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Abstract

Cells respond to their mechanical environment in vivo, which can be separated
into the stiffness and topography of the environment. It drives the cell phenotype.
The topography within a range of 100 nm is of special interest because it falls
within the size range of protein adhesions. Thus, it is replicated in vitro in
fabricated biomaterials to study the effect of the mechanical environment. This
thesis aims to investigate the response of the preosteoblast cell line MC3T3 as a
well-studied standard cell line to its mechanical environment, with a focus on
morphological profiling and traction force microscopy. We analyse the phenotype
based on the morphology of the cells using the Cell Painting method. The cell
response is dependent on the mechanotransduction pathway. Using activators and
inhibitors of the mechanotransduction pathway in combination with 100 nm
diameter nanopits showed a mechanotransduction response over time, from an
initial Ca?* signalling to a decrease in intracellular tension and adhesion after four
days, and ultimately to senescence and commitment to osteogenic
differentiation, as indicated by decreased filopodia and lamellipodia formation.
The nanopits have a diameter of 100 nm, a depth of 100 nm, and a centre-to-
centre spacing of 300 nm in both square and hexagonal arrays, with and without
controlled disorder. We analyse 78 different types of nanopits with varying
diameters, disorder, and pitch, as well as six gratings with depths of 200 nm and
widths ranging from 200 nm to 10 ym, to have an in-depth analysis of the
correlation between phenotype and topography parameters. The gratings cause a
substantially different cell morphology compared to the nanopits. They need to
be smaller than 5 pm to influence cell morphology. The disorder has the strongest
correlation with changes in morphology from the studied topography parameters.
We aim to combine the nanotopography with the material stiffness of the
biomaterial in the analysis and study the effect of varying nanotopographies on
cellular traction forces. However, we are unable to study it due to the challenging
fabrication of the required hierarchical micropillars with nanopits on top. We
successfully created polydimethylsiloxane (PDMS) micropillars with a diameter of
5.93 + 0.15 pm and a height of 18.61 + 0.28 pm using a SU-8 master. We measured
a traction force of 10 nN, which aligns with the traction forces reported in the

literature for smaller diameter pillars with lower spring constants.
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1.Introduction

1.1. Motivation

In tissue regeneration and stem cell differentiation, the biomechanical
environment of cells has gained high interest, as it has been shown to influence
cell behaviour[1-3]. The topography, as well as the mechanical properties, of a
surface affect the cell response[4, 5]. A special focus has been placed on the
differentiation of stem cells on nanotopographies, as different topographies can
direct differentiation in different directions. The biomechanical environment is
also of high interest in wound healing[6] and cancer migration[7, 8]. Thus, we are
interested in gaining a better understanding of how the biomechanical
environment affects the cellular behaviour, with the ultimate goal of contributing

to the development of more effective tissue regeneration.

The cellular response to the biomechanical environment is driven by
mechanosensing and subsequent mechanotransduction, which converts
mechanical signals into biochemical signals within the cell[9-11]. The study of
mechanotransduction through nanotopographies has many challenges.
Conventionally, the response to topography is analysed by omics techniques that
are expensive and time-consuming[12-14]. In our research, we will introduce a
novel approach by utilizing the morphological profiling technique, Cell Painting,
as a high-throughput method that stains the organelles of cells to obtain a
comprehensive picture of the cell's morphological phenotype[15, 16]. We aim to
map the morphological response of cells on nanopits, together with activators and
inhibitors of mechanotransduction pathways, to gain insights into activated
pathways on these topographies. The Cell Painting method has been widely used;

however, this is the first study to attempt its application with nanotopographies.

Another challenge in working with nanotopographies is identifying the ideal
topography. Different topographies elicit distinct responses from cells and few
studies of large nanotopography libraries have been conducted so far [17]. Since
many of the traditional analysis methods are expensive and time-consuming, only

a limited number of topographies can be tested with them. Thus, most of the
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time, only large differences in topographies, such as gratings, pits, or pillars, are
tested, rather than the fine dimensions of the topographies. Only basic
morphological features or general responses as the expression of differentiation
markers are studied for the screening of extensive libraries. In our study, we have
designed a comprehensive research plan that overcomes these limitations. We
want to test the effects of small differences in nanotopography on cell response
using a library of nanotopographies with pitch differences in steps of 10 nm and
disorder in steps of 5 nm, with diameters ranging from 120 nm to 10 pm. We
believe that small differences in the topographic arrangement have a significant
influence on cell response. Our main goal is to see if we can use this systematic
library of nanotopographies with a range of modified parameters to predict new
topographies that replicate the morphome of a desired cell phenotype. If we have
a cell with a morphology caused by a perturbation or differentiation, can we
predict a new topography that will cause the same cell morphology? So far,
nanotopography libraries have only been used to identify the optimal topography
for a given application, such as differentiation into a desired cell line. We want to
take it one step further to create a new topography from the cell's morphome in
a given state and the nanotopography library used. We will use the high-
throughput Cell Painting method to obtain an in-depth analysis of the cell state,
combined with custom-made injection-moulded 24-well plates featuring a variety
of nanopit arrangements and gratings, to ensure a thorough exploration of the

cellular response to different topographies.

The cell responds to the topography of its environment and the mechanical
properties, such as the material stiffness. Both influences have been widely
studied, but they are most often examined individually rather than in
combination[18, 19]. We aim to combine both parameters to obtain a complete
picture of the biomechanical response. It is known that cellular traction forces
are adhesion-dependent and that nanotopographies decrease the cellular
adhesion[19]. Thus, we aim to study how different topographies affect the cellular
traction force on material of varying stiffness. We want to know how the two
factors of topography and material stiffness interact with each other and if one of

the factors is dominant in the cell response.



1.2. Thesis structure

Following this introduction, the thesis embarks on a comprehensive literature
review of the latest advancements in mechanotransduction analysis and
morphological profiling, with a specific focus on Cell Painting and traction force
microscopy in Chapter 2. This review, which underscores the importance of
effective data integration and batch correction, is a crucial foundation for the
subsequent research. The general methods employed across the various chapters
are then presented in Chapter 3. Throughout the thesis, we utilize the well-
studied pre-osteoblast cell line MC3T3, known for its robust response to the

studied nanopits, as it differentiates into mature osteoblasts on said nanopits[20].
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Figure 1.1: Schematic overview of the work performed in the thesis. The influence of
nanotopography on the mechanotransduction pathway is studied using morphological
profiling as well as cellular traction forces. Schematic created in BioRender.
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In Chapter 4, we aim to predict a mechanotransduction pathway during
differentiation using the innovative Cell Painting method. We believe that the
morphological changes observed in MC3T3 cells when perturbed with inhibitors
and activators of key points in the mechanotransduction pathway will be similar
to those of MC3T3 cells on nanopits. We aim to utilise these similarities to gain a

deeper understanding of the differentiation of MC3T3 cells on nanopits over time.

We successfully mapped the nanotopography responses in relation to a variety of
activators and inhibitors and found that cell differentiation through nanopits
undergoes a journey. The first response is dominated by the calcium signalling,
which is known to increase the expression of the early osteogenic marker Runx2.
Then, intracellular tension and adhesion decrease, while oxidative glycolysis
increases during differentiation, until the cell reaches senescence, characterised
by reduced lamellipodia and filopodia formation. Additionally, we have
demonstrated, as a proof-of-concept, that Cell Painting can be used to study the
response to nanopits, even detecting differences in pit arrangement in a square
lattice, with disorder, and in a hexagonal lattice. Furthermore, we pick up the
concentration dependencies of activators and inhibitors, as well as their

similarities and differences in their mechanisms of action.

In Chapter 5, we expand the morphological profiling to a library of 84 different
nanotopographies. We have demonstrated that the morphome is dependent on the
geometry of the nanotopography. Thus, we believe that we can utilise an extensive
nanotopography library to identify an ideal topography and develop new

topography designs from it.

We use nanopits with varying sizes, pitches, and disorder, as well as gratings of
different sizes. We have noticed that the subtle changes we observe in the
morphome through changes in topography are much more challenging to identify
than those resulting from activators and inhibitors. Thus, careful feature selection
is even more important, as is a good batch correction. We can correct for the
batch effect using a Seurat method. The prediction of different nanotopographies
from morphological features is possible using linear regression, as long as only one
parameter is changed in the dataset. Predicting a new topography using the

complete set of geometrical parameters remains a challenge.
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In Chapter 6, we aim to combine the nanopits with the material's mechanical
properties. We believe that by creating micropillars with nanopits of varying
arrangements on top, we can study the topography-dependent cellular traction
force. By varying the micropillar dimensions, we can alter the stiffness and
investigate the impact of material stiffness on adhesion, thereby examining the

traction forces associated with different topographies.

The fabrication of micro-/nanopillars proved to be highly challenging. We
employed both electron beam lithography and photolithography, utilizing various
resists and techniques. However, no fabrication method has yet produced reliable
micropillars with nanopits on top. Operating at the limits of each fabrication
method in a multi-step process, the fabrication remains extremely challenging.
Despite these hurdles, we managed to create micropillar arrays of the desired
dimensions, with a diameter of 6 pm and a height of 18 pm, suitable for traction
force microscopy with MC3T3 cells; however, the addition of nanopits remains a

challenge.



2.Literature review

2.1. Mechanotransduction

The environment surrounding cells, known as the cellular microenvironment,
strongly affects their behaviour[2, 4, 11, 21-24]. This microenvironment can be
broadly categorised into the chemical and biophysical environments. The chemical
environment is described by the chemical composition and the charge of the
biomaterial, as well as the composition of the media. The biophysical
environment, on the other hand, describes the mechanical properties and
topography of the substrate on which the cells grow. This work primarily focuses
on the effect of the biophysical environment, with a special emphasis on the
influence on cell differentiation. It has been shown in many studies that the
mechanical properties of the extracellular matrix (ECM) strongly affect the cell
fate in vivo and in vitro[1, 2, 22, 25-29]. The mechanical properties of the cell
environment can be separated into the stiffness of the environment and its
structure. Especially, the nanotopography, which refers to the surface topography
at the nanoscale level, has been shown to have a significant impact on the cell
response[8, 25, 26, 30-32].

Additionally, the importance of tissue or biomaterial stiffness on cell behaviour
has been shown in many studies[4, 21, 33]. One example is the work of Engler et
al., where they showed that matrix elasticity can direct mesenchymal stem cells
(MSCs) differentiation towards different cell lineages[5]. For instance, collagen-
coated polyacrylamide gels with varying elasticity are used to mimic the elasticity
of brain tissue (Eprain ~ 0.1-1 kPa), muscle tissue (Emuscle ~ 8-17 kPa), and osteoid
tissue (Eosteoid ~ 25-40 kPa)[34]. The majority of MSCs commit to the phenotype
that the matrix elasticity corresponds to. That clearly shows that substrate
stiffness plays a significant role in stem cell differentiation and must be
considered when designing biomaterials. Tissue stiffness also plays an important
role in cell migration as cells tend to move towards stiffer surface. This effect is
called durotaxis[7, 35, 36].
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The cellular mechanotransduction can be separated into three main parts. First,
biomechanical sensing of the environment occurs, followed by the transduction of
extracellular conditions into cells, and finally, cellular translation into biological
responses, including increased and decreased protein expression and adaptation
of transcription (see Figure 2.1C)[10, 11, 23, 30]. Cells sense their biomechanical
environment through membrane proteins, where integrins and ion channels are of
high importance. Integrins are heterodimers that change into an active formation
when binding to the extracellular matrix[37]. Focal adhesion kinase (FAK) binds
to the activated integrins to build focal adhesions and transfer the mechanical
properties of the ECM to the cytoskeleton through the proteins talin, vinculin, and
paxillin. More proteins are involved in this transfer, but talin, vinculin, and paxilin
have been identified as essential proteins in transferring the mechanical
signals[11]. The distribution and number of adhesion proteins, as well as the pull,
affect further signalling cascades inside the cell. The focal adhesion proteins
translate the pull to the actin-myosin cytoskeleton, where the forces are further
transduced into signalling pathways[8, 38-43]. The focal adhesion is a loop, as the
induced contraction of Actin is again enhancing the FAK activation. The formation
of focal adhesions and adaptation of cytoskeletal arrangement and tension
through the ECM activate signalling pathways and nuclear mechanotransduction.
Yes-associated protein (YAP) is the essential protein in nuclear
mechanotransduction to translate the cytoskeletal tension to the nucleus to

activate transcription factors[28, 40, 44-47].

The transport of YAP into the nucleus is not yet fully understood. Nuclear
compression can promote nuclear translocation of YAP. The cytoskeleton can
mediate nuclear compression, translating external factors such as microstructures
and substrate stiffness. Direct compression of the nucleus by external forces
increases YAP transport within the nucleus as well[48]. During nuclear
compression, nuclear pores are stretched to allow YAP transport; however,
nuclear swelling does not allow the pores to open for YAP transport. Thus, the
mechanism of YAP nuclear translocation is more complex than a simple membrane
stretching to open the nuclear pores. The detailed mechanism is still under
investigation[49]. Another part of the nuclear mechanotransduction is the direct

deformation of the nucleus due to the cytoskeletal contractions, which results in
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a rearrangement of chromatin in the nucleus[50]. In this work, we will not focus
on nuclear mechanotransduction but on signalling pathways around the

cytoskeletal arrangement and stability.

The Rho family proteins play a crucial role in the mechanotransduction pathways
and cytoskeletal arrangement and stability[51-56]. We will focus on the most well-
known proteins Cdc42, Rac, and RhoA. RhoA activates Rho-associated protein
kinase (ROCK). ROCK is known to activate myosin Il, a motor protein essential for
actin contraction and the formation of stress fibres together with f-actin. Stress
fibres are bundles of F-actin and myosin Il that propagate the forces of the focal
adhesions through the cell[57]. Thus, it has been shown in many studies that the
ROCK signalling pathway plays a key role in mechanotransduction[58]. Rac is
known to promote the formation of lamellipodia and is therefore essential for cell
migration. Cdc42 promotes the formation of filopodia, which sense the
extracellular environment. Cdc42 also activates Rac[54]. The effect of Cdc42, Rac

and Rho on the actin organization is shown in Figure 2.1B.
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Figure 2.1: Overview of the cell response to its mechanical environment. Cellular
functions depend on environmental influences of the biomaterials, and external forces
(A). (B) shows a schematic representation how the Rho-GTPases RhoA, Rac1 and Cdc42
affect the actin structure organization. RhoA is responsible for stress fibre formation,
Rac1 for lamellipodia formation, and Cdc42 for filopodia formation. [54] (C) shows a
diagram of the interaction between the different mechanosensing and
mechanotransduction pathways in osteogenesis. FA are the focal adhesions, GJs are gap
junctions, piezo-ppp3ca and ERK-MAPK are Ca** dependent signalling pathways, and YAP
and TAZ are transcriptional regulators. [59] The images are reprinted with permission of

Goetzke et al.(A),[22] Samuel et al.(B),[54] and Liu et al.(C)[59]
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The cells respond to nanotopographies through focal adhesion arrangements and
localised changes in membrane curvature. On soft materials, the focal adhesions
are scarce, and the topography is sensed by curved adhesions[60]. In particular,
nanostructures protruding from the surface induce strong membrane
deformations[61]. The BAR domain (bin/amphiphysin/rvs) proteins are essential
for membrane curvature sensing and generation[62, 63]. The BAR proteins have a
curvature that is either concave at the membrane-binding site for BAR and F-BAR
proteins and convex for |-BAR proteins. The F-BAR protein family is known to play
a crucial role in sensing nanotopographies and translating membrane curvature
into the mechanotransduction pathway via the Rho GTPases. FBP17, a curvature-
sensing protein of the F-BAR family, is active when it is bound to the membrane
and induces cytoskeleton remodelling through the Rho GTPase regulation[64]. Lou
et al.[61] showed that high aspect ratio nanopillars with a diameter below 400 nm
promote the formation of branched F-actin and reduce the formation of stress
fibres and mature focal adhesions. The promotion of the branched F-actin is
regulated by N-WASP, Arp2/3 and Toca-1, which in turn interact with Cdc42 that
is essential for the actin cytoskeleton organisation as described above[65]. Zhang
et al.[60] showed that the F-BAR domain of FCHo2 forms curved adhesions in
combination with the integrin ITGB5 on soft nanostructures, where few focal
adhesions are found. Curved adhesion transduces mechanical stimuli to the

cytoskeleton via talin-1.

lon channels are another key factor in mechanosensing[66, 67]. In particular, the
force-activated PIEZO channels sense differences in the ECM, such as its stiffness,
structure, and chemical composition. The PIEZO family includes the PIEZO1 and
PIEZO2 channels. They are mechanosensitive Ca-ion channels that are activated
by tension on the cell membrane. In a closed state, the channel is in a curved
formation. Tension on the membrane flattens the channel and opens it[68, 69].
Thus, the PIEZO ion channels sense surface stiffness through the difference in
membrane tension. The activation also depends on the focal adhesion
organisation, as shown by Ellefsen et al.[70], who identified the most PIEZO1-
dependent Ca?* flickers in areas of high traction force. Cells were seeded with
local constraints by plating them on square fibronectin islands. They noted the

most flicker events at the corner of the squares, where the most focal adhesions
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are also localised and the traction force is the highest. The intracellular Ca-ion
concentration plays a crucial role in mechanotransduction, as it affects signalling
pathways similar to those influenced by focal adhesions. It has been shown that
an increase in intracellular Ca?* concentration activates the ROCK pathway,
stabilises the actin cytoskeleton and promotes focal adhesions. It is also essential
for the mitogen-activated kinase (MAPK) pathway, an important pathway in

osteogenic differentiation[59].

Depending on cell type and application, different nanotopographies are used to
achieve the desired effect[71-73]. The desired effect can, for example, be
differentiation into a specific cell lineage. It is well known that the ECM's
properties are crucial for the state and behaviour of cells in vivo. Therefore,
nanomaterial designs often mimic the ECM's in vivo properties to create a
biomimetic substrate. Topographies can be created in a controlled manner, for
example, by electron beam lithography[74, 75], ion beam lithography[76], UV
lithography[77], or molecular self assembly[78, 79]. The nanotopographies can
also be fabricated in a random manner, for example, using electrospinning[80],
carbon nanotubes[81] or surface roughness[82] (Figure 2.2 A-H). The fabrication
techniques can be divided into bottom-up and top-down techniques[83-85].
Bottom-up techniques work on guided self-assembly. The nanostructures are built
from smaller building blocks, as in electrospinning[80], carbon nanotubes[81],
colloidal self-assembly[78] or DNA origami[86]. Top-down methods are lithography
techniques that write a pattern into a material. The methods are often based
around a beam writing the desired structure into a resist. Some examples include
the above-mentioned electron beam lithography[74, 75], focused ion beam
lithography[76], photolithography[87], and x-ray lithography[88]. Dry[89] and wet
etch techniques[90], which can be used to create controlled surface roughness,

are another option for top-down lithography techniques.

The nanotopography features shown in Figure 2.2 span a wide size range, from 50-
60 nm for the carbon nanotube bundles, to surface roughness in the 100 nm to
micrometre range, to electrospun fibres with a diameter of around 500 nm.
Depending on the fabrication technique, feature sizes can be tuned from as small
as 50 nm to microfeatures. One example of nanotopographies are nanogratings

that are often used to support the elongated shape of neuron cells[91, 92].
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Gratings are also used to align cells along the gratings. Nanopillars and nanopits
are used in many varying applications in slightly different formations. The
nanotopographies guide the formation of integrin clusters[57]. Depending on the
size and distance of features, the cells can build integrin clusters. To build the
integrin clusters, they require sufficient space to attach. That can be a continuous
surface or a surface with a small enough gap. The number, size and distribution

of integrin clusters dictate the cell response (Figure 2.2 I).
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(caption for figure on previous page) Figure 2.2: Overview of varying nanotopographies
used in cell biology studies. SEM images of ordered nanopillars (A), nanogratings (B),
nanopits in square (C) and near-square (D) formation, electro-spun nanofibers (E), carbon
nanotubes (F), random nanopillars (G), and surface roughness (H). (I) shows a schematic
representation how integrin clusters form due to topography to form focal adhesions
that translate the forces into the cell through the actin cytoskeleton and ROCK signalling
pathway. The images are reprinted with permission from Viela et al.(A)[93], Yim et
al.(B)[94], Dalby et al.(C,D)[95], Chua et al.(E)[80], Tay et al.(F)[81], Sjostrom et
al.(G)[96], Ogino et al.(H)[82], and Seo et al.(1)[57].

This work focuses on the nanotopography-induced osteogenic differentiation, as
it has been widely studied with a range of nanotopographies, but the search for
the optimal topography remains a challenge[27, 59, 97]. Mesenchymal stem cells
and osteoprogenitor cells differentiate into mature osteoblasts on nanopillars and
nanopits. Nanopillars of varying heights of 15, 55, and 100 nm[96, 98, 99], as well
as nanopits of 120 nm diameter, 300 nm centre-to-centre spacing, and 100 nm
depth, with varying geometrical arrangements, showed an increase in osteogenic
differentiation[20, 25, 31, 100]. For the nanopillars, a height of 15 nm showed the
highest increase of the early osteogenic marker Runx2 after 2 days and of
osteocalcin (OCN) after 21 days. The focal adhesions increased in size with an
increased height of nanopillars. The geometrical arrangement of nanopits affects
the osteogenic differentiation by directing the focal adhesion arrangements. The
nanopits are arranged in a square (5Q), hexagonal (HEX) and near-square lattice
(NSQ50), where the pits are randomly displaced by 50 nm from an ideal square
lattice. The NSQ50 topography shows the strongest expression of Runx2, osterix
and OCN in the cells. The disorder produces areas that are large enough to form
focal adhesions, while other areas are not big enough for the formation. It has

been shown that focal adhesions need at least 70 nm to form[101, 102].
2.2. Morphological profiling - cell painting

Mechanotransduction pathways are analysed using many different methods.
Often, omics techniques[12-14, 103-105] are used, which are time-consuming and
expensive, limiting the number of experimental conditions that can be tested. The
influence of different parts of the mechanotransduction pathway is not only
analysed by omics techniques, but also by activation or inhibition of parts of the
mechanotransduction pathway and study of the effect on cell functions, such as

migration[106, 107], cellular traction forces[70, 108, 109], or protein
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localisation[48, 60]. The expression of differentiation markers is not only analysed
by omics techniques but also by fluorescence labelling of the markers[110].
Morphological profiling can be used as an alternative to omics techniques, offering
a fast and cost-efficient approach that does not require specialised equipment
beyond a basic fluorescence microscope[15, 16, 111-116]. In contrast to staining
for differentiation markers or focal adhesions, morphological profiling provides
general information about the state of the cell, similar to, for example, genomics
or proteomics. Additionally, one of the key advantages of morphological profiling
is its relatively unbiased approach, which provides a vast collection of features
that are not selected based on known interactions. This open approach holds the
potential for novel discoveries and relationships. In addition to image-based
profiling, other profiling methods such as metabolomic[117-120], proteomic[119,
121-123], and gene expression[124, 125] profiling exist, with only gene expression
profiling being truly high-throughput. While these techniques lack single-cell
resolution, they are all aggregation methods, thus failing to report the
heterogeneity in cell populations. However, current advances in classic omic
techniques enable single-cell resolution, as demonstrated by two key examples:
desorption electrospray ionisation (DESI) mass spectrometry[126-128] and single-
cell RNA sequencing (scRNA-seq)[129-131]. Image-based profiling can be used in
addition to omics techniques, as it can predict properties and provide new
information, making it a valuable complementary tool. Image-based profiling has
been used in conjunction with gene expression data, protein profiling, and

proteome analyses[16, 113].

A special case of morphological profiling is Cell Painting, developed by the
Carpenter lab[15], a renowned research group in the field of cell biology. Figure
2.3 visualizes the Cell Painting process. The Cell Painting method stains the F-
actin cytoskeleton (phalloidin/Alexa Fluor 568 conjugate), endoplasmic reticulum
(ER) (concanavalin A/Alexa Fluor 488 conjugate), Golgi and plasma membrane
(wheat-germ agglutinin/Alexa Fluor 555 conjugate), mitochondria (MitoTracker
Deep Red), nucleus (HOECHST 33342), and RNA (SYTO 14 green fluorescent stain)
to visualise a wide range of organelles and, thus, cell functions. Depending on the
experiment, adjustments are made to the used dyes to stain different relevant

cell features. A major benefit of the chosen staining methods is the easy one-step
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staining protocol, without the need for additional specific antibodies. This
significantly speeds up the experimental process, reducing it from a full day to
less than 2 hours. The stains are also chosen to paint a general picture of the cell
state rather than an experiment-specific stain, as, for example, focal adhesions
in the study of nanotopographies. The Carpenter lab's pioneering work in
developing Cell Painting has significantly advanced the field of morphological
profiling, providing researchers with a powerful and versatile tool for studying cell
biology and disease mechanisms.
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Figure 2.3: Diagram of the Cell Painting process. First, the cells are seeded, and
perturbations are performed. Next, the Cells are stained and imaged by fluorescence
microscopy (A). The obtained images are the mitochondria (B), actin cytoskeleton, Golgi
and plasma membrane (C), nucleolar and cytoplasmic RNA (D), endoplasmic reticulum
(E), DNA (F). A merged image is shown in (G). The information from the different
organelle staining is analysed in CellProfiler, where per cell features are obtained. Those
are then aggregated (H). Reprinted with permission of Seal et al.(A,H),[16] and Cimini
et al.(C-G)[132]

The state of a cell is reflected in its morphology, and many different types of
perturbations to cells were used, as well as many different mechanisms of action
analysed. The recent review by Seal et al.[16] about a decade of Cell Painting

gives a detailed overview of the advancement and potential of morphological

profiling and, especially, Cell Painting as the most used high-throughput image-
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based profiling technique. It is used for a wide variety of perturbations and
applications[133-136]. It is most commonly used with small-molecule compounds,
as well as with CRISPR perturbations and gene or protein overexpression through
open reading frames. An outstanding case of Cell Painting is the JUMP
dataset[137], which consists of 116,750 different small-molecule compounds,
over-expression of 12,602 genes and knockout of 7,975 genes in U20S cells, which
are human osteosarcoma cells. This dataset provides the barcode for all
perturbations, enabling comparisons with drug treatments for purposes such as
toxicity or phenotype identification. The JUMP dataset is a significant resource in
the field of Cell Painting, providing a comprehensive library of perturbations for

researchers to compare and analyse.

The applications of Cell Painting vary a lot. It is used for phenotypic profiling,
compound toxicity, mechanism-of-action prediction, and to deepen the
understanding of diseases. Its most common use is the prediction of the
mechanisms of action of drugs or diseases[138]. It is used to analyse disruptions
in the cytoskeleton, ion channels, metabolism, protein synthesis, oxidative stress,
and more. The wide variety of mechanisms highlights the versatility of Cell
Painting to identify not only a direct change in organelles, but also changes in
protein expression, metabolism and the cell cycle[16]. It is also used to identify
the morphological profiles of cancer cells to study the drug response and identify
cancerous cells. Furthermore, it is used for the prediction of virus-infected cells
and fibroblasts from patients with sporadic Parkinson's disease lines. A new
connection between signalling pathways of tumour initiation and progression of
U20S cells was discovered by Rohban et al.[135] using Cell Painting. It has also
shown its potential in predictive toxicology by correctly predicting the toxicity of

compounds in vivo with an accuracy of 68%.

The pipeline for the Cell Painting assay consists of several steps. After cell
fixation, staining and imaging, the image analysis starts with the cell segmentation
and feature extraction. The image analysis is conventionally done in the powerful
image analysis software CellProfiler. The extracted single-cell features are then
aggregated, and feature selection and integration are performed. The feature
selection is an important step, as not all features are informative depending on

perturbation and cell type. Furthermore, one will find many redundant features,
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which need to be deleted to avoid skewing the data in the wrong direction. Finally,
a dimensionality reduction using t-SNE (t-distributed stochastic neighbour
embedding) or UMAP (uniform manifold approximation and projection) is
performed to visualise the findings. Hierarchical clustering is also often used to

identify similarities between phenotypes/perturbations[16].

2.3. Data integration

One of the most daunting tasks in morphological profiling is the integration of data
and the selection of features. This process, while crucial for extracting meaningful
insights from a dataset, presents a significant challenge. Various approaches to
data normalisation and feature selection are documented in the literature. A brief
overview of these methods is provided below. When conducting experiments in
different batches, it is essential to correct for batch effects without sacrificing
the biological information. Arevalo et al. have extensively explored batch
correction methods with Cell Painting, applying different methods to the JUMP

dataset[139]. The results of their work will be discussed in more detail later.

After the image analysis of a Cell Painting image set, one is left with over 2000
features per cell. The high number of features makes the analysis computationally
expensive, and many features lack significant information due to high noise,
redundancy, or lack of correlation between different cell types/perturbations.
The standard feature selection process involves removing redundant features that
correlate with other features by more than a set threshold. The commonly used
threshold is 0.9. Additionally, features with a low variance across the different
conditions are deleted. Some studies are doing further feature selection or
dimensionality reduction afterwards. Some do a principal component analysis
(PCA) for dimensionality reduction, others try to pick the data with the most
information. Rohban et al. use a regression that starts with essential features, and
then each feature is added to the set, and the feature that adds the most
information to it is kept[135]. The replicate correlation measures the
contribution. This process is repeated until the replicate correlation of the residue

drops to less than 0.3. The use of the replicate correlation is commonly used in
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feature selection. The Carpenter lab developed the Cytominer package for image
data processing[140]. It also includes the option to analyse the feature importance
by its contribution to the reduction of data entropy. Caicedo et al. wrote a review
about the data analysis in 2017, where they mention further methods for feature
selection[141]. They mention the minimum redundancy-maximum relevance
method, and a method where a vector machine is used to give specific weights to
the features that represent its usefulness. Then, the feature with the lowest
weight is iteratively removed until the classification drops. Recently, progress was
made with using machine learning for dimensionality reduction. Siegismund et al.
were able to select only 20-30 features that were enough for a successful

classification[142].

Correcting for batch effects requires a delicate balance between removing the
batch effect and preserving the biological variance. Sphering is the most
commonly used method for batch correction of Cell Painting data, as it is part of
the Cytominer package. The sphering batch correction transforms the negative
control of each batch with the assumption that variation between them is purely
technical noise. A sphering transformation, which does the transformation, is also
called whitening. It is a linear method that converts the initial vector in such a
way that the new covariance matrix is the identity matrix. That means that the
data is decorrelated. Usually, a zero-phase component analysis (ZCA)
transformation is done to perform the sphering with Cell Painting data. The unique
feature of the ZCA sphering transformation is that the resulting whitening matrix
is symmetric. After obtaining the whitening matrix for the negative controls, this
whitening matrix is used to correct the profile of the whole data set and remove
the batch effect[143].

Arevalo et al. compared the sphering method with 10 other batch correction
methods across different levels of batch effect, using the JUMP dataset. This
dataset was chosen as it was collected in a variety of labs, resulting in a significant
batch effect. The comparison was conducted in five different scenarios, ranging
from single-laboratory, single-microscope data to data from multiple laboratories
and multiple microscope types. Across these scenarios, the Seurat correction and

Harmony correction consistently performed best in batch correction and
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preservation of biological variance. An overview of their work is shown in Figure
2.4.

The Satija lab developed the Seurat method for the batch correction of scRNA-
Seq data[144, 145]. It is a method based on nearest neighbour matching.
Therefore, it does not require a negative control as an input, but it requires
information about the batches. It first identifies anchors for the integration. Those
are pairs of mutual nearest neighbours in a low-dimensional space across batches.
Arevalo et al. tested the Seurat method with canonical correlation analysis (CCA)
and reciprocal principal component analysis (RPCA). Both methods got similar
scores in batch correction and retention of biological information. RPCA is faster
than CCA and therefore preferable for massive datasets. It also supports greater
heterogeneity between the datasets. The pairs are used to correct for the batch

effect based on differences between them.



