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Abstract

Land use and land cover (LULC) change, shaped by socio-economic development and
climate variability, has profound implications for ecosystem services (ES),
particularly in fragile mountain and coastal regions of China. Existing studies of the
ES-LULC nexus in China lack systematic review, often short-term and retrospective,
with limited use of scenario-based modelling. As a result, the long-term dynamics,
vulnerabilities, and future trajectories of socio-ecological systems under interacting

socio-economic and climatic drivers remain insufficiently understood.

This dissertation combines a systematic review, long-term empirical analysis, and
system dynamics modelling to investigate the co-evolution of LULC and ES in
Chinese mountain regions, with Shandong Province as a representative case. 1) The

systematic review of 203 articles (2007 - 2024) shows that ES-LULC research in

Chinese mountain regions has grown rapidly but remains uneven in scale,
methodology, and regional focus. English-language studies tend to operate at broader
spatial and temporal scales using biophysical models, with greater attention to
regulating services, whereas Chinese studies are concentrated at smaller regional
scales, relying mainly on statistical analysis and value transfer methods, and focus
more on provisioning services. Overall, long-term time-series analyses, cross-scale
comparisons, and scenario-based assessments remain limited, constraining a
systematic understanding of ES evolution, trade-offs, and feedbacks. 2) Using long-
term data (1950 - 2022) and causality testing in Shandong Province, the study reveals
that urban expansion and economic growth significantly drove the increase of
construction land, intensifying trade-offs between provisioning services such as food
production and regulating services such as carbon storage and water regulation.
Wetland loss and precipitation decline exacerbated negative feedbacks, accelerating
vegetation degradation and drought risks. Overall, system connectivity declined
markedly after 1980, resilience weakened, and the socio-ecological system showed a
tendency toward functional disturbance and potential reorganization. 3) System
dynamics simulations (2020 — 2100) reveal strong nonlinearity and path dependency

in ES-LULC trajectories. Under extreme warming and drought, agricultural, forest,



II

and water systems risk synchronous collapse by mid-century, signalling the approach
of socio-ecological tipping points. Adaptive management can delay destabilisation but
generates unavoidable trade-offs—for example, between food and water or carbon and
water. Socio-economic pathways further amplify these dynamics, with sustainability-
oriented futures slowing risk accumulation and fossil-fuelled trajectories accelerating

systemic decline.

Policy insights include strengthening farmland protection and sustainable
management to secure food and carbon storage; scaling up water-saving measures to
enhance resilience under climate extremes; conserving wetlands to buffer rainfall
decline and drought; and carefully designing afforestation strategies to balance water—
carbon trade-offs. Prioritising sustainability-oriented socio-economic pathways offers

the most robust option for maintaining long-term system stability.

This dissertation contributes academically by advancing understanding of ES-LULC
co-evolution in Chinese mountain and regional systems, methodologically by
integrating causality testing with system dynamics into a transferable framework, and
practically by providing evidence-based insights for land—water—carbon governance in

Shandong and other regions facing similar pressures.
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Chapter 1 Introduction

1.1 Background

Although mountain regions comprise only 27% of the Earth’s terrestrial surface, they
underpin the well-being of nearly half of the global population through the provision
of critical ecosystem services (ES), including fresh water, raw materials and cultural
benefits (Alfthan et al., 2018; Schirpke et al., 2019). However, mountain ecosystems,
as one of the world's most endangered and sensitive ecosystems, are undergoing
profound environmental and socio-economic transformations (Lavorel et al., 2023),
the consequences of which are manifested in polarized land use/ land cover (LULC)
patterns: on the one hand, there is widespread farmland abandonment(Dax et al.,
2021), natural rewilding (Carroll & Noss, 2021), and state-led ecological restoration
programs such as the ‘Grain for Green Program’ in China (Fan & Xiao, 2020), while
on the other hand, rapid urbanization (Anees et al., 2022), tourism expansion (Iversen
et al., 2024), and rural revitalization efforts (Li et al., 2022) are reshaping mountain
landscapes. These divergent trajectories reflect growing tensions between ecosystem
service supply and socio-economic demand, particularly in areas where land system

transitions are accelerating without adequate ecological assessments.

In response to these transformations, scholars have emphasized the need to integrate
ES assessments with mountain LULC analysis in order to better understand their
interactions and to inform sustainable management strategies (Fu et al., 2015a; Vigl et
al., 2017). Ecosystem services are defined as the value and benefits that ecosystems
contribute to human well-being (CICES, 2011; Costanza et al., 1997; MEA, 2005;
TEEB, 2010). In 2005, the Millennium Ecosystem Assessment (MA) proposed a
widely adopted framework to categorize services into four types: provisioning
services (e.g., food or energy output), regulating services (e.g., regulating floods,
droughts, land degradation, and disease), supporting services (e.g., soil formation and
nutrient cycling), and cultural services (e.g., non-material benefits such as recreation,
religion) (MEA, 2005). Since then, several derivative frameworks have emerged to

refine or expand upon the MA structure--e.g., the Economics of Ecosystems and



Biodiversity (TEEB, 2010) initiative aims to assess the economic benefits of
biodiversity, and the framework Common International Classification of Ecosystem
Services (CICES, 2011), used in the EU Mapping and Assessment of Ecosystems and
their Services (MAES, 2013) process for mapping ecosystem services at the European
scale. This study adopts the MA framework due to its global applicability, conceptual
completeness, and strong compatibility with the socio-ecological complexity of
Chinese mountain regions. Its four-tier classification enables the inclusion of both
material and non-material services, making it suitable for integrated assessments in
data-limited, multi-functional mountainous landscapes. LULC refer respectively to
human-induced land uses (e.g., agriculture, urban expansion, infrastructure) and the
biophysical attributes of the Earth's surface natural or semi-natural physical cover
types (e.g., vegetation, water, barren land) (Chowdhury et al., 2020; Nedd et al.,
2021). LULC change is one of the primary drivers of ecosystem service variation,
especially in mountainous regions where socio-economic pressures and ecological
fragility intersect (Belay et al., 2022; Fang et al., 2022a). In this context, co-evolution
is defined as a reciprocal, dynamic process in which ecosystem services and land use
mutually shape each other's trajectories over time through feedback mechanisms and
adaptive responses (Dearing et al., 2010). Unlike unidirectional cause—effect models,
the co-evolutionary perspective emphasizes non-linearity, time-lag effects, and system
memory, making it particularly suitable for understanding long-term social-ecological

interactions in mountain systems.
1.2 Research progress, gaps and novelty

Over the past decades, a number of literature reviews have advanced our
understanding of mountain ES. Mengist et al. (2020) synthesized methodological
advances and research gaps in mountain ES studies; Patru-Stupariu et al. (2020)
highlighted the translational challenges from ES theory to LULC practice; Liu et al.
(2022) explored the interactions among ES, LULC, and human well-being from a
broader systems perspective. Although previous reviews have significantly
contributed to ES, most have focused on general frameworks of global view, with
limited consideration of the coupled dynamics between mountain ES and LULC in the

Chinese context. To date, no systematic review has specifically targeted mountain



regions of China, leaving a gap in understanding the unique socio-ecological
processes, methodological trends, and indicator usage in these landscapes. This
omission has limited the identification of methodological trends, indicator usage, and
critical knowledge blind spots, thus constraining the strategic alignment of ES
research with regional policy needs. A context-specific synthesis is urgently needed to
reveal the temporal and spatial patterns of research foci, clarify evolving

methodological choices, and inform future work.

Beyond literature syntheses, empirical investigations have proliferated to capture how
LULC dynamics affect the ES provision, spatial heterogeneity, and trade-offs of
mountain ES (Belay et al., 2022; Fang et al., 2022; Wang et al., 2018).
Methodologically, studies often adopt statistical analysis and spatial overlay to
quantify ES-LULC relationships (Shao et al., 2020), apply biophysical models (e.g.,
InVEST model) to simulate ecological processes (Li & Cai, 2022; Pan et al., 2024),
and employ scenario-based approaches to explore future spatio-temporal dynamics
(Hua et al., 2024; Zhang et al., 2025). Despite these contributions, three key
limitations persist. First, the majority of existing studies rely on short-term snapshots
and fail to systematically capture the long-term co-evolutionary dynamics between ES
and LULC, thereby overlooking non-linear interactions and latent feedback loops (Pan
et al., 2024; Yuan et al., 2024). Second, while widely used, most biophysical models
such as InVEST are grounded in static input—output structures and are not designed to
simulate system feedbacks, temporal lags, or tipping points. These omissions limit our
capacity to anticipate and manage complex socio-ecological changes. Third, in the
Chinese context, although ES modeling has progressed, most studies remain

descriptive or correlation-based, lacking integrated dynamic system analysis.

These limitations constrain their capacity to inform adaptive policy design and long-
term sustainability planning. These gaps hinder our ability to understand the
functioning of mountain systems and compromise the scientific basis for ecological
restoration, LULC governance, and resource management. Under the dual pressures of
climate change and socio-economic transition, the failure to identify critical thresholds
or regime shifts may lead to irreversible ecosystem degradation, undermining the

provision of ecosystem services and human well-being (Hossain et al., 2017).



To address these gaps, this thesis makes three novel and first-of-their-kind

contributions:

(1) The first systematic review focusing exclusively on mountain ES-LULC
research in China, revealing spatial-temporal trends, methodological
divergences, and unaddressed gaps;

(i1) The first empirical analysis to quantify causal relationships and co-
evolutionary dynamics between ES and LULC in a representative
mountainous region of eastern China; and

(ii1))  The first development and simulation of a region-specific system dynamics
model for Shandong Province’s integrated socio-ecological system,
enabling scenario-based assessment of long-term trajectories, trade-offs,

and synergies.

Together, these first-of-their-kind studies not only advance methodological
capacity but also directly address long-standing gaps in understanding ES-LULC
dynamics, providing actionable insights for sustainable land governance in

ecologically sensitive mountain regions.
1.3 Research aim and questions

The overall goal of this thesis is to advance the understanding of the coupled
dynamics between mountain ES and LULC in China, and to develop integrated
modelling approaches that can inform sustainable land governance in ecologically
sensitive mountain regions. To achieve this, this thesis integrates a multi-method
investigation into the coupled dynamics between mountain ES and LULC in China. It
begins with a comprehensive synthesis of existing literature to clarify the evolution of
concepts, methods, and spatial-temporal patterns in ES-LULC research. Building on
these insights, it then empirically quantifies the co-evolutionary relationships between
mountain ES and LULC of eastern China, and further develops a region-specific
system dynamics model to simulate long-term trajectories, identify potential tipping
points, assess trade-offs and synergies under multiple future scenarios. The modelling
and analysis contribute to achieving synergies and managing trade-offs for

maintaining a safe operating space in sustainability science decision-making



processes. Through this integrated approach, the thesis seeks to bridge the gap
between static assessments and dynamic system understanding, and to inform

sustainable land management in ecologically sensitive mountain regions.

To achieve this overall goal, the following research questions (RQs) will be answered

and understood:

RQ1: What are the major spatial-temporal hotspots and trends, methodological

advances, and research gaps in ES-LULC studies in China’s mountainous regions?

RQ2: How have ES-LULC changed over time in a representative mountainous region

of eastern China?

RQ3: What are the dominant co-evolutionary patterns in ES-LULC, and how do trade-

offs and feedback manifest over time?

RQ4: How can system dynamics modelling be used to simulate future co-evolutionary
trajectories of ES-LULC under multiple scenarios, identify potential tipping points,
and define the safe operating space for sustainable land governance in mountainous

regions?
1.4 Scientific and policy contributions

This research makes distinctive contributions to both science and policy.
Scientifically, it advances understanding of socio-ecological dynamics by (i)
systematically synthesizing mountain ES-LULC studies in China and identifying
major methodological and thematic gaps, (ii) providing empirical evidence from
Shandong that reveals long-term feedbacks between urbanization, wetland decline,
and ecosystem regulation, and (iii) developing a system dynamics model that
integrates climate, demographic, and LULC drivers to simulate coupled trajectories,
trade-offs, and potential tipping risks. By explicitly linking LULC scenarios to
ecosystem tipping dynamics and policy thresholds, the model establishes a scalable

and transferable platform for strategic planning. Collectively, these contributions



establish a multi-method framework that strengthens both explanatory and predictive

capacity in socio-ecological research.

In terms of policy relevance, the findings are grounded in China’s rapid LULC
transitions and provide quantitative evidence for spatial governance instruments such
as ecological redlines, provincial LULC zoning, and integrated land—water—carbon
strategies. The analysis highlights risks from unchecked urbanization and wetland
degradation, while also demonstrating the potential benefits of farmland protection,
targeted afforestation, water-saving technologies, and dual carbon control. At the
global level, the transferable modelling framework contributes to anticipatory
governance in other climate-sensitive mountain and coastal regions, aligning with
international agendas including the Sustainable Development Goals (SDG 15, SDG
13), the Kunming—Montreal Global Biodiversity Framework, and the Paris

Agreement.
1.5 Study area

Shandong Province (Figure 1.5-1), situated along the eastern coast of China, serves as
an exemplary case for examining the co-evolution of LULC and ES within a complex
socio-ecological framework. Spanning approximately 157,900 km?, Shandong is the
second most populous province in China, home to over 100 million residents, and
ranks third in national GDP, with a gross regional product of 4.67 trillion RMB in
2023 (China Statistical Yearbook, 2023). The province leads the country in both
vegetable and aquatic product output—producing 92 million tons and 9.14 million
tons respectively in 2023—making it central to China’s food security and a major

contributor to regional provisioning services that extend beyond national borders.

Climatically, Shandong has a warm temperate monsoonal climate, with average
annual temperatures ranging from 11°C to 14°C and annual precipitation between 600
mm and 750 mm. More than half of its rainfall is concentrated during the summer
months, while spring and autumn are prone to droughts (Shandong Statistical
Yearbook, 1983-2022). These conditions accentuate the seasonal variability of water

availability and place additional stress on both natural and managed ecosystems. The



province also has one of the longest coastlines in China (approx. 3345 km), further

contributing to its ecological complexity and socio-economic importance.

Over the past four decades, Shandong has undergone rapid LULC transformation. Its
urbanization rate increased from 13% in 1985 to 66% in 2023 (Ren et al., 2023). This
expansion—driven by industrialization, rural-urban migration, and major
infrastructure investment—has led to extensive encroachment upon agricultural lands,
wetlands, and forest areas. Policy shifts, including farmland protection and
reforestation campaigns, have simultaneously reshaped LU trajectories, triggering
nonlinear impacts on ecosystem structure and function (Fan & Xiao, 2020). These
dynamics have generated intensified land fragmentation, biodiversity loss, and trade-

offs among provisioning, regulating, and supporting services.

From a research perspective, Shandong provides a highly suitable context for
modelling socio-ecological interactions. It represents a typical mountainous—coastal
hybrid system in China, and also reflects broader transitions in the Global South.
Furthermore, Shandong benefits from high statistical data accessibility and a relatively
transparent governance environment. Key data for this study—spanning LU, ES,
meteorological, demographic, and economic indicators—were collected from a range
of authoritative sources, including the Shandong Statistical Yearbook, China
Statistical Yearbook, National Climatic Data Center (NCDC), Shandong
Environmental Bulletin, China Meteorological Disaster Statistical Yearbook, and
China Environmental Statistical Yearbook. The research team’s prior experience and
long-term familiarity with provincial data sources facilitated communication with

local bureaus and ensured robust data curation and validation.

In light of these ecological, economic, and institutional characteristics, Shandong
Province emerges as an ideal laboratory for testing system dynamics models of land—
ecosystem interactions. Its data richness, diverse socio-environmental gradients, and
policy relevance position it not only as a representative case for China, but also as a
transferable model for investigating safe operating spaces and adaptive governance in

other rapidly urbanizing, agriculturally intensive regions worldwide.
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Figure 1.5-1 The location of Shandong province of China.

1.6 Thesis structure

This thesis comprises three interlinked empirical studies that collectively examine the
co-evolutionary dynamics of ES-LULC in mountainous regions of China, with a
particular focus on Shandong Province. The research follows a stepwise structure that
progresses from knowledge synthesis and mechanism identification to dynamic

simulation and policy-oriented exploration (Figure 1.6-1).

Chapter 2 presents a systematic literature review of 146 peer-reviewed articles
published between 2007 and 2022, including 66 in Chinese and 80 in English.
Chinese-language studies were retrieved from CNKI, while English-language studies
were sourced from Scopus and Web of Science. Following the ROSES protocol, the
review assesses ES-LULC studies in Chinese mountain regions with respect to spatial
scale, methodological orientation, and temporal coverage. The results reveal

widespread limitations, including the absence of dynamic modelling, inadequate



integration across spatial scales, and a lack of forward-looking scenario analysis.
These insights provide a conceptual foundation for the subsequent empirical

modelling and inform the core research questions of the thesis.

Chapter 3 investigates the feedback relationships among land use, ecosystem services,
and socio-economic factors in Shandong Province using time-series data from 1950 to
2020. Data were primarily drawn from the Shandong Statistical Yearbook, Shandong
Environmental Status Bulletin, China Meteorological Disaster Yearbook, and China
Environmental Statistical Yearbook, with meteorological data obtained from the
National Climatic Data Center. To uncover dynamic interactions, the analysis first
applies Granger causality testing to identify lead—lag relationships among key
variables (e.g., cropland area, water bodies, carbon storage, and GDP), clarifying
temporal drivers of change. Second, the Environmental Kuznets Curve (EKC) model
is used to examine potential non-linearities between economic growth and ecosystem
service trends, such as degradation—recovery thresholds. Third, sequential principal
component analysis (sPCA) is employed to reduce dimensionality and extract
dominant modes of system co-evolution. Collectively, these methods reveal critical
feedback mechanisms, leverage points, and early warning signals of transformation,
which provide empirical input for the construction of the system dynamics model in

the next chapter.

Chapter 4 builds on these empirical findings to develop a system dynamics (SD)
model that simulates long-term ES-LULC trajectories under multiple climate,
demographic, and LULC policy scenarios. The model encompasses seven land use
categories and seven ecosystem service types and follows a structured modelling
process that includes causal loop diagram construction, stock—flow architecture,
historical calibration (1995 - 2020), and sensitivity testing. Scenario design
incorporates diverse socio-environmental pathways, including afforestation, cropland
protection, water-saving strategies, and urban containment, overlaid with climate
projections ranging from 1.5 to 5.7°C temperature increases and — 70% to + 50%
precipitation variation. Simulation results identify potential tipping points and safe
operating thresholds for regional ES-LULC systems, offering insights for adaptive
governance under compounded environmental pressures. Simulation results reveal

both potential tipping points and the boundaries of a safe operating space within
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which ecosystem services can be sustained under compounded environmental stress.
By mapping system responses across diverse futures, the model provides a
quantitative basis for evaluating trade-offs, guiding adaptive land governance, and
anticipating policy-relevant thresholds. These findings set the stage for the synthesis

and broader reflections in Chapter 5.

Chapter 5 synthesizes the findings from the three studies, discusses their relevance for
integrated land—ecosystem policy design, and reflects on the theoretical and practical
implications of modelling ES-LULC co-evolution in mountainous regions. It also
considers key limitations and outlines future directions for advancing social-

ecological systems modelling and sustainability planning at regional scales.

Papers Methods Research Aims Steps in SD modelling Output

Search in Chinese Systematic review: )
Systematic review
and English article ES and LU change research Research gap

1st Trends & gaps
in China’s research in the mountain regions Future direction
Future directions
ROSES forms of China
Trend analysis
Granger causality test Co-evolution )
Model formulation Causal feedback model
2nd Sequential PCA and Inter-linkages ) .
(Causal loop diagram) Key drivers
EKC model between ES and LU . )
Connectivity decline
SD model
Parameter estimation . o .
Multi-scenario simulation
System dynamic modelling  Exploring dynamics Validation :
3rd Trade-offs & synergies
Scenarios of social-ecological systems Sensitivity test

Tipping points
Simulation
Policy priorities

Figure 1.6-1 The methodological flow diagram of the thesis.

It shows links among papers, research questions, methods, steps, outputs for 3 papers.
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Chapter 2 Ecosystem services and land use
change research in the mountain regions of

China: A systematic review

Land use/ land cover (LULC) change driven by anthropogenic activities has
increasingly threatened mountain ecosystem services (MESs), yet a systematic
understanding of this issue in the mountains of China remains limited. This study aims
to synthesize the current state of knowledge on Chinese MES & LULC research,
identify key research trends, and inform future research and policy directions in
Chinese mountains. We systematically reviewed 203 peer-reviewed articles published
between 2007 and 2024, including 82 in Chinese and 121 in English. Although most
studies (79%) are historically oriented, the attention to future scenario-based
assessments is growing rapidly. English-language literature tends to adopt broader
regional scales and longer time duration, focusing on ecological processes by
biophysical models. In contrast, Chinese studies primarily operate at the smaller
regional or local scale and rely heavily on statistical analysis and mapping, especially
based on value transfer method for ES valuation. Despite growing academic attention
since 2018, major research gaps remain: The lack of a unified multi-scale framework
has led to fragmented and poorly comparable ES assessments; the use of time-series
approaches or studies with over three temporal observations remain limited (33%),
constraining the analysis of MES & LULC evolution, trade-offs, and system
feedbacks; and the lack of futural scenario-based evolution under different land
policies and extreme environmental changes. Our findings contribute to the scientific
guidance for the implementation of future ecological restoration planning in China

and other mountainous regions.
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2.1 Introduction

Mountain ecosystems provide a diverse array of ecosystem services (ESs) to people
living within their foothills (over 15% of the global population) and the adjacent
lowlands (Locatelli et al., 2017). These services (e.g., food, water, medicine) offer
numerous benefits to human well-being from the ecosystem, social livelihood, and
social-economic view (MEA, 2005; TEEB, 2010; CICES, 2011; IPBES, 2019). In
addition, mountain ecosystems regulate climate, air quality, and water flow, benefiting
downstream populations (Viviroli et al., 2020). While mountain ecosystems are
critical for human development and the global ecosystem health, the provision of

these ecosystems is highly dependent on land use/land cover change (LULC).

LULC itself is shaped by long-term interactions between humans and nature

( Verburg et al., 2013). More than 70% of the planet's land surface has experienced
some form of anthropogenic change (Luyssaert et al., 2014), and the anthropogenic
LULC has disrupted planetary-scale biophysical (e.g., soil formation) and
biogeochemical processes (e.g., carbon storage) (Winkler et al., 2021; Riano Sanchez
et al., 2024). Mountain ecosystems, however, are 2—3 times more vulnerable to LULC
and climate change than lowland regions, due to their steep ecological gradients and
tightly coupled socio-ecological systems (IPBES, 2019; Immerzeel et al., 2020; Pepin
et al., 2022). LULC-driven vulnerability degrades mountain ESs, with losses
cascading to lowlands (e.g., water supply, climate disaster). Regarding the loss of ES
values globally, LULC change (LULCC) and land degradation affect ecosystem
health, directly affecting half of humanity, and led to a loss of about $40 trillion a year
of ESs, which is almost half of global GDP ($93 trillion) in 2021 (Vander et al.,
2022). China has experienced Earth’s fastest LULC transitions Since 1990, with its
mountains serving as focal points for socio-ecological tensions (Wang et al., 2018).
These dynamics have spurred growing interest in LULC-ES interactions, necessitating

systematic review to guide future research and advance global mountain studies.

China is a mountainous country, with mountains, plateaus, and hills accounting for
67 % of land area and 18.4 % of the world's mountainous area (Deng et al., 2015).
These regions are home to the largest concentration of poverty in China, with 310

million people dependent on mountain ecosystems (Wen, 2023). China's mountain
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regions have experienced profound LULC transformations, driven by population
growth, urbanization, and policy interventions, which have significantly reshaped its
ESs, creating a complex interplay of ecological and socioeconomic trade-offs. (Marks,
2017). Population growth after the founding of New China in 1949 increased the
demand for livelihoods and necessitated the reclamation of forest and unused land in
mountainous areas. Since 1990, urbanization and ecological restoration initiatives
have profoundly transformed LULC patterns in China’s mountainous regions. The
expansion of construction land, driven by urbanization, has encroached upon
farmland, grassland and barren land, resulting in landscape fragmentation and a
significant decline in total ES values, including reduced carbon storage and degraded
habitats (Yang, 2021; Zhang et al., 2022). In contrast, the conversion of farmland into
ecological land (e.g., forests and grasslands) under initiatives like the Grain for Green
Project has supported critical ESs, including soil and water conservation and carbon
sequestration(Cheng et al. 2024; Wang et al., 2017). These contrasting trends
highlight the complex trade-offs between economic development and ecological

sustainability in China’s rapidly changing mountainous regions (Deng et al., 2021).

Therefore, linking MESs with LULC research, and clarifying the impact ( Fan &
Xiao, 2020), synergistic trade-offs ( Shi et al., 2021) can effectively reveal the
interactions between human and natural systems, improve our understanding of ES
processes and mechanisms, and facilitate the formulation and implementation of land
use planning and ecological protection policies. It is also of great scientific importance

in promoting regional sustainable development ( Gong et al., 2021).

Most studies to date have focused on regional case studies of LULC & ESs (Wang et
al., 2023; Zhang et al., 2022), leaving systematic reviews of the broader body of
research insufficient. One major gap is the inadequate attention to the unique
characteristics of mountain ecosystems. While many reviews aggregate data from a
range of global landscapes (Liu et al., 2022; Haque and Sharifi, 2024), they often fail
to address specific mountain attributes (e.g., vertical gradients, vulnerability
thresholds, and the spatial variation of population-resource conflicts). Furthermore,
many existing reviews primarily adopt a global perspective, discussing ESs (Evans et
al., 2022; Haque and Sharifi, 2024), LULC (Gomes et al., 2021; Roy et al., 2022), and

their connections to human well-being (Liu et al., 2022), but overlook China’s specific
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context. As a result, there is a lack of systematic reviews at the national scale, which
limits the ability to effectively summarize and guide future research on China’s
mountain ecosystems (Jiang et al., 2021). Additionally, global reviews tend to rely
heavily on English-language sources, disregarding valuable Chinese literature, which
can lead to biased conclusions(Canedoli et al., 2024; Jiang et al., 2021). Finally, the
lessons from China’s mountainous regions for global mountain sustainability have not
been systematically summarized, making it challenging to align with international

agendas such as the IPBES and SDGs (Colglazier, 2015; IPBES, 2019).

Therefore, this study aims at providing a first understanding of the research trend and
hotspot, approach, and help subsequent researchers finding research gaps and
directions for Chinese mountainous areas. We carried out a state-of- the- art
quantitative analysis using a systematic literature review of English and Chinese peer-
reviewed articles published from 2007 to 2024. The review focused on the following
three main objectives within the context of ES and LULC research in the mountain

regions of China:

1. To understand research hotspots and research trends of Chinese MESs & LULC

across time and space;

2. To document the evidence (such as concepts, models, and data) based on Chinese

MESs and LULC research;

3. To identify key research gaps and opportunities, and to provide further research

directions for future sustainability of mountain ecosystems research.

The findings of this study can provide useful information on the overall status of
MESs & LULC research in the Chinese context and the most common gaps observed.
In addition, the study can help researchers identify the scientific progress; the

challenges researchers encounter and the gaps that require further research efforts.
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2.2 Methodology

2.2.1 Search protocol and selection approach

A systematic review aims to provide a comprehensive, unbiased synthesis of evidence
on a clearly defined topic by using critical methods to identify, evaluate, and
summarize relevant studies (Hossain et al., 2023; Tricco et al., 2011). It adheres to the
general principle of summarizing the knowledge from a body of literature, attempts to
uncover “all” of the evidence within a specific time frame and source of research and
focuses on research that reports data rather than concepts or theory (Basak et al.,
2021). This review adopted the MEA (2005) classification system to ensure
consistency across the literature analysed. However, this may limit alignment with
recent conceptual advances, and recommend that future reviews adopt updated
frameworks such as IPBES (2019) or CICES (2011) to better reflect current
understandings of ES types.

2.2.1.1 Identification of data range

To be comprehensive and incorporate as many studies as possible, this systematic
review screened literature published in both Chinese and English. This systematic
review covered publications from 2007 to 2024 (first research in this field), conducted
between November 2021 and June 2025. The English-language publications search
were conducted in Scopus and Web of Science using topic-based queries (“Ecosystem
service*”), (Mountain* OR Hill*), (“Land use change” OR Land cover* OR Land
use®* OR LULC OR Land), (China, OR Chinese), and language should be in English.
Scopus and Web of Science were selected for their comprehensive indexing of high-
quality, peer-reviewed journals in English language and their wide acceptance as
authoritative sources for academic research. There are 771 articles found in total, with

239 articles from Scopus and 532 from Web of Science.

For Chinese-language publications, equivalent search terms were applied using
Chinese characters in the China National Knowledge Infrastructure (CNKI) database
between June 2022 to June 2025. The keywords included “4#& RGRSS, ( “1L*”
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OR “*E%” OR 111 **ﬂg EH ”» )’ (“j:fé;%u)zﬁ/ﬁ/ﬂs” OR ccii&%”};ﬁ” %k OR cciiﬂ%%” %
OR “Hd:Hhi “) and “H'[E”. CNKI was selected due to its extensive coverage of

Chinese academic journals and its recognized role as the primary repository of peer-
reviewed Chinese-language literature. From this screening, 187 articles were

retrieved.

2.2.1.2 Reduce the duplication and non-peer-reviewed articles

After that, this study reduced the duplication of these Chinese and English-language
articles respectively, and removed the non-peer-reviewed articles (e.g., grey literature,
conference papers, book chapters, and editorial letters, as well as documents not
published in either Chinese or English). A total of 514 English-language article, and

214 Chinese-language articles were included in the selection process.

2.2.1.3 Title and abstract filtration

After deduplication and peer-review filtering, an eligibility screening was conducted
using Zotero software. These articles were screened based on their titles, abstracts and
keywords If these sections did not provide sufficient information to determine
eligibility, the methods and results sections were further examined. Four criteria were
applied to assess relevance: (1) at least one clearly defined ecosystem type was
studied; (2) at least one clearly defined ES type was assessed; (3) the study area
contains at least part of mountains in China and has research results for mountains of
China; (4) include studies on LULC (spatial heterogeneity, LULC change, etc.).
Articles that were inaccessible, or conference abstracts behind paywalls or not

publicly available, were also excluded.

2.2.1.4 Screening and reviewing papers

Full-text review was conducted using ROSES forms (Haddaway et al., 2018),
compiled in Excel. ROSES is a systematic review reporting standard widely used in

environmental management studies (https://www.roses-reporting.com/). During this

process, the four eligibility criteria were repeatedly applied, and eligible articles were
compiled into a structured table (Table 6.1-1). The framework for content analysis

was developed by integrating the ROSES checklist with specific research questions. It
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was structured into a set of categories and key elements for systematic evaluation,
including temporal and spatial scale analysis, ES types and methods, LULC
approaches, and the modes of assessment, research directions and opportunities. A
total of 121 English-language articles and 82 Chinese-language articles were included

in the final dataset (Figure 2.2-1).



Web of Science
Before 2022 #287
2022-2024 #245

Scopus database
Before 2022 #103
2022-2024 #136

Domain: Title/abstract/ keywords

Approach: Thematic

Before 2022 #390, 2022-2024 #381

Domain: Article title and journal title

1. Duplication:

[Before 2022: # -56, 2022-2024: #-122];

2. Not in English language :

[Before 2022: # -27, 2022-2024: # -15];

3. No peer-reviewed, grey literature, conference
proceedings, book chapter & editorial letter:
[Before 2022: # -17, 2022-2024: # -20].

Before 2022 #290, 2022-2024 #224

Domain: Titles/abstracts screened

Approach: Exclude artides

--(“Ecosystem service*”), (Mountain* OR Hill*),
(“Land use change” OR Land cover* OR Land
use* OR Land-use OR Land), (China OR
Chinese) [Before 2022#-168, 2022-2024: #-124];
--Conference paper [Before 2022# -1, 2022-2024:
#-1]; --Article missing [Before 2022 # -1,
2022-2024: #-2].

Before 2022 #120, 2022-2024 #99

Domain: Full-text articles assessed

Approach: Exclude artides that no "ES" OR no
"LULC” OR not mountainous OR not in Chinese
research area [Before 2022# -41, 2022-2024:
#-57].

Before 2022 #79, 2022-2024 #42
Total= #122
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China National Knowledge
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Before 2022 #187, 2022-2024 #48

Domain: Article title and journal title
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2. Not in Chinese language:

[Before 2022: # -1, 2022-2024: # -1];

3. No peer-reviewed, grey literature, conference
proceedings, book chapter & editorial letter:
[Before 2022: # -11, 2022-2024: # -9].

Before 2022 #175, 2022-2024 #39

Domain: Titles/abstracts screened

Approach: Exclude artides

-no"EBRFKRSE" OR no "L iHFI A

OR not mountainous OR not in Chinese research
area: [Before 2022: # -102, 2022-2024: # -16];
-Conference paper: [Before 2022: # -3,
2022-2024: # 0];

-Article missing: [Before 2022: # -1, 2022-2024:

#-1];.
Before 2022 #69, 2022-2024 #22

Domain: Full-text articles assessed

Approach: Exclude artides that no" 4.7 FR 4tk
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not in Chinese research area: [Before 2022# -3,

2022-2024: #-6].

Before 2022 #66, 2022-2024 #16
Total= #82

Figure 2.2-1 Systematic literature review’s study selection of literature using inclusion and

exclusion criteria in English-language articles (left) and Chinese-language articles (right).
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2.2.2 Quantitative and qualitative data analysis

The reviewed articles were sorted to filter full-text information describing the spatial
geographic distribution, temporal scales (historical, present, future, cross-scale),
temporal scale hotspots (study duration & time interval) (Mengist et al., 2020) and
scale hotspots for spatiotemporal studies (study duration & spatial extent) (Estes et al.,
2018), ESs and their types (provisioning, regulating, supporting and cultural) (MEA,
2005; IPBES, 2019), the relationship between LULC and ESs, the research methods,
models and mode of analysis (Table S1) (Basak et al., 2021). We carried out data
management and analysis using Excel tools, and the statistics were plotted through the

software - Origin 2018.
2.2.2.1 Spatial scale and temporal scale analysis

The first type of data includes the general nature of the study, which was divided into
the spatial scale and temporal scale analysis. The spatial scale studies included the
map of study sites research sites (Figure 2.3-1) as well as the spatial coverage of the
study (Figure 2.3-2) between 2007 to 2024. The spatial distribution of study sites was
analysed using hotspot maps, separately for Chinese and English-language articles at
the provincial level in China, using Excel's mapping tools to visualize research
intensity. The locations of institutions were manually recorded to analyse spatial
associations with study areas, supporting the textual analysis. The spatial coverage
was categorised in the form of either regional, local or patch scale. The national scale
was not mentioned because the screened articles lacked studies conducted at the
national studies. The regional scale includes studies of multiple sites in China and has
a scale of 10%-10° km?. The local scale will be limited to studies of specific areas or
cities with a scale of 103-10* km?, such as the study of Beijing (Chen et al., 2020).
Most of the studies on the patch scale will address smaller scale explorations such as

villages or parks.

Regarding the temporal scale review, this study reveals the temporal directions in
Chinese and English-language articles (Figure 2.3-3), as well as interval-duration time
relationships and spatiotemporal research hotspots (Figure 2.3- 4). Temporal

directions refer to studies that address historical (using data collected more than three
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years prior to the publication date of the article), current (using data collected within
three years prior to publication), historical and futural (simulate or project futural
LULC or ESs by historical data) will be plotted by bar graphs. The interval-duration
time relationships and spatiotemporal research hotspots were developed using Kernel
Density maps. These maps analyze two key relationships: (1) the total study duration
and the time sampling interval, visualized in Figure 2.3-4 (a, c) to show the sampling
density of time evolution; and (2) the spatial coverage and study duration, visualized

in Figure 2.3-4 (b, d) to identify spatiotemporal research hotspots.

2.2.2.2 I|dentify the types of ESs

The second data type focused on identifying the types of ESs mentioned in the
literature (Figure 2.3-9). Articles within the criteria will have the term ESs present in
the keywords and in the results of each study. Four major types of ESs (Provisioning,
regulating, supporting, and culturing) were identified (MEA, 2005), as this
classification remains the most widely used in the reviewed literature despite the
emergence of newer frameworks such as CICES or IPBES (CICES, 2011; IPBES,
2019). The frequency of research on each type of ESs was counted, and the
differences between Chinese and English papers were compared to identify research
hotspots and cold spots. By integrating spatial and temporal hotspots, this study
identifies current gaps in research across time and space, providing guidance for

selecting appropriate spatiotemporal scales in future studies.

2.2.2.3 Relationships Between Qualitative Classifications

The third type of data is related to the strength of the relationship between the
different qualitative classifications, i.e., the focus of the study, ES types, ES models,
and the mode of analysis for ES and LULC (Figure 2.3-10). To visualize the
correlations among key dimensions of the reviewed articles, this research employed
Alluvial Diagrams, constructed using the rawgraphs.io platform. The four categories
of different combinations -focus (e.g., ecological, social-ecological, social-economic),
ES types (different ES groups), models (e.g., Bio-physical model, InVEST model,
value transfer method), and modes of analysis (e.g., statistical analysis, scenario
simulation, spatial overlay, bundle/trade-off analysis, ecological security pattern) —

were summarized in a structured table based on a systematic literature review (Basak
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et al., 2021). This data was then used to generate the Alluvial Diagram, where nodes
represent the relative contribution of each category, and connecting strips illustrate
their relationships, with strip width indicating the strength of association. This
approach not only provides a clear visualization of the data but also highlights key
trends and linkages in the current research landscape. Additionally, a time-series bar
chart comparing Chinese and English literature across categories was produced and
included in the appendix to illustrate temporal shifts and linguistic differences in

research focus ES classification, ES model and ES-LULC mode of analysis.

2.3 Results

2.3.1 Spatial distribution of MES & LULC research in China

The spatial patterns of MES and LULC research in China reflect both overlaps and
distinctions between English- and Chinese-language literature (Figure 2.3-1).
Research in both languages is heavily concentrated in the western and southwestern
mountainous regions, particularly Sichuan, Yunnan, Guizhou, Xinjiang, and Gansu.
However, notable differences emerge in research emphasis and institutional
orientation. English-language studies are more frequently conducted in ecologically
sensitive regions of global concern—such as arid zones (e.g., Xinjiang, Gansu),
transboundary areas (e.g., Yunnan), and high-altitude fragile systems (e.g., the Tibetan
Plateau, Sichuan)—often reflecting international research agendas and collaborative
projects (Zhu et al., 2024). In contrast, Chinese-language studies are predominantly
led by local universities and institutes, focusing on policy-prioritized regions
associated with national ecological restoration and poverty alleviation programs, such
as Guizhou and western Sichuan (Gao et al., 2014; Yu et al., 2021). This divergence is
further evidenced by differing spatial blind spots: English-language research remains
limited in Jiangxi, Hunan, and Inner Mongolia, whereas Chinese-language research is
scarce in northeastern provinces (e.g., Heilongjiang, Jilin), coastal regions (e.g.,
Jiangsu, Zhejiang), and the central Tibetan Plateau. While Beijing hosts leading
national research institutions, strong regional research capacities are also evident in

provinces like Sichuan and Yunnan, particularly in Chinese-language studies.
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Figure 2.3-1 Geographic distribution of published research Chinese MESs & LULC in English

and Chinese research criteria.

