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ABSTRACT

This thesis comprises three essays that explore the interplay between strategic
behavior, information transmission, and welfare-enhancing policy interven-
tions.

The first chapter develops a multi-receiver incomplete information coor-
dination game with unbiased and biased agents. Unbiased agents aim to
align with the underlying state of nature and coordinate with others, while
biased agents favor a specific collective outcome. A randomly selected sender
observes the state and communicates strategically to the group. I show that
truthful communication and full social learning can be sustained in equi-
librium provided the degree of conformity among unbiased agents does not
exceed one-half and the share of biased agents remains below fifty percent.

The second chapter examines rumor propagation on networks by modify-
ing the communication—coordination game introduced in the previous chapter
so that conformity depends on local interactions only. I demonstrate that
introducing a small degree of conformity enlarges the parameter space in
which truthful communication occurs, thereby relaxing the constraints on
biased participation compared to existing models.

The third chapter shifts focus to consumer behavior and welfare by an-
alyzing optimal taxation of sin goods under self-control problems. Using
the temptation model of Gul and Pesendorfer ( ) in a monopoly set-
ting, I characterize an endogenous quality—price ceiling and derive welfare-
maximizing tax policies. I show that optimal ad valorem taxes decline with
market size, potentially turning into subsidies, while specific taxes are not
optimal for domestically produced goods. By contrast, for imported goods,

both ad valorem and specific taxes improve welfare, with ad valorem taxes

il



yielding substantially larger gains.
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INTRODUCTION

Modern economic environments are increasingly shaped by the interplay
between information flows, social interactions, and behavioral biases. Indi-
viduals do not act in isolation: they exchange information, observe the be-
havior of peers, and make consumption choices that often involve self-control
problems. These dynamics can generate outcomes that deviate from those
predicted by models of fully rational, individualized agents. Understanding
how conformity, communication, and self-control shape collective behavior
is thus essential both for economic theory and for designing policies that
improve welfare.

This thesis explores these themes through three essays, each focusing on a
distinct but related dimension of individual and collective decision-making.
The first essay investigates how conformity affects information transmission
in a communication game. The second extends this framework to study
rumor propagation in networks, highlighting how conformity amplifies the
spread of unverifiable statements. The third essay shifts from information
to consumption, analyzing how self-control costs influence the optimal tax-
ation of sin goods under monopoly pricing. Across these contexts, the cen-
tral concern is how individual behavioral motives interact with structural
constraints, such as communication channels, network topologies, or market
pricing schemes, to shape welfare outcomes.

The first essay examines the role of conformity in environments where in-
dividuals seek both to learn about an underlying state of the world and to
coordinate their actions with others. In many real-world contexts, such as

political communication, financial markets, or product reviews, agents care



not only about the accuracy of information but also about aligning with the
majority. To model this, I build on an incomplete information framework in
which a sender observes the true state of nature and communicates with mul-
tiple receivers. Some receivers may be biased toward a particular outcome,
while others are unbiased truth-seekers. The key innovation is to introduce
conformity into preferences: receivers value taking actions close to those of
their peers.

This modification introduces new strategic tensions. On the one hand,
conformity may discourage truthful communication, as individuals prioritize
coordination over accuracy. On the other hand, moderate levels of confor-
mity can enhance social learning, as unbiased agents are incentivised to fol-
low when they think others will do so. The analysis shows that the degree of
conformity plays a pivotal role in sustaining equilibria with informative com-
munication. This has implications for understanding environments where
both truth and alignment matter, such as coordination on policy reforms,
adoption of technologies, or information sharing in organizations.

Building on the insights of the first essay, the second turns to the problem
of rumor propagation in networks. Rumors are statements whose veracity is
uncertain and often unverifiable, yet they spread rapidly within social groups,
influencing political, economic, and health-related outcomes. From the per-
spective of economics, rumors provide a natural laboratory for studying why
rational agents might transmit information that is potentially false.

I extend the model of Bloch et al. ( ), who show that rational agents
may spread rumors if, on balance, they believe them to be true and stand to
benefit if they are. Their model, however, does not account for conformity
motives. I introduce a networked setting in the form of an undirected line,
in which individuals care about aligning their actions with neighbors. This
addition captures the idea that individuals may spread rumors not because
they believe them, but because doing so aligns them with their neighbors.

The analysis reveals that conformity expands the set of conditions under
which rumors circulate. Even when individuals suspect that a rumor is false,
they may transmit it to avoid deviating from peers. This mechanism helps

explain why political misinformation can sway elections, why doubts about
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medical treatments spread despite strong scientific evidence, and why finan-
cial rumors propagate through markets. The model highlights conformity as
a powerful catalyst for social learning, but also for social mislearning, with
significant policy implications for combating misinformation.

The third essay shifts from communication and networks to consumer
decision-making under self-control problems. Many goods, such as tobacco,
alcohol, and sugary beverages, are associated with temptation and overcon-
sumption. Governments commonly impose sin taxes on such goods to dis-
courage consumption and raise revenue. Yet the optimal design of these
taxes is far from straightforward. Sin taxes are often regressive, encourage
illicit trade when set too high, and interact in complex ways with consumer
behavior.

To analyze these issues, 1 adopt the temptation model of Gul and Pe-
sendorfer ( ), which formalizes the trade-off between long-term commit-
ment utility and short-term temptation utility. Consumers first choose a
menu of options and then select an item within it, with self-control costs
arising when temptation conflicts with long-term preferences. I embed this
framework in a nonlinear pricing model where a monopolist sells sin goods
to heterogeneous consumers. The monopolist cannot observe preferences di-
rectly and thus relies on price discrimination through menus.

The analysis distinguishes between consumers facing upward temptation
(toward high-quality, high-price goods) and downward temptation (toward
low-quality, low-price goods). In such settings, taxation alters not only con-
sumption but also the distribution of self-control costs. I show that specific
taxes have no effect on welfare in the case of a domestic monopolist, whereas
ad valorem taxes can be welfare-enhancing depending on market size and the
distribution of temptation intensities. For imported goods, by contrast, both
ad valorem and specific taxes can improve welfare, with optimal ad valorem
rates reaching as high as 50 percent.

A central contribution of this essay is to evaluate taxation under three
alternative welfare concepts: adjusted-cost welfare (which accounts for self-
control costs), normative welfare (which reflects commitment utility as true

preferences), and behavioral welfare (which aggregates across selves via ex-
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post utility). The results highlight how policy prescriptions depend critically
on the chosen welfare benchmark. For instance, under normative welfare,
higher taxes may be desirable to curb temptation, while under behavioral
welfare, lower taxes may be preferred to respect revealed choices. This un-
derscores the theoretical and philosophical challenges of welfare evaluation
in behavioral contexts.

Considered jointly, the three essays illuminate how conformity, bias, and
self-control interact with institutional and market structures to shape out-
comes. The first two chapters demonstrate how social interactions can am-
plify or suppress the transmission of information, while the third shows how
self-control problems alter the design and evaluation of optimal taxation. A
unifying theme is that individual motives, ranging from the desire to conform
to the pursuit of biased outcomes or the struggle with temptation, exert a
profound influence on collective welfare.

The contributions are threefold. First, the thesis extends models of cheap
talk and rumor propagation by incorporating conformity, offering new in-
sights into the dynamics of social learning and misinformation. Second, it
adapts nonlinear pricing models to account for temptation, yielding novel re-
sults on the design of taxation in sin good markets. Third, it brings together
these strands to highlight a broader perspective: that behavioral motives
must be integrated into economic analysis to understand how communica-
tion, networks, and markets function in practice.

By bridging communication games, network economics, and behavioral in-
dustrial organization, the thesis contributes to ongoing debates in both theory
and policy. It sheds light on how misinformation spreads, how individuals
respond to peer pressure, and how governments can design policies in the
presence of behavioral biases. Ultimately, the results suggest that effective
policy requires not only correcting market failures but also acknowledging

the behavioral forces that drive individual and collective decisions.
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CHAPTER 1

CONFORMITY As A CATALYST
For SociAL LEARNING

I develop a multi-receiver incomplete information game of coordination with
two types of agents: unbiased agents, who seek to align their actions with an
underlying state of nature and to coordinate with others, and biased agents,
who favor a specific collective decision. A randomly chosen sender observes
the realized state and then engages in strategic communication, after which
receivers socially learn through the sender’s message. In equilibrium, whether
truthful equilibrium and full social learning occur depends jointly on the
degree of conformity among unbiased agents and the share of biased agents.
In particular, I show that truthful strategic communication to a large group
and social learning remain feasible provided the degree of conformity does

not exceed one-half and the share of biased agents is below fifty percent.

1.1 Introduction

The rapid development of information technologies has made information
more easily accessible and influential in shaping individual decisions. For
example, consumers can make independent purchase decisions by watching a
review of the product online or through other media. Similarly, voters may
decide how to place their ballot in an election based on the opinion of a

public figure. In both of these cases, agents may end up choosing the same



action because, individually, each agent believes that this action is the best
given the information they received. Consider the first of these examples,
if consumers are only interested in whether a product is of good quality or
not (so that other issues that might affect their decision to purchase, such
as budget constraints and other’s purchasing decisions are ignored), then
purchasing decisions reflect information transfer from the reviewer to the
consumers. In this case, consumers have learned the quality of the product
and purchasing decisions reflect this.

If in the above examples, agents wish to align their actions with other
agents then information transfer and learning might not be feasible. This is
because agents might hold strong beliefs regarding the actions made by the
remaining agents, and thus, even if the reviewer is honest, they coordinate on
a given action independently of the review. Alternatively, the reviewer may
post a review she considers is most likely to align with the action of some
of her viewers. Some agents may then assume that the review is unreliable,
which will lead them to decide not to make a purchase.

The willingness of agents to take actions that match those taken by others
can be regarded as conformity. More specifically, conformity is understood
here as willingness to adopt the same action as others regardless of whether,
according to the agent’s own mind-set, the action is reasonable or correct
in some way. This independence on agent’s own mind-set can then be in-
terpreted as placing a cost on taking certain actions. This cost may be un-
conscious (i.e. due to inherent biases) or conscious (the agent may fear the
social repercussions of diverging from the norm). Formally, conformity may
be represented as a loss function that increases with the extent of divergence
from the choices made by others.

The coexistence of conformity in the context of information transmission
is main theme of this paper. In particular, this coexistence raises a central
question: does conformity allow information to be transferred or does it ac-
tually hamper it? This does not have an immediate answer. On the one
hand, if agents align with others regardless of the information they receive,
then agents may fail to transfer information in favor of conforming to other’s.

Alternatively, agents may ignore any information they receive. On the other



hand, conformity may facilitate information transfer by promoting the dis-
semination of signals that support preferred actions. Similarly, agents may
be more willing to accept unlikely information if doing so results in actions
that are consistent with the majority. In the previous example, a consumer
may be more likely to be influenced by a positive review if the product is
fashionable.

When considering information transfer under conformity, another issue
arises: if some agents disregard information and are willing to promote an
action independently of the truth, can information still be transferred? If
agents seek to conform with others, does the presence of this agent completely
erase information transmission? In many applications the existence of such
agents is relevant. Alleged health treatments are frequently promoted on
social media; similarly, partisan agents may disseminate false information in
pursuit of particular political agendas. Interestingly, in some circumstances
the existence of these biased agents may encourage information transfer if
the desire to conform is not too strong. I investigate this possibility in the
paper.

To investigate these questions, I model information transfer via a sequen-
tial game with imperfect information. The game contains two types of agents
unbiased agents and biased agents. An agent’s type is private knowledge to
that agent, but the proportion of biased agents is common knowledge. Un-
biased agents represent “average” agents who seek the truth but may be
influenced by the actions of others. Biased agents, on the other hand, can
be thought of as partisan agents who are only interested in a particular out-
come. In the reviewer-consumer example, biased agents represent fans of the
product who are willing to purchase it and promote independently of its ac-
tual quality. Unbiased agents represent standard consumers who are willing
to purchase a high-quality product and forgo a low-quality one; however, this
decision may be influenced by the behavior of others.

The game proceeds in two phases: first, a randomly chosen sender from
the population receives a private and perfect signal about the true state of
the world. In the reviewer example this might correspond to the reviewer

receiving a sample by the manufacturer or making a private purchase. After



receiving the signal, the sender takes an action. This action is observed
by the remaining agents in the population, referred to as receivers, who
interpret it as a message about the state of the world (i.e. the reviewer
posts a public review of the product on social media). The remaining agents
then take their actions independently and privately (in the example this
corresponds to making a purchase or not). A collective outcome is determined
by taking the mean of the receivers’ action and the sender’s action. Note that
communication is costly in my model, the sender commits to his action before
the remaining agents take theirs. Moreover, even though the sender has to
take an action, she is allowed to lie.

I determine the existence of equilibria where unbiased senders disclose
their information truthfully (it is possible, as I show, for them to disclose it
by lying, but this is inefficient) and unbiased receivers obey their message.
Note that biased senders seek to obfuscate the truth and they always send
a message that aligns with their preference in equilibrium. Similarly, they
disregard any information and adopt their preferred action. I establish that
conformity can in fact encourage social learning even if biased agents are
present. This is because from the perspective of unbiased agents, information
about an unlike state is very valuable. If biased agents are present and prefer
the outcome associated with this state; then receiving a message indicating
this is the state becomes less informative since it may come from a biased
agent. However, if unbiased agents benefit from conforming and all remaining
players choose the action associated to the unlike state when receiving it, then
the agent is incentivized to choose this action as well.

More broadly, I show that the possibility of information transfer as follows:
if the population contains no biased agents. If the willingness to conform is
sufficiently strong, equilibria in which agents coordinate independently of in-
formational content become relevant, even when these equilibria are Pareto
inferior. On the other hand, if unbiased agents are unaffected by conformity
then social learning is possible if the proportion of biased agents is small. For
low prior believes, social learning is thus not very robust to the inclusion of
biased agents. As mentioned in the previous paragraph, this is due to some

messages not being as informative when biased agents are present. If con-



formity becomes relevant then information transfer and social learning can
survive even for arbitrary proportions of biased agents in small populations.
This is because conformity acts as an additional incentive for unbiased agents
to take certain actions when receiving the corresponding message since ev-
eryone else adopts this action in equilibrium and gains are substantial as
result. These gains are however not large enough to discourage deviating
from taking actions corresponding to alternative messages. Interestingly, if
populations are large then, provided conformity is valued less than truth and
biased agents are not a majority, social learning remains feasible; indepen-
dently of the prior belief.

The above results show that information transfer can be robust when
biased agents are part of the population. In the sense that for a fixed prior
belief the proportion of biased agents a population can sustain while ensuring
that unbiased agents communicate truthfully is larger when biased agents
benefit from conforming than when they do not.

The model lends itself to several applications, among which I have already
highlighted online reviews and consumer purchasing. In this case my model
can help shed light on questions relating to social media motivated consump-
tion trends, for instance the recent trends in matcha tea and Dubai chocolate.
In addition, the model might be well suited to study investor herding and
political influencing through social media. In these examples, the outcome
dependent term can be treated as a formal device to study the interplay of
decisions by receiver and sender. On the other hand, this term can have
representation in real life; i.e. because there might be externalities in taking
a particular action. An example of this is the implementation of prevention
policies for infectious diseases. Consider in particular the Covid-19 pandemic
when governments needed to make decisions to protect citizens from infec-
tion while also considering the burden it places on everyday life activities.
An instance of this kind of decision is encouraging the use of masks. The sit-
uation of the pandemic at a given time may be viewed as either uncontrolled
or controlled by the government by referring to how fast the virus spreads
or in some other way. If the virus is uncontrolled encouraging citizens to

wear a mask would be the best choice in order to prevent the spread of the



virus. On the other hand, if the virus is controlled, mask wearing could be
discouraged for citizens to benefit from fuller social interaction.

Assume that the government is informed of the current situation of the
pandemic accurately via experts’ report or some similar way. The public
is unaware as it does not receive this information directly. A government
official can then make a policy announcement recommending wearing masks
or not. This recommendation need not match the current situation. In
the other words, the government may be overcautious and encourage the
use of masks when it is in fact not needed; or, on the other hand, it may
announce that wearing masks is not needed because it wants to prioritize
some social effect or economic factor despite the virus spreading rapidly.
After the announcement is released, the public can decide whether to wear a
mask or not. Some members of the public may prefer that everyone acts in a
way that matches the current pandemic situation (wearing masks when the
pandemic is uncontrolled and not wearing them when it is controlled). There
may be some others who are very stubborn and only care that society acts in
a given way independently of the situation; some may want masks to be worn
regardless of the current status of the pandemic to feel safer, while others
may not want masks to be worn at all because they see it as too restrictive.
Individuals that have such strong preference are unlikely to be affected by
the behavior of others, while individuals in the first group (those who do not
have a predetermined view) might consider what others are doing to align

their own behavior with that of the rest.

1.1.1 Related Literature

This paper contributes to the literature on strategic communication, which
began with the seminal work of Crawford and Sobel. In Crawford and Sobel
( ), one agent has private information which is allow to communicate to
another agent at no cost (cheap talk). The last agent then takes an action
which determines the payoffs to both. My paper adopts a similar approach
by adopting their payoff (although in Crawford and Sobel action spaces are

continuous) but I consider multiple receivers instead. Unlike Crawford and



Sobel ( ), senders commit to their message and it affects their payoffs,
hence communication is not cheap. Moreover, the environment in my model
allows for receivers to not only be concerned with the accuracy of their indi-
vidual actions but also with coordinating those actions with others.

It is noteworthy that in contrast to standard models of cheap talk with
multiple receivers (e.g. Farrell, ; and Goltsman and Pavlov, ) where
the sender has no incentive to misreport to any single receiver in an informa-
tive equilibrium, since payoffs depend only on the receiver’s action, not on
the content of the message itself. Moreover, if the desire to conform is suffi-
ciently large then senders and receivers seek to coordinate naturally, which
results in no information being transferred.

A common strand in the literature is to consider different modes of com-
munication, a foundational paper in this regard is Farrell and Gibbons ( ),
which discusses the behavior of a sender and two different agents, referred
to as audiences. Equilibria in this paper differ depending on whether one
or both audiences are present. In my model, communication is public and
I therefore do not account for audience-dependent effects, the main focus
being the analysis of the willingness to conform to the behavior of others.

Two particularly noteworthy extensions to these models related to this
paper are Hagenbach and Koessler ( ), and Galeotti et al. ( ). Both
papers reach similar conclusions and allow agents to communicate with mul-
tiple other agents. The main focus is to study the network structures involved
in honest communication. In contrast, my model allows communication only
once by a single agent; nevertheless, I observe similar communication effects.
In addition, my model takes inspiration from the payoff function in Hagen-
bach and Koessler ( ), one of the main differences is that in my model
non-coordination payoffs depend on the aggregate actions of all players. In
addition, in Hagenbach and Koessler ( ) each agent receives a private sig-
nal about the state of nature, with the true state given by the sum of these
signals. By contrast, my model features a single fully informed agent, while
all other agents are uninformed, rather than each agent possessing partial
information.

My paper is closely related to Bloch et al. ( ), who analyze how rumors



spread both in public broadcast and through a network. I extend their pub-
lic broadcast model to account for conformity and assume that the sender
commits to his action, whereas in Bloch et al. ( ) agents are allowed to
change their actions in the later stages. They focus on the conditions for
misinformation transmission in equilibrium. My model implies however that
if agents value the truth more than conforming with other, conformity can in
fact enhance information transfer and help achieve social learning. While, if
the effect is strong enough, it might hamper it in situations where it should
have been otherwise possible.

This work is related to Bayesian social learning models, which examine
how agents learn from observing others. This literature studies how agents
update beliefs and choose actions based on private signals and based on pri-
vate signals and the observed actions of others (Bikhchandani et al., :
Banerjee, ). Standard models show that actions may converge over
time, but herding or miscoordination can occur, especially when signals are
bounded or networks are directed (Smith and Sgrensen, ; Acemoglu et
al., ). While this literature emphasizes how information spreads through
networks, agents in my model care not only about aligning with the true state,
but also about coordinating their actions. This feature, in particular, affects
the credibility of communication, as it depends not only on believes about
the sender’s motives but also on how messages shape collective rather be-
havior. Unlike models in which repetition is possible, learning in my setting
occurs only once.

A large body of political research on collective voting highlights the role
of social conformity. Bernheim ( ) shows that individuals may conform
to behavioral norms because status depends on how actions signal unobserv-
able predispositions, even when underlying preferences are heterogeneous.
Building on this, subsequent studies examine the effect of conformity on col-
lective voting behavior (Coleman, ; Moreno et al., ). In line with
this literature, I incorporate conformity motives into my model.

The paper is organized as follows. The model and equilibrium notions
are introduced in detail in section 1.2. Equilibrium characterizations for

different parameter values are discussed in section 1.3. Section 1.4 provides



a discussion of comparative statistics and robustness of social learning in

large populations. Section 1.5 gives a summary and conclusion.

1.2 Model

In this section, I introduce the incomplete information game of coordination
mentioned earlier. Broadly speaking, the game is as follows: a given agent
(the sender) receives information privately, which he can transmit to other
agents through his action (message). This message is observed by other
agents (receivers). Immediately after the sender takes his action, the receivers
then simultaneously choose their actions based on both the sender’s message

and what they think the unknown state of the world is.

Information Generation

The receivers’ uncertainty, which is central to the game, stems from two
private information sources: the sender’s type and the state of the world,
which determines their preferences. More specifically, consider a popula-
tion N of voters i € N, |N| = n > 4, consisting of two types t € T =
{unbiased, biased} of agents distinguished by their preferences over messages
and outcomes: some do not have predetermined preferences about whether
the collective outcome should align with the unknown state of nature and are
willing to coordinate with others. Their desire to conform to the behavior of
others is measured by a common and publicly known exogenous parameter
a € [0,1] (0 indicates no desire to conform while 1 indicates a complete de-
sire to conform). There are also agents who have predetermined preferences
about what the outcome should be; they are not motivated by the desire to
coordinate. The first class of agents are called unbiased agents. The set of
unbiased agents is U, I use the notation i* € U, |U| > 3, to indicate that
an agent is unbiased. More generally, a superscript “u” refers to unbiased
agents. The second class of agents are biased agents. The set of biased agents
is B, |B| > 1, and, just as before, I write i* € B = CxU to indicate that an



agent is unbiased.! Similarly, a superscript “b” refers to biased agents.
Each agent knows their type but not that of other agents; however, they
know the proportion of types in the population. In other words, individual
agent types t are private information, while the proportion of biased agents is
common knowledge. For a given unbiased agent i* € U in a population, the
bias ratio b is the fraction of biased agents among the remaining population,

defined by

|B]
b= —1
N -1

As mentioned at the beginning, the state of nature is also unknown to
most agents. It is assumed to be in either one of the two possible states
© = {0,1}. A particular state is denoted by 6 € ©. Each agent’s incomplete
information is characterized by the pair (6,t) € © x T which combines the
state of the world and the sender’s type.

The assumptions on group size ensure that the population is sufficiently
large to study communication effects while preventing biased agents from
dominating. For instance, in a group of three agents with one biased agent,
an unbiased agent would face either one unbiased and one biased agent, or
two biased agents. In such small groups, the bias ratio is at least one-half,
meaning that conforming behavior would be disproportionately influenced
by the biased agent’s presence.

The game proceeds in two distinct phases: (1) message transmission phase:
a sender transmits information through a costly action; and (2) collective
decision phase: receivers simultaneously choose actions based on the message.

I now describe each phase in detail.

Message Transmission

A randomly chosen sender observes the realized state 6, while the remaining
agents receive no direct information about the state. Despite 6 being un-

known to most agents, all unbiased agents are assumed to have a common

1€ denotes the complement of the set U/ in the set N
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prior belief 7 about what 6 is (the prior belief of biased agents is irrele-
vant, since their utilities do not depend on the state ). More precisely,
T=PO=1)< %, so that 7 represents the belief that § = 1 is the true state
of nature. The assumption on the belief and its definition are chosen in this
way so as to ensure that information transfer plays a meaningful role in the
decision process of the unbiased agents.

In the sequel, I analyze the Perfect Bayesian Nash Equilibrium of this
game in pure strategies. Each agent chooses one of two actions from the set
A = {0,1}. Observe that these are labeled in the same way as elements of ©.
As usual, a strategy for a given player is a function that specifies an action
at each information set of the game.

Once the sender observes 6, he is allowed to decide whether to commu-
nicate this signal truthfully or to misreport it by choosing an action in A.
Importantly, the sender cannot block or withhold the message. Recall that
only he observes # and takes an action before the receivers (the remaining
players). This action is thus the message he sends to the receivers. For a
sender of type t and § € © m’(f) is the message he chooses to send. The
strategy of the sender i* can be described by a mapping m'(f) : © — A,
t € T. Specifically, m“(0) denotes the strategy of an unbiased sender while
mP(#) denotes the strategy of a biased one. In equilibrium, unbiased senders
may truthfully report # or choose to strategically misreport it depending
on their incentives. By contrast, a biased sender strategically sends a fixed
message that reflects his predetermined preference, aiming to influence the
collective outcome in line with his inflexible objective. This intuitive outcome

is analyzed formally later.

Collective Decision

After the sender has taken his action, each unbiased receiver updates his
prior belief to a posterior p(m) = P(0 = 1|m) according to Bayes rule. Note
that since unbiased agents initially consider 8 = 1 to be less likely, this
posterior probability plays a crucial role in determining the actions taken

by unbiased receivers. Unbiased agents then take an action simultaneously
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about what each thinks the value of 0 is. A profile of actions for receivers
in the population is denoted by v = (vy,...,v,1), with v; € A = {0,1},
j=1,..n—1

Now, let = € [0, 1] denote the collective outcome. The outcome z is as-
sumed to follow the “rule of the average”. In policy terms, the chosen policy is

the one proposed by a randomly chosen voter: = = z(m,v): (m,v) — [0,1],

The final outcome x is therefore the average of the actions taken by all
agents weighted equally. Note that each agent therefore contributes equally
to the final collective outcome, including the sender despite moving first. In
addition, the rule of the average is particularly useful from a modeling per-
spective: when utilities are linear in the collective outcome, taking the simple
average allows expectations to be easily computed, preserving tractability
while highlighting how communication and coordination shape behavior and
avoiding messy nonlinearities while still capturing the idea that more votes
causes higher probability. Moreover, the rule makes the marginal contri-
bution of each agent in the outcome transparent: An agent deviating from
action 1 changes the collective outcome by exactly % This property empha-
sizes that coordination incentives arise not from asymmetric voting power
but from informational and strategic interactions among agents.

A summary of the timeline of the model is provided in figure 1.1 below.

Payoffs

Sender Preferences and Utility
Each sender has intrinsic preferences over the set © = {0,1}. The utility

function of an unbiased sender i* € U choosing strategy m* is

up(m*;v,0,a) = —(1—a)|z(m*;v) — 0| —

n—1
a u u
L3 = ey (m)- (1)
j=1

12



Population: Agents ¢ € {u,b}; a common knowledge

States: Binary 6 € {0,1}; prior w < 1/2

Information: Each knows own type; sender observes 6
Message: Sender chooses m!(6)

Updating: Receivers form posterior p(m)

Actions: Unbiased: v*(m); Biased: v* = 1

Outcome: Collective z(m,v) = mean of actions; payoffs realized

Figure 1.1: Timeline of the model

The first term in this equation corresponds to the loss from the collective
outcome z failing to matching the true state 6 (scaled by 1 — «). On the
other hand, the second term accounts for losses from failing to coordinate
with other agents (scaled by a)). The parameter « € [0, 1] is accordingly the
relative weight loss from mis-coordination compared to loss from deviation
from the outcome not matching #. As explained earlier, if @« = 0 a given
unbiased agent does not care about the remaining agents’ choices and hence
will choose the action that matches what they think the true state is. On the
other hand, if a = 1, the unbiased agent’s utility is completely determined
by other agents’ actions and therefore they will have a strong incentive to
coordinate with the majority.

Note that each unbiased agent shares the same weight « for tractability,
even though heterogeneous weights would be more realistic. This simplifica-
tion should not affect the results significantly.

b

A biased sender i® € B chooses m® so as to bring the collective outcome

x closer towards his preferred state € = 1. This is represented by the utility

13



function
1 n—1
S/ b b b b
- : = — : — 1l == . — 1. 1.2
uwy(m’;v) |z(m”; v) | " (m + ;21 vj(m )) (1.2)

Unlike unbiased agents, the biased sender’s utility is independent of both
the true state of nature 6 and the parameter «.

Receiver Preferences and Utility

An unbiased receiver j* € U chooses an action v;u € {0,1} to maximize
utility by balancing benefits derived from the outcome aligning with the true

state and benefits from coordination. The utility function is therefore:

R
ju

W (Vju; Voju,m, 0, ) = —(1—a)|z(vju; v_ju, m)—0|—

n—1 ~
kg{j*,i}

(1.3)

n—1
where z(vju; v_ju,m) = = | vju +m+ Y vy, | describes the outcome. More-
k=1
k5"
over, v_;« denotes the action profile of all receivers except j*; while the sum
in this equation is taken over agents other than j* and the sender 7.

Similarly, the utility of a biased receiver j° from choosing v 18

n—1

1
uﬁ(vjb;v_jb,m) = —|z(vp; v_p,m)—1| = el IO +m+ Z ve | —1. (1.4)

As stated previously, biased receivers always prefer x = 1 regardless of
. Their utility depends only on the distance between x and 1, and are not
affected by coordination. Therefore, vy = 1 is a dominant strategy for a

biased receiver.
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1.3 Perfect Bayesian Nash Equilibrium Characteriza-

tion

I first identify the conditions that determine receivers’ optimal actions by
requiring that beliefs are consistent. Given a profile of actions v and a
message m, let xé = 2(0;m,v_;) denote the expected collective outcome
when a given agent j chooses 0; :cé—l—% is then the expexted collective outcome
if the agent j chooses 1 instead.

For an unbiased receiver j“, the expected utility from choosing action 0
after receiving message m is then

J
xo.

Elugt(vu = 052)[m] = —(1—a) {p(m)(1 — ) +[1 - p(m)]xé}—an ?z ]

In this equation, the terms in curly brackets refer to the expected loss
from the collective outcome not matching the true state. The second term
refers to loss from failing to coordinate with agents who take action 1. These
coordination losses do not depend on the posterior beliefs p(m) directly, since
the actions of other agents are assumed to be known, but they do depend on
the (unknown) type of the sender.

The expected utility of j* € U from choosing action 1 is on the other
hand,

Bl (e = Ll == (1= ) {pton) (1= = ) + (1= pton)] (s

n .
—a(l—n_le)).

The previous two equations can be combined to arrive at the conclusion
that an unbiased agent 7* chooses action 1 if
1 no 2n

plm) > 5 11+ (1=

Afmv-)|. 15)
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while j* chooses action 0 if

plm) < [+ 722 0= 2 (mv)] (1.6)

1l -« n —

N | —

when « € [0, 1).
If the inequality signs in equations (1.5) and (1.6) are replaced by equal

signs; so that

1

p(m):_[H na o

1 —
1—a( n—

2 —

then the agent is indifferent between both actions. If equality holds, the
agent is indifferent between the two actions and may mix. However, since
the analysis is restricted to pure-strategy equilibria, I exclude this knife-edge
case. Allowing mixed strategies would complicate the analysis by introducing
additional coordination considerations, without generating further insight
into the mechanisms of interest. Hence, focusing on pure strategies is without
loss of generality for the results derived below.

