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Abstract

This thesis comprises three essays that explore the interplay between strategic

behavior, information transmission, and welfare-enhancing policy interven-

tions.

The first chapter develops a multi-receiver incomplete information coor-

dination game with unbiased and biased agents. Unbiased agents aim to

align with the underlying state of nature and coordinate with others, while

biased agents favor a specific collective outcome. A randomly selected sender

observes the state and communicates strategically to the group. I show that

truthful communication and full social learning can be sustained in equi-

librium provided the degree of conformity among unbiased agents does not

exceed one-half and the share of biased agents remains below fifty percent.

The second chapter examines rumor propagation on networks by modify-

ing the communication–coordination game introduced in the previous chapter

so that conformity depends on local interactions only. I demonstrate that

introducing a small degree of conformity enlarges the parameter space in

which truthful communication occurs, thereby relaxing the constraints on

biased participation compared to existing models.

The third chapter shifts focus to consumer behavior and welfare by an-

alyzing optimal taxation of sin goods under self-control problems. Using

the temptation model of Gul and Pesendorfer (2001) in a monopoly set-

ting, I characterize an endogenous quality–price ceiling and derive welfare-

maximizing tax policies. I show that optimal ad valorem taxes decline with

market size, potentially turning into subsidies, while specific taxes are not

optimal for domestically produced goods. By contrast, for imported goods,

both ad valorem and specific taxes improve welfare, with ad valorem taxes
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yielding substantially larger gains.
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Introduction

Modern economic environments are increasingly shaped by the interplay

between information flows, social interactions, and behavioral biases. Indi-

viduals do not act in isolation: they exchange information, observe the be-

havior of peers, and make consumption choices that often involve self-control

problems. These dynamics can generate outcomes that deviate from those

predicted by models of fully rational, individualized agents. Understanding

how conformity, communication, and self-control shape collective behavior

is thus essential both for economic theory and for designing policies that

improve welfare.

This thesis explores these themes through three essays, each focusing on a

distinct but related dimension of individual and collective decision-making.

The first essay investigates how conformity affects information transmission

in a communication game. The second extends this framework to study

rumor propagation in networks, highlighting how conformity amplifies the

spread of unverifiable statements. The third essay shifts from information

to consumption, analyzing how self-control costs influence the optimal tax-

ation of sin goods under monopoly pricing. Across these contexts, the cen-

tral concern is how individual behavioral motives interact with structural

constraints, such as communication channels, network topologies, or market

pricing schemes, to shape welfare outcomes.

The first essay examines the role of conformity in environments where in-

dividuals seek both to learn about an underlying state of the world and to

coordinate their actions with others. In many real-world contexts, such as

political communication, financial markets, or product reviews, agents care
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not only about the accuracy of information but also about aligning with the

majority. To model this, I build on an incomplete information framework in

which a sender observes the true state of nature and communicates with mul-

tiple receivers. Some receivers may be biased toward a particular outcome,

while others are unbiased truth-seekers. The key innovation is to introduce

conformity into preferences: receivers value taking actions close to those of

their peers.

This modification introduces new strategic tensions. On the one hand,

conformity may discourage truthful communication, as individuals prioritize

coordination over accuracy. On the other hand, moderate levels of confor-

mity can enhance social learning, as unbiased agents are incentivised to fol-

low when they think others will do so. The analysis shows that the degree of

conformity plays a pivotal role in sustaining equilibria with informative com-

munication. This has implications for understanding environments where

both truth and alignment matter, such as coordination on policy reforms,

adoption of technologies, or information sharing in organizations.

Building on the insights of the first essay, the second turns to the problem

of rumor propagation in networks. Rumors are statements whose veracity is

uncertain and often unverifiable, yet they spread rapidly within social groups,

influencing political, economic, and health-related outcomes. From the per-

spective of economics, rumors provide a natural laboratory for studying why

rational agents might transmit information that is potentially false.

I extend the model of Bloch et al. (2018), who show that rational agents

may spread rumors if, on balance, they believe them to be true and stand to

benefit if they are. Their model, however, does not account for conformity

motives. I introduce a networked setting in the form of an undirected line,

in which individuals care about aligning their actions with neighbors. This

addition captures the idea that individuals may spread rumors not because

they believe them, but because doing so aligns them with their neighbors.

The analysis reveals that conformity expands the set of conditions under

which rumors circulate. Even when individuals suspect that a rumor is false,

they may transmit it to avoid deviating from peers. This mechanism helps

explain why political misinformation can sway elections, why doubts about
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medical treatments spread despite strong scientific evidence, and why finan-

cial rumors propagate through markets. The model highlights conformity as

a powerful catalyst for social learning, but also for social mislearning, with

significant policy implications for combating misinformation.

The third essay shifts from communication and networks to consumer

decision-making under self-control problems. Many goods, such as tobacco,

alcohol, and sugary beverages, are associated with temptation and overcon-

sumption. Governments commonly impose sin taxes on such goods to dis-

courage consumption and raise revenue. Yet the optimal design of these

taxes is far from straightforward. Sin taxes are often regressive, encourage

illicit trade when set too high, and interact in complex ways with consumer

behavior.

To analyze these issues, I adopt the temptation model of Gul and Pe-

sendorfer (2001), which formalizes the trade-off between long-term commit-

ment utility and short-term temptation utility. Consumers first choose a

menu of options and then select an item within it, with self-control costs

arising when temptation conflicts with long-term preferences. I embed this

framework in a nonlinear pricing model where a monopolist sells sin goods

to heterogeneous consumers. The monopolist cannot observe preferences di-

rectly and thus relies on price discrimination through menus.

The analysis distinguishes between consumers facing upward temptation

(toward high-quality, high-price goods) and downward temptation (toward

low-quality, low-price goods). In such settings, taxation alters not only con-

sumption but also the distribution of self-control costs. I show that specific

taxes have no effect on welfare in the case of a domestic monopolist, whereas

ad valorem taxes can be welfare-enhancing depending on market size and the

distribution of temptation intensities. For imported goods, by contrast, both

ad valorem and specific taxes can improve welfare, with optimal ad valorem

rates reaching as high as 50 percent.

A central contribution of this essay is to evaluate taxation under three

alternative welfare concepts: adjusted-cost welfare (which accounts for self-

control costs), normative welfare (which reflects commitment utility as true

preferences), and behavioral welfare (which aggregates across selves via ex-
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post utility). The results highlight how policy prescriptions depend critically

on the chosen welfare benchmark. For instance, under normative welfare,

higher taxes may be desirable to curb temptation, while under behavioral

welfare, lower taxes may be preferred to respect revealed choices. This un-

derscores the theoretical and philosophical challenges of welfare evaluation

in behavioral contexts.

Considered jointly, the three essays illuminate how conformity, bias, and

self-control interact with institutional and market structures to shape out-

comes. The first two chapters demonstrate how social interactions can am-

plify or suppress the transmission of information, while the third shows how

self-control problems alter the design and evaluation of optimal taxation. A

unifying theme is that individual motives, ranging from the desire to conform

to the pursuit of biased outcomes or the struggle with temptation, exert a

profound influence on collective welfare.

The contributions are threefold. First, the thesis extends models of cheap

talk and rumor propagation by incorporating conformity, offering new in-

sights into the dynamics of social learning and misinformation. Second, it

adapts nonlinear pricing models to account for temptation, yielding novel re-

sults on the design of taxation in sin good markets. Third, it brings together

these strands to highlight a broader perspective: that behavioral motives

must be integrated into economic analysis to understand how communica-

tion, networks, and markets function in practice.

By bridging communication games, network economics, and behavioral in-

dustrial organization, the thesis contributes to ongoing debates in both theory

and policy. It sheds light on how misinformation spreads, how individuals

respond to peer pressure, and how governments can design policies in the

presence of behavioral biases. Ultimately, the results suggest that effective

policy requires not only correcting market failures but also acknowledging

the behavioral forces that drive individual and collective decisions.
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Chapter 1

Conformity As A Catalyst

For Social Learning

I develop a multi-receiver incomplete information game of coordination with

two types of agents: unbiased agents, who seek to align their actions with an

underlying state of nature and to coordinate with others, and biased agents,

who favor a specific collective decision. A randomly chosen sender observes

the realized state and then engages in strategic communication, after which

receivers socially learn through the sender’s message. In equilibrium, whether

truthful equilibrium and full social learning occur depends jointly on the

degree of conformity among unbiased agents and the share of biased agents.

In particular, I show that truthful strategic communication to a large group

and social learning remain feasible provided the degree of conformity does

not exceed one-half and the share of biased agents is below fifty percent.

1.1 Introduction

The rapid development of information technologies has made information

more easily accessible and influential in shaping individual decisions. For

example, consumers can make independent purchase decisions by watching a

review of the product online or through other media. Similarly, voters may

decide how to place their ballot in an election based on the opinion of a

public figure. In both of these cases, agents may end up choosing the same
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action because, individually, each agent believes that this action is the best

given the information they received. Consider the first of these examples,

if consumers are only interested in whether a product is of good quality or

not (so that other issues that might affect their decision to purchase, such

as budget constraints and other’s purchasing decisions are ignored), then

purchasing decisions reflect information transfer from the reviewer to the

consumers. In this case, consumers have learned the quality of the product

and purchasing decisions reflect this.

If in the above examples, agents wish to align their actions with other

agents then information transfer and learning might not be feasible. This is

because agents might hold strong beliefs regarding the actions made by the

remaining agents, and thus, even if the reviewer is honest, they coordinate on

a given action independently of the review. Alternatively, the reviewer may

post a review she considers is most likely to align with the action of some

of her viewers. Some agents may then assume that the review is unreliable,

which will lead them to decide not to make a purchase.

The willingness of agents to take actions that match those taken by others

can be regarded as conformity. More specifically, conformity is understood

here as willingness to adopt the same action as others regardless of whether,

according to the agent’s own mind-set, the action is reasonable or correct

in some way. This independence on agent’s own mind-set can then be in-

terpreted as placing a cost on taking certain actions. This cost may be un-

conscious (i.e. due to inherent biases) or conscious (the agent may fear the

social repercussions of diverging from the norm). Formally, conformity may

be represented as a loss function that increases with the extent of divergence

from the choices made by others.

The coexistence of conformity in the context of information transmission

is main theme of this paper. In particular, this coexistence raises a central

question: does conformity allow information to be transferred or does it ac-

tually hamper it? This does not have an immediate answer. On the one

hand, if agents align with others regardless of the information they receive,

then agents may fail to transfer information in favor of conforming to other’s.

Alternatively, agents may ignore any information they receive. On the other
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hand, conformity may facilitate information transfer by promoting the dis-

semination of signals that support preferred actions. Similarly, agents may

be more willing to accept unlikely information if doing so results in actions

that are consistent with the majority. In the previous example, a consumer

may be more likely to be influenced by a positive review if the product is

fashionable.

When considering information transfer under conformity, another issue

arises: if some agents disregard information and are willing to promote an

action independently of the truth, can information still be transferred? If

agents seek to conform with others, does the presence of this agent completely

erase information transmission? In many applications the existence of such

agents is relevant. Alleged health treatments are frequently promoted on

social media; similarly, partisan agents may disseminate false information in

pursuit of particular political agendas. Interestingly, in some circumstances

the existence of these biased agents may encourage information transfer if

the desire to conform is not too strong. I investigate this possibility in the

paper.

To investigate these questions, I model information transfer via a sequen-

tial game with imperfect information. The game contains two types of agents

unbiased agents and biased agents. An agent’s type is private knowledge to

that agent, but the proportion of biased agents is common knowledge. Un-

biased agents represent “average” agents who seek the truth but may be

influenced by the actions of others. Biased agents, on the other hand, can

be thought of as partisan agents who are only interested in a particular out-

come. In the reviewer-consumer example, biased agents represent fans of the

product who are willing to purchase it and promote independently of its ac-

tual quality. Unbiased agents represent standard consumers who are willing

to purchase a high-quality product and forgo a low-quality one; however, this

decision may be influenced by the behavior of others.

The game proceeds in two phases: first, a randomly chosen sender from

the population receives a private and perfect signal about the true state of

the world. In the reviewer example this might correspond to the reviewer

receiving a sample by the manufacturer or making a private purchase. After

3



receiving the signal, the sender takes an action. This action is observed

by the remaining agents in the population, referred to as receivers, who

interpret it as a message about the state of the world (i.e. the reviewer

posts a public review of the product on social media). The remaining agents

then take their actions independently and privately (in the example this

corresponds to making a purchase or not). A collective outcome is determined

by taking the mean of the receivers’ action and the sender’s action. Note that

communication is costly in my model, the sender commits to his action before

the remaining agents take theirs. Moreover, even though the sender has to

take an action, she is allowed to lie.

I determine the existence of equilibria where unbiased senders disclose

their information truthfully (it is possible, as I show, for them to disclose it

by lying, but this is inefficient) and unbiased receivers obey their message.

Note that biased senders seek to obfuscate the truth and they always send

a message that aligns with their preference in equilibrium. Similarly, they

disregard any information and adopt their preferred action. I establish that

conformity can in fact encourage social learning even if biased agents are

present. This is because from the perspective of unbiased agents, information

about an unlike state is very valuable. If biased agents are present and prefer

the outcome associated with this state; then receiving a message indicating

this is the state becomes less informative since it may come from a biased

agent. However, if unbiased agents benefit from conforming and all remaining

players choose the action associated to the unlike state when receiving it, then

the agent is incentivized to choose this action as well.

More broadly, I show that the possibility of information transfer as follows:

if the population contains no biased agents. If the willingness to conform is

sufficiently strong, equilibria in which agents coordinate independently of in-

formational content become relevant, even when these equilibria are Pareto

inferior. On the other hand, if unbiased agents are unaffected by conformity

then social learning is possible if the proportion of biased agents is small. For

low prior believes, social learning is thus not very robust to the inclusion of

biased agents. As mentioned in the previous paragraph, this is due to some

messages not being as informative when biased agents are present. If con-
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formity becomes relevant then information transfer and social learning can

survive even for arbitrary proportions of biased agents in small populations.

This is because conformity acts as an additional incentive for unbiased agents

to take certain actions when receiving the corresponding message since ev-

eryone else adopts this action in equilibrium and gains are substantial as

result. These gains are however not large enough to discourage deviating

from taking actions corresponding to alternative messages. Interestingly, if

populations are large then, provided conformity is valued less than truth and

biased agents are not a majority, social learning remains feasible; indepen-

dently of the prior belief.

The above results show that information transfer can be robust when

biased agents are part of the population. In the sense that for a fixed prior

belief the proportion of biased agents a population can sustain while ensuring

that unbiased agents communicate truthfully is larger when biased agents

benefit from conforming than when they do not.

The model lends itself to several applications, among which I have already

highlighted online reviews and consumer purchasing. In this case my model

can help shed light on questions relating to social media motivated consump-

tion trends, for instance the recent trends in matcha tea and Dubai chocolate.

In addition, the model might be well suited to study investor herding and

political influencing through social media. In these examples, the outcome

dependent term can be treated as a formal device to study the interplay of

decisions by receiver and sender. On the other hand, this term can have

representation in real life; i.e. because there might be externalities in taking

a particular action. An example of this is the implementation of prevention

policies for infectious diseases. Consider in particular the Covid-19 pandemic

when governments needed to make decisions to protect citizens from infec-

tion while also considering the burden it places on everyday life activities.

An instance of this kind of decision is encouraging the use of masks. The sit-

uation of the pandemic at a given time may be viewed as either uncontrolled

or controlled by the government by referring to how fast the virus spreads

or in some other way. If the virus is uncontrolled encouraging citizens to

wear a mask would be the best choice in order to prevent the spread of the
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virus. On the other hand, if the virus is controlled, mask wearing could be

discouraged for citizens to benefit from fuller social interaction.

Assume that the government is informed of the current situation of the

pandemic accurately via experts’ report or some similar way. The public

is unaware as it does not receive this information directly. A government

official can then make a policy announcement recommending wearing masks

or not. This recommendation need not match the current situation. In

the other words, the government may be overcautious and encourage the

use of masks when it is in fact not needed; or, on the other hand, it may

announce that wearing masks is not needed because it wants to prioritize

some social effect or economic factor despite the virus spreading rapidly.

After the announcement is released, the public can decide whether to wear a

mask or not. Some members of the public may prefer that everyone acts in a

way that matches the current pandemic situation (wearing masks when the

pandemic is uncontrolled and not wearing them when it is controlled). There

may be some others who are very stubborn and only care that society acts in

a given way independently of the situation; some may want masks to be worn

regardless of the current status of the pandemic to feel safer, while others

may not want masks to be worn at all because they see it as too restrictive.

Individuals that have such strong preference are unlikely to be affected by

the behavior of others, while individuals in the first group (those who do not

have a predetermined view) might consider what others are doing to align

their own behavior with that of the rest.

1.1.1 Related Literature

This paper contributes to the literature on strategic communication, which

began with the seminal work of Crawford and Sobel. In Crawford and Sobel

(1982), one agent has private information which is allow to communicate to

another agent at no cost (cheap talk). The last agent then takes an action

which determines the payoffs to both. My paper adopts a similar approach

by adopting their payoff (although in Crawford and Sobel action spaces are

continuous) but I consider multiple receivers instead. Unlike Crawford and
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Sobel (1982), senders commit to their message and it affects their payoffs,

hence communication is not cheap. Moreover, the environment in my model

allows for receivers to not only be concerned with the accuracy of their indi-

vidual actions but also with coordinating those actions with others.

It is noteworthy that in contrast to standard models of cheap talk with

multiple receivers (e.g. Farrell, 1987; and Goltsman and Pavlov, 2011) where

the sender has no incentive to misreport to any single receiver in an informa-

tive equilibrium, since payoffs depend only on the receiver’s action, not on

the content of the message itself. Moreover, if the desire to conform is suffi-

ciently large then senders and receivers seek to coordinate naturally, which

results in no information being transferred.

A common strand in the literature is to consider different modes of com-

munication, a foundational paper in this regard is Farrell and Gibbons (1989),

which discusses the behavior of a sender and two different agents, referred

to as audiences. Equilibria in this paper differ depending on whether one

or both audiences are present. In my model, communication is public and

I therefore do not account for audience-dependent effects, the main focus

being the analysis of the willingness to conform to the behavior of others.

Two particularly noteworthy extensions to these models related to this

paper are Hagenbach and Koessler (2010), and Galeotti et al. (2013). Both

papers reach similar conclusions and allow agents to communicate with mul-

tiple other agents. The main focus is to study the network structures involved

in honest communication. In contrast, my model allows communication only

once by a single agent; nevertheless, I observe similar communication effects.

In addition, my model takes inspiration from the payoff function in Hagen-

bach and Koessler (2010), one of the main differences is that in my model

non-coordination payoffs depend on the aggregate actions of all players. In

addition, in Hagenbach and Koessler (2010) each agent receives a private sig-

nal about the state of nature, with the true state given by the sum of these

signals. By contrast, my model features a single fully informed agent, while

all other agents are uninformed, rather than each agent possessing partial

information.

My paper is closely related to Bloch et al. (2018), who analyze how rumors
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spread both in public broadcast and through a network. I extend their pub-

lic broadcast model to account for conformity and assume that the sender

commits to his action, whereas in Bloch et al. (2018) agents are allowed to

change their actions in the later stages. They focus on the conditions for

misinformation transmission in equilibrium. My model implies however that

if agents value the truth more than conforming with other, conformity can in

fact enhance information transfer and help achieve social learning. While, if

the effect is strong enough, it might hamper it in situations where it should

have been otherwise possible.

This work is related to Bayesian social learning models, which examine

how agents learn from observing others. This literature studies how agents

update beliefs and choose actions based on private signals and based on pri-

vate signals and the observed actions of others (Bikhchandani et al., 1992;

Banerjee, 1992). Standard models show that actions may converge over

time, but herding or miscoordination can occur, especially when signals are

bounded or networks are directed (Smith and Sørensen, 2000; Acemoglu et

al., 2011). While this literature emphasizes how information spreads through

networks, agents in my model care not only about aligning with the true state,

but also about coordinating their actions. This feature, in particular, affects

the credibility of communication, as it depends not only on believes about

the sender’s motives but also on how messages shape collective rather be-

havior. Unlike models in which repetition is possible, learning in my setting

occurs only once.

A large body of political research on collective voting highlights the role

of social conformity. Bernheim (1994) shows that individuals may conform

to behavioral norms because status depends on how actions signal unobserv-

able predispositions, even when underlying preferences are heterogeneous.

Building on this, subsequent studies examine the effect of conformity on col-

lective voting behavior (Coleman, 2004; Moreno et al., 2019). In line with

this literature, I incorporate conformity motives into my model.

The paper is organized as follows. The model and equilibrium notions

are introduced in detail in section 1.2. Equilibrium characterizations for

different parameter values are discussed in section 1.3. Section 1.4 provides
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a discussion of comparative statistics and robustness of social learning in

large populations. Section 1.5 gives a summary and conclusion.

1.2 Model

In this section, I introduce the incomplete information game of coordination

mentioned earlier. Broadly speaking, the game is as follows: a given agent

(the sender) receives information privately, which he can transmit to other

agents through his action (message). This message is observed by other

agents (receivers). Immediately after the sender takes his action, the receivers

then simultaneously choose their actions based on both the sender’s message

and what they think the unknown state of the world is.

Information Generation

The receivers’ uncertainty, which is central to the game, stems from two

private information sources: the sender’s type and the state of the world,

which determines their preferences. More specifically, consider a popula-

tion N of voters i ∈ N , |N | = n ≥ 4, consisting of two types t ∈ T =

{unbiased, biased} of agents distinguished by their preferences over messages

and outcomes: some do not have predetermined preferences about whether

the collective outcome should align with the unknown state of nature and are

willing to coordinate with others. Their desire to conform to the behavior of

others is measured by a common and publicly known exogenous parameter

α ∈ [0, 1] (0 indicates no desire to conform while 1 indicates a complete de-

sire to conform). There are also agents who have predetermined preferences

about what the outcome should be; they are not motivated by the desire to

coordinate. The first class of agents are called unbiased agents. The set of

unbiased agents is U , I use the notation iu ∈ U , |U| ≥ 3, to indicate that

an agent is unbiased. More generally, a superscript “u” refers to unbiased

agents. The second class of agents are biased agents. The set of biased agents

is B, |B| ≥ 1, and, just as before, I write ib ∈ B = ∁NU to indicate that an
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agent is unbiased.1 Similarly, a superscript “b” refers to biased agents.

Each agent knows their type but not that of other agents; however, they

know the proportion of types in the population. In other words, individual

agent types t are private information, while the proportion of biased agents is

common knowledge. For a given unbiased agent iu ∈ U in a population, the

bias ratio b is the fraction of biased agents among the remaining population,

defined by

b =
|B|

|N | − 1
.

As mentioned at the beginning, the state of nature is also unknown to

most agents. It is assumed to be in either one of the two possible states

Θ = {0, 1}. A particular state is denoted by θ ∈ Θ. Each agent’s incomplete

information is characterized by the pair (θ, t) ∈ Θ × T which combines the

state of the world and the sender’s type.

The assumptions on group size ensure that the population is sufficiently

large to study communication effects while preventing biased agents from

dominating. For instance, in a group of three agents with one biased agent,

an unbiased agent would face either one unbiased and one biased agent, or

two biased agents. In such small groups, the bias ratio is at least one-half,

meaning that conforming behavior would be disproportionately influenced

by the biased agent’s presence.

The game proceeds in two distinct phases: (1) message transmission phase:

a sender transmits information through a costly action; and (2) collective

decision phase: receivers simultaneously choose actions based on the message.

I now describe each phase in detail.

Message Transmission

A randomly chosen sender observes the realized state θ, while the remaining

agents receive no direct information about the state. Despite θ being un-

known to most agents, all unbiased agents are assumed to have a common

1∁N denotes the complement of the set U in the set N .
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prior belief π about what θ is (the prior belief of biased agents is irrele-

vant, since their utilities do not depend on the state θ). More precisely,

π = P(θ = 1) < 1
2
, so that π represents the belief that θ = 1 is the true state

of nature. The assumption on the belief and its definition are chosen in this

way so as to ensure that information transfer plays a meaningful role in the

decision process of the unbiased agents.

In the sequel, I analyze the Perfect Bayesian Nash Equilibrium of this

game in pure strategies. Each agent chooses one of two actions from the set

A = {0, 1}. Observe that these are labeled in the same way as elements of Θ.

As usual, a strategy for a given player is a function that specifies an action

at each information set of the game.

Once the sender observes θ, he is allowed to decide whether to commu-

nicate this signal truthfully or to misreport it by choosing an action in A.

Importantly, the sender cannot block or withhold the message. Recall that

only he observes θ and takes an action before the receivers (the remaining

players). This action is thus the message he sends to the receivers. For a

sender of type t and θ ∈ Θ mt(θ) is the message he chooses to send. The

strategy of the sender it can be described by a mapping mt(θ) : Θ 7→ A,

t ∈ T . Specifically, mu(θ) denotes the strategy of an unbiased sender while

mb(θ) denotes the strategy of a biased one. In equilibrium, unbiased senders

may truthfully report θ or choose to strategically misreport it depending

on their incentives. By contrast, a biased sender strategically sends a fixed

message that reflects his predetermined preference, aiming to influence the

collective outcome in line with his inflexible objective. This intuitive outcome

is analyzed formally later.

Collective Decision

After the sender has taken his action, each unbiased receiver updates his

prior belief to a posterior ρ(m) = P(θ = 1|m) according to Bayes rule. Note

that since unbiased agents initially consider θ = 1 to be less likely, this

posterior probability plays a crucial role in determining the actions taken

by unbiased receivers. Unbiased agents then take an action simultaneously
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about what each thinks the value of θ is. A profile of actions for receivers

in the population is denoted by v = (v1, ..., vn−1), with vj ∈ A = {0, 1},
j = 1, ..., n− 1.

Now, let x ∈ [0, 1] denote the collective outcome. The outcome x is as-

sumed to follow the “rule of the average”. In policy terms, the chosen policy is

the one proposed by a randomly chosen voter: x = x(m,v): (m,v) 7→ [0, 1],

x(m,v) =
1

n

(
m+

n−1∑
j=1

vj

)
.

The final outcome x is therefore the average of the actions taken by all

agents weighted equally. Note that each agent therefore contributes equally

to the final collective outcome, including the sender despite moving first. In

addition, the rule of the average is particularly useful from a modeling per-

spective: when utilities are linear in the collective outcome, taking the simple

average allows expectations to be easily computed, preserving tractability

while highlighting how communication and coordination shape behavior and

avoiding messy nonlinearities while still capturing the idea that more votes

causes higher probability. Moreover, the rule makes the marginal contri-

bution of each agent in the outcome transparent: An agent deviating from

action 1 changes the collective outcome by exactly 1
n
. This property empha-

sizes that coordination incentives arise not from asymmetric voting power

but from informational and strategic interactions among agents.

A summary of the timeline of the model is provided in figure 1.1 below.

Payoffs

Sender Preferences and Utility

Each sender has intrinsic preferences over the set Θ = {0, 1}. The utility

function of an unbiased sender iu ∈ U choosing strategy mu is

uS
iu(m

u;v, θ, α) = −(1−α)|x(mu;v)−θ|− α

n− 1

n−1∑
j=1

|mu−vj(m
u)|. (1.1)
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Population: Agents t ∈ {u, b}; α common knowledge

States: Binary θ ∈ {0, 1}; prior π < 1/2

Information: Each knows own type; sender observes θ

Message: Sender chooses mt(θ)

Updating: Receivers form posterior ρ(m)

Actions: Unbiased: vu(m); Biased: vb = 1

Outcome: Collective x(m, v) = mean of actions; payoffs realized

Figure 1.1: Timeline of the model

The first term in this equation corresponds to the loss from the collective

outcome x failing to matching the true state θ (scaled by 1 − α). On the

other hand, the second term accounts for losses from failing to coordinate

with other agents (scaled by α). The parameter α ∈ [0, 1] is accordingly the

relative weight loss from mis-coordination compared to loss from deviation

from the outcome not matching θ. As explained earlier, if α = 0 a given

unbiased agent does not care about the remaining agents’ choices and hence

will choose the action that matches what they think the true state is. On the

other hand, if α = 1, the unbiased agent’s utility is completely determined

by other agents’ actions and therefore they will have a strong incentive to

coordinate with the majority.

Note that each unbiased agent shares the same weight α for tractability,

even though heterogeneous weights would be more realistic. This simplifica-

tion should not affect the results significantly.

A biased sender ib ∈ B chooses mb so as to bring the collective outcome

x closer towards his preferred state θ = 1. This is represented by the utility
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function

uS
ib(m

b;v) = −|x(mb;v)− 1| = 1

n

(
mb +

n−1∑
j=1

vj(m
b)

)
− 1. (1.2)

Unlike unbiased agents, the biased sender’s utility is independent of both

the true state of nature θ and the parameter α.

Receiver Preferences and Utility

An unbiased receiver ju ∈ U chooses an action vju ∈ {0, 1} to maximize

utility by balancing benefits derived from the outcome aligning with the true

state and benefits from coordination. The utility function is therefore:

uR
ju(vju ;v−ju ,m, θ, α) = −(1−α)|x(vju ;v−ju ,m)−θ|− α

n− 1

 ∑
k ̸∈{ju,i}

|vju − vk|+ |vju −m|

 ,

(1.3)

where x(vju ;v−ju ,m) = 1
n

vju +m+
n−1∑
k=1
k ̸=ju

vk

 describes the outcome. More-

over, v−ju denotes the action profile of all receivers except ju; while the sum

in this equation is taken over agents other than ju and the sender i.

Similarly, the utility of a biased receiver jb from choosing vjb is

uR
jb(vjb ;v−jb ,m) = −|x(vjb ;v−jb ,m)−1| = 1

n

vjb +m+
n−1∑
k=1
k ̸=jb

vk

−1. (1.4)

As stated previously, biased receivers always prefer x = 1 regardless of

θ. Their utility depends only on the distance between x and 1, and are not

affected by coordination. Therefore, vjb = 1 is a dominant strategy for a

biased receiver.
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1.3 Perfect Bayesian Nash Equilibrium Characteriza-

tion

I first identify the conditions that determine receivers’ optimal actions by

requiring that beliefs are consistent. Given a profile of actions v and a

message m, let xj
0 = x(0;m,v−j) denote the expected collective outcome

when a given agent j chooses 0; xj
0+

1
n
is then the expexted collective outcome

if the agent j chooses 1 instead.

For an unbiased receiver ju, the expected utility from choosing action 0

after receiving message m is then

E[uR
ju(vju = 0;xj

0)|m] = −(1−α)
{
ρ(m)(1− xj

0) + [1− ρ(m)]xj
0

}
−α

n

n− 1
xj
0.

In this equation, the terms in curly brackets refer to the expected loss

from the collective outcome not matching the true state. The second term

refers to loss from failing to coordinate with agents who take action 1. These

coordination losses do not depend on the posterior beliefs ρ(m) directly, since

the actions of other agents are assumed to be known, but they do depend on

the (unknown) type of the sender.

The expected utility of ju ∈ U from choosing action 1 is on the other

hand,

E[uR
ju(vju = 1;xj

0)|m] =− (1− α)

{
ρ(m)

(
1− xj

0 −
1

n

)
+ [1− ρ(m)]

(
xj
0 +

1

n

)}
− α

(
1− n

n− 1
xj
0

)
.

The previous two equations can be combined to arrive at the conclusion

that an unbiased agent ju chooses action 1 if

ρ(m) >
1

2

[
1 +

nα

1− α
(1− 2n

n− 1
xj
0(m,v−j))

]
, (1.5)
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while ju chooses action 0 if

ρ(m) <
1

2

[
1 +

nα

1− α
(1− 2n

n− 1
xj
0(m,v−j))

]
, (1.6)

when α ∈ [0, 1).

If the inequality signs in equations (1.5) and (1.6) are replaced by equal

signs; so that

ρ(m) =
1

2

[
1 +

nα

1− α
(1− 2n

n− 1
xj
0(m,v−j))

]
,

then the agent is indifferent between both actions. If equality holds, the

agent is indifferent between the two actions and may mix. However, since

the analysis is restricted to pure-strategy equilibria, I exclude this knife-edge

case. Allowing mixed strategies would complicate the analysis by introducing

additional coordination considerations, without generating further insight

into the mechanisms of interest. Hence, focusing on pure strategies is without

loss of generality for the results derived below.

The cutoffs defined by equations (1.5) and (1.6) show that unbiased re-

ceivers are more likely to choose action 1 when one (or more) of the following

conditions are fulfilled: (i) Their posterior belief ρ(m) is sufficiently high; (ii)

the conformity α is stronger (or smaller) when xj
0 is above (or below) the

threshold n−1
2n

; (iii) the expected collective outcome xj
0 is closer to 1. For a

given message m and action profile v−j, I denote by κ(m,v−j) this cutoff,

the decision threshold, for agent j. These are discussed in more detail below.

Note that this threshold is characterized by two components:

κ(m,v−j) =
1

2

1 + nα

1− α︸ ︷︷ ︸
Coordination weight

1− 2n

n− 1
xj
0(m,v−j)︸ ︷︷ ︸

Social influence


 .

Now, consider the expression nα
1−α

. This ratio appears in the context of de-

termining conditions for truth-telling or equilibrium strategies in such games.
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Specifically, it often arises as a threshold in the sender’s incentive to tell the

truth versus conform to others. The numerator nα scales the conformity

weight by the number of players. he denominator 1− α is the weight on ac-

curacy. Thus, nα
1−α

measures the relative importance of conformity compared

to accuracy, adjusted by the group size. I will show that how this ratio affects

the threshold of biased ratio telling-truth equilibrium in the next section.

This equation highlights complexity inherent in the bound as it reflects

the interaction between coordination and communication. These manifest

(as suggested earlier) by the dependence of the bound on three parameters:

α, the total population n and the expected collective decision xj
0. The co-

ordination weight nα
1−α

quantifies the value of aligning with others, while the

effects of social influence are reflected in the term 2n
n−1

xj
0, which accounts

for the pressure to conform to the expected group behavior. If α → 0 (so

that the unbiased agents are interested in the truth only), then the decision

threshold satisfies κ(m,v−j) → 1
2
. In the limiting case where α = 0, the

decision threshold reduces to 1
2
, meaning that unbiased agents take action 1

only if they think that θ = 1 is likely to be true. On the other hand, if α → 1

(pure coordination), then the threshold κ(m,v−j) → +∞ when xj
0 < n−1

2n
.

As a result, the action 1 of an unbiased receiver is never chosen in this case.

If, by contrast, xj
0 >

n−1
2n

then κ(m,v−j) → −∞ and, as a result, an unbiased

receiver shuns action 0. More generally, for α > 0 the decision bound de-

pends on how many agents are taking action 1, as this number increases the

bound becomes less tight and the agent might not need to think that θ = 1 is

the most likely state to take action 1. Similarly, if a majority of other agents

are taking action 0 the bound may become tighter and the unbiased agent is

less incentivised to take action 1.

Given that all biased agents adopt the strategy vjb = 1 in equilibrium, I

can restrict the analysis to finding equilibrium strategies for unbiased senders.

This allows the following formal simplifications: The receivers’ strategy pro-

file v can be replaced by the vector of unbiased receiver strategies {vju},
ju ∈ U . Accordingly, xj

0(m,v−ju) replaces x
j
0(m,v−j). Here v−ju represents

the vector of unbiased receivers except ju. Furthermore, I will simplify no-

tation in the remainder of the chapter as follows: for a sender i; if he is

17



unbiased, the utility uS
iu(m

u;v, θ, α) is reduced to uS
iu(m

u;vju , θ), while if he

is biased, the utility uS
ib
(mb;v) is reduced to uS

ib
(mb;vju). Meanwhile, for a

receiver j; if he is unbiased, the utility uR
ju(vju ;v−ju ,m, θ, α) is reduced to

uR
ju(x

j
0(m,v−ju)). On the other hand, if he is biased, the utility uS

ib
(mb;v) is

reduced to uS
ib
(mb;xj

0(m,vju)).

The solution concept in this paper is Perfect Bayesian Nash Equilibrium

(PBNE, for short). I will consider for simplicity symmetric equilibria only.

