NSQ and HEX arrangements as the similarity of cells on SQ and HEX nanopits 

compared to cells on NSQ nanopits reflects the previous reported differences in 

osteogenic marker expressions on the same topographies. 

From the clustering in the UMAP projection, we propose that calcium signalling 

dominates the first cell response to the nanopits after one day. This aligns with 

the current state of research that calcium signalling promotes the early osteogenic 

genic marker RUNX2[224]. Furthermore, we expect that membrane proteins like 

calcium channels in direct contact with the nanotopography will have a significant 

impact in the first response to nanotopographies as it is the most direct influence 

of the topography on the cell. The intracellular actin cytoskeleton tension and cell 

adhesion are reduced due to increased oxidative glycolysis in the following 

differentiation process over the following days[207]. After seven days on the 

nanotopographies, the mature osteoblasts are in senescence and lack lamellipodia 

and filopodia since they are in a static and settled state with decreased mobility.  

Our data show the above-mentioned mechanotransduction responses in MC3T3 

cells to nanotopographies. However, other known involvements of the studied 

mechanotransduction pathway are not picked up. The ROCK pathway is known to 

regulate osteogenic differentiation of primary rat osteoblasts on titanium 

nanotopographies. Inhibition of ROCK with Y-27632 suppresses osteogenesis[229]. 

The known promotion of osteogenesis by cytochalasin D[212] is also not visible in 

the data. The response to nanotopography is more complex than a simple 

inhibition or activation of a single factor. Therefore, the morphomes of ROCK 

pathway inhibition and activation do not match those from the nanotopographies. 

Thus, the morphological profiling can only guide to interesting interactions, but 

does not exclude conditions that do not cluster with the nanotopographies. 
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We must be careful when interpreting results from the cell morphology of cells 

with different incubation times. Naturally, the incubation time has a significant 

effect on the cell morphology. Thus, the control after four days lies with the 

perturbations for three, four and six days and not the control after one day. After 

four days on flat surfaces without perturbations, the overall cell shape will be 

different to a cell after one day as it has settled down and built up a more 

excessive extracellular matrix. A UMAP projection tries to group every point into 

a group, where the group size depends on the chosen number of neighbours. 

Consequently, it will move a point to the most similar points, which does not 

necessarily mean that they are the same. They are just more similar than the 

other conditions.  

We still believe in the UMAP projection as a truthful representation of similarities 

between phenotypes because of the observed grouping of the different inhibitors 

and activators, which aligns with known mechanotransduction pathways, and the 

morphology changes described in detail above. Furthermore, the observed 

grouping of the metabolites with the nanotopographies provides additional 

validation of our method.  
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(caption for figure on previous page) Figure 4.12: Visualization of the cell response to 
nanopits over time. After one day the calcium signalling is increasing the Runx2 
expression through the MAPK pathway to start the osteogenesis. After four days the 
intracellular tension and adhesion decrease, and oxidative glycolysis increases. After 
seven days the cell goes into senescence and cell differentiation. In that state the cells 
have a decreased filopodia and lamellipodia formation. Schematics created in BioRender. 

The cell morphology is not only able to cluster different perturbations together, 

but it can also reflect their strength. Increasing concentrations of activators and 

inhibitors increases the strength of responses across many features, even though 

the features exhibit high variability. Even with the high variability, the median 

shows clear trends throughout many features. Willis et al. showed that Cell 

Painting can capture concentration dependence by performing a concentration-

response screening of 14 phenotypic compounds in U2OS, A549, ARPE-19, HepG2, 

HTB-9, and MCF7 cells[230]. This could be used for dose tests in future work. It 

can be especially interesting for the use of nanotopographies as the dose 

dependence of the drugs can be compared with the different orientations of 

nanopits. The strength of the effect of the nanopits varies with the orientation, 

represented by the morphology. One can use the varying responses to different 

topographies to identify an ideal nanotopography to elicit a desired response. 

Another advantage of morphological profiling is the possibility of capturing the 

immediate reaction to the topography, while other techniques like transcriptomics 

have a delay until enough noticeable changes in transcription are observable. We 

can follow the adaption of the cells to the nanotopographies in real-time and can 

even analyse the early-stage cell-surface interactions, which refer to the initial 

contact and response of the cell to the nanotopography. By predicting Cell Painting 

images from brightfield images[231], one can study the adaption of live cells to 

different nanotopographies.   

This study is the first study to use Cell Painting in combination with 

nanotopographies. The closest comparable study is the work of Tuvshindorj et 

al.[232] that tested 2176 arrays of unique geometries coated with Arginine-

Glycine-Aspartic acid/polyethylene glycol for guided cell adhesion. They 

discovered that the morphome correlates with YAP nuclear translocation. 

However, they have not tried correlate the morphome to the patterns. 

Conventionally, Cell Painting is used to study drugs, especially for drug discovery. 

It is used in a wide area of applications, for example, to create a library of 
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morphomes for a large number of perturbations, such as 30,000 small 

molecules[133] or the famous JUMP dataset[137] with 116,750 different small-

molecule compounds, over-expression of 12,602 genes and knockout of 7,975 

genes in U2OS cells. Cell Painting is applied to identify 258 impactful variants of 

lung cancer variants by overexpressing 375 genes in A549 cells[134], novel gene 

functions discovered in U2OS cells by successfully clustering genes and 

alleles[135], and potential targets and drugs to treat intestinal fibrosis were 

identified by screening 5,000 compounds[233]. It has also been successfully 

employed to study the cytoskeleton and to identify compounds that target 

tubulin[234]. Cell Painting can also be used to identify chemical hazards[235].  

These studies correlate newly identified chemical compounds or gene expression 

with known genes and chemical compounds to identify mechanisms of action, 

compound targets, and cytotoxicity. In contrast to those studies, our work uses 

the drugs not for drug discovery, but rather utilises their known effects to 

correlate cellular functions with nanotopographies. This is a new concept, and this 

work functions as a proof-of-concept for the method and for the work in the 

following chapter using a library of nanotopographies. Our work involves only a 

few perturbations compared to previous Cell Painting applications. Thus, it serves 

as a proof-of-concept and might yield new significant insights into 

mechanotransduction by upscaling the number of perturbations. Cell Painting 

profiling also only provides correlations between components by screening across 

many perturbations and topographies. To fully understand the biological 

connections, more in-depth studies of the identified connections are necessary.  
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5. Nanotopography prediction from the morphome 

using a nanotopography library 
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5.1. Introduction 

The cell response to nanotopographies is strongly influenced by the geometry of 

the topography. The overall geometry of the topography, whether they are pits, 

pillars, gratings or other shapes, as well as the fine parameters of the topography, 

such as its size, organisation and distance between features, play a crucial role. 

These topographies influence the behaviour of cells by guiding the adhesion areas 

of the cells[3]. The size and orientation of the adhesions affect the cell's 

response[57, 101, 102]. 

The search for the ideal topography by testing a wide range of nanotopographies 

is challenging and limited by the fabrication of large enough arrays of these 

nanotopographies, as well as by time-consuming analysis to obtain a detailed 

picture of the cell's state. Few micro-/nanotopography libraries have been tested 

so far[17]. The most well-known and extensive libraries are the Micro-

/NanoTopoChip by de Boer[77, 236] and the BioSurface Structure Array (BSSA) by 

Foss[237]. The MicroTopoChips consist of 2176 unique microtopographies created 

from random combinations of squares, triangles, and circles that overlap to form 

new shapes[236]. The features of the NanoTopoChip are created in the same way, 

just at smaller dimensions. UV lithography, DRIE and hot-embossing fabricate 1246 

unique topographies. The cell morphology of U2OS cells is analysed on the 

topographies[77]. The BSSA library consists of 169 topography designs of squares, 

circles and rectangles of varying organisation, size and spacing. The 169 

topographies are produced at heights of 0.6, 1.6, and 2.4 µm[238]. The feature 

size ranges from 1 to 8 µm. It is used to study the mineralisation and expression 

of osteogenic markers in MC3T3 cells[238] and the response of human fibroblasts 

by analysing changes in focal adhesion morphology and cytoskeletal 

organisation[237]. Kim produced a smaller feature library in the form of the 

MultiARChitecture (MARC) plate, which consists of up to 30 patterns[239]. The 

used patterns vary depending on the applications. They include gratings, wells, 

pillars, and lenses, with sizes ranging from 250 nm to 10 µm. It is used to study 

the response of pluripotent stem cells[240, 241] and murine neural progenitor 

cells[242]. The integrated mechanobiology platform (IMP) that bonds PDMS with 

nanotoporgraphies on bottomless 96 and 384 well plates[243]. They use gratings 
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with 500 nm to 3 µm spacing and square grids with trenches of 100, 200, and 300 

nm. All nanotopography libraries identified the spacing between features as a key 

driver of cell response.  

The screening of micro-/nanotopographies is performed mainly by 

immunofluorescence staining, as it does not require large cell numbers. The de 

Boer redesigned the Micro-/NanoTopoChip into a TopoWellPlate to achieve a 

sufficient number of cells per array for cytokine measurements of mesenchymal 

stromal cells[244]. Another benefit of the new TopoWellPlate is the physical 

separation of the different topographies into their own wells. This prevents the 

cross-talk between cells and enables the study of secretion profiles. However, this 

results in a reduction to 76 unique topographies. The MARC ship is used for RT-

qPCR to study the differentiation of pluripotent stem cells[240]. This is only 

feasible due to the relatively small number of 30 different topographies. The BSSA 

chip is used with actin, focal adhesion, and osteogenic marker staining[110, 237, 

238]. The effect of the topographies of the NanoTopoChip U2OS cells was analysed 

through the cell shape and actin morphology[77]. We believe that morphological 

profiling using Cell Painting can improve screening by providing a more in-depth 

view of cell state. 

A similar screening is performed with the Galpagos chip by the de Boer group[232]. 

Instead of microtopographies, a chemical pattern library identical to that of the 

MicroTopoChip is fabricated with a binary Arginine-Glycine-Aspartic 

acid/polyethylene glycol coating. Human mesenchymal stem cells are studied by 

Cell Painting and YAP protein localisation. The adhesion pattern and the material 

affect the cells. The group of Daniel Anderson developed a screening platform to 

study the chemical composition of the surface, containing 1,728 different polymer 

spots[245]. In another device, they have created a platform of 496 polymer 

surfaces that differ in wettability, stiffness, and surface roughness by combining 

22 monomers at varying ratios[246]. All those factors have proven important for 

cell response, but in our work, we focus on the nanotopography library. 

Gratings create adhesion areas in a line. Thus, the cell morphology follows the 

grating, and one observes elongated, parallel-oriented cells along the gratings. 

This effect is especially of interest in the work with neuronal cells[91, 92]. Pits 
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and pillars create adhesion areas depending on the size of the features and the 

spacing between the pillars and pits. The slight differences in topography, as well 

as the features of height, size, and disorder, affect the response of the cell[26, 

31, 96, 97]. When choosing a topography for an application, the fine details of the 

topography geometry are rarely considered when identifying the ideal topography. 

The conventional analysis is done with expensive and time-consuming omics 

techniques, so that an in-depth analysis of various topographies is not feasible[12-

14]. We believe that morphological profiling using the Cell Painting method is a 

viable technique for studying a large library of topographies. As we have shown in 

the previous chapter, the Cell Painting method can detect the cell response to 

nanotopographies, with the ability to differentiate between nanopits in square 

(SQ), near-square (NSQ), and hexagonal (HEX) arrays. 

When studying the morphological profile of cells on nanotopographies, the 

differences in morphology will be relatively small. Thus, a good feature selection 

and batch correction are necessary. The morphological profiling has a large 

number of features compared to the number of variables. This curse of 

dimensionality is a well-known problem in machine learning with omics data, 

highlighting the importance of feature selection[247]. Additionally, the Capenter 

lab studied the feature selection and batch correction for the Cell Painting method 

in detail[141]. For an optimised and standardised data processing of Cell Painting 

data, they developed the Cytominer package for Python and R[140]. A study of 

batch correction methods for data of varying complexity, from single-laboratory, 

single-microscope data to multiple-laboratory, multiple-microscope data, showed 

good performance of Seurat correction and Harmony correction. The Seurat batch 

correction method is the state-of-the-art method for scRNA-Seq data[139].  

We aim to use the morphological profile of MC3T3 cells on various topographies to 

compare the morphology of the cells on the topographies with the morphology 

from the activators and inhibitors of the previous chapter to design new 

nanotopographies that replicate the effect of the activators/inhibitors. In 

machine learning, the prediction of a variable from a dataset is widely done[248, 

249]. However, the prediction of new variables, which are a new topography in 

our case, is rare and much more challenging[250, 251].  
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The expression of osteogenic markers can be predicted from the morphome of 

MC3T3 cells on 100 nm diameter nanopits in a square, near-square and hexagonal 

array using Bayesian linear regression[20]. An in-depth literature analysis was done 

to identify the optimal parameters for osteoinductive biomaterials via machine 

learning[251]. They found that a porous calcium phosphate ceramic with 

micropores between 2.5 and 10 µm and macropores of 250 to 1300 µm. A 

fabricated material based on the found optimal parameters, featuring macropores 

of 300 to 760 µm, micropores of 10 to 100 µm, as well as pores of 2 to 10 µm, with 

a porosity of 76.7%. The new bone formation surpassed the database average of 

10.97 % with 14.7 ± 7 %. Thus, it has been shown that new materials can be 

predicted from a database of different biomaterials. However, the prediction of 

new parameters has many limitations due to varying data quality and non-

standardised experimental procedures, the difficulty of comparing materials, and 

small dataset sizes[250, 251]. This work is the only one so far to predict new 

biomaterials from a library of different biomaterials. Other work has only been 

able to predict already known biomaterials from the cell morphome or identify 

the optimal biomaterial for a defined application from a library of tested 

biomaterials. Thus, we aim to take this work further by predicting new topography 

designs that match a cell morphome that does not come from a topography. That 

means we have the cell morphome of a cell in one state, for example, after 

osteogenesis induction, on the one hand, and, on the other hand, the cell 

morphomes from a library of systematically different nanotopographies. Now we 

want to make up a new topography that produces the morphome after osteogenic 

induction. 

Our approach with Cell Painting on injection-moulded polystyrene slides in well 

plates is designed to overcome these challenges of screening a large library of 

nanotopographies. The type of 24 well plate was used before by Huethorst et 

al.[186] for the screening of cardiomyocytes on grooves, chondrocytes on 

nanopillars and MC3T3 cells on high aspect ratio nanopillars. A comprehensive 

amount of data can be collected under well-controlled experimental conditions 

across a wide range of topographies by changing one parameter at a time and 

maintaining consistent material properties. The employed nanotopographies will 

be nanopits with varying pitch in a square and near square array, varying 
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diameters, varying disorder of hexagonal and square arrays, and gratings of 

different sizes. 

5.2. Methodology 

The staining and imaging procedures using the Cell Painting method are performed 

as described in Chapter 3. The staining is performed after four days of incubation 

on the nanotopographies, since it has been shown in Chapter 4 that we see an 

effect on the cell morphology after four days, while the control is not yet 

overcrowded. 

5.2.1. Nanotopography fabrication 

The polystyrene well plates with nanopatterns are fabricated using injection 

moulding and ultrasonic welding, as detailed in the general methodology section. 

These plates feature five distinct types of arrays of nanotopographies, each with 

its unique characteristics. Four of the five arrays consist of nanopits with a 

standard diameter of 120 nm, depth of 100nm, and centre-to-centre spacing of 

300 nm. The NSQ pitch array introduces a disorder of 50 nm from the ideal square 

lattice and a varying pitch from 250 to 350 nm (Figure 5.1A). The arrays with a 

pitch of 265 and 285 nm are missing due to a writing error in the master. The SQ 

pitch array, on the other hand, presents the nanopits in a square lattice with a 

varying pitch from 250 to 350 nm (Figure 5.1B). The array with a pitch of 290 nm 

is missing due to a writing error. Both arrays also include a well with a flat surface, 

nanopits in a HEX lattice, and a standard SQ and NSQ lattice for comparison. The 

sizes array offers varying nanopits with diameters from 150 nm to 5 µm in a SQ, 

NSQ, HEX, and near-hexagonal (NHEX) lattices (Figure 5.2A). The NSQ array with 

a diameter of 150 nm is missing due to a writing error in the master. These arrays 

are injection moulded with a previously made nickel shim as a master. The disorder 

array introduces nanopits in an NSQ lattice with varying disorder from 0 to 150 nm 

and in an NHEX lattice with a disorder of 0, 10, 20, 50, and 80 nm (Figure 5.3). 

The grating arrays, 200 nm in depth and with a size of 200 nm, 500 nm, 1 µm, 2 

µm, 5 µm, and 10 µm (Figure 5.2B), are injection moulded from EVG PDMS foils. 
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The master is fabricated using the EVG nanoimprinting tool, a crucial step in our 

process, which is described in detail below. 

First, a master for the nanoimprint must be fabricated. A four-inch silicon wafer 

is solvent cleaned in methanol, acetone, and isopropanol in an ultrasonic bath for 

5 minutes per solvent. After oxygen plasma cleaning for two minutes at 150 W in 

YES G-1000 plasma asher and a dehydration bake for at least one hour in a 180 ºC 

oven, a PMMA layer of 200 nm is spun on the wafer at 2000 rpm for one minute. A 

Allresist AR-P 632.09 PMMA with 9 % weight in anisole and a molecular weight of 

50k is used. After spinning, the wafer is baked on a vacuum hotplate for 5 minutes 

at 180 ºC to evaporate the solvent. Next, the desired pattern is written in the 

resist using electron beam lithography with a Raith EBPG 5200.  

The pattern is developed in a 2.5:1 isopropanol:methyl isobutyl ketone (IPA:MIBK) 

developer for 25 seconds at 21 ºC under constant agitation. The nanopattern is 

then etched into the silicon wafer using reactive ion etching with an SPTS Omega 

LPX 200 Rapier (SPTS, UK). The wafer is etched for 55 seconds to obtain a 100 nm 

depth. The etch parameters are as follows: C4F8 flow rate: 90 sccm, SF6 flow 

rate = 30 sccm, pressure = 20 mTorr, average platen HF power = 28 W, pk platen 

HF power = 280 W, platen HF duty = 10 %. The remaining resist is removed in a 

solvent cleaning process, as before when preparing the wafer. Afterwards, it is 

plasma cleaned again in a YES G-1000 oxygen plasma asher at 150 W for two 

minutes.  

