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Abstract

Video prediction is a crucial task for intelligent agents such as robots and autonomous

vehicles, it enables them to anticipate and act early on time-critical incidents. Many state-

of-the-art video prediction methods typically model the dynamics of a scene jointly and

implicitly and seeing it as a single entity, without any explicit decomposition into separate

objects. This is sub-optimal, as every object in a dynamic scene has their own pattern

of movement, typically somewhat independent of others. Therefore, we hypothesize that

explicit modelling of moving objects is crucial for video prediction in limited data and

compute scenarios.

We first investigate video prediction with multiple moving and interacting objects in a

static camera setting within the context of a latent-transformer as the video predictor. We

conduct detailed and carefully-controlled experiments on both synthetic and real-world

datasets; our results show that decomposing a dynamic scene leads to higher quality pre-

dictions compared with models of a similar capacity that lack such decomposition. We

then investigate the trajectory prediction of occluded objects and scenes with background

motion which is a common phenomena in real-world scenarios. We introduce explicit mo-

tion information, depth map and point flow, to assist the prediction model we proposed

previously. We investigate this approach in both synthetic and real-world scenarios. The

experimental results shows that with the integration of explicit motion information, the

predicted trajectory of dynamic objects is more accurate. We finally investigate the case of

deformable objects such as scenes in garment manipulation tasks. We introduced a diffu-

sion variant of our proposed video prediction model to better handle the motion prediction

of fully deformable objects because of its continuous nature compared to transformer-

based architectures. By testing it on a garment manipulation dataset, we find that our

diffusion-based variant outperformed our transformer-based models.
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Our findings suggest that for video prediction models to accurately model motion patterns

inside a dynamic scene, scaling up holistic models are inefficient and recourse consuming.

In contrast, decomposition of objects and modeling with their explicit motion information

can be a better and more efficient alternative compared to monolithic models with same

capacity. Furthermore, this setting implies that it can be more useful in closed-world

settings like robotic manipulation tasks where limited objects are in the scene.
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Chapter 1

Introduction

Humans have an inherent desire to anticipate and prepare for the future. From checking

the weather forecast before deciding what to wear, to analyzing financial trends when

managing resources, we constantly seek ways to reduce uncertainty and make informed

decisions. Similarly, humans have the ability to anticipate near-term visual events based

on observed cues. For example, when a snowball is thrown toward us, we instinctively

estimate its trajectory to adjust our movements to dodge. Similarly, when a football

player kicks a ball toward the goal, the goalkeeper anticipates its motion in order to block

a potential score. These scenes often involve many surrounding objects, yet the motion

of interest typically depends on only a few critical ones. For example, the snowball, the

thrower and the person it is aimed at, or the ball, the kicker, and the goalkeeper. This can

be generalized that a dynamic scene is the result of sparse interactions of objects despite

the presence of multiple objects in the scene.

This fundamental drive to predict and prepare motivates the development of computa-

tional models that can forecast future events, such as those in visual environments. The

field of video prediction focuses on forecasting the future evolution of visual scenes. Bey-

ond the simple examples we mentioned previously, video prediction has a wide range of

applications across different domains. For instance, by analyzing satellite imagery, pre-

diction models can anticipate the future formation of clouds, enabling more accurate

weather forecasting (Ravuri et al. 2021). In autonomous driving, such models can anticip-

ate near-future events, such as pedestrians crossing the road, allowing the vehicle to react

1



. Introduction 2

in advance by decelerating (Yang et al. 2024a). Similarly, in robotics, video prediction is

used in manipulation tasks, where forecasting the future states of objects enables robotic

arms to plan and execute actions more effectively (Bharadhwaj et al. 2024), such as in

object picking and placement.

The video prediction problem is the task to anticipate and generate a possible future

dynamics of an observed visual scene, various deep learning architectures have been em-

ployed, including CNNs (Krizhevsky et al. 2012), RNNs (Williams and Zipser 1989),

transformers (Vaswani et al. 2017), and diffusion models (Ho et al. 2020). Despite their

success, these approaches often model the dynamics of sparsely interacting objects in an

implicit manner by seeing the entire scene holistically, relying primarily on scaling the

model size rather than explicitly capturing object-level interactions. This leads to heavy

and suboptimal models which will require more computational resources to deploy for real

world applications.

1.1 Scope of Thesis

Most video prediction approaches focus on modeling the dynamics of an entire scene as a

whole (Wang et al. 2022; Yan et al. 2021; Wu et al. 2024; Pallotta et al. 2025). However,

not every motion in a scene is equally relevant for predicting future states of interest.

For example, when a goalkeeper anticipates the trajectory of a ball, the movements of the

audience around the players are largely irrelevant, while the actions of the opposing players

are crucial. This highlights the need for approaches that emphasize explicit modeling of

key objects and their interactions.
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In this thesis, we do not seek to introduce fundamentally new architectures for video

prediction. Instead, our contribution lies in systematically studying the trade-offs between

implicit and explicit object modeling in dynamic scenes. Specifically, we examine how

incorporating object representations, their motions, and their spatial relations can lead

to more efficient and interpretable video prediction.

Within this scope, we focus on scenarios where only a subset of objects meaningfully

influences the future dynamics of the scene. By concentrating on these sparse interactions,

we aim to improve predictive accuracy without unnecessarily increasing the complexity

of a video prediction model. Thus, we explicitly model groups of interacting objects while

treating background elements and irrelevant motions implicitly.

1.2 Thesis Statement

Accurate video prediction requires explicit modeling of the causes of motion in the scene.

This thesis investigates the problem of modeling dynamic scenes with multiple interacting

objects and predicting their future evolution over a fixed time horizon. Since interactions

among objects in such scenes are typically sparse, modeling the entire scene as a single

entity is both suboptimal and inefficient. We hypothesize, Claim 1: explicit object decom-

position and learning the relationships between decomposed objects improves the quality

of predicted future frames. Moreover, incorporating a cross-attention mechanism to cap-

ture potential object interactions further enhances prediction quality. Building on this

hypothesis, Claim 2: integrating explicit motion information such as point flow and depth

maps is beneficial for capturing specific dynamics, including occlusions and background

motion. Finally, Claim 3: we hypothesize that continuous models, such as diffusion mod-

els, outperform discrete models in scenarios involving highly deformable objects, such as

garments.
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1.3 Contributions

The main contribution of this thesis is that it systematically investigated the benefits of

decomposition of a scene into objects to predict their future dynamics in various settings

such as static and ego-motion camera, rigid, semi-rigid (humans) and fully deformable

objects (garments) with sparse interaction between the objects (including occlusions) on

the scene. More specifically, the contribution of this thesis is as follows:

• We reveal the limitation of holistic video prediction models that need more para-

meters to capture the critical motion dynamics. In our research, we develop a family

of explicit object-aware video prediction models that needs much less parameters

than existing methods, but achieves better or similar performance in a static camera

setting (Chapter 3).

• We find that the object decomposition alone is not sufficient for more complex

dynamic scenes that features occlusion and background motion. To mitigate this

limitation, we integrated explicit motion information, point-flow and depth map, to

assist our video prediction model. Our thorough experiments confirmed that these

additional modalities increase the motion prediction accuracy (Chapter 4).

• We finally studied the future motion prediction of highly deformable objects and

their interaction. We modified the previously proposed approaches into a diffusion

model and argue this continuous setting is beneficial for fully deformable objects.

We demonstrated that diffusion-based object-aware video prediction model performs

better than discrete auto-regressive transformer models (Chapter 5).

1.4 Origins of Material

Most of the material in this thesis is under review by multiple venues in the course of this

PhD study:
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• In Chapter 3, we present our first attempt of explicit object aware video predictor.

This work is currently under review to be published in Transactions in Machine

Learning Research (TMLR).

• In Chapter 4, we present the motion information integrated object aware video

prediction model. This work is accepted as a workshop paper to be published at

British Machine Vision Conference (BMVC 2025) SmartCamera 2025 workshop.

• In Chapter 5, we present the diffusion-based object-aware video prediction model.

This work is being prepared to submit to the International Conference of Pattern

Recognition (ICPR 2026) in December.

1.5 Outline of Thesis

The rest of this thesis is structured as follows:

In chapter 2, we introduce essential background knowledge used throughout this thesis

including Auto-Encoders that we used as a frame encoder to encode the video frames

into latent space; Transformer architecture which we used as prediction model in Chapter

3 and chapter 4 and the diffusion models that are used in our Chapter 5’s prediction

network. We also provide literature review of relevant video prediction models.

In Chapter 3, we will test the main hypothesis of this thesis that the dynamics of a

scene is better learned with explicit decomposition of objects in this scene. We propose

a transformer decoder-based explicit video prediction model and test this model in both

synthetic and real-world scenarios.

In Chapter 4, occlusion and the background motion is studied in detail and a new approach

incorporates point flow and depth is used to address the limitations of the previous chapter.
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In both of the previous chapters, the main focus is on rigid object motion, therefore in

Chapter 5, we will focus on the motion of highly deformable objects such as garments.

Furthermore, we address the limitation for the frame encoder in the previous chapter.

In Chapter 6, we will discuss the main contribution of this thesis, and validate the thesis

statement. Also, limitations and potential directions of future work are discussed in detail.



Chapter 2

Background

Deep learning has achieved remarkable progress over the past decade, revolutionizing

fields such as computer vision and natural language processing. Video prediction, as a

prominent problem in computer vision, has similarly benefited from these advances.

The methods proposed in this thesis build upon a range of deep learning architectures to

tackle different challenges in video prediction. This chapter introduces the fundamental

architectures that form the basis of our approaches and recent video prediction approaches

that are relevant to our proposed methods, providing the reader with the necessary back-

ground to understand the subsequent technical chapters.

The rest of this chapter is organized as follows:

• Section 2.1 gives brief introduction to the fundamental deep learning architectures

we used in this thesis such as Auto-Encoders, Transformer models and Diffusion

models.

• Section 2.2 provides with a comprehensive literature review of video prediction mod-

els relevant to this thesis.

7
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encoder decoder

input output

Figure 2.1: Standard Structure of an Auto-Encoder (Neutelings 2015–2025)

2.1 Deep Learning Architectures

2.1.1 Auto-Encoders

Auto-Encoders are very powerful architectures that compress data (e.g., an image) into a

compact latent representation of this data. Tasks in the broad computer vision problems

deal with images or video data which is more complex than a single image. Since directly

processing these visual data is inherently complex, especially space-time correlation in

videos, many tasks uses auto-encoders as a pre-processing stage to encode either the

images or videos to obtain smaller representations, then perform other downstream tasks.

We will first introduce the standard architecture of auto-encoders developed and used

in computer vision problems, and its more advanced versions which can learn structured

latent representations by using regularization techniques.

2.1.1.1 Standard Auto-Encoders

Auto-Encoder was first introduced in the mid-80’s, a neural network to reconstruct its

input and learn a latent representation of the input data (Rumelhart et al. 1985) as shown

in Figure 2.1, which formalised later by Baldi (2012). With the success of Convolutional

Neural Network (CNN) (Krizhevsky et al. 2012) and its reverse De-Convolutiontal Neural
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  Encoder Decoderz

Input Image Reconstructed image

Figure 2.2: Image AutoEncoder

Network (Pu et al. 2016), auto-encoders can successfully encode images into a compact

latent representation. Many well-known CNN-based architectures, such as family of Res-

Net (He et al. 2016) and VGG models (Simonyan and Zisserman 2014) are used as the

backbone structure, compared to vanilla CNNs, to improve the quality of reconstructed

images. Furthermore, with the recent introduction of Vision Transformers (ViT) (Doso-

vitskiy et al. 2021), there are also approaches which adopted ViT to encode the images

into a latent space such as Masked-AutoEncoder (He et al. 2022), which can reconstruct

partially masked images into a full image.

This process can be formally noted as follows; first, an image x is encoded by an encoder

Φ to produce a latent representation z:

z = Φ(x) (2.1)

Then, z is passed to a decoder Ψ to reconstruct the original image,

x̂ = Ψ(z) (2.2)

The objective of this network is to minimize the reconstruction loss between the original

image x and reconstructed image x̂ with Mean Squared Error (MSE) loss:

Lreconstruction =
1

N

N∑
i=1

(xi − x̂i)
2 (2.3)
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where xi is the pixel value in the original image, x̂i is the pixel value in the reconstructed

image, N is the total number of pixels in the image.

Although standard auto-encoders can encode and reconstruct high-quality images, the

latent representations learned by this type of models are usually poor without meaningful

structure. This is because the latent space itself is not constrained by regularizing terms

or conditions. Therefore, it is difficult to perform other downstream tasks by using an

unstructured latent space.

2.1.1.2 Regularized Auto-Encoders

To make the latent space more structured, both continuous and discrete regularization

methods are used to mitigate the limitation of unstructured latent space and made possible

to sample new data, which in our case images. A representative model of a regularized

auto-encoder is Variational Auto-Encoder (VAE) (Kingma and Welling 2013). The main

difference compared to standard auto-encoder is that VAE assumes the image distribution

is Gaussian distribution and each image is a sample from this Gaussian distribution. Thus,

instead of producing a single latent representation, the encoding network of VAE produces

two latent representations to represent the mean µ and the variance σ of a Gaussian

distribution. To obtain the latent representation z, the VAE applies the reparameterization

trick, which allows for differentiable sampling. This trick expresses the latent variable z

as a function of the mean µ, the standard deviation σ, and a random noise variable

ϵ ∼ N (0, I) sampled from a standard normal distribution. The latent variable z is then

obtained as:

z = µ+ σ · ϵ (2.4)

Then, this latent representation is decoded by a decoder to reconstruct the original image.

The network is trained to minimize the distance between the standard Gaussian distribu-

tion (e.g., zero mean and identity variance, N (0, I)) and the predicted distribution using

Kullback-Leibler divergence (KL Divergence). The Kullback-Leibler divergence between

the predicted distribution q(z|x) (parameterized by the mean µ and standard deviation
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Figure 2.3: Variational Auto-Encoder

σ) and the standard normal distribution N (0, I) is given by:

DKL (q(z|x) || N (0, I)) =
1

2

D∑
j=1

(
σ2
j + µ2

j − log(σ2
j )− 1

)
(2.5)

where µj and σj are the mean and standard deviation for each dimension j of the latent

variable z, D is the dimensionality of the latent space. The reconstruction performance

using negative log-likelihood, which can be represented by the mean squared error (MSE)

loss.

Lreconstruction = Eq(z|x) [− log p(x|z)] ≈ 1

N

N∑
i=1

(xi − x̂i)
2 (2.6)

These two terms together forms the evidence lower bound (ELBO), which is the objective

function of the network as follows:

LELBO = Eq(z|x) [− log p(x|z)] +DKL (q(z|x) || p(z)) (2.7)

By minimizing the ELBO, the VAE optimizes both the reconstruction accuracy and the

structure of the latent space, ensuring that it can generate new, realistic samples by

sampling from the latent space.
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In this way, the image distribution is mapped to the Gaussian distribution, and it can

be used to sample new images. However, VAE still has limitations due to its loss func-

tion. It usually produces blurry reconstructions and entanglement of latent represent-

ations. Therefore, the main idea of generative adversarial networks (Goodfellow et al.

2014) (GAN) is also used to improve reconstruction performance with joint training of

Auto-Encoder network and a discriminator network, such as Adversarial Auto-Encoders

(AAE) (Makhzani et al. 2015) and Dist-GAN (Tran et al. 2018).

In contrast to continuous methods, which force the latent representation into a continuous

latent space, there are approaches that utilize a set of discrete tokens to represent the latent

space. The most representative model of this category is the Vector-Quantized Variational

Auto-Encoder (VQ-VAE) (Oord et al. 2017) and its more advanced variant, VQ-VAE-2

(Razavi et al. 2019), as shown in Figure 2.4. Instead of enforcing a prior distribution on

the latent representation, VQ-VAE replaces the continuous encoder output with discrete

tokens selected from a predefined codebook. This process is referred to as quantization

of the latent space. To perform quantization, a codebook E = {ek}Kk=1 is defined as a

learnable embedding matrix, where K denotes the number of discrete codes and each

code ek ∈ RD has the same dimensionality as the encoder output. Given the encoder

output ze, the quantized latent representation zq is obtained by selecting the closest code

in the codebook using nearest-neighbor search:

zq = ek∗ , k∗ = argmin
k

∥ze − ek∥2 (2.8)

The quantized latent representation zq is then passed to the decoder to reconstruct the in-

put. Since the quantization operation is non-differentiable, VQ-VAE employs the straight-

through estimator to allow gradients to flow from the decoder to the encoder during

backpropagation. The training objective of VQ-VAE consists of three components: recon-

struction loss which is same as used in the previous auto-encoders, vector quantization

loss, and commitment loss. The vector quantization loss updates the codebook embeddings
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Figure 2.4: Vector-Quantised Variational AutoEncoder

to move closer to the encoder outputs:

LVQ = ∥sg [ze(x)]− e∥22 (2.9)

where sg[·] denotes the stop-gradient operator. The commitment loss prevents the encoder

outputs from fluctuating excessively and encourages them to commit to a selected code:

Lcommit = β ∥ze(x)− sg[e]∥22 (2.10)

where β is a hyperparameter controlling the strength of the commitment loss. The final

training objective is given by:

LVQ-VAE = Lreconstruction + LVQ + Lcommit (2.11)

By using a discrete latent space, VQ-VAE avoids posterior collapse and enables learning

a compact and interpretable latent representation, which is particularly suitable for high-

quality image generation and downstream autoregressive modeling. Therefore, generative

models like transformers can use the trained codebook as a dictionary to generate new

high quality images (Esser et al. 2021).
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In this thesis, because of VQ-VAE’s superior performance of producing compact latent

space and the high reconstruction quality of the input image, we use VQ-VAE as our video

frame encoder in each technical chapter with reasonable adjustments of its structure to

meet the needs of a specific chapter.