Equilibria is said to be symmetric in the sense that agents of the same type

behave identically. In particular, senders of the same type create identi-

cal messages, while receivers of the same type follow the same equilibrium

strategy. Formally, a profile (mu,mb, ρ, vju , vjb), with vju : {0, 1} 7→ {0, 1};
mu,mb : Θ 7→ {0, 1} and ρ ∈ ∆(Θ) is a symmetric PBNE if it satisfies the

next four conditions:

(i) Senders’ strategy (Optimal Messaging):

For unbiased senders iu ∈ U :

mu(θ) ∈ arg max
m∈{0,1}

E
[
uS
iu(m;v−iu , θ, α) | ρ(m)

]
∀θ ∈ Θ,

where the expectation takes into accounts receivers’ strategies and pos-

terior belief ρ(m). Recall that the sender also knows θ.

For biased senders ib ∈ B:

mb(θ) ∈ arg max
m∈{0,1}

E
[
uS
ib(m;v−ib , θ) | ρ(m)

]
∀θ ∈ Θ,

where the expectation takes into account receivers’ strategies and pos-

terior belief ρ(m).

(ii) Receivers’ strategy (Optimal Actions):

For an unbiased receiver ju,

vju(m) = 1 if ρ(m) > 1
2

[
nα
1−α

(1− 2n
n−1

xj
0(m, v−ju ∈ U = 1)) + 1

]
;

vju(m) = 0 if ρ(m) < 1
2

[
nα
1−α

(1− 2n
n−1

xj
0(m, v−ju ∈ U = 0) + 1

]
;

and for a biased receiver jb,
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vjb(m) = 1.

(iii) Belief Consistency (Bayesian Updating):

Whenever possible, the posterior belief ρ(m) is updated via Bayes’ rule:

ρ(m) = P(θ = 1 | m) =
b · P(mb = m | θ = 1) + (1− b) · P(mu = m | θ = 1)

b · P(mb = m) + (1− b) · P(mu = m)
π,

where the prior satisfies π = P(θ = 1) < 1
2
and P(mu = m) and

P(mb = m) represent the probabilities of the message received being

sent by unbiased sender or biased sender respectively.

Note that it is a dominant strategy for biased receivers to take action 1

so the action of a biased receiver will match that of other biased receivers

trivially in equilibrium.

Recall that PBNE can be divided into three categories: i. separating equi-

librium, where different types of senders mt(θ) take different actions and thus

all information is transmitted to the receivers; ii. pooling equilibrium, where

both types of senders take the same action, resulting in no information be-

ing transferred to receivers; and, iii. partially-separating equilibrium, where

one type of agent always takes a certain action while the other separates the

actions. A general property of this model is that no separating equilibria

exists for any value of α however. This is because a biased senders’ payoff

is irrelevant of the true state of nature. Hence, under most circumstances,

they prefer sending a fixed signal 1 rather than sending a message which dis-

closes the true state of nature. Note that the goal of preventing information

disclosure does provides an incentive for biased agents send message m = 0

in some cases. Partially separating equilibria can be realised in this model

however. Naturally, in this case unbiased senders to disclose the state of

the world, while biased agents send the same message independently of the

signal received. Information transmission by unbiased senders takes one of

two forms: an unbiased sender can tell the truth to the remaining agents or

lie to them. More formally,

Definition 1.3.1. Truthful equilibrium: a PBNE in which unbiased senders
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send a message identical to the signal they received, i.e. mu(θ) = θ, mb(θ) =

1.

Definition 1.3.2. Lying equilibrium: a PBNE in which unbiased senders

send a message opposite to the signal they received, i.e. mu(θ) = 1 − θ,

mb(θ) = 0.

In the following sections, I characterize the equilibria of the model ac-

cording to different values of the parameters involved beginning with the

boundary cases.

Case: Fully Coordinated Unbiased Agents

In this case, α = 1 which means the utility of each unbiased agent is inde-

pendent of the true state, the game reduces to one that resembles a pure

coordination one. The utilities include only coordination terms for unbiased

agents while they remain the same for biased agents. The utility of a sender

iu ∈ U is accordingly:

uS
iu(m

u;v) = − 1

n− 1

n−1∑
j=1

|mu − vj|; (1.7)

while for an unbiased receiver ju the utility is

uR
ju(vju ;v−ju) = − 1

n− 1
[
∑

−ju ̸∈{ju,i}

|vju − v−ju |+ |vju −m|] (1.8)

instead. The expected utilities for unbiased agents are easy to compute in

this case, since they contain the term coming from coordination only. The

utility from choosing action 0 is therefore

E[uR
ju(vju = 0;xj

0,m)|m] = − n

n− 1
xj
0.

On the other hand, the utility from choosing action 1 is

E[uR
ju(vju = 1;xj

0,m)|m] = −(1− n

n− 1
xj
0),
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regardless of belief ρ(m) since θ no longer affects any type agent’s utility.

Incomplete information in this case reduces from (θ, t) to simply t.

As a consequence of utility being purely dependent on coordination. Un-

biased receivers take their action by following the simple majority rule:

vju =

1 if xj
0 >

n−1
2n

0 if xj
0 <

n−1
2n

In this regime, it is intuitive to conjecture that the rational equilibrium

is the one in which all agents take action 1 whenever a single biased agent

exists in the population. This is because biased agents create an incentive

to take action 1 since they always choose action 1. More formally, when

unbiased agents benefit from coordination only then symmetric equilibria

can be Pareto ranked. The optimal equilibrium being the one in which all

agents take action 1:

Proposition 1.3.1 (Coordination-Dominated Equilibrium). Given any pos-

itive share of biased agents b > 0 and state space θ ∈ {0, 1},
i. senders’ strategies: mt(θ) = 1 for t ∈ T ; and

ii. receivers’ strategies: vjt(1) = 1 for any t ∈ T form an equilibrium.

For a proof of this proposition and others, the reader is referred to the

appendix at the end of this chapter.

The equilibrium in proposition 1.3.1 constitutes an equilibrium where all

agents achieve the maximal possible payoff of 0. Naturally, this outcome is

the only stable one whenever b > 0. As a result, information transfer is not

possible in this regime.

When b < 1
2
, the Pareto efficient outcome is not the only equilibrium.

Indeed, if b < 1
2
, unbiased agents can coordinate with each other by tak-

ing action 0 while the biased agents persist in sending 1. This leads to an

equilibrium in which information about sender type is revealed:

Proposition 1.3.2 (Type-Revealing Equilibrium). Given b < 1
2
;and θ ∈

{0, 1},
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i. sender’s strategies: mu(θ) = 0 and mb(θ) = 1 for iu ∈ U and ib ∈ B;
and

ii. receivers’ strategies: vju(m) = 0 and vjb(m) = 1 for ju ∈ U and jb ∈ B
on the path.

The equilibrium in proposition 1.3.2 may arise when unbiased receivers

coordinate with each other on voting 0. This forces an unbiased sender to

adopt message 0 independently of θ. Receivers coordinating on action 0 may

happen when action 1 is seen as risky, for instance. This causes senders’ type

to be revealed in equilibrium.

Case: Truth-Seeking Unbiased Agents

For α = 0, the model coincides with a variant of Bloch et al. (2018), whose

work directly inspired the approach taken in this paper. Results in my paper

are similar to theirs in this regime. Unlike their paper, I specify that a sender

transfers his action as the message. In other words, a sender cannot change

his action after sending a message to receivers. Another important finding

in my model is the existence, for some particular values of the parameters,

of lying equilibria. This is different from Bloch et al. (2018), which focuses

exclusively on truthful equilibrium and does not mention lying equilibrium

at all.

When α = 0, the utilities for biased agents are unchanged while utilities

for unbiased agents only contain the term resulting from the outcome being

different to the true state θ. Hence, for iu ∈ U if he acts as sender

uS
iu(m

u;v, θ) = −|x(mu;v)− θ|; (1.9)

while if he acts as receiver

uR
ju(vju ;v−ju ,m, θ) = −|x(vju ;v−ju ,m)− θ|. (1.10)

As before, xj
0 = x(m,v−j) is the collective outcome if agent j chooses 0

and xj
0+

1
n
is the collective outcome if he chooses 1 instead. Observe that for

an unbiased receiver ju ∈ U the expected utility of choosing action 0 after
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receiving the message m is

E[uR
ju(vju = 0;xj

0,m)|m] = −ρj(m)(1− xj
0)− [1− ρj(m)]xj

0;

while his expected utility from choosing action 1 is

E[uR
ju(vju = 1;xj

0,m)|m] = −ρ(m)

(
1− xj

0 −
1

n

)
− [1− ρ(m)]

(
xj
0 +

1

n

)
instead. As I discussed earlier, an unbiased agent ju takes action 1 if ρ(m) >
1
2
, while he takes action 0 if ρ(m) < 1

2
.

There are three PBNE in this case: a truthful equilibrium, a lying equilib-

rium and a truthful equilibrium (biased-mimicking), where unbiased senders

communicate truthfully while all unbiased receivers behave as “biased” agents

who prefer a certain choice regardless of the message. The first two types of

equilibria occur whenever b < π
1−π

; while the truthful equilibrium (biased-

mimicking) occurs when b > π
1−π

. These are each separately discussed in the

next three propositions.

Proposition 1.3.3 (Truthful equilibrium). Assuming b < π
1−π

, for θ ∈
{0, 1}, the message strategies mu(θ) = θ and mb(θ) = 1 induce the following

belief ρ(m) on any unbiased receiver ju ∈ U :

ρ(m) =

0, if m = 0

π
b+(1−b)π

, if m = 1.
(1.11)

Moreover, receivers follow the strategies vju(m) = m for any ju ∈ U and

vjb(m) = 1 for any jb ∈ B.

Proposition 1.3.4 (Lying equilibrium). Assuming b < π
1−π

, for θ ∈ {0, 1},
the message strategies of the sender mu(θ) = 1− θ and mb(θ) = 0 induce the

following belief ρ(m) on any unbiased receiver ju ∈ U :

ρ(m) =

0, if m = 1

π
b+(1−b)π

, if m = 0.
(1.12)
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Moreover, receivers follow the strategies vju(m) = 1−m for any ju ∈ U and

vjb(m) = 1 for any jb ∈ B.

In a lying equilibrium, unbiased agents reveal their information even though

they attempt to hide it. This equilibrium is however not efficient. The fact

that this equilibrium is not stable is discussed in section II below. Intuitively,

even tough unbiased senders disclose the true state of nature they do it in

an inefficient way; by making the mean action be further away from the true

state than it should be if they had told the truth instead. In addition, since

biased agents wish to conceal the true state to bring the outcome x closer to

1, biased senders are forced to send 0 instead of their preferred choice of 0.

This creates further inefficiencies.

The bound of b on these two propositions depends on π. This reflects

the fact that even though a large presence of biased agents in the population

makes information unreliable, this effect might be mitigated if the prior belief

of unbiased agents is high enough.

When b is large enough, the receiving message m = 1 does not provide

useful information to any unbiased receiver. This is because it is more likely

than not that m = 1 comes from a biased agent. In these circumstances,

unbiased receivers behave as if they were another class of “biased” agents in

equilibrium. More precisely,

Proposition 1.3.5 (Truthful equilibrium (biased-mimicking)). Assuming

b > π
1−π

, for θ ∈ {0, 1}, the message strategies of the sender mu(θ) = θ

and mb(θ) = 1 induce the following belief ρ(m) on any unbiased receiver

ju ∈ U :

ρ(m) =

0, if m = 0

π
b+(1−b)π

, if m = 1.
(1.13)

Moreover, receivers follow the strategies vju(m) = 0 for any ju ∈ U and

vjb(m) = 1 for any jb ∈ B.

The nature of equilibria for different choices of the parameters b and π is

illustrated in the diagram below.
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Figure 1.2: The bound b in the equilibrium when α = 0

As stated above, as the belief π increases, the threshold between the two

equilibrium regimes becomes less tight. Consequently, the population admits

a higher proportion of biased agents. In the diagram this can be seen by

an increase in the verifiable area (corresponding to both truthful and lying

equilibrium, where information transfer takes place) corresponding to the

increase of π.

When α = 0 and b < π
1−π

, truthful equilibrium Pareto dominates the

lying one. This is because unbiased senders choose messages that maximize

the state-alignment payoff while biased senders follow their preferred action.

This motivates an alternative explanation as to why the lying equilibrium

appears is that receivers may attempt to punish biased senders by voting 0

when receiving 1. Senders respond to this threat by lying about the true

state. However, such a punishment is inefficient as senders have incentives

to revert to their original behavior.

Biased-mimicking equilibrium is caused by the proportion of biased agents

being too large. Unbiased agents take action 0 when receiving message 1

because this information is unreliable. This in spite of unbiased senders also
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creating message 1 whenever θ = 1. Note that it is not possible for unbiased

agents to punish biased agents since information transfer is not possible;

action 0 is, therefore, the only safe option for an unbiased agent.

In summary, the threshold π
1−π

represents a discontinuous transition from

a regime where information about θ can be transferred (truthful or lying

equilibria) to a regime where information transfer breaks down completely

(biased-mimicking equilibrium).

Proposition 1.3.6. There is no pooling equilibrium, i.e. one in which either

mt(θ) = 1 for any t ∈ T , or mt(θ) = 0 for any t ∈ T .

Proposition 1.3.6 is intuitive if α = 0. This is because unbiased senders will

always attempt to transfer information about the true state to ensure that

unbiased agents take actions that match the true state. They are also fully

informed about this state. Moreover, biased agents have a strong incentive

to create message 1, so a pooling equilibrium where mt(θ) = 0 for any t ∈ T
is not possible for this reason.

General Case: Partial Coordinated Unbiased Agents

I consider now the general case when α ∈ (0, 1) and analyse how the different

equilibria depend on both α and b. Recall that since I assumed that there

is at least one biased agent and at least 3 unbiased agents in the population

the following bounds must hold 1
n−1

≤ b ≤ n−3
n−1

< n−2
n−1

, |U| ≥ 3.

Proposition 1.3.7 (Truthful equilibrium). Let α ∈ (0, 1). For θ ∈ {0, 1},
the message strategies of the sender mu(θ) = θ and mb(θ) = 1 induce the

following belief ρ(m) on any unbiased receiver ju ∈ U :

ρ(m) =

0, if m = 0

π
b+(1−b)π

, if m = 1,
(1.14)

and receivers follow the strategies vju(m) = m for any ju ∈ U and vjb(m) = 1

for any jb ∈ B. This forms an equilibrium if α and b satisfy one of the

following conditions:
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Figure 1.3: The upper bound on b when α ∈ (0, 1) and π = 0.25 in the
truthful equilibrium

(1) α ∈ (0, k−1
n−1+k(n+1)

), b < π
1−π

(
1 + 2

R(α,n)−1

)
;

(2) α ∈ [ k−1
n−1+k(n+1)

, n−1
n2−2n−1

), ∀b ∈ (0, n−2
n−1

);

(3) α ∈ [ n−1
n2−2n−1

, n−1
2n−1

), b < 1
2

(
1 +R(α, n)

)
;

(4) α ∈ [ n−1
2n−1

, 1), b <
1
α
−1

1
α
−R(α,n)

,

where k = n−2
n−1

1−π
π

and R(α, n) = 1−α
nα

.

When viewed as a function of α the bound on b can be split into four

regions (this function is shown in figure 1.3 below for different populations).

The first of these regions (i.e α ∈ (0, k−1
n−1+k(n+1)

)), corresponds to low coordi-

nation values. In this case, gains from conformity contribute to information

transfer by making the bound on b less tight. Coordination gains are how-

ever small and unbiased agents priority is to align with the true state. Note

further that when α = 0 the threshold π
1−π

(
1 + 2

R(α,n)−1

)
reduces π

1−π
, the

bound when coordination is absent.

The second region (α ∈ [ k−1
n−1+k(n+1)

, n−1
n2−2n−1

)) corresponds to moderate

coordination values. In this regime, gains from conforming to actions taken
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by others are sufficiently high to ensure unbiased agents are willing to vote

1 when receiving message 1. These gains are not sufficient to provide an

incentive for unbiased agents to try to coordinate with biased agents, even if

their number is very high. This balance benefits information transfer.

Although conformity can significantly enhance information transfer by al-

lowing for ever increasing numbers of biased agents. The range of α where

this takes place has size 1
n
approximately. This means that for large popula-

tions this effect is not robust.

Whenever α ∈ [ n−1
n2−2n−1

, n−1
2n−1

) the incentive to coordinate becomes an

important factor for unbiased receivers. Naturally, when receiving message

m = 1 agents conformity ensures biased agents choose action 1. On the

other hand, to ensure that unbiased agents vote 0 when receiving message

m = 0 the number of biased agents cannot be too high so as to ensure belief

consistency. This is illustrated in figure 3 by the fast (hyperbolic) reduction

in unbiased agents. Since truth seeking is still relevant, the bound on b can

exceed 1
2
slightly.

Finally, if α ∈ [ n−1
2n−1

, 1) then coordination incentives are dominant. Since

sending message m = 1 results in full coordination the sender has a strong

incentive to do so. For truthful equilibrium to exist in this range of α, the

proportion of biased agents must be very small to ensure that the sender is

willing to coordinate with unbiased receivers when θ = 0. Indeed, for large

population the bound on b is approximately 1 − α. Indicating that even a

small proportion of biased agents can disrupt truth-telling when agents care

only about coordination.

Proposition 1.3.8 (Lying equilibrium). Let α ∈ (0, 1). For θ ∈ {0, 1}, the
message strategies of the sender mu(θ) = 1 − θ and mb(θ) = 0 induce the

following belief ρ(m) on any unbiased receiver ju ∈ U :

ρ(m) =

0, if m = 1

π
b+(1−b)π

, if m = 0,
(1.15)

and receivers follow the strategies vju(m) = 1 − m for any ju ∈ U and

vjb(m) = 1 for any jb ∈ B. This forms an equilibrium if α and b satisfy one
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of the following conditions:

(1) α < (0, α(π, n))2, b < π
1−π

(
1 + 2

n−3
n−1

·R(α,n)−1

)
;

(2) α ∈ [α(π, n), n−1
n2−2n−1

), b <
1
α
−1−2R(α,n)
1
α
−R(α,n)

;

(3) α ∈ [ n−1
n2−2n−1

, n−1
2n−1

), b < 1
2

(
n−3
n−1

+R(α, n)

)
;

(4) α ∈ [ n−1
2n−1

, 1), b <
1
α
−1−2R(α,n)
1
α
−R(α,n)

,

where R(α, n) = 1−α
nα

.

Similarly to the case α = 0 this equilibrium describes a situation where

unbiased senders transfer information inefficiently by creating messages op-

posite to the true state. Biased senders attempt to conceal information by

mimicking this behavior (i.e. they follow the strategy m(θ) = 0). Receivers

rationally anticipate this deception and decode the messages by choosing the

opposite action.

As for truthful equilibrium, the bound on b can be regarded as a func-

tion of α four distinct regions appear. A plot of this function for different

populations is shown in figure 4 below.

If coordination is small (i.e. if α < α(π, n) < 1
n+1

) the threshold of b is

similar to that in the truthful equilibrium case. The main difference is the

presence of a small penalty that arises because the sender does not coordinate

with the remaining agents when θ = 1. As in the case of truthful equilibrium,

conformity helps relax the bound on b since unbiased receivers benefit slightly

from coordinating with biased agents when m = 0 is received.

Whenever α ∈ [α(π, n), n−1
n2−2n−1

) the effect of coordination is strong enough

to ensure unbiased receivers take action vju = 1 when receiving message

m = 0 but not strong enough for them to deviate from action vju = 0 when

receiving message m = 1. Unlike truthful equilibrium, coordination effects

are sufficiently high to create an incentive for an unbiased sender to deviate.

To prevent this deviation, the number of biased agents must decrease when

α increases.

If α ∈ [ n−1
n2−2n−1

, n−1
2n−1

) the bound in b resembles again the bound in truthful

2where π
1−π

(
1 + 2

n−3
n−1 ·R(α,n)−1

)
and

1
α−1−2R(α,n)

1
α−R(α,n)

intersect at α(π, n) ∈ (0, 1
n+1 ).
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Figure 1.4: The upper bound on b when α ∈ (0, 1) and π = 0.25 in the lying
equilibrium

equilibrium. The main difference being the factor of n−3
n−1

. The factor arising

because the senders does not coordinate with the remaining agents when

θ = 1. As for truthful equilibrium, the effects of conformity are sufficiently

strong for unbiased agents to want to deviate from action vju = 0 when

receiving message m = 1 (in this case the effect is compounded slightly since

the sender also takes action 1). To ensure unbiased receivers do not deviate

from their equilibrium strategies the proportion of biased agents must be

relatively small. Note however that truth seeking behavior still allows for

this proportion to be slightly above 1
2
.

Finally, if α ∈ [ n−1
2n−1

, 1) coordination pressures are substantial. To ensure

that lying equilibrium remains the proportion of biased agents need to be

significantly small. This is because an unbiased sender is now motivated to

deviate from sending message m = 0 to send message m = 1 when θ = 1.

As can be seen in figure 1.4, for large populations the threshold for lying

equilibrium to exist reduces to the one for truthful equilibrium.

When α > 0 pooling equilibria can exists in the model when coordination
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becomes sufficiently high.

Proposition 1.3.9 (Pooling equilibrium). Let α ∈ (0, 1). Given α > 1
n+1

,

the following strategies and beliefs form an equilibrium: for θ ∈ {0, 1}, the
strategies mt(θ) = 1 for t ∈ T , induce the following belief ρ(m) on any

unbiased receiver ju ∈ U :

ρ(m) =

µ, if m = 0

π, if m = 1,
(1.16)

i. senders’ strategies: mt(θ) = 1 for t ∈ T ; and

ii. receivers’ strategies: vjt(1) = 1 for t ∈ T on the path; while

iii. off-the-equilibrium paths:

receivers follow strategies: vjt(0) = 1 for t ∈ T 3 ; or

vju(0) = 0 and vjb(0) = 1 for ju ∈ U and jb ∈ B with under the following

conditions of α and b: If b ≤ 1
2
, then α > (1−b)n+b

n+b
. While, if b > 1

2
, then

α ∈ ( (1−b)n+b
n+b

, 1
n(2b−1)+1

). This last condition holds whenever b ∈ (1
2
, n
2(n−1)

).4

The requirement α > 1
n+1

in proposition 1.3.9 reflects the fact that coor-

dination needs to be strong enough for pooling equilibria to arise. If b > 1
2

then there exists a unique pooling equilibrium where vju(m) = 1 whenever

α > 1
n+1

. This is because biased agents provide a focal point for agents

to coordinate around once conformity is high enough. When b < 1
2
on the

other hand a second inefficient equilibria arises where unbiased agents vote

0 off-the-equilibrium path (i.e. vju(0) = 0). In this equilibrium stronger co-

ordination is required to ensure an unbiased receiver does not deviate from

taking action 1 when θ = 0 where there are additional losses from the final

outcome being 1.

If b < 1
2
pooling equilibria with vju(0) = 0 should be unstable. This

is because either receivers would coordinate with biased agents, resulting in

higher pay-offs. Or the receiver would succumb and coordinate with unbiased

agents. Interestingly, provided α > 1
n+1

this results in equilibria where agents

type is fully disclosed, but no information about θ is revealed.

3The posterior belief is ρ(0) = µ > κ(m = 0,v−ju = 1)in this case.
4In either case, the posterior belief is ρ(0) = µ < κ(m = 0,v−ju = 0).
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Proposition 1.3.10 (Type-Revealing Equilibrium). Let α > 1
n+1

. Given

b < 1
2
(1 − R(α, n)), the following strategies form an equilibrium: for θ ∈

{0, 1},
i. sender’s strategies: mu(θ) = 0 and mb(θ) = 1 for iu ∈ U and ib ∈ B

respectively;5 and

ii. receivers strategies: vju(m) = 0 and vjb(m) = 1 for ju ∈ U and jb ∈ B
respectively.

Since π < 1
2
unbiased receivers have a preference for action 0 when there

is no information. Consequently, when the number of biased agents is small

they follow this action, even when coordination is large. To ensure the equi-

librium in proposition 1.3.10 exists ensuring the sender does not deviate

becomes crucial. This is particularly important when θ = 1 as the sender

suffers additional losses form the outcome not matching θ = 1. In this case

low number of biased agents ensure the sender does not have an incentive to

defect from coordinating with the rest of the unbiased agents.

1.4 Comparative Statics and Equilibrium Robustness

I now discuss how equilibria change as the parameters of the model vary.

First, observe that α = 1
n+1

marks the transition point from a regime where

the behavior of unbiased agents is mostly determined by aligning with the

true state, to one where coordination dominates. Moreover, as n → +∞
equilibria where information about θ is transferred becomes less relevant.

Crossing the threshold α = 1
n+1

gives rise to pooling equilibria, which do

not exists for α < 1
n+1

. In the extreme case α = 1 where action 1 becomes

preferable. Full coordination becomes the optimal outcome. However, for

bias thresholds b < 1
2
less efficient forms of coordination are present: pooling

equilibria where unbiased agents take action 0 off-the-equilibrium path, and

equilibria where agents coordinate according to their type.

In the general case α ∈ ( 1
n+1

, 1) if b ≤ 1
2
and n → +∞ the bound α >

(1−b)n+b
n+b

can be approximated as α > 1 − b. In this regime, a small increase

5Note that in this case ρ(m) = π for every m ∈ {0, 1}.
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∆b allows for a reduction in the degree of conformity of roughly the same

magnitude to maintain equilibrium (i.e . ∆α ≈ −∆b). On the other hand,

for b > 1
2
the requirement that b < 1

2(1− 1
n
)
≈ 1

2
(1 + 1

n
) means that for large

populations an equilibrium where unbiased senders take action 0 off-the-

equilibrium path requires a population where biased agents exceed unbiased

agents by a single agent.

In the other extreme, when α = 0 three forms of equilibria exist according

to the threshold b = π
1−π

. Below this threshold information transferred is

possible (either through truthful disclosure by unbiased senders or by indirect

inference if senders lie). Above this bound information from senders becomes

unreliable and unbiased agents choose action 0 for any message they receive.

The threshold b = π
1−π

becomes less tight as π ↑ 1
2
where π

1−π
→ 1. In

fact, for small prior beliefs a small increase in prior belief ∆π results in the

population admitting approximately that many more unbiased agents (i.e.

∆b ≈ ∆π).

More generally, for α ∈ [0, 1) equilibria where information is transferred

exist. For truthful equilibria, for α small (α < k−1
n−1+k(n+1)

with k = n−2
n−1

1−π
π
)

the conditions resemble those of pure communication. In fact, the thresh-

old in this region is π
1−π

(
1 + 2nα

1−α(1+n)

)
. Note that for π ↑ 1

2
the bound

converges to a quantity strictly larger than 1. For large prior beliefs the

population admits arbitrary number of agents. In addition, and increase in

π leads to a reduction in k which means this region decreases in size. For

small values of π and α, a small increase in π, ∆π, leads to the population

admitting an additional ∆b ≈ (1 + 2nα) ·∆π, the presence of conformity al-

lows an additional 2n2πα biased agents compared to when α = 0. Similarly,

a small increase ∆α leads to ∆b ≈ 2nπ∆α. The intermediate values of α

( k−1
n−1+k(n+1)

≤ α < n−1
n2−2n−1

) do not place any restriction on b.

Once conformity becomes important (α > 1
n+1

) truthful equilibrium bounds

depend on α and n only. In particular, for moderately high values ( n−1
n2−2n−1

≤
α < n−1

2n−1
) the b is roughly inversely proportional to the product nα, thus

if both quantities are multiplied by a common ratio λ, b lowers by approx-

imately 1
λ2 . Observe that the size of this region approaches 1

2
as n → +∞.

For higher values, ( n−1
2n−1

≤ α < 1) the bound n(1−α)
n−1+α

is independent of n for

33



large values of n. In such regime, it is approximately 1 − α. This implies

that a small increase ∆α results in an identical reduction in the bound (i.e.

∆b ≈ −∆α for n large).

The behavior of the bound for b lying equilibria is similar to that of truthful

equilibria for small values of α and large population sizes. Similar results

also hold for moderately high levels of conformity. The main difference is in

the intermediate and high regions where the bound is (n−2)(1−α)
n+α−1

. For large

populations, the bound is roughly 1− α and independent on n.

Finally, for α > 1
n+1

and the type-revealing equilibrium has a bound b <
1
2
(1 − 1−α

nα
) ≈ 1

2
(1 − 1

nα
) for n → +∞. This means that a small change in

∆α results in the bound becoming tighter by an amount ∆b ≈ −∆α
2α2 . An

analogous reduction takes place with n replacing α.

It follows from this discussion that truthful equilibrium is robust in the

sense that for very large populations truthful equilibria can exist, even if

biased agents make up to nearly half of the population. This suggests that

conformity can help the transfer of information, and thus social learning, in

large populations.

Theorem 1.4.1 (Robust Social Learning). For n → ∞ truthful equilibrium

exists whenever b < 1
2
and α ∈ (0, 1

2
). If α > 1

2
then truthful equilibrium

exists provided b < 1− α.

1.5 Conclusion

In this paper, I have presented an analysis of a strategic communication game

with heterogeneous agents and varying degrees of conformity. I have obtained

full equilibrium characterizations across the entire range of conformity levels.

If the willingness to conform does not exceed the desire of unbiased agents to

take actions that match the true state θ, then conformity can enhance social

learning in the sense that for a given prior belief π the amount of biased agents

that the population can admit while supporting truthful communication by

unbiased agents is larger than when conformity is present. In fact, for small

populations for α < O( 1
n
), there exists a regime for which no bound of biased

agents exist. More generally, if n → ∞ then in so far as biased agents do
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not form a majority, truthful equilibrium can survive given any prior belief.

On the other hand, if conformity dominates for information transfer to take

place the number of biased agents in the population must be substantially

lower than it would have been in the absence of conformity.

Despite the relative simplicity of my model, it has several notable appli-

cations. For instance, the analysis can be applied to the growing influencer

market, Where individuals can post reviews of products or services to other

consumers, who in turn make their own purchase decisions. In relation to

this, my model could be applied to is the spreading of rumors through the in-

ternet. Indeed, followers of a given celebrity can be informed of the person’s

opinion promptly by looking at posts on social media which may show a given

celebrity’s support to a certain cause, a promotion of a product or a call to

act in a certain way. The follower can also react by expressing support or dis-

like pretty directly. Attitudes of either celebrity or follower can be “neutral”

or “biased”, which can affect the direction of the topic being discussed. Ad-

ditionally, the model may be applied to adoption of technology where agents

can observe the deployment of a technology by a socially well-connected in-

dividual. The remaining agents can then adopt or not the technology, which

might have repercussions for the whole population via network externalities.

The model can also be applied to statement on committees. More generally,

governmental decision making can also be modeled using the model presented

here. This is because often when governments advocate certain policies the

final outcome of the policy is mostly determined by the attitudes of the pub-

lic who might follow it or not depending perhaps on their own biases and

preferences. The perceived attitude of public by the government might also

have an effect on the policy they wish to propose, preferring a popular one

to an unpopular one even if the former might be more beneficial.

As it is a common occurrence with models of strategic communication,

multiple equilibria arise for a particular choice of the parameters α and b.

Unlike standard models, the presence of conformity effects alters how re-

ceivers interpret signals and how the sender evaluates potential deviations.

This makes performing equilibrium selection and refinement more challeng-

ing formally. Note that in some cases it is intuitively clear that inefficient
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equilibria such as lying equilibria should not be the outcome of rational inter-

action, since agents can transfer information truthfully at a lower cost. On

the other hand, note that particularly for medium to high values of α, the

model contains both separating and pooling equilibria. In the context of sig-

nalling games there are two well-known refinements: the Intuitive Criterion

introduced in Cho and Kreps (1987) and the Divinity Criterion introduced

in Banks and Sobel (1987). Both of these refinements place constraints on

the off-path beliefs. It will be interesting to adapt one of these criteria to my

model to obtain refinements for some fo the equilibria discussed.

Several extensions could enhance the theoretical realism and empirical ap-

plicability of the model. First, the assumption that α is common and known

is too restrictive. A more realistic setting would allow each individual to have

a privately known value of α, drawn randomly prior distribution. Second,

introducing multiple types of biased agents could better capture heteroge-

neous motivations. Third, in practice, communication spreads though public

broadcast amongst a “small group” usually the close relations of different

agents. In this regard, I have not considered the social structure underlying

information transfer, which is typically represented as a network. In such

a setting, the collective outcome may be affected by each agent’s friends or

close connections, which may have an effect on the agent’s belief. In addition,

an agent’s behavior may depend on the actions of close friends or those in

their immediate social or physical proximity.
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APPENDIX A

Proof of Proposition 1.3.1. Unbiased receivers: On the equilibrium path: If

a message m = 1 is released from a sender, which may be either unbiased

or biased, then an unbiased receiver votes vju(1) = 1 (assuming that the re-

maining unbiased receivers choose 1; i.e. v−ju(1) = 1) since xj
0(m = 1, v−ju =

1)) = n−1
n

> n−1
2n

.

Off the equilibrium path: If a message m = 0 is released from a sender,

which must be unbiased, then :

i. the unbiased receiver votes vju(0) = 1, assuming the remaining unbiased

receivers choose 1 (i.e. v−ju(0) = 1) since xj
0(m

u = 0, v−ju = 1)) = n−2
n

>
n−1
2n

, when n ≥ 4.

ii. Whenever b < 1
2
, the unbiased receiver votes vju(0) = 0, assuming

the remaining unbiased receivers choose 0 (i.e.v−ju(0) = 0) since xj
0(m

u =

0, v−ju = 0)) = n−1
n
b.

Biased agents: Both biased receivers and biased senders have no incentive

to deviate from their equilibrium actions.

Unbiased sender: An unbiased sender has no incentive to deviate from 1

to 0. Any such deviation only contributes to a loss since the highest pay-off

is achieved by following the equilibrium strategy for any value of b.

Proof of Proposition 1.3.2. When b < 1
2
:

Unbiased receivers: On the equilibrium path: If a message m = 1 is

released from a sender, which must be biased, then an unbiased receiver

votes vju(1) = 0 (provided that all other unbiased receivers choose 0, i.e.

v−ju(1) = 0) then xj
0(m = 1, v−ju = 0) = n−1

n
b < n−1

2n
. If, on the other hand,

a message m = 0 is released, which must come from an unbiased sender, then

an unbiased receiver votes vju(0) = 0 (all other unbiased receivers choose 0,

i.e.v−ju(0) = 0) by the same argument.

Biased agents: Both biased receivers and biased senders have no incentive

to deviate from their equilibrium strategies.

Unbiased sender: Any unbiased sender has no incentive to deviate from 0
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to 1, since uS
iu(m

u = 0; vju = 0) = −b > −(1− b) = uS
iu(m

u = 1; vju = 0).

Proof of Proposition 1.3.3. Let α = 0; I check that the truthful equilibrium

is a PBNE by showing that neither receivers nor senders deviate from their

strategies. The bound on the posterior belief is κ(m,v−j) = 1
2
, for both

m = 0, 1, and the posterior belief ρ(m) of any unbiased receiver ju ∈ U is

ρ(m) =

0, if m = 0

π
b+(1−b)π

, if m = 1.
(1.17)

Unbiased receivers: I check first the strategy followed by unbiased re-

ceivers when the message received is 1. since ρ(1) = π
b+(1−b)π

> 1
2
due to the

condition b < π
1−π

, an unbiased receiver chooses 1 when receiving message 1,

i.e. vju(1) = 1. Similarly, the strategy followed by unbiased receivers when

the message received is 0 is voting 0 since ρ(0) = 0 < 1
2
, i.e. vju(0) = 0.

Biased receivers: Any biased receiver strictly benefits from voting 1 as

opposed to voting 0, i.e. vjb(m) = 1.

Next, I check that senders have no incentive to deviate from following the

strategy mu(θ) = θ (if the sender is unbiased) and mb(θ) = 1 (if the sender

is biased).