The cutoffs defined by equations (1.5) and (1.6) show that unbiased re-
ceivers are more likely to choose action 1 when one (or more) of the following
conditions are fulfilled: (i) Their posterior belief p(m) is sufficiently high; (ii)
the conformity a is stronger (or smaller) when 27, is above (or below) the
threshold ”2—;1; (iii) the expected collective outcome mé is closer to 1. For a
given message m and action profile v_;, I denote by x(m,v_;) this cutoft,
the decision threshold, for agent j. These are discussed in more detail below.

Note that this threshold is characterized by two components:

no 2n
K(m,v_;) =5 1+ 1— zp(m, v—_j)
2 1l -« n—1
v N -~ o
Coordination weight Social influence

Now, consider the expression {**-. This ratio appears in the context of de-

termining conditions for truth-telling or equilibrium strategies in such games.
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Specifically, it often arises as a threshold in the sender’s incentive to tell the
truth versus conform to others. The numerator na scales the conformity
weight by the number of players. he denominator 1 — « is the weight on ac-
curacy. Thus, 1% measures the relative importance of conformity compared
to accuracy, adjusted by the group size. I will show that how this ratio affects
the threshold of biased ratio telling-truth equilibrium in the next section.
This equation highlights complexity inherent in the bound as it reflects
the interaction between coordination and communication. These manifest

(as suggested earlier) by the dependence of the bound on three parameters:

«, the total population n and the expected collective decision z. The co-

ordination weight ¢ quantifies the value of aligning with others, while the

effects of social influence are reflected in the term 2%z, which accounts

for the pressure to conform to the expected group behavior. If & — 0 (so

that the unbiased agents are interested in the truth only), then the decision
1
5.
decision threshold reduces to %, meaning that unbiased agents take action 1
only if they think that § = 1 is likely to be true. On the other hand, if « — 1

n—1
2n °

As a result, the action 1 of an unbiased receiver is never chosen in this case.

threshold satisfies xk(m,v_;) — In the limiting case where a = 0, the

(pure coordination), then the threshold x(m,v_;) — 400 when z <

If, by contrast, xé > ”2—;1 then x(m, v_;) = —oo and, as a result, an unbiased
receiver shuns action 0. More generally, for @ > 0 the decision bound de-
pends on how many agents are taking action 1, as this number increases the
bound becomes less tight and the agent might not need to think that § = 1 is
the most likely state to take action 1. Similarly, if a majority of other agents
are taking action 0 the bound may become tighter and the unbiased agent is
less incentivised to take action 1.

Given that all biased agents adopt the strategy v;; = 1 in equilibrium, I
can restrict the analysis to finding equilibrium strategies for unbiased senders.
This allows the following formal simplifications: The receivers’ strategy pro-
file v can be replaced by the vector of unbiased receiver strategies {v;u},
j* € U. Accordingly, x)(m,v_ju) replaces x}(m,v_;). Here v_ju represents
the vector of unbiased receivers except j*. Furthermore, I will simplify no-

tation in the remainder of the chapter as follows: for a sender i; if he is
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unbiased, the utility uf.(m*; v, 6, ) is reduced to ui (m®; v;u, ), while if he
is biased, the utility u$(m?;v) is reduced to w3 (m®; v;u). Meanwhile, for a
receiver j; if he is unbiased, the utility uﬁ (vju; v_ju,m, 0, a) is reduced to
ull (z3(m, v_ju)). On the other hand, if he is biased, the utility w3 (m’; v) is
reduced to uf, (m?; zf(m, vju)).

The solution concept in this paper is Perfect Bayesian Nash Equilibrium
(PBNE, for short). I will consider for simplicity symmetric equilibria only.
Equilibria is said to be symmetric in the sense that agents of the same type
behave identically. In particular, senders of the same type create identi-
cal messages, while receivers of the same type follow the same equilibrium
strategy. Formally, a profile (m*, m®, p,vju,v;p), with v : {0,1} — {0,1};
m¥,m®: O — {0,1} and p € A(O) is a symmetric PBNE if it satisfies the

next four conditions:

(i) Senders’ strategy (Optimal Messaging):

For unbiased senders % € U:

m"(0) € arg m{%ﬁ}E [uf. (m; v_iu,0,0) | p(m)] VO € O,
meq0,

where the expectation takes into accounts receivers’ strategies and pos-
terior belief p(m). Recall that the sender also knows 6.

For biased senders i® € B:

m° () € arg m{%xl}E [uf(m;v_p,0) | p(m)] VO €O,
meq0,

where the expectation takes into account receivers’ strategies and pos-

terior belief p(m).

(ii) Receivers’ strategy (Optimal Actions):
For an unbiased receiver j,

oge(m) = 1if plm) > &[22 (1 22 (m, vy ey = 1)) +1];

vju(m) = 0if p(m) < 3[4 (1 = 2ag(m,v_p o = 0) +1];

and for a biased receiver j°,
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vip(m) = 1.
(iii) Belief Consistency (Bayesian Updating):

Whenever possible, the posterior belief p(m) is updated via Bayes’ rule:

b-Pmb=m|0=1)+(1-b)-Pm*=m|0=1)
b-P(mb=m)+ (1—-0) -P(m*=m)

p(m) =B(0 = 1| m) =

T,

where the prior satisfies 7 = P(§ = 1) < 1 and P(m* = m) and
P(m® = m) represent the probabilities of the message received being

sent by unbiased sender or biased sender respectively.

Note that it is a dominant strategy for biased receivers to take action 1
so the action of a biased receiver will match that of other biased receivers
trivially in equilibrium.

Recall that PBNE can be divided into three categories: i. separating equi-
librium, where different types of senders m’(0) take different actions and thus
all information is transmitted to the receivers; ii. pooling equilibrium, where
both types of senders take the same action, resulting in no information be-
ing transferred to receivers; and, iii. partially-separating equilibrium, where
one type of agent always takes a certain action while the other separates the
actions. A general property of this model is that no separating equilibria
exists for any value of a however. This is because a biased senders’ payoff
is irrelevant of the true state of nature. Hence, under most circumstances,
they prefer sending a fixed signal 1 rather than sending a message which dis-
closes the true state of nature. Note that the goal of preventing information
disclosure does provides an incentive for biased agents send message m = 0
in some cases. Partially separating equilibria can be realised in this model
however. Naturally, in this case unbiased senders to disclose the state of
the world, while biased agents send the same message independently of the
signal received. Information transmission by unbiased senders takes one of
two forms: an unbiased sender can tell the truth to the remaining agents or

lie to them. More formally,

Definition 1.3.1. Truthful equilibrium: a PBNE in which unbiased senders
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send a message identical to the signal they received, i.e. m*(0) = 0, mb(9) =
1.

Definition 1.3.2. Lying equilibrium: ¢ PBNFE in which unbiased senders
send a message opposite to the signal they received, i.e. m*(0) = 1 — 0,
mP(6) = 0.

In the following sections, I characterize the equilibria of the model ac-
cording to different values of the parameters involved beginning with the

boundary cases.

Case: Fully Coordinated Unbiased Agents

In this case, @ = 1 which means the utility of each unbiased agent is inde-
pendent of the true state, the game reduces to one that resembles a pure
coordination one. The utilities include only coordination terms for unbiased
agents while they remain the same for biased agents. The utility of a sender

1" € U is accordingly:

n—1
1
us, (m"; v) = — Z Im* — v;; (1.7)
7j=1

n—1 —

while for an unbiased receiver j* the utility is

1
ufh (Vju; V_ju) = ]l o v — v+ o —m] (1.8)
_jug{ju’i}

instead. The expected utilities for unbiased agents are easy to compute in
this case, since they contain the term coming from coordination only. The
utility from choosing action 0 is therefore

’rl/ .

- 190{).

Eul (vju = 0; 2, m)|m] = -

On the other hand, the utility from choosing action 1 is

Eul (vju = L), m)|m] = —(1 — —
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regardless of belief p(m) since 6 no longer affects any type agent’s utility.
Incomplete information in this case reduces from (6,t) to simply ¢.
As a consequence of utility being purely dependent on coordination. Un-

biased receivers take their action by following the simple majority rule:

1 ifa) >t
Uju—

=

0 ifz) <t

In this regime, it is intuitive to conjecture that the rational equilibrium
is the one in which all agents take action 1 whenever a single biased agent
exists in the population. This is because biased agents create an incentive
to take action 1 since they always choose action 1. More formally, when
unbiased agents benefit from coordination only then symmetric equilibria
can be Pareto ranked. The optimal equilibrium being the one in which all

agents take action 1:

Proposition 1.3.1 (Coordination-Dominated Equilibrium). Given any pos-
itive share of biased agents b > 0 and state space 6 € {0, 1},
i. senders’ strategies: m'(0) =1 fort € T; and

ii. receivers’ strategies: vji(1) =1 for any t € T form an equilibrium.

For a proof of this proposition and others, the reader is referred to the
appendix at the end of this chapter.

The equilibrium in proposition 1.3.1 constitutes an equilibrium where all
agents achieve the maximal possible payoff of 0. Naturally, this outcome is
the only stable one whenever b > 0. As a result, information transfer is not
possible in this regime.

When b < 3,
Indeed, if b < %, unbiased agents can coordinate with each other by tak-
ing action 0 while the biased agents persist in sending 1. This leads to an

=

the Pareto efficient outcome is not the only equilibrium.

equilibrium in which information about sender type is revealed:

Proposition 1.3.2 (Type-Revealing Equilibrium). Given b < %;and S

{07 1}7
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i. sender’s strategies: m*(0) = 0 and m®(0) = 1 for i* € U and i* € B;
and
it. receivers’ strategies: vju(m) =0 and vip(m) =1 for j* € U and j* € B

on the path.

The equilibrium in proposition 1.3.2 may arise when unbiased receivers
coordinate with each other on voting 0. This forces an unbiased sender to
adopt message 0 independently of 6. Receivers coordinating on action 0 may
happen when action 1 is seen as risky, for instance. This causes senders’ type

to be revealed in equilibrium.

Case: Truth-Seeking Unbiased Agents

For ao = 0, the model coincides with a variant of Bloch et al. ( ), whose
work directly inspired the approach taken in this paper. Results in my paper
are similar to theirs in this regime. Unlike their paper, I specify that a sender
transfers his action as the message. In other words, a sender cannot change
his action after sending a message to receivers. Another important finding
in my model is the existence, for some particular values of the parameters,
of lying equilibria. This is different from Bloch et al. ( ), which focuses
exclusively on truthful equilibrium and does not mention lying equilibrium
at all.

When a = 0, the utilities for biased agents are unchanged while utilities
for unbiased agents only contain the term resulting from the outcome being

different to the true state 6. Hence, for i* € U/ if he acts as sender
wp (m"; v, 0) = —[z(m";v) — ]; (1.9)
while if he acts as receiver

uﬁ*(vj”;v—j%mve) = _|x(vj“;v—j“>m) - 9| (1'10)

As before, z}, = x(m,v_;) is the collective outcome if agent j chooses 0

and ) + L is the collective outcome if he chooses 1 instead. Observe that for

an unbiased receiver j* € U the expected utility of choosing action 0 after
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receiving the message m is

while his expected utility from choosing action 1 is

E[uf (vju = 132, m)|m] = —p(m) (1 - %) —[1 = p(m)] <:L'% - %)

instead. As I discussed earlier, an unbiased agent j* takes action 1 if p(m) >
%, while he takes action 0 if p(m) < 1.

There are three PBNE in this case: a truthful equilibrium, a lying equilib-
rium and a truthful equilibrium (biased-mimicking), where unbiased senders
communicate truthfully while all unbiased receivers behave as “biased” agents
who prefer a certain choice regardless of the message. The first two types of
equilibria occur whenever b < ;7—; while the truthful equilibrium (biased-
mimicking) occurs when b > 7. These are each separately discussed in the

next three propositions.

Proposition 1.3.3 (Truthful equilibrium). Assuming b < —, for 0 <
{0,1}, the message strategies m*(0) = 0 and m®(0) = 1 induce the following

belief p(m) on any unbiased receiver j* € U:

0, if m=0
pmy=3 (1.11)
b+ (1—b)r? if m=1.

Moreover, receivers follow the strategies vju(m) = m for any j* € U and

vp(m) =1 for any j* € B.

Proposition 1.3.4 (Lying equilibrium). Assuming b < =, for 6 € {0, 1},

1—m’

the message strategies of the sender m*(0) = 1 —0 and m®(0) = 0 induce the

following belief p(m) on any unbiased receiver j* € U:

0, if m=1
p(m) = _ (1.12)
if m=0.
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Moreover, receivers follow the strategies vju(m) =1 —m for any j* € U and

vp(m) =1 for any j* € B.

In a lying equilibrium, unbiased agents reveal their information even though
they attempt to hide it. This equilibrium is however not efficient. The fact
that this equilibrium is not stable is discussed in section II below. Intuitively,
even tough unbiased senders disclose the true state of nature they do it in
an inefficient way; by making the mean action be further away from the true
state than it should be if they had told the truth instead. In addition, since
biased agents wish to conceal the true state to bring the outcome x closer to
1, biased senders are forced to send 0 instead of their preferred choice of 0.
This creates further inefficiencies.

The bound of b on these two propositions depends on 7. This reflects
the fact that even though a large presence of biased agents in the population
makes information unreliable, this effect might be mitigated if the prior belief
of unbiased agents is high enough.

When b is large enough, the receiving message m = 1 does not provide
useful information to any unbiased receiver. This is because it is more likely
than not that m = 1 comes from a biased agent. In these circumstances,
unbiased receivers behave as if they were another class of “biased” agents in

equilibrium. More precisely,

Proposition 1.3.5 (Truthful equilibrium (biased-mimicking)). Assuming

b > &, for 8 € {0,1}, the message strategies of the sender m"(0) = 0
and m®(0) = 1 induce the following belief p(m) on any unbiased receiver
jhtelu:
0, if m=0
p(m) = ) ‘ (1.13)
m, ’Lf m = 1.

Moreover, receivers follow the strategies vju(m) = 0 for any j* € U and

vp(m) =1 for any j* € B.

The nature of equilibria for different choices of the parameters b and 7 is

illustrated in the diagram below.

24



o Verifiable and Unverifiable Regions for b and n

0.8 4

0.6 1

— b=rfr
o verifiable (b < Z3)

Unverifiable (b > Z3)
0.4 4

0.2 4

0.0

T T T T
0.0 0.1 0.2 0.3 0.4 0.5
n

Figure 1.2: The bound b in the equilibrium when oo = 0

As stated above, as the belief 7 increases, the threshold between the two
equilibrium regimes becomes less tight. Consequently, the population admits
a higher proportion of biased agents. In the diagram this can be seen by
an increase in the verifiable area (corresponding to both truthful and lying
equilibrium, where information transfer takes place) corresponding to the
increase of .

When o = 0 and b < =,

lying one. This is because unbiased senders choose messages that maximize

truthful equilibrium Pareto dominates the

the state-alignment payoff while biased senders follow their preferred action.
This motivates an alternative explanation as to why the lying equilibrium
appears is that receivers may attempt to punish biased senders by voting 0
when receiving 1. Senders respond to this threat by lying about the true
state. However, such a punishment is inefficient as senders have incentives
to revert to their original behavior.

Biased-mimicking equilibrium is caused by the proportion of biased agents
being too large. Unbiased agents take action 0 when receiving message 1

because this information is unreliable. This in spite of unbiased senders also
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creating message 1 whenever § = 1. Note that it is not possible for unbiased
agents to punish biased agents since information transfer is not possible;
action 0 is, therefore, the only safe option for an unbiased agent.

In summary, the threshold - represents a discontinuous transition from
a regime where information about € can be transferred (truthful or lying
equilibria) to a regime where information transfer breaks down completely

(biased-mimicking equilibrium).

Proposition 1.3.6. There is no pooling equilibrium, i.e. one in which either
mh(0) =1 for any t € T, or m*(0) =0 for anyt € T.

Proposition 1.3.6 is intuitive if @« = 0. This is because unbiased senders will
always attempt to transfer information about the true state to ensure that
unbiased agents take actions that match the true state. They are also fully
informed about this state. Moreover, biased agents have a strong incentive
to create message 1, so a pooling equilibrium where m*(f) = 0 for any t € T

is not possible for this reason.

General Case: Partial Coordinated Unbiased Agents

I consider now the general case when a € (0, 1) and analyse how the different
equilibria depend on both a and b. Recall that since I assumed that there
is at least one biased agent and at least 3 unbiased agents in the population
the following bounds must hold ﬁ <b< Z—j’ < Z—j, | > 3.

Proposition 1.3.7 (Truthful equilibrium). Let a € (0,1). For 6 € {0,1},
the message strategies of the sender m*(0) = 6 and m®(0) = 1 induce the

following belief p(m) on any unbiased receiver j* € U:

0, if m=0
oy =4 (113
mame Ym=1

and receivers follow the strategies vju(m) = m for any j* € U and vp(m) = 1
for any j° € B. This forms an equilibrium if o and b satisfy one of the

following conditions:
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Figure 1.3: The upper bound on b when o € (0,1) and 7 = 0.25 in the
truthful equilibrium

(1)&6(0,#@),b<%<1+ﬁ),
(2) a € [—2-1 ), Vb e (0,2=2);

n— 1+k(n+1)’n2 2n 1
(3)0(6 [W’Qn 1) b< = (1+R(oz,n)),

e 1
(4) a € [3= )b<T(n)

where k = = fl—“ and R(a,n) = =2,
- K noa

When viewed as a function of o the bound on b can be split into four
regions (this function is shown in figure 1.3 below for different populations).
The first of these regions (i.e o € (0, #(1%1)))7 corresponds to low coordi-
nation values. In this case, gains from conformity contribute to information
transfer by making the bound on b less tight. Coordination gains are how-

ever small and unbiased agents priority is to align with the true state. Note
further that when a = 0 the threshold = <1 + ﬁ) reduces 7, the

bound when coordination is absent.

k—1 n—1
n—1+k(n+1)’ n2—2n—1

coordination values. In this regime, gains from conforming to actions taken

The second region (o € | )) corresponds to moderate
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by others are sufficiently high to ensure unbiased agents are willing to vote
1 when receiving message 1. These gains are not sufficient to provide an
incentive for unbiased agents to try to coordinate with biased agents, even if
their number is very high. This balance benefits information transfer.

Although conformity can significantly enhance information transfer by al-
lowing for ever increasing numbers of biased agents. The range of o where
this takes place has size % approximately. This means that for large popula-
tions this effect is not robust.

Whenever o € [—"71—, 2=L) the incentive to coordinate becomes an
important factor for unbiased receivers. Naturally, when receiving message
m = 1 agents conformity ensures biased agents choose action 1. On the
other hand, to ensure that unbiased agents vote 0 when receiving message
m = 0 the number of biased agents cannot be too high so as to ensure belief
consistency. This is illustrated in figure 3 by the fast (hyperbolic) reduction
in unbiased agents. Since truth seeking is still relevant, the bound on b can

exceed % slightly.

Finally, if a € [27;;11, 1) then coordination incentives are dominant. Since
sending message m = 1 results in full coordination the sender has a strong
incentive to do so. For truthful equilibrium to exist in this range of «, the
proportion of biased agents must be very small to ensure that the sender is
willing to coordinate with unbiased receivers when # = 0. Indeed, for large
population the bound on b is approximately 1 — «. Indicating that even a
small proportion of biased agents can disrupt truth-telling when agents care

only about coordination.

Proposition 1.3.8 (Lying equilibrium). Let a € (0,1). For 6 € {0,1}, the
message strategies of the sender m“(6) = 1 — 0 and m®(0) = 0 induce the

following belief p(m) on any unbiased receiver j* € U:

0, ifm=1

p(m) = ) . (1.15)
mam Ym=0,

and receivers follow the strategies vju(m) = 1 —m for any j* € U and

vip(m) =1 for any 4% € B. This forms an equilibrium if o and b satisfy one
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of the following conditions:

(1) a < (0,a(m,n))?, b<—<1+n— (e 1)

R(a,

. —1-2R(a,n)

(2) o € lam,n), 2255 b < T
(3) @ € 25 on 1> b< '(n__3 +R(O"n))"

n—1 % —1-2R(a,n)
(4) o € [Qn_17 1),b< m’

where R(a,n) = =2,

Similarly to the case a = 0 this equilibrium describes a situation where
unbiased senders transfer information inefficiently by creating messages op-
posite to the true state. Biased senders attempt to conceal information by
mimicking this behavior (i.e. they follow the strategy m(0) = 0). Receivers
rationally anticipate this deception and decode the messages by choosing the
opposite action.

As for truthful equilibrium, the bound on b can be regarded as a func-
tion of «a four distinct regions appear. A plot of this function for different
populations is shown in figure 4 below.

If coordination is small (i.e. if @ < a(m,n) < —i5) the threshold of b is
similar to that in the truthful equilibrium case. The main difference is the
presence of a small penalty that arises because the sender does not coordinate
with the remaining agents when § = 1. As in the case of truthful equilibrium,
conformity helps relax the bound on b since unbiased receivers benefit slightly
from coordinating with biased agents when m = 0 is received.

Whenever o € [a(m,n), 51— ) the effect of coordination is strong enough
to ensure unbiased receivers take action v;u = 1 when receiving message
m = 0 but not strong enough for them to deviate from action v« = 0 when
receiving message m = 1. Unlike truthful equilibrium, coordination effects
are sufficiently high to create an incentive for an unbiased sender to deviate.
To prevent this deviation, the number of biased agents must decrease when

o Increases.

If o € [25—, 2=L) the bound in b resembles again the bound in truthful
*where 17— (1 + "3R(2an)l) and %(R(a)") intersect at a(m,n) € (0, :47).
n—1 )
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Figure 1.4: The upper bound on b when « € (0,1) and 7 = 0.25 in the lying
equilibrium

equilibrium. The main difference being the factor of Z—:? The factor arising
because the senders does not coordinate with the remaining agents when
6 = 1. As for truthful equilibrium, the effects of conformity are sufficiently
strong for unbiased agents to want to deviate from action v;u = 0 when
receiving message m = 1 (in this case the effect is compounded slightly since
the sender also takes action 1). To ensure unbiased receivers do not deviate
from their equilibrium strategies the proportion of biased agents must be
relatively small. Note however that truth seeking behavior still allows for
this proportion to be slightly above %

Finally, if a € [277‘1__11, 1) coordination pressures are substantial. To ensure
that lying equilibrium remains the proportion of biased agents need to be

significantly small. This is because an unbiased sender is now motivated to
deviate from sending message m = 0 to send message m = 1 when 6 = 1.

As can be seen in figure 1.4, for large populations the threshold for lying
equilibrium to exist reduces to the one for truthful equilibrium.

When a > 0 pooling equilibria can exists in the model when coordination
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becomes sufficiently high.

Proposition 1.3.9 (Pooling equilibrium). Let a € (0,1). Given o > n%l,
the following strategies and beliefs form an equilibrium: for 6 € {0,1}, the
strategies m*(6) = 1 for t € T, induce the following belief p(m) on any

unbiased receiver j* € U:

pmy = {1 0 (116
m, if m=1,

i. senders’ strategies: m'(0) =1 fort € T; and

i. receivers’ strategies: vji(1) =1 fort € T on the path; while

11. off-the-equilibrium paths:

receivers follow strategies: vj:(0) =1 fort € T? ; or

0ju(0) = 0 and v;p(0) = 1 for j* € U and j° € B with under the following
conditions of a and b: If b < %, then o > U=bntb, While, if b > 1, then

n+b 27

a € ((1;22%, n(2bE1)+1>' This last condition holds whenever b € (3, ﬁ)."‘

The requirement o > n%l in proposition 1.3.9 reflects the fact that coor-
dination needs to be strong enough for pooling equilibria to arise. If b > %
then there exists a unique pooling equilibrium where v;u(m) = 1 whenever
a > n+r1 This is because biased agents provide a focal point for agents
to coordinate around once conformity is high enough. When b < % on the
other hand a second inefficient equilibria arises where unbiased agents vote
0 off-the-equilibrium path (i.e. v;u(0) = 0). In this equilibrium stronger co-
ordination is required to ensure an unbiased receiver does not deviate from
taking action 1 when 6 = 0 where there are additional losses from the final
outcome being 1.

Ifbo < % pooling equilibria with v;u(0) = 0 should be unstable. This
is because either receivers would coordinate with biased agents, resulting in
higher pay-offs. Or the receiver would succumb and coordinate with unbiased
agents. Interestingly, provided o > n%l this results in equilibria where agents

type is fully disclosed, but no information about # is revealed.

3The posterior belief is p(0) = p > r(m = 0,v_ju = 1)in this case.
In either case, the posterior belief is p(0) = u < k(m = 0,v_;u = 0).
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Proposition 1.3.10 (Type-Revealing Equilibrium). Let o > n%l Given
b < %(1 — R(a,n)), the following strategies form an equilibrium: for 6 €
{01},

i. sender’s strategies: m“(0) = 0 and mb(#) = 1 for i* € U and i* € B
respectively;” and

i. receivers strategies: vju(m) =0 and vp(m) =1 for j* € U and j* € B

respectively.

Since ™ < % unbiased receivers have a preference for action 0 when there
is no information. Consequently, when the number of biased agents is small
they follow this action, even when coordination is large. To ensure the equi-
librium in proposition 1.3.10 exists ensuring the sender does not deviate
becomes crucial. This is particularly important when 6 = 1 as the sender
suffers additional losses form the outcome not matching § = 1. In this case
low number of biased agents ensure the sender does not have an incentive to

defect from coordinating with the rest of the unbiased agents.

1.4 Comparative Statics and Equilibrium Robustness

I now discuss how equilibria change as the parameters of the model vary.
First, observe that a = #1 marks the transition point from a regime where
the behavior of unbiased agents is mostly determined by aligning with the
true state, to one where coordination dominates. Moreover, as n — —+00
equilibria where information about @ is transferred becomes less relevant.

Crossing the threshold a = n+r1 gives rise to pooling equilibria, which do
not exists for a < n%l In the extreme case o = 1 where action 1 becomes
preferable. Full coordination becomes the optimal outcome. However, for
bias thresholds b < % less efficient forms of coordination are present: pooling
equilibria where unbiased agents take action 0 off-the-equilibrium path, and
equilibria where agents coordinate according to their type.

In the general case a € ( L 1)if b < 1 and n — +00 the bound a >

n+l 2
1-b)n+b . : : .
% can be approximated as o > 1 — b. In this regime, a small increase

®Note that in this case p(m) = 7 for every m € {0, 1}.
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Ab allows for a reduction in the degree of conformity of roughly the same
magnitude to maintain equilibrium (i.e . Aa ~ —Ab). On the other hand,

for b > I the requirement that b < -+ ~ 1(1 + 2) means that for large

I 2
populations an equilibrium where uiﬁaigs)ed senders take action 0 off-the-
equilibrium path requires a population where biased agents exceed unbiased
agents by a single agent.

In the other extreme, when o = 0 three forms of equilibria exist according
to the threshold b = ;*-. Below this threshold information transferred is
possible (either through truthful disclosure by unbiased senders or by indirect
inference if senders lie). Above this bound information from senders becomes
unreliable and unbiased agents choose action 0 for any message they receive.

The threshold b = - becomes less tight as 7 T 5 Where 7~ — 1. In
fact, for small prior behefs a small increase in prior belief A7 results in the
population admitting approximately that many more unbiased agents (i.e.
Ab ~ Am).

More generally, for a € [0,1) equilibria where information is transferred
exist. For truthful equilibria, for a small (o < nflﬁﬁ with k = 2=21-7)
the conditions resemble those of pure communication. In fact, the thresh—
old in this region is (1 + %) Note that for 7 T the bound
converges to a quantity strictly larger than 1. For large prior beliefs the
population admits arbitrary number of agents. In addition, and increase in
7 leads to a reduction in k which means this region decreases in size. For
small values of m and «, a small increase in 7, Ax, leads to the population
admitting an additional Ab ~ (1 + 2na) - Am, the presence of conformity al-
lows an additional 2n?ma biased agents compared to when o = 0. Similarly,
a small increase A« leads to Ab ~ 2nmAca. The intermediate values of «

(—r 1l <a< — ) do not place any restriction on b.

n—1+k(n+1) n2 2
Once conformity becomes important (a > —) truthful equilibrium bounds
depend on « and n only. In particular, for moderately high values (#71—1 <

a < 2’2111) the b is roughly inversely proportional to the product na, thus

if both quantities are multiplied by a common ratio A, b lowers by approx-

imately /\% Observe that the size of this region approaches % as n — +0o0.

For higher values, (27;;11 < a < 1) the bound :LL(ET_J:"C)! is independent of n for
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large values of n. In such regime, it is approximately 1 — «. This implies
that a small increase A« results in an identical reduction in the bound (i.e.
Ab =~ —Aa for n large).

The behavior of the bound for b lying equilibria is similar to that of truthful
equilibria for small values of o and large population sizes. Similar results

also hold for moderately high levels of conformity. The main difference is in
the intermediate and high regions where the bound is %
populations, the bound is roughly 1 — a and independent on n.
1
n+l
1 11—«

$(1—L2)~ 11— 2L) for n - +oo. This means that a small change in

A« results in the bound becoming tighter by an amount Ab = —2%;. An

. For large

Finally, for oo > and the type-revealing equilibrium has a bound b <

analogous reduction takes place with n replacing a.

It follows from this discussion that truthful equilibrium is robust in the
sense that for very large populations truthful equilibria can exist, even if
biased agents make up to nearly half of the population. This suggests that
conformity can help the transfer of information, and thus social learning, in
large populations.

Theorem 1.4.1 (Robust Social Learning). For n — oo truthful equilibrium

exists whenever b < % and a € (0, %) If a > % then truthful equilibrium

exists provided b < 1 — .

1.5 Conclusion

In this paper, I have presented an analysis of a strategic communication game
with heterogeneous agents and varying degrees of conformity. I have obtained
full equilibrium characterizations across the entire range of conformity levels.
If the willingness to conform does not exceed the desire of unbiased agents to
take actions that match the true state 8, then conformity can enhance social
learning in the sense that for a given prior belief 7 the amount of biased agents
that the population can admit while supporting truthful communication by
unbiased agents is larger than when conformity is present. In fact, for small
populations for a < O(%), there exists a regime for which no bound of biased

agents exist. More generally, if n — oo then in so far as biased agents do
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not form a majority, truthful equilibrium can survive given any prior belief.
On the other hand, if conformity dominates for information transfer to take
place the number of biased agents in the population must be substantially
lower than it would have been in the absence of conformity.

Despite the relative simplicity of my model, it has several notable appli-
cations. For instance, the analysis can be applied to the growing influencer
market, Where individuals can post reviews of products or services to other
consumers, who in turn make their own purchase decisions. In relation to
this, my model could be applied to is the spreading of rumors through the in-
ternet. Indeed, followers of a given celebrity can be informed of the person’s
opinion promptly by looking at posts on social media which may show a given
celebrity’s support to a certain cause, a promotion of a product or a call to
act in a certain way. The follower can also react by expressing support or dis-
like pretty directly. Attitudes of either celebrity or follower can be “neutral”
or “biased”, which can affect the direction of the topic being discussed. Ad-
ditionally, the model may be applied to adoption of technology where agents
can observe the deployment of a technology by a socially well-connected in-
dividual. The remaining agents can then adopt or not the technology, which
might have repercussions for the whole population via network externalities.
The model can also be applied to statement on committees. More generally,
governmental decision making can also be modeled using the model presented
here. This is because often when governments advocate certain policies the
final outcome of the policy is mostly determined by the attitudes of the pub-
lic who might follow it or not depending perhaps on their own biases and
preferences. The perceived attitude of public by the government might also
have an effect on the policy they wish to propose, preferring a popular one
to an unpopular one even if the former might be more beneficial.