20

Data Feature Batch i Evaluation
A B Extraction ! Correction :
Num Replicates ! '
H Methods E Batch Removal
1 1 1 302 21/21 | I ! ! Melrics
1 W Baseline '
2 1 3 302 37/37 1 Q  Combat '
H 0 DESC ; I I I
4 : QO  FastMNN 4 JEnuee
3 1 3 80,000+ 212 Cell Profiler —-—b: it a —
* i O MNN | Biology Preservation
4 3 3 302 66/66 . i O Scanorama \ Metrics
| o s —— o Sevl '
z i 0 Seurat CCA !
5 3 5 80,000+ 2/4 B ! 0 Seural RPCA ! h
f | 0 Sphering ! .
| : i ' 2D Projection
C Batch correction Bio metrics Aggregate score
Graph LISI Silhouette LISI Leiden Leiden Silhouette mAP mAP Batch Bio
Method connectivity KBET batch batch label ARI NMI label (controls) (nonrep) correction metrics Overall
Seurat CCA 0.35 0.13 0.49 @ 0.01 0.25 0.31 0.27 0.07 0.46 0.32 0.37
Scanorama 0.34 0.14 0.42 @ 0.01 0.29 0.27 0.23 0.05 0.43 0.31 0.36

DESC 0.33 0.01 0.27 0.58 @ 0.02 0.34 0.01 0.22 0.04 0.30 0.27 0.28
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.4: Batch effect correction for Cell Painting datasets. Arevalo et al. evaluated
batch correction methods for the Cell Painting method, by evaluating a varied of
scenarios of increasing complexity from the JUMP dataset (A). They performed a standard
Cell Painting feature extraction and then used different batch correction methods and
evaluated them for their effectiveness in batch correction and biological preservation
(B). Scenario 5 shows the highest effectiveness in batch correction and biological
preservation (Bio metrics) for the Seurat methods and Scanorama (C). Reprinted with
permission of Arevalo et al.[139].

Even after feature selection, the resulting dataset often contains more than 200
dimensions. To extract valuable insights from the data, further processing is
necessary. This typically involves hierarchical clustering to identify similarities
between different perturbations. Dimensionality reduction methods are then used
to visualise the data in 2D and 3D space. The most commonly used reduction
methods are t-distributed stochastic neighbour embedding (t-SNE)[146] and
uniform manifold approximation and projection (UMAP)[147]. While principal
component analysis (PCA) is the most well-known and historically most used

method, the newer non-linear dimensional reduction methods, t-SNE and UMAP,
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outperform it in separating clusters in a low-dimensional space. PCA preserves the
global distances, while t-SNE and UMAP focus on a preservation of the local
distances over the global distance. In a comparison between t-SNE and UMAP,

UMAP is faster and preserves more of the global structure[148].
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Figure 2.5: Representation of the UMAP dimensionality reduction process. The uniform
manifold approximation and projection (UMAP) works by first building a topological
representation of the high-dimensional data. This representation is then used to find a
low-dimensional representation with similar topological properties. Reprinted with
permission of Healy et al.[149].

PCA can reduce the dimensions of a dataset by computing principal components,
which are new, uncorrelated variables. The new principal components are used as
dimensions for the dimensionality reduction, where the first principal component
carries the most information, the second principal component carries the second
most information and so on. Thus, the first two principal components can be
plotted in a 2D scatter plot that contains most of the variation of the high-

dimensional dataset[150].

T-SNE works by attracting and repulsing the nearest neighbours in a 2D space. For
that, each data point is first plotted randomly in a 2D space and the attraction by
similarity to the nearest neighbour is calculated. Based on this similarity, the data
points are either attracted or repelled from each other. A Gaussian kernel
calculates the similarity between data points. The perplexity defines its width.
The perplexity is an important parameter for a good t-SNE plot. Since the initial
placement in a 2D space is random, the final position of the clusters relative to
each other is also arbitrary. It does not visualise the global geometry of the
data[151].
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UMAP works similarly to t-SNE, projecting high-dimensional data into a 2D space
and adjusting the positions of individual data points based on their high-
dimensional similarity. It first creates a fuzzy high-dimensional graph by
calculating the probability that two data points are connected. If two data points
are connected, is determined by checking if they are within a defined radius of
each other. This radius is an important parameter for the UMAP construction,
which is defined by the distance to the nth nearest neighbour of each point. A
low-dimensional graph is constructed from it by finding a representation that
shows the highest similarity to the high-dimensional graph (Figure 2.5). While t-
SNE has one critical parameter, the perplexity, UMAP uses two parameters: the n-
nearest neighbours and the minimum distance. The n-nearest neighbours
parameter says how many neighbours each data point has. This parameter is
adjusted to find a balance between the local and global structure. The global
structure is more represented in high values, while low values focus on the fine
details in the local structure. The minimum distance is important for the
visualisation in a low-dimensional space. A high value results in broadly distributed
data points in a cluster, while a low value results in tightly packed clusters. While
UMAP provides a better representation of the global structure, it is not to be fully
trusted either, as the distance between clusters lacks meaningful

interpretation[148].

UMAP and t-SNE are stochastic methods and, therefore, one must keep in mind
that each run with the same parameters gives different graphs. Furthermore, the
range of the parameters can be guessed from the datasets nature. However,
different sets of parameters need to be tested to gain a comprehensive
understanding of the data. One also must be cautious with the interpretation of
clusters, as the algorithm forces clusters; false clustering is possible and can be
random noise. Thus, when interpreting the results of a UMAP projection, it is
always advised to test multiple runs over a variety of parameters to obtain a good

picture of the true nature of the data.
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2.4. Traction Force Biology

The above-described mechanotransduction is well understood to influence cellular
traction forces, as these forces are closely linked to key steps in the
mechanotransduction pathway that respond to nanotopography. Cellular traction
forces are determined by factors such as adhesion[19], cytoskeletal
contractility[152], and nuclear displacement[153]. The motor protein myosin Il
plays a crucial role in generating these traction forces by facilitating intracellular
contractions[152, 154]. Furthermore, nuclear mechanotransduction alters
chromatin structure in response to different nanotopographies[9, 44, 46], which,
in turn, affects traction forces based on the localisation of the nucleus and the
arrangement of chromatin. Additionally, the stiffness of materials influences cell
responses through similar pathways[155-157]. Therefore, analysing traction forces
in relation to nanotopography and material stiffness is essential for gaining a
comprehensive understanding of how cells respond to their biomechanical

environment.

The cellular traction forces can be analysed by measuring the forces that a cell
exerts on its surroundings, as this is an indicator of the cell state[158, 159].
Different approaches exist for measuring traction forces. The most used methods
are based on elastomeric micropillars and polyacrylamide gels with fluorescent
beads. The traction force can be measured by microscopically tracking the
displacement of the beads when the cells apply forces to the gel and deform the
gel[160, 161]. Micropillars are analysed similarly. The movement of the top of the
pillars is tracked by a microscope when the cells bend the pillars due to their
traction force (Figure 2.6)[156, 162-164].

This work focuses on micropillars, which were introduced for force tracking
biology in 2003 by Tan et al. and are widely used[165]. An advantage of the
micropillar platform is its compatibility with a broad range of cell types, as well
as the possibility of additional measurements, such as fluorescent staining of the
cells[166, 167]. The micropillars can mimic a wide range of pillar stiffness from 1-
200 nN/pm. Another advantage is the localised analysis of traction forces, as each

deflection of a pillar comes only from the force on that pillar. The stiffness of the
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pillars depends on the geometry and arrangement of the pillars(Figure 2.6C);
therefore, topographies with varying stiffness but the same adhesion area and
chemical and mechanical material properties are possible[156, 157]. This way, the
traction force, depending on substrate stiffness, can be measured without another
effect like a different adhesion area or strength due to chemical differences in

the substrate affecting the forces.

The mechanical properties of the micropillars can be adjusted by changing height,
diameter and centre-to-centre spacing according to the equation for the shear
modulus G of micropillars (equation 1) with the bulk young modulus Eguk, the
diameter D, the height H, the centre-to-centre spacing L, and the fill factor f[156,
168, 169].

G = 116 (g)szBulk (1)
F=n(@) v @
F=kAx (3)

The traction force F (equation 3) can be calculated from the pillar deflection from
equation (3) with the pillar displacement Ax and the spring constant k shown

below in equation 4.

3 D*
k == mEguik 73 (4)

PDMS with a bulk Young's modulus of 1-3 MPa is mainly used for micropillars, as it
is biocompatible, flexible, transparent and easy to handle in soft lithography. The
parameters of a micropillar array must be carefully designed. Limiting factors
include the aspect ratio, cell adherence space, and gap between the pillars. If the
aspect ratio is too high (often clearly more than 1:3 diameter:height ratio), the
soft pillars tend to collapse. The centre-to-centre spacing needs to be chosen in
a way that leaves a gap that is big enough that the pillars do not collapse due to
attractive forces between the pillars, but close enough that the cells stay on top
of the pillars and do not attach to the side of the pillars[170]. The size of the
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studied cell type is of high importance for those design choices. Furthermore, the

pillar diameter needs to be sufficiently large for the cells to adhere well to the

pillars, allowing them to pull on them. Common pillar dimensions are a diameter

of 1-5 ym and a height of 3-12 um[162]. The centre-to-centre spacing is most often

chosen between double and triple of the pillar diameter.
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(caption for figure on previous page) Figure 2.6: Overview of pillar based traction force
microscopy. Finite element model of pillar deflection of pillars with varying heights
under a horizontal traction force of 20 nN (A). The deflection of the pillar is plotted
against the applied force, where a higher change in deflection is visible at larger pillars
(B). The spring constant k calculated by the Euler-Bernoulli beam theory (yellow curve)
follows the calculated spring constants from finite element modelling (C). Scanning
electron microscopy image (D) and fluorescent image of cells on micropillars. The arrows
visualize the deflection of the pillars due to cellular traction force. The scale bars
represent 10 um. Reprinted with permission of Fu et al.(A-C),[157] and Tan et
al.(D,E)[165] (Copyright (2003) National academy of Sciences).

The micropillar fabrication process is often a multi-step process, where a master
mould is fabricated by photolithography or photolithography plus deep reactive
ion etching (DRIE). This mould is then directly used for soft-lithography with PDMS
or to make a PDMS master mould, which is then used to create the final PDMS
micropillars. A silanisation step is necessary for every master to ensure a good
demoulding of the PDMS micropillars from the pits. For good micropillars, a master
with straight sidewalls is essential to avoid the pillars being stuck in the
master[162].

For an accurate readout of the traction force, the cells must attach only to the
top of the pillars and not the sidewalls. PDMS, being a hydrophobic and soft
substrate, is not preferred by cells for attachment. To enhance adhesion, the
surface is coated with fibronectin. A common technique is fibronectin contact
printing, where a stamp is coated with fibronectin and then pressed against the
top of the pillar. This ensures that the cells only attach to the top of the pillars.
This process can be further optimised by coating the rest of the substrate with
Pluronic[171] or bovine serum albumin (BSA)[169] to passivate the surface and

inhibit cell binding in the areas without fibronectin.

Traction force microscopy with micropillars has a wide range of applications. It is
especially interesting for contracting cells or migrating cells like muscle cells,
cardiomyocytes, and cancer cells[158, 162, 164, 169, 172-174]. The cellular
traction force depends on the stiffness of the substrate, cell-cell signalling, and
adhesion strength. It has been shown in multiple studies that the cellular traction
force is greater at higher pillar stiffness[157, 172]. Liu et al. showed that the focal
adhesion force depends on the cell-cell adherence force[175]. It has further been
shown that the cell-cell communication is an important factor for the single cell

focal adhesion forces, as the main forces are visible at the edge of cell assemblies.
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Cheng et al. created micropillars with different surface coatings to study the
dependence of traction forces of MC3T3 cells on the cell-surface adhesion(Figure
2.7)[19]. The top of the pillars was coated with silicon oxide, titanium oxide or
nanopillars, which are 500 nm tall and have a diameter of 280 nm. The silicon and
titanium oxide surface coatings are hydrophilic, while the nanopillars are
hydrophobic. The cells on hydrophilic surfaces exhibited a smaller normalised
traction force, slower migration speed, and fewer filopodia compared to those on
micropillars. Thus, they could conclude that the surface energy correlates with
the migration speed and cellular traction forces.
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(caption for figure on previous page) Figure 2.7: Traction force dependence on surface
energy. Nanopillars on top of micropillars lead to an increased cellular traction force of
MC3T3 cells in leading, middle and trailing position of the cell (A). The nanopillars also
increase the number of filopodia/cell (D) and long protrusions/cell (E), as also shown in
scanning electron images of MC3T3 cells on flat micropillars (B) and micropillars with
nanopillars atop (C). Reprinted with permission of Cheng et al.[19].

2.5. Hierarchical micro-/nanostructures

Microtopographies and nanotopographies have unique properties and effects on
biological organisms. To study how different nanotopographies affect cellular
traction forces, as well as how the mechanical properties of a substrate affect the
cellular response to nanotopographies hierarchical micro-/nanostructures are
needed. Several attempts have been made to create topographies like this, that
incorporate both microscale and nanoscale features[176]. The fabrication of
ordered nanofeatures with microfeatures is a complex task, requiring the
interplay of various nanolithography techniques. Most of these hierarchical
features consist of nanotopographies atop micro-sized features. Alameda et
al.[177] are an exception as they created topographies with the nanofeatures
between the microfeatures, as well as on top of the features, through a
combination of maskless photolithography, nanoimprint lithography (NIL), and
photolithography. The fabrication process is illustrated in Figure 2.8. First, a layer
of nanostructures is printed at the bottom of the substrate using NIL. Next, a
positive photoresist is spin-coated on the nanostructures, and another layer of
nanostructures is imprinted on top of the photoresist. Then, the photoresist is
exposed by maskless photolithography and developed. Maskless photolithography
is using a laser instead of a mask to write the desired pattern into the photoresist.
The micro-/nanostructure is then replicated in a PDMS mould. The mould can be
used for further replications as a stamp for the NIL. That way, a higher level of
hierarchy can be achieved. This approach enabled the creation of hierarchical
micropillars with nanocones on four different levels. Specifically, 2x2 pym pillars
were placed on top of 15x20 um pillars with nanocones located between and on
top of each level. These hierarchical materials were used to have a substrate that
is bactericidal due to the nanocones, as well as favourable for cell proliferation
and differentiation[18].
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Figure 2.8: Fabrication process of hierarchical micro-/nanotopographies by subsequent
NIL of nanocones and maskless photolithography of microposts. The final structure can
be replicated by soft lithography(A). SEM images of the final structure show nanocones
on 4 different levels. In between the microposts and on top of large microposts and on
top of smaller microposts that are on top the large posts (B). Reprinted with permission
of Alameda et al.[177].

Another example of hierarchical micro-/nanotopographies is the work mentioned
previously by Cheng et al.[19] which aimed to study the effect of cellular traction
forces depending on cellular adhesion to nanopillars(Figure 2.9). They fabricated
2.7 pm diameter and 12 pm height micropillars by nanoimprinting,
photolithography, reactive ion etching, and soft lithography. First, a thin layer of
SU-8 is spun onto a silicon wafer, and nanopillars with a diameter of 280 nm and a
height of 500 nm are nanoimprinted. Next, a 4 um thick layer of photoresist was
spin-coated on top of the nanopillars. The micropillars are created by
photolithography. The micropillars are etched by reactive ion etching, and the
remaining photoresist is removed, leaving silicon micropillars with SU-8
nanopillars on top. The nanopillars are then etched into the top of the micropillars
by reactive ion etching, and a double cast of PDMS creates the PDMS micropillars.
The master for the soft-lithography process is coated with Trichloro(1H,1H,2H,2H

perfluorooctyl)silane (FOTS) to ensure good demoulding.
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Figure 2.9: Fabrication of micropillars with a diameter of 2.7 um and a height of 12 um
by nanoimprinting of nanopillars (A), photolithography of micropillars (B), and two
etching steps for the final micro- and nanopillars (C-E). The final PDMS micropillars are
achieved by a double casting of PDMS (F-J). The scanning electron images show flat PDMS
micropillars (K), Nanopillars (L), and micropillars with nanopillars on top (M). Reprinted
with permission of Cheng et al.[19].
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3.General methodology:

This chapter describes the used methodologies across the chapters. Variations and

additional methods are described in detail in the corresponding chapters.
3.1. Cell culture:

We use the osteogenic progenitor cell line mouse MC3T3 (ATCC) in all cell
experiments as a well-studied cell line with a strong known response to
nanotopographies. The MC3T3 cells are cultivated in a growth medium of MEM a
(no ascorbic acid, with nucleotides, Gibco A10490) with 10 % fetal bovine serum
(FBS) and 1 % penicillin/streptomycin. They are incubated in an incubator at 37°
C, 5% COz and 95 % humidity.

3.2. Cell Painting staining and imaging

The fluorescence imaging follows the cell paint protocol with some minor
adjustments. We adjust the protocol to our imaging setup and the MC3T3 cells.
We use the Image-iT™ Cell Painting Kit (Thermo Fisher, 163000). We stain the actin
cytoskeleton with phalloidin - Alexa Fluor 568 [5 ul/ml], the DNA with HOECHST
33342 [1 pg/ml], the ER with concanavalin A - Alexa Fluor 488 [15 pg/ml], and the
Golgi and plasma membrane with wheat-germ agglutinin (WGA) - Alexa Fluor 555
[1.5 pg/ml]. We exclude the RNA stain because it struggles to stain the cell
branches of the MC3T3 cells and overlaps with the fluorescence of the ER stain.
Thus, we exclude the RNA stain for sharper ER staining. The focus of the
mitochondria stain is inconsistent in our confocal laser scanning microscope and
is therefore excluded. The live staining period of the mitochondria also gives cells
enough time to recover from the prior perturbations by inhibitors and activators.
We also increase the concentration of the phalloidin actin stain from 8.25 nM to
33 nM because the initial concentration gave a weak actin staining next to the
background of the plasma membrane staining by WGA. The actin cytoskeleton is
an essential part of the mechanotransduction pathway, and, therefore, we want
to have a strong staining of it to see the actin stress fibres in the staining. We do

not include additional stains for focal adhesions or osteogenic expression in place
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of the discarded mitochondria and RNA stain because we want to keep the staining
process as simple as possible, using a one-step staining process to enable
processing across many different conditions. The focal adhesions are also a direct
response to the nanotopography feature arrangement and will therefore replicate
the architecture of the different topographies well. However, we are more
interested in the overall cell state and the cell’s indirect response to different

nanotopographies.

Table 3.1: Required materials for the staining solution of the adjusted Cell Painting
protocol.

Triton
Phalloidin  Concanavalin A Hoechst WG %100 BSA HBSS
0.1 M sodium RO RO
Solvent | Methanol
bicarbonate water water
1 0.15
Stock 6.6 UM 2 mg/mL
mg/mL  mg/mL
Desired
33 nM/ 1.5
Concen- 0.005 mg/mL 1 pg/mL 0.1% 1%
) 5 ul/mL pg/mL
tration
10 mL
staining 50 uL 25 pL 10 L 100 pL 10 L 100 mg  9.805mL
solution

The staining is done by cell fixation with 4% paraformaldehyde for 20 minutes at
room temperature without a previous wash to avoid washing cells off. Next, the
cells are washed twice with 1x HBSS (Hanks’ Balanced Salt Solution) and the cells
are incubated in the staining solution for 30 minutes in the dark at room
temperature. The staining solution consists of phalloidin - Alexa Fluor 568 [5
pul/ml], HOECHST 33342 [1 pg/ml], WGA - Alexa Fluor 555 [1.5 pg/ml],
concanavalin A - Alexa Fluor 488 [15 pg/ml], 1% bovine serum albumin (BSA), and
0.1% Triton X-100 in 1x HBSS. WGA is centrifuged for 30s at 10 000g before addition
to the staining solution to avoid taking protein aggregates. The amount of stains

required to make up 10 mL of the staining solution is shown in Table 3.1. It also



33

specifies the stock concentrations and solvents. After staining, the cells are

washed twice with 1x HBSS and kept in HBSS for imaging.

The imaging is done on a ZEISS LSM 800 confocal fluorescence laser scanning
microscope (LSM). All imaging parameters are kept constant across samples. The
fluorescence is imaged in three tracks. The first track excites the WGA and
phalloidin at 561 nm. It detects the emission of WGA between 410 and 580 nm,
and of phalloidin between 593 and 700 nm. The second track excites concanavalin
A at 488 nm and detects the emission between 450 and 550 nm. The third track
excites HOECHST 33342 at 405 nm and detects the emission between 410 and 546
nm. A 10x objective (Zeiss, EC Plan-Neofluar 10x/0.3 Ph1) is used, and 20 images
are collected per replica with a pixel size of 291x291 nm. Three biological replicas
are collected per condition. This accumulates to around 300 cells per condition

with 5 cells per image. The imaging takes around 4.5 minutes per image.

The fluorescence images are analysed in CellProfiler[178] after image acquisition.
The analysis is done in computer cluster with over 100 cores. The whole analysis
of a dataset of 60 image sets takes around 60 to 90 minutes until the spreadsheet
of the CellProfiler analysis is created. As a first step, the images are transformed
into grayscale images and saved as those for the further measurements. We
measure the granularity, area shape, intensity, intensity distribution,
colocalization, texture, and image quality of the whole cell, nucleus and
cytoplasm. CellProfiler is a powerful image analysis tool developed by the
Carpenter lab[179, 180]. As a first step, the nucleus is segmented into the primary
object and the cell as the secondary object. The segmentation process and used
CellProfiler modules are shown in Figure 3.2. The Golgi and plasma membrane are
used for cell segmentation since it stains the whole cell. Usually, the RNA stain is
used for segmentation, but it struggles to stain the cell protrusions. We test the
three different thresholding methods Otsu, minimum cross-entropy and robust

background for its performance in cell segmentation.
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(caption for figure on previous page) Figure 3.1: An overview about the cell
segmentation using Otsu, minimum cross-entropy and robust background method. The
thresholding based on the intensity histograms is shown on arbitrary histograms of
intensity distributions. The three class Otsu thresholding divides the histogram in three
classes based on variance (A). The minimum cross-entropy method separates the
histogram in two classes based on entropy between the classes (B). The robust
background method calculates the mean of the intensity distribution and sets the
threshold value as the mean plus N times the standard deviation (C). Example images of
the cell segmentation for the three methods are shown below (D: Otsu, E: Minimum
cross-entropy, F: Robust background). The cells are example images of MC3T3 cells after
one hour incubation in 50 nM jasplakinolide, which is an actin stabiliser. The dimensions
are given in pixels at the side of the images. One pixel unit is 291x291 nm. The
colocalization of the cell segmentation using the Otsu method compared with the
minimum cross-entropy and robust background method is shown in G. The true
positive/negative rate, the false positive/negative rate and the F-factor is plotted. The
F-factor is calculated by 2*(precision*recall)/ (precision + recall), with the precision being
the number of true positive pixels/(number of true positive pixels +number of false
positive pixels) and the recall being the number of true positive pixels/ (number of true
positive + number of false negative pixels).

The Otsu method calculates a histogram of intensities of the image and divides it
into three classes (background, mid-level and foreground) for the used three class
method(Figure 3.1A). The classes are defined by finding the minimizing the intra-
class variance and maximizing the variance between the classes. The minimum
cross-entropy method separates the intensity distribution in two classes, the
foreground and the background(Figure 3.1B). The two classes are defined by
calculating the cross-entropy between the two classes for every possible
thresholding value. The value with the lowest cross-entropy is chosen for the
thresholding. The robust background method calculates the thresholding value in
a different way than the Otsu and the minimum cross-entropy method and works
well for data that is mostly background and does not have two intensity peaks in
the histogram that need to be separated but only one peak at low intensities
(Figure 3.1C). It first removes the outliers of very high and low intensities and
calculated the mean of the background intensities and its variance. The
thresholding value is set as N times the standard deviation from the mean

intensity.

We use the Otsu method because it yields the most consistent segmentation among
the available methods, as shown in Figure 3.1. It is also recommended to use with
image sets with a varying percentage of foreground coverage between images like
we have with varying number of cells in the images. The rate of true and false

positive and negative pixel rates between the Otsu method, the minimum cross-
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entropy, and the robust background method is analysed to find the best
segmentation method. Additionally, the F-factor is calculated following equation
5 with Ntpos as the number of true positive pixels, Nrpos as the number of false
positive pixels, and Nrneg as the number of false negative pixels.

precisionsrecall (5)

F-factor = 2 *

precision+recall

.. N
precision = —1° (6)
NTP05+NFP05
N
recall = —Fos (7)
TPostNFNeg

The minimum cross-entropy method tends to overestimate the cell size, while the
robust background method tends to underestimate it. We adjusted the cell
segmentation parameters so that they can segment the extreme case of cells with
6 UM cytochalasin D as well as less extreme conditions. The Otsu method gave the
best consistency across the different methods. We included a quality control
measure, as the segmentation only tends to largely overestimate the cell size
when it has a false segmentation. Thus, we exclude huge cells from the analysis
since we expect them to be falsely segmented. Additionally, we are only
interested in single cells. If we have more than 20 cells in one image, we exclude

it because the cells are too crowded, which strongly affects the cell morphology.



37

IdentifyPrimaryObjects  e—
IdentifySecondaryObjects mm—
IdentifyTertiaryObjects — m—
MeasureObjectSizeShape
Flagimage
Maskimage

Masklmage
Maskimage
Maskimage

MeasurelmageQuality
MeasureColocalization
MeasureGranularity
MeasureObjectintensity
MeasureObjectintensityDistribution
MeasureTexture
MeasureObjectNeighbors

MeasureObjectNeighbors
MeasureObjectNeighbors
ExportToSpreadsheet

RRARRARAARARRARRARARAAARAAA AR

Figure 3.2: CellProfiler Pipeline and examples for the identification of primary,
secondary and tertiary object. The dimensions are given in pixels at the side of the
images. One pixel unit is 291x291 nm. The image analysis in CellProfiler starts with the
cell segmentation and creation of masks for the ImageQuality measurements.
Afterwards, the object measurements are performed and finally, the results exported to
a spreadsheet.

The optimisation of the primary object identification is first done by setting the
size of the object to be identified. All sizes given in CellProfiles are in pixels, as
it cannot convert the pixel units into SI units. We select a size range of 30 to 160
pixels, which excludes small particles like protein aggregates that are stained or
large dirt particles. We also discard objects that touch the border of the image
because we are only interested in complete cells. A global threshold strategy is
employed because it provides even illumination with a low background. Therefore,
a slower adaptive threshold strategy that calculates the threshold based on the
local surroundings is not needed. The image quality of the nucleus staining is so
high that little optimisation is needed. A minimum cross-entropy thresholding
method is used, as it has shown good thresholding performance in tests. A slight
smoothing with the factor 2 is beneficial since the LSM images have jagged edges.
The most important parameters for the threshold are the lower and upper bounds.
They provide a range of intensities for the object. To define the lower bound,

example images are opened in CellProfiler, and by hovering over the image, one
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can read the intensity in the location. The intensity of the background can be used
to define the lower bound so that no background is detected as the object. This
is necessary, even with strong fluorescence, as observed in the nucleus. Without
a lower bound set to a reasonable value, the program will threshold random
effects in the background if no cell is present in the image. When two nuclei are
close together, we want to declump them by their shape since a nucleus always
has a round shape and is therefore a good measure for the declumping. Finally,

holes should be filled in the object because a nucleus does not have holes.

The thresholding of the cells, which are the secondary objects, is performed next.
The plasma membrane staining that we use for the cell segmentation is not as
strong as the nucleus staining and has a higher background. Thus, a good
segmentation is more challenging, and additional adjustments are needed. The
cell is defined around the nucleus by the propagation method, which finds the
lines between clumped objects by identifying a brighter or darker line between
them. The thresholding method is identified as described above by testing various
methods under extreme conditions and determining which method yields the most
consistent thresholding. The thresholding is smoothed with a factor of 7 because
an LSM image is not smooth at the edges due to the line scanning method.
Smoother edges are easier to threshold, and, therefore, we use a strong
smoothing. The minimum and maximum bound is defined as above. A key
difference in identifying the secondary object compared to the primary object is
the application of a log transformation before thresholding. The log
transformation increases the difference between the brighter objects and the
background, which helps with thresholding. The holes in the identified object are
filled again. The optimisation of both thresholding steps is an iterative process by
changing the parameters with a focus on the lower and upper bounds until a good

segmentation is achieved.

Next, the tertiary object is defined as the cytoplasm by subtracting the nucleus
from the whole cell. Afterwards, the measurements for the quality control of the
thresholding are performed. We measure the size and shape of the nuclei and cells
with the MeasureObjectSizeShape module. This module measures size,
orientation, and eccentricity. Those measurements include different types of

minimum, maximum and average diameters, different measurements for the
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shape and solidity of the cell. The Zernike features in the object are also
calculated. The Zernike features calculate the Zernike polynomials, which are
polynomials of sine and cosine that have an increased number of maxima with
increased indices[181, 182]. The Zernike polynomials up to the sixth radial order
are shown in Figure 3.3. Afeature has an even distribution across the object, while
a feature has a maximum on one side of the object and a minimum on the other
side. With increasing radial order, the distribution is getting increasingly complex;
thus, it is recommended to compute them only to an order of 9 because high
orders provide little information. The Zernike features are a measure of the
detailed intensity distribution across an object; as the order increases, the
complexity increases, and it is important to ensure that enough pixels are analysed
to reproduce the number of Zernike polynomial peaks. Therefore, one should be
cautious when analysing smaller objects, such as the nucleus, if sufficient
resolution is provided. In our case, the nucleus has a diameter of more than 50
pixels, which is sufficient to reproduce the Zernike features up to a high order.
However, one should still be cautious when interpreting high-order Zernike
features, as they may not be biologically relevant. The low-order Zernike features

are to be considered more insightful.

The advanced features that calculate additional statistics for object moments and
inertia tensors are not calculated as they add many columns, and we do not
believe that they add significant additional information. The maximum diameter
calculated by the module is used to flag images with bad thresholding. Due to the
high background in some images, the cell size is largely overestimated. We exclude
images where this happens by excluding any images that have cells with a
maximum radius larger than 150 pixels. This value was tested to work well in only

excluding faulty thresholding and not large cells.

In the next step, we measure the image quality, but only in the areas of the cells.
Thus, we do not obtain per object, but per image measurements. As preparation
for the measurement, we mask the images of each channel with the identified
cell objects. Thus, we have per image measurements but only fluorescence in the
cell and ignore the background fluorescence. The image quality measurement is
interesting to us as it calculates the blur metrics in a range of 5, 10, 20 and 40

pixels, as well as on a global scale. The blur metrics calculate a focus score that



40

measures the intensity variance and the correlation of each pixel to the
neighbouring pixel in the given scale. A blurred image has a high correlation, and
a sharp image has a low correlation. That means that a well-defined actin stress
fibre has a low correlation. In contrast, the lack of actin stress fibres results in a
more even intensity distribution and a higher pixel correlation. The saturation is

also computed and provides the percentage of the minimum and maximum pixel

intensities.
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Figure 3.3: A visualisation of Zernicke polynomials up to the 6" order. Reprinted with
permission of Niu et al.[182].

Next, the colocalization measurement measures the correlation between the
different channels. The correlation is measured by computing the Manders, Costes
and Rank Weighted Colocalization (RWC) coefficients, as well as the overall
correlation by Pearson correlation[183]. The correlation is measured between all
channels in the cells, nuclei and cytoplasm. The only parameter that needs to be
modified is the threshold for the intensity to be considered in the calculation. One
wants to compare the staining of the different channels, not the background,
between the channels. Therefore, only pixels with an intensity of at least 20 % of

the maximum intensity are considered. The correlation is only measured within
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objects and not across the whole image. Faster is selected as the Costes

thresholding method to speed up the computation.