Unbiased sender: For unbiased senders, the utility function is

uS
iu(m

u;v, θ) = −|x(mu;v, θ)− θ| =

= −
∣∣∣∣mu

n
+

n− 1

n
b+

n− 1

n
(1− b)vju(m

u)− θ

∣∣∣∣
=

−mu

n
− n−1

n
b− n−1

n
(1− b)vju(m

u), if θ = 0

mu

n
+ n−1

n
b+ n−1

n
(1− b)vju(m

u)− 1, if θ = 1,

where, as shown earlier, vju(m
u) = mu, vjb(m

b) = 1. The utility function is

strictly decreasing on the value of message m when θ = 0 while it is strictly

increasing on the value of message m when θ = 1. As a result, an unbiased

sender sends message 0 when he receives signal 0, while he sends message 1

when he receives signal 1. In short, mu(θ) = θ as required.
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Biased sender: For biased senders, the utility function is

uS
ib(m

b;v, θ) = −|x(mb;v)− 1| = mb

n
+

n−1∑
j=1

vj(m
b)

n
− 1,

where, as before, vju(m
b) = mb, vjb(m

b) = 1. mb(θ) = 1 is the best strategy

for a biased sender for any signal he receives.

Proof of Proposition 1.3.4. Let α = 0; I check that the lying equilibrium is

a PBNE by showing that neither receivers nor senders deviate from their

strategies. The bound on the posterior belief satisfies κ(m,v−j) =
1
2
for both

m = 0, 1 in this case. The posterior belief ρ(m) of any unbiased receiver

ju ∈ U is now:

ρ(m) =

0, if m = 1

π
b+(1−b)π

, if m = 0.
(1.18)

Unbiased receivers: I check the strategy unbiased receivers follow when the

message received is 0 first. Since ρ(0) = π
b+(1−b)π

> 1
2
, as per the condition b <

π
1−π

, an unbiased receiver chooses 1 when receiving message 1, i.e. vju(0) =

1. Similarly, the strategy followed by unbiased receivers when the message

received is 0 is voting 0 since ρ(1) = 0 < 1
2
, i.e. vju(0) = 1.

Biased receivers: Any biased receiver strictly benefits from voting 1 rather

than 0, i.e. vjb(m) = 1.

Next, I check that senders have no incentive to deviate from the equilib-

rium strategy mu(θ) = 1 − θ (for an unbiased sender) and mb(θ) = 0 (for a

biased sender).
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Unbiased sender: For unbiased senders, the utility function is

uS
iu(m

u;v, θ) = −|x(mu;v, θ)− θ|

= −
∣∣∣∣mu

n
+

n− 1

n
b+

n− 1

n
(1− b)vju(m

u)− θ

∣∣∣∣
=

−mu

n
− n−1

n
b− n−1

n
(1− b)vju(m

u), if θ = 0

mu

n
+ n−1

n
b+ n−1

n
(1− b)vju(m

u)− 1, if θ = 1.

Since vju(m
u) = 1−mu, the utility function of an unbiased sender becomes

uS
iu(m

u;v, θ) =


(n−1)(1−b)−1

n
mu − n−1

n
, if θ = 0

1−(n−1)(1−b)
n

mu + n−1
n

− 1, if θ = 1.

(n−1)(1−b)−1
n

is strictly positive since |U| ≥ 3. Therefore, the utility function

is strictly increasing on the value of message m when θ = 0 while it is strictly

decreasing on the value of message m when θ = 1. As a result, an unbiased

sender communicates 1 when he receives signal 0 while communicates 0 when

he receives signal 1. In other words, mu(θ) = 1− θ as required.

Biased sender: For biased senders, the utility function is

uS
ib(m

b;v, θ) = −|x(mb;v)− 1| = mb

n
+

n−1∑
j=1

vj(m
b)

n
− 1,

where vju(m
b) = 1 −mb, vjb(m

b) = 1. mb(θ) = 0 is the best strategy for a

biased sender for any signal he receives.

Proof of Proposition 1.3.5. Let α = 0; I check that the truthful equilibrium

(biased-mimicking) is a PBNE by showing that neither receivers nor senders

deviate from their strategies. The bound on the posterior belief κ(m,v−j) =
1
2
for both m = 0, 1. The posterior belief ρ(m) of any unbiased receiver

ju ∈ U is:

ρ(m) =

0, if m = 0

π
b+(1−b)π

, if m = 1.
(1.19)
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Unbiased receivers: I begin by checking the strategy followed by unbiased

receivers when the message received is 1. Since ρ(1) = π
b+(1−b)π

< 1
2
, as per

the condition b > π
1−π

, an unbiased receiver chooses 0 when receiving message

1, i.e. vju(1) = 0. Similarly, the strategy followed by unbiased receivers when

the message received is 0 is voting 0 since ρ(0) = 0 < 1
2
, i.e. vju(0) = 0.

Biased receivers: Any biased receiver strictly benefits from voting 1 rather

than 0, i.e. vjb(m) = 1.

Next, I check that senders have no incentive to deviate from the strategies

mu(θ) = θ (if the sender is unbiased) and mb(θ) = 1 (if the sender is biased

instead).

Unbiased sender: For unbiased senders, the utility function is

uS
iu(m

u;v, θ) = −|x(mu;v, θ)− θ|

= −
∣∣∣∣mu

n
+

n− 1

n
b+

n− 1

n
(1− b)vju(m

u)− θ

∣∣∣∣
=

−mu

n
− n−1

n
b, if θ = 0

mu

n
+ n−1

n
b− 1, if θ = 1,

where vju(m
u) = 0, vjb(m

b) = 1. The utility function is strictly decreasing

on the value of message m when θ = 0 while it is strictly increasing on the

value of message m when θ = 1. As a result, an unbiased sender delivers

message 0 when he receives signal 0, while he delivers message 1 when he

receives signal 1. Hence, mu(θ) = θ as required.

Biased sender: For biased senders, the utility function is

uS
ib(m

b;v, θ) = −|x(mb;v)− 1| = mb

n
+

n−1∑
j=1

vj(m
b)

n
− 1,

where vju(m
b) = 0 and vjb(m

b) = 1. mb(θ) = 1 is then the best strategy for

a biased sender for any signal he receives.

Proof of Proposition 1.3.6. Let α = 0; I will prove that there exists no pool-

ing equilibrium by considering both scenarios separately. Once again the
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bound on the posterior belief κ(m,v−j) = 1
2
independently of the message

received.

Claim 1: There is no pooling equilibrium where mt(θ) = 1 for any t ∈ T .

Proof. By way of contradiction, I assume that mt(θ) = 1 for any t ∈ T is

a pooling equilibrium. The posterior belief ρ(m) of any unbiased receiver

ju ∈ U becomes:

ρ(m) =

π, if m = 1

µ, if m = 0.
(1.20)

Note that when message m = 1 is transferred unbiased receivers will vote

0 since π < 1
2
.

Off-the-equilibrium path: If on the other hand message m = 0 reaches the

receivers, an unbiased receiver votes 0 if µ < 1
2
. In that case however an

unbiased sender would deviate from sending massage 1 to 0 whenever θ = 0.

Meanwhile, an unbiased receiver will vote 1 if µ > 1
2
. In this case, an unbiased

receiver’s voting strategy becomes vju(m) = 1 −m and an unbiased sender

would deviate from sending massage 1 to 0 whenever θ = 1. Additionally,

a biased sender can benefit as well by deviating from sending message 1 to

sending message 0 instead. This is because the deviation would make the

collective outcome closer to 1 since |U| ≥ 3. Lastly, if µ = 1
2
an unbiased

receiver is indifferent between either 0 or 1. He therefore mixes between

these two options. Either type of sender has now an incentive to deviate

from sending a message 1.

Claim 2: There is no pooling equilibrium where mt(θ) = 0 for any t ∈ T .

Proof. By way of contradiction, I assume that mt(θ) = 0 for any t ∈ T is

a pooling equilibrium. The posterior belief ρ(m) of any unbiased receiver

ju ∈ U becomes:

ρ(m) =

π, if m = 0

µ, if m = 1.
(1.21)
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Observe that, once again, when message m = 0 is transmitted unbiased

receivers will vote 0 since π < 1
2
.

Off-the-equilibrium path: when message m = 1 reaches the public an

unbiased receiver will vote 0 if µ < 1
2
. In this situation a biased receiver

profits from sending message mb = 1 since it brings the outcome closer to 1.

If instead unbiased receivers vote 1 when receiving 1 (which happens when

µ > 1
2
), biased sender will again deviate to sending message mb = 1. Lastly,

if µ = 1
2
an unbiased receiver is indifferent between either 0 or 1. He therefore

mixes between these two options. Either type of sender has now an incentive

to deviate from sending a message 0.

Proof of Proposition 1.3.7. Let α ∈ (0, 1); I check that the truthful equilib-

rium is a PBNE by showing that neither receivers nor senders deviate from

their assumed strategies. The bounds on the posterior belief are in this case:

κ(m = 1,v−j = 1) =
1

2

[
nα

1− α
(1− 2n

n− 1
xj
0(m = 1,v−j = 1)) + 1

]
,

κ(m = 0,v−j = 0) =
1

2

[
nα

1− α
(1− 2n

n− 1
xj
0(m = 0,v−j = 0)) + 1

]
.

The posterior belief ρ(m) of any unbiased receiver ju ∈ U is:

ρ(m) =

0, if m = 0

π
b+(1−b)π

, if m = 1.
(1.22)

Unbiased receivers: I begin by confirming the strategy followed by unbi-

ased receivers. An unbiased agent ju votes 1 when the message received is

1 if ρ(1) > 1
2
[ nα
1−α

(1 − 2n
n−1

xj
0(m = 1, v−ju = 1)) + 1]; while he votes 0 when

the message received is 0 if ρ(0) < 1
2
[ nα
1−α

(1 − 2n
n−1

xj
0(m = 0, v−ju = 0)) + 1]

instead.

Choose an unbiased agent ju and assume the remaining unbiased agents

follow the PBNE symmetric strategies. Then xj
0(m = 1, v−ju = 1) = n−1

n
and
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xj
0(m = 0, v−ju = 0) = n−1

n
b. The equilibrium conditions become π

b+(1−b)π
> 1

2
(1− nα

1−α
),

0 < 1
2
[1 + nα

1−α
(1− 2b)].

The first inequality implies the following bound:

b <
π

1− π

(
1 +

2
1−α
nα

− 1

)
when α <

1

n+ 1
.

Alternatively, when α ≥ 1
n+1

, the right hand side of the first inequality is

non-positive and the inequality always holds as a result.

The second inequality implies the bound:

b <
1

2

(
1 +

1− α

nα

)
.

Set

R(α, n) =
1− α

nα
.

Observe that R(α, n) monotonically decreases as α (resp. n) increases.

Combining both inequalities, b must satisfy

b < min

{
π

1− π

(
1+

2

R(α, n)− 1

)
,
1

2

(
1+R(α, n)

)}
when α <

1

n+ 1
.

Next, I check that senders have no incentive to deviate from the strategies

mu(θ) = θ (if the sender is unbiased) and mb(θ) = 1 (if the sender is biased).
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Unbiased sender: For unbiased senders, the utility function is

uS
iu(m

u;v, θ) = −(1− α)|x(mu;v, θ)− θ| − α

n− 1

n−1∑
j=1

|mu − vj|

= −(1−α)

∣∣∣∣∣mu

n
+
n− 1

n
b+

n− 1

n
(1−b)vju(m

u)−θ

∣∣∣∣∣− α

n− 1

n−1∑
j=1

|mu−vj|

=

−(1− α)
[
mu

n
+ n−1

n
b+ n−1

n
(1− b)vju(m

u)
]
− α

n−1

∑n−1
j=1 |mu − vj|, if θ = 0,

(1− α)
[
mu

n
+ n−1

n
b+ n−1

n
(1− b)vju(m

u)− 1
]
− α

n−1

∑n−1
j=1 |mu − vj|, if θ = 1.

Recall that vju(m
u) = mu. When θ = 0, uS

iu(m
u = 0; vju = 0, θ = 0) =

−(1−α)n−1
n
b−αb > −(1−α)n−1

n
− 1−α

n
= uS

iu(m
u = 1; vju = 1, θ = 0), which

requires that the bound

b <
n(1− α)

n+ α− 1
=

1
α
− 1

1
α
−R(α, n)

must hold. Additionally, the utility function is strictly increasing on the

value of message m when θ = 1. As a result, whenever the last bound holds,

an unbiased sender will send message 0 when he receives signal 0 while he

will send message 1 when he receives signal 1. In short, mu(θ) = θ.

Biased sender: For biased senders, the utility function is

uS
ib(m

b;v, θ) = −|x(mb;v)− 1| = mb

n
+

n−1∑
j=1

vj(m
b)

n
− 1,

where vju(m
b) = mb, vjb(m

b) = 1. mb(θ) = 1 is the best strategy for a biased

sender for any signal he receives.

Finding the bounds of b and α: Combining all conditions that unbiased

senders and receivers must satisfy as well as the assumption b < n−2
n−1

; the
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next bound on b as a function of α follows

b <


min

{
π

1−π

(
1 + 2

R(α,n)−1

)
, 1
2

(
1 +R(α, n)

)
,

1
α
−1

1
α
−R(α,n)

, n−2
n−1

}
, when α ∈ (0, 1

n+1
)

min

{
1
2

(
1 +R(α, n)

)
,

1
α
−1

1
α
−R(α,n)

, n−2
n−1

}
, when α ∈ [ 1

n+1
, 1)

Write for each candidate bound b1, b2 and b3 respectively, where

b1 =
π

1− π

(
1 +

2

R(α, n)− 1

)
,

b2 =
1

2

(
1 +R(α, n)

)
,

and

b3 =
1
α
− 1

1
α
−R(α, n)

.

i. For 0 < α < 1
n+1

, R(α, n) > 1. As α strictly increases from 0 to
1

n+1
, R(α, n) strictly decreases from +∞ to 1. Furthermore, b1 strictly

increases from π
1−π

to +∞ ; b2 strictly decreases from +∞ to 1, so that

b2 > 1; b3 strictly decreases from n
n−1

to 1. The bounds on b are then

b < π
1−π

(
1 + 2

1−α
nα

−1

)
when α ∈ (0, k−1

n−1+k(n+1)
). Otherwise, when α ∈

( k−1
n−1+k(n+1)

, n−1
n2−4n−1

), b < n−2
n−1

.

ii. For 1
n+1

≤ α < 1, 0 < R(α, n) < 1. As α strictly increases from 1
n+1

to

1, R(α, n) strictly decreases from 1 to 0. Furthermore, b2 strictly decreases

from 1 to 1
2
; b3 strictly decreases from 1 to 0. Taking the derivatives of b2

and b3 separately with respect to α,

d

dα

[
1

2

(
1 +

1− α

nα

)]
= − 1

2nα2
,

d

dα

[
n(1− α)

n+ α− 1

]
= − n2

(n+ α− 1)2
.

Therefore | − 1
2nα2 | > | − n2

(n+α−1)2
| for values of α sufficiently close to 1

n+1
.

On the other hand, | − 1
2nα2 | < | − n2

(n+α−1)2
| for α close to 1.
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Solving

n(1− α)

n+ α− 1
≤ 1

2

(
1 +

1− α

nα

)
I have α ≥ n−1

2n−1
.

Then I check the conditions that ensure each upper bound below n−3
n−1

in

this region:

1

2

(
1 +

1− α

nα

)
≤ n− 2

n− 1

and

n(1− α)

n+ α− 1
≤ n− 2

n− 1
.

Solving these two inequalities, I have

α ≥ n− 1

n2 − 2n− 1

and

α ≥ 2(n− 1)

n2 − 2

When n ≥ 4, 1
n+1

< n−1
n2−2n−1

≤ 2(n−1)
n2−2

≤ n−1
2n−1

and the inequalities hold

with equality when n = 4. As a result, when α ∈ ( 1
n+1

, n−1
n2−2n−1

), b < n−2
n−1

;

when α ∈ [ n−1
n2−2n−1

, n−1
2n−1

), b < 1
2

(
1 + 1−α

nα

)
; when α ∈ [ n−1

2n−1
, 1), b < n(1−α)

n+α−1
.

In summary, truthful equilibrium exists when b and α satisfy

b <



π
1−π

(
1 + 2

R(α,n)−1

)
, when α ∈ (0, k−1

n−1+k(n+1)
)

n−2
n−1

, when α ∈ [ k−1
n−1+k(n+1)

, n−1
n2−2n−1

)

1
2

(
1 +R(α, n)

)
, when α ∈ [ n−1

n2−2n−1
, n−1
2n−1

)

1
α
−1

1
α
−R(α,n)

, when α ∈ [ n−1
2n−1

, 1)
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where k = n−2
n−1

1−π
π

and R(α, n) = 1−α
nα

.

Proof of Proposition 1.3.8. Let α ∈ (0, 1); I check that the lying equilibrium

is a PBNE by showing that senders do not have an incentive to deviate from

their strategies. The bounds of posterior belief are in this case:

κ(m = 0,v−j = 1) =
1

2

[
nα

1− α
(1− 2n

n− 1
xj
0(m = 0,v−j = 1)) + 1

]
,

κ(m = 1,v−j = 0) =
1

2

[
nα

1− α
(1− 2n

n− 1
xj
0(m = 1,v−j = 0)) + 1

]
.

The posterior belief ρ(m) of any unbiased receiver ju ∈ U is:

ρ(m) =

0, if m = 1

π
b+(1−b)π

, if m = 0.
(1.23)

Unbiased receivers: Recall that an unbiased agent ju will vote for 0 when

the message received is 1 if ρ(1) < 1
2
[ nα
1−α

(1 − 2n
n−1

xj
0(m = 1, v−ju = 0)) + 1]

while he votes 1 when the message received is 0 if ρ(0) > 1
2
[ nα
1−α

(1− 2n
n−1

xj
0(m =

0, v−ju = 1))+1]. As before, assuming that the equilibrium is symmetric, the

equilibrium strategies for receivers imply xj
0(m = 1, v−ju = 0) = (n−1)b+1

n
and

xj
0(m = 0, v−ju = 1) = n−2

n
for any unbiased receiver ju. The equilibrium

conditions are then:0 < 1
2
[1 + nα

1−α
(n−3
n−1

− 2b)],

π
b+(1−b)π

> 1
2
(1− n−3

n−1
nα
1−α

).

The first inequality implies the following bound:

b <
1

2

(
1− α

nα
+

n− 3

n− 1

)
.

The second inequality implies the bound:

b <
π

1− π

(
1 +

2
1−α
nα

· n−3
n−1

− 1

)
when α <

n− 1

n2 − 2n− 1
.
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Note that, as in the previous proof, if α ≥ n−1
2(n−2)

the right hand side first

inequality is non-positive and the inequality holds trivially.

Now, combining both inequalities, b must satisfy

b < min

{
π

1− π

(
1+

2
n−3
n−1

·R(α, n)− 1

)
,
1

2

(
n− 3

n− 1
+R(α, n)

)}
, when α <

n− 1

n2 − 2n− 1
.

As in the previous proof,

R(α, n) =
1− α

nα
.

.

Next, I check that senders do not deviate from the strategiesmu(θ) = 1−θ,

whenever ju ∈ U , and mb(θ) = 0, whenever jb ∈ B.
Unbiased sender: For unbiased senders, the utility function is

uS
iu(m

u;v, θ) = −(1− α)|x(mu;v, θ)− θ| − α

n− 1

n−1∑
j=1

|mu − vj|

= −(1−α)

∣∣∣∣mu

n
+

n− 1

n
b+

n− 1

n
(1− b)vju(m

u)− θ

∣∣∣∣− α

n− 1

n−1∑
j=1

|mu−vj|

=

−(1− α)[m
u

n
+ n−1

n
b+ n−1

n
(1− b)vju(m

u)]− α
n−1

∑n−1
j=1 |mu − vj|, if θ = 0

(1− α)[m
u

n
+ n−1

n
b+ n−1

n
(1− b)vju(m

u)− 1]− α
n−1

∑n−1
j=1 |mu − vj|, if θ = 1.

When θ = 0, for there to be no profitable deviation it is required that

uS
iu(m

u = 0; vju = 1, θ = 0) = −(1−α)n−1
n

−α < −(1−α)1+(n−1)b
n

−α(1−b) =

uS
iu(m

u = 1; vju = 0, θ = 0). This condition implies the following bounds

If α <
1

n+ 1
, b ∈

(
0,

(n− 2)(1− α)

n− α(2n− 1)− 1

)
If

1

n+ 1
≤ α < 1, b ∈ (0,

n− 2

n− 1
)

On the other hand, when θ = 1 for no profitable deviation to be possible

uS
iu(m

u = 0; vju = 1, θ = 1) = (1 − α)(n−1
n

− 1) − α > (1 − α)(1+(n−1)b
n

−
1)− α(1− b) = uS

iu(m
u = 1; vju = 0, θ = 1) must hold. This implies that the
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requirement

b <
(n− 2)(1− α)

n+ α− 1
=

1
α
− 1− 2R(α, n)
1
α
−R(α, n)

must hold.

Therefore, an unbiased sender has no incentive to deviate if b < (n−2)(1−α)
n+α−1

,

since (n−2)(1−α)
n+α−1

< (n−2)(1−α)
n−α(2n−1)−1

.

Biased sender: For biased senders, the utility function is

uS
ib(m

b;v, θ) = −|x(mb;v)− 1| = mb

n
+

n−1∑
j=1

vj(m
b)

n
− 1,

where vjb(m
b) = 1 −mb. mb(θ) = 0 is the best strategy for a biased sender

for any signal he receives.

Finding the bounds of b and α: Combining all the conditions derived from

requiring no deviations from unbiased senders and receivers, as well as the

assumption that b < n−2
n−1

, the following bound on b as a function α holds:

b <



min

{
π

1− π

(
1 +

2
n−3
n−1

·R(α, n)− 1

)
,
1

2

(n− 3

n− 1
+R(α, n)

)
,

1
α
− 1− 2R(α, n)
1
α
−R(α, n)

,
n− 2

n− 1

}
, when α ∈

(
0, n−1

n2−2n−1

)
min

{
1

2

(n− 3

n− 1
+R(α, n)

)
,

1
α
− 1− 2R(α, n)
1
α
−R(α, n)

,
n− 2

n− 1

}
, when α ∈

[
n−1

n2−2n−1
, 1
)

Write for each candidate bound b1, b2 and b3 respectively, where

b1 =
π

1− π

(
1 +

2
n−3
n−1

·R(α, n)− 1

)
,

b2 =
1

2

(
n− 3

n− 1
+R(α, n)

)
,

50



and

b3 =
1
α
− 1− 2R(α, n)
1
α
−R(α, n)

.

i. For 0 < α < 1
n+1

, R(α, n) > 1. As α increases from 0 to 1
n+1

, R(α, n)

strictly decreases from +∞ to 1. Furthermore, b1 strictly increases from π
1−π

to +∞ ; b2 strictly decreases from +∞ to n−2
n−1

; b3 strictly decreases from
n−2
n−1

to n(n−2)
n2−1

. The values of b are then as follows: when α ∈ (0, α(π, n)),

b < π
1−π

(
1 + 2

1−α
nα

−1

)
; while if α ∈ (α(π, n), n−1

n2−4n−1
), b < (n−2)(1−α)

n+α−1
.

ii. For 1
n+1

≤ α < 1, 0 < R(α, n) < 1. As α increases from 1
n+1

to 1,

R(α, n) strictly decreases from 1 to 0. In this range, b2 =
1
2

(
n−3
n−1

+R(α, n)

)
<

n−2
n−1

and b3 = (n−2)(1−α)
n+α−1

< n−2
n−1

. To find the appropriate bound, I find the

lower envelope of b2 and b3.

If b2 < b3, then

1

2

(
n− 3

n− 1
+

1− α

nα

)
<

(n− 2)(1− α)

n+ α− 1
.

This inequality yields

α ∈ (
n− 1

n2 − 2n− 1
,
n− 1

2n− 1
).

Overall, I have

b <



π
1−π

(
1 + 2

n−3
n−1

R(α,n)−1

)
, when α ∈ (0, α(π, n))

(n−2)(1−α)
n+α−1

, when α ∈ [α(π, n), n−1
n2−2n−1

)

1
2

(
n−3
n−1

+R(α, n)

)
, when α ∈ [ n−1

n2−2n−1
, n−1
2n−1

)

(n−2)(1−α)
n+α−1

, when α ∈ [ n−1
2n−1

, 1)

where R(α, n) = 1−α
nα

.
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Proof of Proposition 1.3.9. Let α ∈ (0, 1); I consider the case mt(θ) = 1 for

any t ∈ T first. Under these pooling strategies, the posterior belief ρ(m) of

any unbiased receiver ju ∈ U becomes:

ρ(m) =

µ, if m = 0

π, if m = 1.

As before, choose an unbiased agent ju and fix the actions of other agents

so that xj
0(m = 1,v−ju = 1) = n−1

n
. Observe that

ρ(1) = π > κ(m = 1,v−ju = 1) =
1

2

(
1− nα

1− α

)
always holds if α > 1−2π

n+1−2π
. Therefore, receivers of both types vote 1 when

they receive 1.

Next, I check that senders do not deviate from their strategies either. In

this case, mu(θ) = mb(θ) = 1. For a biased sender it is clear that he suffers

a loss from a deviating from mb = 1 to 0 regardless of θ since everyone votes

1 on the equilibrium path. When θ = 1, an unbiased sender also has no

incentive to deviate from 1 to 0.

Then I just analyse the behavior of unbiased agents when θ = 0. Note that

off-the-equilibrium path, xj
0(m = 0,v−ju = 1) = n−2

n
or xj

0(m = 0,v−ju =

0) = n−1
n
b since any such deviations can only come from an unbiased agent.

Biased senders do not deviate from sending message 1, independently of the

actions of the receivers. Consequently,

i. If ρ(0) = µ > κ(m = 0,v−ju = 1) = 1
2

(
1− n−3

n−1
· nα
1−α

)
, then receivers

also vote 1 off-the-equilibrium path. In this case, if θ = 0, for an unbiased

sender to not have any incentive to deviate

uS
iu(m

u = 0;vju = 1, θ = 0) = −(1−α)
n− 1

n
−α < −(1−α) = uS

iu(m
u = 1;vju = 1, θ = 0).

This inequality is satisfied provided α > 1
n+1

.

To ensure the off-the-equilibrium belief µ ∈ [0, 1] exists, I need the condi-
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tion

1

2

(
1− n− 3

n− 1
· nα

1− α

)
< 1.

Under the requirements α > 1
n+1

> 1−2π
n+1−2π

, this condition holds.

ii. If ρ(0) = µ < κ(m = 0,v−ju = 0) = 1
2

[
nα
1−α

(1− 2b) + 1
]
, then unbiased

receivers vote 0 off-the-equilibrium path.

1

2

[
nα

1− α
(1− 2b) + 1

]
> 0

Solving this inequality, thenα ∈ (0, 1), if b ≤ 1
2

α < 1
n(2b−1)+1

, if b > 1
2

Now, if θ = 0 an unbiased sender has no incentive to deviate if

uS
iu(m

u = 0;vju = 0, θ = 0) = −(1−α)
n− 1

n
b−αb < −(1−α) = uS

iu(m
u = 1;vju = 1, θ = 0).

This requires

α >
(1− b)n+ b

n+ b
>

1

n+ 1
.

When b ≤ 1
2
, then α > (1−b)n+b

n+b
; When b > 1

2
, then α ∈ ( (1−b)n+b

n+b
, 1
n(2b−1)+1

)

holds under the condition that b ∈ (1
2
, n
2(n−1)

).

Proof of Proposition 1.3.10. Let α ∈ (0, 1); I consider the case mu(θ) = 0

and mb(θ) = 1 for iu ∈ U and ib ∈ B; then the posterior belief ρ(m) of any

unbiased receiver ju ∈ U becomes:

ρ(m) = π, for m = 0, 1.
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Receivers follow the strategies vju(m) = 0 and vjb(m) = 1 for ju ∈ U and

jb ∈ B on the path if ρ(m) = π < κ(m,v−ju = 0). As before, choose an

unbiased agent ju and fix the actions of other agents so that xj
0(m,v−ju =

0) = n−1
n
b. Then the unbiased agent ju chooses 0 after observing the message

assuming that all the unbiased agents choose 0 if

ρ(m) = π < κ(m,v−ju = 0) =
1

2

[
nα

1− α
(1− 2b) + 1

]
.

Next, I check that senders do not deviate from their strategies either.

In this case, for a biased sender it is clear that he suffers a loss from a

deviating from mb = 1 to 0 regardless of θ since receivers take the same

action independently of the message.

Next, I consider unbiased senders. For an unbiased sender to not have any

incentive to deviate it is required that

uS
iu(m

u = 0;vju = 0, θ = 0) > uS
iu(m

u = 1;vju = 0, θ = 0)

uS
iu(m

u = 0;vju = 0, θ = 1) > uS
iu(m

u = 1;vju = 0, θ = 1).

Specific,

−(1− α)
(n− 1)b

n
− αb > −(1− α)

(n− 1)b+ 1

n
− α(1− b)

−(1− α)
(n− 1)(1− b) + 1

n
− αb > −(1− α)

(n− 1)(1− b)

n
− α(1− b).

By solving these inequalities, I have b < 1
2

(
1− 1−α

nα

)
. Then κ(m,v−ju =

0) = 1
2

[
nα
1−α

(1− 2b) + 1
]
> 1

2
> π, which ensures that unbiased receivers

always choose 0.

proof of (no) pooling when α ∈ (0, 1) and mt(θ) = 0. Let α ∈ (0, 1); By way

contradiction suppose that mt(θ) = 0 for any t ∈ T is a pooling equilibrium.

In that case, no matter what the actions of the receivers are a biased sender

always has a profitable deviation from mb = 0 to mb = 1.
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Chapter 2

Does Conformity Amongst

Agents Affect Rumor

Propagation In A Network?

This paper studies the effect of conformity on rumor propagation on a simple

network. I consider a model that combines a communication and coordina-

tion game containing both unbiased and biased agents. Unbiased agents take

an action that not only matches the true state of the world but also conforms

with the actions of their neighbors, while biased agents take only a specific

decision. I show that introducing a small degree of conformity enlarges the

parameter region for truthful communication by relaxing the upper bound

on the biased share relative to the model in Bloch et al. (2018).

2.1 Introduction

A rumor is a statement whose truth is hard, if not impossible, to verify. In

any social group rumors spread across their members when they engage in

conversation with one another. Rumors often spread fast through the group,

meaning the person who originated the rumor is often not known to others.

From the point of economics, rumors are interesting since they provide a

good setting to understand what factors make rational agents transfer in-

formation that could be false. This can be particularly relevant to policy
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since rumors can lead to inefficient outcomes. For instance, a rumor regard-

ing the integrity of an otherwise competent politician may tip the results of

an election towards a less capable candidate. Another example involves the

take-up of medical treatments, some individuals may attempt to discredit a

treatment by creating doubt about its safety. I suggest in this paper that

rumor propagation is driven by two factors: the likelihood of the rumor be-

ing true and the fact that individuals tend to adopt behaviors and accept

statements from their family and friends. In this paper I model conforming

to the behavior of others by assuming that individuals like to take actions

that are close to those of their neighbors when their actions can be observed.

To analyze this problem, I adapt the model in chapter 1 to a simple net-

work, the undirected line. Despite its simplicity, this example can provide

substantial insight into more complex cases. The resulting model follows

closely the paper of Bloch et al. (2018). The authors introduce a cheap talk

model with two classes of individuals, “biased” and “unbiased”. Unbiased

agents are interested in the truth, while biased agents are interested in a

particular outcome, in the examples above the election of a given candidate

independent on his abilities or promoting a particular treatment without

regard to its effectiveness. The main innovation I introduce is a term de-

scribing conforming with the behavior of neighbors. This is an important

feature, as seen in chapter 1 communication can be enhanced or hampered

by the willingness of agents to conform to the behavior of the majority.

The main insight in Bloch et al. (2018) is that rumors are propagated

because rational agents think on the balance of probabilities they are true

and there may be a benefit if they are indeed true. Their model however

does not consider that an individual may consider a rumor likely to be false

while still be willing to propagate it, since this may misled his neighbors

into conforming with the majority. Experimental evidence suggests that

individuals may change well-seated opinions such as political ones when they

receive information in a social setting where there may be pressure from

others to conform with the general rule. Indeed, under certain conditions the

desire of individuals to conform to the behavior of others can be so strong

that they take decisions based only on the behavior previously observed and
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not on any private information the individual may have.

My main findings are similar to those in Bloch et al. (2018), communi-

cation through a network imposes greater restrictions to the transmission of

truthful information.

2.2 Literature Review

This paper relates to a large body of literature on cheap talk. The basic

model on which most papers are based was introduced by Crawford and

Sobel (1982). A closely related paper that has inspired many subsequent

developments is Farrell and Gibbons (1989). The authors introduce a model

of cheap talk between a sender and two different agents—referred to as audi-

ences—and discuss equilibria both in private (each audience cannot observe

the message sent to the other) and public (both audiences observe the mes-

sage). These foundational models, however, omit some important features,

e.g. in Crawford and Sobel (1982), agents are not allowed to lie.

Rumor propagation influenced by social conformity has also been studied

in other fields, including computer science, physics, and epidemiology (Ma

et al., 2019; Hung and Plott, 2001; Wan and Wang, 2016; Wang et al., 2017).

Common approaches in this literature often draw on epidemiological models

in which a rumor is treated as a spreading disease. However, these mod-

els differ from those in economics in that they do not account for potential

strategic aspects of communication. Moreover, they typically focus on phe-

nomenological features, such as the speed of propagation and the number

of individuals exposed to the rumor, rather than on the motivation for its

propagation.

Recent years have seen the emergence of new work on strategic communi-

cation in networks. Galeotti et al. (2013) introduce a model of multi-player

communication in which agents interact in groups, allowing the authors to

study the geometry and properties of direct communication networks under

decentralized decision-making when agents report truthfully. By contrast,

Ambrus et al. (2013) develop a hierarchical cheap-talk model to analyze in-

termediated communication, where a sender and a receiver interact through a
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chain of intermediaries. My model differs from these in that it explicitly dis-

tinguishes between message creators and message transmitters, with agents

potentially serving in both roles. Bravard et al. (2023) similarly extend the

framework of Bloch et al. (2018) by assuming that agents do not observe the

global network structure but only their local connections, thereby showing

how network architecture and limited information shape the diffusion of mis-

information. In contrast, I examine how conformity amplifies the spread of

inaccurate messages and how conformity rules influence the broader process

of information diffusion.

The most significant innovation of my model is the integration of a strate-

gic communication game with a coordination game. The framework combines

and adapts two basic models, one due to Bloch et al. (2018) and the other

due to Hagenbach and Koessler (2010). The resulting model features two

types of agents with conflicting preferences over the truth. As in Bloch et al.

(2018), an agent creates a rumor that she shares with her neighbors, after

which others decide whether to transmit it. Agents then engage in a co-

ordination game in which preferences again diverge: some individuals want

to choose an action close to the true state (Hagenbach and Koessler, 2010)

while also coordinating with others.

2.3 Model

2.3.1 Environment

There is a finite population N consisting of n agents, with n ≥ 3. The

state of nature is given by θ ∈ {0, 1} and is unknown to all but possibly one

agent. More precisely, an agent chosen randomly may observe the realization

of θ. All agents share the common prior π = Pr(θ = 1) < 1
2
. Agents

form the nodes of a social network G = (N , E). Agents can communicate

information to their neighbors, which in turn can transfer to their neighbors.

Once all communication has taken place, each agent submits a vote vi ∈
{0, 1} simultaneously. A profile of votes for the agents in the population is

denoted by v = (v1, ..., vn). An agent’s payoff depends both on the realization
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of the state of nature and the outcome of the collective decision, denoted by

x ∈ {0, 1}.
A pair of agents i and j in the network G share a link, denoted ij (ij ∈ E),

if they have the potential to communicate. In this case, we say that i is a

neighbor of j, and vice versa. Although the underlying social network is

undirected, communication can occur in either direction, in both directions,

or not at all. To represent directional communication, let (i, j) denote the

directed link from i to j, and (j, i) the directed link from j to i. The network

G and all agents’ types are common knowledge. I assume that the network

is a tree. This implies that it is connected (every agent has at least one

neighbor) and that any two agents i and j can be connected by a unique

path (a collection of distinct links starting at one agent and ending at the

other). This property ensures that there are no cycles which limits possible

origins of any message. The structure of the network is independent of the

signal s(θ).

For each agent i, let Gi be the sub-network G that contains all agents other

than i with whom agent i seeks to coordinate. Given Gi, V (Gi) denotes its

node set. These are the agents i wants to coordinate with. Note that Gi can

depend on how information is flowing through the network.