As it is a common occurrence with models of strategic communication,
multiple equilibria arise for a particular choice of the parameters o and b.
Unlike standard models, the presence of conformity effects alters how re-
ceivers interpret signals and how the sender evaluates potential deviations.
This makes performing equilibrium selection and refinement more challeng-

ing formally. Note that in some cases it is intuitively clear that inefficient
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equilibria such as lying equilibria should not be the outcome of rational inter-
action, since agents can transfer information truthfully at a lower cost. On
the other hand, note that particularly for medium to high values of «, the
model contains both separating and pooling equilibria. In the context of sig-
nalling games there are two well-known refinements: the Intuitive Criterion
introduced in Cho and Kreps ( ) and the Divinity Criterion introduced
in Banks and Sobel ( ). Both of these refinements place constraints on
the off-path beliefs. It will be interesting to adapt one of these criteria to my
model to obtain refinements for some fo the equilibria discussed.

Several extensions could enhance the theoretical realism and empirical ap-
plicability of the model. First, the assumption that « is common and known
is too restrictive. A more realistic setting would allow each individual to have
a privately known value of «, drawn randomly prior distribution. Second,
introducing multiple types of biased agents could better capture heteroge-
neous motivations. Third, in practice, communication spreads though public
broadcast amongst a “small group” usually the close relations of different
agents. In this regard, I have not considered the social structure underlying
information transfer, which is typically represented as a network. In such
a setting, the collective outcome may be affected by each agent’s friends or
close connections, which may have an effect on the agent’s belief. In addition,
an agent’s behavior may depend on the actions of close friends or those in

their immediate social or physical proximity.
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APPENDIX A

Proof of Proposition 1.3.1. Unbiased receivers: On the equilibrium path: If
a message m = 1 is released from a sender, which may be either unbiased
or biased, then an unbiased receiver votes vju(1) = 1 (assuming that the re-
maining unbiased receivers choose 1; i.e. v_ju(1) = 1) since 3(m = 1,v_ju =
1) =21 > 2

Off the equilibrium path: If a message m = 0 is released from a sender,
which must be unbiased, then :

i. the unbiased receiver votes v;«(0) = 1, assuming the remaining unbiased
receivers choose 1 (i.e. v_ju(0) = 1) since z)(m* = 0,v_ju = 1)) = n=2
"2—;1, when n > 4.

ii. Whenever b < 1

29
the remaining unbiased receivers choose 0 (i.e.v_;ju(0) = 0) since z{(m" =
O,U_ju - O)) - nT_lb

Biased agents: Both biased receivers and biased senders have no incentive

the unbiased receiver votes v;u(0) = 0, assuming

to deviate from their equilibrium actions.

Unbiased sender: An unbiased sender has no incentive to deviate from 1
to 0. Any such deviation only contributes to a loss since the highest pay-off
is achieved by following the equilibrium strategy for any value of b.

[

Proof of Proposition 1.3.2. When b < %:

Unbiased receivers: On the equilibrium path: If a message m = 1 is
released from a sender, which must be biased, then an unbiased receiver
votes v;u(1) = 0 (provided that all other unbiased receivers choose 0, i.e.
v_ju(1) = 0) then z}(m = 1,v_ju = 0) = 2=lp < 2= If, on the other hand,
a message m = 0 is released, which must come from an unbiased sender, then
an unbiased receiver votes vju(0) = 0 (all other unbiased receivers choose 0,
i.e.v_ju(0) = 0) by the same argument.

Biased agents: Both biased receivers and biased senders have no incentive
to deviate from their equilibrium strategies.

Unbiased sender: Any unbiased sender has no incentive to deviate from 0
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to 1, since uf(m* = 0;vju =0) = —b > —(1 —b) = ui.(m* = 1;v;u = 0).
[

Proof of Proposition 1.3.3. Let a = 0; I check that the truthful equilibrium
is a PBNE by showing that neither receivers nor senders deviate from their
strategies. The bound on the posterior belief is x(m,v_;) = %, for both

m = 0,1, and the posterior belief p(m) of any unbiased receiver j* € U is

0, itm=20
p(m) = ) ‘ (1.17)
m, lf m = 1.

Unbiased receivers: 1 check first the strategy followed by unbiased re-
ceivers when the message received is 1. since p(1) = m > % due to the
condition b < 7, an unbiased receiver chooses 1 when receiving message 1,
ie. vu(l) = 1. Similarly, the strategy followed by unbiased receivers when
the message received is 0 is voting 0 since p(0) = 0 < 3, i.e. v;u(0) = 0.

Biased receivers: Any biased receiver strictly benefits from voting 1 as
opposed to voting 0, i.e. vjb(m) = 1.

Next, I check that senders have no incentive to deviate from following the
strategy m“(6) = 6 (if the sender is unbiased) and m®(#) = 1 (if the sender
is biased).

Unbiased sender: For unbiased senders, the utility function is

up(m*yv,0) = —|z(m";v,0) = 0] =
m* n-—1 n—1
= —|— b 1—=0vu(m®) —0
b+ —— (1 = bJyju(m")

—mn —nedp — 2=l — bjou(m®),  if §=0
m* + "T—1b+ ”_—1(1 — b)vju(mu) -1, if0=1,

n n
where, as shown earlier, vju(m®) = m*, vj(m?) = 1. The utility function is
strictly decreasing on the value of message m when 6 = 0 while it is strictly
increasing on the value of message m when 6 = 1. As a result, an unbiased
sender sends message 0 when he receives signal 0, while he sends message 1

when he receives signal 1. In short, m“(f) = 6 as required.
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Biased sender: For biased senders, the utility function is

) né v;(m")

Smb:v,0) = — boyy— 1= =
uzb<m 7V7 ) ’x<m 7V) ’ n + n )

where, as before, vju(m®) = mP, vip(m®) = 1. mP(0) = 1 is the best strategy

for a biased sender for any signal he receives.
[

Proof of Proposition 1.3.4. Let a = 0; I check that the lying equilibrium is
a PBNE by showing that neither receivers nor senders deviate from their
strategies. The bound on the posterior belief satisfies x(m, v_;) = % for both
m = 0,1 in this case. The posterior belief p(m) of any unbiased receiver

J* €U is now:

0, it m=1
p(m) = (1.18)

—b+(17r_b)7r, if m=0.

Unbiased receivers: 1 check the strategy unbiased receivers follow when the

message received is 0 first. Since p(0) = 3 i > %, as per the condition b <

1—b)m

17—, an unbiased receiver chooses 1 when rec)eiving message 1, i.e. v;u(0) =
1. Similarly, the strategy followed by unbiased receivers when the message
received is 0 is voting 0 since p(1) =0 < 3, i.e. vju(0) = 1.

Biased receivers: Any biased receiver strictly benefits from voting 1 rather
than 0, i.e. vjp(m) = 1.

Next, I check that senders have no incentive to deviate from the equilib-
rium strategy m“(6) = 1 — 6 (for an unbiased sender) and m®(f) = 0 (for a

biased sender).
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Unbiased sender: For unbiased senders, the utility function is

up(m*;v,0) = —|z(m";v,0) — 0|
m* n-—1 n—1
= —|— b 1—=0bvu(m®) —0
- + - + - ( Juju(m™)

—mn —ndp — 2] — bjuju(m®),  if =0
m* ”T—1b+ ”T_l(l —b)vju(m*) —1, if § =1

n

Since vju(m®) = 1—m*, the utility function of an unbiased sender becomes

(n-1)(A-b)-1 u __ n-1 if0=0
ul (m; v, 0) = ’ "
meﬂ%—l, if 0 =1.

n

(”_I)(Tl_b)_l is strictly positive since || > 3. Therefore, the utility function

is strictly increasing on the value of message m when 6 = 0 while it is strictly
decreasing on the value of message m when 6 = 1. As a result, an unbiased
sender communicates 1 when he receives signal 0 while communicates 0 when
he receives signal 1. In other words, m*(0) = 1 — 6 as required.

Biased sender: For biased senders, the utility function is

n—1
b 21 v (m’)
up (m's v, 0) = —|a(m’sv) = 1| = — + ——— — 1,
n n
where vju(mP?) =1 —mP, vp(m?) = 1. mP(0) = 0 is the best strategy for a
biased sender for any signal he receives.
O

Proof of Proposition 1.3.5. Let a = 0; I check that the truthful equilibrium
(biased-mimicking) is a PBNE by showing that neither receivers nor senders
deviate from their strategies. The bound on the posterior belief k(m,v_;) =
% for both m = 0,1. The posterior belief p(m) of any unbiased receiver

U eU is:

p(m) = (1.19)
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Unbiased receivers: 1 begin by checking the strategy followed by unbiased

receivers when the message received is 1. Since p(1) = < 3, as per

Faor < 7
the condition b > *—, an unbiased receiver chooses 0 when receiving message
1, ie. vju(l) = 0. Similarly, the strategy followed by unbiased receivers when
the message received is 0 is voting 0 since p(0) =0 < 3, i.e. v;u(0) = 0.

Biased receivers: Any biased receiver strictly benefits from voting 1 rather
than 0, i.e. vjp(m) = 1.

Next, I check that senders have no incentive to deviate from the strategies
m®(9) = 0 (if the sender is unbiased) and m®(#) = 1 (if the sender is biased
instead).

Unbiased sender: For unbiased senders, the utility function is

up(m*;v,0) = —|z(m";v,0) — 0|
m* n-—1 n—1
= —|— b 1—=0bvu(m®) —0
- + - + - ( Juju(m*)

—m_nslp s qf 0 =0

mu

mopnlp—1, if 6 =1,

where vju(m*) = 0, vp(m®) = 1. The utility function is strictly decreasing
on the value of message m when 6 = 0 while it is strictly increasing on the
value of message m when # = 1. As a result, an unbiased sender delivers
message 0 when he receives signal 0, while he delivers message 1 when he
receives signal 1. Hence, m"(0) = 6 as required.

Biased sender: For biased senders, the utility function is

n—1
mb Zl Uj (mb)
uz%’(mbsvae) = —]:L’(mb,v) - 1’ =—+ = - 17
n n
where vju(m”) = 0 and v (m®) = 1. mP(g) = 1 is then the best strategy for
a biased sender for any signal he receives.

O

Proof of Proposition 1.3.6. Let a = 0; I will prove that there exists no pool-

ing equilibrium by considering both scenarios separately. Once again the
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bound on the posterior belief x(m,v_;) = % independently of the message
received.

Claim 1: There is no pooling equilibrium where m*(f) = 1 for any ¢t € T.

Proof. By way of contradiction, I assume that m*(6) = 1 for any ¢ € T is
a pooling equilibrium. The posterior belief p(m) of any unbiased receiver

J* € U becomes:

m, ifm=1
pm) =" (1.20)
w, if m=0.

Note that when message m = 1 is transferred unbiased receivers will vote
0 since ™ < %

Off-the-equilibrium path: If on the other hand message m = 0 reaches the
receivers, an unbiased receiver votes 0 if p < % In that case however an
unbiased sender would deviate from sending massage 1 to 0 whenever 6 = 0.
Meanwhile, an unbiased receiver will vote 1 if p > % In this case, an unbiased
receiver’s voting strategy becomes vju(m) = 1 —m and an unbiased sender
would deviate from sending massage 1 to 0 whenever § = 1. Additionally,
a biased sender can benefit as well by deviating from sending message 1 to
sending message 0 instead. This is because the deviation would make the
collective outcome closer to 1 since |U| > 3. Lastly, if u = % an unbiased
receiver is indifferent between either 0 or 1. He therefore mixes between
these two options. FEither type of sender has now an incentive to deviate
from sending a message 1.

O
Claim 2: There is no pooling equilibrium where m*(8) = 0 for any t € T

Proof. By way of contradiction, I assume that m*(§) = 0 for any ¢ € T is
a pooling equilibrium. The posterior belief p(m) of any unbiased receiver

7" € U becomes:

m, if m=0
p(m) = (1.21)
w, if m=1.
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Observe that, once again, when message m = 0 is transmitted unbiased
receivers will vote 0 since m < %

Off-the-equilibrium path: when message m = 1 reaches the public an
unbiased receiver will vote 0 if pu < % In this situation a biased receiver
profits from sending message m? = 1 since it brings the outcome closer to 1.
If instead unbiased receivers vote 1 when receiving 1 (which happens when
> %), biased sender will again deviate to sending message m? = 1. Lastly,
if u= % an unbiased receiver is indifferent between either 0 or 1. He therefore
mixes between these two options. Either type of sender has now an incentive

to deviate from sending a message 0.
O

]

Proof of Proposition 1.3.7. Let o € (0,1); I check that the truthful equilib-
rium is a PBNE by showing that neither receivers nor senders deviate from

their assumed strategies. The bounds on the posterior belief are in this case:

1[ nao (1- 2n

5 m%(mzl,v_jzl))—kl} :

km=1,v_;=1)= 1
-«

1

2
/{(mzo,v_j:()):—[ nae n

2

o n_le)(m:(),v_j:O))%—l]

The posterior belief p(m) of any unbiased receiver j* € U is:

0, it m=0
pmy =4 (1.22)
m, lf m = 1.

Unbiased receivers: 1 begin by confirming the strategy followed by unbi-
ased receivers. An unbiased agent j“ votes 1 when the message received is
Lif p(1) > [ (1 — 220)(m = 1L,v_ju = 1)) + 1]; while he votes 0 when
the message received is 0 if p(0) < $[2%(1 — %:ﬂé(m =0,v_ju = 0)) + 1]
instead.

Choose an unbiased agent j* and assume the remaining unbiased agents

n—1

follow the PBNE symmetric strategies. Then f(m = 1,v_ju = 1) = “— and
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zh(m =0,v_ju =0) = 2=1p. The equilibrium conditions become

1
o > s T s

0 < 3[1+ (1 —2b)].

The first inequality implies the following bound:

2 1
b < T 1+ 4= when o < )
1—m — - n+1

Alternatively, when o > n+r1, the right hand side of the first inequality is
non-positive and the inequality always holds as a result.

The second inequality implies the bound:

1 _
b<—(1+1 a).
2 no

Set

11—«

R(a,n) = —

Observe that R(a,n) monotonically decreases as a (resp. n) increases.

Combining both inequalities, b must satisfy

™ 2 1 1
1+ ———7——1],=(1 h .
1—7r(+R(a,n)—1>’2<+R(&’n)>} when o < ———

Next, I check that senders have no incentive to deviate from the strategies
m*(0) = 6 (if the sender is unbiased) and m®(f) = 1 (if the sender is biased).

b < min{
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Unbiased sender: For unbiased senders, the utility function is

n—1
S u, _ _ u, _ _ @ U __ .
ud (m*v,0) = —(1 — a)|z(m";v,0) — 0] n_lzgml vy

m n—1 n—1
—_— b 1-b)v,u(m*)—0
e

o n—1
n—1§ [m* =]
J=1

@[ 2 1= b n®)] - 25 5 e -,

if 0 =0,

(1—®Pﬂ+ﬂ%b+%§ﬂ—®de%—1]—£32£ﬂm@—wh it0=1.

n

Recall that vu(m®*) = m*. When 6 = 0, u5(m* = 0;v;u = 0,0 = 0) =
—(1—a)=tb—ab> —(1—a)=t — 2 =4, (m" = 1;v;u = 1,6 = 0), which

requires that the bound

n(l—a) -1
n+a—1 21— R(an)

b <

must hold. Additionally, the utility function is strictly increasing on the
value of message m when # = 1. As a result, whenever the last bound holds,
an unbiased sender will send message 0 when he receives signal 0 while he
will send message 1 when he receives signal 1. In short, m*(6) = 6.

Biased sender: For biased senders, the utility function is

n—1

mb z—:l Uj (mb)

ufy(m’sv,0) = —|a(m’ v) = 1| = — + F—— — 1,
n n

where vju(m®) = m®, vp(m®) = 1. m°(#) = 1 is the best strategy for a biased

sender for any signal he receives.
Finding the bounds of b and o: Combining all conditions that unbiased
n—2

senders and receivers must satisfy as well as the assumption b < 7=7; the
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next bound on b as a function of « follows

1_
minq <1 + W) . (1 + R(a,n)>, éfR(;n), g——f} when a € (0, =5)

-

b <
min %<1+R(a,n)),%,%}, when o € [n%l,l)

[e3

Write for each candidate bound by, by and b3 respectively, where

T 2
by = 4
! 1—7r( +R(a,n)—1)’

by = %(1 + R(a,n)),

and

by = ———.
° L — R(a,n)

67

1
n+1’

R(a,n) strictly decreases from 400 to 1. Furthermore, b; strictly

i. For 0 < a < R(a,n) > 1. As « strictly increases from 0 to

1
nt1’
increases from - to 400 ; by strictly decreases from +oo to 1, so that

by > 1; by strictly decreases from -5 to 1. The bounds on b are then

i Ta » n—14k(n+1)

k—1 n—1 n—2
(n71+k(n+1)7 n274n71>’ b < n—1"

ii. For =5 <a<1,0< R(a,n) < 1. As a strictly increases from —5 to

1, R(a,n) strictly decreases from 1 to 0. Furthermore, by strictly decreases

1.
29
and b3 separately with respect to «,

s ()] = e
d [n(l—a)] o

da |n+a—1 (n+a—1)%

b < L(l = ) when a € (0,—%-1—)  Otherwise, when a €

from 1 to 3; b3 strictly decreases from 1 to 0. Taking the derivatives of b,

1 n? ; 1
Therefore | — 5| > | — gra—pz| for values of o sufficiently close to 7.
2

On the other hand, | — ;| < | — ra—nz| for a close to 1.

I
n+o—
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Solving
n(l—«) Sl 1_'_1—04
n+a—172 no

n
2n—1"
n—3

Then I check the conditions that ensure each upper bound below “= in

this region:

1 1+1—a <n—2
2 no —n—1

and

n(l—«) <n—2
n+a—1"n-1

Solving these two inequalities, I have

n—1
>
“n2—2n-1

and
2(n—1)
o> ——>
~ n?-=2
When n > 4, - +1 < el < 27(;_;) < 2=L and the inequalities hold
with equality when n = 4. As a result, when a € (n+1’ Sl b < 222
n —a n(l—a
when « € [0l =Ly ) < —<1+1n—a ; when a € [221,1), b < nia i

In summary, truthful equilibrium exists when b and « satisfy

r
(1 + W) when « € (0, #(ln-i-l))
. Z_:i’ when o € in_ii;(iz+1)’ )
1+ R(a,n)), when o € [5"5—, 5o-7)
e € g1
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where k = 2=21-T and R(a,n) = 2.
n—1 = no

]

Proof of Proposition 1.3.8. Let a € (0,1); I check that the lying equilibrium
is a PBNE by showing that senders do not have an incentive to deviate from

their strategies. The bounds of posterior belief are in this case:

1| no 2n
m(sz,vjzl)zi[l_a(l—n_lxé(mzo,vjzl))—i-l},

1| no 2n
m(mzl,v_jzo):§ 1_@(1—n_lxo(mzl,v_j:(]))—i-l :

The posterior belief p(m) of any unbiased receiver j* € U is:

0, if m=1
p(m) = ) ‘ (1.23)
[augE if m=0.

Unbiased receivers: Recall that an unbiased agent j* will vote for 0 when

the message received is 1 if p(1) < 3[£%(1 — %xé(m =1l,v_ju =0)) +1]
while he votes 1 when the message received is 0 if p(0) > %[%(1—%%(771 =
0,v_ju = 1))+1]. As before, assuming that the equilibrium is symmetric, the
(n—1)b+1

equilibrium strategies for receivers imply a(m = 1,v_ju = 0) = and
xé(m =0,0_ju = 1) = "T_Q for any unbiased receiver j“. The equilibrium

conditions are then:

0 < 214 £ (2=2 —2p)],

n—1
s 1 n—3 na
b+(1-b)m > 2( T on—1 1—o¢)'

The first inequality implies the following bound:
b < 1/1—-« n n—3
2\ na n—1)

The second inequality implies the bound:

n—1

T 2
b< 1 hen o < —————.
1—7r<+1;—;-g—j—1) R

48



Note that, as in the previous proof, if a > 2(7;’_12) the right hand side first

inequality is non-positive and the inequality holds trivially.

Now, combining both inequalities, b must satisfy

T 2 1/n—3 n—1
b < mi 1 - R h -
<““{1_w(+g§.anyq>n<n_1+<“”0}’ When Qs e o T

As in the previous proof,

1—
R(a,n) = a

na

Next, I check that senders do not deviate from the strategies m*(6) = 1—4,
whenever j* € U, and m®(#) = 0, whenever j° € B.

Unbiased sender: For unbiased senders, the utility function is

n—1
U (m% v, 8) = —(1 — a)|e(mv,0) — 6] — —— 3" |m" —u|
J=1

n—14
m* n—1 n-—1 a e
=—(1-a) —+— b+ " (1—b)vju(m“)—9‘—n_1j21|m“—vj|
B —(1—a)[Z= 4+ 2L+ =L (1 — b)oju(m™)] — =25 ;.L;lllm“—vj\, if 6=0
(1= a)[2 4+ 2=Lh 4 =L (1 = b)oju(m®) — 1] — 25 3707 fm» —vy|, if 6 =1.

When 6 = 0, for there to be no profitable deviation it is required that

uf (m* = 0;v50 = 1,0 = 0) = —(1-a)%1 —a < —(1—a) = o (1-p) =

us, (m* = 1;v0 = 0,0 = 0). This condition implies the following bounds

1 (n—2)(1—a)
If —0 b
CY<n+1’ E(O’n—a@n—l)—l
n—2
< 1, b —_—
nrl Tl e(0771—1)

If

On the other hand, when # = 1 for no profitable deviation to be possible
u;qu(mu = 0;v5u = 1,0 = 1) = (1 _ oz)(”_l _ 1) —a> (1 . a)<1+(n—1)b .

n n

1) —a(l—b) = uj(m* = 1;v;u = 0,0 = 1) must hold. This implies that the
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requirement

(n—2)(1-a) L —1-2R(a,n)

b <

n+a—1 L — R(a,n)
must hold.
Therefore, an unbiased sender has no incentive to deviate if b < %,
. (n—2)(1—a) (n—2)(1—a)
sice n+a—1 < n—a(2n—1)—1"°

Biased sender: For biased senders, the utility function is

n—1
b ;Uj(mb)
up(mbiv,0) = —|z(mhsv) — 1| = — + —— — 1,
n n

where v (m?) =1 — mP. mP(f) = 0 is the best strategy for a biased sender
for any signal he receives.
Finding the bounds of b and av: Combining all the conditions derived from

requiring no deviations from unbiased senders and receivers, as well as the

n—2

n—, the following bound on b as a function « holds:

assumption that b <

(
T 2 1/n—-3
I 1 7_< R ) )7
mm{l—ﬂ( +%.R(a,n)—1> 2 n—ljL (a;m)
L—1-2R(a,n) n—2 _
b < é—R(oz,n) I Whenoze((),—m_zi_
1/n—3 L 1-2R(a,n) n—2
] — R ) >7a ) ) h o ’
\m1n{2<n_1 + R(a,n) T Ran) n—l} when a € [~
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and

- L —1-2R(a,n)
o L R(a,n)

«

i. For 0 < a < =5, R(a,n) > 1. As « increases from 0 to —, R(a,n)

strictly decreases from +o0 to 1. Furthermore, b; strictly increases from "

to 400 ; by strictly decreases from +oo to Z—:Q by strictly decreases from

17
n=2 to 222 " The values of b are then as follows: when a € (0, a(m,n)),

n—1 n?—1
b < ﬁ(l + %), while if « € (a(m,n), #_5—1)7 b < %
ii. For =5 < a < 1,0 < R(a,n) < 1. As « increases from —5 to 1,

R(a, n) strictly decreases from 1 to 0. In this range, by = 5 (Z—_i’—i—R(a, n)) <

Zj and by = % < Z—j To find the appropriate bound, I find the
lower envelope of by and bs.

If by < bg, then

1(n—3+1—a><(n—mﬂ—a)

2 n—1 no n+o—1

2
This inequality yields

n—1 n—1

€ o 1 an =1

).

Overall, I have

)
= <1 - Z:lR(Qa,n)—l), when a € (0, a(m, 1))
(n=2)(1-a) —

pod mbal o when « € a(m,n), 25, —)
i ram). when e [t g2)
(n=2)(1-0) =

\ nta—-1 7 when o € [27:1*1’1)

o1



Proof of Proposition 1.3.9. Let « € (0,1); T consider the case m*(8) = 1 for
any t € T first. Under these pooling strategies, the posterior belief p(m) of

any unbiased receiver j* € U becomes:

p, if m=20
p(m) =
m, if m=1.

As before, choose an unbiased agent j* and fix the actions of other agents

so that z)(m = 1,v_ju = 1) = 2=1. Observe that

1 no
1: Il 7'u:1 - = 1_
(1) = > i(m =1 = 1) = 3 (1- )

1—27

always holds if o > 57—

. Therefore, receivers of both types vote 1 when
they receive 1.

Next, I check that senders do not deviate from their strategies either. In
this case, m*(#) = m®(@) = 1. For a biased sender it is clear that he suffers
a loss from a deviating from m® = 1 to 0 regardless of @ since everyone votes
1 on the equilibrium path. When # = 1, an unbiased sender also has no
incentive to deviate from 1 to 0.

Then I just analyse the behavior of unbiased agents when 6§ = (0. Note that
off-the-equilibrium path, zj(m = 0,v_ju = 1) = =2 or zj(m = 0,v_ju =
0) = "T_lb since any such deviations can only come from an unbiased agent.
Biased senders do not deviate from sending message 1, independently of the
actions of the receivers. Consequently,

L Ifp(0) = p > k(m =0,v_ju =1) = 3 (1 —2=2. 29 then receivers
also vote 1 off-the-equilibrium path. In this case, if § = 0, for an unbiased
sender to not have any incentive to deviate

—1

n

1
n+1°

To ensure the off-the-equilibrium belief 1 € [0, 1] exists, I need the condi-

This inequality is satisfied provided o >

92

—a < —(l—a) =un(m"=1;vju =1,0 =0).



tion

1 n—3 no
-1 1- . < 1.
2( n—1 1—a)

Under the requirements o > —— > —1=27_ " thig condition holds.
n+1 n+1—-27"

ii. If p(0) = p < k(m =0,v_ju =0) = 5 [{2%(1 — 2b) + 1], then unbiased

11—«

receivers vote 0 off-the-equilibrium path.

1| na

21—«

(1-2b)+1| >0
Solving this inequality, then

a € (0,1), if b <

1 .
O[<m, 1fb>

NI— o=

Now, if # = 0 an unbiased sender has no incentive to deviate if

-1
D pab < —(1—a) = up(m" = 1;vju = 1,0 = 0).

ub, (m* = 0;vju = 0,0 =0) = —(1—q)
n

This requires

(I—-=bn+b 1

o > > .
n+b n+1

1-b)n-+b 1-b)n+b
When b < %, then v > %; When b > %, then o € (( nlb , n(2b—11)+1)

holds under the condition that b € (3, )

]

Proof of Proposition 1.5.10. Let a € (0,1); I consider the case m*(§) = 0
and m®(f) = 1 for i* € U and ® € B; then the posterior belief p(m) of any

unbiased receiver j7* € U becomes:

p(m)=m, for m=0,1.
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Receivers follow the strategies vju(m) = 0 and v;p(m) = 1 for j* € U and
j° € B on the path if p(m) = 7 < k(m,v_ju = 0). As before, choose an
unbiased agent 7* and fix the actions of other agents so that mé(m,v_ju =
0) = "T’lb. Then the unbiased agent j* chooses 0 after observing the message
assuming that all the unbiased agents choose 0 if

1] no

p(m):7r</<;(m,v_ju:O):§ T

(1—2b)+1].

Next, I check that senders do not deviate from their strategies either.
In this case, for a biased sender it is clear that he suffers a loss from a
deviating from m® = 1 to 0 regardless of 6 since receivers take the same
action independently of the message.

Next, I consider unbiased senders. For an unbiased sender to not have any

incentive to deviate it is required that

ub, (m* = 0;vju = 0,0 = 0) > uf(m" = 1;vju = 0,0 = 0)

uf, (m® = 0;vju = 0,0 = 1) > ub(m" = 1;vju = 0,0 = 1).

Specific,
_<1_a)w—@b> —(1—04)%—@(1—1))
—(1—a) (n = 1)%_ +1_ ab>—(1- &)W —a(l—0b).

By solving these inequalities, I have b < %(1 — ln—aa) Then x(m,v_ju =

0) = 3 [£%(1—2b)+1] > 1 > m, which ensures that unbiased receivers
always choose 0.

]

proof of (no) pooling when « € (0,1) and m*(6) = 0. Let « € (0,1); By way
contradiction suppose that m*(6) = 0 for any ¢ € T is a pooling equilibrium.
In that case, no matter what the actions of the receivers are a biased sender

always has a profitable deviation from m® = 0 to m® = 1. O]
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CHAPTER 2

DoES CONFORMITY AMONGST
AGENTS AFFECT RUMOR
PROPAGATION IN A NETWORK?

This paper studies the effect of conformity on rumor propagation on a simple
network. I consider a model that combines a communication and coordina-
tion game containing both unbiased and biased agents. Unbiased agents take
an action that not only matches the true state of the world but also conforms
with the actions of their neighbors, while biased agents take only a specific
decision. I show that introducing a small degree of conformity enlarges the
parameter region for truthful communication by relaxing the upper bound

on the biased share relative to the model in Bloch et al. ( ).

2.1 Introduction

A rumor is a statement whose truth is hard, if not impossible, to verify. In
any social group rumors spread across their members when they engage in
conversation with one another. Rumors often spread fast through the group,
meaning the person who originated the rumor is often not known to others.
From the point of economics, rumors are interesting since they provide a
good setting to understand what factors make rational agents transfer in-

formation that could be false. This can be particularly relevant to policy
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since rumors can lead to inefficient outcomes. For instance, a rumor regard-
ing the integrity of an otherwise competent politician may tip the results of
an election towards a less capable candidate. Another example involves the
take-up of medical treatments, some individuals may attempt to discredit a
treatment by creating doubt about its safety. I suggest in this paper that
rumor propagation is driven by two factors: the likelihood of the rumor be-
ing true and the fact that individuals tend to adopt behaviors and accept
statements from their family and friends. In this paper I model conforming
to the behavior of others by assuming that individuals like to take actions
that are close to those of their neighbors when their actions can be observed.
To analyze this problem, I adapt the model in chapter 1 to a simple net-
work, the undirected line. Despite its simplicity, this example can provide
substantial insight into more complex cases. The resulting model follows
closely the paper of Bloch et al. ( ). The authors introduce a cheap talk
model with two classes of individuals, “biased” and “unbiased”. Unbiased
agents are interested in the truth, while biased agents are interested in a
particular outcome, in the examples above the election of a given candidate
independent on his abilities or promoting a particular treatment without
regard to its effectiveness. The main innovation I introduce is a term de-
scribing conforming with the behavior of neighbors. This is an important
feature, as seen in chapter 1 communication can be enhanced or hampered
by the willingness of agents to conform to the behavior of the majority.
The main insight in Bloch et al. ( ) is that rumors are propagated
because rational agents think on the balance of probabilities they are true
and there may be a benefit if they are indeed true. Their model however
does not consider that an individual may consider a rumor likely to be false
while still be willing to propagate it, since this may misled his neighbors
into conforming with the majority. Experimental evidence suggests that
individuals may change well-seated opinions such as political ones when they
receive information in a social setting where there may be pressure from
others to conform with the general rule. Indeed, under certain conditions the
desire of individuals to conform to the behavior of others can be so strong

that they take decisions based only on the behavior previously observed and
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not on any private information the individual may have.
My main findings are similar to those in Bloch et al. ( ), communi-
cation through a network imposes greater restrictions to the transmission of

truthful information.