Afterwards, the MeasureGranularity module is used, which measures how big the
granules in the image are. Granularity measurement involves defining a size for
the granules, and any granules larger than this size are removed. The
measurement reports the percentage of signal that is lost due to the removal. This
process is repeated with increasing granule sizes to gain information about the
granule sizes in the image. The measurement is performed in all four channels and
in the cells, cytoplasm and nuclei. The subsampling factors are left at the default
value of 0.25 to speed up the computation, as we have high-resolution images and
the resolution is higher than needed for the granularity measurement. The radius
of the structuring element is defined as 5, which corresponds to a feature size
with a radius of 20 pixels with the subsampling factor of 0.25. The range of
granular spectrum is determined in an iterative process with example images. The
range starts at a high value like 50, and one checks until which value we observe
measurements, and when they all turn to 0. This information is used to select a
granular spectrum range that includes all information in the picture without doing

unnecessary calculations without information.

Additionally, the intensity and intensity distribution are measured. The
MeasureObjectintensity module measures the intensities at the edge of the
objects and the whole object. The mean, maximum, minimum, and standard
deviation intensity across the object are measured. No adjustment of parameters
is made in this module. The intensity is measured across all channels in cells,
cytoplasm and nuclei. The distribution of intensities across the object is analysed
mainly by the Zernike features in the MeasureObjectintensityDistribution module.
The magnitude and phase of the Zernike features are measured up to a Zernike
moment of 9. The object is defined in 4 bins, and the Zernike magnitude and
moment, as well as the total and mean intensity of each ring, are calculated. The
cell is fractured into 4 bins with the centre of the nucleus as the centre for the
binning. For the binning in the cytoplasm and nuclei, the centre of the
corresponding object is taken as the centre for the binning. An example of the

binning with the mean fraction intensities for each channel is shown in Figure 3.4.
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Figure 3.4: Example of binning by MeasureObjectlntensityDistribution module. Four bins
are created with the centre of the nucleus as the centre of the binning. In each bin the
mean intensity across the bin is visualised in a heatmap with a darker blue indicating
higher intensity and lighter blue a smaller mean intensity. The fracturing is performed
in all four channels of the Cell Painting assay. The fluorescence images of the
corresponding MC3T3 cells after 30 minutes in 6 uM cytochalasin D are shown above (A-
D). The dimensions are given in pixels at the side of the images. One pixel unit is 291x291
nm.

The neighbour measurements report how many neighbours each cell has, their
distance, and if they are touching. A cell is considered a neighbour if they are
within 10 pixels of the neighbouring cell. During and immediately after mitosis,
the nuclei of the cells are closely packed together. This is defined by measuring if
the nuclei are 5 pixels close to each other. The number of touching cells is also
determined by checking if they are adjacent, which means that they have
adjacent boundary pixels. The texture of an object is measured by computing the
Haralick features that are calculated from a grey-level co-occurrence matrix that
describes how the image intensities of pixels occur in relation to each other.
CellProfiler compares pixel values to determine intensity variations over a user-
specified number of pixels to the right[184, 185]. Each measurement is taken in
four directions: horizontally, vertically, and in two diagonal directions, NW-SE and
NE-SW. It measures the contrast, variance, homogeneity, entropy and information
in the specified region of pixels in the image. The maximum of grey levels is
measured with 256 grey levels on a scale of 3 pixels. The small scale is used to
observe localised patterns of texture. The measurements are performed in all four

channels in the cells, cytoplasm, and nuclei.
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The measurements are exported in a CSV file for further analysis. During the
export, all measurements that include coordinates of the cells or object numbers
are excluded because it does not carry any useful information. All the exported
data is further analysed in R. The CellProfiler analysis produces 2246 different
features for each cell, which are then further reduced by feature selection
methods. The feature selection methods vary between the chapters and are
further explained in the corresponding chapters. Before feature selection, the
images that are flagged for faulty thresholding are deleted from the dataset. An
error in the export can occur, so that not all the features are exported. Thus, it is
checked that the same measurements are used. Next, the data is checked for
images that have more than 20 cells. Those images are considered too crowded,
with the cells tightly packed, which strongly affects cell morphology. Thus, they
are excluded from further analysis. Next, the median and standard errors are
calculated for each measurement and condition. An overview of the whole

described Cell Painting process is shown in Figure 3.5.
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Figure 3.5: Cell Painting process from cell seeding to image analysis using CellProfiler.
First, MC3T3 cells are seeded into a well plate and after overnight incubation they are
perturbated with an activator or inhibitor for 0.5 to 1 hour. Next, the cells are fixed
with 4% PFA, stained with the Cell Painting staining solution and imaged with a ZEISS LSM
800 confocal laser microscope. The images are analysed in CellProfiler. Schematic
created in BioRender.
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3.3. Nanotopography preparation

The nanotopographies are prepared in self-made polystyrene (PS) well plates that
have the size of a quarter of 96 well plates. This means that the well plates have
24 wells, where each well is the same size as a conventional 96-well plate. Figure
3.6 shows the fabrication process of the well plates with nanopatterns. The
nanopatterns are injection moulded into a PS slide from nickel shims as previously
reported[186]. The nickel shims are available in the lab and were previously
fabricated by electron beam lithography of a 100 nm thin poly(methyl
methacrylate) (PMMA) resist on a silicon wafer that was electroplated with nickel
by Temicon (Germany). The nickel was removed from the silicon wafer by a lift-
off process and cut into shape as a nickel shim with nanopillars. The injection
moulding was performed on an Engel Victory 28 (ENGEL GmbH, Austria) injection
moulding tool by Alysha Hunter. The injection moulded PS slides are ultrasonically
welded onto the self-made 24-well plates by Dr Duarte Menezes using a Rinco
Ultrasonics AG Standard 3000 (Rinco Ultrasonics AG, Switzerland) ultrasonic
welding tool. The standard nanotopographies used are nanopits with a diameter
of 120 nm, depth of 100 nm and centre-to-centre spacing of 300 nm. They are
arranged in a square (5Q), hexagonal (HEX) and near-square (NSQ) array. In the
NSQ array, each pit is randomly displaced by 50 nm from the ideal square lattice.
More variations of the nanotopographies used in Chapter 4 are explained in the
chapter. Before cell seeding, the well plates are treated for 30 seconds with
oxygen plasma at 60 W to activate the surface for good cell adhesion. After plasma
activation, the well plates are sterilised in a biological safety cabinet by UV light
for 20 minutes and 10 minutes in 70 % ethanol. After Ethanol treatment, the wells

are washed at least three times with phosphate-buffered saline (PBS).
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Figure 3.6: A representation of the fabrication of polystyrene 24 well plates with
nanotopographies. A nickel shim or EVG foil is used as a master for an injection moulding
process. The injection moulded nanopatterned PS slides are ultrasonically welded to self-
made PS 24 well plates to have custom made well plates with nanotopographies.

3.4. Scanning electron microscopy

All scanning electron microscopy (SEM) images are taken on a scanning electron
microscope of the Hitachi SU8200 series (Hitachi, Japan). The samples are sputter-
coated before imaging to ensure high-quality imaging and to prevent damage to
the sample. A charging effect on the samples was best avoided by clamping the
samples on specimen holders with metal clamps, rather than using adhesive and
conducting carbon taps from Agar Scientific (UK). The sputter coating was
performed depending on the sample type. Large features are sputter-coated with
an Agar auto sputter coater (Agar Scientific, UK) with an 80/20 Au/Pd target. The
sputter coating is performed at 20 mA for 40 seconds, which gives an Au/Pd layer
of 6 nm. The sputter coating is relatively coarse, and, therefore, an even Pt
sputter coating is performed for nanofeatures. The Pt sputtering is done on a
Quorum Q300TT Plus (Quorum, UK) with a Pt target. An even layer of Pt is
deposited by sputter coating the sample at 2 mA for 114 seconds. This produces a

2 nm thin layer of Pt with low grain size, enabling high-quality SEM images of small
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features. Aworking distance of 8 mm is used as a standard while imaging. A shorter
working distance below 4 mm with a small voltage of 2 kV or smaller and a probe
current below 2 nAis also helping in obtaining high-quality, high-resolution images

with a good contrast.
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4.Visualising mechanotransduction pathways during

differentiation using Cell Painting
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Methods: Morphological profiling with Cell Painting
= 11 inhibitors and activators of the mechanotransduction pathway

with 3 concentrations each
= SQ, NSQ, HEX topography after 1,4, and 7 days
= Metabolites and osteogenic induction after 1, 3, 5, 7, 9, 14 days
— 53 different conditions —» >3200 fluorescence images
Results:
= The morphome reflects the mechanotransduction pathways
= Nanotpography response changes over time
— Ca?* signalling after 1 day
— decreased intracellular tension and adhesion after 4 days

— senescence and commitment to differentiation in osteoblasts

after 7 days
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4.1. Introduction:

Differentiation pathways are often studied using omics techniques[12-14, 103-
105], cell migration studies[106, 107], cellular traction forces[70, 108, 109], or
protein localization[48, 60]. The omics methods are time extensive, need large
cell numbers, and fail to report heterogeneity in the cell populations as they do
not offer single-cell spatial resolution. There are current advances in DESI mass
spectrometry[126-128] and other omic techniques like scRNA-seq and spatial
transcriptomics [187-191] to achieve single cell resolution in isolated cells and
tissue. We propose an alternative to the classic ways of pathway analysis by
studying the cell morphology changes due to perturbations through drugs,
inhibitors, activators, metabolites, and nanotopography using Cell Painting. In
contrast to omics techniques, which need 10° cells, this approach only needs a
few hundred cells per experiment and one hour of experimental preparation, as

no time-consuming and error-prone lysing step is needed.

The phenotype of a cell is reflected in its morphology. Cell Painting [15, 138] has
become a highly efficient method where simple reagents fluorescently stain the
organelles of cells for morphological profiling. This versatile technique has been
widely applied in various conditions, such as drug discovery[192-194], genetic
modifications[133, 135], and diseases[134, 135, 195, 196]. It is a valuable tool for
drug testing and for creating genetic and chemical perturbation libraries[133,
137]. Its ability to identify the mechanism of action of these perturbations
and group them based on similar mechanisms of action makes it a versatile and

powerful method in cell biology research.

In this work, we apply Cell Painting to elucidate relevant pathways relevant to the
interactions of biomaterials. As an example, we focus on the mechanotransduction
pathway of osteogenic differentiation. The Gadegaard group has shown in a
previous work that the cell morphome of MC3T3 cells on nanopits correlates with
osteogenic gene expression[20]. By using different inhibitors and activators of key
parts along the mechanosensitive differentiation pathways, we can correlate the
cell response to the response to nanotopographies. Figure 4.1 shows an overview

of the used activators and inhibitors in the mechanotransduction pathway. Each
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drug is used at three concentrations to demonstrate that Cell Painting is sensible
enough to pick up concentration-dependent responses and to see if the pathways

have a binary on/off state or if they can be modulated by the concentration.
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Figure 4.1: A schematic representation of the mechanotransduction pathway and the
influence of the used activators (green) and inhibitors(red) on the different parts of the
pathway. Schematic created in BioRender.

As cells undergo differentiation, different pathways are activated, depending on
the signals that induce the differentiation process[11, 30]. The ROCK pathway, an
important early stage in the mechanotransduction pathway, has been shown to
affect the actin cytoskeleton and myosin-ll activity. Actin polymerisation and
organisation are crucial for cell morphology and play an important role in the
differentiation process. The Ras/Rac transformation and Cdc42 also affect the
cytoskeleton arrangement by promoting lamellipodia and membrane protrusion
formations. Thus, we are using inhibitors and activators for those pathways[10,
22, 32].

Calcium signalling, a key player in osteogenic differentiation, plays an important
role. It has been shown that nanotopographies affect the activity of calcium
channels as the L-type calcium channel activity depends on the cytoskeletal

arrangement[197]. On the other hand, calcium signalling is also essential for the
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cytoskeletal arrangement[66]. Therefore, we also inhibit and activate the L-type
Calcium channel. As an alternative, one could use the Piezo1 activator Yoda1[198]
and Piezo1 inhibitors such as GsMTx4 or Dooku1[199]. Both Calcium channels are
known to be active in MC3T3 cells. Piezo1 functions as a mechanosensor[200] and
is involved in the osteogenesis process[201, 202]. The L-type Calcium channel in
MC3T3 is partially inhibited by microgravity[203] and is regulated by the actin
cytoskeleton[197]. Furthermore, the L-type Calcium channel promotes filopodia
stability in cancer cells[66]. Since both Calcium channels play an important role,
and we have L-type Calcium channel activators and inhibitors available, we choose
those activators and inhibitors. Additionally, we use the Golgi inhibitor brefeldin
A, which inhibits the build-up of the Golgi apparatus. This results in an aggregation
of unfolded proteins at the ER that induces cell stress and the depletion of

intracellular calcium storage[204].

We are comparing the differentiation induced by nanopits with chemical induction
through dexamethasone, ascorbic acid and B-glycerophosphate. Dexamethasone
induces osteogenic differentiation via the MAPK and Wnt signalling pathway[205,
206]. Benidipine, cytochalasin D, and Y-27632 are also known to induce osteogenic
differentiation. While those conditions induce osteogenesis, they do not
necessarily wholly represent the cell response to nanotopographies, as they focus
on one part of a pathway, and we expect the response to nanopits to be more

complex than that.

Nanopits used in this work are arranged in square, hexagonal and near-square
arrangements as they are well-characterised and known to induce the osteogenic
differentiation of MC3T3 cells[20, 25, 95]. It has also recently been discovered
that the intracellular tension and adhesion of MSCs on nanopits can be replicated
by a metabolite mix consisting of niacinamide, adenine, citrate, and L-glutamic
acid. This metabolite mix, which mimics the cellular response to nanopits, plays
a crucial role in our research as it can be used as a model system for validation to

ensure our findings' accuracy[207].

Here, we use morphological profiling by Cell Painting to analyse the
mechanotransduction pathway of the progenitor osteoblast MC3T3 cells on

nanopits. We prove that it is a viable high-throughput alternative to classic omics
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techniques pathway analysis. The UMAP projection, a powerful tool for visualising
high-dimensional data, replicates known relationships and pathways of the
activators and inhibitors, thereby validating our approach (Figure 4.7). We,
furthermore, highlight the importance of calcium signalling in the early stages of
topography-driven osteogenesis. Thus, morphological profiling shows excellent
potential for better understanding the effect of different nanotopographies on

cells as a fast and efficient method.

4.2. Methodology:

4.2.1. Cell Painting:

We use the osteogenic progenitor cell line MC3T3 in this work. Different inhibitors
and activators perturbate the cells before fixation and staining for fluorescence
imaging. The different inhibitors and activators with their corresponding
concentrations and incubation times are listed in table 4.1. Control images are
taken after 1 and 3 days, and with 0.5 and 1 % dimethyl sulfoxide (DMSO) as the
carrier of some of the used drugs. Extending the control to longer times is
impossible because no single cells can be identified after longer incubation times.
Longer incubation times are possible for nanopits, osteogenic induction, and

metabolite mix since they decrease the proliferation rate.

The osteogenic induction media comprises the growth media with 10 nM
dexamethasone, 10 mM B-glycerophosphate, and 50 pug/ml ascorbic acid[208]. The
induced MC3T3 cells are imaged after 1, 3, 5, 7, 9, and 14 days. The effect of the
SQ, HEX and NSQ nanopits is imaged after 1, 4, and 7 days.

Niacinamide and a metabolite mix are used as controls for the nanopits as they
show a similar cell response[207]. The cells are incubated with 10 mM niacinamide
for 3 days and then for an additional 3 days with the metabolite mix. The mix is
made up of 2.5 mM adenine, 2.5 mM citrate, 2.5 mM L-glutamic acid, and 5 mM
niacinamide. The cells are imaged after 3 days with niacinamide and after 3+3
days niacinamide with following metabolite mix. Each condition is performed in

three biological replicas. A detailed list of all used activators and inhibitors with
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their corresponding incubation time, solvent and concentrations is shown in table
4.1.

Table 4.1: Concentrations and incubation times of used inhibitors and activators.

Incubation
Inhibitor/Activator . Concentration Solvent Inhibition
ime
Y-27632 1h 5, 10, 20 pM DMSO ROCK inhibitor
Narciclasine 1h 25, 50, 100 nM DMSO ROCK activator
Blebbistatin 1h 12.5, 25, 50 uM DMSO Myosin Il inhibitor
Calyculin A 1h 0.25, 0.5, 1 nM DMSO Myosin Il activator
Cytochalasin D 30 min. 1.5, 3, 6 UM DMSO Actin inhibitor
Jasplakinolide 1h 12.5, 25, 50 nM DMSO Actin activator/stabiliser
ML141 1h 2.5, 5, 10 uyM DMSO Cdc42 inhibitor
SCH51344 1h 12.5, 25, 50 uM DMSO Ras/Rac inhibitor
o L-type calcium channel
Benidipine 1h 25, 50, 100 pM DMSO o
inhibitor
L- type calcium channel
BAY K 8644 1h 0.25, 0.5, 1 pM DMSO
activator
Brefeldin A 30 min. 17.5, 35, 70 uM Methanol  Golgi inhibitor
4.2.2. Data analysis:

The fluorescence images are analysed in CellProfiler after image acquisition. We
measure the granularity, area shape, intensity, intensity distribution,
colocalisation, texture, image quality, and neighbours of the whole cell, nucleus
and cytoplasm. All the data analysis is performed in R. The CellProfiler analysis
produces 2246 different features for each cell, which are reduced to 112 features
for the final analysis of the data (Figure 4.2). The data reduction is done by

identifying significant data first. Any feature where two times the mean of the
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standard error is larger than the difference between the highest and lowest mean
value is considered noise and is excluded. In the next step, we exclude all features
with a fold change smaller than 75 % between the maximum and minimum value
to include all data with a clear change. Afterwards, the data is reduced by Pearson
correlation. Redundant data is removed with a cutoff value of 0.95, and all
features with an absolute correlation of less than 0.15 are excluded. The final
data is projected into a 2D space by a UMAP projection with nine neighbours and
a minimum distance of 0.1. An overview of varying parameters for the UMAP
projection is shown in the appendix (Figure A4.1). All sensible parameters show
the same trends and prominent clustering of perturbations. We chose the final
parameters since those separate the clusters enough from each other to quickly

identify the different groups while maintaining a proper global structure.
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Figure 4.2: A schematic representation of the feature selection process. The CellProfiler
features are first reduced by their significance, secondly only the features with a large
enough between the conditions are picked. Lastly the features without any correlation
between the conditions and redundant features are excluded.
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4.3. Results

4.3.1. CellProfiler parameters reflect cell morphology changes

through perturbations

The fluorescence imaging of MC3T3 cells clearly shows the impact of the different
perturbations (Figure 4.3B and Figure A4.2+A4.3). Surprisingly, WGA is also staining
the nucleus of the cells. This is a staining artifact and not due a response of the
Golgi to the perturbations. Blebbistatin and cytochalasin D have the most
substantial impact on cell morphology, which can be easily observed by the eye.
Blebbistatin induces the dissolution of actin stress fibres, which results in the cells
blebbing[209, 210]. Cytochalasin D inhibits the actin polymerisation, which results
in the replacement of actin filaments by local aggregates[211, 212]. As the cell

loses its actin cytoskeleton, it also loses its typical shape.

The Golgi inhibitor brefeldin A mostly affects the Golgi's morphology. While the
Golgi is visibly bright and sharp next to the nucleus in the other condition, we
observe only a weak fluorescence with 20 ug/ml brefeldin A. The Golgi also looks

less sharp than in the other conditions.

The metabolite mix and nanopits after 4 days are both producing a more elongated
cell shape. This is expected as the metabolite mix recreates the intracellular
tension and cell adhesion on those nanotopographies[207]. Therefore, the overall
cell shape is expected to be similar between those two conditions. The metabolite
mix is also showing a weaker fluorescence of the ER. Even though both conditions
promote osteogenesis, the cells look very different after 9 days of osteogenic
induction. The forming of many long cell protrusions dominates the morphology of
the mature osteoblasts, which is represented in the solidity measurement of the
cell shape. The solidity measures the amount of pixels of the convex hull in the
object. A low solidity is an indicator for many protrusions, and MC3T3 cells after
9 days of induction have a solidity of 0.567+0.009; the control got a solidity of
0.669+0.009 and the nanotopography after 4 days of 0.697+0.01.
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Those differences are clearly visible, but a fluorescence image offers much more
data than one can see at first glance. Image processing software like CellProfiler
can extract all the information a fluorescence image has to offer. A thorough
analysis of the image parameters, such as shape, granularity, texture, intensity,
and intensity distribution, quantifies image data to reveal the changes in the

organelles under varying conditions.

B Cyto- Metabolite Osteogenic
Control  Bay K 8644 Brefeldin A chalasin d mix Near-square induction  SCH51344
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Figure 4.3: Images of nanopits and MC3T3 cells after Cell Painting under various
conditions. A: Scanning electron microscope (SEM) images of polystyrene slides with 120
nm diameter nanopits in a square (SQ), hexagonal (HEX), and near-square (NSQ)
arrangement. B: Cell Painting images of MC3T3 cells stained for the Nucleus with
HOECHST 33342 (blue), Endoplasmic reticulum with concanavalin A - Alexa Fluor 488
(green), actin cytoskeleton with phalloidin - Alexa Fluor 568 (red), and the Golgi and
plasma membrane with wheat-germ agglutinin (WGA) - Alexa Fluor 555 (orange). An
overview of conditions with a control after 1 incubation day, L-type calcium channel
activator Bay K8644, Golgi inhibitor brefeldin A, actin inhibitor cytochalasin D, Ras/Rac
inhibitor SCH51344, the metabolite mix after 3+3 days, near-square nanopits after 4
days, and the osteogenic induction after 9 days.

4.3.2. Morphology change due to activators/inhibitors is

concentration dependent

After a detailed analysis of the image features with CellProfiler and a data
reduction to the relevant and unique features, one can see in the heatmap in
Figure 4.4 that all organelles, as well as the cell shape, contribute to the
morphological identity of the cell phenotype. The total amount that each
organelle represents must be interpreted with caution. When removing redundant

features, we remove 258 of 370 features, and we are left with only 112 features.
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Those removed measurements give helpful information for the classification of
the conditions, but they give the same information as other measurements. The
decision on which measurement of several redundant measurements is kept is not
closely monitored. It does not matter for the further analysis which measurement
is kept. However, when we, for example, have four redundant measurements,
where one is from the Actin and the three other measurements are from the Golgi.
We keep the measurement of the Actin, and it does not correctly represent the
importance of the organelle for the cell classifications. However, we can
confidently say that each organelle contributes unique features that help identify
the phenotypes.

The heatmap not only visualises a first impression of similarities between
conditions but also shows that the readout is not binary. The cell morphology
shows the effect of the perturbation and its strength. We can see the
concentration dependency of the cell response. Some features are selected as an
example in Figure 4.5. The features show high variability, which makes the
observed trends insignificant. However, even though the features exhibit
substantial variation, concentration-dependent trends are observable in the
heatmap in Figure 4.4. Thus, the observed trends can only be considered
potential, since the data uncertainty does not yield a significant difference in the

measured features across varying concentrations.
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(caption for figure on previous page) Figure 4.4: Heatmap of the morphological features
for all conditions after feature reduction by Pearson correlation and removal of
redundant and non-significant data. The features are grouped by the cell shape and the
organelles actin, DNA, endoplasmic reticulum, and the Golgi and plasma membrane. The
features are normalized by bringing the data to a 0 to 1 scale by subtracting the minimum
value and dividing by the maximum. Afterwards, the data is standardized to the control
by subtracting each value by the control.
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Figure 4.5: Assorted examples of the concentration dependency of measured featured
by CellProfiler. The different concentration of the activators and inhibitors are grouped
into low, medium and high concentration for simplification. An increase in brefeldin A as
well as ML141 results in a decreased Golgi intensity as the Golgi build up is inhibited (A).
An increase in cytochalasin D concentration increases the Zernikeoo Magnitude of Actin
as the intensity distribution gets more evenly distributed when the actin filaments are
destabilised. In the same sense decreases the Zernikeop Magnitude with increasing
jasplakinolide concentration (B). The change of MC3T3 cell morphology with increasing
cytochalasin D concentration from 1.5 uM to 6 uM is shown in (C).

The Zernike Magnitude is a measure of the intensity distribution across an area. A
high Zernikeoo Magnitude represents a uniform intensity distribution. This is a good

measure of actin stability. A cell with prominent and stable actin fibres has an
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uneven intensity distribution since it has high-intensity values where the fibres
are and low values between the actin fibres. Thus, it has a low Zernikego
Magnitude. We can pick up this concentration-dependent effect. The highest
concentration of jasplakinolide, which stabilises the actin filaments and can result
in a patchy appearance of cortical actin, has the lowest Zernikego Magnitude. The
F-actin inhibitor cytochalasin D has the highest Zernikeoo Magnitude, as it disrupts
the actin filaments, and no fibres are visible anymore. Thus, one has a much more

uniform intensity distribution across the cells with local actin aggregates.

The intensity of the Golgi decreases with increasing brefeldin A concentration as
the Golgi build-up is blocked off more and more. A very similar effect can be
observed for the Cdc42 inhibitor ML141. It has been shown before that ML141 can
also induce changes to the Golgi structure[213]. The lung epithelial cells BEAS-2B
observed more dispersed staining of the Golgi apparatus under 20 pM ML141.

4.3.3. Morphology changes reflect function of inhibitors and

activators

When reducing the dimensions of the high-dimensional feature map to 2D using a
UMAP projection, one can identify different groups that cluster together. Those
groups follow the known mechanisms of action of the perturbation. The cell
morphology change on nanopits over time gives us insight into the underlying
intracellular signals by fitting the morphology into the map of perturbations.
Based on the UMAP projection in Figure 4.7, one can divide the perturbations into

four groups.

The first group are the Actin, Myosin-ll and ROCK inhibitors cytochalasin D,
blebbistatin and Y-27632. Those inhibitors are all on the same pathway, which
results in an actin destabilisation. Blebbistatin and cytochalasin D have the most
potent effect on the overall cell shape and morphology disruption. The cell loses
its typical shape under both conditions. While blebbistatin disintegrates actin
stress fibres, which results in a blebbing of cells, cytochalasin D completely
disrupts the actin cytoskeleton, resulting in a complete loss of shape and just
small patches of actin. ROCK is known to stabilise actin filaments. Thus, the
inhibition of ROCK by Y-27632 also destabilises the actin cytoskeleton[53]. This
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results in more elongated cells with neurite-like elongations. The collapse of the

cell shape under cytochalasin D leaves elongations similar to this morphology.

The second group consists of jasplakinolide, calyculin A, and narciclasine, which
are the corresponding activators for actin, myosin-ll, and ROCK. The actin
stabiliser jasplakinolide and the Myosin Il activator calyculin A induce actin
aggregates while having a prominent actin cytoskeleton[214-217]. The ROCK
activator narciclasine also promotes the stabilisation of F-actin through the ROCK
pathway and promotes actin stress fibres[218, 219]. The Golgi inhibitor brefeldin
A not only prevents the build-up of the Golgi apparatus but also affects the F-actin
distribution as a consequence[220]. This can lead to actin patches. Jasplakinolide
also affects the Golgi by fragmenting it[221]. The normal controls lay in this group,
too, as those morphology changes are not as drastic as those due to the other

perturbations.

The third group comprises the L-type Calcium channel activator BAY K 8644 and
the Calcium channel inhibitor benidipine. Little is known about the morphology
changes induced by those. Curiously, the inhibitor and activator of the same
channel lie together. A disruption in calcium signalling mainly triggers the
intracellular control mechanisms, which involve similar pathways regardless of
whether they must counteract an increase or decrease of calcium ions through the

L-type calcium channel.

The fourth cluster includes the Cdc42 inhibitor ML141 and the Ras/Rac inhibitor
SCH51344. Both inhibitors affect the cytoskeleton's organisation[54]. ML141
inhibits filopodia formation[222], and SCH51344 inhibits lamellipodia formation
and blocks membrane ruffling[223]. Thus, both inhibitors create relatively static

cells without cell elongations.
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Figure 4.6: Hierarchical clustering of Nanotopography data. The different time points
cluster together and a higher similarity between SQ and HEX topographies is found. NSQ
topographies separate from them following previously found osteogenic marker
expression profiles.

The impact of nanotopographies on cell morphology and differentiation is a
significant finding in our research. The fluorescence images of the Cell Painting
on the different topographies is shown in Figure A4.3. Over time, cells react to
the topography, and this reaction is clearly visible. The different nanopit
arrangements in SQ, NSQ, and HEX play a crucial role. Cutiongco et al.[20]
demonstrated that an NSQ arrangement has the most prominent effect, with
MC3T3 cells showing the highest expression of the early osteogenic markers RUNX2
and SP7 on it. The SQ and HEX arrangements, on the other hand, have a smaller
and similar expression to each other. This grouping is also evident in our data
through hierarchical clustering, with distances calculated using a normalised
Euclidean method (Figure 4.6). For one, four, and seven days, the SQ and HEX
nanopits cluster closer together than the NSQ nanopits, indicating the correctness
of our morphological clustering. Thus, the morphology of cells on SQ and HEX
shows more similarities between each other than to cells on NSQ nanopits,
underscoring the significance of our research in understanding cell behaviour.
However, all types of hanotopographies are known to induce osteogenesis and have
a similar effect on MC3T3 cells, with reduced tension and decreased proliferation
over time. The NSQ nanopits are known to have the most prominent effect and
are therefore separating from the other nanopit arrays. All nanopits still produce
a similar morphology in comparison to the drastic changes through the activators

and inhibitors.
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4.3.4. Response of MC3T3 cells to nanopits changes over time

When adding the cell response to SQ, NSQ, and HEX nanopits over time into the
UMAP projection of the inhibitors and activators, we can see how the cell changes
over time and how the corresponding influences on the cells change over time
(Figure 4.7). The control lies with the above-noted second group of ROCK, Myosin-
Il and Actin activators since they have the smallest effect on the cell morphology
and are, therefore, most similar to the control. After 1 day on the nanopits, the
morphology is similar to the morphology change through the L-type calcium
channel inhibitor and activator. This hints at an important role of calcium
signalling in the early stages of differentiation, which aligns with current research.
The mechanosensitive calcium channel piezo 1/2 regulates osteoblasts
differentiation by increasing the early osteogenic marker Runx2[224], which is
known to have an increased expression nanopits. Therefore, one can expect the

calcium signalling to drive the early stages of osteogenesis on nanotopographies.

After 7 days on SQ, NSQ, and HEX nanopits, the MC3T3 cells show a substantial
increase in the osteogenic markers RUNX2, SP7, BGLAP, and SPP1 expression[20].
At this stage, the cells group with the Cdc42 and Ras/Rac inhibition, highlighting
that the cells are more static. We expect the cells to be less mobile as they have
been sitting on the nanopits for 7 days. The filopodia formation decreases during
differentiation into osteoblasts due decreased motility and increased intracellular
tension. It is well known that nanopits and, especially, NSQ nanopits increase the
cellular tension by the formation of integrin clusters[26, 207]. The increase in

cellular tension decreases the lamellipodia formation[225, 226].
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Figure 4.7: UMAP projection of the activators, inhibitors, metabolites, nanotopography
and osteogenic induction. Each data points represents the median features of each
concentration or condition. The UMAP projection is performed with 9 neighbours and a
minimum distance of 0.1. The arrows show the journey of the cell response to nanopits
over time as the morphology clusters with the L-type calcium channel inhibition and
activation. After 4 days on nanopits they cluster with the niacinamide and metabolite
mix, which replicate the intracellular tension and adhesion of the nanopits. Finally, they
are with the Ras/Rac and ML141 inhibitors that inhibit the filopodia and lamellipodia
formation. The osteogenic induction through dexamethasone, B-glycerophosphate, and
ascorbic acid form their own group. The inhibitors of the actin cytoskeleton (cytochalasin
D), myosin Il (blebbistatin), and ROCK (Y-27632) cluster together just like their
activators.