Define the mean disagreement functional

R
(
Gi

)
=

1

|V (Gi)|
∑

j∈V (Gi)

|vi − vj|.

The model contains two types of agents, some do not have predetermined

preferences about the state of nature and are willing to coordinate with

others and there are also agents who have predetermined preferences and

are unwilling to cooperate. More formally, an agent is unbiased if he takes

into account the deviation of the outcome of the vote from the true state of

nature as well as any loss resulting from not coordinating with others. The

payoff for an unbiased agent i is then written compactly as

uiu(v, x; θ) = −(1− α) |x− θ| − αR(Gi),
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where α ∈ (0, 1) measures the weight placed on coordination losses. The set

of unbiased agents is denoted by U .
On the other hand, an agent is biased if she is “stubborn and selfish”. She

prefers the outcome x = 1 independently of the true state and neither gains

nor loses from coordinating with others. The payoff for this agent is given

by

uib(x; θ) = −|x− 1|. (2.1)

The set of biased agents is denoted by B. Agent types are common knowledge

in the network.

For a set S ⊂ N where a message may be created, bS denotes the fraction

of biased agents in S and uS denotes the fraction of unbiased agents. Clearly,

bS + uS = 1. In particular, for any unbiased agent in S, let

bS ≡ |BS|
|BS|+ |US| − 1

denote the fraction of biased agents in the rest of the set S. If S = N , then

b ≡ |B|
|N | − 1

is the fraction of biased agents in the remainder of the population.

The game is played in three phases: (1) a message creation phase; (2) a

communication phase; and (3) a voting phase.

2.3.2 Message Creation

I assume that a perfect signal of the true state, s(θ) ∈ {0, 1}, is generated

by nature with probability p ∈ (0, 1). An agent is then randomly chosen to

receive this signal, with all agents being equally likely to be selected. The

signal contents is private knowledge of the chosen agent, no-one else observes

it. Note that whether a signal has been created or not is also not known

by agents who did not receive a signal. In addition, the agent chosen is not

known by others, unless he or she has only one neighbour. In that case, the
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neighbour who receives information from him can infer this.

The chosen agent becomes a message creator and she is allowed to decide

whether to communicate or remain silent, if she chooses to communicate

then this might be done truthfully or not. Formally, the message space is

{∅, 0, 1} where ∅ denotes the decision to remain silent. Since I only consider

communication strategy profiles and p is not relevant to the posterior belief

of other agents, the strategy of the creator can be described by a mapping

mi : {0, 1} 7→ {∅, 0, 1},

with mi(s) = mi.

2.3.3 Communication

If agent i receives a message mj from neighbor j, she must decide whether

to transmit it to her remaining neighbors or block it. Note that she is not

allowed to alter it any way; only to stop it from reaching others. This decision

is represented by a mapping

ti : {mj} 7→ {mj, ∅}.

If ti(mj) = mj, then agent i forwards the message unchanged to all neigh-

bors except j. If ti(mj) = ∅, then agent i blocks the message, preventing it

from propagating further.

2.3.4 Collective Vote with Coordination

After all possible communication has taken place, each unbiased agent i will

update his initial belief to a posterior ρi(m) = Pr(θ = 1|m) (often abbre-

viated to ρi when it is clear from the context) via Bayes rule. Since agents

consider 0 more likely, the probability that θ = 1 based on any messages she

may have received the from his neighbors is an important quantity. Now, let

x ∈ [0, 1] denote the collective outcome. The outcome x is assumed to follow

the “rule of the average”. Formally, the outcome is given by the average of

the actions taken by all agents weighted equally. In other words, x = x(v):
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v 7→ [0, 1],

x(v) =
1

n

n∑
j=1

vj.

2.4 Coordination Networks and Utilities

Recall that for each agent i the set of agents she wishes to coordinate with

is Gi. There are several possibilities I consider:

Case 1: Nearest neighbors only For each agent i ∈ N , let

Ni = {j ∈ N : ij is a link in the network}.

The elements of Ni then correspond to the neighbours of agent i. By as-

sumption, the network is connected, so |Ni| ≥ 1 for all i.

If agent i coordinates only with her immediate neighbours, let Gi have

node set V (Gi) = Ni. The disagreement term is

R(Gi) =
1

|Ni|
∑
j∈Ni

|vi − vj|,

and the utility is in this case

uiu(v, x; θ) = −(1− α) |x− θ| − α

|Ni|
∑
j∈Ni

|vi − vj|.

Case 2: Entire population

If agent i coordinates with the entire population, let Gi have node set

V (Gi) = N \ {i}. The disagreement measure is

R(Gi) =
1

n− 1

∑
j ̸=i

|vi − vj|,

so the utility becomes

uiu(v, x; θ) = −(1− α) |x− θ| − α

n− 1

∑
j ̸=i

|vi − vj|.
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Case 3: Reachability sets Si(j)

In the previous cases, Gi did not depend on message flow. I consider

now an example where there is dependence on the way the message travels

through the network.

Note that after observing a message from neighbor j, the agent j ∈ Ni

induces a reachability subgraph Gi(j) with node set

V
(
Gi(j)

)
= Si(j),

where Si(j) denotes the set of agents whose messages could have reached

agent i through j. The resulting utility of an unbiased agent i is

uiu(v, x; θ) = −(1− α) |x− θ| − α

|Si(j)|
∑

k∈Si(j)

|vi − vk|.

The three cases differ only in the definition of the coordination group

Gi, which determines the normalization factor and the agents contributing

to the disagreement term. This functional treats disagreement across agents

symmetrically. It is possible to consider a more general disagreement measure

by replacing R(Gi) with a weighted average of agents, this reflects that agent

i may value agreeing with a given agent more than others,

R̃(Gi) :=
∑

j∈V (Gi)

wij |vi − vj|,

where wij ≥ 0 and
∑

j∈V (Gi)
wij = 1.

2.5 Equilibrium

The equilibrium concept of interest is a particular type of Perfect Bayesian

Nash Equilibrium (PBNE) in which any unbiased agents behave in a fully

informative and truthful manner. Specifically, each unbiased agent transmits

any information he receives, creates messages truthfully and votes in accor-

dance with the message. Formally, the messaging and transmission rules for

an unbiased agent iu, are given by miu(s) = s and tiu(mj) = mj. In the
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absence of a received message, an unbiased agent votes 0, reflecting the fact

that in the absence of information she thinks this is the most likely state. In

addition, she may make the inference that a message 0 may have been gener-

ated but blocked by a biased agent higher in the network. This assumption

is particularly reasonable in large networks. Accordingly, the voting rules in

equilibrium are viu(m) = m and viu(∅) = 0, and similarly viu(s) = s if the

unbiased agent acts as sender.

By contrast, biased agents act strategically to favor their preferred out-

come regardless of information: they always create and vote 1, and they

block any 0 message encountered. Formally, mib(s) = 1 and tib(1) = 1 while

tib(0) = ∅. These behaviors correspond to those used in Bloch et al. (2018)

for a Full Communication Equilibrium (FCE). Moreover, because a biased

agent always prefers the collective outcome to move toward 1, voting 1 is a

dominant strategy: a biased agent votes 1 regardless of any information or

any actions taken by others. Hence vib(m) = 1 for any m ∈ {0, 1, ∅}, while
vib(s) = 1 as well.

Given the above strategies, an unbiased agent i updates her belief when

receiving a message m from a neighbour j as follows:

1. If she receives message m = 0, his posterior belief that the true state

is 1 is ρi(mj = 0) = 0.

2. If he receives message m = 1, he updates her belief using Bayes’ rule,

taking into account the proportion of biased and unbiased agents in the

reachability set. Recall that this is the set of all k ∈ N from where the

message could have originated and reached i through j. Her posterior in

this case reflects the likelihood that message 1 was truthfully generated

rather than introduced by a biased agent is

ρi(mj = 1) =
π

bSi(j) + uSi(j)π
,

Recall that bSi(j) is the proportion of biased agents in Si(j), and uSi(j) is the

proportion of unbiased agents in Si(j).
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3. For an agent i who receives no message, his posterior is at most equal to

the prior, since silence provides no evidence in favor of the high state.

In other words, ρi(∅) ≤ π.

Finally, given a profile of actions v and a message m, let xi
0 = x(v−i)

denote the expected collective outcome if agent i chooses 0. If the agent

instead chooses 1, the expected collective outcome increases by 1
n
.

Theorem 2.5.1 (Full communication equilibrium). Consider a network G =

(N , E) and a disagreement functional R, an FCE exists if for every given

unbiased agent i and each of her neighbors j:

bSi(j) <
π

1− π

1 +
2

1− α

∆ijα
− 1

 , whenever α ∈
(
0,

1

1 + maxj∈Ni
∆ij

)
.

where ∆ij = ∆ij(R
(
Gi(j)

)
) < n. In addition, the proportion of biased

agents in the whole population must satisfy b < b(α,R).

Theorem 2.5.1 establishes sufficient conditions for the existence of a full

communication equilibrium (FCE) for a general tree. These conditions de-

pend explicitly on the network architecture, the strength of conformity, and

the distribution of biased agents. In particular, for each unbiased agent i

and each of her neighbours j, the proportion of biased agents in the relevant

reachability set must lie below a threshold that is determined by the prior

π, the conformity parameter α, and the strength of coordination within the

corresponding coordination group, captured by ∆ij. In addition, the overall

share of biased agents in the population must remain below an upper bound

b(α,R) implied by the model primitives.

Theorem 2.5.1 and Proposition 1.3.7 both characterise environments in

which truthful information transmission can be sustained in equilibrium.

Theorem 2.5.1, however, provides more general existence conditions for an

FCE that depend explicitly on the network structure. These conditions im-

pose upper bounds on both the strength of conformity and the prevalence of

biased agents. In particular, the theorem shows that neither conformity nor
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bias can be too large if relevant information is to be fully disseminated along

the network. At the same time, a moderate degree of conformity relaxes the

upper bound on how many biased agents a given reachability set may con-

tain while still permitting truthful messages to circulate. For a fixed prior π,

the maximum biased share compatible with full communication is therefore

(weakly) higher when a non-zero conformity motive is present.

Relative to Proposition 1.3.7, Theorem 2.5.1 is more restrictive in scope:

while Proposition 1.3.7 delivers a complete partition into corresponding equi-

libria of the (α, b) parameter space for the public-broadcast environment,

deriving an analogous characterisation for general network structures is con-

siderably more difficult. Nonetheless, the comparison is informative. Propo-

sition 1.3.7 shows that in public broadcast settings, information transmission

can be maintained for a wide range of conformity levels and is robust even

when biased agents are numerous. By contrast, Theorem 2.5.1 demonstrates

that in network settings, sustaining information transmission requires more

stringent local conditions that reflect the topology of the underlying net-

work. Although conformity must remain sufficiently weak, its presence still

enlarges the set of environments in which truthful communication is feasible

by allowing a greater—though still bounded—proportion of biased agents to

coexist with information transfer.

2.6 Conclusion

This chapter has examined how conformity motives and the distribution of

biased agents interact with network structure to shape the credibility and dif-

fusion of information. Unlike in public-broadcast environments, where mes-

sages reach all agents directly, communication in networks proceeds through

local interactions. As a result, the sustainability of truthful information

transmission is tied not only to global parameters—such as the prior and the

overall proportion of biased agents—but also to the topology of the network

and coordination motives.

The analysis characterises sufficient conditions under which a full commu-

nication equilibrium exists. These conditions require that, for each unbiased

66



agent, the share of biased agents in the relevant reachability sets remains be-

low a threshold that depends on the prior, the conformity parameter, and the

underlying coordination architecture. In addition, the overall proportion of

biased agents must fall below an endogenous upper bound. The results show

that although conformity cannot be too strong, the presence of a small con-

formity motive can actually enlarge the set of network environments under

which truthful communication is feasible. Moderate conformity motivates

unbiased agents to align their actions with others which makes them more

tolerant to unreliable messages.

Nevertheless, the findings make clear that networks are intrinsically more

fragile than the public-broadcast setting. Since information flows through

local interactions, distortions introduced by biased agents can be amplified

depending on their location in the network. Furthermore, local coordination

interests may further disrupt information flow. Consequently, the parameter

region supporting full communication is narrower than in broadcast environ-

ments, and the feasibility of information transmission is more sensitive to the

network structure.

Overall, this chapter highlights the importance of local communication

architecture in determining whether truthful information can be sustained

in the presence of social conformity and heterogeneous preferences. The re-

sults underscore that weak conformity is consistent with information transfer,

but effective communication in networks requires careful alignment between

incentives, beliefs, and network structure.

In this chapter, I extend the analysis of strategic communication from a

public broadcast setting to a networked environment. Specifically, I adapt

the model from Chapter 1 to a simple undirected line network, thereby incor-

porating conformity among neighbors. This framework represents a natural

extension of Bloch et al. (2018), allowing for an explicit analysis of how local

social interactions influence information transfer.

The results highlight the conditions under which information can prop-

agate across the network. Compared to the public communication setting,

the network imposes stricter constraints on the proportion of biased agents

that the population can sustain while still supporting truthful communica-
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tion. This finding aligns with the intuition and results in Bloch et al. (2018),

emphasizing that decentralized communication structures generally reduce

the robustness of social learning.

This analysis provides insights into how social structures influence the

spread of information and rumors, with applications to political communi-

cation, online social networks, and public health messaging. By highlight-

ing the interaction between conformity and network topology, the chapter

contributes to a deeper understanding of how individual behavior shapes

collective learning in realistic social environments.
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APPENDIX B

Proof of theorem 2.5.1. Voting phase:

The argument mirrors the analysis for the public broadcast environment

in Chapter 1. In particular, assuming that a FCE exists, then every agent

in the network transfers message 1. This leads to a similar lower bound for

ρi(1) as in chapter 1. This bound implies that unbiased agents do not have

an incentive to deviate from viu(mj) = 0 to viu(mj) = 1 when mj ∈ {0, ∅}.
Transmission phase:

I now provide conditions under which an unbiased agent has no incentive

to block a message mj = 1 sent by a biased neighbor. This is the relevant

case: if the neighbor were unbiased, the message would be more credible.

Blocking a message implies that the agent considers it unreliable and believes

that θ = 1 is unlikely; consequently she votes 0 in the next phase. This is

the same logic that would generate a deviation in the voting stage.

The interim expected outcome for unbiased agent iu depends on his own

transmission strategy, which will in turn affect his successors’ strategies.

Therefore, I write xi
0(ti) = xi

0(|Si(j)|, |Sj(i)|, ti). Recall that Si(j) describe

the predecessors of i (including j), while Sj(i) describes i’s successors (in-

cluding herself). In equilibrium, the actions of agents in Si(j) are fixed and

determined by message mj (which is assumed to flow through the set). On

the other hand, actions on Si(j) depend on ti ∈ {mj, ∅} but are otherwise

fixed by equilibrium behavior. The expected utility of iu ∈ U from transmit-

ting message 1 received from her biased neighbor jb,

E[uiu(tiu(m
b
j) = mb

j;x
i
0(tiu))|mb

j = 1] = −(1− α)

{
ρi(m

b
j = 1)

(
1− xj

0(ti = 1)− 1

n

)

+ [1− ρi(m
b
j = 1)]

(
xi
0(ti = 1) +

1

n

)}
.

(2.2)

Case 1: V (Gi) = Ni.
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Blocking message 1 now yields

E[uiu(tiu(m
b
j) = ∅;xi

0(tiu))|mb
j = 1] = −(1− α)

{
ρi(m

b
j = 1)

(
1− xj

0(ti = ∅)
)

+ [1− ρi(m
b
j = 1)]xi

0(ti = ∅)

}
− αbNi

.

Combining this with (2.2) implies that an unbiased agent iu transmits if

and only if

ρNear
i (mb

j = 1) >
1

2

(
1− bNi

1− xj
0(ti = ∅)

α

1− α

)
, (2.3)

when α ∈ [0, 1). Note that, once again,
bNi

1−xj
0(ti=∅)

< n.

Case 2: V (Gi) = N \ {i}.
Blocking message 1 yields

E[uiu(tiu(m
b
j) = ∅;xi

0(tiu))|mb
j = 1] = −(1− α)

{
ρi(m

b
j = 1)

(
1− xj

0(ti = ∅)
)

+ [1− ρi(m
b
j = 1)]xi

0(ti = ∅)

}
−α

n

n− 1
xj
0(ti = ∅).

Combining this with (2.2) implies that an unbiased agent iu transmits if

and only if

ρPop
i (mb

j = 1) >
1

2

(
1− n

n− 1

α

1− α

xj
0(ti = ∅)

1− xj
0(ti = ∅)

)
, (2.4)

when α ∈ [0, 1). In addition, n
n−1

< n.

Case 3: V (Gi) = Si(j).
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Blocking the message yields expected payoff

E[uiu(tiu(m
b
j) = ∅;xi

0(tiu))|mb
j = 1] = −(1− α)

{
ρi(m

b
j = 1)

(
1− xj

0(ti = ∅)
)

+ [1− ρi(m
b
j = 1)]xi

0(ti = ∅)

}
− α.

Combining this with (2.2) implies that an unbiased agent iu transmits if

and only if

ρReach
i (mb

j = 1) >
1

2

(
1− 1

1− xj
0(ti = ∅)

α

1− α

)
, (2.5)

when α ∈ [0, 1). Since unbiased successors ku take action vku(∅) = 0,
1

1−xj
0(ti=∅)

< n.

If instead mj = 0 (so j ∈ U), then because vku(∅) = vku(0) = 0 for all ku,

blocking yields no benefit for any type of agent.

Message phrase:

Biased agent. A biased agent cannot increase her expected payoff by

deviating to either m(s) = 0 or m(s) = ∅.
Unbiased agent. The expected payoff of an unbiased agent who receives a

signal s = 1 cannot increase by adopting the strategy m(s) = 0 or m(s) = ∅,
independently of which coordination rule is applied. This is because the

expected payoff from miu(s) = 1 yields zero loss, whereas any deviation

generates a loss.

If instead signal s = 0 is received, then s fully reveals the true state is 0.

Case 1: V (Gi) = Ni. For an unbiased agent iu ∈ U , the expected utility

of iu ∈ U from creating the message 0 from a signal s = 0 is

E[uiu(miu(s) = s)|s = 0] = −(1− α)
n− 1

n
b− αbNi

.

Creating the message 1 from a signal s = 0 yields

E[uiu(miu(s) = 1)|s = 0] = −(1− α).
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Truthful messaging is optimal if

bNi
<

1− α

α

(
1− n− 1

n
b

)
. (2.6)

Case 2: V (Gi) = N . The expected utility of iu ∈ U from creating the

message 0 from signal s = 0 is

E[uiu(miu(s) = s)|s = 0] = −(1− α)
n− 1

n
b− αb.

Creating the message 1 from a signal s = 0 yields

E[uiu(miu(s) = 1)|s = 0] = −(1− α).

The truthful messaging requires

b <
1

n−1
n

+ α
1−α

. (2.7)

Case 3: V (Gi) = Si(j). Si(j) = ∅, identical to the no-coordination case;

no deviation is profitable. In each case, the relevant belief thresholds ensure

that no profitable deviation exists, either by blocking an incoming message

or by misreporting a privately observed signal.
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Chapter 3

Optimal Sin Taxes When

Self-Control Costs Are

Present: A Nonlinear Pricing

Approach

This paper analyzes optimal taxation of sin goods when consumers exert

self-control. This happens, for instance, when consumers struggle balanc-

ing current gratification against preserving future health. In the context of

a monopoly market, I adopt the temptation model of Gul and Pesendorfer

(2001) to characterize the optimal pricing scheme. This scheme contains a

quality-price ceiling, determined endogeneously by the market size. Further-

more, I characterize the welfare maximizing tax policy (both for specific and

ad valorem taxes) for different behavioral welfare frameworks. In particular,

I show that for a domestic monopolist optimal ad valorem tax decreases as

the market size grows up, passing from a tax to a subsidy. I show further

that imposing a specific tax is not optimal. By contrast, for imported goods

both ad valorem and specific tax increases lead to improvements in welfare.

Notably, optimal ad valorem tax rates are much higher than optimal specific

tax rates.
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3.1 Introduction

The UK government currently imposes high “sin taxes” on tobacco, alcohol

and sugar-sweetened beverages to curb consumption and raise revenue. How-

ever, recently HMRC (His Majesty’s Revenue and Customs) receipts from

these taxes have been declining as health-conscious trends seem to reduce

demand for such products which poses a fiscal challenge. While these taxes

are often seen as effective public health interventions and revenue generators

they have a complex structure, which combines both specific and ad valorem

components, and creates a policy dilemma: should the government main-

tain high taxes to sustain revenue, or lower them to stimulate consumption

and mitigate illicit trade? This tension is further complicated by distribu-

tional concerns as sin taxes disproportionately affect low-income households;

as well as enforcement challenges due to excessive taxation fueling smuggling

and black-market activity. Increasing taxation also creates difficulties beside

consumer welfare revenue beyond trade-offs. For instance, as seen in Brazil’s

2023 sin tax reform which will phase into a new system by 2032; for imported

goods, higher taxes could increase market entry costs, necessitating adjust-

ments in pricing, supplier negotiations, and customs classifications. In light

of these issues, age-old questions arise: Should governments tax or subsidize

certain goods to maximize social welfare when consumers face a self-control

problem? How can policymakers design optimal taxation when demand for

harmful products persists? And what are the differential effects on domestic

versus imported goods?

To address the above questions with regards to “sin goods”, I adopt the

approach in Gul and Pesendorfer (2001) (abbreviated to“GP” in the sequel)

to incorporate temptation in decision making of consumers. Their model for-

malizes the ideas of temptation and self-control by characterizing consumer

preferences through two utility components: Commitment utility, which re-

flects the consumer’s rational, long-term preferences, and temptation utility

which captures impulsive consumption desires. Moreover, the decision pro-

cess of the consumer is modeled in two stages. First, the consumer chooses

her most preferred menu out of all possible options and subsequently chooses
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her top ranked item out of the menu. Intuitively, this can be thought as

the consumer first choosing which store to buy from and then, once in the

store, choosing his highest ranked choice. Unlike standard rational agent

models, this framework explicitly accounts for self-control problems (result-

ing from the consumer consciously restraining herself) while maintaining a

single-agent representation. In contrast to time-inconsistent preference mod-

els (e.g. Strotz, 1955; Phelps and Pollak, 1968 and Laibson, 1997), it avoids

the need to split the consumer into multiple selves and thus make arbitrary

assumptions about welfare weights across these selves. Preference reversals

in Gul and Pesendorfer are the result of preferences being defined first over

consumption sets rather than over consumption sequences. Formally, two

sources of utility in the model are present: one denoted by U , the com-

mitment utility, and the other denoted by V ; the temptation utility which

quantifies how tempting different goods are to the consumer. The consumer’s

utility in the second stage is given by U + V (his ex-post utility); while the

utility in the first stage (his ex-ante utility W ) is given by the difference

between the maximum ex-post utility and maximum temptation utility, i.e.

for a menu M

W (M) = max
x∈M

{U(x) + V (x)} −max
x∈M

V (x). (3.1)

If U + V is maximised at x⋆ ∈ M and V is maximised at y ∈ M , then the

ex-ante utility is

W (M) = U(x⋆) + V (x⋆)− V (y), (3.2)

V (x⋆)− V (y) is then the self-control cost.

Sin goods can of course be provided by either a monopoly or a competitive

market. I choose to focus on the monopoly case as the welfare implications of

taxation are clearer. This is because market competition creates additional

interactions between firms and as a result strategic government intervention

may create additional equilibrium distortions. My model relies on similar

assumptions as the standard non-linear pricing models in Mussa and Rosen
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(1978) and Maskin and Riley (1984), where a monopolist sells goods that

differ in a single-dimensional quality (or quantity) level. This assumption

is well suited to sin goods as there are many instances where firms differ-

entiate their products according to consumer characteristics. For example,

luxury spirits (e.g., Johnnie Walker Blue Label, Dom Pérignon champagne)

target high-income consumers who are willing to pay for the brand prestige

and image. On the other hand, beer firms release low-alcohol products to

appeal to a broader health-conscious demographic. As it is standard, the mo-

nopolist does not observe consumers’ preferences and relies on indirect price

discrimination schemes which lead to consumer self-selection. To capture the

additional behavioral assumptions, the parameter measuring the intensity of

a given consumer preference for quality is replaced by the temptation inten-

sity γ in my model. This temptation intensity only appears in temptation

utility.

Following Esteban et al. (2007), I consider two classes of consumers. Con-

sumers facing upward temptation and consumers facing downward tempta-

tion. A consumer facing upward temptation is tempted by high quality high

price items. She therefore has a higher willingness to pay when faced with

bundles containing such items. By contrast a consumer facing downward

temptation is tempted by lower quality lower prices items when faced with

bundles having higher price higher quality items. When confronted with con-

sumers of both types the monopolist faces a trade off between offering smaller

high quality high price menus that enable him to extract high surpluses from

consumers facing upward temptation, but may discourage consumers facing

downward temptation, and offering more targeted menus that can ease the

self control costs consumers facing downward temptation encounter. The

disadvantage of this former approach is that consumers facing upward temp-

tation are disincentivised from purchasing costlier bundles in the menu.

Recall that, I denote by γ a given consumer’s temptation intensity. I

assume that there is a critical temptation level γ∗ where the consumer’s

marginal value of commitment utility equals that of temptation utility. At

this point the consumer behaves as a fully rational agent. The magnitude of

the difference between a consumer’s γ and γ∗ reflects the strength of temp-
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tation. When γ > γ∗ (positive difference), the self-control cost arises from

higher quality: the larger the difference, the more temptation amplifies the

appeal of higher quality. When γ < γ∗ (negative difference), the self-control

cost arises from lower price: the larger the difference, the more temptation

amplifies the appeal of lower prices—potentially even deterring market entry.

My primary interest is the case in which there is population heterogeneity in

the degree of temptation γ.

The standard normative welfare analysis of monopoly taxation is pre-

sented in Krishna (1984). In particular, Krishna’s model analyses the effect

of protectionists policies on both a national and foreign monopolist when

he faces a population where consumers have different willingness to pay for

the goods he provides. Her model builds is based on the model by Mussa

and Rosen (1978). My model is closely related to hers, the main differences

being the additional behavioral assumptions. Unlike her results, where both

specific and ad valorem subsidies are welfare improving for a home monop-

olist, I show that a specific tax has no effect on welfare in this case. I also

characterize the performance of ad valorem taxation according to different

population levels. I further show that in the case of a foreign monopolist

both ad valorem and specific taxes are welfare improving.

In terms of welfare analysis in my model, I distinguish three types of total

welfare: adjusted-cost welfare, normative welfare and behavioral welfare. This

is because unlike traditional economics where individuals maximize a well-

defined utility function and welfare can be easily defined via this function;

behavioral economics incorporates cognitive biases and self-control problems

into the utility function. This makes the problem of defining welfare diffi-

cult. Indeed, disentangling true utility (a measure of genuine welfare) from

revealed preferences (observed choices) is a problem that remains unresolved

but seems to be increasingly substantiated by empirical research. There is

however much theoretical debate regarding this problem. This debate often

intersects deeper philosophical disagreements regarding paternalism versus

liberalism. Particularly, when determining optimal policy selection and wel-

fare evaluation.

The three welfare measures are defined as follows: adjusted-cost welfare
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uses the ex-ante utility of the consumer as a definition of welfare. This

is justified with reference to Gul and Pesendorfer (2001) who shows that

a dynamically consistent decision-maker benefits when ex-ante undesirable

temptations are removed, suggesting welfare should account for both com-

mitment utility and self-control costs in menu-choice contexts. On the other

hand, adopting a paternalistic normative perspective demands that welfare

should reflect choices made free of temptation (i.e. reflects the “true prefer-

ences”). This motivates the choice of commitment utility as welfare measure

since, by definition, it is supposed to capture “true” consumer preferences.

Finally, a behavioral analysis uses ex-post utility (the sum of commitment

and temptation utilities). This is motivated by the interpretation of an agent

in behavioral economics as consisting of several selves. The welfare of an

agent is thus the sum total of the welfare of each self. In this regard, Strotz

(1955) argues welfare must balance conflicting preferences across time (e.g.,

present vs. future selves). This is further motivated, by noting that behav-

ioral economics challenges the conventional interpretation of reveal preference

theory since it is impossible to separate “true” preferences from behavioral

distortions when observing agents’ choices. In the context of the GP model

separating commitment and temptation utility appears unrealistic since only

ex-post utility could be inferred by observed choices. Given these theoret-

ical difficulties, I choose to evaluate policy impact across all three welfare

frameworks.

My results contribute to the literature in a number of ways. To start with,

I characterize an optimal monopoly nonlinear pricing scheme in a behavioral

context where agents suffer from temptation. This results in the optimal

scheme having price cap at the highest level. Secondly, I characterize the

optimal tax design. Third, the most novel contribution results from my

analysis of the welfare effects of taxation in this market both domestically

and for an importer. In particular, I show that a small tax or a subsidy can

improve welfare in the case of a home monopolist. In the case of a foreign

monopolist, I show that protectionist policies can result in higher consumer

welfare and increase tax revenue.

From the consumer perspective, I show that in equilibrium there are three
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types of consumers who do not suffer from self-control problem. First, the

lowest types always obtains zero utility as they purchase nothing. Second,

highest types choose the highest quality highest price product provided by

the monopolist. Since these consumers are upward tempted they suffer no

self-control costs. Lastly, consumers with temptation intensity at the level of

γ∗ behave rationally. At this level, the consumer’s marginal value of commit-

ment utility and that of temptation utility are equal. Equilibrium structure

depends on the upper bound of temptation intensity in two ways: a higher

upper bound implies temptation intensity varies over a wider range. More-

over, a higher bound diminishes the fraction of consumers facing self control

costs in equilibrium. In geometric terms, the interval of consumers who suffer

from self control costs shrinks as the parameter increases.

I show that imposing a tax can mitigate self-control costs by reducing the

net utility of temptation-driven choices (e.g., by making high-quality/lower-

price temptations less salient). I show that the effectiveness and nature of

taxation depends on market size. In particular, I find that larger markets

require taxes while smaller market benefit from subsidies.

More broadly, I show that specific tax has no effect on the domestic temp-

tation good while a small ad valorem tax may improve the social welfare

when the average level of temptation amongst consumers is not very high.

However, when the intensity of temptation varies strongly across consumers

a purely ad valorem subsidy policy can improve the welfare. On the other

hand for the imported good, both ad valorem and specific tax policy can

improve the domestic country’s welfare. I find that an optimal ad valorem

rate can reach a high level of around 50 per cent. By contrast a small specific

tax can be implemented by the government to improve the social welfare.

I also show that the optimal taxation policy depends on the normative and

behavioral perspectives. An optimal normative ad valorem tax for domestic

goods is a moderate rate between that of the adjusted-cost measure and the

behavioral measure, since it ignores the reduction of self-control costs arising

from the tax and the lowering of temptation utility. A specific taxation or

subsidy policy works the same way for domestic welfare. For the foreign good,

the adjusted-cost measure pushes the optimal ad valorem tax above the 50
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per cent mark; while the optimal ad valorem tax is lower than 50 per cent in

both the normative and behavioral measures. The normative measure shows

that a higher tax policy should be implemented by the government as more

consumers suffer more pronounced self-control problems when considering

a foreign good. The behavioral measure suggests that a lower tax rate is

better. It is particularly noteworthy that the optimal normative specific tax

rate is much higher than both tax rates as prescribed by the adjusted-cost

measure and the behavioral measure. This suggests that self-control costs

and temptation utility losses are sensitive to the specific tax rate on imported

good.

3.1.1 Related Literature

This paper studies optimal taxation in a monopoly market where the mo-

nopolist screens agents according to their temptation type. In particular, I

focus on how temptation affects consumers’ preference over different bun-

dles and how the monopolist accounts for this when providing a menu to

the consumers. This differs from the more widely encountered approaches

in the literature that rely on dynamics. In particular, present bias and time

inconsistency due to hyperbolic discounting. In contrast, consumers in my

model are not dynamically inconsistent. This allows for a more straight-

forward analysis by focusing on how other agents (i.e. the monopolist or,

indirectly, the government) account for the consumers behavioral traits in

their own decisions. In particular, this permits a more parsimonious com-

parative statistics analysis in the event a tax is introduced. Similarly, optimal

taxation can be easily characterized. Moreover, my model allows for higher

heterogeneity in agent types.

Time inconsistency and hyperbolic discounting are well-known in the eco-

nomic literature. Originally, the seminal work of Strotz (1955) introduced

the idea that an agent’s future actions may systematically deviate from her

initial optimal plan. Such deviation creates a demand for pre-commitment

devices, which ensures future decisions are in line with the present opti-

mal path. Building on Strotz’s insight, Phelps and Pollak (1968) formalized
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the notion of “hyperbolic discounting”, a time preference structure in which

short-run and long-run discount rates differ. However, their application fo-

cused on inter generational conflicts; specifically the challenge of second-best

national saving when the current generation cannot bind the decisions of

its descendants. This idea was then adapted to account for behavioral in-

consistencies of a single agent over time in Laibson (1997). The paper also

explored how agents behave under imperfect commitment technologies. This

was later developed in O’donoghue and Rabin (2001), which provided a rig-

orous analysis of the welfare and behavioral consequences of present-biased

preferences, which provided important insights into phenomena such as pro-

crastination. O’Donoghue and Rabin (2006) incorporates these ideas along

with the time-inconsistency assumption into a standard optimal taxation

framework. Their conclusions show that imposing a tax on unhealthy items

and returning the proceeds to consumers can generally improve total social

surplus. In particular, they provide examples showing that taxation can

be significantly effective even when agents are afflicted by a relatively small

self-control problem. By contrast in my model, if the population are predom-

inantly downwards tempted then introducing a subsidy can improve welfare.

On the other hand, if a large proportion of upward tempted consumers are

present then taxes are optimal.

A few papers have used the GP model been used to analyze the problem of

optimal taxation. For instance, Gul and Pesendorfer (2007) argue that taxing

drugs can in fact reduce welfare while prohibitive policies may be an effective

way to increase welfare. These results are established by constructing an

infinite horizon model of harmful addiction. Similarly, Krusell et al. (2010)

were the first to study how linear tax-transfer schemes can be used to improve

the welfare in a representative consumer economy where agents are tempted

towards current consumption, thereby distorting the incentive to save for

future periods. They showed that a savings subsidy improves welfare by

making succumbing to temptation less attractive.

Other behavioral models have also been explored in the literature to ana-

lyze welfare improvement via taxation. In particular, Haavio and Kotakorpi

(2011) discusses how linear sin taxes and transfers can mitigate consumption
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errors when agents follow a a quasi-hyperbolic discount function (see e.g.

Laibson, 1997). This time inconsistency leads to delayed negative effects.

More recently, Arvaniti and Sjögren (2023) identify a commitment mecha-

nism that works through endogenous labor choices and affects the design and

effectiveness of the optimal tax policy. As can be seen from these examples,

existing literature focuses mostly on individual welfare improvement via tax-

ation using general equilibrium frameworks. In this paper, I focus on the

normative question of determining whether total welfare can be improved

via taxation or subsidy on a monopolistic industry.

On the policy side, research has shown that paternalistic interventions like

“sin taxes” can be welfare improving as they can help reduce harms arising

from self-control problems. For example, Gruber and Kőszegi (2004) focus on

smoking and show that taxation can benefit low income groups. More gen-

erally, Gruber and Mullainathan (2005) argue that behavioral effects arising

from cigarette taxes are considerably more complex than those predicted by

simple rational economic model by referring to behavioral data from both

the US and Canada.

This paper also contributes to the normative behavioral welfare analy-

sis. Introducing behavioral effects in economic welfare analysis is a hotly

debated topic in the literature. This debate often centers about contesting

the foundational assumption of neoclassical economics without questioning

the underlying welfare assumptions of policy goals. An often cited example

of this approach is Gul and Pesendorfer (2007). On the other hand, a se-

ries of recent papers (Bernheim and Rangel, 2007, 2008, 2009) have argued

strongly in favor of an alternative normative framework that defines welfare

in terms of choice as opposed to well-being or other underlying objectives.