Next, the wafer is prepared for the EVG UV-nanoimprinting. The EVG 

nanoimprinting is performed with the kind help of Dr. Iliyana Samardzhieva. First, 

an anti-sticking layer (2-Methoxy-1-Methylethyl Acetate) is spun for 60 seconds at 

800 rpm on the wafer and baked on a hotplate at 200 ºC for 75 seconds. After 

letting the wafer cool for 60 seconds, a propylene glycol monomethyl ether 

acetate solution is dispensed on the wafer while spinning at 500 rpm for 30 seconds 

and afterwards at 3000 rpm for 20 seconds. This step cleans the wafer and removes 

the edge bead. Next, the EVG PDMS soft stamp material is applied to the wafer 

and spun for 300 seconds at 4000 rpm. 
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In the EVG Nanoimprinting tool, the prepared wafer is placed on a vacuum chuck, 

and a Polyethylene Terephthalate (PET) foil is spanned into the machine. First, 

the PET foil is preconditioned for 10 seconds with UV exposure. After removing 

the protective foil from the PET foil, the wafer is moved below the PET and 

brought into contact with the foil using a roller to ensure good contact without 

bubbles. The sample is exposed to UV light for 300 seconds while holding a 

pressure of 1250 mbar. A 1000-Watt UV lamp is used for the UV exposure. After 

exposure, the foil is separated from the wafer, and one obtains the PET foil with 

the EVG PDMS with nanotopography on top. The foil-PDMS dual layer can then be 

cut into the desired shape by laser cutting and is ready for injection moulding.  

5.2.2. Data integration of Cell Painting data 

The morphome on the nanotopographies shows a smaller variety than the data 

with activators and inhibitors in the previous chapter. Thus, two different feature 

selection methods are tested. The first method, consistent with the previous 

chapter, involves the identification of significant data. Any feature with 

a difference between the highest and lowest mean values exceeding twice the 

mean standard error is deemed noise and excluded. Subsequently, all features 

with a fold change less than 75% between the maximum and minimum values are 

excluded to capture all data with an observable change. The data is then refined 

using Pearson correlation, with redundant data removed at a cutoff value of 0.95, 

and all features with an absolute correlation of less than 0.15 are excluded. 

In the second feature selection method, we leverage the advanced capabilities of 

the R Cytominer package. The package was developed by the Carpenter lab for 

the optimal data processing of Cell Painting data. So far, each study uses its own 

methods for feature selection, which makes the comparison difficult. A 

standardized data processing with an optimized package as Cytominer can 

improve the comparability of studies. This feature selection method begins by 

excluding data with near-zero variance, followed by the removal of redundant 

data. The latter is identified by Pearson correlation, and all data with a correlation 

higher than 0.95 is removed. The remaining features are then analysed for their 

importance by their contribution in decreasing the information entropy. The 

svd_entropy function is employed, providing values for each feature, where higher 
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values indicate that the feature contains more information. The features with the 

most information are then selected, showcasing the power of the R Cytominer 

package in our research.  

A strong batch effect is observed in the data set. Therefore, different batch 

correction methods are used with increased complexity. As a simple batch 

correction method, the data is normalized by centring the data to the median of 

the control using equation (8) with 𝑥̃ as the median and MAD, the median absolute 

deviation.  

𝑥−𝑥̃𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝑀𝐴𝐷𝐶𝑜𝑛𝑡𝑟𝑜𝑙
       (8) 

When the data is not normalised by centring to the control, the data is normalised 

by subtracting the single cell value from the mean and dividing by the standard 

deviation. A cube root transformation is also tested, which normalises the data 

similar to a log transformation. A log normalisation of the data is not possible since 

we have negative and very small values. A log(x+1) normalisation can be used 

instead, and the data can be shifted in a positive range. The cube root 

transformation has the benefit that it remains the special case of having zero 

values.  

As a more advanced batch correction method, we employ the Seurat method. This 

method follows the adaptation of the Seurat batch correction for the Cell Painting 

data of Arevalo et al. who demonstrates its adaptability and applicability[139].  

The batch correction is performed using the Seurat package developed by the 

Satija lab[144, 145]. We utilise the Seurat method with reciprocal PCA as a 

dimensionality reduction method. To find the anchor points, the nearest 

neighbours are searched by reciprocal projections onto the PCA space. After 

finding the integration anchors based on mutual nearest neighbours, the data is 

integrated to perform the batch effect correction.  

The quality of batch effect correction is analysed in UMAP projections. Those high-

dimensionality reduction methods must be used with caution, as it is known that 

they can distort data. However, it has also been proven to be a valuable tool to 

visualise the analysis. The controls on the different batches, as well as the 
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standard SQ, NSQ, and HEX nanopits in each batch, serve as an indicator to 

visualise whether a batch effect is visible or not.   

5.2.3. Linear Regression and canonical correlation analysis 

To test whether the morphome of the cells on the topographies of the 

nanotopography library correlates with the geometry of the topography, we use a 

multivariate multiple linear model[252, 253]. In conventional linear regression 

models, one single variable is predicted from a set of predictors. In the 

multivariate multiple linear regression (equation 10), multiple variables are 

predicted. Thus, the model appears as shown below, with Y representing the 

responses, X the predictors, and ε a random vector. 

(

𝑌11 ⋯ 𝑌1𝑞

⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑞

)

𝑛×𝑞

= 𝒀             (9) 

𝒀 = (

𝑋11 ⋯ 𝑋1𝑝

⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑝

)

𝑛×𝑝

(

𝛽11 ⋯ 𝛽1𝑞

⋮ ⋱ ⋮
𝛽𝑝1 ⋯ 𝛽𝑝𝑞

)

𝑝×𝑞

+ (

𝜀11 ⋯ ε1q

⋮ ⋱ ⋮
𝜀𝑛1 ⋯ 𝜀𝑛𝑞

)

𝑛×𝑞

    (10) 

With more predictors p than conditions n, we encounter a dimensionality problem, 

and a regression model is not possible. Thus, the number of features selected 

needs to be reduced. So far, we have always selected the features independently 

of the variables. To ensure a good regression, we use a maximum correlation 

minimum redundancy method. We calculate the correlation of the features to 

each of the geometry parameters. The geometry of the topographies can be fully 

explained by the x-pitch, y-pitch, diameter, noise, and offset. The features with 

the highest correlation to the features, and a correlation cut-off of 0.7 for the 

correlation between the features.  

To determine if the activator and inhibitor data from the previous chapter 

correlate with the data from the nanotopography library, we employ CCA[254]. 

CCA works similarly to PCA as it is also a dimensionality reduction method. 

However, it is not creating new variables with the highest variability, but it finds 

the linear combination of variables that has the maximum correlation to the 
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parameters of the dataset. We use the CCA R package and follow González et 

al.[255]. We use a regularised CCA to avoid dimensionality problems. The 

regularisation parameters are first computed by estimating them with a leave-

one-out cross-validation process. The optimal parameters are identified by first 

using a large grid and then refining it in the area with the highest cross-validation 

criterion. Since a CCA is similar to a PCA, both are dimensionality reduction 

methods based on matrix algebra and eigen analysis, and they can be visualised 

in a similar way. In the same way that we obtain a specific number of principal 

components from PCA that can be plotted in a 2D plot as the dimensions, we obtain 

canonical variates that can be plotted as the dimensions of the data.   
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Figure 5.1: SEM images of nanopits in a NSQ pitch array (A) and SQ pitch array (B). The 
NSQ pitch array has nanopits with 100 nm diameter, and a varying pitch from 250 nm to 
350 nm. The pits randomly vary by 50 nm from the ideal square lattice. The SQ pitch 
array has nanopits with 100 nm diameter, and a varying pitch from 250 to 350 nm in a 
square lattice. The SEM images are organized in the same way that they are organized 
on the used polystyrene slides with a flat control area. All SEM images are taken with a 
Hitachi scanning electron microscope of the SU8200 series. The scale bar shows 1 µm. 
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Figure 5.2: SEM images of polystyrene slides with nanopits with varying diameter (A) 
and gratings (B). The slide with varying diameter has nanopits of 150 nm, 500 nm, 1 µm, 
2 µm, and 5 µm diameter. They are arranged in a square lattice (SQ), near square lattice 
(NSQ), hexagonal lattice (HEX), and near hexagonal lattice (NHEX). The nanopits in a 
disorder always differ by 50 % of the diameter. The centre-to-centre pitch is always three 
times the diameter. The gratings are in a 1:1 ratio of pitch and grating with a size of 200 
nm, 500 nm, 1 µm, 2 µm, 5 µm, and 10 µm. The SEM images are organized in the same 
way that they are organized on the used polystyrene slides with a flat control area. All 
SEM images are taken with a Hitachi scanning electron microscope of the SU8200 series. 
The scale bars in A show 5 µm (white), and 1 µm (black). All scales bars of B are 1 µm. 
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Figure 5.3: SEM images of nanopits in a square array and hexagonal array with varying 
disorder. The nanopits have a diameter of 100 nm, centre-to-centre spacing of 300 nm, 
and a varying disorder from the ideal lattice by 0 to 150 nm for the square lattice (NSQ) 
and 0 to 80 nm for the hexagonal lattice (NHEX). The SEM images are organized in the 
same way that they are organized on the used polystyrene slides with a flat control area. 
All SEM images are taken with a Hitachi scanning electron microscope of the SU8200 
series. The scale bar shows 1 µm. 
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5.3. Batch correction of nanotopography library data 

The MC3T3 cells are successfully stained and imaged on all five different 

nanotopography arrays. When handling the CellProfiler data the same way as in 

Chapter 4, with a feature selection based on correlation and significance, we 

observe a strong batch effect. The UMAP in Figure 5.4 shows that the SQ pitch 

array data is especially separated from the other data. This is to be expected from 

the fluorescence images shown in Figure A5.3-A5.6, which show that the SQ pitch 

array has a weaker ER fluorescence throughout all topographies. The controls 

visualised by circles are not clustering together as they should, but they remain 

in their respective batches. The same effect can be observed for the standard SQ, 

NSQ, and HEX patterns that are present in every batch, except for the gratings. 

The batches of varying sizes and NSQ pitch are more connected. A clear trend 

based on the different topographies is still not visible in those batches. 

 

 

 

Figure 5.4: UMAP of nanotopography library data without batch correction. The 
datapoints are coloured by their batch and a clear clustering by the batches is visible. 
Especially, the array of SQ with varying pitches and the one with varying disorder are in 
a separate cluster. The control (circles) and standard HEX (square) as a reference 
topography stay in their batch and do not cluster with the same or similar topographies. 
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Due to the strong observed batch effect, a correction is necessary that should 

correct for the difference in staining intensity we see for the SQ pitch array. A first 

attempt at batch effect correction is done by centring the data to the median of 

the control of each batch. We assume that the morphome in the controls is the 

same across the different batches. Thus, an observed change is due to the batch 

effect. By centring the data to the median of each batch, we pick up the change 

for each condition in relation to the control of the corresponding batch (Figure 

5.5A). This batch correction method is the least invasive used, as it implies a 

minimum modification to the raw data. Naturally, the controls of the different 

batches cluster together in UMAP plot. However, the standard SQ, NSQ and HEX 

topographies of the different batches are still in their corresponding batch and 

not close to the same topographies. Thus, we change the feature selection from 

before the centring to after the centring, because if we select features before 

centring the data, we select the features that responsible for the batch effect. 

The feature selection after centring only improves the batch effect slightly. The 

UMAP plot continues to show a clear batch effect (Figure 5.5B). 

 To improve the correction, we first change the normalization method to a cube 

root transformation from normalizing the data to a mean of 0 and standard 

deviation of 1. The cube root transformation improves the normality of the data 

set that should help with the later statistical analysis that works best for normal 

distributed data. Instead of centring the data to the control of the corresponding 

batch, we now choose the control of the gratings batch as the reference control. 

All data is centred using the median and median absolute deviation of the gratings 

control. We choose the control from this batch because we have three controls in 

each batch and, therefore, a large dataset for of good reference images. This 

batch effect correction method improves the correction again, but a clear batch 

effect is still visible in the UMAP plot (Figure 5.5C). Especially, the SQ pitch array 

data is still clustering almost completely together. The remaining data is also still 

clustering together mostly by the batches and not the categories.  
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Figure 5.5: UMAP of nanotopography library data with median centred batch correction. 
The data is median corrected to the control of each batch and the same feature as in the 
initial feature selection are used (A). A feature selection after centring the data 
improves the distribution in the UMAP (B). An additional cube root formation for 
normalization further improves the batch effect correction (C). The median centring 
forces the controls together, which improves the batch effect. However, the reference 
topographies of standard SQ, NSQ and HEX arrangement are still clustering in their 
corresponding batch and not with similar topographies.   

All the above-mentioned batch effect correction methods are not able to reduce 

the batch effect enough. Thus, we use a more invasive method with the Seurat 

method. Seurat is a state-of-the-art batch correction method for scRNA-Seq 

analysis. It has also proven to work well with Cell Painting data, as it can 

successfully remove the batch effect while conserving the biological significance. 

Initial attempts at the Seurat correction using the old feature selection method, 

which involved removing redundant data and selecting significant data, did not 

sufficiently improve the batch effect correction. Therefore, we also have to 

consider the feature selection method. The Cytominer package developed by the 

Carpenter lab, which are also the creators of the Cell Painting method and 

CellProfiler, is the best possible toolbox for the analysis of morphological profiling 

data. This toolbox also includes a function to measure feature importance based 

on its ability to reduce data entropy. The features with the highest importance 

are selected after the removal of redundant features and features with near-zero 

variance. In contrast to previous methods, we do not have a cutoff value for 
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feature selection; instead, we must specify how many features are needed for a 

good representation of the data. A first test showed that a feature number of at 

least 200 is necessary.   

Finally, we observe the best batch effect correction with the RPCA Seurat 

correction, where the data is normalised by centring it on the median of the 

controls for each batch before the Seurat correction. Then, the top 300 features 

with the highest importance for the reduction of data entropy in the dataset are 

selected after removing features with near-zero variance and redundant features 

with a cutoff value of 0.95. The data is combined with the activator and inhibitor 

data from the previous chapter for the Seurat correction. However, for feature 

selection, only the nanotopography library data is used, as we are interested in 

the features that describe changes across the topographies. The UMAP plot shows 

a good distribution of the data and no strong batch effect as before (Figure 

5.6A+B). The topographies still do not cluster perfectly by their category, but it is 

a significant improvement compared to the initial data. With 84 different 

nanotopographies and 13 different activators and inhibitors, each with three 

concentrations per condition, this plot includes too much information to be easily 

comprehended. To better understand the clustering, we break down the plot into 

each batch and plot it separately. 
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(caption for figure in previous page) Figure 5.6: UMAP of nanotopography library data 
after Seurat correction. The nanotopography library data is plotted together after a 
Seurat correction with the top 300 features selected by information entropy based 
selection. The UMAP is coloured by the topography categories (A), and the batch (B) to 
visualize the batch correction. The data does not cluster together only by the batches, 
but the batches are spread across the plot. However, no obvious relation between the 
categories of topographies is visible. The activators and inhibitors do not cluster with 
any of the other data. Thus, a change in topography is not triggering other parts of the 
mechanotransduction pathway. The isolated activator/inhibitor data of the full UMAP 
show a good grouping by the different activators and inhibitors (C).  

It is noticeable in the full UMAP plot that the activators and inhibitors are clearly 

separated from the nanotopography library data. Only the control lies with the 

other controls. This does not support our hope that the changes in the 

nanotopography might trigger different responses in the cell. When examining the 

isolated activator and inhibitor data, similarities to the distribution of the 

activator and inhibitor data from the previous chapter are visible (Figure 5.6C). 

The Ras/Rac and Cdc42 inhibitors SCH51344 and ML141 cluster together as well as 

the cytoskeletal activators jasplakinolide, narciclasine, and calyculin A. The 

cytoskeletal inhibitors cytochalasin D, Y-27632, and blebbistatin also cluster 

together. This shows that the clustering is working well and that we can trust the 

distribution in the UMAP plot.  

An isolated look at the batches of the nanotopography library data reveals that no 

clear trends based on geometry are observable; however, the topographies group 

into three clusters per batch for the NSQ pitch array, SQ pitch array, and varying 

disorder array (Figure 5.7). We did not necessarily expect a continuous 

relationship between the pitch distance or disorder and cell morphology. However, 

it has been shown that sweet spots in adhesion areas exist. Thus, we expect ranges 

of topographies to have a similar response. We plot the observed clusters against 

the pitch as well as the disorder (Figure 5.9). While we observe some signs of 

periodicity in the SQ pitch array and NSQ pitch array, no clear pattern is visible. 

Additionally, the disorder array is mostly together in one big cluster, with the 

topographies with the largest disorder of 140 nm and 150 nm separated. At very 

high disorder, nanopit placement is entirely random, and the pits often overlap. 

At such a high level of randomness, we expect the topographies to be more similar. 

Surprisingly, they lay together with the standard SQ topography. 
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Figure 5.7: UMAP of isolated nanotopography library batches. The projection is from the 
full UMAP and the UMAP coordinates of the SQ-pitch array batch (A), NSQ-pitch array 
(B), and varying disorder batch (C) are plotted independently for better visibility. The 
formed clusters are highlighted by circles and numbered. No underlying pattern in the 
in the clustering of the topography parameters is visible for any of the arrays. 

The batch with varying diameters and gratings does not have enough data with 

one changed parameter to analyse the cluster in the same way. For both batches, 

the topographies that are 5 µm or larger in size are close to the control as visible 

in Figure 5.8. With a feature size that large and a depth of only 100 nm, the 

nanotopographies no longer affect the cell. The cell can adhere to the whole 

surface, and the small 100 nm step does not affect the cell enough to have a 



99 
 
visible effect. The topographies of a large diameter also have a large spacing in 

between. That spacing is likely to be too large to form localised integrin clusters. 

Additionally, the cell feels the shape of the nanopits only in a few places, and has 

a curved membrane only in those areas due to the topography. This will not be 

enough to create a significant influence on F-BAR protein binding due to 

membrane curvature. In the batch with varying diameters, the hexagonal pattern 

and near-hexagonal pattern primarily cluster together. The hexagonal and square 

arrays with pits of 500 nm are close to the nanopits, which have a high disorder 

of 140 and 150 nm. The high disorder might produce large adhesion areas that are 

similar in size to those patterns with 500 nm diameter nanopits, which have a 

distance of 1 µm between the nanopits.  