2.2 Literature Review

This paper relates to a large body of literature on cheap talk. The basic
model on which most papers are based was introduced by Crawford and
Sobel ( ). A closely related paper that has inspired many subsequent
developments is Farrell and Gibbons ( ). The authors introduce a model
of cheap talk between a sender and two different agents—referred to as audi-
ences—and discuss equilibria both in private (each audience cannot observe
the message sent to the other) and public (both audiences observe the mes-
sage). These foundational models, however, omit some important features,
e.g. in Crawford and Sobel ( ), agents are not allowed to lie.

Rumor propagation influenced by social conformity has also been studied
in other fields, including computer science, physics, and epidemiology (Ma
et al., ; Hung and Plott, ; Wan and Wang, ; Wang et al., ).
Common approaches in this literature often draw on epidemiological models
in which a rumor is treated as a spreading disease. However, these mod-
els differ from those in economics in that they do not account for potential
strategic aspects of communication. Moreover, they typically focus on phe-
nomenological features, such as the speed of propagation and the number
of individuals exposed to the rumor, rather than on the motivation for its
propagation.

Recent years have seen the emergence of new work on strategic communi-
cation in networks. Galeotti et al. ( ) introduce a model of multi-player
communication in which agents interact in groups, allowing the authors to
study the geometry and properties of direct communication networks under
decentralized decision-making when agents report truthfully. By contrast,
Ambrus et al. ( ) develop a hierarchical cheap-talk model to analyze in-

termediated communication, where a sender and a receiver interact through a
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chain of intermediaries. My model differs from these in that it explicitly dis-
tinguishes between message creators and message transmitters, with agents
potentially serving in both roles. Bravard et al. ( ) similarly extend the
framework of Bloch et al. ( ) by assuming that agents do not observe the
global network structure but only their local connections, thereby showing
how network architecture and limited information shape the diffusion of mis-
information. In contrast, I examine how conformity amplifies the spread of
inaccurate messages and how conformity rules influence the broader process
of information diffusion.

The most significant innovation of my model is the integration of a strate-
gic communication game with a coordination game. The framework combines
and adapts two basic models, one due to Bloch et al. ( ) and the other
due to Hagenbach and Koessler ( ). The resulting model features two
types of agents with conflicting preferences over the truth. As in Bloch et al.
( ), an agent creates a rumor that she shares with her neighbors, after
which others decide whether to transmit it. Agents then engage in a co-
ordination game in which preferences again diverge: some individuals want
to choose an action close to the true state (Hagenbach and Koessler, )

while also coordinating with others.

2.3 Model

2.3.1 FEnvironment

There is a finite population N consisting of n agents, with n > 3. The
state of nature is given by 6 € {0,1} and is unknown to all but possibly one
agent. More precisely, an agent chosen randomly may observe the realization
of 6. All agents share the common prior # = Pr(f = 1) < ;. Agents
form the nodes of a social network G = (N, ). Agents can communicate
information to their neighbors, which in turn can transfer to their neighbors.
Once all communication has taken place, each agent submits a vote v; €
{0,1} simultaneously. A profile of votes for the agents in the population is

denoted by v = (vy, ..., v,). An agent’s payoff depends both on the realization
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of the state of nature and the outcome of the collective decision, denoted by
xz € {0,1}.

A pair of agents ¢ and j in the network G share a link, denoted ij (ij € &),
if they have the potential to communicate. In this case, we say that i is a
neighbor of 7, and vice versa. Although the underlying social network is
undirected, communication can occur in either direction, in both directions,
or not at all. To represent directional communication, let (7, ) denote the
directed link from i to j, and (j,7) the directed link from j to i. The network
G and all agents’ types are common knowledge. I assume that the network
is a tree. This implies that it is connected (every agent has at least one
neighbor) and that any two agents i and j can be connected by a unique
path (a collection of distinct links starting at one agent and ending at the
other). This property ensures that there are no cycles which limits possible
origins of any message. The structure of the network is independent of the
signal s(6).

For each agent 7, let G; be the sub-network GG that contains all agents other
than ¢ with whom agent ¢ seeks to coordinate. Given G;, V(G;) denotes its
node set. These are the agents ¢ wants to coordinate with. Note that G; can
depend on how information is flowing through the network.

Define the mean disagreement functional

1
R<Gi):m > -l

JEV(Gi)

The model contains two types of agents, some do not have predetermined
preferences about the state of nature and are willing to coordinate with
others and there are also agents who have predetermined preferences and
are unwilling to cooperate. More formally, an agent is unbiased if he takes
into account the deviation of the outcome of the vote from the true state of
nature as well as any loss resulting from not coordinating with others. The

payoff for an unbiased agent 7 is then written compactly as

upn(v,z;0) = —(1 — a) |z — 0] — a R(G),
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where a € (0, 1) measures the weight placed on coordination losses. The set
of unbiased agents is denoted by U.

On the other hand, an agent is biased if she is “stubborn and selfish”. She
prefers the outcome z = 1 independently of the true state and neither gains
nor loses from coordinating with others. The payoff for this agent is given
by

up(x;0) = —|z —1]. (2.1)

The set of biased agents is denoted by B. Agent types are common knowledge
in the network.

For a set S C N where a message may be created, bg denotes the fraction
of biased agents in S and ug denotes the fraction of unbiased agents. Clearly,

bs + us = 1. In particular, for any unbiased agent in S, let

_ |Bs|
—|Bs| 4+ [Us| — 1

denote the fraction of biased agents in the rest of the set S. If S = N, then

8]

b=
IN| -1

is the fraction of biased agents in the remainder of the population.
The game is played in three phases: (1) a message creation phase; (2) a

communication phase; and (3) a voting phase.

2.3.2 Message Creation

I assume that a perfect signal of the true state, s(#) € {0, 1}, is generated
by nature with probability p € (0,1). An agent is then randomly chosen to
receive this signal, with all agents being equally likely to be selected. The
signal contents is private knowledge of the chosen agent, no-one else observes
it. Note that whether a signal has been created or not is also not known
by agents who did not receive a signal. In addition, the agent chosen is not

known by others, unless he or she has only one neighbour. In that case, the
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neighbour who receives information from him can infer this.

The chosen agent becomes a message creator and she is allowed to decide
whether to communicate or remain silent, if she chooses to communicate
then this might be done truthfully or not. Formally, the message space is
{0,0,1} where () denotes the decision to remain silent. Since I only consider
communication strategy profiles and p is not relevant to the posterior belief

of other agents, the strategy of the creator can be described by a mapping
m; :{0,1} — {0,0,1},
with m;(s) = m;.

2.3.3 Communication

If agent i receives a message m; from neighbor j, she must decide whether
to transmit it to her remaining neighbors or block it. Note that she is not
allowed to alter it any way; only to stop it from reaching others. This decision

is represented by a mapping
ti - {m;} = {my, 0}.

If t;(m;) = m;, then agent ¢ forwards the message unchanged to all neigh-
bors except j. If ¢;(m;) = 0, then agent i blocks the message, preventing it

from propagating further.

2.3.4 Collective Vote with Coordination

After all possible communication has taken place, each unbiased agent ¢ will
update his initial belief to a posterior p;(m) = Pr(f = 1|m) (often abbre-
viated to p; when it is clear from the context) via Bayes rule. Since agents
consider 0 more likely, the probability that # = 1 based on any messages she
may have received the from his neighbors is an important quantity. Now, let
x € [0, 1] denote the collective outcome. The outcome x is assumed to follow
the “rule of the average”. Formally, the outcome is given by the average of

the actions taken by all agents weighted equally. In other words, x = z(v):
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v — [0,1],
1 n
z(v) = - Zvj.
=1

2.4 Coordination Networks and Utilities

Recall that for each agent ¢ the set of agents she wishes to coordinate with
is G;. There are several possibilities I consider:

Case 1: Nearest neighbors only For each agent i € N, let
N; ={j € N :ij is a link in the network}.

The elements of N; then correspond to the neighbours of agent i. By as-
sumption, the network is connected, so |A;| > 1 for all .

If agent ¢ coordinates only with her immediate neighbours, let GG; have
node set V(G;) = N;. The disagreement term is

1
R(G;) = — lv; — vy,
I 2
and the utility is in this case
a
up (v, ;0) = —(1 — a) |z — 0] — V] > Jvi = vy
" jeEN;

Case 2: Entire population
If agent i coordinates with the entire population, let G; have node set
V(G;) = N\ {i}. The disagreement measure is

1
RG) = - D I v,

J#

so the utility becomes

a
(v, z;0) = —(1 — ) |m—9|—n_12|vi—vj.
JFi
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Case 3: Reachability sets S;(j)

In the previous cases, G; did not depend on message flow. I consider
now an example where there is dependence on the way the message travels
through the network.

Note that after observing a message from neighbor j, the agent j € N
induces a reachability subgraph G;(j) with node set

where S;(j) denotes the set of agents whose messages could have reached

agent ¢ through 7. The resulting utility of an unbiased agent @ is

(6]
uiu(v,x;G):—(l—a)laz—H\—|S'<j>| D v —wl.
! ke€Si(j)

The three cases differ only in the definition of the coordination group
G, which determines the normalization factor and the agents contributing
to the disagreement term. This functional treats disagreement across agents
symmetrically. It is possible to consider a more general disagreement measure
by replacing R(G;) with a weighted average of agents, this reflects that agent

1 may value agreeing with a given agent more than others,

E(Gz) = Z w;; v — vy,

JEV(Gi)

where w;; > 0 and ZjeV(Gi) wi; = 1.

2.5 Equilibrium

The equilibrium concept of interest is a particular type of Perfect Bayesian
Nash Equilibrium (PBNE) in which any unbiased agents behave in a fully
informative and truthful manner. Specifically, each unbiased agent transmits
any information he receives, creates messages truthfully and votes in accor-
dance with the message. Formally, the messaging and transmission rules for

an unbiased agent i*, are given by msu(s) = s and t;u(m;) = m;. In the
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absence of a received message, an unbiased agent votes 0, reflecting the fact
that in the absence of information she thinks this is the most likely state. In
addition, she may make the inference that a message 0 may have been gener-
ated but blocked by a biased agent higher in the network. This assumption
is particularly reasonable in large networks. Accordingly, the voting rules in
equilibrium are vu(m) = m and v;u () = 0, and similarly v;u(s) = s if the
unbiased agent acts as sender.

By contrast, biased agents act strategically to favor their preferred out-
come regardless of information: they always create and vote 1, and they
block any 0 message encountered. Formally, m;(s) = 1 and ¢;(1) = 1 while
t»(0) = (). These behaviors correspond to those used in Bloch et al. ( )
for a Full Communication Equilibrium (FCE). Moreover, because a biased
agent always prefers the collective outcome to move toward 1, voting 1 is a
dominant strategy: a biased agent votes 1 regardless of any information or
any actions taken by others. Hence v;(m) = 1 for any m € {0, 1,0}, while
vp(s) =1 as well.

Given the above strategies, an unbiased agent ¢ updates her belief when

receiving a message m from a neighbour j as follows:

1. If she receives message m = 0, his posterior belief that the true state

2. If he receives message m = 1, he updates her belief using Bayes’ rule,
taking into account the proportion of biased and unbiased agents in the
reachability set. Recall that this is the set of all k € N from where the
message could have originated and reached i through j. Her posterior in
this case reflects the likelihood that message 1 was truthfully generated

rather than introduced by a biased agent is

T
bs,(j) + us; ()T

Recall that bg,(j) is the proportion of biased agents in S;(j), and wug,(;) is the

proportion of unbiased agents in S;(j).
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3. For an agent ¢ who receives no message, his posterior is at most equal to
the prior, since silence provides no evidence in favor of the high state.
In other words, p;(0) < 7.

Finally, given a profile of actions v and a message m, let z{ = z(v_;)
denote the expected collective outcome if agent ¢ chooses 0. If the agent

instead chooses 1, the expected collective outcome increases by %

Theorem 2.5.1 (Full communication equilibrium). Consider a network G =
(N, E) and a disagreement functional R, an FCE exists if for every given

unbiased agent i and each of her neighbors j:

bs,(j) < IR h €0 1

y _— wnenever o .

Si(5) e 11—« 1 ’ ’ 1+ maXx;en; Aij
A,L'jOé

where N; = Ajj(R(Gi(§))) < n. In addition, the proportion of biased
agents in the whole population must satisfy b < b(c, R).

Theorem 2.5.1 establishes sufficient conditions for the existence of a full
communication equilibrium (FCE) for a general tree. These conditions de-
pend explicitly on the network architecture, the strength of conformity, and
the distribution of biased agents. In particular, for each unbiased agent ¢
and each of her neighbours 7, the proportion of biased agents in the relevant
reachability set must lie below a threshold that is determined by the prior
7, the conformity parameter «, and the strength of coordination within the
corresponding coordination group, captured by A;;. In addition, the overall
share of biased agents in the population must remain below an upper bound
b(cr, R) implied by the model primitives.

Theorem 2.5.1 and Proposition 1.3.7 both characterise environments in
which truthful information transmission can be sustained in equilibrium.
Theorem 2.5.1, however, provides more general existence conditions for an
FCE that depend explicitly on the network structure. These conditions im-
pose upper bounds on both the strength of conformity and the prevalence of

biased agents. In particular, the theorem shows that neither conformity nor
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bias can be too large if relevant information is to be fully disseminated along
the network. At the same time, a moderate degree of conformity relaxes the
upper bound on how many biased agents a given reachability set may con-
tain while still permitting truthful messages to circulate. For a fixed prior 7,
the maximum biased share compatible with full communication is therefore
(weakly) higher when a non-zero conformity motive is present.

Relative to Proposition 1.3.7, Theorem 2.5.1 is more restrictive in scope:
while Proposition 1.3.7 delivers a complete partition into corresponding equi-
libria of the (a,b) parameter space for the public-broadcast environment,
deriving an analogous characterisation for general network structures is con-
siderably more difficult. Nonetheless, the comparison is informative. Propo-
sition 1.3.7 shows that in public broadcast settings, information transmission
can be maintained for a wide range of conformity levels and is robust even
when biased agents are numerous. By contrast, Theorem 2.5.1 demonstrates
that in network settings, sustaining information transmission requires more
stringent local conditions that reflect the topology of the underlying net-
work. Although conformity must remain sufficiently weak, its presence still
enlarges the set of environments in which truthful communication is feasible
by allowing a greater—though still bounded—proportion of biased agents to

coexist with information transfer.

2.6 Conclusion

This chapter has examined how conformity motives and the distribution of
biased agents interact with network structure to shape the credibility and dif-
fusion of information. Unlike in public-broadcast environments, where mes-
sages reach all agents directly, communication in networks proceeds through
local interactions. As a result, the sustainability of truthful information
transmission is tied not only to global parameters—such as the prior and the
overall proportion of biased agents—but also to the topology of the network
and coordination motives.

The analysis characterises sufficient conditions under which a full commu-

nication equilibrium exists. These conditions require that, for each unbiased
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agent, the share of biased agents in the relevant reachability sets remains be-
low a threshold that depends on the prior, the conformity parameter, and the
underlying coordination architecture. In addition, the overall proportion of
biased agents must fall below an endogenous upper bound. The results show
that although conformity cannot be too strong, the presence of a small con-
formity motive can actually enlarge the set of network environments under
which truthful communication is feasible. Moderate conformity motivates
unbiased agents to align their actions with others which makes them more
tolerant to unreliable messages.

Nevertheless, the findings make clear that networks are intrinsically more
fragile than the public-broadcast setting. Since information flows through
local interactions, distortions introduced by biased agents can be amplified
depending on their location in the network. Furthermore, local coordination
interests may further disrupt information flow. Consequently, the parameter
region supporting full communication is narrower than in broadcast environ-
ments, and the feasibility of information transmission is more sensitive to the
network structure.

Overall, this chapter highlights the importance of local communication
architecture in determining whether truthful information can be sustained
in the presence of social conformity and heterogeneous preferences. The re-
sults underscore that weak conformity is consistent with information transfer,
but effective communication in networks requires careful alignment between
incentives, beliefs, and network structure.

In this chapter, I extend the analysis of strategic communication from a
public broadcast setting to a networked environment. Specifically, I adapt
the model from Chapter 1 to a simple undirected line network, thereby incor-
porating conformity among neighbors. This framework represents a natural
extension of Bloch et al. ( ), allowing for an explicit analysis of how local
social interactions influence information transfer.

The results highlight the conditions under which information can prop-
agate across the network. Compared to the public communication setting,
the network imposes stricter constraints on the proportion of biased agents

that the population can sustain while still supporting truthful communica-
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tion. This finding aligns with the intuition and results in Bloch et al. ( ),
emphasizing that decentralized communication structures generally reduce
the robustness of social learning.

This analysis provides insights into how social structures influence the
spread of information and rumors, with applications to political communi-
cation, online social networks, and public health messaging. By highlight-
ing the interaction between conformity and network topology, the chapter
contributes to a deeper understanding of how individual behavior shapes

collective learning in realistic social environments.
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APPENDIX B

Proof of theorem 2.5.1. Voting phase:

The argument mirrors the analysis for the public broadcast environment
in Chapter 1. In particular, assuming that a FCE exists, then every agent
in the network transfers message 1. This leads to a similar lower bound for
pi(1) as in chapter 1. This bound implies that unbiased agents do not have
an incentive to deviate from v;u(m;) = 0 to v;u(m;) =1 when m; € {0, 0}.

Transmission phase:

I now provide conditions under which an unbiased agent has no incentive
to block a message m; = 1 sent by a biased neighbor. This is the relevant
case: if the neighbor were unbiased, the message would be more credible.
Blocking a message implies that the agent considers it unreliable and believes
that 6 = 1 is unlikely; consequently she votes 0 in the next phase. This is
the same logic that would generate a deviation in the voting stage.

The interim expected outcome for unbiased agent ¢“ depends on his own
transmission strategy, which will in turn affect his successors’ strategies.
Therefore, T write z(t;) = x{(|Si(4)],1S;()],t;). Recall that S;(j) describe
the predecessors of i (including j), while S;(7) describes i’s successors (in-
cluding herself). In equilibrium, the actions of agents in S;(j) are fixed and
determined by message m; (which is assumed to flow through the set). On
the other hand, actions on S;(j) depend on ¢; € {m;,0} but are otherwise
fixed by equilibrium behavior. The expected utility of :* € U from transmit-

ting message 1 received from her biased neighbor j°,
Elug (tiw(mb) = m2; af(to))mb = 1] = —(1 - a){pi(m? =1) (1 —xl(t;=1)— =

+[1—pi(m} =1)] <xé(ti =1)+ %) }
Case 1: V(G;) = N,.
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Blocking message 1 now yields

J

Eluu(tin(mj) = 0 25(tin)) | = 1] = —(1 — a){pi(mé’- =1)(1—z)(t; =0))
+[1 = pi(mj = 1)]ag(t; = @)} — aby;.

Combining this with (2.2) implies that an unbiased agent " transmits if

and only if
1 N a
Near mb:1 >_<1_ M )7 2.3
by,

when « € [0,1). Note that, once again, m < n.
"o (=
Case 2: V(G;) =N\ {i}.
Blocking message 1 yields

Combining this with (2.2) implies that an unbiased agent " transmits if

and only if

Pop; b 1. n a ) (t; = 0)
i p(mj_1>>2<1 n—ll—ozl—a:%(ti:@))’ (24)

when a € [0,1). In addition, "5 < n.
Case 3: V(G;) = Si(j).
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Blocking the message yields expected payoff
]E['U,lu(tlu(m?) = @;xé(tiu))\m? =1]=—-(1- a){pi(m? =1) (1 — xé(ti =
+[1 - pi(m? = 1]z} (t; = @)} — .

Combining this with (2.2) implies that an unbiased agent " transmits if

and only if
gl =1) > 5 (1 ) 25)
! 2 1—zl(t;=0)1 -«
when « € [0,1). Since unbiased successors k% take action viu()) = 0,
L <.

1—a? (t;=0)
If instead m; =0 (so j € U), then because vy () = vgu(0) = 0 for all £,

blocking yields no benefit for any type of agent.

Message phrase:

Biased agent. A biased agent cannot increase her expected payoff by
deviating to either m(s) = 0 or m(s) = 0.

Unbiased agent. The expected payoff of an unbiased agent who receives a
signal s = 1 cannot increase by adopting the strategy m(s) = 0 or m(s) = 0,
independently of which coordination rule is applied. This is because the
expected payoff from mu(s) = 1 yields zero loss, whereas any deviation
generates a loss.

If instead signal s = 0 is received, then s fully reveals the true state is 0.

Case 1: V(G;) = N;. For an unbiased agent i € U, the expected utility
of i* € U from creating the message 0 from a signal s = 0 is

n—1

Eluu(miu(s) = s)|s =0] = —(1 — «)

b— aby,.
Creating the message 1 from a signal s = 0 yields

Eluu(miu(s) = 1)[s = 0] = —(1 — ).
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Truthful messaging is optimal if

- —1
by, < —— (1 U b) . (2.6)
(e n

Case 2: V(G;) = N. The expected utility of i* € U from creating the
message 0 from signal s = 0 is

n—1

Eluu(miu(s) = s)|s =0] = —(1 — a) b— ab.

n

Creating the message 1 from a signal s = 0 yields
Eluu(mu(s) =1)[s = 0] = —(1 — ).
The truthful messaging requires
b< ———7. (2.7)

Case 3: V(G;) = Si(j). Si(j) = 0, identical to the no-coordination case;
no deviation is profitable. In each case, the relevant belief thresholds ensure
that no profitable deviation exists, either by blocking an incoming message

or by misreporting a privately observed signal.

]
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CHAPTER 3

OPTIMAL SIN TAXES WHEN
SELF-CONTROL COSTS ARE
PRESENT: A NONLINEAR PRICING
APPROACH

This paper analyzes optimal taxation of sin goods when consumers exert
self-control. This happens, for instance, when consumers struggle balanc-
ing current gratification against preserving future health. In the context of
a monopoly market, I adopt the temptation model of Gul and Pesendorfer
( ) to characterize the optimal pricing scheme. This scheme contains a
quality-price ceiling, determined endogeneously by the market size. Further-
more, | characterize the welfare maximizing tax policy (both for specific and
ad valorem taxes) for different behavioral welfare frameworks. In particular,
I show that for a domestic monopolist optimal ad valorem tax decreases as
the market size grows up, passing from a tax to a subsidy. I show further
that imposing a specific tax is not optimal. By contrast, for imported goods
both ad valorem and specific tax increases lead to improvements in welfare.
Notably, optimal ad valorem tax rates are much higher than optimal specific

tax rates.
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3.1 Introduction

The UK government currently imposes high “sin taxes” on tobacco, alcohol
and sugar-sweetened beverages to curb consumption and raise revenue. How-
ever, recently HMRC (His Majesty’s Revenue and Customs) receipts from
these taxes have been declining as health-conscious trends seem to reduce
demand for such products which poses a fiscal challenge. While these taxes
are often seen as effective public health interventions and revenue generators
they have a complex structure, which combines both specific and ad valorem
components, and creates a policy dilemma: should the government main-
tain high taxes to sustain revenue, or lower them to stimulate consumption
and mitigate illicit trade? This tension is further complicated by distribu-
tional concerns as sin taxes disproportionately affect low-income households;
as well as enforcement challenges due to excessive taxation fueling smuggling
and black-market activity. Increasing taxation also creates difficulties beside
consumer welfare revenue beyond trade-offs. For instance, as seen in Brazil’s
2023 sin tax reform which will phase into a new system by 2032; for imported
goods, higher taxes could increase market entry costs, necessitating adjust-
ments in pricing, supplier negotiations, and customs classifications. In light
of these issues, age-old questions arise: Should governments tax or subsidize
certain goods to maximize social welfare when consumers face a self-control
problem? How can policymakers design optimal taxation when demand for
harmful products persists? And what are the differential effects on domestic
versus imported goods?

To address the above questions with regards to “sin goods”, I adopt the
approach in Gul and Pesendorfer ( ) (abbreviated to“GP” in the sequel)
to incorporate temptation in decision making of consumers. Their model for-
malizes the ideas of temptation and self-control by characterizing consumer
preferences through two utility components: Commaitment utility, which re-
flects the consumer’s rational, long-term preferences, and temptation utility
which captures impulsive consumption desires. Moreover, the decision pro-
cess of the consumer is modeled in two stages. First, the consumer chooses

her most preferred menu out of all possible options and subsequently chooses
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her top ranked item out of the menu. Intuitively, this can be thought as
the consumer first choosing which store to buy from and then, once in the
store, choosing his highest ranked choice. Unlike standard rational agent
models, this framework explicitly accounts for self-control problems (result-
ing from the consumer consciously restraining herself) while maintaining a
single-agent representation. In contrast to time-inconsistent preference mod-
els (e.g. Strotz, ; Phelps and Pollak, and Laibson, ), it avoids
the need to split the consumer into multiple selves and thus make arbitrary
assumptions about welfare weights across these selves. Preference reversals
in Gul and Pesendorfer are the result of preferences being defined first over
consumption sets rather than over consumption sequences. Formally, two
sources of utility in the model are present: one denoted by U, the com-
mitment utility, and the other denoted by V’; the temptation utility which
quantifies how tempting different goods are to the consumer. The consumer’s
utility in the second stage is given by U + V' (his ez-post utility); while the
utility in the first stage (his ez-ante wutility W) is given by the difference
between the maximum ex-post utility and maximum temptation utility, i.e.

for a menu M

W(M) = max{U(z) + V(z)} — max V(z). (3.1)

zeM zeM

If U 4V is maximised at * € M and V is maximised at y € M, then the

ex-ante utility is
W(M)=U(z")+ V(z*) = V(y), (3.2)

V(x*) — V(y) is then the self-control cost.

Sin goods can of course be provided by either a monopoly or a competitive
market. I choose to focus on the monopoly case as the welfare implications of
taxation are clearer. This is because market competition creates additional
interactions between firms and as a result strategic government intervention
may create additional equilibrium distortions. My model relies on similar

assumptions as the standard non-linear pricing models in Mussa and Rosen
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( ) and Maskin and Riley ( ), where a monopolist sells goods that
differ in a single-dimensional quality (or quantity) level. This assumption
is well suited to sin goods as there are many instances where firms differ-
entiate their products according to consumer characteristics. For example,
luxury spirits (e.g., Johnnie Walker Blue Label, Dom Pérignon champagne)
target high-income consumers who are willing to pay for the brand prestige
and image. On the other hand, beer firms release low-alcohol products to
appeal to a broader health-conscious demographic. As it is standard, the mo-
nopolist does not observe consumers’ preferences and relies on indirect price
discrimination schemes which lead to consumer self-selection. To capture the
additional behavioral assumptions, the parameter measuring the intensity of
a given consumer preference for quality is replaced by the temptation inten-
sity 7 in my model. This temptation intensity only appears in temptation
utility.

Following Esteban et al. ( ), I consider two classes of consumers. Con-
sumers facing upward temptation and consumers facing downward tempta-
tion. A consumer facing upward temptation is tempted by high quality high
price items. She therefore has a higher willingness to pay when faced with
bundles containing such items. By contrast a consumer facing downward
temptation is tempted by lower quality lower prices items when faced with
bundles having higher price higher quality items. When confronted with con-
sumers of both types the monopolist faces a trade off between offering smaller
high quality high price menus that enable him to extract high surpluses from
consumers facing upward temptation, but may discourage consumers facing
downward temptation, and offering more targeted menus that can ease the
self control costs consumers facing downward temptation encounter. The
disadvantage of this former approach is that consumers facing upward temp-
tation are disincentivised from purchasing costlier bundles in the menu.

Recall that, I denote by v a given consumer’s temptation intensity. I
assume that there is a critical temptation level +* where the consumer’s
marginal value of commitment utility equals that of temptation utility. At
this point the consumer behaves as a fully rational agent. The magnitude of

the difference between a consumer’s v and ~* reflects the strength of temp-
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tation. When v > ~* (positive difference), the self-control cost arises from
higher quality: the larger the difference, the more temptation amplifies the
appeal of higher quality. When v < +* (negative difference), the self-control
cost arises from lower price: the larger the difference, the more temptation
amplifies the appeal of lower prices—potentially even deterring market entry.
My primary interest is the case in which there is population heterogeneity in
the degree of temptation .

The standard normative welfare analysis of monopoly taxation is pre-
sented in Krishna ( ). In particular, Krishna’s model analyses the effect
of protectionists policies on both a national and foreign monopolist when
he faces a population where consumers have different willingness to pay for
the goods he provides. Her model builds is based on the model by Mussa
and Rosen ( ). My model is closely related to hers, the main differences
being the additional behavioral assumptions. Unlike her results, where both
specific and ad valorem subsidies are welfare improving for a home monop-
olist, I show that a specific tax has no effect on welfare in this case. I also
characterize the performance of ad valorem taxation according to different
population levels. T further show that in the case of a foreign monopolist
both ad valorem and specific taxes are welfare improving.

In terms of welfare analysis in my model, I distinguish three types of total
welfare: adjusted-cost welfare, normative welfare and behavioral welfare. This
is because unlike traditional economics where individuals maximize a well-
defined utility function and welfare can be easily defined via this function;
behavioral economics incorporates cognitive biases and self-control problems
into the utility function. This makes the problem of defining welfare diffi-
cult. Indeed, disentangling true utility (a measure of genuine welfare) from
revealed preferences (observed choices) is a problem that remains unresolved
but seems to be increasingly substantiated by empirical research. There is
however much theoretical debate regarding this problem. This debate often
intersects deeper philosophical disagreements regarding paternalism versus
liberalism. Particularly, when determining optimal policy selection and wel-
fare evaluation.

The three welfare measures are defined as follows: adjusted-cost welfare
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uses the ex-ante utility of the consumer as a definition of welfare. This
is justified with reference to Gul and Pesendorfer ( ) who shows that
a dynamically consistent decision-maker benefits when ex-ante undesirable
temptations are removed, suggesting welfare should account for both com-
mitment utility and self-control costs in menu-choice contexts. On the other
hand, adopting a paternalistic normative perspective demands that welfare
should reflect choices made free of temptation (i.e. reflects the “true prefer-
ences”). This motivates the choice of commitment utility as welfare measure
since, by definition, it is supposed to capture “true” consumer preferences.
Finally, a behavioral analysis uses ex-post utility (the sum of commitment
and temptation utilities). This is motivated by the interpretation of an agent
in behavioral economics as consisting of several selves. The welfare of an
agent is thus the sum total of the welfare of each self. In this regard, Strotz
( ) argues welfare must balance conflicting preferences across time (e.g.,
present vs. future selves). This is further motivated, by noting that behav-
ioral economics challenges the conventional interpretation of reveal preference
theory since it is impossible to separate “true” preferences from behavioral
distortions when observing agents’ choices. In the context of the GP model
separating commitment and temptation utility appears unrealistic since only
ex-post utility could be inferred by observed choices. Given these theoret-
ical difficulties, I choose to evaluate policy impact across all three welfare
frameworks.