2.1.2 Transformers

In sequential data modelling, Recurrent Neural Networks (RNN) (Williams and Zipser

1989), and their more sophisticated versions like Long Short Term Memory (LSTM) (Ho-

chreiter and Schmidhuber 1997) and Gated Recurrent Unit (GRU) (Cho et al. 2014) are

used to learn sequential patterns. Since videos are also a type of sequential data, with the

combination of CNNs, ConvLSTM networks (Shi et al. 2015) are used to handle video

data. However, RNNs based approaches has inherent limitations such as the vanishing

gradient problem when a sequence to process is too long, and the sequential computation

makes them unable to parallelize.

To mitigate these limitations of RNN, the introduction of the transformer architecture

revolutionized the way of modeling sequential data (Vaswani et al. 2017). In this section,

we will first introduce the basics of a standard transformer networks and the transformers

that is adapted to computer vision tasks.

Although the Extended Long Short-Term Memory (xLSTM) Beck et al. 2024 introduced

recently showed superior performance regarding popular transformer-based Large Lan-

guage Models (LLMs) like Llama (Touvron et al. 2023), they state that xLSTMs are still

four times slower than a transformer architecture with similar capacity due to lack of

CUDA kernel optimizations for computation efficiency. Therefore, throughout this thesis,

we use transformer architecture as our backbone structure due to its stability and its well

established performance across different domains. Because our task is to predict future
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frames based on observed past frames, we use a decoder only transformer in both Chapter

3 and Chapter 4 and in Chapter 5 we use a transformer-based diffusion model to tackle

deformable objects’ motion prediction. The diffusion model will be introduced in detail

in the Section 2.1.3.

2.1.2.1 Standard Transformers

Transformer architecture was first proposed for Machine Translation (MT) problem in

Natural Language Processing (NLP) as shown in Figure 2.5. It consists of an encoder

network that learns the patterns of an input sequence with multi-head self-attention, and

a decoder that predicts the target sequence with masked (which prevents the model access

to the future tokens) multi-head cross-attention between the information from the encoder

and the output from its own self-attention. Then the prediction is performed in a causal

and auto-regressive manner. Because of the attention mechanism, all of the tokens (e.g.,

words in language) relations are computed in parallel and without the need of sequential

processing. Because transformer model does not process the tokens sequentially, in order to

impose the positional relationship to the model, the original transformer model used sine-

cosine positional embeddings to let the input sequence have the positional information.

This parallelized process made possible to handle long sequences without the risk of

vanishing gradients. However, this pair-wise attention computation between tokens makes

the architecture computationally heavy.

Because different parts of a transformer play different roles, different transformer variants

are introduced to handle different tasks. Encoder-only transformers are usually used to

pre-train on a large sequential dataset to learn the over all pattern of the sequences,

such as BERT (Devlin et al. 2019). In contrast, because the decoder in transformers is

limited to calculate the attention only between the previous tokens with current tokens,
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Figure 2.5: The original transformer architecture (Figure is reproduced from (Vaswani
et al. 2017))
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decoder-only transformers are usually used to generate new tokens (Radford et al. 2018).

For example, all modern chatbots like ChatGPT (Achiam et al. 2023), Claude (Anthropic

2025), Gemini (Comanici et al. 2025) and Grok (xAI 2025) use this architecture as their

backbone structure.

2.1.2.2 Vision Transformers

Transformer’s success is also well adopted by computer vision tasks. The first vision trans-

former (ViT) was introduced to tackle the image classification problem (Dosovitskiy et al.

2021). Unlike languages, images consist of pixels and are not sequential data, but trans-

former networks takes sequence of tokens as its input, therefore, ViT’s authors introduced

a tokenization approach of images that images are segmented to smaller patches, and each

patch of pixels are considered as tokens. ViT’s network structure is shown in Figure 2.6

Although this patching technique provided a strong baseline for vision tasks, predefined

sizes of patches limits its performance on fine-grained local and overall global relationships

between patches. Therefore, a more adaptive ViT , Swin Transformer (Liu et al. 2021) is

introduced to mitigate this problem. It changes the resolution of patches by combining or

dividing adjacent patches gradually by the depth of blocks to mimic the down-sampling

process of CNNs architectures, and achieved superior performance in image classification

task.

This idea of vision transformer is then used in many different research areas in computer

vision, such as semantic segmentation (Zhang et al. 2022, 2024a), unsupervised image

representation learning (Caron et al. 2021; Oquab et al. 2023; Siméoni et al. 2025), object

detection (Carion et al. 2020), and auto-encoding (He et al. 2022).
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Figure 2.6: Original ViT Architecture (Figure is reproduced from (Dosovitskiy et al. 2021)

Extension to image transformers, the video vision transformer (ViViT) is introduced to

perform the video classification task (Arnab et al. 2021). It introduced two different patch-

ing approaches. One is to follow the patching process in the ViT and it is applied to each

frame to obtain the patches for the video. Another is to patch the same area of adjacent

video frames together, so that enabling a patch to have spatiotemporal information. Many

other works extended the original images transformers from previous works to video do-

main. For example, reconstructing the masked patches of a video (Tong et al. 2022; Wang

et al. 2023) following MAE; Video Swin Transformer (Liu et al. 2022) is later introduced

by following the idea of the original Swin transformer for images.

2.1.3 Diffusion Models

Diffusion is a process that is formally defined in thermodynamics. It refers to spontaneous

movements of particles such as atoms, molecules or ions from high- to low-concentration

region. For example, if a blue dye dropped into a glass of clear water, the clear water will

eventually become blue with the passage of time. Therefore, this process increases the

entropy of a system until concentration is equalized throughout the system.
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In recent years, the concept of diffusion has been adapted into the field of machine learn-

ing, particularly for generative modeling. Inspired by its thermodynamic interpretation,

diffusion-based models simulate data generation as the reversal of a gradual noising pro-

cess. Drawing further motivation from techniques used to transform one probability dis-

tribution into another via non-equilibrium Monte Carlo methods (Jarzynski 1997; Neal

2001), Sohl-Dickstein et al. (2015) introduced a framework in which data is incrementally

corrupted by Gaussian noise through a forward diffusion process. A neural network is then

trained to approximate the reverse process, effectively learning to denoise and reconstruct

the original data distribution from pure noise.

2.1.3.1 U-Net Based Diffusion Models

The diffusion framework was further refined by Ho et al. (2020), who introduced the De-

noising Diffusion Probabilistic Model (DDPM) to address the image generation problem.

Through extensive experiments, the authors demonstrated that DDPM could surpass the

image quality of state-of-the-art generative adversarial networks (GANs) of the time, such

as the StyleGAN family (Karras et al. 2019, 2020). DDPM employs a U-Net architecture

(Ronneberger et al. 2015) as shown in Figure 2.7, originally designed for biomedical image

segmentation, as a noise prediction network. This architecture is particularly effective at

capturing multi-scale image features, which is crucial for high-quality denoising during

the reverse diffusion process.

In DDPM, the task is to learn to map a complex distribution (e.g., images) to a Gaussian

distribution, so the model can be used to generate new images from Gaussian noise.

The training of a diffusion model involves a forward and reverse diffusion process. In

the forward process, a data from a complex distribution is slowly transformed to a pure

Gaussian noise by a noise scheduler. Given an original image x0, and the noise ϵ sampled

from Gaussian distribution N ∼ (0, I), with total time step T , we can get the noised

image xt at every time step t from the previous image xt−1 at time step t − 1. This can

be represented as a conditional probability distribution of xt given xt−1 as the equation
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2.12.

q(xt | xt−1) = N
(
xt ;

√
1− βt xt−1, βtI

)
(2.12)

we can write it in equation form as:

xt =
√

βt − 1xt−1 +
√
βtϵt (2.13)

where βt is the scheduled amount of noise to be added at time step t. For simplicity, we

can represent βt as:

αt = 1− βt (2.14)

So that:

xt =
√
αt xt−1 +

√
1− αt ϵt, ϵt ∼ N (0, I). (2.15)

This shows a single step of a diffusion process. Because xt is obtained only depending on

the previous time step, so this is a Monte Carlo process. Therefore, we can get the noised

image xt at every time step t with the original image x0 as follows,

xt =
√
αtαt−1 xt−2 +

√
αt(1− αt−1) ϵt−1 +

√
1− αt ϵt (2.16)

...

=
√
ᾱt x0 +

t∑
s=1

√√√√(1− αs)
t∏

j=s+1

αj ϵs. (2.17)

Where ᾱt is,

ᾱt =
t∏

s=1

αs (2.18)

Based on the properties of the Gaussian distribution, we can derive the mean and the

covariance,

E[xt | x0] =
√
ᾱt x0, Cov[xt | x0] =

(
t∑

s=1

(1− αs)
t∏

j=s+1

αj

)
I. (2.19)

Simplifying the covariance as,

t∑
s=1

(1− αs)
t∏

j=s+1

αj = 1−
t∏

j=1

αj = 1− ᾱt. (2.20)
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then the final Gaussian form is represented as,

q(xt | x0) = N
(
xt ;

√
ᾱt x0, (1− ᾱt)I

)
. (2.21)

Because the amount of noise is known at every time step, similarly, this formulation

can be used to revert a pure noise sampled from Gaussian distribution back to the data

distribution.

In the original DDPM formulation, the forward noising process is controlled by a linear

variance schedule over T = 1000 diffusion steps, where the noise variance βt increases

linearly from β0 = 10−4 at t = 0 to βT = 0.02 at t = T . In contrast, Diffusion Transformers

(DiT) (Peebles and Xie 2023) employ a cosine variance schedule. In chapter 5, we will

follow DDPM and use a linear scheduler with total time step T = 1000.

DDPM is trained to take a noised image xt as input and predict the noise ϵ that was

added to the original image x0. This formulation allows the model to iteratively denoise

a Gaussian noise sample during generation, ultimately producing a realistic sample from

pure noise. The training objective of diffusion models is derived from maximizing the

evidence lower bound (ELBO) on the log-likelihood of the data distribution q(x0). Let

q(x1:T | x0) denote the forward diffusion process and pθ(x0:T ) the learned reverse process.

The variational lower bound can be written as,

log pθ(x0) ≥ Eq

[
log

pθ(x0:T )

q(x1:T | x0)

]
=: LELBO (2.22)

This objective can be decomposed into a sum of KL divergence terms across time steps. Ho

et al. (2020) show that, with appropriate parameterization of the reverse process, all terms

reduce to simple forms except the one corresponding to the Gaussian mean prediction.

This leads to a simplified training loss of the form

L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
, (2.23)
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Figure 2.7: Original U-Net structure Ronneberger et al. 2015

Thus, the model is trained to predict the added noise ϵ, which implicitly corresponds to

maximizing the ELBO on data likelihood.

However, because DDPM operates directly in the high-dimensional image space, inference

is computationally expensive and slow. To address this limitation, the Latent Diffusion

Model (LDM) was introduced (Rombach et al. 2022). Instead of performing diffusion on

pixel-level data, LDM operates in a compressed latent space learned by a VAE. This

significantly reduces the computational burden and speeds up image generation, but the

generation quality will be depending on the reconstruction quality of the VAE. Another

way to speed up the inference time is to use Denoising Diffusion Implicit Model (DDIM)

(Song et al. 2020). Unlike Markovian sampling process of DDPM, it uses deterministic

sampling process to make inference time faster without losing the generation quality.

In Chapter 5, we adopt the standard diffusion formulation with a slight modification:

instead of operating in pixel space, our model predicts future frames in a learned latent

space. Consequently, the diffusion model is trained to predict the noise added to latent

video representations, rather than directly to RGB frames.
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2.1.3.2 Transformer Based Diffusion Models

While the diffusion models in the previous section rely heavily on the U-Net structure,

recent diffusion models explored the integration of a transformer network as the noise

predictor of a diffusion model. In Diffusion Transformer (DiT) (Peebles and Xie 2023),

the U-Net backbone is replaced by pure transformer backbone. The authors demonstrate

that DiT is highly scalable because the attributes of transformer network. However, with

the increase of the model size (DiT-XL), it requires significantly higher GFLOPs compared

to U-Net based models. Nevertheless, it achieved state-of-the-art performance compared

to U-Net based diffusion models like LDM.

2.2 Video Prediction with Deep Learning

2.2.1 Recurrent models for video prediction

Early video prediction models were typically based on the combination of Convolutional

Neural Networks (Krizhevsky et al. 2012) and Recurrent Neural Networks, often LSTMs

(Shi et al. 2015; Wang et al. 2022, 2018; Chang et al. 2022; Gao et al. 2022; Denton and

Fergus 2018). Lee et al. (2021) proposed a method to predict future semantic maps, then

used those predicted maps to warp the actual future frames from the past RGB frame.

Bei et al. (2021) proposed a similar approach, decomposing the scene with a semantic

map, and using separate pathways to model the dynamics of different semantic classes.

Of these, some methods are deterministic, i.e., make a single most-likely prediction of

the future (Shi et al. 2015; Wang et al. 2018), while others are stochastic, i.e., sample an

autoregressive posterior distribution on possible future frames (Denton and Fergus 2018;

Lee et al. 2021). We focus on the stochastic setting in this work since the deterministic

models tend to predict and converge to the mean of the possible future, as well as stochastic

prediction typically producing sharper predictions (Ohayon et al. 2023).
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2.2.2 Transformer models for video prediction

Following their success on text (Vaswani et al. 2017) and images (Dosovitskiy et al. 2021),

Transformers have also been applied to video prediction. A common approach is to first use

an encoder network to map the original video frames into a sequence of lower-dimensional

latent vectors. Most models use VQ-VAE (Oord et al. 2017) or VQ-GAN (Esser et al. 2021)

as their encoding network due to their high fidelity reconstruction of original frames, and

discrete latent space that enables treating the latents similarly to text tokens. Yan et al.

(2021) proposed the first autoregressive video prediction model based on VQ-GAN and

a decoder transformer to predict future frames; iVideoGPT (Wu et al. 2024) improves

the performance further. Gupta et al. (2022) proposed a similar method that uses VQ-

VAE and transformer, but trains with iterative masking to let it gradually capture the

motion patterns in a video. Sun et al. (2023) proposed a pipeline that decomposes the

dynamic scene into motion, object and background, then uses a stochastic transformer to

predict future frames in latent space. Our work also uses a latent transformer, but with

an explicit decomposition of the latent space into separate objects, and cross-attention to

capture object interactions.

2.2.3 Diffusion models for video prediction

The invention of diffusion models (Sohl-Dickstein et al. 2015; Ho et al. 2020) and the

computationally faster latent diffusion (Rombach et al. 2022) brought significant im-

provement on many generative tasks. Latent diffusion was originally designed to generate

high-resolution images, but has now been applied to video (Blattmann et al. 2023a,b;

Brooks et al. 2024). Ho et al. (2022) use a diffusion model to generate long videos via

a joint training paradigm with conditional sampling. Höppe et al. (2022) use a slightly

different training process that instead of adding noise to the entire video, randomly keeps

some of the input frames without noise. Yu et al. (2023) proposed an interesting way of

modeling latent vectors in three directions by slicing 3D feature vectors along different
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axes. Pallotta et al. (2025) proposes a very similar framework compared to the proposed

method in chapter 5. It uses two modalities RGB and depth map, for each modality sep-

arate encoders are used to extract features, and a denoising latent diffusion model based

on Unet is used to jointly predict both RGB and depth frames.

For more general purpose video generation models, SORA (Brooks et al. 2024) alongside

with Veo3 (DeepMind 2025) is the state-of-the-art video generation model, and can gen-

erate extremely realistic videos by using diffusion with a transformer architecture. It is

able to accurately generate complex interactions that involve multiple objects (Liu et al.

2024). However, in order to train these kind of models, it is extremely expensive in terms

of data and computation power.

2.2.4 Object-centric video prediction

Object-centric representation learning aims to learn decomposed representations of images

(Locatello et al. 2020; Engelcke et al. 2020) or videos (Jiang et al. 2019; Zhou et al. 2022)

without supervision. This can be used to aid video prediction by learning an object-

centric predictor (typically a transformer) over the resulting representations (Kipf et al.

2022; Li et al. 2021; Sajjadi et al. 2022; Singh et al. 2022). (Villar-Corrales et al. 2023)

use an attention mechanism to learn the relationship between different objects in the

video sequence and achieved good results on the synthetic CLEVRER (Yi* et al. 2020)

dataset. Schmeckpeper et al. (2021) use Mask R-CNN (He et al. 2017) to get bounding

boxes for each entity in the scene, then predict the next state of each bounding box from

a single frame. Henderson and Lampert (2020) and Henderson et al. (2021) proposed self-

supervised object-centric approaches that predict frames via latent 3D objects and scene

structure from 2D video.
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The major differences between this thesis and existing object-centric approaches are

threefold. First, instead of learning object-centric representations directly from raw video

frames, we explicitly decompose scenes using segmentation masks obtained from pre-

trained models. While some prior work relies on semantic segmentation, such approaches

decompose scenes into semantic categories rather than individual object instances. This

distinction has not been fully explored in existing methods. By leveraging off-the-shelf

instance segmentation models, we obtain controlled and reliable access to object-level

information, enabling a more explicit and structured scene decomposition Second, while

prior object-centric methods demonstrate promising performance, they rarely isolate and

evaluate the effect of explicit object decomposition under comparable architectural and

capacity settings, particularly in real-world scenarios. Third, existing works primarily em-

phasize the introduction of novel architectures, whereas this thesis focuses on a systematic

study of why and when explicit object decomposition benefits video prediction, independ-

ent of architectural novelty.

2.2.5 Optical flow in video prediction

Optical flow is a pixel-wise dense motion estimation between consecutive video frames.