 

 



100 
 
(caption for figure on previous page) Figure 5.8: UMAP of isolated nanotopography 
library batches with varying diameter (A) and gratings (B). For both arrays the large 
features of 5 µm and above are close to the control because the extremely low aspect 
ratio makes the topography not noticeable to the cells. Many of the NHEX and HEX 
nanopits are close to each other, however, not all of them are located in one cluster. 
Thus, it is not clear if the topography arrangement or nanopit sizes drive the cell 
morphology changes. The projection has the dimensions from the UMAP of the full 
nanotopography library data. 

 

Figure 5.9: Plot of the different clusters depending on the pitch for the SQ pitch array 
(A), and for the NSQ-pitch array (B), and depending on the disorder for the disorder array 
(C). The clusters are taken from Figure 5.7. No trend that is depending on the pitch or 
disorder is visible. The clustering seems mostly random.  

5.4. Linear regression and canonical correlation analysis 

of nanotopograpy library data 

To design new topographies from the cell morphome, we need to ensure first that 

the geometry of the topography correlates with the morphome. The 

nanotopographies need to be parameterised to be in a comparable format. Five 

parameters can fully describe them: the x-pitch, y-pitch, diameter, 

noise/disorder, and offset. The x- and y-pitch are the same for the nanopit arrays. 

For the gratings, the x-pitch is the same value as the diameter because it is a 

constant line, and there is no space between them. The y-pitch is two times the 

diameter. The offset defines whether the nanopits are in a hexagonal array. A 

hexagonal array has an offset of half of the centre-to-centre pitch. Those 

parameters are used with the morphome to check for a linear relationship 

between the morphome and topography parameters. A multivariate multiple 

linear regression is employed for it. 
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The features with the highest correlation to the topography parameters are 

selected. For each batch, we select the features with the highest correlation to 

the corresponding geometry parameter. For the SQ and NSQ pitch array, we look 

at the correlation to the pitch; for the batch with varying disorder, we look at the 

correlation to the disorder, and for the batch with varying sizes and gratings, we 

look at the correlation to diameter. For each batch, the 10 features with the 

highest correlation are picked. For the gratings batch, only the three highest 

features are selected because it has fewer different conditions, with only six 

different grating sizes. We need a smaller number of features than conditions to 

be able to check if the regression works just for the isolated data from one batch.  

Combining the different batches into a complete data set presents its own set of 

challenges. With increasing diameter, the raw absolute pitch and noise values also 

change, while the relative value remains constant. The pitch arrays have a varying 

pitch in 5 nm steps in a range of 100 nm, and the disorder array has a varying 

disorder in 10 nm steps in a range of 150 nm. However, the pitch changes for an 

increased nanopit diameter of 500 nm by 1200 nm, a massive change that a linear 

relationship of the morphome cannot explain. This skewness of the whole dataset 

makes a linear regression of the raw absolute data impossible. As a result, we only 

consider the SQ and NSQ pitch batch and the batch with varying disorder when 

examining the raw absolute data (Figure 5.10). For the whole dataset, the 

geometrical parameters are calculated relative to the diameter. 

The linear regression of the pitch and disorder against the morphome shows a good 

linear relationship for the batches with the changed parameter (Figure 5.10). The 

pitch can be predicted well for the NSQ and SQ pitch arrays, and the disorder can 

be predicted well for the batch with varying disorder. However, the batches with 

a constant pitch or disorder are not predicted correctly through the linear 

regression. The linear regression of the pitch for the raw data of the SQ and NSQ 

pitch batch show an adjusted R2 of only 0.012 and a p-value of 0.466, while the 

linear regression of the absolute disorder shows a much better linear regression 

with an adjusted R2 of 0.647 and a p-value of 3.81 10-6. The linear regression of 

the pitch improves with the use of relative data with an adjusted R2 of 0.098 and 

a p-value of 0.271. However, the performance of the linear regression of the 

disorder decreases with an adjusted R2 of 0.52 and a p-value of 0.00017.  The 
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problem is that while the pitch stays the same, the adhesion area and therefore 

also the morphome still change across the differently disordered topographies of 

the batch with varying disorder. The adhesion areas are known to be a driving 

factor in the cell response to nanotopographies. We expect that across nanopits 

arrays with varying pitch and disorder, we will have topographies with very similar 

distributions and sizes of adhesion areas. So that the cell response will also be 

similar, a simple linear regression cannot replicate this similarity in morphome on 

clearly different topographies. More advanced models would be necessary to 

describe it. The linear regression of the disorder is better than the regression of 

the pitch. We believe that the disorder is a more important factor in the cell 

response than the pitch. The disorder is likely to have a higher impact on the cell 

and the morphome, and with more substantial changes in the morphome, the 

linear regression works better. 

 

Figure 5.10: Linear regression calculated by multi variant linear regression for the 
centre-to-centre pitch and disorder of nanopitches. The raw data values for the pitch 
and disorder are only calculated for the disorder, NSQ-pitch array (nsqp), and SQ-pitch 
array (sqp) since the high values of the large diameter pits as well as large gratings skew 
the data too much. The pitch and disorder relative to the diameter can be calculated for 
the whole nanotopography library. 
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The newly selected features for the linear regression are selected to describe the 

changes in the relevant batches well. Thus, they are also not performing as well 

in correcting a batch effect. Especially, the raw absolute data of just the NSQ and 

SQ pitch and the disorder batch cluster together just by their batch in a UMAP plot 

(Figure 5.11A). The full dataset, including the relative geometric parameters, 

improves it. Unfortunately, there are no novel trends in the UMAP plot visible 

(Figure 5.11B). For the SQ pitch, NSQ pitch and varying diameter batch no trends 

are visible. The batch with varying disorder has the nanopits with high disorder 

above 120 nm separated from the other nanopits of the batch. Surprisingly, the 

disorders of 60 and 70 nm are close to the topographies with high disorder. As 

mentioned earlier, the highly disordered nanopits are entirely random, with many 

overlaps, and therefore, they are also expected to elicit a different cell response. 

The gratings show again that we need features of less than 5 µm to have a visible 

response to the topography. Furthermore, the controls cluster in their respective 

batches again rather than together, indicating a batch effect. That might be 

because we select features with the highest correlation with the topography 

parameters. The controls have a value of zero for all topography parameters and, 

therefore, are outliers in the feature selection. The correct classification of the 

control is not prioritised in the feature selection, and therefore, the features are 

unlikely to highlight similarities between the controls. 

The multivariate multiple linear regression shows that the morphome correlates 

with the geometrical parameters of the nanotopographies, even though not the 

whole topography can be predicted from the morphological features. A CCA 

analysis is used to check the correlation between the activator and inhibitor data 

and the nanotopography library data (Figure 5.12). The activators and inhibitors 

do not cluster in the CCA plot of the first two dimensions in a way that would make 

sense based on the function of the activators and inhibitors, as well as the 

previously discovered relationship to the response to the standard SQ, NSQ, and 

HEX topography. The CCA plot does not show any systematic relationship between 

the activators and inhibitors and the nanotopography library data. 
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Figure 5.11: UMAP of nanotopography data after feature selection for linear regression 
of raw absolute data (A) and relative data (B). The relative data takes the disorder, pitch 
and offset relative to the feature diameter to avoid the skewing of the data because of 
the large features. The use of the relative data improves the clustering in UMAP. The 
raw absolute data shows a clear clustering by the batch while the relative data have 
more separation in the batches. 
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Figure 5.12: Canonical correlation analysis (cca) of nanotopography data to activator 
and inhibitor data. The Scree plot shows the canonical correlation of the computed 
dimensions (A).  The canonical correlation of the variables is plotted in the first two 
dimensions by the batch (B) and category of topography (C). No clear correlation between 
topography parameters and mechanotransduction pathway activators and inhibitors are 
visible in the cca. 
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5.5. Influence of topography parameter on cell morphome 

As described above, a combined analysis of the topography parameters is not 

possible due to the interplay in cell response between the geometrical 

parameters. Thus, we change our approach to analysing topography parameters, 

which is characterised by a systematic separation of the data into four groups. 

Each group represents a unique aspect of the cell response, with only one 

parameter being altered at a time. The first group examines the disorder batch, 

the second group explores the variation in pitch by combining the NSQ and SQ 

pitch arrays, the third group investigates the varying diameters, and the fourth 

group studies gratings with different widths. This systematic approach allows us 

to gain a comprehensive understanding of the cell response. We then visualise the 

cell response by plotting heatmaps of the corresponding groups and subjecting 

them to a hierarchical clustering of the variables. The distances for the 

hierarchical clustering are calculated using the Euclidean method. The selected 

features are chosen in a manner similar to the feature selection process for 

multivariate multiple linear regression. The features are batch corrected using 

RPCA Seurat correction, and redundant and zero-variance features are removed. 

Next, the features with a Pearson correlation of more than 0.5 to the topography 

are selected.  

5.5.1. Nanopits of varying disorder 

The nanopits of varying disorder exhibit a high correlation with morphological 

changes, as indicated by 132 features with a Pearson correlation above 0.5. The 

most prominent clustering we observe is the high disorder above 120 nm. They 

show a clearly different morphome from the other topographies as visible in the 

heatmap in Figure 5.13. The fluorescence images are shown in Figure A5.3. 

Interestingly, the disorder of 60 and 70 nm is grouped in the same cluster. The high 

disorder creates an entirely random topography that no longer follows the square 

array. Additionally, we observe many nanopits that overlap at high disorder. Among 

the other disorders, no clear trend is observable, except for the separation 

between NHEX topographies and NSQ topographies. This highlights that even in a 

disorder, the controlled aspect of the disorder is important for the cell response. 
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Furthermore, the underlying organisation of nanopits, whether in a square or 

hexagonal array, is important for the cell response. That we can pick up those fine 

differences in the topography by the morphome supports again the potential of 

morphological profiling using the Cell Painting method. 
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(caption for figure on previous page) Figure 5.13: Heatmap of the morphome depending 
on the disorder of nanopits. The heatmap is ordered by hierarchical clustering using 
Euclidean distances. The features are normalized between 0 and 1. Each feature is 
corrected against the control by dividing it from the control. The topographies are 
labelled by the array geometry if it is square (SQ), near square (NSQ), hexagonal (HEX), 
or near hexagonal (NHEX). The number behind the geometry describer corresponds to 
the disorder in nanometer. The NSQ patterns with a disorder above 120 nm cluster 
together as the nanopatterns are more randomly distributed. Surprisingly, the NSQ of 60 
and 70 nm have similar features. The features mostly depend on the NHEX and NSQ 
arrangement. 

5.5.2. Nanopits of varying pitch 

The pitch does not correlate with the morphome as strongly as the disorder. When 

examining the individual NSQ pitch and SQ pitch batches, the NSQ pitch batch 

contains 54 features with a Pearson correlation of over 0.5 to the pitch, while the 

SQ pitch array comprises 17 features with high Pearson correlations. When 

combining both datasets into a single dataset of varying pitches, no feature has a 

Pearson correlation coefficient higher than 0.5, and only three feature has a 

correlation above 0.4. 49 features have a higher correlation than 0.3 with the 

pitch and are used for the heatmap (Figure 5.14). The fluorescence images of the 

NSQ pitch array are shown in Figure A5.4 and the images of the SQ pitch array in 

Figure A5.5. The correlation values are calculated with the control set as a pitch 

of 0 nm. We believe that this drop to 0 for the control compared with the pitch 

from 250 to 350 nm disturbs the correlation too much since a feature needs to be 

higher or lower than the control for all pitches to be correlated. Thus, we also 

calculate the Pearson correlation excluding the control. Surprisingly, it does not 

change the number of correlated features a lot. We observe 19 features that have 

a correlation larger than 0.5 for the NSQ pitch array, and 22 features that have a 

correlation larger than 0.5 for the SQ pitch array. The combined dataset shows a 

Pearson correlation to the pitch that is larger than 0.4 for five features, and 37 

features have a Pearson correlation larger than 0.3. We believe that those features 

still replicate the morphome depends better than the features that are calculated 

including the control and use them for the analysis. Since the correlation is low, 

the clustering in the heatmap seems random as well. No trend depending on the 

pitch is visible. The SQ and NSQ batches mostly separate, indicating that the 

disorder has a more substantial effect on cell response than the pitch differences. 

This is also supported by the substantial decrease in correlation of the morphome 
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to the x-pitch when combining the SQ and NSQ datasets. The NSQ and SQ pitches 

also do not exhibit a pitch dependent trend when viewed separately (Figure A5.1 

and A5.2). 
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(caption for figure on previous page) Figure 5.14: Heatmap of the morphome depending 
on the pitch of nanopits. The heatmap is ordered by hierarchical clustering using 
Euclidean distances. The features are normalized between 0 and 1 and corrected against 
the control by dividing the control from the other substrates. The topographies are 
labelled by the array geometry if it is square (SQP), or near square (NSQP). Additionally, 
the corresponding batches are labelled in red (SQP) and blue (NSQP). The number behind 
the describer of the geometry (SQP/NSQP) corresponds to the centre-to-centre spacing. 
The features show most similarities in their own batch. Especially, the SQ array nanopits 
show little variation with varying pitch.  

5.5.3. Nanopits of varying diameter 

The dataset of varying diameters has the smallest correlation to the morphome of 

all individual datasets. Only four features have a Pearson correlation of more than 

0.5 with the morphome, and 26 features show a correlation of over 0.4. Those 26 

features are used for analysing the diameter dependence (Figure 5.15). The 

fluorescence images are shown in Figure A5.6. The hierarchical clustering reveals 

a separation of the HEX, NHEX, NSQ, and SQ arrays, with a diameter of 5 µm, from 

the remaining data. Surprisingly, the SQ array with nanopits of 1 µm diameter falls 

into the same cluster. Overall, the nanopits are close to topographies of the same 

diameter. Thus, the cell response to the diameter, independent of the array 

geometry, can be detected. However, the low number of features with high 

correlation to the nanopit diameter suggests that it does not have a substantial 

effect on the morphome, and that the geometrical arrangement may play a more 

significant role in the cell response than the diameter of the nanopits. The 

separation of the high diameter nanopits is expected because, at a depth of 100 

nm and a diameter of 5 µm, cell adhesion will not be limited to the areas without 

pits but will adhere to the whole surface and will only feel the 100 nm deep edge 

of the nanopits. With smaller adhesion guidance through the large nanopits, we 

expect it to be similar to a flat surface. However, curiously, the control clusters 

closed with the 500 nm nanopits, which cannot be explained by the previously 

found clustering in the UMAP (Figure 5.8A), where the control clustered with the 

5 µm nanopits as expected. The correlation between nanopit size and morphome 

is weak; therefore, we expect the selected features may not be well-suited to 

describe the cell response, depending on feature size.   



111 
 

 

Figure 5.15: Heatmap of the morphome depending on the diameter of nanopits. The 
heatmap is ordered by hierarchical clustering using Euclidean distances. The features 
are normalized between 0 and 1 and corrected against the control by dividing the control 
from the other substrates. The topographies are labelled by the array geometry if it is 
square (SQ), near square (NSQ), hexagonal (HEX), or near hexagonal (NHEX). The 
diameter of the nanopits is mentioned after the array category. The large nanopits of 5 
µm show a similar morphology that separates them from the other topographies. The 
clustering is mostly driven by the nanopits diameter and not the geometrical 
arrangement in a SQ, NSQ, HEX, or NHEX array. 
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5.5.4. Gratings of varying widths 

The gratings show the most prominent effect on cell morphology. Therefore, it 

comes as no surprise that a strong correlation between the widths of the gratings 

and the morphome can be observed. 295 features have a Pearson correlation 

coefficient greater than 0.5 with the pitch of the gratings. The gratings direct cell 

alignment, causing highly oriented and elongated cells along the direction of the 

gratings. The morphological change is more pronounced than the change through 

nanopits. On nanopits, the MC3T3 cells maintain their typical shape, with slight 

changes in protrusions and elongation depending on the geometry. The elongation 

on the gratings decreases with increased widths, as can be clearly seen in the 

fluorescence images of the Cell Painting staining (Figure 5.16B). This is also 

reflected in the heatmap and hierarchical clustering, where the gratings cluster 

together by their size. The largest gratings, 5 and 10 µm, exhibit the most 

significant difference in the morphome, as the gratings do not align the cells. The 

remaining grating sizes have a similar morphome with the smaller 200 and 500 nm 

gratings clustering together and the 1 and 2 µm gratings clustering together.  
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Figure 5.16: The morphome dependence on grating width is plotted in a heatmap (A) 
and shown in fluorescence images (B). The heatmap (A) is ordered by hierarchical 
clustering using Euclidean distances. The features are normalized between 0 and 1 and 
corrected against the control by dividing the control from the other substrates. The large 
gratings of 5 and 10 µm show a different feature expression to the smaller gratings and 
show a higher similarity with the flat control. The Cell Painting fluorescence images (B) 
show the alignment of MC3T3 cells with the gratings for a width of 200 nm to 2 µm, 
while the 5 and 10 µm gratings do not produce a cell alignment. The scale bars shows 50 
µm.  

The control is more similar to the large gratings, as they resemble the typical 

MC3T3 cell shape. It shows that the alignment to nanotopographies is an adhesion 

driven effect, rather than an effect driven by physical confinement, as observed 

on gratings with heights above 1 µm[256, 257]. Refaaq et al. demonstrated that 

PDMS gratings with 6 µm ridges and 4 µm grooves confine MC3T3 cells at grating 
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depths of 1 µm and 4.5 µm. At high heights, the alignment is driven by cell 

protrusions that sense the walls of the ridges and make contact with them, which 

in turn drives cell elongation along the gratings[258]. At a low grating height of 

150 or 200 nm, the gratings do not provide enough area for the protrusions to 

make contact with. However, at small gratings with a width of a few hundred 

nanometers, the focal adhesion clusters are aligned along the gratings, which 

produces cell elongation and alignment along the gratings. The size dependent 

effect of the gratings is similar to the size dependent effect of the nanopits. 

Features of 5 µm and larger are too large to direct focal adhesion formations in a 

way that visibly affects cells. 

5.6. Conclusion 

We successfully imaged fluorescently stained MC3T3 cells on 84 different 

nanotopographies, consisting of 78 nanopits in SQ, NSQ, HEX, and NHEX arrays 

with varying diameters, pitches, and disorder, as well as 6 gratings with varying 

widths. We take 20 images in three biological replicas per condition, which 

accumulate to more than 5340 images taken and 26700 cells analysed, with an 

average of 5 cells per image. The imaging of the fluorescence images takes 

approximately 400.5 hours of continuous imaging for the entire dataset. This 

represents the large magnitude of data collected and how extensive the used 

nanotopography library is.  