My results contribute to the literature in a number of ways. To start with,
I characterize an optimal monopoly nonlinear pricing scheme in a behavioral
context where agents suffer from temptation. This results in the optimal
scheme having price cap at the highest level. Secondly, I characterize the
optimal tax design. Third, the most novel contribution results from my
analysis of the welfare effects of taxation in this market both domestically
and for an importer. In particular, I show that a small tax or a subsidy can
improve welfare in the case of a home monopolist. In the case of a foreign
monopolist, I show that protectionist policies can result in higher consumer
welfare and increase tax revenue.

From the consumer perspective, I show that in equilibrium there are three
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types of consumers who do not suffer from self-control problem. First, the
lowest types always obtains zero utility as they purchase nothing. Second,
highest types choose the highest quality highest price product provided by
the monopolist. Since these consumers are upward tempted they suffer no
self-control costs. Lastly, consumers with temptation intensity at the level of
~v* behave rationally. At this level, the consumer’s marginal value of commit-
ment utility and that of temptation utility are equal. Equilibrium structure
depends on the upper bound of temptation intensity in two ways: a higher
upper bound implies temptation intensity varies over a wider range. More-
over, a higher bound diminishes the fraction of consumers facing self control
costs in equilibrium. In geometric terms, the interval of consumers who suffer
from self control costs shrinks as the parameter increases.

I show that imposing a tax can mitigate self-control costs by reducing the
net utility of temptation-driven choices (e.g., by making high-quality /lower-
price temptations less salient). I show that the effectiveness and nature of
taxation depends on market size. In particular, I find that larger markets
require taxes while smaller market benefit from subsidies.

More broadly, I show that specific tax has no effect on the domestic temp-
tation good while a small ad valorem tax may improve the social welfare
when the average level of temptation amongst consumers is not very high.
However, when the intensity of temptation varies strongly across consumers
a purely ad valorem subsidy policy can improve the welfare. On the other
hand for the imported good, both ad valorem and specific tax policy can
improve the domestic country’s welfare. I find that an optimal ad valorem
rate can reach a high level of around 50 per cent. By contrast a small specific
tax can be implemented by the government to improve the social welfare.

I also show that the optimal taxation policy depends on the normative and
behavioral perspectives. An optimal normative ad valorem tax for domestic
goods is a moderate rate between that of the adjusted-cost measure and the
behavioral measure, since it ignores the reduction of self-control costs arising
from the tax and the lowering of temptation utility. A specific taxation or
subsidy policy works the same way for domestic welfare. For the foreign good,

the adjusted-cost measure pushes the optimal ad valorem tax above the 50
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per cent mark; while the optimal ad valorem tax is lower than 50 per cent in
both the normative and behavioral measures. The normative measure shows
that a higher tax policy should be implemented by the government as more
consumers suffer more pronounced self-control problems when considering
a foreign good. The behavioral measure suggests that a lower tax rate is
better. It is particularly noteworthy that the optimal normative specific tax
rate is much higher than both tax rates as prescribed by the adjusted-cost
measure and the behavioral measure. This suggests that self-control costs
and temptation utility losses are sensitive to the specific tax rate on imported

good.

3.1.1 Related Literature

This paper studies optimal taxation in a monopoly market where the mo-
nopolist screens agents according to their temptation type. In particular, I
focus on how temptation affects consumers’ preference over different bun-
dles and how the monopolist accounts for this when providing a menu to
the consumers. This differs from the more widely encountered approaches
in the literature that rely on dynamics. In particular, present bias and time
inconsistency due to hyperbolic discounting. In contrast, consumers in my
model are not dynamically inconsistent. This allows for a more straight-
forward analysis by focusing on how other agents (i.e. the monopolist or,
indirectly, the government) account for the consumers behavioral traits in
their own decisions. In particular, this permits a more parsimonious com-
parative statistics analysis in the event a tax is introduced. Similarly, optimal
taxation can be easily characterized. Moreover, my model allows for higher
heterogeneity in agent types.

Time inconsistency and hyperbolic discounting are well-known in the eco-
nomic literature. Originally, the seminal work of Strotz ( ) introduced
the idea that an agent’s future actions may systematically deviate from her
initial optimal plan. Such deviation creates a demand for pre-commitment
devices, which ensures future decisions are in line with the present opti-

mal path. Building on Strotz’s insight, Phelps and Pollak ( ) formalized
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the notion of “hyperbolic discounting”, a time preference structure in which
short-run and long-run discount rates differ. However, their application fo-
cused on inter generational conflicts; specifically the challenge of second-best
national saving when the current generation cannot bind the decisions of
its descendants. This idea was then adapted to account for behavioral in-
consistencies of a single agent over time in Laibson ( ). The paper also
explored how agents behave under imperfect commitment technologies. This
was later developed in O’donoghue and Rabin ( ), which provided a rig-
orous analysis of the welfare and behavioral consequences of present-biased
preferences, which provided important insights into phenomena such as pro-
crastination. O’Donoghue and Rabin ( ) incorporates these ideas along
with the time-inconsistency assumption into a standard optimal taxation
framework. Their conclusions show that imposing a tax on unhealthy items
and returning the proceeds to consumers can generally improve total social
surplus. In particular, they provide examples showing that taxation can
be significantly effective even when agents are afflicted by a relatively small
self-control problem. By contrast in my model, if the population are predom-
inantly downwards tempted then introducing a subsidy can improve welfare.
On the other hand, if a large proportion of upward tempted consumers are
present then taxes are optimal.

A few papers have used the GP model been used to analyze the problem of
optimal taxation. For instance, Gul and Pesendorfer ( ) argue that taxing
drugs can in fact reduce welfare while prohibitive policies may be an effective
way to increase welfare. These results are established by constructing an
infinite horizon model of harmful addiction. Similarly, Krusell et al. ( )
were the first to study how linear tax-transfer schemes can be used to improve
the welfare in a representative consumer economy where agents are tempted
towards current consumption, thereby distorting the incentive to save for
future periods. They showed that a savings subsidy improves welfare by
making succumbing to temptation less attractive.

Other behavioral models have also been explored in the literature to ana-
lyze welfare improvement via taxation. In particular, Haavio and Kotakorpi

( ) discusses how linear sin taxes and transfers can mitigate consumption
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errors when agents follow a a quasi-hyperbolic discount function (see e.g.
Laibson, ). This time inconsistency leads to delayed negative effects.
More recently, Arvaniti and Sjogren ( ) identify a commitment mecha-
nism that works through endogenous labor choices and affects the design and
effectiveness of the optimal tax policy. As can be seen from these examples,
existing literature focuses mostly on individual welfare improvement via tax-
ation using general equilibrium frameworks. In this paper, I focus on the
normative question of determining whether total welfare can be improved
via taxation or subsidy on a monopolistic industry.

On the policy side, research has shown that paternalistic interventions like
“sin taxes” can be welfare improving as they can help reduce harms arising
from self-control problems. For example, Gruber and Készegi ( ) focus on
smoking and show that taxation can benefit low income groups. More gen-
erally, Gruber and Mullainathan ( ) argue that behavioral effects arising
from cigarette taxes are considerably more complex than those predicted by
simple rational economic model by referring to behavioral data from both
the US and Canada.

This paper also contributes to the normative behavioral welfare analy-
sis. Introducing behavioral effects in economic welfare analysis is a hotly
debated topic in the literature. This debate often centers about contesting
the foundational assumption of neoclassical economics without questioning
the underlying welfare assumptions of policy goals. An often cited example
of this approach is Gul and Pesendorfer ( ). On the other hand, a se-
ries of recent papers (Bernheim and Rangel, , , ) have argued
strongly in favor of an alternative normative framework that defines welfare
in terms of choice as opposed to well-being or other underlying objectives.
Lastly, Chetty ( ) presents a more pragmatic perspective on behavioral
economics that emphasizes its role in improving empirical predictions and
thus policy decisions. This paper is closer in spirit to this latter perspective,
I study and compare how optimal taxation policy is implemented according
to different attitudes to welfare.

The welfare effects of taxation under monopoly have been studied exten-

sively. Krishna ( ) show that both specific and ad valorem subsidies can
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raise welfare in a domestic monopoly market producing a full product line.
For a foreign monopoly firm, the outcome of taxation depends on the distri-
bution of consumer types. More recently, McCalman ( ) highlight that
optimal trade policy under nonlinear pricing depends not only on terms-of-
trade effects but also on consumer heterogeneity and incentive compatibility
constraints. In contrast, my model consumer types represent the degree of
temptation of each individual consumer. Temptation types are assumed to
be uniformly distributed. In this setting, protection policies can improve wel-
fare under both specific and ad valorem taxation. For a domestic monopolist,
the welfare impact of ad valorem intervention depends on the upper bound
of temptation: taxes enhance welfare when temptation costs are large, while
subsidies improve welfare through higher product quality when temptation
costs are small. By comparison, specific interventions are welfare-neutral.
The structure of this chapter is as follows: In Section 3.2, the model is
described formally in both the simpler case where there are only two con-
sumer types and the more general case where there is a continuum of agents.
In section 3.3, I present the optimal taxation and the welfare analysis. The
paper is then concluded in Section 3.4 with a discussion of further work and
conclusions. Proofs of some of the results in the main body are presented in

the Appendix.

3.2 Model

Consumer’s type 7 is uniformly distributed on [a,b]. The cumulative dis-
tribution is denoted by F(y) and the density by f(7y). Note that v gives a
measure of the degree of temptation the consumer faces. The consumer’s

commitment utility when offered a bundle of quality ¢ and price p is

Ulg,p) =q—p, (3.3)

and temptation utility is

Vi(a.p) = vqg —p. (3.4)
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The ex-ante utility from a menu M C R? is

W, (M) = (;};)@aé%{U(q,p) +V,(¢q,p)} — (;ﬁ@{%(q,p)}

(3.5)
= max {(1+7)g—2p} — max {yqg—p}

(gp)eM (gp)eM

A menu M C R? is assumed to be a compact set containing the origin
(0,0). This reflects the fact that the consumer always has the default choice
of not purchasing from the monopolist.

To clarify the properties of commitment utility U and temptation utility
V,, I define that for any utility function X,(¢,p) and Y,(q,p), X,(¢,p) =
Y,(¢,p) if the marginal value of ¢ is weakly higher for X, (q,p) than for
Y, (g, p) at any point (g, p).

Naturally, consumers with v < «+* who are tempted downwards to lower
quality, cheaper bundles exhibit a lower marginal willingness to pay for ad-
ditional quality than the committed itself, that is, V,, < U +V, < U. On
the other hand, consumers with v > +* who are tempted upwards to higher
quality, more expensive bundles have a higher marginal willingness to pay
for additional quality than the committed itself, that is, V, = U +V, = U.

For every menu, it is possible to define an allocation function z(7y) :
[a,b] — M that associates with each consumer a bundle (¢(v),p(y)) ac-
cording to his type v that the monopolist hopes the consumer will buy. This
bundle might in fact be (0,0). A menu M and allocation = together define a
schedule (M, x). A schedule is optimal if it maximises profits.

It is possible (see Esteban et al., ) to show that an optimal schedule
exists under general assumptions, where (i) the monopolist only provides
bundles consumers buy, and (ii) all consumers enter the store (I assume that
if a consumer is indifferent between entering or not he chooses to enter).
Moreover, this schedule does not generate loses to the monopolist at each
individual type. I discuss how to characterise this optimal schedule below.

Given an allocation (g(7),p(7)), for each consumer’s type ~, the firm’s

profit from the type is
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where the cost is

The expected profit for the monopoly is fw[p(’y) — 2q(7)?*]dF(y). Thus,

the firm’s problem becomes

max [ () = Sa0IFG)

a(v),p(v)
subject to
W, >0, (ex-ante IR)
(3.6)
Ua(v),p(7)) + V5(a(v), p(v)) = 0, (ex-post IR)
(3.7)
Ug(v),p(7) + V5(a(), p(7)) = U(a(%), p(9)) + V;(a(9), p(7)), V4. (ex-post IC)
(3.8)

The first of these conditions represents ex-ante individual rationality; the
consumer cannot be ex-ante worse off by entering the store than she would
be if she did not. The second represents ex-post individual rationality; the
consumer choice cannot be ex-post worse than he would be if she had not
chosen anything. Finally, the third condition represents ex-post incentive
compatibility; the consumer choice must be the best given all consumption
choices. Here, it is noted that ez-ante and ez-post utilities refer respectively
to the consumer before and after exerting self-control, which differs from
their use in standard (non-behavioral) models.

Finally, denote by v* the type of consumer who does not have a self-control
problem. In this setup, v* = 1. The type 7v* acts as a threshold, consumers
with v < 1 face downward temptation, while consumers with v > 1 face

upward temptation.
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3.2.1 Two-Type Case

I begin by considering a simpler setting where the consumer population con-
tains only two types; one downward-tempted, labeled as 7, and another
upward tempted, labeled as 4. More precisely, consumer types satisfy
7 < 1 < 4. By analogy with the continuum case, I assume that the

probability that a given consumer type is drawn from the population is 1.

2
This should not significantly alter the results, but makes calculations slightly
simpler.

I first consider the complete information case to gain some insight on how
the optimal schedule may be characterized under the more realistic assump-
tion of asymmetric information about consumer’s types. The monopolist
therefore observes the value of each consumer type ~ by assumption. This
allows the monopolist to offer an individualized menu M to each consumer so
as to maximize the monopolist’s profit. The consumer then chooses whether
to enter the store; if so, she chooses (¢,p) € M to maximize her ex-post
utility.

Under complete information, the monopolist maximizes profits under sub-
ject only to conditions (3.6) and (3.7), since complete information makes
incentive compatibility (3.8) redundant. In this case, the optimal schedule
contains a unique non-trivial choice (i.e. the optimal schedule is of the form
({(q*,p*),(0,0)}, (¢*, p*)), because offering additional options cannot increase
profits and instead risks raising self-control costs for the seller. Therefore,

the ex-ante and ex-post IR conditions reduce to

min{U(q,p), U(q,p) + V5(q,p)} = 0. (3.9)

For the upward-tempted consumers, U(q, p) > 0 implies U(q, p)+V,(q,p) >
0, since U + V,, > U when v > v*(= 1). Thus, condition (3.9) simplifies to
U(gq,p) > 0. The profit-maximization problem then reduces to maximiz-
ing w(q,p) = p — %qQ subject to U(q,p) = 0. A straightforward calcula-
tion then shows that the optimal bundle for the upward tempted consumer
is p“(m) = ¢“(
willingness to pay for quality because temptation pulls her toward higher

~vu) = 1. The upward-tempted consumer has a stronger
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bundles. The monopolist can therefore extract the entire surplus by setting
(q,p) = (1,1), leaving the consumer with zero commitment utility but no
incentive to opt out.

Conversely, for the downward-tempted consumers, U(q,p) + V,(¢,p) > 0
implies U(q,p) > 0, since U+V, < U when v < v*. Then the monopolist now
maximizes 7(q, p) = p—%q2 subject to U(q, p)+V,(q,p) = 0. This means that

Hzﬂ/L and p“ () = (HZL)Q. For downward-tempted

in this case, ¢“(y.) =
consumers, temptation drags them toward cheaper, lower-quality bundles,
effectively lowering their marginal willingness to pay. The monopolist must
therefore reduce both quality and price relative to the upward-tempted case
in order to satisfy the participation constraint.

Combining the optimal menus for each type of consumer, the monopolist’s
aggregate profit from both consumers is 7 = 7€ (vy) + 7 (11) = %—I— %.
The first summand comes from the upward-tempted consumer, whilst the
second is from the downward-tempted consumer. The monopolist earns a
fixed profit of % from the high-type consumer, while the profit from the low-
type consumer depends on the severity of temptation (through ~;). When
v, is small, the consumer is strongly tempted downwards, reducing both the

optimal bundle and the monopolist’s profit.

Incomplete Information

I now analyze the case of incomplete information where the monopoly does
not observe each individual consumer’s type. He only knows there is an
upward-tempted (also high-temptation type, or “H” type) consumer and a
downward-tempted (also low-temptation type, or “L” type) consumer, each
occurring with equal probability. The assumption of equal probabilities is
without loss of generality, as the distribution does not affect the static analy-
sis of equilibrium outcome. Recall that this means the two consumers satisfy
<Y =1<m.
The monopolist will in this case provide a menu

{(g(ya), p())s (@(); p(71)), (0,0)}
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to screen the two consumer types. As in the standard non-linear pricing
model, I require that in equilibrium 0 < ¢(v) < ¢(7Vx)-
In this case, the monopolist’s profit maximization problem can be rewrit-

ten as follows:

max  [p() — 3q(v)?] + [p(n) — 3a(1)?]
q(vn),p(vH)
q(y),p(L)

subject to

W, >0, (ex-ante IR for H)
(3.10)

W, >0, (ex-ante IR for L)
(3.11)

(1 +7)q(m) — 2p(yu) > 0, (ex-post IR for H)
(3.12)

(1 +)g(n) = 2p(n) =0, (ex-post IR for L)
(3.13)

(1 +7)q(y) = 2p(m) > (14 7m)q( ) — 2p(n),  (ex-post IC for H)
(3.14)

(14+7)q(n) = 2p(n) = (1 +92)q(ve) — 2p(7m).  (ex-post IC for L)
(3.15)

Before I discuss the solution of this problem, I first show that ex-ante IR

constraints are equivalent to non-negative commitment utility, U > 0.

Proposition 3.2.1. Tuaking an arbitrary menu M then ex-ante IR is fulfilled
for each v € {yu, 7.} if and only if, U(p,q) > 0 for all (q,p) € M.

Proof. 1 assume first that ex-ante IR is satisfied for both consumer types

then if (¢(v),p(7)) is a bundle such that maximizes U + V,, for v € {yu, 1.}

Ulq(),p(7)) = U(g(7), p(7)) + V(a(v),p(7)) — ma&{%(q,p)} > 0.

(g:p)

For the other implication; if U(q, p) > 0 for every (¢,p) € M and given some
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type v the following chain of inequalities holds:

W, (M) = max {U(q,p) +V(g,p)} — max {V,(¢,p)}

(gp)eM (¢'.peM

>U(d,p)+V(d,p) -V, p)=U(,p") >0.

In the above inequalities, (¢/,p’) € M is such that V (¢, p’) > V (¢, p) for any
(¢,p) € M. O

Proposition 3.2.1 implies that the two ex-ante IR constraints for both types
(3.10)—(3.11) can be replaced by the simpler conditions U(q(vy), p(7u)) = 0
and U(g(1),p()) > 0.

Recall that 7, < 7. Combining ex-post IR (3.13) for the downward-
tempted consumer with ex-post IC (3.14) for the upward-tempted consumer

yields

(I +7m)q(ve) —2p(a) = (1+7)q() —2p(n) > (1+7)q(n) —2p(7) > 0.

Hence, ex-post IR (3.12) for 43 never binds and can be ignored. By con-
trast, ex-post IR (3.13) for 7, must bind, that is (1 +71)q(7) — 2p(11) = 0.
This is because if this were not so, the monopolist could adjust the menu of-
fered by decreasing the quality, or increasing the price, of a given option. The
downward-tempted consumer prefers this option while the upward-tempted
one does not, leading to an increase in profit. Similarly, ex-ante IR (3.11)
for 4, must be slack. Otherwise this will mean V., < 0 which would lead to

self-control costs for this consumer type. Alternatively,

2q() — 2p(n) > (T +7)g(n) —2p(n) >0

given that v, < 1.

Finally, I substitute the binding ex-post IR (3.13) for v, into the ex-post
IC (3.15) for 7y,. This yields 0 > (1 4+ 7.)q(yu) — 2p(7u), which means that
the downward-tempted consumer does not gain from behaving as an upward-
tempted consumer. As a consequence, constraint (3.15) must not bind. Ei-
ther ex-ante IR (3.10) or ex-post IC (3.14) for 4, must bind however. The
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upwards-tempted consumer cannot obtain simultaneously extra commitment
utility or ex-post utility by choosing the lower quality offer if the monopolist
is maximizing profits.

From the above arguments it follows that conditions (3.10)-(3.15) can be

reduced to the following constraints:

q(yu) — p(m) >0, (3.16)
(L +7)q(n) — 2p(n) =0, (3.17)
(L +7)q(m) = 2p(m) = (1 +7)a(1) — 2p(7)- (3.18)
Rearranging the binding constraint (3.17), I have
2p(n) = (L +n)g(n)- (3.19)
Substituting into (3.18), the IC constraint (3.18) becomes
(1 +70)q(ym) = (v — n)aln) — 2p(yw) = 0. (3.20)

The monopolist’s problem is then simplified to choosing a pair of qualities

(q(u) p(71), ¢(7)) to maximize the profit function

q(m)?(ﬁiq(%) [2p(v) = a(r)*] + [T+ )a(n) — a(0)’],

subject to (3.16) and (3.18). Denoting A > 0 and p > 0 as the Kuhn—Tucker

multipliers for the inequality conditions, the Lagrangian function is

L) pOyn)s a(0), A i) = [20(3) — ¢(0)?] + [(1 4+ 1)a(n) — g(n)?]
+2X [q(y) — p()]
+ (1 + 7)) q(v) — (e — 1)a(n) — 2p()].

Differentiating with respect to q(vu), ¢(7.) and p(7yy) respectively yields
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the first-order conditions

=2q(m) + 2A + p(1 +74) =0, (3.21)
(T+7) —2q() — (v — ) =0, (3.22)
1—A—pu=0. (3.23)

These are complemented with the two complementary slackness conditions

A+ Jalw) = plw)] =0, (3.24)

0
i [0 )am) = G = wa(n) = 20()] = 0. (3.25)

From condition (3.23), I have A\ = 1 — p. Substituting into conditions
(3.21) and (3.22), ¢(v4) and ¢(7.) can be expressed as

q(m) =1+ @:

T4y — N(’YH - VL)

q(n) = 5 .

The social welfare W2 is defined as the sum of consumers’ ex-ante utilities

and the monopolist’s profit. Compared to the case where temptation is
absent, ex-ante utility is the difference between commitment utility and self-
control costs. Aggregate social welfare is therefore the sum of expected value
of U(y) + m(y) = p(v) — C(q(7y)) net of any self-control costs. In this two-
type case, neither of the consumers suffers from self-control problems. On
one hand, the ex-ante utility of downward-tempted consumer is always zero,
since the ex-post utility always binds and the maximal temptation is zero.
On the other hand, the monopolist ensures that the self-control costs of the
upward-tempted consumer are zero, thereby extracting the entirety of her
ex-ante surplus. Consequently, aggregate social welfare then reduces to the
expected value of g(v) — C(q(7)).

143v,4+4/9—2v,— T2

4

Proposition 3.2.2. Defining the following two bounds v, =
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Figure 3.1: Optimal ¢(vy) for different ~;,

and v;7 = v, + 2, the optimal bundle for the upwards tempted consumer is !

L if 1<yu<ny
_ —D(ya—1)(yu—yL—2 . _
q(yn) = Q1+ QDO oD iy € (v, (3.26)
1, if >k
and
2_ _ _ . _
(A+vu)’=(vm ZL)(1+2’YL ’YH)’ if 1<y, < o
Ply) = ( 1+ GGt if € (0, 7) (3:27)
1. if Yy > '7;5

Whereas for the downward-tempted consumer y,,

For expositional clarity, the functions are denoted as depending solely on ~y, for
example ¢(yu) and p(yu). Formally, these objects are functions of both vy and ~;,. In the
analysis that follows, however, ~;, is treated as a fixed parameter, and attention is directed
to the comparative statics with respect to ~y. Similarly, one may treat vy as fixed and
examine the variation with respect to 7.
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q(y) = § B + SplucaQnone® -y, € (1,07) (328)
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2 —~2 - —~— . _
p(y) = Gk Gl nc?) if v € (v, vy) (3:29)
2 .
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Figures 3.1 and 3.2 illustrate the dependence of ¢(yu) and p(yu) on Yy,
respectively, for a given value of ~,. Figure 3.1 highlights the regime tran-
sitions, ranging from a linear quality (resp. pricing) schedule for low values
of 4 to a constant schedule. For small values of 7y, the monopolist offers
higher qualities and prices than under complete information. This is because

IC becomes the only binding constraint and the upward tempted consumer
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receives some ex-ante surplus. As 7y increases ex-ante IR binds as well and
the monopolist obtains the highest possible profit in that case. In this regime,
the monopolist can continue offering bundles above the perfect information
one. By contrast, for sufficiently large values of ~4, the bundle converges to
the one that would be offered under complete information. This is because
when the upwards tempted consumer suffers from high temptation ex-ante
IR becomes the binding constraint while ex-post IC becomes slack. Due to
the possibility of the upward tempted consumer exerting self-control and not
entering the store at all, the monopolist cannot attain the same profit he
would if the consumer did not have behavioral preferences.

Further to the above details, note that as 7, raises to 1 the v/ increases
monotonically to 3, its highest value. The behavior of v;; is more complex as
it first raises and then decreases. Overall, the region where both constraints
bind (i.e. the interval (v, 7)) becomes larger with higher ~;,. Observe that
as shown in figures 3.1 and 3.2 the curvature of of both p and ¢ over this
interval also changes, from convex to concave as 7, increases. Moreover for
fixed vy increases in 7;, result in price reductions when 7y is low but lead to
price increases when 7y becomes larger, as can be seen from figure 3.2. This
is because for low values, increases in 7, make the consumer types closer,
which makes it more difficult for the monopolist to discriminate between
consumers.

Figures 3.3 and 3.4 illustrate the dependence of ¢(7;,) and p(7.) on v, re-
spectively, for a given value of 4. Both figures indicate that this dependence
is monotonic: higher values of 7y induce larger values of quality and price.
As v, approaches one, the bundle converges to (1, 1), which corresponds to
the optimal allocation when the consumer faces no self-control costs. Note
further that fixing 7;, and examining how ¢(7.) and p(7.,) change with 7y,
figures 3.3 and 3.4 show that increasing 7y results in higher quality price
bundles offered to the downward tempted. This is because in such circum-
stances the monopolist can offer a much higher quality price bundle to the
upward tempted consumer while maintain ex-post IC (and ex-ante IR) and

can therefore obtain a higher surplus from the downward tempted consumer.

Proposition 3.2.3. When there are only two consumer types in the popu-
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lation 0 < v, < 1 < vy, with each type being equally like. The monopolist

makes profits:

% + (1+gL)2 + 2(7H—’7L)2‘8""7%+27L_3’ Zf 1< Yu < o
5 12 M 9)\2 . —
7o) = § 4+ G oo if vu € (v, 7) (3:30)
) .
% + (H'gL) . Zf Vi = ’7;

In particular, the profit from upwards temptation is

(1+7H)2_2(’7H_8'7L)(1+27L_'VH)7 if 1<y <o
o -1 2 N —2 2 -1 2 . _
) =43 - St Ywe ) (631
2, if Yu >k
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and the profit from downwards temptation is

(14)2 = (yr—1)?

2 —_1)2 _ _9)2 _ 2 . —
m(y) = § Wl Geoiom e DR if € (,5) (332)
i if Ay >

Figures 3.5 and 3.6 illustrate the profit gains from the upwards and tempted
consumer respectively. Note that profits obtained from the upward tempted
consumer can raise to at most %, which corresponds profits under perfect in-
formation, where ex-ante IR binds. Note that as for p(yu) and ¢(y4) increas-
ing 71, leads to changes in curvature in the intermediate region v; < vy < 74 .
Moreover, for fixed 7y increases in v, result in lower profits when ~; is low
but higher ones when 7y is high, but below 7. On the other hand, profits for
v, are monotonically increasing and the raise to %, the maximum profit when

the consumer faces no self-control costs. As for p(v.) and ¢(7,) increasing vy
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for fixed 7, leads to higher monopoly profits, this is because the monopolist
can improve the quality and increase the price for the downward tempted
consumer without violating ex-post IC.

In addition, the ex-post consumer surplus is

(1+’7H)(24+"/L_’YH)’ if 1<y <v;
2 _1)2 o~ —9)2 . _
W) = 4 3+ P Wbt e (o) (3.33)
2 .
%+ (1+’YL) : if Y > ,yl-{&-

Comparison: With vs. Without Temptation

Consider the standard maximization problem without temptation, ex-ante
utility is no different from ex-post utility in this context. I can then think of
the temptation type v as indexing each consumer by her willingness to pay.

As in the case with temptation, the seller provides a menu

{(a(ya), p(m)); (g( ), p(71)), (0,0)}

to screen each consumer. The monopolist’s profit maximization problem is

however:

max |p(vu) — %Q(VH)Q] + [p(%) — 3q(n)’?
q(vu),p(vm)
q(),p(L)

subject to

(1 +y)q(vs) — 2p(m) > 0, ( )
(I +7)g(n) —2p(n) = (3.35)
(L +vm)q(v) — 2p(yw) = (1 +71)q(1) — 2p(n), (3.36)
(L+7)a(n) = 2p(n) = (1 +7)a(v) — 2p(7m)- (3.37)

As in the case where self-control is present, the IR must bind for the
downward-tempted consumer while the I1C for the upward-tempted consumer

implies the IR for this type. Finally, the IC for the downward-tempted
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consumer always holds.

Note that if the IR bound for the upward-tempted consumer, both upward-
tempted and downward-tempted types will behave in the same way. This
contradicts the assumption that consumers are separated by their types.

Also note that since the IR binds for the downwards temptation, the
IC condition can be written as (1 + v4)q(va) — 2p(va) > (1 + u)q(w) —
2p(v) = (yu — M)g(1) > 0, where the last equality holds only when
q(7.) = p(n) = 0. If the IC for the upward-tempted consumer binds, so
that (1 + 74)q¢(va) — 2p(m) = (u — 7)¢(71), the monopolist’s problem is
then simplified to choosing a pair of qualities (¢(7y),q(7)) to maximize the

profit function

21 = [(1+7)q(va) + (. — ) a(n) — ()] + [(1+72)a(n) — a(w)?].

The first-order conditions imply in this case that

1+ v L2y =
gn)=—"7—"

The bounds 1 < vy < 27, + 1 and 0 < v, < 1 guarantee strictly positive
quality is provided to both consumers. In this case, the prices offered to each

consuier type are

(1+ 7H)2 + (7 = ) (1 + 2% — Yu) P(’YL) (1+ ’)’L)2 — (1 +7)(m — IYL)'

p(m) = 1 , 1
On the other hand, when vy > 27, + 1, the menu always includes (0, 0)

for the downwards temptation. In this case,

0, if 0 <y < WL
q(n) = (3.38)

14291, —yu : yu—1
5 ;o if ey >
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and

0, if 0 <y <2
p(n) = (3.39)

2— —_ . —
(I+) (1Z’YL)(7H ’YL)’ if v, > ’YH2 1

In summary, in the absence of temptation, the monopolist’s problem re-
duces to a standard screening model where the qualities and prices are deter-
mined solely by willingness to pay. By contrast, when temptation is present,
the allocation differs because the monopolist must additionally account for
self-control costs, leading to distortions in both prices and qualities relative

to the non-behavioral model.