Lastly, Chetty (2015) presents a more pragmatic perspective on behavioral

economics that emphasizes its role in improving empirical predictions and

thus policy decisions. This paper is closer in spirit to this latter perspective,

I study and compare how optimal taxation policy is implemented according

to different attitudes to welfare.

The welfare effects of taxation under monopoly have been studied exten-

sively. Krishna (1984) show that both specific and ad valorem subsidies can
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raise welfare in a domestic monopoly market producing a full product line.

For a foreign monopoly firm, the outcome of taxation depends on the distri-

bution of consumer types. More recently, McCalman (2010) highlight that

optimal trade policy under nonlinear pricing depends not only on terms-of-

trade effects but also on consumer heterogeneity and incentive compatibility

constraints. In contrast, my model consumer types represent the degree of

temptation of each individual consumer. Temptation types are assumed to

be uniformly distributed. In this setting, protection policies can improve wel-

fare under both specific and ad valorem taxation. For a domestic monopolist,

the welfare impact of ad valorem intervention depends on the upper bound

of temptation: taxes enhance welfare when temptation costs are large, while

subsidies improve welfare through higher product quality when temptation

costs are small. By comparison, specific interventions are welfare-neutral.

The structure of this chapter is as follows: In Section 3.2, the model is

described formally in both the simpler case where there are only two con-

sumer types and the more general case where there is a continuum of agents.

In section 3.3, I present the optimal taxation and the welfare analysis. The

paper is then concluded in Section 3.4 with a discussion of further work and

conclusions. Proofs of some of the results in the main body are presented in

the Appendix.

3.2 Model

Consumer’s type γ is uniformly distributed on [a, b]. The cumulative dis-

tribution is denoted by F (γ) and the density by f(γ). Note that γ gives a

measure of the degree of temptation the consumer faces. The consumer’s

commitment utility when offered a bundle of quality q and price p is

U(q, p) = q − p, (3.3)

and temptation utility is

Vγ(q, p) = γq − p. (3.4)
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The ex-ante utility from a menu M ⊂ R2
+ is

Wγ(M) = max
(q,p)∈M

{U(q, p) + Vγ(q, p)} − max
(q,p)∈M

{Vγ(q, p)}

= max
(q,p)∈M

{(1 + γ)q − 2p} − max
(q,p)∈M

{γq − p}
. (3.5)

A menu M ⊂ R2
+ is assumed to be a compact set containing the origin

(0, 0). This reflects the fact that the consumer always has the default choice

of not purchasing from the monopolist.

To clarify the properties of commitment utility U and temptation utility

Vγ, I define that for any utility function Xγ(q, p) and Yγ(q, p), Xγ(q, p) ≿

Yγ(q, p) if the marginal value of q is weakly higher for Xγ(q, p) than for

Yγ(q, p) at any point (q, p).

Naturally, consumers with γ < γ∗ who are tempted downwards to lower

quality, cheaper bundles exhibit a lower marginal willingness to pay for ad-

ditional quality than the committed itself, that is, Vγ ≺ U + Vγ ≺ U . On

the other hand, consumers with γ > γ∗ who are tempted upwards to higher

quality, more expensive bundles have a higher marginal willingness to pay

for additional quality than the committed itself, that is, Vγ ≻ U + Vγ ≻ U .

For every menu, it is possible to define an allocation function x(γ) :

[a, b] 7→ M that associates with each consumer a bundle (q(γ), p(γ)) ac-

cording to his type γ that the monopolist hopes the consumer will buy. This

bundle might in fact be (0, 0). A menu M and allocation x together define a

schedule (M,x). A schedule is optimal if it maximises profits.

It is possible (see Esteban et al., 2007) to show that an optimal schedule

exists under general assumptions, where (i) the monopolist only provides

bundles consumers buy, and (ii) all consumers enter the store (I assume that

if a consumer is indifferent between entering or not he chooses to enter).

Moreover, this schedule does not generate loses to the monopolist at each

individual type. I discuss how to characterise this optimal schedule below.

Given an allocation (q(γ), p(γ)), for each consumer’s type γ, the firm’s

profit from the type is

π(γ) = p(γ)− C(q(γ)),
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where the cost is

C(q(γ)) =
1

2
q(γ)2.

The expected profit for the monopoly is
∫
γ
[p(γ) − 1

2
q(γ)2]dF (γ). Thus,

the firm’s problem becomes

max
q(γ),p(γ)

∫
γ

[p(γ)− 1

2
q(γ)2]dF (γ)

subject to

Wγ ≥ 0, (ex-ante IR)

(3.6)

U(q(γ), p(γ)) + Vγ(q(γ), p(γ)) ≥ 0, (ex-post IR)

(3.7)

U(q(γ), p(γ)) + Vγ(q(γ), p(γ)) ≥ U(q(γ̂), p(γ̂)) + Vγ(q(γ̂), p(γ̂)), ∀γ̂. (ex-post IC)

(3.8)

The first of these conditions represents ex-ante individual rationality; the

consumer cannot be ex-ante worse off by entering the store than she would

be if she did not. The second represents ex-post individual rationality; the

consumer choice cannot be ex-post worse than he would be if she had not

chosen anything. Finally, the third condition represents ex-post incentive

compatibility; the consumer choice must be the best given all consumption

choices. Here, it is noted that ex-ante and ex-post utilities refer respectively

to the consumer before and after exerting self-control, which differs from

their use in standard (non-behavioral) models.

Finally, denote by γ∗ the type of consumer who does not have a self-control

problem. In this setup, γ∗ = 1. The type γ∗ acts as a threshold, consumers

with γ < 1 face downward temptation, while consumers with γ > 1 face

upward temptation.
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3.2.1 Two-Type Case

I begin by considering a simpler setting where the consumer population con-

tains only two types; one downward-tempted, labeled as γL, and another

upward tempted, labeled as γH. More precisely, consumer types satisfy

γL < 1 < γH. By analogy with the continuum case, I assume that the

probability that a given consumer type is drawn from the population is 1
2
.

This should not significantly alter the results, but makes calculations slightly

simpler.

I first consider the complete information case to gain some insight on how

the optimal schedule may be characterized under the more realistic assump-

tion of asymmetric information about consumer’s types. The monopolist

therefore observes the value of each consumer type γ by assumption. This

allows the monopolist to offer an individualized menu M to each consumer so

as to maximize the monopolist’s profit. The consumer then chooses whether

to enter the store; if so, she chooses (q, p) ∈ M to maximize her ex-post

utility.

Under complete information, the monopolist maximizes profits under sub-

ject only to conditions (3.6) and (3.7), since complete information makes

incentive compatibility (3.8) redundant. In this case, the optimal schedule

contains a unique non-trivial choice (i.e. the optimal schedule is of the form

({(q∗, p∗), (0, 0)}, (q∗, p∗)), because offering additional options cannot increase
profits and instead risks raising self-control costs for the seller. Therefore,

the ex-ante and ex-post IR conditions reduce to

min{U(q, p), U(q, p) + Vγ(q, p)} ≥ 0. (3.9)

For the upward-tempted consumers, U(q, p) ≥ 0 implies U(q, p)+Vγ(q, p) ≥
0, since U + Vγ ≻ U when γ > γ∗(= 1). Thus, condition (3.9) simplifies to

U(q, p) ≥ 0. The profit-maximization problem then reduces to maximiz-

ing π(q, p) = p − 1
2
q2 subject to U(q, p) = 0. A straightforward calcula-

tion then shows that the optimal bundle for the upward tempted consumer

is pC(γH) = qC(γH) = 1. The upward-tempted consumer has a stronger

willingness to pay for quality because temptation pulls her toward higher
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bundles. The monopolist can therefore extract the entire surplus by setting

(q, p) = (1, 1), leaving the consumer with zero commitment utility but no

incentive to opt out.

Conversely, for the downward-tempted consumers, U(q, p) + Vγ(q, p) ≥ 0

implies U(q, p) ≥ 0, since U+Vγ ≺ U when γ < γ∗. Then the monopolist now

maximizes π(q, p) = p− 1
2
q2 subject to U(q, p)+Vγ(q, p) = 0. This means that

in this case, qC(γL) = 1+γL
2

and pC(γL) = (1+γL)
2

4
. For downward-tempted

consumers, temptation drags them toward cheaper, lower-quality bundles,

effectively lowering their marginal willingness to pay. The monopolist must

therefore reduce both quality and price relative to the upward-tempted case

in order to satisfy the participation constraint.

Combining the optimal menus for each type of consumer, the monopolist’s

aggregate profit from both consumers is πC = πC(γH)+πC(γL) =
1
2
+ (1+γL)

2

8
.

The first summand comes from the upward-tempted consumer, whilst the

second is from the downward-tempted consumer. The monopolist earns a

fixed profit of 1
2
from the high-type consumer, while the profit from the low-

type consumer depends on the severity of temptation (through γL). When

γL is small, the consumer is strongly tempted downwards, reducing both the

optimal bundle and the monopolist’s profit.

Incomplete Information

I now analyze the case of incomplete information where the monopoly does

not observe each individual consumer’s type. He only knows there is an

upward-tempted (also high-temptation type, or “H” type) consumer and a

downward-tempted (also low-temptation type, or “L” type) consumer, each

occurring with equal probability. The assumption of equal probabilities is

without loss of generality, as the distribution does not affect the static analy-

sis of equilibrium outcome. Recall that this means the two consumers satisfy

γL < γ∗ = 1 < γH.

The monopolist will in this case provide a menu

{(q(γH), p(γH)), (q(γL), p(γL)), (0, 0)}

87



to screen the two consumer types. As in the standard non-linear pricing

model, I require that in equilibrium 0 < q(γL) < q(γH).

In this case, the monopolist’s profit maximization problem can be rewrit-

ten as follows:

max
q(γH),p(γH)
q(γL),p(γL)

[p(γH)− 1
2
q(γH)

2] + [p(γL)− 1
2
q(γL)

2]

subject to

WγH ≥ 0, (ex-ante IR for H)

(3.10)

WγL ≥ 0, (ex-ante IR for L)

(3.11)

(1 + γH)q(γH)− 2p(γH) ≥ 0, (ex-post IR for H)

(3.12)

(1 + γL)q(γL)− 2p(γL) ≥ 0, (ex-post IR for L)

(3.13)

(1 + γH)q(γH)− 2p(γH) ≥ (1 + γH)q(γL)− 2p(γL), (ex-post IC for H)

(3.14)

(1 + γL)q(γL)− 2p(γL) ≥ (1 + γL)q(γH)− 2p(γH). (ex-post IC for L)

(3.15)

Before I discuss the solution of this problem, I first show that ex-ante IR

constraints are equivalent to non-negative commitment utility, U ≥ 0.

Proposition 3.2.1. Taking an arbitrary menu M then ex-ante IR is fulfilled

for each γ ∈ {γH, γL} if and only if, U(p, q) ≥ 0 for all (q, p) ∈ M .

Proof. I assume first that ex-ante IR is satisfied for both consumer types

then if (q(γ), p(γ)) is a bundle such that maximizes U + Vγ for γ ∈ {γH, γL}

U(q(γ), p(γ)) ≥ U(q(γ), p(γ)) + V (q(γ), p(γ))− max
(q,p)∈M

{Vγ(q, p)} ≥ 0.

For the other implication; if U(q, p) ≥ 0 for every (q, p) ∈ M and given some
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type γ the following chain of inequalities holds:

Wγ(M) = max
(q,p)∈M

{U(q, p) + V (q, p)} − max
(q′,p′)∈M

{Vγ(q, p)}

≥ U(q′, p′) + V (q′, p′)− V (q′, p′) = U(q′, p′) ≥ 0.

In the above inequalities, (q′, p′) ∈ M is such that V (q′, p′) ≥ V (q, p) for any

(q, p) ∈ M .

Proposition 3.2.1 implies that the two ex-ante IR constraints for both types

(3.10)–(3.11) can be replaced by the simpler conditions U(q(γH), p(γH)) ≥ 0

and U(q(γL), p(γL)) ≥ 0.

Recall that γL < γH. Combining ex-post IR (3.13) for the downward-

tempted consumer with ex-post IC (3.14) for the upward-tempted consumer

yields

(1+γH)q(γH)−2p(γH) ≥ (1+γH)q(γL)−2p(γL) > (1+γL)q(γL)−2p(γL) ≥ 0.

Hence, ex-post IR (3.12) for γH never binds and can be ignored. By con-

trast, ex-post IR (3.13) for γL must bind, that is (1 + γL)q(γL)− 2p(γL) = 0.

This is because if this were not so, the monopolist could adjust the menu of-

fered by decreasing the quality, or increasing the price, of a given option. The

downward-tempted consumer prefers this option while the upward-tempted

one does not, leading to an increase in profit. Similarly, ex-ante IR (3.11)

for γL must be slack. Otherwise this will mean VγL < 0 which would lead to

self-control costs for this consumer type. Alternatively,

2q(γL)− 2p(γL) > (1 + γL)q(γL)− 2p(γL) ≥ 0

given that γL < 1.

Finally, I substitute the binding ex-post IR (3.13) for γL into the ex-post

IC (3.15) for γL. This yields 0 ≥ (1 + γL)q(γH) − 2p(γH), which means that

the downward-tempted consumer does not gain from behaving as an upward-

tempted consumer. As a consequence, constraint (3.15) must not bind. Ei-

ther ex-ante IR (3.10) or ex-post IC (3.14) for γH must bind however. The
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upwards-tempted consumer cannot obtain simultaneously extra commitment

utility or ex-post utility by choosing the lower quality offer if the monopolist

is maximizing profits.

From the above arguments it follows that conditions (3.10)-(3.15) can be

reduced to the following constraints:

q(γH)− p(γH) ≥ 0, (3.16)

(1 + γL)q(γL)− 2p(γL) = 0, (3.17)

(1 + γH)q(γH)− 2p(γH) ≥ (1 + γH)q(γL)− 2p(γL). (3.18)

Rearranging the binding constraint (3.17), I have

2p(γL) = (1 + γL)q(γL). (3.19)

Substituting into (3.18), the IC constraint (3.18) becomes

(1 + γH)q(γH)− (γH − γL)q(γL)− 2p(γH) ≥ 0. (3.20)

The monopolist’s problem is then simplified to choosing a pair of qualities

(q(γH), p(γH), q(γL)) to maximize the profit function

max
q(γH),p(γH),q(γL)

[
2p(γH)− q(γH)

2
]
+
[
(1 + γL)q(γL)− q(γL)

2
]
,

subject to (3.16) and (3.18). Denoting λ ≥ 0 and µ ≥ 0 as the Kuhn–Tucker

multipliers for the inequality conditions, the Lagrangian function is

L(q(γH), p(γH), q(γL), λ, µ) =
[
2p(γH)− q(γH)

2
]
+
[
(1 + γL)q(γL)− q(γL)

2
]

+ 2λ
[
q(γH)− p(γH)

]
+ µ
[
(1 + γH)q(γH)− (γH − γL)q(γL)− 2p(γH)

]
.

Differentiating with respect to q(γH), q(γL) and p(γH) respectively yields
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the first-order conditions

−2q(γH) + 2λ+ µ(1 + γH) = 0, (3.21)

(1 + γL)− 2q(γL)− µ(γH − γL) = 0, (3.22)

1− λ− µ = 0. (3.23)

These are complemented with the two complementary slackness conditions

λ ·
[
q(γH)− p(γH)

]
= 0, (3.24)

µ ·
[
(1 + γH)q(γH)− (γH − γL)q(γL)− 2p(γH)

]
= 0. (3.25)

From condition (3.23), I have λ = 1 − µ. Substituting into conditions

(3.21) and (3.22), q(γH) and q(γL) can be expressed as

q(γH) = 1 +
µ(γH − 1)

2
,

q(γL) =
1 + γL − µ(γH − γL)

2
.

The social welfare WB is defined as the sum of consumers’ ex-ante utilities

and the monopolist’s profit. Compared to the case where temptation is

absent, ex-ante utility is the difference between commitment utility and self-

control costs. Aggregate social welfare is therefore the sum of expected value

of U(γ) + π(γ) = p(γ) − C(q(γ)) net of any self-control costs. In this two-

type case, neither of the consumers suffers from self-control problems. On

one hand, the ex-ante utility of downward-tempted consumer is always zero,

since the ex-post utility always binds and the maximal temptation is zero.

On the other hand, the monopolist ensures that the self-control costs of the

upward-tempted consumer are zero, thereby extracting the entirety of her

ex-ante surplus. Consequently, aggregate social welfare then reduces to the

expected value of q(γ)− C(q(γ)).

Proposition 3.2.2. Defining the following two bounds γ−
H =

1+3γL+
√

9−2γL−7γ2
L

4
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Figure 3.1: Optimal q(γH) for different γL

and γ+
H = γL + 2, the optimal bundle for the upwards tempted consumer is 1

q(γH) =


1+γH

2
, if 1 < γH ≤ γ−

H

1 + (γL−1)(γH−1)(γH−γL−2)
2(γH−1)2+2(γH−γL)2

, if γH ∈ (γ−
H , γ

+
H )

1, if γH ≥ γ+
H

(3.26)

and

p(γH) =


(1+γH)

2−(γH−γL)(1+2γL−γH)
4

, if 1 < γH ≤ γ−
H

1 + (γL−1)(γH−1)(γH−γL−2)
2(γH−1)2+2(γH−γL)2

, if γH ∈ (γ−
H , γ

+
H )

1. if γH ≥ γ+
H

(3.27)

Whereas for the downward-tempted consumer γL,

1For expositional clarity, the functions are denoted as depending solely on γH, for
example q(γH) and p(γH). Formally, these objects are functions of both γH and γL. In the
analysis that follows, however, γL is treated as a fixed parameter, and attention is directed
to the comparative statics with respect to γH. Similarly, one may treat γH as fixed and
examine the variation with respect to γL.
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Figure 3.2: Optimal p(γH) for different γL

q(γL) =


1+2γL−γH

2
, if 1 < γH ≤ γ−

H

1+γL
2

+ (1−γL)(γH−γL)(γH−γL−2)
2(γH−1)2+2(γH−γL)2

, if γH ∈ (γ−
H , γ

+
H )

1+γL
2

, if γH ≥ γ+
H

(3.28)

and

p(γL) =


(1+γL)

2−(1+γL)(γH−γL)
4

, if 1 < γH ≤ γ−
H

(1+γL)
2

4
+

(1−γ2
L)(γH−γL)(γH−γL−2)

4(γH−1)2+4(γH−γL)2
, if γH ∈ (γ−

H , γ
+
H )

(1+γL)
2

4
, if γH ≥ γ+

H

(3.29)

Figures 3.1 and 3.2 illustrate the dependence of q(γH) and p(γH) on γH,

respectively, for a given value of γL. Figure 3.1 highlights the regime tran-

sitions, ranging from a linear quality (resp. pricing) schedule for low values

of γH to a constant schedule. For small values of γH, the monopolist offers

higher qualities and prices than under complete information. This is because

IC becomes the only binding constraint and the upward tempted consumer
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Figure 3.3: Optimal q(γL) for different γH

Figure 3.4: Optimal p(γL) for different γH
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receives some ex-ante surplus. As γH increases ex-ante IR binds as well and

the monopolist obtains the highest possible profit in that case. In this regime,

the monopolist can continue offering bundles above the perfect information

one. By contrast, for sufficiently large values of γH, the bundle converges to

the one that would be offered under complete information. This is because

when the upwards tempted consumer suffers from high temptation ex-ante

IR becomes the binding constraint while ex-post IC becomes slack. Due to

the possibility of the upward tempted consumer exerting self-control and not

entering the store at all, the monopolist cannot attain the same profit he

would if the consumer did not have behavioral preferences.

Further to the above details, note that as γL raises to 1 the γ+
H increases

monotonically to 3, its highest value. The behavior of γ−
H is more complex as

it first raises and then decreases. Overall, the region where both constraints

bind (i.e. the interval (γ−
H , γ

+
H )) becomes larger with higher γL. Observe that

as shown in figures 3.1 and 3.2 the curvature of of both p and q over this

interval also changes, from convex to concave as γL increases. Moreover for

fixed γH increases in γL result in price reductions when γH is low but lead to

price increases when γH becomes larger, as can be seen from figure 3.2. This

is because for low values, increases in γL make the consumer types closer,

which makes it more difficult for the monopolist to discriminate between

consumers.

Figures 3.3 and 3.4 illustrate the dependence of q(γL) and p(γL) on γL, re-

spectively, for a given value of γH. Both figures indicate that this dependence

is monotonic: higher values of γH induce larger values of quality and price.

As γL approaches one, the bundle converges to (1, 1), which corresponds to

the optimal allocation when the consumer faces no self-control costs. Note

further that fixing γL and examining how q(γL) and p(γL) change with γH,

figures 3.3 and 3.4 show that increasing γH results in higher quality price

bundles offered to the downward tempted. This is because in such circum-

stances the monopolist can offer a much higher quality price bundle to the

upward tempted consumer while maintain ex-post IC (and ex-ante IR) and

can therefore obtain a higher surplus from the downward tempted consumer.

Proposition 3.2.3. When there are only two consumer types in the popu-
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Figure 3.5: Optimal π(γH) for different γL

lation 0 < γL < 1 < γH, with each type being equally like. The monopolist

makes profits:

π(γH, γL) =


1
2
+ (1+γL)

2

8
+

2(γH−γL)
2+γ2

L+2γL−3

8
, if 1 < γH ≤ γ−

H

1
2
+ (1+γL)

2

8
− (γL−1)2(γH−γL−2)2

8[(γH−1)2+(γH−γL)2]
, if γH ∈ (γ−

H , γ
+
H )

1
2
+ (1+γL)

2

8
. if γH ≥ γ+

H

(3.30)

In particular, the profit from upwards temptation is

π(γH) =


(1+γH)

2−2(γH−γL)(1+2γL−γH)
8

, if 1 < γH ≤ γ−
H

1
2
− (γL−1)2(γH−γL−2)2(γH−1)2

8[(γH−1)2+(γH−γL)2]2
, if γH ∈ (γ−

H , γ
+
H )

1
2
, if γH ≥ γ+

H

(3.31)
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Figure 3.6: Optimal π(γL) for different γH

and the profit from downwards temptation is

π(γL) =


(1+γL)

2−(γH−γL)
2

8
, if 1 < γH ≤ γ−

H

(1+γL)
2

8
− (γL−1)2(γH−γL−2)2(γH−γL)

2

8[(γH−1)2+(γH−γL)2]2
, if γH ∈ (γ−

H , γ
+
H )

(1+γL)
2

8
, if γH ≥ γ+

H

(3.32)

Figures 3.5 and 3.6 illustrate the profit gains from the upwards and tempted

consumer respectively. Note that profits obtained from the upward tempted

consumer can raise to at most 1
2
, which corresponds profits under perfect in-

formation, where ex-ante IR binds. Note that as for p(γH) and q(γH) increas-

ing γL leads to changes in curvature in the intermediate region γ−
H < γH < γ+

H .

Moreover, for fixed γH increases in γL result in lower profits when γL is low

but higher ones when γH is high, but below γ+
H . On the other hand, profits for

γL are monotonically increasing and the raise to 1
2
, the maximum profit when

the consumer faces no self-control costs. As for p(γL) and q(γL) increasing γH
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for fixed γL leads to higher monopoly profits, this is because the monopolist

can improve the quality and increase the price for the downward tempted

consumer without violating ex-post IC.

In addition, the ex-post consumer surplus is

w(γH, γL) =


(1+γH)(2+γL−γH)

4
, if 1 < γH ≤ γ−

H

1
2
+ (1+γL)

2

8
− (γL−1)2(γH−γL−2)2

8[(γH−1)2+(γH−γL)2]
, if γH ∈ (γ−

H , γ
+
H )

1
2
+ (1+γL)

2

8
, if γH ≥ γ+

H

(3.33)

Comparison: With vs. Without Temptation

Consider the standard maximization problem without temptation, ex-ante

utility is no different from ex-post utility in this context. I can then think of

the temptation type γ as indexing each consumer by her willingness to pay.

As in the case with temptation, the seller provides a menu

{(q(γH), p(γH)), (q(γL), p(γL)), (0, 0)}

to screen each consumer. The monopolist’s profit maximization problem is

however:

max
q(γH),p(γH)
q(γL),p(γL)

[
p(γH)− 1

2
q(γH)

2
]
+
[
p(γL)− 1

2
q(γL)

2
]

subject to

(1 + γH)q(γH)− 2p(γH) ≥ 0, (3.34)

(1 + γL)q(γL)− 2p(γL) ≥ 0, (3.35)

(1 + γH)q(γH)− 2p(γH) ≥ (1 + γH)q(γL)− 2p(γL), (3.36)

(1 + γL)q(γL)− 2p(γL) ≥ (1 + γL)q(γH)− 2p(γH). (3.37)

As in the case where self-control is present, the IR must bind for the

downward-tempted consumer while the IC for the upward-tempted consumer

implies the IR for this type. Finally, the IC for the downward-tempted
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consumer always holds.

Note that if the IR bound for the upward-tempted consumer, both upward-

tempted and downward-tempted types will behave in the same way. This

contradicts the assumption that consumers are separated by their types.

Also note that since the IR binds for the downwards temptation, the

IC condition can be written as (1 + γH)q(γH) − 2p(γH) ≥ (1 + γH)q(γL) −
2p(γL) = (γH − γL)q(γL) ≥ 0, where the last equality holds only when

q(γL) = p(γL) = 0. If the IC for the upward-tempted consumer binds, so

that (1 + γH)q(γH) − 2p(γH) = (γH − γL)q(γL), the monopolist’s problem is

then simplified to choosing a pair of qualities (q(γH), q(γL)) to maximize the

profit function

2π = [(1+ γH)q(γH) + (γL − γH)q(γL)− q(γH)
2] + [(1 + γL)q(γL)− q(γL)

2].

The first-order conditions imply in this case that

q(γH) =
1 + γH

2
, q(γL) =

1 + 2γL − γH

2
.

The bounds 1 < γH < 2γL + 1 and 0 < γL < 1 guarantee strictly positive

quality is provided to both consumers. In this case, the prices offered to each

consumer type are

p(γH) =
(1 + γH)

2 + (γL − γH)(1 + 2γL − γH)

4
, p(γL) =

(1 + γL)
2 − (1 + γL)(γH − γL)

4
.

On the other hand, when γH ≥ 2γL + 1, the menu always includes (0, 0)

for the downwards temptation. In this case,

q(γL) =


0, if 0 < γL ≤ γH−1

2
,

1+2γL−γH
2

, if γL > γH−1
2

,

(3.38)

99



and

p(γL) =


0, if 0 < γL ≤ γH−1

2
,

(1+γL)
2−(1+γL)(γH−γL)

4
, if γL > γH−1

2
.

(3.39)

In summary, in the absence of temptation, the monopolist’s problem re-

duces to a standard screening model where the qualities and prices are deter-

mined solely by willingness to pay. By contrast, when temptation is present,

the allocation differs because the monopolist must additionally account for

self-control costs, leading to distortions in both prices and qualities relative

to the non-behavioral model.

Taxation Policy

I now extend the model to incorporate taxation. Two common types of taxes

are considered: (i) an ad valorem tax τ , levied as a proportion of the unit

price; and (ii) a specific tax s, levied as a fixed amount per unit of output.

Both instruments may be negative, in which case they represent subsidies

(i.e. τ < 0 is an ad valorem subsidy and s < 0 is a per–unit subsidy).

For economic relevance and to maintain well-behaved allocations, I assume

τ ∈ (−1, 1) and s ∈ R.2

When tax policies are embedded with specific tax rate s and ad valorem

tax rate τ under incomplete information; the firm problem can be re-written

as the following optimization problem:

max
qT (γH),pT (γH)

qT (γL),p
T (γL)

1

2
·
[
pT (γH)(1−τ)− 1

2
qT (γH)

2−s
]
+
1

2
·
[
pT (γL)(1−τ)− 1

2
qT (γL)

2−s
]
,

subject to (3.10)–(3.15).

For convenience, I multiply the objective by 4 and rearrange terms, ob-

taining the following scaled version of the problem:

max
qT (γH),pT (γH),qT (γL)

[
2(1−τ)pT (γH)−qT (γH)

2
]
+
[
(1−τ)(1+γL)q

T (γL)−qT (γL)
2
]
−4s,

2The bound τ > −1 ensures 1− τ > 0; if τ ≥ 1, per-unit revenue becomes nonpositive.
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subject to (3.16) and (3.18), which are the rescaled forms of (3.10) and (3.15).

Denoting λT ≥ 0 and µT ≥ 0 by the Kuhn-Tucker multipliers for the

inequality constraints, the Lagrangian function is

L(qT (γH), p
T (γH), q

T (γL), λ
T , µT ) =

[
2(1− τ)pT (γH)− qT (γH)

2
]
+
[
(1− τ)(1 + γL)q

T (γL)− qT (γL)
2
]

− 4s+ 2λT
[
qT (γH)− pT (γH)

]
+ µT

[
(1 + γH)q

T (γH)− (γH − γL)q
T (γL)− 2pT (γH)

]
.

Following the same method as in the previous section, it can be shown

that the ad valorem tax rate τ proportionally reduces equilibrium prices and

qualities for each type. Aggregate profit is affected by both the ad valorem

tax rate τ and the specific tax rate s.

Proposition 3.2.4. Under taxation, equilibrium allocations scale as

qT (γi) = (1− τ)q(γi), pT (γi) = (1− τ)p(γi), i ∈ {H,L}.

Aggregate profit satisfies

πT = (1− τ)2π − 2s.

The two tax instruments exert distinct effects on monopolist behavior.

The ad valorem tax introduces a proportional burden that scales with price

and, as a result, quality. Consequently, the effects if ad valorem taxes are

more pronounced when high–quality or high–price bundles are considered. In

contrast, the specific tax operates as an additive cost shift. When negative,

both instruments act as subsidies: an ad valorem subsidy proportionally

enhances incentives to increase prices and qualities, while a specific subsidy

raises profitability uniformly across all bundles being produced.

Effect of the tax policy on national welfare with self-control cost

This section examines how introducing small ad valorem and specific taxes

(or subsidies) affect national welfare, starting from an initial situation of free
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trade. The benchmark is therefore τ = 0 and s = 0. Government revenue is

assumed to be rebated to consumers in a lump–sum manner. Quasi-linearity

ensures that these lump–sum transfers do not affect demand. National wel-

fare is therefore the sum of consumer commitment utilities q(γ)− p(γ), gov-

ernment tax revenue τpT (γ) + s and monopolist’s profits qT (γ) − τpT (γ) −
C(qT (γ))− s. Formally, national welfare WB is

WB = qT (γH)−
1

2
qT (γH)

2 + qT (γL)−
1

2
qT (γL)

2.

Here,

qT (γH) =


(1− τ)1+γH

2
, if 1 < γH ≤ γ−

H

(1− τ) + (1− τ) (γL−1)(γH−1)(γH−γL−2)
2(γH−1)2+2(γH−γL)2

, if γH ∈ (γ−
H , γ

+
H )

1− τ, if γH ≥ γ+
H

(3.40)

qT (γL) =


(1− τ)1+2γL−γH

2
, if 1 < γH ≤ γ−

H

(1− τ)1+γL
2

+ (1− τ) (1−γL)(γH−γL)(γH−γL−2)
2(γH−1)2+2(γH−γL)2

, if γH ∈ (γ−
H , γ

+
H )

(1− τ)1+γL
2

, if γH ≥ γ+
H

(3.41)

National welfare can be regarded as a piece-wise continuous function of

relative magnitudes of γH and γL:
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WB(γH, γL) =



(1− τ)(1 + γL)

−(1− τ)2

4

[
(γH − γL)

2 + (1 + γL)
2
]
, if 1 < γH ≤ γ−

H

(1− τ)

(
1 +

1 + γL

2
+ Φ + Ψ

)
−(1− τ)2

2

[
(1 + Φ)2 +

(
1 + γL

2
+ Ψ

)2
]
, if γH ∈ (γ−

H , γ
+
H )

(1− τ)

(
1 +

1 + γL

2

)
−(1− τ)2

8
[4 + (1 + γL)

2] , if γH ≥ γ+
H

(3.42)

where

Φ =
(γL − 1)(γH − 1)(γH − γL − 2)

2(γH − 1)2 + 2(γH − γL)2
,

Ψ =
(1− γL)(γH − γL)(γH − γL − 2)

2(γH − 1)2 + 2(γH − γL)2
.

The marginal welfare change due to the imposition of an ad valorem tax

can be found by differentiating

qT (γH)−
1

2
qT (γH)

2 + qT (γL)−
1

2
qT (γL)

2

with respect to τ . Let

S1 ≡ q(γH) + q(γL), S2 ≡ q(γH)
2 + q(γL)

2.

Then

∂W

∂τ
= −S1 + (1− τ)S2,

∂2W

∂τ 2
= −S2 < 0;
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where S2 < 0 since at least one consumer type chooses a bundle with a

positive quality in equilibrium. W (τ) is therefore strictly concave in τ for

fixed values of γL and γH. The first of this derivatives is the welfare gradient,

the marginal change in welfare due to a change in taxation policy.

Observe that at free trade (τ = 0), the welfare gradient is S2−S1. Because

both qualities provided by the monopolist never exceed one, it follows that

q(γ)2 ≤ q(γ) for each type, which implies S2 ≤ S1. Hence,

∂WB

∂τ

∣∣∣∣
τ=0

= −S1 + S2 ≤ 0,

meaning that a small positive tax rate reduces welfare while a small subsidy

(a negative tax) increases it.

From the previous relations it follows that the welfare–maximizing ad

valorem rate is

τ ⋆ = 1− S1

S2

.

Consider now the optimal ad valorem tax for different ranges of γH and γL.

When 1 < γH ≤ γ−
H ,

τ ⋆ = 1− 2(1 + γL)

(γH − γL)2 + (1 + γL)2
.

On the other hand, When γH ∈ (γ−
H , γ

+
H ),

τ ⋆ = 1−
1 + 1+γL

2
+ Φ+Ψ

(1 + Φ)2 +
(

1+γL
2

+Ψ
)2 ,

where recall that

Φ =
(γL − 1)(γH − 1)(γH − γL − 2)

2
[
(γH − 1)2 + (γH − γL)2

] ,

Ψ =
(1− γL)(γH − γL)(γH − γL − 2)

2
[
(γH − 1)2 + (γH − γL)2

] .
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Finally, When γH ≥ γ+
H ,

τ ⋆ = 1−
3+γL

2

1 + (1+γL)2

4

.

The case of specific taxation differs fundamentally. National welfare is

independent of the specific tax rate s. This is because a specific tax or

subsidy merely transfers resources between firms and the government but

does not affect equilibrium allocations. Hence,

∂WB

∂s
= 0,

∂2WB

∂s2
= 0.

Meaning specific taxation has no effect on national welfare.

3.2.2 Continuous-Type Case

If the population of consumers contains only consumers with upward temp-

tation (so that a > 1) or contains only consumers with downward temptation

(so that b < 1) then it is easy to characterize the optimal menus:

Proposition 3.2.5. If a > 1, let x⋆ be a bundle that maximizes profits

π(x) subject to the constraint U(x) = 0 then the menu M = {x⋆, (0, 0)} and

the allocation x(γ) = x⋆ for every γ ∈ [a, b] form an optimal schedule for

the monopolist. This schedule fully extracts each consumer’s entire ex-ante

surplus.

Proof. Let x⋆ = (p⋆, q⋆) be the bundle that maximises q− 1
2
q2, and γ ∈ [a, b].

Since γ > 1, the agent is tempted upwards and Vγ(x) ≥ U(x)+Vγ(x) ≥ U(x).

In particular, Vγ(x
⋆) ≥ U(x⋆) + Vγ(x

⋆) ≥ U(x⋆). This implies that the menu

M = {x⋆, (0, 0)} and allocation satisfy the constraints.

Let M ′ be a menu and y : [a, b] 7→ M ′ be an allocation, both of which

satisfy the constraints. By proposition 3.2.1 ex-ante IR is equivalent to the

constraint U(x) ≥ 0 for every bundle x ∈ M ′, the constraint U(y(γ)) ≥ 0
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must hold for every γ. But for γ ∈ [a, b] and (py(γ), qy(γ)) = y(γ)

py(γ)−
1

2
qy(γ)

2 ≤ p⋆ − 1

2
(q⋆)2.

If I integrate over the whole range,∫ b

a

py(γ)−
1

2
qy(γ)

2dF (γ) ≤ p⋆ − 1

2
(q⋆)2.