The metabolite mix verifies the grouping in the UMAP projection. Niacinamide and
the metabolite mix increase the oxidative glycolysis and, as a result, the
intracellular actin cytoskeleton tension and cell adhesion decreases. The same
effect is observed on the NSQ, SQ and HEX nanopits. The cells on nanopits after
4 days group together with the niacinamide and the metabolite mix in the UMAP
projection as expected. The control after 3 days clusters in the same group, which

shows the strong effect the culturing time has on cell morphology.

The osteogenic induction through the induction media does not group up perfectly

with the other conditions but forms its group. The osteogenic induction shows
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many similarities as well as some differences in its gene array compared to the
induction through nanopits[95]. Therefore, it can be expected that we can also
see a difference in morphology during nanotpography-driven differentiation and
benidipine[227], cytochalasin D[212], and Y-27632[53] promote the osteogenic
differentiation of MC3T3 cells. None of those perturbations cluster together with
the osteogenic induction. The chosen perturbations are involved in the
mechanotransductional differentiation pathway, which differs from the
differentiation through the drugs dexamethasone and glycerophosphate.
Therefore, the mature osteoblasts on the nanopits also cluster with the inhibitors
and not the mature osteoblasts through osteogenic induction. Many different
pathways can lead to osteogenic differentiation. The cell morphology changes
accordingly depending on the dominant pathways triggered by drugs or

topography.

4.3.5. Feature analysis of clustering

A UMAP projection, a powerful tool in high-dimensional data analysis, effectively
visualises similarities in cell morphology data. However, it does not provide
information about the formation of the 2D representation, or which features are
primarily responsible for the small distance between the different conditions
within one group. The different groups in Figure 4.7 can be grouped into six
clusters. The four previously discussed clusters are highlighted in the UMAP plot.
Additionally, in addition to those four clusters, two more clusters are formed:
osteogenic induction through the differentiation media and inhibitors of Actin,
Myosin, and ROCK. The clusters are numbered as follows: The first cluster consists
of cells in the initial state with minimal morphological changes. It consists of
controls after one day, as well as the activators jasplakinolide, narciclasine, and
calyculin A, along with the Golgi inhibitor brefeldin A. The second cluster
represents the first response to the nanopits after one day, as well as the response
to Calcium channel activators and inhibitors. The third cluster is the response to
nanopits after four days, and the metabolites. The fourth cluster represents the
response to nanopits after seven days, as well as the inhibition of Cdc42 and

Ras/Rac. The fifth cluster consists of inhibitors that produce the strongest
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morphology changes, particularly with ROCK, Actin, and Myosin inhibitors. The

sixth cluster are the cells after osteogenic induction.

A heatmap plot ordered by the different clusters reveals clear differences
between them (Figure 4.8). Clusters two and three exhibit many similarities,
indicating that the cell’s initial response to the nanopits changes relatively slowly
until the morphology undergoes significant changes after 7 days, revealing
apparent differences from the other clusters. Cluster five, which consists of the
cytoskeleton inhibitors that have the strongest impact on the cell morphology, is
also clearly separated from the other clusters. To gain a better understanding of
the morphological differences between the clusters, we manually reviewed the
features. We selected those with clear and understandable meanings from the
entire heatmap, which provides insight into the morphological differences

between the clusters (Figure 4.9).

The area shape measurements are the easiest to understand and give an overview
of the general cell shape. After feature selection, we are left with the form factor
and solidity as measures of cell shape. The form factor is a measure of the
roundness of the cell and is calculated as 4*m*Area/Perimeter?, where a value of
one is a perfectly round cell. The solidity calculates how much of the object is
also in the convex hull. The convex hull is created by connecting the outer points
of the object. One can imagine it as a band that is stretched around the object. A
round cell without many protrusions has a high solidity, while a cell with many
protrusions, such as filopodia, has a lower solidity. The form factor decreases as
the time on the nanopits increases. This reflects the observed increase in cell
elongation over time as the cells settle on the nanopits and cease forming
lamellipodia and filopodia in different directions to sense the substrate.
Surprisingly, the solidity also decreases over time, as we would expect it to
increase with the presence of missing filopodia. The differences in solidity
between the clusters are relatively small, so that the decrease might have an

unknown cause (Figure 4.9).

The location of the nucleus in the cell and the chromatin organisation are
measures of the cell state. Those factors can be calculated from the radial

distribution of DNA staining intensity in the nucleus as well as in the whole cell.
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The granularity and radial distribution measurement FracAtD, which measures the
fraction of total staining from the inner area 1 to the outer area 4 in the nucleus.
It measures the chromatin distribution in the nucleus. A difference is visible
primarily for clusters two and three compared to the other clusters. The Zernike
magnitude of the DNA in the whole cell measures the amount of intensity in
different parts of the cell and is therefore a measure of the localisation of the
nucleus inside the cell. We observe a high error in each cluster, indicating that the
nucleus localisation varies within a cluster and is likely not a reliable measure to

highlight the differences between the clusters.

The Golgi and plasma membrane staining can provide significantly different
information, as they stain distinct organelles. That makes it harder to interpret,
too. The Golgi has a higher intensity than the membrane; thus, bright dots in the
cells are the Golgi and can be identified by granularity measurements. The
granularity changes between clusters two and three, whereas clusters 1, 4, 5, and
6 have a similar level of granularity. The integrated intensity can be a measure of
how strong the Golgi staining is, as well as how bright the intensity of the Golgi
staining is, and also how large the cell is. We observe significant differences in
Golgi and membrane intensity across the different clusters, with clusters two and
three having the lowest intensity. In contrast, the other clusters have a higher

integrated intensity, with cluster one exhibiting the highest intensity.

Correlation measurements with Golgi and plasma membrane, as well as actin, can
also be seen as an indicator of how much of the cell is filled out by the organelle,
since their staining fills out most of the cell. The correlation between the ER and
the organelle changes between the clusters, with the smallest correlation
observed in cluster three for the metabolites and nanopits after four days. The
other clusters are in a more similar range. The integrated ER intensity at the edge
of the cytosol is clearly the highest in cluster four of the Cdc42 and Ras/Rac
inhibitor, as well as the nanopits, after seven days. As the cell settles with
decreased filopodia and lamellipodia formation, the cell body gets narrower and
smaller, and the ER reaches the edge of the cell. Thus, the fluorescence intensity

of the cell increases.
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Figure 4.8: A heatmap of all the analysed conditions ordered by the clusters identified
from the UMAP in Figure 4.7. The features replicate the found clusters. The clusters

number 2 and 3 are relatively similar to each other as well as the clusters number 4 and

5. The separation between the other clusters is clearly visible from the heatmap.
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Figure 4.9: A barplot of selected features that highlights the morphological differences
between the clusters. It shows that the clusters clearly differ for some features like the
integrated intensity of the Golgi and membrane or the FormFactor, which shows smaller
values for cluster 5 then for the rest. Other features as the DNA Granularity of 2 or the
solidity show a more even distribution. A ‘1’ behind the measurement means that the
measurement is in the cytosol. A ‘2’ means that the measurement is in the nucleus.

The above-mentioned features provide an overview of the morphological changes
between the clusters. However, we do not know the importance of these features
in distinguishing the conditions within the observed clusters. To obtain an idea of
feature importance, we have employed an entropy-weighted k-means clustering
(wskm package in R)[228]. It works by assigning a weight to each feature for each
cluster and adjusting those weights until it converges to obtain a clustering into a
specified number of clusters. We chose six clusters based on our observations in
the UMAP projection and attempted to select parameters for the weighted k-
means clustering in a way that would replicate our initial clusters as closely as
possible. The clustering is plotted in a 2D PCA space in figure 4.10A. The change
in clusters for the different conditions is shown in table 4.2. While there are some
differences in the clustering, the most important clusters for the change in cell
morphology over time in response to the nanopits are very similar to those from
the UMAP projection. The nanopits, after four days, cluster with the metabolites,

and the nanopits, after seven days, cluster with the Ras/Rac and Cdc42 inhibitor.
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The nanopits after one day do not fully cluster with the calcium channel activator
and inhibitor. Only the SQ nanopits are in one cluster with it, and the NSQ and HEX
nanopits form their own clusters after one day. The difference in clustering cannot
be fully explained. We expect that the SQ, NSQ, and HEX nanopits have slightly
different morphologies, as NSQ nanopits have the strongest positive impact among
those topographies on osteogenic differentiation. However, all nanopits promote
osteogenic differentiation of MC3T3 cells. The weighted k-means clustering starts
by randomly assigning weights to the features, making the method stochastic. We
chose weights that produce a similar clustering to the UMAP clustering in Figure
4.7. While we achieve a good agreement between the clustering methods, a
perfect overlap of clusters is not possible. The most important findings of the
UMAP clustering are also shown in the weighted k-means clustering as discussed

above.

We collected the features with the highest weight for each cluster and plotted
them in a heatmap in Figure 4.10B. Cluster 5, with cells on nanopits after seven
days, ML141, and SCH 51344, clearly has the highest weight for the radial
distribution of actin. However, no apparent differences from other conditions are
visible in the raw data. Cluster 1, with the nanopits after 4 days and metabolites,
has the highest weight for a texture measure of the ER. This feature has relatively
low values for the conditions in these clusters. The conditions with stronger
cytoskeletal disruptions have a higher value in this feature. Cluster 6, with calcium
activator and inhibitor, and SQ nanoparticles, after one day, has the highest weight
for the correlation of DNA and ER, as well as the percentage of maximum intensity
in Golgi and membrane staining. There is also no clear difference visible in the
raw data that supports these features for clustering within the observed groups.
Generally, the differences in weight are minimal between the features, with a few
exceptions. Thus, the overall picture formed by the different features is more
important than any single feature for clustering. The heatmap of the selected
features displays clear blocks of similar measurements within the different groups,
which support this barcode mechanism (Figure 4.11). The cytoskeletal inhibitors
cytochalasin D, blebbistatin, and Y-27632 generally exhibit high feature values in
the heatmap (red) and can be clearly distinguished by their similar morphological

profiles.
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Table 4.2: The differences in clustering between UMAP projection and entropy weighted
k-means clustering. The clustering shows a lot of similarities with only some minor
differences. The main clustering by function is represented in the UMAP as well as

entropy weighted k-means clusters.

Condition

UMAP Cluster

Entropy weighted

k-means cluster

Control 1 day

Brefeldin A5/10/20 pg/ml
Jasplakinolide 12.5/25/50 nM
Narciclasine 25/50/100 nM

Calyculin A 0.25/0.5/1nM

Bay K 0.25/0.5/1 pM

Benidipine 25/50/100 pM
Nanotopography 1 day SQ/NSQ/HEX
Control 3 days

Nanotopography 4 days SQ/NSQ/HEX
Niacinamide 3 days 10 mM
Metabolites 3+3 days

SCH 51344 12.5/25/50 pM

ML141 2.5/5/10 pM

Nanotopography 7 days SQ/NSQ/HEX
Blebbistatin 12.5/25/50 uM
Cytochalasin D 1.5/3/6 uyM

Y-27632 5/10/20 pM

Control DMSO 0.5/1 %

Osteogenic induction 1/3/5/7/9/14

1/1
1/1/1
1/1/1
1/1/1
1/1/1
2/2/2
2/2/2
2/2/2
3/3/3
3/3/3
3/3

3
4/4/4
4/4/4
4/4/4
5/5/5
5/5/5
5/5/5
6/6
6/6/6/6/6/6

1/3
3/1/1
5/5/5
5/3/3
3/3/3
6/6/6
6/6/6
6/4/4
1/1/1
1/1/1
1/1

1
5/5/5
5/5/5
5/5/5
2/2/2
3/2/2
3/5/3
1/1
5/5/5/5/5/5
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Figure 4.10: Entropy weighted k-means clustering for analysis of feature importance.
The clustering visualized in a 2D PCA projection using the first 2 dimensions visualizes
the formed clusters (A). Similar to the UMAP clustering in Figure 4.7, the activators and
inhibitors cluster together by their function. The weight of the handpicked most
important features for the formation of each cluster is plotted in a heatmap with pink
being the high values and blue the low values (B). The clusters are ordered according to
a hierarchical clustering to enhance the visibility of differences between the clusters.
Most weights are in a similar range with a few outliers of high importance for the
clustering as the ZernikesoPhase for Actin, the SumVariance texture measurement of the
ER or the Correlation of DNA and ER.
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Figure 4.11: A heatmap of the selected most important features with the highest
weights in the entropy weighted k-means clustering. The conditions are ordered by the
clustering done by the UMAP projection. This clustering is also visible in the blocks of
similar morphology by the selected features. It shows a similar picture as the large
heatmap in Figure 4.8 with all features, however the selection of the most important
features enables a visualization of the changes in single features, which is not possible
with too many features.

The 103 features selected from the complete data set are distributed across all
four channels/organelles (Table 4.3). The Golgi and plasma membrane stand out
with 55 features that are selected from that channel. When selecting the top
features in the weighted k-means clustering, we observe an unexpectedly strong
drop in actin features, with only one feature remaining. One would typically

expect that the actin cytoskeleton is more important for the morphological
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profiling of cells in the mechanotransduction pathway, which is very focused on
cytoskeleton organisation. On the other hand, it highlights the potential and
importance of the cell painting method for morphological profiling. In the complex
process of mechanotransduction, it is essential not only to examine the known cell
compartments involved but also to take a comprehensive view of the cell to

capture its morphological phenotype fully.

All CellProfiler measurement categories are also well represented in the full
dataset. Most features are from the intensity distribution and correlation
measurements. The selected features from the entropy-weighted k-means
clustering are also distributed across all measurements, except for the granularity.
That highlights that, similar to the different stains, all measurements also provide
helpful information for identifying the morphological phenotypes. When
interpreting those numbers, especially the importance of single measurements,
one must be cautious not to overestimate the significance of the feature. Many
features are excluded from the final analysis due to high correlation with other
features. Thus, many features that represent different morphological changes give

the same information about the grouping of the different conditions.
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Table 4.3: An overview of the feature distribution based on different stains/organelles
and on the CellProfiler measurements. The full dataset consists of the 103 selected
features by our feature selection method. Those features are compared with the
selected features from the entropy weighted k-means clustering.

Weighted Weighted
Full k-means: CellProfiler Full k-means:
Organelle
dataset | Selected Measurement | dataset | Selected
Features Features
Actin 26 1 Correlation 29 5
Golgi & plasma
55 10 Granularity 7 0
membrane
Endoplasmic
. 32 11 Image Quality | 9 3
Reticulum
DNA 23 3 Intensity 16 4
Intensit
y 34 3
distribution
Shape 2 2
Texture 18 5

4.4. Discussion

We successfully imaged MC3T3 cells with 11 different inhibitors and activators and
three concentrations each, as well as SQ, NSQ, and HEX nanopits after 1, 4, and 7
days. We also incubated them with metabolite mix after 3 days and osteogenic
induction media for 1, 3, 5, 7, 9, and 14 days. This accumulates to 53 different
conditions and more than 3200 fluorescence images. An image has an average of
5 cells, which means that we have more than 16000 cells. An imaging time of 4.5
minutes per image means a constant imaging time of 240 hours. This highlights

the magnitude of data collected and analysed.
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Our research has revealed that cell morphology is a powerful tool for studying the
mechanotransduction pathway of MC3T3 cells on SQ, NSQ and HEX nanopit
surfaces. By employing Cell Painting with activators and inhibitors of the pathway,
we have been able to demonstrate a UMAP projection that clusters inhibitors and
activators based on their function. Notably, inhibitors and activators of the ROCK-
Myosin Il pathway cluster in their respective groups, providing a significant insight
into the mechanotransduction process. Additionally, we can also pick up the
different strengths in cell response to the different nanopits arrangements in SQ,
NSQ and HEX arrangements as the similarity of cells on SQ and HEX nanopits
compared to cells on NSQ nanopits reflects the previous reported differences in

osteogenic marker expressions on the same topographies.

From the clustering in the UMAP projection, we propose that calcium signalling
dominates the first cell response to the nanopits after one day. This aligns with
the current state of research that calcium signalling promotes the early osteogenic
genic marker RUNX2[224]. Furthermore, we expect that membrane proteins like
calcium channels in direct contact with the nanotopography will have a significant
impact in the first response to nanotopographies as it is the most direct influence
of the topography on the cell. The intracellular actin cytoskeleton tension and cell
adhesion are reduced due to increased oxidative glycolysis in the following
differentiation process over the following days[207]. After seven days on the
nanotopographies, the mature osteoblasts are in senescence and lack lamellipodia

and filopodia since they are in a static and settled state with decreased mobility.

Our data show the above-mentioned mechanotransduction responses in MC3T3
cells to nanotopographies. However, other known involvements of the studied
mechanotransduction pathway are not picked up. The ROCK pathway is known to
regulate osteogenic differentiation of primary rat osteoblasts on titanium
nanotopographies. Inhibition of ROCK with Y-27632 suppresses osteogenesis[229].
The known promotion of osteogenesis by cytochalasin D[212] is also not visible in
the data. The response to nanotopography is more complex than a simple
inhibition or activation of a single factor. Therefore, the morphomes of ROCK
pathway inhibition and activation do not match those from the nanotopographies.
Thus, the morphological profiling can only guide to interesting interactions, but

does not exclude conditions that do not cluster with the nanotopographies.
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We must be careful when interpreting results from the cell morphology of cells
with different incubation times. Naturally, the incubation time has a significant
effect on the cell morphology. Thus, the control after four days lies with the
perturbations for three, four and six days and not the control after one day. After
four days on flat surfaces without perturbations, the overall cell shape will be
different to a cell after one day as it has settled down and built up a more
excessive extracellular matrix. A UMAP projection tries to group every point into
a group, where the group size depends on the chosen number of neighbours.
Consequently, it will move a point to the most similar points, which does not
necessarily mean that they are the same. They are just more similar than the

other conditions.

We still believe in the UMAP projection as a truthful representation of similarities
between phenotypes because of the observed grouping of the different inhibitors
and activators, which aligns with known mechanotransduction pathways, and the
morphology changes described in detail above. Furthermore, the observed
grouping of the metabolites with the nanotopographies provides additional

validation of our method.
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(caption for figure on previous page) Figure 4.12: Visualization of the cell response to
nanopits over time. After one day the calcium signalling is increasing the Runx2
expression through the MAPK pathway to start the osteogenesis. After four days the
intracellular tension and adhesion decrease, and oxidative glycolysis increases. After
seven days the cell goes into senescence and cell differentiation. In that state the cells
have a decreased filopodia and lamellipodia formation. Schematics created in BioRender.

The cell morphology is not only able to cluster different perturbations together,
but it can also reflect their strength. Increasing concentrations of activators and
inhibitors increases the strength of responses across many features, even though
the features exhibit high variability. Even with the high variability, the median
shows clear trends throughout many features. Willis et al. showed that Cell
Painting can capture concentration dependence by performing a concentration-
response screening of 14 phenotypic compounds in U20S, A549, ARPE-19, HepG2,
HTB-9, and MCF7 cells[230]. This could be used for dose tests in future work. It
can be especially interesting for the use of nanotopographies as the dose
dependence of the drugs can be compared with the different orientations of
nanopits. The strength of the effect of the nanopits varies with the orientation,
represented by the morphology. One can use the varying responses to different
topographies to identify an ideal nanotopography to elicit a desired response.
Another advantage of morphological profiling is the possibility of capturing the
immediate reaction to the topography, while other techniques like transcriptomics
have a delay until enough noticeable changes in transcription are observable. We
can follow the adaption of the cells to the nanotopographies in real-time and can
even analyse the early-stage cell-surface interactions, which refer to the initial
contact and response of the cell to the nanotopography. By predicting Cell Painting
images from brightfield images[231], one can study the adaption of live cells to

different nanotopographies.

This study is the first study to use Cell Painting in combination with
nanotopographies. The closest comparable study is the work of Tuvshindorj et
al.[232] that tested 2176 arrays of unique geometries coated with Arginine-
Glycine-Aspartic acid/polyethylene glycol for guided cell adhesion. They
discovered that the morphome correlates with YAP nuclear translocation.
However, they have not tried correlate the morphome to the patterns.
Conventionally, Cell Painting is used to study drugs, especially for drug discovery.

It is used in a wide area of applications, for example, to create a library of
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morphomes for a large number of perturbations, such as 30,000 small
molecules[133] or the famous JUMP dataset[137] with 116,750 different small-
molecule compounds, over-expression of 12,602 genes and knockout of 7,975
genes in U20S cells. Cell Painting is applied to identify 258 impactful variants of
lung cancer variants by overexpressing 375 genes in A549 cells[134], novel gene
functions discovered in U20S cells by successfully clustering genes and
alleles[135], and potential targets and drugs to treat intestinal fibrosis were
identified by screening 5,000 compounds[233]. It has also been successfully
employed to study the cytoskeleton and to identify compounds that target
tubulin[234]. Cell Painting can also be used to identify chemical hazards[235].

These studies correlate newly identified chemical compounds or gene expression
with known genes and chemical compounds to identify mechanisms of action,
compound targets, and cytotoxicity. In contrast to those studies, our work uses
the drugs not for drug discovery, but rather utilises their known effects to
correlate cellular functions with nanotopographies. This is a new concept, and this
work functions as a proof-of-concept for the method and for the work in the
following chapter using a library of nanotopographies. Our work involves only a
few perturbations compared to previous Cell Painting applications. Thus, it serves
as a proof-of-concept and might vyield new significant insights into
mechanotransduction by upscaling the number of perturbations. Cell Painting
profiling also only provides correlations between components by screening across
many perturbations and topographies. To fully understand the biological

connections, more in-depth studies of the identified connections are necessary.
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Methods: Morphological profiling with Cell Painting

= 84 different nanotopographies are prepared in polystyrene

= 78 nanopit in SQ, NSQ, HEX, and NHEX arrays with varying
diameter, pitch, and disorder are used

= 6 gratings of varying widths are used
— >5340 fluorescence images

Results:

= Batch correction necessary —» Seurat performs best

= Prediction of new topography not possible

= Disorder shows highest correlation with morphome

= Nanofeatures of <5 ym necessary for cell response

= Cell alignment at 200 nm grating depth is adhesion driven and

not confinement driven
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5.1. Introduction

The cell response to nanotopographies is strongly influenced by the geometry of
the topography. The overall geometry of the topography, whether they are pits,
pillars, gratings or other shapes, as well as the fine parameters of the topography,
such as its size, organisation and distance between features, play a crucial role.
These topographies influence the behaviour of cells by guiding the adhesion areas
of the cells[3]. The size and orientation of the adhesions affect the cell's
response[57, 101, 102].

The search for the ideal topography by testing a wide range of nanotopographies
is challenging and limited by the fabrication of large enough arrays of these
nanotopographies, as well as by time-consuming analysis to obtain a detailed
picture of the cell's state. Few micro-/nanotopography libraries have been tested
so far[17]. The most well-known and extensive libraries are the Micro-
/NanoTopoChip by de Boer[77, 236] and the BioSurface Structure Array (BSSA) by
Foss[237]. The MicroTopoChips consist of 2176 unique microtopographies created
from random combinations of squares, triangles, and circles that overlap to form
new shapes[236]. The features of the NanoTopoChip are created in the same way,
just at smaller dimensions. UV lithography, DRIE and hot-embossing fabricate 1246
unique topographies. The cell morphology of U20S cells is analysed on the
topographies[77]. The BSSA library consists of 169 topography designs of squares,
circles and rectangles of varying organisation, size and spacing. The 169
topographies are produced at heights of 0.6, 1.6, and 2.4 ym[238]. The feature
size ranges from 1 to 8 pm. It is used to study the mineralisation and expression
of osteogenic markers in MC3T3 cells[238] and the response of human fibroblasts
by analysing changes in focal adhesion morphology and cytoskeletal
organisation[237]. Kim produced a smaller feature library in the form of the
MultiARChitecture (MARC) plate, which consists of up to 30 patterns[239]. The
used patterns vary depending on the applications. They include gratings, wells,
pillars, and lenses, with sizes ranging from 250 nm to 10 ym. It is used to study
the response of pluripotent stem cells[240, 241] and murine neural progenitor
cells[242]. The integrated mechanobiology platform (IMP) that bonds PDMS with
nanotoporgraphies on bottomless 96 and 384 well plates[243]. They use gratings
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with 500 nm to 3 ym spacing and square grids with trenches of 100, 200, and 300
nm. All nanotopography libraries identified the spacing between features as a key

driver of cell response.

The screening of micro-/nanotopographies is performed mainly by
immunofluorescence staining, as it does not require large cell humbers. The de
Boer redesigned the Micro-/NanoTopoChip into a TopoWellPlate to achieve a
sufficient number of cells per array for cytokine measurements of mesenchymal
stromal cells[244]. Another benefit of the new TopoWellPlate is the physical
separation of the different topographies into their own wells. This prevents the
cross-talk between cells and enables the study of secretion profiles. However, this
results in a reduction to 76 unique topographies. The MARC ship is used for RT-
gPCR to study the differentiation of pluripotent stem cells[240]. This is only
feasible due to the relatively small number of 30 different topographies. The BSSA
chip is used with actin, focal adhesion, and osteogenic marker staining[110, 237,
238]. The effect of the topographies of the NanoTopoChip U20S cells was analysed
through the cell shape and actin morphology[77]. We believe that morphological
profiling using Cell Painting can improve screening by providing a more in-depth

view of cell state.

Asimilar screening is performed with the Galpagos chip by the de Boer group[232].
Instead of microtopographies, a chemical pattern library identical to that of the
MicroTopoChip is fabricated with a binary Arginine-Glycine-Aspartic
acid/polyethylene glycol coating. Human mesenchymal stem cells are studied by
Cell Painting and YAP protein localisation. The adhesion pattern and the material
affect the cells. The group of Daniel Anderson developed a screening platform to
study the chemical composition of the surface, containing 1,728 different polymer
spots[245]. In another device, they have created a platform of 496 polymer
surfaces that differ in wettability, stiffness, and surface roughness by combining
22 monomers at varying ratios[246]. All those factors have proven important for

cell response, but in our work, we focus on the nanotopography library.

Gratings create adhesion areas in a line. Thus, the cell morphology follows the
grating, and one observes elongated, parallel-oriented cells along the gratings.

This effect is especially of interest in the work with neuronal cells[91, 92]. Pits
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and pillars create adhesion areas depending on the size of the features and the
spacing between the pillars and pits. The slight differences in topography, as well
as the features of height, size, and disorder, affect the response of the cell[26,
31, 96, 97]. When choosing a topography for an application, the fine details of the
topography geometry are rarely considered when identifying the ideal topography.
The conventional analysis is done with expensive and time-consuming omics
techniques, so that an in-depth analysis of various topographies is not feasible[12-
14]. We believe that morphological profiling using the Cell Painting method is a
viable technique for studying a large library of topographies. As we have shown in
the previous chapter, the Cell Painting method can detect the cell response to
nanotopographies, with the ability to differentiate between nanopits in square

(5Q), near-square (NSQ), and hexagonal (HEX) arrays.

When studying the morphological profile of cells on nanotopographies, the
differences in morphology will be relatively small. Thus, a good feature selection
and batch correction are necessary. The morphological profiling has a large
number of features compared to the number of variables. This curse of
dimensionality is a well-known problem in machine learning with omics data,
highlighting the importance of feature selection[247]. Additionally, the Capenter
lab studied the feature selection and batch correction for the Cell Painting method
in detail[141]. For an optimised and standardised data processing of Cell Painting
data, they developed the Cytominer package for Python and R[140]. A study of
batch correction methods for data of varying complexity, from single-laboratory,
single-microscope data to multiple-laboratory, multiple-microscope data, showed
good performance of Seurat correction and Harmony correction. The Seurat batch

correction method is the state-of-the-art method for scRNA-Seq data[139].

We aim to use the morphological profile of MC3T3 cells on various topographies to
compare the morphology of the cells on the topographies with the morphology
from the activators and inhibitors of the previous chapter to design new
nanotopographies that replicate the effect of the activators/inhibitors. In
machine learning, the prediction of a variable from a dataset is widely done[248,
249]. However, the prediction of new variables, which are a new topography in

our case, is rare and much more challenging[250, 251].
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The expression of osteogenic markers can be predicted from the morphome of
MC3T3 cells on 100 nm diameter nanopits in a square, near-square and hexagonal
array using Bayesian linear regression[20]. An in-depth literature analysis was done
to identify the optimal parameters for osteoinductive biomaterials via machine
learning[251]. They found that a porous calcium phosphate ceramic with
micropores between 2.5 and 10 ym and macropores of 250 to 1300 ym. A
fabricated material based on the found optimal parameters, featuring macropores
of 300 to 760 pm, micropores of 10 to 100 pm, as well as pores of 2 to 10 um, with
a porosity of 76.7%. The new bone formation surpassed the database average of
10.97 % with 14.7 + 7 %. Thus, it has been shown that new materials can be
predicted from a database of different biomaterials. However, the prediction of
new parameters has many limitations due to varying data quality and non-
standardised experimental procedures, the difficulty of comparing materials, and
small dataset sizes[250, 251]. This work is the only one so far to predict new
biomaterials from a library of different biomaterials. Other work has only been
able to predict already known biomaterials from the cell morphome or identify
the optimal biomaterial for a defined application from a library of tested
biomaterials. Thus, we aim to take this work further by predicting new topography
designs that match a cell morphome that does not come from a topography. That
means we have the cell morphome of a cell in one state, for example, after
osteogenesis induction, on the one hand, and, on the other hand, the cell
morphomes from a library of systematically different nanotopographies. Now we
want to make up a new topography that produces the morphome after osteogenic

induction.

Our approach with Cell Painting on injection-moulded polystyrene slides in well
plates is designed to overcome these challenges of screening a large library of
nanotopographies. The type of 24 well plate was used before by Huethorst et
al.[186] for the screening of cardiomyocytes on grooves, chondrocytes on
nanopillars and MC3T3 cells on high aspect ratio nanopillars. A comprehensive
amount of data can be collected under well-controlled experimental conditions
across a wide range of topographies by changing one parameter at a time and
maintaining consistent material properties. The employed nanotopographies will

be nanopits with varying pitch in a square and near square array, varying
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diameters, varying disorder of hexagonal and square arrays, and gratings of

different sizes.
5.2. Methodology

The staining and imaging procedures using the Cell Painting method are performed
as described in Chapter 3. The staining is performed after four days of incubation
on the nanotopographies, since it has been shown in Chapter 4 that we see an
effect on the cell morphology after four days, while the control is not yet

overcrowded.
5.2.1. Nanotopography fabrication

The polystyrene well plates with nanopatterns are fabricated using injection
moulding and ultrasonic welding, as detailed in the general methodology section.
These plates feature five distinct types of arrays of nanotopographies, each with
its unique characteristics. Four of the five arrays consist of nanopits with a
standard diameter of 120 nm, depth of 100nm, and centre-to-centre spacing of
300 nm. The NSQ pitch array introduces a disorder of 50 nm from the ideal square
lattice and a varying pitch from 250 to 350 nm (Figure 5.1A). The arrays with a
pitch of 265 and 285 nm are missing due to a writing error in the master. The SQ
pitch array, on the other hand, presents the nanopits in a square lattice with a
varying pitch from 250 to 350 nm (Figure 5.1B). The array with a pitch of 290 nm
is missing due to a writing error. Both arrays also include a well with a flat surface,
nanopits in a HEX lattice, and a standard SQ and NSQ lattice for comparison. The
sizes array offers varying nanopits with diameters from 150 nm to 5 pym in a SQ,
NSQ, HEX, and near-hexagonal (NHEX) lattices (Figure 5.2A). The NSQ array with
a diameter of 150 nm is missing due to a writing error in the master. These arrays
are injection moulded with a previously made nickel shim as a master. The disorder
array introduces nanopits in an NSQ lattice with varying disorder from 0 to 150 nm
and in an NHEX lattice with a disorder of 0, 10, 20, 50, and 80 nm (Figure 5.3).
The grating arrays, 200 nm in depth and with a size of 200 nm, 500 nm, 1 ym, 2
pm, 5 pm, and 10 ym (Figure 5.2B), are injection moulded from EVG PDMS foils.
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The master is fabricated using the EVG nanoimprinting tool, a crucial step in our

process, which is described in detail below.