2.3.2 Temporal and spatial scales and their determinants

Figures 2.3-2 and 2.3-3 show that research on MES and LULC in China is steadily
increasing, with most studies focusing on regional scales (Figure 2.3-2). Spatially,
there is a clear rise from 2018 toward present and future-oriented analyses (Figure

2.3-3). In addition, a distinct pattern links spatial scale with study duration (Figure
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2.3-4): Larger spatial scales tend to match longer time scales. English-language
studies often focus on spatial heterogeneity by short timeframes (<5 years) (Jiangbo
Gao et al., 2021; Wu and Dai, 2024), or use longer timeframes (20-40 years) at broad
regional scales (10*-10° km?), supported by long-term remote sensing datasets usually
(Liu et al., 2024). In contrast, Chinese studies are concentrated at local scale and
intermediate durations (10-20 years), corresponding with national policy cycles such
as the Grain-to-Green program (Gao et al., 2014). Despite some variation, both
English- and Chinese-language studies predominantly adopt 5—10 year intervals
(Figure 2.3-4a, 2.3-4c). A few English studies use finer sampling (1-3 years) for
dynamic assessments, while Chinese studies tend to align more consistently with five-

year policy cycles.
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duration and interval (of temporally replicated observations) (a, c); and duration and extent (b,
d).

2.3.3 Current trends in Chinese MES & LULC research

This systematic review examined trends in Chinese MES & LULC. Since the release
of the Millennium Ecosystem Assessment (MEA, 2005), scholars gradually began to
apply its framework to Chinese MES & LULC studies from 2007 onward (L1 et al.,
2007). Later, the TEEB (2010) and CICES (2011) frameworks, by emphasizing the
ES economic valuation and providing a standardized classification system separately,
also encouraged a growing focus on ES monetary valuation, statistical analysis for
evolution, interrelationships after 2010, and combined spatial overlay after 2012

(Peng et al., 2016; Fu et al., 2015;Wang et al., 2012) (Figure 2.3-7, Figure 2.3-8).
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After 2018, driven by the global adoption of the IPBES frameworks (2019), 2030
Sustainable Development Agenda (Colglazier, 2015), and increasing concern over
climate change (Masson-Delmotte et al., 2021), the number of publications rose
sharply, particularly in English-language articles (Figure 2.3-10). ES Assessment
methods shifted from monetary valuation to biophysical and InVEST model
increasingly adopted after 2018 in English-language studies, while Chinese-language
studies predominantly relied on monetary valuation before 2022 (Figure 2.3-7).
Meanwhile, the research focus evolved from ES quantification and correlation
analyses toward current ecological security pattern (ESP) and future scenario-based
simulations aligned with ecological planning and policy objectives, as well as
integrated approaches such as bundle/trade-off analysis (Figure 2.3-8). Some studies
aimed to incorporate Chinese MESs & LULC mapping into planning, and link circuit
theory to develop ecological security models that safeguard critical ecosystem
functions and landscape connectivity against urban expansion and habitat
fragmentation (Huang et al., 2020; Yan et al., 2024). Other studies use historical data
to simulate future ecological conservation and economic development scenarios,
combining visual analyses of Chinese MES & LULC maps to assess and reduce
ecological risks (Gao et al., 2021; Guo et al., 2023). These approaches offer practical

insights for landscape planning, ecological policy, and management.

In addition, social benefits are a relatively new focus in Chinese MES & LULC
assessments. Our review found that although some studies estimated social benefits,
these still focused primarily on economic valuation (e.g., tourism value, recreation)
(Qian et al., 2019) or payment for ESs (Zhang et al., 2021; Zhang et al., 2018).
Especially in English literature, cultural services remain the weakest part of all service
evaluations (Figure 2.3-6). However, the assessment that incorporated social benefits
found that land use patterns had the strongest impact on tourists' perceptions of
various cultural services compared to other services (Lyu et al., 2021), which implies

that social benefits have great research potential in the future.

The results of the different spatial scales of the comparative studies reveal the various
approaches followed by the studies. In terms of research on Chinese LULC and MES,
the regional scale has consistently been the dominant spatial scale in bilingual studies

(Figure 2.3-2), it primarily addresses the impacts of LULC on key ESs distribution
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and changes, explores trade-off relationships, evolutionary trends, and develops the

land or ecological decision support ecological security or scenario projections of

LULC and ES changes. At the local scale, studies primarily focus on analyzing

spatiotemporal dynamics, assessing the effects of LULC on ESs (Yang et al., 2022),

and conducting ES valuation (Xiao et al., 2020), with some also constructing local

LULC multi-objective Scenarios (Luo et al., 2024; Zhu et al., 2024). Patch scale

research is very rare, commonly involves identifying cultural and other service values

by stakeholder survey or other first-hand data analysis in villages or parks (Zhang et

al., 2020), and simulate the futural land use scenarios (Thellmann et al., 2018).
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Figure 2.3-5 Temporal distribution of research focus in English- and Chinese-language ES—

LULC studies in mountain regions of China.
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language ES-LULC studies in mountain regions of China.

2.3.4 The concept of ESs in Chinese mountain research

It was found that both regulating services and supporting services were the most
represented services in the 121 published studies in English and 82 studies in Chinese
(Figure 2.3-9). Regulating services were also the most diverse type of service
considered, with soil conservation (84-English, 65-Chinese) being the most involved,
gas regulation (43, 72) and climate regulation (40, 61), water quality regulation (29,
59) as well as water flow regulation (32, 51) being relatively popular. Support services
were the most commonly mentioned type, due to the fact that mountain research has
the highest demand for biodiversity (55,67) assessments. Of the provisioning services,
food production (58, 56) was the most assessed component, followed by raw material
(41, 51). Although recreation accounts for the majority (29, 39) of cultural service
assessments, cultural services overall remain the least addressed category in Chinese

MES-LULC research.

Comparisons revealed a strong homogeneity of the Chinese ES categories, which is

due to an over-reliance on the revised Chinese Scale of Values of Ecosystem Services
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as a framework (value transfer method), which includes the 11 most important ES
indicators in China, leading to a high intensity and convergence of studies valuing the
indicators using the framework, which explains the high mentions of the leisure
indicator. Cultural services are the most vacant in mountain studies, since cultural
services are more difficult to quantify than other well-established ES models, and

valuation methods are not mature, especially regionally and at larger scales.
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Figure 2.3-9 Number of ES sub-types from all publications of Chinese MESs & LULC

research.
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2.3.5 Research focus, ES, model and relationship analyses of
Chinese MES & LULC

From a methodological perspective (Figure 2.3-10), studies on mountainous regions in
China have predominantly adopted the ES valuation - value transfer method (VIM),
accounting for 35% of English-language and 75% of Chinese-language publications.
These studies typically encompass all ES categories, emphasize the socio-ecological
dimension (English-52/121, Chinese-63/82), and ultimately analyse ES and LULC by
statistical analysis, spatial overlay, bundle/trade-off analysis, scenario simulation (for
Chinese). Beyond this dominant method, ecological focused research (accounting for
50% of the English-language and 21% of Chinese-language studies) employ the
InVEST model and/ or biophysical models (e.g., CASA, SWAT, RUSLE),
particularly those related to regulating and supporting services and ultimately focus on

mapping, temporal statistical analysis, scenario simulations and ESP.
pping p y
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provisioning services; R- regulating services; S- supplying services; C- cultural services. In ES
model section, VTM: Value Transfer Method. For mode of assessment part, Sta: Statistical
analysis, Scenario: Simulation simulatio, SO-spatial overlay, B/Tra: Bundle/Trade-off, ESP:
Ecological Security Pattern. The width of the links corresponds to the mention frequency, and
the numbers and labels correspond to the number and type of articles.

2.3.6 ES-LULCrelationship analyses in Chinese mountain

studies

There are three known ways in which LULC can change ESs in Chinese mountains:
LULC change ESs; changing LU spatial patterns to change ESs; and changing LU
intensity to change ESs (Liu et al., 2022). According to these ways of LU influence

ES, our finding of reveals that:

1) In previous research, LULC transition matrices and dynamics are the most
commonly used methods to study the impact of LULC change on ecosystem services.
Based on historical land use data, the study established an ecological value matrix
related to land use change to understand the impact of land use change and spatial and
temporal changes in habitat quality (Dai et al., 2019). However, although this method
is extremely popular, it is concentrated on studies with 10-year intervals within 40
years, and the selected articles lack dense time series of satellite data monitoring
LULC studies, which will greatly increase the error caused by sharp fluctuations in

land use.

2) A small number of selected studies mentioned LU spatial pattern changes ESs, and
most of them used this to study landscape pattern evolution and ESV interaction.
Some studies have used landscape indexes to explore the relationship between land
use and ecosystem services. For example, the landscape index method has been used
to explore the changing characteristics (Su et al., 2012) and interaction of landscape
patterns and ecosystems in the past three decades (Yi et al., 2018, Gong et al., 2019),
ecological security patterns has been used to develop and optimise for ecological

restoration (Li et al., 2022; Wang et al., 2022).

3) At present, only a small part of the selected studies (e.g. Su et al., 2012; Xu et al.,

2016) uses the land use intensity method, which can reflect the impact of human
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activities, but the response mechanism of ES to land use intensity is not clear, which is
not conducive to predicting the impact of land use change on ES in different
scenarios. Studying the impact of land use intensity on ES in rural China shows that
there is a trade-off between supply services (crop production) and regulation services
(soil conservation and climate regulation) with large increases in land use intensity

(Xu et al., 2016).

4) In terms of analyzing the relationship between LULC and ESs, InVEST model
(Gong et al., 2019; Shi et al., 2021) and ES value transfer method (Ling et al., 2019;
Chen et al. 2020) are commonly used to evaluate ecosystem services. Most studies
used remote sensing data and GIS-based models (such as hotspot analysis, IN'VEST
model) to examine the ES spatial patterns and the impacts of LULC on ESs (Zhang et
al., 2021; Sun et al., 2023). To analyse LULC, the most commonly used method is
correlation analysis (Cheng et al., 2019; Sun et al., 2020), scenario simulation method
— mostly by Markov model (Zhu et al., 2024), PLUS model (Guo et al., 2023; Wang
et al., 2024) FLUS model (Luo et al., 2024) and CLUE model (Gao et al., 2021).

2.4 Discussion

2.4.1 Knowledge gaps and methodological challenges in
Chinese MES & LULC studies

This review identifies several key research gaps in the current literature on Chinese
MES & LULC. Although similar methodological limitations have been acknowledged
internationally, their manifestations in China's mountainous regions remain distinct

and unresolved.

First, although 70% (144/203) of the reviewed studies examine the relationship
between Chinese MES & LULC, 20% explicitly explore trade-offs or interactions
among services (41/203). Most focus on how LULC affects different services
individually (Dai et al., 2020; Tian et al., 2022; Wu & Dai, 2024), while giving
limited attention to inter-service dynamics or potential conflicts (Goldstein et al.,
2012; Gong et al., 2019; Wang et al., 2024). Advanced methods such as service
bundles (Lyu et al., 2021), social-ecological networks (Felipe-Lucia et al., 2022), and
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scenario trade-off modelling (Zhao et al., 2023) are commonly applied in China and
international ES research but have yet to be widely adopted in China’s mountainous

regions.

Second, temporal discontinuity and lack of long-term monitoring remain major
obstacles. Although international research has increasingly emphasized the
importance of time-series analyses to identify regime shifts and ecological thresholds
(Sardanyés et al., 2024; Bathiany et al., 2024), only a minority of Chinese mountain
studies include more than three temporal observations (J. Sun et al., 2023) or apply
time-series methods (Thellmann et al., 2018; Gao et al., 2022). This hinders the
detection of critical change points and tipping points, thereby limiting the ability to
define safe operating spaces and delaying proactive management responses(Zhang et

al., 2015; Hossain et al., 2017).

Third, cultural ESs (CES) are particularly difficult to assess due to their overlapping
categories (e.g., recreation, spirituality, aesthetics) and their non-material, context-
dependent nature, which makes them challenging to quantify and integrate into
standard assessment frameworks (Yang and Cao, 2022). These challenges are
compounded by the subjectivity of cultural values, the lack of standardized indicators,
and the difficulty of translating localized meanings into broader policy contexts. To
address these limitations, international research has explored emerging methods such
as participatory mapping (Garcia-Diez et al., 2020; Gottwald et al., 2022), narrative
approaches (Kim and Son, 2021), and artificial intelligence and social media-based
analysis (Mouttaki et al., 2022). However, these methods still face practical
limitations in integrating CES into LULC planning and governance, and most
applications have been concentrated in urban contexts (Huang et al., 2024; Wen et al.,
2024). Their use in mountainous regions of China remains limited, further
constraining the institutionalization and cross-scale integration of CES in spatial

decision-making (Kosanic and Petzold, 2020).

In addition, one of the other major methodological challenges is the difficulty in
developing a multi-scale approach to the entire MES. Our review shows the
overreliance on secondary data (192 out of 203 total) makes a homogeneity of

available indicators and methods. China's research on MES excessively relies on the
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VTM, which is based on national-scale assessment tables of ES values (Xie et al.,
2008). It is suitable for large-to-medium scale, coarse-grained or comprehensive
ecological accounting, does not account for the ecological contributions of subdivided
areas (e.g., saline land and construction land) and fails to consider spatial
heterogeneity (Huang et al., 2007; Guo et al., 2019). Small-to-medium scale ES
assessments are primarily conducted through ES modelling. However, different
models have various limitations, complexity constraints and data gaps (e.g., the
revised universal soil loss equation (RUSLE) is inadequate for deep gullies in
mountainous areas (Bogdan et al., 2016); the InNVEST model-water yield model
overlooks the interaction between surface runoff and groundwater and neglects
topographic effects (Fu et al., 2017; Wang & Dai, 2020)). Coupled with a lack of
consensus among researchers on selecting indicators and appropriate methods, which
hinders the integration of results across wider spatial and temporal scales (Boerema et
al., 2017). The absence of a comprehensive, multiscale integrated assessment
approach impedes policymakers from effectively managing MES and strategically

planning LULC (Ren et al., 2023).

Finally, obtaining high-quality, long-term representative data on certain Chinese
MESs & LULC indicators poses a significant challenge. The diversified LULC
resolution and ES indicators lead to limited comparability in different geographical
studies, thereby limiting efforts to conduct consistent cross-scale analyses and long-

term assessments (Duan et al., 2021).

In summary, although international studies have already highlighted these general
challenges, the Chinese mountain context exhibits persistent and context-specific
gaps. Addressing these requires methodological adaptation, locally relevant data

generation, and enhanced integration of biophysical and socio-cultural perspectives.

2.4.1.1 Opportunities and Future Directions

Research patterns in China’s mountainous regions are shaped by several contextual
factors. National ecological policies—such as Grain-for-Green and Ecological
Redlines—strongly influence the spatial focus and valuation priorities of Chinese

MES & LULC studies. Limited long-term ecological monitoring also restricts access
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to time-series data, hampering model calibration and system-level analysis. In
addition, the region’s complex topography and socio-ecological heterogeneity
challenge the direct application of global models developed for more uniform or
lowland areas. These factors have contributed to the emergence of a localized, policy-

driven research logic in China.

To address these issues, future assessments should prioritize flexible, cross-scale
frameworks tailored to mountainous conditions (Chen and Chi, 2022; Le Provost et
al., 2023). Although modular biophysical models (InVEST, ARIES, RUSEL, SWAT)
and evaluation tools (ES Value Transfer Matrix, ESTIMAP) exist, their application
remains fragmented and poorly aligned with land use planning needs (Spake et al.,
2017; Wang et al., 2020; Li et al., 2024). Data scarcity—particularly for high-
resolution LULC, socio-economic, and ecological indicators—further constrains
robust assessments (IPBES, 2019; Lyu et al., 2021). Therefore, future efforts should
focus on building flexible, scale-sensitive assessment architectures that can synthesize
model outputs, accommodate data gaps, and support translation of ecological metrics
across spatial planning units (Schirpke et al., 2020; Sun et al., 2022). Practical
strategies may include combining remote sensing proxies (Deeksha et al., 2023),
expert knowledge(Haida et al., 2016), benefit transfer approaches (Badamfirooz et al.,
2021), and process-based models in hybrid workflows (Li et al., 2024). In addition,
methods to standardize inputs (Paul et al., 2021), quantify uncertainty (Stritih et al.,
2019), and validate models using local knowledge (Evangelista et al., 2024) are
essential. Establishing operational pathways for upscaling fine-scale indicators (such
as through area-weighted indicators and nested spatial frameworks) can help embed
ES metrics into planning systems and support more responsive governance in data-

poor mountain landscapes (Wolff, 2023).

Moreover, CES — particularly those related to spiritual values, sense of place, and
cultural identity — remain underrepresented in current assessments due to their
intangible and context-dependent nature (Kosanic and Petzold, 2020). In mountainous
regions, where cultural landscapes and traditional practices are often deeply embedded
in land use patterns, understanding how LULC change influences CES is especially
critical (Li et al., 2025). Future frameworks should integrate participatory mapping

(Xu et al., 2020), narrative valuation (Kim and Son, 2021), and digital trace analysis
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(e.g., social media, mobile data) (Wang et al., 2023) to better capture the spatial
distribution and perception of CES. Incorporating CES into modular, multi-scale
assessments will help reflect the full value of landscape transformation and support

more inclusive land governance(Yang and Cao, 2022).

Human activities (LULC change) directly alter nature, and these changes in turn affect
the generation and provision of ES, creating the largest number of knowledge gaps
due to the complex feedback mechanisms involved (Mastrangelo et al., 2019). Over
longer time scales, feedbacks between society and ecosystems are considered
particularly relevant for designing and implementing effective and sustainable
production and LULC, and for keeping impacts of direct anthropogenic pressures on
natural systems well within safe ecological limits (Mastrangelo et al., 2019; Jiangbo
Gao et al., 2021; Nayak et al., 2024). Therefore, future research questions can be:
What the feedback and trade-off relationship exist between Chinese MES & LULC
under long time series? How can system dynamics or integrative simulation
approaches be adapted to better represent the dynamic coupling between Chinese
MES & LULC? How can the concept of safe ecological limits be defined and
operationalized through social-ecological system (SES) models in Chinese
mountainous landscapes? What are the key spatial configurations and thresholds of
ecological security patterns in China's mountainous regions (Jia et al., 2023)? In the
future, China's mountain land use planning and management will implement the most
effective policies through dynamic simulation to achieve a sustainable win-win

situation for society and the ecosystem.

Future projections of ESs interactions under land use development scenarios and
management actions need to be considered (Su et al., 2012), to develop more reliable
trade-off evaluation systems to assess ecosystem responses to extreme conditions and
different policies (Yu and Han, 2016; Shi et al., 2021). What’s more, Explore multiple
nature reserve management options to determine the proportion of ecological sources
and develop suitable methods to determine the spatial extent of ecological corridors,
ecological nodes and ecological barriers to extraction (Lin et al., 2021). Finally, to
establish a multi-level ecological compensation model, the willingness to pay of
protection stakeholders and the willingness to accept of farmers should be

incorporated based on the quantified biophysical and economic value of ESs, so that
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compensation standards reflect both ecological value and stakeholder acceptance (Fan

etal., 2019; Gao et al., 2020; Liu et al., 2023).

2.5 Conclusion

This study provides the first systematic review of the relationship between Chinese
MES & LULC. The bilingual literature synthesis reveals several key findings.
Research in this field began in 2007 and has grown rapidly since 2018, reflecting

increasing attention to the dynamics of mountain SES.

(1) Current studies lack an integrated, adaptive, and cross-scale assessment framework
tailored to the environmental and socio-ecological characteristics of mountainous

regions in China.

(2) Chinese literature predominantly emphasizes statistical analysis of socio-economic
valuation and spatial overlay, whereas English studies focus more on ecological
processes and dynamic modelling approaches, including InVEST, biophysical models,

scenario simulations.

(3) English-language studies generally adopt longer time series and finer temporal

intervals, supporting better understanding of system evolution and trade-offs.

(4) Notable differences are also found in spatial scale and temporal focus. English-
language studies often cover broader regions, whereas Chinese studies have more
local. While most research remains retrospective, the number of future scenario-based

analyses, though still limited, is growing rapidly.

These findings suggest the need for integrated, multi-scale methodologies and long-
term datasets to capture the co-evolution of Chinese ES and LULC in mountain SES.
By identifying research gaps and highlighting divergent approaches between Chinese
and international studies, our review contributes to informing more resilient Chinese

mountainous land management and ES governance.
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Chapter 3 Uncovering the co-evolution of land
use change and ecosystem services in

Shandong province, China

Many studies have explored the relationships between ecosystem services (ES) and
land use/ land cover (LULC) changes, but understanding the synergistic evolution of
their complex socio-ecological dynamics is still limited in China. This study provides
a comprehensive time-series analysis of ES and LULC spanning 1950 to 2022 in
Shandong province of China, offering valuable insights into the sustainability of these
systems. We derived evolutionary trends by analysing satellite map data, official
government data, and literature data; developing a conceptual model of causal
feedback of LULC and ES by the Granger causality test; and analysing the
relationships of ES with LULC and GDP using the Environmental Kuznets Curve
(EKC) model and sequential principal component analysis. The trend analysis reveals
that urban sprawl is increasingly encroaching on most of the natural land, especially
agricultural land, posing a serious threat to food security. The EKC modelling
demonstrates that economic growth continues to fuel urban expansion without
reaching a sustainable tipping point. Our conceptual model suggests that urbanization
increases the demand for provisioning services, deteriorating key regulating services,
in a synergistic relationship with tourism. Ultimately, these factors collectively
undermine regional ecosystem resilience. Our results suggest that the socio-ecological
systems in Shandong experienced weakening connectivity and heightened
vulnerability between 1980 and 2022, indicating a shift toward functional disturbance
and possible reorganization, with the possibility of approaching tipping thresholds.
Our findings provide valuable insights for policymakers in China and other global
mountains for land management and ecosystem restoration to avoid the collapse of

SES.
3.1 Introduction

Increasing human-induced land use/ land cover (LULC) changes are contributing to

ecosystem services (ES) degradation: globally, the continuous exploitation of natural
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resources and land has increased provisioning services, but accelerated the
degradation of regulatory and support services (Lawler et al., 2014), with
approximately $40 trillion in global ecosystem service losses, and irreversible land
degradation directly affecting half of humanity (Vander Esch et al., 2022). In China,
exponential economic development has led to faster LULC changes. Urbanization,
abandonment and return of farmland to forest, and land intensification have led to a
significant decline in the total value of ecosystem services (Cao et al., 2021; Li et al.,
2020), and a large part of the loss comes from mountain areas, which is not only
caused by the vulnerability and sensitivity of mountain areas to LULC, but also since
the high diversity of mountain ecosystems makes the most abundant and intensive
contribution to ES (Rogora et al., 2018; Schirpke, Tscholl, et al., 2020). To understand
the complex relationships between LULC and ES in mountainous areas, the concept
of co-evolution is required to be introduced: it is based on a longer time series and
captures the slow social and ecological processes from a dynamic perspective, for
understanding how the interacting factors evolve and co-evolve over time (Thompson
& Pagel, 2001; Zhang et al., 2015). We are attempting to apply this concept to the
LULC-ES relationships, to gain insights into the complexity and trade-offs of the
socio-ecological systems for inclusion in the land use management plan (Dearing et

al., 2014b)

Research on the interactions of mountainous LULC-ES has expanded in recent years.
Scenario-based projections are increasingly used to explore future dynamics (Jiang et
al., 2023a; Zhao et al., 2023b), but many studies rely on short-term or coarse-
resolution data, limiting insights into long-term system feedback and transitions
(Patru-Stupariu et al., 2020; Hasan et al., 2020). While some pioneering work has
explored non-linearities in SES (Lin et al., 2019, 2024), the co-evolutionary dynamics
between ES and LULC remain underexamined — especially from a long-term systems
perspective in China’s coastal mountainous regions. In the Chinese context, several
studies have addressed ES—socioeconomic linkages (Lin et al., 2019, 2024; Zhang et
al., 2015), but LULC change has not been sufficiently integrated as a coupled
biophysical and social driver. Other studies focused on time-series datasets on soil and
land use ( e.g., Wang et al., 2023; He et al., 2017) have rarely addressed the multi-

scalar feedback between ecological processes and socioeconomic change.
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Understanding these dynamics is essential for detecting tipping points (i.e., the critical
threshold beyond which the system shifts into a qualitatively different and potentially
irreversible regime), for assessing resilience (i.e., the system’s capacity to maintain
key ES and LULC functions despite disturbances), and for evaluating connectivity
(i.e., strength and persistence of dynamic interactions over time), finally, informing
land governance in ecologically sensitive areas. This study presents the first long-term
co-evolutionary analysis of ES and LULC in China’s coastal mountainous regions by
integrating time-series data to uncover dynamic patterns and feedback, thereby
addressing a critical gap in the context of rapid urbanization. We strive to achieve the

aim of the study by focusing on the following three specific objectives:

1) To quantify long-term trends in ES and LULC by collecting and analysing time-
series data on ES and LULC indicators as well as related economic indicators to

quantify the long-term trajectories.

2) To explore the relationships between ES and LULC changes driven by social and
economic development, using the environmental Kuznets curve (EKC) and sequential
principal component analysis (PCA) to explore and investigate relationships and

connectivity within SES as a measure of resilience.

3) To develop a conceptual system model of each indicator, exploring the
relationships and feedback within ES indicators and between ES-LULC indicators to
understand the processes and drivers of co-evolution. In addition to the synthesis of
the previous analysis, this study used the Granger causality method to help
conceptualize a dynamic feedback framework to understand the interplay mechanism

between ES and LULC.

The results of this study may contribute to defining safe and just operating spaces (i.e.,
environmental and social thresholds that maintain ecological integrity while ensuring
basic human well-being) that can assist policymakers in developing regional
sustainable management strategies and managing land use for achieving net zero (i.e.,
a balance between carbon emissions and sequestration) in mountainous regions and

coastal areas of China (O’Hogain et al., 2018).
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3.2 Data and methods

3.2.1 Study area

In our systematic review of LULC and ES in mountainous areas (Chapter 2), a lack of
research has been identified for the east coast of China, especially in Shandong
Province (only 3 articles focused on specific habitats or urbanization). Furthermore,
there was no research on the analysis of co-evolution to explore the relationships
between ES and LULC. As the province with the second-largest population, third-
largest economy, and first-largest vegetable (88 million tons in 2021) and aquatic
products in China (China Statistical Yearbook, 1999-2023), Shandong's ecosystem
health and stability will support the food security and well-being of most Chinese
provinces and more than 20 neighbouring countries. Therefore, this research chooses
Shandong Province as a case study to explore the socio-ecological evolution of

mountainous areas on the east coast of China.

Shandong Province is located on the eastern coast of China with a total land of about
157,900 square kilometres and a population of more than 100 million, making it the
country's second most populous province (China Statistical Yearbook, 2023).
Shandong is the more mountainous province, and it is also the province with the third
longest coastline in China (around 3345 km) (Li et al., 2023). The province has a
warm temperate monsoon climate, with simultaneous rain and heat, an average
temperature of 11-14 °C, and an annual average precipitation of 600-750 mm, but
more than half of the precipitation is concentrated in the summer, with drought
disasters occurring in the spring and autumn (Shandong Statistical Yearbook, 1983-
2022). As a populous and economic province in eastern China, the urbanisation rate
has increased from 13% in 1985 to 64% in 2022 (Ren et al., 2023) (Figure 3.2-1).
Urban expansion has exacerbated land degradation and fragmentation, and the
implementation of some policies such as land reform and the policy of returning
farmland to forests has also driven extremely rapid changes in land use in
mountainous areas. These changes in land use types have led to unprecedented
changes in the ecosystem structure, putting great pressure on sustainable development

(Fan & Xiao, 2020). Exploring the relationship between ES and its synergistic
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evolution with LULC in Shandong Province as an example is beneficial for other

similar mountainous and coastal regions in China and beyond.

Shandong land use
In 1985

Legend
Cropland
B Forest
B shrub
Grassland
B wWater
[ Barren
Bl Urban
B wetland
In 2020

Figure 3.2-1 Shandong Province is located on the eastern coast of China. There have been

significant changes in land use over the past 35 years.
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3.2.2 Data sources: ES, LULC, and social indicators

3.2.2.1 Ecosystem services

The selection of ecosystem service (ES) indicators for Shandong Province was guided
by three criteria: the availability of long-term data (1978-2022), the degree to which
each indicator reflects key regional environmental challenges, and their measurability
using consistent statistical sources. In total, eleven indicators were incorporated,

covering provisioning, regulating, supporting and cultural services.

Provisioning services comprised four indicators from 1978 to 2022, represented by
food production, aquatic production, timber production, and water supply. Food
production was measured as the combined annual output of grains, vegetables, fruits
and oilseeds, while aquatic and timber production captured the total provincial yield
of fisheries and harvested wood resources in 1978 to 2022. Water supply reflected the
total volume of surface water, groundwater and other sources available for use. All
provisioning service data were obtained from the Shandong Statistical Yearbook

(1978-2022), and annual values were derived directly from the statistical records.

Regulating services were characterised using indicators of climate variables
(temperature and precipitation), air emissions, wastewater discharge, soil erosion and
natural hazard regulation. Meteorological data (1950-2022) were obtained from the
National Meteorological Data Centre, while all other regulating-service indicators—
including air emissions represented by carbon dioxide emissions (1982-2022),
wastewater discharge (1982-2022), soil erosion (1985-2022) and natural hazard—
related data—were sourced from the Shandong Statistical Yearbook. Natural hazard
regulation was represented by the annual area of crops affected by droughts, floods,
low-temperature damage, gale events and other extreme hazards, which reflects the
province’s long-term capacity to buffer climatic and environmental shocks. Overall,
these regulating-service indicators collectively depict the long-term trajectories of
atmospheric pressure, hydrological stress, land degradation and disaster-buffering

capacity.
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Habitat quality, representing supporting services, was assessed using the dataset
produced by Zheng and Li (2022) based on the InVEST Habitat Quality model for the
period 1980-2020. Their study used land-use types as model inputs and incorporated
anthropogenic disturbance factors (e.g., built-up land, roads), together with their
impact distances and sensitivity parameters, to estimate habitat degradation under
various threat pressures. An annual habitat quality index was then generated to reflect
long-term trends in regional habitat condition and landscape integrity. This study

directly uses the published habitat quality results as secondary data for analysis.

Cultural services were represented by annual tourist numbers (1978-2022) obtained
from the Shandong Statistical Yearbook, used as a measurable proxy for cultural and
recreational service use. Other cultural services were excluded due to the lack of

consistent, long-term and regionally comparable data.

3.2.2.2 Land use/land cover change

The time series of the 1985-2021 land use raster dataset (30m*30m) in Shandong
Province for this study was obtained from the Landsat-based China Annual Land
Cover Product (CLCD) produced by Wuhan University
(https://zenodo.org/records/8176941). Using 335,709 Landsat images on Google Earth
Engine, and stable training samples extracted from CLCD, several temporal metrics
were constructed from all available Landsat data and fed into a random forest
classifier to obtain classification results. The final land types were categorised into
nine primary land types, namely agricultural land, forest, shrub, grassland, water,
wasteland, impermeable land, wetland, and snowfield. Among these land types, only
eight land types were extracted and analysed, as there were no permanent snowfields
for land use. We calculated the raster image data as area data of different land types

through QGIS as a data source for land use time series analysis.
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3.2.2.3 Economic and Demographic Change

Changes in ES and LULC are driven by economic and demographic indicators, and it
is necessary to include changes in economic and demographic indicators in the
assessment of drivers. We use GDP (total GDP, primary, secondary, and tertiary GDP,
and GDP per capita) as a proxy for the economic indicators, and the demographic
indicators include urban and rural populations. Both the economic and demographic

data were collected from the Shandong Statistical Yearbook (1983-2022).
3.2.3 Methods
3.2.3.1 Multivariate time series analysis

Our goal is to analyse multiple time series of ES and LULC data and investigate the

co-evolutionary relationships between LULC, socio-economic variables and ES.

We need to investigate the correlation and dynamic structure of this dataset and to
understand and conceptualize these relationships between LULC and ES. Therefore,
this research uses Granger causality tests to explain the observed interactions between
ES and LULC at different time lags (in years) ( Barbosa et al., 2016; Shojaie & Fox,
2022). Given lag lg, this study estimate the binary unrestricted vector autoregressive

equation for the two variables (X t and Y t) as follows:

l l
Xt = ﬁO + Ziil iXt—i + Zizl ath_i s =0 F T (31)

Where B, a, vy and o are the coefficients and € t is the residual term. The null
hypothesis of Granger causality ("Y does not Granger cause X" and/or "X does not

Granger cause Y") can be specified as follows:

Ho:a1=a2="'=am=0, H0:51:52:"':5m:0 ........................... (3.3)
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The hypotheses tested can be realised by a F-test, which can be implemented using a

model consisting of two regression steps:

Xe, = Bo+ Bl 8K i+ T @i+ Brp oo (3.4)

Xe, = Bot Zi BiXi i F Beteeeeoeeomeaeeoeeeeeee et (3.5)

The following equation was then used to calculate the residual sum of squares:

T

RS Sy = ) Ot i, (3.6)
T

RS Sy = Y HEt oot (3.7)

Finally, to compare the residual sum of squares with the F distribution and the (p, T -

2p - 1) degrees of freedom, this study use the following equation:

RS Sy—RS Sy

F(D,T = 2D = 1)~ ——e— oo (3.8)

RST—Zp—l

We inevitably rejected the null hypothesis if the value of the F-statistic was found to
exceed the critical value of the chosen level of significance (the significance level was

setatp < 0.05).

Finally, this study plotted the filtered results as causal loop diagrams to visualise the

results of Granger causality.

We used the Granger causality test through Eviews software (Alhakimi, 2018; Xu et
al., 2013) to investigate the co-evolutionary relationship between ES and LULC over
time and plotted the causal loop of the system through Kumu (https://kumu.io/) based
on the results of Granger causality test (Figure 3.3-5 and Figure 3.3-6). We analyzed
the Granger causality through Eviews software by setting the delay years as 1-10

years and manually tested all the causality within ten years using an Excel spreadsheet
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to reject the null hypothesis (significance level of p < 0.05), and finally, the delay

year with the highest significance level of the causality result was taken as the delay
year data. If both directions of the null hypothesis are significant, it's a bidirectional
relationship; if only one side of the null hypothesis is significant, it's a unidirectional
relationship. In the causality feedback diagram, this study manually screened and
extracted direct relationships for summarization due to the presence of non-direct
causal relationships in the Granger causality section. Our causal feedback plots reveal
causal flow relationships between LULCs, between LULCs and ESs, and between
ESs.

3.2.3.2 Environmental Kuznets Curve Analysis

The Environmental Kuznets Curve (EKC) theory (Dinda, 2004) is a hypothesized
relationship between various indicators of environmental degradation and per capita
income. This theory predicts that the degree of coupling between economic growth
and environmental degradation remains strong until a point is reached where wealth
leads to investment into cleaner industrial processes. In this study, the EKC curve for
the period from 1950 to 2022 was derived from the plots of different ESs and LULCs
against GDP per capita.

3.2.3.3 System connectedness

According to network theory, the resilience of a SES is strongly shaped by the degree
of interconnection among its key variables (Coban et al., 2022; Scheffer et al., 2015;
Zhang et al., 2015). In this study, system connectedness is defined as the statistical
strength of associations among SES variables, following the framework of Dearing et
al. (2014). Higher connectedness indicates stronger coupling among subsystem
components, allowing disturbances to propagate more easily through the system and
thereby reducing flexibility and resilience. System stability is defined as the ability of
the system to maintain its structure and function under internal or external
perturbations. Increasing connectedness therefore implies declining stability and a

heightened risk of systemic failure.
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Sequential Principal Component Analysis (PCA) is commonly used to assess systemic
risk by capturing changes in the covariance structure of variables over time. An
increase in the first principal component (PCA1) eigenvalue indicates that a larger
share of system variance is dominated by a single mode, reflecting strengthened
coupling and rising connectedness, and therefore greater systemic risk and lower
stability (Billio et al., 2012). This research applies the approach to the time-series
indices representing the Shandong ES and LULC and the socio-economy over the
period from 1950 to 2022. This study calculates covariances using a 20-year moving
window PCA that includes together provisioning and regulating services from 1950 to
2021, as well as together ES services and LULC and together ES and GDP from 1980
to 2021. Only the results from the 20-year window are used, as different window sizes
give similar results. All datasets have PCA 1 + PCA 2 values > 0.5, which is preferred

for connectivity analyses.

3.3 Results

3.3.1 Trends of ecosystem services

Figure 3.3-1 displays the trend of ES in Shandong Province, where the record of
provisioning services shows dramatic changes from 1950 to 2020. The total
agricultural production of Shandong province has increased tenfold between 1949 and
2022, in which crop production has been growing especially after 1978 (reform and
opening up). However, the most important growth after 1990 is contributed by
vegetable production, which is due to the establishment of a vegetable industrial
complex in Shouguang city, Shandong province. This became "the home of
vegetables" in China to deliver vegetables to most of the northern provinces of China.
After 2000, Shandong's vegetable production was maintained at around 80 million
tonnes, which is steadily at the top of the national list; fruit production rose slowly

after 1990 when the economy gradually developed.
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Figure 3.3-1 ES and social-economic trends in Shandong Province from 1950 to 2022
(Shandong Statistical Yearbook, 2022; Zheng & Li, 2022).
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Timber supply increases nearly fivefold from 1978 to 2022. Industrial afforestation
peaked during 1990 and remained high for the next 20 years before declining. This

may be due to the implementation of a large-scale reforestation policy.

Shandong Province is three-sided and surrounded by the sea, and the fishery economy
contributes a quarter of Shandong Province's economic growth. Fishery production
began to rise exponentially after 1985, and after 1995, as a result of the
implementation of the policy of marine fishing moratoriums, marine fishery capture
began to grow slower, with mariculture growing rapidly and gradually replacing

marine capture.

The shortage of water resources has been a major bottleneck constraining economic
and social development in Shandong. Shandong Province is a region of extreme water
scarcity, with 4% of the world average (only 298 m’ of water per capita). But it uses
1% of China's total water to irrigate about 5% of China's agricultural land.
Surprisingly, it produces 8 % of the national grain and 11 % of the vegetables,
supporting about 7 % of the whole population and supporting about 7 % of the
country's total GDP. Over the past 20 years, there has been a gradual decline in water
supply, with groundwater supply dropping by half, and the shortfall being made up by
the South-to-North Water Diversion Project, which accounts for 20% of Shandong's
total water supply year-round, and wastewater reuse technologies are gradually

playing a minor role in the water supply.

With economic and technological developments, there have been significant changes
in regulating services. Among the disaster indicators, this study assessed the area of
crops affected by natural hazards. Between 1955 and 2000, hazards severely affected
crop health, with drought being the most significant threat to food security (about 3/4
of the total disaster threat). However, with the development of weather forecasting
techniques and agricultural technologies such as drip irrigation and greenhouses, the
impact on crops is gradually disappearing. Sewage discharges and gaseous emissions
are the main sources of pollution. Sewage emissions peaked in 2013 after the
introduction of policies to regulate environmental pollution, and emissions have
declined rapidly and are being held at a steady level. Carbon emissions are the

mainstay of gaseous emissions, with a gradual sharp increase to 2.7 billion tonnes
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after 2000. In contrast, soil erosion halved between 1985 and 2021 (Figure 3.3-1).
Climate change (Figure 3.3-2) has been significant over the last 70 years, with annual
temperatures rising by 1.5 °C between 1950 and 2022, while annual rainfall has
declined by about 150mm (from 850mm of 1950-1965 to 700mm of 1965-2022),
increasing the threat of drought in the region. The most significant increase in
temperature has been in the spring (from 11.5°C in 1955 increasing to 15°C in 2021),
with rainfall shrinking more in the spring (from an average of 40 mm in 1950-2010 to
30mm in 2010-2022) and summer (from an average of 180mm of 1950-1965 to
140mm of 1965-2022).