Taxation Policy

I now extend the model to incorporate taxation. Two common types of taxes
are considered: (i) an ad valorem tax T, levied as a proportion of the unit
price; and (ii) a specific taz s, levied as a fixed amount per unit of output.
Both instruments may be negative, in which case they represent subsidies
(i.e. 7 < 0 is an ad valorem subsidy and s < 0 is a per—unit subsidy).
For economic relevance and to maintain well-behaved allocations, I assume
7€ (—1,1) and s € R.2

When tax policies are embedded with specific tax rate s and ad valorem
tax rate 7 under incomplete information; the firm problem can be re-written

as the following optimization problem:

1 1
max 2 [p" () (1=7) =3¢ () =s|+ 5+ [P () (1=7) 24" (1)* =],
a” (ym).p" (i) 2
q" (n).p" ()
subject to (3.10)—(3.15).
For convenience, I multiply the objective by 4 and rearrange terms, ob-

taining the following scaled version of the problem:

max [ 201=7)p" () —a" ()] + | (1) (430" () —a” ()] 45,

4T (vu),pT (vm),97 (1)

2The bound 7 > —1 ensures 1 — 7 > 0; if 7 > 1, per-unit revenue becomes nonpositive.
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subject to (3.16) and (3.18), which are the rescaled forms of (3.10) and (3.15).
Denoting AT > 0 and p? > 0 by the Kuhn-Tucker multipliers for the

inequality constraints, the Lagrangian function is
£(g" (i), P (1), 67 (1), AT, 17) = [200 = 70" () — 67 (] + [(1 = D)1+ )a™ () — a7 (n)?

—4s+2\" [qT(vH) — pT(VH)]

(U e () = (= )" () = 267 ()]

Following the same method as in the previous section, it can be shown
that the ad valorem tax rate 7 proportionally reduces equilibrium prices and
qualities for each type. Aggregate profit is affected by both the ad valorem

tax rate 7 and the specific tax rate s.

Proposition 3.2.4. Under taxation, equilibrium allocations scale as
¢" (i) =1 =7)(n), P (w)=Q0-7)p(v), i€{H L}
Aggregate profit satisfies
= (1-7)*r - 2s.

The two tax instruments exert distinct effects on monopolist behavior.
The ad valorem tax introduces a proportional burden that scales with price
and, as a result, quality. Consequently, the effects if ad valorem taxes are
more pronounced when high—quality or high—price bundles are considered. In
contrast, the specific tax operates as an additive cost shift. When negative,
both instruments act as subsidies: an ad valorem subsidy proportionally
enhances incentives to increase prices and qualities, while a specific subsidy

raises profitability uniformly across all bundles being produced.

Effect of the tax policy on national welfare with self-control cost

This section examines how introducing small ad valorem and specific taxes

(or subsidies) affect national welfare, starting from an initial situation of free
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trade. The benchmark is therefore 7 = 0 and s = 0. Government revenue is
assumed to be rebated to consumers in a lump—sum manner. Quasi-linearity
ensures that these lump—sum transfers do not affect demand. National wel-
fare is therefore the sum of consumer commitment utilities ¢(v) — p(v), gov-
ernment tax revenue 7p’(y) + s and monopolist’s profits ¢* () — 7pT () —

C(q* (7)) — s. Formally, national welfare WP is

1 1
WP =" () — =¢" () + ¢ () — §qT(%)2-

2
Here,

(1— ), if 1<y <7y

T _ —1 —1 —yL—2 . _
¢ () = Q (1= 7) + (1 - 7)o - if € (%)
(3.40)
(1—7')1+27+7H, if 1<y <9y
¢ () ={ (1 -+ (1 - n)liguluagbue® i € (3, %)

(1—7)5e, if vy > it
(3.41)

National welfare can be regarded as a piece-wise continuous function of

relative magnitudes of vy and v,
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((1—7)(1+7L)
(1—47‘) [<7H_7L>2+(1+,YL)2L il <yw <y

1
(1—7) (1+ 27L+¢+¢)

B T (1+ @)%+ (H% +\If>2

5 , iy € (i)

[4+ (14+n)%, if i > 9t
(3.42)

where

o =D = Dlm —n —2)
207 — 12 +2(ym —m)?

U — (1 =)y — %) —n —2)
20 — 1) 4+ 2(yu — 1)?

The marginal welfare change due to the imposition of an ad valorem tax

can be found by differentiating

) = 50" )+ a7 () = 5070 )

with respect to 7. Let

St=q(w) +an),  S2=qlwm)’ +a(n)’

Then
ow *W
E:—Sl—i‘(l—T)Sg, 9.2 :—SQ<0;
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where S, < 0 since at least one consumer type chooses a bundle with a
positive quality in equilibrium. W(7) is therefore strictly concave in 7 for
fixed values of v;, and ;. The first of this derivatives is the welfare gradient,
the marginal change in welfare due to a change in taxation policy.

Observe that at free trade (7 = 0), the welfare gradient is S, — S;. Because
both qualities provided by the monopolist never exceed one, it follows that

q(7)? < q(v) for each type, which implies S, < S;. Hence,

OWB
or

=—-51+5, <0,
7=0
meaning that a small positive tax rate reduces welfare while a small subsidy
(a negative tax) increases it.
From the previous relations it follows that the welfare-maximizing ad

valorem rate is

Consider now the optimal ad valorem tax for different ranges of vy and 7.
When 1 < vy <7y,

2(1+ )
(v —)? + (L +7)*

r=1-

On the other hand, When vy € (77, 7%1),

1+ + 0+ T

Tr=1- 5
(1+ @) + (5 4 w)

where recall that

o (= D0 = D~ 7~ 2)
2[(’YH - 1)2 + ('VH - ’YL)Z} ’

(1 =)y — %)y — = 2)
2[(%{ — 12+ (yu — 'YL)Q] ‘
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Finally, When ~ > v,

3+YL

r=1-—2
(1+71)?
I+ UEE

The case of specific taxation differs fundamentally. National welfare is
independent of the specific tax rate s. This is because a specific tax or
subsidy merely transfers resources between firms and the government but

does not affect equilibrium allocations. Hence,

owE

aQWfB
-0 —
0s ’

552 0.

Meaning specific taxation has no effect on national welfare.

3.2.2 Continuous-Type Case

If the population of consumers contains only consumers with upward temp-
tation (so that @ > 1) or contains only consumers with downward temptation

(so that b < 1) then it is easy to characterize the optimal menus:

Proposition 3.2.5. If a > 1, let z* be a bundle that mazximizes profils
m(x) subject to the constraint U(x) = 0 then the menu M = {z*,(0,0)} and
the allocation x(y) = x* for every v € [a,b] form an optimal schedule for
the monopolist. This schedule fully extracts each consumer’s entire ex-ante

surplus.

Proof. Let 2* = (p*, ¢*) be the bundle that maximises ¢ — %qz, and v € [a, b].
Since v > 1, the agent is tempted upwards and V, (z) > U(x)+V,(z) > U(x).
In particular, V,(z*) > U(2*) + V,(2*) > U(2*). This implies that the menu
M = {z*,(0,0)} and allocation satisfy the constraints.

Let M" be a menu and y : [a,b] — M’ be an allocation, both of which
satisfy the constraints. By proposition 3.2.1 ex-ante IR is equivalent to the
constraint U(x) > 0 for every bundle x € M’, the constraint U(y(y)) > 0
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must hold for every . But for v € [a,b] and (py(7), ¢,(7)) = y(7)

Pol) — 5w <P = (a)

If T integrate over the whole range,

’ 1 2 S 1 *\2
/ py(7) — §qy(7) dF(y) <p" — 5((1 ).

Hence, the menu M = {z*,(0,0)} and the allocation z(y) = 2* form an

optimal schedule.
]

Proposition 3.2.6. If b < 1, (M, z) is an optimal schedule if and only if
(M, x) mazimizes profits subject to the constraint U + V., > 0.

Proof. For a proof see proposition 3 and its corollary in Esteban et al.,

]

In the more general case where a < 1 < b, where both downward and
upward temptation are present and tax policies are embedded with specific
tax rate s and ad valorem tax rate 7; the monopolist problem can be re-

written as the optimal control problem

b
[ {30= 1049400 - w)] - 3000 - s}ar )

2
subject to
w'(y) = q(7), (3.43)
w(v) = (v = Da(), (3.44)
w(a) =0, (3.45)
q(v) = 0, (3.46)
q(v) =0, (3.47)
7(y) > 0. (3.48)
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where w() is the ex-post utility of consumer of type v, defined as w(y) =
(1+7)q(v) —2p(7), and 7(7y) denotes the per-type profit contribution, given
by 7(v) = 5(1 = 7)[(1 +)g(y) — w(v)] = 59(7)* — s. Here equation (3.43)
represents the ex-post incentive compatibility and may be derived using the
envelope theorem. Equation (3.44) represents ex-ante individual rationality
and might be derived by manipulating the inequality W, > 0. Equation
(3.45) simply states that it is possible for the monopolist to set the ex-
post surplus of the lowest type at zero. Finally, equation (3.46) reflects the
fact that quality cannot fall below 0, while equation (3.47) states that the
quality function is non-decreasing in type. This last condition ensures that

consumers of higher type do not prefer to buy bundles at the lower type.

Proposition 3.2.7. Equation (3.43) is equivalent to ex-post incentive com-

patibility while equation (3.44) is equivalent to ex-ante individual rationality.

The Hamiltonian function for the optimal control problem is

H(w,q, i1, A, 0,7) Z{%(l — 7)1 +7y)a(y) —wv)] - %q(v)z - S}f(v) + p(v)q(v)

+ A [w(y) = (v = Da(y)] +6(v)a(v),

where p(7y) is the costate variable associated with (3.43), A(y) > 0 is the
multiplier for ex-ante IR (3.44), and 6(y) > 0 is the multiplier for the non-
negativity constraint (3.46).

The necessary optimality conditions are

50 =71 +7) g + () — (7~ DAG) +6(2) =0, (3.49)
w'(v) = q(7), (3.50)
, 1—7 1
W =—5—5— — A, (3.51)
ANw(y) = (v =1e(y)] =0,  Aly) =0, (3.52)
6(v)g(v) =0, d(y) =0, (3.53)
wu(b) =0, (3.54)
7(7) > 0 (3.55)



The optimality conditions reveal two distinct channels through which tax-
ation shapes equilibrium allocations. The ad valorem tax rate 7 enters mul-
tiplicatively in the Hamiltonian and first-order condition (3.49), scaling both
the marginal revenue and the costate dynamics. Intuitively, an ad valorem
tax reduces the effective marginal revenue from serving each type, thereby
proportionally contracting equilibrium quality and transfers across the type
distribution. By contrast, the specific tax s enters additively in the Hamil-
tonian and shifts profits independently of type. This implies that while s
reduces overall profitability, it does not directly distort the marginal trade-off
between quality provision and information rents. Hence, ad valorem taxa-
tion generates allocation distortions across all consumer types, whereas spe-
cific taxation acts as a lump-sum extraction from the firm without altering
marginal incentives. This distinction mirrors the discrete-type case, but here
the distortionary impact of 7 applies continuously across the type distribu-

tion, while s only shifts the intercept of the profit function.

Theorem 3.2.1. Suppose that a < 1 and b € (2,3) so that the consumer

population contains both upwards and downwards tempted types and assume

the quality q(v) is a continuous function of v € (a,b). Denote by
b—1 (b+1)2 4s
l(T’S)ZmaX{T’b_\/ ' (1—7)2}

5—10

V=

and

Impose the following restriction on the specific tax: s € (—1,1), and the ad
valorem taz: T € (—1,1). Given such tazes s and T, the following bound
ensures that the solution is well-defined:

(1-71)

s < (=3b* + 10b — 3) = Sy

Moreover, if |7| < 1 and —1 < 5 < Spax then ¥(7,5) < v* < 7 (recall that
v* =1). In addition, the quality q(7y), ex-post utility w(y) = (14+7)q(y)—p(7)
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and price p(y) are given as follows:

0, if v < (7, 5)

q(v) =q (1 =7)(v—5), if v € [y(r,5),7)] (3.56)
(1-7)(3-b), ify>7
0, if v < (7, 5)

w(y) = 55 (y - 512, if v € [y(7,5),7] (3.57)

1=7)B=by=1), ifv>7

and
0, if v < (7, s)
) =T +1?=CF+ 1% ifveh(ns)a] (358
(1-7)3-0), if v>7

Theorem 3.2.1 establishes that taxation reshapes the optimal schedule
determined by the monopolist. On one hand, taxation lowers the participa-
tion threshold y(7,s) . Taxation makes serving consumers with temptation
parameter v below (7, s) unprofitable. It is therefore optimal for the mo-
nopolist to provide zero quality to those consumer types. In addition, The
ad valorem tax reduces the slope of the quality schedule, scaling down both
q(y) and w(y) across the interior region. Note that specific taxes alone do
not affect the bundles of those consumers who are still served.

It should be noted that for types above 7, both quality and price flatten
out, implying a bunching at the top. This is due to the additional ex-ante
IR constraint due to the presence of self-control. This feature of the optimal
quality and price schedules is not present in the problem without self control.

The functions ¢(vy) and p(7) are illustrated in figure 3.7 below when 7 =
0.1, s = 0.1 - Spax and b = 2 (all the graphs in figs. 3.7-3.10 based on these
parameters). Observe that both functions are constant below (7, s) and

above 7. The fact that both functions coincide on these intervals implies
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that a consumer with temptation type in those regions obtains no surplus
in commitment utility. In particular, this reflects the fact that ex-ante IR
binds for consumers with v > 7. Note that over the interval [y(7,s),7],
q(7y) is linear while p(v) is quadratic. Consumers in this interval receive a
commitment utility surplus. This is similar to standard non-linear pricing
models. Finally, the small jump is due to the fact that s > 0. This tax makes
serving consumers below (7, s) unprofitable, even if some would have been

served if s = 0.

Definition 3.2.1 (Size of the market). The amount of consumers served by

the monopolist, the size of the market, is given by

L )b+1 [0+ 1)? 4s
|b—f_y|—m1n{ ) ,\/ 1 —(1_7_)2}.

The first term, b;r—l, represents the market when no specific tax is levied.
(b+1)2 45
4 1-n2

market size caused by the specific tax s and the ad valorem tax 7. Thus,

The second term, captures the reduction in the effective

the overall market size is determined by whichever of these two constraints

1S more restrictive.

Definition 3.2.2 (Size of the temptation region). Consumers with tempta-
tion intensity v € (v,7%), evcept v = v* = 1, face a self-control problem. The

size of this temptation region is defined as

o i 8 [0 s
R R A Q-2

Here, the bound 3 reflects the maximum possible span of temptation types,

given the support of preferences. The second term, 5’231’ + (b21)2 — (1fi)2,

shows how the temptation region expands or contracts depending on market

heterogeneity b, the self-control cost s, and the ad valorem tax 7. The actual
size of the temptation region is therefore the more restrictive of these two
constraints.

The comparative statics are straightforward. As the market parameter
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Figure 3.7: The optimal scheme of ¢(y) and p(y) with 7 = 0.1 and s =
0.1 Spax When b =2

b increases, the size of the market expands while the temptation region
contracts. Intuitively, when the consumer base shifts toward higher types,
more upwards-tempted consumers can be served without suffering self-control
costs. This implies that the monopolist is more likely to implement pooling
at higher types in order to maximize expected profit. Increasing b also causes
the temptation region to shrink while a larger share of consumers are now
located in the temptation-free region. Consequently, the optimal pricing
schedule shifts rightward, and the monopolist reduces quality marginally to
attract additional consumers by easing the self-control costs of those con-
sumers.

The measure |y — 1| captures the degree of behavioral divergence, i.e. the
extent of departure from standard utility maximization. A larger value of
|y—1] indicates stronger departure from traditional assumptions. Specifically,
when v—1 > 0, the consumer is drawn toward the high-quality option (high-
quality temptation); when v — 1 < 0, the consumer is attracted by the

low-price option (low-price temptation).
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As a consequence of proposition 3.2.1 monopoly profits 7(+) are given by

0, if v <~(7,s)
w(y) = G (y =02 + 1o+ 1) s, if y € [y(r,5),7] (3:59)
L3 —b)(b—1) — s, if v > 75

Per-type profit 7(7) is shown in figure 3.8 below. For low types, per-
type profit is zero, reflecting the fact that these consumers are excluded from
the market. The monopolist finds it unprofitable to serve them since their
willingness to pay is too low relative to the effective marginal cost (including
the effects of taxation s and 7).

In this intermediate range, profits rise smoothly and concavely with ~.
The upward slope reflects that consumers with higher temptation intensity
can be charged more aggressively, because the nature of their temptation in-
creases their willingness to accept higher qualities at higher prices. Concavity
indicates a diminishing marginal profitability as v approaches 7. Beyond %,
profits reach a maximum and become flat. Recall that any attempt to further
increase profit by distorting the contract would violate the ex-ante individual
rationality constraint.

Using the formulas in proposition 3.2.1, the different utilities can be
rewritten in terms of v. Denote by U(7) the commitment utility of type
v; by V,(7) its temptation utility; by maxV,(y) the largest temptation
faced by type v; by {maxV,(x) — V,(y)} type 7’s temptation cost and by
W(vy)=U(y)+ Vy(y) _“max V() the ex-ante utility of type 7. Then

0, if v < (7, s)
—T —_ 2 . —
UM =a(n)-p() = 52 [~ =12+ 2] ity € [y(7,9).9]
0, ify>7

Note that, as shown in figure 3.9 below, the commitment utility U(7) is in-
creasing in (y(7,s), 1) and decreasing in (1,%). This reflects the fact that for

consumers facing downwards temptation ex-ante IR is satisfied which means
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Figure 3.8: The optimal profit 7(vy) with 7 = 0.1 and s = 0.1 - Sy, When
b=2

that since they suffer from self-control costs, they must obtain a commit-
ment utility surplus. This surplus increases as v approaches 1 (who suffers
no self-control problem). On the other hand, for consumers facing upward

temptation this surplus is reduced as the monopolist attempts to extract

surplus.
0, if v <y(7,s)

Vo () = va(v)—ply) = § 42 (372 — 2by + %) 7 if v € [y(7,5),7]
(1=7)B=0b(y—1), if v>7%

As reflected in figure 3.9, the temptation utility V, is always increasing for
consumers that purchase a bundle. However, it grows linearly above 7 since
consumers in this region obtain no commitment utility surplus and price and
quantity coincide.

To determine the self-control cost, the maximum temptation must be cal-

culated for each type. For any 4 € [y,7] the temptation maximization prob-
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lem is

max {V5(q(7),p(7))} = max {§q(v) —p(7)}

q(7),p(7) q(7),p(7)

— max {?}/1%(27—1)—#1)—1?77_ (fy+1)2—(b%>2—b]}.

q(7),p(7)

Taking the first-order derivative of v, I have

av
& ~A-nh-50 =0
When ¥ € [ZTH, I, v = 29—1 € [y,7] the maximum value is V;(29—1) =
1TTT (2’} — HTl)Q Meanwhile, when 4 < = WH ‘v/ < 0, V5 is maximized at Y

and therefore the maximum temptation is Vﬁ(z) = 0. On the other hand,

when 4 > 7;1, ‘Cll—v > 0 and V5 is maximized at 7 which means that the
Y

maximum temptation satisfies V;(¥) = (1 — 7)(3 — b)(¥ — 1). Therefore,

0, it v < w
2 . 7,5)+1 5
maxV; (2) = max{yq(e)—p()} = { (1= 7) (y = B2, if 4 & (A2 281

1-7)B=0b)(y-1), ify>I2

Using this formula the temptation cost is

(

0, if v <~y(7,s)
(-7 7') <37 — by + zﬂ#) 7 if v € [y(r, 8)71(7,;)+1)
mg«wi(x)—‘/w(v) = 1%(7 —1)% if ve[= (TS)H, %H)
(1—7) [—%V2+ (3= 1)y + —ila=ts 45], if v € [Z,5)
\O’ if v> %H

As shown in figure 3.9, this function is divided in five regions. The first and

last both vanish, since consumers above 7 or below (7, s) face no self-control
costs. In the second region, consumers with v € [y(7, s), W) are tempted
by the bundle (0, 0), this cost peaks at % where consumers begin to be

tempted by bundles closer to them. The third region [*(T ;)H 7+1) contains
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Figure 3.9: Equilibrium U(v), V,(v) and max V. (z) — V() with 7 = 0.1 and

s = 0.18,,0, Wwhen b =2

both consumers facing downwards temptation, who pay a low cost as the
bundle they are tempted by is close to theirs and the effect of temptation is
low in since their type is close to 1. Remember that v* = 1 faces no self-
control by definition. On the other hand, once this transition type is passed
self-control costs raise again as consumer are tempted by bundles that are
further from theirs, this offsets the fact that the effect of temptation is small
for these types. Finally, in the fourth region, types v € [%H, ) are tempted
by the bundle purchased by 7% but since it is relatively close to theirs, the
effect is smaller and self-control costs decrease as 7 increases.

The ex-ante utility per type v can be calculated easily from these results

(O, if v <y(7,5)
5= if v € [y(7,9),
W) = wiy)-maxVy(a) = § (1=7) (=5 +7+ E525) | ify e (L0
(-0 (F+52+05E), iy eha)
0, if v=>7

As illustrated in figure 3.10 below, ex-ante utility is strictly positive only
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Figure 3.10: Equilibrium w(y) and W () with 7 = 0.1 and s = 0.18,,,, when
b=2

for types v € (v(7,s),7), which is precisely the region where self-control
costs are relevant and ex-ante individual rationality does not bind. For types
below (7, s) or above 7, W(y) = 0, consistent with binding participation
constraints. Moreover, W (7) is highest at v* = 1 since this type has standard
preferences. Furthermore, for types close to 1 the effects of temptation are
small and can therefore benefit from a higher surplus. In contrast, for types
farther from 1, self-control costs reduce surplus, explaining the concave shape

of W () across the temptation region.

Proposition 3.2.8 (Effect of taxation on the bounds of v and %). The
introduction of a small amount of tax, either ad valorem (T) or specific (s),
does not change the upper bound 7. Moreover, the lower bound ¥(7, s) never
rises to the value of 7. By contrast, the lower bound (7, s) is sensitive to
taxation, and its behavior depends on the type of tax as follows:

(1) Case of an existing subsidy (s <0):

Starting from a situation where an specific subsidy has been imposed (s <
0) so that that (,s) = b_Tl Neither a reduction of the subsidy s nor the
introduction of a tax T affect this lower bound.

(2) Case of a laissez-faire market (s =0):
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i. Imposing a specific tax s > 0 increases the lower bound to 1(0, s) while
introducing a specific subsidy s < 0 has no effect on the lower bound (7, s).
1. Imposing an ad valorem tax T has no effect on the lower bound.
(3) Case of an existing specific tax (s > 0):
Starting from a situation when a specific taz is being levied (s > 0) so that
—p_ )2 s
A(7,8) = 1 -z
i. Increasing the specific tax s raises the lower bound 1(7',5). This leads

to the lowest types leaving the market.
1. The effect of a change in the ad valorem taxr T depends on whether
T < 1, in which the change in bound is in the same direction as the change

in T; or T > 1, when the change is in the opposite direction.

In particular, when 7 = 0, the lower bound reduces to

==, when s < 0

v(s) = [T 16s
o b—&216 when s > 0

P} )
and the derivative of this function is

dv(s 4
1(): >0 for s>0.
ds (b+1)%2—16s

—3b%4+10b—3
16

1 and the optimal control problem is well defined, which leads to a non-

Finally, recall that the condition s < Sy = ensures that y(s) <
empty set of consumers in the market The dependence of s, on b is shown
underneath in figure 3.11. Notice that as b increases spy.x approaches 0,
meaning that higher-quality goods tolerate only very small specific taxes

before the market collapses.

Proposition 3.2.9 (Effect of specific taxes on market variables). An
increase in the specific tax s has the following effects:

(1) It does not affect the quality q(y), the price p(v), ex-ante utility W (~y)
and ex-post utility w(7y) for all of consumers of types v € (y(7,5),b];

(2) It reduces the total profit of the monopoly.
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Figure 3.11: The upper bound for the specific policy sy ax

Proposition 3.2.10 (Effect of ad valorem taxes on market variables).
An increase in the ad valorem tax T has the following effects:

(1) It reduces the quality q(7y), the price p(7y), ex-ante utility W(v) and
ex-post utility w(y) to all types of consumers v € (y(t,s),b|;

(2) It reduces the total profit of the monopoly.

The difference between the two types of taxation lies in how they distort
the monopolist’s optimal contract design. A specific tax acts as a lump-sum
burden on the monopolist, reducing profits without affecting the optimal
allocation of quality and prices across types. By contrast, an ad valorem
tax directly scales down revenues from each unit sold, making high-quality
contracts less profitable. As a result, the monopolist reduces both quality and
price, which lowers consumer utilities in addition to profits. This explains
why ad valorem taxation has stronger distortive effects on market outcomes

compared to specific taxation.

3.3 Welfare Effects

This section examines the impact of introducing a small ad valorem or spe-
cific tariff on aggregate welfare when starting from an initial equilibrium
where trade is free. The analysis also derives the optimal taxation policy un-
der two alternative market structures, distinguishing between the case of a
domestic monopolist and that of a foreign monopolist. As noted in the intro-

duction, multiple theoretical frameworks can be employed to evaluate welfare
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effects. The analysis proceeds by considering the three primary approaches
separately, calculating welfare under each, and subsequently comparing the

results across the different measures.

3.3.1 Welfare Analysis of a Domestic Monopolist with Behav-

toral Consumers
Social welfare effect of the ad valorem fiscal policy

For a home monopolist, the total welfare comprises the sum of consumer
surplus and expected profits of the monopolist and tariff revenues. However,
since tariff revenues represent transfers between consumers and the monop-
olist, they do not affect aggregate surplus. Accordingly, welfare reduces to
the sum of consumer utility (from surplus) and monopolist surplus.

To capture behavioral distortions, I define the self-control cost-adjusted to-
tal welfare, denoted by W (7, s). This results from summing (i) ex-ante con-
sumer surplus, (ii) the monopolist’s expected profits, (iii) tariff revenues, and
(iv) the negative of self-control costs. In other words, the welfare WX (1, s)

18

W)= [ ot = 3a002] st = [ {maxtoatn) ~ o1} - bate) - sl 1

&

J/

TV Vv
Normative Welfare Self-Control Cost

To determine the effect of the introduction of a small intervention from
a laissez-faire benchmark where 7 = s = 0, I compute the derivative of

WH (1, s) with respect to T evaluated at 7 = s = 0:

OWH (T, s) _ 3—0D

—_— 2 R—
e oo = 1605 —a) (b* — 30b + 57). (3.60)

The sign of this derivative (and thus wether implementing a tax or sub-
sidy) depends on whether the parameter b falls below or exceeds the critical
threshold b7 :

b =15 — 2v/42 & 2.04.
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When b is relatively small, where b € (%,bg), the welfare gradient is

strictly positive:

OWH(r, s)

> 0.
87' T=5=0

This implies that a marginal tariff raises welfare when there is a large
proportion of agents with upwards temptation.

At the boundary b = bf, the welfare gradient vanishes:

OWH (7, s)

87' T=5=0

In this regime, abstaining from intervention is optimal.
For b is relatively large, where b € (b%, 3), the welfare gradient becomes

negative:

OWH (7, s)

< 0.
87' T=5=0

In this case, the introduction of a marginal tax reduces aggregate welfare,
indicating that a subsidy would be required to improve efficiency.

Finally, I generalize the analysis by considering the derivative of welfare
with respect to 7 for arbitrary 7 (with s = 0). This expression allows me
to characterize the optimal ad valorem policy, which balances the trade-off
between mitigating temptation-driven inefficiencies and preserving surplus.

To derive the optimal ad valorem taxation policy, I formally evaluate the
marginal effect of the ad valorem tax 7 on welfare, while setting the specific
tax equal to zero. This derivative characterizes the sensitivity of aggregate
welfare to incremental changes in 7, thereby allowing the identification of the

welfare-maximizing tax (or subsidy) rate.

OWH (7, s) (3—10)

.\ ) 2 9 _
S oo = T80 —ay B~ 300+ 5T) + 80 + 66— 27)1].
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Figure 3.12: The optimal ad valorem policy 7/

From this calculation, the optimal policy is given by the following rule:

L 3(b2—30b+57)

T T8+ 9)0b-3)

Proposition 3.3.1 (Optimal Intervention Strategy 7%). The optimal
ad valorem policy is
Y 3(b* — 30b + 57)

Ty = —

CT 8L+ 9)(b-3)

For populations with
(a) Small-market size (b€ (3,b7)): a tax 78 € (0,2%) is optimal.
(b) Large-market size (b € (b, 3)): a subsidy 7 < 0 is optimal.

(¢) Boundary-market size (b = b%): no intervention is optimal.

The intuition behind these results is straightforward. In relatively small

markets, where b lies below the critical threshold b7, a tax improves efficiency
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by counteracting the excessive consumption driven by behavioral biases such
as temptation or self-control problems. Conversely, in sufficiently large mar-
kets, the distortionary effect of taxation outweighs its corrective benefits,
and a subsidy is required to restore efficiency. At the boundary value of
b = bZ, the opposing forces exactly cancel out, so that laissez-faire remains
the optimal policy choice.

Next, consider the normative social welfare measure W which includes
(i) consumer surplus measured in terms of commitment utility, (ii) the mo-
nopolist’s expected profits, and (iii) tariff revenues, but omits self-control

costs:

1

W)= [ ot - a6 syer

- J

~
Normative Welfare

As before, the marginal effect of intervention at the laissez-faire benchmark

(1 =s=0) is given by,

OWH (7, s) 30 5
e R o S )

Define the threshold parameter
b =26 — 3 ~ 1.90.

For b is relatively small, where b € (g, b’;), the welfare gradient is strictly

positive:

OWH (7, s)

> 0.
(37' T=5=0

In this range, a marginal increase in the ad valorem tax rate raises aggre-

gate welfare, indicating that taxation is welfare-improving.
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At the boundary b = b}, the welfare gradient vanishes:

OWH(7,s)

=0.
87’ T=5=0

In this transition region, imposing a marginal tax or subsidy has no effect.
For b is relatively large, where b € (b%, 3), the welfare gradient becomes

negative:

OWH(T s)

< 0.
87' T=5=0

In this regime, any marginal tax imposition reduces aggregate welfare. In
other words, welfare improvement requires a subsidy.
To determine the optimal ad valorem taxation policy, consider derivative

of WH (7, s) with respect to 7, holding the specific tax equal to zero:

AW H (7, 5) 3-b

i o =6 gy TE 60 15) + B+ 9) (b= 3)7]

Solving the first-order condition:

. bP4+6b—15

T b+ 9)(b—3)
yields the welfare-maximizing ad valorem rate.

Proposition 3.3.2 (Optimal Intervention Strategy 7). The optimal

ad valorem policy is

. PP+6b—15

T+ 9)0b-3)

For populations with:
(a) Small-market size (b € (2,b1)): a taz 77 € (0, ) improves welfare.

37U ’ 32

(b) Large-market size (b € (b%,3)): a subsidy 7/ < 0 is welfare-enhancing.
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Figure 3.13: The optimal ad valorem policy 7}

(¢) Boundary-market size (b = b%): (boundary-market size), no inter-

vention 1s optimal.