First, a master for the nanoimprint must be fabricated. A four-inch silicon wafer
is solvent cleaned in methanol, acetone, and isopropanol in an ultrasonic bath for
5 minutes per solvent. After oxygen plasma cleaning for two minutes at 150 W in
YES G-1000 plasma asher and a dehydration bake for at least one hour in a 180 °C
oven, a PMMA layer of 200 nm is spun on the wafer at 2000 rpm for one minute. A
Allresist AR-P 632.09 PMMA with 9 % weight in anisole and a molecular weight of
50k is used. After spinning, the wafer is baked on a vacuum hotplate for 5 minutes
at 180 °C to evaporate the solvent. Next, the desired pattern is written in the

resist using electron beam lithography with a Raith EBPG 5200.

The pattern is developed in a 2.5:1 isopropanol:methyl isobutyl ketone (IPA:MIBK)
developer for 25 seconds at 21 °C under constant agitation. The nanopattern is
then etched into the silicon wafer using reactive ion etching with an SPTS Omega
LPX 200 Rapier (SPTS, UK). The wafer is etched for 55 seconds to obtain a 100 nm
depth. The etch parameters are as follows: C4Fs flow rate: 90 sccm, SFe¢ flow
rate = 30 sccm, pressure = 20 mTorr, average platen HF power = 28 W, pk platen
HF power = 280 W, platen HF duty = 10 %. The remaining resist is removed in a
solvent cleaning process, as before when preparing the wafer. Afterwards, it is
plasma cleaned again in a YES G-1000 oxygen plasma asher at 150 W for two

minutes.

Next, the wafer is prepared for the EVG UV-nanoimprinting. The EVG
nanoimprinting is performed with the kind help of Dr. Iliyana Samardzhieva. First,
an anti-sticking layer (2-Methoxy-1-Methylethyl Acetate) is spun for 60 seconds at
800 rpm on the wafer and baked on a hotplate at 200 °C for 75 seconds. After
letting the wafer cool for 60 seconds, a propylene glycol monomethyl ether
acetate solution is dispensed on the wafer while spinning at 500 rpm for 30 seconds
and afterwards at 3000 rpm for 20 seconds. This step cleans the wafer and removes
the edge bead. Next, the EVG PDMS soft stamp material is applied to the wafer
and spun for 300 seconds at 4000 rpm.
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In the EVG Nanoimprinting tool, the prepared wafer is placed on a vacuum chuck,
and a Polyethylene Terephthalate (PET) foil is spanned into the machine. First,
the PET foil is preconditioned for 10 seconds with UV exposure. After removing
the protective foil from the PET foil, the wafer is moved below the PET and
brought into contact with the foil using a roller to ensure good contact without
bubbles. The sample is exposed to UV light for 300 seconds while holding a
pressure of 1250 mbar. A 1000-Watt UV lamp is used for the UV exposure. After
exposure, the foil is separated from the wafer, and one obtains the PET foil with
the EVG PDMS with nanotopography on top. The foil-PDMS dual layer can then be

cut into the desired shape by laser cutting and is ready for injection moulding.

5.2.2. Data integration of Cell Painting data

The morphome on the nanotopographies shows a smaller variety than the data
with activators and inhibitors in the previous chapter. Thus, two different feature
selection methods are tested. The first method, consistent with the previous
chapter, involves the identification of significant data. Any feature with
a difference between the highest and lowest mean values exceeding twice the
mean standard error is deemed noise and excluded. Subsequently, all features
with a fold change less than 75% between the maximum and minimum values are
excluded to capture all data with an observable change. The data is then refined
using Pearson correlation, with redundant data removed at a cutoff value of 0.95,

and all features with an absolute correlation of less than 0.15 are excluded.

In the second feature selection method, we leverage the advanced capabilities of
the R Cytominer package. The package was developed by the Carpenter lab for
the optimal data processing of Cell Painting data. So far, each study uses its own
methods for feature selection, which makes the comparison difficult. A
standardized data processing with an optimized package as Cytominer can
improve the comparability of studies. This feature selection method begins by
excluding data with near-zero variance, followed by the removal of redundant
data. The latter is identified by Pearson correlation, and all data with a correlation
higher than 0.95 is removed. The remaining features are then analysed for their
importance by their contribution in decreasing the information entropy. The

svd_entropy function is employed, providing values for each feature, where higher
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values indicate that the feature contains more information. The features with the
most information are then selected, showcasing the power of the R Cytominer

package in our research.

A strong batch effect is observed in the data set. Therefore, different batch
correction methods are used with increased complexity. As a simple batch
correction method, the data is normalized by centring the data to the median of
the control using equation (8) with ¥ as the median and MAD, the median absolute

deviation.

X—Xcontrol (8)
MAD control

When the data is not normalised by centring to the control, the data is normalised
by subtracting the single cell value from the mean and dividing by the standard
deviation. A cube root transformation is also tested, which normalises the data
similar to a log transformation. A log normalisation of the data is not possible since
we have negative and very small values. A log(x+1) normalisation can be used
instead, and the data can be shifted in a positive range. The cube root
transformation has the benefit that it remains the special case of having zero

values.

As a more advanced batch correction method, we employ the Seurat method. This
method follows the adaptation of the Seurat batch correction for the Cell Painting
data of Arevalo et al. who demonstrates its adaptability and applicability[139].
The batch correction is performed using the Seurat package developed by the
Satija lab[144, 145]. We utilise the Seurat method with reciprocal PCA as a
dimensionality reduction method. To find the anchor points, the nearest
neighbours are searched by reciprocal projections onto the PCA space. After
finding the integration anchors based on mutual nearest neighbours, the data is

integrated to perform the batch effect correction.

The quality of batch effect correction is analysed in UMAP projections. Those high-
dimensionality reduction methods must be used with caution, as it is known that
they can distort data. However, it has also been proven to be a valuable tool to

visualise the analysis. The controls on the different batches, as well as the
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standard SQ, NSQ, and HEX nanopits in each batch, serve as an indicator to

visualise whether a batch effect is visible or not.
5.2.3. Linear Regression and canonical correlation analysis

To test whether the morphome of the cells on the topographies of the
nanotopography library correlates with the geometry of the topography, we use a
multivariate multiple linear model[252, 253]. In conventional linear regression
models, one single variable is predicted from a set of predictors. In the
multivariate multiple linear regression (equation 10), multiple variables are
predicted. Thus, the model appears as shown below, with Y representing the

responses, X the predictors, and € a random vector.

Yis - Y

X1 o Xip P11 ﬁ1q €11 " E1q
S : R : +< P ) (10)

Xo1 = Xnp o Bor  Bog - En1 v Eng/

With more predictors p than conditions n, we encounter a dimensionality problem,
and a regression model is not possible. Thus, the number of features selected
needs to be reduced. So far, we have always selected the features independently
of the variables. To ensure a good regression, we use a maximum correlation
minimum redundancy method. We calculate the correlation of the features to
each of the geometry parameters. The geometry of the topographies can be fully
explained by the x-pitch, y-pitch, diameter, noise, and offset. The features with
the highest correlation to the features, and a correlation cut-off of 0.7 for the

correlation between the features.

To determine if the activator and inhibitor data from the previous chapter
correlate with the data from the nanotopography library, we employ CCA[254].
CCA works similarly to PCA as it is also a dimensionality reduction method.
However, it is not creating new variables with the highest variability, but it finds

the linear combination of variables that has the maximum correlation to the
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parameters of the dataset. We use the CCA R package and follow Gonzalez et
al.[255]. We use a regularised CCA to avoid dimensionality problems. The
regularisation parameters are first computed by estimating them with a leave-
one-out cross-validation process. The optimal parameters are identified by first
using a large grid and then refining it in the area with the highest cross-validation
criterion. Since a CCA is similar to a PCA, both are dimensionality reduction
methods based on matrix algebra and eigen analysis, and they can be visualised
in a similar way. In the same way that we obtain a specific number of principal
components from PCA that can be plotted in a 2D plot as the dimensions, we obtain

canonical variates that can be plotted as the dimensions of the data.
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Figure 5.1: SEM images of nanopits in a NSQ pitch array (A) and SQ pitch array (B). The
NSQ pitch array has nanopits with 100 nm diameter, and a varying pitch from 250 nm to
350 nm. The pits randomly vary by 50 nm from the ideal square lattice. The SQ pitch
array has nanopits with 100 nm diameter, and a varying pitch from 250 to 350 nm in a
square lattice. The SEM images are organized in the same way that they are organized
on the used polystyrene slides with a flat control area. All SEM images are taken with a
Hitachi scanning electron microscope of the SU8200 series. The scale bar shows 1 um.
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Figure 5.2: SEM images of polystyrene slides with nanopits with varying diameter (A)
and gratings (B). The slide with varying diameter has nanopits of 150 nm, 500 nm, 1 um,
2 um, and 5 um diameter. They are arranged in a square lattice (5Q), near square lattice
(NSQ), hexagonal lattice (HEX), and near hexagonal lattice (NHEX). The nanopits in a
disorder always differ by 50 % of the diameter. The centre-to-centre pitch is always three
times the diameter. The gratings are in a 1:1 ratio of pitch and grating with a size of 200
nm, 500 nm, 1 um, 2 um, 5 um, and 10 um. The SEM images are organized in the same
way that they are organized on the used polystyrene slides with a flat control area. All
SEM images are taken with a Hitachi scanning electron microscope of the SU8200 series.
The scale bars in A show 5 um (white), and 1 um (black). All scales bars of B are 1 um.



92

Control

Figure 5.3: SEM images of nanopits in a square array and hexagonal array with varying
disorder. The nanopits have a diameter of 100 nm, centre-to-centre spacing of 300 nm,
and a varying disorder from the ideal lattice by 0 to 150 nm for the square lattice (NSQ)
and 0 to 80 nm for the hexagonal lattice (NHEX). The SEM images are organized in the
same way that they are organized on the used polystyrene slides with a flat control area.
All SEM images are taken with a Hitachi scanning electron microscope of the SU8200
series. The scale bar shows 1 um.
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5.3. Batch correction of nanotopography library data

The MC3T3 cells are successfully stained and imaged on all five different
nanotopography arrays. When handling the CellProfiler data the same way as in
Chapter 4, with a feature selection based on correlation and significance, we
observe a strong batch effect. The UMAP in Figure 5.4 shows that the SQ pitch
array data is especially separated from the other data. This is to be expected from
the fluorescence images shown in Figure A5.3-A5.6, which show that the SQ pitch
array has a weaker ER fluorescence throughout all topographies. The controls
visualised by circles are not clustering together as they should, but they remain
in their respective batches. The same effect can be observed for the standard SQ,
NSQ, and HEX patterns that are present in every batch, except for the gratings.
The batches of varying sizes and NSQ pitch are more connected. A clear trend

based on the different topographies is still not visible in those batches.

No Batch correction
category

‘ control
ratin
¢ B grating
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Figure 5.4: UMAP of nanotopography library data without batch correction. The
datapoints are coloured by their batch and a clear clustering by the batches is visible.
Especially, the array of SQ with varying pitches and the one with varying disorder are in
a separate cluster. The control (circles) and standard HEX (square) as a reference
topography stay in their batch and do not cluster with the same or similar topographies.
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Due to the strong observed batch effect, a correction is necessary that should
correct for the difference in staining intensity we see for the SQ pitch array. A first
attempt at batch effect correction is done by centring the data to the median of
the control of each batch. We assume that the morphome in the controls is the
same across the different batches. Thus, an observed change is due to the batch
effect. By centring the data to the median of each batch, we pick up the change
for each condition in relation to the control of the corresponding batch (Figure
5.5A). This batch correction method is the least invasive used, as it implies a
minimum modification to the raw data. Naturally, the controls of the different
batches cluster together in UMAP plot. However, the standard SQ, NSQ and HEX
topographies of the different batches are still in their corresponding batch and
not close to the same topographies. Thus, we change the feature selection from
before the centring to after the centring, because if we select features before
centring the data, we select the features that responsible for the batch effect.
The feature selection after centring only improves the batch effect slightly. The

UMAP plot continues to show a clear batch effect (Figure 5.5B).

To improve the correction, we first change the normalization method to a cube
root transformation from normalizing the data to a mean of 0 and standard
deviation of 1. The cube root transformation improves the normality of the data
set that should help with the later statistical analysis that works best for normal
distributed data. Instead of centring the data to the control of the corresponding
batch, we now choose the control of the gratings batch as the reference control.
All data is centred using the median and median absolute deviation of the gratings
control. We choose the control from this batch because we have three controls in
each batch and, therefore, a large dataset for of good reference images. This
batch effect correction method improves the correction again, but a clear batch
effect is still visible in the UMAP plot (Figure 5.5C). Especially, the SQ pitch array
data is still clustering almost completely together. The remaining data is also still

clustering together mostly by the batches and not the categories.
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Figure 5.5: UMAP of nanotopography library data with median centred batch correction.
The data is median corrected to the control of each batch and the same feature as in the
initial feature selection are used (A). A feature selection after centring the data
improves the distribution in the UMAP (B). An additional cube root formation for
normalization further improves the batch effect correction (C). The median centring
forces the controls together, which improves the batch effect. However, the reference
topographies of standard SQ, NSQ and HEX arrangement are still clustering in their
corresponding batch and not with similar topographies.

All the above-mentioned batch effect correction methods are not able to reduce
the batch effect enough. Thus, we use a more invasive method with the Seurat
method. Seurat is a state-of-the-art batch correction method for scRNA-Seq
analysis. It has also proven to work well with Cell Painting data, as it can
successfully remove the batch effect while conserving the biological significance.
Initial attempts at the Seurat correction using the old feature selection method,
which involved removing redundant data and selecting significant data, did not
sufficiently improve the batch effect correction. Therefore, we also have to
consider the feature selection method. The Cytominer package developed by the
Carpenter lab, which are also the creators of the Cell Painting method and
CellProfiler, is the best possible toolbox for the analysis of morphological profiling
data. This toolbox also includes a function to measure feature importance based
on its ability to reduce data entropy. The features with the highest importance
are selected after the removal of redundant features and features with near-zero

variance. In contrast to previous methods, we do not have a cutoff value for
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feature selection; instead, we must specify how many features are needed for a
good representation of the data. A first test showed that a feature number of at
least 200 is necessary.

Finally, we observe the best batch effect correction with the RPCA Seurat
correction, where the data is normalised by centring it on the median of the
controls for each batch before the Seurat correction. Then, the top 300 features
with the highest importance for the reduction of data entropy in the dataset are
selected after removing features with near-zero variance and redundant features
with a cutoff value of 0.95. The data is combined with the activator and inhibitor
data from the previous chapter for the Seurat correction. However, for feature
selection, only the nanotopography library data is used, as we are interested in
the features that describe changes across the topographies. The UMAP plot shows
a good distribution of the data and no strong batch effect as before (Figure
5.6A+B). The topographies still do not cluster perfectly by their category, but it is
a significant improvement compared to the initial data. With 84 different
nanotopographies and 13 different activators and inhibitors, each with three
concentrations per condition, this plot includes too much information to be easily
comprehended. To better understand the clustering, we break down the plot into

each batch and plot it separately.
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(caption for figure in previous page) Figure 5.6: UMAP of nanotopography library data
after Seurat correction. The nanotopography library data is plotted together after a
Seurat correction with the top 300 features selected by information entropy based
selection. The UMAP is coloured by the topography categories (A), and the batch (B) to
visualize the batch correction. The data does not cluster together only by the batches,
but the batches are spread across the plot. However, no obvious relation between the
categories of topographies is visible. The activators and inhibitors do not cluster with
any of the other data. Thus, a change in topography is not triggering other parts of the
mechanotransduction pathway. The isolated activator/inhibitor data of the full UMAP
show a good grouping by the different activators and inhibitors (C).

It is noticeable in the full UMAP plot that the activators and inhibitors are clearly
separated from the nanotopography library data. Only the control lies with the
other controls. This does not support our hope that the changes in the
nanotopography might trigger different responses in the cell. When examining the
isolated activator and inhibitor data, similarities to the distribution of the
activator and inhibitor data from the previous chapter are visible (Figure 5.6C).
The Ras/Rac and Cdc42 inhibitors SCH51344 and ML141 cluster together as well as
the cytoskeletal activators jasplakinolide, narciclasine, and calyculin A. The
cytoskeletal inhibitors cytochalasin D, Y-27632, and blebbistatin also cluster
together. This shows that the clustering is working well and that we can trust the
distribution in the UMAP plot.

An isolated look at the batches of the nanotopography library data reveals that no
clear trends based on geometry are observable; however, the topographies group
into three clusters per batch for the NSQ pitch array, SQ pitch array, and varying
disorder array (Figure 5.7). We did not necessarily expect a continuous
relationship between the pitch distance or disorder and cell morphology. However,
it has been shown that sweet spots in adhesion areas exist. Thus, we expect ranges
of topographies to have a similar response. We plot the observed clusters against
the pitch as well as the disorder (Figure 5.9). While we observe some signs of
periodicity in the SQ pitch array and NSQ pitch array, no clear pattern is visible.
Additionally, the disorder array is mostly together in one big cluster, with the
topographies with the largest disorder of 140 nm and 150 nm separated. At very
high disorder, nanopit placement is entirely random, and the pits often overlap.
At such a high level of randomness, we expect the topographies to be more similar.

Surprisingly, they lay together with the standard SQ topography.
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Figure 5.7: UMAP of isolated nanotopography library batches. The projection is from the
full UMAP and the UMAP coordinates of the SQ-pitch array batch (A), NSQ-pitch array
(B), and varying disorder batch (C) are plotted independently for better visibility. The
formed clusters are highlighted by circles and numbered. No underlying pattern in the
in the clustering of the topography parameters is visible for any of the arrays.

The batch with varying diameters and gratings does not have enough data with
one changed parameter to analyse the cluster in the same way. For both batches,
the topographies that are 5 um or larger in size are close to the control as visible
in Figure 5.8. With a feature size that large and a depth of only 100 nm, the
nanotopographies no longer affect the cell. The cell can adhere to the whole

surface, and the small 100 nm step does not affect the cell enough to have a
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visible effect. The topographies of a large diameter also have a large spacing in
between. That spacing is likely to be too large to form localised integrin clusters.
Additionally, the cell feels the shape of the nanopits only in a few places, and has
a curved membrane only in those areas due to the topography. This will not be
enough to create a significant influence on F-BAR protein binding due to
membrane curvature. In the batch with varying diameters, the hexagonal pattern
and near-hexagonal pattern primarily cluster together. The hexagonal and square
arrays with pits of 500 nm are close to the nanopits, which have a high disorder
of 140 and 150 nm. The high disorder might produce large adhesion areas that are
similar in size to those patterns with 500 nm diameter nanopits, which have a

distance of 1 ym between the nanopits.
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(caption for figure on previous page) Figure 5.8: UMAP of isolated nanotopography
library batches with varying diameter (A) and gratings (B). For both arrays the large
features of 5 um and above are close to the control because the extremely low aspect
ratio makes the topography not noticeable to the cells. Many of the NHEX and HEX
nanopits are close to each other, however, not all of them are located in one cluster.
Thus, it is not clear if the topography arrangement or nanopit sizes drive the cell
morphology changes. The projection has the dimensions from the UMAP of the full
nanotopography library data.
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Figure 5.9: Plot of the different clusters depending on the pitch for the SQ pitch array
(A), and for the NSQ-pitch array (B), and depending on the disorder for the disorder array
(C). The clusters are taken from Figure 5.7. No trend that is depending on the pitch or
disorder is visible. The clustering seems mostly random.

5.4. Linear regression and canonical correlation analysis

of nanotopograpy library data

To design new topographies from the cell morphome, we need to ensure first that
the geometry of the topography correlates with the morphome. The
nanotopographies need to be parameterised to be in a comparable format. Five
parameters can fully describe them: the x-pitch, y-pitch, diameter,
noise/disorder, and offset. The x- and y-pitch are the same for the nanopit arrays.
For the gratings, the x-pitch is the same value as the diameter because it is a
constant line, and there is no space between them. The y-pitch is two times the
diameter. The offset defines whether the nanopits are in a hexagonal array. A
hexagonal array has an offset of half of the centre-to-centre pitch. Those
parameters are used with the morphome to check for a linear relationship
between the morphome and topography parameters. A multivariate multiple

linear regression is employed for it.
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The features with the highest correlation to the topography parameters are
selected. For each batch, we select the features with the highest correlation to
the corresponding geometry parameter. For the SQ and NSQ pitch array, we look
at the correlation to the pitch; for the batch with varying disorder, we look at the
correlation to the disorder, and for the batch with varying sizes and gratings, we
look at the correlation to diameter. For each batch, the 10 features with the
highest correlation are picked. For the gratings batch, only the three highest
features are selected because it has fewer different conditions, with only six
different grating sizes. We need a smaller number of features than conditions to

be able to check if the regression works just for the isolated data from one batch.

Combining the different batches into a complete data set presents its own set of
challenges. With increasing diameter, the raw absolute pitch and noise values also
change, while the relative value remains constant. The pitch arrays have a varying
pitch in 5 nm steps in a range of 100 nm, and the disorder array has a varying
disorder in 10 nm steps in a range of 150 nm. However, the pitch changes for an
increased nanopit diameter of 500 nm by 1200 nm, a massive change that a linear
relationship of the morphome cannot explain. This skewness of the whole dataset
makes a linear regression of the raw absolute data impossible. As a result, we only
consider the SQ and NSQ pitch batch and the batch with varying disorder when
examining the raw absolute data (Figure 5.10). For the whole dataset, the

geometrical parameters are calculated relative to the diameter.

The linear regression of the pitch and disorder against the morphome shows a good
linear relationship for the batches with the changed parameter (Figure 5.10). The
pitch can be predicted well for the NSQ and SQ pitch arrays, and the disorder can
be predicted well for the batch with varying disorder. However, the batches with
a constant pitch or disorder are not predicted correctly through the linear
regression. The linear regression of the pitch for the raw data of the SQ and NSQ
pitch batch show an adjusted R? of only 0.012 and a p-value of 0.466, while the
linear regression of the absolute disorder shows a much better linear regression
with an adjusted R? of 0.647 and a p-value of 3.81 10. The linear regression of
the pitch improves with the use of relative data with an adjusted R? of 0.098 and
a p-value of 0.271. However, the performance of the linear regression of the

disorder decreases with an adjusted R? of 0.52 and a p-value of 0.00017. The
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problem is that while the pitch stays the same, the adhesion area and therefore
also the morphome still change across the differently disordered topographies of
the batch with varying disorder. The adhesion areas are known to be a driving
factor in the cell response to nanotopographies. We expect that across nanopits
arrays with varying pitch and disorder, we will have topographies with very similar
distributions and sizes of adhesion areas. So that the cell response will also be
similar, a simple linear regression cannot replicate this similarity in morphome on
clearly different topographies. More advanced models would be necessary to
describe it. The linear regression of the disorder is better than the regression of
the pitch. We believe that the disorder is a more important factor in the cell
response than the pitch. The disorder is likely to have a higher impact on the cell
and the morphome, and with more substantial changes in the morphome, the

linear regression works better.

X-pitch Disorder
2 150 1
o * *
© 300- polpmitt <% o
c = e s Batch
= 2 < 100+ atc
1200 ! .
© 3 3 disorder
s g S s * nsgp
m 2 100_ b - - e e .
[ Qo ° sgp
@] @]
D - 8 ! ! I O - ® ZZZ:;C.’.’ZZ:Z‘ o : !
100 200 300 0 50 100
Predicted value Predicted value
., > 1.5
o @ 31 = rtem ot © Batch
g = “w 3 = disorder
> = 1.0
© 8' 24 < gratings
= 2 * nsqp
% 2 14 205 *o @ mmmime * sjzes
0
o © O sqp
0+ T - 1 1 L 0.0 4 -1 "TY
1 2 3 4 00 04 08 1.2
Predicted_value Predicted value

Figure 5.10: Linear regression calculated by multi variant linear regression for the
centre-to-centre pitch and disorder of nanopitches. The raw data values for the pitch
and disorder are only calculated for the disorder, NSQ-pitch array (nsqp), and SQ-pitch
array (sqp) since the high values of the large diameter pits as well as large gratings skew
the data too much. The pitch and disorder relative to the diameter can be calculated for
the whole nanotopography library.
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The newly selected features for the linear regression are selected to describe the
changes in the relevant batches well. Thus, they are also not performing as well
in correcting a batch effect. Especially, the raw absolute data of just the NSQ and
SQ pitch and the disorder batch cluster together just by their batch in a UMAP plot
(Figure 5.11A). The full dataset, including the relative geometric parameters,
improves it. Unfortunately, there are no novel trends in the UMAP plot visible
(Figure 5.11B). For the SQ pitch, NSQ pitch and varying diameter batch no trends
are visible. The batch with varying disorder has the nanopits with high disorder
above 120 nm separated from the other nanopits of the batch. Surprisingly, the
disorders of 60 and 70 nm are close to the topographies with high disorder. As
mentioned earlier, the highly disordered nanopits are entirely random, with many
overlaps, and therefore, they are also expected to elicit a different cell response.
The gratings show again that we need features of less than 5 ym to have a visible
response to the topography. Furthermore, the controls cluster in their respective
batches again rather than together, indicating a batch effect. That might be
because we select features with the highest correlation with the topography
parameters. The controls have a value of zero for all topography parameters and,
therefore, are outliers in the feature selection. The correct classification of the
control is not prioritised in the feature selection, and therefore, the features are

unlikely to highlight similarities between the controls.

The multivariate multiple linear regression shows that the morphome correlates
with the geometrical parameters of the nanotopographies, even though not the
whole topography can be predicted from the morphological features. A CCA
analysis is used to check the correlation between the activator and inhibitor data
and the nanotopography library data (Figure 5.12). The activators and inhibitors
do not cluster in the CCA plot of the first two dimensions in a way that would make
sense based on the function of the activators and inhibitors, as well as the
previously discovered relationship to the response to the standard SQ, NSQ, and
HEX topography. The CCA plot does not show any systematic relationship between

the activators and inhibitors and the nanotopography library data.
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Figure 5.11: UMAP of nanotopography data after feature selection for linear regression
of raw absolute data (A) and relative data (B). The relative data takes the disorder, pitch
and offset relative to the feature diameter to avoid the skewing of the data because of
the large features. The use of the relative data improves the clustering in UMAP. The
raw absolute data shows a clear clustering by the batch while the relative data have

more separation in the batches.
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Figure 5.12: Canonical correlation analysis (cca) of nanotopography data to activator
and inhibitor data. The Scree plot shows the canonical correlation of the computed
dimensions (A). The canonical correlation of the variables is plotted in the first two
dimensions by the batch (B) and category of topography (C). No clear correlation between
topography parameters and mechanotransduction pathway activators and inhibitors are
visible in the cca.
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5.5. Influence of topography parameter on cell morphome

As described above, a combined analysis of the topography parameters is not
possible due to the interplay in cell response between the geometrical
parameters. Thus, we change our approach to analysing topography parameters,
which is characterised by a systematic separation of the data into four groups.
Each group represents a unique aspect of the cell response, with only one
parameter being altered at a time. The first group examines the disorder batch,
the second group explores the variation in pitch by combining the NSQ and SQ
pitch arrays, the third group investigates the varying diameters, and the fourth
group studies gratings with different widths. This systematic approach allows us
to gain a comprehensive understanding of the cell response. We then visualise the
cell response by plotting heatmaps of the corresponding groups and subjecting
them to a hierarchical clustering of the variables. The distances for the
hierarchical clustering are calculated using the Euclidean method. The selected
features are chosen in a manner similar to the feature selection process for
multivariate multiple linear regression. The features are batch corrected using
RPCA Seurat correction, and redundant and zero-variance features are removed.
Next, the features with a Pearson correlation of more than 0.5 to the topography

are selected.
5.5.1. Nanopits of varying disorder

The nanopits of varying disorder exhibit a high correlation with morphological
changes, as indicated by 132 features with a Pearson correlation above 0.5. The
most prominent clustering we observe is the high disorder above 120 nm. They
show a clearly different morphome from the other topographies as visible in the
heatmap in Figure 5.13. The fluorescence images are shown in Figure A5.3.
Interestingly, the disorder of 60 and 70 nm is grouped in the same cluster. The high
disorder creates an entirely random topography that no longer follows the square
array. Additionally, we observe many nanopits that overlap at high disorder. Among
the other disorders, no clear trend is observable, except for the separation
between NHEX topographies and NSQ topographies. This highlights that even in a

disorder, the controlled aspect of the disorder is important for the cell response.
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Furthermore, the underlying organisation of nanopits, whether in a square or
hexagonal array, is important for the cell response. That we can pick up those fine
differences in the topography by the morphome supports again the potential of

morphological profiling using the Cell Painting method.
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(caption for figure on previous page) Figure 5.13: Heatmap of the morphome depending
on the disorder of nanopits. The heatmap is ordered by hierarchical clustering using
Euclidean distances. The features are normalized between 0 and 1. Each feature is
corrected against the control by dividing it from the control. The topographies are
labelled by the array geometry if it is square (SQ), near square (NSQ), hexagonal (HEX),
or near hexagonal (NHEX). The number behind the geometry describer corresponds to
the disorder in nanometer. The NSQ patterns with a disorder above 120 nm cluster
together as the nanopatterns are more randomly distributed. Surprisingly, the NSQ of 60
and 70 nm have similar features. The features mostly depend on the NHEX and NSQ
arrangement.

5.5.2. Nanopits of varying pitch

The pitch does not correlate with the morphome as strongly as the disorder. When
examining the individual NSQ pitch and SQ pitch batches, the NSQ pitch batch
contains 54 features with a Pearson correlation of over 0.5 to the pitch, while the
SQ pitch array comprises 17 features with high Pearson correlations. When
combining both datasets into a single dataset of varying pitches, no feature has a
Pearson correlation coefficient higher than 0.5, and only three feature has a
correlation above 0.4. 49 features have a higher correlation than 0.3 with the
pitch and are used for the heatmap (Figure 5.14). The fluorescence images of the
NSQ pitch array are shown in Figure A5.4 and the images of the SQ pitch array in
Figure A5.5. The correlation values are calculated with the control set as a pitch
of 0 nm. We believe that this drop to 0 for the control compared with the pitch
from 250 to 350 nm disturbs the correlation too much since a feature needs to be
higher or lower than the control for all pitches to be correlated. Thus, we also
calculate the Pearson correlation excluding the control. Surprisingly, it does not
change the number of correlated features a lot. We observe 19 features that have
a correlation larger than 0.5 for the NSQ pitch array, and 22 features that have a
correlation larger than 0.5 for the SQ pitch array. The combined dataset shows a
Pearson correlation to the pitch that is larger than 0.4 for five features, and 37
features have a Pearson correlation larger than 0.3. We believe that those features
still replicate the morphome depends better than the features that are calculated
including the control and use them for the analysis. Since the correlation is low,
the clustering in the heatmap seems random as well. No trend depending on the
pitch is visible. The SQ and NSQ batches mostly separate, indicating that the
disorder has a more substantial effect on cell response than the pitch differences.

This is also supported by the substantial decrease in correlation of the morphome
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to the x-pitch when combining the SQ and NSQ datasets. The NSQ and SQ pitches
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also do not exhibit a pitch dependent trend when viewed separately (Figure A5.1

and A5.2).
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(caption for figure on previous page) Figure 5.14: Heatmap of the morphome depending
on the pitch of nanopits. The heatmap is ordered by hierarchical clustering using
Euclidean distances. The features are normalized between 0 and 1 and corrected against
the control by dividing the control from the other substrates. The topographies are
labelled by the array geometry if it is square (SQP), or near square (NSQP). Additionally,
the corresponding batches are labelled in red (SQP) and blue (NSQP). The number behind
the describer of the geometry (SQP/NSQP) corresponds to the centre-to-centre spacing.
The features show most similarities in their own batch. Especially, the SQ array nanopits
show little variation with varying pitch.