Habitat quality and tourist numbers (Figure 3.3-1) represent support and cultural
services, respectively. Between 1980 and 2020, the quality of habitats showed a
polarising trend: the area covered by high habitat quality (11.64 %-12.98 %) and low
habitat quality (12.63 %-17.44 %) was gradually increasing, while the predominantly
intermediate quality of habitats showed a slight decrease (69 %-65 %). The number of
tourists increased exponentially from near zero to 0.85 billion with the growth of GDP

from 1990.



mm

55

15 2 .
Annual temperature (°C) —— Winter temperature (°C) s Spring temperature (°C)
144 1
14
O 13 go &
13
124 .14
12
1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020
27- Year 16 Year Year
Summer temperature (°C) Fall temperature (°C)
26 15
O 251 V14
244 134
23 12
1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020
1100+ Year Year 60, : N
Annual precipitation (mm) —— Winter precipitation (mm) Spring precipitation (mm)
1000+ 20
50
900
£ £
E15
800 E £ 401
700
10 30-
600
1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020
Year 30 Year Year
Summer precipitation (mm) Fall precipitation (mm)
200
60
£ £
£ =
150
40

100 v - - . ; - v
1950 1960 1970 1980 1990 2000 2010 2020
Year

2022 in Shandong province.

3.3.2 Trends of LULC change
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Figure 3.3-2 Trends of annual and seasonal average temperature and rainfall from 1950 to

As shown in Figure 3.3-3, in the past 35 years, land use types in Shandong Province
have been dominated by arable land, with a serious loss of arable land (11.55 % of the
total area), plummeting from about 80 % of arable land in 1985 to 68.45 % in 2021.
Shrubs (83 % have disappeared in 35 years ), grassland (56 % have lost in 35 years ),
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unused land (86 % have declined in 35 years ) and wetland areas (93 % have lost in 35
years ) decreased significantly, while the land use types that increase significantly are
water covered area (55 % have increased in 35 years ), woodland area (24 % have

increased in 35 years ), and urban and rural residential land use (56 % have increased

in 35 years ).
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Figure 3.3-3 Land use trends in Shandong province from 1985 to 2022.

From the causal loop of the coevolution in LULC (Figure 3.3-4), urban expansion has
led to a decrease in barren land, wetland, shrubland and grassland, but the demand for
nature from urbanisation has led to an expansion of woodland and water area:
shrubland and barren land have been covered by forestland, and the increase in water
area due to the loss of shrubs and barren land has led to a decrease in the area of
wetland. The reduction of agricultural land is not only due to the increasing woodland

and water-covered land but also encroached by the land for construction. Overall, in
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the last 35 years, urban sprawl and water and woodlands favoured for urban aesthetics

have rapidly replaced the area used for other LULC types.
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Figure 3.3-4 Causal loop diagram of coevolution of LULCs. Blue indicatesan increase and red
indicates a decrease. In the feedback loop, if the arrow colors are all monochromatic, it
represents positive feedback, and whereas a change in the arrow color indicates a balancing
feedback loop.. Numbers indicate the number of years by which the causal effect is
delayed..The relationship is between economic growth and environmental change.

Over the past 40-60 years, environmental degradation has increased rapidly at very
low income level and only began to levelled off when GDP per capita reached about
20,000 Yuan per year (Figure 3.3-5) (Zhang et al., 2015). Agricultural and aquatic
production increased rapidly as GDP approached 20,000 Yuan, and then levelled off.
Timber harvesting shows that demand for timber grows fastest when GDP is between
30,000 to 50,000 Yuan, before levelling off once GDP surpasses 50,000 Yuan. The
growth rate of carbon emissions begins to plateau when GDP reaches around 15,000
Yuan. Sewage emissions peak at approximately 55,000 Yuan, after which they decline

and stabilise as environmental protection policies and stricter regulations are
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introduced at higher income levels.The area of low habitat quality continues to grow
with the economy and has not yet hit an inflexion point. In contrast, high habitat
quality declines rapidly at very low incomes, followed by a gradual exponential
rebound with economic development. Soil erosion is also most severe at incomes less

than 10,000 Yuan, after which the area of erosion stays steadily low.
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Figure 3.3-5 The relationship between ES and GDP per capita is modelled through EKC.
When per capita GDP is below 10,000 Yuan, people solve hunger and livelihood problems
(through agriculture, fishing, forestry production) at the expense of the environment (rapidly
increasing carbon emissions and sewage discharges, rapid habitat destruction, rapid soil
loss). With economic growth, the provisioning services and carbon emissions have gradually
tended to a stable high level, and water pollution and soil erosion have been effectively

controlled. Habitat restoration requires a better economic foundation in the future to level off.

Poverty is an important driver of land degradation (Figure 3.3-6). Agricultural land,
grassland, wetlands and unused land experience rapid degradation when per capita

income is below 10,000 Yuan.
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Wetland area declines extremely rapidly at low income levels (below approximately
8,000 Yuan per capita) and approaches near-zero levels thereafter, remaining
relatively stable at very low values as income continues to rise. Urban land, forest
land, and water area gradually increase in size with the promotion of the economy,
although forest land expands only after per capita income exceeds 40,000 Yuan and
tends to stabilise once income surpasses 70,000 Yuan. Urban land increases rapidly at
lower income levels, continues to grow steadily thereafter, and has not yet reached its
inflection point. Water area rises sharply until income reaches about 8,000 Yuan per

capita, after which it begins to fluctuate around a stable level.
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Figure 3.3-6 The relationship between LULC and GDP per capita is modelled through EKC.
When per capita GDP is below 10,000 Yuan, people solve hunger and livelihood problems
(through agriculture, fishing, forestry production) at the expense of the environment (rapidly
increasing carbon emissions and sewage discharges, rapid habitat destruction, rapid soil

loss). With economic growth, the provisioning services and carbon emissions have gradually
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tended to a stable high level, and water pollution and soil erosion have been effectively
controlled. Habitat restoration requires a better economic foundation in the future to level off.
The causal relationship of land use change has been mentioned in Section 3.3.2
(Figure 3.3-4), while there is a co-evolution between land use change and ES (Figure
3.3-7). Land use drives ES change, and is also strongly influenced by ES (Table 3.3-
1). In the ES, the increase in aquatic production was due to urbanisation and the
expansion of watered areas, yet it had negative feedback with wetland areas.
Agricultural land yields rose probably because more water bodies solved the irrigation
problem, but more irrigation demand also left fewer wetlands. Agricultural production

and urban expansion form a reinforcing feedback loop.
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Figure 3.3-7 Causal loop diagram of coevolution of LULC, ES and LULC, and in ESs. The
thick solid arrows show the causal relationship between land use changes. The thin solid
arrows are the causal relationships between land uses, and the thin dashed arrows are the

causal relationships between ES. Blue represents an increase in this variable and red
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represents a decrease in the variable. In the feedback loop, if the arrow colors are all
monochromatic, it represents positive feedback, and if there is a transition in the arrow color,
the feedback is balanced feedback. Numbers imply causal effect delayed response years.
In the regulating service, urban expansion and the reduction of farmland and
shrubland increased air pollution, especially carbon emissions; at the same time, the
increase in water pollution caused by urban expansion created negative feedback with
the reduction of grasslands, and positive feedback with watershed areas, which
exacerbated the reduction of wetlands. Under a changing climate, declining annual
precipitation and more frequent drought events first reduce wetland extent, and this
loss of wetlands, in turn, further weakens local buffering capacity and accelerates the
degradation of shrubs and grasslands, eventually leading to a series of balancing
feedbacks at a lower level of ecosystem functioning. Urbanisation also increases

temperatures and further stresses wetland areas (Table 3.3-1).

Table 3.3-1The ES and LULC relationship matrix. " + " means both indicators increase or
decrease at the same time, forming positive feedback. " - " means that one indicator is
increasing and the other is decreasing, creating negative feedback. "0" means that there is

no significant correlation between the two indicators.

Factor Urbanizationt | Cropland| | Shrub| | Grassland| | Wetland| | Water{ | Barren| | Forest}
Air pollution? + - - - 0 0 0 0
;Z?ltjtrionT * 0 0 - - + 0 0
Precipitation| 0 0 + + + 0 0 0
Temperaturet + 0 0 0 - 0 0 0
I?rccl)l(liallltitionT * 0 0 0 ) * 0 0
Ef:;ui?tgiom * 0 0 0 - + 0 0
gri(‘jétl’lecrﬁon . + 0 0 0 0 0 0 +
Tourist? + 0 - - - + - +
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The number of tourists is a proxy for cultural services. Urban expansion and tourist
growth are mutually reinforcing, and the boom in tourism has contributed to the
expansion of woodlands, with larger water areas attracting more tourists to visit.
However, the rapid development of tourism and urbanization leads to the faster
disappearance of grasslands, shrubs and wetlands, and there is also a negative

feedback relationship with the sharp decline in barren land (Table 3.3-1).
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Figure 3.3-8 Causal loop diagram of coevolution of ES and LULC. Blue represents an
increase in this variable and red represents a decrease in the variable. In the feedback loop, if
the arrow colors are all monochromatic, it represents positive feedback, and if there is a
transition in the arrow color, the feedback is balanced feedback. Numbers imply causal effect

delayed response years.
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Figure 3.3-9 Causal loop diagram of coevolution of ES. Blue represents an increase in this
variable and red represents a decrease in the variable. In the feedback loop, if the arrow
colors are all monochromatic, it represents positive feedback, and if there is a transition in the
arrow color, the feedback is balanced feedback. Numbers imply causal effect delayed

response years.

3.3.3 System connectedness and stability

In Figure 3.3-10, this study analysed the reasons behind the fluctuation of the system
stability in provisioning (farming and aquatic production) and regulating services
(annual temperature and rainfall). Connectivity analysis suggests that under the
control of the planned economy (in 1955-1980), human activity was the main driver
of the higher risk of system failure. China carried out a lot of land reclamation to solve
hunger, which has caused huge ecological degradation. The single crop and low yield

have made farmers do more land reclamation to meet livelihoods, coupled with severe
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climate impact, the connectivity grew rapidly. From 1980 to 1990, the risk of systemic
failure increased due to the stress of land management due to labour outflows. Land
reform made rural labour no longer mandatory to do farm work; reform and opening
up the market economy have created high-paying jobs in the cities that have attracted
an exodus of rural labourers. From 1990 to 2005, China's economy took off due to the
rapid growth of business investment brought about by the reform and opening up (in
1978) and accession to the WTO (in 2001). With the increasing maturity of vegetable
greenhouses and aquaculture technologies, multi-type supply exploration has
increased the heterogeneity of provisioning services, and mature technologies have
weakened the connectivity between provisioning services and climate change. In
addition to the support of comfortable climate conditions (climate warming, stable
precipitation), the system connectivity decreases rapidly. Coupled with accession to
the WTO in 2001, international trade allowed provisioning services to explore more
diverse supply needs, and system connectivity reached its lowest point (in 2005).
After 2005, with the influence of trade globalization and local market competition, the
provisioning service began the trend of intensification and industrialization,
homogenized. Coupled with cropland loss and abandonment, this increased
provisioning pressures on land. Under growing climate variability (decreasing
precipitation and increasing temperature fluctuation), the system showed signs of

resilience erosion and instability during 2005 to 2010.
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Figure 3.3-10 Connectivity of ES sector with LULC and GDP in Shandong Province from 1950
to 2022. The three curves represent the connectivity of individual regulating and provisioning
of service records (black lines) and of all ES metrics with LULC (blue lines) and ES with GDP
(red lines). These curves were calculated as the proportion of variability (eigenvalues) of PCA
axes 1 and 2 over a 20-year moving window.

The connectivity of the ES and LULC has been on a steady downward trend. Between
1990 and 2000, the implementation of a large-scale reforestation policy converted
previously abandoned grasslands and shrubs in mountainous areas into forested land,
which led to a rapid decline in soil erosion, a decrease in connectivity, and a reduction
in the risk to the system. Afforestation continued steadily over the next decade, but the
system failures began to intensify with urban expansion, gradual encroachment of
unused land and grassland, growth in carbon and sewage emissions, and continued
rising demand for provisioning services. Government regulation of carbon emissions
and sewage treatment then began between 2005 and 2013, and the capacity for
provisioning services gradually levelled off at a high level, and system risks began to

c€asc.

However, the connectivity of ES to GDP has always fluctuated steadily with small
increases, and connectivity has always been high. This suggests that economic
development over the past 40 years has consistently kept ecosystems at high risk and

has not seen a tipping point approaching(Dearing et al., 2014b).
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Overall, Shandong’s socio-ecological system has transitioned from an agriculture-
dominated to an urban-driven regime. Connectivity between provisioning and
regulating services first declined with technological advances but rose again with
urban expansion and increasing climate variability, indicating continuous weakening
of social-ecological resilience. Urban expansion triggered natural land loss and
landscape homogenization, reducing ecosystem adaptability and responsiveness.
Although governmental interventions strengthened carbon and wastewater
management and stabilized provisioning capacities, the high dependency of economic
growth on ecosystem services persisted, suggesting an approach toward a potential

critical transition in future.

3.4 Discussion

3.4.1 Summary of the co-evolution of ES and LULC

Firstly, this study summarized the trends of ES and LULC. In terms of ES, since the
1980s, regulating services such as climate regulation and pollution have deteriorated,
and provisioning services and cultural services represented by tourist numbers have
risen along with GDP. Regarding LULC, from 1985 to 2021, when the total land area
is 100%, the area of urban land (from 11% to 23%), forest land and water expanded,
while all other land areas, represented by agricultural land (from 80% to 68%),
declined significantly, which is consistent with previous studies (Zheng & Li, 2022;
Zheng & Zheng, 2023a; Zhu et al., 2022).

Second, this study constructed the conceptual model through the Granger causality
test and found the causality relationship between LULC and ES (Figure 3.3-7). Our
analysis of LULC (Figure 3.3-4) illustrates that urban expansion is the main driver of
land use change. Urban expansion promotes the growth of forests and water lands, but
encroachs on cropland, shrublands, grasslands, wetlands and barren lands, leading to
fragmentation and irreversible degradation of these lands (Zheng & Li, 2022). The
increase of forest land and water bodies benefits from the implementation of
ecological protection policies. There has been a rapid increase in forest land, mainly
due to the afforestation of abandoned farmland and barren mountain project

implemented by the government in the hilly area of south-central Shandong Province,
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also due to the construction of key forestry protection zones along the coast (Ren et
al., 2023). The increase in water area is mainly contributed by barren land, shrubs, and
urban land, mainly due to the implementation of government measures such as the
establishment of the Yellow River Delta National Nature Reserve (1992) and
ecological governance of riverbank lakes (Liu et al., 2014, 2018). In addition, ES and
LULC have evolved in a coordinated or balanced way in the past 40 years (Figure 3.3-
8). Urbanization increases the demand for supply services (farming, aquatic and
timber production) and worsens key regulatory services (wastewater and carbon
emissions), showing a synergistic relationship with tourism. Wetland degradation is a
trade-off with rising temperatures and fisheries, and it also exacerbates the decline in
precipitation. The lack of precipitation has led to the loss of grass and shrubs. The
increase in tourists had a trade-off effect with barren land, shrub, grassland and

wetland, and co-evolved with construction land and forest land.

Thirdly, our study reveals the results of the EKC analysis and the stability of the
system. Economic growth is responsible for the accelerated destruction of ecosystems
in China's coastal provinces (He et al., 2014). The EKC model (Figure 3.3-4 and
Figure 3.3-5) shows that over the past 40 to 60 years, very low incomes have led to
dramatic changes/degradation of the environment until a certain level of economic
development is reached (Stern et al., 1996). Our study shows that low incomes of less
than 10,000 Yuan have caused dramatic degradation of some land types (especially
agricultural land, grasslands, and wetlands), while poverty drives urbanization and
policies for ecological conservation force the expansion of forestland and water
bodies. As GDP growth continues, urbanization is still on the rise, which will pose
further challenges to the capacity of ESs in the future (Gross & Ouyang, 2021;
Hossain et al., 2017). Thus, although higher income stages alleviate some
environmental pressures, the long-term sustainability of SES functions remains
uncertain. Moreover, the critical point of regulating and supporting service over
capacity brought by economic development and the threshold of safe operation space

still needs to be further predicted (Dearing et al., 2015).

In terms of system stability in Shandong Province, the link between increasing
provisioning services and slowly deteriorating driving variables (temperature,

precipitation) gradually weakens. Before 1990, climate-dependent agricultural
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patterns made drought a driver of systemic resilience and instability (El-Bilali et al.,
2020; Zhang et al., 2015). Subsequently, the effect of the slow variable on system
failure is gradually weakening, as it is supported by agricultural technology (vegetable
greenhouse technology, agricultural drip irrigation, and aquaculture technology (after
1990)). Moreover, since China's accession to the WTO in 2001, intensified
agricultural production under trade globalization has expanded provisioning services
(e.g., agricultural yield) but simultaneously led to significant declines in key
regulating services (e.g., water and climate regulation), reflecting a clear dynamic

trade-off driven by socioeconomic transformation (Lin et al., 2019; Tu et al., 2019).

From 1980 to 2022, the connectivity between economic growth and ecosystem
services increased gradually before stabilizing at a high level. This intensified
connectivity suggests a growing reliance of economic sectors (e.g., agriculture,
industry, tourism) on ecosystem services (e.g., water supply) and likely reflects the
influence of eco-friendly practices and policies (e.g., green economy strategies, eco-

compensation schemes, environmental regulations).

Over the past 40 years, system connectivity between ES and LULC has sharply
declined, suggesting reduced ecosystem sensitivity and responsiveness, likely due to
LULC-driven ecosystem degradation or long-term damage (e.g., to habitat quality and
climate regulation), which has weakened ecosystem resilience. Rather than signalling
immediate collapse, these changes suggest that the SES may be experiencing a phase
of functional disturbance and potential reorganization (Lin et al., 2019, 2024).
Nevertheless, continued degradation could eventually cross critical thresholds
(Dearing et al., 2014), triggering irreversible impacts on LULC patterns. Thus,
identifying and predicting the safe and just operating space for land use and
ecosystems is essential for sustaining long-term regional resilience (Dearing et al.,

2014).
3.4.2 Policy Recommendations
According to the causal conceptual model analysis, urban expansion and

environmental protection policies are the main driving forces of ES change in

Shandong Province (Ren et al., 2023; Song et al., 2015). Over the past 40 years, urban
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expansion has encroached on a large amount of arable land, wetlands, and grasslands,
resulting in homogenization and fragmentation of land use types. The growth of cities
is also demanding more supply services from ecosystems and degrading regulating
services, which increases land degradation and endangers food security and
sustainable ecosystem development. The endless expansion of urban areas in
Shandong Province is required to control the red line of arable land, ensure food
security, and reduce greenhouse gas and sewage emissions for sustainable ecosystem

development.

The powerful ecological purification function of wetlands can increase climate
stability, effectively control floods and prevent soil desertification (Wang et al., 2010;
Yim et al., 2018). However, the causality and balance feedback loop shows the area of
wetlands was rapidly declining, water quality was declining, and biodiversity was
being lost since 1995 (Yu et al., 2021), as a result of water cover expansion, water
pollution, and urbanization. The loss of wetlands leads to higher temperatures and less
precipitation, which leads to more sewage, and more water surface that exacerbates
wetland loss. Therefore, it is necessary to strengthen environmental pollution control,
carry out wetland ecological protection and restoration, establish wetland ecological
protection areas, hold the wetland red line, and establish a natural disaster early

warning system.

To enhance system stability and resilience, it is crucial to rigorously enforce land use
management policies, uphold the farmland protection boundary, and prevent excessive
urban expansion and farmland abandonment (Li et al., 2018; Xu et al., 2019). The
government should focus on diversifying industries, advancing agricultural assistance
programs, and promoting green agriculture and ecotourism. Implementing varied
ecological compensation mechanisms and creating diverse employment opportunities
will help attract labor back to rural areas. These measures are essential for achieving a
balanced approach to ecological security and rural revitalization in Shandong and

other regions in China (Liu et al., 2023).
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3.4.3 Limitations and future improvements

In analysing the co-evolutionary relationship between ES and LULC in the time
series, this study only focused on temporal data and did not account for spatial-scale
effects. Biological ES (e.g., primary production, water quality, biodiversity) were not
included due to the lack of consistent, long-term, and spatially explicit data,
particularly before 1985. This limitation may affect the validation of Granger
causality results and the robustness of inferred feedback. Moreover, research results
lack intuitive mapping and regional guidance. Future research should incorporate
biological ES indicators and high-resolution spatial data to refine the assessment of
system resilience and define safe and just operating spaces across diverse landscapes.
Caution is also needed when interpreting system stability due to limited comparability

with other SES.

Our empirical results reveal the co-evolutionary relationship between ES and LULC,
which is helpful to further understand the operation and evolution trend of a complex
social ecosystem, and provide suggestions for ecosystem management in Shandong
Province. The results will also provide multi-dimensional scientific support for
Sustainable Development Goals (11- sustainable cities, 15-life on land, 16-peace,
justice & strong Institutions) and research on complex social ecosystems in other

similar mountainous and coastal SES in China and beyond.

3.5 Conclusions

We use decades of time-series analyses based on official provincial statistics to study
SES and construct a conceptual model of the relationship between ES and LULC. In
Shandong, these analyses provide provincial-level evidence that the long-term
dynamics of regional LULC and ecological systems have become very unstable since
2005, and that tipping points may occur in the near future. This instability is likely due
to ecosystem degradation caused by uncontrolled land use (urbanization and farming

land loss), which has reduced ecosystem resilience.

There is evidence that urban sprawl is taking all of the natural land except water and

forest, especially agricultural land, with serious implications for food security. As the



71

economy grows, urban expansion will continue with no tipping point in sight.
Urbanization increases demand for provisioning services and degrades key regulating
services, in synergy with tourism. Wetland loss reduces annual precipitation and
increases temperature, creating balance feedback with temperature and rainfall, and
drought leads to a reduction in shrubs and grasslands. Ultimately, all these impactors

caused a decline in the region's resilience.

The outcomes support the necessity of grasping and devising development strategies
based on an understanding of social and ecological relationships, connectivity

constraint boundaries and dynamics of systems.
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Chapter 4 Modelling social-ecological
systems of land use and ecosystem services

co-evolution in Shandong of China

Climate change and LULC transitions are increasingly destabilizing ecosystem
services (ESs), especially in regions facing compounded resource and socio-economic
pressures. However, existing studies rarely integrate multiple socio-economic and
climatic drivers to quantitatively unravel the coupled mechanisms and dynamic
trajectories of ES-LULC co-evolution at a regional scale. To evaluate the coupled
dynamics between ESs and land use (LULC) under climate, demographic, and
economic stressors, this study developed a socio-ecological system dynamics model
and applied it to Shandong Province, China. The model simulates a wide range of
climate scenarios (temperature increase of 1.5-5.7°C; precipitation change from -70%
to +50%), combined with urbanization, cropland management, afforestation, water-
use strategies, and population-economic pathways (SSP 1-5). It tracks the long-term
trajectories of seven ESs and seven LULC categories. Results show that (1) under
extreme warming and drought, all ESs collapse simultaneously, with water bodies
disappearing by 2050, signalling a systemic tipping point; (2) water-saving strategies
can delay water collapse by up to 30 years, highlighting adaptive potential; (3)
urbanization accelerates built-up land expansion at the cost of natural ecosystems;
cropland management improves food production and carbon storage; afforestation
enhances carbon and aesthetic services but reduces water yield; (4) SSP3-5, featuring
population growth, inequality, and fossil-driven development, further exacerbate long-
term ES degradation. Findings underscore the need for integrated land-water-carbon
governance. Priorities include farmland protection, ecological reuse of urban land,
ecological flow allocation, and dual carbon control. To prevent irreversible shifts,
global warming must be limited to 2 °C. The model is transferable to other

mountainous and coastal areas under similar stress conditions.
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4.1 Introduction

4.1.1 Background overview

Approximately one-third of the global land cover has been altered by human activities
over the past 60 years. Recent assessments further suggest that the magnitude of
global land use changes is four times greater than earlier long-term estimates, with
substantial implications for ecological, environmental, economic, and social systems
across scales (Radwan et al., 2021; Winkler et al., 2021). Population, economy, and
climate change are the driving forces behind land change. As economies boomed after
World War II, the global population has grown from 2.5 billion in 1950 to nearly 8.2
billion in 2024 (United Nations, 2024), steepening agricultural supply pressures have
expanded the global agricultural area (i.e., farmland and rangeland / pastureland) by 1
million km? and 0.9 million km?, respectively. Expansion of construction land and
agricultural production has accelerated the fragmentation and loss of ecologically
sensitive areas (grasslands, forests, wetlands, water covered land). For instance,
forests globally have suffered a net loss of 0.8 million km? (Fang et al., 2022b;
Winkler et al., 2021). Extreme weather events (droughts, floods, wildfires) brought on
by a warming climate also accelerate land degradation (Salimi et al., 2021). The
concession of natural land cover to human demands causes irreversible land
degradation and serious challenges to ecosystem services (ES) (e.g., reduced carbon
storage capacity, soil erosion, biodiversity degradation, weakened water regulation,
food security risks, etc.) (Boakes et al., 2024; Cabernard et al., 2024; Wu et al., 2024;
Yuan et al., 2024). The global loss of ESs is estimated at $44 trillion, with irreversible
land degradation directly affecting nearly half of the global population ( Esch et al.,
2022). This indicates that land degradation has dire impacts on ecosystems, socio-
economic systems, while protecting, restoring and promoting the sustainable use of
terrestrial ecosystems is one of the overarching objectives of the United Nations
Sustainable Development Goal (SDG 15). The economic impact of ecosystem
collapse is expected to increase in the coming years. A new World Bank report
estimates that the collapse of specific ESs supplied by nature could lead to an annual
decline in global GDP of $2.7 trillion by 2030 (World Bank, 2021). Of these, low-

income countries whose economies are heavily reliant on natural assets are the hardest
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hit — for example,sub-Saharan Africa and South Asia, where real GDP would shrink
by 9.7% and 6.5% annually(Johnson et al., 2021). Therefore, concerted efforts from
researchers, policymakers and practitioners are essential to address the ESs and socio-

economic challenges arising from LULC change.

4.1.2 Current challenges

Land use and ecological health are intrinsically connected (Fu et al., 2015b),
constituting a nexus between sectors or issues (Estoque, 2023). This study defines the
ecosystem service and land use/ land cover nexus (ES-LULC nexus) as a concept that
elucidates the intricate interrelations, including trade-offs, between land use and ESs.
Land use is primarily influenced by population, economic, and climatic changes
(Stehfest et al., 2019). The encroachment of land cover due to human activities, such
as the expansion of urban and farmlands into natural landscapes, leads to irreversible
degradation of natural land (Eswaran et al., 2019). This degradation jeopardizes the
ecosystem's provisioning services (food, water, timber), regulating services (climate,
pollution, disaster management), supporting services (habitat, soil protection), and
cultural services (aesthetic, tourism, heritage) (MEA, 2005), while also undermining
the stability of socio-economic systems. As ecosystems destabilize, the diminishing
monetary and non-monetary values of essential ESs draw increased attention from
researchers, who utilize ecosystem service assessments to aid policymakers in
formulating sustainable land use and environmental management strategies to address
ecological issues (Fiirst et al., 2017; Goldstein et al., 2012). For example, the land use
scenario simulation of Sichuan-Yunnan ecological barrier provides a new way for
land use planning of ecological functional areas (Li et al., 2021); Li et al. (2021)
found that large-scale afforestation policies had a long-term positive impact on soil

erosion and sandstorm control in semi-arid China.

The ES-LULC nexus is characterised by its intrinsic complexity including feedback,
non-linear processes, which means that the relationship between land use and ESs
isnot straightforward (Fiirst et al., 2017). One example is urban expansion, which
reduces cropland and pressures food provision, but where advances in agricultural
technology and disaster management have increased farmland net ecosystem

productivity, mitigating much of the pressure on food security (Zhang et al., 2024;
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Garibaldi et al., 2017; Guo et al., 2019). This stabilisation of supply reduces the need
to retain all agricultural land, enabling conversion to urban or ecological uses (Grain
to Green project); in turn, changes in cropland area influence subsequent management
strategies, creating a bidirectional feedback within the ES-LULC system. These
feedbacks highlight the need to understand the complex relationships and dynamic

behaviour of ES-LULC nexus to support long-term sustainable management policies.

The complex drivers of LULC change are deeply intertwined with the needs of social
systems (Stehfest et al., 2019), extending the ES-LULC nexus beyond simple 'land-
environment' interactions to encompass climate, demographic, socioeconomic, and
global political realms. This complex coupling reflects the deep integration of natural
and social systems and their dynamic interactions. Therefore, an integrated and
dynamic approach that focuses equally on natural and social systems is essential to
understanding this linkage. The nexus research approach is often used to analyse the
dependencies (trade-offs and synergies) between sectors or issues in order to develop
sustainable policies (Berrio-Giraldo et al., 2021). However, its ability to balance
natural and social systems remains questionable due to the lack of a harmonised
framework (Stringer et al., 2018), the Social-Ecological Systems (SES) approach
explicitly fills this gap (Gomez-Jaramillo et al., 2024; Wang, et al., 2023). The SES
approach provides a unifying framework for understanding the coevolution of LULC
and ESs. As an interdisciplinary perspective, SES embeds humans within ecosystems
and highlights the coupled interactions of social and ecological processes.including
feedback, non-linearities, and delays that determine the overall dynamics of the
system. This framework moves beyond the traditional “nature—society” dichotomy
and offers a basis for analysing complex system features such as feedbacks, non-
linearities, and critical thresholds (Biggs et al., 2021). The importance of SES lies in
its ability to systematically reveal long-term trajectories and thresholds in human—
nature interactions. Recent studies illustrate how SES perspectives uncover systemic
dynamics across contexts. In Bangladesh, SES modelling revealed that warming
combined with upstream withdrawals and political instability could reduce food
security by more than half, underscoring the vulnerability of coupled water—food
systems (Roy et al., 2024). In China’s karst region, large-scale ecological restoration
not only boosted biomass and carbon sequestration but also catalysed livelihood

transitions beyond farming, linking ecological recovery to social transformation (Qiu
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et al., 2022). In the UK uplands, integrating land managers’ behavioural choices with
spatial system dynamics demonstrated how policy incentives propagate through
landscapes to reshape long-term vegetation patterns (Termansen et al., 2019). Taken
together, these cases show that SES approaches move beyond sector-focused analyses
to reveal feedbacks, thresholds, and cross-scale linkages. This perspective deepens our
understanding of ES-LULCcoevolution and supports the design of adaptive land

policies that strengthen socio-ecological resilience.

4.1.3 Research gap

Numerous studies have examined the effects of land use on ESs (Liu et al., 2021;
Mekuria et al., 2023; Roy et al., 2024; Wu et al., 2020), and it is broadly
acknowledged that prevalent research methodologies in the world, the InNVEST model
(Grafius et al., 2016; Jiang et al., 2023b), the Value Equivalent Approach (Song &
Deng, 2017; Wang et al., 2023), and various bio-physical models of ESs (Duan et al.,
2021; Huang et al., 2019), possess intrinsic limitations in accurately representing the
complexities (e.g., feedback loops, non-linearities) between social and ecological
variables. For example, both the INVEST model and the Value Equivalent Approach
assess alterations in ESs based on satellite map or LULC statistics, and bio-physical
modelling of ESs typically is rooted in physical variables (e.g., soil, water); however,
neither valuation method sufficiently incorporates social factors (Li et al., 2020; Wang
et al., 2018). Consequently, current scholars have underscored the integration of
ecological (essential ESs) and social (e.g., economic prosperity, demographic,
cultural, policy, etc.) variables in discerning the potential effects of land use on ESs

(Qiu et al., 2022; Ratnayake et al., 2024).

Although researchers have emphasised that social factors (population, GDP
expansion) drive changes in coupled ES-LULC, quantitative studies of socio-natural
system dynamics are limited (Li et al., 2024). Most studies explore ES-LULC issues
from an ecological perspective, mainly using quantitative research methods such as
bio-physical models or value transfer method, with limited applications of other
methods (e.g., interviews, questionnaires, causal analyses, expert analyses). While a
few studies have employed SES approaches, none of them has explored the

correlation between land use-ESs through a conceptual SES framework that integrates
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socio-ecological components and factors (Liu et al., 2015; Zhang et al., 2023). For
instance, Bennett et al. (2015) used causal loop diagrams to develop a framework for
ecoSERVICES that examines the three primary challenges of biodiversity,
environmental services, and human well-being; Peng et al. (2023) linked ESs,
ecosystem vulnerability, and social vulnerability using the SES vulnerability cascade
framework. Overall, the review suggests that the SES approach has not been explored

in the study of ES-LULC nexus.

4.1.4 Research Objectives

To address the identified research gap, this study is the first attempt to use the SES
approach to investigate the relationship between land use change and ESs of
Shandong, while considering both social and ecological systems and their complex
interactions. Specifically, this study employ the system dynamic model to quantify the
dynamic interactions between social and ecological variables. The purpose of this
study was to understand the SES relationship between land use, ESs and population
and GDP in Shandong Province, China. To achieve the purpose of this study, this

study proposes the following research questions:

1. How are social and ecological variables interrelated to determine the dynamic
behavior of the system?
2. How does the ES-LULC nexus perform under different socio-economic policies

and climate scenarios?

This study aims to serve as an informative tool for academics and policymakers on the
long-term interactions between land use and ESs, facilitating sustainable management

of land and ecosystems amidst varying socio-economic policies and climate change.

This chapter is arranged as outlined below. Section 2 shows rationale for the selection
of the study site; followed by Section 3, which presents the methodologies for
developing and validating the conceptual and empirical SD model; Section 4
delineates the results derived from the SD model of the ES-LULC nexus and the

scenario analysis; Section 5 examines the principal findings and policy implications;
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while Section 6 concludes the essential insights of the study, its prospects, and

potential limitations.

4.2 Study area

China has experienced some of the most dramatic LULC changes globally over the
past three decades, driven by rapid economic and population growth (Miao et al.,
2016; Winkler et al., 2021). Simultaneously, China has emerged as a key contributor
to global ESs, accounting for 25% of the world's new green vegetation over the past
20 years (Liao et al., 2024) and leading the global transition to clean energy (Song et
al., 2024). These rapid changes position China as an exemplary region for studying
the ES-LULC nexus, offering a critical lens through which to explore the dynamics of
SES evolution. In addition, SES modelling necessitates extensive multi-scale social

and ecological data support.

Shandong Province, located along China’s eastern coast, spans an area of 157,900 km?
and possesses unique socio-economic and environmental characteristics, making it a
critical region for studying the ES-LULC nexus (Figure 4.2-1). As China’s second
most populous province (with a population exceeding 100 million) (China Statistical
Yearbook, 2023) and its third-largest economy (GDP of 4,667.7 billion RMB in
2023), Shandong’s highly concentrated economic activities and large population
emphasize the intricate interactions between land use and ESs. Furthermore,
Shandong is the largest producer of vegetables (92 million tons in 2023) and aquatic
products (9.14 million tons) in China, playing a pivotal role in national food security
while supporting the livelihoods of over 20 neighbouring countries (Shandong
Statistical Yearbook, 2023). These economic activities generate significant spillover
effects on regional and neighbouring ecosystems, making Shandong’s ESs vital for
both national ecological security and regional well-being. The province’s distinctive
climatic conditions further amplify these dynamics. Shandong’s warm temperate
monsoonal climate is characterized by highly concentrated precipitation (over 50%
occurring in summer) and frequent droughts in spring and autumn (Shandong
Statistical Yearbook, 2023). These environmental factors exacerbate pressures on land
use and ESs, shaping a complex socio-ecological system. Over the past few decades,

Shandong’s urbanization rate has increased rapidly, rising from 13% in 1985 to 66%
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in 2023. Urban expansion, coupled with policy-driven land use reforms such as
reforestation, has significantly altered land use patterns. These changes have
intensified land degradation and fragmentation, profoundly impacting the structure
and function of regional ecosystems (Fan & Xiao, 2020; Ren et al., 2023). These
distinctive socio-economic and environmental dynamics make Shandong an ideal case

for investigating the ES-LULC nexus within a socio-ecological framework.

Moreover, Shandong offers notable practical advantages for research. Shandong’s
relatively high data transparency, combined with the research team’s familiarity with
the province’s data environment, facilitates effective communication with local
statistical departments and government agencies. This ensures access to reliable

datasets and enhances the scientific rigor of the modelling process.

Thus, Shandong province is not only a representative and exemplary case for
exploring the ES-LULC nexus but also a critical region whose findings can inform
ecosystem management and policymaking in similar socio-ecological contexts

globally.
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Figure 4.2-1 The location and land use of Shandong province of China.

4.3 Methodology

This study adopts a System Dynamics (SD) Modelling approach, hereafter termed the
ES-LULC nexus Socio-Ecological System model (LULCESN-SES model), to
examine the socio-ecological dynamics within the ES-LULC nexus. The SDM
approach was chosen for its capability to model complex SES, enabling the
integration of social and ecological variables to capture feedback mechanisms, non-
linear relationships, and time delays (Ford, 2010; Hossain et al., 2020). Initially
developed by Forrester (1961), SDM has been extensively applied in fields such as
industrial economics, environmental systems, and population dynamics (Sterman,
2000). In recent years, its application has expanded to diverse SES contexts, including
agricultural systems (e.g., Bastan et al., 2017), dynamic change of land use and social-

ecosystem (e.g., Berrio-Giraldo et al., 2021; Zhang et al., 2023), and the
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interconnected security of water, food, and energy resources(e.g., Naderi et al., 2021).

The methodological framework and procedural steps employed in this study are

detailed in Figure 4.3-1.
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Figure 4.3-1 The methodological framework implemented in this study aligns with the
principles outlined by Maani and Cavana (2007) and Sterman (2000), ensuring a systematic

approach to modelling socio-ecological dynamics (Roy et al., 2024).

4.3.1 Conceptual model development

The process begins with the development of a conceptual model, referred to as a
causal loop diagram (CLD), which outlines the system's structural relationships
(Hossain et al., 2020; Roy et al., 2024). In a CLD, variables are linked by directional
arrows, each annotated with a positive ( + ) or negative ( — ) sign. A positive sign

signifies that a change in one variable leads to a corresponding change in the same
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direction for the connected variable. In contrast, a negative sign implies that a change
in one variable results in an opposite change in the linked variable (Haraldsson, 2004).
These causal interactions form feedback loops, which are categorized as either
reinforcing (positive) or balancing (negative) loops (Berrio-Giraldo et al., 2021).
Reinforcing loops drive exponential growth or decline, often leading to system
instability, while balancing loops counteract changes, promoting stability and

equilibrium (Hossain et al., 2020).