The analysis of the morphome of MC3T3 cells on a library of nanotopographies has 

proven more complicated than expected. A first challenge is the relatively small 

difference in responses between different topographies. Due to the slight 

differences, careful feature selection and batch correction are needed. The 

Seurat batch correction, known for its effectiveness in scRNA-Seq and Cell Painting 

data batch correction, has proven to remove a significant portion of the batch 

effect while retaining the biological information. We can separate the controls of 

the batches and get the batches mixed. However, we still do not observe a perfect 

correction, as the standard SQ, NSQ, and HEX topographies that are in all nanopit 

batches do not cluster together.  
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Additionally, we found that the feature selection method must be suitable for the 

purpose. To study the relationship between different topographies, a metadata-

independent feature selection method is most effective. A feature selection 

method that measures the feature importance based on its ability to reduce the 

data entropy works best. When we want to study the relationship between the 

morphome and the geometry of the nanotopography, a feature selection approach 

based on the correlation between morphological features of the cells and 

geometrical features of the nanotopographies works best. In general, the 

complexity of the relationship makes the analysis difficult. The high 

dimensionality of the data poses another challenge. Usually, over 100 different 

features are used, which means that we have more variables than observations, 

which causes dimensionality problems in a linear regression. The reduced number 

of features selected for the multivariate multiple linear regression helps to 

overcome the dimensionality problems, thereby reducing the risk that it does not 

describe the full effect of the topographies on cell morphology and, consequently, 

does not reveal the full relationship. In general, one must be cautious not to 

overfit the data with normalisation, Seurat correction and feature selection.  

The nanotopography library shows that the nanotopography features need to be 

smaller than 5 µm to influence the cell. Larger topographies do not create 

designated adhesion areas. This is especially visible in the gratings of different 

sizes. The small gratings create highly oriented and elongated cells along the 

gratings, whereas the large gratings of 5 and 10 µm do not significantly affect cell 

morphology. In general, the morphome differs a lot on the gratings compared to 

the nanopits. In comparing the different nanopit topographies, we find that 

disorder has the most substantial impact, next to the diameter of the nanopits. 

For the diameter, the dependency is similar to the gratings with the nanopits of 

5 µm, having a smaller impact. The disorder exhibits a better linear relationship 

with changes in the morphome than the pitch. Additionally, a clear trend is 

observable, where the high disorder separates from the other disordered 

topographies as the placement becomes completely random, and we see many 

overlaps of pits. However, we are unable to explain why we observe a change in 

morphology at the transition from a disorder of 110 nm to 120 nm. In particular, 

the similar morphology of the 60 and 70 nm disorder to the high disorder nanopits 
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is not explainable. The high disorder and overlap between pits might create larger 

areas without adhesions, since integrins need to be closer than 70 nm to form 

integrin clusters, and the adhesion area needs enough space to form a cluster of 

several adhesions[259-261]. For the formation of stable focal adhesions, at least 

4 integrin attachments are needed with an interspacing distance of 60 nm or less. 

However, the cluster size does not affect cell spreading above 4 integrins[262]. 

We would assume from this that the organisation of the integrin clusters we find 

on our topographies is more important than the adhesion sizes, as they are mostly 

large enough to facilitate their formation. When the nanopits are extremely close 

due to high disorder, the space between them might not be large enough for the 

formation of integrin clusters, even when the nanopits do not overlap. On the 

other hand, it also creates relatively large adhesion areas when the nanopits are 

far apart due to disorder, with a maximum of 150+150 nm of additional spacing 

between two nanopits. It is known that the cell response to nanotopographies 

depends on the available adhesion areas. We believe that the nanopits of the NSQ 

pitch batch, SQ pitch batch, and batch with varying disorder in an NSQ and NHEX 

arrangement should have topographies with similar adhesion areas between the 

different topographies. We do not find any support for this claim in the data.  

Cell alignment has been widely studied across different cell types and grating 

dimensions. Alignment properties vary strongly by cell type. It is known to depend 

on grating height and spacing. Dual gradient chips with gradients in height and 

spacing showed the highest elongation and orientation along the gratings for the 

highest (0.85 – 1 µm) and widest (8 – 30 µm) gratings in human-induced pluripotent 

stem cell-derived cardiomyocytes[263]. The endothelial LE2 cells and fibroblast 

hTERT cells show the strongest alignment with the narrowest gratings (8 µm) and 

the largest height (1 µm)[264]. Fibroblasts show greater alignment than epithelial 

and endothelial cells. At wide gratings with a width of 1 µm or larger, a large 

height of around 1 µm is needed for the cells to align with the gratings. With high 

gratings, the cells feel the sidewalls through cell elongations, such as 

filopodia[257, 258]. Gratings with a smaller height at 350 nm showed the highest 

alignment and elongation in narrow 350 nm gratings for human mesenchymal stem 

cells[241]. The alignment is still visible up to a width of 2 µm. The alignment 

drastically drops at a width of 10 µm. Those findings align with our data. However, 
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for neurons, only 2 µm wide and 2 µm high gratings cause alignment. 250 nm wide 

and 250 nm high gratings do not produce any alignment[242]. Thus, the cell line 

must be considered when designing the biomaterial. Due to the observed 

difference in alignment between microgratings and nanogratings, we believe that 

two distinct alignment mechanisms exist. At microgratings, the cells sense the 

gratings' sidewalls and align along them. The alignment on nanogratings is 

probably adhesion-driven, with an arrangement of focal adhesions along the 

gratings that elongates and aligns cells.  

A detailed study of the response to varying topographies has proven challenging in 

general. One big challenge is that the change of different topography parameters 

has a similar effect on the cell. A reduction of the pitch of an SQ array may 

similarly change the adhesion areas as an increase in disorder. Thus, it is 

challenging to correlate specific changes in the morphome to a change in one 

parameter, but the interplay between the different topographical parameters 

needs to be considered. We are also assuming a linear relationship between 

topographical parameters and morphome. However, the analysis of clusters shows 

a hint of possible periodicity, and it can very well be that sweet spots of 

topographies exist for the cell response. Thus, more work is needed to fully 

understand the influence of the different topography parameters on the cells. 

However, an analysis not assuming linearity and considering the relationship 

between the different topography parameters is much more challenging. 

We also see that the response to nanotopographies is more complicated than the 

response to activators and inhibitors in the previous chapter. The morphome of 

the inhibitors and activators does not cluster with any specific group of 

topographies. The CCA showed some correlation between topographies and 

activators and inhibitors, but no trend is observable. The activators and inhibitors 

strongly affect one part of the mechanotransduction pathway, while the 

nanotopographies affect the complete mechanotransduction pathway. The cell 

response changes in nuances to the changes in the topography, and not as extreme 

as to changes in activators and inhibitors. For example, a slight change in disorder 

will not completely change the differentiation of the MC3T3 cell from 

differentiating into mature osteoblasts to not differentiating at all. Depending on 

the topography, the differentiation is slightly stronger or weaker. Thus, we will 
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likely see changes in the strength of the response, not see different responses and 

different mechanotransduction pathways. Those nuances are obviously much more 

challenging to pick up; however, we believe that we can pick them up. It can be 

compared with the different concentrations of the activators and inhibitors in the 

previous chapter. Only the gratings with a completely different topography 

compared to the nanopits show a clearly different cell morphology, which is 

captured by our analysis. 

While a machine learning based approach for predicting new topographies is a 

promising option, it would require a significant amount of work and optimisation. 

Additionally, the use of a polytomous variable class analysis (poLCA)[265] could 

provide intriguing insights into the similarities between topographies. While poLCA 

is not designed for predicting topographies, it excels in identifying sources of 

cofounding between variables and constructing clusters based on this information. 

It can uncover hidden subgroups in the dataset that may reveal similarities 

between different topographies with similar available adhesion areas. 

In contrast to other large nanotopography libraries, our library is highly 

systematic, with only five parameters needed to describe all topographies. The 

BSSA chip of the Foss group also uses a systematic approach. However, it shows 

greater variation in its patterns due to different combinations of circles, squares, 

and rectangles, whereas ours with nanopits shows only variation in pitch, size, and 

disorder[237, 238]. The NanoTopoChip[77] primarily focuses on the variance in 

feature shape resulting from the random combination of squares, triangles, and 

circles into unique shapes. Our nanotopography library also differs in the size 

range of topographic variations from those of the BSSA chip library. We study the 

difference in pitch at steps of 5 nm and in disorder at steps of 10 nm, whereas the 

BSSA platform steps in 1 µm increments and larger. The NanoTopoChip has a very 

detailed variation of features and pitch sizes. However, distinct values for possible 

adhesion areas are challenging to name due to the complex shapes. We believe 

that our systematic approach can be beneficial for predicting new topographies, 

even though it has a smaller range of topographies than the BSSA and 

NanoTopoChip platforms.  
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Even though our library and the NanoTopoChip and BSSA platform differ 

significantly in the topographies used, screening methods, and plate design, we 

face the same challenges and achieve similar results. We identified the size and, 

therefore, the large difference in feature spacing as the main driving factor for 

the cell phenotype. At the same time, small changes in pitch and disorder did not 

significantly affect cell morphology. The NanoTopoChip showed that U2OS cell 

spreading depends on the ratio of patterned to non-patterned area. Additionally, 

they found that few large, patterned areas give rise to small cell areas, whereas 

many small adhesion areas give rise to large cell areas. No influence of feature 

shape was observed[77]. The BSSA platform identified that the inter-pillar gap size 

is the most important factor in promoting osteogenesis[110]. The highest 

osteogenic marker expression was observed at a gap size of 4 µm, whereas larger 

gap sizes strongly reduced differentiation. Pillars with a size of 1 and 2 µm exhibit 

the strongest response in osteogenic marker expression. In comparison, pillars 

with diameters of 4 and 6 µm exhibit significantly lower expression of osteogenic 

markers. This observation matches our results, which show that cellular 

morphology changes decrease at larger adhesion areas with larger nanopits. A 

similar effect was observed for the BSSA platform on fibroblasts, where the inter-

pillar distance also drives proliferation. At the same time, the shape of the pillar 

does not affect the cells significantly[237].  

The Galapagos chip, which used the MicroTopoChip design to create unique 

adhesive areas, found similar limitations to us[232]. They found no correlation 

between YAP nuclear translocation and adhesion patterns. However, they were 

able to correlate cell morphology to YAP nuclear translocation. Adding a factor 

such as YAP nuclear translocation could also be an approach to improve our 

nanotopography library screening.     



120 
 

6. Cellular traction force dependency on 

nanotopography – the challenge of hierarchical 

micro-/nanostructure fabrication 
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6.1. Introduction 

In the previous chapters, we discussed the effect of nanotopographies on cells in 

detail with the example of the osteogenic progenitor cell line MC3T3. In vivo, the 

cell is responding to the topography of its surroundings as well as the stiffness of 

the environment[4, 33, 34]. Engler et al. have shown that the mechanical 

properties of the surrounding biomaterial dictate the differentiation of MSCs[5]. 

In vivo different tissue has a wide range of stiffness. Brain tissue is one of the 

softest tissues, with a Young’s modulus of 0.1-1 kPa. Muscle tissue has a modulus 

of 8-17 kPa, and bone tissue is the hardest, with a modulus of 25-40 kPa[34]. Thus, 

the stiffness of the environment is an important indicator for the cell response. 

The stiffness of the tissue is also of interest in wound healing as scarred tissue is 

stiffer than healthy tissue[6]. Furthermore, tumours are stiffer than the healthy 

surrounding tissue and cancer cells are known to migrate towards the stiffer 

tissue. This effect is known as durotaxis[7, 35]. Those effects are also observable 

due to nanotopographies. Nanotopographies are used in various applications, 

including directing cell differentiation and guiding cancer cell migration[8, 24]. 

The early reviews of Curtis and Wilkinson[266, 267] and others[268, 269] already 

show the vast impact of nanotopographies across a wide range of cell types and 

applications. As nanolithography methods improved, the field expanded, and a 

great number of topographies of different materials and geometries were created, 

and the understanding of cellular response grew as well[270-272]. Some examples 

include guided cell movement along adhesive tracks[273], alignment of epithelial 

cells along grooves and ridges[274], differentiation into neurons on gratings[92, 

242], and into osteoblasts on nanopits[31].  

Cellular adhesions are an essential part of mechanotransduction, since 

biomechanical extracellular cues are sensed, among others, by focal adhesions 

and translated into the cell through the cytoskeleton[11]. Material stiffness 

affects cell adhesions and the cellular response[275]. Zhou et al.[276] have shown 

that increased material stiffness increases vinculin recruitment at focal adhesion 

sites and traction forces. The focal adhesion area also increases with material 

stiffness. Nanotopographies locally limit the adhesion sites for cells. The 
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size[277], organisation[95, 278] and spacing[77] between adhesion sites affect the 

cell response.  

We are interested in studying the interplay between those two effects. Only a few 

studies have examined material stiffness and nanotopography simultaneously 

[279]. Gratings or waves are synthesized in PDMS and hydrogel [280], 

polyacrylamide gels from 3 to 145 kPa[281], and polyurethane-based surfaces from 

1.8 MPa to 1.1 GPa[282] and 11 MPa to 1.1 GPa All those studies have the 

disadvantage that changes in stiffness are accompanied by changes in the 

material's chemical composition. To overcome this problem, we need to create a 

biomaterial that differs in only one parameter at a time, either topography or 

stiffness. Nanotopographies with different stiffness, achieved by using varying 

materials or PDMS compositions, differ not only in stiffness but also in chemical 

composition, which in turn affects the cell response. Hierarchical micropillars are 

a good solution for it. Different nanotopographies can be fabricated on top of the 

micropillars, and by varying the dimensions of the micropillars, the mechanical 

properties of the biomaterial are changed while keeping the chemical composition 

constant. The micropillars can also be well used for traction force microscopy[159, 

162]. 

Cellular traction forces are a good measure of the cell response to varying 

stiffness. Micropillar arrays are widely used to study the effect of different 

stiffness materials on cellular functions[156, 157]. For many cell types, cellular 

traction forces are also a reliable measure of the cell’s state. Traction forces are 

studied in a broad range of applications. They are of high interest in highly 

contractile cell types, such as cardiomyocytes[283, 284] and smooth muscle 

cells[285]. They are also widely used in cancer research and show great promise 

for drug discovery[173, 286]. Those varying cell types are in tissues of different 

mechanical properties. The micropillars used for traction force microscopy can be 

fabricated with different dimensions, replicating the stiffness of the different 

tissues. The micropillars of different stiffness have also been used to study the 

effect of biomaterial stiffness on MSCs. Rigid micropillars direct the MSC 

differentiation towards osteogenesis, while soft micropillars direct the 

differentiation towards adipogenesis[157]. 
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The cellular traction force is adhesion-dependent, and nanotopographies affect 

the adhesion. Thus, the fabrication of micropillars with nanotopographies is of 

high interest for studying the effect of nanotopographies on cellular traction 

forces and, consequently, adhesion. It was recently shown by Cheng et al.[19] in 

2013 that 280 nm diameter and 500 nm tall nanopillars on top of micropillars with 

a 5 µm diameter increase the cellular traction force of MC3T3 cells. Furthermore, 

they have shown that the nanopillars increase the migration speed and filopodia 

number. The higher amount of actin-rich protrusions produce larger cellular 

traction forces[287]. A silicon oxide and titanium oxide coating of the micropillars 

produces the opposite effect. Therefore, the surface energy correlates with 

traction forces[19]. It is further known that nanotopographies change intracellular 

tension and contractibility. Mechanotransduction, the process by which cells 

convert mechanical stimuli into biochemical signals, plays a key role in these 

changes[11]. Myosin II is an important protein in the mechanotransduction 

pathway and is essential for the traction forces as it is responsible for the 

contractile forces in cells[70, 108, 152, 154]. Nanotopographies also affect the 

nuclear structure and chromatin formation through nuclear mechanotransduction, 

translating extracellular forces and nanotopographies into cytoskeleton 

rearrangement toward the nucleoskeleton. Changes in the nucleoskeleton enable 

the transport of signalling proteins like YAP and a chromatin rearrangement[9, 44, 

46]. The nucleus location and chromatin structure are, in turn, correlated with 

the traction forces[153]. Those examples highlight the importance of studying the 

interplay between the topography and the mechanical properties of biomaterials 

to achieve a comprehensive understanding of the cellular response to its 

environment, as the mechanotransduction of topography and material stiffness 

shares the same pathways. 

We aim to take this further by including a variety of nanotopographies in the form 

of nanopits in a square, near-square and hexagonal arrangement. Additionally, we 

want to use micropillars of varying dimensions to study the effect of material 

stiffness on the cellular traction forces on nanopits. The used nanopits have the 

advantage over the nanopillars that the response will be mainly based on the 

adhesion. The nanopillars used by Cheng et al.[19] result in a stiffer material on 

top of the micropillars, which can be sensed by the cells and can change the cell 
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response[288-290]. The nanopillars on top of the micropillars have a spring 

constant of 7 nN/µm, and the micropillars have a spring constant of 12.16 nN/µm. 

The nanopits are not significantly affecting the material properties. Therefore, 

we believe that the nanopits will mainly impact the adhesion sites of the cells, 

with the changes to the mechanical properties due to the nanopits being 

negligible.  

The fabrication of hierarchical micropillars with nanopits on top has proven to be 

highly challenging. Thus, this chapter focuses mainly on the attempted fabrication 

of those micropillars. The general fabrication process starts with a master 

fabrication by electron beam lithography or photolithography. Next, the 

micropillars are replicated by soft lithography from the master using PDMS. This 

process has several challenges. For a good replication in soft lithography, the 

master needs straight sidewalls in the micropits to avoid the pillars getting stuck 

in the master. Another challenge is the replication of nanofeatures in PDMS. The 

conventionally used soft Sylgard PDMS is not able to replicate nanotopographies 

of 100 nm. For the replication of nanotopographies, hard PDMS (h-PDMS) 

formulations are used, which have a tuneable stiffness in a range exceeding that 

of Sylgard PDMS by more than twice[291-293]. However, the usage of hard PDMS 

causes challenges in the micropillar fabrication. Due to the higher stiffness, one 

would need micropillars with a higher aspect ratio, which in turn makes the master 

fabrication more challenging again. The h-PDMS is also more brittle, which makes 

the replication of microfeatures challenging.  