5.5.3. Nanopits of varying diameter

The dataset of varying diameters has the smallest correlation to the morphome of
all individual datasets. Only four features have a Pearson correlation of more than
0.5 with the morphome, and 26 features show a correlation of over 0.4. Those 26
features are used for analysing the diameter dependence (Figure 5.15). The
fluorescence images are shown in Figure A5.6. The hierarchical clustering reveals
a separation of the HEX, NHEX, NSQ, and SQ arrays, with a diameter of 5 pm, from
the remaining data. Surprisingly, the SQ array with nanopits of 1 ym diameter falls
into the same cluster. Overall, the nanopits are close to topographies of the same
diameter. Thus, the cell response to the diameter, independent of the array
geometry, can be detected. However, the low number of features with high
correlation to the nanopit diameter suggests that it does not have a substantial
effect on the morphome, and that the geometrical arrangement may play a more
significant role in the cell response than the diameter of the nanopits. The
separation of the high diameter nanopits is expected because, at a depth of 100
nm and a diameter of 5 ym, cell adhesion will not be limited to the areas without
pits but will adhere to the whole surface and will only feel the 100 nm deep edge
of the nanopits. With smaller adhesion guidance through the large nanopits, we
expect it to be similar to a flat surface. However, curiously, the control clusters
closed with the 500 nm nanopits, which cannot be explained by the previously
found clustering in the UMAP (Figure 5.8A), where the control clustered with the
5 pym nanopits as expected. The correlation between nanopit size and morphome
is weak; therefore, we expect the selected features may not be well-suited to

describe the cell response, depending on feature size.
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Figure 5.15: Heatmap of the morphome depending on the diameter of nanopits. The
heatmap is ordered by hierarchical clustering using Euclidean distances. The features
are normalized between 0 and 1 and corrected against the control by dividing the control
from the other substrates. The topographies are labelled by the array geometry if it is
square (5Q), near square (NSQ), hexagonal (HEX), or near hexagonal (NHEX). The
diameter of the nanopits is mentioned after the array category. The large nanopits of 5
um show a similar morphology that separates them from the other topographies. The
clustering is mostly driven by the nanopits diameter and not the geometrical

arrangement in a SQ, NSQ, HEX, or NHEX array.
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5.5.4. Gratings of varying widths

The gratings show the most prominent effect on cell morphology. Therefore, it
comes as no surprise that a strong correlation between the widths of the gratings
and the morphome can be observed. 295 features have a Pearson correlation
coefficient greater than 0.5 with the pitch of the gratings. The gratings direct cell
alignment, causing highly oriented and elongated cells along the direction of the
gratings. The morphological change is more pronounced than the change through
nanopits. On nanopits, the MC3T3 cells maintain their typical shape, with slight
changes in protrusions and elongation depending on the geometry. The elongation
on the gratings decreases with increased widths, as can be clearly seen in the
fluorescence images of the Cell Painting staining (Figure 5.16B). This is also
reflected in the heatmap and hierarchical clustering, where the gratings cluster
together by their size. The largest gratings, 5 and 10 pym, exhibit the most
significant difference in the morphome, as the gratings do not align the cells. The
remaining grating sizes have a similar morphome with the smaller 200 and 500 nm

gratings clustering together and the 1 and 2 pm gratings clustering together.
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Figure 5.16: The morphome dependence on grating width is plotted in a heatmap (A)
and shown in fluorescence images (B). The heatmap (A) is ordered by hierarchical
clustering using Euclidean distances. The features are normalized between 0 and 1 and
corrected against the control by dividing the control from the other substrates. The large
gratings of 5 and 10 um show a different feature expression to the smaller gratings and
show a higher similarity with the flat control. The Cell Painting fluorescence images (B)
show the alignment of MC3T3 cells with the gratings for a width of 200 nm to 2 um,
while the 5 and 10 um gratings do not produce a cell alignment. The scale bars shows 50
pm.

The control is more similar to the large gratings, as they resemble the typical
MC3T3 cell shape. It shows that the alignment to nanotopographies is an adhesion
driven effect, rather than an effect driven by physical confinement, as observed
on gratings with heights above 1 um[256, 257]. Refaaq et al. demonstrated that
PDMS gratings with 6 pm ridges and 4 pm grooves confine MC3T3 cells at grating
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depths of 1 ym and 4.5 pym. At high heights, the alignment is driven by cell
protrusions that sense the walls of the ridges and make contact with them, which
in turn drives cell elongation along the gratings[258]. At a low grating height of
150 or 200 nm, the gratings do not provide enough area for the protrusions to
make contact with. However, at small gratings with a width of a few hundred
nanometers, the focal adhesion clusters are aligned along the gratings, which
produces cell elongation and alignment along the gratings. The size dependent
effect of the gratings is similar to the size dependent effect of the nanopits.
Features of 5 ym and larger are too large to direct focal adhesion formations in a

way that visibly affects cells.

5.6. Conclusion

We successfully imaged fluorescently stained MC3T3 cells on 84 different
nanotopographies, consisting of 78 nanopits in SQ, NSQ, HEX, and NHEX arrays
with varying diameters, pitches, and disorder, as well as 6 gratings with varying
widths. We take 20 images in three biological replicas per condition, which
accumulate to more than 5340 images taken and 26700 cells analysed, with an
average of 5 cells per image. The imaging of the fluorescence images takes
approximately 400.5 hours of continuous imaging for the entire dataset. This
represents the large magnitude of data collected and how extensive the used

nanotopography library is.

The analysis of the morphome of MC3T3 cells on a library of nanotopographies has
proven more complicated than expected. A first challenge is the relatively small
difference in responses between different topographies. Due to the slight
differences, careful feature selection and batch correction are needed. The
Seurat batch correction, known for its effectiveness in scRNA-Seq and Cell Painting
data batch correction, has proven to remove a significant portion of the batch
effect while retaining the biological information. We can separate the controls of
the batches and get the batches mixed. However, we still do not observe a perfect
correction, as the standard SQ, NSQ, and HEX topographies that are in all hanopit

batches do not cluster together.
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Additionally, we found that the feature selection method must be suitable for the
purpose. To study the relationship between different topographies, a metadata-
independent feature selection method is most effective. A feature selection
method that measures the feature importance based on its ability to reduce the
data entropy works best. When we want to study the relationship between the
morphome and the geometry of the nanotopography, a feature selection approach
based on the correlation between morphological features of the cells and
geometrical features of the nanotopographies works best. In general, the
complexity of the relationship makes the analysis difficult. The high
dimensionality of the data poses another challenge. Usually, over 100 different
features are used, which means that we have more variables than observations,
which causes dimensionality problems in a linear regression. The reduced number
of features selected for the multivariate multiple linear regression helps to
overcome the dimensionality problems, thereby reducing the risk that it does not
describe the full effect of the topographies on cell morphology and, consequently,
does not reveal the full relationship. In general, one must be cautious not to

overfit the data with normalisation, Seurat correction and feature selection.

The nanotopography library shows that the nanotopography features need to be
smaller than 5 pm to influence the cell. Larger topographies do not create
designated adhesion areas. This is especially visible in the gratings of different
sizes. The small gratings create highly oriented and elongated cells along the
gratings, whereas the large gratings of 5 and 10 pm do not significantly affect cell
morphology. In general, the morphome differs a lot on the gratings compared to
the nanopits. In comparing the different nanopit topographies, we find that
disorder has the most substantial impact, next to the diameter of the nanopits.
For the diameter, the dependency is similar to the gratings with the nanopits of
5 um, having a smaller impact. The disorder exhibits a better linear relationship
with changes in the morphome than the pitch. Additionally, a clear trend is
observable, where the high disorder separates from the other disordered
topographies as the placement becomes completely random, and we see many
overlaps of pits. However, we are unable to explain why we observe a change in
morphology at the transition from a disorder of 110 nm to 120 nm. In particular,

the similar morphology of the 60 and 70 nm disorder to the high disorder nanopits
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is not explainable. The high disorder and overlap between pits might create larger
areas without adhesions, since integrins need to be closer than 70 nm to form
integrin clusters, and the adhesion area needs enough space to form a cluster of
several adhesions[259-261]. For the formation of stable focal adhesions, at least
4 integrin attachments are needed with an interspacing distance of 60 nm or less.
However, the cluster size does not affect cell spreading above 4 integrins[262].
We would assume from this that the organisation of the integrin clusters we find
on our topographies is more important than the adhesion sizes, as they are mostly
large enough to facilitate their formation. When the nanopits are extremely close
due to high disorder, the space between them might not be large enough for the
formation of integrin clusters, even when the nanopits do not overlap. On the
other hand, it also creates relatively large adhesion areas when the nanopits are
far apart due to disorder, with a maximum of 150+150 nm of additional spacing
between two nanopits. It is known that the cell response to nanotopographies
depends on the available adhesion areas. We believe that the nanopits of the NSQ
pitch batch, SQ pitch batch, and batch with varying disorder in an NSQ and NHEX
arrangement should have topographies with similar adhesion areas between the

different topographies. We do not find any support for this claim in the data.

Cell alignment has been widely studied across different cell types and grating
dimensions. Alignment properties vary strongly by cell type. It is known to depend
on grating height and spacing. Dual gradient chips with gradients in height and
spacing showed the highest elongation and orientation along the gratings for the
highest (0.85 - 1 um) and widest (8 - 30 um) gratings in human-induced pluripotent
stem cell-derived cardiomyocytes[263]. The endothelial LE2 cells and fibroblast
hTERT cells show the strongest alignment with the narrowest gratings (8 pm) and
the largest height (1 um)[264]. Fibroblasts show greater alignment than epithelial
and endothelial cells. At wide gratings with a width of 1 ym or larger, a large
height of around 1 pm is needed for the cells to align with the gratings. With high
gratings, the cells feel the sidewalls through cell elongations, such as
filopodia[257, 258]. Gratings with a smaller height at 350 nm showed the highest
alignment and elongation in narrow 350 nm gratings for human mesenchymal stem
cells[241]. The alignment is still visible up to a width of 2 ym. The alignment

drastically drops at a width of 10 ym. Those findings align with our data. However,
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for neurons, only 2 pm wide and 2 ym high gratings cause alignment. 250 nm wide
and 250 nm high gratings do not produce any alignhment[242]. Thus, the cell line
must be considered when designing the biomaterial. Due to the observed
difference in alighment between microgratings and nanogratings, we believe that
two distinct alignment mechanisms exist. At microgratings, the cells sense the
gratings’ sidewalls and align along them. The alignment on nanogratings is
probably adhesion-driven, with an arrangement of focal adhesions along the

gratings that elongates and aligns cells.

A detailed study of the response to varying topographies has proven challenging in
general. One big challenge is that the change of different topography parameters
has a similar effect on the cell. A reduction of the pitch of an SQ array may
similarly change the adhesion areas as an increase in disorder. Thus, it is
challenging to correlate specific changes in the morphome to a change in one
parameter, but the interplay between the different topographical parameters
needs to be considered. We are also assuming a linear relationship between
topographical parameters and morphome. However, the analysis of clusters shows
a hint of possible periodicity, and it can very well be that sweet spots of
topographies exist for the cell response. Thus, more work is needed to fully
understand the influence of the different topography parameters on the cells.
However, an analysis not assuming linearity and considering the relationship

between the different topography parameters is much more challenging.

We also see that the response to nanotopographies is more complicated than the
response to activators and inhibitors in the previous chapter. The morphome of
the inhibitors and activators does not cluster with any specific group of
topographies. The CCA showed some correlation between topographies and
activators and inhibitors, but no trend is observable. The activators and inhibitors
strongly affect one part of the mechanotransduction pathway, while the
nanotopographies affect the complete mechanotransduction pathway. The cell
response changes in nuances to the changes in the topography, and not as extreme
as to changes in activators and inhibitors. For example, a slight change in disorder
will not completely change the differentiation of the MC3T3 cell from
differentiating into mature osteoblasts to not differentiating at all. Depending on

the topography, the differentiation is slightly stronger or weaker. Thus, we will
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likely see changes in the strength of the response, not see different responses and
different mechanotransduction pathways. Those nuances are obviously much more
challenging to pick up; however, we believe that we can pick them up. It can be
compared with the different concentrations of the activators and inhibitors in the
previous chapter. Only the gratings with a completely different topography
compared to the nanopits show a clearly different cell morphology, which is

captured by our analysis.

While a machine learning based approach for predicting new topographies is a
promising option, it would require a significant amount of work and optimisation.
Additionally, the use of a polytomous variable class analysis (poLCA)[265] could
provide intriguing insights into the similarities between topographies. While poLCA
is not designed for predicting topographies, it excels in identifying sources of
cofounding between variables and constructing clusters based on this information.
It can uncover hidden subgroups in the dataset that may reveal similarities

between different topographies with similar available adhesion areas.

In contrast to other large nanotopography libraries, our library is highly
systematic, with only five parameters needed to describe all topographies. The
BSSA chip of the Foss group also uses a systematic approach. However, it shows
greater variation in its patterns due to different combinations of circles, squares,
and rectangles, whereas ours with nanopits shows only variation in pitch, size, and
disorder[237, 238]. The NanoTopoChip[77] primarily focuses on the variance in
feature shape resulting from the random combination of squares, triangles, and
circles into unique shapes. Our nanotopography library also differs in the size
range of topographic variations from those of the BSSA chip library. We study the
difference in pitch at steps of 5 nm and in disorder at steps of 10 nm, whereas the
BSSA platform steps in 1 ym increments and larger. The NanoTopoChip has a very
detailed variation of features and pitch sizes. However, distinct values for possible
adhesion areas are challenging to name due to the complex shapes. We believe
that our systematic approach can be beneficial for predicting new topographies,
even though it has a smaller range of topographies than the BSSA and

NanoTopoChip platforms.
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Even though our library and the NanoTopoChip and BSSA platform differ
significantly in the topographies used, screening methods, and plate design, we
face the same challenges and achieve similar results. We identified the size and,
therefore, the large difference in feature spacing as the main driving factor for
the cell phenotype. At the same time, small changes in pitch and disorder did not
significantly affect cell morphology. The NanoTopoChip showed that U20S cell
spreading depends on the ratio of patterned to non-patterned area. Additionally,
they found that few large, patterned areas give rise to small cell areas, whereas
many small adhesion areas give rise to large cell areas. No influence of feature
shape was observed[77]. The BSSA platform identified that the inter-pillar gap size
is the most important factor in promoting osteogenesis[110]. The highest
osteogenic marker expression was observed at a gap size of 4 uym, whereas larger
gap sizes strongly reduced differentiation. Pillars with a size of 1 and 2 pm exhibit
the strongest response in osteogenic marker expression. In comparison, pillars
with diameters of 4 and 6 pm exhibit significantly lower expression of osteogenic
markers. This observation matches our results, which show that cellular
morphology changes decrease at larger adhesion areas with larger nanopits. A
similar effect was observed for the BSSA platform on fibroblasts, where the inter-
pillar distance also drives proliferation. At the same time, the shape of the pillar

does not affect the cells significantly[237].

The Galapagos chip, which used the MicroTopoChip design to create unique
adhesive areas, found similar limitations to us[232]. They found no correlation
between YAP nuclear translocation and adhesion patterns. However, they were
able to correlate cell morphology to YAP nuclear translocation. Adding a factor
such as YAP nuclear translocation could also be an approach to improve our

nanotopography library screening.
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6.Cellular traction force dependency on
nanotopography - the challenge of hierarchical

micro-/nanostructure fabrication
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Nanotopography
dependent cellular
traction forces

Methods: Traction force microscopy with MC3T3 cells on hierarchical
micropillars with nanopits on top
Challenge: Fabrication of master for soft lithography replication in PDMS
Results:
= H-PDMS needed for replication of nanotopography <200 nm
= Protocol for e-beam lithography in 10 pum thick PMMA resist
= Photolithography with SU-8 resist most promising
= UV-light interaction with nanopillars hinders fabrication of
hierarchical micropillar by photolithography
= Traction force microscopy with flat PDMS micropillars with
5.93+0.15 pm diameter and 18.61+0.28 ym height —» ~10 nN
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6.1. Introduction

In the previous chapters, we discussed the effect of nhanotopographies on cells in
detail with the example of the osteogenic progenitor cell line MC3T3. In vivo, the
cell is responding to the topography of its surroundings as well as the stiffness of
the environment[4, 33, 34]. Engler et al. have shown that the mechanical
properties of the surrounding biomaterial dictate the differentiation of MSCs[5].
In vivo different tissue has a wide range of stiffness. Brain tissue is one of the
softest tissues, with a Young’s modulus of 0.1-1 kPa. Muscle tissue has a modulus
of 8-17 kPa, and bone tissue is the hardest, with a modulus of 25-40 kPa[34]. Thus,
the stiffness of the environment is an important indicator for the cell response.
The stiffness of the tissue is also of interest in wound healing as scarred tissue is
stiffer than healthy tissue[6]. Furthermore, tumours are stiffer than the healthy
surrounding tissue and cancer cells are known to migrate towards the stiffer
tissue. This effect is known as durotaxis[7, 35]. Those effects are also observable
due to nanotopographies. Nanotopographies are used in various applications,
including directing cell differentiation and guiding cancer cell migration[8, 24].
The early reviews of Curtis and Wilkinson[266, 267] and others[268, 269] already
show the vast impact of nanotopographies across a wide range of cell types and
applications. As nanolithography methods improved, the field expanded, and a
great number of topographies of different materials and geometries were created,
and the understanding of cellular response grew as well[270-272]. Some examples
include guided cell movement along adhesive tracks[273], alighment of epithelial
cells along grooves and ridges[274], differentiation into neurons on gratings[92,

242], and into osteoblasts on nanopits[31].

Cellular adhesions are an essential part of mechanotransduction, since
biomechanical extracellular cues are sensed, among others, by focal adhesions
and translated into the cell through the cytoskeleton[11]. Material stiffness
affects cell adhesions and the cellular response[275]. Zhou et al.[276] have shown
that increased material stiffness increases vinculin recruitment at focal adhesion
sites and traction forces. The focal adhesion area also increases with material

stiffness. Nanotopographies locally limit the adhesion sites for cells. The
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size[277], organisation[95, 278] and spacing[77] between adhesion sites affect the

cell response.

We are interested in studying the interplay between those two effects. Only a few
studies have examined material stiffness and nanotopography simultaneously
[279]. Gratings or waves are synthesized in PDMS and hydrogel [280],
polyacrylamide gels from 3 to 145 kPa[281], and polyurethane-based surfaces from
1.8 MPa to 1.1 GPa[282] and 11 MPa to 1.1 GPa All those studies have the
disadvantage that changes in stiffness are accompanied by changes in the
material's chemical composition. To overcome this problem, we need to create a
biomaterial that differs in only one parameter at a time, either topography or
stiffness. Nanotopographies with different stiffness, achieved by using varying
materials or PDMS compositions, differ not only in stiffness but also in chemical
composition, which in turn affects the cell response. Hierarchical micropillars are
a good solution for it. Different nanotopographies can be fabricated on top of the
micropillars, and by varying the dimensions of the micropillars, the mechanical
properties of the biomaterial are changed while keeping the chemical composition
constant. The micropillars can also be well used for traction force microscopy[159,
162].

Cellular traction forces are a good measure of the cell response to varying
stiffness. Micropillar arrays are widely used to study the effect of different
stiffness materials on cellular functions[156, 157]. For many cell types, cellular
traction forces are also a reliable measure of the cell’s state. Traction forces are
studied in a broad range of applications. They are of high interest in highly
contractile cell types, such as cardiomyocytes[283, 284] and smooth muscle
cells[285]. They are also widely used in cancer research and show great promise
for drug discovery[173, 286]. Those varying cell types are in tissues of different
mechanical properties. The micropillars used for traction force microscopy can be
fabricated with different dimensions, replicating the stiffness of the different
tissues. The micropillars of different stiffness have also been used to study the
effect of biomaterial stiffness on MSCs. Rigid micropillars direct the MSC
differentiation towards osteogenesis, while soft micropillars direct the

differentiation towards adipogenesis[157].
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The cellular traction force is adhesion-dependent, and nanotopographies affect
the adhesion. Thus, the fabrication of micropillars with nanotopographies is of
high interest for studying the effect of nanotopographies on cellular traction
forces and, consequently, adhesion. It was recently shown by Cheng et al.[19] in
2013 that 280 nm diameter and 500 nm tall nanopillars on top of micropillars with
a 5 pm diameter increase the cellular traction force of MC3T3 cells. Furthermore,
they have shown that the nanopillars increase the migration speed and filopodia
number. The higher amount of actin-rich protrusions produce larger cellular
traction forces[287]. Asilicon oxide and titanium oxide coating of the micropillars
produces the opposite effect. Therefore, the surface energy correlates with
traction forces[19]. It is further known that nanotopographies change intracellular
tension and contractibility. Mechanotransduction, the process by which cells
convert mechanical stimuli into biochemical signals, plays a key role in these
changes[11]. Myosin Il is an important protein in the mechanotransduction
pathway and is essential for the traction forces as it is responsible for the
contractile forces in cells[70, 108, 152, 154]. Nanotopographies also affect the
nuclear structure and chromatin formation through nuclear mechanotransduction,
translating extracellular forces and nanotopographies into cytoskeleton
rearrangement toward the nucleoskeleton. Changes in the nucleoskeleton enable
the transport of signalling proteins like YAP and a chromatin rearrangement[9, 44,
46]. The nucleus location and chromatin structure are, in turn, correlated with
the traction forces[153]. Those examples highlight the importance of studying the
interplay between the topography and the mechanical properties of biomaterials
to achieve a comprehensive understanding of the cellular response to its
environment, as the mechanotransduction of topography and material stiffness

shares the same pathways.

We aim to take this further by including a variety of nanotopographies in the form
of nanopits in a square, near-square and hexagonal arrangement. Additionally, we
want to use micropillars of varying dimensions to study the effect of material
stiffness on the cellular traction forces on nanopits. The used nanopits have the
advantage over the nanopillars that the response will be mainly based on the
adhesion. The nanopillars used by Cheng et al.[19] result in a stiffer material on

top of the micropillars, which can be sensed by the cells and can change the cell
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response[288-290]. The nanopillars on top of the micropillars have a spring
constant of 7 nN/um, and the micropillars have a spring constant of 12.16 nN/um.
The nanopits are not significantly affecting the material properties. Therefore,
we believe that the nanopits will mainly impact the adhesion sites of the cells,
with the changes to the mechanical properties due to the nanopits being

negligible.

The fabrication of hierarchical micropillars with nanopits on top has proven to be
highly challenging. Thus, this chapter focuses mainly on the attempted fabrication
of those micropillars. The general fabrication process starts with a master
fabrication by electron beam lithography or photolithography. Next, the
micropillars are replicated by soft lithography from the master using PDMS. This
process has several challenges. For a good replication in soft lithography, the
master needs straight sidewalls in the micropits to avoid the pillars getting stuck
in the master. Another challenge is the replication of nanofeatures in PDMS. The
conventionally used soft Sylgard PDMS is not able to replicate nanotopographies
of 100 nm. For the replication of nanotopographies, hard PDMS (h-PDMS)
formulations are used, which have a tuneable stiffness in a range exceeding that
of Sylgard PDMS by more than twice[291-293]. However, the usage of hard PDMS
causes challenges in the micropillar fabrication. Due to the higher stiffness, one
would need micropillars with a higher aspect ratio, which in turn makes the master
fabrication more challenging again. The h-PDMS is also more brittle, which makes

the replication of microfeatures challenging.

Several factors limit the design of the micropillar dimensions. First of all, the
diameter needs to be large enough to have sufficient space for the
nanotopography. Then, the aspect ratio needs to be high enough that the pillar is
soft enough to pick up the pillar deflection with the microscope. The used Zeiss
Observer with a 63x objective has a pixel unit of 103 nm/pixel, and 1/5 of a pixel
unit can be picked up by the traction force microscopy. Thus, a deflection of
20.6 nm can be seen. Common traction forces are in the range of 10s of nN for
MC3T3 cells[19, 294]. That means that a micropillar needs to have a spring
constant of less than 485 nN/um to have an observable deflection, following

Hooke’s law F=k*Ax.
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6.2. Methodology

This Chapter 6 is mainly focused on the fabrication of hierarchical micropillars
with nanopits on top. Thus, the detailed methodology is explained in the
corresponding sections below. We will describe the methodology that is uniform
across the different tested methods in this subchapter first. The osteogenic
progenitor cell line MC3T3 is used in this chapter as in the previous chapters and
is maintained as described in the general methodology section. The general
outline of the fabrication stays the same across the different fabrication methods.
The design of all e-beam lithography patterns is done using L-edit software. The
designed GDS file is then converted into a GPF file in BEAMER (GenlSys), where
the resolution, beam step size, and field sizes are set. Depending on those
parameters, the pattern is fractured into mainfields and subfields, and the
location of beam shots is calculated. It is essential to have the shape detection of
circles enabled to obtain round objects. We also have an overlap of the beam
shots, as this helps to obtain a smooth, round object. Next, a cjob file is created
in the Cjob software of Raith to bring the patterns into the correct format for the
e-beam lithography tool. The exposure dose is also set in this step. All electron

beam lithography is performed on a Raith EBPG 5200.

The fabrication of the micropillars follows the schematic in Figure 6.1. First, HSQ
nanopillars are fabricated on a silicon wafer piece by electron beam lithography.
Next, the micropits are fabricated using e-beam lithography or photolithography.
The resist is spun on top of the nanopillars after a short oxygen plasma cleaning
in YES G-1000 oxygen plasma asher for 30 seconds at 80 W and dehydration bake
at 180° C for 30 minutes. After development, the master stamp is ready for the
soft lithography step. The master is silanised by adding 3 pL of
Trichloro(1H,1H,2H,2H-perfluorooctyl)silane in a desiccator with the master. It is
kept in the vacuum desiccator for 1 hour with the vacuum pump on and is then
kept overnight in the vacuum. Next, the micropillars are replicated from the
master using the Sylgard 184 PDMS or h-PDMS.
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Figure 6.1: Schematic drawing of different fabrication approaches of PDMS micropillars
with nanopits on top. First, the master stamp is fabricated on a silicon wafer piece. The
nanopillars are produced in HSQ by e-beam lithography. Next, the micropits are
fabricated either by e-beam lithopgraphy and PMMA resist or photolithography and SPR-
220 as a positive photoresist or SU-8 as a negative photoresist. After development and
silanisation the micropillars are fabricated by a soft-lithography process with either a
combination of h-PDMS and Sylgard 184 PDMS or only Sylgard 184 PDMS.
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6.2.1. HSQ nanopillar fabrication

First, a master for the soft lithography process is fabricated, which begins with
the fabrication of nanopillars. For the fabrication of the nanopillars, a silicon
wafer piece is solvent cleaned in an ultrasonic bath with methanol, acetone,
isopropanol (IPA), and reverse osmosis (RO) water for 5 minutes each. Afterwards,
the silicon piece is dried with a nitrogen gun. Next, it is dehydration baked for 1
hour at 180° C in an oven and oxygen plasma cleaned for 3 minutes at 150 W. A
1:3 hydrogen silsesquioxane:methyl isobutyl ketone (HSQ:MIBK) solution is spun at
2000 rpm for 1 minute for a thickness of 100 nm. For a thickness of 200 nm, a 1:1
HSQ:MIBK is spun for 1 minute at 3000 rpm. The backside of the silicon piece is
cleaned with acetone to remove any resist, and it is then baked at 90° C on a
vacuum hotplate for 2 minutes. The e-beam lithography is performed with a beam
step size of 30 nm and an 8 nA beam that has a spot size of 36 nm. Dose tests
define the optimal dose; 100 nm diameter and 100 nm height nanopillars are
written with a dose of 1350 uC/cm2. The nanopillars of 200 nm diameter and 200
nm height are written with a dose of 2100 pC/cm?. The nanopillars are developed
in 25 % tetramethylammonium hydroxide (TMAH) for 1 minute at 23° C under
constant agitation. Next, it is washed twice in RO water for 30 seconds and in IPA
for 15 seconds. Finally, the silicon piece is dried with a nitrogen gun. Before
further processing for an additional e-beam resist or photoresist layer, the silicon
piece with the HSQ nanopillars is oxygen plasma cleaned at 80 W for 30 seconds
and dehydration baked at 180° C for 30 minutes.

6.2.2. PDMS softlithography of micropillars

The replication of the micropillars from the master in Sylgard 184 PDMS follows
the same procedure, independent of the master composition. The Sylgard 184
PDMS is prepared in a 10:1 monomer:curing agent ratio and thoroughly mixed. The
PDMS mixture is degassed in a vacuum desiccator for 30 minutes until no air
bubbles are visible in the PDMS mixture. Next, a glass cover slip is solvent cleaned
in acetone and IPA in an ultrasonic bath for 5 minutes per solvent. After solvent
cleaning, the glass coverslip is dried with a nitrogen gun and oxygen plasma

cleaned in a Henniker Plasma HPT-200 plasma oven (Henniker Scientific, UK) for
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1 minute at 80 W. Next, the PDMS is spun on the glass cover slip. Two to three
drops of PDMS are placed on the centre of the glass, and it is spun in a five-step
process. In a first step, the cover slip is spun at 500 rpm and 100 rpm/s for
3 seconds. Next, the spin speed is increased to 1000 rpm and 100 rpm/s for 3
seconds. In the third step, the cover slip is spun at 2500 rpm and 100 rpm/s for 60
seconds. The spinning is then slowly stopped by decelerating to 1000 rpm and
100 rpm/s for 3 seconds, and 500 rpm for 3 seconds at the same acceleration.
Afterwards, the spin is fully stopped, and the silicon master is placed on top of
the PDMS with the face down. A 1.5 gram weight is placed on top of the master to
press it down, and it is then placed in a vacuum desiccator for at least 1 hour,
until no air is trapped between the master and the glass cover slip. The PDMS is
cured in an oven for 10 hours at 70° C. After curing, the master is carefully
demoulded from the glass cover slip by cutting along the edge of the master with
a scalpel to separate the PDMS from the master. Next, the master is carefully pried
off the glass cover slip, and the replication is checked in an optical microscope as
well as in a SEM. Instead of a glass coverslip, a 35 mm MatTek glass-bottom dish is
also used for the cell experiments. The fabrication process using a MatTek glass-
bottom dish is the same as with the glass cover slip. Only the solvent cleaning is

not necessary.
6.3. Micropillar fabrication by electron beam lithography

The fabrication of highly controlled nano- and microfeatures can be achieved using
various nanofabrication techniques, depending on the feature sizes. For features
as small as 3 nm to a few micrometres, electron beam lithography is primarily
used[74, 75, 295-298]. Conventionally, a resist is spun on a silicon wafer, cured
and then exposed in an electron beam lithography tool. PMMA and HSQ are among
the most commonly used resists. PMMA is a positive resist, which means that the
exposed resist becomes soluble by the electron beam, as the electrons damage
the cross-linking in the resist. Thus, the exposed area can be washed off with a
fitting developer. Usually, IPA:water or IPA:MIBK mixtures are used for the
development. HSQ is a negative tone resist, which means that the electrons cross-
link the resist, and the remaining unexposed resist is washed off with a developer.

Typically, tetramethylammonium hydroxide (TMAH) based developers are used for



129

HSQ resist[296, 299]. PMMA can turn into a negative resist at high doses above 50-
70 C/m?[300].

We utilise the properties of the different types of e-beam resists to fabricate
nanopatterns from the thin, high-accuracy negative resist HSQ, as described
above. The micropits are fabricated in the thick positive e-beam resist PMMA. The
exposure of the positive tone in the second e-beam exposure should not affect the
previously developed negative tone HSQ resist. We use PMMA widely in our lab to
fabricate the masters for the micropillar fabrication of micropillars with a
diameter of 1 pm. They can be easily fabricated with different stiffness by varying
the PMMA layer thickness.