This study developed a conceptual SES model to explore the relationship between ESs
and land use in Shandong, China (Figure 4.3-2). The model variables and the complex
interactions between social and ecological components were identified based on a
systematic review of prior studies, relevant literature, and findings from preliminary
research. The conceptual model comprises 28 system variables interconnected by 42
causal links. Within the model, a total of 10 feedback loops were identified, including
2 reinforcing loops and 8 balancing loops. This section discusses the significance of
key feedback loops in shaping the structural dynamics of the ES-LULC nexus (Table
6.3-1).

Feedback loops B1, B2, and B3 illustrate the dynamic interactions between
construction land and farmland (B1), barren land (B2), and grassland (B3),
respectively. In these loops, an expansion of construction land leads to a reduction in
the areas of farmland, barren land, and grassland, while a decrease in construction

land would conversely allow for the recovery or expansion of these land types.

Population increase contributes to farmland reduction through multiple pathways and
ultimately to a decrease in population as a result of economic development. In
particular, the urbanization driven by population growth exacerbates agricultural labor
shortages, resulting in farmland abandonment and reduction (B4); simultaneously, the
expansion of construction land directly encroaches upon farmland (B5) and indirectly
threatens farmland security by reducing water yield (B6); moreover, construction land
expansion intensifies carbon emissions, prompting carbon neutrality policies that
accelerate cropland-to-forest conversion (B7); the multifaceted loss of farmland has
not prevented an increase in farming production (as economic development in R1

promotes agricultural inputs/technology and agricultural production growth, finally
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drives economic growth), which increases the agrarian economy and total GDP, this
economic growth ultimately reduces fertility intentions and birth rates, leading to a

decline in population (B4, B5, B6, B7).

Additionally, feedback loop B8 indicates that population-driven urban expansion and
farmland loss contribute to the gradual forestland expansion. The increase in forest
cover enhances landscape aesthetics (tourism value) which in turn promotes the
expansion of water covered land (as demonstrated by R2, where water body and
landscape aesthetics reinforce each other). This expansion creates a favourable
environment for increased fisheries production, further stimulating agricultural output
and overall GDP growth. However, the economic growth resulting from these

processes ultimately reduces fertility intentions, leading to a decline in population.

This conceptual SES model serves as the foundation for developing the simulation

model in the next stage. A summary of the feedback loops is presented in Table 6.3-1.
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Figure 4.3-2 Conceptual SES model of the ES-LULC nexus.

4.3.2 Model formulation, input data and parameterisation

This study builds upon the conceptual SES model by constructing a Stock-Flow
Diagram (SFD) in STELLA Professional v.3.1 (https://www.iseesystems.com) to
simulate system dynamics. While the conceptual model effectively represents causal
relationships and feedback mechanisms among variables, its qualitative nature limits
its ability to capture temporal system evolution. To address this limitation, the SFD
was developed based on physical equations and incorporates both quantitative and
qualitative data to enhance the accuracy of dynamic system analysis. The SFD
consists of three fundamental components: stocks (accumulations), flows (rates), and

converters (auxiliary variables), which interact to form feedback loops that drive
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system evolution (Ford, 2010). Stocks represent accumulated resources within the
system, such as total farmland area or GDP. Flows indicate the rate of change in
stocks, including the expansion and reduction of forest land or population growth and
decline. Converters function as auxiliary variables that regulate flow rates, for
instance, birth and death rates influence the total population increase and loss within a
given period (Roy et al., 2024). Within the SFD, converters indirectly shape system
evolution by regulating flow magnitudes, while flows determine the accumulation or
depletion of stocks.These dynamic interactions establish feedback mechanisms that
critically shape system behaviour and evolutionary patterns (Pham et al., 2021). For
example, in the LULC module, farmland, forest land, grassland, barren land, and
water-covered land are defined as stocks; their conversions such as afforestation,
deforestation, and urban expansion are represented as flows; while population
demand, climatic factors, and transfer years act as converters. This structural design
was consistently applied across other ecosystem service modules, ensuring an

integrated representation of the SES.

In this study, the dynamic LULCESN-SES model was constructed using physical
equations to define the relationships among SES variables within STELLA
Professional v.3.1 (Table 6.3-3). The model employs annual time-step data
aggregation to simulate system-wide trends. To ensure accurate parameterisation, an
extensive review of relevant literature and datasets was conducted to obtain stock
values (initial conditions), converters, and graphical functions. A key challenge in
model development was the limited availability of site-specific parameter values. To
address this, national and regional datasets (e.g., average water depth, permeability
coefficients) were used as proxies to approximate local conditions. Furthermore, due
to the absence of long-term empirical data, direct model calibration and prediction
were constrained. To overcome these limitations, the study integrated computational
formulas from the InVEST model — specifically for carbon storage (Figure 6.3-8), soil
retention (6.3-9), and water yield (Figure 6.3-6) — to derive more reliable time-series
estimations. To quantify the influence of multiple independent variables on a
dependent variable, regression equations were applied. For example, water yield was
modelled as a function of water area and unit productivity, enabling the estimation of
relationships in the absence of direct observational data. SPSS software was used to

perform multiple and linear regression analyses, incorporating sequential time-series



86

data derived from the conceptual model. Additionally, graphical functions, a built-in
feature of STELLA software, were utilised to approximate relationships between
independent variables when empirical data were unavailable. These functions allow
for the definition of nonlinear dynamics (e.g., irrigation effects on crop yield) by
selecting from predefined functional forms such as linear, S-shaped, nonlinear, or
oscillatory relationships, or by manually adjusting curves based on theoretical

assumptions.

To ensure the reliability of the simulation, a diverse range of historical and cross-
sectional datasets were integrated to parameterise the model, as detailed below. Data
related to population, higher education attainment, fertility intentions, crop and
fisheries production, GDP, urbanization rate, surface water availability, and carbon
emissions were obtained from the Shandong Statistical Yearbook. Climate variables
(e.g., precipitation, temperature) were sourced from the National Meteorological Data
Center to compute annual climate trends. Parameters and coefficients for carbon
storage, aquatic production, and soil retention were derived from the InNVEST model
and supplemented by regional studies of Shandong (e.g., Wang et al., 2023; Xu et al.,
2024; Zheng & Zheng, 2023). For land use change dynamics, this study utilized a
sequential time-series dataset (1985 - 2021) for Shandong Province, obtained from

the Landsat-based China Land Cover Dataset (CLCD), produced by Wuhan
University (https://zenodo.org/records/8176941). The dataset includes annual LULC
raster maps, which were processed in QGIS software to calculate the annual area
changes for eight LULC categories: cropland, forest, shrubland, grassland, water

covered land, barren land, wetland, and construction land.

4.3.3 Model validation

Model validation is a crucial step to establish the credibility and scientific robustness
of the LULCESN-SES model as a policy analysis tool (Senge & Forrester, 1980). As
system dynamic models are simplified representations of real-world systems, their
validation is not to confirm model ‘absolute correctness’, but rather to enhance
confidence in the structure and behaviour of the model through testing from different
time series perspectives (Barlas, 1996; Roy et al., 2024; Sterman, 2002). The
LULCESN-SES model was validated by historical datasets (between 1990 - 2020) for
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the key variables (e.g., land uses). Model calibration is initially conducted using the
first subset of historical data (1990 - 2005) to optimize the dynamic equations of key

variables, ensuring alignment with observed trends. Subsequently, a second subset
(2006 - 2020) was employed for extrapolative validation, assessing the model’s
ability to reproduce historical patterns independent of the training dataset (Hossain et
al., 2017; Roy et al., 2024). The model parameters and structure were optimally
adjusted through repeated iterations until it was ensured that the simulation results

were dynamically consistent with the historical data.

System dynamics modelling requires both qualitative and quantitative tests to validate
the model(Barlas, 1989; Schwaninger & Grosser, 2020). To achieve this, structural
validation (examining whether the model structure adequately represents the real-
world system) and behavioural validation (assessing whether the model produces
acceptable behavioural outcomes) are widely used (Barlas, 1989). Structural
validation checks the logical consistency of the model, ensuring that its structure is
coherent and capable of representing the real system. This can be tested through direct
or indirect investigation, using empirical data or theoretical reasoning (Barlas, 1989;
Schwaninger & Grdosser, 2020). For quantitative validation, this study applies
parameter confirmation tests, dimensional consistency tests, and behavioural pattern
validation. The parameter confirmation test ensures that the parameters used in the
model are meaningful and supported by real-world data or literature (e.g., Ma et al.,
2024; Zhao et al., 2023). The dimensional consistency test verifies that all equations
in the model adhere to unit balance principles, preventing computational errors caused
by unit inconsistencies (Barlas, 1989). These validation steps ensure that the model is
not only numerically sound but also theoretically robust, providing a solid foundation

for subsequent behavioural validation.

To assess the credibility of model behaviour, this study applies a multidimensional
statistical evaluation approach. To determine whether the simulated behavior is
reasonable, a multidimensional evaluation matrix is constructed using R? (coefficient
of determination), PBIAS (percentage bias), RSR (ratio of the root mean square error
to the standard deviation of observations), and Uo (Theil’s inequality coefficient).
Other studies have also used these tests for model validation (Maleki Tirabadi et al.,

2022; Roy et al., 2024; Wu et al., 2013). R? measures the goodness of fit between
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simulated and observed data. Its value ranges from 0 to 1, with values closer to 1
indicating a stronger explanatory power of the model (Wu et al., 2013). PBIAS
reflects the systematic deviation of simulated values relative to observed values,
indicating whether the model tends to overestimate or underestimate on average. The
ideal PBIAS value is 0.0, with positive values indicating underestimation and negative
values indicating overestimation (Gupta et al., 1999). RSR (ratio of the root mean
square error to the standard deviation of observations) addresses the scale sensitivity
issue of traditional RMSE (root mean square error), allowing data with different units
to be compared within the same framework (Tirabadi et al., 2022). It is calculated as
the ratio of RMSE to the standard deviation of observed data (Equation 4.4). The RSR
value ranges from 0 to a larger positive number, with lower RSR values indicating
lower RMSE or smaller residual variation. Uo provides a global assessment of the
model’s predictive accuracy. Its value ranges from 0 to 1, with values closer to 0
indicating smaller prediction errors (Theil & Nagar, 1961). To further verify the
model’s dynamic behaviour, this study examines six key variables: crop yield, carbon
emissions, built-up area, farmland area, GDP, and population (Figure 4.3-3). The
simulated results from 2006 to 2020 are compared with actual observations to ensure
that the model accurately captures the long-term evolution of the system (Hossain et
al., 2017; Roy et al., 2024). All statistical evaluations follow the standards set by
Moriasi et al. (2015), with detailed results provided in Supplementary Table 6.3-2. By
integrating structural validation, behavioural validation, and statistical analysis, this
study ensures that the model not only reliably replicates past system changes but also
has strong predictive power. This provides a robust foundation for scenario

simulations and informed decision-making.
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where, Y, is the observed value; Yy, is simulated value; Cov(Y;,, Yops) 1S the
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oY,ps are the standard deviations of the two sets of values.
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Figure 4.3-3 A comparison of the observed and simulated behaviors of construction land,
farmland for cultivation, agricultural production, carbon emissions, population, and GDP. Blue

solid lines represent historical data, and yellow dashed lines represent simulated data.

4.3.4 Sensitivity analysis

To enhance the credibility and applicability of the model, a two-step sensitivity
analysis was conducted to examine how uncertainties in input parameters may
influence simulation outcomes. This process is essential in SES modeling, where
many parameters are derived from empirical estimates or expert judgment and thus

carry inherent uncertainty (Cooper, 2018; Kotir et al., 2016).
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The first stage (Figure 6.3-11) involved a local sensitivity test in which selected
parameters and graphical variables were independently varied by 10% above and
below their baseline values. By adjusting one variable at a time and holding all others
constant, this method enables a straightforward assessment of how individual factors
shape system behavior. The model’s responses were interpreted using widely accepted
criteria for system dynamics models, focusing on the magnitude, direction, and

consistency of change (Maani & Cavana, 2007; Pham et al., 2021).

The second stage adopted a global sensitivity approach using Monte Carlo
simulations, which allow for the simultaneous perturbation of multiple uncertain
parameters (Figure 6.3-12). This method is well-suited to evaluating systemic risks
and identifying the parameters most responsible for variability in model outputs
(Rachmawati & Kim, 2023). In this analysis, each selected parameter was assigned a
uniform probability distribution within +20% of its initial value. This distribution was
chosen to reflect the absence of prior knowledge about the likelihood of different
parameter values, ensuring that all values within the range were equally probable
(Jeon & Shin, 2014; Tian, 2006). A total of 500 simulations were run, with the model
randomly sampling from the defined distributions to generate a spread of plausible

outcomes across the parameter space (Zhang & Li, 2023).

Due to limitations in the sensitivity testing module of the modeling platform, only
exogenous constants — such as demographic rates and physical coefficients — were
included in the Monte Carlo process. Time-dependent graphical functions could not
be randomized directly. Nonetheless, the results provide valuable insight into the
stability and responsiveness of the model under uncertainty, offering guidance for

future scenario exploration and policy applications.

4.3.5 Scenario analysis

To explore potential trajectories of land use and ecosystem service interactions over
the simulation horizon of 2020 to 2100, a scenario-based analysis was conducted
under varying assumptions. This analysis aimed to explore the system’s behavior
under a range of plausible future conditions shaped by environmental change and

socio-economic transformation. Scenario analysis serves as a strategic tool for
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anticipating system responses beyond linear trends and for supporting long-term

policy planning under uncertainty.

The scenario framework was informed by the results of the sensitivity analysis, as
well as by relevant long-term development targets and climate mitigation goals
outlined in national strategies and international assessments. In particular, references
were drawn from China’s low-carbon development plans (2021 - 2100), China’s
Updated Nationally Determined Contributions (2021), and the broader global
narratives provided by the IPCC Sixth Assessment Report (2023). A total of 54
exploratory scenarios were developed and tested to capture the diversity of possible

system pathways. The analysis proceeded in three stages:

(1) BAU scenario was simulated to represent the system's baseline trajectory

in the absence of additional interventions.

The BAU scenario is a common benchmark in system dynamics modeling, as it
provides a reference point against which the effects of alternative assumptions can

be compared (Sterman, 2000).

(i1) A set of alternative scenarios was generated by adjusting key variables and
structural assumptions, both individually and in combination (Maani &
Cavana, 2007), including changes in different climate conditions,
afforestation and carbon emission policies, water-saving measures under
climate change, and adjustments in LULC conversion efficiencies among

urban, farmland, grassland, and barren land.

These factors were selected because they represent the most critical drivers of land
use—ecosystem service dynamics identified in both the sensitivity analysis and
policy documents: climate variables directly influence ecosystem productivity and
water balance; afforestation and carbon policies reflect national commitments to
carbon neutrality and ecological restoration; water-saving measures capture
adaptation needs under climate stress; and LULC conversion efficiencies
determine the structural pathways of urban expansion, farmland protection, and

ecological land transitions.
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(ii1))  These scenarios were categorized and interpreted using the Shared

Socioeconomic Pathways (SSPs) framework (O’Neill et al., 2014).

The SSPs are a set of five globally recognized scenarios developed by the IPCC
that describe alternative socioeconomic development pathways and their
implications for climate change. Specifically, SSP1 (Sustainability) depicts a
pathway of inclusive development and strong environmental stewardship; SSP2
(Middle of the Road) assumes a continuation of historical trends with moderate
progress; SSP3 (Regional Rivalry) represents a fragmented world with weak
global cooperation and high resource intensity; SSP4 (Inequality) describes a
future of deepening disparities between regions and social groups; and SSP5
(Fossil-fueled Development) envisions rapid economic growth strongly dependent
on fossil fuels. SSPs were selected because they provide an internationally
comparable framework that integrates socioeconomic drivers with environmental
pressures, enabling our results to be interpreted not only in a national but also a
global context. In particular, the SSP framework helps to situate the Shandong
case within broader trajectories of sustainability (SSP1), regional rivalry (SSP3),
or fossil-fueled growth (SSPS5), thereby linking local ES-LULC dynamics to
global policy debates.

The simulated trajectories were assessed in relation to the BAU reference to
understand how alternative assumptions might shift the dynamics of the ES-LULC
relationship. Instead of focusing on precise numerical predictions, the analysis
prioritized the identification of long-term patterns and systemic responses to different
policy and environmental conditions. Supplementary Table 6.3-4 provides an

overview of the scenario settings and their alignment with the SSP classification.

4.4 Results

The LULCESN-SES model generated outputs for key system variables linked to the
ES-LULC nexus over the 2020 - 2100 simulation period. These outputs reflect model
behavior under business as usual (BAU) case, a range of different “what if” scenarios,

and five Shared Socioeconomic Pathways (SSPs).
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4.4.1 Business as usual (BAU) scenario
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Figure 4.4-1 Key system variables under the BAU scenario over the 2020 - 2100 period,

including population, GDP, LULC categories and selected ESs.
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Figure 4.4-1 summarizes the projected trajectories of key system variables under the
BAU scenario over the 2020 - 2100 period, including population, GDP, LULC
categories and selected ESs. While the economy continues to grow, the population
begins to decline after 2030. Yet, construction land demand remains high for a time,
showing a delayed adjustment to demographic change. Early land expansion caused a
substantial and irreversible reduction in farmland, leading to a marked decline in
farming production. This inertia may be related to path dependency in LULC
conversion and infrastructure investments. Carbon emissions follow a similar rise and
fall trend, aligning with the timing of mitigation policies. Meanwhile, forest recovery
drives a gradual increase in water-covered land. However, aquatic production does not
rise in parallel, likely constrained by persistent temperature increases. Ecological
restoration efforts — such as reforestation, wetland rehabilitation, and grassland
recovery — support a slow but steady improvement in biodiversity and landscape

aesthetics over the long term.

4.4.2 Behavior of the ES-LULC nexus under different “what if”

scenarios

Table 6.3-4 provides extended narratives contextualized of different “ what if ”
scenarios, and the result shows in Figure 4.4-2 and Figure 4.4-3. Specifically,
scenarios 1-10 examined the effects of population and CPI changes on land use and
ecosystem service dynamics, with Scenarios 9 and 10 capturing their combined
impacts. In Stagnant Growth under Aging Pressure (Scenario 9), a declining
population (— 20%) and moderate inflation (+ 30%) will reduce demand for developed
land, resulting in a 13% contraction in construction areas and a 9% loss of farmland,
with agricultural output falling by 8% compared to BAU in 2100. These LULC
contractions will be accompanied by modest ecological gains: forest and water
covered land will expand (by 6% and 4%, respectively), aquatic production will rise
by 5%, and carbon emissions will drop by 21%, along with slight increases in
biodiversity and aesthetic value. Demographic Expansion with Deflation (Scenario
10) will reverse this pattern. A growing population (+ 20%) and declining prices (—
30%) will drive a 15% expansion in both construction and farmland, raising

agricultural output and carbon emissions by 15% and 39%, respectively. However,
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this socio-economic growth will come at an ecological cost: forest and water covered
land will decline (— 10%, — 16%), aquatic production will fall by 7%, and biodiversity
and aesthetic values will drop by 11% and 9%.

Scenarios 11 to 23 assessed the projected impacts of climate change throughout the
simulation period. Specifically, Scenarios 11 to 14 explored increases in mean
temperature ranging from 1.5°C to 5.7°C, with the BAU2100 scenario projecting a
rise of 3.24°C. When the temperature increases remain within 1.5°C to 2.5°C, most
indicators will either remain stable or show slight improvement. In contrast, under the
high warming scenario of 5.7°C (Scenario 14), farming production will decline by
39% and farmland will decrease by 26% after 2070. Forest degradation will begin
after 2060, resulting in a 42% reduction in forest land and a subsequent 25% loss in
carbon storage. Although inland water covered land will expand by 23%, farming
production will fall by 21% due to elevated thermal stress. Biodiversity and landscape
aesthetics will also be negatively affected, with reductions of 20% and 7%,
respectively. Scenarios 15 to 19 examined how changes in precipitation, ranging from
a reduction to 348 mm to an increase up to 1,044 mm (relative to the BAU 2100 level
of 624 mm), influence system dynamics. Under reduced rainfall (Scenarios 15 to 17),
all key system variables will exhibit declining trends, whereas increased precipitation
(Scenarios 18 and 19) generally will lead to improvements across most indicators.
Interestingly, although reduced rainfall (from 624 mm to 348 mm) clearly will resulte
in marked reductions in natural land cover and related ESs, excessive rainfall (from
624 mm to 1,044 mm) also will trigger land degradation and a consequent loss of
ecosystem functions when compare to the BAU scenario projected for around 2100.
Scenarios 20 to 23 further evaluated the combined effects of temperature and
precipitation changes. Under scenarios with moderate warming and increased
precipitation (Scenarios 20 and 21), natural land, ESs, and GDP all exhibit
improvements. However, excessive rainfall results in losses of both agricultural and
forest land (-27%), alongside declines in agricultural production (— 24%) and carbon
storage (— 20%). In the high-temperature and drought scenario (Scenario 23), all key
system variables show declining trends. The most severe impacts are observed in ESs
associated with natural land systems. These included substantial reductions in forest
land (— 47%), water covered land (— 100%), and cropland (— 25%), along with

marked declines in carbon storage (— 26%), water yield (— 79%), aquatic production
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(— 87%), and agricultural production (— 47%). Other critical variables, such as
biodiversity, landscape aesthetics (both — 56%), and GDP (— 36%) will also
negatively affected. Scenario 22, representing moderately arid and warm conditions,
will cause damage to forest land (— 30%) and cropland (— 27%) that will be

comparable to the effects of Scenario 21, characterized by mild but excessive rainfall.

Scenarios 24 to 29 evaluated the impacts of water consumption patterns under climate
change throughout the simulation period. In Scenarios 24 and 25, changes in water
consumption (+30% / — 30%) directly influenced water area (+37% / — 37%), which
in turn affected key water-related variables, including aquatic production (+12% / —
13%), agricultural production (+5% / — 5%), and landscape aesthetics (+ 14% / —
14%). Water management strategies under extreme climate conditions further
amplified the ecological impacts of climate change. The simulation outcomes were
consistent with the trends observed in previous climate change scenarios (Scenarios
20 and 23). Notably, under extreme heat and drought conditions (Scenarios 26 and
27), the water-saving scenario was able to delay the complete loss of water area by 30
years compared to the high-consumption scenario, thereby providing a critical

window for exploring sustainability strategies under extreme conditions.

Scenarios 30-32 reveal the effects of changes in urbanization rates. When the
urbanization rate exceeds the BAU threshold of 80% and reaches 92% (Scenario 30),
construction land expands (by 10%), accompanied by increases in forest land (+ 20%)
and water covered land (+ 39%). While this transition enhances landscape aesthetics
(+24%), biodiversity (+ 20%), aquaculture yield (+ 13%), and aquatic production(+
13%), it results in significant losses in farmland (— 47%) and agricultural output (—
51%), along with a sharp rise in carbon emissions (+ 35%). Conversely, constraining
the urbanization rate to 60% reverses these patterns (Scenario 31), favoring farmland
preservation (+ 86%) and production(+ 83%), while reducing urban-related land uses
(constructed land: — 15%, forestland: — 37%, water body: — 91%) and ecosystem

aesthetics (— 51%), as well as lowering overall carbon emissions(— 39%).

Farmland management plays a critical role in safeguarding food security. An increase
in per capita farmland management area (Scenarios 33 and 34) substantially mitigates

farmland loss (+68% and +112%) and doubles food production. However, this
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expansion encroaches upon water covered land (— 59% and — 100%), resulting in
nearly 50% loss in fisheries yield. Carbon storage initially declines before stabilizing,
while biodiversity and landscape aesthetics remain stagnant at the 2020 level. In
contrast, Scenario 35, characterized by a reduction in farmland management per
capita, farming production outcomes similar to the BAU trajectory, indicating that
without sustained and effective management efforts, farmland systems are unlikely to
achieve dual gains in productivity and ecosystem functions, and may instead remain in

a degraded state.

The rate of grassland degradation (Scenarios 36 - 38) has limited effects on LULC
patterns and ESs, likely due to the small share of grassland in the region. Similarly,
carbon emission policies of varying intensities (Scenarios 39 - 42) show no
substantial changes, possibly because regional models do not account for global
climate feedbacks. However, Scenario 40 slightly improves afforestation efficiency
(+5%) while reducing water covered land (— 3%), indicating potential trade-offs

among ecosystem functions.

Afforestation and the expansion of fast-growing plantations (Scenarios 43 - 45)
substantially reshape LULC patterns and ESs. Under the extreme afforestation
scenario (Scenario 44), large-scale cropland conversion is completed by 2050 (—
30%), and by 2100, nearly half of water covered lands are replaced by forests,
threatening food (— 18%) and fisheries supply (— 21%). In contrast, carbon storage
(+30%), biodiversity (+32%), and landscape aesthetics (+8%) increase alongside
forest expansion. However, under weak forest protection, the impacts are largely

comparable to the BAU scenario.

Unused land has limited effects on key system variables, contributing marginally to
construction land expansion before saturation (Scenarios 46 - 48). When conversion
slows (Scenarios 46 and 47), water covered land and aquatic production increase by
7% and 4%, respectively (Scenario 46). Faster conversion (Scenario 48) leads to a 5%

increase in forest land, while other variables remain largely unchanged.

Integrated scenario analysis reveals that LULC pathways play a decisive role in

shaping the trade-offs and synergies among ESs. The sustainable scenario (Scenario
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49) limits construction land expansion (— 7%) and maintains cropland and forest lands
near 2020 levels (+150% and — 78%)), thereby stabilizing food production (+144%)
and carbon storage while reducing carbon emissions generally. Slight declines are
observed in biodiversity and landscape aesthetics (minor decrease), along with slower
economic growth (— 35%). In contrast, the unmanaged scenario (Scenario 50) leads to
substantial losses in cropland (— 45%) and food production (— 48%), with a significant
increase in water covered land (+50%) but only limited improvement in fisheries yield
due to climate constraints. Carbon storage declines (— 12%), and emission reductions
are delayed until after 2050. Although economic output increases (+18%), ecosystem
stability is significantly compromised. Overall, LULC strategies profoundly affect the
configuration of ESs, underscoring the need for integrated and adaptive management

within resource and planetary boundaries to balance ecological and economic goals.

4.4.3 Behavior of ES-LULC nexus under different shared

socio-economic pathways (SSPs)

This study also assessed a set of hypothetical scenarios aligned with the five Shared
Socioeconomic Pathways (SSPs). Table 6.3-4 provides extended narratives
contextualized to this study. As shown in Figure 4.4-2 and Figure 4.4-3, LULC & ES
under SSP1 (Sustainability) and SSP2 (Middle of the Road) follow a trajectory similar
to that of the BAU scenario. In contrast, SSP3 (Regional Rivalry), SSP4 (Inequality),
and SSP5 (Fossil-fueled Development) are associated with more pronounced LULC
changes and greater losses in ESs, underscoring the systemic risks driven by
fragmented governance, widening social disparities, and fossil-intensive growth

strategies.

Farmland area remains relatively stable only under SSP1 and SSP3 (+156% and
+160%, respectively), while all other pathways show varying degrees of decline, with
SSP2 exhibiting the most rapid reduction (— 27%). Construction land closely
correlates with population dynamics, generally following a similar trajectory. Except
for SSP5, which shows sustained growth before levelling off (+74%), all other
scenarios experience a modest initial increase followed by a decline. Under SSP1,
SSP3, and SSP4, construction land remains below BAU levels throughout the

simulation. Forest land remains the lowest under SSP3 (-83%), while most other
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scenarios show an initial increase followed by a slight decline. The highest forest
coverage is found in SSP2, closely aligning with BAU, followed by SSP4 (— 42%).
Among all land categories, water covered land exhibits the most pronounced
differences across SSPs. Under SSP1 and SSP2, the water area increases progressively
over time. In contrast, water covered land vanishes entirely in SSP5, SSP4, and SSP3,

disappearing by 2040, 2048, and 2055, respectively.

Provisioning services, represented by food production and aquatic yield, declined to
varying degrees across all SSPs. For food production, SSP1 and SSP3 experienced the
least reduction, reaching +140% and +126% relative to the baseline. In terms of
aquatic yield, SSP1 and SSP2 showed the slowest declines (— 24% and — 4%,
respectively). SSP5 recorded the lowest provisioning services overall, with a 14%
drop in food production and a drastic 79% decline in aquatic yield. Regulating
services — represented by carbon emissions, carbon storage, aquatic production, and
biodiversity — exhibited distinct responses across SSPs. Carbon emissions increased
sharply under SSP5, peaking around 2050 before leveling off at +4346%. In contrast,
all other pathways showed varying degrees of reduction, with SSP1 achieving the
lowest emission levels (— 60%). Carbon storage declined steadily in SSP5, with a
marked drop after 2070 (— 27%). Other scenarios remained largely stable or showed
slight decreases. Notably, SSP4 experienced a minor cliff-like drop around 2080,
accelerating the decline (— 8%). Aquatic production followed three distinct patterns:
slight increases under SSP1 and SSP2 (similar to BAU), stabilization under SSP4 (—
31%), and sharp declines under SSP3 and SSP5 (— 83% and — 93%, respectively),
approaching near-zero levels. Biodiversity trends largely mirrored those of landscape
aesthetics, a cultural service indicator. SSP2 saw continuous improvement (similar to
BAU), SSP1 and SSP4 remained relatively stable (around — 52%), while SSP3 and
SSP5 declined moderately until 2044 before flattening out (approximately — 74%).

Under SSP5, the population continues to grow until 2050 and then stabilizes,
ultimately reaching a level 79% higher than BAU by 2100. In contrast, all other
scenarios experience population decline after 2035, albeit at varying rates. GDP
outcomes also vary across scenarios. SSP2 yields the most favorable economic

performance, closely aligning with the BAU trajectory. In comparison, SSP1 and
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SSPS5 result in the lowest GDP gains, both approximately 50% below BAU levels by

the end of the simulation.
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Figure 4.4-2 Social-economic and LULC simulation of ES-LULC nexus over the simulation
period (2020 - 2100) under different “what if’ scenarios and SSPs.
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4.5 Discussion

This study employed the SES perspective to assess the long-term co-evolution of
LULC and ESs in Shandong Province under varying socio-economic and climate
conditions. Under the BAU scenario, the model reveals growing tensions between
land system dynamics and the ecological capacity to support essential ESs. Although
the total population is projected to decline around 2030, the urbanization rate is
projected to reach 80% by 2040, driving continued growth in the urban population.
Urban land growth remains tightly coupled with demographic restructuring, reversing
after the urban population peaks. This trend is consistent with prior findings that
identify population thresholds as key constraints on urban land expansion in Shandong
(Wang et al., 2023). In contrast, cultivated land declines steadily under the combined
effects of urbanization and climate change, shrinking by nearly 70% by 2100 and
accompanied by a 60% drop in agricultural output — posing severe risks to regional
food security. This projection is consistent with a recent study showing that even
under a 1.5°C global warming scenario, China could lose up to 35% of its arable land
(Lv et al., 2025); under the BAU trajectory modelled here, the projected 3.24°C
increase implies even greater degradation risk. Although forest, shrubland, and water-
covered areas expand under restoration policies, such gains remain marginal relative
to extensive cropland loss, resulting in limited improvements in regulating and
cultural services. Notably, despite steep reductions in carbon emissions after 2040
under carbon neutrality efforts, carbon stocks continue to decline slightly, indicating
that early-stage land degradation has already compromised long-term sequestration
capacity (Lal et al., 2018; Zheng & Zheng, 2023b). Meanwhile, persistent warming
and reduced precipitation further constrain ecological recovery, limiting the

restoration potential of key regulating functions (Guo et al., 2024a).

Compared to the BAU scenario, the results indicate that ESs in Shandong are exposed
to compound risks driven by interacting climatic, hydrological, and socioeconomic
forces. Given its chronic water scarcity, Shandong’s ES-LULC system shows higher
sensitivity to precipitation variability than to temperature rise, positioning water
availability as a critical determinant of system stability (Fu et al., 2019; Liu et al.,

2024). Persistent warming (1.5 - 5.7°C), declining rainfall (— 50% to — 80%), and
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intensified water use jointly contribute to sharp declines across most ES and LULC
indicators. Under extreme hot-dry conditions, cropland and forest area shrink
significantly, water bodies vanish before 2050, and both provisioning and regulating
services collapse. This shift reflects the breakdown of internal feedbacks and the
severing of ecological linkages across services, signalling a transition into an
irreversible degradation trajectory (Steffen et al., 2018). Notably, excessive
precipitation does not necessarily improve system performance; in such scenarios,
agricultural land loss and service decline still occur, suggesting nonlinear and
threshold-based responses to hydrological input that destabilize land-service
coordination. In contrast, under the same extreme climate conditions, water-saving
strategies can delay the total loss of water bodies by approximately 30 years, offering
a limited but critical window to sustain core ecological functions. Previous studies
have similarly emphasized that managing the growth of agricultural and industrial
water use and optimizing water allocation structures can alleviate water scarcity in
Shandong and enhance overall system resilience (Zhang et al., 2022). These findings
highlight the need for resilience strategies that move beyond temperature mitigation

and focus on integrated water governance and strengthened cross-service feedback.

Socioeconomic variables and LULC trajectories significantly shape the structural
coordination and resilience of ES-LULC systems by reconfiguring development
intensity and spatial patterns. Simulation results indicate that population growth
coupled with declining CPI (Scenario 10) may enhance short-term provisioning
capacity and economic indicators, but also intensify the encroachment on natural land
systems such as forests and water bodies, leading to sustained degradation of
regulating and cultural services, including carbon storage, biodiversity, and landscape
aesthetics. This finding is also supported by Marques et al. (2019). In contrast,
population deceleration and reduced consumption (Scenario 9) help ease development
pressure, facilitate natural system recovery, and strengthen regulating functions. When
urbanization exceeds critical thresholds or farmland management intensifies
(Scenarios 30, 33 - 34), farming production may improve, but this is accompanied by
waterbody shrinkage, increased carbon emissions, and declining aquatic production
services, revealing weakened feedback coordination between provisioning and
regulating functions (Guo et al., 2024b). Under high-intensity afforestation pathways

(e.g., Scenario 44), regulating services such as carbon sequestration and biodiversity
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improve substantially, but are offset by the ongoing loss of cropland and water bodies,
resulting in sharp declines in food and aquatic production. Similar effects have been
noted by Fang et al. (2022b), who found that large-scale afforestation can reduce
water availability and contribute to the disappearance of aquatic ecosystems. Overall,
service coordination is highly sensitive to socioeconomic dynamics and LULC
interventions. Development pathways driven by single-objective priorities tend to
destabilize internal feedback mechanisms and erode system adaptability. Future
governance should be grounded in an integrated understanding of demographic
change, economic incentives, and spatial configuration to rebuild ecosystem service

coordination and long-term resilience.

Under the Shared Socioeconomic Pathways (SSPs), different development logics lead
to clearly differentiated trajectories in ESs and system resilience. SSP1, the
sustainability pathway, maintains strong service coupling through ecological
conservation and cross-sectoral governance, enabling positive outcomes such as water
and farmland restoration and carbon reduction, thereby demonstrating the highest
system resilience. SSP2 largely follows the BAU trend, with moderate ES fluctuations
and limited improvements in regulating functions or overall system structure. SSP3,
constrained by regional rivalry and fragmented governance, suffers from chronic
underinvestment in regulation; although farmland area remains high, water bodies,
biodiversity, and cultural ESs continue to decline, resulting in accumulating system
vulnerability. SSP4 exhibits localized structural gains — particularly in forest cover —
but widening social inequality and weak institutional coordination lead to uneven
access to regulating services, limited cultural recovery, and weak system coherence.
SSP5 reflects a rapidly degrading, resource-intensive trajectory characterized by
soaring emissions, regulatory collapse, and destabilized provisioning systems, pushing
the system toward irreversible thresholds, as also shown in the findings of Guo et al.
(2024b). Collectively, these scenarios illustrate that development pathways not only
influence ES levels but also shape functional integrity and tipping risks, underscoring
the need for recovery strategies grounded in structural pathway recognition and

process-based understanding (IPBES, 2019a).
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4.6 Policy Implications

This study highlights a dual challenge in regional development: managing land
abandonment driven by population decline, urban contraction, and natural land
degradation, while also fostering greater synergy between ES and economic growth.
To address this, there is an urgent need for integrated LULC and ecological
restoration policies that can guide the sustainable transformation of socio-ecological

systems.

All scenarios show same trend of population decline and urban contraction, especially
S1 to S3, which reduced expansion of construction land slows farmland loss. Rising
food prices temporarily stabilize primary sector GDP. However, this passive stability
conceals deeper risks, including declining productivity, labor shortages, irrigation
water scarcity, and farmland abandonment (Hou et al., 2021; Xu et al., 2019b).
Policymakers should address this structural lag by enhancing farmland use through
land revitalization, use-based incentives, agricultural insurance subsidies, and
coordinated food and water pricing mechanisms (Pan et al., 2022; Si et al., 2023), to
secure regional food supply and contribute to the SDG 2 goal of zero hunger through
sustainable agriculture. In China, and particularly in provinces such as Shandong
facing rural depopulation and underutilized farmland, this strategy is essential for
maintaining baseline food production capacity. Empirical evidence confirms that
targeted subsidies and pricing policies can effectively stabilize land productivity (Pan

et al., 2022).

Declining urban population and reduced demand for construction land have released
spatial resources, offering opportunities for ecological restoration and industrial

transition (S1 - S3, S31 - S32, S49). Forest recovery and landscape enhancement

have stimulated growth in the tertiary sector, reflecting a shift in land function from
construction to ecological and service-oriented uses (Puppim et al., 2022). To harness
this potential, policies should repurpose underused urban land into green-blue
infrastructure or multifunctional service spaces, supported by tax incentives,
transferable land quotas, and service-oriented development mechanisms. In the near

term, ecological zoning and multifunctional LULC mechanisms should be
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incorporated into urban renewal pilots to enhance implementation readiness, while
aligning with SDG 11 (Sustainable Cities) and SDG 15 (Life on Land). This global
perspective also resonates with China's National Territorial Spatial Planning Outline
(2021 - 2035), which emphasizes revitalizing underutilized land and improving

spatial efficiency (Central Committee of the CPC & State Council, 2021).

Under climate change and ongoing structural transition, drought and water scarcity
has become a critical constraint on food system stability, ecosystem service provision,
and urban—rural water supply reliability in Shandong (in S11 - 29) (Zhang et al.,
2022). A coordinated water security framework is needed to balance agricultural,
ecological, and domestic water demands. Key measures include expanding water-
saving irrigation, utilizing non-conventional water sources, enhancing supply
buffering systems (Owens et al., 2022; Ristvey et al., 2019), and establishing
ecological water allocation priority to safeguard river baseflows, wetland water levels,
and aquatic habitats (Li et al., 2021). Water governance should be embedded in an
integrated land—water—climate framework to enhance synergies among food security,
ecosystem services, and public health (Ramos et al., 2022). This strategy supports the
dual objectives of SDG 6 — improved agricultural efficiency and ecological restoration
— and aligns with the SSP1 sustainability pathway, which emphasizes resilient

regional water systems and ecological integrity.