Similarly, in short, the analysis demonstrates that welfare-improving pol-
icy is context dependent: small markets call for taxation, large markets re-
quire subsidization, and at the critical boundary no intervention is desirable.

The behavioral social welfare W[ | aggregates (i) ex-post consumer sur-

plus, (ii) the firm’s expected profits, (iii) tariff revenues. Formally,

Witro) = [ o = 5002 s+ [ a0 =l s

. >

Vv vV
Normative Welfare Temptation Surplus

The effect of a marginal intervention from the laissez-faire status quo

(1 =5 =0), I compute the welfare gradient W (7, s) with respect to 7:

oWl (7,s) 3—0b 9
—_— = ————(—43b" — 78b + 285).
or r=s=0 96(b—a) ( +285)
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Define the threshold b7 as

U+v

H __
bU+V -

4 _
—W ~ 1.82.

H
U+V

For b is relatively small, where b € (g, b ), the welfare gradient is strictly

positive:

aWﬁv(T, s)

> 0.
87’ T=5=0

The introduction of a marginal tariff results in first-order welfare raises.

At the boundary b = b%_ ,, the welfare gradient vanishes:

U+V?
OWH (7,s) _9
or r=5=0 '

This represents a transition point, neither tax nor subsidy yield welfare
gains.
For b is relatively large, where b € (b, 3), the welfare gradient becomes

U+V?

negative:

OW (7, 5)

< 0.
or r=5=0

In this regime, any marginal tax imposition reduces aggregate welfare. In
other words, welfare improvement requires a subsidy.
To obtain the optimal ad valorem taxation policy, I differentiate W (7, s)

with respect to 7 at s = 0:

oW (7, 5) 3-b ,
o o = 60— (430 786 — 285) - 16(b + 9)(b — 3)7]

From this calculation, the optimal policy is given by the following rule:

n 43b% 4 78b — 285
U 16(b+9)(b—3)
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U+Vv

Figure 3.14: The optimal ad valorem policy 7

H
U+Vv

Proposition 3.3.3 (Optimal Intervention Strategy 7/, ,). The optimal

ad valorem policy is

n 43b% 4 78b — 285
U 16(b+9)(b—3)

For populations with:

(a) Small-market size (b € (2,b,,)): a tax policy 7., € (0,25) im-

proves welfare.

(b) Large-market size (b € (b%,,,3)): a subsidy policy 7/, < 0 is

welfare-enhancing.

(c) Boundary-market size (b =10, ): no intervention is optimal.

U+v

Taken together, the analysis across the three welfare criteria establishes
a robust pattern for optimal taxation policy. Recall that as the parame-
ter b increases, the market expands while the share of consumers subject to

temptation distortions diminishes. In relatively small markets, where the
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Figure 3.15: The comparison of the optimal ad valorem policy 7 with a
home monopolist

temptation region is sizable, an ad valorem tax is welfare-enhancing be-
cause it alleviates self-control problems and improves allocative efficiency.
In contrast, in sufficiently large markets, where temptation is less pervasive,
a subsidy becomes the welfare-maximizing policy by stimulating additional
consumption. Hence, the sign of the optimal intervention is systematically
linked to the relative prevalence of temptation in the consumer population.

The welfare effects of an ad valorem tax policy depend critically on the
underlying welfare criterion and the share of intermediate consumers in the
market. The ordering of optimal policies satisfies

H

H H
To > Ty > Ty

as the graph 3.15 shows. When using the adjusted-cost criterion (so that
welfare is measured in terms of ex-ante utility), a marginal tax introduction
raises welfare whenever the proportion of intermediate consumers is large.
Conversely, if this share is small, so that the majority of consumers are

upward tempted, a subsidy becomes welfare improving. This result is qual-
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itatively similar to the situation where consumers face no self-control cost.
Moreover analogous results hold if the normative (where commitment utility
serves a metric of consumer welfare) or behavioral approaches are taken (so
ex-post utility is used instead). The key difference lies in the position of the
welfare threshold:

bl > by >by,
indicating that the switch between taxation and subsidy occurs at a slightly
lower market size when self-control costs are neglected.

The intuition is as follows: Imposing a tax can reduce self-control costs
and lower temptation utility. Under the normative perspective, where com-
mitment utility is quadratic in 7, this generates a threshold beyond which the
optimal policy switches from taxation to subsidy. Accounting for self-control
costs (adjusted-cost welfare) strengthens the case for taxation because higher
taxes more effectively reduce temptation-induced distortions. In contrast,
under a purely behavioral framework (where only temptation utility mat-
ters), higher taxes diminish temptation utility, so a lower tax (or a subsidy

in some cases) yields higher welfare.

Social welfare effect of the specific taration policy

For a home monopolist, the introduction of a specific tax strictly reduces
welfare, whereas subsidies are neutral. This result holds under all welfare

specifications considered.

Lemma 3.3.1 (Specific Tax Neutrality for WX). Under the adjusted-cost
welfare criterion, any s > 0 (specific tazx) reduces welfare, while any s < 0

(specific subsidy) has no effect.

Lemma 3.3.2 (Specific Tax Neutrality for W). Under the normative wel-

fare criterion, s > 0 reduces welfare, and s < 0 has no effect.

Lemma 3.3.3 (Specific Tax Neutrality for W2

U+V

). Under the behavioral wel-

fare criterion, s > 0 reduces welfare, and s < 0 has no effect.
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These lemmas imply that the optimal specific tax for a home monopolist

is s = 0, independently of the welfare specification;

Proposition 3.3.4 (Neutrality of Specific Taxes). For all welfare spec-
ifications (C, U, and U+V), the optimal specific tax rate is zero:

The intuition for this result is straightforward. If the government provides
a specific subsidy, the transfer is fully captured by the monopolist, leaving
consumer surplus unaffected because the lowest consumer type served re-
mains unchanged. Conversely, if the government imposes a specific tax, the
monopolist raises the cutoff type, so that types in the range (a, (7, s)) are no
longer served in order to maintain non-negative profits at each type. Never-
theless, if self-control costs are considered, then the introduction of a specific

tax can help lower this cost.

3.3.2 Welfare Analysis of a Foreign Monopolist with Behavioral
Consumers

For a foreign monopolist, the total welfare consists of the sum of consumer

surplus and tariff revenues.

Social welfare effect of the ad valorem taxation policy

The self-control cost-adjusted welfare is denoted by W2 (7, s) and consists of

the sum of (i) ex-ante consumer surplus and (ii) tariff revenues.

Wl(r,s) = / [q(v) = p(M] f(7)dy — / {max{vq(v) —p(M} = [valy) — p(y)] }f(v)dv

J/

Commitment}jtility Surplus Self—Con;?ol Costs
b
+ [ )+ 10,
a

Tax Revenues
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Having established the components of self-control cost—-adjusted welfare,
it is natural to analyze how taxation shapes these terms. In particular, the
ad valorem rate 7 enters both through its direct contribution to government
revenue and indirectly via its influence on consumer surplus and behavioral
costs. To isolate the mechanisms at work, it is useful to begin by examining
the marginal effect of changes in 7 on government revenue. This step pro-
vides a benchmark for understanding how fiscal instruments interact with

consumer behavior in determining overall welfare.

Proposition 3.3.5 (Marginal effects of ad valorem taxation rates changes).
The marginal effect on government tax revenue effect of an increase in the

ad valorem tax rate T 1s:
i. positive when T < %; a small increase in T yields higher tax revenues.
1. negative when T > %; a small reduction in T yields higher tax revenues.
14 neutral when T = %; a small reduction in T has no effect on revenue.

Proposition 3.3.5 characterizes the revenue-maximizing properties of the
ad valorem tax rate in general terms. To assess the welfare consequences
more directly, it is instructive to evaluate the effect of taxation starting from
the laissez-faire allocation, where both the ad valorem and specific taxes are
set to zero. The following expression computes the derivative of welfare with
respect to 7 at this point, thereby providing a benchmark for understanding
the initial welfare impact of introducing a small ad valorem tax.

At the laissez-faire allocation (7 = s = 0), the derivative of welfare with
respect to 7 is:

(b—3)

= (Tb? + 30b — .
48(b_a)(7 +30b—33) >0

OWE (7, s)
or

T=5=0
More generally, the derivative of welfare with respect to 7 (while keeping

s =0) is:

owkr
or

(=3 s 2
Sl [(76? + 30b — 33) + 4(b* — 30b + 33)7] .

s=0

130



0.64

0.63

0.62

0.61

0.60

1 1 1 | 1
1.8 2.0 2.2 24

1 1 1 1 |
26 2.8 3.0

Figure 3.16: The optimal ad valorem policy 7/

Maximizing W/ yields the optimal ad valorem tax rate:

B b2 + 30b — 33

Te = T 402 —30b + 33)°

Proposition 3.3.6 (U-shaped Optimal Intervention Strategy 7/). The
optimal T initially decreases with b, and then increases as b continues to

grow, while always remaining above 50per cent.

From the figure 3.16, the optimal 7/ under the adjusted-cost welfare cri-
terion displays a U-shaped with respect to the parameter b. In particular for
both relatively small and relatively large values of b a high taxation policy,
the optimal policy prescribes a high tax rate, typically exceeding, larger than
50 per cent. In this case, tax increases can offset revenue losses by improving
total consumer surplus. When b is close to 2.2, the optimal ad valorem also
approaches 0.5. This implies the ad valorem taxation always helps consumers
overcome self-control problems when considering a foreign monopolist.

The intuition behind the U-shape is as follows. When the market is rela-
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tively small, temptation distortions are severe, and a high tax is required to
mitigate excessive consumption induced by the monopolist’s pricing strategy.
As the market grows, these distortions gradually diminish, lowering the need
for heavy taxation; hence the optimal rate falls toward 50 percent around
the mid-range of b. However, for very large markets, the monopolist’s abil-
ity to extract surplus again amplifies the importance of corrective taxation,
driving the optimal rate back above 50 percent. Thus, the U-shape captures
the trade-off between reducing temptation costs and maintaining sufficient
consumer surplus across different market sizes.

The normative social welfare W7

commitment utility surplus and (ii) tariff revenues, given by

consists of the sum of (i) consumer

WE(r,s) = / la(y) — (V)] F()dy + / [7p(y) + 5] F()dby

. J

Vv vV
Commitment Utility Surplus Tax Revenues

At the laissez-faire benchmark (7 = s = 0), the derivative of welfare with

respect to 7 is:

OWEI(r,s)
or

__(b=3)
T=5=0 a 12(b — CL)

(b — 18b + 21) > 0.

More generally, when holding s = 0), the welfare gradient is:

OWI(r s)
or

(b—3)

=0 12(b—a) [(b" — 18b +21) + (—b" + 30b — 33)7]

Accordingly, the optimal ad valorem policy

F

b —18b+21
Tv = p2 2 30b + 33"

Proposition 3.3.7 (Optimal Intervention Strategy 7/). The optimal 7},
is monotonically increasing in b, and remains strictly below 50 per cent for

all admissible values of b.

As illustrated in Figure 3.17, the optimal ad valorem policy 7, converges

toward 50 per cent as b increases. Note that taxation reduces total standard
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Figure 3.17: The optimal ad valorem tax policy 7/

consumer surplus on one hand while on the other it increases the total tax
revenue. In relatively small markets, the reduction in consumer surplus in-
duced by taxation is limited, while the associated increase in tariff revenue
is substantial. Consequently, the revenue-raising effect dominates, rendering
taxation welfare-enhancing.

The behavioral social welfare W = consists of the sum of (i) ex-post

U+Vv?

consumer surplus and (ii) tariff revenues, given by

b b b
WErs) = [ lat) = o) 1)+ [ D) = p) £+ [ frat) + o] f)ey.
Commitment%tility Surplus Temptation ?thility Surplus Tax R:ervenues

~
Ex-Post Consumer Surplus

At the laissez-faire benchmark (7 = s = 0), the derivative of welfare with

respect to 7 is:

oWk (7, s) b—3 )
_ = —(35b° — 162b + 123 0.
or | - a) T123) >
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The derivative of welfare with respect to 7 (while keeping s = 0) is:

OWE (1,s) _ b-3 [
or . ~96(b— a)

S=

(35b6° — 162b + 123) + 8(—b* + 30b — 33)7] .

The optimal ad valorem policy is

. 35b* —162b+ 123
URV T 8(b2 — 300 + 33)

-
Proposition 3.3.8 (Optimal Intervention Strategy 7;,,). The optimal
7L s monotonically decreasing in b, and remains strictly below 50 percent for

all admissible values of b.

As shown in Figure 3.18, the optimal ad valorem policy 7;; decreases below
50 per cent as b increases. This is because taxation reduces total consumer
surplus and the optimal ad valorem policy is below 50 per cent. In smaller
markets, by contrast, the reduction in consumer surplus induced by taxation
is relatively limited, so that the revenue-enhancing effect dominates. Con-
sequently, the optimal tax remains positive but lies strictly below one-half,
highlighting the weaker role of ad valorem taxation in welfare improvement

compared to the adjusted-cost or normative frameworks.

F
U+Vv

The optimal policy satisfies 75 > 7 > 7/, as the graph shows. The
results are consistent with the standard model which suggests that market
protection policies are always welfare-improving. The main difference is the
effect of taxation in reducing consumer’s self control costs, which was not
taken into account before. The adjusted-cost opinion emphasizes that a
heavy tax on a foreign product can improve the country’s welfare. For the
dependence on market size, paternalism and libertarianism show the opposite
results. As the proportion of agents with ~ closer to 1 increases, the optimal
ad valorem raises when considering normative welfare; while the optimal ad

valorem tax reduces when considering behavioral welfare.
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Figure 3.18: The optimal ad valorem tax policy 7
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Figure 3.19: The comparison of the optimal ad valorem policy 7" with a
foreign monopolist
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Social welfare effect of the specific tax policy

To determine the effect of the introduction of small specific tax (7 = s = 0),

I take derivative of W' (7, s) with respect to s evaluated at 7 = s = 0" and

T=5=07:
oWk (7, s) _ —5b* +2b+ 13
Os r=0s=0+ 8(b—a)(b+1)’
OWI(r s) _ b+l ~o
Os r=0,s=0- 2(b—a)

The choice between implementing a tax or subsidy depends on whether

the parameter b falls below or exceeds a critical threshold b, :

b- ~ 1.83.

c

_ 1+/66
-

For b € (g, bg), the welfare gradient is strictly positive:

3W£(7‘, s)

D5 > 0.

T=5=01

This indicates that marginal taxation generates a first-order welfare improve-
ment when initial productivity lies in this interval.

At the boundary b = b, the welfare gradient vanishes:

oW (7, 5)

=0.
0s

T=5=071

At this point, neither taxation nor subsidy lead to welfare improvements.

For b € (b%,3), the welfare gradient becomes negative:

OWI(r, s)

< 0.
0s

T=5=071

In this regime, any small tax imposition reduces aggregate welfare.

To obtain the optimal specific taxation-only policy, I differentiate W2 (7, s)
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Figure 3.20: The optimal specific tax policy sZ,

with respect to s > 0 and s < O:

oW (r,s) b —6b+1— 965 +4(3—b)y/(b+1)2— 165
ds 7=0,5>0 S(b _ CL) (b i 1)2 —16s ’
W _ b1,
0s r=0,s<0  2(b—a)

Proposition 3.3.9 (Optimal Intervention Strategy sf). The optimal
specific policy

CTh246b-33 | (3—b)v2362 1426133 5 prF
88 T 722 , whenb € (3,b¢)

0, when b € [bE,3)

Q=

For populations with:
(a) Small-market size (b € (3,0%)): a tax policy s > 0 is optimal.

(b) Large-market size (b € [b%,3)): no intervention is optimal.

To determine the effect of the introduction of small specific tax (7 =

s = 0), I differentiate W' (7, s) with respect to s and evaluate the result at
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T=s=0tandT=5=0":

OWE(r,s) _ b+l -0,
0s r=0s=0+  2(b—a)

oWk (7, s) _ b+1 S0
0s r=0s=0- 2(b—a)

To obtain the optimal specific taxation-only policy, I take derivative of

WE(r,s) with respect to s > 0 and s < 0:

3W5(T,S) _3b2+26—1—32$—2(b—1) (b+1)2—16s
0Os 7=0,5>0 2(b—a)/(b+1)2—16s ’
M = b+1 > 0.
0s 7=0,5<0 2(b — a)

Proposition 3.3.10 (Optimal Intervention Strategy s%). The optimal
specific policy

b (20 +20—1)— (b—1)\/8= (b—1)> —3b2+10b— 3
SU — Imin )
32 16
[ DS e 314 2
32 1003, whenb € [1 + 2, 3)

\/ga

For populations with:

(a) Small-market size (b€ (2,1+ \/lg)) the optimal taz policy s > 0 is
increasing on b.

(b) Large-market size (b € [1 + \%, 3)): the optimal taz policy s > 0 is

decreasing on b.

To determine the effect of the introduction of small specific tax (7 = s =
0), I take derivative of W[, (7, s) with respect to s evaluated at 7 = s = 0"

and T=s=0":
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OWE (7,s) =30+ 4b+2
65 7=0,s=0%" n 4<b — a)(b + ].)7
0s r=0,s=0-  2(b—a)

The choice between implementing a tax or subsidy depends on whether

the parameter b falls below or exceeds the critical threshold b?

U+V:
b _ 2+ V10
3

U+v

~1.72

For b € (5 . ), the welfare gradient is strictly positive:

3 Yu+v

OW (7, 5)

> 0.
O0s

T=5=07F

This indicates that marginal taxation generates a first-order welfare improve-

ment when initial productivity lies in this interval.
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At the boundary b = b%,, ,, the welfare gradient vanishes:

U+V?

Wy, (7, 5)

95 = 0.

T=s=0"%

No intervention yields a welfare gain at this transition point.
For b € (b}

¥ 3), the welfare gradient becomes negative:

owk (T, 9)

09 < 0.

r=s=0*1

In this regime, any marginal tax imposition reduces aggregate welfare.

To obtain the optimal specific taxation-only policy, I take derivative of
WF

U+V(

7,$) with respect to s > 0 and s < 0:

oW, (7, 5) TR —4b—2—16s+4(b+1)y/(b+ 1)? — 165

)

Os T=0,5>0 4(b—a)/(b+1)2 — 16s
OWE (1,s) _ _b+1 >0
Js r=0s<0  2(b—a)

F
U+Vv

Proposition 3.3.11 (Optimal Intervention Strategy s
specific policy

). The optimal

—5(30% + 4b+2) + HL/1207 1 14b 1 7, whenb € (3,05, )

U+Vv

0, whenb € [bY,,3)

U+vo

F —
8U+v_

For populations with:
(a) Small-market size (b€ (2,0},,)): a taz policy s > 0 is optimal.
(b) Large-market size (b € [b

f v 3)): no intervention is optimal.

The specific tax policy for a foreign monopolist satisfies s7,, < s < s7.
When b < b}, the optimal policy under the utilitarian benchmark s}, is above
0.25 and increases in b. This is because a smaller market size causes the total
deadweight consumer surplus losses to reduce. Conversely, when b > b7, due
to the presence of an upper bound on the specific tax s, the optimal policy
reaches the maximum value allowed.

Specific taxes exerts a pronounced effect on temptation utility. As a result,

140



0.007 -
0.006
0.005 f
0.004 f
0.003F
0.002 f
0.001Ff
.'..|...|...|...|...|...|...|‘;_:|
1.8 20 22 2.4 26 2.8 3.0
Figure 3.22: The optimal specific tax policy sy, ,,
o —— sf (cuts off at b=1.825)
—— sf; (switches at b= 1.894)
F 0.30 —— sf,,, (cuts off at b=1721)
sE=0.022 — >
o.oo'\ ‘ : r r T

b

Figure 3.23: The comparison of the optimal specific tax policy s with a
foreign monopolist
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F
U+Vv

the optimal s and s’ are very small, as the imposition of a specific tax
substantially reduces the maximum level of temptation faced by consumers.
The specific tax also reduces the maximum temptation that each consumer
faces in the adjusted-cost welfare. The sum of self-control costs are more

sensitive to increases when s increases compared to the results of sj,.

3.4 Conclusion

In this paper, I have discussed the optimal taxation policy in a monopoly
market when consumers face self-control problems over different quality-price
bundles. I distinguish consumers by their different degree of temptation and
characterize the monopolist profit maximizing menu provided. I conduct
behavioral welfare analysis for this model and show that for a domestic firm
a small ad valorem tax can increase the social welfare when upward tempted
consumers are numerous among the population. On the other hand, an
valorem subsidy can increase the welfare when the population consists mostly
of downward tempted consumers. Furthermore, in this case no specific policy
intervention is optimal. For a foreign firm, both ad valorem and specific
taxation policies can increase national welfare. This is a similar conclusion
to that of the standard model; optimal policy level may be higher in my
model however. The results are robust to the normative framework used.
The findings in my model are in sharp contrast traditional views on taxa-
tion policies for “sin goods”. It is often argued by policymakers that higher
tax rates can lead to welfare improvement by referring to health benefits or
lowering any perceived over-consumption of the goods. My findings suggest
that the adoption of an ad valorem domestic taxation policy should depend
on the temptation range of the population. In populations with mostly down-
ward tempted consumers, there is no justification for imposing a corrective
tax; in fact, an ad valorem subsidy could potentially enhance welfare. For
instance, a country where alcohol consumption is not deeply embedded in the
culture may rationally opt for a lower tax rate on alcohol—or even a sub-
sidy—compared to a nation where some consumers indulge in large alcohol

consumption. Even some countries use a complex tax rate sort of mixture of
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ad valorem tax and specific tax, the sole specific tax will not be effective on
the welfare by separating these two taxes.

One advantage of my model is that it clearly identifies the effect on gov-
ernment revenue arising from both ad valorem and specific taxes on a foreign
monopolist. This provides clear predictions when behavioral assumptions are
included versus when they are not and can consequently help inform policy.
In addition, under behavioral assumptions I have shown that higher tax rates
are needed to increase the welfare by helping reduce temptation costs.

Although this paper characterizes the optimal taxation policy in the con-
text of a monopoly market where consumers face heterogeneous temptations
in a parsimonious way. There are still some important aspects that could be
included. First, in line with most work in the literature the model could be
extended to a dynamic version, in a similar fashion to Gul and Pesendorfer
( ). Second, the market structure could be replaced by a competitive
market. This would allow a comparison between optimal taxation policies
and help to identify welfare improvements due to correcting market ineffi-

ciencies arising from the monopoly structure.
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APPENDIX C

Proof of proposition 3.2.2 - proposition 3.2.3. Now I will confirm the opti-
mal solution in separate situation based on the values of A and p. Obviously,
A = p = 0 violates the first-order condition (3.23). I will then discuss the
other three possibilities:

i. f A>0and u=0,ie. A=1, then only ex-ante IR for ~; binds, i.e.
q(yu) = p(yu) =0

and then

(v — Da(vm) — (vu — n)a(n) > 0.

The first order conditions imply

1+ ,
q(vm) = 1, q() = 2%, with \ = 1.
Therefore,
14+ v.)?
p(m) = 1, p(1) = (TL)'

The condition that vy > v, + 2 ensures that incentive compatibility for vy

with the condition p(7y) = ¢(7u) holds, i.e. (yu —1)q(u) — (v —m)a(n) =

(,}/H _ 1) _ (,}/H _ ’YL) 1-*-2714 _ (1—7L)(W2H—VL—2) > 0.

In this case, the monopolist’s aggregate profit from both consumers is

1 (1473
71': =T (/}/H)—|—7'('A (%)25—1-%:7@

A=
n=

A=1 1 1
pn=0 0 0

Then, the welfare is expressed by

B 2
1 1
17, 7—— :§+%:Wc_

ii. f A=0and g > 0,ie p=1then then only ex-post IC for vy binds,

144



1.e.

2p(v) = (1 +ym)q(va) — (v — n)a(n)

and then

q(vu) — p(yu) >0

The first order conditions imply in this case that

1+ v

q(v) = 5 q(m)

_ 14+ 2% — Vx
2

with p=1.

The bounds 1 < vy < 27, 4+ 1 and 0 < v, < 1 guarantee positive quality is
provided to both consumers.
(T4 7)* = (4 — ) (1 4+ 2% — ) (1) (T4 %) = (v —n)(d + )
L

Then I check if the ex-ante IR for ~y is valid: ¢(v4) — p(yu) > 0. I have the
bound 7, < SakACRRY 272%7775 <+ 1<2y+1.

The maximal aggregate profit for the monopolist is then given by

T o= (w0

_ (1+ ”VH)Q —2(ym — ) (1 + 29 — ) i (1+ VL)2 — (Y — ’YL)Q
8 8
1 1 2 2 —)? 24 2y, —3
_ §+( +8%) L 20w =) J;’Vﬁ W3 e

2(ya—L)2 2 +27L -3 143y +4/9—2vL— T2
where Lyp = 20 MANTS 010 < qp < 1 <y < VTR

which can be proved by a numerical method. This is because of the profit
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loss due to providing positive ex-ante utility with ~y.

B
1
WA . = q(u) — 5(](%1)2 + 7TA o(%)
- 4(1 + ”YH) - (1 + ”YH)Q (1 + ’YL)2 - ('YH - ’YL)2
= +
8 8
(1 +7)(2 + 7 — )
1 .

iii. If both A\, u > 0, then both constraints bind, i.e.
q(u) —p(y) =0

and

(1 +y)a(v) — (e — n)a(n) — 2p(m) =

The first order conditions imply

() = plyw) = 1+ w
q(n) = Lt ';L(FVH — 7L)) p() = (1+m)? - ,U(14+ ) (Y — ,YL).

From the condition (1 + vu)q(vu) — (va — n)¢(n) — 2p(yu) = 0, I have
_ (n=Dm—n-2)
B a7 om—)?

The maximal aggregate profit of the monopolist in the case A\, u > 0 is
thus

where v4 — v < 2 to ensure p > 0.

Tu>0 = 77)\,u>0<'7H) + 7TA,u>0<’YL)

= (% el 1>2) L) = O = n)®

8 8
1 1 2 2 -1 2 o 2
SN o o1 i (/e e 1 ER
2 8 8
where Lo = _M2[(7H—1)2;(7H—7L)2} < 0. This profit loss is caused by the

distortion from incentive compatibility where the upwards tempted consumer
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has no incentive to mimic the downwards temptation.

qu>0 = 7'()\”“>0 — 5 + ( SFYL) o 1% [(f)/H ) 8 (’YH /YL) ]

Last, I confirm that the solution is global maximum. When ~y; > v, + 2,
the unique solution under the constraints is characterized by the multipliers
i =0 and A = 1. The optimal bundle is therefore {(¢*(74) = 1,p* () =
1), (q*(m) = L, p* (1) = %)}, and hence the optimal profit is

1 1 2
T =T :——l——< + ) :

= 2 8

w=0

/q_ _ A2
When —2-* Z T < v < Y+2, the unique solution is characterized
by A, pu > 0.

(e =D =D =0 = 2)
207 =1+ 200 —n)®

¢ () =0 () = 1+

T4y (=) (m — %) — % —2)

p*(,y ): (1+7L)2 4 (1_’73)(7H_’YL)(7H—7L—2)
) 4 Ay — 12 +4(m — n)?
and
1 (1 2 — D2 (v — vy — 2)2
T = Tau>0 = = 1 ( + ,YL) — (,YL ) (,YH T )

2 8 8[(7H - 1>2 + ('7H - 'VL)z]

143y, +4/9-27L— 772 . .
When 1 < 74 < L 1 L= WL, there are two possible scenarios: the

ex-ante IR for 74 may bind or not, while the ex-post IC for v, binds. For any

v € (0,1), Lyg > Ljc. Therefore, the optimal solution is under the slack
ex-ante IR and the binding ex-post IC, which is characterized by
1+ 7y (1+7H)2+(7L_'YH)(1+2’YL—”YH)

q*(VH) = 5 p*<7H) = 1 )
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— .1 + 2% — Y P () = (I4+7)? - (14“‘ Yi) (Y — ’YL)7

and

1 Q+)? 20— )P+ R+ 27— 3
A=0 2 8 + 8 '

]

Proof of proposition 3.2.4. Differentiating with respect to 7 (v4), ¢* (7.) and
p? (y4) respectively yields the first order conditions

—2¢" (i) + 20T + T (1 + ) =0, (3.61)
(=71 +n) - 2qT<7L) — 1" (=) =0, (3.62)
(1—7)= X" —pl =0. (3.63)

These are complemented with the two complementary slackness conditions

Mg () = 2" ()] = 0, (3.64)

1M1+ 70)g" () — (v — 1)d" () — 20" ()] = 0. (3.65)

From condition (3.63), I have AT = (1 — 7) — u”. Putting is into conditions

(3.61) and (3.62), q(yx) and 7, can be expressed as

(v — 1)

") = (1 —7) + 5=,
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Now I will confirm the optimal solution in separate situation based on the
values of AT and p?. Obviously, AT = uT = 0 violates the first order condition
(3.63). I will then discuss the other three possibilities:

i. If AT > 0and pu? =0, ie. AT =1 — 7, then only ex-ante IR for 7y

binds, i.e.
¢ () —p () =0
and then

(v — 1)¢" () — (3 — )" () = 0.

The first order conditions imply

T+

¢ () =1-r1, ()= (1-7) 5 with A=1—17.
Therefore,
14 7.)?
prwm)=1-m, pl(n)=(1- 7)%.

The condition that vy > 7, + 2 ensures that incentive compatibility for
Y with the condition p”(v4) = ¢7 (v4) holds, i.e. (v — 1)q” () — (yu —

VL)QT(’YL) > 0.
In this case, the monopolist’s aggregate profit from both consumers is

1 1 2
=1 (yu)+1I . () = (1—7)25—%(1—7)2&—25 =(1-7)*7r —2s.

ii. If \T =0 and p” > 0, i.e. u” =1 — 7,then then only ex-post IC for 7y

binds, i.e.

20" (va) = (1 + v)q" () — (v — )" (n)
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and then

¢ () =" () =0

The first order conditions imply in this case that

1+ v
2 )

142y, —Yu

¢ () = (1-7) q"(n) = (1-7)

with p=1-7.

The bounds 1 < vy < 27, 4+ 1 and 0 < v, < 1 guarantee positive quality is

provided to both consumers.

(1+ 7H)2 — (v =)+ 2% — )
4

P () = (L—1)

pn) = (1= I = e )0 )

Then I check if the ex-ante IR for vy is valid: ¢ (74) — pT (%) > 0. T have
the bound

< 1437+ /9 — 27y, — 772
Ta = 1

The maximal aggregate profit for the monopolist is then given by

7_)2 (1+ '7H)2 —2(va — )L + 2y, — u)

)2 (T+)? = (—n)?
8

— 2s
8

+(1-

=(1-7)2r —2s.
0

iii. If both AT, uT > 0, then both constraints bind, i.e.
qT(’VH) - pT(VH) =0
and

(1+ 7H>qT(7H) — (Yu — 7L>QT(7L> — QPTWH) = 0.
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The first order conditions imply

) = ") = (1= 7) 4 022D
qT(%) _ (1 — T)(l + 7L)2_ ,UT(’VH - '}/L)
pT(%) _ (1 - T)<1 + 7L>2 - ,UT<1 + 7L>(7H - fVL).