Hence, the menu M = {x⋆, (0, 0)} and the allocation x(γ) = x⋆ form an

optimal schedule.

Proposition 3.2.6. If b < 1, (M,x) is an optimal schedule if and only if

(M,x) maximizes profits subject to the constraint U + Vγ ≥ 0.

Proof. For a proof see proposition 3 and its corollary in Esteban et al., 2007.

In the more general case where a < 1 < b, where both downward and

upward temptation are present and tax policies are embedded with specific

tax rate s and ad valorem tax rate τ ; the monopolist problem can be re-

written as the optimal control problem∫ b

a

{1
2
(1− τ)[(1 + γ)q(γ)− w(γ)]− 1

2
q(γ)2 − s

}
dF (γ)

subject to

w′(γ) = q(γ), (3.43)

w(γ) ≥ (γ − 1)q(γ), (3.44)

w(a) = 0, (3.45)

q(γ) ≥ 0, (3.46)

q′(γ) ≥ 0, (3.47)

π(γ) ≥ 0. (3.48)
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where w(γ) is the ex-post utility of consumer of type γ, defined as w(γ) ≡
(1+ γ)q(γ)− 2p(γ), and π(γ) denotes the per-type profit contribution, given

by π(γ) ≡ 1
2
(1 − τ)[(1 + γ)q(γ) − w(γ)] − 1

2
q(γ)2 − s. Here equation (3.43)

represents the ex-post incentive compatibility and may be derived using the

envelope theorem. Equation (3.44) represents ex-ante individual rationality

and might be derived by manipulating the inequality Wγ ≥ 0. Equation

(3.45) simply states that it is possible for the monopolist to set the ex-

post surplus of the lowest type at zero. Finally, equation (3.46) reflects the

fact that quality cannot fall below 0, while equation (3.47) states that the

quality function is non-decreasing in type. This last condition ensures that

consumers of higher type do not prefer to buy bundles at the lower type.

Proposition 3.2.7. Equation (3.43) is equivalent to ex-post incentive com-

patibility while equation (3.44) is equivalent to ex-ante individual rationality.

The Hamiltonian function for the optimal control problem is

H(w, q, µ, λ, δ, γ) =
{1
2
(1− τ)[(1 + γ)q(γ)− w(γ)]− 1

2
q(γ)2 − s

}
f(γ) + µ(γ)q(γ)

+ λ(γ)[w(γ)− (γ − 1)q(γ)] + δ(γ)q(γ),

where µ(γ) is the costate variable associated with (3.43), λ(γ) ≥ 0 is the

multiplier for ex-ante IR (3.44), and δ(γ) ≥ 0 is the multiplier for the non-

negativity constraint (3.46).

The necessary optimality conditions are

[
1

2
(1− τ)(1 + γ)− q(γ)]

1

b− a
+ µ(γ)− (γ − 1)λ(γ) + δ(γ) = 0, (3.49)

w′(γ) = q(γ), (3.50)

µ′(γ) =
1− τ

2

1

b− a
− λ(γ), (3.51)

λ(γ)[w(γ)− (γ − 1)q(γ)] = 0, λ(γ) ≥ 0, (3.52)

δ(γ)q(γ) = 0, δ(γ) ≥ 0, (3.53)

µ(b) = 0, (3.54)

π(γ) ≥ 0. (3.55)
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The optimality conditions reveal two distinct channels through which tax-

ation shapes equilibrium allocations. The ad valorem tax rate τ enters mul-

tiplicatively in the Hamiltonian and first-order condition (3.49), scaling both

the marginal revenue and the costate dynamics. Intuitively, an ad valorem

tax reduces the effective marginal revenue from serving each type, thereby

proportionally contracting equilibrium quality and transfers across the type

distribution. By contrast, the specific tax s enters additively in the Hamil-

tonian and shifts profits independently of type. This implies that while s

reduces overall profitability, it does not directly distort the marginal trade-off

between quality provision and information rents. Hence, ad valorem taxa-

tion generates allocation distortions across all consumer types, whereas spe-

cific taxation acts as a lump-sum extraction from the firm without altering

marginal incentives. This distinction mirrors the discrete-type case, but here

the distortionary impact of τ applies continuously across the type distribu-

tion, while s only shifts the intercept of the profit function.

Theorem 3.2.1. Suppose that a < 1 and b ∈ (5
3
, 3) so that the consumer

population contains both upwards and downwards tempted types and assume

the quality q(γ) is a continuous function of γ ∈ (a, b). Denote by

γ(τ, s) = max

{
b− 1

2
, b−

√
(b+ 1)2

4
− 4s

(1− τ)2

}

and

γ̄ =
5− b

2
.

Impose the following restriction on the specific tax: s ∈ (−1, 1), and the ad

valorem tax: τ ∈ (−1, 1). Given such taxes s and τ , the following bound

ensures that the solution is well-defined:

s <
(1− τ)2

16

(
−3b2 + 10b− 3

)
≡ smax.

Moreover, if |τ | < 1 and −1 < s < smax then γ(τ, s) < γ∗ < γ̄ (recall that

γ∗ = 1). In addition, the quality q(γ), ex-post utility w(γ) = (1+γ)q(γ)−p(γ)
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and price p(γ) are given as follows:

q(γ) =


0, if γ < γ(τ, s)

(1− τ)(γ − b−1
2
), if γ ∈ [γ(τ, s), γ̄]

(1− τ)(3− b), if γ > γ̄

(3.56)

w(γ) =


0, if γ < γ(τ, s)

1−τ
2
(γ − b−1

2
)2, if γ ∈ [γ(τ, s), γ̄]

(1− τ)(3− b)(γ − 1), if γ > γ̄

(3.57)

and

p(γ) =


0, if γ < γ(τ, s)

1−τ
4
[(γ + 1)2 − ( b−1

2
+ 1)2], if γ ∈ [γ(τ, s), γ̄]

(1− τ)(3− b), if γ > γ̄

(3.58)

Theorem 3.2.1 establishes that taxation reshapes the optimal schedule

determined by the monopolist. On one hand, taxation lowers the participa-

tion threshold γ(τ, s) . Taxation makes serving consumers with temptation

parameter γ below γ(τ, s) unprofitable. It is therefore optimal for the mo-

nopolist to provide zero quality to those consumer types. In addition, The

ad valorem tax reduces the slope of the quality schedule, scaling down both

q(γ) and w(γ) across the interior region. Note that specific taxes alone do

not affect the bundles of those consumers who are still served.

It should be noted that for types above γ̄, both quality and price flatten

out, implying a bunching at the top. This is due to the additional ex-ante

IR constraint due to the presence of self-control. This feature of the optimal

quality and price schedules is not present in the problem without self control.

The functions q(γ) and p(γ) are illustrated in figure 3.7 below when τ =

0.1, s = 0.1 · smax and b = 2 (all the graphs in figs. 3.7-3.10 based on these

parameters). Observe that both functions are constant below γ(τ, s) and

above γ. The fact that both functions coincide on these intervals implies
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that a consumer with temptation type in those regions obtains no surplus

in commitment utility. In particular, this reflects the fact that ex-ante IR

binds for consumers with γ > γ. Note that over the interval [γ(τ, s), γ],

q(γ) is linear while p(γ) is quadratic. Consumers in this interval receive a

commitment utility surplus. This is similar to standard non-linear pricing

models. Finally, the small jump is due to the fact that s > 0. This tax makes

serving consumers below γ(τ, s) unprofitable, even if some would have been

served if s = 0.

Definition 3.2.1 (Size of the market). The amount of consumers served by

the monopolist, the size of the market, is given by

|b− γ| = min

{
b+ 1

2
,

√
(b+ 1)2

4
− 4s

(1− τ)2

}
.

The first term, b+1
2
, represents the market when no specific tax is levied.

The second term,
√

(b+1)2

4
− 4s

(1−τ)2
, captures the reduction in the effective

market size caused by the specific tax s and the ad valorem tax τ . Thus,

the overall market size is determined by whichever of these two constraints

is more restrictive.

Definition 3.2.2 (Size of the temptation region). Consumers with tempta-

tion intensity γ ∈ (γ, γ̄), except γ = γ∗ = 1, face a self-control problem. The

size of this temptation region is defined as

|γ̄ − γ| = min

{
3,

5− 3b

2
+

√
(b+ 1)2

4
− 4s

(1− τ)2

}
.

Here, the bound 3 reflects the maximum possible span of temptation types,

given the support of preferences. The second term, 5−3b
2

+
√

(b+1)2

4
− 4s

(1−τ)2
,

shows how the temptation region expands or contracts depending on market

heterogeneity b, the self-control cost s, and the ad valorem tax τ . The actual

size of the temptation region is therefore the more restrictive of these two

constraints.

The comparative statics are straightforward. As the market parameter
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Figure 3.7: The optimal scheme of q(γ) and p(γ) with τ = 0.1 and s =
0.1 · smax when b = 2

b increases, the size of the market expands while the temptation region

contracts. Intuitively, when the consumer base shifts toward higher types,

more upwards-tempted consumers can be served without suffering self-control

costs. This implies that the monopolist is more likely to implement pooling

at higher types in order to maximize expected profit. Increasing b also causes

the temptation region to shrink while a larger share of consumers are now

located in the temptation-free region. Consequently, the optimal pricing

schedule shifts rightward, and the monopolist reduces quality marginally to

attract additional consumers by easing the self-control costs of those con-

sumers.

The measure |γ − 1| captures the degree of behavioral divergence, i.e. the

extent of departure from standard utility maximization. A larger value of

|γ−1| indicates stronger departure from traditional assumptions. Specifically,

when γ−1 > 0, the consumer is drawn toward the high-quality option (high-

quality temptation); when γ − 1 < 0, the consumer is attracted by the

low-price option (low-price temptation).
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As a consequence of proposition 3.2.1 monopoly profits π(γ) are given by

π(γ) =


0, if γ < γ(τ, s)

(1−τ)2

4
[−(γ − b)2 + 1

4
(b+ 1)2]− s, if γ ∈ [γ(τ, s), γ̄]

(1−τ)2

2
(3− b)(b− 1)− s, if γ > γ̄

(3.59)

Per-type profit π(γ) is shown in figure 3.8 below. For low types, per-

type profit is zero, reflecting the fact that these consumers are excluded from

the market. The monopolist finds it unprofitable to serve them since their

willingness to pay is too low relative to the effective marginal cost (including

the effects of taxation s and τ).

In this intermediate range, profits rise smoothly and concavely with γ.

The upward slope reflects that consumers with higher temptation intensity

can be charged more aggressively, because the nature of their temptation in-

creases their willingness to accept higher qualities at higher prices. Concavity

indicates a diminishing marginal profitability as γ approaches γ̄. Beyond γ̄,

profits reach a maximum and become flat. Recall that any attempt to further

increase profit by distorting the contract would violate the ex-ante individual

rationality constraint.

Using the formulas in proposition 3.2.1, the different utilities can be

rewritten in terms of γ. Denote by U(γ) the commitment utility of type

γ; by Vγ(γ) its temptation utility; by maxVγ(γ) the largest temptation

faced by type γ; by {max
x

Vγ(x) − Vγ(γ)} type γ’s temptation cost and by

W (γ) = U(γ) + Vγ(γ)−maxVγ(γ) the ex-ante utility of type γ. Then

U(γ) = q(γ)−p(γ) =


0, if γ < γ(τ, s)

(1−τ)
4

[
−(γ − 1)2 + (b−3)2

4

]
, if γ ∈ [γ(τ, s), γ̄]

0, if γ > γ̄

Note that, as shown in figure 3.9 below, the commitment utility U(γ) is in-

creasing in (γ(τ, s), 1) and decreasing in (1, γ̄). This reflects the fact that for

consumers facing downwards temptation ex-ante IR is satisfied which means
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Figure 3.8: The optimal profit π(γ) with τ = 0.1 and s = 0.1 · smax when
b = 2

that since they suffer from self-control costs, they must obtain a commit-

ment utility surplus. This surplus increases as γ approaches 1 (who suffers

no self-control problem). On the other hand, for consumers facing upward

temptation this surplus is reduced as the monopolist attempts to extract

surplus.

Vγ(γ) = γq(γ)−p(γ) =


0, if γ < γ(τ, s)

(1−τ)
4

(
3γ2 − 2bγ + b2+2b−3

4

)
, if γ ∈ [γ(τ, s), γ̄]

(1− τ)(3− b)(γ − 1), if γ > γ̄

As reflected in figure 3.9, the temptation utility Vγ is always increasing for

consumers that purchase a bundle. However, it grows linearly above γ since

consumers in this region obtain no commitment utility surplus and price and

quantity coincide.

To determine the self-control cost, the maximum temptation must be cal-

culated for each type. For any γ̂ ∈ [γ, γ̄] the temptation maximization prob-
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lem is

max
q(γ),p(γ)

{Vγ̂(q(γ), p(γ))} = max
q(γ),p(γ)

{γ̂q(γ)− p(γ)}

= max
q(γ),p(γ)

{
γ̂
1− τ

2
(2γ − b+ 1)− 1− τ

4

[
(γ + 1)2 − (b− 1)2

4
− b

]}
.

Taking the first-order derivative of γ, I have

dV

dγ
= (1− τ)[γ̂ − 1

2
(γ + 1)] = 0.

When γ̂ ∈ [
γ+1

2
, γ̄+1

2
], γ = 2γ̂−1 ∈ [γ, γ̄] the maximum value is Vγ̂(2γ̂−1) =

1−τ
4

(
2γ̂ − b+1

2

)2
. Meanwhile, when γ̂ <

γ+1

2
, dV

dγ
< 0, Vγ̂ is maximized at γ

and therefore the maximum temptation is Vγ̂(γ) = 0. On the other hand,

when γ̂ > γ̄+1
2
, dV

dγ
> 0 and Vγ̂ is maximized at γ which means that the

maximum temptation satisfies Vγ̂(γ̄) = (1− τ)(3− b)(γ̂ − 1). Therefore,

max
x

Vγ(x) = max
x

{γq(x)−p(x)} =


0, if γ <

γ(τ,s)+1

2

(1− τ)
(
γ − b+1

4

)2
, if γ ∈ [

γ(τ,s)+1

2
, γ̄+1

2
]

(1− τ)(3− b)(γ − 1), if γ > γ̄+1
2

Using this formula the temptation cost is

max
x

Vγ(x)−Vγ(γ) =



0, if γ < γ(τ, s)

− (1−τ)
4

(
3γ2 − 2bγ + b2+2b−3

4

)
, if γ ∈ [γ(τ, s),

γ(τ,s)+1

2
)

1−τ
4
(γ − 1)2, if γ ∈ [

γ(τ,s)+1

2
, γ̄+1

2
)

(1− τ)
[
−3

4
γ2 +

(
3− b

2

)
γ + −b2+14b−45

16

]
, if γ ∈ [ γ̄+1

2
, γ̄)

0, if γ ≥ γ̄+1
2

As shown in figure 3.9, this function is divided in five regions. The first and

last both vanish, since consumers above γ or below γ(τ, s) face no self-control

costs. In the second region, consumers with γ ∈ [γ(τ, s),
γ(τ,s)+1

2
) are tempted

by the bundle (0, 0), this cost peaks at γ(τ,s)+1
2

where consumers begin to be

tempted by bundles closer to them. The third region [
γ(τ,s)+1

2
, γ̄+1

2
) contains
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Figure 3.9: Equilibrium U(γ), Vγ(γ) and max
x

Vγ(x)−Vγ(γ) with τ = 0.1 and

s = 0.1smax when b = 2

both consumers facing downwards temptation, who pay a low cost as the

bundle they are tempted by is close to theirs and the effect of temptation is

low in since their type is close to 1. Remember that γ⋆ = 1 faces no self-

control by definition. On the other hand, once this transition type is passed

self-control costs raise again as consumer are tempted by bundles that are

further from theirs, this offsets the fact that the effect of temptation is small

for these types. Finally, in the fourth region, types γ ∈ [ γ̄+1
2
, γ̄) are tempted

by the bundle purchased by γ but since it is relatively close to theirs, the

effect is smaller and self-control costs decrease as γ increases.

The ex-ante utility per type γ can be calculated easily from these results

W (γ) = w(γ)−max
x

Vγ(x) =



0, if γ < γ(τ, s)

1−τ
2
(γ − b−1

2
)2, if γ ∈ [γ(τ, s),

γ(τ,s)+1

2
)

(1− τ)
(
−γ2

2
+ γ + b2−6b+1

16

)
, if γ ∈ [

γ(τ,s)+1

2
, γ̄+1

2
)

(1− τ)
(

γ2

2
+ (b−5)γ

2
+ (b−5)2

8

)
, if γ ∈ [ γ̄+1

2
, γ̄)

0, if γ ≥ γ̄

As illustrated in figure 3.10 below, ex-ante utility is strictly positive only
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Figure 3.10: Equilibrium w(γ) and W (γ) with τ = 0.1 and s = 0.1smax when
b = 2

for types γ ∈ (γ(τ, s), γ), which is precisely the region where self-control

costs are relevant and ex-ante individual rationality does not bind. For types

below γ(τ, s) or above γ, W (γ) = 0, consistent with binding participation

constraints. Moreover, W (γ) is highest at γ⋆ = 1 since this type has standard

preferences. Furthermore, for types close to 1 the effects of temptation are

small and can therefore benefit from a higher surplus. In contrast, for types

farther from 1, self-control costs reduce surplus, explaining the concave shape

of W (γ) across the temptation region.

Proposition 3.2.8 (Effect of taxation on the bounds of γ and γ̄). The

introduction of a small amount of tax, either ad valorem (τ) or specific (s),

does not change the upper bound γ̄. Moreover, the lower bound γ(τ, s) never

rises to the value of γ̄. By contrast, the lower bound γ(τ, s) is sensitive to

taxation, and its behavior depends on the type of tax as follows:

(1) Case of an existing subsidy (s < 0):

Starting from a situation where an specific subsidy has been imposed (s <

0) so that that γ(τ, s) = b−1
2
. Neither a reduction of the subsidy s nor the

introduction of a tax τ affect this lower bound.

(2) Case of a laissez-faire market (s = 0):
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i. Imposing a specific tax s > 0 increases the lower bound to γ(0, s) while

introducing a specific subsidy s < 0 has no effect on the lower bound γ(τ, s).

ii. Imposing an ad valorem tax τ has no effect on the lower bound.

(3) Case of an existing specific tax (s > 0):

Starting from a situation when a specific tax is being levied (s > 0) so that

γ(τ, s) = b−
√

(b+1)2

4
− 4s

(1−τ)2
.

i. Increasing the specific tax s raises the lower bound γ(τ, s). This leads

to the lowest types leaving the market.

ii. The effect of a change in the ad valorem tax τ depends on whether

τ < 1, in which the change in bound is in the same direction as the change

in τ ; or τ > 1, when the change is in the opposite direction.

In particular, when τ = 0, the lower bound reduces to

γ(s) =


b−1
2
, when s < 0

b−
√

(b+1)2−16s

2
, when s ≥ 0

and the derivative of this function is

dγ(s)

ds
=

4√
(b+ 1)2 − 16s

> 0 for s > 0.

Finally, recall that the condition s < smax =
−3b2+10b−3

16
ensures that γ(s) <

1 and the optimal control problem is well defined, which leads to a non-

empty set of consumers in the market The dependence of smax on b is shown

underneath in figure 3.11. Notice that as b increases smax approaches 0,

meaning that higher-quality goods tolerate only very small specific taxes

before the market collapses.

Proposition 3.2.9 (Effect of specific taxes on market variables). An

increase in the specific tax s has the following effects:

(1) It does not affect the quality q(γ), the price p(γ), ex-ante utility W (γ)

and ex-post utility w(γ) for all of consumers of types γ ∈ (γ(τ, s), b];

(2) It reduces the total profit of the monopoly.
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Figure 3.11: The upper bound for the specific policy smax

Proposition 3.2.10 (Effect of ad valorem taxes on market variables).

An increase in the ad valorem tax τ has the following effects:

(1) It reduces the quality q(γ), the price p(γ), ex-ante utility W (γ) and

ex-post utility w(γ) to all types of consumers γ ∈ (γ(τ, s), b];

(2) It reduces the total profit of the monopoly.

The difference between the two types of taxation lies in how they distort

the monopolist’s optimal contract design. A specific tax acts as a lump-sum

burden on the monopolist, reducing profits without affecting the optimal

allocation of quality and prices across types. By contrast, an ad valorem

tax directly scales down revenues from each unit sold, making high-quality

contracts less profitable. As a result, the monopolist reduces both quality and

price, which lowers consumer utilities in addition to profits. This explains

why ad valorem taxation has stronger distortive effects on market outcomes

compared to specific taxation.

3.3 Welfare Effects

This section examines the impact of introducing a small ad valorem or spe-

cific tariff on aggregate welfare when starting from an initial equilibrium

where trade is free. The analysis also derives the optimal taxation policy un-

der two alternative market structures, distinguishing between the case of a

domestic monopolist and that of a foreign monopolist. As noted in the intro-

duction, multiple theoretical frameworks can be employed to evaluate welfare

118



effects. The analysis proceeds by considering the three primary approaches

separately, calculating welfare under each, and subsequently comparing the

results across the different measures.

3.3.1 Welfare Analysis of a Domestic Monopolist with Behav-

ioral Consumers

Social welfare effect of the ad valorem fiscal policy

For a home monopolist, the total welfare comprises the sum of consumer

surplus and expected profits of the monopolist and tariff revenues. However,

since tariff revenues represent transfers between consumers and the monop-

olist, they do not affect aggregate surplus. Accordingly, welfare reduces to

the sum of consumer utility (from surplus) and monopolist surplus.

To capture behavioral distortions, I define the self-control cost-adjusted to-

tal welfare, denoted by WH
C (τ, s). This results from summing (i) ex-ante con-

sumer surplus, (ii) the monopolist’s expected profits, (iii) tariff revenues, and

(iv) the negative of self-control costs. In other words, the welfare WH
C (τ, s)

is

WH
C (τ, s) =

∫ b

a

[
q(γ)− 1

2
q(γ)2

]
f(γ)dγ︸ ︷︷ ︸

Normative Welfare

−
∫ b

a

{
max{γq(γ)− p(γ)} − [γq(γ)− p(γ)]

}
f(γ)dγ︸ ︷︷ ︸

Self-Control Cost

.

To determine the effect of the introduction of a small intervention from

a laissez-faire benchmark where τ = s = 0, I compute the derivative of

WH
C (τ, s) with respect to τ evaluated at τ = s = 0:

∂WH
C (τ, s)

∂τ

∣∣∣
τ=s=0

=
3− b

16(b− a)
(b2 − 30b+ 57). (3.60)

The sign of this derivative (and thus wether implementing a tax or sub-

sidy) depends on whether the parameter b falls below or exceeds the critical

threshold bHC :

bHC = 15− 2
√
42 ≈ 2.04.
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When b is relatively small, where b ∈
(
5
3
, bHC
)
, the welfare gradient is

strictly positive:

∂WH
C (τ, s)

∂τ

∣∣∣
τ=s=0

> 0.

This implies that a marginal tariff raises welfare when there is a large

proportion of agents with upwards temptation.

At the boundary b = bHC, the welfare gradient vanishes:

∂WH
C (τ, s)

∂τ

∣∣∣
τ=s=0

= 0.

In this regime, abstaining from intervention is optimal.

For b is relatively large, where b ∈ (bHC, 3), the welfare gradient becomes

negative:

∂WH
C (τ, s)

∂τ

∣∣∣
τ=s=0

< 0.

In this case, the introduction of a marginal tax reduces aggregate welfare,

indicating that a subsidy would be required to improve efficiency.

Finally, I generalize the analysis by considering the derivative of welfare

with respect to τ for arbitrary τ (with s = 0). This expression allows me

to characterize the optimal ad valorem policy, which balances the trade-off

between mitigating temptation-driven inefficiencies and preserving surplus.

To derive the optimal ad valorem taxation policy, I formally evaluate the

marginal effect of the ad valorem tax τ on welfare, while setting the specific

tax equal to zero. This derivative characterizes the sensitivity of aggregate

welfare to incremental changes in τ , thereby allowing the identification of the

welfare-maximizing tax (or subsidy) rate.

∂WH
C (τ, s)

∂τ

∣∣∣
s=0

=
(3− b)

48(b− a)

[
3(b2 − 30b+ 57) + 8(b2 + 6b− 27)τ

]
.
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Figure 3.12: The optimal ad valorem policy τH
C

From this calculation, the optimal policy is given by the following rule:

τH

C = −3(b2 − 30b+ 57)

8(b+ 9)(b− 3)
.

Proposition 3.3.1 (Optimal Intervention Strategy τH
C ). The optimal

ad valorem policy is

τH

C = −3(b2 − 30b+ 57)

8(b+ 9)(b− 3)
.

For populations with

(a) Small-market size (b ∈ (5
3
, bHC)): a tax τH

C ∈ (0, 33
128

) is optimal.

(b) Large-market size (b ∈ (bHC, 3)): a subsidy τH
C < 0 is optimal.

(c) Boundary-market size (b = bHC): no intervention is optimal.

The intuition behind these results is straightforward. In relatively small

markets, where b lies below the critical threshold bHC, a tax improves efficiency
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by counteracting the excessive consumption driven by behavioral biases such

as temptation or self-control problems. Conversely, in sufficiently large mar-

kets, the distortionary effect of taxation outweighs its corrective benefits,

and a subsidy is required to restore efficiency. At the boundary value of

b = bHC, the opposing forces exactly cancel out, so that laissez-faire remains

the optimal policy choice.

Next, consider the normative social welfare measure WH
U , which includes

(i) consumer surplus measured in terms of commitment utility, (ii) the mo-

nopolist’s expected profits, and (iii) tariff revenues, but omits self-control

costs:

WH
U (τ, s) =

∫ b

a

[
q(γ)− 1

2
q(γ)2

]
f(γ)dγ︸ ︷︷ ︸

Normative Welfare

.

As before, the marginal effect of intervention at the laissez-faire benchmark

(τ = s = 0) is given by,

∂WH
U (τ, s)

∂τ

∣∣∣
τ=s=0

=
3− b

6(b− a)
(−b2 − 6b+ 15).

Define the threshold parameter

bHU = 2
√
6− 3 ≈ 1.90.

For b is relatively small, where b ∈
(
5
3
, bHU
)
, the welfare gradient is strictly

positive:

∂WH
U (τ, s)

∂τ

∣∣∣
τ=s=0

> 0.

In this range, a marginal increase in the ad valorem tax rate raises aggre-

gate welfare, indicating that taxation is welfare-improving.
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At the boundary b = bHU, the welfare gradient vanishes:

∂WH
U (τ, s)

∂τ

∣∣∣
τ=s=0

= 0.

In this transition region, imposing a marginal tax or subsidy has no effect.

For b is relatively large, where b ∈ (bHU, 3), the welfare gradient becomes

negative:

∂WH
U (τ, s)

∂τ

∣∣∣
τ=s=0

< 0.

In this regime, any marginal tax imposition reduces aggregate welfare. In

other words, welfare improvement requires a subsidy.

To determine the optimal ad valorem taxation policy, consider derivative

of WH
U (τ, s) with respect to τ , holding the specific tax equal to zero:

dWH
U (τ, s)

dτ

∣∣∣
s=0

=
3− b

6(b− a)

[
−(b2 − 6b+ 15) + (b+ 9)(b− 3)τ

]
.

Solving the first-order condition:

τH

U =
b2 + 6b− 15

(b+ 9)(b− 3)
,

yields the welfare-maximizing ad valorem rate.

Proposition 3.3.2 (Optimal Intervention Strategy τH
U ). The optimal

ad valorem policy is

τH

U =
b2 + 6b− 15

(b+ 9)(b− 3)
.

For populations with:

(a) Small-market size (b ∈ (5
3
, bHU)): a tax τH

U ∈ (0, 5
32
) improves welfare.

(b) Large-market size (b ∈ (bHU, 3)): a subsidy τ
H
U < 0 is welfare-enhancing.
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Figure 3.13: The optimal ad valorem policy τH
U

(c) Boundary-market size (b = bHU): (boundary-market size), no inter-

vention is optimal.

Similarly, in short, the analysis demonstrates that welfare-improving pol-

icy is context dependent: small markets call for taxation, large markets re-

quire subsidization, and at the critical boundary no intervention is desirable.

The behavioral social welfare WH
U+V, aggregates (i) ex-post consumer sur-

plus, (ii) the firm’s expected profits, (iii) tariff revenues. Formally,

WH
U+V(τ, s) =

∫ b

a

[
q(γ)− 1

2
q(γ)2

]
f(γ)dγ︸ ︷︷ ︸

Normative Welfare

+

∫ b

a

[γq(γ)− p(γ)] f(γ)dγ︸ ︷︷ ︸
Temptation Surplus

.

The effect of a marginal intervention from the laissez-faire status quo

(τ = s = 0), I compute the welfare gradient WH
C (τ, s) with respect to τ :

∂WH
U+V(τ, s)

∂τ

∣∣∣
τ=s=0

=
3− b

96(b− a)
(−43b2 − 78b+ 285).

124



Define the threshold bHU+V as

bHU+V =
4
√
861− 39

43
≈ 1.82.

For b is relatively small, where b ∈
(
5
3
, bHU+V

)
, the welfare gradient is strictly

positive:

∂WH
U+V(τ, s)

∂τ

∣∣∣
τ=s=0

> 0.

The introduction of a marginal tariff results in first-order welfare raises.

At the boundary b = bHU+V, the welfare gradient vanishes:

∂WH
U+V(τ, s)

∂τ

∣∣∣
τ=s=0

= 0.

This represents a transition point, neither tax nor subsidy yield welfare

gains.

For b is relatively large, where b ∈ (bHU+V, 3), the welfare gradient becomes

negative:

∂WH
U+V(τ, s)

∂τ

∣∣∣
τ=s=0

< 0.

In this regime, any marginal tax imposition reduces aggregate welfare. In

other words, welfare improvement requires a subsidy.

To obtain the optimal ad valorem taxation policy, I differentiate WH
U (τ, s)

with respect to τ at s = 0:

∂WH
U+V(τ, s)

∂τ

∣∣∣
s=0

=
3− b

96(b− a)

[
−(43b2 + 78b− 285) + 16(b+ 9)(b− 3)τ

]
.

From this calculation, the optimal policy is given by the following rule:

τH

U+V =
43b2 + 78b− 285

16(b+ 9)(b− 3)
.
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Figure 3.14: The optimal ad valorem policy τH
U+V

Proposition 3.3.3 (Optimal Intervention Strategy τH
U+V). The optimal

ad valorem policy is

τH

U+V =
43b2 + 78b− 285

16(b+ 9)(b− 3)
.

For populations with:

(a) Small-market size (b ∈ (5
3
, bHU+V)): a tax policy τH

U+V ∈ (0, 5
32
) im-

proves welfare.

(b) Large-market size (b ∈ (bHU+V, 3)): a subsidy policy τH
U+V < 0 is

welfare-enhancing.

(c) Boundary-market size (b = bHU+V): no intervention is optimal.

Taken together, the analysis across the three welfare criteria establishes

a robust pattern for optimal taxation policy. Recall that as the parame-

ter b increases, the market expands while the share of consumers subject to

temptation distortions diminishes. In relatively small markets, where the
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Figure 3.15: The comparison of the optimal ad valorem policy τH with a
home monopolist

temptation region is sizable, an ad valorem tax is welfare-enhancing be-

cause it alleviates self-control problems and improves allocative efficiency.

In contrast, in sufficiently large markets, where temptation is less pervasive,

a subsidy becomes the welfare-maximizing policy by stimulating additional

consumption. Hence, the sign of the optimal intervention is systematically

linked to the relative prevalence of temptation in the consumer population.

The welfare effects of an ad valorem tax policy depend critically on the

underlying welfare criterion and the share of intermediate consumers in the

market. The ordering of optimal policies satisfies

τH

C > τH

U > τH

U+V

as the graph 3.15 shows. When using the adjusted-cost criterion (so that

welfare is measured in terms of ex-ante utility), a marginal tax introduction

raises welfare whenever the proportion of intermediate consumers is large.

Conversely, if this share is small, so that the majority of consumers are

upward tempted, a subsidy becomes welfare improving. This result is qual-

127



itatively similar to the situation where consumers face no self-control cost.

Moreover analogous results hold if the normative (where commitment utility

serves a metric of consumer welfare) or behavioral approaches are taken (so

ex-post utility is used instead). The key difference lies in the position of the

welfare threshold:

bHC > bHU > bHU+V

indicating that the switch between taxation and subsidy occurs at a slightly

lower market size when self-control costs are neglected.

The intuition is as follows: Imposing a tax can reduce self-control costs

and lower temptation utility. Under the normative perspective, where com-

mitment utility is quadratic in γ, this generates a threshold beyond which the

optimal policy switches from taxation to subsidy. Accounting for self-control

costs (adjusted-cost welfare) strengthens the case for taxation because higher

taxes more effectively reduce temptation-induced distortions. In contrast,

under a purely behavioral framework (where only temptation utility mat-

ters), higher taxes diminish temptation utility, so a lower tax (or a subsidy

in some cases) yields higher welfare.

Social welfare effect of the specific taxation policy

For a home monopolist, the introduction of a specific tax strictly reduces

welfare, whereas subsidies are neutral. This result holds under all welfare

specifications considered.

Lemma 3.3.1 (Specific Tax Neutrality for WH
C ). Under the adjusted-cost

welfare criterion, any s > 0 (specific tax) reduces welfare, while any s < 0

(specific subsidy) has no effect.

Lemma 3.3.2 (Specific Tax Neutrality for WH
U ). Under the normative wel-

fare criterion, s > 0 reduces welfare, and s < 0 has no effect.

Lemma 3.3.3 (Specific Tax Neutrality for WH
U+V). Under the behavioral wel-

fare criterion, s > 0 reduces welfare, and s < 0 has no effect.
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These lemmas imply that the optimal specific tax for a home monopolist

is s = 0, independently of the welfare specification;

Proposition 3.3.4 (Neutrality of Specific Taxes). For all welfare spec-

ifications (C, U, and U+V), the optimal specific tax rate is zero:

sH

C = sH

U = sH

U+V = 0.

The intuition for this result is straightforward. If the government provides

a specific subsidy, the transfer is fully captured by the monopolist, leaving

consumer surplus unaffected because the lowest consumer type served re-

mains unchanged. Conversely, if the government imposes a specific tax, the

monopolist raises the cutoff type, so that types in the range (a, γ(τ, s)) are no

longer served in order to maintain non-negative profits at each type. Never-

theless, if self-control costs are considered, then the introduction of a specific

tax can help lower this cost.

3.3.2 Welfare Analysis of a Foreign Monopolist with Behavioral

Consumers

For a foreign monopolist, the total welfare consists of the sum of consumer

surplus and tariff revenues.

Social welfare effect of the ad valorem taxation policy

The self-control cost-adjusted welfare is denoted by W F
C (τ, s) and consists of

the sum of (i) ex-ante consumer surplus and (ii) tariff revenues.

W F
C (τ, s) =

∫ b

a

[q(γ)− p(γ)] f(γ)dγ︸ ︷︷ ︸
Commitment Utility Surplus

−
∫ b

a

{
max{γq(γ)− p(γ)} − [γq(γ)− p(γ)]

}
f(γ)dγ︸ ︷︷ ︸

Self-Control Costs

+

∫ b

a

[τp(γ) + s] f(γ)dγ︸ ︷︷ ︸
Tax Revenues

.
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Having established the components of self-control cost–adjusted welfare,

it is natural to analyze how taxation shapes these terms. In particular, the

ad valorem rate τ enters both through its direct contribution to government

revenue and indirectly via its influence on consumer surplus and behavioral

costs. To isolate the mechanisms at work, it is useful to begin by examining

the marginal effect of changes in τ on government revenue. This step pro-

vides a benchmark for understanding how fiscal instruments interact with

consumer behavior in determining overall welfare.

Proposition 3.3.5 (Marginal effects of ad valorem taxation rates changes).

The marginal effect on government tax revenue effect of an increase in the

ad valorem tax rate τ is:

i. positive when τ < 1
2
; a small increase in τ yields higher tax revenues.

ii. negative when τ > 1
2
; a small reduction in τ yields higher tax revenues.

iii. neutral when τ = 1
2
; a small reduction in τ has no effect on revenue.