Model results indicate that most system indicators remain stable or improve under
1.5 - 2.5°C warming, but risks rise sharply beyond 2.5 - 3°C (IPCC et al., 2021).
Without intervention, continued development along SSP3 - 5 pathways may
significantly undermine the region’s ability to achieve SDG 2, 6, and 13 (Roy et al.,
2024). A proactive temperature control approach is thus essential to meet the Paris
Agreement target of keeping global warming below 2°C (United Nations, 2015).
Regionally, this research recommends establishing dual carbon controls (total and
intensity), advancing energy system decarbonization, low-carbon land use, and
ecological carbon sink enhancement (Song et al., 2023; Zheng et al., 2019). These
measures should be integrated into a ES-LULC socio-economic governance
framework to strengthen long-term climate resilience and deliver cross-sectoral

mitigation benefits.
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4.7 Conclusion

This study finds that the combined effects of biophysical stressors — namely rising
temperatures and declining precipitation — and socio-economic transitions such as
population decline and rapid urbanization are accelerating the degradation of natural
land cover, with cascading impacts on ESs. Under the most extreme climate scenario
(a 5.7°C increase in temperature and 50% reduction in rainfall), all key ES indicators
decline simultaneously, natural land loss multiplies, and the system’s resilience
deteriorates sharply. The complete disappearance of surface water by 2050 emerges as
a clear warning of an impending ecological tipping point. Yet, the results also suggest
that adopting water-saving LULC practices could delay this collapse by up to 30

years, offering a window for adaptive intervention.

Simulations across SSPs show that divergent development trajectories have profound
implications for ecosystem dynamics. Regional fragmentation under SSP3, rising
inequality in SSP4, and fossil-fuel-driven growth in SSPS5 all contribute to varying
degrees of ecological degradation, particularly the erosion of regulating services such

as carbon storage and water retention.

Ensuring the long-term stability of ecological functions will require integrated, cross-
sectoral action. This includes maintaining the integrity of farmland, preventing land
abandonment and degradation, and reinforcing agricultural resilience through targeted
subsidies and technical support. Urban planning should prioritize the ecological
repurposing of underutilized land, including wetland restoration, green corridors, and
urban carbon sinks. Equally, water governance must prioritize ecological baseflows to
minimize unsustainable competition between agricultural and urban users. Most
importantly, the global temperature increase must be kept well below 2°C in
accordance with the Paris Agreement to prevent irreversible disruptions to regional
ecosystems (United Nations, 2015). Achieving this requires a comprehensive carbon
governance framework that targets both total emissions and emission intensity,

enabling coordinated management of land, water, and carbon systems.

As with any system dynamics approach, the model presented here is shaped by

structural and parametric assumptions that introduce some degree of uncertainty. The
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findings and recommendations should therefore be interpreted within the context of
these scenario-based constraints. While the model is applied to Shandong Province, its
core feedback structure and dynamic interactions are transferable. This framework
could be adapted to other regions experiencing similar resource and climate pressures,
such as South Asia or East Africa. Future work could expand the model’s scope by
incorporating more diverse LULC systems (e.g., livestock or cryosphere components),
accounting for intra-annual variability, integrating a broader range of climate variables
(e.g., wind, evapotranspiration), and simulating compound events such as alternating
droughts and floods. These enhancements would strengthen the model’s capacity to

support socio-ecological adaptation under accelerating global change.
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Chapter 5 Synthesis and conclusion

5.1 Knowledge contributions and synthesis across

the three papers

The first paper conducts a systematic review of 146 peer-reviewed studies on ES and
LULC interactions in China's mountainous regions, retrieved from Chinese (CNKI)
and English (Scopus, Web of Science) databases and published between 2007 and
2022. The analysis reveals significant differences in spatial scale, methodological
approaches, and temporal coverage. English-language studies emphasize regional-
scale assessments and process-based modelling, whereas Chinese-language studies
primarily adopt local-scale static valuation tables and ES mapping methods. These
divergent approaches contribute to fragmented evidence and hinder the policy
relevance of cross-scalar comparisons. Furthermore, nearly 78% of the studies adopt a
retrospective perspective, rarely considering systemic feedbacks or scenario-based
projections. The review identifies three critical gaps that shape the research agenda:
insufficient use of dynamic models, weak multi-scale integration, and a lack of
scenario-based system analysis. Collectively, these insights provide a conceptual and
methodological foundation for the thesis, guiding the empirical and modelling
components and framing a coherent agenda for advancing ES-LULC co-evolution

research in mountainous socio-ecological systems.

The second paper analyzes long-term time series data (1950 - 2020) from Shandong

Province to reveal coupled imbalances among LULC, ESs, and socio-economic
drivers. It identifies urban expansion, tourism development, and wetland loss as key
anthropogenic pressures driving the decline of regulating services and shaping
complex feedbacks within the socio-ecological system. Granger causality tests
establish lead—lag relationships among provisioning, regulating, and economic
variables, showing that urban growth consistently reduces wetlands, water bodies, and
carbon stocks, while tourism enhances provisioning services but intensifies regulatory
degradation. EKC modeling shows that most ESs do not exhibit recovery turning
points, challenging the prevailing assumption that economic growth inevitably yields

ecological restoration. PCA further reveals a marked decline in the connectivity of
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regulating services as GDP rises, indicating a progressive weakening of systemic
feedback integrity. Together, these findings provide a deeper empirical basis for
understanding ES-LULC co-evolution and offer critical input for structuring the

causal pathways in the system dynamics model developed in the subsequent chapter.

The third paper develops a regionally calibrated SD model to simulate the long-term
evolution of ES-LULC in Shandong Province under multiple socio-environmental
scenarios. Building on the empirical foundations of the previous chapter, the model
incorporates seven LULC categories and seven ES types, integrating key feedback
loops, trade-offs, and potential tipping points. Results reveal strong path dependency
and non-linear responses of the ES-LULC system to stressors such as warming,
drought, and urban expansion. For example, large-scale afforestation enhances carbon
storage but triggers water scarcity under reduced precipitation, while controlling urban
expansion slows the degradation of regulating services. Under compounded extreme
scenarios, services including water yield, aquatic production, and biodiversity exhibit
simultaneous declines around 2050, indicating proximity to a coupled system
threshold. The model also identifies effective intervention levers — such as water-
saving measures, farmland protection, and urban boundary control — that can delay
degradation and help keep the system within a safe operating space. This work
advances a novel modelling paradigm for detecting system thresholds and feedback-
sensitive risk zones, and provides a forward-looking tool to support adaptive ES-

LULC governance under uncertainty.

Taken together, the three papers establish a progressive and multi-dimensional
research framework that systematically investigates the co-evolution of ES-LULC in
mountainous China. From literature synthesis to empirical identification and dynamic
modeling, the research uncovers the temporal patterns, feedback structures, and
tipping risks within ES-LULC interactions. By integrating quantitative testing (e.g.,
Granger causality, EKC), structural analysis (e.g., SPCA), and system dynamics
modelling, this thesis advances the empirical foundations of complex SES dynamics
and offers a coherent toolkit for identifying systemic imbalances, assessing
transformation risks, and informing targeted interventions at the regional scale. This
integrative approach is particularly applicable to high-risk ecological contexts facing

intense resource pressures and socio-environmental change.
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5.2 Methodological and conceptual novelty

This research develops an integrated methodological framework to investigate ES-
LULC coupling dynamics and adaptive interventions in mountainous regions of
China. First, it applies the ROSES protocol to systematically review 146 peer-
reviewed articles in both Chinese and English, bridging language barriers and
revealing significant thematic gaps in ES-LULC research — particularly the lack of
dynamic modelling, scenario-based exploration, and multi-sectoral integration in
mountainous contexts. Second, it introduces a novel empirical framework that
combines Granger causality tests, EKC modelling, and sPCA to capture the
directional influence of socioeconomic processes, nonlinear ecosystem responses, and
structural degradation in system connectivity. Third, drawing on these empirical
findings, a regionally calibrated SD model is developed to simulate long-term ES-
LULC trajectories under integrated climate-land policy scenarios. This SD model
incorporates key feedback loops, trade-offs, and potential tipping points, offering a
robust tool for threshold identification and scenario-based governance. Collectively,
the study bridges the gap between empirical evidence and dynamic modelling,
advancing an adaptive, policy-relevant modelling paradigm for high-risk socio-

ecological systems under uncertainty.
5.3 Policy implications

This thesis advances an integrated understanding of how ES-LULC co-evolve under
the combined pressures of socioeconomic development and climate change, offering
empirically grounded and model-informed insights for future governance in Shandong
Province. The co-evolutionary analysis and system dynamics modelling collectively
demonstrate that the ES-LULC system exhibits strong path dependence, feedback
sensitivity and nonlinear responses—characteristics that conventional static
assessment tools are ill-equipped to capture. These findings underscore the need to
embed dynamic, threshold-aware modelling frameworks into existing planning and
regulatory instruments to enable more anticipatory and resilience-oriented land

governance.
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Shandong has implemented a range of ecological and land-use policies—including the
Ecological Redline system, permanent prime farmland protection, the Yellow River
Delta wetland conservation programme, Sponge City initiatives, basin-level
restoration projects, and the province’s 2021-2035 Territorial Spatial Plan—that
together provide an important institutional foundation for sustainable land
management. The results of this thesis, however, indicate that these instruments
remain insufficient for addressing deeper systemic risks, largely because they do not
yet incorporate cross-sectoral feedbacks, cumulative pressures, ecological thresholds
or long-term scenario foresight. As a consequence, governance outcomes often remain

fragmented and reactive.

Empirical findings (Chapter 3) identify urban expansion, wetland degradation and
tourism-driven land conversion as the principal forces driving the decline of
regulating services. These pressures require a shift from project-based and
engineering-oriented restoration towards more structural interventions—such as
enforceable urban growth boundaries, legally designated wetland buffer zones,
restrictions on ecological encroachment by tourism development and strengthened
high-quality cropland protection. The absence of ecological recovery turning points in
the EKC analysis, together with the observed decline in regulating-service
connectedness with rising GDP, further challenges the assumption that economic
growth alone will generate ecological improvement. As such, ecological thresholds
and feedback-sensitive constraints need to be formally integrated into land-use,
industrial and water-resource policies, promoting development pathways that

prioritise system stability.

The system dynamics simulations additionally reveal that water-related services may
approach critical thresholds around mid-century under high warming and drought
scenarios. At the same time, the model identifies several leverage points—including
water-saving policies, watershed and cropland protection, green agricultural practices
and urban containment—that can substantially slow ecological deterioration and help
maintain the system within its safe operating space. These results highlight a narrow
but consequential governance window before 2040 during which integrated land—
water reforms could prevent irreversible ecological losses. Given the compound

nature of socio-climatic pressures, single-policy interventions are insufficient; instead,
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coordinated governance frameworks that align spatial planning, ecological
compensation mechanisms and water-use regulation are required to achieve systemic

coherence.

Institutionalising resilience-oriented governance will require embedding ecological
thresholds into territorial spatial planning, river-basin management and environmental
impact assessments, thereby providing a regulatory basis for early warning and
adaptive policy adjustment. At the national level, aligning Shandong’s ES-LULC
governance with China’s broader Ecological Civilization agenda could transform
scenario-based modelling into an actionable policy trigger rather than a purely
analytical tool. By transitioning from fragmented, reactive governance to anticipatory,
systemic and adaptive approaches, Shandong Province can enhance the long-term
stability, resilience and sustainability of its ES-LULC system through the mid-21st
century and beyond.

5.4 Limitations and future improvement

Despite the substantial progress made in synthesizing literature, identifying causal
mechanisms, and developing dynamic simulations of ES-LULC interactions, this

study has several limitations that merit further development.

First, the breadth and contextual depth of the literature integration can be improved.
While the review followed the ROSES protocol and synthesized 146 Chinese- and
English-language studies — offering a rare focus on ES-LULC dynamics in China’s
mountainous regions — it remained constrained by database coverage and limited
disciplinary crossover. In particular, the review did not systematically capture how
institutional evolution and policy contexts shape ES-LULC trajectories. Future work
should incorporate multilingual, multi-scalar bibliometric approaches to build a more

holistic map of governance, policy and ecological linkages.

Second, the empirical modelling of ES remains limited in ecological representation.
Although the Granger-EKC-sPCA framework effectively captured GDP-ES
connectivity, several regulating services were measured through indirect proxies, and

climate and governance drivers were not fully incorporated. Moreover, ES were
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primarily inferred from LULC transitions, without integrating key process-based
ecological variables (e.g., soil moisture, groundwater, pollution loads). Future
research should incorporate remote sensing and sensor-based data, as well as

institutional indicators, to enhance both ecological realism and policy relevance.

Third, the SD model’s structural flexibility and cross-regional applicability remain
limited. While the model successfully integrated policy interventions, climate-LULC
scenarios, and feedback loops to identify potential tipping points, it was calibrated for
a single region and did not capture cross-regional interactions, market coupling, or
global feedbacks. Its scenario design was also based on static assumptions, lacking
institutional inertia and adaptive behaviour. Future extensions should incorporate
agent-based modelling (ABM) to capture human behaviour and response to changes in
ES and LULC, institutional change pathways, and uncertainty propagation

mechanisms to better reflect the complexity of SES dynamics.

Fourth, the translation of model outcomes into actionable tools remains
underdeveloped. Although the SD model supports scenario simulation and critical
threshold identification, it has not yet been operationalized through interactive
interfaces or aligned with local planning systems. Future efforts should focus on
building user-friendly visualization platforms and early-warning tools to support

multi-agency coordination and participatory decision-making.

In sum, this study builds a foundational ES-LULC modelling framework across
literature synthesis, empirical diagnosis, and dynamic simulation. Future research
should deepen this foundation through cross-scale coupling, process-based ecological
integration, behavioural governance modelling, and decision-oriented tool

development — facilitating a shift from system diagnosis to policy design.

5.5 Conclusion

This dissertation systematically investigates the co-evolution between LU and ESs in
mountainous regions of China, establishing an integrated analytical framework that
links literature synthesis, empirical identification, and dynamic simulation. First, the

review chapter provides the first focused synthesis of ES-LULC research in Chinese
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mountains, highlighting spatial, methodological, and scenario-based gaps. It reveals a
lack of system-level understanding of SES feedbacks and institutional dynamics,
offering contextual and theoretical foundations for subsequent modeling. Second,
based on provincial time-series data from Shandong (1950 - 2020), the study develops
an empirical framework combining Granger causality, EKC modeling, and sPCA.
Results identify urban expansion, tourism-driven conversion, and wetland loss as key
drivers of sustained declines in regulating services. ES connectivity declines
continuously with GDP growth, without recovery turning points — challenging the
classical assumption that economic growth leads to ecological improvement. Third, a
regionally calibrated SD model simulates ES-LULC trajectories and potential tipping
points under multiple scenarios (2020 - 2100). Under extreme warming and drought,
services such as water provision, biodiversity, and water retention show synchronized
degradation by mid-century. Yet, targeted interventions — such as water-saving
practices, farmland protection, and urban boundary control — can help maintain the

system within a safe operating space and delay critical transitions.

Together, these studies establish a closed-loop methodological pathway for ES-LULC
research, bridging theoretical framing, empirical evidence, and dynamic simulation.
The research offers practical tools and strategic insight into feedback mechanisms,
coupling risks, and governance levers in complex SESs. It emphasizes the need to
shift from static evaluation to adaptive control, and from fragmented responses to
integrated governance—providing scientific foundations and policy guidance for

managing land and ESs in high-risk mountain regions under increasing uncertainty.
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Chapter 6 Appendix

6.1 Appendix A

Supplementary material: Chapter 2

6.1.1Systematic review addressed in different categories

and description

Table 6.1-1 Systematic review addressed in different categories and description.

HEADERS Factor DESCRIPTION
SL. No. Serial number of paper (Unique ID)
Year Year of publication (Integer)
Authors All authors of the paper
Title Title of the papers reviews
Journal Name of the journal
Type of Category the published manuscript namely, article/book
research chapters
Keywords Keywords of the published article - (factor)
Aim/to fill the . o
Main objective of the paper

gap

Patch 10-10% km?

Local 10*-10° km?
Spatial scale | Regional 10°-10° km?

National 10°-10° km?

Location of
the study

Area

Location of the research study area
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Those that simulate or project land use or ecosystem services

Future o
beyond the publication date.
Those using data collected within three years prior to
Temporal Current o
publication
scale . .
Those using data collected more than three years prior to the
Historical o
publication date of the article.
Cross-
scale
Not
indicated
Studies that primarily focus on human perceptions,
behaviors, or social valuation of ecosystem services (e.g.,
Social )
stakeholder surveys, community-based assessment,
willingness-to-pay studies).
Studies that emphasize biophysical processes, ecological
Ecological | mechanisms, or natural dynamics of ES and LULC (e.g.,
InVEST, CASA, soil erosion models).
Studies that assess the monetary value of ecosystem services
Economic or economic impacts of land use change, using market-based
Systematic or valuation models.
Focus S Studies that integrate both social and ecological dimensions,
ocial-
e.g., combining ES supply with stakeholder demand, or
ecological ) ) o )
spatial mapping with livelihood impacts.
Studies linking ecological data or models with economic
Ecological- . . . _ )
valuation, such as biophysical modeling + ESV calculation
economic ] .
or cost-benefit analysis of land use decisions.
Studies that explore human perceptions, behavior, and
Social- _ ) .
economic valuation, but do not directly include ecological
economic
data or models.
other
Primary Data derived from sampling in the field (e.g., field data,
data surveys, or interviews or census data)
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Data types which were derived from other readily available

Secondary | information and not verified in the field (e.g., remote-sensed
Types of data data, socioeconomic data, and mixed sources like databases
data like global statistics)
SORTEES Database (global statistics, e.g., map of carbon storage and
Mixed data | FAO reports), bibliography, modeling, surveys, and field
data.
Whether Ecosystem Services have been mentioned/identified
Types of ES in the article.
Provisioning Products obtained from ecosystems, such as water, food,
fiber, etc.
Ecosystem services that regulate the environmental
Regulating conditions in which human beings live (e.g., climate
regulation, hydrological cycles, water quality)
Basic ecosystem services that maintain the generation of all
Supporting
other ES (e.g., soil formation, pollination, nutrient cycling)
Both tangible and intangible benefits derived from the
Cultural ecosystem, such as recreation, aesthetics, spiritual benefits,
and so on
Number of At least one MES type should be studied: climate regulation,
MES fn erosion control, water purification, air quality, pest
number
assessed regulation, etc.
Land use Type of land use analyse or land use change has been
change type mentioned
Relationship
of ES and How about the relationship of ES and LUCC
LUCC
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Those that analyze the temporal dynamics of ecosystem
services (MES) and/or land use/land cover (LULC)
Evolution . o
based on three or more time points, in order to track
long-term changes, transitions, or trends.
Refer to the relationships among multiple ecosystem
Trade- services or between ES and LULC, where the increase in
offs/synergy one service or land use outcome leads to the increase
Relationship (synergy) or decrease (trade-off) in another.
of ES and ;
Refer to natural or anthropogenic factors that cause
LUCC Drive _ . . o
changes in ES and/or LULC, either directly or indirectly
Refers to the observable effects or outcomes resulting
from changes in land use/cover or ecosystem services,
Impact ) . )
often expressed in terms of ecological degradation,
service loss, or socio-economic consequences
Evolution and
Trade-
off/synergy
Mixed
qualitative Expressing the ES value with verbal terms
quantitate Expressing the ES values using tons/year/or/hectare
Mix
Not indicated

Approach

Agent-based

model

An agent-based model (ABM) is a computational model
for simulating the actions and interactions of
autonomous agents (both individual or collective entities
such as organizations or groups) in order to understand
the behaviour of a system and what governs its

outcomes.
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look-up tables

A kind of benefit transfer, which is based on national-

scale assessment tables of ecosystem service values

System dynamics

System dynamics (SD) is an approach to understanding
the nonlinear behaviour of complex systems over time
using stocks, flows, internal feedback loops, table

functions and time delays

Network analysis

Network analysis (NA) is a set of integrated techniques
to depict relations among actors and to analyze the
social structures that emerge from the recurrence of

these relations

Statistical such as correlation, were used to quantify the
analysis relationships in basis of conceptual models
expert To leverage the expertise of individuals with specialized
knowledge knowledge to identify and solve problems
A role-playing game (sometimes spelled roleplaying
game; abbreviated RPG) is a game in which players
assume the roles of characters in a fictional setting.
Role play game Players take responsibility for acting out these roles
within a narrative, either through literal acting or
through a process of structured decision-making
regarding character development
Participatory approaches (such as questionnaires, focus
Participatory group) were increasingly used to elucidate the
research importance and contributions ecosystem services to
human well-being.
Mode of Those that analyze the temporal dynamics of ecosystem
Evolution
assessment services (MES) and/or land use/land cover (LULC) based
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on three or more time points, in order to track long-term
changes, transitions, or trends.
The process of assigning monetary value to ecosystem
Economic services, typically using methods such as market pricing,
valuation value transfer, willingness-to-pay, or cost—benefit
analysis.
That means driving or impact or trade-offs relationship
Relationship '
analysis
Studies showing the spatial distribution of the MES or
Mapping
LULC
Mapping and
Relationship
Mapping and
Evolution
Mapping and
Economic
valuation
Yes
Limitation
No
Recommendations
Refer to the ecological, biophysical, or social thresholds
beyond which continued land use or ecosystem service
Limits to MG N . . .
exploitation risks causing irreversible degradation or system
sustainability collapse.
No
Scenarios describe possible future conditions under specific
assumptions or policy settings, while pathways refer to the
Scenarios/ Yes . . .
trajectories or sequences of changes leading toward those
Pathways .
scenarios.
No
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Gaps refer to what is missing in current research, while
Challenges or gaps | Yes [ challenges refer to what is difficult to achieve or address,
even when recognized
No
Refer to the priority areas, approaches, and innovations that
Future research Yes | should be pursued in order to address current gaps and
direction challenges and advance the field.
No
Main findings Main finding or achievement of the article

6.1.2 Full-text screening list of the systematic review

Table 6.1-2 Full-text screening list of literature review (in English) -121 articles.

Year | Journal Title Author
2024 | Sustainabi | A Multi-Objective Scenario Study of
lity County Land Use in Loess Hilly
Areas: Taking Lintao County as an
Example
2024 | Sustainabi | Analysis of Spatial—Temporal Ting Li 1, Donghui Shi 2,
lity Variation in Ecosystem Service Value | Shuguang Jiang 2, Yu Li
in Shandong Province over the Last 2,* and Huilu Yu 1,*
Two Decades
2024 | Open Assessment and multi-scenario Bing Zhu, Yan Yang*, Yu
agricultur | simulation of ecosystem service values | Meng, Juan Chen
e in Southwest China's mountainous and
hilly region
2024 | Sustainabi | Construction of the Ecological Mengmeng Yan 1, Jilin
lity Security Pattern in Xishuangbanna Duan 1,*, Yubin Li 2, Yang
(switzerla | Tropical Rainforest Based on Circuit Yu 3, Yu Wang 1, Jiawei
nd) Theory Zhang 1 and Yu Qiu 1
2024 | Scientific | Ecological protection makes the Xiaoyang Liu, Hongwei
reports ecological Kuznets curve turning point | Wang, Songhong Li &
come earlier Liyang Wang
2024 | Global Ecological redline policy strengthens Lijuan Wang a, Hua Zheng b
ecology sustainable development goals through | ¢, Yongzhe Chen d, Binbin
and the strict protection of multiple Huang b c
conservati | ecosystem services
on
2024 | Sustainabi | Ecological Security Patterns Research | Qiang Wu 1 and Yunchuan
lity Based on Ecosystem Services and Dai 2,
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6.2 Appendix B

Supplementary material: Chapter 2

6.2.1 Temporal Trend Visualization of ES and LULC
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Figure Land use change trend.
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Figure 6.2-1 Wastewater discharge, air pollution emission and solid waste.
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Figure 6.2-2 Seasonal and annual rainfall and temperature changes.
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Figure 6.2-3 Hazard affected sown area and damaged sown area.
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Figure 6.2-4 Different hazards affected area.
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Figure 6.2-5 Hazards affected population.
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Figure 6.2-6 Afforestation and forest usage.
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Figure 6.2-7 Afforestation and timber production.

6.2.2 SPCA and Early Warning Signals (EWS)

To detect structural evolution, potential regime shifts, and resilience changes in ES,
this study employed sPCA approach. These methods were applied to three
subsystems: (1) internal ES dynamics, (2) ES-LULC coupling, and (3) ES-GDP
interactions. This combined approach has proven effective for diagnosing instability
and reorganization in complex social-ecological systems (Scheffer et al., 2009; Dakos

etal., 2012).
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6.2.2.1 Method Overview

This section outlines the integrated approach of SPCA employed in this study to
identify structural changes and potential tipping dynamics in the ES system. The

method consists of three main steps:

(1) Rolling SPCA Analysis

SPCA uses a moving-window strategy to calculate the cumulative variance explained
by the first three principal components (PC1, PC1 + PC2, and PC1 + PC2 + PC3).

These components reflect the degree of structural coherence and coordination among
system variables over time. This dynamic approach captures the evolving patterns of

system organization.

(2) Change Point Detection

Structural change points are identified based on the rolling slope of the principal
component trends. These change points are marked with red dashed lines in the trend
plots, indicating moments when the system shifts from one dominant structural regime

to another.

(3) Early Warning Signal (EWS) Indicators

To detect early signs of declining system resilience or impending instability, three

standard indicators from the EWS framework are applied:

AR(1) (Autocorrelation at lag-1): Measures the correlation between consecutive
observations. An increasing AR(1) trend indicates rising memory in the system, which

is a typical signal of critical slowing down—a precursor to potential regime shifts.

SD (Standard Deviation): Reflects the overall variability of the system. A rising SD
suggests increasing fluctuations, which may indicate weakening resilience and higher

volatility.
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Skew (Skewness): Measures the asymmetry in the distribution of system states.
Increases in skewness imply a higher frequency of extreme states, potentially

reflecting structural shifts or the emergence of a new system regime.

These indicators are calculated using the same moving-window approach as SPCA
and are plotted over time to assess whether the ES system shows signs of approaching

instability or undergoing structural reorganization.

6.2.2.1.1 Code of SPCA analysis and EWS between provisioning services

and regulating services

# Step 1: Load Libraries and Data

library(zoo)

library(ggplot2)

library(Kendall)

library(EWSmethods)

data <- read.csv("ES.csv") # Replace with your filename

time column <- "Year"

# Interpolate missing values (excluding time column)

data_interp <- data

for (col in names(data)[-which(names(data) == time column)]) {
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data_interp[[col]] <- na.spline(data[[col]])

# Step 2: SPCA (Sequential PCA: PC1, PC1+2,
PC1+2+3)

window_size <- 20

num_windows <- nrow(data_interp) - window_size + 1

variance pcl <- numeric(num_windows)

variance pc2 <- numeric(num_windows)

variance pc3 <- numeric(num_windows)

for (i in 1:num_windows) {

window_data <- data_interp[i:(i + window_size - 1), ]

pca_result <- prcomp(window_data[, -which(names(window_data) ==

time column)], scale. = TRUE)

total var <- sum(pca_result$sdev”2)

variance pcl[i] <- pca_result$sdev[1]"2 / total var

variance pc2[i] <- sum(pca_result$sdev[1:2]"2) / total var



166

variance pc3[i] <- sum(pca_result$sdev[1:3]"2) / total var

# Mid-year of each rolling window

center years <- data_interp$Year[(window_size:nrow(data_interp)) -

floor(window_size / 2)]

result data <- data.frame(

Year = center_years,

PC1 = variance pcl,

PC2 = variance pc2,

PC3 = variance pc3

# Step 3: Change Point Detection via Rolling Slope
(on PC1+PC2)

roll_slope <- zoo::rollapply(result_data$PC2, width =5,

FUN = function(x) coef(Im(x ~ seq_along(x)))[2],

fill = NA, align = "right")
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threshold <- quantile(roll_slope, 0.1, na.rm = TRUE)

change years <- result data$Year[which(roll_slope < threshold)]

# Step 4: Mann-Kendall Trend Test (on PC1+PC2)

mk_test <- MannKendall(result data$PC2)

mk p value <- mk_test$sl

# Step 5: Early Warning Signals
(EWSmethods::uniEWS)

ews_input <- data.frame(

time = result data$Year,

abundance = result_data§PC2

ews_result <- uniEWS(

data = ews_input,

metrics = c¢("SD", "arl", "skew"), # Optional: kurt, cv

method = "rolling",
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winsize = 20

# Print Kendall tau values for EWS metrics

print(ews_resultSEWSS$cor)

# Step 6: Plot SPCA Trend and Change Points

ggplot(result_data, aes(x = Year)) +

geom_line(aes(y = PC1, color = "PC1"), size = 1) +

geom_line(aes(y = PC2, color = "PC1+PC2"), size = 1) +

geom_line(aes(y = PC3, color = "PC1+PC2+PC3"), size = 1) +

geom_vline(xintercept = change years, linetype = "dashed", color = "red") +

labs(title = "SPCA Trend of Ecosystem Service Variables",

subtitle = paste("Mann-Kendall p-value (PC1+PC2):", round(mk p value, 4)),

x ="Year", y = "Proportion of Variance", color = "Principal Component") +

scale color manual(values = ¢("PC1" = "red", "PC1+PC2" = "green",

"PCI1+PC2+PC3" = "blue")) +

theme minimal(base size = 14)
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# Save plot

ggsave("SPCA_ES trend with change.tiff", width = 10, height = 6, dpi = 300)

# Step 7: Visualize EWS Metrics

plot(ews_result)

# Step 8: Export SPCA Trend and Change Points

write.csv(result data, "SPCA ES Proportion_Trends.csv", row.names = FALSE)

write.csv(data.frame(Change Year = change years),

"SPCA_ES Change Points.csv", row.names = FALSE)

# Step 9: Export Full-Sample PCA Loadings

pca_full <- prcomp(data_interp[, -which(names(data_interp) == time_column)], scale.

= TRUE)

variances <- pca_full$sdev”2

loadings <- pca_full$rotation
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proportion_of variance <- variances / sum(variances)

cumulative proportion <- cumsum(proportion_of variance)

result loadings <- data.frame(

Principal Component = 1:length(variances),

Variance = variances,

Proportion_of Variance = proportion_of variance,

Cumulative Proportion = cumulative proportion

# Add variable-wise loadings

for (i in 1:ncol(loadings)) {

result loadings[[paste0("Loading PC", 1)]] <- loadings], i]

result loadings$Variable <- rownames(loadings)

# Save to CSV

write.csv(result loadings, "SPCA result loadings ES.csv", row.names = FALSE)



6.2.2.1.2 Code of SPCA analysis and EWS between ESs and LULC

# Step 1: Load Libraries and Data

library(zoo)

library(ggplot2)

library(Kendall)

library(EWSmethods)

data <- read.csv("ES@.csv") # < Replace with your filename

time column <- "Year"

# Interpolate missing values (excluding Year)

data_interp <- data

for (col in names(data)[-which(names(data) == time column)]) {

data_interp[[col]] <- na.spline(data[[col]])

# Step 2: SPCA (PC1, PC1+2, PC1+2+3)
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window_size <- 20

num_windows <- nrow(data_interp) - window_size + 1

variance pcl <- numeric(num_windows)

variance pc2 <- numeric(num_windows)

variance pc3 <- numeric(num_windows)

for (i in 1:num_windows) {

window_data <- data_interp[i:(i + window_size - 1), ]

pca_result <- prcomp(window_data[, -which(names(window_data) ==

time column)], scale. = TRUE)

total var <- sum(pca_result$sdev”2)

variance pcl[i] <- pca_result$sdev[1]"2 / total var

variance pc2[i] <- sum(pca_result$sdev[1:2]"2) / total var

variance pc3[i] <- sum(pca_result$sdev[1:3]"2) / total var

# Mid-year of each window
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center years <- data_interp$Year[(window_size:nrow(data_interp)) -

floor(window_size / 2)]

result data <- data.frame(

Year = center_years,

PC1 = variance pcl,

PC2 = variance pc2,

PC3 = variance pc3

# Step 3: Change Point Detection (Rolling Slope)

roll_slope <- zoo::rollapply(result_data$PC2, width =5,

FUN = function(x) coef(Im(x ~ seq_along(x)))[2],

fill = NA, align = "right")

threshold <- quantile(roll_slope, 0.1, na.rm = TRUE)

change years <- result data$Year[which(roll_slope < threshold)]

# Step 4: Mann-Kendall Trend Test
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mk_test <- MannKendall(result data$PC2)

mk p value <- mk_test$sl

# Step 5: Early Warning Signals (EWSmethods)

ews_input <- data.frame(

time = result data$Year,

abundance = result_data§PC2

ews_result <- uniEWS(

data = ews_input,

metrics = c¢("SD", "arl", "skew"), # Optional: add kurt, cv

method = "rolling",

winsize = 20

# Print Kendall tau values for EWS metrics

print(ews_resultSEWSS$cor)
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# Step 6: Plot SPCA Trend

ggplot(result _data, aes(x = Year)) +

geom_line(aes(y = PC1, color = "PC1"), size =1) +

geom_line(aes(y = PC2, color = "PC1+PC2"), size = 1) +

geom_line(aes(y = PC3, color = "PC1+PC2+PC3"), size = 1) +

geom_vline(xintercept = change years, linetype = "dashed", color = "red") +

labs(title = "SPCA Trend of ES + LULC Variables",

subtitle = paste("Mann-Kendall p-value (PC1+PC2):", round(mk p value, 4)),

x ="Year", y = "Proportion of Variance", color = "Principal Component") +

scale color manual(values = c("PC1" = "red", "PC1+PC2" = "green",

"PC1+PC2+PC3" = "blue")) +

theme minimal(base size = 14)

# Save plot

ggsave("SPCA_ES LULC trend with change.tiff", width = 10, height = 6, dpi =
300)
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# Step 7: Visualize EWS Metrics

plot(ews_result)

# Step 8: Export Trend & Change Point

write.csv(result data, "SPCA_ES LULC Proportion Trends.csv", row.names =

FALSE)

write.csv(data.frame(Change Year = change years),

"SPCA _ES LULC Change Points.csv", row.names = FALSE)

# Step 9: Export PCA Loadings (Full Sample)

pca_full <- prcomp(data_interp[, -which(names(data_interp) == time_column)], scale.

= TRUE)

variances <- pca_full$sdev”2

loadings <- pca_full$rotation

abs_loadings <- abs(loadings)

proportion_of variance <- variances / sum(variances)

cumulative proportion <- cumsum(proportion_of variance)
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result loadings <- data.frame(

Principal Component = 1:length(variances),

Variance = variances,

Proportion_of Variance = proportion_of variance,

Cumulative Proportion = cumulative proportion

# Add loadings per variable

for (i in 1:ncol(loadings)) {

result loadings[[paste0("Loading PC", 1)]] <- loadings], i]

result loadings$Variable <- rownames(loadings)

# Save loadings

write.csv(result loadings, "SPCA result loadings ES LULC.csv", row.names =

FALSE)



6.2.2.1.3 Code of SPCA analysis and EWS about all ESs and GDP and

population

# Step 1: Load Data and Apply Interpolation

library(zoo)

library(ggplot2)

library(Kendall)

library(EWSmethods)

data <- read.csv("ES-.csv") # < Replace with your filename

time column <- "Year"

# Apply spline interpolation to missing values (excluding the time column)

data_interp <- data

for (col in names(data)[-which(names(data) == time column)]) {

data_interp[[col]] <- na.spline(data[[col]])
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# Step 2: SPCA - Proportion of Variance Explained

window_size <- 20

num_windows <- nrow(data_interp) - window_size + 1

variance pcl <- numeric(num_windows)

variance pc2 <- numeric(num_windows)

variance pc3 <- numeric(num_windows)

for (i in 1:num_windows) {

window_data <- data_interp[i:(i + window_size - 1), ]

pca_result <- prcomp(window_data[, -which(names(window_data) ==

time column)], scale. = TRUE)

total var <- sum(pca_result$sdev”2)

variance pcl[i] <- pca_result$sdev[1]"2 / total var

variance pc2[i] <- sum(pca_result$sdev[1:2]"2) / total var

variance pc3[i] <- sum(pca_result$sdev[1:3]"2) / total var
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# Create results dataframe using the center year of each window

center years <- data_interp$Year[(window_size:nrow(data_interp)) -

floor(window_size / 2)]

result data <- data.frame(

Year = center_years,

PC1 = variance pcl,

PC2 = variance pc2,

PC3 = variance pc3

# Step 3: Change Point Detection Using Rolling Slope

roll_slope <- zoo::rollapply(result_data$PC2, width =5,

FUN = function(x) coef(Im(x ~ seq_along(x)))[2],

fill = NA, align = "right")

threshold <- quantile(roll_slope, 0.1, na.rm = TRUE) # Bottom 10% slope as

potential change points

change years <- result data$Year[which(roll_slope < threshold)]
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# Step 4: Mann-Kendall Trend Test

mk_test <- MannKendall(result data$PC2)

mk p value <- mk_test$sl # Significance level of trend (p < 0.05 indicates

significance)

# Step 5: Early Warning Signals
(EWSmethods::uniEWS)

ews_input <- data.frame(

time = result data$Year,

abundance = result_data§PC2

ews_result <- uniEWS(

data = ews_input,

metrics = ¢("SD", "arl", "skew"), # Optional: "kurt", "cv", etc.

method = "rolling",

winsize = 20
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# Print Kendall tau values for EWS indicators

print(ews_resultSEWSS$cor)

# Step 6: Plot SPCA Trend and Change Points

ggplot(result_data, aes(x = Year)) +

geom_line(aes(y = PC1, color = "PC1"), size =1) +

geom_line(aes(y = PC2, color = "PC1+PC2"), size = 1) +

geom_line(aes(y = PC3, color = "PC1+PC2+PC3"), size = 1) +

geom_vline(xintercept = change years, linetype = "dashed", color = "red") +

labs(title = "SPCA Trend of ES + GDP Variables",

subtitle = paste("Mann-Kendall p-value (PC1+PC2):", round(mk p value, 4)),

x ="Year",

y = "Proportion of Variance",

color = "Principal Component") +

scale color manual(values = ¢("PC1" = "red", "PC1+PC2" = "green",

"PCI1+PC2+PC3" = "blue")) +

theme minimal(base size = 14) +

theme(
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plot.title = element _text(face = "bold", size = 16),

legend.position = "top"

# (Optional) Save the figure in high resolution

ggsave("SPCA_ES GDP trend with change.tiff", width = 10, height = 6, dpi = 300)

# Step 7: Visualize Early Warning Signals

plot(ews_result)

# Step 8: Export SPCA Trend and Detected Change

Points

write.csv(result _data, "SPCA_ES GDP_Proportion_Trends.csv", row.names =

FALSE)

write.csv(data.frame(Change Year = change years),

"SPCA _ES GDP_Change Points.csv", row.names = FALSE)
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6.2.3 EKC analysis

6.2.3.1 Method of EKC analysis

To evaluate whether environmental indicators follow the Environmental Kuznets
Curve (EKC) hypothesis in the study region, this study conducted a series of quadratic
regression analyses between per capita GDP and multiple ecosystem-related variables,
including air pollution, wastewater discharge, forest cover, soil erosion, impervious

surface, high-quality habitat, and low-quality habitat.

First, this study applied spline interpolation (zoo::na.spline) to fill missing values in

the time series data to ensure continuity.

Second, scatter plots were generated to visually inspect potential nonlinear

relationships between GDP and each environmental indicator.

Then, quadratic models of the form y ~ GDP + GDP? were fitted for each variable,
and fitted curves were added to the plots to identify potential inverted-U or U-shaped

patterns.