FlowNet (Dosovitskiy et al. 2015) and its advanced version (Ilg et al. 2017) is first intro-

duced to estimate the optical flow through CNN network. Recent optical flow estimation

approaches used vision transformers to achieve the same goal (Shi et al. 2023; Le Moing

et al. 2024; Lu et al. 2023). Because optical flow contains rich motion information of a

dynamic scene, it is integrated to many video prediction approaches to predict future

frames. Li et al. (2018) first predict the optical flow of future frames by conditioning on a

single frame, then warp the RGB frame with predicted flow to achieve video prediction.

Shi et al. (2024) used a similar idea to predict the flow first and then use a diffusion model

conditioned on flow to generate RGB frames. Bei et al. (2021) proposed a semantic-aware

approach that predicts the optical flow directly with a ConvLSTM network, then uses the

predicted flow to generate future frames. Wu et al. (2022) used optical flow to optimize the

model’s frame interpolation ability to improve the future frame prediction quality. Liang
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et al. (2024) generated video frames based on another video’s optical flow information.

Optical flow has also been integrated with generative diffusion models to guide the motion

of generated frames to be more realistic (Chefer et al. 2025). However, error accumulation

over time and the complete loss of information while objects are occluded hamper the

effectiveness of optical flow methods when occlusion occurs.

2.3 Auxiliary Structures and Modalities

2.3.1 Cross-attention

Cross-Attention is first introduced with the original transformer. Its purpose is to learn

the correlation between the input sequence and the sequence that needs to be predicted.

Due to this efficient conditioning mechanism, this idea have been used in many other

domains, e.g. Zhu et al. (2022) use pairwise cross-attention to re-identify pedestrians; Shi

et al. (2025) use cross-attention to fuse information from audio and video for emotion

recognition; Lee et al. (2023) use pairwise cross-attention on video action recognition;

Rombach et al. (2022) uses cross attention between image features and text embeddings for

conditional image generation. In this thesis, we use cross-attention to model the potential

interaction between each object, and also evaluate the impact of using cross-attention to

handle object interactions in a dynamic scene.

2.3.2 Point Tracking

Point tracking approaches have recently gained popularity due to their strong performance

(Karaev et al. 2025; Tumanyan et al. 2024; Cho et al. 2024; Xiao et al. 2024). Unlike optical

flow estimation, which aims to estimate the motion of every pixel in a pair of consecutive

images, point tracking methods typically operate in an encoded latent space and focus on

tracking sparse, semantically meaningful features. Rather than modeling dense pixel-level
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motion, these methods estimate the trajectories of key features across frames, making

them more robust to noise, occlusions, and appearance changes. This abstraction allows

tracking-based approaches to better capture high-level motion dynamics and structural

consistency compared to traditional flow-based methods. Several studies have attempted

to integrate point tracking for motion modeling and future trajectory prediction. For

instance, Bharadhwaj et al. (2024) leveraged point tracking to assist robotic arm control

in completing various tasks, achieving superior performance. Point tracking has also been

applied to generative tasks. (Jeong et al. 2024) incorporated point tracking into video

diffusion models, enabling more realistic motion generation. In this thesis, point tracking

is used to provide explicit motion information to assist video prediction.

2.3.3 Depth Estimation

Depth estimation provides spatial information about a scene, which is the relative position

and distance of a pixel to the camera. It can help to create a 3D representation of the

environment, and this representation can be used on many downstream tasks. Cetinkaya

et al. (2022) used depth estimation to perform object detection. Chan et al. (2022) used

estimated depth map to create a tri-plane that can reconstruct a 3D scene from a single

image. Xiao et al. (2024) extended this idea to track keypoints in a clip in 3D space. In

Chapter 4, we will investigate the benefits of using a depth map on the task of video

prediction, especially in occluded events where 3D geometry information is crucial for

models to learn the occlusion of objects.

2.3.4 Multi-Modal Fusion

Multi-modal fusion, in computer vision, refers to combining different modalities captured

by different sensors such as RGB images from digital cameras, depth maps from RGB-D

cameras, and point clouds from LiDAR scanners, into a single representation that has

all of the characteristics of these modalities. This enables many downstream tasks as 3D
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object detection (Chen et al. 2017; Bai et al. 2022; Li et al. 2022) and segmentation

(Hazirbas et al. 2016; Guan et al. 2025), 3D scene reconstruction (Azinović et al. 2022),

and point tracking (Karaev et al. 2025; Ngo et al. 2025). In chapter 5, we use ideas from

multi-modal fusion architectures to integrate different modalities in order to improve the

frame reconstruction quality.



Chapter 3

On the Benefits of Instance

Decomposition in Video Prediction

Models

In the previous chapters, we introduced the task of video prediction, its applications

across domains such as robotics and autonomous driving, and the main research gaps

motivating this thesis. Besides, we introduced necessary background knowledge such as

Auto-Encoders, Transformers and Diffusion models. We also outlined three central re-

search proposals, each designed to address specific limitations of current video prediction

models.

In this chapter, we present the first contribution of this thesis: a video prediction frame-

work that explicitly models scenes in an object-centric manner. The goal of this model

is to test our first hypothesis that explicit instance decomposition improves the quality

of video predictions by enabling per-object motion modeling. We develop and evaluate a

transformer-based architecture that encodes and predicts individual object motions, and

we assess its benefits over standard non-object-centric models.

The chapter is structured as follows:

• Section 3.1 provides a brief introduction to general video prediction methods and

prior work on object-centric predictors;

30
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• Section 3.2 describes the proposed architecture in detail;

• Section 3.3 outlines our experimental setup, implementation details, evaluation met-

rics, and discusses the results;

• Section 3.4 and 3.5 summarizes the findings and discusses limitations of the proposed

method.

3.1 Introduction

Predicting future frames is challenging, since images are high-dimensional and result from

the combination of multiple objects’ appearances, dynamics and mutual interactions. For

example, consider the environment observed while driving a car. How this scene will de-

Figure 3.1: Typical scenario of a video prediction task: While we drive a car and want
to drive through a cross-road, after we observe a certain period of the past (blue frames)
which we see a pedestrian is trying to cross, we will anticipate the future motion (green
frames) of this pedestrian and slowdown our car (Oprea et al. 2020).

velop in the immediate future is dependent on critical elements in the scene (e.g., cars,

pedestrians, dogs) and their individual pattern of movement, including complex interac-

tions with both static and moving parts of the scene (e.g., a car stopping at a traffic light

or a dog following its owner on a leash). Hence, the complexity of the frame prediction

task rises quickly as more objects with different motions interact in a scene, and with this,

the size and training data required by prediction models.
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3.1.1 Joint Vs. Decomposed Modeling of Dynamic Scene

State-of-the-art general video prediction and generation models such as Veo3 (DeepMind

2025) and Sora (Brooks et al. 2024) tend to model the dynamics of a scene jointly with

the availability of large-scale datasets and computation power (e.g., High Performance

GPUs and CPUs). Although these models achieve remarkable performance, they are not

efficient because of the reliance on these resources, which makes them suboptimal. Such big

problems can usually be dealt with by decomposing them into smaller pieces. In the case

of video prediction, because a dynamic scene often consists of different objects and their

pattern of motion, the logic of decomposition is also applicable to video prediction task

for more efficient modeling with limited resources. The decomposition enables modeling

the appearance and dynamics of each part separately during prediction, thus reducing

computational cost and increasing statistical efficiency.

3.1.2 Decomposition Approaches

There are mainly two different ways of decomposing a scene (i.e., an image), implicit and

explicit decomposition. Implicit Decomposition means the scene is decomposed without

any external knowledge such as any form of labels, for example a segmentation map.

These approaches use unsupervised learning methods to decompose the scene into indi-

vidual objects by learning and categorizing similar features. For example, Hsieh et al.

(2018) uses DRNet (Denton et al. 2017) to learn a disentangled representation of appear-

ance and 2D pose implicitly with a structured pose and appearance representation. Wu

et al. (2023) uses object-centric representation learning (Locatello et al. 2020) to separ-

ate objects without supervision, and model the dynamics with a multi-slot transformer.

However, training unsupervised learning models also tends to need a well balanced and

large dataset, otherwise these kind of models will fail to capture the different semantic

information.



3.1. Introduction 33

Explicit Decomposition uses available label or a pre-trained semantic or panoptic seg-

mentation model when labeled data is unavailable to achieve object decomposition in a

scene. For instance, Bei et al. (2021) and Lee et al. (2021) use semantic segmentation mod-

els to generate a segmentation map, then predict the future segmentation map; Finally the

initial image is warped according to predicted segmentation maps. Compared to implicit

decomposition, the latter is more efficient and robust, because there are many ready and

available off-the-shelf models already trained on large-scale datasets, for example, family

of YOLO (Reis et al. 2023) models and more modern segmentation models: SAM family

(Kirillov et al. 2023; Ravi et al. 2024).

While some existing object-centric video prediction approaches we mentioned previously

achieved impressive results compared to agnostic video prediction models, they do not

focus on measuring the benefits of object decomposition for video prediction models in

a scientifically controlled way, i.e., keeping confounding factors such as the number of

network parameters, architecture or latent dimensionality constant. Moreover, some of

these works (Gao et al. 2022; Wang et al. 2022, 2018) did not use the modern large latent-

space Transformer architectures (Vaswani et al. 2017) that now yield excellent results

on diverse domains of videos (Yan et al. 2021; Wu et al. 2024); they instead used older,

smaller CNN- or RNN-based models.

To fill this gap, we perform a detailed study of the benefits of explicit modeling of sep-

arate objects’ motions during video prediction, using modern latent transformer models.

Rather than introducing an entirely new model, we develop a family of architectures

similar to VideoGPT, MOSO and Slotformer (Yan et al. 2021; Sun et al. 2023; Wu et al.

2023), that supports both single-slot (i.e. jointly modeling the whole scene) and multi-slot

(i.e. per-object) representations in a unified framework. This allows us to perform con-

trolled experiments on the benefits of object decomposition and on strategies for modeling

interactions. Specifically, we adopt a hierarchical approach that explicitly decomposes a

dynamic scene into individual objects using an instance segmentation model, before en-

coding these into separate latent spaces. We assume objects of the same class will have
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similar motion patterns, for example different cars or different pedestrians; therefore, we

will use same slot (e.g., sharing parameters) across all instances of each class. Neverthe-

less, each instance can still be modeled separately, but it is inefficient and computationally

expensive.

Our main contributions are as follows:

• We present the first systematic and comprehensive analysis of the benefits of explicit

object decomposition for latent transformer video prediction models.

• To achieve this, we develop a scalable framework for video prediction that supports

both the single- and multi-slot settings.

• We mitigate statistical inefficiencies in object-centric video predictors by sharing

weights (and thus knowledge about object dynamics) across slots within each object

class.

3.2 Methodology

Let X1:T = ⟨x1, x2, ..., xT ⟩, be a sequence of T RGB frames from a video clip, where

xt ∈ Rh×w×3. Our goal is to learn a probability distribution on M future frames XT+1:T+M ,

conditioned on the T past frames X1:T .

We hypothesise that predicting future frames is more effective when modeling each object

or instance separately rather than modeling the entire scene at once. Moreover, when

objects are decomposed, we aim to measure the degree to which cross-attention enables

learning interactions among objects, thus making prediction more accurate.

To test this hypothesis, we designed a family of models that support differing degrees of

object decomposition and interaction within a unified framework. We decompose a scene

into individual objects using instance segmentation models (Reis et al. 2023; Lüddecke

and Ecker 2022). The video prediction models then comprise an object-aware auto-encoder
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Figure 3.2: Top: Our proposed multi-object interacting model SCAT. First, the input
frames are decomposed via a segmentation model, then each decomposed sequence passes
through class-specific encoder to convert the 2D frames into latent representations; then,
class-specific transformer blocks learn and predict the dynamics of each instance and its
relationships with other instances in latent space; lastly, the predicted latent representa-
tion are decoded via joint decoder to reconstruct the predicted RGB frames. Bottom: The
non-decomposed single-slot variant SiS where the scene is modeled globally and jointly.

(OAAE) (Section 3.2.1), which extracts latent representations for each object, and a multi-

object transformer (Section 3.2.2) that predicts future latent representations conditioned

on previous ones; the OAAE is used to decode these future latents back into video frames.

To test our hypotheses, we propose three variants of our overall pipeline:

• Single Slot (SiS): Objects are not modeled separately; frames are encoded with a

single encoder, and a standard (not object-centric) transformer network is used to

predict future frames; this is similar to VideoGPT (Yan et al. 2021).

• Stochastic non-Class Attended Transformer (SNCAT): The scene is decomposed

into instances; both the encoder and predictor have one slot for each object in the

scene, with parameters shared across instances of the same class, but no interactions

among different object slots in the transformer.
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• Stochastic Class Attended Transformer (SCAT): Our full model, which encodes

instances separately, then uses a multi-slot transformer for future prediction, with

cross-attention to capture object interactions.

The overall pipeline of the fully-interacting decomposed SCAT and single slot SiS models

is shown in Figure 3.2.

3.2.1 Object-aware autoencoder

We now discuss the encoder we use for extracting the latent representation of a video,

which will be used in Section 3.2.2 as a lower-dimensional space for future prediction. We

first explain the object-aware autoencoder (OAAE) as used in the SCAT and SNCAT

models, then give a brief explanation of the simpler (non-object-centric) variant used in

SiS.

3.2.1.1 Instance decomposition

Let x ∈ Rh×w×3 be a frame in an RGB video sequence of width w and height h. It is

decomposed into a set of N instances with corresponding class labels using an off-the-

shelf segmentation model (Reis et al. 2023; Lüddecke and Ecker 2022). The segmentation

returns N non-overlapping binary masks, each belonging to one of m object classes ck ∈

{1, . . . ,m}; we then multiply the input frame by the respective masks to isolate each

object. The kth masked instance is denoted by x̃k for k ∈ {1, 2, . . . , N}, and its class

is denoted as ck. Assuming the segmentation is panoptic and covers all pixels of the

frame, the original frame can be reconstructed by recombining all instances of all classes

additively as follows:

x =
N∑
k=1

x̃k (3.1)
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3.2.1.2 Instance embedding

We modify the standard VQ-VAE (Oord et al. 2017) model to have a set of encoders Φ =

{ϕ1, ϕ2, ..., ϕm} and a set of embedding code books E = {e1, e2, ..., em}, each associated

with an individual semantic class. Each instance frame x̃k is passed to the corresponding

encoder ϕck and quantized with eck to produce a latent vector z̃k:

z̃k = eick where i = argmin
j
(∥ϕck(x̃k)− ejck∥2) (3.2)

The quantized representations are then concatenated into a single vector z =
⊕N

k=1 z̃k

that encodes the complete frame x (where
⊕

denotes concatenation operation).

For convenience, we will use the notation z = Φ(x) to denote the overall encoding op-

eration. This latent representation z can then be passed to a single joint decoder Ψ to

reconstruct the full frame, i.e., x̂ = Ψ(z). After each up-sampling convolutional layer in

the decoder, we incorporate Frequency Complement Modules (FCM) (Lin et al. 2023) to

learn not only from the target frame but also from feature maps between encoder and de-

coder. The FCM module consist of batch normalization layer, ReLU activation, Dropout

layer and finally a 2-dimensional Convolutional layer.

3.2.1.3 Loss function

Since our OAAE is a multi-object extended version of the original VQ-VAE (Oord et

al. 2017) with some features of FA-VAE (Lin et al. 2023), we also extend the original

loss functions correspondingly. There are 4 losses: feature loss, commitment loss, vector

quantization loss (VQ loss) and reconstruction loss. Following Lin et al. (ibid.), we impose

loss on feature maps, not only on the final pixels; similarly to them, we use focal frequency

loss (FFL (Jiang et al. 2021)) between the output of encoder convolution layers and

decoder FCM layers:

Lfeature =
m∑
c=1

L−1∑
l=0

FFL(f c
l , gL−l) (3.3)
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where c indexes encoders (recall there is one per class), l indexes over convolutional layers

in the cth encoder and L− l over corresponding FCM layers in the decoder (L is the total

number of decoder layers), fl represents the feature map of the lth encoder layer, and gl

that of the lth FCM module in the decoder. The VQ and commitment losses are similar

to the original VQ-VAE, except we compute these for each class c and instance k, then

sum over these:

LV Q =
N∑
k=1

∥sg[ϕck(x̃k)]− eck∥2 (3.4)

Lcommitment =
N∑
k=1

∥ϕck(x̃k)− sg[eck ]∥22 (3.5)

where sg is the stop-gradient operator. Finally, the reconstruction loss is composed of

pixel-space and frequency-space terms calculated between the reconstructed and original

frames:

Lrecon = − log p(x|Ψ(Φ(x))) + FFL(x,Ψ(Φ(x))) (3.6)

Putting all four terms together yields the final loss function for training OAAE:

Loaae = Lrecon + αLfeature + LV Q + βLcommitment (3.7)

where α and β weight the different loss terms. Once the OAAE is trained, we denote the

latent representation for the frame xt at time step t as zt. This provides a structured and

disentangled representation, capturing N instances across m classes.

3.2.1.4 Variations of the OAAE

In order to measure whether object decomposition helps with prediction, we also define a

non-decomposed version of the VQ-VAE, for use in model SiS. This only takes the original

non-segmented frame as input. It is processed by a single encoder, with the latent size

matched to the total latent size (over all instances) for model SCAT. In terms of losses,

Lrecon remains unchanged, LV Q, Lcommitment and Lfeature will be a modified to a single
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term without summation since there is now a single encoder and codebook, and feature

maps from just one instance (e.g. the whole frame). For the SNCAT model variant, the

OAAE is identical to the main version for SCAT, only the subsequent transformer stage

is different.

3.2.2 Prediction Model

Using the OAAE, a video clip X is encoded as a sequence of latent representations Z =

⟨z1, z2, . . . , zT ⟩. To learn the instance dynamics and its relationship with other instances,

we modify the original decoder-only transformer (Vaswani et al. 2017; Radford et al.

2018) into a slot-per-instance auto-regressive transformer that has cross-attention between

instances, and shares parameters across instances of each class.