Several factors limit the design of the micropillar dimensions. First of all, the 

diameter needs to be large enough to have sufficient space for the 

nanotopography. Then, the aspect ratio needs to be high enough that the pillar is 

soft enough to pick up the pillar deflection with the microscope. The used Zeiss 

Observer with a 63x objective has a pixel unit of 103 nm/pixel, and 1/5 of a pixel 

unit can be picked up by the traction force microscopy. Thus, a deflection of 

20.6 nm can be seen. Common traction forces are in the range of 10s of nN for 

MC3T3 cells[19, 294]. That means that a micropillar needs to have a spring 

constant of less than 485 nN/µm to have an observable deflection, following 

Hooke’s law F=k*Δx. 
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6.2. Methodology 

This Chapter 6 is mainly focused on the fabrication of hierarchical micropillars 

with nanopits on top. Thus, the detailed methodology is explained in the 

corresponding sections below. We will describe the methodology that is uniform 

across the different tested methods in this subchapter first. The osteogenic 

progenitor cell line MC3T3 is used in this chapter as in the previous chapters and 

is maintained as described in the general methodology section. The general 

outline of the fabrication stays the same across the different fabrication methods. 

The design of all e-beam lithography patterns is done using L-edit software. The 

designed GDS file is then converted into a GPF file in BEAMER (GenISys), where 

the resolution, beam step size, and field sizes are set. Depending on those 

parameters, the pattern is fractured into mainfields and subfields, and the 

location of beam shots is calculated. It is essential to have the shape detection of 

circles enabled to obtain round objects. We also have an overlap of the beam 

shots, as this helps to obtain a smooth, round object. Next, a cjob file is created 

in the Cjob software of Raith to bring the patterns into the correct format for the 

e-beam lithography tool. The exposure dose is also set in this step. All electron 

beam lithography is performed on a Raith EBPG 5200.  

The fabrication of the micropillars follows the schematic in Figure 6.1. First, HSQ 

nanopillars are fabricated on a silicon wafer piece by electron beam lithography. 

Next, the micropits are fabricated using e-beam lithography or photolithography. 

The resist is spun on top of the nanopillars after a short oxygen plasma cleaning 

in YES G-1000 oxygen plasma asher for 30 seconds at 80 W and dehydration bake 

at 180° C for 30 minutes. After development, the master stamp is ready for the 

soft lithography step. The master is silanised by adding 3 µL of 

Trichloro(1H,1H,2H,2H-perfluorooctyl)silane in a desiccator with the master. It is 

kept in the vacuum desiccator for 1 hour with the vacuum pump on and is then 

kept overnight in the vacuum. Next, the micropillars are replicated from the 

master using the Sylgard 184 PDMS or h-PDMS. 
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Figure 6.1: Schematic drawing of different fabrication approaches of PDMS micropillars 
with nanopits on top. First, the master stamp is fabricated on a silicon wafer piece. The 
nanopillars are produced in HSQ by e-beam lithography. Next, the micropits are 
fabricated either by e-beam lithopgraphy and PMMA resist or photolithography and SPR-
220 as a positive photoresist or SU-8 as a negative photoresist. After development and 
silanisation the micropillars are fabricated by a soft-lithography process with either a 
combination of h-PDMS and Sylgard 184 PDMS or only Sylgard 184 PDMS. 
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6.2.1. HSQ nanopillar fabrication 

First, a master for the soft lithography process is fabricated, which begins with 

the fabrication of nanopillars. For the fabrication of the nanopillars, a silicon 

wafer piece is solvent cleaned in an ultrasonic bath with methanol, acetone, 

isopropanol (IPA), and reverse osmosis (RO) water for 5 minutes each. Afterwards, 

the silicon piece is dried with a nitrogen gun. Next, it is dehydration baked for 1 

hour at 180° C in an oven and oxygen plasma cleaned for 3 minutes at 150 W. A 

1:3 hydrogen silsesquioxane:methyl isobutyl ketone (HSQ:MIBK) solution is spun at 

2000 rpm for 1 minute for a thickness of 100 nm. For a thickness of 200 nm, a 1:1 

HSQ:MIBK is spun for 1 minute at 3000 rpm. The backside of the silicon piece is 

cleaned with acetone to remove any resist, and it is then baked at 90° C on a 

vacuum hotplate for 2 minutes. The e-beam lithography is performed with a beam 

step size of 30 nm and an 8 nA beam that has a spot size of 36 nm. Dose tests 

define the optimal dose; 100 nm diameter and 100 nm height nanopillars are 

written with a dose of 1350 µC/cm2. The nanopillars of 200 nm diameter and 200 

nm height are written with a dose of 2100 µC/cm2. The nanopillars are developed 

in 25 % tetramethylammonium hydroxide (TMAH) for 1 minute at 23° C under 

constant agitation. Next, it is washed twice in RO water for 30 seconds and in IPA 

for 15 seconds. Finally, the silicon piece is dried with a nitrogen gun. Before 

further processing for an additional e-beam resist or photoresist layer, the silicon 

piece with the HSQ nanopillars is oxygen plasma cleaned at 80 W for 30 seconds 

and dehydration baked at 180° C for 30 minutes. 

6.2.2. PDMS softlithography of micropillars 

The replication of the micropillars from the master in Sylgard 184 PDMS follows 

the same procedure, independent of the master composition. The Sylgard 184 

PDMS is prepared in a 10:1 monomer:curing agent ratio and thoroughly mixed. The 

PDMS mixture is degassed in a vacuum desiccator for 30 minutes until no air 

bubbles are visible in the PDMS mixture. Next, a glass cover slip is solvent cleaned 

in acetone and IPA in an ultrasonic bath for 5 minutes per solvent. After solvent 

cleaning, the glass coverslip is dried with a nitrogen gun and oxygen plasma 

cleaned in a Henniker Plasma HPT-200 plasma oven (Henniker Scientific, UK) for 
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1 minute at 80 W. Next, the PDMS is spun on the glass cover slip. Two to three 

drops of PDMS are placed on the centre of the glass, and it is spun in a five-step 

process. In a first step, the cover slip is spun at 500 rpm and 100 rpm/s for 

3 seconds. Next, the spin speed is increased to 1000 rpm and 100 rpm/s for 3 

seconds. In the third step, the cover slip is spun at 2500 rpm and 100 rpm/s for 60 

seconds. The spinning is then slowly stopped by decelerating to 1000 rpm and 

100 rpm/s for 3 seconds, and 500 rpm for 3 seconds at the same acceleration. 

Afterwards, the spin is fully stopped, and the silicon master is placed on top of 

the PDMS with the face down. A 1.5 gram weight is placed on top of the master to 

press it down, and it is then placed in a vacuum desiccator for at least 1 hour, 

until no air is trapped between the master and the glass cover slip. The PDMS is 

cured in an oven for 10 hours at 70° C. After curing, the master is carefully 

demoulded from the glass cover slip by cutting along the edge of the master with 

a scalpel to separate the PDMS from the master. Next, the master is carefully pried 

off the glass cover slip, and the replication is checked in an optical microscope as 

well as in a SEM. Instead of a glass coverslip, a 35 mm MatTek glass-bottom dish is 

also used for the cell experiments. The fabrication process using a MatTek glass-

bottom dish is the same as with the glass cover slip. Only the solvent cleaning is 

not necessary. 

6.3. Micropillar fabrication by electron beam lithography 

The fabrication of highly controlled nano- and microfeatures can be achieved using 

various nanofabrication techniques, depending on the feature sizes. For features 

as small as 3 nm to a few micrometres, electron beam lithography is primarily 

used[74, 75, 295-298]. Conventionally, a resist is spun on a silicon wafer, cured 

and then exposed in an electron beam lithography tool. PMMA and HSQ are among 

the most commonly used resists. PMMA is a positive resist, which means that the 

exposed resist becomes soluble by the electron beam, as the electrons damage 

the cross-linking in the resist. Thus, the exposed area can be washed off with a 

fitting developer. Usually, IPA:water or IPA:MIBK mixtures are used for the 

development. HSQ is a negative tone resist, which means that the electrons cross-

link the resist, and the remaining unexposed resist is washed off with a developer. 

Typically, tetramethylammonium hydroxide (TMAH) based developers are used for 
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HSQ resist[296, 299]. PMMA can turn into a negative resist at high doses above 50-

70 C/m2[300]. 

We utilise the properties of the different types of e-beam resists to fabricate 

nanopatterns from the thin, high-accuracy negative resist HSQ, as described 

above. The micropits are fabricated in the thick positive e-beam resist PMMA. The 

exposure of the positive tone in the second e-beam exposure should not affect the 

previously developed negative tone HSQ resist. We use PMMA widely in our lab to 

fabricate the masters for the micropillar fabrication of micropillars with a 

diameter of 1 µm. They can be easily fabricated with different stiffness by varying 

the PMMA layer thickness. 

The fabrication of the master for 1 µm diameter micropillars starts by spinning 

Allresist AR-P 642.15 PMMA with 15 % weight in anisole and a molecular weight of 

200k on top of the oxygen plasma cleaned and dehydrated silicon wafer piece with 

the HSQ nanopillars. If the micropits are fabricated without HSQ nanopillars, the 

silicon wafer piece is always solvent cleaned in methanol, acetone, and IPA in an 

ultrasonic bath for 5 minutes per solvent and dried with a nitrogen gun afterwards. 

Then, the silicon wafer piece is dehydration baked for 1 hour at 180° C in an oven 

and oxygen plasma cleaned for 3 minutes at 150 W. The PMMA layer is spun for 1 

minute at a speed determined by the desired thickness. The spin speeds are shown 

in Table 6.1. For a single PMMA layer, the silicon wafer piece with PMMA is baked 

at 180° C in an oven overnight. A bilayer of PMMA is needed for a thicker layer of 

resist. For this, the thicker layer is spun at a lower spin speed first and then baked 

at 180 °C for 4 hours in an oven. Afterwards, the second thinner layer is spun on 

top of the first layer and baked at 180° C overnight in an oven. After baking, the 

e-beam lithography exposure is performed using a 100 nA beam and an aperture 

of 300 µm that has a beam spot size of 52 nm. A beam step size of 30 nm is used. 

Afterwards, the development is performed in 2.5:1 MIBK :IPA developer at 25° C 

and the silicon piece is constantly agitated while developing to ensure an even 

development. The development time depends on the PMMA layer thickness and is 

written in Table 6.1. After development, the development process is stopped by 
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rinsing the substrate in IPA for 10 seconds. The PMMA microtopography is then 

dried again with a nitrogen gun.  

To obtain a thicker PMMA resist for the master of 4 µm micropillars, a PMMA resist 

with higher viscosity is needed. A smaller anisole percentage in the resist achieves 

a higher viscosity. We use the same Allresist AR-P 642.15 PMMA resist that is to 

85 % anisole. To reduce the anisole percentage, we place 1 mL of PMMA resist in 

an open 1.5 mL Eppendorf tube in a laminar flow cabinet for 5-6 hours until the 

weight is reduced by 10%. In the laminar flow cabinet, the anisole evaporates, 

while the absolute PMMA content remains constant. Thus, the relative PMMA 

content increases and the viscosity increases. That way, a 10 µm thick PMMA layer 

can be spun on a silicon piece by spinning three layers at 1000 rpm for 1 minute 

per layer. 

After the first layer, the PMMA is baked at 180° C for 30 minutes in an oven, and 

the next layer is baked on a vacuum hotplate for 5 minutes at 180° C. The third 

layer is baked in an oven at 180° C overnight. Afterwards, Electra 92 is spun on 

top of the PMMA layer at 2000 rpm for 1 minute and baked at 90° C for 2 minutes 

on a vacuum hotplate. The Electra 92 layer serves as a thin charge dissipation 

layer, preventing charging in the resist, which can cause it to crack. The e-beam 

lithography is performed using a 100 nA beam and an aperture of 300 µm that has 

a beam spot size of 52 nm. A beam step size of 40 nm is used.  After e-beam 

lithography exposure, the Electra 92 layer is rinsed off with RO water for 1 minute. 

Next, the sample is developed with 7:3 IPA:water developer for 5 minutes at 23° 

C. After development, the sample is rinsed in IPA for 10 seconds and dried with a 

nitrogen gun.  

 

 

 

 



131 
 
Table 6.1: Spin, development and electron beam lithography conditions for the 
fabrication of micropits in PMMA with varying height. 

PMMA Rpm 
Height in 

µm 
Development 

time 
Dose in 
µC/cm2 

AR-P 642.15 4000 1.23 30 s 1000 

AR-P 642.15 2000 1.75 30 s 1100 

AR-P 642.15 1500 2.03 30 s 1200 

AR-P 642.15 1000 2.478 40 s 1350 

AR-P 642.15 2000+4000 3.0175 40 s 1400 

AR-P 642.15 1000+4000 3.728 50 s 1800 

AR-P 642.15 
( -10 % weight) 

3x 1000 10 5 min 1050 

 

4 µm Diameter  PMMA master

PDMS replica

1 µm Diameter  PMMA master

A  

C

D

1 µm

500 nm

10 µm

10 µm
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(caption for figure on previous page) Figure 6.2: SEM images of PMMA masters for 
micropillar fabrication and PDMS replica. PMMA masters for micropillars with 1 µm 
diameter and a height of 3 µm are successfully fabricated with HSQ nanopillars at the 
bottom by electron beam lithography (A). The replication of 1 µm diameter micropillars 
using Sylgard PDMS replicates the micropillars, but not the nanotopography (B). 4 µm 
diameter holes in 10 µm thick PMMA resists are fabricated by electron beam lithography 
(C) and successfully replicated with Sylgard PDMS (D). All SEM images are taken with a 
Hitachi scanning electron microscope of the SU8200 series. 

The micropits of 1 µm diameter are successfully fabricated, and micropillars can 

be fabricated in PDMS (Figure 6.2A+B). However, a diameter of 1 µm does not 

provide sufficient space for 100 nm diameter nanopits with a centre-to-centre 

spacing of 300 nm. Only three nanopits would fit in a row on one micropillar at a 

time, with two of them being at the edge of the micropillar. So, no proper 

topography is formed on top of the micropillar. Therefore, larger-diameter 

micropillars are required. The height of the micropillars must grow with the 

diameter to ensure a 1:3 aspect ratio for flexible pillars. Conventionally, e-beam 

lithography is not used for this thick resist since it is at the limit of its 

capabilities[301]. We are able to spin a reliable layer of 10 µm thick PMMA resist 

by decreasing the anisole content by 10 % by evaporation. The micropits without 

nanopillars are fabricated well, and a replication in PDMS is also successful. 

However, no straight sidewall could be achieved (Figure 6.2C+D). This is due to 

the electron scattering as well as the shape of the electron beam with the focus 

point on top of the resist. The electrons scatter forward in the resist, backwards 

from the substrate and backwards within the resist. The electrons collide with the 

atoms of the resist and are inelastically scattered by them. This results in a conical 

shape of the electron beam in the resist, as well as the proximity effect, which 

means that scattered electrons also expose the resist in proximity to the exposed 

area[302, 303]. Therefore, it is essential to consider the electron path in the resist 

when fabricating high-quality nanotopographies, particularly when a straight 

sidewall of the features is required. The scattering effect is especially strong in 

thick resist. The longer the electron path, the more it scatters. The proximity 

effect is negligible for our topographies, as it remains constant throughout the 

entire area. Only at the edges is a difference in dose. Since we measure the 

micropillar diameters at the centre of the array and not at the edge, a slide 

difference in micropillar diameter sizes at the edge is negligible.  
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Additionally, the electron beam is focused on the top of the PMMA layer, which 

means that the beam is diverging in the resist. This effect is negligible for thin 

resists but has an effect in thicker resists. Due to those two effects, an undercut 

is observed. With the non-straight sidewalls, the Euler-Bernoulli beam theorem to 

calculate the applied forces from the pillar deflection does not hold anymore. 

However, the sidewall profile can be approximated by a Bézier curve to adjust for 

the wider top of the pillar[304]. We test an offset of the electron beam focus to 

the bottom of the resist to compensate for the undercut, but it does not improve 

the sidewall profile. While the replication of PDMS micropillars with an undercut 

in the master is sometimes successful, it is highly unreliable, depending on the 

strength of the undercut. With a just slightly higher undercut than shown in Figure 

6.2C, the PDMS pillars get stuck in the master, and no replication is achievable. 

 

Figure 6.3: Schematic diagram of a typical electron beam lithography tool, where the 
electron beam is focused through condense lenses to write with an electron beam into 
resist with nanometre precision(A). (B) shows a Monte Carlo simulation of the primary 
electron scattering in PMMA. Adapted from Sharma et al.,[299] and Murata et al.[303].   

The observed undercut is not the only issue that is noticed in the fabrication 

process of micropillars with nanopits on top. Figure 6.2B also shows that the 

replication of the 100 nm diameter nanopits in Sylgard 184 PDMS is not working 

well. It is known that the soft Sylgard 184 PDMS struggles with the replication of 

features in the range of less than 200 nm. Hard types of PDMS have been developed 

that can replicate features as small as 50 nm. The hard PDMS (h-PDMS) recipes 

A 

B 
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consist of more copolymer than the standard PDMS recipe. That way, the number 

of crosslinks can be tuned more effectively, and a PDMS that is up to 5 times harder 

can be obtained[291-293, 305-308]. The h-PDMS consists of two copolymers and 

shorter curing agents than the Sylgard 184 PDMS. This results in the more rigid 

material. Additionally, it is a four-component mixture which provides a larger 

variety of stiffnesses than the two-component Sylgard 184 PDMS mixture. 

However, a downside of the use of h-PDMS is the brittle nature of the h-PDMS. A 

bilayer of h-PDMS and soft Sylgard 184 PDMS is used, where a thin h-PDMS layer 

replicates the nanostructures and a thick Sylgard 184 PDMS layer gives the h-PDMS 

layer the needed stability. This bilayer of different stiffness will be challenging for 

us as we will have h-PDMS micropillars on top of soft PDMS. This changes the 

behaviour of the pillars and how the cell traction forces can be calculated from 

the measured pillar deflection. As shown by Schoen et al. does the pillar deflection 

also depend on the material stiffness that the pillars are sitting on[309].  