Finally, regression coefficients and p-values were extracted, and a faceted multi-panel
EKC plot was created to summarize the economic—ecological response patterns across

all indicators.

6.2.3.2 Code of EKC analysis in R

data <- read.csv("EKC.csv")

library(zoo)

# Interpolate missing values for each environmental indicator
forestcover_interp <- na.spline(data$forestcover)

print(forestcover_interp)



airpollution_interp <- na.spline(data$airpollution)

print(airpollution_interp)

Impervious_interp <- na.spline(data§Impervious)

print(Impervious_interp)

Wastewater interp <- na.spline(data$Wastewater)

print(Wastewater interp)

Low_interp <- na.spline(data§Low)

print(Low _interp)

Highhabitat _interp <- na.spline(data§Highhabitat)

print(Highhabitat interp)

# Install and load necessary packages

install.packages("ggplot2") # For plotting

install.packages("Imtest") # For extended regression testing

library(ggplot2)

library(Imtest)

# Load dataset again (ensure the file is in the working directory)

data <- read.csv("EKC.csv")
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# Draw scatter plots: GDP vs. Environmental Indicators

ggplot(data, aes(x = GDP, y = airpollution)) +

geom_point() +

labs(x = "GDP", y = "Air Pollution") +

ggtitle("Scatter Plot of GDP vs. Air Pollution")

ggplot(data, aes(x = GDP, y = Wastewater)) +

geom_point() +

labs(x = "GDP", y = "Wastewater") +

ggtitle("Scatter Plot of GDP vs. Wastewater")

ggplot(data, aes(x = GDP, y = forestcover)) +

geom_point() +

labs(x = "GDP", y = "Forest Cover") +

ggtitle("Scatter Plot of GDP vs. Forest Cover")

ggplot(data, aes(x = GDP, y = soilerosion)) +

geom_point() +
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labs(x = "GDP", y = "Soil Erosion") +

ggtitle("Scatter Plot of GDP vs. Soil Erosion")

ggplot(data, aes(x = GDP, y = Impervious)) +

geom_point() +

labs(x = "GDP", y = "Impervious Land") +

ggtitle("Scatter Plot of GDP vs. Impervious Land")

ggplot(data, aes(x = GDP, y = Highhabitat)) +

geom_point() +

labs(x = "GDP", y = "High Habitat") +

ggtitle("Scatter Plot of GDP vs. High Habitat")

ggplot(data, aes(x = GDP, y = Low)) +

geom_point() +

labs(x = "GDP", y = "Low Habitat") +

ggtitle("Scatter Plot of GDP vs. Low Habitat")
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# Combine multiple plots into one canvas (optional)

library(gridExtra)

plotl airpollution <- ggplot(data, aes(x = GDP, y = airpollution)) +

geom_point() +

labs(x = "GDP", y = "Air Pollution")

plot2 Wastewater <- ggplot(data, aes(x = GDP, y = Wastewater)) +

geom_point() +

labs(x = "GDP", y = "Wastewater")

plot3 forestcover <- ggplot(data, aes(x = GDP, y = forestcover)) +

geom_point() +

labs(x = "GDP", y = "Forest Cover")

plot4 soilerosion <- ggplot(data, aes(x = GDP, y = soilerosion)) +

geom_point() +

labs(x = "GDP", y = "Soil Erosion")
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plot5 Impervious <- ggplot(data, aes(x = GDP, y = Impervious)) +

geom_point() +

labs(x = "GDP", y = "Impervious Land")

plot6_Highhabitat <- ggplot(data, aes(x = GDP, y = Highhabitat)) +

geom_point() +

labs(x = "GDP", y = "High Habitat")

plot7 Low <- ggplot(data, aes(x = GDP, y = Low)) +

geom_point() +

labs(x = "GDP", y = "Low Habitat")

# Arrange all plots together

grid.arrange(plot]_airpollution, plot2 Wastewater, plot3_forestcover,

plot4_soilerosion, plot5 Impervious, plot6 Highhabitat, plot7 Low,

ncol = 3) # Adjust number of columns as needed
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# Polynomial regression (quadratic) for each environmental indicator

# Example: air pollution

modell <- Im(airpollution ~ GDP + I(GDP"2), data = data)

summary(modell)

ggplot(data, aes(x = GDP, y = airpollution)) +

geom_point() +

geom_smooth(method = "Im", formula =y ~ x + [(x"2), se = FALSE, color = "red")
+

labs(x = "GDP", y = "Air Pollution") +

ggtitle("Quadratic Regression: Air Pollution")

anova(modell)

# Repeat for other indicators

model2 <- Im(Wastewater ~ GDP + [(GDP”2), data = data)

summary(model2)

anova(model2)
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model3 <- Im(forestcover ~ GDP + [(GDP"2), data = data)

summary(model3)

anova(model3)

model4 <- Im(soilerosion ~ GDP + I(GDP*2), data = data)

summary(model4)

anova(model4)

model5 <- Im(Impervious ~ GDP + [(GDP”2), data = data)

summary(model5)

anova(model?)

model6 <- Im(Highhabitat ~ GDP + [(GDP"2), data = data)

summary(model6)

anova(model6)

model7 <- Im(Low ~ GDP + I(GDP”2), data = data)

summary(model7)
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anova(model7)

# Store coefficients and p-values for all models

results <- data.frame(

Environment = ¢("Air Pollution", "Wastewater", "Forest Cover", "Soil Erosion",

"Impervious Land", "High Habitat", "Low Habitat"),

Coef Intercept = c(coef(modell)[1], coef(model2)[1], coef(model3)[1],
coef(model4)[1], coef(model5)[1], coef(model6)[1], coef(model7)[1]),

Coef GDP = c(coef(modell)[2], coef(model2)[2], coef(model3)[2],
coef(model4)[2], coef(model5)[2], coef(model6)[2], coef(model7)[2]),

Coef GDP2 = c(coef(modell)[3], coef(model2)[3], coef(model3)[3],
coef(model4)[3], coef(model5)[3], coef(model6)[3], coef(model7)[3]),

P _value GDP = c(summary(modell)S$coefficients[2, 4],
summary(model2)$coefficients[2, 4], summary(model3)$coefficients[2, 4],

summary(model4)$coefficients[2, 4], summary(model5)S$coefficients[2, 4],
summary(model6)$coefficients[2, 4],

summary(model7)$coefficients[2, 4]),

P _value GDP2 = ¢(summary(modell)$coefficients[3, 4],
summary(model2)$coefficients[3, 4], summary(model3)$coefficients[3, 4],

summary(model4)$coefficients[3, 4], summary(model5)$coefficients[3,
4], summary(model6)S$coefficients[3, 4],

summary(model7)$coefficients[3, 4])



# Print and save the results

print(results)

write.csv(results, "EKC results.csv", row.names = FALSE)

# Combine all environmental variables for final multi-panel EKC plot

library(reshape2)

environment data <- data.frame(

GDP = data$GDP,

Air.pollution = dataS$airpollution,

Wastewater = data$ Wastewater,

Forest.cover = data$forestcover,

Soil.erosion = data$soilerosion,

Impervious.land = data$Impervious,

High.habitat = data§Highhabitat,

Low.habitat = data$Low
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environment data long <- melt(environment data, id.vars = "GDP", variable.name =

"Variable")

ekc plot <- ggplot(environment data long, aes(x = GDP, y = value, color =

Variable)) +

geom_point() +

geom_smooth(method = "lm", formula =y ~ x + I[(x"2), se = FALSE) +

labs(x = "Per Capita GDP (yuan)", y = "Environmental Indicator", color =

"Variable") +

ggtitle("Environmental Kuznets Curve") +

theme minimal() +

facet wrap(~ Variable, scales = "free y", ncol = 2)

print(ekc_plot)
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6.3.1 Population, labor force, and land demand sub-model
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Figure 6.3-2 Structure of population, labor force, and land demand sub-model.

This sub-model captures how demographic transitions influence long-term land
demand through shifts in labor supply and urbanization (see SI Figure 1). The core
stock is population, which is disaggregated into three age cohorts: children (0—14
years), working-age adults (15—64 years), and the elderly (65+ years). Transitions
between age groups occur through aging flows, while the overall population is
dynamically adjusted through births and deaths. Birth rates are determined by the total
fertility rate, which is modeled as a function of the desired number of children (DNC).
The DNC is shaped by socioeconomic conditions, particularly education level,

household income, and family planning policies (e.g., the two-child policy in China).

The working-age population constitutes the primary labor force for agriculture.
However, the size and availability of this labor force are further influenced by access
to higher education. As education levels rise and economic development accelerates,

rural populations are increasingly drawn to urban areas, reducing the supply of
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agricultural labor. This urbanization process is endogenously modeled, driven by GDP

growth and educational attainment.

Agricultural labor availability directly determines farmland demand, which is
calculated based on per capita grain demand and farmland productivity. In parallel,
growth in the urban population drives demand for construction land. Together, these
two LULC demands reflect the broader spatial consequences of demographic and

economic transitions.

By linking demographic structure, educational dynamics, labor mobility, and spatial
land demand, the model offers a coherent framework to examine the trade-offs
between farmland preservation and urban expansion under different socioeconomic

scenarios.
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6.3.2 LULC sub-model
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Figure 6.3-3 Structure of LULC transitions sub-model bases on ES Responses.

This sub-model simulates the dynamic transitions among six major LULC types—
cultivated land, forestland, grassland, barren land, water-covered land, and wetlands—
and their feedback interactions with key ecosystem services, including climate
regulation, carbon emissions, water balance, and aesthetic landscape quality. Each

LULC type is represented as a stock variable, and transitions between land types are
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governed by a set of flow variables reflecting biophysical, socioeconomic, and policy-

driven processes.

Several dominant transition pathways are explicitly modeled. Urban expansion is
driven by construction land demand, which converts grassland, barren land, and
cultivated land into built-up areas. Cultivated—forest—water dynamics capture LULC
shifts influenced by climate variability and hydrological conditions. Barren land
redevelopment allows for conversion into cultivated land or water bodies, conditional
on policy-defined time windows or ecological restoration triggers. Grassland
transitions respond to both climatic drivers and population pressure, and may be

directed toward forestland or agriculture, reflecting competition for land.

The model embeds feedback loops between land cover and ecosystem services. For
example, land conversion alters carbon emissions, evapotranspiration rates, and
landscape aesthetics, which in turn modify the drivers of future LULC change. These
bidirectional feedbacks introduce nonlinearities and path dependencies into the land

system dynamics.

This sub-model enables scenario-based simulations of land-use—ecosystem
interactions, supporting analysis of policy interventions such as urban growth control,
reforestation, wetland conservation, and agricultural intensification within an

integrated socio-ecological framework.
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6.3.3 GDP sub-model
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Figure 6.3-4 Structure of GDP sub-model, bases on land, resources, and prices.

This sub-model simulates the sectoral evolution of GDP and its dynamic interactions
with land use, water resources, energy consumption, and price mechanisms (see SI
Figure 3). GDP is disaggregated into three major sectors—primary, secondary, and
tertiary—each governed by distinct but interconnected drivers. The primary sector is
determined by outputs from farming and aquaculture systems, which are themselves
influenced by land availability, water supply, and environmental conditions. The

secondary sector is shaped by access to construction land, energy consumption, and



201

water availability, reflecting the resource intensity of industrial development. The
tertiary sector is driven by the extent of urban land, consumer price index (CPI),
urbanization rate, and tourism activity, indicating the socio-spatial basis of service

economies.

Land use—particularly construction and urban land—not only facilitates industrial
and service sector growth, but is also restructured as a consequence of economic
expansion, forming a bidirectional feedback loop. Meanwhile, CPI functions as a
dynamic price signal, influencing real economic outputs and consumer behavior, and
is itself sensitive to external shocks such as political instability or inflationary
pressures. Water yield and carbon emissions act as critical ecological constraints that

regulate the sustainability of GDP growth, particularly in resource-stressed regions.

The model explicitly incorporates feedback pathways between economic structure,
LULC allocation, and environmental constraints, enabling scenario-based exploration
of sustainable development trajectories. It supports the evaluation of integrated policy
interventions aimed at balancing economic growth with environmental limits and

LULC efficiency.
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6.3.4 Farming production sub-model
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Figure 6.3-5 Structure of farming production sub-model under Irrigation, Climate,
technological, and ecological feedbacks.

This sub-model captures the dynamics of agricultural production by linking climatic,
ecological, technical, and economic drivers through an integrated system. Crop yield
is modeled as a function of precipitation, temperature, soil conservation quality, and
irrigation efficiency. The irrigation subsystem is jointly determined by water
availability, cultivated land area, and farming subsidies, the latter two of which are
influenced by consumer price index (CPI) and primary sector investment tied to GDP

performance.

Technological support—represented by agricultural R&D and capital investment—
directly enhances yield potential and interacts with irrigation efficiency. Soil

conservation is introduced not only as a long-term ecological buffer but also as a key
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modulator of yield response to climate stress. Meanwhile, farming subsidies, CPI, and
water resources are embedded in feedback loops that regulate the allocation of

agricultural land and productivity over time.

By integrating these dimensions, the model simulates how agricultural output adapts
to climate variability, economic fluctuations, and policy interventions. It provides a
dynamic framework to assess system resilience, particularly in the face of water

scarcity, inflationary pressures, and ecological degradation.
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6.3.5 Water yield sub-model
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Figure 6.3-6 Water yield sub-model, bases on INVEST model- Water Yield section.

This module is adapted from the INVEST Annual Water Yield model, which estimates
annual water yield across different land use/land cover (LULC) types using a Budyko-
based water balance framework. In this study, the pixel-based InVEST logic is
translated into a system dynamics structure, in which each land type is assigned
specific equations and parameters. The model captures key hydrological interactions
among precipitation, evapotranspiration, vegetation, soil properties, and land use, and

computes both land-type-specific water yield and total regional yield.



205

1. Core Water Yield Equation

The annual water yield Y(x) for each land use type x is calculated as the difference

between precipitation and actual evapotranspiration (AET):

(o) =(1- AL(")) (X)L (1)

P(x)
Where:
Y(x) is the annual water yield per unit area for land type x;
P(x) is annual precipitation;
AET(x) is actual annual evapotranspiration.
2. Actual Evapotranspiration (AET)

a. For vegetated land types (e.g., forest, grassland, cultivated land), AET is
calculated using the Fu-Budyko equation (Fu, 1981; Zhang et al., 2004)

[

AET(x) _ PET(x) PET()\? Tw
=145 [1+(P(x)) ] ....................................... )

where PET(x) is the potential evapotranspiration and m(x) is a non-physical parameter

that characterizes the natural climatic-soil properties, both detailed below.

b. For other LULC types (open water, urban, wetland), actual evapotranspiration
is directly computed from reference evapotranspiration ETO(x) and has an

upper limit defined by precipitation:
AET (x) = min(Kc(x) - ETO(x), P(x))

where ETO(x) is reference evapotranspiration, and Kc(£x) is the evaporation factor

for each LULC.
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3. Potential evapotranspiration PET(x):

Potential evapotranspiration is derived from the reference evapotranspiration (ET0(x))

and the crop/vegetation coefficient (Kc( Ix)):

PET (%) = KC(£X) “ ETO(X) e, 3)

ETO(x): Reference evapotranspiration, based on local climatic data (e.g., temperature,

radiation);

Kc(x): Coefficient adjusting ETO to the specific LULC type, based on vegetation
properties (Allen et al., 1998).

4. Empirical Parameter o(x)

o(x) is an empirical parameter that can be expressed as linear function of AWC*NP,
where N is the number of rain events per year, and AWC is the volumetric plant
available water content (see Appendix 1 for additional details). While further research
is being conducted to determine the function that best describe global data, this study
use the expression proposed by Donohue et al. (2012) in the InNVEST model, and thus

define:

_ L, AWC(x)
W) = Z5 2+ 125 (4)

where:

AWC(x): Plant available water content (mm);

P(x): Annual precipitation;

Z: Seasonality factor;

1.25: Minimum value for bare soil (Donohue et al., 2012).

Values of w(x) are capped at 5, following Yang et al. (2008).
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Z is an empirical constant, sometimes referred to as “seasonality factor”, which
captures the local precipitation pattern and additional hydrogeological characteristics.
It is positively correlated with N, the number of rain events per year. The 1.25 term is
the minimum value of m(x), which can be seen as a value for bare soil (when root
depth is 0), as explained by Donohue et al. (2012). Following the literature (Yang et
al., 2008; Donohue et al. 2012), values of w(x) are capped to a value of 5.

5. Plant Available Water Content (AWC)

AWC(x) is the volumetric (mm) plant available water content. The soil texture and
effective rooting depth define AWC(x), which establishes the amount of water that
can be held and released in the soil for use by a plant. It is estimated as the product
of the plant available water capacity (PAWC) and the minimum of root restricting

layer depth and vegetation rooting depth:

AWC (x) = Min(Rest.layer.depth,root.depth) - PAWC...................... (5)

Root restricting layer depth is the soil depth at which root penetration is inhibited
because of physical or chemical characteristics. Vegetation rooting depth is often
given as the depth at which 95% of a vegetation type’s root biomass occurs. PAWC is
the plant available water capacity, i.e. the difference between field capacity and

wilting point.

In this model, AWC is set as 0.5 x PAWC for barren land, 2.5 x PAWC for grassland,
3.5 x PAWC for cultivated land, and 5.2 x PAWC for forest land. For non-vegetated
land use types such as construction land and water-covered land, AWC is fixed at 0.1
x PAWC. These multipliers reflect the relative water-holding capacity of each land

use type based on typical root zone depth and soil-plant interactions.

6. PAWC Estimation Formula

PAWC is estimated from soil texture and organic matter content using the following

empirical equation:
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PAWC = 54.509 — 0.132 - S — 0.003 - S? — 0.055 - Si — 0.006 - Si? + 0.738 - C —
0.007 - C? —2.688-0OM + 0.501-OM? ..ot (6)

Where:

S: sand content (%); Si: silt content (%); C: clay content (%); OM: organic matter
(%).

This formulation allows AWC to dynamically respond to soil composition across

different land units.

7. Regional Water Yield Aggregation (weighted sum)

The total annual water yield for the region is computed as a weighted sum of land-

type-specific water yields:

Water yield;ytq; = ) e, (7

Land

Where:

e Y(x): unit water yield for land type x;

e A(x): total area of land type x;

e Land: total area of the study region: 15,463,289 hm.

By structurally embedding InVEST’s pixel-level hydrological logic into a stock—flow
framework, this module provides a pioneering pathway for coupling LULC transitions

with water resource dynamics in long-term socio-ecological simulations.
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6.3.6 Water flow balance sub-model
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Figure 6.3-7 Water flow balance sub-model, based on water flow and surface water
consumption under climate, population, and economic drivers.

This sub-model captures the dynamic water balance of the region by simulating the
evolution of surface water resources and their consumption across key socio-
ecological sectors (Figure 7-21). The central stock variable, Water Flow, represents
the available surface water volume in the system. This stock is increased by multiple
inflows: (1) natural water yield derived from the water yield module (driven by
precipitation, evapotranspiration, and land cover); (i) wastewater returns from
domestic and industrial systems; and (iii) inter-basin water transfer projects. Water is
depleted from the stock through (i) evaporation (a function of surface area and
temperature), (ii) infiltration to soil and groundwater, and (iii) surface water

consumption (SWC).

SWC is further disaggregated into four flow components: (1) domestic water use,
modeled as a function of per capita water use and total population; (2) industrial water

use, linked to the scale and growth of the secondary economic sector (secondary
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GDP); (3) irrigation water demand, calculated based on cultivated land area and
irrigation efficiency; and (4) ecological water use, allocated based on predefined
policy targets for environmental flow requirements. Each component contributes to
the reduction of the Water Flow stock and responds dynamically to socioeconomic or

climatic drivers.

This structure enables integrated simulations of surface water dynamics under varying
climate, land use, and development trajectories. It also allows for testing the

effectiveness of water-saving policies (e.g., irrigation efficiency improvement,
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industrial upgrading, ecological redlines) in mitigating regional water stress and

maintaining hydrological stability across long-term scenarios.

6.3.7 Carbon storage sub-model
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Figure 6.3-8 Carbon storage sub-model, based on INVEST model-Carbon section.

This carbon storage module is adapted from the InVEST Carbon Storage and
Sequestration model, which estimates total carbon stock by combining land use/land
cover (LULC) types with their respective carbon pool densities. In the system
dynamics framework, each land type contributes to total carbon storage through four

distinct carbon pools:
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Ctotal = z Ax * (Cabove,x + Cbelow,x + Cdead,x + Csoil,x)

Where:
e C total: Total carbon storage (tC);
e Ax: Area of LULC type xxx;

e Cabove,x, Cbelow,x, Cdead,x, Csoil,x: Aboveground, belowground, dead

organic, and soil organic carbon densities (tC/ha).

In this model:

e All major LULC types (e.g., forest, grassland, cropland) are associated with

static or scenario-updated carbon densities per pool;

e Carbon pool values are parameterized based on empirical data or national

inventories;

e The system dynamically updates total carbon storage in response to land use

transitions over time.
Optionally, soil conservation quantity can be used to adjust soil carbon as:
Csoit,adjusted = Csoir - (1 + 6 - SQ)
Where SQ is the soil conservation index, and 0 is a sensitivity coefficient.

This structure supports policy-relevant scenario simulations such as afforestation,
reforestation, land degradation, or agricultural expansion, providing insights into

ecosystem carbon trade-offs and climate mitigation potential.
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6.3.8 Soil conservation quantity sub-section.
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This sub-model translates the IN'VEST Sediment Retention model into a system
dynamics framework to estimate regional soil conservation services based on land
use, topography, rainfall, and land management practices (Figure 7-23). The model
captures monthly rainfall variability, topographic conditions, and vegetation dynamics
to simulate both potential and actual soil loss using the RUSLE (Revised Universal

Soil Loss Equation) approach.

In this system dynamics implementation, total annual precipitation is disaggregated
into 12 monthly values, contributing to a Rainfall Erosion Index (R). Combined with
land surface factors, this index drives the calculation of both potential and actual soil

loss using the Revised Universal Soil Loss Equation (RUSLE) framework:

Potential Soil Loss =R -K - LS

Actual Soil Loss=R-K-LS-C-P

Where:

R: Rainfall erosion index (sum of monthly rainfall erosivity);

K: Soil erodibility factor;

LS: Topographic factor (length-slope index);

C: Vegetation cover and management factor;

P: Support practice factor.

The Soil Conservation Quantity is then:

Soil Conservation = Potential Soil Loss — Actual Soil Loss

Land use/land cover types (e.g., forest, grassland, cultivated land, barren land) are
associated with specific C and P values based on vegetation cover and land
management intensity. This structure allows the model to capture seasonal and inter-
annual variability in soil retention capacity driven by precipitation dynamics and
LULC transitions. It enables scenario analysis of soil erosion risk under climate

change, deforestation, agricultural intensification, or conservation interventions.
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6.3.9 Energy consumption and carbon emissions sub-model
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Figure 6.3-10 Energy consumption and carbon emissions sub-model of bases on

socioeconomic drivers.
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This model simulates the dynamics of total energy consumption and carbon dioxide
emissions by integrating four primary energy sources—coal, oil, gas, and electricity—
with land use, population, GDP, and policy interventions. Each energy source is
represented as a stock variable (e.g., coal energy consumption), with inflows
determined by growth rates that are functions of construction demand, population
change, GDP change, and policy influence coefficients. The flow-out terms represent

energy consumption or export.

Electricity is further divided into domestic generation (primary electricity
consumption) and net input of electricity (e.g., imports), with its share influencing the
proportion of non-fossil energy. All four energy streams contribute to total energy
consumption, which, along with land-based carbon sources (from different LULC
types), drives carbon dioxide emissions. Research on the energy consumption model

structure reference Liu et al. (2015)’s research.

Land use (e.g., forest, cultivated, barren, water, grassland) contributes to natural
LULC carbon emissions, linking energy-driven emissions with LULC change. The
model enables scenario analysis of how shifts in socioeconomic development, energy
structure, and land cover affect carbon outcomes under varying policy settings.
Carbon density of vegetation in different land cover types from the research of Liu et

al. (2022a).

6.3.10 Description of feedback loops identified in the real

model

Table 6.3-1 Description of feedback loops identified in the real model.

Loops | Description

Reinforcing feedback loops

R1 GDP growth — (+) Agricultural inputs/technology — (+) Crop yield —

(+) Agricultural production — (+) Agricultural GDP — (+) GDP growth
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Water covered land — (+) Aesthetic landscape — (+) Tourism required

water landscape — (+) Water covered land

Balancing feedback loops

Bl Construction land — (=) Farmland — (-) Construction land

B2 Construction land — (=) Barren land — (-) Construction land

B3 Construction land — (-) Grassland — (-) Construction land

B4 Population — (+) Urbanisation — (-) Agricultural labour — (-)
Farmland — (+) Agricultural intensification — (+) Agricultural
production — (+) Economic growth — (-) Fertility/birth rate — ()
Population

B5 Population — (+) Urbanisation — (+) Construction land — (-) Farmland
— (+) Agricultural intensification — (+) Agricultural production — (+)
Economic growth — (-) Fertility/birth rate — (-) Population

B6 Population — (+) Construction land — (-) Water yield — (-) Farmland
security — (+) Agricultural intensification — (+) Agricultural production
— (+) Economic growth — (-) Fertility/birth rate — () Population

B7 Population — (+) Construction land — (+) Carbon emissions — (+)

Carbon-neutrality policy — (+) Cropland-to-forest conversion — (-)
Farmland — (+) Agricultural intensification — (+) Agricultural
production — (+) Economic growth — (-) Fertility/birth rate — ()

Population
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B8

Population — (+) Construction land — (-) Farmland — (+) Forest land

— (+) Landscape aesthetics — (+) Water bodies — (+) Fisheries

production — (+) GDP — (-) Fertility/birth rate — (-) Population

Table 6.3-2 Model Structural Summary and Component Statistics

Count Including Array Elements

Total

Variables 337
Modules 14
Stocks 19
Flows 30
Converters 288
Constants 33
Equations 285
Graphicals 53

Macro Variables |87

337

19
30
288
33
285
53

6.3.11

Equations of the ES-LULC SD model.

Figure 6.3-3 Equations of the ES-LULC SD model.

Equation

Top-Level Model:

Aesthetic_landscape:

andscape

120.07*"Land_use/ land cover".Cultivated land+1751.06*
"Land use/ land cover".Forestland+1180.72*"Land use/ 1
Aesthetic 1 |and cover".Grassland+10426.32*("Land use/ land cover".
Water covered land+"Land use/ land cover".Wetland)+"

Land use/ land cover".Barren land*140.08+"Land use/ |

and_cover".Construction land*398

Aquatic_production:

Water cov
ered land(t ' Water covered land(t - dt)

)

Prope

. ni
rties ¢

5= <ZzZ0

N !

jov]
1

INIT
Water ha
_cove




Aquatic_pr
oduct dem
and

Aquatic_pr
oduction

Aquatic_pr
oduction f
or_Other
province s
upport_and
_export

"Aquatic_p
roduction
local dem

and/yr"

Freshwater
_aquatic_p
roduction

Sea_aquati
c_producti
on

Population.Population*"Aquatic_production local demand/

yr

Freshwater aquatic_production+Sea aquatic_production

Aquatic_production-Aquatic_product demand

0.01473

GRAPH(Water covered land) Points: (255707, 202000),
(261848.62069, 261700), (267990.241379, 320200),
(274131.862069, 377400), (280273.482759, 433200),
(286415.103448, 487900), (292556.724138, 541300),
(298698.344828, 593600), (304839.965517, 644700),
(310981.586207, 694700), (317123.206897, 743500),
(323264.827586, 791300), (329406.448276, 838000),
(335548.068966, 883700), (341689.689655, 928400),
(347831.310345, 972100), (353972.931034, 1015000),
(360114.551724, 1057000), (366256.172414, 1097000),
(372397.793103, 1137000), (378539.413793, 1176000),
(384681.034483, 1215000), (390822.655172, 1252000),
(396964.275862, 1288000), (403105.896552, 1324000),
(409247.517241, 1359000), (415389.137931, 1393000),
(421530.758621, 1427000), (427672.37931, 1459000),
(433814, 1491000)

GRAPH(Temperature) Points: (13.260, 1780000),
(13.4924137931, 3320000), (13.7248275862, 5600000),
(13.9572413793, 6910000), (14.1896551724, 7680000),
(14.4220689655, 8040000), (14.6544827586, 8220000),
(14.8868965517, 8390000), (15.1193103448, 8390000),
(15.3517241379, 8200000), (15.584137931, 8020000),
(15.8165517241, 7910000), (16.0489655172, 7790000),
(16.2813793103, 7530000), (16.5137931034, 7270000),
(16.7462068966, 7120000), (16.9786206897, 6890000),
(17.2110344828, 6630000), (17.4434482759, 6330000),
(17.675862069, 6110000), (17.9082758621, 5880000),
(18.1406896552, 5690000), (18.3731034483, 5430000),

red |
and =
3623

59
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yr
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(18.6055172414, 5210000), (18.8379310345, 4980000),
(19.0703448276, 4800000), (19.3027586207, 4610000),
(19.5351724138, 4310000), (19.7675862069, 4120000),
(20.000, 3930000)

GRAPH(TIME) Points: (31.00, 14.120), (33.724137931,
14.160), (36.4482758621, 14.200), (39.1724137931,
14.250), (41.8965517241, 14.290), (44.6206896552,
14.330), (47.3448275862, 14.370), (50.0689655172,
14.410), (52.7931034483, 14.460), (55.5172413793,
14.500), (58.2413793103, 14.540), (60.9655172414,
14.580), (63.6896551724, 14.620), (66.4137931034,
14.670), (69.1379310345, 14.710), (71.8620689655,
14.750), (74.5862068966, 14.790), (77.3103448276,
14.840), (80.0344827586, 14.880), (82.7586206897,
14.920), (85.4827586207, 14.960), (88.2068965517,
15.000), (90.9310344828, 15.050), (93.6551724138,
15.090), (96.3793103448, 15.130), (99.1034482759,
15.170), (101.827586207, 15.210), (104.551724138,
15.260), (107.275862069, 15.300), (110.00, 15.340)

Biodiversity:

Temperatu
re

"Land use/ land cover".Cultivated land*260.16+"Land us

e/ land cover".Forestland*3982.41+"Land use/ land cove

r".Grassland*2674.96+("Land_use/ land cover".Water cov

Y ered land+"Land use/ land cover".Wetland)*10426.32+"L
and use/ land cover".Barren land*140.08

Biodiversit

Carbon_emission:

Coal_ener
gy _consu
mption(t)

Coal energy consumption(t - dt) +
(Increment_of coal energy - Coal energy flow out) * dt

Gas_energ Gas_energy consumption(t - dt) +

gaf)ir(lts)u m (Increment_of gas energy - Gas_flow out) * dt

INIT
Coal
energ
y_con
sumpt
ion =
2803
1387

INIT
Gas_
energ
y _con
sumpt
ion =
2439
9791
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Net Input
of Electric
ity(t)

Oil_energy
_consumpt
ion(t)

Primary el
ectricity ¢
onsumptio

n(t)

Coal_ener
gy flow o
ut

Electricity
_flow_out

Gas_flow
out

Increment
of coal en
ergy
Increment
of Electric
ity
Increment
of gas ene
gy

Increment
of Net In

Net Input of Electricity(t - dt) +
(Increment_of Net Input of Electricity -
Net_input of electricity flow out) * dt

Oil _energy consumption(t - dt) +
(Increment_of oil energy - Oil_flow out) * dt

Primary_electricity consumption(t - dt) +
(Increment_of Electricity - Electricity flow out) * dt

-Average growth rate of coal*Coal energy consumption

Average growth rate of Electricity*Primary electricity c
onsumption

-Average growth rate of gas*Gas energy consumption

Coal_energy consumption*Average growth rate of coal

Primary_electricity consumption*Average growth rate of
_Electricity

IF TIME <25 THEN 0 ELSE
Gas_energy consumption*Average growth rate of gas

IF TIME <25 THEN 0 ELSE
Net Input of Electricity*(Average growth rate of Net In

INIT
Net 1
nput
of El
ectric
ity =
3915
3153

INIT
Oil e
nergy
_cons
umpti
on =
7437
7896

INIT
Prima
ry el
ectric
ity c
onsu
mptio
n=
1824
5282
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put of Ele
ctricity

Increment
of oil ene
gy

Net input
of electrici
ty flow o
ut

Oil_flow
out

Average g
rowth_rate
_of coal

Average g
rowth_rate
_of Electri
city

Average g
rowth_rate
_of gas

Average g
rowth_rate
_of Net I
nput_of El
ectricity

Average g
rowth_rate
_of oil

Carbon_di
oxide emi
ssion

Constructi
on_change
_energy

put_of Electricity-
DELAY(Average growth rate of Net Input of Electricit
y, 1)

Oil_energy consumption*Average growth rate of oil

Average growth rate of Net Input of Electricity*Net In
put_of Electricity

-Average growth rate of oil*Oil energy consumption

0.6*Ratio_coefficient of coal*GDP_change rate+Populati
on_change energy+Construction change energy
+Policy influence on coal

Ratio_coefficient of Electricity*GDP_change rate*0.6+Po
pulation change energy+Construction change energy+Pol
icy influence coefficient on_electricity

IF TIME <25 THEN
0.6*Ratio_coefficient of gas*GDP_change rate+Populatio
n_change energy+Construction change energy ELSE
0.6*Ratio_coefficient of gas*GDP_change rate+Populatio
n_change energy+Construction_change energy+Policy inf
luence coefficient on_gas

Net Input of Electricity Ratio Coefficient*GDP_change
rate*0.6+Population_change energy+Construction change
energy+Policy influence coefficient on net input of elec
tricity

0.6*Ratio_coefficient of oil*GDP_change rate+Populatio
n_change energy+Construction_change energy+Policy inf
luence coefficient on_oil

(((Coal_energy consumption*1000)*(0.7143)*(0.7559)
+(Oil_energy consumption*1000)*1.4286%0.5857
+((Primary_electricity consumption+Net Input of Electric
ity)*1000)*0.1229*0.007935

+(Gas_energy consumption®*1000)*1.2143%0.4483)/1000+
Natural land use Carbon_emission)

Construction_change rate*Construction_Influence Coeffici
ent
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Constructi |("Land use/ land cover".Construction land-
on_change DELAY("Land use/ land cover".Construction land,
_rate 1))/DELAY("Land use/ land cover".Construction land, 1)

Constructi
on_Influen
ce_Coeffic
ient
GDP_chan
ge rate

L.5

(GDP.GDP-DELAY(GDP.GDP, 1))/DELAY(GDP.GDP, 1)

"Land use/ land cover".Cultivated land*0.422+"Land use
/ land_cover".Forestland*(-
0.644)+"Land use/ land cover".Grassland*(-
0.021)+"Land use/ land cover".Water covered land*(-
0.253)+"Land use/ land cover".Barren land*(-0.005)

Natural la
nd use Ca
rbon_emis
sion

Net Input

of Electric -0.155 * EXP(-9.49¢-15 * (TIME - 1)) * SIN(1.266 *
ity Ratio |[(TIME-1)-0.412)+0.159

Coefficient

GRAPH(TIME) Points: (1.00, 0), (2.00, 0), (3.00, 0), (4.00,
0), (5.00, 0), (6.00, 0), (7.00, 0), (8.00, 0), (9.00, 0), (10.00,
0), (11.00, 0), (12.00, 0), (13.00, 0), (14.00, 0), (15.00, 0),
(16.00, 0), (17.00, 0), (18.00, 0), (19.00, 0), (20.00, 0),
(21.00, 0), (22.00, 0), (23.00, 0), (24.00, 0), (25.00, 0),
(26.00, 0), (27.00, 0), (28.00, 0), (29.00, 0), (30.00, 0),
Policy infl |(31.00, 0), (32.00, 0), (33.00, 0), (34.00, 0), (35.00, 0),
uence_coef | (36.00, 0), (37.00, 0), (38.00, 0), (39.00, 0), (40.00, 0),
ficient_on_ | (41.00, 0), (42.00, 0), (43.00, 0), (44.00, 0), (45.00, 0),
electricity | (46.00, 0), (47.00, 0), (48.00, 0), (49.00, 0), (50.00, 0),
(51.00, 0), (52.00, 0), (53.00, 0), (54.00, 0), (55.00, 0),
(56.00, 0), (57.00, 0), (58.00, 0), (59.00, 0), (60.00, 0),
(61.00, 0), (62.00, 0), (63.00, 0), (64.00, 0), (65.00, 0),
(66.00, 0), (67.00, 0), (68.00, 0), (69.00, 0), (70.00, 0),
(71.00, 0), (72.00, 0), (73.00, 0), (74.00, 0), (75.00, 0),
(76.00, 0), (77.00, 0), (78.00, 0), (79.00, 0), (80.00, 0)

Policy infl
uence coef
ficient on_
gas

-0.017

Policy infl
uence coef
ficient on_
net_input_

of electrici
ty

Policy infl GRAPH(TIME) Points: (30.00, 0.0000), (31.00, -0.000484),
uence_coef |(32.00, -0.0009803), (33.00, -0.001489), (34.00, -0.002011),

0.109
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ficient on_

oil

Policy infl
uence on_
coal

Population
_change e
nergy

Population
_change r
ate

Population
_Influence
_Coefficie
nt

"Proportio
n_of non-
fossil_ener

gy

Ratio_coef
ficient of
coal

(35.00, -0.002546), (36.00, -0.003094), (37.00, -0.003657),
(38.00, -0.004233), (39.00, -0.004824), (40.00, -0.005431),
(41.00, -0.006052), (42.00, -0.006689), (43.00, -0.007343),
(44.00, -0.008013), (45.00, -0.0087), (46.00, -0.009404),
(47.00, -0.01013), (48.00, -0.01087), (49.00, -0.01163),
(50.00, -0.0124), (51.00, -0.0132), (52.00, -0.01402),
(53.00, -0.01486), (54.00, -0.01572), (55.00, -0.0166),
(56.00, -0.01751), (57.00, -0.01843), (58.00, -0.01938),
(59.00, -0.02036), (60.00, -0.02136), (61.00, -0.02238),
(62.00, -0.02343), (63.00, -0.02451), (64.00, -0.02561),
(65.00, -0.02675), (66.00, -0.02791), (67.00, -0.0291),
(68.00, -0.03032), (69.00, -0.03157), (70.00, -0.03285),
(71.00, -0.03417), (72.00, -0.03552), (73.00, -0.0369),
(74.00, -0.03832), (75.00, -0.03977), (76.00, -0.04127),
(77.00, -0.04279), (78.00, -0.04436), (79.00, -0.04597),
(80.00, -0.04762), (81.00, -0.04931), (82.00, -0.05104),
(83.00, -0.05281), (84.00, -0.05463), (85.00, -0.0565),
(86.00, -0.05842), (87.00, -0.06038), (88.00, -0.06239),
(89.00, -0.06445), (90.00, -0.06657), (91.00, -0.06874),
(92.00, -0.07096), (93.00, -0.07324), (94.00, -0.07558),
(95.00, -0.07798), (96.00, -0.08044), (97.00, -0.08296),
(98.00, -0.08554), (99.00, -0.08819), (100.00, -0.09091),
(101.00, -0.09369), (102.00, -0.09655), (103.00, -0.09948),
(104.00, -0.1025), (105.00, -0.1056), (106.00, -0.1087),
(107.00, -0.1120), (108.00, -0.1153), (109.00, -0.1187),
(110.00, -0.1222)