Our transformer consists of alternating attention and feed-forward blocks. However, unlike

typical 1D transformers, it includes factored spatial and temporal attention blocks; each

of these is applied both for self-attention (i.e., each instance independently attending to

other locations / time-points of itself), and cross-attention (i.e., each instance attending

to different locations / time-points of all other instances). We use PreNorm (Xiong et al.

2020) in each transformer block. The output vectors for each instance from the last trans-

former layer are concatenated and passed through a linear layer. The output size matches

the number of embeddings in OAAE, allowing the model to predict the probability of

possible indices of future frames.

Because the latent vectors produced by the OAAE are a concatenation of each object

instance’s latent encoding, we can write the sequence of latent encodings in the video for

each individual object instance as Z̃k = ⟨z1k, z2k, ..., zTk ⟩ where k denotes the kth instance.
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Figure 3.3: Top: Architecture of the multi-object latent transformer. Bottom: Detail of
spatial and temporal attention blocks.
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3.2.2.1 Spatial and temporal extensions of attention layers

Since an instance latent sequence Z̃k has a 3-dimensional shape t × (h × w) × c, where

c represents embedding dimension in OAAE, it encompasses both temporal and spatial

information. Merely flattening the latent vector to form the video sequence in latent space

risks losing crucial spatial details. Hence, inspired by (Sun et al. 2023), all attention layers

are applied in both spatial (h×w) and temporal t dimensions. This ensures the model can

capture not only the temporal relationships within the sequence but also the important

spatial information embedded within each latent representation.

3.2.2.2 Instance-level self-attention

For each latent instance frame ztk in the sequence, we first apply learnable positional em-

beddings. This embedding is added to the input features prior to self-attention to provide

the model with information about the position of each instance within the sequence.

Scaled self-attention is then applied to each instance sequence separately in order to learn

instance-specific dynamics:

SAc(Z̃k) = softmax

(
QkK

T
k√

dk

)
Vk (3.8)

where SA denotes instance-specific self-attention for objects of class c, Qk, Kk and Vk are

the key, query and value calculated by a linear function on Z̃k;
1√
dk

is a scaling factor that

prevents excessively large values in the attention score. Following self-attention, we apply

a further linear projection layer.
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3.2.2.3 Instance-level cross-attention

After the self-attention layer that treats each instance separately, we apply cross-attention

between instances to learn the potential relationships and interactions between objects. In

this layer, each instance attend the space/time dimensions of each of the other instances:

CA(Z̃k) =
⊕

i=1...N, i ̸=k

softmax

(
QkKi

T

√
dk

)
Vi (3.9)

Here CA denotes the cross-attention operation between instance k and the remaining

instances. The value Vi and key Ki are derived from Z̃i, while the query originates from

Z̃k. The cross-attention layer’s output, being n− 1 times larger than the input because of

concatenation, is reduced to the original size through a linear layer.

3.2.2.4 Training and inference

The model outputs probabilities over the codebook indices from OAAE, and we use cross-

entropy loss to minimize the difference between the predicted and actual distributions.

During training, all model variants are trained with teacher forcing on 10-frame clips.

Before the forward pass, 10% noise sampled from a standard normal distribution N (0, 1)

is added to the input frames. During inference, auto-regressive sampling is used, starting

from an initial sequence of conditioning frames, with softmax temperature treated as a

hyperparameter.
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3.2.2.5 Variants of the transformer

We have described the transformer as used in the full model SCAT. In the non-interacting

model SNCAT, cross-attention is simply replaced by a per-object feed-forward network

of similar capacity. The single-slot version SiS has a single, larger latent vector for the

whole scene instead of separate latents for each object, and we also increase the hidden

dimensionality of the transformer (in fact resulting in considerably more parameters). The

number of feed-forward and self-attention layers remains the same.

3.3 Experiments

We perform a series of experiments to measure the benefit of separately modeling the

dynamics of objects during video prediction. Our focus is on comparing different model

variants in a controlled setting, keeping model capacity approximately equal but changing

whether the latent representation is decomposed over objects, and whether interactions

between objects are modeled if so. In addition, to place our results in context, we per-

form a comparative evaluation against other recent video prediction models under similar

conditions.

3.3.1 Experimental protocol

Each model is given five frames as input, then predicts the following 5–25 frames depending

on the dataset. We use 64 × 64 resolution for all datasets; The models are implemented

in PyTorch and trained on a single NVIDIA RTX 3090 GPU, reflecting our emphasis

on computational efficiency and model scalability; To ensure a rigorous comparison that

focuses on the benefit of instance decomposition, we ensure the numbers of parameters

in each model are as similar as possible. Our focus is not on achieving state-of-the-art

performance but rather on analyzing the benefits of explicit object-centric modeling within
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a balanced and controlled setting. For quantitative evaluation, we report Peak Signal-

to-Noise Ratio (PSNR) (Horé and Ziou 2010), Structural Similarity (SSIM) (Wang et

al. 2004), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al. 2018).

PSNR measures the pixel-wise fidelity between the generated and ground truth image

pairs; SSIM evaluates perceptual similarity in terms of luminance, contrast, and structure;

LPIPS uses deep network features to capture perceptual similarity. We focus on LPIPS

scores in this chapter, because it is more aligned with human perception while PSNR and

SSIM are overly sensitive on slight misalignment that leads to poor scores. The results are

obtained by sampling with 10 different temperature values ranging from 0.1 to 1.0 with

an increment of 0.1 (from low to high stochasticity), and using argmax to sample the

most likely future indices yielding 11 evaluations in total. For each test video sequence, 25

samples are generated for the same input, which is standard in stochastic prediction tasks

(Denton and Fergus 2018; Yan et al. 2021), and the best one is selected in terms of metric

score. After evaluating different model variants on each dataset, bootstrapping is used to

estimate the spread. We sampled 10000 same-sized evaluation sets with replacement, then

calculated the mean and standard deviation of these sets, which are reported in the tables

and figures.

3.3.2 Datasets

We conduct experiments on five different datasets characterized by weak and strong in-

teractions. We define weak interactions as scenarios where the dynamics of an instance

are unaffected by other instances, or minimally so. In contrast, strong interactions involve

instances significantly affecting each other’s dynamics, such as during collisions. Since our

focus is measuring how the interaction between objects are handled by explicit object

decomposition and cross-attention, we do not address the problem of background motion

in this chapter, therefore none of the dataset we use features moving background.
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Figure 3.4: An example of KTH dataset

Figure 3.5: An Example of Real-Traffic dataset

The first weak interaction dataset we use is the KTH human action dataset (Schuldt et al.

2004). This includes six action types performed by 25 individuals. Although the primary

focus is on the person, there remains some slight interaction between the person and the

background, such as shadows cast by the individual on the background. Following MOSO

(Sun et al. 2023), we use videos of persons 1-16 for training and 17-25 for testing. We

used CLIPSeg (Lüddecke and Ecker 2022) to segment the person and the background

with the prompt ’person’ and ’background’. Each prediction model is conditioned on

an input sequence of five observed frames and is required to predict subsequent 15 future

frames. This setup is motivated by the characteristics of the running scenes in the KTH

dataset, where the person typically exits the frame around the 20th frame after entering a

scene. Predicting beyond this point would yield limited meaningful content, as the primary

subject of interest is no longer visible.

The second weak interaction dataset is the Real-Traffic dataset from Ehrhardt et al.

(2020). This comprises video clips taken from a CCTV camera overlooking a highway

intersection. The background is static, and only the cars are moving in the scene; there are

up to five cars per clip. The original dataset contains 615 video clips with various lengths

of total frames, we split the dataset into a more standardized 10 frames per clip with

5,089 clips for training and 2,181 for validation. During inference, the models are given

five frames and required to predict five future frames. We used YOLOv8 (Reis et al. 2023)

to extract each instance. Each car’s motion is independent of other cars most of the time;

however, interactions do occur, such as when a car stops before the intersection, causing
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Figure 3.6: An example CLEVR-2 dataset

Figure 3.7: An example CLEVR-3 dataset

other cars behind it to slow down. For quantitative evaluation, we therefore identify a

subset of video clips from the test set with the strongest interactions. We calculate the

distances between centroids of different cars, and select clips where the distance between

any pair of cars is less than 25% of the image size; this yields a test set of 807 clips.

For strong interactions, we used Kubric (Greff et al. 2022) to generate a series of synthetic

datasets inspired by CLEVRER (Yi* et al. 2020) but exhibiting stronger interactions and

more visual complexity. Specifically, CLEVR-2 contains scenes with two spheres with

random velocity sampled such that they will collide; CLEVR-3 scenes are similar but

include another sphere that does not interact with the first two. Kubric-Real uses a

realistic background and replaces the basic geometric objects with 3D-scanned objects—

bottles and pots, since these exhibit interesting dynamics due to their cylindrical shapes.

All three datasets use a colliding position range of [−1, 1] and a fixed, static camera

looking at (0, 0, 0). The summoning radius is set to 5 for CLEVR datasets and 8 for

Kubric-Real, with minimum summoning distances of 2 for CLEVR and 4 for Kubric-Real.

CLEVR datasets feature object friction values of 0.4 for metal spheres and 0.8 for rubber

spheres, while Kubric-Real has a uniform friction of 1.0. This higher friction in Kubric-

Real necessitates a larger maximum initial velocity of 7, compared to 5 in the CLEVR

datasets. The number of objects also increases from 2 in CLEVR-2 to 3 in CLEVR-3,

and 4 in Kubric-Real. The generation parameters are given in Table 3.1 and the examples

are shown in Figure 3.6, Figure 3.7 and Figure 3.8. For all synthetic datasets, the models
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Figure 3.8: An example of Kubric-Real dataset

CLEVR-2 CLEVR-3 Kubric-Real

Colliding Position Range (x, y) [(-1, 1),(-1, 1)] [(-1, 1),(-1, 1)] [(-1, 1),(-1, 1)]
Radius for Summoning Objects 5 5 8
Min Distance When Summoning 2 2 4
Max Initial Velocity 5 5 7
Ground Friction 0.3 0.3 0.3
Object Friction 0.4,0.8 0.4,0.8 1.0
Num Objects 2 3 4
Num Object Class 1 1 2
Camera Position Fixed Static Fixed Static Fixed Static
Camera Looks At (x, y, z) (0, 0, 0) (0, 0, 0) (0, 0, 0)

Table 3.1: Parameters for Generating CLEVR-2, CLEVR-3 and Kubric-Real Datasets

are required to predict 25 future frames given five observed frames. This is because most

interactions in these scenarios complete or stabilize around the 25th frame.

3.3.3 Results

In this section, we first describe the process of how we select the best performing sample

of n samples, as well as the best result of the whole evaluation set. Then, we compare our

proposed model variants to evaluate the benefit of explicit object-centric modeling in a

controlled setting. Finally, we also compare our best performing model variant with other

similar approaches.
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Figure 3.9: Worst and best cases of 25 samples generate by SCAT on Kubric-Real when
the temperature equals to 0.7 which performs best among other temperatures.

3.3.3.1 Evaluation Protocol

As described previously in Section 3.3.1, we now provide details on our evaluation strategy.

Specifically, we explain: (i) how we select the best-of-N samples for each test sequence,

where N=25; and (ii) how we identify the best overall result among 11 evaluations ob-

tained under different temperature values. Figure 3.9 and Figure 3.10 shows the qualitat-

ive and quantitative results, which are generated by using SCAT model on Kubric-Real

dataset, of best-of-N samples. Each sample is generated based on the following:

P (yt = k) =
exp

( zt,k
τ

)∑V
j=1 exp

( zt,j
τ

) , yt ∼ Categorical(P (yt = k)) (3.10)

where t denotes the timestep in the predicted sequence, k indexes a candidate token from

the vocabulary of size V , and zt,k is the logit produced by the model for token k at timestep

t. The scalar τ > 0 is a temperature parameter controlling the sharpness of the probability

distribution: values τ < 1 make the distribution more peaked, whereas τ > 1 produce a

smoother distribution. The term P (yt = k) represents the probability of selecting token k

at timestep t after applying the temperature-scaled softmax transformation to the logits.

Finally, yt ∼ Categorical(·) denotes sampling the discrete token index yt from the cat-

egorical distribution defined by these probabilities. Both the qualitative and quantitative

results indicate that the best-case predictions are significantly closer to the ground truth
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Figure 3.10: Worst, Average and Best cases of the sample shown in Table 3.9; Note that
the Standard deviation presented in this figure is obtained without using bootstrapping
technique

compared to the average or worst cases. As illustrated in Figure 3.9, the predicted object

trajectories in the best-case sample are more accurately aligned with the ground truth,

whereas in the worst-case sample, the object positions deviate substantially. However, the

worst-case does not indicate our model’s performance is poor but the object trajectories

are distant from the groun-truth trajectories.

After selecting the best-case prediction for each sequence in the test set of a given data-

set, we compute the overall mean and standard deviation of the evaluation metrics using

bootstrapping, as described in Section 3.3.1, for each different temperatures. The evalu-

ation results of the SCAT model on the Kubric-Real dataset are presented in Table 3.2

and Figure 3.11. As shown in Figure 3.11, increasing the temperature generally improves

the prediction quality, likely due to enhanced sample diversity. However, when the tem-

perature becomes too high (i.e., the sampling becomes overly stochastic), the prediction

quality begins to deteriorate. This trend is also evident in Table 3.2, where all metric

scores improve steadily as the temperature increases from 0.1 to approximately 0.6-0.7,

but degrade beyond that point. These results indicate that moderate stochasticity can

help the model avoid overly conservative predictions, whereas excessive randomness leads

to unstable or unrealistic outputs.
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Figure 3.11: Performance of SCAT on the Kubric-Real dataset across temperature values
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Figure 3.12: Performance of the SCAT model on the Kubric-Real dataset under varying
sampling temperatures. Each subplot shows the trend for one evaluation metric. Moderate
temperatures improve performance, while both excessive randomness and deterministic
sampling (argmax) result in degraded predictions.
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temperature PSNR↑ SSIM↑ LPIPS↓

argmax 24.124±0.190 0.773±0.004 0.122±0.003
0.1 24.690±0.193 0.783±0.004 0.116±0.003
0.2 24.793±0.191 0.785±0.004 0.113±0.003
0.3 24.871±0.191 0.786±0.004 0.112±0.003
0.4 24.931±0.190 0.787±0.004 0.111±0.003
0.5 25.022±0.190 0.788±0.004 0.110±0.003
0.6 25.098±0.189 0.789±0.004 0.108±0.003
0.7 25.129±0.188 0.789±0.004 0.108±0.003
0.8 25.119±0.187 0.787±0.004 0.108±0.002
0.9 25.025±0.182 0.783±0.004 0.112±0.003
1.0 24.678±0.185 0.772±0.004 0.124±0.003

Table 3.2: LPIPS score of SCAT on Kubric-Real dataset with different temperature para-
meters

3.3.3.2 Internal Evaluation

Table 3.3 shows quantitative results on the two weak-interaction datasets. For KTH, the

models are given five frames and required to predict 15 frames and for Real-Traffic, they

are required to predict five frames. In both datasets the SCAT model performs better

than the two other variants (SNCAT & SiS). First, modeling the scene separately by seg-

menting it at the instance level (SNCAT) leads to predictions comparable to modeling

the whole scene at once (Single-slot model), while using a much smaller model (25M vs.

48M parameters on KTH, 27M vs. 286M parameters on Real-Traffic). In KTH, we see

negligible decrease compared to SiS model, whereas in Real-Traffic a slight improvement

has been made due to this dataset having more instances and stronger interaction between

instance compared to KTH. Second, adding cross-attention to the model to handle po-

tential interactions between instances (SCAT) leads to an improvement in performance

across all metrics. Since KTH features a single instance with negligible interaction, the

performance improvement is subtle on each metric: SSIM (+0.003), PSNR (+0.05) and

LPIPS (-0.03). On Real-Traffic, which has more instances and higher interactions, con-

sistent improvements are observed in all metrics (PSNR: +0.78, SSIM: +0.01, LPIPS:

-0.007). These results confirm the computational advantage of both the decomposition

and cross-attention components of the approach. From Figure 3.13, we can see that in

Real-Traffic dataset, improvements are also shown in every time step of the prediction.
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In KTH dataset, since the interaction level is negligible, the improvement is not obvi-

ous. This shows that the proposed video prediction model is more suitable to scenarios

where there are multiple object interactions. Table 3.4 provides quantitative results on
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Figure 3.13: Mean and Std of LPIPS metric for KTH(left) andReal-Traffic(right) datasets

Table 3.3: Quantitative results on KTH and Real-Traffic datasets
KTH Real-Traffic

PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms

Single-Slot 26.49±0.22 0.786±0.005 0.100±0.003 48M 29.63±0.12 0.939±0.001 0.023±0.0005 286M
SNCAT 26.36±0.17 0.785±0.005 0.101±0.003 25M 30.02±0.12 0.946±0.001 0.018±0.0004 27M
SCAT 26.54±0.18 0.789±0.004 0.097±0.003 23M 30.41±0.12 0.949±0.001 0.016±0.0004 28M

the strong-interaction datasets. On CLEVR-2, the SCAT model (PSNR: 31.11) performs

similarly to the single-slot model (PSNR: 31.70) but outperforms it on LPIPS (0.047 vs.