The soft-lithography fabrication process of h-PDMS nanopits or micropillars with 

nanopits is performed by preparing the h-PDMS first. The h-PDMS consists of the 

four components (7.0-8-0 % Vinylmethylsiloxane)-dimethylsiloxane copolymer 

(trimethysiloxyl terminated) (VDT-731, Gelest), Platinum-

divinyltetramethyldisiloxane complex in xylene (SIP 6831.2, Gelest) in a 1:2 SIP 

6831.2:toluene solution, 2,4,6,8-Tetramethyl-2,4,6,8-tetravinylcyclotetra-

siloxane (SIT 7900, Gelest), and (25-35% Methylhydrosiloxane)-dimethylsiloxane 

copolymer, trimethylsiloxane terminated (HMS-301, Gelest). First, 1.7 g VDT-731, 

0.5 g HMS-301 and 9 µL SIP 6831.2 in a 1:2 solution in toluene are mixed. 25 µL of 

SIT 7900 is mixed into it last. Next, the h-PDMS solution is poured onto the silicon 

piece with either the PMMA micropits with HSQ nanopillars, or on a piece only with 

nanopillars. The silicon piece is left for 30 minutes to let the h-PDMS sink into the 

cavities. Next, we spin the silicon piece in a two-step process. In the first step we 

spin it at 500 rpm for 1400 seconds to ensure a good spreading of the h-PDMS, and 

then at 1500 rpm for 60 seconds for the final thickness. After spinning, a first 

curing step is performed at 80° C for 10 minutes in an oven. In the meantime, 

Sylgard 184 PDMS is spun on a glass coverslip as described before. The partially 

cured h-PDMS on the silicon wafer piece is placed on the glass cover slip with the 

h-PDMS contacting the soft PDMS. A 1.5 g weight is placed on top of the silicon 
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wafer piece, and it is placed in a vacuum desiccator for 1 hour until no air is 

trapped under the silicon wafer piece. The sample is then cured for 10 hours at 

70° C in an oven. During curing the Sylgard 184 PDMS crosslinks with the h-PDMS 

that makes it strongly connected. After curing, the silicon master is carefully 

demoulded in the same way as described above. 

To test the replication of nanopits, we created nanopillars with a diameter of 200 

nm and a height of 100 nm, spaced 600 nm apart in a square array. We replicated 

them in Sylgard 184 PDMS and h-PDMS. The replication in the soft Sylgard 184 PDMS 

is not working for just the nanopillars (Figure 6.4B) and the micropits with 

nanopillars (Figure 6.4A). Interestingly, the micropillars with nanopits have a 

platform at the top. Typically, the PDMS does not entirely fill the undercut and 

forms a drop shape at the bottom of the micropit. When the PDMS touches the 

nanopillars, it spreads over the nanopillars to form the observed platform. The h-

PDMS replicates the nanopillars well (Figure 6.4D), but it fails to replicate the 

micropits. Due to the higher stiffness and brittleness of the h-PDMS, the 

micropillars become stuck in the master mould during demoulding. The softer 

Sylgard 184 PDMS can probably deform enough while demoulding to negate the 

negative effect of the undercut in the master.  

 

PDMS micropillar with nanopits PDMS nanopits

H-PDMS micropillar with nanopits H-PDMS nanopits

10 µm 1 µm

10 µm 500 nm
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(caption for figure on previous page) Figure 6.4: SEM images of large micropillar 
replication with nanotopography from PMMA masters. The replication of the micropillars 
works well for Sylgard PDMS (A), but no replication of 200 nm diameter nanopits is 
possible (B).  H-PDMS can replicate the nanotopography (D), but not the Micropillars, as 
they get stuck in the PMMA master (C). All SEM images are taken with a Hitachi scanning 
electron microscope of the SU8200 series. 

6.4. Micropillar fabrication by photolithography 

Micropillar fabrication using e-beam lithography is not working well enough to 

establish a reliable process. The main issue is the produced undercut that is 

unavoidable due to the beam shape and electron scattering in the resist. 

Photolithography is an alternative lithography technique for the fabrication of 

micron sized features[310-312]. The photons do not scatter in the resist like the 

electrons; therefore, it can be used with thick resist and still provides straight 

sidewalls. This reduces the formation of an undercut. The light path and the resist 

properties define the sidewall. In photolithography, using a mask aligner, the 

quality of lithography strongly depends on the contact with the mask. The 

wavelength of the light defines the resolution of photolithography and has a 

typical minimum feature size of 2 µm. UV light is mainly used for photolithography 

and operates in a manner similar to EBL. Positive resists are cured before 

exposure, and the cross-linking is broken up by the photons, allowing the 

developer to wash it out. The negative resists are cross-linked by photon 

activation, and the developer washes away the unexposed areas.  

We test SPR220-7.0 as a positive tone photoresist and SU-8 as a negative tone 

photoresist. We only tested resist without a nanopillars on the silicon wafer piece. 

The silicon wafer piece is at least 25x25 mm large to ensure a good spinning of 

the thick resist. The silicon wafer piece is prepared by solvent cleaning in 

methanol, acetone, and IPA for 5 minutes per solvent in an ultrasonic bath. It is 

dried with a nitrogen gun afterwards and dehydration baked at 180° C for minutes 

on a vacuum hotplate. Next, it is oxygen plasma cleaned at 150 W for 3 minutes. 

The SPR220 sample is prepared with a MicroChem Primer 80/20 (MCC 80/20) that 

is made up of 20 % Hexamethyldisilazane (HMDS) and 80 % propylene glycol 

monomethyl ether acetate (PM acetate) that aids the adhesion of the photoresist. 

The MCC 80/20 is poured on the silicon wafer piece to cover the surface. After 

waiting for 20 seconds, the sample is spun dry and nitrogen purged to remove 
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remaining ammonia on the surface. Next, the SPR220-7.0 is spun in a 3-step 

spinning process. The resist is puddle dispensed on the silicon piece and spun at 

500 rpm for 5 seconds with an acceleration of 100 rpm/s to spread the resist. In 

the second step, the resist is spun to its final thickness for 30 seconds at 3000 rpm 

and 2000 rpm/s. Finally, the sample is slowed to a stop at a deceleration of 1000 

rpm/s. After spinning, the sample is left standing for 30 minutes so that the 

solvent can evaporate. After the solvent evaporation, the soft bake is performed 

on a vacuum hotplate at 118° C for 90 seconds. Next, the sample is transferred to 

a watch glass that has been heated to 120° C in an oven to ensure slow cooling. 

The slow cooling prevents cracking of the resist. Next, the sample is left standing 

for 1 hour to rehydrate before exposure. The photolithography process is 

performed on a SUSS Mask Aligner MA6 with a 365 nm UV-mercury lamp with a 

lamp power of 350 W that has a light intensity of 7.2 milliwatts/cm2 constant 

power. The used mask has arrays of 2 µm diameter holes and 5 µm holes with 

centre-to-centre spacing of 3 times the diameter. The mask is a chrome on quartz 

glass photomask received from Compugraphics. The sample is exposed for 28 

seconds in the hard contact mode and a wedge edge correction of 0.4 bar. After 

exposure, the sample is left standing for 1 hour to rehydrate. Then, the post 

exposure bake is performed at 118° C for 90 seconds. The sample is cooled slowly 

again by placing it on a watch glass that comes out of a 120° C oven. The 

development is performed after a 20 minute delay to ensure the sample is 

completely cooled down. It is developed in Microposit MF CD-26 developer that 

contains 1-5 % TMAH for 2 minutes under constant agitation. The sample is rinsed 

in RO water for 5 minutes after development. Finally, a hard bake process is 

performed on a vacuum hotplate at 120° C for 10 minutes.  

SU-8 is a negative-tone photoresist and one of the most used thick resists for high-

aspect ratio microtopographies[313-315]. Amato et al.[316] fabricated 

micropillars with an aspect ratio of 11, with a diameter of 1.8 µm and a height of 

20 µm. They have a straight side wall at this height. For larger structures, an 

aspect ratio of more than 20 is achieved. Thus, we use it as a negative tone 

photoresist to fabricate micropits with straight sidewalls. Since SU-8 is a negative-

tone photoresist, we cannot use the same photomask for it but need the negative 

of it. The JWNC lab technicians, Linda Pollock, Sarai Diaz Romero and Archie 
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McIver, prepared a negative copy of the available mask on a soda lime glass plate 

with a titanium and nickel-chromium pattern. A soda lime glass plate with a thin 

iron-based coating that is UV-light blocking, and a layer of the AZ1518 photoresist 

is exposed with the mask we used above. The plate is developed, the iron-based 

layer is etched away, and titanium and nickel-chromium are deposited on the 

plate. Next, a lift-off process of the remaining resist is performed, and the 

remaining iron-based layer is etched away. Thus, only the titanium and nickel-

chromium are left in the exposed areas. That way, a good negative copy of the 

photomask is fabricated, even though the copy is not perfect, as it has missing 

dots in the arrays.  

We use 30x30 mm silicon wafer pieces for the fabrication of SU-8 micropits. The 

SU-8 layer is prepared in two different thicknesses for 2 µm diameter micropits 

and 5 µm micropits. We describe the fabrication of 2 µm diameter micropits in SU-

8 photoresist first. The silicon wafer piece is solvent cleaned, dehydration baked, 

and oxygen plasma cleaned the same way as described above for the SPR220-7.0 

samples. SU-8 3005 is dispensed on the silicon piece and spun for 5 seconds at 500 

rpm and 100 rpm/s to spread the resist. Next, it is spun for 30 seconds at 3000 

rpm and 300 rpm/s for a final thickness of 6 µm. After spinning, the soft bake is 

performed by placing the sample on a 65° C hotplate for 30 seconds, 95° C for 2 

minutes and again 65° C for 30 seconds. The slow ramp helps to prevent a cracking 

of the resist. After the soft bake, the sample is exposed in the SUSS MA6 Mask 

Aligner with an i-line bandpass filter for 15 seconds. The i-line filter filters UV 

light by only allowing the desired 365 nm light to pass. This ensures a straight 

sidewall in photolithography of SU-8 resist. The photolithography is performed in 

hard contact mode. After exposure, the sample is baked at 65° C for 1 minute on 

a hotplate, followed by 3 minutes on a 95° C hot plate and again 30 seconds on a 

65° C hotplate. The development is performed in ethylene carbonate (EC) solvent 

for 2 minutes in one beaker under constant agitation and 2 minutes in a second 

beaker with fresh EC solvent under constant agitation. The sample is washed with 

IPA first, by rinsing it with IPA. If no misty white residue is visible, it is fully 

developed and is washed in IPA for 1 minute. The sample is dried with a nitrogen 

gun after development. 
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 For the 5 µm diameter micropits, we need a thicker resist. Thus, we use SU-8 

3010. The fabrication procedure is the same as with SU-8 3005, just the spin speed 

and durations change. The SU-8 3010 resist is spun to its final thickness of around 

18 µm at a spin speed of 1000 rpm. The soft bake is performed for 1 minute at 

65° C, 9 minutes at 95° C, and 1 minute at 65° C. The thick resist produces a large 

edge bead that needs to be removed since good contact with the mask is essential 

for the lithography process. We remove the edge bead by cutting off the edges of 

the silicon wafer piece where the edge bead is visible. The sample is exposed for 

15 seconds. The post exposure bake is made for 1 minute at 65 ° C, 4 minutes at 

95° C, and 30 seconds at 65° C. The development is performed for 5 minutes per 

EC solvent beaker and 1 minute in IPA. We attempt to adjust the development by 

increasing the development time and using an ultrasonic bath. However, it does 

not improve the washing out of the resist. Too high a development time results in 

delamination of the resist.  

The fabrication of 2 µm diameter micropits with SPR220-7.0 is not working. The 

observed pits are only 1-2 µm deep and around 5 µm wide (Figure 6.5B). A 100 µm 

broad line surrounds the arrays of microdots. This line shows that the sidewall is 

not nearly straight enough to be able to fabricate holes of 2 µm. Additionally, a 

lip that is overhanging is observable at the edge of the line. This lip would be 

problematic in the following soft lithography process. SU-8 is also not able to 

produce 2 µm diameter micropits with a depth of 6 µm. The light exposes the 

resist with straight sidewalls, but it is not possible to entirely remove the SU-8 

resist from the holes (Figure 6.5C+D). A porous structure is left in the hole, which 

we believe to be partially cured resist. We expose the entire silicon wafer, except 

for the 2 µm dots, which are not exposed to light. That probably causes a strong 

proximity effect that partially cures the resist in the areas that UV-light does not 

directly expose. Another possibility is that the self-made negative copy of the 

photolithography mask does not have as good antireflective properties as the 

purchased photomasks from Compugraphics. That could cause a reflection of the 

light and standing light waves in the resist that partially cure the resist. 
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Figure 6.5: SEM images of photolithography tests using SPR220 and SU-8. 
Photolithogrpahy cannot create arrays of 2 µm holes. SPR220 does not have a straight 
enough sidewall to create as small features. Additionally, it has a lip at the top that 
prevents a good demoulding in soft lithography (A, B). SU-8 cannot fully expose the 2 µm 
diameter holes with a 1:3 aspect ratio. The holes are filled with partially cured SU-8 
resist that is probably cured due to reflections from the wafer and mask (C, D). An 
alveole Primo maskless photolithography tool struggle to create round pillars of 20 pixel 
size which are more than 10 µm in diameter (E, F). All SEM images are taken with a 
Hitachi scanning electron microscope of the SU8200 series. 

Since we believe that the failed fabrication of 2 µm holes in SU-8 resist may be 

due to the mask, we attempt maskless photolithography using an alveole Primo 

maskless photolithography tool, which has a resolution of 1.2 µm and can replicate 

any grayscale image loaded into the software. However, initial tests indicate that 

when attempting to design 20 pixel diameter micropillars in 6 µm thick SU-8 3005 

resist with a dose of 60 mJ, the pillars are not sufficiently round. A not perfect 



141 
 
roundness strongly affects the mechanical properties of the micropillars and would 

give different flexibilities depending on direction. This makes an analysis of pillar 

deflections due to cellular traction forces extremely challenging. The 20 pixel 

diameter corresponds to around 13 µm, which means that one pixel is 0.65 µm 

large and a 2 µm object is 3 pixels large. We do not believe that we can prepare 

micropits with the desired accuracy with this tool. Therefore, this route is not 

further followed.   

 

Figure 6.6: Micropillar fabrication with a diameter of 5 µm and height of 18 µm using 
SU-8 resist and photolithography. The SU-8 master show holes with straight sidewalls (A). 
With 6 µm, the diameter is one micron larger than designed. The micropillars replicated 
well in Sylgard 184 PDMS (B). All SEM images are taken with a Hitachi scanning electron 
microscope of the SU8200 series. 

Micropits of 5 µm diameter are successfully fabricated in 18 µm thick SU-8 3010 

resist (Figure 6.6A). The diameter of the pits is one µm larger than designed, but 

we have straight sidewalls all the way to the bottom of the resist to the silicon 

wafer. A replication by soft lithography with Sylgard 184 PDMS is working well. We 

create high aspect ratio micropillars with a diameter of 5.93±0.15 µm and a height 

of 18.61±0.28 µm. However, it is worth noting that the fabrication is still not very 

reliable, but it is the best we can achieve at this time. A good contact between 

the photomask and the sample has proven to be highly crucial. Just a slight edge 

bead or contamination on the sample that prohibits a perfect contact and results 

in shallow and broad dips in the resist instead of deep and straight pits. 

Thus, the edge bead removal is of utmost importance. Cutting off the edge of the 

silicon wafer piece that has the edge bead has proven successful. However, one 

SU8  Micropillar master 

5 µm Diameter

PDMS  Micropillar 

5 µm Diameter

A  

10 µm 20 µm
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must take care that no particles from the cutting process land on top the sample. 

A good spin is the first important step to ensure a successful and reliable sample 

preparation. It has proven best to puddle dispense 1.5 mL from a syringe to the 

centre of a square 30x30 mm silicon piece and start the spinning immediately. 

That way, a consistent thickness can be achieved, and the edge bead can be 

minimised. When letting the resist spread before spinning, it touches the edge of 

the sample before the spin starts. During spinning, the resist follows that path, 

resulting in areas on the edge of the sample without resist, which leads to larger 

edge beads and a less uniform surface. A sample size of 30x30 mm provides 

sufficient space to cut off the areas with the edge bead.  

Since the fabrication of large micropits in SU-8 3010 photoresist has proven to be 

the best fabrication method, we also use this method to create micropillars with 

nanopits on top. We prepared HSQ nanopillars with a height of 200 nm and a 

diameter of 220 nm in a square array with a centre-to-centre spacing of 600 nm 

(Figure 6.7A). We expect the larger nanopillars to be easier to replicate than 100 

nm high nanopillars. However, the replication of the micropillars with nanopits on 

top does not work well with Sylgard 184 PDMS. The area of micropillars is larger 

than the area of nanopits, so that an area of micropillars without nanopits 

surrounds the area with nanopits. The micropillars surrounding the area with 

nanopits replicated well while the micropillars in the area of the nanopits are cut 

in half (Figure 6.7C).  

A look at the master stamp after replication reveals that a narrowing occurs in the 

middle of the pit. This narrowing works as a breaking point to rip the micropillar 

in half. One can see in Figure 6.7D that the lower half of the micropit is filled with 

remaining PDMS, while the PDMS has demoulded at the top half. Since this effect 

is only observed in the area of the nanotopography, we believe that a light 

interaction of the nanopillars with the UV-light causes the effect. Nanopillars are 

known for their unique optical properties, and the light reflection can be expected 

to be significantly different to the light reflection from a flat silicon surface. Some 

pillars are still replicated well and show that the nanotopography is also replicated 

(Figure 6.7B). The remaining PDMS in the master stamp on top of the nanopillars 

shows that the PDMS covers the nanopillars. However, the nanopillars are not fully 

immersed in the PDMS, so they do not replicate nanopits with a sharp edge at the 
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top, but with a round edge. The replicated nanopits should still be replicated well 

enough to affect cell adhesion. It should also be noted that SEM imaging of the 

nanopits on top of the micropillars is challenging since the soft PDMS tends to melt 

under a high imaging current, and the contrast of the nanopits is low. Thus, one 

must find a compromise between a high enough current to be able to image the 

low contrast of the nanopits and a low enough current not to damage the PDMS 

too much. 
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(caption for figure on previous page) Figure 6.7: Fabrication of large micropillars with 
nanopits using SU-8 resist and photolithography. The used HSQ nanopillars are 200 nm 
high and 220 nm in diameter (A). When replicating 6 µm diameter micropillars in 18 µm 
thick SU-8 resist with nanopits on top in Sylgard PDMS, only the area without 
nanotopography replicates well (C). The nanopillars in the SU-8 master cause an 
interference with the light that create a narrowing in the centre of the hole (D,E). Thus, 
the top part of the PDMS pillars get stuck inside the SU-8 master mould. The few 
micropillars that are fabricated replicate the nanopits (B). The nanotopography 
replication does not work perfectly as the soft Sylgard PDMS surrounds the nanopillars 
but cannot create a sharp replication (F). All SEM images are taken with a Hitachi 
scanning electron microscope of the SU8200 series. 