4
From the condition (1 + )¢ (7u) — (vu — %)¢* () — 2p" (9w) = 0, I have
r_ =7 =Dl —n —2)

S Coppun oy g ERC AL

where v — 1, < 2 to ensure pf > 0.
The maximal aggregate profit of the monopolist in the case A\, u > 0 is
thus

H,\T,MT>0 = HAT,MT>0(’YH) + HAT,MT>0(%)

(1 - 7_)2(% . :U’2<7H8_ 1)2) + (1 - 7_)2(1 + VL)2 — M2(7H — ’VL) — 95

= (1 - 7—)27]-)\,#>0 - 257

]

Proof of proposition 3.2.7. Ex-post incentive compatibility means that given
an allocation (¢(),p(y)) a consumer of type 4 maximises his ex-post utility
by selecting bundle (¢(%), p(¥)). More formally, this bundle must satisfy the

first order condition

0= (U +V3) = (1)) — 2/, (3.66)

The total differential of w at 4 is

dw(¥)
dry

= (1+9)d' (%) +a(¥) —20'(5)- (3.67)
The previous equation implies w'(y) = q(v). If w'(v) = ¢(v) the first or-
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der condition would follow which means that ex-post incentive compatibility
holds.

The other equivalence is easier:

w(y) + (1 —=7)q(v) = 2q(v) — 2p(v) = 2U(q(7), p(7))- (3.68)

O

Proof of theorem 3.2.1. Following proposition 7 in Esteban et al. ( ), 1
can guess that the solution v and 7 to the optimal control problem is of the
form given in proposition 3.2.1 for some parameters 7 and 4. Moreover, it
also follows from that result that p(y) = 0 when v < 7, and p is held at a
fixed level when v > 7.

I consider first the case v € [a,~) so that ¢(v) = w(vy) = 0 and find values

of 6(7), A(y) and p(y).
Claim 1: a < < v, then ¢(y) = w(y) = 0 holds.

Proof. There are a number of possible values that d(y) and A(y) can take
in this situation. It suffices to provide just one set; I provide two possible
examples. If A(7y) =0 and () > 0, then condition (3.49) becomes

1=+
2(b—a)

+ u(y) +6(y) = 0.

Integrating condition (3.63) and applying the boundary condition (3.54), I

have

(1-7)(v—b)
p(y) = W-

From the above two equations, we have

(I—=7)1=b+2y)

)= 5

> 0,

1;—71. But since 7 is the largest type for which

w(7y) = 0, the equality can hold.

which holds implies 7 <
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On the other hand, if A(y) > 0 and 6(y) = 0 conditions (3.49) and (3.63)

become

(A=) +)
2(b—a)

+u(y) = (v = DA(y) =0,

1—71

1) = 20—a) A()-

From the above two equations, we have

(1 -7y b)
n(y) = — =)

17 (1-7)b-1)
L S R

This shows that it is possible to satisfy the necessary conditions in the interval
7y € [a,7) and the guess is verified in this case; ¢(y) = w(7) = 0 holds there.
m

Now, I examine the intermediate case v <y <7,

Claim 2: 7 <y <7, then A\(y) =d(y) =0 and g(7) = (1 - 7)(v = 55*).

Proof. This follows immediately since neither constraint binds in this case
and ¢(v) is continuous so that ¢(%1) = 0.
O

Claim 3: 7y <y < % and w(y) is continuous, then A(y) = d(y) = 0 and

w(y) = F(y =54

Proof. This results since w(%51) = 0 and w'(y) = ¢(7).
[

Finally, I consider the last case where v € (¥,b]. In this situation, the
guess requires that ¢(vy) is a constant C; > 0 and that ex-ante individual

rationality (equation 3.44) holds. This condition implies that

w(y) = (v —1)q(y) = Ci(y = 1). (3.69)
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Claim 4: ¥ = 574’.

Proof. Since ¢(7) is continuous:

(1-nG-h=0 (3.70)

In addition, w(+y) is continuous and satisfies individual rationality, which

means

(1-7)(7 -5y
2

= Ci(7—1). (3.71)

If I combine these two equations, then

b—1

- 5 = 2(y — 1). (3.72)

Solving this equation ¥ = 57_13 and

G=(1-7)E- 5N =2 -E-1)=(1-7)E-b).  (373)

O

I just need to check that this gives a consistent solution by finding d(7),A(7y)
and 1(7):

Claim 5: When ¢(v) =2(1—7)(y—1) and w(y) =2(1—-7)(y —1)(y—1),
v > %, then A\(7) > 0 and () = 0.

Proof. To keep the notation simple, let ¢(v) = C; as above. Since this
constant is positive 6(7) = 0. In addition, conditions (3.49) and (3.63)

together become

(1-7)147v) —2C,
2(b—a)

+u(y) = (v = DA(y) = 0.

1—7

;mw=2w_®—xw»
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From the two equations above, I have

{1 —7) -Gy )
) = -y

1—71 n (1—7)b—-1)(b—2)
(b—a) (b—a)(y—1)?

A p—
(7) 5 >0,

since b > 2.
Claim 6: 7(v) > 0, then

(b+1)2 4s (b+1)2 4s
76[b_\/ 1 _(1—7)2’“\/ 1 _(1—7)2]

Proof. This can be obtained immediately by calculating 5 (1—7)[(1+7)g(v)—
w()] - 5¢(7)* = s 2 0.

[]

Claim 7: v = (7, s). When s < 0, that is, the monopolist faces a specific

subsidy, v = b%; when s > 0, that is, the monopolist faces a specific tax,

_ (b+1)2 4s
7=0b- i -0z
Proof. All that remains is to find functions §(y), A(v) and u(~y) that satisfy
the necessary conditions and to verify that indeed v = b — % — uf—‘i)Q
and 7 = 57_”
b—1 (b+1)2 4s 1 when s < 0
2 (1-7) b— 1 —ﬁ, when s > 0
and
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(b+1)2 4s

since the minimum of b+ R gw is b (which is larger than 574’, when

b>2)ats= (bJ{Gm(l —7)2

The taxes need to satisfy the following conditions:

(b+1)2 4s 5—b
b— - 1< —<b
a < \/ 1 (1—T)2< < 5 <

Proof of proposition 3.3.1. The social welfare W is given by

Wil(r,s) = / b [Q(v) - %Q(V)Q} f(y)dy — / b{maX{W(’V) —p(1)} = a(v) —p(v)] }f (V)dvy

(759 gl _ )2
[ [T ey vy - S e v 7] s
a v(7,8)

y(7,8)+1
2

= )
v/ b (=00 - 50-r2e-0| e - [T oren

a

TV
Total surplus

341

_/(2)+ 127 <2y—b+Tl>2f(7)dv—/b (1=7)B=b)(y —1)f(7)dy

1
2 2

=]

J/

(7,8)
T / 0f(7)dy

T 1—71 b +2b—3
+/ 1 (372 — 2by + T) f(y)dy
”

p

~
Self-control costs

T / (1= )3 = )y — Df()dy

J/

= Il—i—IQ —+ [3+I4 + I5+[6
—— S~—— ~——

Normative welfare ~ (Negative) Maximal temptation =~ Temptation utility

)
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where the sum of integrals is divided into five parts Iy, I, I3, I, I5 and then
I calculate each part separately.

The welfare decomposition comprises three components: (1) normative
welfare (I; + I3), representing true preferences; (2) maximal temptation
(I3 + 1), the highest possible level of temptation in the given menu; and
(3) temptation utility (/5 + Is), measuring a tempting desire.

L= o= Laer) sonar= [ Ty sy - S 0y 1] pean
/ { 2 } /7 {2 8

A(7:8) (7:5)

’ 1 ’ 1
L= [ ot - 5002 | senar = [|a=n6-0 - 50260 s
2l 2l
Ea To1-7 b+1)>
o= [ maxoa) sy == [0 ST (- T s
b b
L= [ waxtra) ~ o) == [ =nE-006 - Di6)n
T2 2
g T o117 b2 +2b—3
I = / {va(y) = p(M}f(V)dy = / (372 =2y ) f(y)dy
1(7’,8) 1(7’,8)
b b
o= [ Gat) = sl )y = [(1=1)(3 -0 - D)
2 v
When s = 0, the threshold v simplifies to:
_b—1
= 9
Consequently, the derivative of 7 with respect to 7 is:
vy
—=0
or ’
since 7 is independent of 7 in this case.
Next, I compute the derivatives of each term I; (i = 1,...,6) with respect
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to 7 under the condition s = 0. The results are as follows:

5—b 5—b

3= e P sa = [ 1= a-n6-"50] - -0 s
EV pa-ne-n -3
5= | = B2ty = [ ===l 9) o
S == CEURCRD)
% = /b;i (27— b+71>2f(7)dv= ;j(b;_b); >0
o e e Y
% = - :{vq(v) —p(MH()dy = - /: i (372 —2by + bu?#) f()dy
_B- b)S (23(56—_ 53)(13 )
% == /5;(3 )y — D)y = - B bfg: — zi(H 2

For the commitment utility terms (I3 and I), we derive the following

comparative statics with respect to 7:

(a) For Iy:

: 3
all >O 1f7'<1—m
i _ : _ 3
or =0 lfT—l—m

: 3

<0 lfT>1—m
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(b) For Iy:

>0 if7'<1—ﬁ

o1y :
e =0 1f7:1—ﬁ

. 1
<0 1f7’>1—ﬂ

The aggregate effect on commitment utility is:

oI, 9I, (3-0b) ) b’ +6b— 15
et B R _ 1—7) =277 +1 h o
5 5 6(b—a)[ (b +6b)(1 — ) — 277 + 15] > 0 WenT<(b+9>(b_3>

For the temptation and self-cost effects:

(a) Negative maximal temptation :

OIy | Ol _ (3~ b)(490> — 102D + 57)

ar | or 96(b — a)

This indicates the resistance cost decreases as 7 increases.

(b) Temptation utility:

ols 0l 33—-b0)(3b—5)(b+1
oL, Ol _ 3(B-HE -5+ _
or ot 32(b—a)
showing that temptation utility decreases with higher 7.
The total change in self-control costs (negative maximal temptation minus

temptation utility):

8L, (3 b)(370% — 126b + 141)

or 192(b — a) =0

=3

The net effect represents a welfare improvement as 7 increases, which
suggests 7 acts as an effective mechanism for mitigating self-control problems.

The welfare function W (7, s) responds to taxation as:

aWé{(T, 8) . 8[1 0[2 813 814 815 816
“or  or "or Tor "o Tor Tar

I will consider the effect on welfare of raising 7 or s from zero and look for
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the optimal tax policies of 7 and s.

3—0b

OWH (7, s) B
r=s=0 16(b— a)

b% — 30b
5 (b2 — 30b + 57)

owH
or

3-1b)

= Is—a) P00 b2+ 6b — 27)7] .

The critical point is b = 15 — 2v/42 ~ 2.04.

>0 forbe (%,bg),

Ws 0 atb=0>b"
0T lr=s=0 o a Ik
<0 forbe (b4 3).
The optimal ad valorem policy 7/ = —W since % o >0
when 7 < 7/ and % < 0 when 7 > 7//. Specifically, when b €
s=0
(%, m, T e (0, %38); when b € (b2, 3), 77 < 0.

]

Proof of proposition 3.3.2. The social welfare W is given by

Wt = [ o - a0 s)in

7(7:9) gl _ _ )2
[T [T ey - S e v s
a ’Y(T’S)

+ [ a-n6-0-ja-rre-u] o

=1 + L.

Therefore,

W) _on ol
or - or O’
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87’ T=5=0 N 6(b — a) (_b B 6b + 15)
OWH (7, s 3—-0b
# " 50— a) [—(b* — 6b+ 15) + (b +9) (b — 3)7]

The critical point is b = 2v/6 — 3 ~ 1.90.

>0 forbe (2,01,
=0 atb=0>bl
<0 forbe (b4,3).

oW
or

T7=5=0

H
The optimal ad valorem policy 7,/ = (l;ig?l(’;g) since anT(T’S) o > (0 when
H
7 < 7/l and ang(T’S) o < 0 when 7 > 7/ Specifically, when b € (2,b),

€ (0,5); when b € (b}, 3), 72 < 0.

]

Proof of proposition 3.3.3. The social welfare WX

vy 18 given by is

Wi (r,s) = /ab [(1 +7)a(y) —p(v) — —q(’y)zl fv)dy

= /b{ [q(v) - %Q(V)Q} + [va(v) = p(V)] }f(v)dv

:[1+12+I5+[6-

Therefore,

aWﬁV(T, S) . 8[1 8]2 (915 8[6
“or  ar "o T o

The change of W/ (7,s) on 7 from 0 given no specific tax s:

OWH (7,s) 3—b 9
_ = ———(—43b° — 78b + 285).
or 96(b — a) ( +285)

T7=5=0
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oW (7,5)
or

3—b )
= 550 ) [ (459" + 78D — 285) + 1600+ 9)(b — 3)7]..

s=0

The critical point is b, = @# ~ 1.82.

U+v —

>0 forb€(5 " ),

3 Yurv
owl,
(97'7L T7=5=0 =0 at b= bg+w
<0 forbe (bl,,,3).
H T,8
The optimal ad valorem policy 7/, , = % since 3WU5—:(’) o >0
H 7,8 .
when 7 < 7/, and W”g—f(’) < 0 when 7 > 7/, . Specifically, when
s=0
be (%,bgw), T, € (0, %), when b € (b7, ,,3), 7, < 0.
O
Proof of proposition 3.3./. When 7 = 0,
(s) %, when s < 0
y\s) = 165
N b— w, when s > 0
Then, 8%(88) = 4 > 0 when s > 0. Additionally, s < %

V/(b+1)2-16s
ensures that v(s) < 1.

Taking the derivative of each I; with respect to s as s approaches from the
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positive side and as s approaches from the negative side, I have the following:

o) - gata(o)?] 2

- - 0v(s
- [0 - 555 - jaw - 5] B2

b1 V1P 165)(3 b+ b+ 1? —16s) _

2(b—a)/(b+1)%—16s

o 1

ds lss0 b—a

oL

=0

0s s>0
2

o1, ) b1\ on(s)  (3—1-2y/(+ 17— 16s)
Oslsso  8(b—a) \ — 2 0Os 8(b—a)y/(b+1)%—16s
ol
it -0
0s 1s>0
ol 1 b +2b— 3\ dy(s)
— =— 3v(s)* — 2b =
Js ls>0 4(b—a) < 7(s) () + 4 ) ds

B 1 13b* + 8b — 48s — 8by/ (b + 1)2 — 165

4(b—a) (b+1)2 — 165

0l
776 -0
0s ls>0
o1, .

—0, i=1,2,3,456
0s ls<o
% 0 <0, since 0 < y(s) — %5 < 1.

The sum change of temptation utility on s > 0 is % +% . % +
s>0 s>0 s>0

ol b—1 b+3 3b—b2y. OI a1 _
GE o > 0 when (s) € (%5, %>) or s € (0,%5%); 3_S5L>0 + 52 .
0 when 7(s) = 3; 25 + s < 0 when 7(s) € (%2,1) or s €

- s>0 s>0 -
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b2 _3p2 _
(3b9b ’ 3b Jlr610b 3).

0 [ {max{r9(7) = p(1)} = [va(y) = p(N] }f(N)ey
0s

s>0
6

71,:3 Os
— 1362 — 14 + 5 + 325 + 4(b + 1)/(0 + 1)% — 165
8(b—a)y/(b+ 1) —16s
B Lt Ut e CVA U Ve Ul e VN

8(b—a)\/(b+1)?—16s

s>0

The sum of self-control cost increases as s > 0 increases, therefore welfare
decreases.

A subsidy cannot increase the welfare through the effect of market size.
Proof of the effect of specific policy s on social welfare W,

(’3Wé{(7, S) B (9[1 (3[2 813 (9[4 815 8[6
T os 0s " 0s T os " os T os os

OWH(r,s) =9 —6b+9 —0
85 7=0,s=0%" a 8(b — CL) (b + 1) ’
OWH (7, s) _0
0s r=0,5=0~
OWH (7, s) °. ol
SAALRGLY = 0
0s 7=0,5>0 ; 0s ls>0 <5
OWH (7, s)
_— =0.
0s 7=0,5<0

The differentiates show that s > 0 is negative while s < 0 is 0. Therefore,
the optimal specific tax is at s = 0.
O
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Proof of the effect of specific policy s on social welfare WEH.

OWi(rs) o, on

ds s s
OWH (7, s)
Ve \He) =0,
0s 7=0,s=01
OWH (7, s)
TV \He) =0,
85 7=0,5=0"
OWH (7, s) oL
_ = — <0
85 7=0,5>0 (95 s>0 ’
OWH (7, s)
EASAGEN —0.
0s 7=0,5<0

The differentiates show that s > 0 is negative while s < 0 is 0. Therefore,

the optimal specific tax is at sl = 0.

]
Proof of the effect of specific policy s on social welfare WH .
6W£_V(T, S) 8[1 8]2 815 816
T 0s s Bs @5 0
6W£V(T, s) B —5b2 <0
Os st 4b—a)(b+1)
oW (7, s)
_— =0
0s
7=0,5=0"
OWH (7,s) =90 —8b— 44165+ 4(b+1)\/(b+1)? — 165 “0
0s 00 4(b—a)/(b+1)% — 165
oW (7, s)
_— =0
s
7=0,5<0
W iiyvlrs) < 0, since
0s r=0,5>0

—9b%—8b—4-+165+4(b+1)/(b + 1)2 — 165 < —9b*—8b—4-+(b+1)* = —8b*—6b—3 < 0

and therefore the numerator is negative.
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These value when s > 0 is negative while s < 0 is 0. Therefore, the

optimal specific tax is at sj,, = 0.

Proof of proposition 3.3.5. The welfare W (7, s) is given by

b b
Wl(r,s) =/ [Q(v)—p(v)}f(v)dv—/ {maX{vq(v) —p(M)} = [va(y) — p(y)] }f(v)dv
+ [ ) + 5 )y

— /ay(m 0f (v)dy + A:T,s) u ; m) {—(7 —1)° + (b _43)2} f(y)dy + lb 0f (v)dy

s

~
Total Commitment Utility Surplus

wP= = b+ 1)
2 2 — T
[T - [ (-2 oo

Y(78)

- / (1= )3 = )y — Df()dy + / 04 (7)dy

341
3 a

Self-Control Cost

7 =T 2 — b
+ /w,s) 1T <3v2 — 2by + %) f(n)dy+ /7 (1—7)(3=b)(y — 1) f(7)dy

J/

—7)r [T - ’
+% / (1 = (o 1) )y + (1= 7 / (8 =0/ ()dy

J/

TV
Ad Valorem Tax Revenue

+/b sf(y)dy

Y(7:8)

N L

~
Specific Tax Revenue

EM—}—[3—|—[4+[5—|—16—|—T1+T2+S,

where [;,7 = 3,4,5,6 are defined as before. I define the other symbols as
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follows:

v= [ —seson = [ B8 -0+ B o

= [ e =S [ ey -t e an

~(7,s)

Taking the derivative of each I; with respect to 7 when s = 0, I have the
following:

oM _ [ 1 —3)? (-3

(97' b—1 Z_L|: 4 f(’y)d’}/—m<0
b — —

% — (1-20) /5;<3— D)y = & 2;’2(_3’;) 51— 2n)

05

=0

The derivatives of T} and T5 with respect to 7 exhibit the following behavior:
For 7 < %:

8T1 a T2
87' >0 and W > 0.

This means both 7T} and 75 increase as 7 increases when 7 is less than %
For 7 > %:

T, oT,
— d —= )
g <0 an g <0

This means both 77 and T5 decrease as 7 increases when 7 is greater than %
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__ 1.
AtT—i

oTy oT,
E =0 and E =0.

This indicates that both 77 and T3 have critical points (likely maxima) at
r=1
The total effect is the sum of the individual effects:

0T | 9Ty _ (1—27)(b—3)(t* — 30D +33)

or = 0r 24(b—a)

The term (1 — 27) determines the sign of the total effect based on 7: If

T <3, (1=27) >0, so the total effect is positive. If 7 > 1, (1 —27) <0, so

the total effect is negative. If 7 = £, (1 — 27) = 0, so the total effect is zero.

The term (b — 3)(b* — 30b + 33) is given to be positive for b € (2,3). The
denominator 24(b — a) is obviously positive.

[

Proof of proposition 3.3.6.

an(T,S)_8M+%+%+%+%+%+@+§
or - or or or or or or or or’

I will consider the effect on welfare of raising 7 or s from zero and look for

the optimal tax policies of 7 and s.

aW£<T7 S) (b — 3) 2
- = ————(70"+30b—33) >0
or T=5=0 48(b - CL) ( + )
owl (b—3) 2 2
= ——————|(7b" 4+ 300 — 33) + 4(b* — 300 + 33
ot ls=0 48(b — a) [( + )+ 4 + )T}
The optimal ad valorem policy 75 = —% since ang(T’s) >0
s=0
when 7 < 75 and % < 0 when 7 > 7[.
s=0
O
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Proof of proposition 3.3.7. The normative social welfare W is given by is
b b
WEs) = [ ) = s f)dr + [ o) + 5] F)n

Therefore,

8W5<T, S) _ oM i 8T1 i (9T2 i @

dr or or dr Ot
oW (r,5) (b-3) .,
_— = ——(b"—18b+21) >0
or r=s=0 12(b— a)< +21)>
oW/ (7, s) (b—3) 2 2
— = ——— (b —18b+ 21 —b" 4 300 — 33
or s=0  12(b—a) I ) )7]
The optimal ad valorem policy 7,; = Zj:;ggigé since 8W§£T’S) > (0 when
s=0
T < 7} and —8WgT(T’S) < 0 when 7> 7/.
s=0
O

F
U+v

Proof of proposition 3.3.8. The behavioral social welfare W/  is given by is

WE (r.5) = / l4(y) — p)] F )y + / a(y) — p(0)] F()dn

EM+I5—|—16—|—T1+T2+S

Therefore,

OWE(r,s) _OM | 0L Ol 9T, 0T, , 05

or ar " ar Tor & Tar o

The change of W/, (7,s) on 7 from 0 given no specific tax s:

on 5+v(7—’ 3) b—3 2
_ = ——(35b" — 162b + 123 0.
or . 96(b — a) ( +123) >
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OW (T, 5) b—3 2 2
—_—t = ———— (350" — 162b 4+ 123) + 8(—b" + 30b — 33)7| .
or T 96(b—a) 1 +123) +8(=b"+ )7]
The optimal ad valorem policy 77, , = 3;?;211360%)?3132)3 since OW%X(T’S) >0
s=0
when 7 < 7/, and W”g—;’(m) <0 when 7 > 77, ,.
i 0

Proof of proposition 3.3.9. Taking the derivative of each I; with respect to s
as s approaches from the positive side and as s approaches from the negative

side, I have the following:

oM
Os

1 o (b=3)"7 da(s)
>0 4(b —a) [Q(S) - - 4 } ds
:b—1—4s—(b—1) (b+1)2 —16s

(b—a)\/(b+1)2 —16s

<0

oT;

=0 , =1,2
0s s>0 ’ ! ’
85 ” dy(s)
$s>0__8f + f a(_s ds Th-als ))

1 N (b+1)2—16s) (b+1)% —24s

b—a (b+ ) — 165 2 2(b—a)\/(b+1)?—16s

ou
- -0
O0s s<0
oT;

=0, =12
Os s ’
oS b+1

))dy = > 0.
s s / fals)dy = 2(b —a)
88—]\5 . < 0: increasing specific tax decreases the size of market, and thus
s>

the lowest leaving causes the welfare of total commitment to be reduced.
For % , there two opposite effects of the specific tax policy s. On the
>0
one hand, the market size reduces due to the increase of y(s) as s increases;

on the other hand, the tax revenue increases as s increases. The total effect
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depends on which effect dominates.

Specifically, when the market size is large enough, b € (%, %), the

total effect depends on the value of s. A small amount of specific tax causes
the increase of tax revenue more than the decrease of market size, then

% > 0if s € (0, (b’;i)g); While if the amount of tax excesses a threshold,
s>0

the negative effect of market size dominates the other positive effect, that is,

S . (b+1)2  —3b24+10b—3
o <0if s € (5, 5 ).

s>0
When the market size is small, b € (%,3), then the effect of tax

revenue always dominates among the aggregate effect for any feasible tax
policy, % > 0.
0

Therefoie,

6W§(T, S) - oM 8]3 814 8]5 616 8T1 8T2 X oS

3 or " Bs Bs 85  0s s | 0s | Bs
OWE(r,s) ~ —5b* +2b+ 13
Os r=0s=0+ 8(b—a)(b+1)’
OWE(r,s) _ b+1 -0,
Os r=0s=0- 2(b—a)
OWE (r, s) 02— 6b+ 1 — 965+ 4(3 — b)\/(b + 1)% — 165
0Os 7=0,5>0 8(b—a)/(b+1)?—16s
OWE (7, s) _ b+1 >0
0s 7=0,5<0 2(b — a)

The critical point is b, = %% ~ 1.83.

>0 forbe (g,bg),
=0 atb=105,
<0 forbe (bL,3).

6W§(7‘, s)
0s

7=0,s=01
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The optimal specific policy is

—7h% 4+ 6b — 33 N (3 — b)v/23b2 + 42b + 33
) —
288 72/2

_ 5 (302 4+ 4b+2) + HLVIP + 146 17, whenb € (2,b7)

SF — 37 Ve
C
0, when b € [b, 3)
. OWE (1,s OWE (1,s
Since when b € (3,b%), %s( ) o0 > 0 when s < s% and ‘(:;S( ) et <
0 when s > sf. When b € [bL, 3), 8W§S(T’S) > 0 and @ <
7=0,5<0 7=0,5>0
0.
[
Proof of proposition 3.3.10.
oWE(r s) oM Ty 0T, S
=+ L2
0Os Os Os  0s  Os
OWE(r,s) _ b+t -0,
0s r=0,s=0+  2(b—a)
F
oWy (r,s) _ b+1 -0,
0s r=0s=0-  2(b—a)
OWE(r,s) 30 +20—1-32s—2(b—1)/(b+ 1) — 165
ds  lr=0s>0 2(b— a)\/(b+ 1)2 — 165 ’
OWE(r,s) _ b+1 S
0s r=0,s<0  2(b—a)

. ,{2(b2+2b—1)—(b—1) 8—(b—1)2 —3b2+10b—3}
S, = min

32 ’ 16
2(b24+2b—1)—(b—1)4/8—(b—1)2 5 9
_ = , whenbe (5,14-75)
—3b24+10b—3 2
=, when b € [1+ =,3)
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> 0, when s < s.

7=0,5>0

F
dWlC]ls(T 9 a0 0, when s = s7,.
F
dW[C’LET ) < 0, when s > s7.
7=0,s>0
]
Proof of proposition 3.3.11.

owk (r,s) oM 09I, 9l oIy 9T, 0S

9s @s | Bs  0s = 0s  Bs ' Os
oWk (7, s) =30+ 4b+2

0s S 40 —a)(b+1)
OWE (7,s) _ b+1 -0

Os 2(b—a)

7=0,5=0"
oWk (7, s) B —Tb* —4b—2 — 165+ 4(b+ 1)/(b+ 1)2 — 16s
— — =

s 00 4(b—a)/(b+1)? — 16s
OWE (7,s) _ b+1 -0

Os 2(b—a)

7=0,s<0

_ 2410
e +Twl.72

The critical point is by, =

>0 forbe (3,00,,),
w -0 b= b~
Os = at b= by,
7=0,s=0%"
<0 forbe (b,,,3).

The optimal specific policy

— 230 +4b+2) + B1\/1202 + 14b+ 7, whenb € (2,07,)
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CONCLUSION

This thesis has examined the interplay between strategic communication,
conformity, and self-control in shaping individual behavior and policy-relevant
decisions. Across the three essays, I have explored how behavioral motives
and structural constraints interact to influence social learning, rumor propa-
gation, and optimal taxation. A unifying theme is that individual preferences
in terms of conformity, biased outcomes, or self-control significantly affect in-
formation transmission, coordination, and welfare, with implications for both
theory and policy.

In Chapter 1, I analyzed a multi-receiver strategic communication game in
which agents are heterogeneous, consisting of unbiased truth-seekers and bi-
ased agents with partisan preferences. I introduce conformity as a preference
for aligning actions with others and examined its impact on social learning.
The results show that moderate conformity can enhance information trans-
fer by providing additional incentives for unbiased agents to act on messages
they receive, even in the presence of biased agents. Equilibrium outcomes
depend on population size, the degree of conformity, and the share of bi-
ased agents: in small populations, information can be transferred without
upper bounds on biased agents, whereas in large populations, truthful equi-
libria persist provided biased agents are not a majority. The analysis offers
insights into real-world phenomena such as influencer-driven consumption,
rumor spread, technology adoption, and government policy communication,
where alignment incentives coexist with the desire for accurate information.

Chapter 2 extends this framework to networked environments, adapting
the model to a simple undirected line network and incorporating conformity

among neighbors. Consistent with prior work (Bloch et al., ), the net-
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work structure imposes stricter constraints on the proportion of biased agents
that allow for truthful communication. While conformity can facilitate co-
ordination locally, the network’s decentralized nature reduces the robustness
of social learning compared to public broadcast settings. This extension pro-
vides a clearer understanding of rumor propagation, political misinformation,
and peer-influenced decision-making, demonstrating how local social inter-
actions and network topology affect the balance between truthfulness and
conformity:.

Chapter 3 shifts the focus from information and networks to consumer
behavior and policy design. [ analyzed optimal taxation of sin goods in
a monopoly market when consumers face heterogeneous self-control prob-
lems. By incorporating the temptation framework of Gul and Pesendorfer
( ), T distinguished between upward-tempered and downward-tempered
consumers and characterized the monopolist’s profit-maximizing menu. Be-
havioral welfare analysis reveals that domestic ad valorem taxes can improve
social welfare when upward-tempered consumers are prevalent, whereas ad
valorem subsidies may be preferable for populations dominated by downward-
tempered consumers. For a foreign monopolist, both ad valorem and specific
taxes enhance national welfare. The results challenge conventional policy
heuristics, highlighting that optimal taxation depends on the distribution of
consumer temptations and the market context. Furthermore, the analysis
demonstrates that welfare evaluations are sensitive to the normative frame-
work, underscoring the importance of distinguishing commitment, tempta-
tion, and ex-post utilities in behavioral settings.

Collectively, the three essays contribute to a broader understanding of
how behavioral motives influence economic outcomes. Chapters 1 and 2 il-
luminate the role of conformity in shaping information transfer and social
learning, showing that social interactions can either facilitate or hinder the
spread of truthful information through public broadcast and network. Chap-
ter 3 demonstrates that behavioral considerations, such as self-control costs,
fundamentally alter policy design and its welfare implications. Overall, the
findings suggest that economic models and policy interventions must account

for both individual biases and the social or institutional context in which de-
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cisions occur.

The thesis also identifies several avenues for future research. Incorporat-
ing heterogeneity in conformity parameters, multiple types of biased agents,
or richer network structures could improve the realism of the communication
models. Similarly, extending the taxation framework to dynamic settings
or competitive markets would allow for more nuanced comparisons and pro-
vide further guidance for policy design. Overall, the results highlight that
behavioral motives such as conformity, bias, and self-control are critical de-
terminants of both micro-level decisions and macro-level outcomes, offering

valuable insights for theory, empirical research, and public policy.
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