-0.04

Population_change rate*Population Influence Coefficient

(Population.Population-DELAY (Population.Population,
1))/DELAY (Population.Population, 1)

1.2

(Primary_electricity consumption+Net Input of Electricit
y)/Total_energy consumption

0.720*EXP(-0.022*(TIME-1))*SIN(0.594*(TIME-
1)+0.944)+0.514
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Ratio coef
ficient of
Electricity

Ratio coef
ficient of
gas

Ratio coef
ficient of
oil

Total ener

gy_consu
mption

-0.991 * EXP(-0.898 * (TIME - 1)) * SIN(0.5 * (TIME - 1 )
+0.172) +2.199

18.033*EXP(-1.0%*(TIME-1))*SIN(0.3*(TIME-
1)+2.137)+2.794

-0.988 * EXP(-0.155 * (TIME - 1)) * SIN(0.5 * (TIME - 1)
~0.881) + 0.504

Primary_electricity consumption+Oil energy consumption
+Coal_energy consumption+Gas_energy consumption+Ne
t Input of Electricity

Carbon_storage:

Carbon_st
orage

"Cultivated
_land-
_above gr
ound"

"Cultivated
_land-
_below _gr
ound"

"Cultivated
_land-

_death_org
anic_carbo

n

"Cultivated
_land-
_soil_orga
nic_carbon

"Cultivated
_land-
carbon_sto
rage"

"Forestlan
d-

("Cultivated land-carbon_storage"+"Forestland-
carbon_storage" +"Grassland-
carbon_storage"+"Land use/ land cover".Wetland*(20.75
+13.6+160.42+2.65)+"Land use/ land cover".Construction
_land*20.78+"Land_use/ land cover".Barren land*(1.82+
15.88))

7.74

5.26

1.32

57.83*(1+0.005*(Soil_conservation.Soil Conservation_qua
ntity-

INIT(Soil conservation.Soil_Conservation_quantity))/INIT
(Soil_conservation.Soil_Conservation_quantity))

"Land use/ land cover".Cultivated land*("Cultivated land
- soil organic carbon"+"Cultivated land-
_death_organic_carbon"+"Cultivated land-
_below_ground"+"Cultivated land- above ground")

28.38
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_above gr
ound"

"Forestlan
d-
_below_gr
ound"

"Forestlan
d-
_death_org
anic_carbo

n

"Forestlan
d-
_soil_orga
nic_carbon

"Forestlan
d-
carbon_sto
rage"

"Grassland
_above gr
ound"

"Grassland
_below _gr
ound"

"Grassland
_death_org
anic_carbo

n

"Grassland
_soil_orga
nic_carbon

"Grassland

carbon_sto
rage"
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10.82

2.15

95.35*(1+0.003*(Soil_conservation.Soil Conservation_qua
ntity-

INIT(Soil conservation.Soil_Conservation_quantity))/INIT
(Soil _conservation.Soil_Conservation_quantity))

"Land use/ land cover".Forestland*("Forestland-
_soil_organic_carbon"+"Forestland-
_death_organic_carbon"+"Forestland-
_below_ground"+"Forestland-_above ground")

14.29

15.19

8.46

75.7*(1+0.006*(Soil_conservation.Soil Conservation quan
tity-

INIT(Soil conservation.Soil_Conservation_quantity))/INIT
(Soil_conservation.Soil_Conservation_quantity))

"Land use/ land cover".Grassland*("Grassland-
_soil_organic_carbon"+"Grassland-
_death_organic_carbon"+"Grassland-
_below_ground"+"Grassland- _above ground")

Climate_regulation:
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Climatic_f

Precipitation_factor*Temperature factor
actors - -

GRAPH(TIME) Points: (31.00, 622.0), (33.724137931,
636.6), (36.4482758621, 651.1), (39.1724137931, 665.7),
(41.8965517241, 680.2), (44.6206896552, 694.8),
(47.3448275862, 709.3), (50.0689655172, 723.9),
(52.7931034483, 738.4), (55.5172413793, 753.0),
(58.2413793103, 767.5), (60.9655172414, 782.1),
(63.6896551724, 796.6), (66.4137931034, 811.2),
(69.1379310345, 825.7), (71.8620689655, 840.3),
(74.5862068966, 854.8), (77.3103448276, 869.4),
(80.0344827586, 883.9), (82.7586206897, 898.5),
(85.4827586207, 913.0), (88.2068965517, 927.6),
(90.9310344828,942.1), (93.6551724138, 956.7),
(96.3793103448, 971.2), (99.1034482759, 985.8),
(101.827586207, 1000.0), (104.551724138, 1015.0),
(107.275862069, 1029.0), (110.00, 1044.0)

Precipitati
on

Precipitati

i L R
on_factor MAX(0.01, 1 - ((Precipitation - 700) / 300)"2)

GRAPH(TIME) Points: (31.00, 14.120), (33.724137931,
14.160), (36.4482758621, 14.200), (39.1724137931,
14.250), (41.8965517241, 14.290), (44.6206896552,
14.330), (47.3448275862, 14.370), (50.0689655172,
14.410), (52.7931034483, 14.460), (55.5172413793,
14.500), (58.2413793103, 14.540), (60.9655172414,
14.580), (63.6896551724, 14.620), (66.4137931034,
14.670), (69.1379310345, 14.710), (71.8620689655,
14.750), (74.5862068966, 14.790), (77.3103448276,
14.840), (80.0344827586, 14.880), (82.7586206897,
14.920), (85.4827586207, 14.960), (88.2068965517,
15.000), (90.9310344828, 15.050), (93.6551724138,
15.090), (96.3793103448, 15.130), (99.1034482759,
15.170), (101.827586207, 15.210), (104.551724138,
15.260), (107.275862069, 15.300), (110.00, 15.340)

Temperatu
re

Temperatu

_0.1 % i A
re_factor MAX(0.01, 1 - 0.1 * MAX(0, Temperature - 14.5)"2)

Farming production:

GRAPH(GDP."Consumer_ price index (CPI)") Points:
Effect of (1.000, 1.1100), (1.980, 1.0690), (2.960, 1.0280), (3.940,
CPI _on_irr |0.9870), (4.920, 0.9460), (5.900, 0.9050), (6.880, 0.8640),
igation (7.860, 0.8230), (8.840, 0.7820), (9.820, 0.7410), (10.800,
0.7000)

Effect of i GRAPH(Irrigation) Points: (2723967118, 6.00),
rrigation_o |(2743864940.18, 6.134), (2763762762.36, 6.268),
n_crop_yie [(2783660584.54, 6.40), (2803558406.72, 6.531),
1d (2823456228.9, 6.662), (2843354051.08, 6.791),
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(2863251873.26, 6.919), (2883149695.44, 7.046),
(2903047517.62, 7.173), (2922945339.8, 7.298),
(2942843161.97, 7.422), (2962740984.15, 7.546),
(2982638806.33, 7.668), (3002536628.51, 7.79),
(3022434450.69, 7.91), (3042332272.87, 8.03),
(3062230095.05, 8.149), (3082127917.23, 8.266),
(3102025739.41, 8.383), (3121923561.59, 8.499),
(3141821383.77, 8.614), (3161719205.95, 8.728),
(3181617028.13, 8.842), (3201514850.31, 8.954),
(3221412672.49, 9.066), (3241310494.67, 9.176),
(3261208316.85, 9.286), (3281106139.03, 9.395),
(3301003961.21, 9.503), (3320901783.39, 9.611),
(3340799605.57, 9.717), (3360697427.75, 9.823),
(3380595249.92, 9.928), (3400493072.1, 10.03),
(3420390894.28, 10.14), (3440288716.46, 10.24),
(3460186538.64, 10.34), (3480084360.82, 10.44),
(3499982183, 10.54), (3519880005.18, 10.64),
(3539777827.36, 10.74), (3559675649.54, 10.84),
(3579573471.72, 10.93), (3599471293.9, 11.03),
(3619369116.08, 11.12), (3639266938.26, 11.22),
(3659164760.44, 11.31), (3679062582.62, 11.41),
(3698960404.8, 11.50), (3718858226.98, 11.59),
(3738756049.16, 11.68), (3758653871.34, 11.77),
(3778551693.52, 11.86), (3798449515.69, 11.95),
(3818347337.87, 12.04), (3838245160.05, 12.13),
(3858142982.23, 12.22), (3878040804.41, 12.30),
(3897938626.59, 12.39), (3917836448.77, 12.47),
(3937734270.95, 12.56), (3957632093.13, 12.64),
(3977529915.31, 12.72), (3997427737.49, 12.81),
(4017325559.67, 12.89), (4037223381.85, 12.97),
(4057121204.03, 13.05), (4077019026.21, 13.13),
(4096916848.39, 13.21), (4116814670.57, 13.29),
(4136712492.75, 13.37), (4156610314.93, 13.44),
(4176508137.11, 13.52), (4196405959.29, 13.60),
(4216303781.47, 13.67), (4236201603.64, 13.75),
(4256099425.82, 13.82), (4275997248, 13.90),
(4295895070.18, 13.97), (431579289236, 14.04),
(4335690714.54, 14.11), (4355588536.72, 14.19),
(4375486358.9, 14.26), (4395384181.08, 14.33),
(4415282003.26, 14.40), (4435179825.44, 14.47),
(4455077647.62, 14.54), (4474975469.8, 14.60),
(4494873291.98, 14.67), (4514771114.16, 14.74),
(4534668936.34, 14.81), (4554566758.52, 14.87),
(4574464580.7, 14.94), (4594362402.88, 15.00),
(4614260225.06, 15.07), (4634158047.24, 15.13),
(4654055869.41, 15.20), (4673953691.59, 15.26),
(4693851513.77, 15.32), (4713749335.95, 15.39),
(4733647158.13, 15.45), (4753544980.31, 15.51),
(4773442802.49, 15.57), (4793340624.67, 15.63),
(4813238446.85, 15.69), (4833136269.03, 15.75),




Effect of
rainfall on
_crop_yiel
d

Effect of
Rainfall o
n_irrigatio
n

Effect of
soil conser
vation_qua
lity on cr

op_yield

Effect of
subsidy on
_irrigation
_withdraw
al

(4853034091.21, 15.81), (4872931913.39, 15.87),
(4892829735.57, 15.93), (4912727557.75, 15.98),
(4932625379.93, 16.04), (4952523202.11, 16.10),
(4972421024.29, 16.15), (4992318846.47, 16.21),
(5012216668.65, 16.27), (5032114490.83, 16.32),
(5052012313.01, 16.38), (5071910135.19, 16.43),
(5091807957.36, 16.48), (5111705779.54, 16.54),
(5131603601.72, 16.59), (5151501423.9, 16.64),
(5171399246.08, 16.70), (5191297068.26, 16.75),
(5211194890.44, 16.80), (5231092712.62, 16.85),
(5250990534.8, 16.90), (5270888356.98, 16.95),
(5290786179.16, 17.00)

GRAPH(Climate regulation.Precipitation) Points: (0, 0.00),
(71.4757142857, 0.24), (142.951428571, 0.48),
(214.427142857, 0.81), (285.902857143, 1.13),
(357.378571429, 2.46), (428.854285714, 3.69), (500.33,
4.77), (571.805714286, 6.54), (643.281428571, 8.72),
(714.757142857, 13.64), (786.232857143, 17.35),
(857.708571429, 18.00), (929.184285714, 15.74), (1000.66,
10.41)

GRAPH(Climate regulation.Precipitation) Points: (713.0,
1.15), (723.7, 1.14), (734.4, 1.13), (745.1, 1.12), (755.8,
1.11), (766.5, 1.1), (777.2, 1.09), (787.9, 1.08), (798.6,
1.07), (809.3, 1.06), (820.0, 1.05)

GRAPH(Soil conservation.Soil_Conservation_quantity)
Points: (207.1767859, 8.000), (223.651166743, 8.872),
(240.125547586, 9.685), (256.599928429, 10.440),
(273.074309271, 11.150), (289.548690114, 11.800),
(306.023070957, 12.410), (322.4974518, 12.980),
(338.971832643, 13.510), (355.446213486, 14.000),
(371.920594329, 14.460), (388.394975171, 14.890),
(404.869356014, 15.290), (421.343736857, 15.660),
(437.8181177, 16.000)

GRAPH(Farming_subsidy) Points: (137481875.47, 0.000),
(731399866.595, 0.004149), (1325317857.72, 0.009726),
(1919235848.85, 0.01729), (2513153839.97, 0.02759),
(3107071831.1, 0.04163), (3700989822.22, 0.06073),
(4294907813.35, 0.08654), (4888825804.47, 0.121),
(5482743795.6, 0.1663), (6076661786.72, 0.2246),
(6670579777.85, 0.2972), (7264497768.97, 0.3845),
(7858415760.1, 0.4846), (8452333751.22, 0.5938),
(904625174235, 0.7062), (9640169733.47, 0.8154),
(10234087724.6, 0.9155), (10828005715.7, 1.003),
(11421923706.8, 1.075), (12015841698, 1.134),
(12609759689.1, 1.179), (13203677680.2, 1.213),
(13797595671.3, 1.239), (14391513662.5, 1.258),
(14985431653.6, 1.272), (15579349644.7, 1.283),
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Effect of t
echnology

_on_crop_

yield

Effect of t
emperature
_on_crop
yield

Farming i
nvestment

Farming p
roduction

Farming s
ubsidy

Irragation
change rat
e

Irrigated 1
and

Irrigation

"Irrigation
_water/ha"

(16173267635.8, 1.290), (16767185627, 1.296),
(17361103618.1, 1.300)

GRAPH(MIN(technology support, 1)) Points: (0.000,
2.00), (0.0344827586207, 3.832), (0.0689655172414,
5.488), (0.103448275862, 6.984), (0.137931034483, 8.336),
(0.172413793103, 9.557), (0.206896551724, 10.66),
(0.241379310345, 11.66), (0.275862068966, 12.56),
(0.310344827586, 13.37), (0.344827586207, 14.11),
(0.379310344828, 14.77), (0.413793103448, 15.37),
(0.448275862069, 15.92), (0.48275862069, 16.41),
(0.51724137931, 16.85), (0.551724137931, 17.25),
(0.586206896552, 17.61), (0.620689655172, 17.94),
(0.655172413793, 18.24), (0.689655172414, 18.50),
(0.724137931034, 18.74), (0.758620689655, 18.96),
(0.793103448276, 19.16), (0.827586206897, 19.34),
(0.862068965517, 19.50), (0.896551724138, 19.64),
(0.931034482759, 19.77), (0.965517241379, 19.89), (1.000,
20.00)

GRAPH(Climate regulation. Temperature) Points: (13.300,
3.00), (13.5473684211, 11.65), (13.7947368421, 14.41),
(14.0421052632, 14.93), (14.2894736842, 17.24),
(14.5368421053, 18.21), (14.7842105263, 17.91),
(15.0315789474, 16.1223591616), (15.2789473684,
14.8178854512), (15.5263157895, 12.62), (15.7736842105,
10.61), (16.0210526316, 9.49), (16.2684210526, 8.67),
(16.5157894737, 7.18), (16.7631578947, 6.65),
(17.0105263158, 5.91), (17.2578947368, 5.16),
(17.5052631579, 4.57), (17.7526315789, 3.67), (18.000,
3.00)

0.1207*Primary_industry investment”™ 1.076870
"Land use/ land cover".Cultivated land*Yield

Farming_investment*0.2

MIN(0.45+(0.007*TIME), 0.9)

"Land use/ land cover".Cultivated land*Irragation chang
e rate

Irrigated land*"Irrigation water/ha"*(Effect of subsidy o
n_irrigation withdrawal*0.333+Effect of Rainfall on_irrig
ation*0.333+Effect of CPI on_irrigation®*0.333)

GRAPH(TIME) Points: (1.00, 653.0), (3.90, 683.0), (6.80,
713.0), (9.70, 743.0), (12.60, 773.0), (15.50, 803.0), (18.40,
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833.0), (21.30, 863.0), (24.20, 893.0), (27.10, 923.0),
(30.00, 953.0)

Primary in
dustry inv |0.0000001815*GDP.Primary GDP"1.474176

estment

GRAPH(GDP.GDP) Points: (181054000000, 0.000),
(757950168690, 0.05362), (1334846337380, 0.1054),
(1911742506070, 0.1555), (2488638674760, 0.2038),
(3065534843450, 0.2505), (3642431012140, 0.2957),
(4219327180830, 0.3393), (4796223349520, 0.3814),
(5373119518210, 0.4221), (5950015686900, 0.4614),
(6526911855590, 0.4994), (7103808024280, 0.5361),

technology (7680704192970, 0.5715), (8257600361660, 0.6058),

_support

Yield

GDP:

GDP(t)

(8834496530340, 0.6389), (9411392699030, 0.6708),
(9988288867720, 0.7017), (10565185036400, 0.7315),
(11142081205100, 0.7604), (11718977373800, 0.7882),
(12295873542500, 0.8151), (12872769711200, 0.8411),
(13449665879900, 0.8662), (14026562048600, 0.8905),
(14603458217200, 0.9139), (15180354385900, 0.9366),
(15757250554600, 0.9584), (16334146723300, 0.9796),
(16911042892000, 1.000)

MAX(3,

Effect of technology on crop yield)*0.4+Effect of rainfa
1l on crop yield*0.1+MAX(0,

Effect of temperature on crop yield)*0.3+Effect of soil
conservation_quality on crop_yield*0.1+Effect of irrigati
on_on_crop_yield*0.1

GDP(t - dt) + (GDP_inflow - GDP_outflow) * dt

Primary G |Primary GDP(t - dt) + ("Ist GDP_inflow" -

DP(t) "2nd_GDP_outflow") * dt

"Ist GDP_ | . . . .

inflow" Price_change_considered_1st_production-Primary_GDP
"2nd_GDP

"

_outflow

Primary GDP-Price_change considered 1st production

INIT
GDP

6301
2100
0000

INIT
Prima

DP =
5364
3500
0000
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GDP _inflo
w

GDP_outfl
ow

"3rd_GDP

"Consumer
_price_ind
ex_(CPI)"

Effect of
available
water_on_
2nd_GDP

Effect of
constructio
n_land on
_2nd_GDP

Indicated GDP-GDP

GDP-Indicated GDP

Effect of urbanization rate on 3rd GDP*0.25+Effect of
urban_land on 3rd GDP*0.25+Effect of tourism on 3rd
_GDP*0.25+Effect of CPI on 3rd GDP*0.25

GRAPH(TIME) Points: (1.00, 1.000), (2.00, 1.076), (3.00,
1.152), (4.00, 1.228), (5.00, 1.303), (6.00, 1.379), (7.00,
1.455), (8.00, 1.531), (9.00, 1.607), (10.00, 1.683), (11.00,
1.759), (12.00, 1.834), (13.00, 1.910), (14.00, 1.986),
(15.00, 2.062), (16.00, 2.138), (17.00, 2.214), (18.00,
2.290), (19.00, 2.366), (20.00, 2.441), (21.00, 2.517),
(22.00, 2.593), (23.00, 2.669), (24.00, 2.745), (25.00,
2.821), (26.00, 2.897), (27.00, 2.972), (28.00, 3.048),
(29.00, 3.124), (30.00, 3.200)

GRAPH(Water yield.Water Yield) Points: (98.00,
1.09¢+12), (111.00, 1.26e+12), (112.00, 1.26e+12),
(113.00, 1.27e+12), (114.00, 1.3e+12), (117.00, 1.36e+12),
(118.00, 1.36e+12), (118.00, 1.36e+12), (119.00,
1.39¢+12), (120.00, 1.46e+12), (127.00, 1.54e+12),
(128.00, 1.57e+12), (131.00, 1.64e+12), (131.00,
1.64e+12), (131.00, 1.64e+12), (131.00, 1.64e+12),
(135.00, 1.71e+12), (137.00, 1.71e+12), (137.00,
1.71e+12), (138.00, 1.73e+12), (140.00, 1.78e+12),
(141.00, 1.82e+12), (145.00, 1.87e+12), (145.00,
1.87e+12), (147.00, 1.96e+12), (156.00, 2.06e+12),
(158.00, 2.11e+12), (178.00, 2.36e+12), (181.00,
2.56e+12), (193.00, 2.81e+12)

GRAPH("Land use/ land cover".Construction land)
Points: (1789279, 74590000000), (1844238, 99911000000),
(1916851, 135571000000), (1963307, 189143000000),
(2007863, 235578000000), (2049865, 278409000000),
(2112594, 314737000000), (2157833, 340806000000),
(2214113, 364432000000), (2272269, 412019000000),
(2304486, 446674000000), (2341818, 503763000000),
(2395651, 572001000000), (2446364, 732761000000),
(2499042, 884113000000), (2554350, 1056849000000),
(2639285, 1252941000000), (2697741, 1491150000000),
(2752636, 1591967000000), (2800194, 1773308000000),
(2865766, 1992611000000), (2924897, 2127589000000),
(3026200, 2261589000000), (3068436, 2358802000000),
(3127499, 2481488000000), (3172624, 2.55e+12),
(3213678, 2.57e+12), (3258131, 2.62e+12), (3296734,
2.68e+12), (3452989, 2845666000000)
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Effect of
CPI on 2n
d GDP

Effect of
CPI on 3r
d GDP

Effect of
energy co
nsumption
~on 2nd_

GDP

GRAPH("Consumer price index (CPI)") Points: (1.000,
74590000000), (1.07586206897, 99911000000),
(1.15172413793, 135571000000), (1.2275862069,
189143000000), (1.30344827586, 235578000000),
(1.37931034483, 278409000000), (1.45517241379,
314737000000), (1.53103448276, 340806000000),
(1.60689655172, 364432000000), (1.68275862069,
412019000000), (1.75862068966, 446674000000),
(1.83448275862, 503763000000), (1.91034482759,
572001000000), (1.98620689655, 732761000000),
(2.06206896552, 884113000000), (2.13793103448,
1056849000000), (2.21379310345, 1252941000000),
(2.28965517241, 1491150000000), (2.36551724138,
1591967000000), (2.44137931034, 1773308000000),
(2.51724137931, 1992611000000), (2.59310344828,
2127589000000), (2.66896551724, 2261589000000),
(2.74482758621, 2358802000000), (2.82068965517,
2481488000000), (2.89655172414, 2556504000000),
(2.9724137931, 2817178000000), (3.04827586207,
2692559000000), (3.12413793103, 2752367000000),
(3.200, 2845666000000)

GRAPH("Consumer_price index (CPI)") Points: (1.000,
54279000000), (1.07586206897, 66280000000),
(1.15172413793, 81803000000), (1.2275862069,
117804000000), (1.30344827586, 158744000000),
(1.37931034483, 189954000000), (1.45517241379,
219470000000), (1.53103448276, 239749000000),
(1.60689655172, 262852000000), (1.68275862069,
290579000000), (1.75862068966, 326902000000),
(1.83448275862, 366974000000), (1.91034482759,
372624000000), (1.98620689655, 423225000000),
(2.06206896552, 517821000000), (2.13793103448,
630105000000), (2.21379310345, 773764000000),
(2.28965517241, 931852000000), (2.36551724138,
1054494000000), (2.44137931034, 1277807000000),
(2.51724137931, 1537027000000), (2.59310344828,
1763436000000), (2.66896551724, 2027433000000),
(2.74482758621, 2252401000000), (2.82068965517,
2557109000000), (2.89655172414, 2836717000000),
(2.9724137931, 3125380000000), (3.04827586207,
3417468000000), (3.12413793103, 3725171000000),
(3.200, 3897716000000)

GRAPH(Carbon_emission.Total _energy consumption)
Points: (108830209.3, 74590000000), (124438404.6,
99911000000), (231134276.1, 135571000000),
(271052467.7, 189143000000), (302259119,
235578000000), (322475605.2, 278409000000),
(334191588.5, 314737000000), (344099440.8,
340806000000), (355762065.4, 364432000000),
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Effect of t
ourism_on
_3rd GDP

Effect of

urban_land
~on 3rd G
DP

(376002563.6, 412019000000), (390261869.3,
446674000000), (417675446.1, 503763000000),
(450707785.1, 572001000000), (484606692.4,
732761000000), (525876260.6, 884113000000),
(564144096.9, 1056849000000, (598146293.2,
1252941000000), (6251520814, 1491150000000),
(658148959.1, 1591967000000, (692700444.9,
1773308000000), (711419308.6, 1992611000000),
(728575718.8, 2127589000000, (758227654.8,
2261589000000), (797081745.4, 2.52¢+12), (824005120.6,
2.68¢+12), (826623497, 2.68¢+12), (838398487.2,
2.75¢+12), (847927730.5, 2.83¢+12), (848018056.3,
2.85¢+12), (851301681, 2.85¢+12)

GRAPH(Aesthetic landscape.Aesthetic landscape) Points:
(6548400091, 0), (6618361800.31, 79580000000),
(6688323509.62, 162000000000), (6758285218.93,
247200000000), (6828246928.24, 335500000000),
(6898208637.55, 426800000000), (6968170346.86,
521400000000), (7038132056.17, 619300000000),
(7108093765.48, 720600000000), (7178055474.79,
825500000000), (7248017184.1, 934000000000),
(7317978893.41, 1046000000000), (7387940602.72,
1163000000000), (7457902312.03, 1283000000000),
(7527864021.34, 1408000000000), (7597825730.66,
1537000000000), (7667787439.97, 1.67e+12),
(7737749149.28, 1808000000000), (7807710858.59,
1951000000000), (7877672567.9, 2099000000000),
(7947634277.21, 2253000000000), (8017595986.52,
2411000000000), (8087557695.83, 2575000000000),
(8157519405.14, 2745000000000), (8227481114.45,
2921000000000), (8297442823.76, 3103000000000),
(8367404533.07, 3292000000000), (8437366242.38,
3487000000000), (8507327951.69, 3689000000000),
(8577289661, 3898000000000)

GRAPH(Population.Urban_land demand) Points: (995344,
54279000000), (1036602, 66280000000), (1082367,
81803000000), (1130037, 117804000000), (1178899,
158744000000), (1227460, 189954000000), (1275226,
219470000000), (1323036, 239749000000), (1371799,
262852000000), (1422068, 290579000000), (1474212,
326902000000), (1528624, 366974000000), (1585735,
372624000000), (1645920, 423225000000), (1709277,
517821000000), (1775625, 630105000000), (1844612,
773764000000), (1915725, 931852000000), (1988421,
1054494000000), (2062376, 1277807000000), (2137117,
1537027000000), (2211984, 1763436000000), (2286460,
2027433000000), (2360297, 2252401000000), (2433309,
2557109000000), (2509316, 2836717000000), (2585427,
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3125380000000), (2660159, 3417468000000), (2733328,
3725171000000), (2804918, 3897716000000)

GRAPH(Urbanization_rate) Points: (0.2000, 54279000000),
(0.2100, 66280000000), (0.2200, 81803000000), (0.2300,
117804000000), (0.2400, 158744000000), (0.2400,
189954000000), (0.2500, 219470000000), (0.2600,
239749000000), (0.2700, 262852000000), (0.2800,
290579000000), (0.2900, 326902000000), (0.3000,
Effect of 366974000000), (0.3100, 372624000000), (0.3200,
urbanizatio |423225000000), (0.3300, 517821000000), (0.3400,
n_rate_on_ 630105000000), (0.3500, 773764000000), (0.3600,

3rd GDP 931852000000), (0.3700, 1054494000000), (0.3800,
1277807000000), (0.4000, 1537027000000), (0.4100,
1763436000000), (0.4200, 2027433000000), (0.4300,
2252401000000), (0.4400, 2557109000000), (0.4600,
2836717000000), (0.4700, 3125380000000), (0.4800,
3417468000000), (0.4900, 3725171000000), (0.5100,
3897716000000)

Indicated " T

GDP Secondary GDP+"3rd GDP"+Primary GDP

Price_chan

ge conside Primary industry production*"Consumer price index (CP
red 1st pr I)"*1034
oduction

Primary in
dustry pro
duction

Aquatic_production.Aquatic_production+Farming_producti
on.Farming_production

Effect of available water on 2nd GDP*0.25+Effect of ¢
Secondary |onstruction land on 2nd GDP*0.25+Effect of CPI on 2

_GDP nd GDP*0.25+Effect of energy consumption on 2nd G
DP*0.25

Urbanizati | MIN(0.0001008*TIME*TIME+0.00732*TIME+0.1972,

on_rate 0.80)

"Land use/ land cover":

Barren_land(t - dt) + (Flow_of barren_and grassland -
Barren lan Flow of barren and water cover -

d(t) Flow of construction_and barren land - "Barren-
farmland change") * dt
Construction_land(t - dt) +

Constructi |(Flow_of construction and grassland +

on_land(t) Flow of construction and barren land +
Urban_expansion_from farmland) * dt
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Cultivated
_land(t)

Forestland(
t)

Grassland(
t)

Shrub_lan
d(t)

Water cov
ered land(t

)

Wetland(t)

"Barren-
farmland ¢
hange"

Flow of b
arren_and
grassland

Cultivated land(t - dt) + ("Barren-farmland change" +
"Grassland-cultivated change rate" -

Flow of cultivated land and forestland -
Urban_expansion_from farmland -

Flow of cultivated land and water cover) * dt

Forestland(t - dt) +
(Flow_of cultivated land and forestland +
Flow_of shrub land and forest) * dt

Grassland(t - dt) + (Flow_of shrub and grassland
Flow_of construction_and grassland - "Grassland-

cultivated change rate" - Flow of barren and grassland) *

dt

Shrub_land(t - dt) + ( - Flow_of shrub _and grassland -
Flow_of shrub land and forest) * dt

Water covered land(t - dt) +

(Flow_of barren _and water cover +

Water _expansion_from wetland +

Flow of cultivated land and water cover) * dt

Wetland(t - dt) + ( - Water_expansion_from_ wetland) * dt

IF Climate regulation.Climatic factors>0.05 THEN (IF
Cultivated land-Population.Farming land demand>0
THEN -(Cultivated land-

Population.Farming_land _demand)/50 ELSE 0) ELSE( IF
Cultivated land-Population.Farming land demand>0
THEN -(Cultivated land)*(1-

Climate regulation.Climatic_factors)/10 ELSE 0)

IF Climate regulation.Climatic factors>0.1 THEN 0
ELSE(Grassland)*(1-
Climate_regulation.Climatic_factors)/10
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INIT
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INIT
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INIT
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INIT
Shrub
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INIT
Water
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INIT
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Flow of b
arren_and
water _cov
er

Flow of ¢
onstruction
_and_barre
n_land

Flow of ¢
onstruction
_and_grass
land

Flow of ¢
ultivated 1
and and f
orestland

Flow of ¢
ultivated 1
and and
water _cov
er

Flow of s
hrub_and
grassland

Water balance.Water flow/"barren-water transfer year"

IF Population.Construction_demand> Construction land
THEN (Population.Construction demand-
Construction_land)/"Barren-urban_transfer year" ELSE -
(Construction_land-Population.Construction _demand)/15

IF Population.Construction demand-Construction land>0
THEN 0.024*Grassland ELSE

(((DELAY 1(Construction_land, 1)-

Construction_land ))/Grassland _transfer year)*Climate reg
ulation.Climatic_factors

MAX(IF Cultivated land-
Population.Farming land demand>0 THEN (IF TIME >14
THEN
(DELAY1(0.00001053*Carbon_emission.Carbon_dioxide
emission, 20) +(Aesthetic_landscape.Aesthetic_landscape-
DELAY (Aesthetic_landscape.Aesthetic_landscape,

1))/Aesthetic landscape.Aesthetic landscape*Forestland/30
+(Cultivated _land-

Population.Farming land demand)*(Climate regulation.Cli |:

matic_factors)/50 ) ELSE +(Cultivated land-
Population.Farming land demand)*(Climate regulation.Cli
matic_factors)/100) ELSE -Forestland/10, 0)

IF Cultivated land-Population.Farming land demand>0
THEN ( 0.05*(Water_balance.Water flow))
+((Aesthetic_landscape.Aesthetic_landscape-

DELAY (Aesthetic_landscape.Aesthetic_landscape,
1))/Aesthetic landscape.Aesthetic landscape)*Water cover
ed land/10 ELSE 0

IF Climate regulation.Climatic factors>0.2 THEN 0 ELSE
(Shrub_land)*(1-Climate regulation.Climatic_factors)/20
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Flow of s

hrub_land

and_forest

"Grassland
cultivated
change rat

n

€

Urban_exp
ansion_fro
m_farmlan

d

Water exp
ansion_fro
m_wetland

"Barren-
urban_tran
sfer year"

"barren-
water_tran
sfer _year"

Grassland
transfer ye
ar

Population:

"Aged 1-
15"(t)

IF Climate regulation.Climatic factors>0.35 THEN
0.074*Shrub_land*(1-Climate regulation.Climatic factors)
ELSE -(Forestland)/100

IF Cultivated land-Population.Farming land demand>0
THEN -(Grassland-DELAY (Grassland, 1))/10-
(Aesthetic_landscape.Aesthetic_landscape-

DELAY (Aesthetic_landscape.Aesthetic_landscape,
1))/Aesthetic landscape.Aesthetic landscape*Grassland/5
ELSE 0

IF Population.Construction _demand-Construction land>0
THEN (Population.Construction demand-
Construction_land)/5 ELSE 0

IF TIME <20 THEN 0.252*Wetland ELSE -0.052*Wetland
+((Aesthetic_landscape.Aesthetic_landscape-

DELAY (Aesthetic_landscape.Aesthetic_landscape,
1))/Aesthetic landscape.Aesthetic landscape)*Wetland/20

GRAPH(TIME) Points: (1.00, 25.00), (2.00, 24.28), (3.00,
23.55), (4.00, 22.83), (5.00, 22.10), (6.00, 21.38), (7.00,
20.66), (8.00, 19.93), (9.00, 19.21), (10.00, 18.48), (11.00,
17.76), (12.00, 17.03), (13.00, 16.31), (14.00, 15.59),
(15.00, 14.86), (16.00, 14.14), (17.00, 13.41), (18.00,
12.69), (19.00, 11.97), (20.00, 11.24), (21.00, 10.52),
(22.00, 9.793), (23.00, 9.069), (24.00, 8.345), (25.00,
7.621), (26.00, 6.897), (27.00, 6.172), (28.00, 5.448),
(29.00, 4.724), (30.00, 4.00)

30

"Aged 1-15"(t - dt) + (Births - "Aging Flow 0-14 to 15-
64") * dt

ouT
FLO

PRIO
RITY

12

ouT
FLO
\%

PRIO
RITY

23

ouT
FLO
\%

PRIO
RITY
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INIT
"Age
d 1-

15" =
1910
3016
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"Aged 15-
64"(t)

Aged 65(t
)

"Aging Fl
ow_0-

14 to 15-
64"
"Aging Fl
ow_15-
64 to 65"

Births

Deaths

"2nd_child
_Policy i
mpact"

"Aged 15-64"(t - dt) + ("Aging Flow 0-14 to 15-64" -
"Aging Flow 15-64 to 65") * dt

Aged 65(t - dt) + ("Aging Flow 15-64 to 65" - Deaths) *
dt

DELAYN(Births,"Age Span 0-14",10,1519746*(1-
"Death_rate 0-14"))

DELAYN("Aging Flow 0-14 to 15-64","Age Span 15-
64",10,57348480/55*(1-"Death_rate 15-64"))

"Aged 15-
64"*0.45*Fraction_women*(Observed_fertility/Fertile peri
od year)

DELAYN("Aging Flow 15-
64 to 65",Age Span 64 to die,10,5313400/10)

GRAPH(Higher education_rate) Points: (-0.002514995,
0.7000), (0.00827633405063, 0.6901), (0.0190676631013,
0.6802), (0.0298589921519, 0.6705), (0.0406503212025,
0.6609), (0.0514416502532, 0.6515), (0.0622329793038,
0.6421), (0.0730243083544, 0.6329), (0.0838156374051,
0.6238), (0.0946069664557, 0.6148), (0.105398295506,
0.6060), (0.116189624557, 0.5972), (0.126980953608,
0.5885), (0.137772282658, 0.5800), (0.148563611709,
0.5715), (0.159354940759, 0.5632), (0.17014626981,
0.5550), (0.180937598861, 0.5469), (0.191728927911,
0.5388), (0.202520256962, 0.5309), (0.213311586013,
0.5231), (0.224102915063, 0.5154), (0.234894244114,
0.5077), (0.245685573165, 0.5002), (0.256476902215,
0.4928), (0.267268231266, 0.4854), (0.278059560316,
0.4782), (0.288850889367, 0.4710), (0.299642218418,
0.4639), (0.310433547468, 0.4570), (0.321224876519,
0.4501), (0.33201620557, 0.4433), (0.34280753462,
0.4365), (0.353598863671, 0.4299), (0.364390192722,
0.4234), (0.375181521772, 0.4169), (0.385972850823,
0.4105), (0.396764179873, 0.4042), (0.407555508924,
0.3980), (0.418346837975, 0.3918), (0.429138167025,
0.3857), (0.439929496076, 0.3797), (0.450720825127,
0.3738), (0.461512154177, 0.3680), (0.472303483228,
0.3622), (0.483094812278, 0.3565), (0.493886141329,

INIT
"Age
d 15-
64" =
6722
6748

INIT
Aged
_65=
1539
0236
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"Age Span
_0-14"

"Age Span
_15-64"

Age Span
_ 64 to die

Birth_rate

Constructi
on_deman

d

"Death_rat
e 0-14"

"Death_rat
e 15-64"

"Desired
Number o
f Children
_(DNO)"

0.3509), (0.50467747038, 0.3453), (0.51546879943,
0.3398), (0.526260128481, 0.3344), (0.537051457532,
0.3291), (0.547842786582, 0.3238), (0.558634115633,
0.3186), (0.569425444684, 0.3134), (0.580216773734,
0.3083), (0.591008102785, 0.3033), (0.601799431835,
0.2983), (0.612590760886, 0.2934), (0.623382089937,
0.2886), (0.634173418987, 0.2838), (0.644964748038,
0.2791), (0.655756077089, 0.2745), (0.666547406139,
0.2699), (0.67733873519, 0.2653), (0.688130064241,
0.2608), (0.698921393291, 0.2564), (0.709712722342,
0.2520), (0.720504051392, 0.2477), (0.731295380443,
0.2435), (0.742086709494, 0.2393), (0.752878038544,
0.2351), (0.763669367595, 0.2310), (0.774460696646,
0.2270), (0.785252025696, 0.2230), (0.796043354747,
0.2190), (0.806834683797, 0.2151), (0.817626012848,
0.2113), (0.828417341899, 0.2075), (0.839208670949,
0.2037), (0.8500, 0.2000)

15

50

GRAPH(TIME) Points: (1.00, 5.00), (2.00, 5.002), (3.00,
5.006), (4.00, 5.012), (5.00, 5.023), (6.00, 5.043), (7.00,
5.077), (8.00, 5.137), (9.00, 5.241), (10.00, 5.418), (11.00,
5.717), (12.00, 6.20), (13.00, 6.942), (14.00, 7.987), (15.00,
9.293), (16.00, 10.71), (17.00, 12.01), (18.00, 13.06),
(19.00, 13.80), (20.00, 14.28), (21.00, 14.58), (22.00,
14.76), (23.00, 14.86), (24.00, 14.92), (25.00, 14.96),
(26.00, 14.98), (27.00, 14.99), (28.00, 14.99), (29.00,
15.00), (30.00, 15.00)