6.5. Traction force microscopy of MC3T3 cells on 6 µm 

micropillars 

The micropillars with nanopits on top do not replicate well, but the micropillars 

without nanopits with a height of 18.61±0.28 µm and a diameter of 5.93±0.15 µm, 

that are shown in Figure 6.6B, can be used for pillar-based traction force 

microscopy. 5 µm micropillars are widely used in pillar-based traction force 

microscopy, but they are often used with a spacing of 10 µm from centre-to-

centre. Our micropillars have a centre-to-centre spacing of 15 µm. A simple pillar 

traction test with MC3T3 cells may not yield new biological information, but it will 

provide us with helpful insights. It will tell us if the design of 6 µm diameter pillars 

with a large centre-to-centre spacing provides enough adhesion area for the cells 

to adhere to the top of the pillars and not between the pillars. Additionally, it will 

show if the autofocus on top of the pillars for the cell traction works and if the 

pillar deflections can be detected for this type of micropillars. 

6.5.1. Micropillar preparation for traction force microscopy 

The micropillars are prepared in 35 mm MatTek glass bottom dishes. Cells do not 

like to adhere to PDMS. Thus, the surface needs to be treated to increase cell 

adhesion. Fibronectin is widely used to increase cell adhesion to non-adherent 

surfaces. We do a fibronectin contact printing to ensure that only the top of the 

pillars is fibronectin coated. A fibronectin-FITC (fluorescein isothiocyanate) 

(MERCK, F2733-1ML) is used to be able to visualize the fibronectin coating. For 

the fibronectin contact printing, the stamp is fabricated by first preparing a PDMS 

stamp. Sylgard 184 PDMS is prepared as described above and filled into a petri 
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dish at approximately 5 mm height. After curing in an oven at 70° C for 10 hours, 

the PDMS slabs are cut with a scalpel into the desired format. One wants the stamp 

to cover the array of micropillars, but not bigger than the array, to ensure good 

contact printing. In our case, the array is around 15x15 mm big. The PDMS slab is 

cleaned in ethanol in an ultrasonic bath for 5 minutes and dried with a nitrogen 

gun. The fibronectin-FITC is prepared at a concentration of 60 µg/ml in RO water. 

100 µl of the fibronectin-FITC solution is placed on the PDMS stamp and incubated 

at room temperature in the dark for 1 hour. The fibronectin is carefully removed 

with a pipette from the side and blown dry with nitrogen. The PDMS stamp is now 

ready to use. The micropillars are activated by oxygen plasma treatment at 80 W 

for 1 minute. Next, the PDMS stamp with fibronectin-FITC is carefully placed on 

top of the micropillars and slightly pressed down for 30 seconds. The contact 

printing must be carried out extremely carefully to ensure that the micropillars 

are not damaged. Movement of the stamp while it is in contact with the pillars 

causes them to collapse. 

After fibronectin contact printing, we passivate the rest of the pillar array by 

incubating the micropillars in 3 % BSA in PBS for 1 hour in the dark at room 

temperature. To only use the area in the MatTek dish with micropillars, we use 

ibidi 2-well culture inserts that are placed on top of the micropillars and create 

two wells on the micropillars with a culture area of 0.22 cm2. After incubation 

with BSA, the micropillars are washed 6 times with PBS. While washing, it is 

essential to ensure that the micropillars are always covered with liquid. When the 

pillars dry out they collapse due to surface tension forces. After washing with PBS, 

the pillars are washed at least three times with the culturing media to ensure that 

PBS does not dilute the culture media. 4000 MC3T3 cells/cm2 are seeded on the 

micropillars and incubated overnight at 37° C, 5 % CO2 and 95 % humidity.  

The fluorescent fibronectin coating is imaged with Zeiss Observer with a Colibri 7 

LED light source. The FITC is excited with a 475 nm LED at 100% light intensity and 

imaged with a Zeiss N-Achroplan 63x objective. The pillars are stained well, and 

one can clearly see the outline of the pillar tops (Figure 6.8A). To determine if 

only the pillar tops are stained, we perform a z-stack analysis using a Zeiss LSM 

800 confocal microscope. The FITC is excited using a 488 nm laser and an EC Plan-

Neofluar 40x objective. The z-stack is performed at 530 nm per step over a depth 
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of 22.26 µm and shows that the fluorescence is confined to the tops of the 

micropillars. It is not a perfect contact printing, since the side of the pillars is also 

coated at the top of the micropillars. No fluorescence is visible at the bottom of 

the pillars and between the pillars. Thus, the cells are expected to attach only to 

the top of the pillars (Figure 6.8B+C). Thus, we can assume that the MC3T3 cells 

will only attach to the top of the pillars. 

  

Figure 6.8: Contact printing of fluorescent fibronectin-FITC on 18.61±0.28 µm high PDMS 
micropillars. A PDMS stamp is incubated with fibronectin-FITC (FN-FITC) and broad in 
contact with oxygen plasma activated micropillars for the contact printing (A). 
Fluorescent images of flat micropillars coated with fluorescent fibronectin-FITC by 
contact printing. Fluorescent images taken from the top are taken with Zeiss Observer 
microscope and a 63x objective (B). A z-stack proves that the fibronectin-FITC coating is 
only around the top of the pillars (C). The cross-section of the staining shows that the 
first few micrometer on top of the pillars are coated with fibronectin (D). The z-stack is 
taken using a Zeiss LSM 800 confocal laser microscope. 
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6.5.2. Performing pillar-based traction force microscopy 

The pillar traction microscopy is performed on a Zeiss Observer with a Zeiss Colibri 

7 LED light source and a Zeiss N-Achroplan 63x objective. An on-stage incubator 

that keeps the sample at 37° C, 5 % CO2 and 95 % humidity. Twelve positions are 

imaged per sample, and the tracking is done for 2 hours with an image every 

minute. After placing the sample on the incubated stage, we wait for 10 minutes 

to let the incubator and stage settle. The adjustment in temperature and humidity 

causes a drift of the stage. Even after the incubator has reached the working 

conditions and the stage has settled a slight drift is still visible over a time frame 

of 2 hours. Furthermore, is the micropillar surface never completely level. 

Therefore, an automated focus is needed. We use the in-build autofocus that finds 

the position of best contrast.  

The images are collected in the CZI format of Zeiss and exported as TIFF images 

without compression. The pillar deflection is analysed in Fiji ImageJ[317]. An 

overview of the pillar traction analysis is shown in Figure 6.9. First, the time series 

is loaded into ImageJ as an image stack, and the image stack is checked for out of 

focus images that are deleted from the stack. Next, the image stack is rotated to 

make square array level in the image. The microscope stage is often drifting over 

time. Thus, it needs to be corrected for the stage drift. The correction is 

performed by the MultiStackReg function of the Registration plugin. The created 

stack is used as the only stack and Align is used as Action 1. The transformation is 

performed using the Rigid Body method. After checking if the registration is 

successful and the pillars are not drifting over time, the image stack is cropped to 

the interesting area, and the pillar traction is performed. The PillarTracker GUI 

function of the MBI-PillarTracker plugin is used for pillar traction.  

First, the pixel size is set to 103 nm per pixel. Next, the pillar diameter is set to 

59 pixels, the pillar spacing is set to 146 pixels, and the grid is set to 90 degrees 

as the micropillars are in a square array. First, a Gaussian curve fit for the pillars 

is defined by drawing a line across a representative pillar and calculating the 

Gaussian sigma in pixels. Make sure that the curve fit is fitting over the centre of 

the pillar and not a peak in intensity at the edge of the pillar. Different curve fits 

are tested by changing the drawn line until a good fit is achieved. Afterwards, a 
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fast Fourier transform (FFT) is performed, and maxima of the FFT are selected 

that are used to do an inverse FFT to create a mask. At the inverse FFT, the off-

centre mask radius and centre mask radius are kept at 5. The inverse FFT is 

checked to ensure that it functions as a reference image, where the cells are not 

visible, and the pillars are clearly visible with a good contrast. If that is not the 

case, the number of maxima selected needs to be changed until a good inverse 

FFT mask is created. Next, pillars are detected by clicking on Fast Detect Pillars. 

The pillar detection is checked that the pillars are detected and that they are 

detected at the centre of the pillar and not the edge of the pillar. When the pillar 

detection was successful, the pillar traction can be performed by navigating to 

the Tracking tab and selecting the stabilised image stack. This step takes the 

calculated values from the previous steps, and therefore, no adjustments are 

needed here. By clicking on Track & Optimise, the pillar traction is performed, 

and the output is saved in a bin file as well as an Excel file. The Excel file is used 

for further analysis. 
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Figure 6.9: A schematic representation of the pillar based traction force microscopy 
process. The micropillars are prepared in a glass-bottom MatTek dish and an ibidi 2 well 
insert is used to confine the cells to the micropillar area. After traction force microscopy 
for two hours the images are analysed in ImageJ using the MBI-PillarTracker plugin. The 
pillar detection is prepared by a Gaussian fit to the micropillar (F), a FFT (D), and an 
inverse (FFT) to create a mask for the final pillar traction (G). 

In the output file, the pillar deflection of each pillar at each frame (time point) is 

given. The pillars are numbered, and we must select relevant pillars first before 

we can analyse the measured pillar deflection. The created bin file can be loaded 

into the Grid Analysis tab, and the pillar deflection is visualised with arrows and 

overlayed on the microscope images. We manually select pillars that touch the 

cell and where a change in deflection is measured over time, without extreme 
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deflection outliers that are due to traction errors. The pillar deflection is 

measured in the change of x and y coordinates. The length of that vector is 

calculated by using equation (11) with dx being the deflection in x direction, dy 

the deflection in y direction and Δxy the total deflection. 

∆𝑥𝑦 = √𝑑𝑥2 + 𝑑𝑦2     (11) 

The total deflection in pixels is then transformed into m using the pixel size of 

103 nm of the used microscope. From that deflection the exerted cellular traction 

forces can be calculated using Hooks law. We use micropillars of 5.93±0.15 µm 

diameter and 18.61±0.28 µm height with Sylgard 184 PDMS with a Young's modulus 

of 2 MPa. Using equation (4) with those micropillar dimensions means that we have 

pillars with a spring constant of 0.0574 N/m. This corresponds to a shear modulus 

of 4.67 kPa using equation (1). We measure the deflection of the pillars over a 

time frame of 2 hours. We calculate the mean deflection of each pillar over the 

whole time frame to get the mean deflection over time. The standard deviation 

of the pillar deflection over time is also calculated and plotted.  

6.5.3. Results of traction force microscopy of MC3T3 cells 

While performing the pillar based traction force microscopy, we notice that the 

autofocus of the microscope focuses on two different focus planes (Figure 6.10A). 

It either takes the top of the pillar in focus, which results in pillars with a bright 

spot in the centre and a sharp border. Alternatively, it focuses on the pillars on 

top of the pillars. In that case, the pillars are slightly out of focus, have a more 

uniform dark appearance and a ring around the pillar. This makes the Gaussian 

fitting more challenging. It often tries to fit in the bright spot between the ring 

around the pillar and the dark pillar, rather than at the centre of the pillar. To 

ensure a good pillar detection we must force the Gaussian fit to be broad enough 

to detect the pillar and not the bright spot next to it. The focus on the pillars also 

presents its challenges in pillar detection. We are using the ibidi 2 well inserts to 

force cells onto the micropillar array. However, when imaging close to the wall of 

the well, it affects the light, and the bright spot is not in the centre of the pillar 

but instead at the side of the pillar, close to the wall. If the bright spot is too far 

at the edge the pillar detection detects the pillar at the edge of the pillar. When 



151 
 
the cells are moving along those pillars, the light at the edge of the pillars is 

affected, and we only pick that effect up and not the pillar deflection. Thus, it 

might be better not to use the ibidi 2-well inserts in the future to avoid those 

artefacts. Many more cells are needed in that case, but for the use of cells like 

the analysed MC3T3 cells that are available in abundance, it is no issue. 

The cells spread on the micropillars and touch the micropillars. However, 

compared to smaller pillars and shorter centre-to-centre spacings, the cells pull 

on a few pillars, which may affect the cellular traction forces as the forces are 

combined at a few positions and are not spread evenly across the cell. The missing 

pillars due to errors in the negative photomask copy are also causing some 

challenges. It creates space that allows cells to spread, which is mostly avoided 

by passivation with BSA. The gap also restricts cell movement, as larger gaps 

between the pillars need to be bridged by the cells. Furthermore, the missing 

pillars impact the quality of the FFT. The FFT depends on periodicity, and we 

already have few pillars in one image with several bright spots due to their large 

size. The missing pillars are also breaking with that periodicity. The mask creation 

and pillar traction are still working well, but it could be improved by a complete 

micropillar array without gaps.    
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Figure 6.10: Force traction microscopy of MC3T3 cells on 6 µm diameter and 18 µm 
height micropillars. The cellular traction force is recorded over 2 hours using a Zeiss 
observer microscope and a 63x objective. The autofocus of the microscope focuses either 
on the pillars or the cells on top of the pillars (A). An example of the pillar traction force 
applied on a pillar touching a cell and not touching any cells (baseline) over 2 hours is 
plotted (B). The two pillars a selected from the same position that has a focus on the 
pillars. The measured traction force is divided in pillars touching the body of the cell, 
touching the filopodia and not touching the cells as a baseline (C). The cells are 
highlighted in the images for better visibility. The higher outliers are only visible in the 
pillars touching the cell body. Each data point is the mean force of one pillar over two 
hours. While the baseline still has strong reflections the reflections are more static as 
the plotted standard deviation of each pillar over two hours shows (D). A focus on the 
pillars improves the baseline and therefore the pillar tracking. 

When calculating the traction forces, we separate the pillars into three groups: 

pillars touching the body of the cell, pillars touching the filopodia of the cell and 

pillars not touching the cell, which we use as a baseline. Furthermore, we plot 
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the differences between the focus on the pillars and the focus on the cells to 

check if both focus points are working for the pillar traction. First of all, the 

measured mean cellular traction forces for the body of the MC3T3 cells and the 

filopodia are around 10 nN, which agrees with the reported traction forces of 

MC3T3 cells in the literature, as mentioned above[19].  

However, the baseline of the mean pillar deflection reaches a similar force to that 

of a large part of the pillar deflections due to cellular traction forces. When 

examining the vector of the baseline pillar deflection, it becomes apparent that 

the measured pillar deflections are constant in one direction. This is reflected in 

the standard deviation of the pillar deflection over time. It is a measure about the 

activity of the pillar overtime, and the baseline shows clearly less changes over 

time than the pillars that are touched by the cell or filopodia. This means that we 

have a good baseline of pillar movement over time, and we do pick up the pillar 

deflections because of the pulling of the cells on the pillars. 

When comparing the cellular traction forces of the cell body and the filopodia, we 

can see that the mean traction forces show no significant difference. The filopodia 

and the body of the cell exert the same average forces on the pillars. However, 

the outliers of large traction forces are only in the traction forces of the body of 

the cell, which means that the body of the cell can exert larger forces than the 

filopodia or more false pillar deflections are measured. When comparing the 

traction forces depending on the focus position, we can see that the focus on the 

cells has more outliers. Especially, the difference in the standard deviation of 

pillar deflection over time highlights the better performance of the pillar traction 

when the pillars are in focus. The baseline pillars have low activity, and the pillar 

deflections of pillars on the cell have fewer outliers and are closely packed. This 

means that the pillar detection is more accurate when the pillar is in focus and 

not the cells.  
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6.6. Conclusion 

The fabrication of hierarchical micropillars with nanopits on top in PDMS has 

proven challenging. The best fabrication results are achieved using SU-8 resist 

with photolithography to produce the master stamp. High aspect ratio micropillars 

with a diameter of 5.93±0.15 µm and a height of 18.61±0.28 µm in a square array 

with centre-to-centre spacing of 15 µm are successfully fabricated and used for 

pillar-based traction force microscopy. The measured traction forces are in the 

area of 10 nN, which was reported before in literature for MC3T3 cells. Thus, we 

are confident that this pillar design and our setup can correctly measure pillar 

deflections due to cellular traction forces. 

The fabrication of the hierarchical micropillars with nanopits is challenging 

because we are moving on the edge of what is possible at several steps during the 

fabrication process. The fabrication of nanofeatures of 100 nm in HSQ using e-

beam lithography is widely done. However, the replication of those features is in 

the resolution limit of soft lithography processes using PDMS[293]. To replicate 

nanofeatures smaller than 200 nm, h-PDMS was developed, which can effectively 

replicate nanostructures. However, it comes with several disadvantages for our 

application. The fabricated micropillars in h-PDMS are brittle and tend to break 

more easily. Furthermore, they tend to be more impacted by an undercut in the 

master stamp as they are stiffer and cannot deform as much as the soft Sylgard 

184 PDMS while demoulding. A composite stamp of h-PDMS and soft Sylgard 184 

PDMS is also needed for the fabrication of the micropillars of h-PDMS. The soft 

underlayer of the micropillars affects the mechanics of pillar bending and 

complicates the calculation of the correct spring constant for force calculations. 

A simulation of the pillar bending with the material properties is likely necessary 

to obtain the correct spring constant. Thus, we need to consider if we want to 

replicate 100 nm large nanostructures and have more challenging micropillars to 

work with or have larger nanostructures and the simple Sylgard 184 PDMS 

micropillars. We have shown in the previous chapter that increasing the nanopit 

diameter from 100 nm to 500 nm does not have a significant impact on the cell 

response. Therefore, we decide that it is a better route to create 220 nm diameter 

nanopillars that replicate in soft PDMS and still affect the cell adhesion. 
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The fabrication of 10 µm deep holes in PMMA by e-beam lithography is clearly 

above the usual applications that are only up to a few microns deep. The 

fabricated holes for the creation of micropillars are not good enough for our 

application. The scattering of secondary electrons in the resist and the conical 

shape of the electron beam are affecting the side profile of the pits too 

strongly[302, 303]. However, we have shown that we can spin 10 µm thick PMMA 

resist and do e-beam lithography with it without cracking of the thick resist or 

resist swelling during development by developing in 7:3 IPA:water developer, that 

is known to improve the contrast and sensitivity compared to MIBK based 

developers[318], and using a charge dissipation layer of Electra 92. This is an 

entirely novel fabrication technique that overcomes the size limitations of 

conventional e-beam lithography procedures with PMMA. Even though, the 

sidewalls are not straight enough for our application it can be still a valuable 

method for the fabrication of high aspect ratio micropatterns of 2 or 3 µm width 

where photolithography can struggle. 