0.048). In contrast, SNCAT performs worse than the single-slot model both on CLEVR-2

and CLEVR-3 datasets, this is due to the lack of cross-attention to model interactions

between objects which lead to deformations of the spheres when collision happens. In

CLEVR-2, where only two spheres colliding, SiS model can handle this simple interac-

tion. However in CLEVR-3, where one sphere is added but not interacted with the original

two, SiS model starts to struggle but SCAT performs best by a large margin. This also

shows that SCAT’s efficiency of modeling multiple objects’ motion without the need of big

sized model. In Kubric-Real, SNCAT preserves object shapes better than the single-slot

model, which struggles with deformation after collision. SCAT outperforms both models

in LPIPS (0.108 vs. 0.146 for the single-slot model) and SSIM (0.789 vs. 0.748 for the

single-slot model), emphasizing the importance of cross-attention in more realistic and

complex interaction scenes. Also, From Figure 3.15 we can see that due to the strong in-

teractions, removing cross-attention makes SNCAT unable to beat the single slot model.
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In contrast, SCAT performed better than other two variants because of interaction hand-

ling with cross-attention. On Kubric-Real, note that towards the end of the prediction

time frame, the prediction accuracy of SCAT and SNCAT starts to improve again. This

is due to the fact that the moving object has either stopped moving or left the scene

entirely. These results confirm our hypothesis that instance segmentation is important

for video prediction and that cross-attention is an effective way to encode strong inter-

actions. Moreover, without cross-attention, instance separation on its own is sufficient

to achieve similar or better performance compared to the baseline single-slot model on

complex scenes (Real-traffic, Kubric-Real) having more than two instances, with only a

fraction of the parameters.

Input Prediction
t = 1 t = 5 t = 7 t = 9 t = 13 t = 18 t = 30

G
T

SiS

SNCAT

SCAT

Figure 3.14: Comparison of different model variants on the Kubric-Real dataset. SCAT
successfully predicted that the blue pot bounced away whereas SNCAT neglected the
interaction between other objects and let the blue pot go through from other objects. The
single-slot model SiS fails to capture the appearances well, yielding indistinct predictions
for later frames.

Table 3.4: Quantitative results on CLEVR-2, CLEVR-3, and Kubric-Real datasets
CLEVR-2 CLEVR-3 Kubric-Real

PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms

Single-Slot 31.70±0.14 0.925±0.001 0.048±0.001 105M 31.25±0.11 0.911±0.001 0.057±0.001 186M 24.14±0.17 0.748±0.004 0.146±0.002 287M
SNCAT 29.72±0.10 0.908±0.001 0.093±0.002 25M 29.55±0.01 0.898±0.002 0.087±0.002 26M 24.18±0.18 0.759±0.004 0.139±0.003 38M
SCAT 31.11±0.12 0.919±0.001 0.047±0.001 25M 34.42±0.14 0.947±0.001 0.022±0.001 26M 25.13±0.19 0.789±0.004 0.108±0.003 40M
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Figure 3.15: Mean and Std of LPIPS metric for CLEVR-2(left), CLEVR-3(middle) and
Kubric-Real(right) datasets

Figure 3.16: FLOPs (GMac) of a single forward pass comparison across different model
variants; Note that the Y-axis in this figure uses log-scale
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Figure 3.17: Impact of over- and under-segmentation on SCAT performance simulated
via dilation and erosion operations on Kubric-Real dataset. We evaluated the samples
generated by using argmax on logits to isolate the effect of dilation and erosion from
stochasticity.

In addition to the model’s prediction performance, we also measure the FLOPs of a single

forward pass of our proposed variants to evaluate their computational efficiency, which

shown in Figure 3.16. It shows both SCAT’s and SNCAT’s encoder FLOPs are slightly

higher compared to SiS’s encoder, this is expected because the variants with decompos-
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ition have individual encoder for an object class where single-slot encoder only have a

single encoder. However, the total FLOPs of decomposed variants are smaller than the

one without decomposition across different datasets even when the segmentation model is

involved. This suggests the decomposed variants are more computationally efficient than

non-decomposed variant. Since SNCAT and SCAT variants depend entirely on the per-

formance of instance segmentation model, we simulate under- and over-segmentation of

an instance segmentation model with image processing techniques such as erosion and

dilation. Figure 3.17 shows that with the increase of the kernel size, performance of SCAT

is decreased. This suggests when the segmentation model’s performance is poor, the pro-

posed pipeline’s performance will also decrease accordingly. It is worth noting that al-

though both over- and under-segmentation has negative impact on the prediction quality

of SCAT, we can see when the objects are over-segmented (dilation), it tends to have

smaller effect compared to under-segmentation. This is likely because over-segmentation

still provides full information about an instance. More generally, SCAT still performs bet-

ter or similar to SiS when the kernel sizes of dilation and erosion is relatively small (9 for

dilation and 7 for erosion). The implication is that even when the segmentation model

makes small errors, explicit models like SCAT will still outperform single-slot models.

3.3.3.3 External Evaluation

Although the main focus of our work is on measuring the benefit of object-centric video

modeling in a controlled setting, we also compare our method with other similar methods

to better contextualize those results. Our model is designed to be small yet efficient,

demonstrating high performance without the need for large-scale resources. In contrast,

many existing models rely on significantly larger architectures and large-scale datasets to

achieve similar results, which can be resource-intensive and less practical. To ensure a fair

and balanced evaluation, we therefore adjusted each method’s hyperparameters to match

our model’s size (i.e., number of weights), providing a level playing field for comparison.

We compare against VideoGPT (Yan et al. 2021), which uses a similar architecture, and

the CNN-based SimVP (Gao et al. 2022) for a comprehensive evaluation.
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Figure 3.18: Qualitative results from our full model and baselines on the KTH dataset

Input Prediction
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SVG

VideoGPT
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Figure 3.19: Qualitative results from our full model and baselines on the Real-Traffic
dataset
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Figure 3.20: Qualitative results from our full model and baselines on the Kubric-Real
dataset

Table 3.5: Quantitative results on KTH, Real-Traffic and Kubric-Real datasets
KTH Real-Traffic Kubric-Real

PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms

SVG 15.93±0.23 0.614±0.008 0.161±0.004 23M 25.64±0.11 0.900±0.002 0.095±0.0024 31M 16.52±0.13 0.611±0.006 0.699±0.009 41M
VideoGPT 24.44±0.18 0.789±0.004 0.087±0.002 41M 29.13±0.10 0.927±0.001 0.023±0.0006 55M 23.62±0.17 0.700±0.005 0.155±0.003 67M
SimVP 25.17±0.22 0.812±0.005 0.130±0.004 56M 30.16±0.11 0.949±0.001 0.018±0.0004 31M 22.21±0.15 0.710±0.005 0.213±0.003 59M
SCAT 26.54±0.18 0.789±0.004 0.097±0.003 23M 30.41±0.12 0.949±0.001 0.016±0.0004 28M 25.13±0.19 0.789±0.004 0.108±0.003 40M

Prediction performance on KTH, Real-Traffic and Kubric-Real are presented in Table 3.5

and Figure 3.21. The SCAT model outperforms or is competitive with other models across

all three datasets, with a smaller model size, confirming the effectiveness of instance-level

segmentation and cross-attention. On the simpler KTH dataset, SCAT achieves same

SSIM compared to VideoGPT (0.789 vs 0.789) and slightly lower LPIPS than VideoGPT

(0.087 vs 0.097), but lower quality according to PSNR (26.54 vs 24.44). Moreover, from

Figure 3.18 we can see that only SCAT maintained human posture throughout the predic-

tion. On Real-Traffic, SCAT achieved best performance in PSNR metric, with PSNR of

30.41, which is higher than VideoGPT (29.13) and SimVP(30.16). Moreover, SCAT also

performs best under the perceptually robust LPIPS metric (0.016), outperforming both

VideoGPT (0.023) and SimVP (0.018), indicating better perceptual quality. Also, from

Figure 3.19 we can see that when t=9 and t=10, SCAT maintained the distance between
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Figure 3.21: Mean and Std of LPIPS metric for KTH(left), Real-Traffic(middle) and
Kubric-Real(right) datasets, where x-axis and y-axis denotes time-step and mean±std,
respectively.

Table 3.6: Comparison of FLOPs (GMac), Peak vRAM (GB) and Latency (s) of com-
pleting the prediction of required future frames (15 for KTH, 5 for Real-Traffic, 25 for
Kubric-Real)
Dataset SVG VideoGPT SimVP SCAT

FLOPs Peak vRAM Latency FLOPs Peak vRAM Latency FLOPs Peak vRAM Latency FLOPs Peak vRAM Latency

KTH 78.61 0.46 0.31 89497.6 1.27 15.03 31.5 0.80 0.04 1011.06 + (46.6) 0.68 + (0.98) 0.61 + (0.36)
Real-Traffic 32.44 0.50 0.14 35942.4 1.46 5.88 10.5 0.57 0.01 1414.35 + (344.1) 1.05 + (1.19) 1.33 + (1.94)
Kubric-Real 125.62 0.55 0.49 162247.7 1.64 26.23 121.0 1.49 0.12 7796.71 + (0.0) 1.25 + (0.0) 4.06 + (0.0)

two cars and kept them separate while the other models merged the two cars. Finally, on

Kubric-Real, where strong interactions and realistic objects are present, our model leads

by a large margin on every metric. This further demonstrates that the proposed model

achieves larger improvements on scenes with more instances and strong interactions. In

Figure 3.20, SimVP, VideoGPT and SVG all failed to predict the collision between two

objects, while SCAT predicted this accurately and maintained the object shape.

Following internal experiments, we also compare the proposed method in terms of com-

putational efficiency against the baselines. We compare FLOPs of a single forward pass,

peak GPU memory usage in inference time and the total time spent to finish predicting

the required number of frames for a dataset. From Table 3.6, we can see SCAT’s FLOP is

higher than SVG and SimVP, and it is scaled up further with the addition of segmentation

models. This is an expected limitation of our model that as the number of classes and

instances increases, the cross-attention module will be operated between each instance

pairs, leading to high computational cost compared to simple and light architectures like

SimVP and SVG. However, SCAT is faster and more efficient than VideoGPT due to their
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different prediction strategies. VideoGPT uses latent codes to represent the entire video

and predicts frames token-by-token over multiple iterations, requiring more FLOPs and

time. In contrast, SCAT predicts all tokens for a frame at a single timestep, making it

more efficient. It is still worth noting that all of the experiments conducted in this chapter

used relatively limited computation power (single NVIDIA RTX 3090 GPU), therefore

this approach can be scaled to devices having more computation power to potentially

scale up the inference latency.

3.4 Conclusion

In this chapter, we investigated and analyzed the benefits of explicit object-centric de-

composition in video prediction. We presented a flexible video prediction pipeline based

on an object-aware VQ-VAE and multi-object Transformer, that operates on separate

objects extracted via panoptic segmentation; we also defined variants that lack object-

decomposition and support for interactions to measure the impact of these design choices

in a controlled manner. We evaluated the proposed models on five datasets, finding that

when a dynamic scene is explicitly decomposed and encoded into a structured latent

vector, prediction quality is better than an equal-capacity model without decomposition,

and that this improvement is larger for scenes that involve strong interactions between

objects. This confirms that using both object decomposition and cross-attention to handle

interactions improves the overall prediction quality when strong interactions occur in a

dynamic scene.
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3.5 Limitations

Our model has three inherent limitations. First, object decomposition is entirely reliant

on the performance of instance segmentation models, this is evident in Figure 3.17 that

the proposed model’s performance is decreased when the kernel sizes to simulate over-

and under-segmentation became bigger. Second, our experiments throughout the chapter

focused solely on static camera settings, and additional experiments would be required

to evaluate the robustness of the approach to scenarios with moving cameras. Third, the

encoder encodes predefined object classes. For example, pots and bottles in Kubric, cars

in Real-traffic and spheres in CLEVR datasets. Based on this predefined latent space,

the transformer will also learn to predict the dynamics of the given latent space during

training. Because each object in a video is first segmented and the instances which belong

to the predefined classes are selected to process, if there are novel object classes outside the

scope of the predefined classes, then the novel objects are automatically categorized to the

background slot. Therefore, this novel object’s motion is learned and predicted implicitly.

For example in Kubric-Real, the model is trained to predict the motions of pots and

bottles, and if we initialize a new object with different characteristics than pre-defined

object-class (i.e., a box), its motion is learned in the background slot implicitly.



Chapter 4

Flow and Depth Assissted Video

Prediction for Occlusions

In the previous chapter, we discussed how decomposed modeling of a multi-object scene

can be beneficial for future frame prediction. It showed promising results on five differ-

ent datasets includes both synthetic (CLEVR-2, CLEVR-3, Kubric-Real) and real-world

scenarios (KTH & Real-Traffic). The proposed pipeline showed significant improvements

on handling object interaction compared to non-decomposed standard video prediction

models. However, the datasets chosen to conduct the experiments are designed to have

limited object occlusion and without background motion. This leads to a critical research

question that can object decomposition alone be beneficial for occlusion and background

motion? In the occlusion event, a completely occluded object is invisible to the video

prediction model making SCAT less practical in these scenarios. Moreover, the motion in-

formation is also not explicit with RGB frames. Therefore, SCAT is not directly applicable

to prediction of the dynamics of a clip that has occlusion and background motion.

In this Chapter, we will focus on occlusion and background motion prediction problem

which theoretically cannot be handled by solely relying on object decomposition. We build

upon the model we proposed in the previous chapter by integrating additional modalities

that can provide geometrical and motion information. The chapter is structured as follows:

• Section 4.1 gives brief introduction about the importance of video prediction models’

ability to work well in occlusion scenarios;
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• Section 4.2 introduces the proposed approach in detail;

• Section 4.3 introduces the dataset we used in this chapter, new metrics to better

evaluating the motion of prediction, as well as the experimental results and findings.

• In Section 4.4, a comprehensive conclusion is given and briefly discusses the limita-

tion of this chapter.

4.1 Introduction

Occlusion poses a fundamental challenge in video prediction within dynamic scenes. In

multi-object environments, where interactions are common, occlusions frequently occur,

causing objects to become partially or fully invisible for brief periods. This phenomenon

significantly complicates the task of predicting future frames, as models must infer the

motion and appearance of occluded objects from limited visual cues. Similarly, in single-

object scenarios, deformable objects, such as garments, can exhibit self-occlusion when

one part of the object overlaps another, further increasing the complexity of accurate

prediction. Therefore, simply using RGB images for complex motion events is not sufficient

and explicit motion information is needed to handle this problem more efficiently.

Several approaches aimed to improve video prediction by incorporating optical flow es-

timation (Bei et al. 2021; Lu et al. 2021; Luo et al. 2021; Zhang et al. 2024b). However,

two major limitations of optical flow are that it accumulates errors over time and loses

information when objects become fully occluded, e.g., being completely invisible. As a res-

ult, optical flow-based video prediction methods struggle to handle complete occlusions

effectively.

Unlike optical flow, which relies on dense pixel-wise motion estimation, recent progress in

point tracking methods allows more robust motion estimation by tracking and estimating

key points on objects even when they are fully occluded (Karaev et al. 2025; Tumanyan

et al. 2024; Xiao et al. 2024).
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Equally critical to occlusion handling, depth maps provide rich geometric information

about the 3D structure of a scene, enabling precise spatial reasoning and occlusion dis-

ambiguation (Godard et al. 2017). Depth maps are essential for determining occlusion

hierarchies, as they indicate the relative position of objects from the camera, allowing

models to identify which objects occlude others.

In this chapter, we hypothesize that integrating information about depth and the flow of

points into a video prediction model will enhance its ability to anticipate object motion,

particularly in occluded scenarios and the clips has background motion. While key points

helps to track object motion trajectories, depth maps introduce explicit spatial constraints

that improve occlusion-aware prediction. To investigate this, we build on our method

proposed on the previous chapter as our video prediction model, which lacks robustness

to occlusions when only relying on RGB images; we define a new modality derived from

tracked key points called point flow and propose a variant that incorporates both point flow

and depth map as additional information to the model. Our approach enables the model to

retain motion information when objects become temporarily invisible, improving future

frame prediction accuracy by leveraging both motion trajectories and spatial structure

alongside visual cues. We want to understand how the model will perform in terms of

motion, specifically we want to measure if the model can predict the reappearance of fully

occluded objects. Thus, we test our model not only on appearance-based metrics, but also

define two motion-based metrics, which are optical flow difference (OFD) that calculates

the difference between the optical flow between predicted and ground-truth RGB frames,

and earth mover’s distance (EMD) on the binary object map of predicted frames between

the ground-truth, to evaluate the predicted motion accuracy.

Our main contributions are as follows:

• We provide the first systematic analysis of how depth and point flow impact the

performance of prediction when dynamic scenes have occlusion and background

motion.
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• We design a video prediction model that can incorporate point flow and depth as

additional modalities to improve RGB frame prediction.

• We conduct extensive experiments on both synthetic and real-world occlusion heavy

datasets.

• We find that when integrating point flow, the reappearance of occluded objects is

predicted more accurately.

4.2 Methodology

4.2.1 Preliminaries

Our goal remains the same as the previous chapter, that is to learn a probability distribu-

tion on future frames XT+1:T+M , conditioned on the past frames X1:T . However, instead

of conditioning on a single modality (RGB), we will jointly encode both depth and point-

flow with their corresponding RGB frame. We next discuss the base model we build on in

this chapter, as well as the models used to extract additional modalities—point flow and

depth.

4.2.1.1 Base Architecture

We use the model we proposed in the previous chapter, Object Aware Auto-Encoder

(OAAE) and Stochastic Class Attended Transformer (SCAT), as our base architecture.

Our improvements will be described in detail in Section 4.2.2.
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4.2.1.2 Point Tracking with CoTracker

CoTracker (Karaev et al. 2025) is a transformer-based model that tracks 2D points in

video sequences. First, the query points are initialized on the first frame of a video clip,

with their initial positions and visibility. A point Pi at time step t is represented as

P t
i = (ut

i, v
t
i) ∈ R2, for t ∈ {1, . . . , T}. It is set to make all points visible after it is

initialized at the first time step (e.g first frame of a video clip) to reduce ambiguity.

After the points are initialized, an end-to-end convolutional neural network is trained to

obtain the feature map of the frames. Then each point is projected to the relative position

on the feature map, and the corresponding feature is selected for the point. Finally, a

transformer model is trained iteratively to learn how these points are related the selected

features from the encoded representation. The objective of this model is to minimize the

distance between the predicted and ground truth point locations.