The fabrication of the master for 1 pm diameter micropillars starts by spinning
Allresist AR-P 642.15 PMMA with 15 % weight in anisole and a molecular weight of
200k on top of the oxygen plasma cleaned and dehydrated silicon wafer piece with
the HSQ nanopillars. If the micropits are fabricated without HSQ nanopillars, the
silicon wafer piece is always solvent cleaned in methanol, acetone, and IPA in an
ultrasonic bath for 5 minutes per solvent and dried with a nitrogen gun afterwards.
Then, the silicon wafer piece is dehydration baked for 1 hour at 180° C in an oven
and oxygen plasma cleaned for 3 minutes at 150 W. The PMMA layer is spun for 1
minute at a speed determined by the desired thickness. The spin speeds are shown
in Table 6.1. For a single PMMA layer, the silicon wafer piece with PMMA is baked
at 180° C in an oven overnight. A bilayer of PMMA is needed for a thicker layer of
resist. For this, the thicker layer is spun at a lower spin speed first and then baked
at 180 °C for 4 hours in an oven. Afterwards, the second thinner layer is spun on
top of the first layer and baked at 180° C overnight in an oven. After baking, the
e-beam lithography exposure is performed using a 100 nA beam and an aperture
of 300 um that has a beam spot size of 52 nm. A beam step size of 30 nm is used.
Afterwards, the development is performed in 2.5:1 MIBK :IPA developer at 25° C
and the silicon piece is constantly agitated while developing to ensure an even
development. The development time depends on the PMMA layer thickness and is

written in Table 6.1. After development, the development process is stopped by
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rinsing the substrate in IPA for 10 seconds. The PMMA microtopography is then

dried again with a nitrogen gun.

To obtain a thicker PMMA resist for the master of 4 um micropillars, a PMMA resist
with higher viscosity is needed. A smaller anisole percentage in the resist achieves
a higher viscosity. We use the same Allresist AR-P 642.15 PMMA resist that is to
85 % anisole. To reduce the anisole percentage, we place 1 mL of PMMA resist in
an open 1.5 mL Eppendorf tube in a laminar flow cabinet for 5-6 hours until the
weight is reduced by 10%. In the laminar flow cabinet, the anisole evaporates,
while the absolute PMMA content remains constant. Thus, the relative PMMA
content increases and the viscosity increases. That way, a 10 pm thick PMMA layer
can be spun on a silicon piece by spinning three layers at 1000 rpm for 1 minute

per layer.

After the first layer, the PMMA is baked at 180° C for 30 minutes in an oven, and
the next layer is baked on a vacuum hotplate for 5 minutes at 180° C. The third
layer is baked in an oven at 180° C overnight. Afterwards, Electra 92 is spun on
top of the PMMA layer at 2000 rpm for 1 minute and baked at 90° C for 2 minutes
on a vacuum hotplate. The Electra 92 layer serves as a thin charge dissipation
layer, preventing charging in the resist, which can cause it to crack. The e-beam
lithography is performed using a 100 nA beam and an aperture of 300 um that has
a beam spot size of 52 nm. A beam step size of 40 nm is used. After e-beam
lithography exposure, the Electra 92 layer is rinsed off with RO water for 1 minute.
Next, the sample is developed with 7:3 IPA:water developer for 5 minutes at 23°
C. After development, the sample is rinsed in IPA for 10 seconds and dried with a

nitrogen gun.
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Table 6.1: Spin, development and electron beam lithography conditions for the
fabrication of micropits in PMMA with varying height.

A

1 ym Diameter - PMMA master

PMMA Rpm Heijrr:]t in Devetlic;r[\)énent E(c:)ji r:qr;
AR-P 642.15 4000 1.23 30s 1000
AR-P 642.15 2000 1.75 30s 1100
AR-P 642.15 1500 2.03 30s 1200
AR-P 642.15 1000 2.478 40 s 1350
AR-P 642.15 | 2000+4000 3.0175 40 s 1400
AR-P 642.15 | 1000+4000 3.728 50s 1800

( ﬁ%?ﬁigr?t) 3x 1000 10 5 min 1050
B PDMS replica
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(caption for figure on previous page) Figure 6.2: SEM images of PMMA masters for
micropillar fabrication and PDMS replica. PMMA masters for micropillars with 1 uym
diameter and a height of 3 um are successfully fabricated with HSQ nanopillars at the
bottom by electron beam lithography (A). The replication of 1 um diameter micropillars
using Sylgard PDMS replicates the micropillars, but not the nanotopography (B). 4 um
diameter holes in 10 um thick PMMA resists are fabricated by electron beam lithography
(C) and successfully replicated with Sylgard PDMS (D). All SEM images are taken with a
Hitachi scanning electron microscope of the SU8200 series.

The micropits of 1 ym diameter are successfully fabricated, and micropillars can
be fabricated in PDMS (Figure 6.2A+B). However, a diameter of 1 ym does not
provide sufficient space for 100 nm diameter nanopits with a centre-to-centre
spacing of 300 nm. Only three nanopits would fit in a row on one micropillar at a
time, with two of them being at the edge of the micropillar. So, no proper
topography is formed on top of the micropillar. Therefore, larger-diameter
micropillars are required. The height of the micropillars must grow with the
diameter to ensure a 1:3 aspect ratio for flexible pillars. Conventionally, e-beam
lithography is not used for this thick resist since it is at the limit of its
capabilities[301]. We are able to spin a reliable layer of 10 pm thick PMMA resist
by decreasing the anisole content by 10 % by evaporation. The micropits without
nanopillars are fabricated well, and a replication in PDMS is also successful.
However, no straight sidewall could be achieved (Figure 6.2C+D). This is due to
the electron scattering as well as the shape of the electron beam with the focus
point on top of the resist. The electrons scatter forward in the resist, backwards
from the substrate and backwards within the resist. The electrons collide with the
atoms of the resist and are inelastically scattered by them. This results in a conical
shape of the electron beam in the resist, as well as the proximity effect, which
means that scattered electrons also expose the resist in proximity to the exposed
area[302, 303]. Therefore, it is essential to consider the electron path in the resist
when fabricating high-quality nanotopographies, particularly when a straight
sidewall of the features is required. The scattering effect is especially strong in
thick resist. The longer the electron path, the more it scatters. The proximity
effect is negligible for our topographies, as it remains constant throughout the
entire area. Only at the edges is a difference in dose. Since we measure the
micropillar diameters at the centre of the array and not at the edge, a slide

difference in micropillar diameter sizes at the edge is negligible.
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Additionally, the electron beam is focused on the top of the PMMA layer, which
means that the beam is diverging in the resist. This effect is negligible for thin
resists but has an effect in thicker resists. Due to those two effects, an undercut
is observed. With the non-straight sidewalls, the Euler-Bernoulli beam theorem to
calculate the applied forces from the pillar deflection does not hold anymore.
However, the sidewall profile can be approximated by a Bézier curve to adjust for
the wider top of the pillar[304]. We test an offset of the electron beam focus to
the bottom of the resist to compensate for the undercut, but it does not improve
the sidewall profile. While the replication of PDMS micropillars with an undercut
in the master is sometimes successful, it is highly unreliable, depending on the
strength of the undercut. With a just slightly higher undercut than shown in Figure

6.2C, the PDMS pillars get stuck in the master, and no replication is achievable.

A < »»»»»»»»»»»»»» Electron beam source
> S— Electron beam
-«--'15‘ condense lens
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D |:|< Deflector J 0.20
-< ----- Final condenselens = 030
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< Resist 0.50

Side view

Figure 6.3: Schematic diagram of a typical electron beam lithography tool, where the
electron beam is focused through condense lenses to write with an electron beam into
resist with nanometre precision(A). (B) shows a Monte Carlo simulation of the primary
electron scattering in PMMA. Adapted from Sharma et al.,[299] and Murata et al.[303].

The observed undercut is not the only issue that is noticed in the fabrication
process of micropillars with nanopits on top. Figure 6.2B also shows that the
replication of the 100 nm diameter nanopits in Sylgard 184 PDMS is not working
well. It is known that the soft Sylgard 184 PDMS struggles with the replication of
features in the range of less than 200 nm. Hard types of PDMS have been developed

that can replicate features as small as 50 nm. The hard PDMS (h-PDMS) recipes
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consist of more copolymer than the standard PDMS recipe. That way, the number
of crosslinks can be tuned more effectively, and a PDMS that is up to 5 times harder
can be obtained[291-293, 305-308]. The h-PDMS consists of two copolymers and
shorter curing agents than the Sylgard 184 PDMS. This results in the more rigid
material. Additionally, it is a four-component mixture which provides a larger
variety of stiffnesses than the two-component Sylgard 184 PDMS mixture.
However, a downside of the use of h-PDMS is the brittle nature of the h-PDMS. A
bilayer of h-PDMS and soft Sylgard 184 PDMS is used, where a thin h-PDMS layer
replicates the nanostructures and a thick Sylgard 184 PDMS layer gives the h-PDMS
layer the needed stability. This bilayer of different stiffness will be challenging for
us as we will have h-PDMS micropillars on top of soft PDMS. This changes the
behaviour of the pillars and how the cell traction forces can be calculated from
the measured pillar deflection. As shown by Schoen et al. does the pillar deflection

also depend on the material stiffness that the pillars are sitting on[309].

The soft-lithography fabrication process of h-PDMS nanopits or micropillars with
nanopits is performed by preparing the h-PDMS first. The h-PDMS consists of the
four components (7.0-8-0 % Vinylmethylsiloxane)-dimethylsiloxane copolymer
(trimethysiloxyl terminated) (VDT-731, Gelest), Platinum-
divinyltetramethyldisiloxane complex in xylene (SIP 6831.2, Gelest) in a 1:2 SIP
6831.2:toluene solution, 2,4,6,8-Tetramethyl-2,4,6,8-tetravinylcyclotetra-
siloxane (SIT 7900, Gelest), and (25-35% Methylhydrosiloxane)-dimethylsiloxane
copolymer, trimethylsiloxane terminated (HMS-301, Gelest). First, 1.7 g VDT-731,
0.5 g HMS-301 and 9 pL SIP 6831.2 in a 1:2 solution in toluene are mixed. 25 pL of
SIT 7900 is mixed into it last. Next, the h-PDMS solution is poured onto the silicon
piece with either the PMMA micropits with HSQ nanopillars, or on a piece only with
nanopillars. The silicon piece is left for 30 minutes to let the h-PDMS sink into the
cavities. Next, we spin the silicon piece in a two-step process. In the first step we
spin it at 500 rpm for 1400 seconds to ensure a good spreading of the h-PDMS, and
then at 1500 rpm for 60 seconds for the final thickness. After spinning, a first
curing step is performed at 80° C for 10 minutes in an oven. In the meantime,
Sylgard 184 PDMS is spun on a glass coverslip as described before. The partially
cured h-PDMS on the silicon wafer piece is placed on the glass cover slip with the

h-PDMS contacting the soft PDMS. A 1.5 g weight is placed on top of the silicon
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wafer piece, and it is placed in a vacuum desiccator for 1 hour until no air is
trapped under the silicon wafer piece. The sample is then cured for 10 hours at
70° C in an oven. During curing the Sylgard 184 PDMS crosslinks with the h-PDMS
that makes it strongly connected. After curing, the silicon master is carefully

demoulded in the same way as described above.

To test the replication of nanopits, we created nanopillars with a diameter of 200
nm and a height of 100 nm, spaced 600 nm apart in a square array. We replicated
them in Sylgard 184 PDMS and h-PDMS. The replication in the soft Sylgard 184 PDMS
is not working for just the nanopillars (Figure 6.4B) and the micropits with
nanopillars (Figure 6.4A). Interestingly, the micropillars with nanopits have a
platform at the top. Typically, the PDMS does not entirely fill the undercut and
forms a drop shape at the bottom of the micropit. When the PDMS touches the
nanopillars, it spreads over the nanopillars to form the observed platform. The h-
PDMS replicates the nanopillars well (Figure 6.4D), but it fails to replicate the
micropits. Due to the higher stiffness and brittleness of the h-PDMS, the
micropillars become stuck in the master mould during demoulding. The softer
Sylgard 184 PDMS can probably deform enough while demoulding to negate the

negative effect of the undercut in the master.

PDMS micropillar with nanopits PDMS nanopits

H-PDMS micropillar with nanopits H-PDMS nanopits
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(caption for figure on previous page) Figure 6.4: SEM images of large micropillar
replication with nanotopography from PMMA masters. The replication of the micropillars
works well for Sylgard PDMS (A), but no replication of 200 nm diameter nanopits is
possible (B). H-PDMS can replicate the nanotopography (D), but not the Micropillars, as
they get stuck in the PMMA master (C). All SEM images are taken with a Hitachi scanning
electron microscope of the SU8200 series.

6.4. Micropillar fabrication by photolithography

Micropillar fabrication using e-beam lithography is not working well enough to
establish a reliable process. The main issue is the produced undercut that is
unavoidable due to the beam shape and electron scattering in the resist.
Photolithography is an alternative lithography technique for the fabrication of
micron sized features[310-312]. The photons do not scatter in the resist like the
electrons; therefore, it can be used with thick resist and still provides straight
sidewalls. This reduces the formation of an undercut. The light path and the resist
properties define the sidewall. In photolithography, using a mask aligner, the
quality of lithography strongly depends on the contact with the mask. The
wavelength of the light defines the resolution of photolithography and has a
typical minimum feature size of 2 pm. UV light is mainly used for photolithography
and operates in a manner similar to EBL. Positive resists are cured before
exposure, and the cross-linking is broken up by the photons, allowing the
developer to wash it out. The negative resists are cross-linked by photon

activation, and the developer washes away the unexposed areas.

We test SPR220-7.0 as a positive tone photoresist and SU-8 as a negative tone
photoresist. We only tested resist without a nanopillars on the silicon wafer piece.
The silicon wafer piece is at least 25x25 mm large to ensure a good spinning of
the thick resist. The silicon wafer piece is prepared by solvent cleaning in
methanol, acetone, and IPA for 5 minutes per solvent in an ultrasonic bath. It is
dried with a nitrogen gun afterwards and dehydration baked at 180° C for minutes
on a vacuum hotplate. Next, it is oxygen plasma cleaned at 150 W for 3 minutes.
The SPR220 sample is prepared with a MicroChem Primer 80/20 (MCC 80/20) that
is made up of 20 % Hexamethyldisilazane (HMDS) and 80 % propylene glycol
monomethyl ether acetate (PM acetate) that aids the adhesion of the photoresist.
The MCC 80/20 is poured on the silicon wafer piece to cover the surface. After

waiting for 20 seconds, the sample is spun dry and nitrogen purged to remove
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remaining ammonia on the surface. Next, the SPR220-7.0 is spun in a 3-step
spinning process. The resist is puddle dispensed on the silicon piece and spun at
500 rpm for 5 seconds with an acceleration of 100 rpm/s to spread the resist. In
the second step, the resist is spun to its final thickness for 30 seconds at 3000 rpm
and 2000 rpm/s. Finally, the sample is slowed to a stop at a deceleration of 1000
rpm/s. After spinning, the sample is left standing for 30 minutes so that the
solvent can evaporate. After the solvent evaporation, the soft bake is performed
on a vacuum hotplate at 118° C for 90 seconds. Next, the sample is transferred to
a watch glass that has been heated to 120° C in an oven to ensure slow cooling.
The slow cooling prevents cracking of the resist. Next, the sample is left standing
for 1 hour to rehydrate before exposure. The photolithography process is
performed on a SUSS Mask Aligner MA6 with a 365 nm UV-mercury lamp with a
lamp power of 350 W that has a light intensity of 7.2 milliwatts/cm2 constant
power. The used mask has arrays of 2 ym diameter holes and 5 pm holes with
centre-to-centre spacing of 3 times the diameter. The mask is a chrome on quartz
glass photomask received from Compugraphics. The sample is exposed for 28
seconds in the hard contact mode and a wedge edge correction of 0.4 bar. After
exposure, the sample is left standing for 1 hour to rehydrate. Then, the post
exposure bake is performed at 118° C for 90 seconds. The sample is cooled slowly
again by placing it on a watch glass that comes out of a 120° C oven. The
development is performed after a 20 minute delay to ensure the sample is
completely cooled down. It is developed in Microposit MF CD-26 developer that
contains 1-5 % TMAH for 2 minutes under constant agitation. The sample is rinsed
in RO water for 5 minutes after development. Finally, a hard bake process is

performed on a vacuum hotplate at 120° C for 10 minutes.

SU-8 is a negative-tone photoresist and one of the most used thick resists for high-
aspect ratio microtopographies[313-315]. Amato et al.[316] fabricated
micropillars with an aspect ratio of 11, with a diameter of 1.8 um and a height of
20 uym. They have a straight side wall at this height. For larger structures, an
aspect ratio of more than 20 is achieved. Thus, we use it as a negative tone
photoresist to fabricate micropits with straight sidewalls. Since SU-8 is a negative-
tone photoresist, we cannot use the same photomask for it but need the negative

of it. The JWNC lab technicians, Linda Pollock, Sarai Diaz Romero and Archie
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Mclver, prepared a negative copy of the available mask on a soda lime glass plate
with a titanium and nickel-chromium pattern. A soda lime glass plate with a thin
iron-based coating that is UV-light blocking, and a layer of the AZ1518 photoresist
is exposed with the mask we used above. The plate is developed, the iron-based
layer is etched away, and titanium and nickel-chromium are deposited on the
plate. Next, a lift-off process of the remaining resist is performed, and the
remaining iron-based layer is etched away. Thus, only the titanium and nickel-
chromium are left in the exposed areas. That way, a good negative copy of the
photomask is fabricated, even though the copy is not perfect, as it has missing

dots in the arrays.

We use 30x30 mm silicon wafer pieces for the fabrication of SU-8 micropits. The
SU-8 layer is prepared in two different thicknesses for 2 pm diameter micropits
and 5 ym micropits. We describe the fabrication of 2 pm diameter micropits in SU-
8 photoresist first. The silicon wafer piece is solvent cleaned, dehydration baked,
and oxygen plasma cleaned the same way as described above for the SPR220-7.0
samples. SU-8 3005 is dispensed on the silicon piece and spun for 5 seconds at 500
rpm and 100 rpm/s to spread the resist. Next, it is spun for 30 seconds at 3000
rpm and 300 rpm/s for a final thickness of 6 um. After spinning, the soft bake is
performed by placing the sample on a 65° C hotplate for 30 seconds, 95° C for 2
minutes and again 65° C for 30 seconds. The slow ramp helps to prevent a cracking
of the resist. After the soft bake, the sample is exposed in the SUSS MA6 Mask
Aligner with an i-line bandpass filter for 15 seconds. The i-line filter filters UV
light by only allowing the desired 365 nm light to pass. This ensures a straight
sidewall in photolithography of SU-8 resist. The photolithography is performed in
hard contact mode. After exposure, the sample is baked at 65° C for 1 minute on
a hotplate, followed by 3 minutes on a 95° C hot plate and again 30 seconds on a
65° C hotplate. The development is performed in ethylene carbonate (EC) solvent
for 2 minutes in one beaker under constant agitation and 2 minutes in a second
beaker with fresh EC solvent under constant agitation. The sample is washed with
IPA first, by rinsing it with IPA. If no misty white residue is visible, it is fully
developed and is washed in IPA for 1 minute. The sample is dried with a nitrogen

gun after development.
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For the 5 pm diameter micropits, we need a thicker resist. Thus, we use SU-8
3010. The fabrication procedure is the same as with SU-8 3005, just the spin speed
and durations change. The SU-8 3010 resist is spun to its final thickness of around
18 pym at a spin speed of 1000 rpm. The soft bake is performed for 1 minute at
65° C, 9 minutes at 95° C, and 1 minute at 65° C. The thick resist produces a large
edge bead that needs to be removed since good contact with the mask is essential
for the lithography process. We remove the edge bead by cutting off the edges of
the silicon wafer piece where the edge bead is visible. The sample is exposed for
15 seconds. The post exposure bake is made for 1 minute at 65 ° C, 4 minutes at
95° C, and 30 seconds at 65° C. The development is performed for 5 minutes per
EC solvent beaker and 1 minute in IPA. We attempt to adjust the development by
increasing the development time and using an ultrasonic bath. However, it does
not improve the washing out of the resist. Too high a development time results in

delamination of the resist.

The fabrication of 2 pm diameter micropits with SPR220-7.0 is not working. The
observed pits are only 1-2 ym deep and around 5 pm wide (Figure 6.5B). A100 pm
broad line surrounds the arrays of microdots. This line shows that the sidewall is
not nearly straight enough to be able to fabricate holes of 2 pm. Additionally, a
lip that is overhanging is observable at the edge of the line. This lip would be
problematic in the following soft lithography process. SU-8 is also not able to
produce 2 pm diameter micropits with a depth of 6 pm. The light exposes the
resist with straight sidewalls, but it is not possible to entirely remove the SU-8
resist from the holes (Figure 6.5C+D). A porous structure is left in the hole, which
we believe to be partially cured resist. We expose the entire silicon wafer, except
for the 2 ym dots, which are not exposed to light. That probably causes a strong
proximity effect that partially cures the resist in the areas that UV-light does not
directly expose. Another possibility is that the self-made negative copy of the
photolithography mask does not have as good antireflective properties as the
purchased photomasks from Compugraphics. That could cause a reflection of the

light and standing light waves in the resist that partially cure the resist.
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SU-8 - PRIMO Maskless
Photolithograhy - 20 pixel

Figure 6.5: SEM images of photolithography tests using SPR220 and SU-8.
Photolithogrpahy cannot create arrays of 2 um holes. SPR220 does not have a straight
enough sidewall to create as small features. Additionally, it has a lip at the top that
prevents a good demoulding in soft lithography (A, B). SU-8 cannot fully expose the 2 um
diameter holes with a 1:3 aspect ratio. The holes are filled with partially cured SU-8
resist that is probably cured due to reflections from the wafer and mask (C, D). An
alveole Primo maskless photolithography tool struggle to create round pillars of 20 pixel
size which are more than 10 um in diameter (E, F). All SEM images are taken with a
Hitachi scanning electron microscope of the SU8200 series.

Since we believe that the failed fabrication of 2 um holes in SU-8 resist may be
due to the mask, we attempt maskless photolithography using an alveole Primo
maskless photolithography tool, which has a resolution of 1.2 ym and can replicate
any grayscale image loaded into the software. However, initial tests indicate that
when attempting to design 20 pixel diameter micropillars in 6 pm thick SU-8 3005

resist with a dose of 60 mJ, the pillars are not sufficiently round. A not perfect
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roundness strongly affects the mechanical properties of the micropillars and would
give different flexibilities depending on direction. This makes an analysis of pillar
deflections due to cellular traction forces extremely challenging. The 20 pixel
diameter corresponds to around 13 pym, which means that one pixel is 0.65 pm
large and a 2 pm object is 3 pixels large. We do not believe that we can prepare
micropits with the desired accuracy with this tool. Therefore, this route is not

further followed.

A

SU8 - Micropillar master B PDMS - Micropillar
5 ym Diameter 5 ym Diameter

Figure 6.6: Micropillar fabrication with a diameter of 5 um and height of 18 um using
SU-8 resist and photolithography. The SU-8 master show holes with straight sidewalls (A).
With 6 um, the diameter is one micron larger than designed. The micropillars replicated
well in Sylgard 184 PDMS (B). All SEM images are taken with a Hitachi scanning electron
microscope of the SU8200 series.

Micropits of 5 um diameter are successfully fabricated in 18 pm thick SU-8 3010
resist (Figure 6.6A). The diameter of the pits is one pm larger than designed, but
we have straight sidewalls all the way to the bottom of the resist to the silicon
wafer. A replication by soft lithography with Sylgard 184 PDMS is working well. We
create high aspect ratio micropillars with a diameter of 5.93+0.15 pm and a height
of 18.61+0.28 pm. However, it is worth noting that the fabrication is still not very
reliable, but it is the best we can achieve at this time. A good contact between
the photomask and the sample has proven to be highly crucial. Just a slight edge
bead or contamination on the sample that prohibits a perfect contact and results

in shallow and broad dips in the resist instead of deep and straight pits.

Thus, the edge bead removal is of utmost importance. Cutting off the edge of the

silicon wafer piece that has the edge bead has proven successful. However, one
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must take care that no particles from the cutting process land on top the sample.
A good spin is the first important step to ensure a successful and reliable sample
preparation. It has proven best to puddle dispense 1.5 mL from a syringe to the
centre of a square 30x30 mm silicon piece and start the spinning immediately.
That way, a consistent thickness can be achieved, and the edge bead can be
minimised. When letting the resist spread before spinning, it touches the edge of
the sample before the spin starts. During spinning, the resist follows that path,
resulting in areas on the edge of the sample without resist, which leads to larger
edge beads and a less uniform surface. A sample size of 30x30 mm provides

sufficient space to cut off the areas with the edge bead.

Since the fabrication of large micropits in SU-8 3010 photoresist has proven to be
the best fabrication method, we also use this method to create micropillars with
nanopits on top. We prepared HSQ nanopillars with a height of 200 nm and a
diameter of 220 nm in a square array with a centre-to-centre spacing of 600 nm
(Figure 6.7A). We expect the larger nanopillars to be easier to replicate than 100
nm high nanopillars. However, the replication of the micropillars with nanopits on
top does not work well with Sylgard 184 PDMS. The area of micropillars is larger
than the area of nanopits, so that an area of micropillars without nanopits
surrounds the area with nanopits. The micropillars surrounding the area with
nanopits replicated well while the micropillars in the area of the nanopits are cut
in half (Figure 6.7C).

A look at the master stamp after replication reveals that a narrowing occurs in the
middle of the pit. This narrowing works as a breaking point to rip the micropillar
in half. One can see in Figure 6.7D that the lower half of the micropit is filled with
remaining PDMS, while the PDMS has demoulded at the top half. Since this effect
is only observed in the area of the nanotopography, we believe that a light
interaction of the nanopillars with the UV-light causes the effect. Nanopillars are
known for their unique optical properties, and the light reflection can be expected
to be significantly different to the light reflection from a flat silicon surface. Some
pillars are still replicated well and show that the nanotopography is also replicated
(Figure 6.7B). The remaining PDMS in the master stamp on top of the nanopillars
shows that the PDMS covers the nanopillars. However, the nanopillars are not fully

immersed in the PDMS, so they do not replicate nanopits with a sharp edge at the
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top, but with a round edge. The replicated nanopits should still be replicated well
enough to affect cell adhesion. It should also be noted that SEM imaging of the
nanopits on top of the micropillars is challenging since the soft PDMS tends to melt
under a high imaging current, and the contrast of the nanopits is low. Thus, one
must find a compromise between a high enough current to be able to image the
low contrast of the nanopits and a low enough current not to damage the PDMS

too much.

HSQ nanopillars
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(caption for figure on previous page) Figure 6.7: Fabrication of large micropillars with
nanopits using SU-8 resist and photolithography. The used HSQ nanopillars are 200 nm
high and 220 nm in diameter (A). When replicating 6 um diameter micropillars in 18 um
thick SU-8 resist with nanopits on top in Sylgard PDMS, only the area without
nanotopography replicates well (C). The nanopillars in the SU-8 master cause an
interference with the light that create a narrowing in the centre of the hole (D,E). Thus,
the top part of the PDMS pillars get stuck inside the SU-8 master mould. The few
micropillars that are fabricated replicate the nanopits (B). The nanotopography
replication does not work perfectly as the soft Sylgard PDMS surrounds the nanopillars
but cannot create a sharp replication (F). All SEM images are taken with a Hitachi
scanning electron microscope of the SU8200 series.

6.5. Traction force microscopy of MC3T3 cells on 6 pm

micropillars

The micropillars with nanopits on top do not replicate well, but the micropillars
without nanopits with a height of 18.61+0.28 pm and a diameter of 5.93+0.15 pm,
that are shown in Figure 6.6B, can be used for pillar-based traction force
microscopy. 5 pm micropillars are widely used in pillar-based traction force
microscopy, but they are often used with a spacing of 10 ym from centre-to-
centre. Our micropillars have a centre-to-centre spacing of 15 um. A simple pillar
traction test with MC3T3 cells may not yield new biological information, but it will
provide us with helpful insights. It will tell us if the design of 6 pm diameter pillars
with a large centre-to-centre spacing provides enough adhesion area for the cells
to adhere to the top of the pillars and not between the pillars. Additionally, it will
show if the autofocus on top of the pillars for the cell traction works and if the

pillar deflections can be detected for this type of micropillars.
6.5.1. Micropillar preparation for traction force microscopy

The micropillars are prepared in 35 mm MatTek glass bottom dishes. Cells do not
like to adhere to PDMS. Thus, the surface needs to be treated to increase cell
adhesion. Fibronectin is widely used to increase cell adhesion to non-adherent
surfaces. We do a fibronectin contact printing to ensure that only the top of the
pillars is fibronectin coated. A fibronectin-FITC (fluorescein isothiocyanate)
(MERCK, F2733-1ML) is used to be able to visualize the fibronectin coating. For
the fibronectin contact printing, the stamp is fabricated by first preparing a PDMS
stamp. Sylgard 184 PDMS is prepared as described above and filled into a petri
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dish at approximately 5 mm height. After curing in an oven at 70° C for 10 hours,
the PDMS slabs are cut with a scalpel into the desired format. One wants the stamp
to cover the array of micropillars, but not bigger than the array, to ensure good
contact printing. In our case, the array is around 15x15 mm big. The PDMS slab is
cleaned in ethanol in an ultrasonic bath for 5 minutes and dried with a nitrogen
gun. The fibronectin-FITC is prepared at a concentration of 60 pg/ml in RO water.
100 pl of the fibronectin-FITC solution is placed on the PDMS stamp and incubated
at room temperature in the dark for 1 hour. The fibronectin is carefully removed
with a pipette from the side and blown dry with nitrogen. The PDMS stamp is how
ready to use. The micropillars are activated by oxygen plasma treatment at 80 W
for 1 minute. Next, the PDMS stamp with fibronectin-FITC is carefully placed on
top of the micropillars and slightly pressed down for 30 seconds. The contact
printing must be carried out extremely carefully to ensure that the micropillars
are not damaged. Movement of the stamp while it is in contact with the pillars

causes them to collapse.

After fibronectin contact printing, we passivate the rest of the pillar array by
incubating the micropillars in 3 % BSA in PBS for 1 hour in the dark at room
temperature. To only use the area in the MatTek dish with micropillars, we use
ibidi 2-well culture inserts that are placed on top of the micropillars and create
two wells on the micropillars with a culture area of 0.22 cm2. After incubation
with BSA, the micropillars are washed 6 times with PBS. While washing, it is
essential to ensure that the micropillars are always covered with liquid. When the
pillars dry out they collapse due to surface tension forces. After washing with PBS,
the pillars are washed at least three times with the culturing media to ensure that
PBS does not dilute the culture media. 4000 MC3T3 cells/cm2 are seeded on the
micropillars and incubated overnight at 37° C, 5 % CO2 and 95 % humidity.

The fluorescent fibronectin coating is imaged with Zeiss Observer with a Colibri 7
LED light source. The FITC is excited with a 475 nm LED at 100% light intensity and
imaged with a Zeiss N-Achroplan 63x objective. The pillars are stained well, and
one can clearly see the outline of the pillar tops (Figure 6.8A). To determine if
only the pillar tops are stained, we perform a z-stack analysis using a Zeiss LSM
800 confocal microscope. The FITC is excited using a 488 nm laser and an EC Plan-

Neofluar 40x objective. The z-stack is performed at 530 nm per step over a depth
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of 22.26 pm and shows that the fluorescence is confined to the tops of the
micropillars. It is not a perfect contact printing, since the side of the pillars is also
coated at the top of the micropillars. No fluorescence is visible at the bottom of
the pillars and between the pillars. Thus, the cells are expected to attach only to
the top of the pillars (Figure 6.8B+C). Thus, we can assume that the MC3T3 cells
will only attach to the top of the pillars.