The resolution limit of standard photolithography by contact and proximity 

printing is often mentioned to be around 2 µm sized features[310, 311]. The 

resolution can be largely improved by projection photolithography to few tens of 

nanometers[76]. However, it is challenging to achieve photolithography on that 

scale with a high aspect ratio in practice. Thus, our desired topography lies at the 

lower limit of the resolution limit of photolithography and above the resist 

thickness used in PMMA e-beam lithography. SU-8 performed best to create the 

needed micropits as it can produce straight sidewalls at high aspect-ratio. The 

contact between mask and resist is essential for a high-quality photolithography 

process in SU-8[313], especially for the fabrication of narrow trenches or pits. 

Zhang et al.[319] improved contact by applying a soft cushion beneath the sample 

to enhance resist-mask contact. This enabled the fabrication of 8 µm wide 

trenches in 145 µm thick resist. However, since it is a negative-tone photoresist, 

it makes the fabrication of micropits more challenging. Since photolithography of 

negative photoresists works by UV-light cross-linking the resist, and nanopillars 

have unique interactions with light and reflect light differently than flat silicon, 

we still struggle with fabricating a master stamp for the creation of hierarchical 

micropillars with nanopits at the top. Currently, we are attempting to use the 
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positive photoresist AZ4562 with a maskless laser beam lithography tool for 

fabrication, with the assistance of Yuyan Liu at the Technical University of 

Denmark. We hope that the lack of a mask reduces the effects of reflections. 

Furthermore, we expect a smaller effect of the light interference of the 

nanopillars in a positive photoresist as the UV-light exposes less area of the 

sample. 

The successful fabrication of hierarchical micro-/nanostructures differs from our 

approach. Most applications have larger features and not as high aspect ratios as 

our application, like the work of Alameda et al.[177]. The work of Cheng et al.[19] 

has a similar application to our work and can therefore be well compared. They 

fabricate the high aspect ratio pillar master by reactive ion etching, which is 

widely used in high aspect ratio micropillar fabrication, as it can etch straight 

sidewalls with aspect ratios higher than 1:5. To use reactive ion etching for the 

fabrication of hierarchical structures, the nanotopography needs to be on the top 

of the surface and not the bottom. Thus, a double replication process is needed 

that involves a PDMS to PDMS replication step. We tested a PDMS to PDMS 

replication as well by fabricating 2 µm diameter SU-8 micropillars with a height of 

6 µm and replicating them in PDMS that one obtains a PDMS mould with 2 µm 

diameter pits. The PDMS mould is silanised the same way we normally silanise our 

samples, and a PDMS replication is done. Replication is not possible because the 

PDMS samples are not demoulding well from each other. Cheng et al. used a critical 

point dryer after their demoulding process which is essential and not available to 

us. The PDMS to PDMS replication is also known to be challenging, as PDMS strongly 

binds to PDMS. 

The combination of micropillars of varying heights and different nanopit arrays 

would enable us to combine the effects of material stiffness and nanotopography. 

Both are known to affect cell adhesion[102, 259, 275], and they have been rarely 

studied in combination[280-282, 320]. All studies so far have fabricated 

nanotopographies of varying stiffness by altering the material's chemical 

composition. However, the chemical composition of the biomaterial affects cell 

response, as shown by Anderson et al. in an extensive library of 1,728 different 

chemical compounds[245]. The hierarchical micro-/nanotopography platform 

enables the study of the interplay between stiffness and topography without 



157 
 
altering the chemical composition of biomaterials. Micropillars of varying height 

have already been successfully used to measure the stiffness-dependent cellular 

traction forces of human mesenchymal stem cells[156, 157]. The stiffness of the 

pillars affected cell morphology, traction forces, focal adhesions and 

differentiation. We aim to determine whether one of the two properties 

dominates the cell response and whether the cell response to the different 

topographies changes similarly across different material stiffnesses.    
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7.  Summary and Outlook 

We have collected and analysed an enormous amount of data in this work. We 

collected fluorescence images of 53 different conditions in Chapter 4 and 84 

different conditions in Chapter 5. We have a total of 137 different conditions and 

more than 8540 fluorescent images with four channels. On average, we have five 

cells per image. Thus, we have analysed more than 42700 cells. To highlight the 

magnitude of the data collected, we can calculate the total continuous imaging 

time required, with an imaging time of approximately 4.5 minutes per image. We 

require 640.5 hours of continuous imaging for the entire dataset, which is 

approximately 64 working days, assuming a standard working day of 10 hours. 

In this thesis, we have analysed the cell response of MC3T3 cells to nanopits and 

gratings using only fluorescence microscopy. Our unique approach involves the use 

of the Cell Painting method developed by Carpenter et al for the first time in 

morphological profiling of the cell response to nanotopographies. This work serves 

as a strong proof-of-concept, demonstrating that the clustering of mechano-

transduction pathway inhibitors and activators in the UMAP plot accurately 

represents the known functions of these molecules in the pathways. The ROCK, 

myosin II, and actin inhibitors cluster together, as do the corresponding activators. 

Metabolites that mimic intracellular tension and adhesion on nanopits also cluster 

with the cells after four days on nanopits. These observations underscore the 

reliability of mapping morphological profiling data in a UMAP plot.   

We successfully used the Cell Painting assay to observe the time-dependent 

response of MC3T3 cells to nanopits in SQ, NSQ, and HEX arrays. The first response 

to the nanotopography is dominated by the calcium signalling, which increases the 

expression of the early osteogenic marker Runx2 through the MAPK pathway. After 

four days, the cells have adapted to the nanopits and the intracellular tension and 

adhesion are decreased. The oxidative glycolysis is increased at this stage. After 

seven days, the cells are in senescence and have fully committed to the 

differentiation process into mature osteoblasts. The cells show decreased 

filopodia and lamellipodia formation as they cluster with the Cdc42 and Ras/Rac 

inhibitor. 
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Our morphological profiling using Cell Painting has also demonstrated high 

sensitivity, as well as a comprehensive understanding of the cell response to 

nanotopographies. We have not only differentiated between inhibitors and 

activators but also shown concentration dependency and differences in 

nanotopographies. We analysed the morphome of MC3T3 cells on 84 different 

nanotopographies, ranging from changes of 5 nm up to changes of micron size. 

Most topographies used in this work are nanopits that vary in size, pitch, and 

orientation to each other, as they are in ordered square and hexagonal arrays or 

with varying disorder. Additionally, we have used gratings with a size of 200 nm, 

500 nm, 1 µm, 2 µm, 5 µm and 10 µm, providing a comprehensive view of the cell 

response to various nanotopographies. 

The nanotopographies and especially the different geometries of nanopits produce 

a cellular response following the same mechanotransduction pathways. Only the 

details in the strength of the responses differ. Therefore, the change in the 

morphome is also minimal. The imaging and staining are performed in different 

batches on different days, which produces a batch effect. Compared to the slight 

differences in morphology due to minimal changes in topography, the batch effect 

is relatively large. Thus, a good batch correction is needed to analyse this dataset. 

The Seurat method, a state-of-the-art batch effect correction method developed 

for batch effect correction in scRNA-Seq[139, 144, 145], has proven to be most 

successful. We get rid of most of the batch effect while retaining the biological 

information, as the correct clustering of the activators and inhibitors shows.  

Five parameters fully describe the topographies: the x-pitch, y-pitch, diameter, 

noise, and offset. Our goal was to create new topographies based on those 

parameters and their correlation with the morphome. This was an extremely 

ambitious goal because we want to pick up minimal changes in cell morphology 

systematically and correlate them to the geometry parameters, which are in turn 

correlated to each other. Typically, prediction in machine learning is achieved by 

training a dataset and using the trained model to predict to which category the 

new dataset belongs. We are not interested in categorising new data into one of 

the existing nanotopography categories but instead want to treat the geometrical 

parameters as continuous values. Suppose we have a cell that is altered, for 

example, by incubation in induction media. How must the nanotopography look to 
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obtain the same morphology without limitation to the observed topographies? We 

are not able to perform this prediction due to its complexity. Each topography 

does not cause a specific change in the morphome, but each parameter affects 

the whole morphome. Additionally, the cell response strongly depends on the 

available adhesion area, and changes in the parameters affect it similarly. For 

example, a decrease in pitch might decrease the adhesion area similarly to an 

increase in disorder. Thus, all topography parameters must be analysed 

simultaneously if we want to study the entire library. An addition of nanopillars in 

similar geometrical arrays would also improve the nanotopography library as it 

completes the topographies. 

It is possible to separate the parameters and only study the datasets with changes 

in the separated parameters. The disorder has the strongest correlation to the 

morphological changes between the different nanopit arrays. Thus, we find that 

disorder is the decisive factor in the cell response. No distinct continuous trend in 

the disorder is observed. We only see that the high disorder of 120 to 150 nm 

clearly separates from the remaining cells. Curiously, the disorder of 60 nm and 

70 nm produces a similar morphome. The pitch and size affect the morphome only 

slightly, and no similarities are observed between the pitch variations of SQ arrays 

and NSQ arrays. The gratings have a distinct effect on the cells as they align with 

the gratings. Thus, a high correlation is observed between the morphology and the 

width of the gratings. The gratings need to be smaller than 5 µm to affect the 

cells. 

To overcome those challenges, much work must be done. A larger dataset would 

be beneficial for any machine learning approaches. The slow speed of the LSM 

currently limits our imaging. A change to a widefield microscope would be 

beneficial. First experiments with a Zeiss Observer with a Colibri 7 LED-

Lightsource showed promising results with an imaging speed of less than 30 

seconds instead of more than 4 minutes per image for the LSM. This offers the 

option of thousands of cells per condition instead of hundreds, which will be 

helpful for training in machine learning. However, it is not possible to separate 

the membrane and Golgi staining from the actin staining in this microscope setup, 

and they need to be in one channel, as in the original Cell Painting protocol. The 
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imaging of the mitochondria stain, MitoTracker Deep Red, worked well with that 

microscope and can be added to gain more information about the cell state.  

We are confident in our results and the proposed mechanotransduction pathway 

over time. However, verifying our findings with conventional omic techniques, 

such as proteomics, would significantly enhance our work. It would be beneficial 

to obtain proteomics data for each identified group from one of the activators or 

inhibitors, as well as the nanotopographies at the corresponding time points. This 

data could validate the morphological profiling and provide more insight into the 

state of the cells at those time points. 

The proteomic analysis could also be taken to the single cell level with DESI mass 

spectrometry. In this work, we have not taken advantage of the single-cell 

character of morphological profiling. A single-cell analysis, considering 

heterogeneities in the cell culture, can likely improve the analysis. Morphological 

profiling has already been used to predict gene expressions of MC3T3 cells on 

nanopits in SQ, NSQ, and HEX arrays. However, the mean of single-cell data is used 

to predict the batch gene expression. With DESI mass spectrometry, the single cell 

morphome can be matched with the protein expression of the corresponding 

cell[127]. This approach holds the potential to enhance our understanding of how 

intracellular processes influence cell morphology and to improve predictions 

based on the morphome.  

Initial tests with the grating slides for DESI measurements have been conducted, 

but they have not been successful so far. The tool requires samples in a slide 

format that allows the nozzle for electrospray and the inlet to the mass 

spectrometer to be positioned close to the cells. Thus, the PS slides are not 

ultrasonically welded but taped to the bottom of the 24 well plates using an 

adhesive double-sided Microfluidic Diagnostic Tape 9965 (3M, US). After four days 

of cell incubation, the cells are stained using the Cell Painting protocol and then 

washed with RO water to remove any ions from the surface. The slides are pried 

off, dried by vacuum desiccation for 1 hour and kept in a -80° C freezer until use. 

We prepare slides with stained cells and with cells that are not stained. Mark 

Towers attempted the DESI analysis at Waters™ (UK). However, several challenges 

occurred. The adhesive tape leaves a glue residue on the slide that physically 
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hinders the sprayer and melts due to the heat from the source and inlet, 

contaminating the inlet and DESI spray. The stained cells have a high polymer 

signal that we believe comes from TritonX-100. Thus, to perform DESI 

measurements with the slides, they cannot be in the well plate format, and no 

staining is possible. The slides can be incubated in a well plate, but in that case, 

crosstalk between the cells on different topographies exists as they share the same 

media.  

To avoid staining, the Cell Painting staining can be predicted from brightfield 

images. Cross-Zamirski et al. have proven that the Cell Painting staining of U-2 OS 

cells can be predicted using U-net and a generative adversarial network 

(GAN)[231]. The prediction of Cell Painting staining can also be helpful for 

analysing cell responses to nanotopographies over time. At the current approach, 

for every time point, a new sample is needed because the cells need to be fixed 

for the staining procedure. By using live cell images, one sample can be imaged 

at many time points and the time-dependent response to topography can be 

analysed in much more detail. It would even be possible to analyse the first 

response to the topography when seeding the cell and the dynamic adaptations to 

adapt to its surroundings, and how it affects internal processes by correlation to 

mechanotransduction pathway morphologies, and single-cell proteomics 

predictions.  

It was not possible to obtain a complete understanding of the cellular response to 

the biomechanical environment because we were unsuccessful in fabricating 

hierarchical PDMS micropillars with nanopits on top. As a result, we could not 

study the effects of different nanotopographies on cellular traction forces or the 

interplay between material stiffness and topography. Despite not achieving our 

initial goal, we gained valuable insights into the lithography process at the 

resolution limits of e-beam lithography and photolithography. 

We developed a novel protocol for performing e-beam lithography using a 10 µm 

thick PMMA resist to create micropits with a diameter of 4 µm. Although these 

micropits were not suitable for our specific application, the process may still be 

beneficial for other uses where a thick resist is necessary for fabricating micron-

sized elements with high precision. 



163 
 
Photolithography using SU-8 resist has proven to be the most promising technology 

for creating high-aspect-ratio micropillars with nanopits on top. We successfully 

fabricated PDMS micropillars with a height of 18.61±0.28 µm and a diameter of 

5.93±0.15 µm from a SU-8 master stamp through soft lithography. However, 

generating a master with nanopillars remains challenging due to their interference 

with UV light, which necessitates further investigation. A maskless 

photolithography approach using a UV laser writer and a positive-tone AZ4562 

photoresist may reduce this light interference enough to create the desired mask. 

Additionally, using a maskless photolithography tool allows for easier changes to 

design parameters. 

In our pillar-based traction force microscopy tests with micropillars of 6 µm 

diameter and MC3T3 cells, we found that tracking the forces would likely improve 

with a smaller diameter and a centre-to-centre spacing of twice the diameter 

instead of three times. This design would allow the cells to spread out over more 

pillars and exert force on them, thereby improving the statistical analysis per cell 

and enhancing cell adhesion. We observed that only a few cells had pillars located 

at their centres; most were only in contact with the pillars at their outer edges. 

Therefore, a denser pillar array would offer a larger area for the cells to attach 

to. The traction force on the pillars would also likely improve with a denser array, 

as it increases periodicity and, consequently, the FFT. Furthermore, a smaller 

diameter would enhance the identification of the pillar centre by the traction 

software.   
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9.  Appendix 

 

Figure A3.1: Example images of the cell segmentation using Otsu, minimum cross-
entropy and robust background method. The segmentation is shown on MC3T3 cells with 
6 µM cytochalasin D, a control, 50 µM blebbistatin, 50 nM jasplakinolide, 14 days of 
osteogenic induction, and 4 days on NSQ nanopits. 
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Figure A4.1: UMAP projections of median features for each condition with varying 
distance and varying number of neighbours. 
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Figure A4.2: Cell Painting images of MC3T3 cells stained for the Nucleus with HOECHST 
33342 (blue), Endoplasmic reticulum with concanavalin A – Alexa Fluor 488 (green), actin 
cytoskeleton with phalloidin - Alexa Fluor 568 (red), and the Golgi and plasma membrane 
with wheat-germ agglutinin (WGA) – Alexa Fluor 555 (orange). The cells are shown with 
the highest concentration of each activator and inhibitor. 
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Figure A4.3: Cell Painting images of MC3T3 cells stained for the Nucleus with HOECHST 
33342 (blue), Endoplasmic reticulum with concanavalin A – Alexa Fluor 488 (green), actin 
cytoskeleton with phalloidin - Alexa Fluor 568 (red), and the Golgi and plasma membrane 
with wheat-germ agglutinin (WGA) – Alexa Fluor 555 (orange). Example images of the 
cells on NSQ after 1, 4 and 7 days, as well as cells on HEX and NSQ after 4 days.  
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Figure A4.4: These are examples that visualize the concentration dependencies of the 
features measured by CellProfiler. For clarity, the various concentrations of activators 
and inhibitors are categorized into low, medium, and high concentrations. Those features 
are selected to give a broad overview of different feature categories and to highlight 
that concentration dependencies are visible in all activators and inhibitors. 
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Figure A5.1: UMAP plots of nanotopography library datasets with entropy based feature 
selection. The 100 (A), 150 (B), 200 (C), and 250 (D) features with the highest impact in 
entropy reduction are picked. 

 

Figure A5.2: UMAP plot of Seurat corrected data and 200 selected features by entropy. 
The datapoints are coloured by their nanotopography category (A) and their batch (B) to 
show a potential batch effect.  
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Figure A5.3: Cell Painting images of MC3T3 cells for the disorder array. The cells are 
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with 
concanavalin A – Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor 
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) – Alexa 
Fluor 555 (orange). The fluorescence channels are merged in the images. 
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Figure A5.4: Cell Painting images of MC3T3 cells for the NSQ pitch array. The cells are 
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with 
concanavalin A – Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor 
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) – Alexa 
Fluor 555 (orange). The fluorescence channels are merged in the images. 
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Figure A5.5: Cell Painting images of MC3T3 cells for the SQ pitch array. The cells are 
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with 
concanavalin A – Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor 
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) – Alexa 
Fluor 555 (orange). The fluorescence channels are merged in the images. 
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Figure A5.6: Cell Painting images of MC3T3 cells for the varying size array. The cells are 
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with 
concanavalin A – Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor 
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) – Alexa 
Fluor 555 (orange). The fluorescence channels are merged in the images. 
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Figure A5.7: Heatmap of the morphome depending on the pitch of nanopits in the SQ 
pitch array. The heatmap is ordered by hierarchical clustering using Euclidean distances. 
The features are normalized between 0 and 1 and corrected against the control by 
dividing the control from the other substrates. The number behind the geometry 
describer corresponds to the centre-to-centre spacing. 
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Figure A5.8: Heatmap of the morphome depending on the pitch of nanopits in the NSQ 
pitch array. The heatmap is ordered by hierarchical clustering using Euclidean distances. 
The features are normalized between 0 and 1 and corrected against the control by 
dividing the control from the other substrates. The number behind the geometry 
describer corresponds to the centre-to-centre spacing. 
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