4.2.1.3 Depth Estimation with DepthAnything-V2

Depth Anything (Yang et al. 2024b,c) is a monocular depth estimation model designed

to generalize well across diverse real-world scenes. It follows a semi-supervised learning

approach, where a teacher-student framework is employed to leverage both synthetic and

real data. Initially, a teacher network is trained on a large-scale synthetic dataset with

dense ground-truth depth annotations. This teacher is then used to pseudo-label a large

corpus of real-world unlabeled images, effectively transferring its knowledge to real data.

Finally, a student network is trained on a mixture of these pseudo-labeled real images and

a small set of manually labeled real-world samples. The model takes a single RGB frame

as input and produces a dense depth map as output. We use the second version as our

depth estimator for video frames.
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4.2.2 Proposed Method

SCAT (Suleyman et al. 2025) decomposes a video into a set of object instances and

models their dynamics in a latent space. However, when an object instance becomes fully

occluded at a certain time step, it is no longer visible to the frame encoder. As a result,

the corresponding latent representation lacks direct visual evidence, making it difficult to

accurately predict the motion of fully occluded objects, even when their prior appearance

has been observed.

To address this limitation, we propose incorporating tracked points obtained from Co-

Tracker (Karaev et al. 2025) as point flows, providing explicit motion information to

the prediction model. Unlike optical flow, which estimates dense pixel-wise motion and is

prone to error accumulation over time (Harley et al. 2022), point tracking maintains sparse

but temporally consistent trajectories that preserve object identity across frames. When

an object becomes occluded, the tracked point trajectories are partially estimated rather

than directly observed; however, these estimates are obtained by enforcing temporal mo-

tion consistency and leveraging contextual cues from visible regions of the scene. As such,

point flows provide informed motion hypotheses rather than arbitrary hallucinations.

By incorporating point flows, the encoder can retain information about an object instances

relative position and motion at time step t, even when its RGB appearance is entirely

absent due to complete occlusion. We hypothesize that encoding point flows alongside

RGB frames enriches the latent representation with explicit relative location and motion

cues, thereby enabling more accurate prediction of occluded object dynamics.

We hypothesize that incorporating point flows alongside RGB frames during encoding

will enrich the latent representations with relative location information. Therefore, the

motion of occluded objects can be predicted more accurately. Depth images are integ-

rated as a another modality to our model, providing geometric context that is invariant

to appearance changes. While point flows capture motion, depth encodes scene structure,
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aiding in disambiguating object movement and handling occlusions, especially under cam-

era motion, thus improving spatial and temporal reasoning. It is important to note that

we do not require any additional or richer information to train the model to obtain other

modalities. Instead, we use pretrained models solely to pre-process the available RGB

sequences, generating point flow and depth images from the same input data used by

existing baselines as we discussed previously. Following SCAT, we test our hypothesis by

designing a family of models with varying input configurations:

• SCAT-D: A model trained with RGB and depth frames;

• SCAT-P: A model trained with RGB frames and point flows;

• SCAT-DP: A model trained with RGB frames, depth frames, and point flows.

4.2.2.1 Point flow and Depth

We first use Cotracker to track points in a video clip, then calculate the point flow as the

displacements of each point between consecutive frames. For the initial time step (t = 0),

there are no displacements, as the points are treated as the initial reference positions,

represented by a tensor of shape (T,N, 3), where T is the number of frames, N is the

number of points, and 3 represents the coordinates of a point and its visibility. From the

second frame and onwards (t ≥ 1), the horizontal and vertical displacements of each point

are calculated as the difference between the current and previous positions. Finally, since

each point is defined by its (h,w) coordinates, the displacement information is mapped to

a grid with the same size as the image, resulting in a tensor of shape (T,H,W, 3), where H

and W represent the height and width of the video frame resolution. The last dimension

encodes horizontal displacement, vertical displacement, and visibility. We therefore have

PointFlow(T,H,W, 3) =


(0, 0, 1), if t = 0,

(hnt − hnt−1, w
n
t − wn

t−1, v
n
t ), if t > 0.

(4.1)
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where PointFlow(T,H,W, 3) is the displacement tensor, ht,n and wt,n are the (h,w)

coordinates of the nth point and vt,n is the visibility of the nth point at time step t. (H,W )

corresponds to the pixel grid location in the image, derived from the (h,w) coordinates of

each point. This mapping ensures that the point flows retain spatial correspondence with

the video frames, enabling effective integration with the encoder.

For depth images, we employ an off-the-shelf depth estimation model, DepthAnythingv2 (Yang

et al. 2024c), to generate the depth information for non-synthesized datasets. Since a video

sequence is composed of instance sequences, the corresponding points and depth inform-

ation are extracted via segmentation maps that were used to decompose the instances.

After we obtain these modalities, we concatenate them with the original RGB frame on

the channel dimension to form the input of the encoder. Then, all of these information

will be encoded together according to different variants of our proposed method. Finally,

the model’s output is not just a single RGB frame, but also with the reconstructions of

other modalities. This make sure that other modalities will be encoded into the latent

space.

4.2.2.2 Loss Function

Since our approach has two stages, we need to train the frame encoder first and then

train the temporal predictor. For the frame encoder, we modify the original VQ-loss and

Commitment Loss to fit our model design. We extend VQ loss for each semantic class

separately because each instance is encoded via a class-specific encoder and codebook,

then the overall reconstruction loss for RGB images, depths and point flows is calculated.

LV Q, Lrecon is shown below:

LV Q =
m∑
c=1

nc∑
k=1

∥ sg[z̃ck]− ec∥22 (4.2)

Lcommitment =
m∑
c=1

nc∑
k=1

∥z̃ck − sg[ec]∥22 (4.3)
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Lrecon = − log p(x|Ψ(Φ(x))) (4.4)

where sg denotes the stop-gradient operator, nc represents the number of instances in class

c, and ec corresponds to the codebook for class c, respectively. We also include LPIPS

(Zhang et al. 2018) as an additional reconstruction loss:

LLPIPS(x,Ψ(Φ(x))) =
∑
l

wl ∥ϕl(x)− ϕl(Ψ(Φ(x)))∥22 (4.5)

where ϕl(x) represents the deep feature maps extracted from the l-th layer of a pretrained

network ϕ. The term wl is a learned weight that adjusts the contribution of each layer to

the overall similarity, and ∥ · ∥22 denotes the squared Euclidean distance between feature

representations. The final objective of our encoder will be summing all loss terms together

as follows:

L = LV Q + αLcommitment + Lrecon + βLLPIPS (4.6)

Where α and β denotes the weights for commitment and LPIPS loss, which are set to

0.25 and 1.0, respectively. For the transformer model that predicts future frames in latent

space, we use the same formulation as SCAT, i.e. minimizing the cross entropy between

target and predicted indices.

4.3 Experiments

We conduct a series of experiments to analyze the impact of each additional modality

on future frame prediction using the proposed family of models. Our primary focus is on

evaluating occluded scenarios under controlled settings, enabling a systematic assessment

of how well each modality improves performance in handling occlusions. We focus our

evaluation on the predicted RGB frames and moving object’s mask but not the other

modalities which are simply regarded as guidance for the model. To demonstrate the

generality of the proposed method, we also evaluate it on more diverse scenarios and

compare its performance against other baselines. In each experiment, we follow SCAT’s

experimental setups, where the proposed model given five frames and is required to predict
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five future frames on KITTI dataset and 20 future frames on Kubric-Occlusion dataset

given five input frames. All experiments are conducted on a single NVIDIA RTX 3090

GPU, and the model sizes (e.g., number of parameters) of other baselines are adjusted

accordingly to ensure a fair comparison.

4.3.1 Datasets

4.3.1.1 Kubric Occlusion

The hypothesis of this chapter is that incorporating point flow and depth map can improve

the performance of prediction models, particularly in scenarios involving occlusions and

background motion. To test this, we used Kubric (Greff et al. 2022) to generate video

clips tailored for our evaluation, which we refer as Kubric-Occlusion. A total of 1,800

video clips were generated, with 1,300 used for training and 500 for testing. There are

two objects in each clip, we first define a occlusion event location at the range of [-1, 1],

then we summon the stationary object at a random location within this range. Second,

we summon the moving object with initial velocity to behind of the stationary object at

a random position in the circular sector region behind the still object, so that it passes

behind the still object. The specific data generation parameters of Kubric is given in

Table 4.1. Since, the segmentation and depth maps are automatically calculated by the

Kubric-Occlusion

Occlusion Event Range (x, y) [(-1, 1),(-1, 1)]
Radius for Summoning Objects 8
Min Distance When Summoning 4
Max Initial Velocity 7
Ground Friction 0.3
Object Friction 1.0
Num Objects 2
Num Object Class 2 (Bottle & Pot)
Camera Position Fixed Static
Camera Looks At (x, y, z) (0, 0, 0)

Table 4.1: Parameters for generating Kubric-Occlusion dataset



4.3. Experiments 73

Kubric generator, it is directly used without using our pre-processing method. However,

since point flow is not available from the generator, we used Co-Tracker to track the key

points on the scene.

4.3.1.2 KITTI

The KITTI dataset (Geiger et al. 2013) is a widely used benchmark for autonomous

driving research. It contains various driving scenarios captured in urban, residential, and

highway environments. We use a subset of KITTI, specifically selecting scenes from city,

residential, and road categories. We select these scenarios because it features reasonable

amount of objects for our model and not extremely complex. Unlike Kubric-Occlusion, a

synthetic dataset with all ground-truth labels are available when generated, the segment-

ation and depth maps are not available for the videos in KITTI. Also, since one video

contains various lengths of frames, directly using the proposed pre-processing to to obtain

other modalities are not efficient. Most importantly, because the objects in long videos

will be replaced regularly and tracking every objects’ segmentation map is not particularly

helpful for our model. Therefore, we first split the original long video to smaller clips with

10 frames each, then we run our pre-processing method to these clips. Then, we follow

the object selection strategy described in Chapter 3, we sort the segmented car instances

by size and select the largest four as foreground objects; the remainder of the image is

categorized as background; resulting five instances in total. After processing, 2,497 clips

are used as training and 639 for testing (each clip contains 10 frames).

4.3.2 Evaluation Metrics

We evaluate the pixel-level quality of predicted frames using standard appearance-based

metrics: PSNR(Horé and Ziou 2010), LPIPS(Zhang et al. 2018), and SSIM(Wang et al.

2004). However, since the primary focus of our work is on assessing motion in the predicted

frames, appearance-based metrics alone are insufficient to capture the dynamic aspects
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of prediction quality. To address this, we introduce the optical flow difference (OFD),

which measures the discrepancy in motion between predicted and ground-truth frames.

After the model predicts the future frames, optical flow of the predicted future frames is

computed using the Gunnar-Farneback method (Farnebäck 2003), then the optical flow

of corresponding ground-truth future frames are also calculated using the same method.

Finally, the motion accuracy is then quantified by calculating the mean squared error (L2

loss) between the predicted and ground truth flows.

In addition to global motion assessment via OFD, we further evaluate motion quality at

the instance level. Since the segmentation map (e.g., binary mask of an instance) of each

instance is available in our dataset, we trained a mask predictor to predict instance masks

from the trained OAAE latent space, and use this to estimate masks for predicted frames.

We then compute the Earth Movers Distance (EMD) (also known as the Wasserstein

distance) between the predicted and ground truth masks.

While OFD captures overall scene motion, EMD provides a finer-grained analysis of mo-

tion distribution differences, offering a more accurate reflection of motion quality in pre-

dicted frames. EMD we use in our thesis is defined as follows: Let Pt = {p1, . . . ,pm} ⊂ R2

be the set of pixel coordinates for the predicted mask, and Gt = {g1, . . . , gn} ⊂ R2 be the

set of pixel coordinates for the ground truth mask. We define uniform discrete distributions

over these sets:

a =

(
1

m
, . . . ,

1

m

)
∈ ∆m, b =

(
1

n
, . . . ,

1

n

)
∈ ∆n (4.7)

Let M ∈ Rm×n be the cost matrix with entries:

Mij = ∥pi − gj∥2 (4.8)

The Earth Movers Distance is computed as the optimal transport cost as:

EMD2(P,G) = min
T∈U(a,b)

m∑
i=1

n∑
j=1

TijMij (4.9)
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where U(a,b) = {T ∈ Rm×n
+ | T1n = a, T⊤1m = b} is the set of admissible transport

plans. All metrics are computed on a per-frame basis, and the values reported in the table

represent the mean over all frames across the clips in the respective dataset.

4.3.3 Results

4.3.3.1 Frame Reconstruction Performance

Before evaluating our prediction model, it is crucial to understand what impact is imposed

by adding additional modalities to our encoder. Since our strategy is simply concatenating

the different modalities on the channel dimension to form the input, only the input chan-

nel size will be different and the rest of the VQ-VAE architecture will be exactly the same

across different variants of encoders. Therefore, we first evaluate the performance of our

autoencoders in reconstructing RGB video frames. Table 4.2 and 4.3 presents the quantit-

ative results and Figure 4.2 and Figure 4.3 shows qualitative results of different variants of

the proposed model on both Kubric-Occlusion and KITTI dataset. In Kubric-Occlusion,

Depth Point-Flow PSNR↑ SSIM↑ LPIPS↓

OAAE 7 7 26.672±0.133 0.669±0.007 0.052±0.001
OAAE-P 7 3 26.737±0.129 0.677±0.006 0.052±0.001
OAAE-D 3 7 27.280±0.127 0.712±0.006 0.043±0.001
OAAE-PD 3 3 26.194±0.122 0.660±0.007 0.061±0.001

Table 4.2: Autoencoder’s frame reconstruction performance on Kubric-Occlusion dataset

we observe that integrating a single modality (OAAE-P or OAAE-D) improves overall

reconstruction quality. We also noted OAAE-D variant achieves the best results among

other variants. This may indicate the ground truth depth map, which is precisely resem-

bling the geometric structure of the RGB image, can provide additional complimentary

feature that cannot be captured alone with RGB frame. However, combining both mod-

alities simultaneously (OAAE-PD) leads to decreased reconstruction performance. This

suggests a trade-off between incorporating multiple modalities and reconstruction quality

under limited latent capacity.
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Depth Point-Flow PSNR↑ SSIM↑ LPIPS↓

OAAE 7 7 21.468±0.100 0.769±0.003 0.038±0.001
OAAE-P 7 3 20.138±0.093 0.701±0.003 0.056±0.001
OAAE-D 3 7 21.316±0.095 0.770±0.003 0.040±0.001
OAAE-PD 3 3 19.957±0.090 0.695±0.003 0.063±0.001

Table 4.3: Autoencoder’s frame reconstruction performance on KITTI dataset

GT SCAT SCAT-P SCAT-D SCAT-DP

Figure 4.2: Qualitative results on Autoencoder’s reconstruction Kubric-Occlusion dataset

In KITTI, autoencoder’s performance significantly degrades when incorporating point

flow (OAAE-P & DP). Unlike Kubric-Occlusion, KITTI involves camera motion, making

the background non-stationary. As a result, the loss function tasked with reconstructing

both RGB frames and additional modalities introduces noise into the RGB output. This is

evident in the reconstructed frames shown in Figure 4.3, where small dot-shaped artifacts

appear at the point displacement regions. Also in Figure 4.2, we can see that the moving

object’s appearance and the overall background is poorly reconstructed when point flow

is added. These findings suggest that directly concatenating point- flow with RGB frames

is not an effective encoding strategy, especially when the background also has its own
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GT SCAT SCAT-P SCAT-D SCAT-DP

Figure 4.3: Qualitative results on Autoencoder’s reconstruction on KITTI dataset

motion. However, since the main focus of this chapter is not predicting high quality video

frames in terms of appearance, but to investigate and understand the benefits of point flow

and depth map brings to motion prediction accuracy especially in the event of occlusions.

Therefore, we will ignore this limitation in this chapter and introduce a better encoding

method in detail in the next chapter.