A FN-FITC PDMS
> (LTI
PDMS PDMS
0O,-Plasma l

‘ PDMS \ ‘ PDMS \

Figure 6.8: Contact printing of fluorescent fibronectin-FITC on 18.61+0.28 um high PDMS
micropillars. A PDMS stamp is incubated with fibronectin-FITC (FN-FITC) and broad in
contact with oxygen plasma activated micropillars for the contact printing (A).
Fluorescent images of flat micropillars coated with fluorescent fibronectin-FITC by
contact printing. Fluorescent images taken from the top are taken with Zeiss Observer
microscope and a 63x objective (B). A z-stack proves that the fibronectin-FITC coating is
only around the top of the pillars (C). The cross-section of the staining shows that the
first few micrometer on top of the pillars are coated with fibronectin (D). The z-stack is
taken using a Zeiss LSM 800 confocal laser microscope.
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6.5.2. Performing pillar-based traction force microscopy

The pillar traction microscopy is performed on a Zeiss Observer with a Zeiss Colibri
7 LED light source and a Zeiss N-Achroplan 63x objective. An on-stage incubator
that keeps the sample at 37° C, 5 % CO2 and 95 % humidity. Twelve positions are
imaged per sample, and the tracking is done for 2 hours with an image every
minute. After placing the sample on the incubated stage, we wait for 10 minutes
to let the incubator and stage settle. The adjustment in temperature and humidity
causes a drift of the stage. Even after the incubator has reached the working
conditions and the stage has settled a slight drift is still visible over a time frame
of 2 hours. Furthermore, is the micropillar surface never completely level.
Therefore, an automated focus is needed. We use the in-build autofocus that finds

the position of best contrast.

The images are collected in the CZI format of Zeiss and exported as TIFF images
without compression. The pillar deflection is analysed in Fiji ImageJ[317]. An
overview of the pillar traction analysis is shown in Figure 6.9. First, the time series
is loaded into ImageJ as an image stack, and the image stack is checked for out of
focus images that are deleted from the stack. Next, the image stack is rotated to
make square array level in the image. The microscope stage is often drifting over
time. Thus, it needs to be corrected for the stage drift. The correction is
performed by the MultiStackReg function of the Registration plugin. The created
stack is used as the only stack and Align is used as Action 1. The transformation is
performed using the Rigid Body method. After checking if the registration is
successful and the pillars are not drifting over time, the image stack is cropped to
the interesting area, and the pillar traction is performed. The PillarTracker GUI

function of the MBI-PillarTracker plugin is used for pillar traction.

First, the pixel size is set to 103 nm per pixel. Next, the pillar diameter is set to
59 pixels, the pillar spacing is set to 146 pixels, and the grid is set to 90 degrees
as the micropillars are in a square array. First, a Gaussian curve fit for the pillars
is defined by drawing a line across a representative pillar and calculating the
Gaussian sigma in pixels. Make sure that the curve fit is fitting over the centre of
the pillar and not a peak in intensity at the edge of the pillar. Different curve fits

are tested by changing the drawn line until a good fit is achieved. Afterwards, a
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fast Fourier transform (FFT) is performed, and maxima of the FFT are selected
that are used to do an inverse FFT to create a mask. At the inverse FFT, the off-
centre mask radius and centre mask radius are kept at 5. The inverse FFT is
checked to ensure that it functions as a reference image, where the cells are not
visible, and the pillars are clearly visible with a good contrast. If that is not the
case, the number of maxima selected needs to be changed until a good inverse
FFT mask is created. Next, pillars are detected by clicking on Fast Detect Pillars.
The pillar detection is checked that the pillars are detected and that they are
detected at the centre of the pillar and not the edge of the pillar. When the pillar
detection was successful, the pillar traction can be performed by navigating to
the Tracking tab and selecting the stabilised image stack. This step takes the
calculated values from the previous steps, and therefore, no adjustments are
needed here. By clicking on Track & Optimise, the pillar traction is performed,
and the output is saved in a bin file as well as an Excel file. The Excel file is used

for further analysis.
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Figure 6.9: A schematic representation of the pillar based traction force microscopy
process. The micropillars are prepared in a glass-bottom MatTek dish and an ibidi 2 well
insert is used to confine the cells to the micropillar area. After traction force microscopy
for two hours the images are analysed in ImageJ using the MBI-PillarTracker plugin. The
pillar detection is prepared by a Gaussian fit to the micropillar (F), a FFT (D), and an
inverse (FFT) to create a mask for the final pillar traction (G).

In the output file, the pillar deflection of each pillar at each frame (time point) is
given. The pillars are numbered, and we must select relevant pillars first before
we can analyse the measured pillar deflection. The created bin file can be loaded
into the Grid Analysis tab, and the pillar deflection is visualised with arrows and
overlayed on the microscope images. We manually select pillars that touch the

cell and where a change in deflection is measured over time, without extreme
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deflection outliers that are due to traction errors. The pillar deflection is
measured in the change of x and y coordinates. The length of that vector is
calculated by using equation (11) with dx being the deflection in x direction, dy

the deflection in y direction and Axy the total deflection.

Axy = \/dx? + dy? (11)

The total deflection in pixels is then transformed into m using the pixel size of
103 nm of the used microscope. From that deflection the exerted cellular traction
forces can be calculated using Hooks law. We use micropillars of 5.93+0.15 pm
diameter and 18.61+0.28 pm height with Sylgard 184 PDMS with a Young's modulus
of 2 MPa. Using equation (4) with those micropillar dimensions means that we have
pillars with a spring constant of 0.0574 N/m. This corresponds to a shear modulus
of 4.67 kPa using equation (1). We measure the deflection of the pillars over a
time frame of 2 hours. We calculate the mean deflection of each pillar over the
whole time frame to get the mean deflection over time. The standard deviation

of the pillar deflection over time is also calculated and plotted.
6.5.3. Results of traction force microscopy of MC3T3 cells

While performing the pillar based traction force microscopy, we notice that the
autofocus of the microscope focuses on two different focus planes (Figure 6.10A).
It either takes the top of the pillar in focus, which results in pillars with a bright
spot in the centre and a sharp border. Alternatively, it focuses on the pillars on
top of the pillars. In that case, the pillars are slightly out of focus, have a more
uniform dark appearance and a ring around the pillar. This makes the Gaussian
fitting more challenging. It often tries to fit in the bright spot between the ring
around the pillar and the dark pillar, rather than at the centre of the pillar. To
ensure a good pillar detection we must force the Gaussian fit to be broad enough
to detect the pillar and not the bright spot next to it. The focus on the pillars also
presents its challenges in pillar detection. We are using the ibidi 2 well inserts to
force cells onto the micropillar array. However, when imaging close to the wall of
the well, it affects the light, and the bright spot is not in the centre of the pillar
but instead at the side of the pillar, close to the wall. If the bright spot is too far
at the edge the pillar detection detects the pillar at the edge of the pillar. When
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the cells are moving along those pillars, the light at the edge of the pillars is
affected, and we only pick that effect up and not the pillar deflection. Thus, it
might be better not to use the ibidi 2-well inserts in the future to avoid those
artefacts. Many more cells are needed in that case, but for the use of cells like

the analysed MC3T3 cells that are available in abundance, it is no issue.

The cells spread on the micropillars and touch the micropillars. However,
compared to smaller pillars and shorter centre-to-centre spacings, the cells pull
on a few pillars, which may affect the cellular traction forces as the forces are
combined at a few positions and are not spread evenly across the cell. The missing
pillars due to errors in the negative photomask copy are also causing some
challenges. It creates space that allows cells to spread, which is mostly avoided
by passivation with BSA. The gap also restricts cell movement, as larger gaps
between the pillars need to be bridged by the cells. Furthermore, the missing
pillars impact the quality of the FFT. The FFT depends on periodicity, and we
already have few pillars in one image with several bright spots due to their large
size. The missing pillars are also breaking with that periodicity. The mask creation
and pillar traction are still working well, but it could be improved by a complete

micropillar array without gaps.
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Figure 6.10: Force traction microscopy of MC3T3 cells on 6 um diameter and 18 um
height micropillars. The cellular traction force is recorded over 2 hours using a Zeiss
observer microscope and a 63x objective. The autofocus of the microscope focuses either
on the pillars or the cells on top of the pillars (A). An example of the pillar traction force
applied on a pillar touching a cell and not touching any cells (baseline) over 2 hours is
plotted (B). The two pillars a selected from the same position that has a focus on the
pillars. The measured traction force is divided in pillars touching the body of the cell,
touching the filopodia and not touching the cells as a baseline (C). The cells are
highlighted in the images for better visibility. The higher outliers are only visible in the
pillars touching the cell body. Each data point is the mean force of one pillar over two
hours. While the baseline still has strong reflections the reflections are more static as
the plotted standard deviation of each pillar over two hours shows (D). A focus on the
pillars improves the baseline and therefore the pillar tracking.

When calculating the traction forces, we separate the pillars into three groups:
pillars touching the body of the cell, pillars touching the filopodia of the cell and

pillars not touching the cell, which we use as a baseline. Furthermore, we plot
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the differences between the focus on the pillars and the focus on the cells to
check if both focus points are working for the pillar traction. First of all, the
measured mean cellular traction forces for the body of the MC3T3 cells and the
filopodia are around 10 nN, which agrees with the reported traction forces of

MC3T3 cells in the literature, as mentioned above[19].

However, the baseline of the mean pillar deflection reaches a similar force to that
of a large part of the pillar deflections due to cellular traction forces. When
examining the vector of the baseline pillar deflection, it becomes apparent that
the measured pillar deflections are constant in one direction. This is reflected in
the standard deviation of the pillar deflection over time. It is a measure about the
activity of the pillar overtime, and the baseline shows clearly less changes over
time than the pillars that are touched by the cell or filopodia. This means that we
have a good baseline of pillar movement over time, and we do pick up the pillar

deflections because of the pulling of the cells on the pillars.

When comparing the cellular traction forces of the cell body and the filopodia, we
can see that the mean traction forces show no significant difference. The filopodia
and the body of the cell exert the same average forces on the pillars. However,
the outliers of large traction forces are only in the traction forces of the body of
the cell, which means that the body of the cell can exert larger forces than the
filopodia or more false pillar deflections are measured. When comparing the
traction forces depending on the focus position, we can see that the focus on the
cells has more outliers. Especially, the difference in the standard deviation of
pillar deflection over time highlights the better performance of the pillar traction
when the pillars are in focus. The baseline pillars have low activity, and the pillar
deflections of pillars on the cell have fewer outliers and are closely packed. This
means that the pillar detection is more accurate when the pillar is in focus and

not the cells.
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6.6. Conclusion

The fabrication of hierarchical micropillars with nanopits on top in PDMS has
proven challenging. The best fabrication results are achieved using SU-8 resist
with photolithography to produce the master stamp. High aspect ratio micropillars
with a diameter of 5.93+0.15 pm and a height of 18.61+0.28 pm in a square array
with centre-to-centre spacing of 15 pym are successfully fabricated and used for
pillar-based traction force microscopy. The measured traction forces are in the
area of 10 nN, which was reported before in literature for MC3T3 cells. Thus, we
are confident that this pillar design and our setup can correctly measure pillar

deflections due to cellular traction forces.

The fabrication of the hierarchical micropillars with nanopits is challenging
because we are moving on the edge of what is possible at several steps during the
fabrication process. The fabrication of nanofeatures of 100 nm in HSQ using e-
beam lithography is widely done. However, the replication of those features is in
the resolution limit of soft lithography processes using PDMS[293]. To replicate
nanofeatures smaller than 200 nm, h-PDMS was developed, which can effectively
replicate nanostructures. However, it comes with several disadvantages for our
application. The fabricated micropillars in h-PDMS are brittle and tend to break
more easily. Furthermore, they tend to be more impacted by an undercut in the
master stamp as they are stiffer and cannot deform as much as the soft Sylgard
184 PDMS while demoulding. A composite stamp of h-PDMS and soft Sylgard 184
PDMS is also needed for the fabrication of the micropillars of h-PDMS. The soft
underlayer of the micropillars affects the mechanics of pillar bending and
complicates the calculation of the correct spring constant for force calculations.
A simulation of the pillar bending with the material properties is likely necessary
to obtain the correct spring constant. Thus, we need to consider if we want to
replicate 100 nm large nanostructures and have more challenging micropillars to
work with or have larger nanostructures and the simple Sylgard 184 PDMS
micropillars. We have shown in the previous chapter that increasing the nanopit
diameter from 100 nm to 500 nm does not have a significant impact on the cell
response. Therefore, we decide that it is a better route to create 220 nm diameter

nanopillars that replicate in soft PDMS and still affect the cell adhesion.
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The fabrication of 10 ym deep holes in PMMA by e-beam lithography is clearly
above the usual applications that are only up to a few microns deep. The
fabricated holes for the creation of micropillars are not good enough for our
application. The scattering of secondary electrons in the resist and the conical
shape of the electron beam are affecting the side profile of the pits too
strongly[302, 303]. However, we have shown that we can spin 10 ym thick PMMA
resist and do e-beam lithography with it without cracking of the thick resist or
resist swelling during development by developing in 7:3 IPA:water developer, that
is known to improve the contrast and sensitivity compared to MIBK based
developers[318], and using a charge dissipation layer of Electra 92. This is an
entirely novel fabrication technique that overcomes the size limitations of
conventional e-beam lithography procedures with PMMA. Even though, the
sidewalls are not straight enough for our application it can be still a valuable
method for the fabrication of high aspect ratio micropatterns of 2 or 3 pm width

where photolithography can struggle.

The resolution limit of standard photolithography by contact and proximity
printing is often mentioned to be around 2 pm sized features[310, 311]. The
resolution can be largely improved by projection photolithography to few tens of
nanometers[76]. However, it is challenging to achieve photolithography on that
scale with a high aspect ratio in practice. Thus, our desired topography lies at the
lower limit of the resolution limit of photolithography and above the resist
thickness used in PMMA e-beam lithography. SU-8 performed best to create the
needed micropits as it can produce straight sidewalls at high aspect-ratio. The
contact between mask and resist is essential for a high-quality photolithography
process in SU-8[313], especially for the fabrication of narrow trenches or pits.
Zhang et al.[319] improved contact by applying a soft cushion beneath the sample
to enhance resist-mask contact. This enabled the fabrication of 8 ym wide
trenches in 145 pm thick resist. However, since it is a negative-tone photoresist,
it makes the fabrication of micropits more challenging. Since photolithography of
negative photoresists works by UV-light cross-linking the resist, and nanopillars
have unique interactions with light and reflect light differently than flat silicon,
we still struggle with fabricating a master stamp for the creation of hierarchical

micropillars with nanopits at the top. Currently, we are attempting to use the
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positive photoresist AZ4562 with a maskless laser beam lithography tool for
fabrication, with the assistance of Yuyan Liu at the Technical University of
Denmark. We hope that the lack of a mask reduces the effects of reflections.
Furthermore, we expect a smaller effect of the light interference of the
nanopillars in a positive photoresist as the UV-light exposes less area of the

sample.

The successful fabrication of hierarchical micro-/nanostructures differs from our
approach. Most applications have larger features and not as high aspect ratios as
our application, like the work of Alameda et al.[177]. The work of Cheng et al.[19]
has a similar application to our work and can therefore be well compared. They
fabricate the high aspect ratio pillar master by reactive ion etching, which is
widely used in high aspect ratio micropillar fabrication, as it can etch straight
sidewalls with aspect ratios higher than 1:5. To use reactive ion etching for the
fabrication of hierarchical structures, the nanotopography needs to be on the top
of the surface and not the bottom. Thus, a double replication process is needed
that involves a PDMS to PDMS replication step. We tested a PDMS to PDMS
replication as well by fabricating 2 ym diameter SU-8 micropillars with a height of
6 um and replicating them in PDMS that one obtains a PDMS mould with 2 pm
diameter pits. The PDMS mould is silanised the same way we normally silanise our
samples, and a PDMS replication is done. Replication is not possible because the
PDMS samples are not demoulding well from each other. Cheng et al. used a critical
point dryer after their demoulding process which is essential and not available to
us. The PDMS to PDMS replication is also known to be challenging, as PDMS strongly
binds to PDMS.

The combination of micropillars of varying heights and different nanopit arrays
would enable us to combine the effects of material stiffness and nanotopography.
Both are known to affect cell adhesion[102, 259, 275], and they have been rarely
studied in combination[280-282, 320]. All studies so far have fabricated
nanotopographies of varying stiffness by altering the material's chemical
composition. However, the chemical composition of the biomaterial affects cell
response, as shown by Anderson et al. in an extensive library of 1,728 different
chemical compounds[245]. The hierarchical micro-/nanotopography platform

enables the study of the interplay between stiffness and topography without
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altering the chemical composition of biomaterials. Micropillars of varying height
have already been successfully used to measure the stiffness-dependent cellular
traction forces of human mesenchymal stem cells[156, 157]. The stiffness of the
pillars affected cell morphology, traction forces, focal adhesions and
differentiation. We aim to determine whether one of the two properties
dominates the cell response and whether the cell response to the different

topographies changes similarly across different material stiffnesses.
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7. Summary and Outlook

We have collected and analysed an enormous amount of data in this work. We
collected fluorescence images of 53 different conditions in Chapter 4 and 84
different conditions in Chapter 5. We have a total of 137 different conditions and
more than 8540 fluorescent images with four channels. On average, we have five
cells per image. Thus, we have analysed more than 42700 cells. To highlight the
magnitude of the data collected, we can calculate the total continuous imaging
time required, with an imaging time of approximately 4.5 minutes per image. We
require 640.5 hours of continuous imaging for the entire dataset, which is

approximately 64 working days, assuming a standard working day of 10 hours.

In this thesis, we have analysed the cell response of MC3T3 cells to nanopits and
gratings using only fluorescence microscopy. Our unique approach involves the use
of the Cell Painting method developed by Carpenter et al for the first time in
morphological profiling of the cell response to nanotopographies. This work serves
as a strong proof-of-concept, demonstrating that the clustering of mechano-
transduction pathway inhibitors and activators in the UMAP plot accurately
represents the known functions of these molecules in the pathways. The ROCK,
myosin I, and actin inhibitors cluster together, as do the corresponding activators.
Metabolites that mimic intracellular tension and adhesion on nanopits also cluster
with the cells after four days on nanopits. These observations underscore the

reliability of mapping morphological profiling data in a UMAP plot.

We successfully used the Cell Painting assay to observe the time-dependent
response of MC3T3 cells to nanopits in SQ, NSQ, and HEX arrays. The first response
to the nanotopography is dominated by the calcium signalling, which increases the
expression of the early osteogenic marker Runx2 through the MAPK pathway. After
four days, the cells have adapted to the nanopits and the intracellular tension and
adhesion are decreased. The oxidative glycolysis is increased at this stage. After
seven days, the cells are in senescence and have fully committed to the
differentiation process into mature osteoblasts. The cells show decreased
filopodia and lamellipodia formation as they cluster with the Cdc42 and Ras/Rac

inhibitor.
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Our morphological profiling using Cell Painting has also demonstrated high
sensitivity, as well as a comprehensive understanding of the cell response to
nanotopographies. We have not only differentiated between inhibitors and
activators but also shown concentration dependency and differences in
nanotopographies. We analysed the morphome of MC3T3 cells on 84 different
nanotopographies, ranging from changes of 5 nm up to changes of micron size.
Most topographies used in this work are nanopits that vary in size, pitch, and
orientation to each other, as they are in ordered square and hexagonal arrays or
with varying disorder. Additionally, we have used gratings with a size of 200 nm,
500 nm, 1 ym, 2 ym, 5 pym and 10 pm, providing a comprehensive view of the cell

response to various nanotopographies.

The nanotopographies and especially the different geometries of nanopits produce
a cellular response following the same mechanotransduction pathways. Only the
details in the strength of the responses differ. Therefore, the change in the
morphome is also minimal. The imaging and staining are performed in different
batches on different days, which produces a batch effect. Compared to the slight
differences in morphology due to minimal changes in topography, the batch effect
is relatively large. Thus, a good batch correction is needed to analyse this dataset.
The Seurat method, a state-of-the-art batch effect correction method developed
for batch effect correction in scRNA-Seq[139, 144, 145], has proven to be most
successful. We get rid of most of the batch effect while retaining the biological

information, as the correct clustering of the activators and inhibitors shows.

Five parameters fully describe the topographies: the x-pitch, y-pitch, diameter,
noise, and offset. Our goal was to create new topographies based on those
parameters and their correlation with the morphome. This was an extremely
ambitious goal because we want to pick up minimal changes in cell morphology
systematically and correlate them to the geometry parameters, which are in turn
correlated to each other. Typically, prediction in machine learning is achieved by
training a dataset and using the trained model to predict to which category the
new dataset belongs. We are not interested in categorising new data into one of
the existing nanotopography categories but instead want to treat the geometrical
parameters as continuous values. Suppose we have a cell that is altered, for

example, by incubation in induction media. How must the nanotopography look to
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obtain the same morphology without limitation to the observed topographies? We
are not able to perform this prediction due to its complexity. Each topography
does not cause a specific change in the morphome, but each parameter affects
the whole morphome. Additionally, the cell response strongly depends on the
available adhesion area, and changes in the parameters affect it similarly. For
example, a decrease in pitch might decrease the adhesion area similarly to an
increase in disorder. Thus, all topography parameters must be analysed
simultaneously if we want to study the entire library. An addition of nanopillars in
similar geometrical arrays would also improve the nanotopography library as it

completes the topographies.

It is possible to separate the parameters and only study the datasets with changes
in the separated parameters. The disorder has the strongest correlation to the
morphological changes between the different nanopit arrays. Thus, we find that
disorder is the decisive factor in the cell response. No distinct continuous trend in
the disorder is observed. We only see that the high disorder of 120 to 150 nm
clearly separates from the remaining cells. Curiously, the disorder of 60 nm and
70 nm produces a similar morphome. The pitch and size affect the morphome only
slightly, and no similarities are observed between the pitch variations of SQ arrays
and NSQ arrays. The gratings have a distinct effect on the cells as they align with
the gratings. Thus, a high correlation is observed between the morphology and the
width of the gratings. The gratings need to be smaller than 5 pm to affect the

cells.

To overcome those challenges, much work must be done. A larger dataset would
be beneficial for any machine learning approaches. The slow speed of the LSM
currently limits our imaging. A change to a widefield microscope would be
beneficial. First experiments with a Zeiss Observer with a Colibri 7 LED-
Lightsource showed promising results with an imaging speed of less than 30
seconds instead of more than 4 minutes per image for the LSM. This offers the
option of thousands of cells per condition instead of hundreds, which will be
helpful for training in machine learning. However, it is not possible to separate
the membrane and Golgi staining from the actin staining in this microscope setup,

and they need to be in one channel, as in the original Cell Painting protocol. The
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imaging of the mitochondria stain, MitoTracker Deep Red, worked well with that

microscope and can be added to gain more information about the cell state.

We are confident in our results and the proposed mechanotransduction pathway
over time. However, verifying our findings with conventional omic techniques,
such as proteomics, would significantly enhance our work. It would be beneficial
to obtain proteomics data for each identified group from one of the activators or
inhibitors, as well as the nanotopographies at the corresponding time points. This
data could validate the morphological profiling and provide more insight into the

state of the cells at those time points.

The proteomic analysis could also be taken to the single cell level with DESI mass
spectrometry. In this work, we have not taken advantage of the single-cell
character of morphological profiling. A single-cell analysis, considering
heterogeneities in the cell culture, can likely improve the analysis. Morphological
profiling has already been used to predict gene expressions of MC3T3 cells on
nanopits in SQ, NSQ, and HEX arrays. However, the mean of single-cell data is used
to predict the batch gene expression. With DESI mass spectrometry, the single cell
morphome can be matched with the protein expression of the corresponding
cell[127]. This approach holds the potential to enhance our understanding of how
intracellular processes influence cell morphology and to improve predictions

based on the morphome.

Initial tests with the grating slides for DESI measurements have been conducted,
but they have not been successful so far. The tool requires samples in a slide
format that allows the nozzle for electrospray and the inlet to the mass
spectrometer to be positioned close to the cells. Thus, the PS slides are not
ultrasonically welded but taped to the bottom of the 24 well plates using an
adhesive double-sided Microfluidic Diagnostic Tape 9965 (3M, US). After four days
of cell incubation, the cells are stained using the Cell Painting protocol and then
washed with RO water to remove any ions from the surface. The slides are pried
off, dried by vacuum desiccation for 1 hour and kept in a -80° C freezer until use.
We prepare slides with stained cells and with cells that are not stained. Mark
Towers attempted the DESI analysis at Waters™ (UK). However, several challenges

occurred. The adhesive tape leaves a glue residue on the slide that physically
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hinders the sprayer and melts due to the heat from the source and inlet,
contaminating the inlet and DESI spray. The stained cells have a high polymer
signal that we believe comes from TritonX-100. Thus, to perform DESI
measurements with the slides, they cannot be in the well plate format, and no
staining is possible. The slides can be incubated in a well plate, but in that case,
crosstalk between the cells on different topographies exists as they share the same

media.

To avoid staining, the Cell Painting staining can be predicted from brightfield
images. Cross-Zamirski et al. have proven that the Cell Painting staining of U-2 OS
cells can be predicted using U-net and a generative adversarial network
(GAN)[231]. The prediction of Cell Painting staining can also be helpful for
analysing cell responses to nanotopographies over time. At the current approach,
for every time point, a new sample is needed because the cells need to be fixed
for the staining procedure. By using live cell images, one sample can be imaged
at many time points and the time-dependent response to topography can be
analysed in much more detail. It would even be possible to analyse the first
response to the topography when seeding the cell and the dynamic adaptations to
adapt to its surroundings, and how it affects internal processes by correlation to
mechanotransduction pathway morphologies, and single-cell proteomics

predictions.

It was not possible to obtain a complete understanding of the cellular response to
the biomechanical environment because we were unsuccessful in fabricating
hierarchical PDMS micropillars with nanopits on top. As a result, we could not
study the effects of different nanotopographies on cellular traction forces or the
interplay between material stiffness and topography. Despite not achieving our
initial goal, we gained valuable insights into the lithography process at the

resolution limits of e-beam lithography and photolithography.

We developed a novel protocol for performing e-beam lithography using a 10 pm
thick PMMA resist to create micropits with a diameter of 4 uym. Although these
micropits were not suitable for our specific application, the process may still be
beneficial for other uses where a thick resist is necessary for fabricating micron-

sized elements with high precision.
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Photolithography using SU-8 resist has proven to be the most promising technology
for creating high-aspect-ratio micropillars with nanopits on top. We successfully
fabricated PDMS micropillars with a height of 18.61+0.28 pm and a diameter of
5.93+0.15 pm from a SU-8 master stamp through soft lithography. However,
generating a master with nanopillars remains challenging due to their interference
with UV light, which necessitates further investigation. A maskless
photolithography approach using a UV laser writer and a positive-tone AZ4562
photoresist may reduce this light interference enough to create the desired mask.
Additionally, using a maskless photolithography tool allows for easier changes to

design parameters.

In our pillar-based traction force microscopy tests with micropillars of 6 pm
diameter and MC3T3 cells, we found that tracking the forces would likely improve
with a smaller diameter and a centre-to-centre spacing of twice the diameter
instead of three times. This design would allow the cells to spread out over more
pillars and exert force on them, thereby improving the statistical analysis per cell
and enhancing cell adhesion. We observed that only a few cells had pillars located
at their centres; most were only in contact with the pillars at their outer edges.
Therefore, a denser pillar array would offer a larger area for the cells to attach
to. The traction force on the pillars would also likely improve with a denser array,
as it increases periodicity and, consequently, the FFT. Furthermore, a smaller
diameter would enhance the identification of the pillar centre by the traction

software.
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9. Appendix
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Figure A3.1: Example images of the cell segmentation using Otsu, minimum cross-
entropy and robust background method. The segmentation is shown on MC3T3 cells with
6 UM cytochalasin D, a control, 50 uM blebbistatin, 50 nM jasplakinolide, 14 days of
osteogenic induction, and 4 days on NSQ nanopits.
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Figure A4.1: UMAP projections of median features for each condition with varying
distance and varying number of neighbours.
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Figure A4.2: Cell Painting images of MC3T3 cells stained for the Nucleus with HOECHST
33342 (blue), Endoplasmic reticulum with concanavalin A - Alexa Fluor 488 (green), actin
cytoskeleton with phalloidin - Alexa Fluor 568 (red), and the Golgi and plasma membrane
with wheat-germ agglutinin (WGA) - Alexa Fluor 555 (orange). The cells are shown with
the highest concentration of each activator and inhibitor.
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Figure A4.3: Cell Painting images of MC3T3 cells stained for the Nucleus with HOECHST
33342 (blue), Endoplasmic reticulum with concanavalin A - Alexa Fluor 488 (green), actin
cytoskeleton with phalloidin - Alexa Fluor 568 (red), and the Golgi and plasma membrane
with wheat-germ agglutinin (WGA) - Alexa Fluor 555 (orange). Example images of the
cells on NSQ after 1, 4 and 7 days, as well as cells on HEX and NSQ after 4 days.
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Figure A4.4: These are examples that visualize the concentration dependencies of the
features measured by CellProfiler. For clarity, the various concentrations of activators
and inhibitors are categorized into low, medium, and high concentrations. Those features
are selected to give a broad overview of different feature categories and to highlight
that concentration dependencies are visible in all activators and inhibitors.
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Figure A5.1: UMAP plots of nanotopography library datasets with entropy based feature
selection. The 100 (A), 150 (B), 200 (C), and 250 (D) features with the highest impact in

entropy reduction are picked.
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Figure A5.2: UMAP plot of Seurat corrected data and 200 selected features by entropy.
The datapoints are coloured by their nanotopography category (A) and their batch (B) to

show a potential batch effect.



Figure A5.3: Cell Painting images of MC3T3 cells for the disorder array. The cells are
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with
concanavalin A - Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) - Alexa
Fluor 555 (orange). The fluorescence channels are merged in the images.
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Figure A5.4: Cell Painting images of MC3T3 cells for the NSQ pitch array. The cells are
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with
concanavalin A - Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) - Alexa
Fluor 555 (orange). The fluorescence channels are merged in the images.



Figure A5.5: Cell Painting images of MC3T3 cells for the SQ pitch array. The cells are
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with
concanavalin A - Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) - Alexa
Fluor 555 (orange). The fluorescence channels are merged in the images.
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Figure A5.6: Cell Painting images of MC3T3 cells for the varying size array. The cells are
stained for the Nucleus with HOECHST 33342 (blue), Endoplasmic reticulum with
concanavalin A - Alexa Fluor 488 (green), actin cytoskeleton with phalloidin - Alexa Fluor
568 (red), and the Golgi and plasma membrane with wheat-germ agglutinin (WGA) - Alexa
Fluor 555 (orange). The fluorescence channels are merged in the images.
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Figure A5.7: Heatmap of the morphome depending on the pitch of nanopits in the SQ
pitch array. The heatmap is ordered by hierarchical clustering using Euclidean distances.
The features are normalized between 0 and 1 and corrected against the control by
dividing the control from the other substrates. The number behind the geometry

describer corresponds to the centre-to-centre spacing.




193

0 n
- o o <
E E E E E E E E E E E £ E E E E E £E E E
c Cc C C c c Cc C c c c el oy c c C C C C C
L O 1B W B OO O WwWo B o S © B B o W o
® T AN O - O b B SN - 0 =0 © O K~ 6, K
G m o m A0 O N®N MmN AN NNN® NN
W Y« Y N W W W W W W WY oI o N~ Y« WY Y N MY« Y« o
oo g Qo0 Qg CCQo g sC OO0 QO oo g
0w wwmww »nwwwnwnwnoww W v o w v wwww

-

E=fzzzS-zg=ss--EEaE,cEs

L

Figure A5.8: Heatmap of the morphome depending on the pitch of nanopits in the NSQ
pitch array. The heatmap is ordered by hierarchical clustering using Euclidean distances.
The features are normalized between 0 and 1 and corrected against the control by
dividing the control from the other substrates. The number behind the geometry

describer corresponds to the centre-to-centre spacing.
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