Proposition 3.3.5 characterizes the revenue-maximizing properties of the

ad valorem tax rate in general terms. To assess the welfare consequences

more directly, it is instructive to evaluate the effect of taxation starting from

the laissez-faire allocation, where both the ad valorem and specific taxes are

set to zero. The following expression computes the derivative of welfare with

respect to τ at this point, thereby providing a benchmark for understanding

the initial welfare impact of introducing a small ad valorem tax.

At the laissez-faire allocation (τ = s = 0), the derivative of welfare with

respect to τ is:

∂W F
C (τ, s)

∂τ

∣∣∣∣∣
τ=s=0

= − (b− 3)

48(b− a)
(7b2 + 30b− 33) > 0.

More generally, the derivative of welfare with respect to τ (while keeping

s = 0) is:

∂W F
C

∂τ

∣∣∣∣∣
s=0

= − (b− 3)

48(b− a)

[
(7b2 + 30b− 33) + 4(b2 − 30b+ 33)τ

]
.
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Figure 3.16: The optimal ad valorem policy τF
C

Maximizing W F
C yields the optimal ad valorem tax rate:

τF

C = − 7b2 + 30b− 33

4(b2 − 30b+ 33)
.

Proposition 3.3.6 (U-shaped Optimal Intervention Strategy τ F
C). The

optimal τF
C initially decreases with b, and then increases as b continues to

grow, while always remaining above 50per cent.

From the figure 3.16, the optimal τF
C under the adjusted-cost welfare cri-

terion displays a U-shaped with respect to the parameter b. In particular for

both relatively small and relatively large values of b a high taxation policy,

the optimal policy prescribes a high tax rate, typically exceeding, larger than

50 per cent. In this case, tax increases can offset revenue losses by improving

total consumer surplus. When b is close to 2.2, the optimal ad valorem also

approaches 0.5. This implies the ad valorem taxation always helps consumers

overcome self-control problems when considering a foreign monopolist.

The intuition behind the U-shape is as follows. When the market is rela-
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tively small, temptation distortions are severe, and a high tax is required to

mitigate excessive consumption induced by the monopolist’s pricing strategy.

As the market grows, these distortions gradually diminish, lowering the need

for heavy taxation; hence the optimal rate falls toward 50 percent around

the mid-range of b. However, for very large markets, the monopolist’s abil-

ity to extract surplus again amplifies the importance of corrective taxation,

driving the optimal rate back above 50 percent. Thus, the U-shape captures

the trade-off between reducing temptation costs and maintaining sufficient

consumer surplus across different market sizes.

The normative social welfare W F
U , consists of the sum of (i) consumer

commitment utility surplus and (ii) tariff revenues, given by

W F
U (τ, s) =

∫ b

a

[q(γ)− p(γ)] f(γ)dγ︸ ︷︷ ︸
Commitment Utility Surplus

+

∫ b

a

[τp(γ) + s] f(γ)dγ︸ ︷︷ ︸
Tax Revenues

.

At the laissez-faire benchmark (τ = s = 0), the derivative of welfare with

respect to τ is:

∂W F
U (τ, s)

∂τ

∣∣∣
τ=s=0

=
(b− 3)

12(b− a)
(b2 − 18b+ 21) > 0.

More generally, when holding s = 0), the welfare gradient is:

∂W F
U (τ, s)

∂τ

∣∣∣
s=0

=
(b− 3)

12(b− a)

[
(b2 − 18b+ 21) + (−b2 + 30b− 33)τ

]
.

Accordingly, the optimal ad valorem policy

τF

U =
b2 − 18b+ 21

b2 − 30b+ 33
.

Proposition 3.3.7 (Optimal Intervention Strategy τ F
U). The optimal τF

C

is monotonically increasing in b, and remains strictly below 50 per cent for

all admissible values of b.

As illustrated in Figure 3.17, the optimal ad valorem policy τF
U converges

toward 50 per cent as b increases. Note that taxation reduces total standard
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Figure 3.17: The optimal ad valorem tax policy τF
U

consumer surplus on one hand while on the other it increases the total tax

revenue. In relatively small markets, the reduction in consumer surplus in-

duced by taxation is limited, while the associated increase in tariff revenue

is substantial. Consequently, the revenue-raising effect dominates, rendering

taxation welfare-enhancing.

The behavioral social welfare W F
U+V, consists of the sum of (i) ex-post

consumer surplus and (ii) tariff revenues, given by

W F
U+V(τ, s) =

∫ b

a

[q(γ)− p(γ)] f(γ)dγ︸ ︷︷ ︸
Commitment Utility Surplus

+

∫ b

a

[γq(γ)− p(γ)] f(γ)dγ︸ ︷︷ ︸
Temptation Utility Surplus︸ ︷︷ ︸

Ex-Post Consumer Surplus

+

∫ b

a

[τp(γ) + s] f(γ)dγ︸ ︷︷ ︸
Tax Revenues

.

At the laissez-faire benchmark (τ = s = 0), the derivative of welfare with

respect to τ is:

∂W F
U+V(τ, s)

∂τ

∣∣∣∣∣
τ=s=0

=
b− 3

96(b− a)
(35b2 − 162b+ 123) > 0.
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The derivative of welfare with respect to τ (while keeping s = 0) is:

∂W F
U+V(τ, s)

∂τ

∣∣∣∣∣
s=0

=
b− 3

96(b− a)

[
(35b2 − 162b+ 123) + 8(−b2 + 30b− 33)τ

]
.

The optimal ad valorem policy is

τF

U+V =
35b2 − 162b+ 123

8(b2 − 30b+ 33)
.

Proposition 3.3.8 (Optimal Intervention Strategy τ F
U+V). The optimal

τF
C is monotonically decreasing in b, and remains strictly below 50 percent for

all admissible values of b.

As shown in Figure 3.18, the optimal ad valorem policy τF
U decreases below

50 per cent as b increases. This is because taxation reduces total consumer

surplus and the optimal ad valorem policy is below 50 per cent. In smaller

markets, by contrast, the reduction in consumer surplus induced by taxation

is relatively limited, so that the revenue-enhancing effect dominates. Con-

sequently, the optimal tax remains positive but lies strictly below one-half,

highlighting the weaker role of ad valorem taxation in welfare improvement

compared to the adjusted-cost or normative frameworks.

The optimal policy satisfies τF
C > τF

U > τF
U+V as the graph shows. The

results are consistent with the standard model which suggests that market

protection policies are always welfare-improving. The main difference is the

effect of taxation in reducing consumer’s self control costs, which was not

taken into account before. The adjusted-cost opinion emphasizes that a

heavy tax on a foreign product can improve the country’s welfare. For the

dependence on market size, paternalism and libertarianism show the opposite

results. As the proportion of agents with γ closer to 1 increases, the optimal

ad valorem raises when considering normative welfare; while the optimal ad

valorem tax reduces when considering behavioral welfare.
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Figure 3.18: The optimal ad valorem tax policy τF
U+V

Figure 3.19: The comparison of the optimal ad valorem policy τF with a
foreign monopolist
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Social welfare effect of the specific tax policy

To determine the effect of the introduction of small specific tax (τ = s = 0),

I take derivative of W F
C (τ, s) with respect to s evaluated at τ = s = 0+ and

τ = s = 0−:

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s=0+

=
−5b2 + 2b+ 13

8(b− a)(b+ 1)
,

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s=0−

=
b+ 1

2(b− a)
> 0.

The choice between implementing a tax or subsidy depends on whether

the parameter b falls below or exceeds a critical threshold bFC :

bFC =
1 +

√
66

5
≈ 1.83.

For b ∈
(
5
3
, bFC
)
, the welfare gradient is strictly positive:

∂W F
C (τ, s)

∂s

∣∣∣
τ=s=0+

> 0.

This indicates that marginal taxation generates a first-order welfare improve-

ment when initial productivity lies in this interval.

At the boundary b = bFC, the welfare gradient vanishes:

∂W F
C (τ, s)

∂s

∣∣∣
τ=s=0+

= 0.

At this point, neither taxation nor subsidy lead to welfare improvements.

For b ∈ (bFC, 3), the welfare gradient becomes negative:

∂W F
C (τ, s)

∂s

∣∣∣
τ=s=0+

< 0.

In this regime, any small tax imposition reduces aggregate welfare.

To obtain the optimal specific taxation-only policy, I differentiateW F
C (τ, s)
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Figure 3.20: The optimal specific tax policy sF
C

with respect to s > 0 and s < 0:

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s>0

=
−b2 − 6b+ 1− 96s+ 4(3− b)

√
(b+ 1)2 − 16s

8(b− a)
√

(b+ 1)2 − 16s
,

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s<0

=
b+ 1

2(b− a)
> 0.

Proposition 3.3.9 (Optimal Intervention Strategy sF
C). The optimal

specific policy

sF

C =

−7b2+6b−33
288

+ (3−b)
√
23b2+42b+33

72
√
2

, when b ∈ (5
3
, bFC)

0, when b ∈ [bFC, 3)

For populations with:

(a) Small-market size (b ∈ (5
3
, bFC)): a tax policy s > 0 is optimal.

(b) Large-market size (b ∈ [bFC, 3)): no intervention is optimal.

To determine the effect of the introduction of small specific tax (τ =

s = 0), I differentiate W F
U (τ, s) with respect to s and evaluate the result at
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τ = s = 0+ and τ = s = 0−:

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s=0+

=
b+ 1

2(b− a)
> 0,

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s=0−

=
b+ 1

2(b− a)
> 0.

To obtain the optimal specific taxation-only policy, I take derivative of

W F
U (τ, s) with respect to s > 0 and s < 0:

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s>0

=
3b2 + 2b− 1− 32s− 2(b− 1)

√
(b+ 1)2 − 16s

2(b− a)
√

(b+ 1)2 − 16s
,

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s<0

=
b+ 1

2(b− a)
> 0.

Proposition 3.3.10 (Optimal Intervention Strategy sF
U). The optimal

specific policy

sF

U = min

{
2(b2 + 2b− 1)− (b− 1)

√
8− (b− 1)2

32
,
−3b2 + 10b− 3

16

}

=


2(b2+2b−1)−(b−1)

√
8−(b−1)2

32
, when b ∈ (5

3
, 1 + 2√

5
)

−3b2+10b−3
16

, when b ∈ [1 + 2√
5
, 3)

For populations with:

(a) Small-market size (b ∈ (5
3
, 1+ 2√

5
)): the optimal tax policy s > 0 is

increasing on b.

(b) Large-market size (b ∈ [1 + 2√
5
, 3)): the optimal tax policy s > 0 is

decreasing on b.

To determine the effect of the introduction of small specific tax (τ = s =

0), I take derivative of W F
U+V(τ, s) with respect to s evaluated at τ = s = 0+

and τ = s = 0−:
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Figure 3.21: The optimal specific policy sF
U

∂W F
U+V(τ, s)

∂s

∣∣∣
τ=0,s=0+

=
−3b2 + 4b+ 2

4(b− a)(b+ 1)
,

∂W F
U+V(τ, s)

∂s

∣∣∣
τ=0,s=0−

=
b+ 1

2(b− a)
> 0.

The choice between implementing a tax or subsidy depends on whether

the parameter b falls below or exceeds the critical threshold bFU+V :

bFU+V =
2 +

√
10

3
≈ 1.72

For b ∈
(
5
3
, bFU+V

)
, the welfare gradient is strictly positive:

∂W F
U+V(τ, s)

∂s

∣∣∣
τ=s=0+

> 0.

This indicates that marginal taxation generates a first-order welfare improve-

ment when initial productivity lies in this interval.
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At the boundary b = bFU+V, the welfare gradient vanishes:

∂W F
U+V(τ, s)

∂s

∣∣∣
τ=s=0+

= 0.

No intervention yields a welfare gain at this transition point.

For b ∈ (bFU+V, 3), the welfare gradient becomes negative:

∂W F
U+V(τ, s)

∂s

∣∣∣
τ=s=0+

< 0.

In this regime, any marginal tax imposition reduces aggregate welfare.

To obtain the optimal specific taxation-only policy, I take derivative of

W F
U+V(τ, s) with respect to s > 0 and s < 0:

∂W F
U+V(τ, s)

∂s

∣∣∣
τ=0,s>0

=
−7b2 − 4b− 2− 16s+ 4(b+ 1)

√
(b+ 1)2 − 16s

4(b− a)
√

(b+ 1)2 − 16s
,

∂W F
U+V(τ, s)

∂s

∣∣∣
τ=0,s<0

=
b+ 1

2(b− a)
> 0.

Proposition 3.3.11 (Optimal Intervention Strategy sF
U+V). The optimal

specific policy

sF

U+V =

− 5
16
(3b2 + 4b+ 2) + b+1

4

√
12b2 + 14b+ 7, when b ∈ (5

3
, bFU+V)

0, when b ∈ [bFU+V, 3)

For populations with:

(a) Small-market size (b ∈ (5
3
, bFU+V)): a tax policy s > 0 is optimal.

(b) Large-market size (b ∈ [bFU+V, 3)): no intervention is optimal.

The specific tax policy for a foreign monopolist satisfies sF
U+V ≤ sF

C < sF
U.

When b < bFU, the optimal policy under the utilitarian benchmark sF
U is above

0.25 and increases in b. This is because a smaller market size causes the total

deadweight consumer surplus losses to reduce. Conversely, when b > bFU, due

to the presence of an upper bound on the specific tax s, the optimal policy

reaches the maximum value allowed.

Specific taxes exerts a pronounced effect on temptation utility. As a result,
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Figure 3.22: The optimal specific tax policy sF
U+V

Figure 3.23: The comparison of the optimal specific tax policy sF with a
foreign monopolist
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the optimal sF
U+V and sF

C are very small, as the imposition of a specific tax

substantially reduces the maximum level of temptation faced by consumers.

The specific tax also reduces the maximum temptation that each consumer

faces in the adjusted-cost welfare. The sum of self-control costs are more

sensitive to increases when s increases compared to the results of sF
U.

3.4 Conclusion

In this paper, I have discussed the optimal taxation policy in a monopoly

market when consumers face self-control problems over different quality-price

bundles. I distinguish consumers by their different degree of temptation and

characterize the monopolist profit maximizing menu provided. I conduct

behavioral welfare analysis for this model and show that for a domestic firm

a small ad valorem tax can increase the social welfare when upward tempted

consumers are numerous among the population. On the other hand, an

valorem subsidy can increase the welfare when the population consists mostly

of downward tempted consumers. Furthermore, in this case no specific policy

intervention is optimal. For a foreign firm, both ad valorem and specific

taxation policies can increase national welfare. This is a similar conclusion

to that of the standard model; optimal policy level may be higher in my

model however. The results are robust to the normative framework used.

The findings in my model are in sharp contrast traditional views on taxa-

tion policies for “sin goods”. It is often argued by policymakers that higher

tax rates can lead to welfare improvement by referring to health benefits or

lowering any perceived over-consumption of the goods. My findings suggest

that the adoption of an ad valorem domestic taxation policy should depend

on the temptation range of the population. In populations with mostly down-

ward tempted consumers, there is no justification for imposing a corrective

tax; in fact, an ad valorem subsidy could potentially enhance welfare. For

instance, a country where alcohol consumption is not deeply embedded in the

culture may rationally opt for a lower tax rate on alcohol—or even a sub-

sidy—compared to a nation where some consumers indulge in large alcohol

consumption. Even some countries use a complex tax rate sort of mixture of
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ad valorem tax and specific tax, the sole specific tax will not be effective on

the welfare by separating these two taxes.

One advantage of my model is that it clearly identifies the effect on gov-

ernment revenue arising from both ad valorem and specific taxes on a foreign

monopolist. This provides clear predictions when behavioral assumptions are

included versus when they are not and can consequently help inform policy.

In addition, under behavioral assumptions I have shown that higher tax rates

are needed to increase the welfare by helping reduce temptation costs.

Although this paper characterizes the optimal taxation policy in the con-

text of a monopoly market where consumers face heterogeneous temptations

in a parsimonious way. There are still some important aspects that could be

included. First, in line with most work in the literature the model could be

extended to a dynamic version, in a similar fashion to Gul and Pesendorfer

(2007). Second, the market structure could be replaced by a competitive

market. This would allow a comparison between optimal taxation policies

and help to identify welfare improvements due to correcting market ineffi-

ciencies arising from the monopoly structure.
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APPENDIX C

Proof of proposition 3.2.2 - proposition 3.2.3. Now I will confirm the opti-

mal solution in separate situation based on the values of λ and µ. Obviously,

λ = µ = 0 violates the first-order condition (3.23). I will then discuss the

other three possibilities:

i. If λ > 0 and µ = 0, i.e. λ = 1, then only ex-ante IR for γH binds, i.e.

q(γH)− p(γH) = 0

and then

(γH − 1)q(γH)− (γH − γL)q(γL) ≥ 0.

The first order conditions imply

q(γH) = 1, q(γL) =
1 + γL

2
, with λ = 1.

Therefore,

p(γH) = 1, p(γL) =
(1 + γL)

2

4
.

The condition that γH ≥ γL+2 ensures that incentive compatibility for γH

with the condition p(γH) = q(γH) holds, i.e. (γH − 1)q(γH)− (γH − γL)q(γL) =

(γH − 1)− (γH − γL)
1+γL

2
= (1−γL)(γH−γL−2)

2
≥ 0.

In this case, the monopolist’s aggregate profit from both consumers is

π
λ=1

µ=0

= π
λ=1

µ=0

(γH) + π
λ=1

µ=0

(γL) =
1

2
+

(1 + γL)
2

8
= πC .

Then, the welfare is expressed by

W
B

λ=1

µ=0

= π
λ=1

µ=0

=
1

2
+

(1 + γL)
2

8
= πC .

ii. If λ = 0 and µ > 0, i.e. µ = 1,then then only ex-post IC for γH binds,
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i.e.

2p(γH) = (1 + γH)q(γH)− (γH − γL)q(γL)

and then

q(γH)− p(γH) ≥ 0

The first order conditions imply in this case that

q(γH) =
1 + γH

2
, q(γL) =

1 + 2γL − γH

2
with µ = 1.

The bounds 1 < γH < 2γL + 1 and 0 < γL < 1 guarantee positive quality is

provided to both consumers.

p(γH) =
(1 + γH)

2 − (γH − γL)(1 + 2γL − γH)

4
, p(γL) =

(1 + γL)
2 − (γH − γL)(1 + γL)

4
.

Then I check if the ex-ante IR for γH is valid: q(γH)− p(γH) ≥ 0. I have the

bound γH ≤ 1+3γL+
√

9−2γL−7γ2
L

4
< γL + 1 < 2γL + 1.

The maximal aggregate profit for the monopolist is then given by

π
λ=0

µ=1

= π
λ=0

µ=1

(γH) + π
λ=0

µ=1

(γL)

=
(1 + γH)

2 − 2(γH − γL)(1 + 2γL − γH)

8
+

(1 + γL)
2 − (γH − γL)

2

8

=
1

2
+

(1 + γL)
2

8
+

2(γH − γL)
2 + γ2

L + 2γL − 3

8
= πC + LIR,

where LIR =
2(γH−γL)

2+γ2
L+2γL−3

8
< 0 on 0 < γL < 1 < γH ≤ 1+3γL+

√
9−2γL−7γ2

L

4
,

which can be proved by a numerical method. This is because of the profit
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loss due to providing positive ex-ante utility with γH.

W
B

λ=0

µ=1

= q(γH)−
1

2
q(γH)

2 + π
λ=0

µ=1

(γL)

=
4(1 + γH)− (1 + γH)

2

8
+

(1 + γL)
2 − (γH − γL)

2

8

=
(1 + γH)(2 + γL − γH)

4
.

iii. If both λ, µ > 0, then both constraints bind, i.e.

q(γH)− p(γH) = 0

and

(1 + γH)q(γH)− (γH − γL)q(γL)− 2p(γH) = 0.

The first order conditions imply

q(γH) = p(γH) = 1 +
µ(γH − 1)

2
,

q(γL) =
1 + γL − µ(γH − γL)

2
, p(γL) =

(1 + γL)
2 − µ(1 + γL)(γH − γL)

4
.

From the condition (1 + γH)q(γH) − (γH − γL)q(γL) − 2p(γH) = 0, I have

µ = (γL−1)(γH−γL−2)
(γH−1)2+(γH−γL)2

where γH − γL < 2 to ensure µ > 0.

The maximal aggregate profit of the monopolist in the case λ, µ > 0 is

thus

πλ,µ>0 = πλ,µ>0(γH) + πλ,µ>0(γL)

= (
1

2
− µ2(γH − 1)2

8
) +

(1 + γL)
2 − µ2(γH − γL)

2

8

=
1

2
+

(1 + γL)
2

8
− µ2[(γH − 1)2 + (γH − γL)

2]

8
= πC + LIC ,

where LIC = −µ2[(γH−1)2+(γH−γL)
2]

8
< 0. This profit loss is caused by the

distortion from incentive compatibility where the upwards tempted consumer
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has no incentive to mimic the downwards temptation.

WB
λ,µ>0 = πλ,µ>0 =

1

2
+

(1 + γL)
2

8
− µ2[(γH − 1)2 + (γH − γL)

2]

8
.

Last, I confirm that the solution is global maximum. When γH ≥ γL + 2,

the unique solution under the constraints is characterized by the multipliers

µ = 0 and λ = 1. The optimal bundle is therefore {(q∗(γH) = 1, p∗(γH) =

1), (q∗(γL) =
1+γL

2
, p∗(γL) =

(1+γL)
2

4
)}, and hence the optimal profit is

π∗
1 = π

λ=1

µ=0

=
1

2
+

(1 + γL)
2

8
.

When
1+3γL+

√
9−2γL−7γ2

L

4
≤ γH < γL+2, the unique solution is characterized

by λ, µ > 0.

q∗(γH) = p∗(γH) = 1 +
(γL − 1)(γH − 1)(γH − γL − 2)

2(γH − 1)2 + 2(γH − γL)2
,

q∗(γL) =
1 + γL

2
+

(1− γL)(γH − γL)(γH − γL − 2)

2(γH − 1)2 + 2(γH − γL)2

p∗(γL) =
(1 + γL)

2

4
+

(1− γ2
L)(γH − γL)(γH − γL − 2)

4(γH − 1)2 + 4(γH − γL)2
.

and

π∗
2 = πλ,µ>0 =

1

2
+

(1 + γL)
2

8
− (γL − 1)2(γH − γL − 2)2

8[(γH − 1)2 + (γH − γL)2]

.

When 1 < γH ≤ 1+3γL+
√

9−2γL−7γ2
L

4
, there are two possible scenarios: the

ex-ante IR for γH may bind or not, while the ex-post IC for γH binds. For any

γL ∈ (0, 1), LIR > LIC . Therefore, the optimal solution is under the slack

ex-ante IR and the binding ex-post IC, which is characterized by

q∗(γH) =
1 + γH

2
, p∗(γH) =

(1 + γH)
2 + (γL − γH)(1 + 2γL − γH)

4
,
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q∗(γL) =
1 + 2γL − γH

2
, p∗(γL) =

(1 + γL)
2 − (1 + γL)(γH − γL)

4
,

and

π∗
3 = π

λ=0

µ=1

=
1

2
+

(1 + γL)
2

8
+

2(γH − γL)
2 + γ2

L + 2γL − 3

8
.

Proof of proposition 3.2.4. Differentiating with respect to qT (γH), q
T (γL) and

pT (γH) respectively yields the first order conditions

−2qT (γH) + 2λT + µT (1 + γH) = 0, (3.61)

(1− τ)(1 + γL)− 2qT (γL)− µT (γH − γL) = 0, (3.62)

(1− τ)− λT − µT = 0. (3.63)

These are complemented with the two complementary slackness conditions

λT [qT (γH)− pT (γH)] = 0, (3.64)

µT [(1 + γH)q
T (γH)− (γH − γL)q

T (γL)− 2pT (γH)] = 0. (3.65)

From condition (3.63), I have λT = (1− τ)− µT . Putting is into conditions

(3.61) and (3.62), q(γH) and γL can be expressed as

qT (γH) = (1− τ) +
µ(γH − 1)

2
,

qT (γL) =
(1− τ)(1 + γL)− µ(γH − γL)

2
.
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Now I will confirm the optimal solution in separate situation based on the

values of λT and µT . Obviously, λT = µT = 0 violates the first order condition

(3.63). I will then discuss the other three possibilities:

i. If λT > 0 and µT = 0, i.e. λT = 1 − τ , then only ex-ante IR for γH

binds, i.e.

qT (γH)− pT (γH) = 0

and then

(γH − 1)qT (γH)− (γH − γL)q
T (γL) ≥ 0.

The first order conditions imply

qT (γH) = 1− τ, qT (γL) = (1− τ)
1 + γL

2
, with λ = 1− τ.

Therefore,

pT (γH) = 1− τ, pT (γL) = (1− τ)
(1 + γL)

2

4
.

The condition that γH ≥ γL + 2 ensures that incentive compatibility for

γH with the condition pT (γH) = qT (γH) holds, i.e. (γH − 1)qT (γH) − (γH −
γL)q

T (γL) ≥ 0.

In this case, the monopolist’s aggregate profit from both consumers is

Π
λT =1−τ

µT =0

= Π
λT =1−τ

µT =0

(γH)+Π
λT =1−τ

µT =0

(γL) = (1−τ)2
1

2
+(1−τ)2

(1 + γL)
2

8
−2s = (1−τ)2π

λ=1

µ=0

−2s.

ii. If λT = 0 and µT > 0, i.e. µT = 1− τ ,then then only ex-post IC for γH

binds, i.e.

2pT (γH) = (1 + γH)q
T (γH)− (γH − γL)q

T (γL)
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and then

qT (γH)− pT (γH) ≥ 0

The first order conditions imply in this case that

qT (γH) = (1−τ)
1 + γH

2
, qT (γL) = (1−τ)

1 + 2γL − γH

2
with µ = 1−τ.

The bounds 1 < γH < 2γL + 1 and 0 < γL < 1 guarantee positive quality is

provided to both consumers.

pT (γH) = (1− τ)
(1 + γH)

2 − (γH − γL)(1 + 2γL − γH)

4

pT (γL) = (1− τ)
(1 + γL)

2 − (γH − γL)(1 + γL)

4
.

Then I check if the ex-ante IR for γH is valid: qT (γH) − pT (γH) ≥ 0. I have

the bound

γH ≤
1 + 3γL +

√
9− 2γL − 7γ2

L

4

The maximal aggregate profit for the monopolist is then given by

Π
λT =0

µT =1−τ

= Π
λT =0

µT =1−τ

(γH) + Π
λT =0

µT =1−τ

(γL)

= (1− τ)2
(1 + γH)

2 − 2(γH − γL)(1 + 2γL − γH)

8
+ (1− τ)2

(1 + γL)
2 − (γH − γL)

2

8
− 2s

= (1− τ)2π
λ=0

µ=1

− 2s.

iii. If both λT , µT > 0, then both constraints bind, i.e.

qT (γH)− pT (γH) = 0

and

(1 + γH)q
T (γH)− (γH − γL)q

T (γL)− 2pT (γH) = 0.
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The first order conditions imply

qT (γH) = pT (γH) = (1− τ) +
µ(γH − 1)

2
,

qT (γL) =
(1− τ)(1 + γL)− µT (γH − γL)

2

pT (γL) =
(1− τ)(1 + γL)

2 − µT (1 + γL)(γH − γL)

4
.

From the condition (1 + γH)q
T (γH)− (γH − γL)q

T (γL)− 2pT (γH) = 0, I have

µT =
(1− τ)(γL − 1)(γH − γL − 2)

(γH − 1)2 + (γH − γL)2
= (1− τ)µ,

where γH − γL < 2 to ensure µT > 0.

The maximal aggregate profit of the monopolist in the case λ, µ > 0 is

thus

ΠλT ,µT>0 = ΠλT ,µT>0(γH) + ΠλT ,µT>0(γL)

= (1− τ)2(
1

2
− µ2(γH − 1)2

8
) + (1− τ)2

(1 + γL)
2 − µ2(γH − γL)

2

8
− 2s

= (1− τ)2πλ,µ>0 − 2s,

Proof of proposition 3.2.7. Ex-post incentive compatibility means that given

an allocation (q(γ), p(γ)) a consumer of type γ̂ maximises his ex-post utility

by selecting bundle (q(γ̂), p(γ̂)). More formally, this bundle must satisfy the

first order condition

0 =
d

dγ
(U + Vγ̂) = (1 + γ̂)q′(γ̂)− 2p′(γ̂). (3.66)

The total differential of w at γ̂ is

dw(γ̂)

dγ
= (1 + γ̂)q′(γ̂) + q(γ̂)− 2p′(γ̂). (3.67)

The previous equation implies w′(γ) = q(γ). If w′(γ) = q(γ) the first or-
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der condition would follow which means that ex-post incentive compatibility

holds.

The other equivalence is easier:

w(γ) + (1− γ)q(γ) = 2q(γ)− 2p(γ) = 2U(q(γ), p(γ)). (3.68)

Proof of theorem 3.2.1. Following proposition 7 in Esteban et al. (2007), I

can guess that the solution γ and γ̄ to the optimal control problem is of the

form given in proposition 3.2.1 for some parameters γ and γ̄. Moreover, it

also follows from that result that p(γ) = 0 when γ < γ, and p is held at a

fixed level when γ > γ̄.

I consider first the case γ ∈ [a, γ) so that q(γ) = w(γ) = 0 and find values

of δ(γ), λ(γ) and µ(γ).

Claim 1: a ≤ γ < γ, then q(γ) = w(γ) = 0 holds.

Proof. There are a number of possible values that δ(γ) and λ(γ) can take

in this situation. It suffices to provide just one set; I provide two possible

examples. If λ(γ) = 0 and δ(γ) > 0, then condition (3.49) becomes

(1− τ)(1 + γ)

2(b− a)
+ µ(γ) + δ(γ) = 0.

Integrating condition (3.63) and applying the boundary condition (3.54), I

have

µ(γ) =
(1− τ)(γ − b)

2(b− a)
.

From the above two equations, we have

δ(γ) = −(1− τ)(1− b+ 2γ)

2(b− a)
> 0,

which holds implies γ ≤ b−1
2
. But since γ is the largest type for which

w(γ) = 0, the equality can hold.
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On the other hand, if λ(γ) > 0 and δ(γ) = 0 conditions (3.49) and (3.63)

become

(1− τ)(1 + γ)

2(b− a)
+ µ(γ)− (γ − 1)λ(γ) = 0,

µ′(γ) =
1− τ

2(b− a)
− λ(γ).

From the above two equations, we have

µ(γ) =
(1− τ)(γ − b)

(b− a)(1− γ)

λ(γ) =
1− τ

2(b− a)
+

(1− τ)(b− 1)

(b− a)(γ − 1)2
> 0.

This shows that it is possible to satisfy the necessary conditions in the interval

γ ∈ [a, γ) and the guess is verified in this case; q(γ) = w(γ) = 0 holds there.

Now, I examine the intermediate case γ < γ < γ̄,

Claim 2: γ < γ < γ̄, then λ(γ) = δ(γ) = 0 and q(γ) = (1− τ)(γ − b−1
2
).

Proof. This follows immediately since neither constraint binds in this case

and q(γ) is continuous so that q( b−1
2
) = 0.

Claim 3: γ < γ < γ̄ and w(γ) is continuous, then λ(γ) = δ(γ) = 0 and

w(γ) = 1−τ
2
(γ − b−1

2
)2.

Proof. This results since w( b−1
2
) = 0 and w′(γ) = q(γ).

Finally, I consider the last case where γ ∈ (γ̄, b]. In this situation, the

guess requires that q(γ) is a constant C1 > 0 and that ex-ante individual

rationality (equation 3.44) holds. This condition implies that

w(γ) = (γ − 1)q(γ) = C1(γ − 1). (3.69)
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Claim 4: γ̄ = 5−b
2
.

Proof. Since q(γ) is continuous:

(1− τ)(γ̄ − b− 1

2
) = C1. (3.70)

In addition, w(γ) is continuous and satisfies individual rationality, which

means

(1− τ)(γ̄ − b−1
2
)2

2
= C1(γ̄ − 1). (3.71)

If I combine these two equations, then

γ̄ − b− 1

2
= 2(γ̄ − 1). (3.72)

Solving this equation γ̄ = 5−b
2

and

C1 = (1− τ)(γ̄ − b− 1

2
) = 2(1− τ)(γ̄ − 1) = (1− τ)(3− b). (3.73)

I just need to check that this gives a consistent solution by finding δ(γ),λ(γ)

and µ(γ):

Claim 5: When q(γ) = 2(1−τ)(γ̄−1) and w(γ) = 2(1−τ)(γ̄−1)(γ−1),

γ > γ̄, then λ(γ) > 0 and δ(γ) = 0.

Proof. To keep the notation simple, let q(γ) = C1 as above. Since this

constant is positive δ(γ) = 0. In addition, conditions (3.49) and (3.63)

together become

(1− τ)(1 + γ)− 2C1

2(b− a)
+ µ(γ)− (γ − 1)λ(γ) = 0.

µ′(γ) =
1− τ

2(b− a)
− λ(γ).
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From the two equations above, I have

µ(γ) =
[(1− τ)− C1](γ − b)

(b− a)(1− γ)

λ(γ) =
1− τ

2(b− a)
+

(1− τ)(b− 1)(b− 2)

(b− a)(γ − 1)2
> 0,

since b > 2.

Claim 6: π(γ) ≥ 0, then

γ ∈

[
b−

√
(b+ 1)2

4
− 4s

(1− τ)2
, b+

√
(b+ 1)2

4
− 4s

(1− τ)2

]

Proof. This can be obtained immediately by calculating 1
2
(1−τ)[(1+γ)q(γ)−

w(γ)]− 1
2
q(γ)2 − s ≥ 0.

Claim 7: γ = γ(τ, s). When s < 0, that is, the monopolist faces a specific

subsidy, γ = b−1
2
; when s ≥ 0, that is, the monopolist faces a specific tax,

γ = b−
√

(b+1)2

4
− 4s

(1−τ)2
.

Proof. All that remains is to find functions δ(γ), λ(γ) and µ(γ) that satisfy

the necessary conditions and to verify that indeed γ = b −
√

(b+1)2

4
− 4s

(1−τ)2

and γ = 5−b
2
.

γ = max

{
b− 1

2
, b−

√
(b+ 1)2

4
− 4s

(1− τ)2

}
=


b−1
2
, when s < 0

b−
√

(b+1)2

4
− 4s

(1−τ)2
, when s ≥ 0

and

γ̄ = min

{
5− b

2
, b+

√
(b+ 1)2

4
− 4s

(1− τ)2

}
=

5− b

2
,
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since the minimum of b+
√

(b+1)2

4
− 4s

(1−τ)2
is b (which is larger than 5−b

2
, when

b > 5
3
) at s = (b+1)2

16
(1− τ)2.

The taxes need to satisfy the following conditions:

a < b−

√
(b+ 1)2

4
− 4s

(1− τ)2
< 1 <

5− b

2
< b

Proof of proposition 3.3.1. The social welfare WH
C is given by

WH
C (τ, s) =

∫ b

a

[
q(γ)− 1

2
q(γ)2

]
f(γ)dγ −

∫ b

a

{
max{γq(γ)− p(γ)} − [γq(γ)− p(γ)]

}
f(γ)dγ

=

∫ γ(τ,s)

a

0f(γ)dγ +

∫ γ̄

γ(τ,s)

[
1− τ

2
(2γ − b+ 1)− (1− τ)2

8
(2γ − b+ 1)2

]
f(γ)dγ︸

+

∫ b

γ̄

[
(1− τ)(3− b)− 1

2
(1− τ)2 (3− b)2

]
f(γ)dγ −

∫ γ(τ,s)+1

2

a

0f(γ)dγ︷︷
Total surplus

−
∫ γ̄+1

2

γ(τ,s)+1

2

1− τ

4

(
2γ − b+ 1

2

)2

f(γ)dγ −
∫ b

γ̄+1
2

(1− τ)(3− b)(γ − 1)f(γ)dγ︸
+

∫ γ(τ,s)

a

0f(γ)dγ︸
+

∫ γ̄

γ(τ,s)

1− τ

4

(
3γ2 − 2bγ +

b2 + 2b− 3

4

)
f(γ)dγ︷︷

Self-control costs

+

∫ b

γ̄

(1− τ)(3− b)(γ − 1)f(γ)dγ︸
≡ I1 + I2︸ ︷︷ ︸

Normative welfare

+ I3 + I4︸ ︷︷ ︸
(Negative) Maximal temptation

+ I5 + I6︸ ︷︷ ︸
Temptation utility

,
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where the sum of integrals is divided into five parts I1, I2, I3, I4, I5 and then

I calculate each part separately.