4.3.3.2 Prediction Performance

We now evaluate the different variants of our predictors in both datasets and analyze

their performance on both appearance and motion based metrics. As we introduced in the

previous chapter, we use different temperature parameters to see how well the model will

perform under different stochasticity, and then we select the best performing model based

on the metric scores. In Kubric-Occlusion dataset, the occlusion happens by design. It is

less stochastic compared to a collision event that we described in Kubric-Real dataset in
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Figure 4.4: Reappearing phenomenon on the Kubric-Occlusion dataset when the stochasti-
city is high
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Figure 4.5: Appearance-based metrics (PSNR, SSIM, LPIPS) across temperatures on
Kubric-Occlusion dataset
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Figure 4.6: Motion-based metrics (EMD & OFD) across temperatures on Kubric-
Occlusion dataset

the previous chapter. Therefore, by increasing the temperature τ , the prediction model

is not expected to improve significantly. This is evident in Figure 4.5 and 4.6. We can

see in all appearance based metrics, there are no improvements or very subtle decrease

in performance. But in motion based metrics, the models are improved slightly when the

temperature value is in between the range of [0.2, 0.3]. The reason for the performance

decrease is due to the increasing stochasticity making the models assume there will al-

ways be a moving object appearing from the back of stationary object. This is shown in

Figure 4.4. From Table 4.4, we can see on the Kubric-Occlusion dataset, all proposed

variants improve on plain SCAT in terms of motion metrics. This confirms our hypothesis

that flow and depth modalities are important for occlusion prediction. As consistent in

the metric scores reported in Table 4.2, the SCAT-D variant achieves best performance
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Figure 4.7: Performance of model variants over time on motion metrics, evaluated on the
Kubric-Occlusion dataset

Appearance Motion

PSNR↑ SSIM↑ LPIPS↓ OFD↓ EMD↓ Prms

SCAT 25.88±0.13 0.658±0.007 0.064±0.001 0.0423±0.0017 0.0081±0.0005 11M
SCAT-P 25.99±0.13 0.665±0.007 0.063±0.001 0.0356±0.0016 0.0070±0.0006 11M
SCAT-D 26.53±0.13 0.701±0.006 0.054±0.001 0.0414±0.0019 0.0069±0.0004 11M
SCAT-PD 25.69±0.12 0.649±0.007 0.072±0.002 0.0347±0.0014 0.0066±0.0004 11M

Table 4.4: Frame prediction comparison of different SCAT variants on Kubric-Occlusion
dataset

for appearance metrics (PSNR, SSIM & LPIPS). But in motion based metrics (OFD &

EMD), SCAT-PD achieves the best results. We found the performance of the SCAT-PD

variant to be generally lower than the two other (SCAT-P and SCAT-D), which is likely

a consequence of processing larger input data with the same model size. Additionally,

in Figure 4.7, before the occlusion event happens (i.e., roughly before 10-th frame), all

models performed similarly with minimal differences; but the difference is clear when

the event of occlusion and the reappearance of the occluded object happens, that the

model variants with point flow performed better. The occluded object’s reappearance is

only predicted correctly when point flow is integrated (SCAT-P and -PD), confirming

the evidence provided by the OFD and EMD metrics. Now we evaluate the ability of

predicting background motion with KITTI dataset Figures 4.8 and 4.9 plots PSNR, SSIM

LPIPS, EMD and OFD scores calculated by using different temperature parameters with

different variants of our model to predict future frames. We can see that although PNSR

and SSIM are decreased with the increase of temperature τ , LPIPS scores are improved

overall. The result is consistent with the VQVAE reconstruction performance presented

in Table 4.3. When the point flow is added, the prediction quality of the future frames are
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Figure 4.8: Appearance-based metrics (PSNR, SSIM, LPIPS) across temperatures on
KITTI dataset
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Figure 4.9: Motion-based metrics (EMD & OFD) across temperatures on KITTI dataset
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Figure 4.10: Quantitative performance of model variants over time on motion metrics,
evaluated on the KITTI dataset

Appearance Motion

PSNR↑ SSIM↑ LPIPS↓ OFD↓ EMD↓ Prms

SCAT 15.33±0.13 0.473±0.006 0.135±0.003 2.5776±0.3341 0.0310±0.0016 8M
SCAT-P 15.20±0.11 0.448±0.006 0.155±0.003 1.6659±0.1939 0.0282±0.0020 8M
SCAT-D 15.53±0.12 0.465±0.006 0.132±0.003 3.2781±0.4762 0.0285±0.0022 8M
SCAT-PD 15.36±0.11 0.445±0.006 0.137±0.002 1.6390±0.2324 0.0278±0.0016 8M

Table 4.5: Frame prediction comparison of different SCAT variants on Kubric-Occlusion
dataset

decreased in terms of appearances overall. However, when the depth map is added alone,

it performs the best in both PSNR and SSIM. In contrast, when we use motion-based

metric, EMD and OFD, to measure the performance of the different variants of our mod-

els, it shows the opposite. Vanilla SCAT is the worst among other variants. Furthermore,

when the point flow is added with or without depth map, the motion prediction quality

improves significantly compared to SCAT. Also, when both point flow and depth map are

integrated together (SCAT-DP), the predictor performs the best. This evidence further

suggests the integration of point flow and depth map are still effective for predicting the

motion in moving backgrounds. Tables 4.6 and 4.7 provide a comparison to SimVP.

PSNR↑ SSIM↑ LPIPS↓ OFD↓ Num-Params

SCAT 25.88±0.13 0.66±0.007 0.064±0.001 0.0423±0.0017 11M
SimVP 33.05±0.13 0.95±0.001 0.021±0.001 0.0626±0.0019 14M
Ours 25.69±0.12 0.65±0.007 0.072±0.002 0.0347±0.0014 11M

Table 4.6: Frame prediction comparison on Kubric-Occlusion dataset with SimVP

SimVP is a widely adopted and competitive baseline for video prediction that models

scene dynamics in an implicit and holistic manner, without relying on explicit object-level
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Figure 4.11: Comparison of different model variants on the Kubric-Occlusion dataset.

representations. It also has a light structure, similar training objectives and performs well

on short term prediction (e.g., 5-10 frames). From a practical perspective, the proposed

models in this chapter are computationally expensive to train and evaluate. Each model

requires extensive training time across multiple datasets, and running a larger number

of baselines would significantly increase the experimental duration without proportionate

additional insight. In practice, evaluating four models variants across two datasets already

required approximately two months of computation. Therefore, we restrict the comparison

to a single representative baseline in order to balance experimental rigor with feasibility.
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The proposed models appear to under-perform SimVP when looking at appearance-based

metrics on the Kubric-Occlusion dataset, however they perform better when looking at

motion-based metrics by a large margin. This contrast can be explained by the compar-

atively small impact of moving objects on appearance metrics versus background noise,

which is likely reduced by the larger size of the SimVP model. This intuition is confirmed

by the qualitative results shown in Figure 4.11, where SCAT-P & SCAT-DP accurately

predicted the motion of moving objects while others fail. Specifically, the trajectory of

the moving object in Kubric-Occlusion dataset is correctly predicted only when including

point flow information (SCAT-P & SCAT-PD), while SimVP fails to predict the object’s

reappearance. Moreover, because most of the pixels do not have motion in this dataset,

therefore SimVP achieved better performance on appearance based metrics. In contrast,

Input Prediction
t = 1 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

G
T

SCAT
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SCAT-D

SimVP

SCAT-PD

Figure 4.12: Comparison of different model variants on the KITTI dataset.

where KITTI features complex real world dynamics, our model outperforms SimVP in
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PSNR↑ SSIM↑ LPIPS↓ OFD↓ Num-Params

SCAT 15.33±0.13 0.47±0.006 0.135±0.002 2.49±0.33 8M
SimVP 17.14±0.10 0.49±0.005 0.332±0.004 1.66±0.11 14M
Ours 15.36±0.11 0.45±0.006 0.137±0.002 1.64±0.23 8M

Table 4.7: Frame prediction comparison on KITTI dataset with SimVP

LPIPS (0.137 v 0.332). Also, we see that in terms of motion our model also outperformed

SimVP (1.64 v 1.66), where this can be seen in Figure 4.12, where the white car’s structure

across frames is more consistent with point flow and depth variants (SCAT-P, D & PD)

versus RGB-only variants, and in particular, SimVP produces very blurry predictions. It

is important to note that our SCAT variants are notably smaller models that SimVP and

achieved similar or better performance. Another example shows that with the integra-

tion of point flow, the motion of the background is accurately predicted as illustrated in

Figure 4.13. We can see SCAT and SCAT-D cannot predict the motion of ego-camera’s

motion which the car is turning left. We can also see that although SimVP correctly pre-

dicted the motion, but the predicted frames are very blurry compared to SCAT-P and

SCAT-DP. This is also backed by the evidence in Table 4.7 that SCAT-DP performed

better in LPIPS metric

4.4 Discussion

We propose a video prediction pipeline that investigates the impact of adding point track-

ing and depth information on future frame prediction. Our method incorporates point flow

and depth maps to enhance motion prediction, particularly in challenging scenarios with

occlusions. Experimental results show that point flow contributes to more accurate mo-

tion estimation, and in particular can successfully predict the reappearance of occluded

moving objects. Furthermore, our approach is also effective in the scenarios of predicting

the motion of background.



4.4. Discussion 86

Input Prediction
t = 1 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

G
T

SCAT

SCAT-P

SCAT-D

SimVP

SCAT-PD

Figure 4.13: Motion accuracy of the predicted frames on KITTI dataset

While the proposed method improves motion modeling through the addition of point flow

and depth to RGB inputs, its performance of reconstructing RGB frames degrades when

applied to datasets with more complex distributions (e.g., KITTI), as shown in Tables 4.2

and 4.3. A likely cause is that the latent space capacity was kept constant across all

variants, and the encoder architecture remained unchanged apart from the input channel

size. As a result, with the increasing amount of information, compressing it to a fixed sized

latent spaces is not enough to fully represent all of the different modalities. Additionally,

our current cross-modal fusion strategy simply concatenates the different modalities, which

leads to tradeoffs already at the encoding stages, especially with a moving camera. Another

limitation is that our experiments focused mostly on rigid objects except KTH dataset

in the previous chapter. Moreover, although KTH features deformable objects (a moving

person), interaction is still limited in KTH dataset where only a single instance is on the
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scene. Thus, the performance of the proposed models in both this chapter and the previous

chapter on soft or highly deformable objects (e.g., garments) remains unknown. In the

next chapter, we investigate these limitations by developing a more efficient cross-modal

encoding strategy for integrating multiple modalities, and by extending our framework to

model and predict the dynamics of deformable objects.



Chapter 5

Diffusion Transformer as Video Predictor

In the previous chapter, we showed that using point flow can improve the predicted object

trajectory and depth can improve the appearance of the the predicted frames; integrating

point flow and depth map together can enhance both appearance and motion accuracy. So

far we mostly used datasets that features the motion of rigid objects such as the systhetic

datasets we generated using Kubric, Real-traffic and KITTI. Although we used KTH in the

first chapter, which involves a deformable object (a single person), the lack of interaction

because of singular moving instance is the main limitation of this dataset. Furthermore,

the motion of a human is not fully deformable, our joints srve to constraint the movement

of our body to a certain degree. Thus, our proposed architectures’ robustness is not tested

using a kind of dataset that features the interaction of multiple soft or fully deformable

objects. Therefore, we will mainly focus on prediction of the soft objects in this chapter

to investigate the performance of our proposed multi-object pipeline.

The rest of the chapter is structured as follows:

• Section 5.1 gives the brief introduction of our motivation and hypothesis;

• Section 5.2 introduces our proposed method in detail;

• Section 5.3 and Section 5.4 discusses the experimental setup and the discussion of

the results.

88
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5.1 Introduction

Auto-regressive models such as SCAT have shown effectiveness in modeling structured

motion of rigid objects and their interactions as shown in the previous chapters. How-

ever, their reliance on predicting discrete tokens may limit their ability to capture the

fine-grained, continuous dynamics of deformable objects such as garments, where motion

evolves smoothly in space and time.

On the other hand, Diffusion models (Ho et al. 2020; Peebles and Xie 2023; Blattmann

et al. 2023a), operate in a continuous latent space and refine entire trajectories through

iterative denoising, making them a more natural choice for modeling such continuous

non-rigid dynamics. A recent work proposed a U-Net based diffusion model, it used both

RGB and depth frames of a video clip to predict future frames (Pallotta et al. 2025). Al-

though they reported promising performance on Real-World scenarios such as CityScapes

(Cordts et al. 2016) that features city driving, their performance on motion prediction of

deformable objects is not tested.

In this chapter, we hypothesize that diffusion model will better handle the problem of pre-

dicting the motion of highly deformable objects such as garments because of its continuous

nature compared to auto-regressive GPT-style transformers. To verify this, we propose

a transformer-based diffusion video prediction network SCAT-Diffusion. We build on the

basis of the transformer network we used in the previous chapters. In addition, due to the

limitation of degradation of reconstruction performance of the AutoEncoder we proposed

in the previous chapter, we propose a more efficient variant of this autoencoder network to

better encode the different modalities and aim improve reconstruction performance. We

conduct systematic and detailed experiments to test each of the components we proposed

in this chapter on Flat’N’Fold dataset (Zhuang et al. 2024) that features human demon-

strations of garment manipulation task. Additionally, in order to test that the proposed

method is also suitable for scenes of rigid objects, we test on the widely used benchmark

KITTI.
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5.2 Methodology

In this chapter, we will use the same problem formalism as in the previous chapters that by

conditioning on a sequence of context frames to learn the distribution of future frames. We

will first introduce the preliminary concepts of Denoising Diffusion Probabilistic Models

(DDPM) (Ho et al. 2020) for images. Then we describe the multi-modal fusion OAAE

and our diffusion based video frame predictor in details.

5.2.1 Obtaining Other Modalities

We change our point tracking model to generate point flows from Co-Tracker (Karaev et al.

2025) to Delta-Tracker (Ngo et al. 2025) which is a more recent and powerful point tracker,

10 times faster compared to Co-Tracker, and more robust on tracking the key-points on

an occluded object. While Co-Tracker tracks the keypoints in 2D space, Delta-Tracker

tracks the keypoints in 3D space which will give our model not only the flow of motion

but also 3D geometry information complementing the depth map. For obtaining depth

maps, we will use DepthAnythingV2 (Yang et al. 2024c) as in the previous chapter.

5.2.2 Frame Encoder

We build upon the OAAE encoder introduced in the previous chapter, which is based

on a ResNet-18 backbone. However, in the previous design, no dedicated module existed

to explicitly fuse information from multiple modalities; instead, different modalities (e.g.,

RGB frane, point flow and depth map) were simply concatenated as the input of OAAE.

We observed that this naive fusion strategy degraded RGB reconstruction quality when

the number of modalities increased especially when point flow is added.
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Figure 5.1: Structure of the frame encoder used in this chapter

To address this issue, we propose a multi-modal fusion encoder that more effectively integ-

rates information across modalities. Each modality is first processed by its own dedicated

encoder network to produce a set of feature maps. Concretely, for each object class m, the

instance-specific encoder ϕm now consists of three sub-encoders, one for each modality:

ϕm = {ϕrgb
m , ϕd

m, ϕ
p
m},

corresponding to RGB, depth maps, and point-flow, respectively. We denote the full set

of object-class encoders as Φ = {ϕ1, ϕ2, . . . , ϕm}, where m is the number of object classes.

Given an object k, its latent representation zk is obtained by concatenating the latent

features from all three modalities:

zk =
⊕[

zrgbk , zdk , z
p
k

]
, (5.1)

Then zk is passed through a transformer-based fusion block, which models the interde-

pendencies between each modalities. From this point, the rest of the process is identical to

the previous chapters in that each instance latent zk is concatenated to form z to represent

the entire scene and each of the modalities. Then, this full latent representation is passed

to the same decoder network Ψ as in the previous chapter to reconstruct all modalities
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jointly. We will use the same loss function we described in the previous chapter as follows:

L = LV Q + αLcommitment + Lrecon + βLLPIPS (5.2)

5.2.3 Diffusion-based SCAT

We formulate the problem similarly to the previous chapters: to learn a probability dis-

tribution on M future frames XT+1:T+M , conditioned on the T past frames X1:T . Because

the motion of objects like garments is smooth and continuous compared to rigid objects,

we hypothesise that predicting the motion of highly deformable objects using a continuous

model (SCAT-Diffusion) in a continuous latent space is better than predicting discrete

indices using discrete auto-regressive models (SCAT based variants).

Therefore, we adopt a continuous model, a Diffusion Transformer (DiT) (Peebles and Xie

2023), and transform SCAT into a diffusion transformer to directly predict the future

frames on the continuous latent space, which will be referred as SCAT-Diffusion in this

chapter. We preserved the overall structure that uses self- and cross-attentions to learn

objects’ motion pattern as well as the potential interaction with other objects. Instead

of predicting the probability of possible indices from the learned code-book, we directly

predict the future frames based on the context frames in the latent space we learned in

the previous step.

We apply the diffusion process to the future latents ZT+1:T+M , where the forward process

gradually perturbs the clean latents into Gaussian noise:

q(Zt | Z0) = N
(
Zt;

√
ᾱt Z0, (1− ᾱt)I

)
. (5.3)
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Noisy Target Latent Sequence
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Figure 5.2: Structure of SCAT-Diffusion

At training time, SCAT-Diffusion receives the noised future latents zt, together with the

context latents z1:T and the diffusion timestep t, and learns to predict the added noise ϵ.

The conditioning on the past frames is achieved by concatenating the past latent frames

Z1:T with the noised future frames along the temporal dimension, allowing the model to

process both jointly in a straightforward manner.

The objective of this model is same the DDPM loss, which maximizes the ELBO on the

predicted latent frames’ likelihood. This can be simplified to minimizing the MSE loss

between the predicted noise and the original noise as shown in the equation 5.4.

L(θ) = EZ0,ϵ,t

[
∥ϵ− ϵθ(Zt, t)∥2

]
(5.4)

Following DDPM formulation, we use 1000 diffusion steps and a linear schedule to train

and validate the proposed model.
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Figure 5.3: An example from the dataset that is showing a person trying to lift a napkin.
Top: The original RGB sequence; Middle: Depth map of corresponding RGB frames;
Bottom: The flow of tracked key points on RGB frames.

5.3 Experiments

5.3.1 Datasets

Flat’n’Fold is a large scale dataset for garment manipulation task (Zhuang et al. 2024).

The main purpose of this dataset is to teach robots to fold a piece of garment with human

and machine demonstrations. It contains 1,212 human and 887 robot demonstrations of

flattening and folding 44 unique garments across 8 categories, there are 20 different in-

dividuals performed the human demonstrations. Each demonstration is stored as a video

clip that has 100-500 frames depending on the type of garment being manipulated. The

manipulation process is simple, first flatten a randomly placed garment on a table, then

fold the garment into a desired shape. However, it involves many different types of gar-

ments with different sizes and textures. For example, napkins, T-shirts and trousers each

with different texture.

Since this study aims to investigate the performance of SCAT-Diffusion and understand

if it will be effective in a fully deformable objects setting, a subset of the entire dataset is

selected for testing to limit the randomness. We selected all of the videos that are demon-

strated by a human (i.e., no robot motion is involved) to flatten and fold a napkin. Unlike

other garment types, a napkin is usually a rectangular shaped garment which is simple

in shape compared to other types of garments. Napkins provide a canonical yet challen-
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ging example of a fully deformable object: although simple in geometry and topology,

they undergo large non-rigid deformations and frequent self-occlusions during manipula-

tion. Moreover, the interaction involves two highly deformable entitiesthe human hands

and the garmentallowing us to study rich objectobject interactions while maintaining a

controlled experimental setting. Focusing on a single deformable object category there-

fore allows us to isolate the effect of the proposed diffusion-based predictor and attribute

performance differences to the modeling choice rather than dataset heterogeneity.