Births/Population*1000

Rural construction_demand+Urban_land demand

(1/1000) * (1 - Medical Improvement Factor)

(5/1000) * (1 - Medical Improvement Factor)

MAX(((DNC_1990 + (DNCmin - DNC 1990) * EXP(-
DNCgamma * ("GDP/population 1991" -
"GDP/population_1990"))) * (1 + GDP_impact *
("GDP/population_1991" - "GDP/population_1990"))) * (1
- Education_impact * Higher education rate) * (1 +
"2nd_child Policy impact" * (TIME > 25)), 0.8)
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DNC 199
0

DNCgam
ma

DNCmin

Education_
impact

2

0.005

1.4

GRAPH(Higher education_rate) Points: (-0.002514995,
0.0000), (0.00827633405063, 0.0005329),
(0.0190676631013, 0.001125), (0.0298589921519,
0.001785), (0.0406503212025, 0.00252),
(0.0514416502532, 0.003342), (0.0622329793038,
0.00426), (0.0730243083544, 0.005287),
(0.0838156374051, 0.006437), (0.0946069664557,
0.007725), (0.105398295506, 0.009168), (0.116189624557,
0.01079), (0.126980953608, 0.0126), (0.137772282658,
0.01463), (0.148563611709, 0.01691), (0.159354940759,
0.01945), (0.17014626981, 0.0223), (0.180937598861,
0.02548), (0.191728927911, 0.02904), (0.202520256962,
0.0330), (0.213311586013, 0.0374), (0.224102915063,
0.04229), (0.234894244114, 0.04771), (0.245685573165,
0.05371), (0.256476902215, 0.06031), (0.267268231266,
0.06757), (0.278059560316, 0.07551), (0.288850889367,
0.08418), (0.299642218418, 0.09359), (0.310433547468,
0.1038), (0.321224876519, 0.1147), (0.33201620557,
0.1264), (0.34280753462, 0.1389), (0.353598863671,
0.1520), (0.364390192722, 0.1659), (0.375181521772,
0.1803), (0.385972850823, 0.1952), (0.396764179873,
0.2106), (0.407555508924, 0.2262), (0.418346837975,
0.2420), (0.429138167025, 0.2580), (0.439929496076,
0.2738), (0.450720825127, 0.2894), (0.461512154177,
0.3048), (0.472303483228, 0.3197), (0.483094812278,
0.3341), (0.493886141329, 0.3480), (0.50467747038,
0.3611), (0.51546879943, 0.3736), (0.526260128481,
0.3853), (0.537051457532, 0.3962), (0.547842786582,
0.4064), (0.558634115633, 0.4158), (0.569425444684,
0.4245), (0.580216773734, 0.4324), (0.591008102785,
0.4397), (0.601799431835, 0.4463), (0.612590760886,
0.4523), (0.623382089937, 0.4577), (0.634173418987,
0.4626), (0.644964748038, 0.4670), (0.655756077089,
0.4710), (0.666547406139, 0.4745), (0.67733873519,
0.4777), (0.688130064241, 0.4805), (0.698921393291,
0.4831), (0.709712722342, 0.4854), (0.720504051392,
0.4874), (0.731295380443, 0.4892), (0.742086709494,
0.4908), (0.752878038544, 0.4923), (0.763669367595,
0.4936), (0.774460696646, 0.4947), (0.785252025696,
0.4957), (0.796043354747, 0.4967), (0.806834683797,
0.4975), (0.817626012848, 0.4982), (0.828417341899,
0.4989), (0.839208670949, 0.4995), (0.8500, 0.5000)
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Farming 1|
abor

Farming 1|

and dema
nd

Fertile per
iod year
Fraction_a
chieving d
esired fam
ily size

Fraction w
omen

GDP_impa
ct

"GDP/pop
ulation 19
90"

"GDP/pop
ulation 19
91"

Higher ed
ucation

Rural population*0.74

MAX(Farming_labor*(0.23+0.0006*(TIME)),Minimum_de
mand_for farmland)

20

0.49

GRAPH("GDP/population_1991") Points: (2112.648775,
0), (3956.24906862, -4.29¢-7), (5799.84936224, -
0.0000013), (7643.44965586, -0.00000147),
(9487.04994948, -0.00000182), (11330.6502431, -
0.00000211), (13174.2505367, -0.00000232),
(15017.8508303, -0.000002475), (16861.451124, -
0.00000263), (18705.0514176, -0.00000281),
(20548.6517112, -0.00000293), (22392.2520048, -
0.00000305), (24235.8522984, -0.000003165),
(26079.4525921, -0.00000328), (27923.0528857, -
0.000003395), (29766.6531793, -0.00000351),
(31610.2534729, -0.00000363), (33453.8537666, -
0.00000375), (35297.4540602, -0.000003828),
(37141.0543538, -0.000003906), (38984.6546474, -
0.000003984), (40828.254941, -0.000004062),
(42671.8552347, -0.00000414), (44515.4555283, -
0.000004265), (46359.0558219, -0.00000439),
(48202.6561155, -0.00000449), (50046.2564091, -
0.00000456), (51889.8567028, -0.00000463),
(53733.4569964, -0.00000467), (55577.05729, -
0.00000488)

2122

GDP.GDP/Population

GRAPH("GDP/population_1991") Points: (3517.860141,
1263032.000), (3783.744297, 1542796.000), (4101.574612,
1882491.000), (4479.856057, 2294696.000), (4929.699631,
2793803.000), (5464.985379, 3396078.000), (6102.544049,
4119709.000), (6858.73453, 4987472.000), (7755.204185,
6023317.000), (8820.845129, 7250273.000), (10086.14951,
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8694408.000), (11589.47402, 10379365.000),
(13377.05542, 12325163.000), (15498.03143,
14551738.000), (18011.88757, 17071064.000)

Higher ed
ucation_rat |"Maximum-_ Education_population"/Population
e

"Maximum

_Education | MIN(Higher education, 0.85*Population)
_populatio

n"

GRAPH(TIME) Points: (1.00, 0.005), (2.00, 0.005316),
(3.00, 0.005633), (4.00, 0.005949), (5.00, 0.006266), (6.00,
0.006582), (7.00, 0.006899), (8.00, 0.007215), (9.00,
0.007532), (10.00, 0.007848), (11.00, 0.008165), (12.00,
0.008481), (13.00, 0.008797), (14.00, 0.009114), (15.00,
0.00943), (16.00, 0.009747), (17.00, 0.01006), (18.00,
0.01038), (19.00, 0.0107), (20.00, 0.01101), (21.00,
0.01133), (22.00, 0.01165), (23.00, 0.01196), (24.00,
0.01228), (25.00, 0.01259), (26.00, 0.01291), (27.00,
0.01323), (28.00, 0.01354), (29.00, 0.01386), (30.00,
0.01418), (31.00, 0.01449), (32.00, 0.01481), (33.00,
0.01513), (34.00, 0.01544), (35.00, 0.01576), (36.00,

Medical 1 |0.01608), (37.00, 0.01639), (38.00, 0.01671), (39.00,

mproveme |0.01703), (40.00, 0.01734), (41.00, 0.01766), (42.00,

nt_Factor |0.01797), (43.00, 0.01829), (44.00, 0.01861), (45.00,
0.01892), (46.00, 0.01924), (47.00, 0.01956), (48.00,
0.01987), (49.00, 0.02019), (50.00, 0.02051), (51.00,
0.02082), (52.00, 0.02114), (53.00, 0.02146), (54.00,
0.02177), (55.00, 0.02209), (56.00, 0.02241), (57.00,
0.02272), (58.00, 0.02304), (59.00, 0.02335), (60.00,
0.02367), (61.00, 0.02399), (62.00, 0.0243), (63.00,
0.02462), (64.00, 0.02494), (65.00, 0.02525), (66.00,
0.02557), (67.00, 0.02589), (68.00, 0.0262), (69.00,
0.02652), (70.00, 0.02684), (71.00, 0.02715), (72.00,
0.02747), (73.00, 0.02778), (74.00, 0.0281), (75.00,
0.02842), (76.00, 0.02873), (77.00, 0.02905), (78.00,
0.02937), (79.00, 0.02968), (80.00, 0.03)

Minimum
demand fo |Per capita demand for farmland*Population
r_farmland

Observed  |"Desired Number of Children (DNC)"*Fraction_achievin
fertility g desired family size

Per_capita
_demand f
or_farmlan

d

Per capita demand for grain/Farming production.Yield
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Per_capita
_demand f
or_grain

Population

Rural cons
truction_de
mand

"Rural lan
d/_person"

Rural pop
ulation

"Urban_an
d_industria
| land / p
erson"

Urban_lan
d_demand

Urban_pop
ulation

Urbanizati
on rate

0.146

Aged 65+"Aged 15-64"+"Aged 1-15"

Rural population*"Rural land/ person”

0.0165

Population*(1-Urbanization_rate)

0.05676

Urban_population*"Urban_and _industrial land / person"

Population*Urbanization rate

MIN(0.0001008*TIME*TIME+0.00732*TIME+0.1972,
0.80)

Soil conservation:

Actual Soi
1 Conserva
tion_quanti

ty

"length-
slope_inde

X

Potential
Soil _conse
rvation

Precipitati
on_April

Precipitati
on_August

Precipitati
on_Decem
ber

Rainfall erosion index*Soil erosion_factor*"length-
slope index"*Vegetation_and administration_element*sup
port_practice factor

0.58

Rainfall erosion index*Soil erosion_factor*"length-
slope_index"

Climate regulation.Precipitation*0.046664238

Climate regulation.Precipitation*0.176909357

Climate regulation.Precipitation*0.016539141
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Precipitati
on_Februa

ry

Precipitati
on_Januar

y

Precipitati
on July

Precipitati
on_June

Precipitati
on_March

Precipitati
on_May

Precipitati
on_Novem
ber

Precipitati
on_Octobe
r

Precipitati
on_Septem
ber

Rainfall er
osion_inde
X

Climate regulation.Precipitation*0.022632564

Climate regulation.Precipitation*0.012001067

Climate regulation.Precipitation*0.247471656

Climate regulation.Precipitation*0.114109491

Climate regulation.Precipitation*0.033678072

Climate regulation.Precipitation*0.101434348

Climate regulation.Precipitation*0.036744414

Climate_regulation.Precipitation*0.047308426

Climate regulation.Precipitation*0.091275505

1.735 * (10(1.5 * LOG10((Precipitation_January”2) /
Climate_regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation_February”2) /
Climate_regulation.Precipitation) - 0.08188)) + 1.735 *
(10™(1.5 * LOG10((Precipitation_March”"2) /

Climate regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation_April*2) /

Climate regulation.Precipitation) - 0.08188)) + 1.735 *
(10~(1.5 * LOG10((Precipitation_May”2) /

Climate regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation_June”2) /
Climate_regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation_July”2) /
Climate_regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation August"2) /
Climate_regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation_September”2) /
Climate regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation_October”2) /
Climate_regulation.Precipitation) - 0.08188)) + 1.735 *
(107(1.5 * LOG10((Precipitation November"2) /
Climate regulation.Precipitation) - 0.08188)) + 1.735 *
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Soil_Cons
ervation_q
uantity

Soil_erosio
n_factor

support_pr
actice fact
or

Vegetation
_and_admi
nistration_
element

(107(1.5 * LOG10((Precipitation_December”2) /
Climate_regulation.Precipitation) - 0.08188))

(Potential Soil conservation-
Actual _Soil Conservation_quantity)

(0.2+0.3*EXP(-0.0256*45%(1-30/100)))* (1-
(0.25%5/5+EXP(3.72-(2.95%5))))* (1-(0.7*(1- 45/100))/(1-
45/100+EXP(-5.51+22.9%(1-45/100))))* (30/20+30)%0.3

0.2105

(0.003 * "Land use/ land cover".Forestland+ 0.02 *

"Land use/ land cover".Grassland + 0.3 *

"Land use/ land cover".Cultivated land+0.8*"Land use/ 1
and cover".Barren land) /15463288.53

Wastewater discharge:

Wastewate
r_discharg
e

IF TIME <26 THEN ( 0.000000050683 * GDP.GDP +
0.013302 * Population.Population -109310*
Population.Urbanization rate -963100 ) ELSE(370000)

Water balance:

Amount o
f penetrati
on

Average

water dept
h

Coefficient
_of perme
ability

Coefficient of permeability*"Land use/ land cover".Wate
r_covered land*10

GRAPH(Climate regulation.Precipitation) Points: (620.0,
1.000), (624.482758621, 1.069), (628.965517241, 1.138),
(633.448275862, 1.207), (637.931034483, 1.276),
(642.413793103, 1.345), (646.896551724, 1.414),
(651.379310345, 1.483), (655.862068966, 1.552),
(660.344827586, 1.621), (664.827586207, 1.690),
(669.310344828, 1.759), (673.793103448, 1.828),
(678.275862069, 1.897), (682.75862069, 1.966),
(687.24137931, 2.034), (691.724137931, 2.103),
(696.206896552, 2.172), (700.689655172, 2.241),
(705.172413793, 2.310), (709.655172414, 2.379),
(714.137931034, 2.448), (718.620689655, 2.517),
(723.103448276, 2.586), (727.586206897, 2.655),
(732.068965517, 2.724), (736.551724138, 2.793),
(741.034482759, 2.862), (745.517241379, 2.931), (750.0,
3.000)
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ecologic
water

Evaporatio
n_flow

Industry w
ater

"Inter-
basin_wate
r_transfer"

Life water
_consumpt
ion

"Surface
water _cons
umption(S
wQC)"

"SWC rate

GRAPH(TIME) Points: (11.00, 34000000, (11.95,
29000000), (12.90, 138000000), (13.85, 168000000),
(14.80, 237000000), (15.75, 262000000), (16.70, 3.2¢+08),
(17.65, 373000000), (18.60, 394000000), (19.55, 4.9¢+08),
(20.50, 5.4e+08), (21.45, 6.1e+08), (22.40, 6.7e+08),
(23.35, 695000000), (24.30, 7.9¢+08), (25.25, 1.01¢+09),
(26.20, 1.15¢+09), (27.15, 1.5¢+09), (28.10, 1.66e+09),
(29.05, 1908000000, (30.00, 2.13¢+09)

Water yield.Reference ETO*"Land use/ land cover".Wate
r_covered land*10

GRAPH(GDP.Secondary GDP) Points: (446674000000,
4.17e+09), (503763000000, 3.86e+09), (572001000000,
3.35e+09), (732761000000, 2.26e+09), (884113000000,
1.71e+09), (1056849000000, 1.71e+09), (1252941000000,
2.15e+09), (1491150000000, 2.22e+09), (1591967000000,
2.37e+09), (1773308000000, 2.54¢+09), (1992611000000,
2.7e+09), (2127589000000, 2.83e+09), (2261589000000,
2.89¢+09), (2358802000000, 2.94¢+09), (2481488000000,
3e+09), (2556504000000, 3.07e+09), (2692559000000,
3.13e+09), (2752367000000, 3.16e+09), (2817178000000,
3.18e+09), (2845666000000, 3.2e+09)

GRAPH(TIME) Points: (1.00, 0), (1.96666666667, 0),
(2.93333333333, 0), (3.90, 0), (4.86666666667, 0),
(5.83333333333, 0), (6.80, 0), (7.76666666667, 0),
(873333333333, 0), (9.70, 0), (10.6666666667, 4.93¢+08),
(11.6333333333, 5.04e+08), (12.60, 5.12¢+08),
(13.5666666667, 5.16e+08), (145333333333, 5.31e+08),
(15.50, 5.39¢+08), (16.4666666667, 5.5¢+08),
(17.4333333333, 5.58¢+08), (18.40, 5.77¢+08),
(193666666667, 5.81e+08), (20.3333333333, 5.92¢+08),
(21.30, 5.96e+08), (22.2666666667, 6.03¢+08),
(23.2333333333, 6.07¢+08), (24.20, 6.11¢+08),
(25.1666666667, 6.23e+08), (26.1333333333, 6.34e+08),
(27.10, 6.42¢+08), (28.0666666667, 6.49¢+08),
(29.0333333333, 6.65¢+08), (30.00, 6.72¢+08)

"water consumption/people"*Population.Population

Amount_of penetration+Evaporation flow+("SWC-
life_ water"+"SWC-industry water"+"SWC-
irrigation"+"SWC-ecological water")

GRAPH(TIME) Points: (1.00, 0.0500), (2.00, 0.07759),
(3.00, 0.1052), (4.00, 0.1328), (5.00, 0.1603), (6.00,
0.1879), (7.00, 0.2155), (8.00, 0.2431), (9.00, 0.2707),
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_ecologic_ |(10.00, 0.2983), (11.00, 0.3259), (12.00, 0.3534), (13.00,

water" 0.3810), (14.00, 0.4086), (15.00, 0.4362), (16.00, 0.4638),
(17.00, 0.4914), (18.00, 0.5190), (19.00, 0.5466), (20.00,
0.5741), (21.00, 0.6017), (22.00, 0.6293), (23.00, 0.6569),
(24.00, 0.6845), (25.00, 0.7121), (26.00, 0.7397), (27.00,
0.7672), (28.00, 0.7948), (29.00, 0.8224), (30.00, 0.8500)

GRAPH(TIME) Points: (1.00, 0.5500), (2.00, 0.5545),
(3.00, 0.5590), (4.00, 0.5634), (5.00, 0.5679), (6.00,
0.5724), (7.00, 0.5769), (8.00, 0.5814), (9.00, 0.5859),
(10.00, 0.5903), (11.00, 0.5948), (12.00, 0.5993), (13.00,
0.6038), (14.00, 0.6083), (15.00, 0.6128), (16.00, 0.6172),
(17.00, 0.6217), (18.00, 0.6262), (19.00, 0.6307), (20.00,
0.6352), (21.00, 0.6397), (22.00, 0.6441), (23.00, 0.6486),
(24.00, 0.6531), (25.00, 0.6576), (26.00, 0.6621), (27.00,
0.6666), (28.00, 0.6710), (29.00, 0.6755), (30.00, 0.6800)

GRAPH(TIME) Points: (1.00, 0.4500), (2.00, 0.4541),
(3.00, 0.4583), (4.00, 0.4624), (5.00, 0.4666), (6.00,
0.4707), (7.00, 0.4748), (8.00, 0.4790), (9.00, 0.4831),
(10.00, 0.4872), (11.00, 0.4914), (12.00, 0.4955), (13.00,
e water 0-4997): (14.00,0.5038), (15.00, 0.5079), (16.00, 0.5121),
e (17.00, 0.5162), (18.00, 0.5203), (19.00, 0.5245), (20.00,
0.5286), (21.00, 0.5328), (22.00, 0.5369), (23.00, 0.5410),
(24.00, 0.5452), (25.00, 0.5493), (26.00, 0.5534), (27.00,
0.5576), (28.00, 0.5617), (29.00, 0.5659), (30.00, 0.5700)

GRAPH(TIME) Points: (1.00, 0.65), (2.00, 0.6483), (3.00,
0.6466), (4.00, 0.6448), (5.00, 0.6431), (6.00, 0.6414),
(7.00, 0.6397), (8.00, 0.6379), (9.00, 0.6362), (10.00,
0.6345), (11.00, 0.6328), (12.00, 0.631), (13.00, 0.6293),
(14.00, 0.6276), (15.00, 0.6259), (16.00, 0.6241), (17.00,
0.6224), (18.00, 0.6207), (19.00, 0.619), (20.00, 0.6172),
(21.00, 0.6155), (22.00, 0.6138), (23.00, 0.6121), (24.00,
0.6103), (25.00, 0.6086), (26.00, 0.6069), (27.00, 0.6052),
(28.00, 0.6034), (29.00, 0.6017), (30.00, 0.6)

"SWC rate

_industry
water"

"SWC rate

"SWC rate
-irrigation”

"SWC-
ecological |ecologic water*(MIN("SWC rate- ecologic_water", 1))
_water"

"SWC-
industry w |Industry water*(MIN("SWC rate-_industry water", 0.8))
ater"

"SWC- Farming production.Irrigation*(MIN("SWC _rate-
irrigation" |irrigation", 0.8))

"SWC- Life water consumption*(MIN("SWC rate- life water",
life_ water" 1))

"water _con | GRAPH(TIME) Points: (11.00, 23.00), (11.95, 24.08),
sumption/p |(12.90, 25.11), (13.85, 26.08), (14.80, 27.01), (15.75,
eople" 27.90), (16.70, 28.74), (17.65, 29.54), (18.60, 30.30),
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Water_flo
w

water_infl
ow

"Water_yie
1d_(cubic
meter)"

(19.55, 31.03), (20.50, 31.71), (21.45, 32.37), (22.40,
32.99), (23.35, 33.59), (24.30, 34.15), (25.25, 34.69),
(26.20, 35.20), (27.15, 35.68), (28.10, 36.14), (29.05,
36.58), (30.00, 37.00)

((water_inflow-
"Surface water consumption(SWC)")/(MAX(Average wat
er_depth, 0.1)*10000))

"Water yield (cubic_meter)"+"Inter-
basin_water transfer"+Wastewater discharge.Wastewater
discharge*0.6

Water yield.Water Yield*11463289*10

Water yield:

"Barren_ A
ET/P"

Barren A
WC

Barren PE
T

Barren wa
ter_yield

Clay rate

Constructi
on AWC

Constructi
on land w
ater_yield

"cultivated
_AET/P"

Cultivated
_AWC

1+(Barren PET/Climate regulation.Precipitation)-
(1+(Barren_PET/Climate_regulation.Precipitation)""w-
barren")"(1/"w-barren")

0.5*("PAWC-
The amount of water available to the plants")

0.2*Reference ETO

(1-"Barren_ AET/P")*Climate_regulation.Precipitation

20*(1+0.5*(Soil_conservation.Soil_Conservation_quantity-
INIT(Soil conservation.Soil_Conservation_quantity))/INIT
(Soil _conservation.Soil_Conservation_quantity))

0.1*("PAWC-
The amount of water available to the plants")

(1-
Urban PET/Climate regulation.Precipitation)*Climate reg
ulation.Precipitation

I+(cultivated PET/Climate regulation.Precipitation)-
(1+(cultivated PET/Climate regulation.Precipitation)™"w-
cultivated")(1/"w-cultivated")

3.5*%("PAWC-
The amount of water available to the plants")
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cultivated
PET

Cultivated
_water_yie
1d

"Forest A
ET/P"

Forest A
WC

Forest PE
T

Forest wat
er yield

"Grassland
_AET/P"

Grassland
AWC

Grassland
PET

Grassland
water yiel

d

Organic m
aterial rate

"PAWC-
The amou
nt_of wate
r_available
_to_the pl
ants"

Reference

ETO
Sand rate

Silt rate

"urban AE
T/P"

Urban PE
T

0.68*Reference ETO

(1-"cultivated AET/P")*Climate regulation.Precipitation

1+(Forest PET/Climate regulation.Precipitation)-
(1+(Forest PET/Climate_regulation.Precipitation)™"w-
forest")(1/"w-forest")

5.2*%("PAWC-
The amount of water available to the plants")

1*Reference ETO

(1-"Forest AET/P")*Climate regulation.Precipitation

1+(Grassland PET/Climate regulation.Precipitation)-
(1+(Grassland PET/Climate_regulation.Precipitation)""w-
grassland")(1/"w-grassland")

2.5*("PAWC-
The amount of water available to the plants")

Reference ET0*0.85

(1-"Grassland  AET/P")*Climate_regulation.Precipitation

5*(1+0.6*(Soil_conservation.Soil Conservation_quantity-
INIT(Soil conservation.Soil_Conservation_quantity))/INIT
(Soil _conservation.Soil_Conservation_quantity))

54.509 - (0.132 * Sand rate) - (0.003 * Sand_rate”2) -
(0.055 * Silt rate) - (0.006 * Silt_rate”2) + (0.738 *
Clay rate) - (0.007 * Clay_rate"2) - (2.688 *
Organic_material rate) + 0.501

*( Organic_material rate)"2

0.0023*1361*(Climate_regulation. Temperature+15.8)*SQR
T(15-0.0123*Climate_regulation.Precipitation)"0.76*6
100-Organic_material rate-Clay rate-Silt rate

30

1+(Urban_PET/Climate regulation.Precipitation)-
(1+(Urban_PET/Climate_regulation.Precipitation)™"w-
construction")(1/"w-construction")

MIN(0.3*Reference ETO, Climate regulation.Precipitation)
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"w-barren" |0.2*%20*(Barren. AWC/Climate regulation.Precipitation)+7

cj)vr;s tructio 0.2*20*(Construction AWC/Climate_regulation.Precipitati

" on)+7

"w- 0.2*20*(Cultivated AWC/Climate_regulation.Precipitation

cultivated" |)+7

"w-forest" |0.2*%20*(Forest AWC/Climate regulation.Precipitation)+7

"w- 0.2*20*(Grassland AWC/Climate regulation.Precipitation)

grassland" |+7

"w-water" |0.2*%20*(Water AWC/Climate regulation.Precipitation)+7

Water A | 0.1*("PAWC-

WwC The amount of water available to the plants")

Water cov

:5;:16;1;221— (1-"Water_land AET/P")*Climate regulation.Precipitation

d

"Water lan I+(water _land PET/Climate regulation.Precipitation)-

d AET/P" (1+(water land PET/Climate regulation.Precipitation)""w-

- water")N(1/"w-water")

w;ltae;_land MIN(1*Reference ETO, Climate regulation.Precipitation)

Cultivated water yield*"Land use/ land cover".Cultivate
_ _y _use/_land_

d_land+Construction_land water yield*"Land use/ land ¢

Water Yie over".Construction_land+Forest water yield*"Land use/ 1

d and cover".Forestland+Water covered land water yield*"
Land use/ land cover".Water covered land+Barren water
_yield*"Land use/ land cover".Barren land+Grassland w
ater yield*"Land use/ land cover".Grassland)/15463289

6.3.12 Results of the statistical validation tests.

Table 6.3-4 Results of the statistical validation tests.
Model building: 1991-2005
Model validation: 2005-2020

Variable

Coefficient of Percent RMSE- Discrepancy
determination Bias observations coefficient
(R2) (PBIAS) standard (Uo)

deviation ratio

(RSR)
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Population 0.95
Barren land 0.97
Construction 0.99
land

Cultivated land  0.98
Forest land 0.93
Grassland 0.83
Water covered 0.78
land

Farming 0.91
production

Carbon 0.97
emission

GDP 0.99

0.14
8.11
-1.68

0.27

-2.22

4.40

3.49

1.85

-9.02

7.19

0.23
0.52
0.29

0.26

0.40

0.55

0.64

0.46

0.83

0.22

0.00
0.06
0.01

0.00

0.01

0.03

0.02

0.01

0.05

0.04

Note: Coefficient of determination (R?) value close to 1.0 indicates the model

simulates well;

PBIAS value <+ 10% indicates good model fit;

RSR value < 0.50 indicates good model fit.

The Up values range from 0 to 1, where 0 indicates ‘perfect prediction’ and 1 indicates

‘worse prediction’ of the model behaviour.
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6.3.13 One parameter at time sensitivity analyses

Aesthetic landscape |
Biodiversity ]
Water yield | I |
Carbon storage ]
Carbon emission [
@ Aquatic production I |
% Farming production [ -
g Water covered land I
A~ Grassland [ |
Forest land ]
Cultivated land -
Construction land I
GDP

Higher education rate
-30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0
Change in Population (percent)

m 10% decrease  m 10% increase

Biodiversity [ |
Water yield [
Carbon storage ]
Carbon emission
Farming production
Water covered land

Grassland

Paramters

|
|
[
|
Forest land [
Cultivated land [ |
Barren land |
GDP I
B

Population

-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0

Change in Construction (percent)
m 10% decrease  m 10% increase

Figure 6.3-11 Outputs of the one parameter at time sensitivity analyses(Continue).



GDP

Primary GDP
Population
Aesthetic landscape
Biodiversity
Water yield

Carbon storage

Paramters

Carbon emission
Farming production
Water covered land
Forest land
Barren land

Construction land

-20.0

Aesthetic landscape
Biodiversity

Water yield

Carbon storage
Carbon emission

Water covered land

Paramters

Cultivated land
Barren land
Construction land
GDP

Population

-15.0

-10.0 0.0 10.0 20.0 30.0

Change in Cropland (percent)
m 10% decrease  m 10% increase

-10.0 -5.0 0.0 5.0 10.0 15.0

Change in forestland (percent)

m 10% decrease  m 10% increase

Figure 6.3-11 Outputs of the one parameter at time sensitivity analyses(Continue).
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Aesthetic landscape
Biodiversity

Water yield

Carbon storage
Carbon emission

% Aquatic production
g Farming production
E Grassland
Forest land

Cultivated land
Barren land
Construction land
GDP

-10.0

Birth

Higher education
Aesthetic landscape
Biodiversity
Carbon storage
Carbon emission

Aquatic production

Paramters

Farming production
Grassland

Forest land
Cultivated land
Barren land
Construction land

-15.0

-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0
Change in water body (percent)
m 10% decrease  m 10% increase

-10.0 -5.0 0.0 5.0
Change in GDP (percent)

m 10% decrease  m 10% increase

Figure 6.3-11 Outputs of the one parameter at time sensitivity analyses.
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6.3.14 Monte Carlo Sensitivity analysis

Confidence Intervals for Construction land
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Confidence Intervals for Grassland
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Confidence Intervals for Forest land
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Confidence Intervals for Aquatic production
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Confidence Intervals for Water Yield
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Confidence Intervals for Biodiversity
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Confidence Intervals for GDP
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Figure 6.3-12 Outcomes of the Monte Carlo Sensitivity analysis. Parameter used for this
analysis are -Population, construction land, forestland, cultivated land, grassland, barren
land, water covered land, wetland, urban and industrial land/ person, rural land/ person. The
wider the confidence bound, the more sensitive the variable is to the combined effects of

multiple parameter changes.
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6.3.15 Description of “what if” and SSP scenarios

Table 6.3-3 Description of “what if” and SSP scenarios.

Population S1 This run simulates the effects of 10% population
decrease
S2 This run simulates the effects of 20% population
decrease
S3 This run simulates the effects of 30% population
decrease
S4 This run simulates the effects of 30% population
growth
Consumer price index | S5 This run simulates the effects of 30% increase in
(CPD) consumer price index (CPI)
S6 This run simulates the effects of 50% increase in
consumer price index (CPI)
S7 This run simulates the effects of 30% decrease in
consumer price index (CPI)
S8 This run simulates the effects of 50% decrease in
consumer price index (CPI)
Population and S9 This run simulates the effects of 20% population
consumer price index decrease, 30% increase in consumer price index
(CPI) (CP))
S10 | This run simulates the effects of 20% population
growth, 30% decrease in consumer price index
(CP))
Temperature (BAU S11 | This run simulates the effects of 1.5°C rise of
increase 3.24°C: temperature (14.12+1.5=15.62°C)
(14.1243.24=17.36°C)) | S12 | This run simulates the effects of 2.5°C rise of
temperature (14.12+2.5=16.62°C)
S13 | This run simulates the effects of 4.6°C rise of
temperature (14.12+4.6=18.72°C)
S14 | This run simulates the effects of 5.7°C rise of

temperature (14.12+5.7=19.82°C)
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Rainfall (BAU S15 | 80% of rainfall (556.8mm)
decrease to 624mmin | S16 | 70% of rainfall (487.2mm)
2100, is 90% rainfall in | S17 | 50% of rainfall (348mm)

2020) S18 | 110% of rainfall (765mm)

S19 | 150% of rainfall (1044mm)

Temperature and S20 | This run simulates the effects of 1.5°C rise of
rainfall temperature (14.12+1.5=15.62°C) and150% of
rainfall (1044mm)

S21 | This run simulates the effects of 2.5°C rise of
temperature (14.12+2.5=16.62°C) and 110% of
rainfall (765mm)

S22 | This run simulates the effects of 4.6°C rise of
temperature (14.12+4.6=18.72°C) and 70% of
rainfall (487.2mm)

S23 | This run simulates the effects of 5.7°C rise of
temperature (14.12+5.7=19.82°C) and 50% of
rainfall (348mm)

Water consumption S24 | Water consumption decrease 30%, which caused
water cover land increase

S25 | Water consumption increases 30%, which caused
water cover land loss

Drought- water saving | S26 | Water consumption decreases 30% caused water

scenario cover land increase; 5.7°C rise of temperature
(14.12+5.7=19.82°C) and 50% of rainfall
(348mm)

Drought- large water S27 | Water consumption increases 30% cause water

consumption scenario

cover land loss; 5.7°C rise of temperature
(14.12+5.7=19.82°C) and 50% of rainfall
(348mm)
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Water abundance - S28 | Water consumption increase 30% caused water
large water cover land loss; 1.5°C rise of temperature
consumption scenario (14.12+1.5=15.62°C) and 150% of rainfall
(1044mm)
Water abundance - S29 | Water consumption decrease 30% cause water
water saving scenario cover land increase; 1.5°C rise of temperature
(14.12+1.5=15.62°C) and 150% of rainfall
(1044mm)
Urbanization rate S30 | Urbanization rates increase to 92% in 2100
(BAU-maximum 80% ['§31 | Urbanization rates increase to 60% in 2100
in 2100) S32 | Urbanization rates increase to 70% in 2100
Farmland S33 | Annual per capita farmland management growth:
0.003 (BAU (0.0006))
S34 | Annual per capita farmland management growth:
0.005 (BAU (0.0006))
S35 | Annual per capita farmland management growth:
0.0001 (BAU (0.0006))
Grassland S36 | Grassland to construction land: 50 years (BAU-
30)
S37 | Grassland to construction land: 20 years (BAU-
30)
S38 | Grassland to construction land: 10 years (BAU-
30)
Carbon emission S39 | No Carbon emission control
S40 | Carbon emission control Intensity: +40%
S41 | Carbon emission control Intensity: -30%
S42 | Carbon emission control Intensity: -20%
Forestland S43 | Afforestation for carbon sequestration: + 12%,

farmland to forest: 20years (BAU-50 years),
aesthetic landscape makes forest: 15 years (BAU-
20 years);




268

S44

Afforestation for carbon sequestration: + 20%,
farmland to forest: 10 years (BAU-50 years),
aesthetic landscape makes forest: 10 years (BAU-
20 years);

S45

No Afforestation for carbon sequestration,
farmland to forest: 70 years (BAU-50 years),
aesthetic landscape makes forest: 30 years (BAU-
20 years).

Barren land

S46

Barren land to construction land: 20 years (BAU-

5)

S47

Barren land to construction land: 10 years (BAU-

5)

S48

Barren land to construction land: 1 year (BAU-5)

Construction, forest,

grassland and farmland

S49

Urbanization rate increase to 70% in 2100
Afforestation for carbon sequestration: + 20%,
farmland to forest: 10 years (BAU-50 years),
aesthetic landscape makes forest: 10 years (BAU-
20 years);

Grassland to construction land: 50 years (BAU-30
years)

Annual per capita farmland management growth:

0.005 (BAU-0.0006).

S50

Urbanization rate increase to 92% in 2100

No Afforestation for carbon sequestration,
farmland to forest: 70 years (BAU-50 years),
aesthetic landscape makes forest: 30 years (BAU-
20 years);

Grassland to construction land: 10 years (BAU-30
years)

Annual per capita farmland management growth:

0.0001 (BAU (0.0006))

Shared Socio-economic Pathways (SSPs).
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Sustainability

SSP1

Less life stress: Population: -20%, Urbanization
rate: 60%; Consumer price index (CPI): -30%
Better climate situation: Temperature: +1.5°C,
rainfall: +30%;

Strong water-saving regulation: Water
consumption control to 80% to promote water
covered land increase

Strong farmland regulation: Annual per capita
farmland management growth: 0.005
(BAU(0.0006))

Grain to Green program and Green-tourism
requirement: Afforestation for carbon
sequestration: + 20%, farmland to forest: 10 years
(BAU-50 years), aesthetic landscape makes forest:
10 years (BAU-30 years);

Better grassland and barren land protection:
grassland to construction: 50 years (BAU-30
years);

barren land to construction land: 20 years (BAU-5
years);

Carbon emission control Intensity: +40%

Middle of the road

SSp2

Population: no change, Urbanization rate: no
change (BAU: 80%); Consumer price index
(CPI): no changeBetter climate

situation: Temperature: +3.5°C (BAU: 3.2°C),
rainfall: -10%;Medium water-saving regulation:
No change of Water consumption and water
covered landMedium farmland regulation: Annual
per capita farmland management growth: no
changeMedium forestland regulation:
Afforestation for carbon sequestration: no change,
farmland to forest: 40 years (BAU-50 years),
aesthetic landscape makes forest: 15 years (BAU-
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20 years);Limited grassland regulation: grassland
to construction: no change (BAU-30
years);Limited barrenland regulation: barren land
to construction land: 10 years (BAU-5
years);Limited carbon emission control Intensity:

no change

Regional rivalry
pathway

SSP3

Bad social-economy background: Population:
+30%, Urbanization rate: 60%; Consumer price
index (CPI): +50%

Bad climate situation: 4.6°C rise of temperature
(14.12+4.6=18.72°C) and 70% of rainfall
(487.2mm)

Huge water press: Less water-saving regulation:
Water consumption increase 20%, makes water
covered land loss.

Limited farmland support: Annual per capita
farmland management growth: 0.005 (BAU-
0.0006)

Limited forestland strategy: Afforestation for
carbon sequestration: - 20%, farmland to forest:
70 years (BAU-50 years), aesthetic landscape
makes forest: 40 years (BAU-20 years);
Constructed land emcroached Grassland and
barren land: grassland to construction: 10 years
(BAU-30 years); barren land to construction land:
1 years (BAU-5 years);

Limited carbon emission control Intensity: -

30%
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Inequality SSP4 | Inequal social-economy background:
Population: +20%, Urbanization rate: 70%;
Consumer price index (CPI): +30%

Better climate situation:4.6°C rise of
temperature (14.12+4.6=18.72°C) and 80% of
rainfall

Less vs more water-saving regulation: Water
consumption increase 10%, makes water covered
land loss.

Good vs bad farmland support: Annual per
capita farmland management growth: 0.001
(BAU-0.0006)

Good vs bad forestland regulation:
Afforestation for carbon sequestration: + 10%,
farmland to forest: 40 years (BAU-50 years),
aesthetic landscape makes forest: 15 years (BAU-
20 years);

Limited grassland regulation: grassland to
construction: 20 years (BAU-30 years);
Limited barrenland regulation: barren land to
construction land: 3 years (BAU-5 years);

Limited carbon emission control Intensity:

+20%
Fossil-fueled SSP5 | Better social-economic environment: Population:
development +5%, Urbanization rate: 92%; Consumer price

index (CPI): -50%

The heaviest drought situation: Temperature:
5.7°C rise of temperature (14.12+5.7=19.82°C)
and 50% of rainfall (348mm)

More water requirment: Water consumption
increase 30%, makes water covered land loss.
Better farm management tech: Annual per capita

farmland management growth: 0.005
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(BAU(0.0006))
No afforestration strategy: No Afforestation for
carbon sequestration, farmland to forest: 70 years
(BAU-50 years), aesthetic landscape makes forest:
30 years (BAU-20 years).

Constructed land emcroached Grassland and
barren land: grassland to construction: 10 years
(BAU-30 years); barren land to construction land:
1 years (BAU-5 years);

No carbon emission regulation: No Carbon

emission control
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