The welfare decomposition comprises three components: (1) normative

welfare (I1 + I2), representing true preferences; (2) maximal temptation

(I3 + I4), the highest possible level of temptation in the given menu; and

(3) temptation utility (I5 + I6), measuring a tempting desire.

I1 =

∫ γ̄

γ(τ,s)

[
q(γ)− 1

2
q(γ)2

]
f(γ)dγ =

∫ γ̄

γ(τ,s)

[
1− τ

2
(2γ − b+ 1)− (1− τ)2

8
(2γ − b+ 1)2

]
f(γ)dγ

I2 =

∫ b

γ̄

[
q(γ)− 1

2
q(γ)2

]
f(γ)dγ =

∫ b

γ̄

[
(1− τ)(3− b)− 1

2
(1− τ)2 (3− b)2

]
f(γ)dγ

I3 = −
∫ γ̄+1

2

γ(τ,s)+1

2

max{γq(γ)− p(γ)}f(γ)dγ = −
∫ γ̄+1

2

γ(τ,s)+1

2

1− τ

4

(
2γ − b+ 1

2

)2

f(γ)dγ

I4 = −
∫ b

γ̄+1
2

max{γq(γ)− p(γ)}f(γ)dγ = −
∫ b

γ̄+1
2

(1− τ)(3− b)(γ − 1)f(γ)dγ

I5 =

∫ γ̄

γ(τ,s)

{γq(γ)− p(γ)}f(γ)dγ =

∫ γ̄

γ(τ,s)

1− τ

4

(
3γ2 − 2bγ +

b2 + 2b− 3

4

)
f(γ)dγ

I6 =

∫ b

γ̄

{γq(γ)− p(γ)}f(γ)dγ =

∫ b

γ̄

(1− τ)(3− b)(γ − 1)f(γ)dγ

When s = 0, the threshold γ simplifies to:

γ =
b− 1

2
.

Consequently, the derivative of γ with respect to τ is:

∂γ

∂τ
= 0,

since γ is independent of τ in this case.

Next, I compute the derivatives of each term Ii (i = 1, . . . , 6) with respect
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to τ under the condition s = 0. The results are as follows:

∂I1
∂τ

=

∫ 5−b
2

b−1
2

[1− q(γ)]
dq(γ)

dτ
f(γ)dγ =

∫ 5−b
2

b−1
2

[
1− (1− τ)(γ − b− 1

2
)

] [
−(γ − b− 1

2
)

]
f(γ)dγ

=
(3− b)2

6(b− a)
[2(1− τ)(3− b)− 3]

∂I2
∂τ

=

∫ b

5−b
2

[1− q(γ)]
dq(γ)

dτ
f(γ)dγ =

∫ b

b−1
2

[1− (1− τ)(3− b)] [−(3− b)] f(γ)dγ

=
(3− b)(b+ 1)

2(b− a)
[(2− b)− τ(3− b)]

∂I3
∂τ

=

∫ 7−b
4

b+1
4

1

4

(
2γ − b+ 1

2

)2

f(γ)dγ =
(3− b)3

24(b− a)
> 0

∂I4
∂τ

=

∫ b

7−b
4

(3− b)(γ − 1)f(γ)dγ =
(3− b)(3b− 1)(5b− 7)

32(b− a)
> 0

∂I5
∂τ

= −
∫ 5−b

2

b−1
2

{γq(γ)− p(γ)}f(γ)dγ = −
∫ 5−b

2

b−1
2

1

4

(
3γ2 − 2bγ +

b2 + 2b− 3

4

)
f(γ)dγ

=
(3− b)(3b− 5)(b+ 1)

32(b− a)
> 0

∂I6
∂τ

= −
∫ b

5−b
2

(3− b)(γ − 1)f(γ)dγ = −(3− b)(3b− 5)(b+ 1)

8(b− a)
< 0

For the commitment utility terms (I1 and I2), we derive the following

comparative statics with respect to τ :

(a) For I1:

∂I1
∂τ


> 0 if τ < 1− 3

2(3−b)

= 0 if τ = 1− 3
2(3−b)

< 0 if τ > 1− 3
2(3−b)
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(b) For I2:

∂I2
∂τ


> 0 if τ < 1− 1

3−b

= 0 if τ = 1− 1
3−b

< 0 if τ > 1− 1
3−b

The aggregate effect on commitment utility is:

∂I1
∂τ

+
∂I2
∂τ

=
(3− b)

6(b− a)

[
−(b2 + 6b)(1− τ)− 27τ + 15

]
> 0 when τ <

b2 + 6b− 15

(b+ 9)(b− 3)

For the temptation and self-cost effects:

(a) Negative maximal temptation :

∂I3
∂τ

+
∂I4
∂τ

=
(3− b)(49b2 − 102b+ 57)

96(b− a)
> 0.

This indicates the resistance cost decreases as τ increases.

(b) Temptation utility:

∂I5
∂τ

+
∂I6
∂τ

= −3(3− b)(3b− 5)(b+ 1)

32(b− a)
< 0

showing that temptation utility decreases with higher τ .

The total change in self-control costs (negative maximal temptation minus

temptation utility):

6∑
i=3

∂Ii
∂τ

=
(3− b)(37b2 − 126b+ 141)

192(b− a)
> 0

The net effect represents a welfare improvement as τ increases, which

suggests τ acts as an effective mechanism for mitigating self-control problems.

The welfare function WH
C (τ, s) responds to taxation as:

∂WH
C (τ, s)

∂τ
=

∂I1
∂τ

+
∂I2
∂τ

+
∂I3
∂τ

+
∂I4
∂τ

+
∂I5
∂τ

+
∂I6
∂τ

I will consider the effect on welfare of raising τ or s from zero and look for
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the optimal tax policies of τ and s.

∂WH
C (τ, s)

∂τ

∣∣∣
τ=s=0

=
3− b

16(b− a)
(b2 − 30b+ 57)

∂WH
C

∂τ

∣∣∣
s=0

=
(3− b)

48(b− a)

[
3(b2 − 30b+ 57) + 8(b2 + 6b− 27)τ

]
.

The critical point is bHC = 15− 2
√
42 ≈ 2.04.

∂WH
C

∂τ

∣∣∣
τ=s=0


> 0 for b ∈

(
5
3
, bHC
)
,

= 0 at b = bHC,

< 0 for b ∈ (bHC, 3).

The optimal ad valorem policy τH
C = −3(b2−30b+57)

8(b+9)(b−3)
since

∂WH
U (τ,s)

∂τ

∣∣∣
s=0

> 0

when τ < τH
C and

∂WH
U (τ,s)

∂τ

∣∣∣
s=0

< 0 when τ > τH
C . Specifically, when b ∈

(5
3
, bHC), τ

H
C ∈ (0, 33

128
); when b ∈ (bHC, 3), τ

H
C < 0.

Proof of proposition 3.3.2. The social welfare WH
U is given by

WH
U (τ, s) =

∫ b

a

[
q(γ)− 1

2
q(γ)2

]
f(γ)dγ

=

∫ γ(τ,s)

a

0f(γ)dγ +

∫ γ̄

γ(τ,s)

[
1− τ

2
(2γ − b+ 1)− (1− τ)2

8
(2γ − b+ 1)2

]
f(γ)dγ

+

∫ b

γ̄

[
(1− τ)(3− b)− 1

2
(1− τ)2 (3− b)2

]
f(γ)dγ

= I1 + I2.

Therefore,

∂WH
U (τ, s)

∂τ
=

∂I1
∂τ

+
∂I2
∂τ

.
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∂WH
U (τ, s)

∂τ

∣∣∣
τ=s=0

=
3− b

6(b− a)
(−b2 − 6b+ 15)

∂WH
U (τ, s)

∂τ

∣∣∣
s=0

=
3− b

6(b− a)

[
−(b2 − 6b+ 15) + (b+ 9)(b− 3)τ

]
The critical point is bHU = 2

√
6− 3 ≈ 1.90.

∂WH
U

∂τ

∣∣∣
τ=s=0


> 0 for b ∈

(
5
3
, bHU
)
,

= 0 at b = bHU,

< 0 for b ∈ (bHU, 3).

The optimal ad valorem policy τH
U = b2+6b−15

(b+9)(b−3)
since

∂WH
U (τ,s)

∂τ

∣∣∣
s=0

> 0 when

τ < τH
U and

∂WH
U (τ,s)

∂τ

∣∣∣
s=0

< 0 when τ > τH
U . Specifically, when b ∈ (5

3
, bHU),

τH
U ∈ (0, 5

32
); when b ∈ (bHU, 3), τ

H
U < 0.

Proof of proposition 3.3.3. The social welfare WH
U+V is given by is

WH
U+V(τ, s) =

∫ b

a

[
(1 + γ)q(γ)− p(γ)− 1

2
q(γ)2

]
f(γ)dγ

=

∫ b

a

{[
q(γ)− 1

2
q(γ)2

]
+ [γq(γ)− p(γ)]

}
f(γ)dγ

= I1 + I2 + I5 + I6.

Therefore,

∂WH
U+V(τ, s)

∂τ
=

∂I1
∂τ

+
∂I2
∂τ

+
∂I5
∂τ

+
∂I6
∂τ

.

The change of WH
U+V(τ, s) on τ from 0 given no specific tax s:

∂WH
U+V(τ, s)

∂τ

∣∣∣∣∣
τ=s=0

=
3− b

96(b− a)
(−43b2 − 78b+ 285).
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∂WH
U+V(τ, s)

∂τ

∣∣∣∣∣
s=0

=
3− b

96(b− a)

[
−(43b2 + 78b− 285) + 16(b+ 9)(b− 3)τ

]
.

The critical point is bHU+V = 4
√
861−39
43

≈ 1.82.

∂WH
U+V

∂τ

∣∣∣
τ=s=0


> 0 for b ∈

(
5
3
, bHU+V

)
,

= 0 at b = bHU+V,

< 0 for b ∈ (bHU+V, 3).

The optimal ad valorem policy τH
U+V = 43b2+78b−285

16(b+9)(b−3)
since

∂WH
U+V(τ,s)

∂τ

∣∣∣
s=0

> 0

when τ < τH
U+V and

∂WH
U+V(τ,s)

∂τ

∣∣∣
s=0

< 0 when τ > τH
U+V. Specifically, when

b ∈ (5
3
, bHU+V), τ

H
U+V ∈ (0, 5

32
); when b ∈ (bHU+V, 3), τ

H
U+V < 0.

Proof of proposition 3.3.4. When τ = 0,

γ(s) =


b−1
2
, when s < 0

b−
√

(b+1)2−16s

2
, when s ≥ 0

Then,
∂γ(s)

∂s
= 4√

(b+1)2−16s
> 0 when s > 0. Additionally, s < −3b2+10b−3

16

ensures that γ(s) < 1.

Taking the derivative of each Ii with respect to s as s approaches from the
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positive side and as s approaches from the negative side, I have the following:

∂I1
∂s

∣∣∣
s>0

= − 1

b− a

[
q(γ(s))− 1

2
q(γ(s))2

]
∂γ(s)

∂s

= − 1

b− a

[
(γ(s)− b− 1

2
)− 1

2
(γ(s)− b− 1

2
)2
]
∂γ(s)

∂s

= −
(b+ 1−

√
(b+ 1)2 − 16s)(3− b+

√
(b+ 1)2 − 16s)

2(b− a)
√
(b+ 1)2 − 16s

< 0

∂I2
∂s

∣∣∣
s>0

= 0

∂I3
∂s

∣∣∣
s>0

=
1

8(b− a)

(
2γ(s)− b+ 1

2

)2 ∂γ(s)

∂s
=

(
3b− 1− 2

√
(b+ 1)2 − 16s

)2
8(b− a)

√
(b+ 1)2 − 16s

> 0

∂I4
∂s

∣∣∣
s>0

= 0

∂I5
∂s

∣∣∣
s>0

= − 1

4(b− a)

(
3γ(s)2 − 2bγ(s) +

b2 + 2b− 3

4

)
dγ(s)

ds

= − 1

4(b− a)

(
13b2 + 8b− 48s− 8b

√
(b+ 1)2 − 16s√

(b+ 1)2 − 16s

)
∂I6
∂s

∣∣∣
s>0

= 0

∂Ii
∂s

∣∣∣
s<0

= 0, i = 1, 2, 3, 4, 5, 6

∂I1
∂s

∣∣∣
s>0

< 0, since 0 < γ(s)− b−1
2

< 1.

The sum change of temptation utility on s > 0 is ∂I5
∂s

∣∣∣
s>0

+ ∂I6
∂s

∣∣∣
s>0

. dI5
∂s

∣∣∣
s>0

+

∂I6
∂s

∣∣∣
s>0

> 0 when γ(s) ∈ ( b−1
2
, b+3

6
) or s ∈ (0, 3b−b2

9
); ∂I5

∂s

∣∣∣
s>0

+ ∂I6
∂s

∣∣∣
s>0

=

0 when γ(s) = b+3
6
; ∂I5

∂s

∣∣∣
s>0

+ dI6
ds

∣∣∣
s>0

< 0 when γ(s) ∈ ( b+3
6
, 1) or s ∈
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(3b−b2

9
, −3b2+10b−3

16
).

−
∂
∫ b

a

{
max{γq(γ)− p(γ)} − [γq(γ)− p(γ)]

}
f(γ)dγ

∂s

∣∣∣
s>0

=
6∑

i=3

∂Ii
∂s

∣∣∣
s>0

=
−13b2 − 14b+ 5 + 32s+ 4(b+ 1)

√
(b+ 1)2 − 16s

8(b− a)
√

(b+ 1)2 − 16s

=
−9b2 − 6b+ 9− 2(

√
(b+ 1)2 − 16s− b− 1)2

8(b− a)
√

(b+ 1)2 − 16s
< 0.

The sum of self-control cost increases as s > 0 increases, therefore welfare

decreases.

A subsidy cannot increase the welfare through the effect of market size.

Proof of the effect of specific policy s on social welfare WH
C .

∂WH
C (τ, s)

∂s
=

∂I1
∂s

+
∂I2
∂s

+
∂I3
∂s

+
∂I4
∂s

+
∂I5
∂s

+
∂I6
∂s

.

∂WH
C (τ, s)

∂s

∣∣∣
τ=0,s=0+

=
−9b2 − 6b+ 9

8(b− a)(b+ 1)
< 0,

∂WH
C (τ, s)

∂s

∣∣∣
τ=0,s=0−

= 0,

∂WH
C (τ, s)

∂s

∣∣∣
τ=0,s>0

=
6∑

i=1

∂Ii
∂s

∣∣∣
s>0

< 0,

∂WH
C (τ, s)

∂s

∣∣∣
τ=0,s<0

= 0.

The differentiates show that s > 0 is negative while s < 0 is 0. Therefore,

the optimal specific tax is at sH
C = 0.
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Proof of the effect of specific policy s on social welfare WH
U .

∂WH
U (τ, s)

ds
=

∂I1
∂s

+
∂I2
∂s

.

∂WH
U (τ, s)

∂s

∣∣∣
τ=0,s=0+

= 0,

∂WH
U (τ, s)

∂s

∣∣∣
τ=0,s=0−

= 0,

∂WH
U (τ, s)

∂s

∣∣∣
τ=0,s>0

=
∂I1
∂s

∣∣∣
s>0

< 0,

∂WH
U (τ, s)

∂s

∣∣∣
τ=0,s<0

= 0.

The differentiates show that s > 0 is negative while s < 0 is 0. Therefore,

the optimal specific tax is at sH
U = 0.

Proof of the effect of specific policy s on social welfare WH
U+V.

∂WH
U+V(τ, s)

∂s
=

∂I1
∂s

+
∂I2
∂s

+
∂I5
∂s

+
∂I6
∂s

.

∂WH
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s=0+

=
−5b2

4(b− a)(b+ 1)
< 0

∂WH
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s=0−

= 0

∂WH
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s>0

=
−9b2 − 8b− 4 + 16s+ 4(b+ 1)

√
(b+ 1)2 − 16s

4(b− a)
√

(b+ 1)2 − 16s
< 0

∂WH
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s<0

= 0

∂WH
U+V(τ,s)

∂s

∣∣∣
τ=0,s>0

< 0, since

−9b2−8b−4+16s+4(b+1)
√

(b+ 1)2 − 16s < −9b2−8b−4+(b+1)2 = −8b2−6b−3 < 0

and therefore the numerator is negative.
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These value when s > 0 is negative while s < 0 is 0. Therefore, the

optimal specific tax is at sH
U+V = 0.

Proof of proposition 3.3.5. The welfare W F
C (τ, s) is given by

W F
C (τ, s) =

∫ b

a

[q(γ)− p(γ)] f(γ)dγ −
∫ b

a

{
max{γq(γ)− p(γ)} − [γq(γ)− p(γ)]

}
f(γ)dγ

+

∫ b

a

[τp(γ) + s] f(γ)dγ

=

∫ γ(τ,s)

a

0f(γ)dγ +

∫ γ̄

γ(τ,s)

(1− τ)

4

[
−(γ − 1)2 +

(b− 3)2

4

]
f(γ)dγ +

∫ b

γ̄

0f(γ)dγ︸ ︷︷ ︸
Total Commitment Utility Surplus

−
∫ γ(τ,s)+1

2

a

0f(γ)dγ −
∫ γ̄+1

2

γ(τ,s)+1

2

1− τ

4

(
2γ − b+ 1

2

)2

f(γ)dγ︸
−
∫ b

γ̄+1
2

(1− τ)(3− b)(γ − 1)f(γ)dγ +

∫ γ(τ,s)

a

0f(γ)dγ︷︷
Self-Control Cost

+

∫ γ̄

γ(τ,s)

1− τ

4

(
3γ2 − 2bγ +

b2 + 2b− 3

4

)
f(γ)dγ +

∫ b

γ̄

(1− τ)(3− b)(γ − 1)f(γ)dγ︸
+
(1− τ)τ

4

∫ γ̄

γ(τ,s)

[(γ + 1)2 − (
b− 1

2
+ 1)2]f(γ)dγ + (1− τ)τ

∫ b

γ̄

(3− b)f(γ)dγ︸ ︷︷ ︸
Ad Valorem Tax Revenue

+

∫ b

γ(τ,s)

sf(γ)dγ︸ ︷︷ ︸
Specific Tax Revenue

≡ M + I3 + I4 + I5 + I6 + T1 + T2 + S,

where Ii, i = 3, 4, 5, 6 are defined as before. I define the other symbols as
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follows:

M =

∫ b

a

[q(γ)− p(γ)] f(γ)dγ =

∫ γ̄

γ(τ,s)

(1− τ)

4

[
−(γ − 1)2 +

(b− 3)2

4

]
f(γ)dγ

T1 =

∫ γ̄

γ(τ,s)

τp(γ)f(γ)dγ =
(1− τ)τ

4

∫ γ̄

γ(τ,s)

[(γ + 1)2 − (
b− 1

2
+ 1)2]f(γ)dγ

T2 =

∫ b

γ̄

τp(γ)f(γ)dγ = (1− τ)τ

∫ b

γ̄

(3− b)f(γ)dγ

S =

∫ b

γ(τ,s)

sf(γ)dγ.

Taking the derivative of each Ii with respect to τ when s = 0, I have the

following:

∂M

∂τ
=

∫ 5−b
2

b−1
2

1

4

[
(γ − 1)2 − (b− 3)2

4

]
f(γ)dγ =

(b− 3)3

24(b− a)
< 0

∂T1

∂τ
=

1− 2τ

4

∫ 5−b
2

b−1
2

[(γ + 1)2 − (
b− 1

2
+ 1)2]f(γ)dγ =

(b− 3)2(b+ 9)

24(b− a)
(1− 2τ)

∂T2

∂τ
= (1− 2τ)

∫ b

5−b
2

(3− b)f(γ)dγ =
(3− b)(3b− 5)

2(b− a)
(1− 2τ)

∂S

∂τ
= 0

The derivatives of T1 and T2 with respect to τ exhibit the following behavior:

For τ < 1
2
:

∂T1

∂τ
> 0 and

∂T2

∂τ
> 0.

This means both T1 and T2 increase as τ increases when τ is less than 1
2
.

For τ > 1
2
:

∂T1

∂τ
< 0 and

∂T2

∂τ
< 0.

This means both T1 and T2 decrease as τ increases when τ is greater than 1
2
.

167



At τ = 1
2
:

∂T1

∂τ
= 0 and

∂T2

∂τ
= 0.

This indicates that both T1 and T2 have critical points (likely maxima) at

τ = 1
2
.

The total effect is the sum of the individual effects:

∂T1

∂τ
+

∂T2

∂τ
=

(1− 2τ)(b− 3)(b2 − 30b+ 33)

24(b− a)
.

The term (1 − 2τ) determines the sign of the total effect based on τ : If

τ < 1
2
, (1− 2τ) > 0, so the total effect is positive. If τ > 1

2
, (1− 2τ) < 0, so

the total effect is negative. If τ = 1
2
, (1− 2τ) = 0, so the total effect is zero.

The term (b − 3)(b2 − 30b + 33) is given to be positive for b ∈
(
5
3
, 3
)
. The

denominator 24(b− a) is obviously positive.

Proof of proposition 3.3.6.

∂W F
C (τ, s)

∂τ
=

∂M

∂τ
+

∂I3
∂τ

+
∂I4
∂τ

+
∂I5
∂τ

+
∂I6
∂τ

+
∂T1

∂τ
+

∂T2

∂τ
+

∂S

∂τ
.

I will consider the effect on welfare of raising τ or s from zero and look for

the optimal tax policies of τ and s.

∂W F
C (τ, s)

∂τ

∣∣∣
τ=s=0

= − (b− 3)

48(b− a)
(7b2 + 30b− 33) > 0

∂W F
C

∂τ

∣∣∣
s=0

= − (b− 3)

48(b− a)

[
(7b2 + 30b− 33) + 4(b2 − 30b+ 33)τ

]
The optimal ad valorem policy τF

C = − 7b2+30b−33
4(b2−30b+33)

since
∂WF

C (τ,s)

∂τ

∣∣∣
s=0

> 0

when τ < τF
C and

∂WF
C (τ,s)

∂τ

∣∣∣
s=0

< 0 when τ > τF
C .
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Proof of proposition 3.3.7. The normative social welfare W F
U is given by is

W F
U (τ, s) =

∫ b

a

[q(γ)− p(γ)] f(γ)dγ +

∫ b

a

[τp(γ) + s] f(γ)dγ

= M + T1 + T2 + S.

Therefore,

∂W F
U (τ, s)

dτ
=

∂M

∂τ
+

∂T1

∂τ
+

∂T2

dτ
+

∂S

∂τ
.

∂W F
U (τ, s)

∂τ

∣∣∣
τ=s=0

=
(b− 3)

12(b− a)
(b2 − 18b+ 21) > 0

∂W F
U (τ, s)

∂τ

∣∣∣
s=0

=
(b− 3)

12(b− a)

[
(b2 − 18b+ 21) + (−b2 + 30b− 33)τ

]
The optimal ad valorem policy τF

U = b2−18b+21
b2−30b+33

since
∂WF

U (τ,s)

∂τ

∣∣∣
s=0

> 0 when

τ < τF
U and

∂WF
U (τ,s)

∂τ

∣∣∣
s=0

< 0 when τ > τF
U .

Proof of proposition 3.3.8. The behavioral social welfare W F
U+V is given by is

W F
U+V(τ, s) =

∫ b

a

[q(γ)− p(γ)] f(γ)dγ +

∫ b

a

[γq(γ)− p(γ)] f(γ)dγ

≡ M + I5 + I6 + T1 + T2 + S.

Therefore,

∂W F
U+V(τ, s)

∂τ
=

∂M

∂τ
+

∂I5
dτ

+
∂I6
∂τ

+
∂T1

dτ
+

∂T2

∂τ
+

∂S

∂τ
.

The change of W F
U+V(τ, s) on τ from 0 given no specific tax s:

∂W F
U+V(τ, s)

∂τ

∣∣∣∣∣
τ=s=0

=
b− 3

96(b− a)
(35b2 − 162b+ 123) > 0.
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∂W F
U+V(τ, s)

∂τ

∣∣∣∣∣
s=0

=
b− 3

96(b− a)

[
(35b2 − 162b+ 123) + 8(−b2 + 30b− 33)τ

]
.

The optimal ad valorem policy τF
U+V = 35b2−162b+123

8(b2−30b+33)
since

∂WF
U+V(τ,s)

∂τ

∣∣∣
s=0

> 0

when τ < τF
U+V and

∂WF
U+V(τ,s)

∂τ

∣∣∣
s=0

< 0 when τ > τF
U+V.

Proof of proposition 3.3.9. Taking the derivative of each Ii with respect to s

as s approaches from the positive side and as s approaches from the negative

side, I have the following:

∂M

∂s

∣∣∣
s>0

=
1

4(b− a)

[
(γ(s)− 1)2 − (b− 3)2

4

]
dγ(s)

ds

=
b2 − 1− 4s− (b− 1)

√
(b+ 1)2 − 16s

(b− a)
√
(b+ 1)2 − 16s

< 0

∂Ti

∂s

∣∣∣
s>0

= 0, i = 1, 2

∂S

∂s

∣∣∣
s>0

= −sf(γ(s))
∂γ(s)

∂s
+

∫ b

γ(s)

f(γ(s))dγ =
1

b− a

(
−s

dγ(s)

ds
+ b− γ(s)

)

=
1

b− a

(
− 4s√

(b+ 1)2 − 16s
+

√
(b+ 1)2 − 16s

2

)
=

(b+ 1)2 − 24s

2(b− a)
√

(b+ 1)2 − 16s

∂U

∂s

∣∣∣
s<0

= 0

∂Ti

∂s

∣∣∣
s<0

= 0, i = 1, 2

∂S

∂s

∣∣∣
s<0

=

∫ b

b−1
2

f(γ(s))dγ =
b+ 1

2(b− a)
> 0.

∂M
∂s

∣∣∣
s>0

< 0: increasing specific tax decreases the size of market, and thus

the lowest leaving causes the welfare of total commitment to be reduced.

For ∂S
∂s

∣∣∣
s>0

, there two opposite effects of the specific tax policy s. On the

one hand, the market size reduces due to the increase of γ(s) as s increases;

on the other hand, the tax revenue increases as s increases. The total effect
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depends on which effect dominates.

Specifically, when the market size is large enough, b ∈ (5
3
, 13+4

√
3

11
), the

total effect depends on the value of s. A small amount of specific tax causes

the increase of tax revenue more than the decrease of market size, then
∂S
∂s

∣∣∣
s>0

> 0 if s ∈ (0, (b+1)2

24
); While if the amount of tax excesses a threshold,

the negative effect of market size dominates the other positive effect, that is,
∂S
∂s

∣∣∣
s>0

< 0 if s ∈ ( (b+1)2

24
, −3b2+10b−3

16
).

When the market size is small, b ∈ (13+4
√
3

11
, 3), then the effect of tax

revenue always dominates among the aggregate effect for any feasible tax

policy, dS
ds

∣∣∣
s>0

> 0.

Therefore,

∂W F
C (τ, s)

∂s
=

∂M

∂τ
+

∂I3
∂s

+
∂I4
∂s

+
∂I5
∂s

+
∂I6
∂s

+
∂T1

∂s
+

∂T2

∂s
+

∂S

∂s
.

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s=0+

=
−5b2 + 2b+ 13

8(b− a)(b+ 1)
,

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s=0−

=
b+ 1

2(b− a)
> 0,

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s>0

=
−b2 − 6b+ 1− 96s+ 4(3− b)

√
(b+ 1)2 − 16s

8(b− a)
√

(b+ 1)2 − 16s

∂W F
C (τ, s)

∂s

∣∣∣
τ=0,s<0

=
b+ 1

2(b− a)
> 0

The critical point is bFC = 1+
√
66

5
≈ 1.83.

∂W F
C (τ, s)

∂s

∣∣∣∣∣
τ=0,s=0+


> 0 for b ∈

(
5
3
, bFC
)
,

= 0 at b = bFC,

< 0 for b ∈ (bFC, 3).
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The optimal specific policy is

sF

C(τ, s) =
−7b2 + 6b− 33

288
+

(3− b)
√
23b2 + 42b+ 33

72
√
2

sF

C =

− 5
16
(3b2 + 4b+ 2) + b+1

4

√
12b2 + 14b+ 7, when b ∈ (5

3
, bFC)

0, when b ∈ [bFC, 3)

Since when b ∈ (5
3
, bFC),

∂WF
C (τ,s)

∂s

∣∣∣
τ=0,s>0

> 0 when s < sF
C and

∂WF
C (τ,s)

∂s

∣∣∣
τ=0,s>0

<

0 when s > sF
C. When b ∈ [bFC, 3),

∂WF
C (τ,s)

∂s

∣∣∣∣∣
τ=0,s<0

> 0 and
dWF

C (τ,s)

ds

∣∣∣∣∣
τ=0,s>0

<

0.

Proof of proposition 3.3.10.

∂W F
U (τ, s)

∂s
=

∂M

∂s
+

vT1

∂s
+

∂T2

∂s
+

∂S

∂s
.

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s=0+

=
b+ 1

2(b− a)
> 0,

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s=0−

=
b+ 1

2(b− a)
> 0,

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s>0

=
3b2 + 2b− 1− 32s− 2(b− 1)

√
(b+ 1)2 − 16s

2(b− a)
√

(b+ 1)2 − 16s
,

∂W F
U (τ, s)

∂s

∣∣∣
τ=0,s<0

=
b+ 1

2(b− a)
> 0.

sF

U = min

{
2(b2 + 2b− 1)− (b− 1)

√
8− (b− 1)2

32
,
−3b2 + 10b− 3

16

}

=


2(b2+2b−1)−(b−1)

√
8−(b−1)2

32
, when b ∈ (5

3
, 1 + 2√

5
)

−3b2+10b−3
16

, when b ∈ [1 + 2√
5
, 3)
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dWF
U (τ,s)

ds

∣∣∣
τ=0,s>0

> 0, when s < sF
U.

dWF
U (τ,s)

ds

∣∣∣
τ=0,s>0

= 0, when s = sF
U.

dWF
U (τ,s)

ds

∣∣∣
τ=0,s>0

< 0, when s > sF
U.

Proof of proposition 3.3.11.

∂W F
U+V(τ, s)

∂s
=

∂M

∂s
+

∂I5
∂s

+
∂I6
∂s

+
∂T1

∂s
+

∂T2

∂s
+

∂S

∂s
.

∂W F
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s=0+

=
−3b2 + 4b+ 2

4(b− a)(b+ 1)

∂W F
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s=0−

=
b+ 1

2(b− a)
> 0

∂W F
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s>0

=
−7b2 − 4b− 2− 16s+ 4(b+ 1)

√
(b+ 1)2 − 16s

4(b− a)
√

(b+ 1)2 − 16s

∂W F
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s<0

=
b+ 1

2(b− a)
> 0

The critical point is bFU+V = 2+
√
10

3
≈ 1.72

∂W F
U+V(τ, s)

∂s

∣∣∣∣∣
τ=0,s=0+


> 0 for b ∈

(
5
3
, bFU+V

)
,

= 0 at b = bFU+V,

< 0 for b ∈ (bFU+V, 3).

The optimal specific policy

sF

U+V =

− 5
16
(3b2 + 4b+ 2) + b+1

4

√
12b2 + 14b+ 7, when b ∈ (5

3
, bFU+V)

0, when b ∈ [bFU+V, 3)

Since when b ∈ (5
3
, bFU+V),

∂WF
U+V(τ,s)

∂s

∣∣∣
τ=0,s>0

> 0 when s < sF
U+V and

∂WF
U+V(τ,s)

∂s

∣∣∣
τ=0,s>0

< 0 when s > sF
U+V. When b ∈ [bFU+V, 3),

∂WF
U+V(τ,s)

∂s

∣∣∣∣∣
τ=0,s<0

>
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0 and
∂WF

U+V(τ,s)

∂s

∣∣∣∣∣
τ=0,s>0

< 0.

when b ∈ (5
3
, bFU+V), s

F
U+V ∈ (0,−85

16
+ 2

√
573
9

);

when b ∈ (bFU+V, 3), s
F
U+V = 0.
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Conclusion

This thesis has examined the interplay between strategic communication,

conformity, and self-control in shaping individual behavior and policy-relevant

decisions. Across the three essays, I have explored how behavioral motives

and structural constraints interact to influence social learning, rumor propa-

gation, and optimal taxation. A unifying theme is that individual preferences

in terms of conformity, biased outcomes, or self-control significantly affect in-

formation transmission, coordination, and welfare, with implications for both

theory and policy.

In Chapter 1, I analyzed a multi-receiver strategic communication game in

which agents are heterogeneous, consisting of unbiased truth-seekers and bi-

ased agents with partisan preferences. I introduce conformity as a preference

for aligning actions with others and examined its impact on social learning.

The results show that moderate conformity can enhance information trans-

fer by providing additional incentives for unbiased agents to act on messages

they receive, even in the presence of biased agents. Equilibrium outcomes

depend on population size, the degree of conformity, and the share of bi-

ased agents: in small populations, information can be transferred without

upper bounds on biased agents, whereas in large populations, truthful equi-

libria persist provided biased agents are not a majority. The analysis offers

insights into real-world phenomena such as influencer-driven consumption,

rumor spread, technology adoption, and government policy communication,

where alignment incentives coexist with the desire for accurate information.

Chapter 2 extends this framework to networked environments, adapting

the model to a simple undirected line network and incorporating conformity

among neighbors. Consistent with prior work (Bloch et al., 2018), the net-
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work structure imposes stricter constraints on the proportion of biased agents

that allow for truthful communication. While conformity can facilitate co-

ordination locally, the network’s decentralized nature reduces the robustness

of social learning compared to public broadcast settings. This extension pro-

vides a clearer understanding of rumor propagation, political misinformation,

and peer-influenced decision-making, demonstrating how local social inter-

actions and network topology affect the balance between truthfulness and

conformity.

Chapter 3 shifts the focus from information and networks to consumer

behavior and policy design. I analyzed optimal taxation of sin goods in

a monopoly market when consumers face heterogeneous self-control prob-

lems. By incorporating the temptation framework of Gul and Pesendorfer

(2001), I distinguished between upward-tempered and downward-tempered

consumers and characterized the monopolist’s profit-maximizing menu. Be-

havioral welfare analysis reveals that domestic ad valorem taxes can improve

social welfare when upward-tempered consumers are prevalent, whereas ad

valorem subsidies may be preferable for populations dominated by downward-

tempered consumers. For a foreign monopolist, both ad valorem and specific

taxes enhance national welfare. The results challenge conventional policy

heuristics, highlighting that optimal taxation depends on the distribution of

consumer temptations and the market context. Furthermore, the analysis

demonstrates that welfare evaluations are sensitive to the normative frame-

work, underscoring the importance of distinguishing commitment, tempta-

tion, and ex-post utilities in behavioral settings.

Collectively, the three essays contribute to a broader understanding of

how behavioral motives influence economic outcomes. Chapters 1 and 2 il-

luminate the role of conformity in shaping information transfer and social

learning, showing that social interactions can either facilitate or hinder the

spread of truthful information through public broadcast and network. Chap-

ter 3 demonstrates that behavioral considerations, such as self-control costs,

fundamentally alter policy design and its welfare implications. Overall, the

findings suggest that economic models and policy interventions must account

for both individual biases and the social or institutional context in which de-
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cisions occur.

The thesis also identifies several avenues for future research. Incorporat-

ing heterogeneity in conformity parameters, multiple types of biased agents,

or richer network structures could improve the realism of the communication

models. Similarly, extending the taxation framework to dynamic settings

or competitive markets would allow for more nuanced comparisons and pro-

vide further guidance for policy design. Overall, the results highlight that

behavioral motives such as conformity, bias, and self-control are critical de-

terminants of both micro-level decisions and macro-level outcomes, offering

valuable insights for theory, empirical research, and public policy.
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