There are a total of 204 videos of people manipulating napkins, we split the original video

into smaller clips to 20 frames per clip, aimed to better pre-process the videos to obtain

other modalities. After splitting the data, it yields 4,400 clips in total. We use 4,000 video

clips to train our model and the remaining 400 clips as our validation set.

In addition to Flat’n’Fold, we evaluate our model on the KITTI dataset following exactly

the same settings as in the previous chapter. Unlike Flat’n’Fold, KITTI primarily contains

rigid objects with highly stochastic motion driven by complex scene dynamics and ego-

motion. Including KITTI therefore serves a complementary purpose: it allows us to assess

whether the proposed encoder and diffusion-based predictor generalize beyond the fully

deformable regime, and to highlight the limitations of diffusion-based sampling under

increased motion uncertainty. This comparison also enables a direct assessment of the

proposed cross-modal fusion encoder against the encoder used in the previous chapter

under identical conditions.

5.3.2 Results

The motion metrics introduced earlier for evaluating trajectory accuracy of rigid objects

are not suitable for fully deformable objects such as garments in the Flat’n’Fold dataset,

because the motion of both human and the garment is subtle compared to the rigid ob-

ject datasets. Therefore, for Flat’n’Fold we report only appearance-based metrics: PSNR,
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SSIM, and LPIPS. For evaluation on the KITTI dataset, we follow the same settings as

in the previous chapters. Specifically, we report PSNR, SSIM, and LPIPS for appearance,

and OFD and EMD for motion performance. All reported metric scores are obtained using

bootstrapping, consistent with the procedure described in Chapter 3.

5.3.2.1 Encoder Performance

In the previous chapter, we found SCAT-PD variant performed the worst, in terms of

appearance, among other variants due to the frame encoder’s reconstruction performance

is poor. To mitigate this problem, we proposed a more efficient way of encoding different

modalities that has specific components to fuse these modalities. Therefore, before eval-

uating the performance of the prediction model, we first evaluate the reconstruction per-

formance of the frame encoder proposed in this chapter and compare against the encoder

we used in the previous chapter. Table 5.1 presents the reconstruction performance of the

Depth Point-Flow PSNR↑ SSIM↑ LPIPS↓

OAAE-PD 3 3 19.957±0.090 0.695±0.003 0.063±0.001
Fusion-OAAE-PD 3 3 21.013±0.101 0.754±0.003 0.045±0.001

Table 5.1: Reconstruction performance comparison of OAAE-PD and Fusion-OAAE-PD
on KITTI dataset

baseline OAAE-PD encoder and the proposed Fusion-OAAE-PD encoder on the KITTI

dataset. Across all metrics, the Fusion-OAAE-PD consistently outperforms OAAE-PD,

achieving a notable increase in PSNR and SSIM, along with a substantial reduction in

LPIPS. Specifically, the Fusion-OAAE-PD improves PSNR by over one point and SSIM

by nearly 0.06, while cutting perceptual error (LPIPS) by more than 25%.

These results confirm that the newly introduced fusion module is significantly more ef-

fective than the simple concatenation approach used in the previous chapter. By explicitly

modeling the relationships across modalities before reconstruction, the Fusion-OAAE-PD

leverages complementary information more efficiently, leading to sharper, more perceptu-

ally accurate reconstructions. This improvement directly addresses the limitation observed
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Figure 5.4: Performance of model variants over time on time metrics, evaluated on the
Flat’n’Fold dataset

in the previous chapter, where the SCAT-PD variant suffered from poor appearance pre-

diction performance due to bad frame reconstructions. Consequently, the enhanced frame

encoder provides a stronger foundation for the prediction model, as improved input rep-

resentations are expected to translate into better temporal dynamics modeling in the

subsequent experiments.

5.3.2.2 Prediction performance

After we showed our new encoding strategy is working efficiently, we will now use this

new latent space to run our diffusion-based prediction model on Flat’N’Fold dataset to

test its future frame prediction performance on highly deformable objects. To ensure fair

comparison and isolation of the variable of using diffusion architecture, we used the new

latent space for both SCAT-PD, which is proposed in the previous chapter, and SCAT-

Diffusion. We let both models take five context frames and they are required to predict

five future frames. Because each model is stochastic, we sample 10 times to select the best

performing predicted frames for comparison. The diffusion step is set to 1000 steps. The

Appearance

PSNR↑ SSIM↑ LPIPS↓ Prms

SCAT-PD 26.69±0.19 0.873±0.004 0.027±0.001 100M
SCAT-Diffusion 27.41±0.19 0.883±0.003 0.022±0.001 102M

Table 5.2: Comparison of prediction performance on Flat’n’Fold dataset

quantitative results on the FlatnFold dataset are presented in Table 5.2. SCAT-Diffusion
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Figure 5.5: Comparison of different model variants on the Flat’n’Fold dataset (1)

achieves consistent improvements over SCAT-PD across all appearance-based metrics,

with notable gains in PSNR (26.69 vs 27.41) and LPIPS (0.027 vs 0.022), indicating

sharper and more perceptually better predictions. The qualitative results further highlight

the advantages of SCAT-Diffusion in modeling deformable object dynamics. In Figure

5.5, SCAT-Diffusion accurately predicts that the person unfolds the napkin, producing a

prediction close to the ground truth, whereas SCAT-PD struggles to capture this motion

and incorrectly predicts that the napkin remains unchanged. Similarly, in Figure 5.6,

SCAT-Diffusion successfully predicts the folding motion of the person and the napkin,

while SCAT-PD fails to model this interaction and ultimately causes the persons hand

to freeze in the predicted sequence. Furthermore, as this napkin has two different colours

on different sides, SCAT-Diffusion also correctly predicted the correct white colour in

the future frames. These examples demonstrate that SCAT-Diffusion not only generates

sharper frames but also captures complex motion patterns of both humans and deformable

objects better than its discrete counterpart.

For an additional evaluation on SCAT-Diffusion’s prediction performance, we also com-

pare it KITTI dataset as this dataset features the opposite motion type compared to

Flat’n’Fold dataset. In terms of appearance-based metrics, SCAT-Diffusion shows clear

improvements in PSNR (15.36 vs 15.72) and LPIPS (0.137 vs 0.111), indicating higher

fidelity and perceptual quality. However, it underperforms in SSIM (0.445 vs 0.439), sug-
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Figure 5.6: Comparison of different model variants on the Flat’n’Fold dataset (2)

Appearance Motion

Fusion-Encoder PSNR↑ SSIM↑ LPIPS↓ OFD↓ EMD↓ Prms

SCAT-PD 7 15.36±0.11 0.445±0.006 0.137±0.002 1.64±0.23 0.0278±0.0016 8M
SCAT-PD 3 16.02±0.11 0.491±0.006 0.134±0.002 1.24±0.10 0.0278±0.0018 8M
SCAT-Diffusion 3 15.72±0.11 0.439±0.006 0.111±0.002 1.29±0.10 0.0402±0.0022 10M

Table 5.3: Comparison of prediction performance on KITTI dataset
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Figure 5.7: Performance of model variants over time on motion metrics, evaluated on the
KITTI dataset

gesting that structural consistency is not preserved as effectively. For motion-based met-

rics, SCAT-Diffusion achieves a significantly lower OFD (1.29 vs 1.64), reflecting better

alignment of predicted motion with ground truth trajectories. In contrast, on the fine-

grained EMD metric, our approach is less effective, performing worse than SCAT-PD.

This is evident in Figure 5.9, which shows the decoded masks for each car instance in the

scene. We can see that even the predicted RGB frames are visually better than SCAT-

PD, the masks decoded by the predicted latent space shows very noisy masks. This is
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Figure 5.9: Comparison of different model variants on the KITTI dataset
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likely due to the prediction process of the diffusion model that uses diffusion process to

gradually revert a sampled noise back to the latent space. However, as our main focus

is testing SCAT-Diffusion in predicting highly deformable objects and our evaluation on

these type of dataset showed SCAT-Diffusion is more effective.

5.4 Discussion

In this chapter, we hypothesized that the diffusion-based prediction models can better

capture the motion patterns of a fully deformable objects. We introduced a fusion module

within the frame encoder and demonstrated that it achieves more accurate video frame

reconstruction compared to the encoder used in the previous chapter, which lacked a ded-

icated multi-modality fusion mechanism. Building on this improved encoder, we proposed

a diffusion-based video prediction model SCAT-Diffusion, focusing primarily on scenarios

involving fully deformable objects using the FlatnFold dataset. We conducted a direct

comparison with the SCAT-PD model from the previous chapter while maintaining the

same latent space. Our results show that SCAT-Diffusion consistently outperforms SCAT-

PD, suggesting that diffusion-based approaches are particularly effective for modeling the

future dynamics of fully deformable objects.

Additional experiments on the KITTI dataset revealed more nuanced behavior. Although

SCAT-Diffusion improved appearance-based reconstruction metrics compared to SCAT-

PD, it performed significantly worse on the fine-grained motion metric (EMD). This per-

formance gap is reflected in the decoded masks, where SCAT-Diffusion produced noisy

and less coherent object shapes. We attribute this degradation to two main factors: (i) the

KITTI dataset exhibits significantly more stochastic object motions compared to Flatn-

Fold, and (ii) SCAT-Diffusion attempts to approximate the latent vector directly through

the reverse diffusion process, whereas SCAT-PD samples discrete indices directly from a

constrained codebook, which may provide a more stable representation in highly uncertain

scenarios.
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5.4.1 Limitations

While SCAT-Diffusion shows promising performance on FlatnFold, our evaluation was

restricted to a single scenario, folding a napkin from a random configuration into a target

shape. Future work should extend this evaluation to the full FlatnFold dataset, which

includes a broader range of manipulation tasks such as folding shirts and trousers, to

better assess the models generalization capabilities.

Furthermore, the results on the KITTI dataset reveal another key limitation: when object

motion is highly stochastic, the predicted latent space becomes noisy, leading to heavily

distorted decoded masks. This highlights the need for more advanced sampling strategies

to better control stochasticity during the reverse diffusion process. Finally, the current

model used for KITTI experiments is relatively lightweight, containing only 10M para-

meters. While performance may improve with larger model capacity as we demonstrated

in the evaluation on Flat’n’Fold dataset with 100M parameters, it is noteworthy that

even with similar capacity to SCAT-PD, SCAT-Diffusion underperforms, indicating that

architectural changes may be required rather than simply scaling the model size.



Chapter 6

Conclusions & Discussions

6.1 Validation of Thesis Statement

In Section 1.2, we presented three main claims about the problem we want to focus in

this thesis. We will validate these claims in this section.

• Claim 1: Explicit object decomposition and learning the relationships

between decomposed objects improves the quality of predicted future

frames. Moreover, incorporating a cross-attention mechanism to cap-

ture potential object interactions further enhances prediction quality. In

Chapter 3, we introduced a family of video prediction models built on a two-stage

pipeline: encoding video frames into a latent space and predicting future frames

within this space. To validate this claim, we applied off-the-shelf semantic segment-

ation models to decompose scenes into objects of interest and focused on predicting

their dynamics. We then evaluated the proposed models across five datasets that

span weak and strong interaction scenarios. Our results consistently showed that

SCAT (which uses full decomposition and cross-attention) outperforms the non-

decomposed variant (SiS) in both qualitative and quantitative evaluations. Fur-

thermore, we found that SNCAT (which includes decomposition but omits cross-

attention) performs worse than SCAT, highlighting the crucial role of cross-attention.

These findings collectively confirm our first claim.

103
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• Claim 2: Integrating explicit motion information such as point flow and

depth maps is beneficial for capturing specific dynamics, including oc-

clusions and background motion. In Chapter 3, we observed limitations in

handling fully occluded objects and background motion when relying solely on

RGB information. To address this, Chapter 4 integrated explicit motion inform-

ation, point flow and depth maps, that provide 3D geometry, relative position, and

motion direction. Through systematic experimentation, we found that point flow

is the most significant contributor, enabling the model to predict background and

occluded object motion more accurately. In contrast, using only RGB or RGB com-

bined with depth yielded inferior motion predictions such as inability to predict the

reappearance of fully occluded objects and failure to capture the overall background

motion direction. These findings provide clear evidence to our second claim.

• Claim 3: Continuous models, such as diffusion models, outperform dis-

crete models in scenarios involving highly deformable objects, such as

garments. To evaluate this claim, we extended the GPT-style autoregressive trans-

former into a diffusion-based transformer in Chapter 5. We tested this model on the

FlatnFold dataset, which features interactions between a person and deformable gar-

ments. Using the same frame encoder we proposed in Chapter 5, which could better

integrate the different modalities of a single frame, for fair comparison, we changed

only the prediction network between the model we proposed in Chapter 4 (SCAT-

DP). Our experiments demonstrated that SCAT-Diffusion consistently outperforms

the SCAT-DP in both appearance- and motion-based metrics. These results provide

strong support for our final claim.

Our findings throughout this thesis establish that object motion in dynamic scenes is

fundamentally better modeled through explicit object decomposition using powerful off-

the-shelf segmentation models. This explicit object-centric approach is more efficient than

monolithic video prediction models in terms of both computational cost and model size,

even when segmentation models occasionally make errors. Furthermore, our work demon-

strates that multi-modality is essential for capturing complex dynamics such as occlu-

sions and background motion from moving cameras, capabilities that single-modality ap-
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proaches fundamentally cannot achieve. Finally, we show that diffusion-based variant of

our approach is particularly well-suited for predicting the dynamics of fully deformable

objects, revealing important insights about matching model architectures to physical phe-

nomena. These contributions collectively establish a new paradigm for video prediction

that leverages the modularity and power of existing foundation models rather than at-

tempting to solve all aspects of the problem end-to-end. Our approach is particularly

effective in static-camera settings with a limited number of objects that the scenarios

common in robotic arm manipulation tasks. By demonstrating that superior performance

can be achieved with lightweight, modular architectures, this work provides a practical

foundation for deploying video prediction in real-world applications where computational

efficiency and reliability are paramount.

6.2 Limitations of This Thesis

Although we progressively addressed the limitations of each technical chapter throughout

the thesis, for example, improving the motion modeling of SCAT in Chapter 4 compared

to the vanilla SCAT in Chapter 3, and enhancing the frame encoding strategy to better

fuse multi-modal information in Chapter 5 while maintaining reconstruction quality, there

remain several inherent challenges that this work does not resolve. The main limitations

of this thesis are as follows:

• Reliance on external semantic segmentation models. Our methods depend on off-

the-shelf segmentation networks for object decomposition. Although we simulated

the possible errors made by the segmentation models by dilation and erosion (over-

and under-segmentation) and achieved relatively better performance when the ker-

nel size of dilation or erosion is small compared to non-decomposed approaches

in Chapter 3, its performance consistently decreases when the size of the kernels

becomes bigger.
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• Pre-defined object classes. The decomposition strategy used in this thesis assumes

a fixed set of object categories, which restricts the models ability to generalize to

unseen or novel objects. This constraint limits the applicability of the approach

to more open-world scenarios where object categories may not be known. For ex-

ample in Chapter 5, we defined the class of interesting objects are the person and

the garment being manipulated by the person, thus everything else goes into the

background. Thus, the segmentation model will also only segment the predefined

objects. As a result, if the person starts to manipulate a new object that is out

of the scope of predefined objects, then this new object will be treated as part of

the background and its motion will be learned implicitly with the background. This

limits the adaptability of our model in a open-world setting.

6.3 Future Work

Based on the limitations of this thesis, there are several potential future research direction

can be continued upon the basis of this work.

• Efficient interaction modeling. While the cross-attention module effectively cap-

tures pairwise interactions between objects, it remains computationally expensive

and will grow exponentially with the increase of the number of objects in a scene.

This limits the deployability of our model on a low budget scenario and the inference

in the real-time. Future work could investigate more efficient interaction mechan-

isms, such as restricting attention to spatially or semantically relevant neighbors. For

example, a distance-based threshold could be introduced to omit attention between

objects that are far apart and unlikely to interact, thereby reducing unnecessary

computation. Alternative architectures, such as graph neural networks (Scarselli et

al. 2009) or locality-sensitive attention mechanisms Kitaev et al. 2020, may also

provide a more efficient yet expressive means of modeling interactions.
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• Improved conditioning on past frames. In Chapter 5, past frames are incorporated

by simple concatenation with the noisy target frames, leaving the burden of learn-

ing temporal dependencies to the self-attention mechanism. While effective to some

extent, this approach does not explicitly leverage the temporal and spatial structure

of the conditioning frames. Future work could explore more principled conditioning

strategies, such as cross-attention between observed and target frames. These meth-

ods could provide richer and more explicit alignment between past observations and

predicted futures, improving both accuracy and sample efficiency.

• Generalization to open-world settings. A major limitation of the current frame-

work is its reliance on a pre-defined set of object classes. This restricts the models

applicability in real-world environments, where novel or previously unseen objects

frequently appear. When such objects are encountered, their dynamics are only cap-

tured implicitly as part of the background, limiting interpretability and predictive

accuracy.

6.4 Final Remarks

In this thesis, we have demonstrated that explicitly decomposing objects in a dynamic

scene and modeling their individual dynamics is not merely a niche idea, but a practical

and effective design choice that can bring substantial benefits to video prediction models.

Across all proposed approaches, our models were able to generate visually coherent and

physically plausible future frame predictions from observed past frames. We believe that

the findings of this research provide a solid foundation for advancing video prediction

applications. In particular, we highlight the relevance to robotics: as shown in Chapter

5, the SCAT-Diffusion model showed potential in a robotic manipulation setting with a

limited number of objects. By accurately forecasting the future states of the manipulated

objects, our approach can support more reliable planning and control in robotic systems.

However, our model has many inherent limitations as we stated in Section 6.2 which

provides promising future research directions.
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